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Preface

Themathematician and physicist, Cornelius Lanczos (1893–1974), wrote
one of the best books of physics explanation that has ever been writ-
ten: The Variational Principles of Mechanics.1 It explains the truemeaning and
philosophical content of the Principle of Least Action. The present book
is a shorter and simplified version of that classic - but it is an original
interpretation (anything taken directly from Lanczos is attributed and
referenced by page number); it is also a paean to Lanczos.
Who is the book for? It is for you! It concerns a principle that underpins

the whole of physics, so how could it not be important to understand
even a tiny bit of it? The greatest theories have one common feature -
they always bring in wisdom far-surpassing their original remit, extend-
ing into almost every walk of life. Therefore, one should not limit one’s
area of study but rather follow the maxim: “The more you know, the
more you can know; themore you understand, themore you can under-
stand.”2 Moreover, as well as an increased understanding of the world,
you will be privy to a rare reward - to “theories of excessive beauty”.3

It is true that the reader is assumed to have a background in the
physical sciences, however a layreader could also read this book, with
profit and enjoyment, by skim-reading the mathematics, or by read-
ing just the Introduction (Chapter 1), the Final Words (Chapter 9), and
the historical and popular chapters (2 and 8). Furthermore, the book
is not a textbook: there are many equations, but the aim is to explain -
why these equations and not others, and what do the equations mean?4

The appendices are usually at a more advanced level and condensed in
style, but they may be entirely passed over without loss of continuity
in the main text. Apart from the invaluable asset of seeing how a prob-
lem is solved, the reason for somany appendices is twofold: to provide a

1 Lanczos C, The Variational Principles of Mechanics, University of Toronto Press (1949). All
page numbers will refer to the fourth edition, Dover Publications, Inc. New York (1970),
and we shall write ‘Lanczos, page x’.

2 (author’s maxim)
3 Lanczos, page 229.
4 This is in contrast to the approach in Synge and Griffith, Principles of Mechanics,

3rd edition, McGraw-Hill Book Company, Inc (1959), page 413, where the advice is: “Do
not attempt to see a physical meaning in these [mathematical] operations; it will not
help.”
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compact resource for the physicist (for example, a physicist on a beach
holiday); and for the layreader to knowwhat subject-headings to follow
up at a later stage, if so desired. Enrichment material has been included
but often as optional reading (in small font), or in parentheses, or foot-
notes. Also, we have avoided detailing all the qualifications, exemptions,
and special cases, in order to be able to say things simply, andmake bold
statements.
Terminology: on the authority of both Lanczos, and Richard

Feynman,5 we refer to all the appropriate principles - Hamilton’s
Principle, Jacobi’s Principle, Lagrange’s Principle, and Maupertuis’s
Principle - as Principles of Least Action, as they are generically so.
‘Variational Mechanics’ means any physics problem that uses the
Principle of Least Action. Also, the fact that we usually say ‘least’ as
opposed to ‘stationary’ is explained in the main text - see Section 6.6.
The University of La Trobe is thanked for granting me an hon-

orary research associateship, and for the use of library and comput-
ing facilities. It was Joe Petrolito, Emeritus Professor of Engineering
at La Trobe, Bendigo campus, who introduced me to the website of
Edwin F Taylor, Senior Research Scientist Emeritus at theMassachusetts
Institute of Technology (MIT). This led to a short but rewarding email
correspondence.
At OUP, I thank Sönke Adlung and Ania Wronski. The use of LaTeX,

Ubuntu, Gimp, Wikipedia, Google, Metapost, Scilab, and Mfpic are
gratefully acknowledged. Mal Haysom and Deborah Peake are thanked
for their help with the diagrams (Deborah drew the maze, the encum-
bered porcupine and Stevin’s ‘Wreath of Spheres’). George Rogers,
librarian at DIAS, once again anticipated my needs and supplied superb
images of Lanczos and of Hamilton, with no fuss. Most of all, I am grate-
ful to Gerald Sussman, Panasonic Professor of Electrical Engineering at
MIT, who undertook a critical reading of the book prior to printing.
The errors he identified have been corrected. Finally, I thank Murray
Peake for helpful discussions on maths and physics, and for leading me
to Lanczos in the first place.
If I have inspired any reader to seek out the work of the master,

Cornelius Lanczos, then it will be ‘mission accomplished’.

5 Feynman R P, Feynman’s Lectures on Physics, Volume II, Chapter 19.



Contents

List of Figures xi

1 Introduction 1

2 Antecedents 12

3 Mathematics and physics preliminaries: of hills
and plains and other things 31

4 The Principle of Virtual Work 59

5 D’Alembert’s Principle 88

6 Lagrangian Mechanics 107

7 Hamiltonian Mechanics 143

8 The whole of physics 183

9 Final words 192

A1.1 Newton’s Laws of Motion 197

A2.1 Portraits of the physicists 198

A3.1 Reversible displacements 201

A6.1 Worked examples in Lagrangian Mechanics 202

A6.2 Proof that T is a function of v2 217

A6.3 Energy conservation and the homogeneity of
time 222

A6.4 The method of Lagrange Multipliers 225

A6.5 Generalized Forces 228

A7.1 Hamilton’s Transformation, examples 230

A7.2 Demonstration that the pi s are independent
coordinates 232

A7.3 Worked examples in Hamiltonian Mechanics 233

A7.4 Incompressibility of the phase fluid 237

A7.5 Energy conservation in extended phase space 238

A7.6 Link between the action, S, and the ‘circulation’ 241



x Contents

A7.7 Transformation equations linking p and q via S 243

A7.8 Infinitesimal canonical transformations 244

A7.9 Perpendicularity of wavefronts and rays 248

A7.10 Problems solved using the Hamilton-Jacobi
Equation 250

A7.11 Quasi refractive index in mechanics 255

A7.12 Einstein’s link between Action and the de
Broglie waves 256

Bibliography and Further Reading 259
Index 261



List of Figures

1.1 The suitors’ puzzle. 2
2.1 Weights, connected by a cord, on inclined planes. 13
2.2 ‘Wreath of spheres’ draped over inclined planes (after Stevin). 13
2.3 Huygens’s canal-boat thought experiment. 15
2.4 Brachystochrone, curve of ‘swiftest descent’. (schematic) 19
3.1 “Anamorphic Column” by Istvan Orosz. 43
3.2 The path of a cannon ball. (schematic) 49
3.3 Is the ladder stable? 52
3.4 The function, f (x), and some variations, f var(x). 56
3.5 The distinction between df and δ. 57
4.1 Weighted bar supported at one end. 70
4.2 The ‘black box’. 79
4.3 Knob and slider. 80
4.4 Stability of a ladder. 81
4.5 Two springs connected to a mass. 81
4.6 Spring loaded with a weight. 83
4.7 Soap bubble. 83
5.1 Connected masses, ‘Half-Atwood’ and ‘Black Box’. 93
5.2 ‘Fictitious Forces’, examples. 97
5.3 Newton’s Bucket. 101
7.1 Nicolas Poussin, A Dance to the Music of Time. 142
7.2 An oscillating spring. 158
7.3 Simple pendulum. 159
7.4 Spinning top. 160
7.5 Wavefront of common action in configuration space. 173
7.6 Huygens’s wavelets. 176
7.7 Construction of the next wavefront. 177

A3.1 Washing-line seen through a window. 201
A6.1.1 Plane polar coordinates. 203
A6.1.2 Atwood’s Machine. 205
A6.1.3 The ‘Half-Atwood’ Machine. 206
A6.1.4 Mass attached to a spring. 207
A6.1.5 Spherical pendulum. 210
A6.1.6 Projectile motion. 211
A6.1.7 Electrical and mechanical systems compared. 214



xii List of Figures

A6.1.8 One block sliding on another block. 215
A7.1 Coordinates for the spherical pendulum. 231



1
Introduction

It would be wonderful if there was one principle, simple to state, that
could account for every process in the physical universe. But there
is such a principle, a surprisingly well-kept secret, that accounts for
almost every physical process. It is a principle that is more powerful than
Newton’s ‘F = ma’, and a principle that doesn’t have energy conser-
vation as a requirement in every scenario. We know that Newtonian
Mechanics must be replaced when speeds are very high, or the masses
are tiny, or huge - but this ‘new’ principle still applies in these extreme
regimes. How can one principle explain so much? The clue comes from
the deep wisdom of the eighteenth-century French philosophe, Jean le
Rond d’Alembert:1

“L’univers, pour qui saurait l’embrasser d’un seul point de vue,
ne serait, s’il est permis de le dire,
qu’un fait unique et une grande vérité.”

(“If one could grasp the whole Universe from one viewpoint,
it would appear, if it is permitted to say this,
as a unique fact and a great truth.”)

No one knows whether d’Alembert’s beautiful claim is correct but one
thing is certain, if we cannot find one universal viewpoint then we will
not arrive at one universal truth. For our viewpoint to be universal it
is not a question of us all looking at the view from the same hilltop,
rather, it is a requirement that all viewpoints are equivalent, and that
there is just one universal rule or law or algorithm that solves the prob-
lem. Our new principle achieves this - but it seems incredible that one
simple ‘algorithm’ could cope with all the specificity, variety, and com-
plexity across the whole of physics. To make this plausible, we consider
the following fable.

1 D’Alembert, J le R, Discours préliminaire de l’encyclopédie, 1751.

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001



2 The Lazy Universe

Figure 1.1 The suitors’ puzzle.

There once was a King and he set a fiendish puzzle for prospect-
ive suitors who wanted to marry his daughter, the beautiful princess.
The King had constructed a maze and the successful suitor had to pro-
vide the princess with instructions for collecting treasure from a casket.
The young suitors had a few hours to look at a map of the maze and
prepare their instructions. The King then looked at their answers and
quickly whittled away the number of competitors to just two. These
two suitors, Alfredo and Bruno, had very different approaches to the
puzzle. Alfredo provided detailed instructions for every route, advising
the princess to sight the tall column, visible from a distance over the
hedges, to let her nose guide her to the fragrance of the frangipani tree,
and also to listen out for the sound of bells chiming in the bell-tower,
and water splashing at the fountain. Bruno came forward with just a
tiny scrap of paper on which it said, “Wherever you may find yourself,
turn left at the next intersection. Eventually you will reach the casket.”
(The King had assured the contestants that there were no disconnected
‘islands’ within the maze.)
The King, a veritable sage, awarded the hand of his daughter in

marriage to this second suitor.
The amazing thing about this suitor’s instructions is that they are

very simple to state and they are universal - they apply to any maze
(although the maze must satisfy certain geometrical restrictions, for
example, it cannot contain disconnected islands). There is also another



Introduction 3

curious attribute of Bruno’s algorithm - it is local. The princess need only
ever look as far ahead as the very next step (while always keeping an eye
open for the casket). Although Alfredo’s instructions may be broken
down into steps the method is not local in the true sense (there are ref-
erences to distant features - the sound of the fountain, the smell of the
frangipani, the sight and sound of the bells in the bell-tower).
This is only a story but it demonstrates some essential points. In our

new principle the method is truly local, and this is never the case for
NewtonianMechanics, even when a pathmay be broken down into lots
of tiny incremental steps. But most astounding of all we shall find that
the ensuing equations are invariant, taking exactly the same form, no
matter what the scenario or what coordinates are used. It is not even
necessary that the setting is time-independent, or that the components
are passive (so the maze could writhe and undulate with time, and
the princess could affect the maze, say, by trimming the hedges as
she passed by). The reason for this invariance is that we have at last
found something absolute: it is not a universal timepiece, yardstick, or
reference frame, for there are none, it is a principle, and one that applies
across almost every area of physics. We introduce it by way of a brief
historical aside.
One of the most awe-inspiring developments in physics has been the

shift from Newton’s to Einstein’s view of gravity. In Newton’s Theory
of Universal Gravitation, gravity is a force acting between bodies, how-
ever near or far. In Einstein’s Theory of Gravitation (the Theory of
General Relativity), the force is completely dispensedwith. It is replaced
by a patchwork of reference frames, sufficiently small, but seamlessly
joined together, and, instead of responding to a force, the orbiting body
now responds to geometry - the ‘curvature’ of ‘space’. This is often rep-
resented heuristically by the image of, say, the Earth resting on a large
two-dimensional surface, such as a trampoline, distorting this surface,
and thereby affecting the trajectory of nearby small bodies, such as the
Moon. These two theories - Newton’s and Einstein’s - are utterly dif-
ferent, and yet, amazingly, the experimental differences, for example,
the predictions of the Moon’s orbit, are practically nil. It turns out
that Einstein’s approach involves much more complicated calculations
and, as we have just stated, barely any practical advantage - so why use
it? The answer is that it has deeper explanatory power, it is applicable
over a much greater range of problems, and it is philosophically more
sound.
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We have been talking just of gravitation, but the principle that we
introduce explains not only gravitation but all kinds of problems in
the physical sciences (statics and dynamics, optics, electricity and mag-
netism, quantum mechanics, physical chemistry, statistical mechanics,
astronomy,materials science, hydrodynamics, quantum electrodynam-
ics (QED), and so on); it also has deeper explanatory power, is applicable
over a much greater range of problems, and is philosophically more
sound. This principle is the Principle of Stationary Action (the PSA). It
can be stated as:

The Principle of Stationary Action
The physical system seeks out the ‘flattest’ region of ‘space’.

This is equivalent to choosing the ‘straightest’ possible path, which
(usually) translates as the path of least ‘distance’. One more thing,
whether considering the ‘flatness of space’ or the ‘straightness of paths’,
or the ‘least distance’, only the ‘space’ nearby - that is to say, locally, -
needs to be inspected.
The subtitle of this book is the Principle of Least Action (PLA), but the

principle just given is the Principle of StationaryAction (PSA)? ‘Stationary’
is a mathematical term meaning ‘at a flat point of ‘space’ ’ but whether
that flat point implies a least path requires a further investigation -
therefore the PSA is the more general principle, and incorporates the
PLA. However, we shall find that the more stringent condition, the
PLA, is the one we need, and later on we’ll switch to calling our prin-
ciple: the Principle of Least Action. We’ll explain this in a later chapter
(Section 6.6, Chapter 6).
Einstein’s Theory of Special Relativity, that preceded his theory of

General Relativity, starts with two postulates: 1) the laws of physics
take the same form in every reference frame,2 2) the speed of light in
a vacuum is a constant. These two postulates are strikingly different:
the first postulate (the Principle of Relativity) is philosophical in char-
acter - Einstein coached us into realizing that physics just couldn’t be
practised unless postulate 1) applied. On the other hand, postulate 2)
appears to be empirical - the speed of light is constant, yes, but perhaps,
in another Universe, it might have been variable? Similarly, in the case

2 When we say ‘reference frame’ we shall automatically mean a ‘valid reference
frame’.
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of the Principle of Stationary Action, the Principle has two postulates of
very different natures. The first postulate, 1), we have already described -
that the system ‘space’ is as ‘flat’ as possible, locally. This appears reason-
able but rather abstract and philosophical; it soundsmore like geometry
than physics, and we need to know - ‘flat’ with respect to what? This is
where the second postulate comes in, the one that contains the physical
input. Postulate 2) states that what is actually being flattened is a cer-
tain specific physical quantity - ‘action’. This quantity has dimensions of
energy× time, or linear momentum× distance or angular momentum× angle, and
so on. In one of its first incarnations, ‘action’ was given as ‘m×v×ds’,
where m is the mass of a ‘free’ particle, v is its speed, and ds is a small
distance along the particle’s path. As we have to do with a postulate,
we cannot justify the choice by deduction from even more elemental
principles. Nevertheless, ‘action’ does seem like a worthy candidate for
a telling physical quantity - it is a scalar (a pure magnitude, having no
direction - therefore more likely to be an invariant), it ‘spans the phys-
ical space’ (nothing crucial is missed out), and it does so in the simplest
way possible (mvds is postulated rather than, say, m2v3d4s/dt4).
D’Alembert’s “one viewpoint” implies objectivity, and this is diffi-

cult to arrive at in everyday life where prejudice abounds. For example:
we barely notice the reaction-force against the soles of our feet, or on
our bottoms, that is present almost every minute of our lives (Einstein
teaches us that we are thereby not in ‘free-fall’, and so do not serve as a
‘natural’ frame of reference); on the other hand, in the rapidly rotating
‘gravitron’ at the funfair, we feel pinned as if by a great weight but have
no sensation of our spinning motion (we merely notice that we can
barely nod ormove our arms). When revisiting a park that we knew as a
child, we find that it resembles a pocket handkerchief rather than a vast
estate - is the slight increase in the height of our eyes the source of this
change? No, it arises because we have undergone an enormous (non-
local) translation in time, during which our brain has totally altered.
We watch the water sloshing about in a neighbour’s swimming pool -
perhaps they have installed a wave-generating machine? Upon closer
inspection we find nomachine, but realize that ‘a giant hand’ - an Earth
tremor - is gently rocking the pool: therefore our initial assumption of
an isolated system, defined by the edges of the pool, is wrong.
What helps us to achieve objectivity in physics (as opposed to every-

day life) is the fact that we are bound by the strictures of mathemat-
ical tests. The PSA is centred on a mathematical test - a ‘test of the
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flatness of ‘space’ ’ - which is remarkable for its ability to winnow away
the distracting observer-dependent features and so arrive at the true
invariant laws. It succeeds in this because it involves an ‘extremal’ fea-
ture of the mathematical landscape (something like ‘shortest route
between Peshawar and Kabul’), and these features are unique in that
they don’t depend upon the type of map or even the units used (the
route is shortest whether we use aMercator’s or a Peter’s projection, and
whether wemeasure in feet or inmetres). Before the test can be applied,
we have to define what we mean by ‘space’. We follow the historical
development, and return to our discussion of Newton.
You most likely know Newton’s Laws of Motion3 but we want now

to give a different perspective of them, emphasizing the philosophical
assumptions. An implicit premise of Newton’s Mechanics was the out-
standing advance: ‘space’ and ‘physics’ are totally separate from each
other. ‘Physics’ means forces, masses, andmasses inmotion. ‘Space’, fol-
lowing Descartes’ invention of the coordinate system, means the three
everyday space dimensions (commonly designated x, y, and z), and the
time, t. All of x, y, z, and t are assumed independent of each other, and
each goes on to infinity. Gone are the sixteenth century’s tendencies,
empathies, abhorrences, and vortices; and Newton’s ‘space’ is empty,
not full like Descartes’. (It is a void, which Newton does not abhor.)
Next after ‘space’ come particles - bodies with no internal structure

but having an intrinsic property, mass. By Law (Newton’s First), each
‘free’ particle is either at rest, or moves at constant speed and in a
constant direction.
Finally, forces, F, are introduced, such as an attractive force between

one particle and another. A force has one effect and one effect only - it
causes a particle to accelerate. This is where mass plays its role, it deter-
mines how big the acceleration shall be, for a given force. (Apart from
this, mass is inert - it doesn’t depend on when or where the particle is,
or on its state ofmotion.) All this is asserted in the Second Law, F = ma.4

Another outstanding hypothesis was that for composite bodies (bodies
made frommany particles), or indeed for any complicated arrangement
of particles, the net outcome could be obtained by ‘summing’ over the

3 See Appendix A1.1, Newton’s Laws of Motion.
4 (But it could all have been somuchmore complicated; the force could have left the

motion unchanged but caused themass to swell, or it could have caused an acceleration
not in line with F, or caused a third-order change in the position, and so on.)
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influence of each particle considered on its own.5 Thus was born the
idea of the ‘rigid body’, an extended body made up from separate par-
ticles, but which could itself be treated as if it were one single particle,
with all its mass concentrated at one point.
325 years on fromNewton’s “Principia”6 it is hard to remain sufficiently

impressed. As the philosopher, Schopenhauer, said, a theory passes
from being rejected as ridiculous to being accepted but taken to be
obvious.7 ConsiderNewton’s use of ‘acceleration’. It was already known,
from Galileo’s Principle of Relativity, that uniform motion is relative
to the observer. Newton turned this around: all non-uniform, that is
to say, accelerated, motion is not relative to the observer, it can be known
absolutely. Acceleration with respect to what? Answer, with respect
to ‘space’. But as the accelerations are absolute, then Newton’s ‘space’
is absolute. So we have arrived back at Newton’s wonderful abstrac-
tion, an infinite ‘space’, an inert and absolute background to physical
happenings.
With the PSA, every tenet of Newton’s Mechanics is challenged: the

absolutes of Newton are avoided as every measure - whether it be a pos-
ition, a speed, a direction, a time, and so on - is always defined with
reference to something within the given system; action-at-a-distance
does not occur - a global picture is built up, piece by piece, but by anten-
nae which are sensitive only to conditions locally; the axes of ‘space’ no
longer extend to infinity, are not necessarily independent of each other,
and not necessarily independent of the masses within; and Newton’s
modular approach, building up complexity frommore and more com-
plicated arrangements of particles, each taken singly, is replaced by a
holistic ‘systems’ approach.
Let’s explain this ‘systems’ approach by analogy. Bertrand Russell

(philosopher and mathematician) quipped that the activities of man-
kind amounted to the redistribution of matter within ±0.2% of the
Earth, at its surface (this was before the era of space travel). To check
Russell’s claim, we could exhaustively track the motion of every sin-
gle person, throughout recorded history, and note what masses they
were carrying andwhere they deposited them; or, we could estimate the

5 (Again, it could have beenmore complicated, the force might have been cast anew
for, say, each trio of particles.)

6 Newton, Isaac, Philosophiae naturalis principia mathematica (The Mathematical Principles of
Natural Philosophy), 1687.

7 (There is then the third phase, when the theory is again rejected.)
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matter-content of cities built, crops grown, monuments constructed,
bodies buried, and so on. In the second, ‘systems’, approach, we have
lost the simplicity of basic elements (a person, their movements, what
they are carrying) and instead have more abstract concepts relating
to the whole system (cities, roads, pyramids, etc.). Some totally new
possibilities arise (‘the deceased’) that were not catered for (!) in the first
approach. We end up with a static tally of the mass distribution.
Another, more dynamic, example is given by the description of a

football match. In the modular description we have only ‘players’
and ‘a football’; in the other approach, the ‘systems-view’, we have
‘defence-position’, ‘attack’, ‘tackling’, ‘dribbling the ball’, ‘goal-kick’,
and so on. One counter-intuitive aspect of this systems-view is that we
appear to have lost that quintessential feature of motion - its direc-
tionality. However, we soon realize that it is not lost but embedded in
the whole-system structures (for example, ‘goal-kick’ has no absolute
direction (say, 30◦ West) yet it conveys all the directional information
required, and makes reference only to features within the system - the
goal posts).
Returning now to the PSA, the method is as follows: (i) Instead of

particles we have individual components of the system. These are chosen in
a system-specific way. (They can be billiard balls, atoms, planets, lever
arm, pendulum, capacitor, and so on, as the given problem demands);
(ii) Instead of forces there are ‘scalar structure functions’, what in a pre-
vious life we have called the energy functions (the kinetic energy, and the
potential energy); (iii) we identify all the independent ‘motions’ that the
system can undergo. These ‘motions’ are the physical changes that hap-
pen naturally and that characterize the given system -what in a later life
we shall call the ‘degrees of freedom’. (For example, the planet orbits,
the lever arm rotates, swings swing, and roundabouts turn.) (iv) We
come finally to the application of a principle, a principle that requires
an exploration of the ‘space’ in which the physical problem occurs.
Knowing all the ‘motions’, we then choose an alternative set of ‘motions’
that could occur. These motions are hypothetical - we have hypothe-
sized them - however we are not free to hypothesize anything we like:
the ‘motions’ must all be in the same given ‘space’ (each system has its
own ‘system-space’), occur in the given time-window, and theymust be
‘nearby’. Now these ‘motions’ imply certain amounts of kinetic energy
and potential energy consumed or generated in the given time. From
these energies we compute a certain quantity - the total action - used up
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in the given time. In short, we determine the total hypothetical action
for this choice of hypothetical motions. We then continue the explor-
ation and consider another choice of hypothetical motions and again
determine the consequential hypothetical action. And so on. The prin-
ciple then asserts that of all choices for hypothetical motions, the actual
motions are those which make the change-in-action-between-choices come out to zero.
More evocatively, the system finely adjusts itself, via the actual motions
(acting in concert but instant by instant taking their marching orders
from the scalar structure functions) in just such a way that the action
used is least. That these subtly different versions - the italicized one
and the evocative one - are the same will emerge during the course of
this book.
Be reassured: these ideas are new and many and abstract; there is

no way they can be understood in one go. It is useful to collect them
together in one place, but not possible to convey all the nuances in a
single paragraph. For example, we shall later on discover that some-
times the ‘space’ exploration is made explicitly by us (in the method
known as the Principle of Virtual Work) and sometimes the mathem-
atics takes care of it (in the Variational or Lagrangian Mechanics). Also,
there is sometimes an elision made between the ‘motions’ as ‘degrees of
freedom’ and the ‘motions’ as hypothetical ‘variations’.
Did we write ‘hypothetical’? Yes, this is the piece de resistance: the

‘system-space’ is a virtual abstract space, and this is what finally enables
us to achieve the required objectivity (the actual physical space could
have this, that, or the other observer-bias, whereas the virtual abstract
space is neutral).
Here is a summary of the main virtues of the PSA.

(i) It does the job.

(ii) As forces play no part in the method then ‘forces-of-constraint’
also play no part. Incredible but true.

(iii) Better understanding of physics. We can now have ‘cat’ and
‘mouse’ instead of only ‘particles’ and ‘particle-particle inter-
actions’. But a ‘cat’ is more than the sum of its ‘particles’.

(iv) No hard and fast distinction between ‘active’ and ‘passive’ com-
ponents. (Just as a river carves out the river-bed, and the
river-bed determines the path of the river, so the ‘curvature of
space’ affects the paths of bodies, and moving bodies affect the
‘curvature of space’.)
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(v) Philosophically superior: local (and this is all we ever detect
experimentally); no pre-existing empty ‘space’ (just take the
world as it is and then examine it8); the system is what’s
important.

(vi) Global View. Even when ‘space’ is flat locally, ‘curvature’ can
still arise globally - by patching together smaller regions with
the requirement that there is no ‘puckering at the seams’.

(vii) The PSA gives prominence to energy and to the whole system.
Kinetic energy is shown to be amore fundamental and primitive
concept than force. Also the dichotomy between kinetic energy
and potential energy is explained.

(viii) The PSA reveals a deep connection between symmetry and con-
served properties. (Newton’s Mechanics does not lead naturally
to any conservation laws except for one, the conservation of
linear momentum.)

(ix) In Newtonian Mechanics no attempt is given to show how
robust the solution is (how it changes following small changes in
the starting conditions) or to give ball-park estimates. The PSA,
via Hamilton’s Mechanics, does address these questions.

(x) Amazing unity of approach across almost the whole of physics.
(Almost? The exceptions will be discussed in due course.)

Apart from the fact that the PSA is the keystone of physics, and there-
fore an indispensable tool for the professional engineer or physical
scientist, there are two other reasons why we would like to awaken an
appreciation of it, even a non-mathematical appreciation. The first is
a pragmatic reason. We all know, roughly speaking, what space, time,
mechanics, quantum mechanics, matter, and energy are about. These
ideas have passed into the public domain. It would be inefficient to start
from scratch in our science classes, and not even incorporate advances
made during the seventeenth and eighteenth centuries. Somehow the
PSA has got missed out - it is time to correct this. The second reason
is aesthetic. The beauty of physics does not reside only in the beauty of
the night sky, a rainbow, or a sunset. It resides even more in the inter-
ior logic, the principles which reach across vast areas of the physical

8 This is more correct, especially when we remember that all our observations really
have been carried out in the presence of large gravitating masses. Even where experi-
ments are carried out in remote regions, the results still need to be brought back to
Earth - in our present state of evolution.
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world, unifying them into a self-consistent whole, and with the most
economical set of starting premises. (One could call it the ‘Aha’ feeling.)
Alice (from Lewis Carroll’sAlice’s Adventures in Wonderland) tried so hard

to get through the door in order to see the exquisitely beautiful garden
beyond. Consider this garden as a metaphor for physics: it’s true that
without mathematics we shall never be able to wander freely around
this garden, but it would be wonderful indeed if we could just be lifted
up to peer at it through the keyhole.



2
Antecedents

A new principle rarely arises completely out of the blue, there are usu-
ally vague presentiments in the air. Some precursors to the Principle
of Least Action are described (we don’t attempt to give an exhaustive
history).

Simon Stevin (1548–1620)

Stevin (Stevinus) was a ‘geometer’ from Bruges in Flanders. The dis-
covery of which he was most proud concerns the condition for static
equilibrium of weights on inclined planes (see Figure 2.1):
What relation must hold between the masses and the lengths of the

triangle in order for the system to be in equilibrium? Our first guess
might be to ‘resolve the forces’ into components, then balance the hori-
zontal components to zero, and, finally, equate the vertical components
to the weights. Stevin, in Antwerp in 1588, attacked the problem in a
different way - (he was working 200 years before vectors, and 99 years
before Newton’s forces).
The first remarkable thing Stevin did was to bring (hypothetical)

motion into this static set-up. He recast the problem and imagined a
chain of spherical masses that could circulate around the triangle, with
the lower part of the chain hanging freely. Stevin idealized this arrange-
ment: the chain could move in either direction, without friction, and
would never get stuck on the pointy bits (imagine a little frictionless
pulley at the apex of the triangle). Also, the mass had to be uniformly dis-
tributed along the chain - think of a bead chain like the ones used today
to open and close Venetian blinds. Stevin argued that if the section of
chain from A to X pulls more than the section from X to B then the
chain will over-balance to the left. It will circulate anticlockwise (excuse
the anachronism) until the original portion AX then occupies the arc Y
to A. The entire length of chain that hangs freely below the little table,
between A and B, can be ignored - by symmetry it is always in balance

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001
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Figure 2.1 Weights, connected by a cord, on inclined planes.

Figure 2.2 ‘Wreath of spheres’ draped over inclined planes (after Stevin).

with itself. However, the replacement section of chain now lying along
AX will again over-balance that new section now lying along XB. In
other words, the new state, after circulation, is identical to the initial
state. But this will always be true (the new state, after circulation, will
always be identical to the initial state), and so the chain will always
over-balance, and will keep circulating for ever.
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But a continuously circulating chain, without an engine to drive it,
is absurd. This is the second remarkable step taken by Stevin - he con-
sidered ‘perpetual motion’ as self-evidently absurd, and used this as the
basis for an argument (a reductio ad absurdum argument).1 To avoid the
absurd outcome then the starting premise - section AX over-balances
section XB - must be wrong; in other words, the initial distribution of
masses, with the chain draping itself smoothly over the surfaces, must
already be in equilibrium. This is a powerful proof, as it applies for an
infinity of different starting states (different inclined planes).
Stevin realized he had discovered an eternal truth, and he displayed

a diagram of his ‘Wreath of Spheres’ (clootcrans) as the frontispiece of
his book on mechanics. The punchline, from our point of view, is
that: without the use of forces, considering only gentle movements
of the chain in harmony with the constraints (motion within certain
surfaces), Stevin showed that, with respect to these motions, nothing
changes, and equilibrium is maintained. In fact (going beyond Stevin’s
own interpretation), the proof can be made to sound like pure geom-
etry: for equilibrium, it is only necessary that the length of chain along
an inclined plane is equal to the length of that inclined plane.Moreover,
as any bumpy surface can be thought of as lots of tiny triangles, we have
only to lie a uniform chain on this surface, with no bunching up or
stretching out, and it will be in equilibrium.

Christiaan Huygens (1629–95)

Huygens, in Paris in 1656, tried to understand billiard-ball-type colli-
sions but without the use of forces (this was some thirty years before
Newton’s Principia, but billiards was a game that had been played since
the fifteenth century). Then, as now, scientists were motivated by the
thrill of showing that a great namewas wrong. Descartes was the tower-
ing authority in themiddle of the seventeenth century, and we shall see
that three scientists (natural philosophers) in our story found errors in
Descartes’ work - Fermat, Huygens, and Leibniz.
Back to Huygens. In his rules of collision, Descartes had claimed that

a small body, hitting a larger body at rest, would never be able to shift it.
Huygens knew that this couldn’t possibly be right - it didn’t agree with

1 This is probably the first time this had ever been done - that is, the use of the
impossibility of perpetual motion as the basis of an argument.
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experiment.2 To show that Descartes was wrong, he used a remarkable
demonstration. (Huygens might have been a bit apprehensive about
contradicting the Cartesian view - Descartes had been a regular vis-
itor to the Amsterdam home of Huygens’s parents, and his tutor was
horrified to hear of the young Huygens’ ‘heresy’.)
Huygens’s remarkable demonstration consisted in putting the

Principle of the Relativity of Motion (due to Galileo) to quantitative use -
the first time this had ever been done.3 He imagined a ‘billiard-ball
collision’ viewed simultaneously from two vantage points - from a
smoothly coasting canal-boat, and from the canal-bank (undoubtedly
his childhood in Amsterdam was an influence). Here is a picture of this
thought-experiment, taken from the frontispiece of Huygens’s treatise.
It’s not clear from this picture whether the experiment was carried

out on the boat or on the canal-bank. It doesn’t matter, so let’s say it
happened on the boat. On the boat, the large mass hits a stationary
smaller mass. Now we are free to choose the speed of the canal-boat

Figure 2.3 Huygens’s canal-boat thought experiment4 (from De Motu corpore ex
percussione, 1656)5.

2 Descartes also knew that experiment was contradicted, but he had the perfect
fudge - see Coopersmith, J, Energy, the Subtle Concept, Revised Edition, Oxford University
Press, (2015) - hereafter referred to as Coopersmith, EtSC.

3 (to the author’s knowledge)
4 The figure shows balls of the same size, yet we can imagine that one ismoremassive

than the other.
5 Huygens C, De Motu corpore ex percussione, 1656, published by Martin Nijhoff NV.
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so that it will exactly cancel out the incoming speed of the large mass
when viewed from the bank. Then, as viewed from this bank, the small
mass will collide with a stationary larger mass, and then cause this larger
mass to move - and therefore Descartes is proved wrong.
The Relativity of Motion has been used to veto certain outcomes, but

Huygens recognized that a general principle was at work: only those
rules are correct which guarantee the same outcomes, no matter what
frame of reference they are viewed from. The punchline: as with Stevin,
certain ‘motions’ (in Huygens’s case, uniform motion of one reference
frame with respect to another) have resulted in ‘no change’.
Huygens went on to use other symmetry arguments to develop his

own rules of collision,6 and these were in better accord with experiment
than Descartes’s rules. Although symmetry arguments alone didn’t
answer to all possible outcomes, the telling point, for us, is that somuch
could be explained this way, and without the use of forces. Huygens
noted in passing (drawing upon both his collision theory, and his the-
ory of the compound pendulum) that a certain quantity was conserved:
it was the total mv2 . . . (m was the mass, and v the speed, of each body).

Gottfried Wilhelm Leibniz (1646–1716)

Huygens attached no great significance to the quantity mv2. Leibniz, on
the other hand, immediately realized its importance. He already knew
of it from Galileo’s work on free-fall,7 but when he happened to learn
of its conservation from Huygens (Huygens and Leibniz met regularly
at the Academie Royale des Sciences in Paris) Leibniz built a whole new phil-
osophy around it, calling it vis viva or ‘live force’. (Leibniz, fromHanover,
introduced other ‘whole new philosophies’, fully justifying the German
epithet, universalgeni.) Straightaway, Leibnizmade big play of how his new
‘live force’, mv2, trumped Descartes’s ‘quantity of motion’, mv. (Leibniz’s
paper was called “A brief demonstration of a famous error of Descartes
and other learned men, concerning the claimed natural law accord-
ing to which God always preserves the same quantity of motion; a law
which they use incorrectly, even in mechanics”;8 the title, at any rate,
was anything but brief.)

6 Coopersmith, EtSC, Chapter 3.
7 Galileo found that v2 (and therefore mv2) was proportional to the fall-height.
8 Leibniz G W, “Brief demonstration. . . ” (1686) in Philosophical Papers and Letters,

ed Loemker, Chicago University Press (1956).
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Leibniz’s mv2 was essentially the same as our modern kinetic energy,
1
2mv

2 - it had no dependence on direction, it obviated the need to
calculate accelerations, and, above all, it encouraged a ‘systems’ view.
It was slowly learned, over the next 200 years, that energy existed
in various scalar forms (the ‘structure functions’ of Chapter 1), and
that altogether, within a closed system, it was conserved.9 We add that
Leibniz’s philosophy also stressed another new idea (in common with
Huygens) - the importance of symmetry: a free particle could not
swerve to the left or the right as it had no ‘reason’ to do so (Leibniz’s
Principle of Sufficient Reason). Leibniz was hundreds of years ahead of
his time in using such arguments.
The dispute between Leibniz and the Cartesians evolved into a con-

troversy between the Leibnizian school and the Newtonian school,
between a whole-system view and an individual-particle view, and
between ‘kinetic energy’ and ‘force’. Ultimately (as we shall find), it
evolved into a contest between Newtonian Mechanics and the Principle
of Least Action, a contest which, some say, still persists today.

Maximal/minimal properties

At the same time as conservation principles were beginning to hold
sway, an alternative approach was coming in: nature was economical
as well as conservatory with her resources. What was the measure of
nature’s resources - time of travel? length of path? the total potential
energy? Even while this was still unclear, it seemed to some philo-
sophers self-evident that optimization was a crucial driver of physical
processes. Chief among these natural philosophers was the great Swiss
mathematician, Leonhard Euler (1707–83), who wrote:

“nothing happens which has not some maximal or minimal
property.”10

We shall meet him again in this chapter.
Max/min problems were already known about in antiquity. There is

the story about the Phoenician princess, Dido. After running away from
home, she reached the coast of North Africa and tried to buy some land.

9 Coopersmith, EtSC.
10 Euler L, ‘Additamentum I de curvis elasticis’, 1744, English translation in Oldfather et al,

Leonhard Euler’s elastic curves, Isis 20 (1933) pp 72–160.
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Legend has it that she was allowed to purchase only as much land as
could be encompassed by the hide of a bull. From this unpromising
start, Dido cleverly maximized her land-area: she cut the hide into very
thin strips and joined these end to end; she chose a plot by the sea so
that the coastline would be part of the boundary; and she shaped the
long strip of hide into the optimum shape - a semi-circle, up against the
coast.
Heron of Alexandria (around AD 60) found that light reflected

from a plane or curved surface took the shortest distance between
the light-source and the detector (not counting missing out the mir-
ror altogether). And Pappus of Alexandria, around 300 AD, observed
that beehives had that special shape, hexagonal, which could hold the
greatest volume of honey for the smallest expenditure of wax.
Our story becomes quantitative in themid-seventeenth century with

Pierre de Fermat (1601–65), French lawyer and ‘amateur’ natural phil-
osopher. Fermat agreed with Heron’s results for the reflection of light
but when it came to refraction he found that the path was not one
of shortest distance but of least time. He elevated this to a general
principle, his Principle of Least Time:11

“Nature operates by means and ways that are easiest and fastest.”

Fermat was delighted with his Principle but “astonished”12 because
his laws of refraction, while completely ageeing with Descartes’s laws,
started from utterly opposite premises: Descartes (Fermat) required
that light travelled faster (slower) in denser media.13 The Cartesians
were not impressed - “The shortness of the time? Never.”14 By the way,
we mentioned symmetry arguments in connection with Huygens, and
Leibniz, but they are also present in Fermat’s Principle: for the reflection
of light, the angle of incidence is equal to the angle of reflection.15 Also,
another feature in Fermat’s Principle (the importance of this will be rec-
ognized much later), is that the correct path is not only the one taking

11 (in 1662, in a letter to de la Chambre) Goldstine H, History of the Calculus of Variations
from the Seventeenth through the Nineteenth Century, Springer-Verlag, New York (1980).

12 Dugas R, A History of Mechanics, Dover Publications Inc. (1988).
13 Imagine how difficult it would have been to measure these speeds - or even know

that light has a speed.
14 Dugas R, as above.
15 A symmetry rule applies in refraction as well: ni sin θi = nr sin θr.
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Figure 2.4 Brachystochrone, curve of ‘swiftest descent’. (schematic)

the least time, but the onewhose time-of-travel is the same (to first-order)
as the time-of-travel for neighbouring paths.
Isaac Newton (1643–1727), in his landmark work, familiarly known

as “The Principia”,16 derived the optimum shape for a solid body so that
it would move with the least resistance through a fluid. However, apart
from this, and the ‘brachystochrone question’ - see below, there are no other
examples where Newton tackled such max/min problems.
The Bernoullis of Basle in Switzerland exhibited an extremal prop-

erty all of their own - they had the largest number of mathematical
geniuses in one family (eight) that has ever been recorded. The broth-
ers, Jakob and Johann Bernoulli, were at the start of it (born in 1654
and 1667 respectively), both brilliant but very competitive - they baited
each other with silver ducats and impossible deadlines for the solution
of difficult problems.
One famous problem was the search for the brachystochrone, the path of

‘swiftest descent’, taken up by Johann Bernoulli in 1696. A weight slides
down a curve, and the question is: what shape must the curve have
so that the travel time between given start- and end-positions is least?
(Assume no friction, and that the destination point is not dead vertically
down from the starting point.) Galileo Galilei (1564–1642) had already
noted that the quickest path was not along the straight line connecting
the points.

16 Newton, Isaac, The Mathematical Principles of Natural Philosophy, (1687) translated 1729
by AndrewMotte.
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Leibniz, Newton, de l’Hôpital, Tschirnhaus, and both Bernoullis all
came up with solutions for this swiftest-descent curve. Newton’s had
been submitted anonymously but Johann “recognized the lion by its
claw”.17 Jakob and Johann both solved the problem but employed very
different methods, each opening up grand new vistas in physics.
Jakob’s method was complicated and messy, but showed the way,

ultimately, to more general techniques for max/min problems, a fore-
runner of Euler’s and Lagrange’s ‘calculus of variations’ (see Section 3.7,
Chapter 3).
Johann’smethodwas amasterpiece of lateral thinking: he considered

that the falling mass passed through successive sheets of ‘denser and
denser gravity’, and was ‘refracted’ at each boundary in such a way
that its total journey-time was least (a smooth curve was obtained by
imagining thinner and thinner sheets). This was analogous to Fermat’s
least-time path for light. Thus, Johann’s insight foreshadowed both
Hamilton’s conjoining of light and matter into one theory (Chapter 7),
and Einstein’s theory of gravitation (in which a freely-falling mass
moves along a curved path, as dictated by the curvature of ‘space’ - the
‘gravitational refractive index’). Johann was centuries ahead of his time.
What was astounding for the contemporary mathematicians - and

ever since - was that the brachystochrone turned out to have exactly the
same shape as Huygens’s tautochrone,18 and both curves were the same as
a third curve, the cycloid.19 As Johann Bernoulli wrote,

“. . . you will be struck with astonishment when I say that this very
same cycloid, the tautochrone of Huygens, is the brachystochrone we are
seeking.”20

Before we move on from these wonderful old ’chrones, the punchline
is: whether ‘least time’ or ‘same time’, the optimized path is stationary -
the total travel-time doesn’t change with respect to small variations in

17 Kline M, Mathematical Thought from Ancient to Modern Times, Oxford University Press
(1972).

18 The tautochrone is the curve guaranteeing equal travel-times irrespective of (modest)
variations in the starting position.

19 A cycloid is the curve traced out by, say, a pebble stuck in a tyre as a bicycle rolls
forward.

20 Kline, as above, page 575.
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either the whole-curve-shape or the start-time. (The term ‘stationary’
will be explained in Chapter 3.)
There were other curves that could be determined by the max/min

method, for example, the curve of a hanging chain or suspension
bridge, known as the catenary; and the ‘elastica’, the shape of a flexed
metallic band (think of a metal ruler). This latter problem was investi-
gated by Daniel Bernoulli (1700–82), the middle son of Johann, and the
first true physicist (as opposed to mathematical physicist).21 The elastica
could be determined, but what actually was the property being maxi-
mized or minimized? The following correspondence between Daniel
Bernoulli and Leonhard Euler, from 250 years ago, makes fascinating
reading:22

Bernoulli to Euler, 5 May 1739:

“I have today a quantity of thoughts on elastic [metal] bands. . . I think
that an elastic bandwhich takes on of itself a certain curvature will bend
in such a way that the live force will be a minimum, since otherwise the
band would move of itself. I plan to develop this idea further in a paper;
but meanwhile I should like to know your opinion on this hypothesis.”

Euler’s reply, 5 May 1739:

That the elastic curve must have some maximum or minimum prop-
erty I do not doubt. . . but what sort of expression should be amaximum
was obscure tome at first; but now I see well that this must be the quan-
tity of potential forces which lie in the bendings; but how this quantity is
to be determined I am eager to learn from the piece which yourWorship
has promised.”

Bernoulli replies, 1742:

My thoughts on the shapes of elastic bands, which I wrote on paper only
higgledy piggledy and long ago at that, I have not yet set in order.”

and again, from Bernoulli to Euler, 1743:

“May your Worship reflect a little whether one could not deduce the
curvature. . . directly from the principles of mechanics. . . I express the
potential live force of the band by

∫
ds/r2. . . Since no one has perfected

21 Coopersmith, EtSC, Chapter 7.
22 Truesdell, C, introduction to Leonhardi Euleri, Opera Omnia, 2nd Series, Vols X and XI,

Fussli, pp 173–4.
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the isoperimetric method23 as much as you [Euler], you will easily solve
this problem of rendering

∫
ds/r2 a minimum.”

And in his famous paper the following year (1744) Euler writes:

“although the curved shape assumed by an elastic band has long been
known, nevertheless the investigation of that curve by the method
of maxima andminima [could not be carried out until the] most per-
spicacious Daniel Bernoulli pointed out to me that the entire force
stored in the curved elastic band may be expressed by a certain for-
mula, which he calls the potential force, and that this expression
must be a minimum in the elastic curve.”24

(In other words, Daniel needed help with the maths and Euler with
the physics.) What is so fascinating is that we are witnessing not only
the birth of variational mechanics, but also of kinetic energy (live force)
and potential energy (potential live force). However, all these max/min
problems were tackled individually, and it was not clear what if any
overriding principle might encompass them all.

The Principle of Virtual Work

This principle will have a chapter to itself (Chapter 4). The first glim-
merings of it, in the guise of the Principle of Virtual Velocities, are found
in Aristotle’s analysis of the lever. When the lever is in balance, then the
end with the heavier (lighter) load moves slower (faster). But, one may
ask, if the lever is balanced, then the ends don’t move at all? Yes, that’s
why these movements are called virtual, or ‘mathematically imagined’.
This mathematical experiment is carried out in order that the criter-
ion for balance may be established. (This will be explained in Chapters 3
and 4.) The same Principlewas taken up by Stevin: “What is gained in the
force is lost in the velocity”, and then again by Galileo. Galileo made an
important advance in recognizing that it is only the velocity in the direction
of the forcewhich counts.
Finally, Johann Bernoulli, ever the clairvoyant, took up the Principle

and realized its potential to solve all the problems of static equilib-
rium. (Before Johann, the Principle was limited to cases where there

23 A perimeter of given fixed length enclosed an area: what was the shape of the
perimeter-curve needed to maximize the area?

24 Euler L, letter of September 1738 to Daniel Bernoulli, in Die Werke von Daniel
Bernoulli, Band 3,Mechanik, ed Speiser, Birkhauser Verlag, (1987) p 72.
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were just two forces, the ‘moving force’ and the ‘load’.) Bernoulli
made significant improvements and took the Principle to a new level
of generality:

(i) he applied the Principle to any number of forces - as many as the
system demanded - (all in static equilibrium).

(ii) he no longer assumed that the virtual velocity was in inverse
proportion to the force but, rather, considered the product of
force and ‘virtual velocity in the direction of that force’. He
called this product the ‘energy’.

(iii) he adopted a sign convention as follows - if the angle between
force and velocity was acute (obtuse) then the product had a
positive (negative) sign. (In modern parlance, the sign conven-
tion was the usual one for the ‘scalar product’ of two vectors.)

(iv) the criterion for equilibrium was that all these products, with
appropriate signs, had to sum to zero.

Bernoulli’s revolutionary idea, a watershed in physics, was never pub-
lished, but was written down as some throwaway remarks in a letter to
Varignon in 1715. Fortunately, Varignon didn’t throw them away:25

“In every case of equilibrium of forces, in whatever way they are
applied and in whatever directions they act on [one] another, medi-
ately or immediately, the sum of the positive energies will be equal to
the sum of the negative energies taken positively.”

This is the first time that the word ‘energy’ appears in physics (an
honour usually ascribed to Thomas Young in 1802).26

One last thing, how did the Principle later get to be called the
Principle of Virtual Work? The answer is that the Principle applies at an
instant, and an instantaneous velocity is proportional to an instantan-
eous displacement (even while they are both ‘virtual’), and the scalar
product of a force and a displacement is not just ‘energy’, it is that spe-
cial kind of energy known as ‘work’. All this will be explained again in
more detail in Chapter 4.

25 Dugas R, A History of Mechanics, Dover Publications, Inc. New York (1988) page 233.
26 Coopersmith, EtSC.
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The Provenance of the Principle of Least Action: Maupertuis

Here is yet another principle in this plethora of principles, and it’s the
one that will turn out to be the underlying principle, incorporating
all the others. The principle arose out of successive generalizations of
earlier principles:

(i) first, as we have already seen, there was Heron’s ‘shortest path’
for reflected light (second century AD),

(ii) then there was Fermat’s ‘Least Time’ for reflection and refraction
(1662),

(iii) then Leibniz, in 1682, in his Principle of Least Resistance, pooh
poohed Fermat’s Principle, for why should light make a choice
between optimizing ‘time’ and optimizing ‘distance’? No, argued
Leibniz, light takes the easiest path, the one for which the
‘resistance’ is least,

(iv) finally,Maupertuis, in 1644, extended Leibniz’s principle to cover
the motion of light and bodies - he called it the Principle of Least
Action.

The tale of Maupertuis and the Principle of Least Action is an enter-
taining one, redolent of the eighteenth century, and full ofmetaphysics,
intrigue, and curious characters, and so we will let it divert us for a
while. Lanczos whets our appetite with the following rousing words:
“[the eighteenth century] is the only period of cosmic thinking in the
entire history of Europe since the time of the Greeks.”27

Pierre-Louis Moreau deMaupertuis, son of a wealthy pirate, was born
in St Malo, France (1698–1759). Maupertuis was variously a musket-
eer, geographer, amateur astronomer, biologist, moralist, linguist, and
surveyor. In this last capacity, Louis XV commissioned him to lead an
expedition to Lapland to measure the length of a degree along the
Earth’s meridian; Maupertuis’s findings corroborated Newton’s predic-
tions - that the Earth was flatter at the poles. Voltaire, famous French
wit, and man of letters, was delighted and awarded Maupertuis the epi-
thet ‘Earth-flattener’ (while also lampooning him for having brought

27 Lanczos, Preface, p x. (Mind you, what about the cosmic laws of thermodynam-
ics brought in by Clausius and by Thomson in the nineteenth century, and Einstein’s
theories in the twentieth century?)
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two Lap women back to Paris). Voltaire later (around 1740) recom-
mended Maupertuis to be President of the new Prussian Academy of
Sciences being set up by Frederick the Great in Berlin (Frederick pre-
ferred French scholars, they represented the height of culture and
refinement).
Around the early 1740s, Maupertuis discovered the Principle of Least

Action, getting the germ of the idea, and the word ‘action’, from
Leibniz’s Principle of Least Resistance, but extending the latter to
cover the motion of bodies (Leibniz’s Principle considered only light).
Maupertuis defined action as mvs, where m is the mass of the body, v
its speed and s the path. For just one body the mass dropped away as
merely a constant multiplying factor (its constancy was never in ques-
tion at this stage in physics), and the quantity to be minimized was then
the sum over vds, where ds was a small increment of distance travelled
along the path.
The discovery of this principle was a turning point in Maupertuis’s

career, he vaunted it and made it a cornerstone of his philosophy. In his
essay “The laws of rest and of motion deduced from the attributes of
God” he wrote:

“Whenever any change takes place in Nature, the amount of action
expended in this change is always the smallest possible.”28

Maupertuis also applied the principle to scenarios outside the purely
physical realm (in his calculus of pleasure and pain, the total happiness
was maximized and the total pain minimized) and, overstepping the
mark (bymodern standards anyway), argued that least action was proof
of the existence of a “Supreme Being”.29

The response to the principle was varied: the Leibnizians did not rate
the principle as high as Leibniz’s conservation of ‘live force’; the athe-
ists/materialists objected to Maupertuis’s use of the principle as proof
of God’s existence; and some, especially the philosophe and encyclopae-
dist, d’Alembert, objected to the teleological implications - how did the
body know which path was the minimum one? Just one philosopher
was unequivocally on Maupertuis’s side - the great Euler.

28 de Maupertuis, P L M, Les lois de mouvement et du repos, déduites d’un principe de métaphysique.
(1746) Mém. Ac. Berlin, p. 267.

29 Reference in Jourdain P, The nature and validity of the Principle of Least Action,
The Monist, Vol 23 (1913) page 11, note 40.
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Now one Samuel König (1712–57) had recently been elected to the
Academy in Berlin, at Maupertuis’s invitation (König, Maupertuis,
Voltaire, and Voltaire’s mistress, the marchioness, Mme du Châtelet,
were all friends, promoting ‘Newtonianism’ in France, and often
staying at Voltaire’s mansion at Cirey near Geneva). Nevertheless,
König attacked Maupertuis’s Principle, saying that, on the one hand,
Maupertuis had got it from Leibniz, and on the other hand, it wasn’t
correct. Maupertuis demanded to see proof of Leibniz’s priority, which -
said König - was in some letters that Leibniz had written to Hermann (a
mathematician). König could not find the originals, which, apparently,
were in the possession of a certain Henzi of Berne, who had been decapi-
tated. Maupertuis was incensed, and wrote eleven times to Hermann’s
heirs (via Johann Bernoulli (II) in Basle) asking them to hunt through
all the old correspondence. Even so, the letters were not found (and
they never have been30). Maupertuis then arranged for a hearing of the
Academy to determine whether König’s copies were forgeries. On the
day (13th April 1752) Maupertuis was absent and Euler presided, but
the result was a foregone conclusion (the Academicians were hardly
impartial, as they relied on Maupertuis for their promotions). König
was found guilty, appealed, lost again (8th June 1752), and then resigned
from the Academy. Maupertuis, aware that these consequences made
him unpopular, fought evenmore vigorously, and asked the Princess of
Orange at the Hague to threaten König with dismissal from his post as
Court librarian.
Then Voltaire got on the bandwagon, forgetting earlier epithets, and

now criticizing Maupertuis for plagiarism, bad physics, being a tyrant,
and anything else he could think of. This century saw the birth of sat-
ire and it was most unfortunate for Maupertuis to get on the wrong
side of Voltaire, the facileprinceps of satire. To top it all, Voltaire was in a
dismal mood as Mme du Châtelet had recently died in childbirth. He
proceeded to write an entire book with the express purpose of pour-
ing abuse on Maupertuis, casting him as a stupid, presumptious fellow,
the student of a certain Dr Akakia (‘kak’ would have sounded just as
offensive in the eighteenth century as it does today).
Frederick II defended Maupertuis, the president of his Academy,

and Euler also came to Maupertuis’s aid. In fact, Euler’s defence of

30 Instead, some relevant letters between Leibniz and various Bernoulli personae
were found in the Bernoulli family archives by historian, Kabitz, in 1913.
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Maupertuis’s priority was very generous, especially considering that
Euler had found some serious errors in Maupertuis’s formulation,
and had actually discovered the principle the year before Maupertuis!
(Maupertuis’s formulation was vague and incorrect and he needed
Euler to tidy it up, changing the sum into an integral, and showing
that the principle was meaningless unless the conservation of energy
applied). As Lanczos writes:31 “Although Euler must have seen the
weakness of Maupertuis’ argument, he refrained from any criticism,
and refrained from so much as mentioning his own achievements in
this field, putting all his authority in favour of proclaiming Maupertuis
as the inventor of the Principle of Least Action. Even knowing Euler’s
extraordinarily generous and appreciative character, this self-effacing
and self-denying modesty has no parallel in the entire history of
science”.
There has also been no parallel to Voltaire’s campaign of vilifica-

tion. Maupertuis’s health was badly affected by the stress, and some
while later he left Berlin for St Malo, still pursued by vitriolic volleys
from Voltaire’s pen, never to return (Maupertuis died at a stop-over at
Johann (II) Bernoulli’s in Basle).
The verdict of today? Königwas in all probability honest but naive and

earnest, not appreciating that one must always allow the President of
an Academy to have a face-saver. Maupertuis, although by all accounts
an uppish fellow (“spoilt, intransigent,. . . very short and alwaysmoving,
with many tics, careless of his apparel.”32) nevertheless had genuinely
stumbled into an idea of great and long-lasting importance. Although
getting the initial idea from Leibniz - a source which Maupertuis didn’t
deny - Maupertuis had taken it to a new level of generality (by applying
it to masses). It is possible that Leibniz also proceeded to this step, but
no evidence in the form of any original letters or papers was found at
the time or since. Maupertuis’s outrage, and his attempts to track down
Leibniz’s letters, appear genuine. It is true that Maupertuis was not in
the first rank ofmathematicians (mind you, being second to Leibniz and
to Euler was not bad going) but, alone amongst his contemporaries, he
did intuit the principle’s cosmic significance. Not even Euler had done
this. Giving the last words to Euler:

31 Lanczos, page 346.
32 Dictionary of Scientific Biography (the article on Maupertuis), ed Gillispie, C C, Charles

Scribner’s Sons, New York (1970–80).
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“This great geometer [Maupertuis] has not only established the prin-
ciple [of Least Action] more firmly than I had done, but his method,
more ubiquitous and penetrating than mine, has discovered conse-
quences that I had not obtained.”33

and

“nobody before the Illustrious President of our Academy
[Maupertuis] has even suspected in what elements this prin-
ciple was contained and how it could be accommodated to all cases.
As regards myself, I only knew in a sure manner a posteriori the
principle I used to determine trajectories; and I have ingenuously
confessed that I was not in a position to establish its truth in another
manner.”34

It seems that even the greatest of mathematicians can sometimes
benefit from the intuitions of a generalist.

The Variational Mechanics

This ends our brief survey of the antecedents. The Principle of Least
Action proper was founded by Lagrange, and byHamilton, with import-
ant contributions from d’Alembert, and from Jacobi. It is hardly sur-
prising that this crowning glory of human thought should have been
brought in by remarkable and unusual individuals.
Jean le Rond d’Alembert (1717–83) (the source of the quote head-

ing Chapter 1) was a foundling, and given the name ‘Jean Le Rond’
from the church in Paris on whose steps he was left. The police traced
his parentage to a famous salonniere and a cavalry officer. The salonniere
never acknowledged her son but the Chevalier arranged for him to
be fostered by a humble glazier and his wife. D’Alembert wrote his
most famous works while living with his foster mother for 48 years.
He finally “weaned”35 himself after 48 years, and then lived with his
mistress, herself a famous salonniere. As well as being a mathematician
and philosophe, d’Alembert was also joint editor of the famous Encyclopédie

33 Dugas R, A History of Mechanics, Dover Publications Inc. (1988) page 271.
34 Reference in Jourdain P, The nature and validity of the Principle of Least Action,

The Monist, Vol 23 (1913) pages 26–7, note 114.
35 D’Alembert’s own expression - see the article on d’Alembert in the Dictionary of

Scientific Biography, ed Gillispie, C C, Charles Scribner’s Sons, New York (1970–80).
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with Denis Diderot (until the two of them fell out, and d’Alembert left
the enterprise to Diderot). The ‘d’Alembert’s Principle’ is explained in
Chapter 5. It arises from his Traité de Dynamique, 1743, a work that seems
to try to make every new idea as hard as possible to comprehend. (For
example, it is startling for the modern mind to learn that mechanics is
not empirical - according to d’Alembert, it is a purely rational subject.)
Joseph-Louis Lagrange (1736–1813), Italian by birth, was director of

mathematics at the Prussian Academy of Sciences in Berlin (at the invi-
tation of Euler and d’Alembert), then moved to revolutionary Paris
in 1787, and continued his illustrious career as Professor at the École
Normale (briefly), the École Polytechnique, the Bureau des Longitudes,
and was a Senator in 1799. He managed to stay in favour on both
sides of the French Revolution (1789) by cannily adopting his maxim:
“every wise man [should] conform strictly to the rules of the country
in which he is living, even if they are unreasonable.”36 He had a long
happy marriage, was widowed, and then had a second long happy mar-
riage; he expressly did not have children as they would be a distraction
from work. One has the impression of a person who purposely led an
uneventful life - this is often true of the most creative individuals.37

Lagrange discovered an outstanding method of minimizing integrals
in max/min problems - the ‘calculus of variations’. Also outstand-
ing was his ‘Method of Lagrange Multipliers’ (see Appendix A6.4). His
masterpiece was the Mécanique analytique,38 published in 1788, the most
comprehensive account of mechanics since Newton’s Principia from one
hundred and one years earlier, and radical in being completely general
(not tied to this or that mechanical scenario). It was unusual in another
way - Lagrange announced in the preface that the work contained no
diagrams, ormechanical arguments, but “solely algebraic operations”.39

William Rowan Hamilton (1805–65), from Dublin, Ireland, was a
linguistic and mathematical prodigy. Aged eight, he unravelled the
methods used by the American Calculating Boy, Zerah Colburn, and
before his thirteenth birthday he knew thirteen languages. He later

36 Dictionary of Scientific Biography (see earlier footnote), the article on Lagrange,
p 569.

37 Newton, for example, never got around to visiting Oxford let alone abroad - but
then, he could see the world in a pebble or a raindrop.

38 Lagrange, J-L, Mécanique analytique 1788, Cambridge Library Collection, Cambridge
University Press, 2009.

39 Imagine a book on mechanics today without a single diagram.
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considered both poetry and mathematics as the wellsprings of his cre-
ativity (his friend, the poet William Wordsworth, tactfully told him
to stick to mathematics). Due to the influence of another friend, the
poet Samuel Taylor Coleridge, Hamilton was attracted by the idealist
philosophy of the German philosopher, Immanuel Kant. Hamilton’s
idealism also extended to his love affairs: his first love represented the
ideal but remained on an abstract plane (shewas forced by circumstance
to marry another).
Hamilton was enormously impressed by Lagrange: he likened

Lagrange to Shakespeare, and theMécanique analytique to a scientific poem.
It was this work which inspired him to the topic of mechanics which,
like Lagrange, he tried to found in the most general possible terms,
and purely algebraically. In fact, Hamilton’s mechanics (and optico-
mechanical analogy) was so abstract and mathematically challenging
that it lay unappreciated by all but one contemporary. FromHamilton’s
optics and mechanics he came up with just one experimental predic-
tion - that a beam of light rays would in certain cases be refracted into a
3-D cone of light. He was lauded for this - but in the main he was sim-
ply years ahead of his time, and the dividends were reaped only in the
following century. His work is explained in Chapter 7.
The German mathematician, Carl Gustav Jacob Jacobi (1804–51),

was that lone contemporary who did recognize Hamilton’s genius.
In admiration, he coined the descriptor ‘canonical’ for Hamilton’s
Equations - a curious choice for one of Jewish parentage, but perhaps
Jacobi had the enthusiasm of the convert (he converted to Christianity
while a student in Berlin).40 Readers may be familiar with Jacobi on
account of ‘the Jacobian’ - a mathematical tool for transforming from
one set of coordinates to another. Jacobi was indeed a great algebraicist,
and his maxim was apparently “man muss immer umkehren” (“invert, always
invert”). He enters our story as onewho developed the ‘Hamilton-Jacobi
Theory’ - a method for making Hamilton’s Mechanics workable (in the
form reached by Hamilton, the equations were mostly too difficult to
solve in any actual applications).

Portraits of the natural philosophers and physicists who discovered
or used the Principle of Least Action are given in Appendix A2.1.

40 The adjective ‘canonical’ means ‘according to canon law’. To the author’s know-
ledge, Jacobi was the first to use this term in a secular mathematical setting.
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Mathematics and physics

preliminaries: of hills and plains
and other things

3.1 Coordinates
The programme of physics is the mapping of numbers onto physical
things, then the carrying out of mathematical operations using these
numbers, and then, finally, the translation back to the physical things,
in other words, the making of physical predictions.1 However, there
is no unique way to make the initial mapping or even to decide what
needs to be mapped.
Galileo (1564–1642) was one of the first to stress that quantification

was crucial - “This book [of the universe] is written in themathematical
language”2 he said. The first and most obvious quantity to be mapped
was ‘length’ or ‘distance’. Galileo, in his famous experiments on freely-
falling bodies, measured the distances travelled by those bodies (he used
units such as dito, canna, and braccia3) and he realized that idealizing
assumptions had to be made (about air resistance, friction, the flatness
of a surface, the roundness of a ball, and so on). He also had the import-
ant realization that the different directions of ‘space’ were independent
of each other. (For example, the horizontal and vertical distances trav-
elled by a cannon ball could be calculated completely separately, but
then could be combined to yield a parabolic path overall.)

1 (This is paraphrased from Lanczos, page 7.)
2 Galileo Galilei, Opere Il Saggiatore (The Assayer), 1623, translated by Stillman Drake

in Discoveries and Opinions of Galileo, An Anchor Book, Doubleday (1957).
3 dito is a thumb’s breadth (roughly, an inch), canna or ell was around 39 inches, brac-

cia was 21 to 22 inches. Galileo Galilei, Dialogues concerning the two chief world systems, (1632)
translated by Stillman Drake, note on page 22.

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001
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Galileo’s view of space was affected by his ideas about motion. His
outstanding insight was that all motion is relative (his Principle of
Relativity). This, in turn, had some outstanding implications: that there
is no absolute state of motion, that there is no absolute state of rest,
and that, left to itself,4 a body travelling horizontally with constant
speed will carry on travelling at that speed forever. This sounds a bit
like Newton’s First Law of Motion, still fifty years into the future, but,
instead of Newton’s ‘inertial’ motion, Galileo identified two kinds of
‘natural’ motion: vertical accelerated motion of a freely-falling body;
and horizontal motion at constant speed of a body at a fixed distance
from a gravitating centre.5 Therefore Galileo’s never-ending horizon-
tal motion was not motion in a straight line, but was motion in a circle.
In other words, for Galileo, all ‘natural’ motion was connected with a
gravitating centre - either free-fall toward it, or circling around it - and
the idea of motion proceeding infinitely and rectilinearly into empty
space, seemingly for no reason, was unthinkable.
Descartes (1596–1650) did think about it. In his view, the Universe

had to be infinite in extent otherwise there would have to be a bound-
ary and this would be counter to God’s perfection. He introduced a
new mathematical scheme which would change our worldview for-
ever.6 Space was represented by three7 independent directions (x, y, and
z ‘axes’), infinite, straight, and at right angles to each other. The axes
were marked off at regular intervals, and so an arbitrary point in space,
P, could be identified (‘coordinated’) by three numbers, the coordinates
(x, y, z). The consequences were extraordinary: in addition to the geo-
metric proofs of the Ancient Greeks (the visual properties of straight
lines, circles, triangles, and so on) there developed proofs that were
purely algebraic (the equations of straight lines, circles, etc.). The tech-
niques of this new ‘coordinate geometry’, meant that all the properties
of parallel lines, right-angle triangles, and so on, could be explored even
by a blind person, fromwithin the space (there was no need for an extra
dimension in which to view the shapes).

4 For example, the body is not propelled by a cannon, or impeded by air resistance.
5 Apart from these ‘natural’ motions, Galileo also identified ‘forced’ or ‘violent’

motions, the motion of things that were thrown, shot, or otherwise forcibly projected.
A gravitating centre was a mass of planetary size.

6 Actually, Fermat had the same idea independently of Descartes. Sometimes, when
the time is ripe, then many thinkers have the same revolutionary ideas - but perhaps
just two thinkers is not enough to draw conclusions in this case.

7 Descartes had just two axes, x and y, and it was Fermat who brought in the third, z.
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Descartes not only extended Galileo’s space to an infinite one, he
also extended Galileo’s conception of motion. While still holding on to
Galileo’s Principle of Relativity, hemade it apply to all uniformmotion,
whether horizontal or not, and rejected Galileo’s distinction between
‘violent’ and ‘natural’ motion. Also, curiously and presciently, despite
his new infinite axes, Descartes thought that only local motion made
any sense.8

Newton (1643–1727), when a student, found a copy of Descartes’s La
Geometrie at a fair, and was about to throw the book away in disgust
when his tutor persuaded him otherwise.9 Descartes became one of
the giants upon whose shoulders Newton stood, and Descartes’s infinite
space (and also his concept of ‘inertial’ motion) was passed on, through
Newton, to succeeding generations. In 1687 Newton published his fam-
ous Principia10 containing his three Laws of Motion (Appendix A1.1).
The First Law relied upon a space that was universal and featureless
- there were no absolute markers in it and so positions, distances, and
uniformmotions (that is, unaccelerated motions) could be determined
only relatively (that is, relative to each other or to some imagined refer-
ence frame). By contrast, the forces and accelerations in the Second Law
of Motion were absolute. To give an everyday example, a relation such
as ‘to-the-right-of’ is not absolute - it depends on the position of your
eye - whereas two magnets that are attracted accelerate toward each
other and eventually collide howsoever you view them, and even how-
soever you are moving as you view them. In summary, Newton’s Laws
required that there was one, true, absolute space, and that this space
was a featureless, infinite, passive background to the events (forces and
accelerations) within.11

One hundred and one years after Newton’s Principia (1687), Lagrange
published his Mécanique analytique (Analytical Mechanics) (1788), and
changed the concept of ‘coordinates’ yet again. In Newton’s world-
view, particles and forces are dropped into space, an infinite Cartesian

8 Westfall R, Force in Newton’s Physics (1971) American Elsevier andMacdonald, London,
page 59.

9 Westfall R, Never at Rest: a biography of Isaac Newton (1983) Cambridge University Press.
10 Newton I, The Mathematical Principles of Natural Philosophy (1687) translated 1729 by

AndrewMotte.
11 Curiously, Newton’s one, absolute space can be represented by an infinity of

allowed (‘inertial’) reference frames - but it is to be understood that these are all
equivalent to each other (they are identified in the next footnote).
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‘reference frame’.12 Lagrange, however, uses coordinates that are
tailored to the given scenario, and that must be reformulated for every
new scenario. For example, consider going from a system with just one
particle to one comprising N particles. According to Lagrange, the new
system has 3N coordinates, (x1, y1, z1, x2, y2, z2, . . . . xN , yN , zN), and there-
fore 3N dimensions of ‘space’ whereas, according to Newton, there are
always just 3 space dimensions (x, y, and z) whatever the number of
particles. The fundamental difference is that, in Lagrange’s mechanics,
particles are not dropped into space, they are space.
Lagrange went even further: not just particle-positions but any con-

tinuously graduated and quantifiable physical attributes can count as
coordinates. For example, we can map the angle, θ , that a simple pen-
dulum swings through; or the distance, s, that a bead travels as it moves
along a curved wire; or the radial distance, r, and angles, θ and φ, of
an orbiting satellite; and so on. So far, these coordinates are all dis-
tances or angles - generalizing yet further, we can assign coordinates
to other properties: the changing voltage between capacitor plates, the
area of a soap bubble, the values of the coefficients in the Fourier expan-
sion of a waveform, and so on. In other words, any physical property
which varies continuously, and which characterizes the system may be
a coordinate of that system. Lagrange’s coordinates are called the gen-
eralized coordinates and are designated qi, with i running from 1 to n, and
where n is as large as necessary in the given scenario. (Notation: we will
write

{
qi
}
as a shorthand for the set of coordinates q1, q2, q3,. . . qn.)

Isn’t this a retrogade step, to move from the breathtaking abstrac-
tion of an infinite, eternal, empty space to a set of coordinates that
are system-specific and only as extensive as the system requires? Well,
it might have been a backward step if it wasn’t for one surprising
and outstanding advantage: the new Lagrangian formulation allows
us to sacrifice a universal space in favour of a universal physical prin-
ciple. Before we explain this remarkable progression, we must attend to
another ‘coordinate’ that we have forgotten till now.

3.2 Time
According to historian of science, Charles Gillispie (1918–2015), Galileo
was the one who really brought ‘time’ into science. Yes, the seven ages

12 The reference frames may be in different positions, orientations, or have different
states of uniformmotion.
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of man were known about, yes, the acorn took time to grow into an
oak, and, yes, time could be marked out by water-clocks, candle-clocks,
and sundials: but that time could be put into a mathematical relationship,
that it could be brought into comparison with distances travelled - this
was new.13 This was such a difficult step to take that it took Galileo over
twenty years to be able to state his law of free-fall as ‘the distance fallen
is proportional to the squares of the time’.14

The next big advance came with Newton. He brought ‘time’ into
dynamics (via his Second Law of Motion, a = F/m, where acceleration
is the rate of change of velocity with time), but, as m and F could be
absolutely determined, then this implied that timewas absolute also. As
Newton wrote in the Principia: “Absolute, true and mathematical time,
of itself, and from its own nature, flows equably without relation to
anything external. . . ”.15

‘Time’ can be quantified, and it varies continuously, so is it to be
counted as a generalized coordinate? The answer is both yes and no.
‘Time’ is special in that it is the obvious choice as the freely chosen
or independent coordinate, the one against which all the others are
measured (for example, speed is distance travelled in a given time, accel-
eration is the velocity change in a given time, and so on). Yet, there is
no logical necessity for ‘time’ to take on this role, and no logical pro-
hibition against another coordinate being the independent one (we can
have a standing wave plotted against horizontal distance, the height of
an embankment against the speed of river-flow, and other examples).
‘Time’ is also special in that there is only one dimension of time - but,
again, there is no logical prohibition against time having two or more
dimensions.16 It seems that we must simply accept that, empirically
as well as otherwise, ‘time’ (designated t) is different from the other
coordinates (designated qi, and sometimes called the generalized position
coordinates in contradistinction to the time coordinate). As Feynman
says in his Lectures on Physics,17 we must simply accept that time is, after
all, not the same as space.

13 Although there was already astronomical time, for example, in Ptolemy’s
epicycles, and Kepler’s Third Law of planetary orbits.

14 Gillispie C C, The Edge of Objectivity, Princeton University Press (1973).
15 Scholium to the Definitions in the Principia (see earlier footnote), Bk I (1689) transl.

Andrew Motte (1729), Florian Cajori, Berkeley, University of California Press (1934)
page 6.

16 (Two time dimensions were, in fact, proposed by Dirac and by Milne in the 1930s.)
17 The quote is somewhere in the Feynman Lectures on Physics, probably Volume I, but -

my apologies - I haven’t been able to find it again.
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The mechanics of both Newton and Lagrange splits into two regimes
- statics (there is no time-dependence) and dynamics (there is a time-
dependence). However, Lagrange was the first physicist whose dynam-
ics, on occasion, treated ‘time’ on a more equal footing with the other
coordinates. He sometimes lumped all the coordinates, including time,
together, making them all dependent on some new ‘dummy vari-
able’. Time is special in yet another regard. When all but microscopic
phenomena are investigated, time appears to flow, and always in one
direction (from ‘the past’ to ‘the future’). It’s very strange to say, but
this profound yet banal human experience of time plays no part what-
soever in the dynamics of either Newton or Lagrange. Even though
the dynamics examines macroscopic effects (but, crucially, microscopic
dissipative effects, like friction or air resistance,18 are ignored), there
is no sense of time flowing, no difference between making time run
forward or backward in the equations. As Einstein wrote: “. . . the dis-
tinction between past, present, and future is only an illusion, however
persistent.”19

3.3 Degrees of Freedom
We have our coordinates, say, n of them for the given system. There
may still be different coordinate representations, connected by trans-
formation functions, for this given system (for example, we may use
Cartesian, or spherical polar coordinates). Also, there may be extra
conditions - such as the conditions of rigidity, incompressibility, or inex-
tensibility. Say there are m such conditions. Then there will be only n – m
truly independent coordinates. Now when we have explored lots of
different coordinate representations, then that one using the smallest
number of independent coordinates determines the ‘number of degrees
of freedom’ of the given system. However, it must be admitted that the
‘smallest number of independent coordinates’ is a dry and overly for-
malistic criterion for something so important. Physically, the degrees of
freedom are the defining characteristics of the given system - the irredu-
cible, independent ‘motions’ of which the system is capable - and their
explanatory power is just as important as the economy of coordinates.

18 But Newton did treat the case of motion through a resistive medium in the
Principia, Book II.

19 Albert Einstein and Michel Besso: Correspondence 1903–1955, p. Speziali, ed Paris,
Hermann 1972, as found in Brian Greene’s The Fabric of the Cosmos, p 139, Penguin, 2008.



Mathematics and physics preliminaries 37

While the degrees-of-freedom is ultimately a somewhat slippery con-
cept, it is, nevertheless, an inherent property of the given system, and
not merely a property of this or that coordinate description.
Economy may be a good thing, but how can we be sure that we have

enough coordinates to completely describe the system? This is really the
same as asking how we can be sure we have taken account of all the
effects. In this regard Einstein, as so often, comes to our aid. Suppose,
for example, that we are monitoring waves breaking on the beach. The
waves arrive every few seconds and have a wavelength of a metre or so,
but then we realize that we forgot to take account of the swell with a
wavelength of one or two kilometres. This swell was not noticeable on
our length and time scales, and - this is Einstein’s message - if an effect
isn’t noticeable then we don’t need to notice it.20 In other words, if we
think we have enough qi to describe the system, then we probably do.

3.4 A generalized mechanics
We have gone from Cartesian coordinates to generalized coordinates,
and from Newton’s particles to ‘generalized particles’ (lever arm, pen-
dulum bob, capacitor plates, and so on). Force will become generalized
as well, but it is part of a whole change of tack. We move away from
Newton’s outstanding and simple ‘F = ma’, to a new energy analysis in
which ‘force’ is replaced by the ‘work done by a force’.We remember from
high-school physics that the work done by a force, F, acting through
an infinitesimal21 displacement, dr, is given by the scalar product F · dr.
For example, for N Newtonian particles with position vectors, ri, dis-
placements, dri, and each subject to a force, Fi, then the total work
done is:

dW = F1 · dr1 + . . . + Fi · dri + . . . + FN · drN (3.1)

What is rarely stressed is that this is a highly specialized definition in
which Fi and dri are ‘rectangular vectors’, that is, they are referred to the

20 (This is connected with the precision in the detection apparatus. Note, also,
that this pre-dates any quantum mechanical considerations about the precision of
measurements, the rôle of the observer, and so on.)

21 Later, Section 3.6, we explain that our test of stationarity involves differential
geometry - that’s why we are using infinitesimal differentials rather than finite displace-
ments.
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rectangular22 axes, x, y, and z. Making the switch to the generalized
coordinates, we have the generalized work:

dW = Q1 · dq1 + . . . + Qi · dqi + . . . + Q3N · dq3N (3.2)

where dqi are infinitesimal changes in the coordinates, qi, and the Qi are
functions of these coordinates, Qi = Qi(q1, q2, . . . q3N). Comparison of
equations (3.1) and (3.2) suggests that the ‘Qi’ may be regarded as stand-
ins for the ‘Fi’. Yes, but note several things: the i in equations (3.1) and
(3.2) have different ranges; the Fi is a vector and is the total force (includ-
ing constraint- and internal-forces) on the ith Newtonian particle; ‘Qi’
is not necessarily a vector,23 and applies to a ‘generalized particle’ as
it goes through a ‘generalized displacement’, dqi. This may all sound
like mere formalistic pedantry, but our message will be that the for-
malism (the mathematics) has physical implications (and vice versa). For
example, a ‘generalized particle’, by its nature, moves only in a certain
way, in harmony with the constraints and kinematic conditions (a car
travels along a road, but a 4-wheel-drive can go over the rough, while
a person walks along a footpath24). As the ‘generalized particle’ moves
harmoniously, that is, in keeping with the constraints and kinematic
conditions, then it doesn’t do work against these constraints and kine-
matic conditions. Therefore the generalized forces, Qi, do not include
constraints and kinematic conditions - they represent applied or exter-
nal effects only. This is a major difference between the forces and the
generalized forces.
More to do with formalism: the total work in equation (3.2), some-

times symbolizedU, is what, in the old classical physics, used to be called
the ‘work function’. The term ‘function’ is used advisedly. ‘Work’ is a
form of energy, yes, but it is a rather special kind of energy, having a
functional dependence on the distribution of variousmacroscopic compo-
nents (like the raising of weights, the stretching of a spring, and so on).
Remembering also that there is a functional connection between the
different coordinate representations (Section 3.3), then it is hardly sur-
prising that theQ1,Q2, . . . end up as being functions of the q1, q2, . . .They

22 Rectangular axes are straight (rectilinear) and at right angles to each other
(orthogonal).

23 In fact, Qi and dqi are more general ‘vectors’ that exist in an abstract ‘vector space’.
24 Other examples are: a lever arm swings about the fulcrum, a spring stretches

along its axis, a rigid body moves while still maintaining its shape because of internal
forces.
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may also be functions of t. The Q1, Q2, . . . are known as the general-
ized forces. As already mentioned, they are not necessarily rectangular
vectors, and do not necessarily have the dimensions of force. The only
requirement is that, while the generalized displacements need not have
the dimensions of length, and the generalized forces need not have the
dimensions of force, each product, Qidqi, must have the dimensions of
energy.
Although it seems that the work function must be less fundamen-

tal than the force (as it requires force in its definition), this mistaken
hierarchy is partly due to historical accident (force was discovered first),
and partly due to the fact that the force-analysis is simpler and more
intuitive. But, in fact, it is the work done that is more fundamental.
As Lanczos writes:25 “Although we are inclined to believe that force is
something primitive and irreducible, the [variational] mechanics shows
that it is not the force but the work done by the force which is of pri-
mary importance. . . ” Now in the Newtonian Mechanics a force causes
a particle to accelerate whereas in the Variational Mechanics the ‘work
done’ causes a ‘generalized particle’ to change its kinetic energy. This is
why Lanczos also writes: “the really fundamental quantity . . . is not the
[rate of change of] momentum but the kinetic energy.”26 ‘Work done’
and ‘kinetic energy’ are both forms of energy, and this confirms our start-
ing assertion that Newton’s ‘force-mechanics’ is being replaced by a new
‘energy-mechanics’.
We shall also find that the dichotomy is not just between force

and energy, but between a whole-system feature (the work function or
configuration-energy) and the individual energies (the kinetic energy of
each individual mobile component). Now a system is evidently made
up of its components, but the boundary between ‘whole’ and ‘parts’ is
not always clear-cut. In the variational mechanics the motion of com-
ponents, and even the mass of an individual component, can affect the
‘whole’, whereas in NewtonianMechanics the influence between ‘F’ and
‘ma’ is all one way.
Curiously, while energy is in the ascendant in the Variational

Mechanics, the well-known Principle of the Conservation of Energy
will be relegated to a subordinate role, applying only in the special
case where there is no explicit dependence on time. In the special case
in which the work function, U, is time-independent and also doesn’t

25 Lanczos, page 27.
26 Lanczos, pages 21–2. We explain inertia in Section 3.5.
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depend on the ‘speeds’, q̇1, q̇2, . . . ,27 then U is the same as the potential
energy, V (actually, by convention,U = –V).

3.5 ‘Space’ - a mathematical testing-ground
We have generalized coordinates, generalized particles, and generalized
forces; we also have need of a new generalized conception of ‘space’.
A crucial requirement is that our choice of ‘space’ - a mere viewpoint
- must not make any difference to the system being investigated. This
requirement is certainly satisfied when switching between, say, rec-
tilinear and curvilinear28 coordinates - this is a purely mathematical
procedure effected by mathematical transformations between coordin-
ates. However, we can go from one space,29

{
qi
}
, to a second space,

{
q′j
}
,

in another way - we can adopt two completely different physical mod-
els for the one given system (for example, we can model bells, or their
clangers).
However, space and physical assumptions are intimately related. Let’s

examine this relationship first in the familiar territory of Newtonian
Mechanics. By Newton’s First Law of Motion, a free particle travels in a
straight line at constant speed - but how shall we know that this particle,
coasting along in empty (Newtonian) Space, is in fact moving through
regular distance intervals in regular Time intervals, in other words, how
shall we know that it is really moving in a straight line? We can only be
assured of this by postulate - that there really are no forces operating,
and that the universality and regularity of our rulers and clocks can be
relied upon. How can we be assured that our free particle is not swerv-
ing to the left? Again, we can only be assured of this by postulate. Also, if
the particle is not free but is subject to a force then it will have an accel-
eration determined by that force, and also by the particle’s mass. How
can we be sure of this? Because we assert that our reference frame is
definitively not accelerating, and also that the mass is constant between
reference frames.

27 Notation: a dot over a symbol is a shorthand for d/dt.
28 Note that curvilinear coordinates, such as (r, θ ,φ), do not make a flat ‘space’

become ‘curved’. The true meaning of ‘curved’ will be explained in Section 3.6.
29 Notation: we mostly drop apostrophes round the word space from now on. The

curly brackets,
{
qi
}
, is a shorthand for the whole set of n coordinates: q1, q2, . . . , qn. The

prime, q′j , means a different space, it does not mean differentiation.



Mathematics and physics preliminaries 41

In the Variational Mechanics, a ‘free’ generalized particle is one that
goes through its paces, its degrees of freedom, unhindered: the pendu-
lum bob swings, a marble rolls down the marble-run, the Earth follows
an elliptical orbit around the Sun, a pebble falls freely until the instant
before it reaches the ground.30 So, ‘free particles’ can swerve, speed up,
or slow down, - all accelerations - but accelerations can now be con-
sidered as ‘inertial’, and sometimes even define the new ‘straight’ lines
of space.31 In effect, the concept of ‘inertial’ has also been generalized,
but the new ‘inertial’ is no longer divorced from ‘space’. For example,
‘inertia’ can depend on the spatial distribution of mass (the ‘moment of
inertia’ is often proportional to r2); and the response of an electrical cir-
cuit is dependent on the distribution in space of its components (merely
curving a straight wire into a coil turns it into a new component - an
electromagnet). What is perhaps less well appreciated is that time also
affects space (the rate at which a bar magnet is pushed into or out of an
electromagnet affects the strength of the induced currents; triangula-
tion using lasers relies upon the regularity of clocks; and so on). Also, it
is well attested that the presence of very large gravitating centres affects
the surrounding space.32

This interrelation between space and the given physical features
makes the challenge of finding a fiducial viewpoint - the challenge of
objectivity - seem insurmountable. But this challenge can be met, and
what we require is a space that can serve as an agreed mathematical
testing-ground - a mathematical-test-space. How we meet this require-
ment is rather clever: instead of using physical space, we construct a
completely abstract space. We take the n generalized coordinates for the
given system, q1, q2, . . . , qn, and plot them against n rectangular axes
(straight lines meeting at right angles) - it’s as simple as that. And, in
the same way as we have been used to associating the position of a point
in physical space with the three coordinates, x, y, and z, we now associ-
ate the position of the system in abstract configuration space with the n
coordinates q1, q2, . . . , qn. The ‘position of the system’ is known as the

30 Putting one’s finger in the way of the pebble it will no longer be free. Likewise,
friction, air resistance, or booster rockets all stop it from being free.

31 These lines are called geodesics, but this terminology only applies in time-
independent cases, for example, where the external force-fields do not vary with
time.

32 See, for example, Will, Clifford, “Was Einstein Right?: putting general relativity to the test",
Basic Books, New York, 1986.
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configuration point or C-point, and it represents the state of the whole
system (the values of all the qi s) at a given time. Finally, in the same
way as we can track the actual motion of a particle along a trajectory as
its position changes in time, so we can track the abstract motion of the
C-point as it moves along a curve, its world-line, through time.
To emphasize that this configuration space is truly abstract, we

consider an example from outside the realm of physics. Imagine a
two-dimensional configuration space in which we plot the number of
white chess pieces against the number of black chess pieces, as a given
chess game procedes. If the end-game is long and drawn out, with no
pieces taken, then the C-point will remain fixed, even while the actual,
physical disposition of the chess pieces keeps changing.
We now have our mathematical testing ground - configuration space

- but what shall the mathematical test be? From the title of this book,
we can guess that it will be a test of stationary or least action, but we
must creep up on this more slowly.

3.6 Invariants: ‘space research’
The layperson’s perception of Einstein’s legacy is that he found that
‘everything is relative’. This couldn’t be more wrong: the true con-
tent of Einstein’s Principle of Relativity is that the important things
are not relative, they are invariant (invariant with respect to different
viewpoints, cf. d’Alembert’s quote at the start of Chapter 1).
Let’s compare two views - spaces - of one physical system. There is

an important proviso, crucial to Variational Mechanics: the two spaces
must be connected by coordinate transformation functions. In Figure 3.1
we see a column in the mirror-surface, and the same column in the
table-top surface. We find that straight lines have become transformed
into curves, and distances and angles are not preserved (for example,
the grooves in the column are parallel in one space and diverging in the
other space).
Nevertheless, there are certain geometric features that do remain

the same between the two spaces: there is just one column, it always
has exactly 10 straight grooves, and the leaves, whorls, and flowers are
always at the top of the column (not half-way up). These are so-called
topological features, and their importance lies in the fact that they are
invariant between spaces. If our mechanics can be couched exclusively in
terms of such invariant topological features then it has a chance of being
universal.
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Figure 3.1 “Anamorphic Column” by Istvan Orosz ©Istvan Orosz.

What is the topological feature we use when it comes to mechanics?
Comparing the spaces in Figure 3.1, two things can be noted. One is that
the position of a point is not a very robust quantity, it can change from
one space to another - for example, for a reference frame whose origin
is in the middle of a flower, the petals are all the way around this origin;
whereas for an origin sited on the tip of one petal, then all the other
petals are to one side. The other noteworthy thing is that the smaller
the portion of space that is investigated, the more closely the different
mappings approach each other, topologically-speaking (curved line-
segments approach straightness, line-segments that diverge in the large
appear parallel in the small, and so on). So, better than the position of
one point, P, is the difference in position of two points, P and Q; and better
still than the difference in position of P andQ is the difference in position
of P and Q as Q gets infinitesimally close to P.
We are familiar with using the ordinary differential calculus to deter-

mine the tangent line at a point, P, on a curve - we examine the slope
as a nearby point gets arbitrarily close to P. In configuration space we
are now in a space of n dimensions but we can analogously identify a
space of (n – 1) dimensions that is ‘tangent to’ the n-dimensional space
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at the point P. The branch of mathematics that deals with the rate of
change of a ‘hyper-surface’33 at a point is called differential geometry,
and it is just what’s required in order to arrive at a topological feature
that will be invariant. (The old-fashioned name, the absolute calculus,
is better at reminding us of this asset.) We are about to find out that the
topological feature that will be relevant in mechanics is the ‘stationary
point’ (see Section 3.7) of the hyper-surface corresponding to the given
configuration space.
Before returning to this discussion, let’s pause for a brief tour of the

history of ‘space research’. We showed earlier (Section 3.5) that there
was a link between the mechanical assumptions and the properties
(the geometry) of space. Now it so happened that the predictions of
Newton’s Mechanics and the geometry of Euclid’s space were so per-
fectly matched that (almost) everyone simply took it for granted that
space - everyday physical space - was Euclidean.34 It came as something
of a shock, therefore, when Einstein declared (in 1915, in his Theory of
General Relativity) that physical space was not Euclidean. For example,
Einstein predicted that it wasn’t true that the angles of a triangle would
always sum to 180◦ no matter where the triangle was located, or that
parallel lines remained parallel however far they were extended.
Actually, mathematicians in the nineteenth century had already dis-

covered the possibility of non-Euclidean spaces but few realized that
these abstract speculations could have any relevance to the real phys-
ical world. One who did realize this was the mathematical genius, Carl
Friedrich Gauss (1777–1855). He tried to measure the angle-sum of a
triangle defined by three mountain-tops - but the experiment was too
crude to bring out the tiny deviation from 180◦. However Gauss made
an outstanding theoretical discovery: the properties of a space could
be determined algebraically, that is, from totally within that space (in
Section 3.1 we remarked that Descartes’s coordinate geometry had like-
wise liberated us from the need to look at space from ahigher dimension
outside the space). Then therewas BernhardRiemann (1826–1866), who
took Gauss’s investigations to a new level of generality (see below).
(There were others, Bolyai, and Lobachevsky, but we won’t pursue
them.)

33 A hyper-surface is a surface in more than two dimensions.
34 Euclideanmeans having the properties given by, and derived from, Euclid’s axioms

in his book “The Elements” (c. 300 BCE). For example, a Euclidean space is one in which
the sum of the angles of a triangle always comes to 180◦; parallel lines remain parallel
to infinity; the circumference of any circle is 2π (radius); and so on.
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Are the quintessential properties of a space determined solely by
certain axioms concerning triangles, circles, parallel lines, and so on?
Yes, the properties of a space are so-determined, but Riemann’s bril-
liant discovery was that the properties of space can be determined by
examining just one formula35 - the formula for the infinitesimal ‘dis-
tance’ between neighbouring points, ds. Before Euclid, another ancient
Greek had already come up with such a formula. This was Pythagoras
(or, strictly speaking, the Pythagorean School), around 500 BCE, who
promoted the famous formula known as Pythagoras’s Theorem:36

Pythagoras’s Theorem, (ds)2 = (dx)2 + (dy)2 (3.3)

Riemann realized some fundamental things: (i) Pythagoras’s Theorem
not only told of the properties of right-angled triangles, but the func-
tion (ds) (the positive square root of (ds)2), was the ‘distance’ between
two points; (ii) more than that, it was the shortest ‘distance’ between
two points; (iii) most amazing of all, Pythagoras’s (ds)2 was but one
possibility - more generally, it could be written as:

(ds)2 = gxx(dx)(dx) + +gxy(dx)(dy) + gyx(dy)(dx) + gyy(dy)(dy) (3.4)

where the gij are coefficients to be determined. In Pythagoras’s Theorem,
it just so happens that we have the values gxx = 1, gxy = 0, gyx = 0, and
gyy = 1. In other cases (other spaces), the gij need not have these particu-
lar values, and need not be constants - they could even be functions of
x and y.37 This discussion has, so far, been in a space of only two dimen-
sions, but Riemann generalized his ‘distance function’ still further to n
dimensions:

Riemann’s distance function, (ds)2 =
n∑

i,j=1

gij(dqi)(dqj) (3.5)

Most remarkable of all, Riemann showed that all the geometric prop-
erties of an n-dimensional space can be completely determined by just

35 Moreover, it’s a formula which can be determined from within the space.
36 We have adapted Pythagoras’s Theorem by writing it in differential form, (ds)2 =

. . ., rather than in incremental form, (�s)2 = . . .
37 (with the proviso that the gij must be continuous, and twice-differentiable func-

tions).
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this ‘distance’, ds (the square root of the above equation). For example,
if any of the coefficients, gij, are not constant but are functions of the
coordinates, then the corresponding space is not ‘flat’ (Euclidean) but
‘curved’. This, finally, is what ‘curved’ means: it is a measure of the
departure from Euclidean space, and is determined by certain functions
(Riemann’s ‘curvature functions’) of the gij-coefficients. While the ‘dis-
tance’ is specific to the given space, its value is invariant as regards which
coordinate representation has been adopted.
In view of our quest for invariant properties, Riemann’s distance

function is obviously very important. In effect, Riemann’s distance
function enables us to turn ‘space research’ on its head: instead of start-
ing with Pythagoras’s Theorem (leading to a Euclidean space) we can
instead start with a postulate of a certain distance function, ds, and then
explore the consequential geometry of that space. (Any space charac-
terized by a certain distance function, ds, will be called a Riemannian
space.)

Optional: Some well-known cases are: (i) Euclidean space, ds =√
[(dx)2 + (dy)2], (ii) Fermat’s Principle, ds = time-of-flight along

a light ray, (iii) Special Relativity, ds ≡ ‘spacetime interval’ =√
[(dx)2 + (dy)2 + (dz)2] – [c2(dt)2]), (iv) ds =

√
2Tdtwhere T is the kin-

etic energy in a conservative system with no potential energy, (v)
ds =
√
2(E – V)dt where (E – V) is the kinetic energy in a conserva-

tive system with potential energy V and total energy E, (vi) General
Relativity, ds ≡ dτ = an interval of ‘proper time’ (in units where
c = 1).

How does all this relate to ‘mechanics’ (pendula swinging, juggling
clubs twirling, cantilever bridges, LC circuits, planets orbiting, star-
light passing near the Sun, and so on)? All the definitions of ds just
given (optional reading) are examples of special spaces for special cases.
However in general mechanics we have bodies with mass, a poten-
tial energy function V, and V may be time-varying, and there may be
additional constraints and kinematic conditions: in these most general
cases, ds is an interval of action.38

38 ds is sometimes called the ‘metric’ of the given space as it is an absolute measure,
and gives the actual ‘distance’ between two specific points, for example, the points may
be separated by a ds of 0.056 Js.
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The function ds or ‘metric’ appropriate to our problem determines
the ‘curvature’ of the space of that problem: and any mechanical prob-
lem (not just Einstein’s Gravitation) may be said to occur in a curved
space. For example, a bead travelling along a bendy wire needs more
force to move it through tighter twists - it’s space is not uniform, it
is curved. Now a mechanical system with n degrees of freedom can be
depicted using an n-dimensional configuration space, but if there are m
conditions (the condition of moving along a wire, of maintaining the
shape of a spinning top, of hanging on an inextensible cord, and so
on) then the configuration space is reduced to a subspace of (n – m)
dimensions. This subspace will usually39 be curved. For a problem
with no potential energy and no explicit time-dependence, the C-point
moves along a ‘geodesic’ - the ‘straightest’/‘shortest’ path between given
end-points - in this curved subspace. For problems with an external
influence (there is a V) we can still establish what is the ‘geodesic’, but
not determine the C-point’s speed along it. However, this extra infor-
mation can be reconstructed afterward (using the condition of energy
conservation). Finally, even if the external conditions are time-varying,
we can add the time to the position coordinates, thereby increasing the
dimensionality of the space by 1, and, again, determine the ‘geodesics’ of
this new space. All told, the mechanical problem has been translated into a problem
of (differential) geometry.
(It will not be possible to absorb these difficult new ideas in one go,

their meaning will become more and more apparent as we proceed
through the book.)

3.7 The Calculus of Variations
In this section we interrupt our story (it will be continued in Chapters 4
to 7) in order to explain some mathematical techniques. These tech-
niques will be very helpful in the understanding of everything that
follows - but they may be skipped over without too much loss of
continuity.

3.7.1 Extremum problems - of hills and plains

Popularly, it is thought that hills and valleys are the antithesis of plains
but actually hill-tops, valley-bottoms, and plains all have something in

39 The subspace will be flat only in the special case where all the conditions are linear
in all the coordinates. The subspace is then a ‘hyper-plane’.
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common. In extremum problems we are not trying to find the highest
peak in a whole mountain range, but rather we are already on a given
mountain andwant to determine the position of the very top.Wherever
we are on the mountain we ask ourselves - are we at the top yet, or
does our next step take us even higher? In other words, the location of
the highest point requires an inspection of the immediate - the local -
surroundings. It is with respect to their local surroundings that hill-
tops, valley-bottoms, and perfect plains are all the same - they are all flat.
The extremum point of interest involves ‘no change’ relative to local,
neighbouring points, and so it is called the ‘stationary point’ (it is said to
exhibit ‘stationarity’).
In the variational mechanics, we still explore a ‘surface’, but it may

have more than just the two dimensions of hills or plains (an n-
dimensional surface is called a ‘hyper-surface’ - as mentioned in an
earlier footnote). Also, we are usually only interested in whether the
conditions for stationarity have been met - whether the point in ques-
tion happens to be a true extremum (a maximum or a minimum), or
merely an inflection point, or a point within an extended flat plain, is
irrelevant.

3.7.2 Three kinds of infinitesimal

Suppose we have a function, y, of n variables, x1, x2, . . . , xn, that describes
an n-dimensional space, a hyper-surface, y = y(x1, . . . xn). We wish to
determine whether the point P in this surface is stationary or not. As
we have just seen, in order to establish whether a point is stationary, we
must examine the region infinitesimally close by. However, there are
three distinct ways in which to take an infinitesimal step.

(1) Actual displacements
We can explore from P to a nearby position, P′, by allowing the vari-
ables x1, x2, . . . , xn at P, to be displaced (change their values) by very
small amounts, dx1, dx2, . . . , dxn. You could say that we’ve put out tiny
feelers in all the relevant directions. Then we draw the feelers back
in, and ‘in the limit’ as P′ reaches P, all the displacements are once
again zero. This ‘limiting process’ is mathematical and not haphazard -
the displacements scale down in unison, and must at every stage satisfy
the function, y(x1, . . . xn), and must at every stage maintain the proper
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proportions to each other as determined by any constraints.40 Only
in this way can it be guaranteed that all the displacements will scale
down and reach zero together. This mathematical down-sizing process
implies that the difference between y(x1 + dx1, x2 + dx2, . . . , xn + dxn) at
P′, and y(x1, x2, . . . , xn) at P, called the ‘total differential’, dy, is given by
the well-known rules of differential calculus:

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2 + . . . +

∂y

∂xn
dxn (3.6)

The condition for the stationarity of y at P is that dy at P is zero.
For simplicity, let us consider the one-dimensional case in which y is a

function of just one variable, y = y(x). The n-dimensional ‘surface’ then
reduces to the curve, y(x). (We assume that the functional form of y is
known, and that it is continuous and differentiable.) The condition for
stationarity at P then becomes: dy/dx = 0 at P. For example, y(x) could
represent the vertical position of a cannon ball as a function of time; or
the vertical position of a cannon ball as a function of its horizontal pos-
ition; or the force on a spring as a function of the extension of the spring;
or the torque on a lever-arm as a function of the angular displacement
at the pivot; and so on. Let’s examine the second example, the path of
the cannon ball, shown in Figure 3.2.

P

height = y

horizontal position = x

Figure 3.2 The path of a cannon ball. (schematic)

40 (In the language of vector spaces, each displacement, dxi, maintains a fixed dir-
ection along an axis of the abstract space, and only its magnitude changes as zero is
approached.)
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It so happens that in this problem we know that y is the function
y = –ax2 + bx where a and b are constants. Suppose we want to deter-
mine whether y is stationary at the point P shown in the figure. There
are two perspectives on this. From the physical, experimental, perspective,
we can take successive measurements of the ball’s position, plot the
graph, and see whether or not the curve appears flat at P. From a purely
mathematical perspective, we can use the well-known method of ‘cal-
culating the differential’, dy/dx, and then check numerically and see if
dy/dx is indeed equal to zero at P. (In the example shown, y = –ax2 + bx,
so dy/dx = –2ax + b, and this is equal to zero whenever x = b/(2a). So, we
must examine whether x at P has the value b/(2a).)
Are these two perspectives, the physical and the mathematical,

equivalent, leading to the same result? Amazingly, they are. It must be
admitted that it’s impossible to make measurements that really do get
smaller and smaller all the way to zero, yet, the important thing is that
the cannon ball really does undergo actual horizontal displacements (dx)
as it whizzes through the sky, and there is, in principle, no objection to
our physically sampling the curve anywhere we like.41 (Note that, from
either perspective, we just ascertain the flatness, we don’t determine the
height of the ball at P.)

(2) Virtual displacements
Now, we consider a different kind of infinitesimal displacement called a
virtual displacement, δx (or, in n dimensions, the virtual displacements,
δx1, δx2, . . . , δxn). To distinguish it from the previous kind of displace-
ment we give it a different symbol, δ. We again wish to carry out a test
of stationarity at the point P, and this again involves an investigation of
the neighbourhood infinitesimally close by; but now, for various reas-
ons, the displacements, δx1, δx2, . . . , δxn, are not all physically possible.
For example, they may imply bodies having infinite speeds, or displace-
ments of physical components which can’t actually be moved (like the
blocks in a Roman arch), and so on. We don’t let this stand in our way,
but press right ahead and mathematically imagine the displacements
instead. This was Lagrange’s brilliant idea (one of many).
Nevertheless, our mathematical imagination must be constrained.

The new positions, (xi + δxi), must still satisfy the function y (it is, after

41 However we can only do this to within a certain experimental precision.
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all, this same ‘surface’ that we are exploring) and theremay also be con-
straints between the displacements (this is just another way of saying
that the variables may not all be independent of each other). In fact,
we have exactly the samemathematical requirements as we had before,
and so we can now write down exactly the same equation as before, but
substituting δx for dx:

δy =
∂y

∂x1
δx1 +

∂y

∂x2
δx2 + . . . +

∂y

∂xn
δxn (3.7)

Once again, the stationarity of y at P requires the zero-value of δy at P.
Thus, in case (1) we had both a mathematical and a physical perspec-

tive, whereas now, case (2), we retain the mathematical perspective but
let the requirement for an actual physical perspective fall away.
Let’s consider a one-dimensional example. Suppose we have a ladder,

of given mass, leaning against a wall; the wall is assumed completely
smooth, but there is some contact friction between the ladder and the
floor. We wish to determine the conditions for stationarity, that is, for
static equilibrium at some position, P, of the foot of the ladder. Instead
of balancing forces and/or balancing torques (the Newtonian method),
we adopt a radically different procedure, and allow the foot of the lad-
der to be virtually displaced, very slightly, toward or away42 from the
wall (Figure 3.3).
However, this displacement doesn’t actually happen, the foot of the

ladder does not really slip through position P - it’s not a ‘falling-down-
ladder’, it’s a ‘stable-ladder’ that we’re investigating. By contrast, the
cannon ball really does fly through position P in Figure 3.2. Thus, the
infinitesimal mathematical displacements of the cannon ball are also
actual physical displacements, whereas the infinitesimal displacements
of the ladder are purely virtual displacements - they don’t actually happen,
they are mathematically imagined.
(The problems in Figures 3.2 and 3.3 are worked through in

Appendix A6.1 (problem 6), and Section 4.10, Chapter 4.)
There is just one more requirement to note about the virtual dis-

placements - they must be reversible, that is to say, for any displacement,
δxi, a displacement in the reverse direction, –δxi, must also be possible.
This is to ensure that we can always approach the C-point from either

42 The reason for insisting on these two directions is given in the main text, the
paragraph after next.



52 The Lazy Universe

ladder

–δx +δx

floor P

wall

Figure 3.3 Is the ladder stable?

the positive or negative directions (for each i), and this in turn ensures
that we can ascertain whether the C-point is at a true stationary point,
and not merely at a ‘false’ extremum existing on a boundary (see the
washing line in Figure A3.1, Appendix A3.1).
Now, you may object that, if we are assuming a stable ladder, then

we have presumed the very answer that we seek. This isn’t so, as we
are really asking the question: “granted that the ladder is stable, then
what are themathematical conditions that are implied by this stability?”
Note that while the displacements are virtual yet they must still satisfy
the actual, physical constraint conditions (the ladder-foot moves only
within the surface, it doesn’t burrow into the floor or jump into the air,
and the whole ladder maintains its rigidity).
There’s no denying that the idea of virtual displacements is difficult

and, at first glance, mysterious, but let’s argue the case for mathem-
atical experimentation the other way around. The mathematician can
imagine anything he/she wants to (infinite speeds, Dirac delta func-
tions, bishops moving only diagonally, and so on); imagining is not the
problem, but why should these physically impossible imaginings tell us
anything physically useful, that is the question. There are two answers.
First, although we have set up this artificial construction of virtual dis-
placements, in fact it is only the point P itself that we’re interested in
(the position of the C-point in configuration space) and at this point
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the distinction between dx and δx in effect disappears. Second, there are
many precedents wheremathematics has provided criteria that have no
direct physicalmanifestation. For example, consider two rodsmoving in
different directions at speeds close to c, the speed of light. Even though
the rods move at speeds less than c, the mathematical point of intersec-
tion of the rods can move faster than c. Quantum mechanics abounds
in cases where there are mathematical conditions for which there is no
direct physical analogue (although, of course, the mathematics leads
on to predictions which can be checked up on physically). There is one
other telling example, the only other case where the adjective ‘virtual’
is used in physics. This occurs in geometrical optics, where extensions
of actual light rays are mathematically imagined. If these virtual exten-
sions intersect then we have a focused image but it is an image where
there is no actual light.
We started this chapter with the broad assertion that “The pro-

gramme of physics is the mapping of numbers onto physical things. . . ”
but now we are finding that the intersection of maths and physics is
more murky than this suggests. In fact, the problem of understanding
virtual displacements is entirely one of merging the physical and the
mathematical worlds: if we were solving a problem in pure mathemat-
ics, then all the displacements would be of one kind - virtual - and no
problems of understanding would arise.

(3) Imperfect displacements
So far, we have had displacements, dx or δx, and we have been con-

cerned with determining dy or δy, where y is a specific function that has
been supplied beforehand. But what if there are displacements but there
is no function y? For example, we might have a guinea pig nibbling its way
through a biscuit: with each tiny bite more and more of the biscuit dis-
appears, but we can’t express this as a functional relationship between bites
and biscuit-shape. All we can say is that each actual, tiny bite, dx, causes
an actual, tiny reduction in the biscuit, dy, called an ‘imperfect differen-
tial’. We use a bar over the top, dy, to show that this represents an actual
tiny change, but we can’t say that it is the ‘d-of-y’ as we would have said
in ordinary calculus. As there is no function, y, then we will not be able
to use our usual mathematical weapons (differentiation, etc.). This case
looks hopeless - how can it ever be incorporated into such a mathem-
atical subject as the variational mechanics? Lagrange was not defeated,
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and with amazing ingenuity he devised a method of dealing with these
imperfect differentials. But - enough already - we shall not be pursuing
this further at this stage.43

We said that there were just three ways of taking an infinitesimal step
but there is a fourth way - we can make an infinitesimal ‘whole path’
variation. We’ll discuss this in the next section.

3.7.3 The calculus of variations: stationary integral problems - a big step
up in complexity

We have been concerned with determining the conditions when a
function y is stationary (Section 3.7.2) but, beyond the usual ‘regu-
larity’ requirements,44 we have said nothing about the function y
itself. In problems of static equilibrium then y is a simple polynomial
function (such as y = ax2 + bx + c), but in more general mechanics,
where motion is involved, then it turns out that y is generically a lot
more complicated - it’s then a function-of-a-function-of-a-function.
Specifically, y is then an integral, I, and this is a function of the inte-
grand, F, where F is itself a function of f , which is itself a function of the
independent variable, x:

y ≡ I =

∫ b

a
F
(
f (x), ḟ (x), x

)
dx (3.8)

(Also, as shown in this equation, one of the arguments of F is ḟ , which is
a shorthand notation for the derivative, df /dx - the reason for its inclu-
sion will be explained later on.) The reason why in dynamics we have to
do with an integral, and a huge increase in complexity, will be explained
in Chapter 6. For now, we concentrate solely on the mathematics. The
problem will once again be, as in Section 3.7.2, to determine the vir-
tual variation δy (now also called δI), and to see what conditions are
required for it to equal zero. But what is δywhen it comes to an integral?
It will entail the variation of the ‘whole shape’ of a function between two
end-points, a and b, rather than a displacement made at one ‘running’
point, x. We first look at some qualitative features of this sort of problem.

43 If your appetite has been whetted, the method involves a technique known as
‘Lagrange multipliers’, Section 6.8.

44 ymust be continuous, differentiable, and also finite and single-valued.
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Extremumproblems of this kind, where the stationarity of an integral
is sought, occur in dynamics, and in general mechanics problems. We
have met some cases already in Chapter 2: the brachystochrone curve; iso-
perimetric problems (for example, Dido’s quest to maximize the area
enclosed by a fixed strip of bullhide); Newton’s most streamlined solid;
and even certain static problems (the equilibrium shape for a suspension
bridge - the catenary). In all these cases we must determine the correct
overall shape of some continuous function such as to make the inte-
gral, I, have a minimum or, more generally, a stationary value, δI = 0.
Once again (as in Section 3.7.2, case (2)), we will use the technique of
mathematical experimentation, but this time we will virtually ‘vary a
function’ rather than virtually displace a variable.
What does itmean to ‘vary a function’? Looking back at equation (3.8),

it seems that there are a number of ways in which the integral could be
(virtually) altered: we could change any or all of F, f , ḟ , x, or the limits
a or b. However, in fact, we ban all but one of these changes. First, it is
in the nature of these problems that F is never altered, it is prescribed
beforehand (in other words, F defines the very problem we are investi-
gating and if we allow it to be changed we are, in effect, investigating a
new problem). F might be the formula for an infinitesimal increment
of time, ds/v; or the potential energy per unit length of hanging chain;
or, in dynamics, as we shall find out in Chapter 6, it is the difference
between the kinetic and potential energy functions.45 Second, we do not
allow virtual changes in the independent variable, x. (Of course, x does
actually change as we integrate from the limit x = a all the way to x = b,
but there is never an extra introduced change, δx.) Talking of the lim-
its, a and b, these also are fixed, and so is the value of f at these limits.
So, what is left? The only thing we are allowed to change (to ‘vary’) is the function, f .
Even ḟ is not varied by us, it just changes consequentially as a result of
the change in f .
Thus, here is yet another huge step up in complexity: instead of

a ‘virtual displacement of a variable’ we have a ‘virtual variation of
a function’. This variation is achieved by plucking out of the math-
ematical imagination an arbitrary function, φ(x), then scaling it by
some ‘small’ arbitrary constant, ε, and adding the result to our starting
function, f (x):

45 Note that it is imperative that F is in functional form - if the problem doesn’t present
itself in this way, then we just have to give up and go home, as there’s no way that
analytical (i.e. mathematical) mechanics can be applied to this type of problem.
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variation of f

f var(x) = f (x) + εφ(x) a ≤ x ≤ b (3.9)

The variation can then be made infinitesimal by allowing ε to get
arbitrarily close to zero. The conditions on φ(x) are that it must be con-
tinuous and differentiable, it must be ‘small’, and, at the integration
limits x = a and x = b, it must be zero (in other words, the function is
not varied at the ends of the integral). An example of a function, f (x),
and some possible variations, f var(x), is given in Figure 3.4. (Terminology
and notation: a whole virtual path is known as a ‘variation of f (x)’ and is
denoted f var(x); the difference between f var(x) and f (x) at a given x is some-
times called the ‘variation of f (x) at x’ and is denoted δf (x), in other
words, δf (x) = ε φ(x).)
The distinction between an actual differential, df , and a virtual vari-

ation, δf , must be borne inmind. While dx and δx are identical mathem-
atically (Section 3.7.2), df and δf are utterly different mathematically.
Because f is a function (that is, f = f (x)), then df is the usual ‘total dif-
ferential’ that we are familiar with from ordinary calculus, and a finite
df inescapably implies a finite actual displacement, dx, (see Figure 3.5).
On the other hand, the virtual variation, δf , does not imply the virtual
displacement, δx, but rather δf occurs at an ‘instantaneous’ value of x.
This conforms to the rubric for these stationary integral problems - that
a virtual displacement of the independent variable, δx, is not allowed.

f(x)

f(a)

f(b)

xba

–∞

+∞ the function f(x)

a valid variation

another valid variation

an invalid variation

Figure 3.4 The function, f (x), and some variations, f var(x) (one dimension).
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δf(4.5) occurs exactly at x = 4.5  
whereas df occurs over an interval dx

the function, f(x)

a variation, fvar(x)

δf(4.5) dx df

Figure 3.5 The distinction between df and δ (one dimension).

Now that we have established how our integral, I, is to be varied (by
infinitesimal virtual variations in f ), we can return to our overarch-
ing goal - to establish whether the integral is stationary with respect
to these variations. In other words, does δI–→ 0 as δf (x)–→ 0? This
is a mathematical problem of considerable difficulty, and it was solved
in the eighteenth century first by Euler and then, more rigorously,
by Lagrange. In honour of these great mathematicians, the solution is
known as the Euler-Lagrange equation, and we shall simply present it
rather than show how it was derived:46

The Euler-Lagrange Equation:
d

dx

(
∂F

∂ ḟ

)
–
∂F

∂ f
= 0 (3.10)

the solution to δI = δ

[∫ b

a
F(f (x), ḟ (x), x) dx

]
= 0

with respect to virtual variations, δf

In the case of n dimensions we then have n functions, fi, and n func-
tions, ḟi, and instead of just one equation, we have a set of n simultaneous
equations:

46 (no more do we show how d(xn)/dx = nxn–1 can be derived).
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The Euler-Lagrange Equations

d

dx

(
∂F

∂ ḟi

)
–
∂F

∂ fi
= 0 for i = 1, 2, . . . n (3.11)

the solution to: δI = δ

[∫ b

a
F(f1, f2, . . . fn; ḟ1, ḟ2, . . . ḟn; x) dx

]
= 0

with respect to virtual variations, δf1, δf2, . . . , δfn

There is still one loose end to tie up. At the beginning of this section
we mentioned that one of the arguments of F is ḟ - why must this be
so? (It would seem at first sight that as the function f is determined by
solution of the Euler-Lagrange equation then ḟ is also so-determined,
and therefore ḟ need not be specified separately as an argument?) Our
frequent remark that the functions f and δf (and, by implication, F and
δF) must be continuous has often been relegated to brackets and foot-
notes, but now we can see that this condition is crucial: there will be
an infinite number of ways in which a path could be stationary and dis-
continous, but only one way in which it could be stationary, satisfy the
end-conditions, and still be continuous.47 In effect, the requirement of
continuity is like lots of extra ‘boundary’ conditions all along the length
of the path. The boundary conditions at the very ends of the varied path
are provided by the upper and lower limits of the definite integral, how-
ever the ‘internal boundary conditions’ are provided by the function ḟ -
the value of ḟ at any given x ensures the continuity of f at that x. (This is
mentioned again in Section 6.4, Chapter 6.)
We have been laying the mathematical groundwork - all will become

clearer when the physical motivation for this mathematics is explained,
and some worked examples are given (Chapter 6 and Appendix A6.1).

47 (This continuity condition is an especially intuitive requirement when we are
dealing with a vibrating string, a hanging chain, and so on.)



4
The Principle of Virtual Work

4.1 Introduction
Classical Mechanics deals with ‘statics’ (nothing is moving) and
‘dynamics’ (some parts aremoving relative to other parts). We consider,
in this chapter, the first of these.
If nothing is moving then the system is said to be in a state of static

equilibrium. We have two methods of dealing with such static states,
the method of Newtonian Mechanics, and the method known as the
Principle of VirtualWork. Physicists have tended to use the firstmethod,
whereas engineers have used both methods, as appropriate. Thus the
engineers are ahead of the physicists, showing the way for the last 150
years and more (the Principle of Virtual Work was first proposed by
Johann Bernoulli in 1715 (see Chapter 2)).
There is a difficulty in comprehending these static states: how shall

we know whether there are strong forces keeping a certain structure in
balance - a Roman arch, a house of cards, taut cords meeting at a point -
or whether the forces are weak, or even absent, and the various parts
just happen to be adjacent to each other in space? Similarly, what is the
evidence for the large amount of energy locked away in the still body of
water in the reservoir of a hydroelectric power station, a column with a
heavyweight on top, or a fully charged battery? Our instinctive response
is to gently prod, shake, or tweak the system, trying to disturb it very
slightly away from equilibrium. In this way, the forces and energies can
reveal themselves.We shall find that this nudge to the system is pursued
in a special way in the Principle of Virtual Work.

4.2 System of non-interacting particles
We start by considering a very simple scenario - a system made up
just of forces and non-interacting particles. Particles are point masses,
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m1, m2, . . . , that is, they have no extension and no internal structure
(but they may have extra properties such as electric charge). Forces
are applied externally, such as gravity, muscle strength, and so on. We
seek to determine the magnitude of the forces necessary to achieve
equilibrium.

Method 1, Newtonian Mechanics

Consider that we have particles i = 1 to N, with position vectors,
r1, r2, . . . rN , acted upon by forces, F1, F2, . . . FN respectively (the ri and
Fi are referred to the usual Cartesian axes (x, y, z)). To say that the sys-
tem is in equilibrium is to say that the particles are not moving. But
if nothing is moving then it is also true that nothing is accelerating; so,
by Newton’s Second Law of Motion, there are no forces. Therefore we
must have:

Method 1, static equilibrium of a system of N non-interacting
particles in Newtonian Mechanics

F1 = 0, F2 = 0, . . . , FN = 0 (4.1)

This is a condition involving forces but what of the particles? And are
there the same number of forces as particles? For answer, we note that:
if there happens to be a force where there is no particle (the force acts in
empty space somewhere) then this force is not relevant to the problem
and can be ignored; if there happens to be a particle where there is no
force then we can just as well say that there is a force but its magnitude
is zero; and if there happen to be two or more forces acting at a given
particle then the forces can be added to yield just one resultant force.
On all counts (4.1) still holds and so, in all generality, the equilibrium
condition for N non-interacting particles has N forces, one force acting
at each particle, and each force is zero. It’s as simple as that.

Method 2, The Principle of Virtual Work

The Principle of Virtual Work (P of VW) tackles the problem of static
equilibrium in an entirely different way. The Principle first contrives
a scenario in which each and every particle, i, simultaneously does
an infinitesimal amount of virtual work, δωi. Leaving aside, for the
moment, how this is contrived, and what ‘virtual’ means, note that
‘work’ is still defined, from Classical Mechanics, as the dot product of
force and displacement. δωi is therefore a scalar quantity, but one that
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can be positive or negative. (‘Positive’ when, along any given axis, the
force and displacement vectors point the same way; ‘negative’ when,
along any given axis, the force and displacement vectors point the
opposite way.) The P of VW then asserts that the system will be in static
equilibrium if, after summing these simultaneous contributions to vir-
tual work, one contribution from each particle, the total virtual work
is zero:

Method 2, static equilibrium of a system of N non-interacting
particles in the Principle of Virtual Work

δω1 + δω2 + . . . =
N∑
i=1

δωi = δω
total = 0 (4.2)

In striking contrast to (4.1), forces are nowhere to be seen.
We now return to an explanation of what is virtual work. ‘Work’ is

defined in the usual way as the ‘work done by a particle acted upon by a
force while the particle is displaced through a certain distance in a cer-
tain direction.’ But Method 2 immediately presents us with a problem:
in order to have finite contributions to work we need finite displace-
ments but, at equilibrium, nothing is moving and so the displacements
are all zero. Therefore, to rescue Method 2, we do something which at
first sight appears like an act of intellectual prestidigitation - we invoke
a small, hypothetical displacement, δri, one for each particle, i. This is the
‘nudge’ that was referred to at the end of the introduction. The sym-
bol, δ, pronounced ‘variation’, reminds us that the displacements (and
the consequent ‘work done’) are imagined, virtual, and form part of a
purely mathematical experiment.
At first encounter this seems perplexing - why do we not actually,

physically, tweak the system (say, use our finger to move a particle)?
However, strange as it may seem, we shall find (Sections 4.5 and 4.9) that
some virtual displacements cannot occur physically, and some phys-
ical displacements cannot occur virtually. We must simply accept the
need for virtual displacements - imagined displacements that happen
in an imagined mathematical landscape or ‘space’. This ‘space’ is the
‘configuration space’ that was described in Chapter 3.
Conditions (4.1) and (4.2) appear utterly different, yet wemay suspect

that Methods 1 and 2 really boil down to the same thing. After all, work
is the scalar product of force and displacement, and so if all the forces
are zero then surely the work must also be zero, end of story? However,
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this innocent line of reasoning turns out to be flawed. Methods 1
and 2 really are quite different, and for at least three reasons. For
one thing, they concern totally different entities (Method 1 has to do
with forces, Method 2 has to do with energy, specifically work), and
for another, Method 1 involves lots of individual statements (F1 = 0,
F2 = 0, . . . ) while Method 2 involves one grand statement which is a
sum. Finally, while Method 1 involves equating things to zero, Method
2 involves a mathematical procedure which goes beyond mere sum-
ming to zero and uses the variational calculus to carry out a ‘test of
flatness’ or ‘test of stationarity’ (Chapter 3). We shall talk more about
this later.
We would nevertheless like to bring out the resemblances between

the two methods, and so we re-express (4.2) in terms of forces and
displacements:

Static equilibrium in the Principle of Virtual Work, re-expressed

F1·δr1 + F2·δr2 + . . . =
N∑
i=1

Fi·δri = δω
total = 0 (4.3)

The forces, F1, F2, . . . , are external and have been supplied in the spe-
cification of the given problem. Despite these forces, the particles in
this example are ‘free’ (they don’t interact with each other, and are
not constrained) and so each is free to be displaced in any direction. We
can therefore choose the virtual displacement for each particle inde-
pendently, and to be in any direction. So much for the direction but
what of the magnitude of the displacement? We must understand that
(4.3) is more than an equation, it is a ‘test of stationarity’ and there-
fore represents a limiting process. The sum must be zero in the limit as
themagnitude of each displacement is reduced. The startingmagnitude
must be ‘small’ but it doesn’t matter what exactly it is (in the same way
as, in differential calculus, we draw diminishing triangles on a curve in
order to find the slope, but it doesn’t matter what size triangle we start
with). So, for these independent particles, we can choose both the dir-
ection and (small) starting magnitude of the virtual displacements at
random. Condition (4.3) is therefore a condensed version of the follow-
ing infinite set of equations, each one corresponding to a different choice
or set of virtual displacements:
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N∑
i=1

Fi·δrchoice1i = 0 (4.4)

N∑
i=1

Fi·δrchoice2i = 0 (4.5)

N∑
i=1

Fi·δrchoice3i = 0 (4.6)

and so on
...

The only way that this infinity of equations can be simultaneously sat-
isfied is if all the forces are zero, F1 = 0, F2 = 0, . . . , FN = 0. We have
returned to exactly the same result as the one derived fromMethod 1.
We see that Method 2, the Principle of Virtual Work, involves a much

more complicated procedure in order to end up at exactly the same
results as Method 1. Before explaining why this is justified, let’s check
whether the Newtonian predictions are again reproduced by the P of
VWwhenmore complex equilibrium states are considered. Suppose we
now allow for the particles to interact - to be bound together into a rigid
body, for example.

4.3 Statics of a rigid body
What is the difference between a rigid body and a collection of particles?
Lanczos poses the question most graphically: what is the difference
between a sandstone rock and a pile of sand just happening to have
exactly the same overall shape as the rock? He answers that we can try
picking up ‘the body’ and moving it from one place to another (giving
it a translation or a rotation). The rock will move as a whole, as a rigid
body, whereas the sand-pile will disintegrate. This translation or rota-
tion is a kind of physical nudge, but the body will only remain intact
if the nudge is sufficiently gentle. Likewise, in applying the test of sta-
tionarity in the P of VW, we give the body a gentle virtual nudge. We now
describe how this is achieved.
We can make the adjective ‘gentle’ more precise. The rock is rigid

because there are internal forces (also called constraint, or reaction
forces) between the particles, binding them together into a body. The
virtual displacements will be sufficiently ‘gentle’ if they never go against
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these forces of reaction, and this will be the case if the body is always
displaced (virtually) as a whole, and is never virtually squeezed, twisted,
or stretched. This is guaranteed so long as we give every particle exactly
the same virtual translation:

δri = δr for all particles i = 1 to N (4.7)

The resultant total virtual work due to these virtual translations is then:

N∑
i=1

Fi·δr = δr·
N∑
i=1

Fi = δω
total = 0 (4.8)

The forces, Fi, are not the internal ones, but are the external forces that
we seek to determine, and that ensure the equilibrium state. As δr is
non-zero, (4.8) can only be satisfied if:

N∑
i=1

Fi = Fresultant = 0 (4.9)

But this is just the standard result from Newtonian Mechanics: for
equilibrium of a rigid body, the resultant external force must be zero.
A new development arises now that we are dealing with bodies rather

than particles. A rigid body, having extension and having a shape, can be
rotated.1 This possibility brings in a new kind of virtual displacement -
not just translations but also rotations. Again, the reaction forces must
not come into (virtual) play, and this is assured by giving every par-
ticle (that is, every particle’s position vector, ri) exactly the same virtual
rotation about some common axis of rotation:

δθi = δθ for all particles i = 1 to N (4.10)

However, unlike (4.7), this universal rotation does still lead to differ-
ent displacements, as these depend on the individual particle position
vectors, as follows:

δri = δθ U×ri (4.11)

1 As a particle has no size then there is no evidence that it has been rotated. This is
equivalent to saying that it cannot be rotated.
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where U is a vector of unit length along the given axis of rotation.
The virtual work of particle, i, due to the external force, Fi, acting at i,
becomes:

δωi = Fi·(δθ U×ri) = δθ U·(ri×Fi) = δθ U·Mi (4.12)2

where Mi = (ri×Fi) is known as the ‘moment of the force’ about the
given axis of rotation. Therefore the total virtual work due to all
particles is:

δωtotal =
N∑
i=1

δθ U·Mi = δθ U·
N∑
i=1

Mi (4.13)

As δθ U is non-zero, the total virtual work can only be zero if:

N∑
i=1

Mi = Mresultant = 0 (4.14)

which is the same as saying that U must be perpendicular to Mresultant.
Again, this is the same as the result we expect from Newtonian
Mechanics: for equilibrium of a rigid body, the resultant moment is zero.

4.4 A comparison between Newtonian
Mechanics and the Principle of Virtual Work

The very simple scenarios in Sections 4.2 and 4.3 have been selected to
demonstrate the complete equivalence of Newtonian Mechanics and
the Principle of Virtual Work in these cases. It appears that the P of
VW has served only to replicate Newtonian Mechanics, and at the
cost of introducing obscure imaginary motions in a virtual space - but
we should remember that the P of VW has arrived at these results,
conditions (4.9) and (4.14), afresh and completely independently of
Newtonian Mechanics. In order to bring out the new outlook and con-
tent of the P of VW we try a different tack: instead of introducing forces
into (4.2) we introduce displacements into (4.1). Also, we consider a

2 We have used the result from vector algebra that a·(b×c) = b·(c×a).
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more general system in which particles can interact but are not neces-
sarily bound into a rigid body. Each particlemay be subject to an internal
force, an external force, or both, in other words, each particle is acted
upon by a net force, Fneti , which is the sum of the applied and con-
straint forces at i. (We shall in what follows use the terms ‘applied’ for
‘external’, and ‘constraint’ for ‘internal’.) The Newtonian condition for
equilibrium (Condition (4.1)) can then be written:

Fnet1 = 0, Fnet2 = 0, . . . , FnetN = 0 (4.15)

As the net force at each particle is zero, we are able to take its scalar prod-
uct with any vector we like and still obtain zero. Exploiting this fact, we
choose to take the scalar product of Fneti with whatever happens to be
the virtual displacement at i. For this special choice-set, we arrive at:

(Fnet1 ·δr1) = 0, (Fnet2 ·δr2) = 0, . . . (FnetN ·δrN) = 0 (4.16)

Adding lots of zeros together should still lead to zero, so we obtain:

(Fnet1 ·δr1) + (Fnet2 ·δr2) + . . . + (FnetN ·δrN) = 0 (4.17)

Remembering that Fneti is made up from an external applied force, F
appl
i ,

and an internal constraint force, Fconsi , equation (4.17) becomes:

(F
appl
1 + Fcons1 ) ·δr1 + . . . + (F

appl
N + FconsN ) ·δrN= 0 (4.18)

But now, instead of considering everything on a particle-by-particle
basis, we rather lump together all the F

appl
i s, and lump together all the

Fconsi s. In this way we arrive at:

N∑
i=1

(F
appl
i ·δri) +

N∑
i=1

(Fconsi ·δri) = 0 (4.19)

At this stage we introduce a brand new requirement, that the second
term in (4.19), that is, the total virtual work of all the constraint forces,
is zero:
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N∑
i=1

(Fconsi ·δri) = 0 (4.20)

This is beautifully consistent: the total ‘constraint’ (for example, the
‘constraint’ of being a rigid body) has no internal movements within
it, and so it also is a system in equilibrium, a mini-system to which the P
of VW should apply.
As we still have equation (4.19) to be satisfied, along with (4.20), then

itmust be that the total virtual work of all the applied forces is also zero.
This, finally, is the P of VW as it is usually defined:

The Principle of Virtual Work, standard definition

N∑
i=1

(F
appl
i ·δri) = 0) (4.21)

Let us remind ourselves of (4.15), the Newtonian condition we started
from:

Equilibrium Condition, Newtonian Mechanics

Fnet1 = 0, Fnet2 = 0, . . . , FnetN = 0 (4.22)

Comparing these two conditions, (4.21) and (4.22), we find that (4.21)
is making an utterly different claim to (4.22). In the P of VW there is
just one zero condition, that condition is a sum, and constraint forces
are conspicuous by their absence. Also, curiously, there is no longer
a necessity for Newton’s Third Law of Motion (see Appendix A1.1) to
be upheld (at the level of particle-particle interactions). This is because
the sum in (4.21) means that the applied forces act as one system, there
is no extra requirement for certain pairs of forces to cancel each other
out. With the foreknowledge that physics contains many examples
where Newton’s Third Law may be broken,3 there is every reason why
the P of VW, rather than Newtonian Mechanics, will apply in these
domains.

3 For example, the interaction between two electrons, one moving along a line at
right angles to the motion of the other. See Feynman, Richard, The Feynman Lectures on
Physics, Addison-Wesley, 1963, Volume II.
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4.5 Virtual Displacements
We have talked much of forces and little about displacements but both
occur in (4.21). The virtual displacements, as we have discussed above
(Section 4.2, and 3.7.2) are displacements in an abstract space (configur-
ation space), a spacewith axes that correspond to the degrees of freedom
of our given problem. The ‘test of stationarity’ occurs at one point - the
C-point - of this space. Although the virtual displacements are imagined
this doesn’t mean we are free to imagine anything we like. We must
follow some strict guidelines, as follows:

How many virtual displacements are there?

The forces are given in the description of the problem, but the virtual
displacements are chosen by us.4 They are chosen to occur wherever
there is an applied force acting on a particle. If, by chance, we happen
to do a virtual displacement where there isn’t a force, it won’t matter
(it’s virtual work will be zero), but if there is an applied force acting on
a particle somewhere and we don’t carry out a virtual displacement at
this position then the ‘test of stationarity’ (the Principle of VirtualWork)
will fail, it won’t be ‘complete’.

When do the displacements occur?

The ‘test of stationarity’ is carried out at a test point, in other words, in an
instant, that is to say, at one time. Therefore all the virtual displacements
must happen simultaneously.

Where do the displacements occur?

Each virtual displacement, δri, must be located at the end of the
respective vector, ri.5

What direction does the displacement have?

The direction of δri is arbitrary except that it must be ‘in harmony’ with any con-
straints, which is the same thing as saying that itmust be perpendicular to

4 In some advanced versions of the method of VW, the applied forces can be given a
virtual variation instead of the displacements; we won’t be considering these versions.

5 The notation makes δri look similar to ri whereas in fact they are quite different:
δri is a displacement vector while ri is a position vector.
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the reaction forces at i (see Section 4.8). Only in this way we can be sure
that no virtual work will arise from these constraint or reaction forces.
Also, for any allowed direction, the virtual displacement could be +δri
or –δri (the displacements are said to be ‘reversible’) and this ensures
that the test point can be approached from the negative or positive side
of any allowed direction. (See Appendix A3.1.)

What magnitude do the displacements have?

As mentioned before, we must appreciate that condition (4.21) is really
a shorthand for a mathematical procedure (‘taking the limit’). For
independent particles, each virtual displacement can have any starting
magnitude, except that this magnitude must always be ‘small’ - as we
can only examine a local region surrounding the test point. The ‘test of
stationarity’ is then applied by simultaneously letting all the imagined
displacements tend to zero-magnitude as the test point is approached.
If there are functional relations between the position vectors (relations
given in advance in the description of the problem) then the virtual dis-
placements will also have to satisfy these relations, as determined by the
usual rules of differential calculus.6

How long do the displacements take?

As mentioned above, the ‘test of stationarity’ means that the displace-
ments must happen simultaneously. Theymust also happen instantan-
eously, that is, take no time to occur.7 As they are imagined rather than
actual, this doesn’t pose a problem.
In summary, ‘virtuality’ means that the δri are ‘small’, happen simul-

taneously, and do not cause a force, result from a force, or take any time
to occur. Also, they can only be in directions that are ‘in harmony’ with
any constraints and other ‘kinematical conditions’ that may pertain.
You may wonder why the displacements can depart from physicality
as regards their duration, yet must bow to it as regards constraints and
kinematical conditions? The answer is that, out of an infinity of pos-
sible configuration spaces, we wish to investigate this one and not that
one (that is, we wish to investigate the one that does correspond to our
given system).

6 So, if, say, the given problem requires that r1 = (r2)3, then we must have δr1 =
3(r2)2δr2. Also, if, say, r1 = r2 + r3, then δr1 = δr2 + δr3.

7 This is an example of virtual displacements which have no actual, physical,
counterpart - mentioned in Method 2, Section 4.2.
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4.6 The Principle of Virtual Work: Feynman’s
pivoting bar

It will be easier to understand these abstract ideas if we use the P of
VW to tackle a specific problem. We consider an example adapted from
Feynman’s Lectures on Physics.8 A bar, 8 metres long, is supported on
a fulcrum at one end (Figure 4.1). In the middle of the bar is a mass
of 60 kg, and at a distance of two metres from the support is a mass of
100 kg. What value must the hanging mass, M, have in order that the
bar is balanced (is in equilibrium)?
The three masses can be considered as ‘particles’, and the bar intro-

duces a constraint or kinematical condition between these particles
(assume that the mass of the bar itself is negligible, that it remains rigid
while it pivots, and that there is no friction at the pivot or in the sliding
of the pulley-cord). We imagine that M falls any arbitrary ‘small’ dis-
tance, say, 4 cm. The centre mass then rises 2 cm, and the other mass
rises 1 cm. So we have virtual displacements –4 cm, +2 cm, and +1 cm,
and weights (applied forces) of Mg N, 60 g N, and 100 g N, respectively
(where ‘g’ is the magnitude of the acceleration due to gravity). Thus,
the P of VW, (4.21), leads to:

8 m

2 m
4 m

M M1M2

δr1= –1 cmδr2= –2 cm

δr3 = 4 cm

M1= 100 kg, M2= 60 kg, M= ? 

Figure 4.1 Weighted bar supported at one end (adapted from Fig. 4–6, Vol I of
The Feynman Lectures on Physics, Fifth printing, 1970, courtesy of California
Institute of Technology, © in 1963.)

8 R. P, Feynman, Chapter 4, Vol I, The Feynman Lectures on Physics, 1963. Feynman was
not only one of the outstanding physicists of the twentieth century, but was also one of
the best explainers of physics.
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(Mg× –4) + (60 g× 2) + (100 g× 1) = 0 (4.23)

and so we find thatM = 55 kg.
As Feynman explains, the beauty of the P of VW is that we can try

out imaginary displacements even though in practice the bar may be
immoveable.
By the way, the first virtual displacement was chosen to be 4 cm; this

is not infinitesimal but is it ‘small enough’? Answer: yes, as on this scale
all the virtual displacements approximate to straight-line segments.9 So
‘sufficiently small’ depends on details of the actual physical scenario,
and on how precise the measurements are.

4.7 Coordinates - an increase in generality
First we considered free particles, then particles constrained into a
rigid body, then particles constrained any which way. Now we take
yet another step toward increased generality, but this is not a small
step, it is enormous, and will allow us to see the whole of physics in a
new way. We will model the physical world employing not necessarily
‘particles’ but ‘things’; not ‘displacements’ but ‘motions’; not ‘applied
forces’ but ‘applied generalized forces’. It is the far reach of the Principle
of Virtual Work that gives us this licence; and as the crucial elements
are now infinitesimal chunks of energy (condition (4.2)), so the crucial
sub-elements are any quantities that combine together to yield energy.
It’s time to come clean; from the start of this chapter we have lulled

you into a false sense of universality, and taken it for granted that the
physical system is always reducible to forces, particles, and the position
vectors of these particles. Also, we casually stated that the position vec-
tors and forces were ‘referred to the usual Cartesian axes, x, y, and z’
(Section 4.2). But all the above assumptions are inessential and preju-
dicial. The Cartesian coordinates are ‘rectangular’ (Chapter 3) but as
soon as the physical system involves a rotation, a bend, a twist, spinning,
orbiting, pivoting, spherical bodies, bubbles - anything curvy - then rect-
angular coordinates are a poor choice, perhaps even an impossible one.
Although vectors offer such wonderful insights, and greatly facilitate
the ease of solving problems such as ‘the equilibriumof taut cordsmeet-
ing at a point’, ‘a swimmer swims diagonally across a uniformly flowing

9 In actual fact, the displacements are curved, being small arcs of circles traced out
as the bar pivots.
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river’, and so on, nevertheless they lead to fiendish complications
whenever curvy features are present.
Why didn’t we notice this before? It is partly because, in our phys-

ics and engineering textbooks, the problems have been very carefully
selected, one might even say cherry-picked. Also, some standard phys-
ics equations, equations of vector algebra such as F1 + F2 = Fresultant, and
F = ma, are so simple, so seemingly elemental, that we can hardly credit
that they are, actually, rather specialized. For example, F = ma applies
only to linear momentum.10 In fact, components like ‘particle’, and
‘force’, and equations like ‘F1 + F2 = Fresultant’, are elemental, but this
doesn’t prove that they are the only elements or the right elements in a
given physics problem.
We therefore need to stop presuming Cartesian coordinates (x, y, z),

and, depending on the given scenario, we could use, say, the spherical
polar coordinates, (r, θ , φ).11 This is the perfect coordinate system for
certain problems (for example, the spherical pendulum) but we have
in mind a more radical change than a mere switch from one coordin-
ate system to another. For instance, there is no need to think only in
terms of positioning particles, we could just as well map the motions of
other system-components, including whole entities such as ‘lever arm’,
‘cricket bat’, ‘juggling club’, ‘a spring’, ‘a sliding block’, ‘a planet’, ‘a pis-
ton rod’, and so on. Finally, we can free ourselves from thinking of
‘motions’ as just translations or rotations, and consider also changes in
capacitance, surface tension, magnetic field, phase of a wave, strain in a
beam, pressure within a fluid, and so on. In fact, any variable that can
be quantified, is expressible as a function, and characterizes the physical
system, can serve as a coordinate of that system. We have arrived at the
generalized coordinates, qi, of Chapter 3.
The forces must be generalized as well. As the displacements are no

longer necessarily lengths (quantities with units such as cm, or inches)
then the new ‘generalized forces’ are no longer necessarily Newtonian
forces (measured in Newtons). Thus these generalized forces, symbol-
ized Qi, may have units of Newtons, Newton metres, Newton/(metre)2,
Volts, Joules, and so on. The qi corresponding to these Qi could then
have units of, respectively: metres, pure number, (metre)3, Coulombs,

10 The analogue to this equation for non-linear momentum is: torque, N =
m d
dt (r× v), where m, r, and v, are the mass, position, and velocity, respectively.
11 (The r here has nothing to do with the magnitude of the rectangular vector, ri.)
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angle in degrees, and so on. The important thing is that, as we are per-
forming a test of stationary work, so each duo must form a product, Qiqi,
that yields the scalar quantity having the dimensions of energy.
How shall we know that we have enough generalized coordinates

and the right ones for the given system? This is where the wisdom and
artistry comes into mechanics - there is no prescription, no hard and
fast rule for choosing the qi. There isn’t even necessarily a unique way
of choosing them. The best that can be said is that when some differ-
ent ways of describing the system have been tried then that choice (or
choices) with the smallest number of coordinates is rather special as
this smallest number is equal to the ‘number of degrees of freedom’
of the given system. The ‘degrees of freedom’ have the special property
that they represent independent characteristics (‘motions’) of the system. If
they were not independent then there would be some equation linking
them (for example, a constraint equation) and then these {qi} would
no longer be the smallest set.
It seems that the degrees of freedom (and the number of them) is an

ineffable thing, a characteristic of the system rather than of any mere
description of it. However, we don’t need to feel daunted by the bur-
den of choosing a set of qi - if we don’t notice an effect or characteristic
then it probably isn’t noticeable (on the scales and with the precision
that we are considering)- see Section 3.3. Also, if we have too many
qi, then that also isn’t a problem; we’ll find, as mentioned above, that
the qi will be linked by some constraint equations or kinematic con-
ditions. An example is Feynman’s bar (Figure 4.1, Section 4.6). There
are threemasses (‘particles’) and correspondingly three virtual displace-
ments, and so we might be tempted to think that this is a problem with
three degrees of freedom. On second thoughts, we realize that these dis-
placements are linked together by a constraint condition (the ‘rigidity of
the bar’) which determines that whenmassMmoves down by 4 cm the
middle mass must move up through 2 cm and the endmass must move
up through 1 cm. In otherwords, the bar is capable of only one independ-
ent motion - it can rotate about the pivot in the vertical plane. So there
is just one truly independent virtual displacement, δθ , that is, there is
just one degree of freedom. The P of VW condition can this time be
written as δθ [(Mg× –4) + (60g× 2) + (100g× 1)] = 0, where now the
whole expression, ‘[(Mg× –4) + (60g× 2) + (100g× 1)]’, is the gener-
alized force, Q. The δθ is finite (there is no purpose in imagining a
zero displacement) and so the total virtual work will only equal zero
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Table 4.1 Systems, degrees of freedom, and possible qi

one dof: a pistonmoving up and down; a beadmoving along a wire, a bar
pivoted at one end, a bubble expanding or contracting, capacitor plates
moving closer or further apart,

two dofs: a particle moving on a surface (x,y) or (r,θ ); Meriam and
Kraige’s ‘black box’ and pushrods A and B (see Section 4.10, problem (i)),

three dofs: a particle moving in space (x,y,z) or (r,θ ,φ); a rigid body
rotating about a fixed point (ω,θ ,φ),
four dofs: a double star rotating in a plane (x1,y1,x2,y2) or (r1,θ1,r2,θ2),

five dofs: two particles at a constant distance (x1,y1,z1,x2,y2,z2) +
constraint equation, or (xcm,ycm,zcm,θ ,φ) where ‘cm’ are the centre-of-
mass coordinates,

six dofs: a rigid body moving freely in space (x,y,z,r,θ ,φ); three non-
interacting particles moving on a surface (x1,y1,x2,y2,x3,y3); two free
particles in space (x1,y1,z1,x2,y2,z2) or (r1,θ1,φ1,r2,θ2,φ2).

if Q = 0, and we return to our earlier equation, (4.23). We have lost the
elemental simplicity of F and now have Q, a complicated scalar quan-
tity that must be formulated afresh for each new problem. However,
we have gained the ability to solve every mechanical problem, and with
whatever choice of (qi,Qi), and with just one universal principle - the
Principle of Virtual Work.
Some examples of mechanical systems, and the generalized coordin-

ates and number of degrees of freedom (‘dof’), are given in Table 4.1.

4.8 Constraints and kinematical conditions
As well as choosing the generalized coordinates and ascertaining what
are the generalized forces, we must see if the problem involves con-
straints or other kinematical conditions. The condition, ‘rigid body’,
is an example of a constraint (each internal particle is constrained to
stay at a certain fixed position relative to the other internal particles);
and ‘ideal joint’ is another example (components are constrained to
maintain certain positions and orientations relative to each other). The
constraint may enter into the problem as a constraint equation, or it
may be implicit in the mathematical form of the generalized force (e.g.
Feynman’s pivoting bar, Sections 4.6 and 4.7).
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Constraints sometimes manifest themselves as kinematic conditions,
such as: a block slides along a table-top (the block is constrained to
remain within a given surface); a bob swings at the end of an inex-
tensible cord (it is constrained to keep a certain distance from the
ceiling-attachment-point); and so on. It sounds like geometry but a con-
straint or kinematic condition is never a matter of pure geometry - in
the last resort, it is always made up from forces. Moreover, in the last
resort these internal or constraint forces are always forces of reaction.
For example, why doesn’t the sliding block burrow down into the sur-
face of the table? It is because the forces between the atoms in the table
oppose this burrowing motion. Why does the rigid body maintain its
fixed shape? Answer: because the atoms which make up the body resist,
by force, being pushed closer or stretched further apart.
This seems like a step backward - earlier we dispensed with forces

(except in simple ‘rectangular’ vectorial problems) but now we are re-
introducing them. The explanation is as follows. There are inmechanics
two very different kinds of forces and they are dispensed with in two
very different kinds of ways. In the first place we have the external
applied forces, and these disappear by becoming the generalized forces;
in the second place we have the internal constraint forces, and these
disappear (don’t come into play) by choosing our virtual displacements
very carefully - they must never ‘go against’ the constraints (see also
Section 4.9). The applied forces (for example, gravity) are mathemat-
ical functions, specified in advance, or determined when the problem
has been solved. The constraint/internal/reaction forces aremicroscopic
in origin, usually of strength unknown, are not given in mathemat-
ical form, and can be completely ignored if the problem is formulated
in the right way: the qi must be well-chosen, and the δqi must be
‘in harmony’ with the constraints. For example, a pendulum bob can
be virtually displaced such as to make the pendulum swing (‘harmo-
nious’), but not such as to make the pendulum cord stretch (not
‘harmonious’). Also, a lever arm can virtually rotate gently about the
fulcrum (‘harmonious’), but itmust not flex or get knocked off its perch
(not ‘harmonious’).
If we push a body, what makes it move? For example, if we grab a

loaf of bread at one end, what makes it move at the other end? If the
bread was sliced, would the outcome be different? Again, it is the infin-
ity of internal forces that come to our aid: they ‘transmit’ our applied
force from the atoms at one end to the adjacent atoms, and so on, all
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the way along the length of the bread. The loaf will move as one body,
and maintain its shape, provided that the forces are transmitted infin-
itely fast, and provided that all the internal, inter-particle forces depend
only on relative distance (the forces are ‘central’), and satisfy Newton’s
Third Law. But in most cases these provisos don’t apply and the body
may squash up, bend, stretch, twist, or break. For example, a geolo-
gist, using a hammer to apply a force in one direction, may find that
a rock cleaves in a completely new direction; a plastic handle, instead
of rotating as one body, may buckle, twist, or develop a crack; a girder
may bend; a shaft may shear; a vertical column with a load on top may
nevertheless explode sideways; and so on.
Newtonian Mechanics is ultimately built up from a framework of

individual point-particles and forces, but often appears to avoid the
need for internal forces by using whole constructs such as ‘rigid body’,
‘moment of inertia’, and so on. Also, themechanics appears deceptively
simple through familiarity (but remember, for example, the sheer var-
iety of formulae needed for moment of inertia depending on whether
the body is a sphere, spherical shell, cylindrical shell, rectangular paral-
lelepiped, uniform slender rod, quarter circular rod, right circular cone,
elliptic paraboloid, half torus, rectangular tetrahedron, and so on12).
Many of these techniqueswere developed by those geniuses of the eight-
eenth century, notably Leonhard Euler, and Daniel Bernoulli, and even
earlier Newton had brilliantly demonstrated that the whole mass of the
Earth could be said to act at the Earth’s centre (its ‘centre-of-mass’) as far
as the Moon was concerned. These hard-won advances are now taken
for granted, and we have forgotten that they contain many implicit
assumptions, and that in most realistic cases the system can no longer
be modelled as being made up of modular components like ‘point-
particles’, ‘forces’, ‘central forces’, ‘normal reaction’, ‘transmissable
force’, ‘forces transmitted infinitely fast’, ‘inextensible cord’, and so on.
Then, Newtonian Mechanics fails to solve the problem. This comes as a
shock - as we have been led to believe that Newtonian Mechanics fails
only when the relativistic or quantum mechanics regimes are reached.
Rather, we should realize how amazing it is that such simple elements
(forces, point-particles, and accelerations) could ever have accounted
correctly for so much.

12 Meriam J L and Kraige L G, Statics, Volume 1, Engineering Mechanics, 4th edition, John
Wiley & Sons, Inc. (1998) Appendix D, Table D/4.



The Principle of Virtual Work 77

In summary, NewtonianMechanics considers the infinity of particles,
and the infinity of net forces, one by one, whereas the P of VW (by con-
sidering only virtual displacements/motions that are in harmony with
the constraints, can thereby ignore these constraints and so) treats the
whole body in one go.

4.9 Mechanics and geometry
We are witnessing a beguilingmelding of geometry and physics. Already
in Chapter 2, in Stevin’s ‘wreath of spheres’, we saw how the condition
for equilibrium was guaranteed merely by a uniform draping (no gaps
or bunching up) of a bead chain over the relevant surfaces; and in this
chapter we have seen how geometric conditions (an object moves along
a given curve, or on a given surface, and so on) is ultimately due to the
presence of internal forces. Careful thinking and examination of many
scenarios shows us even more: the virtual displacements must always be perpen-
dicular to the reaction-forces. For example, in Feynman’s horizontal bar (see
Section 4.6), while the displacement of each mass was vertical, in line
with the applied force of gravity, yet the reaction-force acted along the
length of the bar (preventing themasses from getting closer together or
further apart - in other words, maintaining the rigidity of the bar). The
displacements and the reaction-force were therefore at right-angles to
each other.
A surprisingly tricky example is the case of a sliding block which is

pushed across a table-top by a force, say, pushed by your finger (we
ignore friction). The displacement of the block is anywhere on the
surface whereas the reaction-force acts at right-angles to this surface
preventing the block from burrowing down into the table. So far, this
makes sense. But, hang on, there is also a reaction against your finger,
from the block, and this reaction is in line with the block’s displace-
ment. The trick is to appreciate that the block’s displacement due to
the finger-push is an actual, not a virtual, displacement.13 We can hypo-
thetically freeze the block (switch to a different reference frame) and
get rid of the distraction of its actual motion. Then we realize that the
finger can’t depress the block as if it were somuch sponge-cake, as there
is a reaction-force of the block against the finger. However, the finger is

13 We mentioned in Section 4.2, Method 2, how sometimes the actual physical
displacement could not be chosen as the virtual displacement.
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still allowed, infinitesimally, virtually, to move within the back face of
the block, at right-angles to this reaction-force. This is a general result:
for any virtual displacement, being ‘harmonious’ is the same thing as
being in a direction perpendicular to the reaction forces.

Optional: It is well known that at equilibrium the potential energy
function, V, is not just stationary, it is at a minimum - in most
cases. The P of VW cannot determine this, a further investigation
is required. Why it is that V is usually at a minimum rather than a
maximumwill be explained later, in Chapter 6, Section 6.6.

4.10 More examples using the Principle
of Virtual Work

(i) The ‘black box’

Of all the problems in Meriam and Kraige’s textbook, “Statics”,14 this
simple set-up of connected pushrods is the most marvellous (see
Figure 4.2). The pushrods, A and B, can slide in or out of a box. (They
are capable only of linearmotions but don’t need to be positioned in line
with each other.) The pushrods are connected together by some series
of reversiblemechanical devices (racks and pinions, gears, hydraulic pis-
tons, pulleys, levers, and so on) such that when rod A is pushed into the
box then rod B gets pushed out, and when rod B is pushed into the box
then rod A gets pushed out. We cannot see, hear, or in any other way
detect the presence of these internal transmissionmechanisms (the box
is ‘black’), and we must assume that they act without friction or any
other dissipation of energy. The question posed is: for every 1.0 unit of
inward movement of pushrod A under the action of force, F1, pushrod
Bmoves outward from the box 0.25 units against the action of force, F2.
If F1 = 100 N, determine the magnitude of F2 for equilibrium (the state
where the pushrods don’t move). We choose virtual displacements with
directions as if pushrod A could drive B out of the box. Then the virtual
work done by rod A is F1 · δrA and is positive as the directions of F1 and
δrA are the same (they are both directed into the box), while the virtual

14 Meriam J L and Kraige L G, Statics, Volume 1, Engineering Mechanics, 4th edition, John
Wiley & Sons, Inc. (1998) page 449.
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A

B

δr B

δrA

Figure 4.2 The ‘black box’
(adapted fromMeriam and Kraige, Statics.)

work done by rod B is F2 · δrB and is negative as the directions of F2 and
δrB are opposite (δrB goes out of the box while F2 is directed into the
box). The total virtual work must be zero for equilibrium, and thus we
must have F1 ·δrA = –F2 ·δrB or F2 = 400.0 N.
This problem is amarvel because it demonstrates an astounding fact -

the problem is insoluble using Newtonian Mechanics.15

(ii) Knob and slider

This is another kind of ‘black box’ except that now the angular dis-
placement of a knob, δθ , is linked to the linear displacement of a
slider, δx. The knob is turned by applying a couple (‘turning force’) M
(having units of Newton metres), and then the slider moves against
a force, F (having units of Newtons). Assuming no dissipative losses

15 In Newtonian Mechanics we would be compelled to open up the box and assess
the forces acting at each and every intersection.
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θ

Figure 4.3 Knob and slider
(adapted fromMeriam and Kraige, Statics, 4th edition.)

within the ‘box’, for equilibrium the Principle of Virtual Work requires
that Mδθ + Fδx = 0.

(iii) Ladder leaning against a wall

What is the connection between the weight, W, and the horizontal fric-
tion force, Fhoriz, for equilibrium of the ladder? We consider that the
ladder is rigid and of uniform density - so its weight acts at its centre
(halfway along its length, L). Also, we assume that the wall is smooth
(frictionless) whereas there is contact friction from the floor (or else the
ladder would fall down). If the top of the ladder has a vertical virtual
displacement of δy then the bottom of the ladder will have a corres-
ponding horizontal displacement of δx. This is because, although the
displacements are virtual, they are still linked together by the con-
straint condition that the ladder’s length doesn’t change. That is, we
have x2 + y2 = L, and so, differentiating, we must have 2xδx + 2yδy = 0,
which implies δx = –(y/x)δy. Now, by similar triangles, when the top of
the ladder falls through δy, the halfway point falls through δy/2. By the
Principle of Virtual Work, the total virtual work due to the weight and
the friction force sums to zero: (Wδy/2) + (–Fhorizδx) = 0. (W and δy are
in the same direction and so the work due to the weight is positive; Fhoriz
and δx are in opposite directions and so the work due to friction is nega-
tive.) This means that W = 2Fhorizy/x = 2Fhoriz tan θ , and therefore the
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Figure 4.4 Stability of a ladder.

δx δx

M

Figure 4.5 Two springs connected to a mass.

final condition for equilibrium of the ladder is: θ = arctan(W/2Fhoriz).
(The analysis uses magnitudes only.)
Note that as δy and δx are along the wall and floor, respectively, then

we have not needed to input the (perpendicular) reaction forces at the
wall or against the floor. Note also that the frictional force is that due
to static friction - so there are no actual displacements of the ladder; the
Principle of Virtual Work must be used.

(iv) Two identical springs connected to a mass

The Newtonian method easily gives the condition for equilibrium:
F1 = –F2. In the method of VW we have: –F1.δx + F2. – δx = 0. The
displacement, δx, cancels out and thenwe are left with exactly the same
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condition as before, F1 = –F2. We see that the virtual work contribu-
tions are equal even while one spring is being extended and the other
is being compressed - in other words, we learn that there is no essential
difference between extending or compressing a spring (a fact which is a source of
wonderment). It’s the same in Newtonian Mechanics (there’s no dif-
ference between extending or compressing a spring, within the spring’s
elastic limit) but this similarity now arises for a different reason - because
of the postulate that each spring obeys Hooke’s Law.

(v) A spring loaded with a weight

Howmuchmust a spring be compressed in order to balance the weight
of a stone? (Assume the spring’s weight can be ignored.) The spring’s
stiffness is k, its displacement is δx, the stone has mass, m, and the
gravitational acceleration is g. We can consider just magnitudes as the
problem is in one dimension (vertical). At equilibrium, balancing forces
we have: mg = kδx, whereas balancing energies we have: gravitational
energy, mgδx = stored spring energy, 12 k(δx)

2. But this implies that mg =
1
2 kδx, which is half what it was before. What has gone wrong? (You
may want to cover up the text and think about this for a while before
reading on.) The mistake was that, in the energy-analysis, we did not
approach the equilibrium state gradually. In reality, a displaced springwill
not return to equilibrium straight away but will overshoot repeatedly,
lose energy by dissipation, and only gradually attain equilibrium. This
is curious: we are used to so many textbook problems in which we are
told to neglect air-resistance, friction, and so on, but here is a problem
where now ignoring dissipative effects leads to the wrong answer. This
mistake crept in because wemade a false identity between the actual dis-
placement of the spring down to the equilibrium state, and the virtual
displacement, δx, of the end of the spring once the equilibrium state had
already been achieved.
Both (iv) and (v) are showing that, while the Newtonian method

gives us a condition on the exact equilibrium position, the method of
VW gives us something more, a condition on this exact position and
also on the neighbourhood infinitesimally close to equilibrium.

(vi) Soap bubble

The soap bubble has a higher pressure on the inside (let’s call the pres-
sure difference, �P) and so it would like to expand, but the surface
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Figure 4.6 Spring loaded with a weight.
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Figure 4.7 Soap bubble.

tension makes it want to contract. Imagine a virtual increase in radius,
δr, leading to a virtual volume increase, δV = 4π r2δr, and a virtual
increase in surface area, δA = 8π rδr. The virtual work due to the pres-
sure difference is –�PδV = –�P 4π r2δr, and due to the surface tension
is, 8γπ rδr (where γ is the surface tension of the soap film, a measure
of its stored energy per unit area). In fact, there are two surfaces (inner
and outer surfaces of the film) and so for equilibrium we must have:
–�P 4π r2δr + 2× 8γπ rδr = 0. Therefore, a bubble of radius, r, will be
stable so long as�P = 4γ /r.

(vii) The parallel-plate capacitor

This is adapted from Feynman’s Lectures on Physics, Vol II, Chapter 8.
The spacing between the capacitor plates is increased virtually by δz,
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and the mechanical virtual work to do this is Fδz where F is the force
between the plates. The virtual change in the capacitor’s energy is δU =
1
2Q

2δ(1/C) = – 1
2C2Q

2δC where C is the capacitance and Q is the stored
charge (it is assumed that Q has been kept constant). At equilibrium,
the P of VW requires:

Fδz = –
1

2C2
Q2δC (4.24)

The force is the electrical force of attraction between the plates, but
from the P of VW we are learning that F is not affected by the detailed
distribution of charge; everything is taken care of by the values of Q
and C.

4.11 Lanczos’s Postulate A
A marvellous leap forward in conceptual understanding was brought
in by Lanczos, in his re-statement of the Principle of Virtual Work.16

The usual practice17 is to define the P of VW as we stated it before in
Section 4.4, ∑

i

(F
appl
i ·δri) = 0 (4.25)

This sum is the first term in equation (4.19). Lanczos, on the other hand,
homes in on the second term of equation (4.19), and defines the P of
VW as: ∑

i

(Fconsi ·δri) = 0 (4.26)

He then comments that constraint-forces are really the same thing
as reaction-forces (we have explained this in Section 4.8) and so re-
expresses the P of VW as: ∑

i

(Freactioni ·δri) = 0 (4.27)

Finally, he puts this in words, and emphasizes that it is a postulate by
calling it Postulate A:

16 Lanczos, page 76.
17 See for example, Goldstein H, Classical Mechanics, Addison-Wesley (1980).
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Lanczos’s Postulate A

“The virtual work of the forces of reaction is always zero for any
virtual displacement which is in harmony with the given kinematic
constraints.”

But what has been the point of all this wordplay? I surmise that
Lanczos’s motivations were as follows. The applied forces (squashed
spring, finger-push, gravity, electrostatic attraction, and so on) are usu-
ally given beforehand, supplied by the problem, and are in the form of
scalar mathematical functions. Likewise, the overall kinematical con-
ditions are usually predetermined and in the form of mathematical
functions. The reaction forces, by contrast, are consequential - they are,
as their name suggests, reactive, responsive, and they are ultimately
microscopic in origin, and usually ‘polygenic’, that is, arising frommany
sources, and therefore not defined by a scalar mathematical function.
Moreover, these reaction forces act ‘cooperatively’, as a system; and so
it is from these forces that we obtain the most physical insight. Also,
the bald statement of equation (4.27) does not remind us that this is a
mathematical procedure that involves ‘taking the limit’; and, crucially,
that the δri must be only in directions allowed by the constraint and
kinematic conditions. This essential requirement is brought out by the
words ‘in harmony with’. Finally, Lanczos is mindful to emphasize that
the P of VW is a postulate, and does not come out of Newton’s vector-
force mechanics. But perhaps the most decisive reason for Lanczos to
put the Principle of Virtual Work into words is that, as Postulate A, it
will lead into thewhole of the rest ofmechanics (the variationalmethod
as applied to both statics and dynamics), and is therefore of astounding
universality:
“Postulate A is actually the only postulate of analytical mechanics, and

is thus of fundamental importance.”18

4.12 Concluding Remarks
There are some questions that we’re not allowed to ask:
Why does the P of VW work? Answer - we don’t know, it just does.
How do the forces-of-reaction act cooperatively? Answer - we don’t

know, they just do.

18 Lanczos, page 76.
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How can a test in a fictitious space tell us anything about the real
world? We don’t know, but it happens also in countless other cir-
cumstances. Consider the statistic, “an average family of 2.2 children”;
evidently there can never be a family of this size but the statistic may
still serve as a useful criterion. Also consider the example of the hypo-
thetical money-transfers postulated by a financier in a ‘test of portfolio
value’.19 The money-transfers are subject to certain fees, interest rates,
and exchange rates, but in order to actually buy and sell shares, or trans-
fer money between accounts, some actual time is required. During this
time, the financial conditions may change - and so the ‘test of portfolio
value’ occurs in a virtual space.
But this is only half the answer. The utility of using a virtual space

is that it can provide an absolute benchmark in a way that no actual
physical space could ever do. This absoluteness and invariance of the
results in the abstract test space is what comes about in the branch
of mathematics known as ‘differential geometry’ (which used to be
called ‘absolute geometry’). The results are the same irrespective of
what coordinates have been chosen or how the system has been mod-
elled. We shall find that this remarkable invariance is a feature of the
whole of Variational Mechanics (the P of VW, Principle of Least Action,
Lagrangian Mechanics, and Hamiltonian Mechanics).
An enormous advantage of using the Principle of Virtual Work, as

shown in the Examples, Section 4.10, is that we do not need to know the
internal forces, the reaction forces, or the forces of constraint. However,
a disadvantage of the P of VW is that when, on occasion, the applied
force is not given in the form of a scalar mathematical function (for
example, the applied force actually is a friction-force) then mathemat-
ical methods - the VariationalMechanics - cannot be used. On the other
hand, as Lanczos notes,20 given that ultimately all dissipative forces are
microscopic in origin, with an appropriatemathematical formderivable
fromquantum theory, then ultimately it should be possible to apply the
variational methods across the whole of physics.
Now the fact that the P of VW yields absolute answers - that’s math-

ematics, but the fact that it’s work that’s minimized as opposed to some
other quantity - that’s physics. The innumerable cases where the P of

19 Murray Peake, private communication.
20 Lanczos, Introduction, page xxv.
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VW succeeds and Newtonian Mechanics fails shows us that it is indeed
work rather than force that is pre-eminent. In problems of exceptional
simplicity, described in rectangular coordinates, it would be a mistake
not to use Newtonianmethods and benefit from the physically intuitive
forces, but wemust always remember that “force is a secondary quantity
derived from . . .work.”21 As Lanczos puts it:

“we are inclined to believe that force is something primitive and
irreducible, [however] . . . it is not the force but the work done by the
force which is of primary importance.”22

This is the main reason for using the Principle of Virtual Work: it is
abstract, intuitively opaque, and mathematically complicated, but it is
the way the physical world really is.

21 Lanczos, page 27.
22 Lanczos, page 27, edited and with italics added.



5
D’Alembert’s Principle

5.1 Introduction
In the Principle of Virtual Work (the P of VW, Chapter 4) we have
a method for analysing the condition known as static equilibrium or
‘statics’. In this chapter we widen the scope to include ‘dynamics’ -
mechanical scenarios in which there is motion between the parts of a
system. Motion appears antithetical to statics and yet, in d’Alembert’s
Principle, we will discover a brilliant strategy for treating these dynamic
cases; they will be treated, once again, as problems of ‘equilibrium’.
In essence, d’Alembert’s Principle proclaims that the very motions are
exactly such as to bring the system, instant by instant, back to ‘equi-
librium’ - an equilibrium of a new, dynamic kind. The Principle relies
on one radical new idea, d’Alembert’s “stroke of genius:”1 it is that
a mass-in-accelerated-motion counts as a force. Previously, we had
only Newtonian-type forces (cohesive, tensional, gravitational, elec-
trical, magnetic), and these are all forces emanating from some source
or other (a gravitating mass, an electric charge, a magnet, and so on).
Now, with d’Alembert, we introduce a totally new type of force - amass,
merely by virtue of its motion, can act as a force. With hindsight, we see
that this must be so - if ‘motions’ can counteract forces, then ‘motions’
must be forces. D’Alembert’s programme is then to add this new cat-
egory of force to the familiar applied- and constraint-forces, and apply
the Principle of Virtual Work in the usual way.
D’Alembert’s new force, called the force-of-inertia, or ‘inertial force’,

occurs wherever there is a mass-in-accelerated-motion. A mass that is
moving but not accelerating does not count as a force, and a geometric
point that is accelerating but is massless (such as the geometric point of
intersection between two accelerating rods) does not count as a force.
Also, it is of no consequence to ask how themass-in-accelerated-motion

1 Lanczos, page 88.
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gets to be accelerating - it could be subject to a force (such as an applied
force), or it could be viewed from a reference frame that is accelerating,
or a mixture of these. Howsoever it originates, the inertial force - let’s
call it I - has all the usual attributes of a force: it has magnitude and
direction, and it adds and ‘multiplies’ in the usual vectorial ways. The
inertial force may therefore be added to the other forces, and then the
Principle of Virtual Work may be employed.
Let us see how this happens. We consider a mechanical system com-

posed of N particles (i = 1 to N) of mass, mi, position vector, ri, subject
to applied forces, F

appl
i , and/or constraint forces, Fconsi . From Section 4.8,

Chapter 4, we remember that the applied- and constraint-forces have
very different provenances: the applied forces are described by math-
ematical functions, specified beforehand in the given problem (for
example, gravity follows an ‘inverse square law’), whereas the con-
straint forces (also called internal forces or reaction forces) are generally
unknown and not expressible as a mathematical function (what is
the force between particles in a taut cord, or in a rigid body, and so
on?). Despite these different origins, we add together the applied- and
constraint-forces acting on a given particle, and call this sum Fneti . Now,
in the usual way (that is, in accordance with Newton’s Second Law
of Motion), Fneti acting on the mass, mi, causes it to accelerate, and so
we must have Fneti = miai. But, by d’Alembert’s “stroke of genius”, this
massy acceleration, in and of itself, constitutes a force. Even more than
that, by postulate it constitutes a reactive force, a force that always opposes
Fneti . Therefore, we define the inertial force, Ii, as being in the reverse
direction to Fneti , that is, in the reverse direction to the acceleration:

Inertial force defined as: Ii = –Fneti = –miai (5.1)

Now the total force at i is the sum of Ii and Fneti ; we call this the ‘effective

force’, F
eff
i :

F
eff
i = Fneti + Ii for particle i (5.2)

Thus forN particles we end upwith a system of forces, F
eff
1 , F

eff
2 , . . . , F

eff
N ,

and, by d’Alembert, we seek an equilibrium condition between these
forces, even for this dynamics (non-statics) scenario.
This seems very nice until we realize with some surprise that, by

equations (5.1) and (5.2), the F
eff
i s are all identically zero: F

eff
1 = 0,
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F
eff
2 = 0, . . . , F

eff
N = 0. Nevertheless, we are free to ‘multiply’ each zero

F
eff
i by a virtual displacement, δri, andwe can be assured that each ‘prod-

uct’, F
eff
i · δri, will also be identically zero. We can then sum these zeros

together and, of course, end up with zero:

N∑
i=1

F
eff
i · δri = 0 (5.3)

While the correctness of this equation is not in doubt, the utility of

it is unclear. For one thing, we still don’t know what the F
eff
i actu-

ally are (we know that they’re identically zero, but we don’t know
what is being equated to zero); we have been supplied with the applied
forces, and we seek to determine the accelerations (the ones that will
lead to ‘equilibrium’), but we are stymied by our lack of knowledge of
the constraint-forces. Nevertheless, we press on, and try decomposing

each F
eff
i into its constituent force-types, that is, applied, constraint, and

inertial forces. Equation (5.3) then becomes:

N∑
i=1

(F
appl
i + Fconsi + Ii) · δri = 0 (5.4)

At this stage we do some rearranging of the three terms within the
bracket - by exploiting the well-known rules of arithmetic. Thus, using
the commutative and associative laws, we may group the threesome
into (F

appl
i +Fconsi ) + Ii, F

appl
i + (Fconsi +Ii), or (F

appl
i +Ii) + Fconsi . Choosing

the last one and using the distributive law, (5.4) becomes:

N∑
i=1

(F
appl
i + Ii) · δri +

N∑
i=1

(Fconsi ) · δri = 0 (5.5)

At last, we have made some progress - we have herded all the trouble-
some (that is, unknown) constraint-forces into one group. The way
forward is now clear: provided we insist that all the virtual displace-
ments are in conformity with (in ‘harmony’ with) these constraint-
forces, then we can be assured that the constraint-forces will do no
virtual work. (This has been explained in Section 4.9, Chapter 4.)
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The constraint-forces, separately from all the other forces, will then
make up a sub-system in equilibrium:

N∑
i=1

(Fconsi ) · δri = 0 (5.6)

This saves us - it is simply unnecessary to know what the constraint
forces are (their contribution to virtual work is zero). But, as we still
require that the total virtual work from all sources equals zero (equa-
tion (5.5)), then it must be that the applied and inertial forces, taken
together, also form a sub-system in equilibrium (their total virtual work
must also be zero). This, finally, is what is conventionally referred to as
d’Alembert’s Principle:

D’Alembert’s Principle, standard formulation
N∑
i=1

(F
appl
i + Ii) · δri =

N∑
i=1

(F
appl
i – miai) · δri = 0 (5.7)

Note that although the sum goes from 1 toN, there is not necessarily an
applied force at every i (there could be an accelerating mass-point even
where the applied force happens to be zero).
There is yet one more change in nomenclature that we can

introduce. The bracket (F
appl
i - miai) is equivalent to one resultant force

at i, and we can name this resultant force as we choose. Let us call it the
‘dynamics force’, F

dyn
i , as we reach an equilibrium of a new dynamic kind,

that is, an equilibrium where accelerations occur. We can then rewrite
(5.7) finally as:

D’Alembert’s Principle
N∑
i=1

F
dyn
i · δri = 0 (5.8)

This is exactly the same as the (standard definition of) the Principle
of Virtual Work, see (4.21), as long as we pay no attention to the
different naming conventions (F

appl
i occurs in the P of VW, F

dyn
i occurs

in d’Alembert’s Principle) - but then what’s in a name?
Et voilà - dynamics has been reduced to statics. Well, almost; there is

a difference between statics and dynamics, and this goes deeper than
the mere statement of the Principle (definition (4.21) as opposed to
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definition (5.8)); the difference lies entirely in the solutions to (4.21) and
to (5.8), in other words, the final equations are not the same. In statics
we end up with statical relations (a weight might have to be located at a
certain distance along a beam, a taut cord located at a certain angle, a
weight squashes a spring to just such an extent, and so on) whereas in
dynamics the Principle determines the accelerations of particles, and then
if we wish to know how the positions of these particles change with
timewewill have to go on to solve the appropriate (2nd order) differential
equations of motion.
Despite our success in combining both statics and dynamics into one

Principle, there is much that is perplexing and disturbing about our
‘derivation’2 (equations (5.1) to (5.8): naming, renaming, and shuffling
packets of zero. . .). We have the feeling of whipping up a soufflé with
no eggs, and, to compensate for the absence of eggs, whipping faster
and faster. Before we return to this, it will help to examine a worked
example.

5.2 A worked example
We provide a high-school physics example3 to show how d’Alembert’s
Principle works in practice. A mass, m1, slides across a table-top and is
joined, by a rope going over a pulley, to another mass, m2, which is fall-
ing under gravity (Figure 5.1 a). We make all the usual idealizations:
m1 slides without friction, the rope is taut and inextensible, there is no
friction at the pulley, and the masses of the rope and pulley can be
ignored. In fact, we can idealize the whole experimental arrangement as
a ‘black box’ with m1 approaching, m2 receding, plus appropriate forces
(Figure 5.1 b) (cf. problem (i) Section 4.10, Chapter 4).
The virtual displacements of m1 and m2 are always along the length of

the rope (they’re ‘harmonious’). Also, as the rope-length is fixed, then
this is a constraint whichmakes themotions of m1 and m2 not independ-
ent of each other, and we end up with δr2 = δr1, and a2 = a1 for the
accelerations. From d’Alembert’s Principle, (5.7), we obtain: (F

appl
1 + I1) ·

δr1 + (F
appl
2 + I2) ·δr2 = 0. Substituting δr2 for δr1, and a for a2 or a1, and

setting m2g=W2 = F
appl
2 , we find: (0 – m1a) ·δr2 + (m2g – m2a) ·δr2 = 0.

2 The definition (5.8) was given so as to emphasis the identicality of d’Alembert’s
Principle with the Principle of Virtual Work. From now on, we shall always use the
definition of d’Alembert’s Principle as given in (5.7).

3 Year 12 VCE physics homework, Bendigo Senior Secondary College, 2013.
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Figure 5.1 Connectedmasses a) “Half Atwood” version b) “Black box” version.

Cancelling δr2 and rearranging, we arrive at the standard solution:
a= m2g/(m1 + m2). Note that we have not needed to calculate the ten-
sion of the rope as this is a constraint force and does no virtual work (but
in the method of Newtonian Mechanics we would need to determine
the tension, or know this beforehand). Even more interesting is the
role played by the mass, m1. It undergoes an acceleration and therefore
introduces an inertial force, I1 (in the reverse direction to this acceler-
ation), but this inertial force does not occur in tandemwith any applied
force. Rather, I1, exists because of the mere fact of m1’s acceleration, and
we end up with the curious result that I1 is the sole influence of m1 on
m2 - the (gravitational) weight of m1, and its force-of-attachment to the
rope, are both irrelevant as far as m2 is concerned (provided that m1 does
indeed remain attached to the rope4). This is evidence that the inertial
force truly exists, and is just like any other force.

5.3 Against intuition?
We return now to the question that we left dangling at the end
of Section 5.1, and to other counter-intuitive aspects of d’Alembert’s
Principle.
If the ‘derivation’ of d’Alembert’s Principle (equations (5.1) through

to (5.8)) arose out of nothing more than the renaming and regrouping
of packets of zero then this would indeed be paradoxical; however, the
paradox is resolved when we appreciate that new knowledge has entered

4 As with all methods in the Variational Mechanics, d’Alembert’s Principle only
works for sufficiently small virtual displacements leading to sufficiently small effects.
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into the problem. (This is reminiscent of a well-known ‘paradox’ in
probability - the tale of the three caskets, or the Monty Hall problem.5)
Specifically, in equation (5.6) we have introduced an extra postulate
(asserting that the virtual work of the constraint forces is zero), and this
brings in the new knowledge that the motions of the mass-points are
dependent on each other, and may even be tied together into ‘super-
structures’ (wheel, lever, inclined plane, and so on). Extra knowledge
has also been brought in by the requirement that the virtual displace-
ments can’t be in arbitrary directions but must be in harmony with
these super-structures (and with any other kinematic conditions that
may apply).
What about if there are no constraints, does d’Alembert’s method

then reduce to Newtonian Mechanics? Not necessarily - although it is
true that the simpler the system is, the less is the difference between the
methods, and the less apparent is the advantage of using d’Alembert’s
Principle. Consider the very simplest case: one particle, one applied
force, and no constraints. We then have F = ma (from Newton’s Second
Law of Motion), and F - ma = 0 (from d’Alembert’s Principle, (equation
(5.7), after superscripts and subscripts have dropped away, and δr can-
cels out). It seems as if d’Alembert’s Principle has offered nothing more
than a trite rearrangement of Newton’s Second Law. However Newton
and d’Alembert are really posing utterly different questions. Newton
asks - what is the motion of a particle given that the applied force is F?
D’Alembert asks - what is the condition for equilibrium when there is a
collection of forces? He finds that the condition is

∑
(forces) = 0 where

it just so happens that the forces are ‘F’ and ‘–ma’. Thewording is telling:
Newton refers to ‘a particle’, in other words, to one particle; d’Alembert
refers to a ‘collection of forces’, in other words to a whole system. But the

5 An ancient king needs to find a husband for the princess. The king has three
identical caskets. He hides treasure in one of them and leaves the other two empty.
Furthermore, he makes sure that no one but he knows which casket contains the treas-
ure. In one go, the successful suitormust choose the casket containing the treasure. One
day a suitor whom the King especially likes arrives at the palace. This suitor chooses a
casket but before he gets to it the King quickly opens one of the other caskets, revealing
- emptiness. The King then gives the suitor the option of changing his original choice.
The ‘paradoxical’ question is: in order to maximize his chance of winning the princess’s
hand in marriage, should the suitor change his choice or stay with his initial choice?
This seems like a ‘no-brainer’ (of course the king’s intervention won’t change the odds)
until we realize that the king is introducing extra knowledge into the problem. . .
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differences go even deeper than this: Newton’s Second Law is an equa-
tion in vector algebra, while d’Alembert’s

∑
(forces) = 0 is a shorthand

for a principle in the variational calculus: it is only true ‘in the limit’, and
the virtual variations must be chosen wisely.
The elemental system, ‘one particle, one force’, is so simple to state

and easy to visualize that it leads us to suppose that scenarios of any
degree of complexity can always be built up out of these basic elem-
ents. But this is not so, and the pathological simplicity has led us to false
expectations. It is an example of the dictum “exceptionally simple cases
make bad physical intuition”6 (in contrast to the lawyers’ dictum “hard
cases make bad law”).
There are other counter-intuitive aspects of d’Alembert’s Principle.

The fact that the zero condition in (5.7) involves a sum allows for two
surprising possibilities. First, it is possible to have some terms where
F
appl
i �= miai. There is no contradiction with Newton’s Second Law as the
miai are consequent upon the net force, Fneti , they are not generated by

just the applied force, F
appl
i . (Typically, the applied forces will exist at

just a few mass-points, whereas the inertial forces will occur at every
i, that is, wherever there is a mass in accelerated motion.) Second, and
more alarming, it may occur that the interaction force (a genre of con-
straint force) between one particle and another particle is not ‘equal
and opposite’, that is, there is nothing to prohibit Fintij �=Fintji . This means
that Newton’s Third Law of Motion has failed. There is ample experi-
mental confirmation of this7 - but note that the failure occurs only at
this ‘microscopic’ level, the level of interacting particles: overall, at the
‘whole-system’ level, Newton’s Third Law does still always apply.
There is yet one more aspect that is against our intuition. We have

said that Fneti leads to the massy accelerations, miai, but this doesn’t
rule out the possibility of these miai being generated in a totally dif-
ferent way (even when Fneti is zero): the massy accelerations can occur
merely as a consequence of an accelerating reference frame. But this
then means that inertial forces can occur merely as a consequence of
accelerations. This is very non-Newtonian and sowill bring in some very
non-Newtonian outcomes which we shall now investigate.

6 The author invented this dictum and used it first in a slightly different context; see
Coopersmith, EtSC, Chapter 18.

7 Famously, this occurs in electrodynamics, such as the interaction between two
electrons, with one electron approaching at right angles to the path of the other
electron.
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5.4 ‘Fictitious forces’
5.4.1 Introduction and examples

Let us generalize from the ‘pathologically’ simple scenario of just one
particle and one force, and include the possibility of many particles, and
of constraint or internal forces - is our system now of the most gen-
eral kind? No, there is yet one more generalization we can make: we
can remove the Newtonian prohibition against accelerating reference
frames. We give a qualitative account of the consequences of allowing
such accelerating reference frames (see Figures 5.2a to 5.2e).
Consider a system seen simultaneously from a reference frame that

has no acceleration, REF, and from a reference frame that is acceler-
ating, REFacc. We will find that particles that were stationary in REF
will be accelerating in REFacc; and, per contra, there may be particles that
were accelerating in REF and are no longer accelerating in REFacc. Now,
according to d’Alembert, a mass that accelerates constitutes a force. So,
merely dependent on the reference frame, a force could come into existence
which didn’t exist beforehand. The consequences are not innocent, a force is
not a tame thing (applied to a person, it could make them feel nause-
ous, lose their balance, or tear them limb from limb). Such forces have
in the past been called ‘fictitious forces’ - a misnomer, as these forces
are every bit as real as applied- and constraint-forces, and their exist-
ence has been corroborated in countless experiments. (For example,
the ‘fictitious forces’ associated with a rotating reference frame are the
well-known centrifugal, and Coriolis forces8).
Let’s look at some examples. Imagine that you are in a hotel room

(a one-room cabin) with the window-shutters closed, in an armchair
against the wall (Figure 5.2a). Unbeknownst to you, some prankster
has mounted the whole cabin, at its centre, onto a strong bearing with
rotary motor attached. The prankster turns the motor on and the
room starts to spin (Figure 5.2b). Let’s imagine that it spins exception-
ally smoothly and quietly. What will you notice? You may feel a bit sick
and you’ll feel yourself being pushed against the chair-back.9 The hang-
ing lamp near your chair gets tugged toward the outside wall. Also,
some marbles on the floor suddenly start to move toward the edges

8 There are also the less well-known ‘Euler forces’ associated with a frame rotating
non-uniformly, see Lanczos, page 105.

9 The faster the spin-rate, the greater your distance from the spin-axis, and the
greater your mass, the more strongly you’ll feel pinned to the chair.
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Figure 5.2 ‘Fictitious Forces’, examples.

of the room. They start rolling, radially outward, but they also feel, in
addition, a sideways push, and so pursue a curved path toward thewalls.
You exchange stiff words with the management, switch to a new

cabin, and promptly fall into a deep sleep. When you wake up later, you
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are relieved to find that everything is as usual, and you amuse your-
self playing with the marbles, having a game of darts, and watching
the goldfish in the goldfish-bowl. Everything appears utterly normal
until you open the shutters and see - nothing. The view has disap-
peared and all you can see is a blue planet, far away. Room service (!?)
informs you that you are now in Outer Space, on a rocket travelling
dead straight and accelerating smoothly at 9.81 metres per second per
second, (the engines are under the floor), and, not toworry, you have all
the necessary oxygen, cabin pressure, supplies, shielding, and such like.
Your adventure is not over yet: you suddenly notice that every loose

object in the room starts to accelerate linearly and gently toward the
ceiling. This lasts for some minutes, gradually tailing off, until you
notice that you feel weightless and see some marbles hanging motion-
less in mid-air (you are still on your chair, which is bolted to the floor,
but you must now hold on to it). Room service informs you that you
are still inOuter Space, but the rocket engines have been turned off. You
enjoy the sensation of weightlessness, pushing off from the walls and
doing somersaults with ease. Exhausted, you doze off in the chair again,
(buckling yourself in). When you awake, you continue to feel weightless
and are just about to indulge in some more acrobatics, when you look
out the window and notice with horror that the Earth is close by and
you are plummeting down toward it (that is, you’re in free-fall).
Before you crash to your death, you just have time to ponder on the

wisdom of d’Alembert: from within your room you feel only the com-
bined force, (Fappl + I), and there is no way for you to distinguish between
the effects due to an externally applied force and the effects due to your
acceleration - in other words, Fappl and I are completely indistinguishable.
Now, if it so happens that the acceleration of your reference frame

satisfies two conditions - it is in a straight line, and it’smagnitude doesn’t
change - then the ‘fictitious’ force in this special case is indistinguishable
from a particular kind of external force - the one known as grav-
ity.10 This was Einstein’s celebrated Equivalence Principle. D’Alembert’s
Principle is more general inasmuch as the external force doesn’t have to
be gravity, but the Equivalence Principle is more general inasmuch as it
applies not only to mechanics (bodies in motion) but to any physical
effect whatsoever (heating, electricity, radioactivity, chemical action,
and so on). In other words, all these effects will be unaltered when

10 (for a sufficiently small room and short timescale).
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viewed from a reference frame that has zero acceleration and includes
a gravitational field, or has a constant linear acceleration and does
not include a gravitational field. Einstein subsequently generalized the
Equivalence Principle in his landmark Principle of General Relativity:
in a closed system, no physics experiment, of any kind, can distinguish
between reference frames having any kind of motion (zero acceleration,
uniform acceleration, or non-uniform acceleration11).
This is all completely contrary to Newtonian Mechanics. Newton

makes the distinction between a free body (there are no forces acting on
it), and one that is subject to a force. By contrast, d’Alembert, Einstein,
and modern physics, all make a distinction between a constrained body
(moving only within a given surface, tied to a cord, and so on), and an
unconstrained body - whether or not there may additionally be exter-
nal influences. The importance of force is now downplayed, and we
sometimes find (for example, in modern field theory) that it disappears
altogether.

5.4.2 Critique, and some historic examples

One may try the objection that scenarios (a) and (c), and again (d) and
(e), (Figure 5.2) do not have to yield the same outcomes as they are not
identical (rocket engines are on and off, the Earth is near or far). This
is true but, first, d’Alembert’s Principle, and the Principle of General
Relativity, do not deny that F and I can be distinguished if you look out-
side the cabin (that is, look outside the system, look at ‘the view’), and
second, these Principles don’t prohibit identical outcomes for different
scenarios, they only prohibit different outcomes for identical scenarios.
Let’s nevertheless, make things simpler by considering just one12

scenario (which must, presumably, be identical to itself!) as seen from
different view-points. For example, consider the Pluto-Charon system
(andmake the approximation that Pluto and Charon are perfectly rigid
bodies travelling in circular orbits), and then site the origin of the ref-
erence frame: (a) on Pluto, (b) on Charon, and (c) at the centre-of-mass
of the whole system (that is, on the line joining Pluto and Charon,
just slightly outside Pluto’s body). Surely, as there is only one actual

11 Again, provided that the experiment is only carried out over ‘small’ time- and
space-scales.

12 A cabin that is left alone, rotated by an engine, or fired into space by a rocket, all
count as different scenarios.
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scenario, then d’Alembert’s Principle will guarantee the same ‘out-
comes’ for each view-point? Yes, it does, but we can hardly say that the
observed motions are the same in (a), (b), or (c). Now here’s a strange
thing. Earlier on (in the spinning cabin) we showed that there were ‘fic-
titious forces’ as a result of rotary motion (you were pinned to your
chair, you felt a bit sick, the lamp no longer hung vertically down, and
marbles started moving) but now, despite the fact that both Pluto and
Charon are orbiting and spinning, yet there are no centrifugal or other
‘fictitious’ forces, no evidence of rotation whatsoever (apart from look-
ing outside the system at ‘the view’, that is, the distant stars). How does
this curious result arise? It arises because of the simplifying assump-
tion - that Pluto and Charon are perfectly rigid bodies. In the cabin this
assumption has not been made (humans are squishy, marbles are not
stuck to the floor, the hanging lamp can swing). In fact, it is only through
these non-rigid attributes that rotations can be noticed.
Another example is that of a bucket, spinning around its vertical

axis of symmetry. The bucket would give no evidence of its acceler-
ation unless it was filled with something non-rigid, like water. This is
the famous example of Newton’s rotating-bucket experiment. Newton
noted that, after spinning for a while, the surface of the water becomes
curved, with the outer edges higher up than the level in the middle
(Figure 5.3). Newton took this curved water-surface as a demonstra-
tion that the bucket really is spinning (relative to an unobservable but
absolutely stationary background Space).
Ernst Mach (nineteenth century physicist and philosopher) had an

intriguing alternative idea. He saw that a) was not the true inverse of b)
(see Figure 5.3), as the bucket of water was not, in reality, surrounded by
empty space but by the distant stars. If, in b), the distant stars were sta-
tionary, then, in the true inverse of b) (say, c)) they should be rotating
at the same rate13 but in the opposite direction to the bucket’s rotation.
As the background system of stars would then be different in b) and
c), then this could account for foreground differences, like the differ-
ent shape of the water’s surface. In effect, Mach asserted that the stars
actually caused the water-surface to curve.
Nowadays we reject Newton’s absolutes (force, acceleration, Space),

and we also reject Mach’s hypothesis. We can never carry out Mach’s

13 We have ignored the spin of the Earth, but this can be accounted for and doesn’t
change the argument.
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b) spinning bucket

c) the ‘heavens’ are spinning 

a) stationary bucket

or

? ?

Figure 5.3 Newton’s Bucket.

hypothetical experiment of spinning or removing the heavens, and
so we can never confirm or deny Mach; yet, his hypothesis is com-
pletely against the spirit of d’Alembert’s Principle (and against the
spirit of all variational mechanics, and Einstein’s Theory of General
Relativity). While bothMach and d’Alembert agree that what is import-
ant is the system, the whole system, and nothing but the system,
yet, in d’Alembert’s Principle, the system does not extend to infinity,
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it only encompasses local effects and only makes local claims. This is
more humble andmore philosophically correct (‘pc’). In the variational
mechanics, which includes d’Alembert’s Principle, the curving of the
water-surface is due only to local interactions (neighbouringmolecules),
and localmotions (of water molecules with respect to the centre of the
bucket - a small distance). All this can be tested experimentally. Now,
the bucket radius is smaller than the distance to the stars, yes, but how
small is ‘local’? Ah, that depends. . . 14

5.5 D’Alembert’s Principle and energy
There is one matter concerning d’Alembert’s Principle that we haven’t
mentioned so far - the question of solvability, that is, can mathematical
solutions to (5.7) be obtained? The applied forces are usually specified
beforehand, and given in functional form (Hooke’s Law for a spring,
Coulomb’s Law for electrostatic attraction, and so on) whereas the iner-
tial forces (reversed accelerations of the mass-points) are not usually in
functional form.15 This is because these accelerations have arisen from
multiple influences - constraint forces as well as applied forces. An excel-
lent demonstration of this is seen in the system of the roulette wheel
and ball: here there are two applied forces - gravity and the push given
to spin the wheel - but the resulting acceleration of the roulette-ball is
all over the place - ‘randomized’ - due to the complexity of the mul-
tiple constraint forces (the ridged and sloping surface of the spinning
roulette wheel).
Now there is one special circumstance in which the (reversed)

accelerations can be expressed in functional form. Remember that
d’Alembert’s Principle uses virtual displacements that are of our choos-
ing (subject to any constraint and kinematical conditions): surely, we
can choose the δri to coincide with the actual displacements, dri, which
really do occur? This would resolve our difficulties as the dri are ‘perfect
differentials’ and therefore amenable to mathematical solution. But,
strange as it may seem, the actual displacements are not always per-
missable as a stand-in for the virtual displacements. This is because the

14 That depends on the precision of the measuring apparatus, and the rapidity of
change in the external forces and other conditions - see Chapters 3 and 4.

15 The inertial accelerations are not the familiar ‘rate of change of velocity’, dv/dt.
They are tiny incremental vectors, in the correct units, but they do not have a
functional form (cf. the guinea-pig nibbling the biscuit (Section 3.7.2 c)).
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actual displacements, dri, always take a finite time, dt, and during this
finite time-interval the external conditions (applied forces, constraint
forces, kinematical conditions, other external conditions) may change.
However, in the one special circumstance that all the external conditions
are constant, independent of time, then there will be no contradiction in
choosing the δri to be the same as the dri.
In this special circumstance in which everything is in functional

form, and everything is independent of time,16 some rather special out-
comes follow. First, we will be able to express the applied forces as a
time-independent ‘potential function’, V(ri), satisfying F

appl
i = –∂V/∂ri

(see Appendix A6.5). Second, we will be able to express the accelerations
as ai = r̈i. Third, as we have already explained, we are choosing to have
δri = dri. Making the appropriate substitutions into (5.7) we obtain:

N∑
i=1

(–∂V/∂ri – mir̈i) · dri = 0 (5.9)

The first term in the bracket, when summed over i, becomes the perfect
differential, dV, and, provided that all the masses, mi, are constant in
time, the second term can be re-expressed as follows:

N∑
i=1

(mir̈i) · dri =
N∑
i=1

d

dt
(miṙi) · ṙidt = d

dt

(
1

2

N∑
i=1

(miṙ
2
i )

)
dt (5.10)

Does this remind us of anything? Yes, 12
∑

(miṙ2i ) is the familiar kinetic
energy function, T, and so the right-hand side of (5.10) is d

dt (T)dt, which
is the perfect differential, dT. So we can now rewrite (5.9) as:

dV + dT = d(V + T) = 0 (5.11)

Finally, this can be integrated to give

T + V = constant = E (5.12)

This is a familiar but fundamental result - the sum of the kinetic and
potential energies of a mechanical system is a constant. To extract the

16 We mean no explicit dependence on time; obviously there is still an implicit
dependence on time, unless we are talking of ‘statics’.
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importance of this, let’s collect together our starting assumptions: we
have a mechanical systemmade up from particles and forces which can
be modelled using rectangular coordinates; the applied forces derive
from a time-independent potential function; the kinematical conditions
remain constant in time; and the masses are also constant. One may
think, well, it’s hardly surprising that we have a conservation prin-
ciple given that we have assumed that everything is independent of
time, that is to say, conserved. But this is to miss the point; what we
have found is that, granted all the above assumptions, the well-known
and fundamental law of the conservation of energy actually follows from
d’Alembert’s Principle.

5.6 Review
D’Alembert, that brilliant but “sinister character”,17 discovered a
Principle that causes some physicists to shudder even while, at the
same time, it answers to almost all of physics: “All the different prin-
ciples of mechanics are merely mathematically different formulations
of d’Alembert’s Principle”.18 In d’Alembert’s Principle we have amethod
of treating a problem in dynamics as if it was a problem in statics (using
the Principle of Virtual Work). This is down to d’Alembert’s “stroke
of genius” - treating reversed massy accelerations as reactive ‘inertial’
forces. These inertial forces are added to the applied forces, and then the
condition for ‘equilibrium’ is found in the usual way. Well, not quite in
the usual Newtonian way: instead of the applied and reactive forces can-
celling each other out in a pair-wise fashion, we generally have applied
forces acting at just a few mass-points, and a melée of inertial forces,
one for every accelerating mass. A further departure from Newtonian
Mechanics is that instead of arriving at a balance of forces, we have a
balance of energies - specifically, virtual work.
The tenets of d’Alembert’s Principle are:

(1) The mechanical system is made up out of particles and forces,
given in rectangular coordinates,

(2) there are such things as ‘constraints’, and these are, in essence,
forces,

(3) moreover, these constraint forces are reactive forces,

17 Truesdell C, ‘The rational mechanics of flexible or elastic bodies, 1638–1788’,
Leonhardi Euleri, Opera Omnia, 2nd series, page 186.

18 Lanczos, page 92.
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(4) massy reversed accelerations are, in essence, forces,
(5) moreover, these massy reversed accelerations, known as ‘inertial

forces’, are reactive forces,
(6) at any instant, the total virtual work of the reactive constraint

forces is zero, for virtual displacements that are in harmony with
the constraints (Postulate A),

(7) at any instant, the total virtual work of the applied forces and the
reactive inertial forces is zero, for virtual displacements that are
in harmony with the constraints.

The new modelling of physical reality is, at first acquaintance, rather
strange, especially the newly introduced ‘inertial force’ which sounds
oxymoronic, allying inertness with activity. However, this inertial force
has been experimentally detected in countless scenarios (witness the
centrifugal, and Coriolis forces, and the inertial force in Section 5.2)
and, more than this, it brings in physical insight and philosophical ‘cor-
rectness’. First, d’Alembert’s Principle shows that, whether inertial or
constraint, all the non-applied forces are ‘reactive’. Second, we have seen
that d’Alembert’s Principle is sensitive to ‘F

appl
i + Ii’ rather than to F

appl
i

and Ii taken separately (equation (5.7)). This means that there is no
fundamental way of separating F

appl
i and Ii, and so there is no way of

determining that an applied force is absolutely external, or that a frame
of reference is absolutely stationary, or that a frame of reference is abso-
lutely accelerating. Considering Ii itself, we see also that the Principle is
sensitive to miai rather than to mi and ai taken separately. It is there-
fore impossible to cleanly excise mi away from ai, and this leads to a
departure from Newton’s passive, inert, conception of mass. For ‘ficti-
tious forces’ (see Section 5.4), the strength of the force, far from being
independent of mass, is actually proportional to it. In the special case of
gravity this leads to an identity between the ‘gravitational charge’, mgrav,
and themass, m (see the footnote for definitions19). Newton noticed this
as a coincidence but for Einstein it was one of the clues that led him to
the Equivalence Principle and then on to General Relativity. Also, in the
centrifugal force, we see a dependence of the force on the speed, and the

19 The ‘gravitational charge’ occurs inNewton’s Law ofUniversal Gravitation, Fgrav =
GmgravMgrav/r2; the ‘inertial mass’, m, is what occurs in F = ma. Usually, whenever we say
‘mass’ we shall mean the ‘inertial mass’, m.
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spatial distribution of mass, and for Coriolis forces, a dependence on the
speed, and direction of the moving mass - all non-Newtonian features.
While some physicists have imagined that d’Alembert’s Principle is

included within Newtonian Mechanics, and makes no further phys-
ical claims, assertions (4) to (7) are extra postulates which go beyond
Newton’s Laws of Motion. The wider reach, increased explanatory
power, and greater profundity of the Principle is not in doubt, and
in modern physics we find that Newton’s Third Law doesn’t always
apply, mass isn’t always constant, external conditions can vary with
time, and energy is not always conserved (as the system isn’t necessar-
ily closed), but it is always the case that the total virtual work of the
‘dynamical’ forces is zero (condition (5.8), Section 5.1). We can even
go a step further than d’Alembert, and switch from a consideration of
forces to virtual work, and recast the Principle as

∑
δωdyn = δω

dyn
total = 0.

This is the cornerstone of classical, relativistic, and quantum mechan-
ics, and so Lanczos’s words, repeated again here, are explained: ‘All the
different principles of mechanics are merely mathematically different
formulations of d’Alembert’s Principle” (reference given earlier).
Given all this, we may wonder why d’Alembert’s Principle isn’t bet-

ter known. The answer has little to do with the physical content of
the Principle, and everything to do with the difficulty in solving it
(obtaining the mathematical solutions). This is because of two surpris-
ing limitations: (1) the Principle still preserves a relic from Newton -
it employs particles, forces, and rectangular coordinates, which leads
to reactive accelerations that are ‘imperfect differentials’,20 and these
are not amenable to mathematical solution; (2) despite our vaunting of
it, d’Alembert’s Principle, being a special application of the Principle of
Virtual Work, still applies only at one instant of time - curiously inappro-
priate for dynamics. An ingenious way of overcoming both limitations
in one go is given in the next development, known as Lagrangian
Mechanics.

20 Unlike the applied forces, the inertial forces are not in general described by amath-
ematical function, say, y, and so the inertial accelerations are not the ‘d-of-y’ - see the
footnote in Section 5.5, and also Section 3.7.2.
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Lagrangian Mechanics

Joseph-Louis Lagrange, in his great work, the Mécanique analytique
(Analytical Mechanics),1 of 1788, discovered a general method for solv-
ing all the problems of mechanics, whether in statics or dynamics.

6.1 Introduction
The Principle of Virtual Work yields the condition for static equilib-
rium: it applies at one instant and then for all time (in other words,
time doesn’t come into it). D’Alembert’s Principle, being a special case
of the Principle of Virtual Work, also applies at just one instant but
as we’re now in the realm of dynamics the conditions do change
with time and so d’Alembert’s Principle must be reapplied at the very
next instant, and then again at the next instant, and so on and so
on. However what we would like is a method that frees us from the
need to explicitly re-apply d’Alembert’s Principle, and, instead, enables
us to mathematically track the motions continuously and over the
whole time-interval of the problem. For example, in this more ‘hol-
istic’ method we could have a provisional solution (a guess) spanning
the whole time of the given dynamical problem (from tstart to tend), and
then we could ‘vary’ our whole-solution (have a guess that was a
slightly different whole-solution), and then have some criterion for fil-
tering out all but one of our guesses - the answer. Does this remind
us of anything? Yes, it reminds us of minimum-path and isoperimetric
problems - such as Dido’s question, Johann Bernoulli’s quickest-descent
curve, and the shape of the catenary (see Chapter 2) - all solved using
the method known as the ‘calculus of variations’ (Sections (3.7.2) and
(3.7.3), Chapter 3). But perhaps we could use this same method, the
calculus of variations, also in the case of general mechanics problems,

1 Lagrange J-L, Mécanique analytique 1788, translated by Boissonade and Vagliente,
Kluwer Academic, 1997.
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as follows: we could embed d’Alembert’s Principle in a time integral,
and then determine that whole-path through time which makes the
integral stationary?
This is, in fact, exactly what we will do but there is one stumbling

block that stands in our way: the calculus of variations involves analyt-
ical (mathematical) techniques and these can only be used when all the
equations are in functional form (the f and F in equation 3.7.3-1 must be
functions). The resolution? It turns out that we shall succeed if we restrict
ourselves to just those cases where everything is in functional form.
Thus, we shall insist that the applied forces arise from a work function,
U, itself arising from a potential energy function, –V, (for example, such
that F

appl
i (ri) = –∂V/∂ri), and we shall also insist that any constraints

and kinematical conditions are given in functional form.2

You may feel that this is all very well but we’ll just end up with a
mechanics that only works when it works. However, this turns out to
be a worthwhile exercise as ‘when it works’ seems to encompass most of
physics! Better still, ‘when it works’ yields results that are stupendous,
seeming to reward us with more physics, more insight, than ever we
put in. So let’s run with it and see what happens.

6.2 Hamilton’s Principle - The Principle
of Least Action

At any one time, t, d’Alembert’s Principle equates the total ‘dynamical’
virtual work, δω̄

dyn
total, to zero (end of Chapter 5)3 but, in dynamics, we

require to integrate δω̄
dyn
total through time between endtimes ta and tb,

and then find the solution, that is, we require to solve
∫ tb
ta
δω̄

dyn
totaldt = 0.

However this integral is not solvable as it stands, and this is because
δω̄

dyn
total is an imperfect differential (Chapter 3, Section 3.7.2 c). It is imper-

fect for the reason that it contains the work done by the ‘inertial’
or ‘reactive’ accelerations, and these have arisen from the combined

2 There are a few exceptions, known as non-holonomic conditions, which we’ll
come to later. Why does the potential energy have a minus sign? This is discussed in
Section 6.6.

3 Notation: ‘Dynamical’ has been defined at the end of Section 5.1, Chapter 5. We
denote the dynamical virtual work of one particle at one time as δω̄

dyn
i , and for all par-

ticles at one time as
∑
δω̄

dyn
i = δω̄

dyn
total. The bar over the omega reminds us that the

differential is imperfect, and ‘total’ refers to ‘all particles’, not ‘all times’.
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influence of many sources. (Lanczos uses the Greek term ‘polygenic’ -
arising from many sources - as opposed to ‘monogenic’ - arising from
just one source.) But not all the contributions to δω̄

dyn
total are imperfect: if

only we could arrange things so that we collect together all the perfect
bits that are in functional form, and tease out and isolate the difficult
imperfect bits. Here’s how.
We consider a system comprising N particles, mi, with (rectangular)

position vectors, ri. We start by integrating d’Alembert’s Principle, (5.7),
Chapter 5, from time ta to time tb:∫ tb

ta

δω̄
dyn
total dt =

∫ tb

ta

∑
i=1

(F
appl
i – miai) · δridt = 0 (6.1)

(As δω̄
dyn
total at each instant is zero, then the integral of it over time is also

zero.) The bracket in (6.1) can be separated into two terms:∫ tb

ta

∑
i=1

F
appl
i · δridt –

∫ tb

ta

∑
i=1

miai · δridt = 0 (6.2)

Now, one of our assumptions is that there is a potential function,
V, with perfect differential, δV =

∑
(∂V/∂ri)δri = –

∑
F
appl
i · δri where

F
appl
i = –∂V/∂ri. The first term of (6.2) is therefore already in functional
form:∫ tb

ta

∑
i=1

F
appl
i · δri dt may be written as –

∫ tb

ta

δVdt

The second term in (6.2) is problematic as it contains the dreaded imper-
fect inertial accelerations - but we have some ‘tricks’ up our sleeve. First,
we ameliorate matters by re-branding the accelerations as velocities:

ai may be written as v̇i may be written as d
dt (vi)

This re-branding ‘trick’4 is one we’ll resort to again and again (see espe-
cially Chapter 7), and amazingly it works. (The reason why it works

4 Such a ‘trick’ was first used by J F Riccati (1676–1754). (The reference is in “When
Least is Best”, Nahin, p243.)
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is hard to explain but, ultimately, it is due to the fact - as Hamilton
intuited - that ‘position’ and ‘momentum’ are the fundamental variables,
and so ‘speed’ (part of momentum) is a more fundamental and telling
parameter than ‘acceleration’.We’ll return to this in Chapter 7.) Finally,
assuming that the mi are constant in time, we obtain:∫ tb

ta

∑
i=1

miai · δri dt may be written as

∫ tb

ta

∑
i=1

d

dt
(mivi) · δri dt

The second ‘trick’ we use is a mathematical technique known as ‘inte-
gration by parts’:∫ tb

ta

∑
i=1

d

dt
(mivi) · δri dt =∫ tb

ta

∑
i=1

d

dt
(mivi · δri) dt –

∫ tb

ta

∑
i=1

mivi · d
dt
(δri) dt (6.3)

There is scope for modifying the last term in (6.3) by exploiting the fact
that the operations d

dt and δ may be swapped around.5 This term may
then be transformed as follows (taking note of the fact that d

dt (ri) is the
same as vi):∫ tb

ta

∑
i=1

mivi · d
dt
(δri)dt =

∫ tb

ta

∑
i=1

mivi · δ d
dt
(ri)dt =

∫ tb

ta

∑
i=1

mivi · δvidt

(6.4)
Now, δ is an operation which, while it relates to the variational calculus
(Sections (3.7.2b) and (3.7.3)), it nevertheless follows exactly the same
rules as d

dt . So we know that

mivi · δvi may be written as δ( 12miv
2
i )

This last expression, 1
2miv

2
i , rings bells for us - it is the kinetic energy

of particle, i, and we will denote it by Ti, as T is a symbol commonly

5 This is acceptable because the process of variation involves only infinitesimal changes
to the starting function. (And if d

dt and δ can’t be swapped, everything is then so
pathological that the methods of analytical mechanics fail anyway.)
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used for kinetic energy. (δTi is then the variation in the kinetic energy
of particle i.) Summing over all the masses (that is, over all the i s) we
obtain the virtual variation in the total kinetic energy, δT.
Returning to equation (6.1), we substitute in all of these new expres-

sions, and so finally arrive at:∫ tb

ta

δω̄
dyn
totaldt = –

∫ tb

ta

δVdt –

∫ tb

ta

∑
i=1

d

dt
(mivi · δri)dt +

∫ tb

ta

δTdt

= 0 (6.5)

We have made huge progress. T and V are functions, and so we have
succeeded in isolating and herding together all the difficult imperfect
polygenic responses - they’re all in the middle term on the right-hand
side of (6.5). Even more fortuitous, this middle term, by this method of
‘integration by parts’, is a ‘total differential’ and so all of it becomes a
boundary term:

∫ tb

ta

∑
i=1

d

dt
(mivi · δri)dt =

[∑
i=1

(mivi · δri)

]tb
ta

(6.6)

This helps - themessy bits are concentrated in just one term of (6.5), and
even within this term they are concentrated (exist only) at the bound-
aries (the end-points of the path). But there’s still one more ‘trick’ up
our sleeve. It so happens that at these boundaries there is no variation.
(Hamilton insisted on this - the integral in (6.5) was to beminimized for
a function that remains fixed at the ends (fixed in both position and
time6).) But this then means that the δri s are zero at ta and zero at
tb, and so the whole boundary term is zero - it just disappears, pouffe!
We have had one difficult bundle of imperfect inertial accelerations,
but we never have to unwrap it, we can throw the whole bundle away.
Equation (6.5) thus simplifies to:∫ tb

ta

δω̄
dyn
total dt =

∫ tb

ta

δ(T – V) dt = 0 (6.7)

6 This is in contrast to Lagrange who allowed some small slack in the final end-time,
just enough to make sure that energy-conservation was satisfied.
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Now, in the same way as the order of d
dt and δ may be swapped (see

above), the order of
∫
and δmay be swapped. So, the right-hand side of

equation (6.7) finally turns into:

Hamilton’s Principle δ

∫ tb

ta

(T – V) dt = 0 (6.8)

This equation has become known as Hamilton’s Principle, after the
Irish genius and mathematical physicist, William Rowan Hamilton
(1805–65) - see Chapter 2. We shall hear more of Hamilton later (in the
next chapter). As the integrand, (T – V), has the dimensions of energy,
and as the integral is over time, then the left-hand side of equation (6.8)
is a quantity of action - it asserts that the variation in the total action is
zero, or, in other words, the action is stationary. In fact, we shall find
(Section 6.6) that the action is not just stationary, it is minimized. So,
Hamilton’s Principle is thus a Principle of Least Action (we have the
authority of Feynman to name it thus7). We at last have our Principle in
the form of an equation - but now we must solve this equation. This is
dealt with in the next section.

6.3 The solution of Hamilton’s Principle:
Lagrange’s Equations of Motion

We start by making Hamilton’s Principle more compact by writing ‘L’ as
a shorthand for ‘T – V’:

Hamilton’s Principle

δ

∫ tb

ta

(T – V) dt = 0 may be written as δ

∫ tb

ta

L dt = 0

The letter ‘L’ was chosen to commemorate Lagrange, who formulated a
least action principle which was the precursor of Hamilton’s Principle.
‘L’ is known as ‘the Lagrangian’. Now T and V are functions of rj, ṙj,
and t, and so L is likewise some function of rj, ṙj, and t, where j runs
over the number of particles in the system, say, N. (A historical note:
in Lagrange’s earlier version L was not allowed to be a function of t;

7 Richard P Feynman, The Feynman Lectures on Physics, Vol II, Chapter 19.



Lagrangian Mechanics 113

Hamilton’s Principle is more general in this regard.) Thus Hamilton’s
Principle, with all the arguments shown, becomes:

δ

∫ tb

ta

L(r1, r2, . . .rN ; ṙ1, ṙ2, . . .ṙN ; t) dt = 0 (6.9)

Let’s refresh our memory of the calculus of variations from Section
(3.7.3), Chapter 3. There we showed that the stationarity of a definite
integral (with respect to infinitesimal variations in the shape of the line),
required that:

δ

∫ xb

xa

F( f1, f2, . . .fn; ḟ1, ḟ2, . . .ḟn; x) dx = 0 (6.10)

In that section we claimed that, so long as the fj and the ḟj were functions
of x, and so long as F was a function of the fj, ḟj, and x, then (6.10) could
be solved by the Euler-Lagrange Equations.8 Now equations (6.9) and
(6.10) bearmore than a passing resemblance to each other. In fact, given
that L is some, as yet, unspecified function of rj, ṙj, and t, and F is some
unspecified function of fj, ḟj, and x, then, if the Euler-Lagrange Equations
solve (6.10), might they not also solve (6.9), that is, solve Hamilton’s
Principle? Yes, but there is even one more remarkable step we can take:
as L is ‘some function’ of rj, ṙj, and t, so surely it is also ‘some other
function’9 of qi, q̇i, and t, where the qi s are Lagrange’s ‘generalized coord-
inates’.10 We can thus write Hamilton’s Principle, in its most general
form, as:

δ

∫ tb

ta

L(q1, q2, . . .qn; q̇1, q̇2, . . .q̇n; t) dt = 0 (6.11)

and we can be assured that it will be solved by the Euler-Lagrange
equations:

8 Equations (3.11, Chapter 3). Note: there’s also the requirement that the functions
be continuous, differentiable and finite, and that the boundary conditions are satisfied.

9 This functional nature of L is guaranteed as, in addition to our insistence that T and
V are functions, we also insist that the transformation between

{
rj, ṙj, t

}
and
{
qi, q̇i, t

}
must

be by functions. Note that the limits of j and of i are not necessarily the same (j = 1 to
N, whereas i = 1 to n).

10 The generalized coordinates are explained in Sections 3.1 and 4.7.
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d

dt

(
∂L

∂ q̇1

)
–
∂L

∂q1
= 0

d

dt

(
∂L

∂ q̇2

)
–
∂L

∂q2
= 0

...

...

...

d

dt

(
∂L

∂ q̇n

)
–
∂L

∂qn
= 0 (6.12)

(It is understood that all these n equations must be satisfied simultan-
eously.) As the independent variable is now the time, t, then (6.12) are
equations of motion, and by convention the Euler-Lagrange Equations
are then referred to as the ‘Lagrange Equations of Motion’ or simply
as the ‘Lagrange Equations’. These famous equations, the solution to
Hamilton’s Principle, can be written on one line as:

The Lagrange Equations of Motion

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1, 2, . . ., n (6.13)

This is all very impressive, but we are left wondering whether we
haven’t been blinded by wool: can a mere change of symbols (F→
L, f → q, ḟ → q̇, and x→ t) really mean that we have gone from a
useful technique (for solving, for example, Dido’s problem, the bra-
chystochrone problem, and the shape of the catenary) to a set of
equations promising a solution to all of mechanics? The resolution will
lie in the fact that, in going from the Euler-Lagrange Equations to the
Lagrange Equations of Motion, we have done much more than a mere
change of symbols. Before this is explained, we’ll first treat a few simple
and well-known mechanics problems by Hamilton’s Principle and the
Lagrange Equations of Motion - in other words, by the method known
as ‘Lagrangian Mechanics’ - so that we can be duly awed by the power
of our new weapons. (See the worked examples in Appendix A6.1).
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6.4 What is happening physically
From solving problems (Appendix A6.1) we learn so much: that what
counts as kinetic or potential energy depends on the frame of reference;
that it isn’t necessary to calculate the constraint forces (the tension in
a cord, the force that constrains a bead to a wire, and so on); that the
same method and insights can be applied to very different systems (for
example, electrical and mechanical systems); that the kinetic energy
can contain constant terms, and terms that are linear in the speeds;
that the potential energy can depend on velocity, and on time. But even
without solving a single problem, something commands our attention
and leaves us awestruck: run your eye over all the boxes shaded grey in
Appendix A6.1 and you will be witness to a most remarkable thing - the
applicability of just one set of equations. The systems are for different scen-
arios, eachwith their own forms for T andV, and yet the equations to be
solved always have exactly the same form. Also, for any one system, the
coordinates may be transformed,11 or the system may be re-modelled
into a different set of coordinates, and there may be time-dependent
conditions imposed on these coordinates, and the total energy may not
be a constant, and the reference frame may be moving, even accelerat-
ing; and yet in all these cases the equations to be solved - the Lagrange
Equations - still have the same form, and the Lagrangian keeps its same
value (say, 0.0561 Joules).12

Yet we are left feeling puzzled and circumspect: surely, merely by
‘sleight of maths’ (all the ‘tricks’ of Section 6.2, and the symbol-changes
of Section 6.3), we can’t have arrived at a universally valid set of equa-
tions? To be able to minimize a definite integral, that is a very pretty
skill, mathematically-speaking, but our perplexity has nothing to do
with the mathematics, and everything to do with the application of it
to physics. The perplexity will be resolved when we understand that
some implicit physical assumptions have entered in along the way. Yes,
we can re-model the system, or transform from one set of coordin-
ates to another, but there are some underlying physical aspects that
don’t change - the ‘degrees of freedom’. Yes, we can introduce some
extramathematical ‘conditions’ (equations between variables) but again
something physical is implicated - the number of these ‘degrees of

11 We are not allowing a change of units, like going from centimetres to inches.
12 But see the optional reading in Section 6.6.
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freedom’ is reduced. Yes, imposing certain boundary conditions gets rid
of the ‘boundary term’ at a stroke - but what does this mean physically?
Let’s address the last question first. We remember Lanczos’s Postulate

A - the ‘reactive’ constraint forces, leading to imperfect accelerations, do
no virtual work. Now in the boundary term we again have a collection
of imperfect accelerations (this time resulting from ‘reactive’ inertial
forces), and we again find that they contribute nothing to the total vir-
tual work. So it seems as if the boundary conditions are a special kind of
constraint condition - and this makes plausible physical sense.
Note that Postulate A doesn’t apply to the perfect differential

motions - we find that δT does not usually lead to zero variation in
action; it is only δT in tandem with –δV that leads to stationary action.
Remarkably, this applies both through time and at each instant of time
(between the given end-times). That T and V are up to the task is, in
a sense, not too surprising; we earlier on stipulated that they must be
functions, and, as such, they impart a functional dependence on time.13

Combined with the boundary and continuity conditions, and maybe
also extra constraint and kinematic conditions, this functional depend-
ence is exactly such as to rule in one actual path, and to weed out all
other paths from our enquiries. (Moreover, T and V are still up to the
task, whether they are functions of

{
qi, q̇i, t

}
or
{

rj, ṙj, t
}
.)

Another mathematical stipulation, introduced rather casually (just
before Hamilton’s Principle, equation (6.8), Section 6.2), was that the
order of

∫
and δ may be swapped. This seemingly innocent swap-

ping operation has physical implications: we go from virtual displacements
at one instant, to a varied whole-path over a prescribed time-interval.
Now, one may at first think that this extra whole-path requirement is
unnecessary - surely, as the total virtual work is already zero at each and
every instant,14 then it is guaranteed to be zero over the whole path in
time? Yes, but while a minimized15 path does require that every sub-
interval must also be minimal, this doesn’t mean that any collection
of minimal sub-intervals will be just the right collection to yield the
required whole path. In other words, the vanishing of the virtual work

13 This dependence is implicit - through the time-dependence of the motions -
but could also be explicit; that is, there is nothing we have said that prevents T or V
depending directly on t. (That is, we could have T = T(t), or V = V(t).)

14 (by d’Alembert’s Principle, which is our starting principle)
15 The same argument applies to a stationary path, but it is more intuitively obvious

when considering a minimum path.
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at every instant is a necessary but not a sufficient condition to generate
the correct final path. This gives us some insight into an earlier question:
at the end of Chapter 3 we wondered why the varied integral had q̇ as
one of its arguments - surely a dependence on q is enough, as q̇ is merely
consequential upon q? But now we begin to understand: in order for a
collection of infinitesimal path segments to add up to the correct whole
path, then each segmentmust join on smoothly and continuously with
the next segment, and so on. This can only be guaranteed if the q̇-values
are equal at the join. Or, in other words, the q̇-values are like an infinity
of ‘interior boundary conditions’, existing all the way along the path.
(The boundary conditions at the very ends are determined in another
way - by the limits on the integral.)
What of the scalar energy functions, T and V? As mentioned earl-

ier, we find that the total virtual work of variations in T cancels out
with the total virtual work of variations in V, both instant by instant,
and over the whole time of the given problem. But, in fact, we have
no need to keep harking back to the form of energy known as work: we
have progressed to a more general vision - variations in energy, pure
and simple (δT and δV). Now, taken individually (that is, for each i),
the Ti will not necessarily be the same as they were when modelling
the system as point-particles and rectangular coordinates (compare T
in examples (1) and (2), Appendix A6.1). Also, V may change as we go
from one coordinate system to another. However the total Lagrangian,
L, (defined as (T – V)), will be the same (have the same actual value,
say 10 Joules). We say that L is invariant. This means that for any one
system, howsoever that system is viewed or modelled, the L-value will
remain unchanged.16 We’ll comment again on this wondrous outcome
in Section 6.6, and discuss the forms of T and V in Section 6.5.
Let’s summarize some of the physical assumptions implicit in

Lagrangian Mechanics:

1) the system can be modelled as ‘generalized particles’, qi, having
individual ‘perfect motions’ with an, as yet unknown, functional
dependence on time,

2) these individual ‘perfect motions’ imply an amount of ‘work’
which makes up one all-embracing scalar function known as T.
Moreover, T is an energy function (known as the kinetic energy).

16 However, see the optional reading in Section 6.6.



118 The Lazy Universe

The functional form of T depends on the modelling (the choice
of
{
qi
}
), and is known in advance,

3) the configurations and interactions17 of the
{
qi
}
, in other words

the whole-system aspects, make up one all-embracing scalar function,
V, which, of its nature, depends on the system, and is known in
advance.Moreover,V is an energy function (known as the potential
energy).

4) there may, as well, be extra constraints or conditions on or
between the generalized particles, and these will manifest them-
selves in the form of known functional relationships between the qi
(the functions may also depend on q̇i or t),

5) themelée of imperfect reactivemotions due to constraints ‘cancel
each other out’ (their total virtual work is zero) at each instant, t,

6) the melée of imperfect reactive motions due to boundary condi-
tions also leads to zero virtual work at each instant, t,

7) the virtual variations, δT and -δV, when these are considered
together, bring the variation in total action to zero, at each instant,
and over the whole time interval of the given problem,

8) the only functions (‘equations of motion’) for the
{
qi
}
that can

survive assumptions 1) to 7), along with the requirements of con-
tinuity, and boundary conditions (and also differentiability, and
being finite), are the ones describing the actual motions.

That Nature does, in fact, conform to these requirements is borne out
by the success of Lagrangian Mechanics and of the Principle of Least
Action in physics.

6.5 The functions T and V
The generalized coordinates for a given system can usually be arrived at
after thoughtful inspection of that system and seeing the ‘motions’ of
which it is capable. But what of the functions T and V? We have merely
said that they are supplied beforehand. Nowwewill examinewhat form
they must take.

17 Note that these configurations and interactions can be with respect to time, speed,
or direction, as well as with respect to position.



Lagrangian Mechanics 119

6.5.1 The form of T

For a single free particle (no forces acting) of mass, m, and velocity, v (in
rectangular coordinates), the kinetic energy has the familiar form:

T = 1
2mv

2 kinetic energy, ‘quadratic form’ (6.14)

Why does T have this ‘quadratic form’, is it essential? (The adjective
‘quadratic’ is to remind us that the speed is squared.) The physicists
Landau and Lifshitz18 argue that, due to the homogeneity of space and
time, the kinetic energy for a free particle cannot depend on position,
r, or on time, t. Therefore (they argue), T must depend only on the
velocity, v. Furthermore, the isotropy of space requires that no special
directions are picked out, and so Tmust depend only on themagnitude
of the velocity, that is, on v. This leads Landau and Lifshitz, finally, to
conclude that Tmust depend only on the speed squared, T = T(v2).
But there are questions to be asked of Landau and Lifshitz’s ‘deriv-

ation’. First, as well as no absolute position or time, we know that there
is also no absolute velocity (it is impossible to tell, by any experiment
within a given reference frame, at what uniform speed or direction the
reference frame is travelling) - so how can there be a dependence on v or
v, squared or not? Second, why should a magnitude - the speed - only be
arrived at by squaring? Why not, say, squaring followed by taking-the-
square-root? In fact, it can be shown that a squared dependence on speed
is required. This can be shown in two ways:

(i) A physics argument: The Principle of Relativity must always be
upheld, and this can only be guaranteed by having a dependence
on v2. Two proofs of this (due to Maimon,19 and due to Ehlers
et al20) are given in Appendix A6.2,

(ii) A mathematical argument: the only way in which to arrive at a
scalar invariant quantity from the vector quantity, v, is to take
the ‘scalar product’, v·v, and this yields v2.

18 Landau L, and Lifshitz E, Course in Theoretical Physics, vol 1,Mechanics, Pergamon Press,
Oxford, 1960.

19 Maimon, Ron: former contributor to Physics Forum on the web; Maimon is an
independent researcher in physics.

20 Ehlers J, Rindler W, and Penrose R, ‘Energy conservation as the basis of relativistic
mechanics II’, American Journal of Physics, 33(12) 1965, pages 995–7.
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Upon reflection, we find that both arguments have a common feature:
to obtain an absolute or invariant quantity wemust always consider one
quantity relative to another. So, in (i) we find that both proofs require a
collision between two particles; and in (ii) we note that the scalar prod-
uct, a·b, presumes two vectors. Even in the case of identical vectors, v·v,
then one v is the ‘projected’ vector, and the other v is the ‘projectee’
vector; in other words, the ‘dimensionality’ of the problem is dual.21

(In differential geometry, we say that each v has come from a different
‘vector space’.)
However, a solution can sometimes lead to a new problem: what

form shall we give to the kinetic energy of just one isolated particle? The
resolution is that we are then compelled to define the kinetic energy as
having the quadratic form (6.14). This leads to consistency in the the-
oretical modelling. (On the other hand, we could bow out altogether
on the grounds that ‘one isolated particle’ is a pathological scenario -
we can never check up on it experimentally because as soon as we bring
in measuring equipment then the particle is no longer isolated. Once
again, the author’s maxim is apt: “[pathologically] simple cases make
bad physical intuition.”)
We are not done yet; in (6.14), there is still the question of mass,

m. How did we arrive at ‘T is proportional to m’? To answer, we fol-
low Maimon and use the empirical observations that mass is additive
(the mass of many particles is the sum of their individual masses), and
that for a particle of, say, double the mass, then its kinetic energy is
doubled. These empirical findings mean that not only is T a function
of v2 but mass must occur as the coefficient of this function of v2. So,
we end up asserting that: T=‘massy inertial factor’×‘some function of
v2’, where the ‘massy inertial factor’ always includes m.22 Finally, when
we are modelling the situation using generalized coordinates, then the
standard form is: T=‘massy inertial factor’×‘some function of q̇2’. (We’ll
come back shortly to the question of the factor, 12 .)
We are still not done; look again at definition (6.14) and ask: How big

is the mass, m? How big is the speed, v? For masses that are tiny, or huge,
or speeds that are high, then (6.14) needsmodification, andwe are in the

21 The word ‘dimensionality’ will be explained near the beginning of Chapter 7.
22 There is still the question of how the ‘massy inertial factor’ is split between the

two dual vectors: we could have 1 and 1
2m, or

√
m/2 and

√
m/2, and so on. The resolution

will come with Hamilton’s p and q coordinates (Chapter 7), and it will be shown that all
the massy-dependence goes to just one of the dual vectors.
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realms of quantummechanics, Einstein’s Theory of General Relativity,
and Einstein’s Theory of Special Relativity, respectively. However, a
common feature of all great theories is that their wisdom extends
beyond their conventional range of applicability. This is especially
true of Special Relativity, which has not merely extended Newtonian
Mechanics into a high-speed regime but has radically changed our
understanding of all of physics, whatever the speed. (It was from Special
Relativity that Einstein arrived at his most important single discovery,
E = mc2 - see below.) Of particular relevance in the present discus-
sion: in Newtonian Mechanics there is no absolute speed, but in Special
Relativity there is an absolute speed - the speed of light, c. However, in
all the formulae of Special Relativity v always occurs as the ratio, v/c, -
so speed has, in effect, been converted into a ‘relative quantity’. Should
we be concerned that in the standard form for T, (6.14), speed occurs on
its own (that is, without c)? No, we are rescued in a different way. The
method of Lagrangian Mechanics (and all Variational Mechanics) con-
cerns a system, andwe find that the speed is always relative to that system.
In fact, in the Variational Mechanics, all the coordinates are relative to
the end-points of the integral in Hamilton’s Principle, and so all the coord-
inates are relative to the system. This answers our earlier question over Landau
and Lifshitz allowing v into the formulation, and is yet another reason
why Lagrangian Mechanics rather than Newtonian Mechanics survives
the transition to Einstein’s Relativistic Mechanics. (By the way, the fac-
tor, 12 , must be included in order to ensure that the Special Relativistic
kinetic energy reduces to the usual formulation of (6.14) in the limit of
‘low’ speed.)
Saving the most important till last, we come to Einstein’s most fam-

ous discovery, the best-known equation23 in physics, E = mc2. Einstein,
himself, regarded this discovery - of the equivalence between mass and
energy - as the single most important result to emerge from Special
Relativity.24 One consequence of this equivalence is that even if the
particle slows to a standstill, and its kinetic energy is then zero, the par-
ticle still has mass, and so there is still some energy ‘left over’. Now,
in Newtonian Mechanics, the zero-point of kinetic energy is arbitrary,

23 We have left this iconic equation in its usual form, but, in fact, it depends on the
notation for mass: if we use ‘m’ to mean ‘rest mass’, then the equation should be written
E = mγ c2, where γ = 1/

√
(1 – v2/c2).

24 Einstein A, in Pais A, Subtle is the Lord: the Science and the Life of Albert Einstein, Oxford
University Press, 2005.
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and is generally set to zero. However, Einstein found that the ‘left
over’ energy, sometimes called the ‘rest energy’, is not arbitrary - it is
determined, and specific to the given particle.25 It also happens to be
enormous (1 gram of mass has a ‘rest-energy’ of some 90 million mil-
lion Joules). Why are we usually so (blissfully) unaware of this huge ‘rest
energy’? It is because, contained within mass, it happens to be an excep-
tionally stable way of storing energy. One further question on this: as
the ‘rest energy’ is evidently a store of energy, should we not consider it
as V instead of lumping it together with T? We’ll say more about this as
we go along, and end up with a speculation in the concluding section of
the chapter.
Einstein’s famous equation applies not only to kinetic energy but

implies that all energy is ‘massy’. This mass-energy equivalence is antici-
pated in Lagrange’s and later Hamilton’s Mechanics, which treats kin-
etic energy (rather than acceleration) as the true measure of inertia
(see the next section, 6.6). It is therefore not surprising that Lagrangian
Mechanics is well placed to accommodate Einstein’s Relativity Theory
(it is only necessary to find the appropriate form for L) whereas
Newton’s Mechanics must be totally replaced. One extra thing to say
is that it is an empirical and not fully understood fact that mass, and
hence also kinetic energy, are always positive quantities.26

The standard form for T applies to free27 particles. When consider-
ing more complicated scenarios, for example with interacting particles,
or accelerating reference frames, then T can have terms just containing
q, or unsquared-q̇, and so on (see Appendix 6.1, problem (10)). These
occurrences do not contradict the ‘quadratic’ form of (6.14), as there we
had a free particle and so space really was featureless (homogeneous);
but when we consider interacting particles, and external conditions,
then the space of the problem is no longer homogeneous, and so a
dependence on q, q̇, q̈, . . . can occur.28

25 Of course, it is determined from the mass, in accordance with Einstein’s famous
equation - as we are talking of a particle, with no internal parts, thenwe can forget about
internal energy states.

26 W Rindler, Special Relativity, Oliver and Boyd, 1966, p 87.
27 Colliding particles may be considered free at all times except for the instant of

collision; also, a uniformly rotating finite-sized rigid body may be considered as free.
28 (For terms linear in q̇, you may be wondering about a contradiction with our earl-

ier footnote that the system relates to a dual vector space. However, these linear terms
occur when some constraint condition or potential energy term also contains a linear
dependence on speed - and so, overall, the duality is maintained.)
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6.5.2 The form of V

There is a standard form for T, (6.14), but none for V - it must be for-
mulated afresh for each new system. This has led some physicists to
speculate that V is in some sense less fundamental than T - more on
this later (end of Sections 6.6 and 6.8). Now V arises from applied forces,
and from ‘particle’-interactions, and as these depend on configuration
- the positions of external features, the positions of the ‘particles’ with
respect to one another - then V is explicitly a function of these position
coordinates,V = V(q1, q2, . . .qn). T has already hived off the dependence
on the motions, q̇i, (T is, after all, kinetic) and so we generally do not
have V depending explicitly on q̇1, q̇2,. . . (but see below). Finally, there
is nothing we have said, at any stage in our development of Lagrangian
Mechanics, that prevents L, and hence V, depending explicitly on time.
So, altogether, our simplest form for V has it depending just on q, and t.
You may be wondering why we are allowing an explicit depend-

ence on q and on t for V but not for T-in-standard-form (in the latter
case we (or rather, Landau and Lifshitz) invoked the homogeneity of
space and time to veto just such a dependence on q and on t). The
explanation is that V, of its nature, describes whole-system attributes,
and it can therefore depend on whole-system ‘configuration’ coordin-
ates, whereas T-in-standard-form, of its nature, depends on individual or
system-free attributes. Put differently, as far as V is concerned, q and t
are not absolute but are defined with respect to the given system: the q
describe the positions of particles relative to each other or to some exter-
nal constraint, and t is relative to the prescribed end-times of the path, ta
and tb.
Does an explicit time-dependence in V (and, perhaps, in constraint

or kinematic conditions) mean that energy conservation is not satisfied?
Yes, in Lagrangian Mechanics it is not required that energy be con-
served.29 Obviously, in the whole world, energy is still conserved, but an
explicit time-dependence in V, or in the external conditions, allows for
energy to come into the system from outside. For example: in the ‘vari-
able energy cyclotron’ the magnetic field is steadily increased to ensure
that an accelerating charged particle will stay in the same orbit, but the
energy for themagnets must be fed into the system from the outside; in
‘Ehrenfest’s pendulum’, the length of the pendulum is slowly decreased

29 In Lagrange’s own version of Lagrangian Mechanics energy conservation is
required, but in Hamilton’s Principle energy conservation is a special case.
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- but hauling in the pendulum takes energy; a spinning turntable intro-
duces centrifugal, Coriolis, and other effects - but the energy to spin the
table has been externally supplied; and so on. We’ll have more to say on
the conservation of energy in Section 6.7.
So much for V in standard form. Now, earlier on, we said that T was

responsible for the dependence on speeds, but in fact there is nothing
that prevents V depending explicitly on the speed coordinates, q̇i, and
there are some famous and important cases. One concerns the motion
of a charged particle moving under the influences of electric fields,
E, and magnetic fields, B. The force (known as the Lorentz force) is
given by:

F = q[E + (v× B)] (6.15)

(This is in units where c = 1. The q here refers to electric charge and not
to a generalized coordinate). This implies a potential energy given by:

V = qφ – qA · v (6.16)

where φ is some scalar potential and A is a vector potential.30 Note
that, in this example, V depends on the velocity, v, of the particle (on
the direction of motion as well as the speed). Just imagine the conster-
nation when these effects were first discovered - when Oersted, then
Faraday, and others, discovered that magnetized compass needles, iron
filings, electric currents, and isolated charges could travel along curved
lines, sometimes in closed loops neither starting or ending on a ‘source’,
and (for a pure magnetic field) with the velocity, the field, and the force
all at right angles to one another. Newton’s Mechanics is contravened, but
Lagrangian Mechanics carries on as usual (it is only necessary to use
Hamilton’s Principle with a Lagrangian given by L = T - qφ + qA · v).
Another example of velocity-dependent effects are Coriolis forces -

those forces partly responsible for wind directions, and ocean currents.
For a particle of mass, m, moving at speed, v, with respect to a rotating
platform (with constant spin-rate, ω) then the Coriolis force acts side-
ways on to the particle’s motion, and is stronger the greater the particle’s
mass, or speed. In symbols, the Coriolis force has magnitude 2mωvradial,
or 2mωvtangent, and is tangential when the velocity is radial, and radial
when the the velocity is tangential. (Also, the Coriolis force doesn’t
depend on the radius, and is distinct from the centrifugal force, another
kind of velocity-dependent force.)

30 The reader can find out more from an introductory text on electrodynamics.
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In most cases of velocity-dependent potentials the particle’s motion
violates Newton’s Third Law of ‘action and reaction’, and its momen-
tum is not conserved. However the generalized or canonical momentum
(Section 6.8, and Chapter 7) is conserved, for example, for a moving
charged particle,31 the particle’s momentum is not conserved on its
own, and the momentum of the electromagnetic field must make up
the balance.

6.6 The form of L
The energy function, L, was introduced rather casually in our ‘deriv-
ation’ of Hamilton’s Principle (see the beginning of Section 6.3). L, the
‘Lagrangian’, is the integrand in Hamilton’s Principle, and is of para-
mount importance in mechanics - but where does it come from, and
why does it have the form ‘(T – V)’ when we are somuchmore familiar
with ‘(T + V)’? We turn to Lanczos,32 as an explanation of the physical
origins of L is given there and nowhere else.
At any instant, T is a function which describes the motions of all

the particles,33 and these motions are a consequence of the ‘marching
orders’ dictated by V. At the very next instant the particles will adopt
new positions,34 and so the configuration has changed, and so the mag-
nitude of V is different. This new V will influence the motion of the
particles afresh, and so the T at the next instant will be different. This
new T will again lead to the particles adopting new positions, and this
will again imply a V with a different magnitude, and so on and so on.
We therefore have an interplay between T and V, one which continues,
instant by instant, from the start- to the end-time of the problem. Now,
as T involves masses-in-motion, it can be seen as an inertial response to V
(and this is consonant with Einstein’s mass-energy equivalence, coming
over a hundred years later). This is reminiscent of the inertial response,
ma, to Newton’s force, F. However, whereas in Newtonian Mechanics
we treat one particle in isolation, and end up with an equality (between
ma and F), in Lagrangian Mechanics we have a whole system, and end
up with a balancing process between two scalar energy functions. How

31 (for a φ and A which are independent of position).
32 Lanczos, bottom of pages 21 and 27, also pages 118–9.
33 ‘particles’ can be ‘generalized particles’.
34 This includes not just new positions in space, but different relative speeds, orien-

tations, and so on.
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shall we choose between these postulates - Newton’s Second Law, and
Hamilton’s Principle? It is not simply a question of switching from
Newtonian to Lagrangian Mechanics when going from simple to com-
plicated scenarios, but rather that LagrangianMechanics supersedes and
totally replaces Newtonian Mechanics. This is because, despite what we
have been coached to believe, it is kinetic energy which is the truemeas-
ure of ‘inertia’, and kinetic energy rather than force which is the thing
that is truly primitive and irreducible:

ma = F

is superseded by

T ‘balances’ V

(where ‘balances’ refers to awhole process, the application of a principle,
and not merely to ‘equality’.)
Finally, why does L have exactly the form L = T – V and no other?

It is because, while T and V must be in balance, they must also act in
opposition to each other. If each could reinforce the other then this could
lead to a runaway growth in energy - a very unphysical outcome. But if
they act in opposition, or, in other words, if we must find the difference
between them, then this can lead to a stable value for energy - a phys-
ically plausible outcome. Thus it is the difference between T and V that
is important, and therefore V must carry a negative sign. According to
Lanczos:

“the excess of kinetic energy over potential energy is the most
fundamental quantity in . . . mechanical problems.”35

So, T opposes V rather than T and V reinforcing each other - but does
this mean that Hamilton’s Principle will always lead to least action? (We
require the action to be stationary, but this still leaves open the ques-
tion of whether it is a maximum, a minimum, a saddle point, or a
plateau.) The answer has been given in an interesting paper by Gray
and Taylor.36 These authors show that we can have a true minimum
(a pure minimum), and we can have a saddle point (a minimum and a

35 Lanczos, page 113.
36 C G Gray and E F Taylor, When action is not least, AJP 75 (2007) pages 434–58.
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maximum together), but it is never the case that there is a true max-
imum in the action. The argument is made intuitive in the following
way. Consider the time-path of a particle in 2-D space using (x, y) coord-
inates (the one scenario where everyday space and configuration space
are the same). Canwe vary the path andmake it shorter? Usually, unless
the path already has the minimum length. Can we vary the path and
make it longer? Always, just add more wiggles. Thus there is a differ-
ence between a minimum and a maximum: only the former can be
guaranteed to be unique. The argument also seems physically intui-
tive in another way, on the grounds of economy - that is to say, it is
more economical in action to have it minimized rather than maximized.
As supporting evidence, we have the finding that for stable equilibrium
(T = 0) V is at a minimum - a well-known result in statics.

Optional

Returning to the form of L, we note that this cannot be defined
uniquely, for two reasons. First, the condition of stationarity (the
equating to zero of the action integral in Hamilton’s Principle) will be
unaffected if the whole integral, δ

∫
Ldt, is multiplied by an arbitrary

constant, ‘cons’. Second, the condition of stationarity will likewise be
unaffected if the integrand, L, is changed to, L + df /dt. This doesn’t
invalidate what we said earlier about L being an invariant - for any
given system, the Lagrangian is not defined uniquely, but whatever
choice we plump for then this L is invariant (with respect to a dif-
ferent choice of {qi}, or to coordinate transformations - excluding
re-scaling). This non-uniqueness of L is perhaps the reason why its
invariance isn’t vaunted as much as the invariance of the Lagrange
Equations: these Equations are invariant come what may.37

Another comment concerns the sign of L. While T is always a positive
quantity (m is positive, and the speed is real) we cannot go on to say
that L is always positive, first becauseV has no absolute sign - it can be
set to be positive or negative - and second because the multiplicative
constant, cons, can be positive or negative.

One intriguing observation is that the condition of stationarity is
sensitive to L, that is, to the whole of (T – V), rather than to T or V
taken separately. Does this imply that there is some blurring of the

37 (Note that when we have non-holonomic conditions or polygenic forces, such as
‘friction’, the effect of these non-holonomic influences is to introduce a ‘right-hand side’
to the Lagrange Equations, see Appendix A6.5, and Lanczos, pages 146–7.)
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distinction between what counts as kinetic energy and what counts as
potential energy? The answer is yes. For example, in the case of a bead
on a wire rotating with constant angular speed, ω (Problem (10) in
Appendix A6.1), we have T = 1

2mṙ
2 + 1

2mr
2ω2 and V = 0, but we could

just as well consider it as T = 1
2mṙ

2 andV = –1
2mr

2ω2. It makes no differ-
ence whatsoever to L, but in the second case we have lost somemotional
energy of the bead and gained a ‘centrifugal’ potential that didn’t exist
beforehand. Such a shift in the assignment of energies can also occur as
a result of a change in coordinates (a change in viewpoint), say, from a
reference frame sited at the centre of rotation to one sited on the bead
itself (see Sections 6.8 and 6.9).
This blurring between T and V is an example of how, in Lagrangian

Mechanics, there is no hard and fast distinction made between a whole
system and the individual components of that system. For example,
consider the motion of a planet in its orbit around the Sun. The planet
is a very small body by comparison with the dimensions of its orbit,
and with the size of the Sun. In the Newtonian analysis the planet is
a ‘particle’ and doesn’t affect its ‘surroundings’ but in Einstein’s theory
of General Relativity the planet does distort spacetime to a tiny extent,
and this leads to a subtle change in its orbit - its precession advances. (In
fact, it was just this tiny effect which led to one of the confirmations of
General Relativity - the extra precession of the perihelion of Mercury.)
Consider, also, the case of an electron moving parallel to a wire in
which a current is flowing;38 the moving electron feels the magnetic
field and is attracted toward the wire. But what happens if the system is
viewed from a reference frame which moves such as to cancel out the
motion of the exterior electron? The now-stationary electron feels no
magnetic force, but, according to the Principle of Relativity, it must still
be attracted to the wire. What happens is that the now-moving wire
suffers a Special Relativistic effect known as ‘length contraction’; the
relative density of protons is thereby minutely increased, and so the
wire acquires a net positive charge, and attracts the exterior electron,
as before. The same overall outcome occurs in both reference frames -
and this accords with the Principle of Relativity - but there has has been
some subtle switching between ‘field energy’ and kinetic energy, that is,

38 The example is taken from Feynman’s Lectures on Physics, Vol II, 13–7. Note how a
relativistic effect occurs (‘length contraction’) but the speed of the wire is tiny, around
0.001 m/s.
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between V and T. The method of Lagrangian Mechanics can be adapted
for use in electromagnetism and in gravitation just because it has this
whole-system outlook.
Despite the ambiguity between T and V, the former has a funda-

mental form, equation (6.14), and is always positive, whereas the latter
is different for different systems, and has no universal form. This led
some nineteenth-century physicists to think that T was in some sense
more fundamental thanV. Most notably, the great nineteenth-century
physicist, James Clerk Maxwell (1831–79), wrote with regards to T,

“. . . we are unable to conceive that any possible addition to our know-
ledge could explain the energy ofmotion [T] or give us amore perfect
knowledge of it than we have already”39

whilst with regards to V,

“. . . the progress of science is continually opening up new views of
the forms and relations of different kinds of potential energy.”40

Also, Heinrich Hertz (1857–94), (the first to detect radio waves), went
so far as to suggest that there was, at an elemental level, only kinetic
energy - in the form of microscopic motions - and that these hidden
motions accounted for the effects known as V. (We make brief mention
of this again at the end of Section (6.8).)

6.7 Noether’s Theorem, and the definition
of energy

Let’s bypass T and V and consider the relationship of L directly on
the generalized coordinates, L = L(qi(t), q̇i(t); t).41 We will now consider
those cases in which V, and any external conditions, do not depend
explicitly on time. Then, while we still have qi = qi(t) and q̇i = q̇i(t),42

nevertheless t will not occur explicitly in V or in the external con-
ditions, and so t will also not occur in the argument of the function
for L. Therefore we will have the special time-independent form, L =
L(qi(t), q̇i(t)).

39 Maxwell J-C, The Theory of Heat, 1871, Dover Publications, (2001), p 301.
40 The Theory of Heat, as above, p 302.
41 This is an abbreviated way of writing L = L(q1, q2, . . .qn; q̇1, q̇2, . . .q̇n; t).
42 (These are, in fact, the very ‘equations of motion’ that we wish to solve in

mechanics.)
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We postulate that time is homogeneous - there are no absolutemark-
ers in it, and no times are more special than other times as regards
the applicability of our laws of physics.43 Pertinent to our present dis-
cussion is the law of physics known as Hamilton’s Principle, and we
find that as time is homogeneous then it should not matter what the
absolute end-times of the action integral are. So, we could displace the
whole action integral through a small constant time interval, ε, and this
displacement should make no difference whatsoever to the outcome:

δ

∫ tb

ta

L(qi(t), q̇i(t)) dt = δ

∫ tb+ε

ta+ε
L(qi(t), q̇i(t)) dt = 0 (6.17)

By definition, shifting the limits of integration through +ε is equivalent
to shifting (‘transforming’) the time coordinate through –ε. Thus we
arrive at:

δ

∫ tb+ε

ta+ε
L(qi(t), q̇i(t)) dt = δ

∫ tb

ta

L(qi(t – ε), q̇i(t – ε)) d(t – ε)

= δ

∫ tb

ta

L(qi(t – ε), q̇i(t – ε)) dt = 0 (6.18)

We could just as well say that we have a new time coordinate, say,
τ = t – ε, and it hasn’t made any difference to anything. So far so
unexceptionable - but it turns out that this is only the beginning.
A hundred years ago, themathematician EmmyNoether (1882–1935)

obtained an outstanding theorem with repercussions across the whole
of field theory. Her theorem, in words, is that if the action integral has
no explicit dependence on a given coordinate, qi, or t, then it will be
invariant with respect to certain infinitesimal transformations of this
coordinate, and the system will then exhibit a symmetry or conserva-
tion law concerning this coordinate. A specific symmetry will arise for
any ‘absent’ coordinate but here we consider the time coordinate.
We may begin to suspect that these infinitesimal transformations are the

same as a variation (the δ-process, see Chapter 3, Section 3.7), but one
aspect that rings a minatory warning is the fact that Noether has
included t as one of the coordinates that may be transformed, whereas

43 (Pretend we don’t know about the Big Bang.)
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from Section 3.7 we remember that variation of the independent coord-
inate, t, is not allowed. More alarming still, Noether does not restrict the
transformation of t to a fixed translation but allows ε to be a function 44 of
time - so we could have τ = t – ε(t). It is now not at all obvious that our
translation in time will make no difference andmaintain the homogen-
eity of time (we are, in effect, allowing time to become bunched up or
stretched out between the end-times of the integral).
It turns out, however, that even in the case of such inconstant trans-

lations invariance of the action principle can be assured. There is one
crucial thing that must be taken into account in this more general case:
not only does L change, but dt changes also, and it is no longer suffi-
cient for L on its own to be invariant but rather it is the whole product,
Ldt, which must be invariant. We can follow through the mathemat-
ics (Appendix A6.3) or jump straight to the result: for a system with
time-independent external conditions, the action integral is invariant
with respect to an infinitesimal translation in time, ε(t), provided that the
following conservation rule applies:(

n∑
i

∂L

∂ q̇i
q̇i

)
– L = constant (6.19)

What is this mysterious left-hand side that is equal to a constant, in
other words, it stays the same for all times? (As neither ta nor tb appear
in (6.19) then the conservation rule is independent of these specific
end-times.) Let’s begin to answer this by choosing our simplest time-
independent case-study: T =

∑ 1
2miq̇i

2, V = V(qi), and, by definition,
L = T – V. Then ∂L/∂ q̇i = miq̇i for all i, and so the left-hand side of (6.19)
becomes: (

n∑
i

mi(q̇i)
2

)
– L = 2T – L = T + V (6.20)

The constant on the right-hand side of equation (6.19) can then be iden-
tified with the right-hand side of equation (6.20), T + V, which in turn
can be identified with E, the total energy. In other words, we have found
that the total energy is a constant.
So, we have assumed time-independent conditions and out pops the

result that the total energy, E, is conserved - the well-known ‘law

44 (albeit a function that is infinitesimal, continuous, and differentiable)
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of the conservation of energy’. The emergence of a conservation law
may appear unsurprising given that V and all the external conditions
were taken to be time-independent, that is to say, ‘conservative’; but
remember that we have not brought in energy conservation as an
extra condition but have deduced it, and only by asserting the validity
of Hamilton’s Principle, and that time is homogeneous.45 What will
emerge later (in the work of Hamilton, Chapter 7) is that [

∑
(∂L/∂ q̇i)q̇i

- L] is a more general form for the total energy, and moreover it is not
necessary that the total energy satisfies E = T + V. Indeed, there can
arisemechanical systemswhich have termswhich are linear rather than
quadratic in q̇, or where T is more complicated than 1

2mq̇
2. Such systems,

if they are independent of time, still satisfy an energy conservation law
but it takes the more general form of equation (6.19), which holds for
any time-independent Lagrangian.

6.8 External conditions
Every now and again in mathematics, physics, or technology, some-
body comes up with a new idea, technique, or gizmo, that is simple
to state but is sheer genius. For example, we have Stevin’s ‘Wreath
of Spheres’ (Chapter 2), Torricelli’s barometer, Pascal’s ‘triangle’, the
Newcomen engine, Watt’s ‘parallel motion’, and so on. Lagrange’s
method for dealing with the ‘condition equations’ - the ‘method of
Lagrangemultipliers’ - is one such a gem. We deal with it in this section.
‘Conditions’ are functional relations, f (q1, q2, q3, . . .), between the gen-

eralized coordinates - examples include ‘constraint conditions’ (a block
slides on a given surface without friction; a cord maintains a certain
length; a body is rigid; and so on), and ‘kinematic conditions’ (a block
slides down an inclined plane resting on a trolley, and meanwhile
the whole trolley moves uniformly along tracks; a bicycle wheel spins
about the axle at a constant rate and in a plane at right angles to the
spin-axis; and so on). So far in this chapter we have only mentioned
these ‘conditions’ in passing, as extra equations to be satisfied after the
Lagrange Equations have been solved. But there is a way of incorpor-
ating the condition equations from the start - using the method of
Lagrange multipliers. We explain the method in mathematical detail in
Appendix A6.4.

45 In A 6.3 we have used a slightly different derivation to Lanczos in order to
emphasize the link between E-conservation and the homogeneity of time.
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Themathematical arguments are pretty, and themethod of Lagrange
multipliers enables us to solve otherwise insoluble problems, but we are
also very impressed by the fact that themethodmeans something phys-
ically. Now in Appendix A6.4 we show how the potential energy, V, has
the extra conditions, ‘λf ’, added on, and sowe end upwith a new poten-
tial energy, Vnew = V + λf . However Hamilton’s Principle applies in the
usual way, and is sensitive to the whole of Vnew in one go, and pays no
heed to its separate components, ‘V’ and ‘λf ’. The important physical
meaning to extract is that no ultimate distinction can be made between potential
energy and external conditions.46 This ties in with what we have claimed earl-
ier (Chapters 4 and 5) - that ‘constraints’ and ‘kinematic conditions’ are
due to forces, and these forces are ultimately indistinguishable from the
applied forces (arising from the potential energy function). It also ties
in with the insight derived from d’Alembert’s Principle (Section 5.4):
there is no ultimate difference between an applied force and a ‘fictitious’
force (say, due to an accelerating reference frame). Finally, as we just
learned in Section 6.6, Hamilton’s Principle is sensitive to the whole of
T – V and not to T and V separately. We can therefore expand our pre-
vious remark and state that: no ultimate distinction can be made between potential
energy, kinetic energy, and external conditions. We have come a long way from
Newton’s absolute external force, causing an absolute acceleration, rela-
tive to an absolutely stationary and passive Space, and an absolute and
passive Time.
There is even one more thing to say about the physical implications

of ‘condition equations’. In Chapters 3 and 4 we learned that while the
degrees of freedom are slippery to define yet they relate to the very
essence of the given problem. However we also know that when there
are conditions between coordinates, these coordinates are no longer
independent of each other, and so the number of degrees of freedom has been
reduced.

Optional extras

For n generalized coordinates and m condition-equations the number
of degrees of freedom is reduced from n to n – m. This can be dem-
onstrated geometrically: the n generalized coordinates move within
an n-dimensional abstract ‘space’ (the configuration space), however
the m conditions reduce this to a more restricted (n – m)-dimensional
‘space’ within the original ‘space’.

46 (over sufficiently small length- and time-scales)
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Althoughwe have indicated that themethod of Lagrangemultipliers
requires functional relations between coordinates, actually, it can also
be used in the case of ‘non-holonomic’ conditions, such as: the walls
of a gas container; a ball rolling on a surface; a spinning top; and
others.47

Finally, in a totally original analysis, Lanczos48 shows that the
Lagrange multipliers account for microscopic effects (the microscopic
reactive forces that maintain the given constraints). The consequen-
tial motions, being microscopic, are ‘hidden’, and they fluctuate
in time (are time-dependent), even while the macroscopic system
may be conservative. Hertz (end of Section 6.6) wondered whether
such ‘hidden’ motions were the underlying source of all force. In
other words, he speculated that kinetic energy (rather than force,
or potential energy) was the primitive element in physics.

6.9 Symmetries and conservation laws
There is an important kind of ‘condition’ which brings in great physical
insight: the condition known as symmetry. If a system displays sym-
metry with respect to a given coordinate, qi, then this means it remains
unaltered after a ‘small’ change,�qi, in that coordinate.49 Equivalently,
if the system is symmetrical with respect to a certain qi then it doesn’t
depend on that qi, that is, ∂L/∂qi = 0 and qi is known as an ‘ignored’ or
‘absent’ coordinate. (Note that L still depends on q̇i - or else we would
have to concede that the system has one less degree of freedom than
originally anticipated.)
For example, if a merry-go-round is symmetrical about its axis of

rotation then the system does not identify any special angles, or, in
other words, qi = θ doesn’t occur in L. We say that space is ‘iso-
tropic’ (the same in all directions). Likewise, if a brick can be displaced
through a small translation, �x, and nothing in the world changes
as a consequence, then the system does not identify any special posi-
tions, or, in other words, qi = x doesn’t occur in L. We say that space is
homogeneous (the same at all points).

47 Goldstein, H, Classical Mechanics, 2nd ed, page 12; Lanczos, page 146.
48 Lanczos, pp 143–5.
49 This is a kind of symmetry known as a continuous symmetry, as opposed to a

non-continuous symmetry such as the symmetry following reflection in a mirror.
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Because of the Lagrange Equations, something special happens in the
case of these symmetrical systems. If, say, it is the kth coordinate that
is ignorable then L does not depend on qk and so ∂L/∂qk = 0 but the
Lagrange Equation for qk then implies:

‘absent’ qk,

d

dt

(
∂L

∂ q̇k

)
= 0 and thus

∂L

∂ q̇k
= constant (6.21)

We shall, in the next chapter, learn to identify ∂L/∂ q̇k, with the ‘momen-
tum’, pk, associated with qk, but for now we note the important result:
a symmetry leads to a conservation law; a system with translational symmetry
leads to a conservation rule for momentum; and a system with rota-
tional symmetry leads to a conservation rule for angular momentum
(Noether’s Theorem, section 6.7).50

Everything we have just said for symmetries with respect to some
position coordinate or other, qi, applies equally well for a symmetry
with respect to the time coordinate, t. In fact, we have met this case
already. In Section (6.7) we considered a Lagrangian with no explicit
dependence on time, and found that a symmetry - invariance of the sys-
tem after a translation in time -meant that a conservation law emerged:
the law of the conservation of energy. We can also argue this another
way: as t doesn’t occur explicitly it is an ‘ignorable’ variable and may be
eliminated from L; and as a consequence of carrying out this elimination
a ‘condition equation’ is introduced - the very condition that energy is
conserved (the maths is shown in Appendix A7.5).
Carl Jacobi (1804–51) tackled the problem of particle motion in this

reduced form (that is, with the time coordinate eliminated51) and this
led to Jacobi’s Principle in which

∫
mvds must be minimized. (In other

words, Jacobi had returned to Maupertuis’s Principle of Least Action
from a hundred years earlier - see Chapter 2.) What Jacobi thereby
determined was the path or ‘geodesic’ of a particle through space,

50 (Note that, as Lagrangian Mechanics is always a local theory, so these rotations
and translations must be ‘small’.)

51 It’s a bit more complicated than straightforward elimination: first the time is
re-branded as the (n + 1)th position coordinate, t = qn+1. The time can therefore no
longer serve as the independent variable, and all (n + 1) ‘position’ coordinates are given
instead as functions of some new parameter, say, τ . In so doing, it is found that the new
Lagrangian depends on q̇n+1 but not on qn+1 (the differentiation is with respect to τ ).
Thus qn+1 is an ignorable coordinate, and may be eliminated.



136 The Lazy Universe

but - as befits a model in which time has been eliminated - he deter-
mined nothing about the rate at which the particle moves along this
path. (This motion in time can be reconstructed afterward by imposing
the condition that energy is conserved.) Now in the special case where
energy is conserved and there are no external forces (noV), it turns out
that the path is straight, and the particle must move along this path
with constant speed. Does this sound familiar? Yes - we have recovered
the famous ‘law of inertia’, asserted (in so many words) by Leonardo
da Vinci, Galileo, Descartes, and Newton: “A free particle moves [solely
under its own inertia] in a straight line with constant speed”.
Even more impressive, Jacobi’s Principle can be extended and then

leads to a generalized ‘law of inertia’: we take the free ‘particle’ to be
the C-point of a mechanical system of arbitrary complexity and in n
dimensions. This C-point moves along a world-line in an n-dimensional
Riemannian space - and we find that the paths are the straightest lines
in that Riemannian space - the ‘geodesics’ (see Section 3.6 for a mention
of Riemannian spaces). We give two examples: (1) a particle is con-
strained to stay on a given two-dimensional curved surface, with no
external forces; (2) in Einstein’s Theory of Gravitation, a planet moves
in a Riemann space of four dimensions - spacetime - and its motion is
governed by the ‘law of inertia’ with no external force of gravity. The
only difference between these two examples is that in (2) the curva-
ture of space is an actual property of the physical world,52 and not a
consequence of this or that constraint.
Let us return to our discussions at the beginning of this section -

to a consideration of symmetry. We can argue that the ‘law of iner-
tia’ is upheld because of certain fundamental symmetries: the particle
moves in a straight line because space is homogeneous and isotropic -
there is no reason for it to prefer left or right; and it moves at constant
speed because, in addition, time is homogeneous and isotropic53 - there
is no reason for the particle to move faster or slower. But Lagrangian
Mechanics is better: yes, these symmetries may apply, but there is no
claim that they extend infinitely far. Even more important, the particle
follows the ‘straightest’ path not only because of local symmetries, but

52 (the physical world that actually has a large gravitating body, the Sun, about
which the planet orbits.)

53 We must be careful: macroscopically, time does not seem to be the same forward
and backward; and the Big Bang seems to flag one time as more special than the rest.
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because the ‘straightest’ path is also the ‘shortest’ path (between given
end-points). And finally, the criterion ‘shortest’ path is more general - it
still holds even when there are no symmetries, that is, even when there
are external influences, and evenwhen these external influences change
in time.

6.10 Conclusions
The basic elements of Lagrangian Mechanics are the generalized coord-
inates, {qi}, the Lagrangian function, L = T – V, and the time, t. For
each new problem, or even for each new modelling of any one prob-
lem, the {qi} are chosen afresh, and the functions T and Vmay change;
and yet we have the remarkable finding that the Lagrange Equations always
have the same form:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1, 2, . . ., n

The invariance of these equations,54 and their near-universal applicabil-
ity across the whole of physics, inspires our awe:

“Was it a God who wrote these signs
Which soothe the inner tumult’s raging,
Which fill the lonely heart with joy
And, with mysteriously hidden might,
Unriddle Nature’s forces all around?”

Goethe’s Faust55

(Faust gazing at the Macrocosmos)

Why are the Lagrange Equations invariant? In view of our discussion in
Section 3.6 about differential geometry, that is, the absolute calculus, it is
not surprising that the true invariant things are connected with infini-
tesimal changes of one quantity relative to another, that is, with partial
differential equations. Furthermore, the reasonwhy these Equations are
invariant is that they derive from an ‘extremal’ condition. But geometry

54 (when taken as a whole, that is, all n equations together)
55 The quote was used in a different context by Lanczos, page 161.
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alone cannot tell us which invariant topological features will have phys-
ical significance; it is only the physics that can answer why it is exactly
‘action’ that must be minimized.
There is no general, turn-the-handle, way of solving the Lagrange

Equations, but by wisely choosing the coordinates - taking full advan-
tage of any prior knowledge of super-structures, symmetries, con-
straints, and kinematic conditions - we can make the solution easier
to obtain, or make a problem tractable as opposed to intractable.
We can argue this even more strongly - the increased tractability,
mathematically-speaking, means that our wiser modelling of the sys-
tem actually has more physical meaning - in other words, there really
are such things as flexing beams, capacitors, spinning tops, wires with
currents in them, gyroscopes, the Solar System, smoothly flowing
rivers, and so on, and these things cannot, in general, be built up from
the even simpler elements of particles, and forces-between-particles.
Wise modelling (incorporating physical knowledge into the system)
also confers many computational advantages to Lagrangian Mechanics
over Newton’s force-mechanics. We have no need to determine the
constraint- or reaction-forces (the tension in the cord, the reaction at
a pivot, the internal forces maintaining the rigidity of a beam, and so
on), or to determine the acceleration (a tricky vector quantity) for each
particle in the system. We have only to deal with the single scalar function,
L, and this function then determines the entire dynamics of the given system.
We still have the overarching requirement that Einstein’s Principle of

Relativity is to be upheld. This is to ensure that the same events will be
present, regardless of the reference frame. Consider our earlier example
of an electron being attracted to a wire: yes, this ‘event’ is the same in
both themoving and stationary reference frames - the electron is always
attracted to the wire. But what of the speed of approach of the elec-
tron, and the electron’s mass, momentum, and kinetic energy - must
these all be unchanged between reference frames?56 It turns out that
the only dynamic57 system-property that is guaranteed invariance is the
‘least δ(total action)’.
Now L is made up of the energy functions, T and V. We have made a

good case for T having the fundamental form of a ‘massy inertial factor’

56 The answer is that none of the above are guaranteed invariance (the mass is only
invariant if it is the ‘rest mass’).

57 There can also be non-dynamic properties of the system that are invariant, like,
for example, the total electric charge.
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multiplying ‘some-function-of-q̇2’, but T may also include a constant
term, and terms which are linear in the speed; and V usually depends
just on position, butmay also include a constant term, and terms which
are linear in the speed. There is evidently much overlap in the defin-
itions of T and V, so what then is the fundamental difference between
them? It is well known that T relates to motions, while V relates to
configurations, but, even more fundamentally, T relates to the energy
of individual components, while V relates to whole-system energies. However,
there is still the possibility of ambiguity between the two. For example,
in earlier discussions (Sections 6.5 and 6.6), we pondered about how to
classify rest-mass, being, on the one hand, a static store of energy (so it
could be part of V), and, on the other hand, part of the identity of an
individual component (so it could be classified as T). This ambiguity is
consonant with the fact that L is sensitive to the whole of T – V, rather
than to T and V taken separately. This allows for an interplay between
T and V, an interplay that is borne out in nature, and that looks for-
ward to modern physics (field theory, statistical mechanics, quantum
theory, gravitation theory, and other disciplines). This is in contrast to
Newtonian Mechanics, in which a particle is a particle is a particle - it
never affects the space (Space and Time) that it inhabits.
The interplay between T and V occurs through time and not just at

one time. So, time has ‘configurational’ aspects, and may sometimes be
treated as a quasi position coordinate (for example, time may be treated
as the (n + 1)th ‘position’ coordinate - see the footnote in Section 6.9).
Thus we see, in LagrangianMechanics, a softening of the formerly sharp
distinction between time and space. ‘Time’ always remains special58 but,
nevertheless, it is sometimes considered on an equal footing with the
other ‘position’ coordinates - and in this way Lagrangian Mechanics
foreshadows Einstein’s Relativistic Mechanics, in which space and time
are no longer independent of each other, but form a continuum known
as spacetime.
The previous two paragraphs show us that Lagrangian Mechanics,

and not Newtonian Mechanics, survives the transition to Einstein’s
Theories of Special and General Relativity. This is because Variational
Mechanics (which includes Lagrangian Mechanics) is more ‘philosoph-
ically correct’. Newtonian Mechanics postulates the prior existence of
an absolute Space and Timewhereas Einstein’s Gravitation Theory takes

58 (Feynman R P, Lectures on Physics, Vol I - the same (lost) reference as in Section 3.2.)
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the existence of the masses as givens; this is more correct when we
reflect that all our observations really have been made in the presence
of large gravitating masses. Also, the Variational Mechanics only makes
local claims (and then the local pieces are joined together, with the con-
dition that the joins must always be smooth). This also is more correct
whenwe remember that ‘far away’ and ‘long ago’ are always conjecture,
we can never have direct experience of them.
We have claimed near-universal rather than universal applicability

for Lagrangian Mechanics - when does it fail? First, the method of
Lagrangian Mechanics relies on everything being in functional form
(see Sections 3.7 and 6.1). This requirement isn’t always met, chiefly in
the case of dissipative or frictional effects. However, these dissipative
effects are due ultimately to microscopic interactions and, as Lanczos
suggests, if we could obtain the functional forms from quantum the-
ory, then variational methods would be applicable after all.59 Second,
we must admit that most real-life problems are just too complicated
for any analytical mechanics,60 whether Newtonian or Lagrangian (but
Hamiltonian Mechanics, Chapter 7, will rescue some of these prob-
lems); then we must resort to curve-fitting, simulations, and other
numerical methods.
In summary: Lagrangian Mechanics is a local theory; the time and

position coordinates are not required to be independent of each other;
T has inertial attributes; in fact, T and V have inertial attributes (and
this accords with Einstein’s finding that the mass-energy equivalence
applies to all types of energy); the sharp division between geometry and
external conditions has broken down; and ‘energy’ rather than ‘force’ is
the true determinant of what happens. What we have not mentioned
is that the Variational Mechanics also shows the way into Quantum
Mechanics. This will be looked at in Chapter 7, which charts the next
great advance, brought about by Hamilton.

59 Note that introducing ‘polygenic’ frictional forces, or non-holonomic (micro-
scopic) conditions, introduces a right-hand side to the Lagrange Equations, see Appendix
A6.5 and Lanczos, pp 146–7.

60 ‘Analytical’ implies that every aspect can be modelled mathematically, and then
the equations can be solved.
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Figure 7.1 Nicolas Poussin, A Dance to the Music of Time, c. 1640,
by permission of the Trustees of the Wallace Collection, London.

A metaphor for the perpetual dance of the p s and q s in phase space.



7
Hamiltonian Mechanics

“A dance to the music of time”
Nicolas Poussin, c. 1640

7.1 Introduction: ask less frommore
The outstanding achievements of Lagrange are still not the last word in
mechanics, and it was an Irish mathematical prodigy, William Rowan
Hamilton, who, in the nineteenth century, took mechanics to its high-
est form. Hamilton was in awe of Lagrange, referring to him as a
Shakespeare, and to the Mécanique analytique as a scientific poem; it was
this work which attracted him to the topic of mechanics. Hamilton
understood that even if the equations of motion were sometimes too
difficult to solve one could nevertheless obtain important qualitative
information - but only if one used the right choice of variables. His cru-
cial advance was to discover what were the true, most telling, variables
of mechanics.
We are familiar with the fact that the choice of variables (coordinates)

canmake all the difference to the tractability of a problem inmechanics.
For example, a lever can be modelled as a near infinity of atoms, or as a
‘lever arm’ with just one position coordinate (the angle, θ ) and the con-
dition of ‘rigidity’. We are inclined to think that the second version is an
improvement over the first, but Hamilton realized that it is not always
best to have the sparest, most economical description; sometimes even
an increase in the number of coordinates can lead to greater insights.
Specifically, Hamilton brought in a doubling of the number of coord-

inates in any mechanics problem. This was no mere doubling of the
number of dimensions (as would be the case in going from, say, a class of
25 children to a class of 50 children) but a doubling in the ‘dimensional-
ity’ of the problem (as in going from ‘children’ to ‘boys’ and ‘girls’). This
analogy is useful but too simple, it doesn’t demonstrate Hamilton’s
further requirement - that the two kinds of variable must be dynamically

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001
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related. A better analogy1 is the example of a semiconductor crystal: an
electron may occasionally be missing from a given lattice site, and then
there will be a ‘hole’. The positions of the holes are necessarily implied
by the positions of the electrons but in practice the holes take on a life of
their own, and it is useful to map both the electrons and the holes inde-
pendently from each other. Another example has to do with the rings
of Saturn. The rings are made up of particles, and for each particle we
could tabulate both its radius and its speed even though if one is known
the other is automatically determined. The data-table can then be
trawled through as many times as necessary: we may, for example, look
for all particles orbiting beyond a certain radius, and then on another
occasion look for all particles with a speed below a certain threshold.
However, Hamilton’s Mechanics is so much more than a matter of
picking out trends in a spreadsheet. Consider the suggestive analogy of
a picture, which, as we know, is made up from an array of pixels. The
amount of input data is doubled up by the simple expedient of viewing
the picture with two eyes as opposed to one. In especially contrived
stereographic pictures this doubling-up reveals previously hidden
objects and a hidden depth. Likewise, we shall find that Hamilton’s
doubling of variables leads to hidden depths of understanding.

7.2 The optical theory: extraordinary genius
We have learned in the previous chapters that Lagrangian Mechanics
can be cast as a question in geometry (an ‘extremal’ condition in an
abstract space). Similarly, Hamilton’s big advance was also inspired by
geometry. When a youth of only seventeen years, Hamilton was mus-
ing on the problem of mathematically describing an ‘optical system’ -
a system comprising a tight bundle of light-rays, starting at a common
source, and then passing through various lenses and mirrors. His aim
was to find the most general description possible of the optical system -
onemathematical formulation that would serve whatever the arrange-
ment of lenses or mirrors, and a formulation that was not to depend on
the physical nature of light, that is, whether light is a wave or a particle.
Hamilton came to the realization that as the rays pass through a system
of this, that, or the other lenses and mirrors there are certain geometrical

1 Most of the analogies we employ from now on can, in fact, be cast into problems
of Hamiltonian Mechanics.
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properties that remain unchanged: the ray-tips define a surface - a ‘sur-
face of simultaneous arrival time’ - and if the rays leave such a ‘surface’
at right angles, then they will leave all subsequent ‘surfaces of simul-
taneous arrival time’ at right angles. (The same geometry applies for
arrivals, that is, if the rays arrive at such a ‘surface’ at right angles,
then they will arrive at all subsequent ‘simultaneous surfaces’ at right
angles.) We call this geometric property the ‘ray property’. Given the
exceedingly fast speed of light, this remarkable observationwas available
only to Hamilton’s mind’s eye, not to his actual eye.
Hamilton knew of Descartes’s epoch-changing discovery, made

almost two hundred year earlier, that geometrical properties (Euclid’s
axioms about planes, triangles, parallel lines, and so on) could be
described purely algebraically, that is, by algebraic2 functions of coordinates.
(It was, in fact, Descartes who brought in the very idea of ‘coordin-
ates’.) This led Hamilton to wonder whether he could explain the ‘ray
property’ purely by an algebraic function of coordinates. Inmathematics, the
geometric property of being a surface can indeed be expressed as a func-
tion: fsurface = 0, where fsurface is some algebraic function of the relevant
coordinates. But Hamilton also appreciated that, because of Fermat’s
Principle of Least Time, then one such ‘surface of simultaneous arrival
time’ is functionally linked in someway to any subsequent ‘surface of simul-
taneous arrival time’. Now Fermat’s Principle dictates that the ‘distance’
(in time) between these surfaces has to be a minimum - but can this
‘minimum distance’ itself be reformulated as an algebraic function?
Even for a mathematician of Hamilton’s calibre, this was a complicated
thing to do. Hamilton was not daunted (he was barely 18 years old) and
he looked at this complexity from an astoundingly audacious angle, as
we now explain.
Using the Principle of Least Time, the ‘least-time distance’ for a light

ray travelling between specified initial and final positions, qi and qf , can
be determined. Having done this, the whole process can be repeated
but for a slightly different choice of initial and final positions, say, q′i
and q′f . A slightly different ‘least distance’ will ensue. This evaluation
can be repeated again and again, in each case for slightly different
end-state coordinates, and in each case yielding slightly different ‘dis-
tances’. The audacious question Hamilton asked was: could this ‘least

2 An algebraic function is the solution to a polynomial equation. It is defined by a
finite series of operations - for example, adding, subtracting, multiplication, and ‘to the
power of’ are allowed, but trigonometric operations are not allowed.
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distance’ be a function, perhaps even an algebraic function, of these end-
state coordinates? The answer he found was - yes, the ‘distance’ was an
algebraic function, let’s call it, fdistance, of the end-state coordinates, and
the end-state coordinates alone. (Readers may be reminded of other
scenarios in physics where there is function that depends only on end-
coordinates: for example, a conservative potential energy field, or a
‘function-of-state’ in thermodynamics.)
ThusHamilton came to the realization that there were two overarch-

ing algebraic functions that completely described the system of rays:
first there was the function that determined the surface of simultan-
eous arrival time, fsurface, and then there was the function, fdistance, that
was the ‘distance’ between two such surfaces. So far, this was genius of
an ordinary kind; next came the hallmark of extraordinary genius - for
Hamilton had to decide what coordinates to use, and then to find what
the functions actually were.

7.3 Hamilton’s Mechanics - the right coordinates
The problem was first solved for the case of optics. Hamilton’s work in
optics, “Theory of Systems of Rays”,3 was published in 1828 and in it he
introduced his ‘characteristic function’, so-called because it completely
characterised the given optical system (the arrangement of mirrors and
lenses, and the refractive indices of themedia). This ‘characteristic func-
tion’ is the function, fdistance, and it depends only on the start and end
position-coordinates of the light rays. In addition, Hamilton also deter-
mined the function, fsurface, (for example, for light rays which arrived in
parallel at a concave mirror and were then focused to a point, fsurface was
the function known as the ‘caustic surface’).
It would be over ten years before Hamilton’s work on mechan-

ics appeared yet the seeds were already evident in the earlier Optical
Theory, as Hamilton understood that the geometric ‘ray property’
arises in any system governed by a minimum principle. (It was later
proved that the reverse is also true: a minimum principle arises from
the ‘ray property’.) What was the minimum principle operating in
mechanics? Hamilton knew it had to be a principle concerning action
rather than time - after all, it was he who had brought in Hamilton’s

3 HamiltonWR, “Theory of Systems of Rays”, Transactions of the Royal Irish Academy, vol
15 (1828) pp 69–174.
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Principle (see Chapter 6), a generalization of Lagrange’s Least Action
Principle, itself an overhaul of Maupertuis’s Least Action Principle. But
what is the equivalent of a ray when it comes to mechanics? Hamilton’s
answer: it is the worldline of a single ‘whole-system’ point moving
in an abstract multi-dimensional space. We have met this before: the
whole-system point is the C-point (Chapter 6), and its worldline in con-
figuration space is equivalent to a ‘ray’. In summary, in optics there are
light rays in everyday 3-D space, influenced by lenses and mirrors, and
subject to a principle of least time; while in mechanics there are ficti-
tious C-points moving along ‘rays’ in the multi-dimensional abstract
configuration space, and subject to a principle of least action: and in
both optics and mechanics the ‘rays’ exhibit the ‘ray property’.
We must now consider what the functions, fsurface and fdistance, are

in mechanics, and what coordinates should be used. Despite certain
inescapable differences4 between optics and mechanics, the former is
much simpler to visualize, and therefore offers valuable insights into
mechanics. In the optical system, the ‘simultaneous surface’ really is a
2-D surface in everyday 3-D space.5 In mechanics, the ‘surface of com-
mon action’ is a complicated thing known as a hyper-surface,6 and yet
by analogy with light it still has certain geometrical properties - the ‘ray
property’ - as if it were an ordinary 2-D surface: in optics fsurface has two
dimensions; in mechanics, fsurface has two dimensionalities (the termin-
ology was explained in Section 7.1). This means that in mechanics fsurface
depends on two coordinates for each particle on the ‘surface’. Finally,
going back to the introduction section of this chapter, we suspect
that these two surface-coordinates for one particle may be dynamically
related to each other. So much for fsurface, for the moment.
In mechanics, the function fdistance links two ‘surfaces of common

action’ together and so, like fsurface, it also must have a dimensionality
of two (we have just one mechanics problem, and the dimensional-
ity of a problem can’t change halfway through the analysis). However,
this dual dimensionality comes about in a new way. We remember that
fdistance arises from an integral, that is, an integral between two end-states.

4 For example, in optics, the light rays arrive at their ‘geometric surface’ at the same
time, whereas, in mechanics, the C-points arrive at their ‘surfaces’ at different times but
at common values for action.

5 (for example, for a point light-source, a spherical surface centred on this source
receives the rays simultaneously and at right-angles)

6 A hyper-surface is a surface in more than two dimensions.
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The requirement for a dimensionality of two is therefore most easily
and suggestively satisfied if we adopt these start- and end-‘positions’ for
each ‘ray’ as the dual coordinates for fdistance in mechanics.
To sum up, we have made a good case for fdistance depending on

end-state coordinates, one on each of two different ‘surfaces’; and a
good case for fsurface depending on two dynamically-related coordinates,
both on one ‘surface’. It now remains to ascertain what exactly these
two dynamically-related surface-coordinates will be. (Note that, in
this mechanics scenario, there is also the possibility of fdistance and fsurface
depending on the time, t.)
We are satisfied that fdistance depends on the two end-positions for each

ray, but where will the duality come from in the case of fsurface? We cannot
hope to bootstrap the modelling of physics from plausibility arguments
alone - at some point a daring visionary has to come along and show
us the way (and then their theory must make predictions, and then
thesemust be tested against experiment). Nevertheless, there is just one
more ‘plausibility argument’ that we can follow. Remember that in our
explanation of the variational calculus (Section 3.7, Chapter 3) we stated
that the integrand function, L, has two kinds of argument,7 q and q̇, (and
the reason for this peculiarity was explained in Section 6.4). This seems
like a gift, too good to ignore - might we not take the qi and the q̇i and
employ them together as our two coordinates per particle, in the def-
inition of fsurface? Yes, this is exactly what we’ll do - but there’s a subtle
point that needs explaining. The arguments of a function may be split
into separate categories (the notational convention is to separate each
category by a semi-colon) but when reassigning categories - say, shift-
ing the q̇i s (the speed coordinates) into the same category as the qi s
(the position coordinates) - then we must be aware that the q̇i s will
change their nature and turn into position coordinates. A good alle-
gory comes from a cutlery drawer: the forks, knives, and spoons, are all
stored in different compartments, but when the forks are shifted, say,
to the spoon-compartment, then the forks must be used as if they were
now spoons.
The daring visionary was, of couse, Hamilton, and he realized he

could double the number of coordinates at a stroke by transferring the

7 Not counting the time, t. Note that we’re now using the term ‘argument’ to mean
‘argument of a function’.
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q̇i s into the same category as the qi s. However in order for this strata-
gem to work he knew he had to disguise the q̇i s making them not look
like speed coordinates anymore. He accomplished this by performing a
transformation as follows:

Lagrange’s description Hamilton’s description
qi, position 	→ qi, position
q̇i, speed 	→ pi, position
t, time 	→ t, time

with pi given by:

Defining equation for conjugate ‘momentum’, pi,

pi = ∂L/∂ q̇i for all i = 1 to n (7.1)

In (7.1), L is ‘the Lagrangian’, and it is still a function given in terms of
the original untransformed coordinates, qi and q̇i. There may also be an
explict dependence on time and, if so, the t is the same in Lagrange’s
and Hamilton’s descriptions. This is still a bit baffling - how are the q̇i
actually transformed into the pi? Well, as the Lagrangian, L, is a func-
tion of qi, q̇i, and possibly t, then ∂L/∂ q̇i is likewise some function of qi, q̇i,
and possibly t, and so pi is also some function of qi, q̇i, and possibly t. But
this pi-function can then be rearranged (‘inverted’8) to yield q̇i as a func-
tion of qi, pi, and possibly t. This q̇i-function, is, finally, the function we
require to carry out the transformation: wherever we find a q̇i in the
original Lagrangian we replace it by the q̇i-function of qi, pi, and possibly
t, and so the transformed Lagrangian itself becomes a function of qi, pi,
and possibly t. (See Appendix A7.1 for some worked examples.)
In the new scheme, we now have two ‘position’ coordinates for every

one old position coordinate: (qi) 	→ (qi, pi). We need to explain the
words used in (7.1). The adjective ‘conjugate’ is employed to remind
us that each qi is linked to one corresponding pi (and vice versa). This
‘conjugate pair’ are for one and the same particle, i, and are dynamic-
ally related (they are connected via equation (7.1)); there is no special
relationship linking, say, q2 and p8.9 The descriptor, ‘momentum’, is

8 We assume this is always possible - the Jacobian must be non-singular.
9 However, through the presence of L in (7.1), all i-values may enter into all the

transformation equations.
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employed for the following reason: we remember that the speed coord-
inate, q̇i, usually occurs in L in the form 1

2miq̇
2
i (Section 6.5.1), and then

∂L/∂ q̇i turns out to be miq̇i - but this is none other than the standard
definition for momentum. However there is more that can be said.
Momentum is more than just speed re-scaled, it has a massy factor, and
Hamilton’s transformation equation, (7.1), allows for this massy factor
to enter in many ways - for example, the mass need not be constant, it
could depend on speed, spatial distribution, or time. Thus, even when
L has a non-standard form, equation (7.1) still applies, and then pi is the
generalizedmomentum (see Chapter 3 on generalized coordinates). Note
further that although the pi s are called ‘momenta’, they are to be con-
sidered as position coordinates (remember the cutlery drawer), of the
same status as the qi coordinates, and so altogether, for each ‘particle’, i,
we end up with two generalized position coordinates, (qi, pi).

7.4 The canonical equations
We have arrived at the required duality, but, as we have seen, Hamilton
has not plucked his new (qi,pi) coordinates out of the air, he has obtained
them (via (7.1)) from Lagrangian Mechanics, and this is because he
wants to continue to use the Principle of Least Action as the found-
ing principle of his new mechanics. Therefore, we have the least action
condition (condition (6.11)) still at the heart of the physics prob-
lem. In Hamilton’s Mechanics, we use this condition as before, but
only after replacing the original Lagrangian by our newly transformed
Lagrangian, Lnew. So far, so unexceptionable - but then something quite
astonishing happens (even while it will sound like a succession of “Just
So”10 stories). The new Lagrangian, Lnew, is split into Tnew and Vnew,
as usual, but then it just so happens (following on from our trans-
formation equations, (7.1)) that Lnew always ends up having a rather
special form:

Lnew = Tnew – Vnew =
(∑

i

piq̇i
)
– Vnew(qi, pi; ; t) (7.2)

That is to say, it turns out that Tnew always has the form (
∑

ipiq̇i), and
it turns out that Vnew has no q̇i s or ṗi s in it (and this seems to confirm

10 R Kipling, Just So Stories for Little Children, Macmillan & Co. (1902).
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our calling it a potential energy function11), and, furthermore, it turns
out that Vnew is a purely algebraic function of the qi s and pi s, and pos-
sibly t. Is Vnew the function, fsurface, that Hamilton was seeking? Not quite,
but almost.12 To honour it, Vnew is given a special name: it is called ‘the
Hamiltonian’ and given the symbol ‘H’.

Commentary 1)
To repeat, H is a potential energy function, a scalar algebraic func-
tion just of pi s, qi s, and possibly t; and Tnew always has the form
(
∑
piq̇i). However, we may object, and wonder why the q̇i s are still

hanging around (in Tnew) when, according to the procedure given in
Section 7.3, they should all have been replaced by their q̇i-functions -
(functions just of pi s, qi s, and posssibly t)? There are two answers to
this. The first is to argue that we can decide on purpose to normal-
ize Tnew to this new specific form, and therefore we can choose not
to replace all the q̇i s in Lnew but leave just the necessary ones in place.
The second answer is better - less ad hoc; it is that Lnew is in principle a
function of 2n position coordinates and 2n consequential speed coord-
inates but it just so happens that none of the ṗi s appear, and it just so
happens that the only q̇i s that appear are the ones in (

∑
piq̇i):

L(q1, . . . qn; q̇1, . . . q̇n;t) 	→Lnew(q1, . . . , qn, p1, . . . , pn; q̇1, . . . , q̇n, ṗ1, . . . , ṗn;t)

where it just so happens that:

Lnew always has the form
(∑

i

piq̇i
)
– H(q1, . . . , qn, p1, . . . , pn; ; t)

(7.3)
This new Lagrangian can be put into the minimized action condition,

δ

∫ tb

ta

Lnew dt = δ

∫ tb

ta

(∑
i

piq̇i
)
– H(q1, . . . , qn, p1, . . . , pn; ; t) dt = 0 (7.4)

and this will lead to the Lagrange Equations, as usual (except that there
will be 2n instead of n of them):

11 In Section 6.5.2, we said that, in the main, the potential energy depends on
position- rather than speed-coordinates.

12 We’ll find that H is not identical with fsurface as the former is a surface of energy,
whereas the latter is a surface of common action. However, in cases whereH is independ-
ent of t, then H and fsurface are linearly related - see Section 7.7.
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d

dt

(
∂Lnew

∂ q̇i

)
–
∂Lnew

∂qi
= 0 i = 1, 2, . . . , n

d

dt

(
∂Lnew

∂ ṗi

)
–
∂Lnew

∂pi
= 0 i = 1, 2, . . . , n (7.5)

Now, because of the special form of Lnew as in (7.3), then ∂Lnew/∂ q̇i is
always just equal to pi (and, furthermore, this is consistent with the
defining equation, (7.1)), and ∂Lnew/∂qi is the same thing as –∂H/∂qi (as
qi only occurs in theH part of Lnew), and ∂Lnew/∂ ṗi is always zero (as there
is no ṗi in Lnew), and, finally, ∂Lnew/∂pi is always given by (q̇i – ∂H/∂pi).
Making all of these substitutions into (7.5) we arrive at:

dpi
dt

–

(
–
∂H

∂qi

)
= 0 i = 1, 2, . . . , n

0 –

(
q̇i –

∂H

∂pi

)
= 0 i = 1, 2, . . . , n (7.6)

Rearranging, and noting that dpi/dt may be written as ṗi, we finally
arrive at:

ṗi = –
∂H

∂qi
and q̇i =

∂H

∂pi
i = 1, 2, . . . , n (7.7)

These equations are the new equations of motion. They are sometimes
called ‘Hamilton’s Canonical Equations’, and we shall find that they are
a turning point in mechanics, ushering in a new era. It is not essential
to follow the mathematical derivation above; just know that we started
from the original Lagrangian Equations (6.13), applied the transform-
ations (7.1), and ended up with Hamilton’s Canonical Equations. (The
adjective ‘canonical’, coming from ‘canon law’ in church proceedings,
was coined by the mathematician Carl Jacobi (1804–51) (see Chapter 2),
and conjoined forever afterward with Hamilton’s Mechanics as a ges-
ture of respect and admiration. Applied to the equations, ‘canonical’
means the definitive and correct form for mechanics; applied to the
pi s and qi s, ‘canonical’ means the definitive and correct choice of
coordinates.)
In order to understand the advance that Hamilton’s Mechanics

represents, let us assemble the old and new equations of motion
together:
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From: The Lagrange Equations

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1, 2, . . . , n (7.8)

To: Hamilton’s Canonical Equations

ṗi = –
∂H

∂qi
i = 1, 2, . . . , n

q̇i =
∂H

∂pi
i = 1, 2, . . . , n (7.9)

Once again, the words of Goethe are apt:

“Was it a God who wrote these signs
Which soothe the inner tumult’s raging,
Which fill the lonely heart with joy
And, with mysteriously hidden might,
Unriddle Nature’s forces all around?”

Goethe’s Faust13

(Faust gazing at the Macrocosmos)
Part I, Scene 1

We have already explained, in Chapter 6, why the Lagrange Equations
inspire our awe; let us now explain why Hamilton’s Equations com-
mand a ten-fold increase in awe.
Hamilton’s Equations show how the qi s and pi s undergo a ‘dance to

the music of time’,14 a dance in which, as some qi s or pi s increase in
value, others decrease in value, but always such as to keep the energy
constant (in conservative systems), and always such as to keep the total
action minimized, both instant by instant, and over the whole path
between ‘surfaces-of-common-action’. This ‘dance’ is governed by one
function, H, - that is to say, while H is different for different systems
(orbiting planets, a statistical ensemble, an electrical circuit, positrons
orbiting an atomic antinucleus, a spinning top, juggling pins, a flowing

13 As quoted by Lanczos page 161.
14 Nicolas Poussin, A Dance to the Music of Time, c. 1640. (See Chapter 7 quotation

and Figure 7.1.)
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river, and so on) yet within any one system there is just one overarch-
ing function (there is no need for individual functions, H1, H2, . . .Hn).
Also,H is an algebraic function, and so - in sharp contrast to Lagrangian
Mechanics - in order to solve the equations just simple differentiations
and substitutions suffices. Also, in Hamiltons Equations, all the time-
dependence (the dotted variables) are neatly together in one place (on
the left-hand side of the equations) while all the algebraic operations are
neatly together in one place (on the right-hand side of the equations).
Also, this time-dependence is only to first-order (there are single dots, q̇
and ṗ, but no double dots, q̈ and p̈, or higher orders), and also, the equa-
tions are linear in their time-dependence (we have q̇i and ṗi but no q̇2i , ṗ

2
i ,

q̇3i , ṗ
3
i , and so on).

But it is not principally for the sake of increased mathematical ease
that we are awe-struck, but rather for the sake of increased physical
insight (although the two are evidently related). In particular, the sim-
ple mathematical structure of Hamilton’s Equations makes them espe-
cially able to bring out physically telling symmetries and conservation
theorems, such as the conservation of momentum, the conservation of
angular momentum, and the conservation of energy (see Section 7.6).
More than this, Hamilton’s Mechanics brings in not only a generalized
definition of momentum (equation (7.1)), but a more generalized and
fundamental definition of energy: the kinetic energy is normalized to a
special form, and it is no longer necessary that it is ‘quadratic’, or that
the potential energy is velocity-independent, or speed-independent, or
time-independent, and it is not even necessary that energy be con-
served. Perhaps the single most astounding new physical insight arising
out of Hamilton’s Mechanics will be the ‘wave-nature of particles’ and
the ‘particle-nature of waves’ (see Sections 7.7, 7.8, and Chapter 8).
We begin to appreciate why Lanczos, and also Schrödinger (Erwin
Schrödinger (1887–1961), the discoverer of the wave equation in quan-
tummechanics, Section 7.8), claim that the Hamiltonian,H, is themost
important function in mechanics:

“The central conception of all modern theory in physics is the
“Hamiltonian”. . . ”15

15 E Schrödinger, The Hamilton postage stamp: an announcement by the Irish min-
ister of Posts and Telegraphs, referenced in T L Hankins, Sir William Rowan Hamilton, Johns
Hopkins University Press (1980), p64 note 7.
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Commentary 2)
The minimization of the action integral, (7.4), requires that all the
position coordinates are varied independently of each other - but
isn’t this requirement contravened by the fact that the pi are related
to the qi (through (7.1))? Answer: we treat the δp-variations as if
they were independent. This can be done because it just so hap-
pens that the minimized-action-condition, δ(Action)=0, is satisfied
anyway, irrespective of the δp s. (And the reason for this is that the
transformation equation, (7.1), implies that the coefficient multiply-
ing each δp is identically zero, just like the coefficients in the case
of Lagrange Multipliers16). How this comes about is explained quite
simply in Appendix A7.2.

We are still left wondering: surely the differential nature of q̇i can-
not be hidden by re-naming it pi? Also, surely we can’t expect to learn
twice as much just by having twice as many coordinates? A partial
answer: yes, we have nmore coordinates, butwe have introduced nmore
constraint-equations (the very transformation equations (7.1)). A bet-
ter answer: what saves Hamilton’s camouflage ‘trick’ from emptiness is
the fact that, at the same time as doubling the number of coordinates,
we have moved the mechanical problem into a totally new space: we
havemoved from configuration space17 in n dimensions to a space called
‘phase space’ (next section) in 2n dimensions. These spaces are different
from each other and, crucially, they are both abstract - and of utterly
different abstract spaces one can ask utterly different abstract questions.
This will be explained further in Section 7.5. Before proceeding with
this explanation, we give some worked examples of simple mechanics
problems, solved using the methods of Hamiltonian Mechanics - see
Appendix A7.3.

7.5 A fluid flowing in phase space
It would seem, from Appendix A7.3, that there has been no advan-
tage in usingHamilton’s Canonical Equations over Lagrange’s Equations
over Newton’s Equations - so why have we bothered? A short allegory
will help to explain the different aims of Lagrangian Mechanics and
Hamilton’s Mechanics - and explain why we do bother.

16 See Appendix A6.4.
17 (See Section 3.5, Chapter 3.)
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Imagine that we are keen on golf and want to improve our stroke. On
Saturday, we are at the tee of hole number 18, we have selected our golf
club, have an ample supply of identical golfballs, and proceed to hit 100
balls toward flag number 18. Exhausted, we walk over to the putting
green and count up the number of balls we find there. The next day
(Sunday) we again drive 100 balls, but just as we’re about to walk to hole
18 it starts to rain andwe head, instead, for the clubhouse, where tea and
scones awaits us. Fortunately, our companion used his smartphone to
take photographs of each drive, and the phone has been programmed
(using Lagrange’s Mechanics) to calculate the trajectory of a golfball,
knowing the angle and speed at which it leaves the golf club, and so
determine whether the given ball makes it to the putting green.
Onemight think that there’s notmuch to choose between themeth-

ods employed on Saturday and then on Sunday (apart from the fact
that in one case we had need of a clever computing device) but there’s
a world of difference: on Saturday, we count the number of balls on
the green after their arrival; on Sunday, we calculate the whole tra-
jectory of a given ball and so we know whether the ball arrives, and
when. We can say that Saturday’s and Sunday’s results occur in different
‘spaces’. In the ‘Sunday space’, we can reconstruct the entire history of
each and every golfball; in the ‘Saturday space’, we are happy to forego
this detailed knowledge because we really just want to know what pro-
portion of our drives do in fact make it to the putting green. We could
also investigate other questions of a general nature, such as whether any
golfballs at all will make it through a certain gap in the trees, and what
overall difference the choice of golfclub makes, and so on. (If we need
to know more about one specific ball or another, this more detailed
knowledge can be reconstructed afterward, if we supply the appropriate
extra data.)
This allegory nicely demonstrates the sorts of differences we find

between phase space (the ‘Saturday space’) and configuration space
(the ‘Sunday space’). In phase space we obtain qualitative information,
about more golfballs, all in one go - we obtain ‘less from more’. Before
we give some examples, let’s first explain how a plot in phase space is
constructed.

Phase space

In Hamilton’s Mechanics we have a problem in 2n dimensions - the n qi s
and the n pi s. We wish to picture this graphically, and so, as a matter
of convenience, we plot the qi s and the pi s as rectangular coordinates
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of a 2n-dimensional space - that is, we plot the qi s and the pi s against
straight, perpendicular axes.18 (In configuration space, Section 3.5, we
likewise plotted the qi s against straight, perpendicular axes.) In phase
space we can then track the progress of one ‘whole-system’ C-point
along its worldline in this abstract space of 2n dimensions. While the
C-point is fictitious, we can sometimes choose units such that it mimics
the behaviour of a real particle.19

An interesting question is: can we ‘beat the system’? That is to say,
suppose we consider a system with just one degree of freedom, q, and
suppose this q really is a rectangular coordinate (for example, it is
the horizontal distance travelled by a bullet rather than, say, the θ -
coordinate of a pendulum). Then, in this special case, could it be that
the world-line of the C-point in configuration space is identical to the
actual bullet’s trajectory (what you can see with your eyes)? Yes, this
could happen - but we can never beat the system as far as phase space
is concerned. We might fire an identical bullet again and again, say, 20
times, and plot the 20 individual world-lines on one graph. In the con-
figuration space graph, these 20 individual world-lines could cross each
other, like straw in a barn (as it may happen that two bullets with dif-
ferent starting speeds end up going through the same position later on).
However, in the phase space graph the 20 individual world-lines could
not cross each other; on the contrary, they would have to follow simi-
lar paths nearby, like streamlines in a fluid. This is because each point
in phase space corresponds to a unique20 pair of coordinates, (pi,qi). If it
did so happen that two identical bullets were fired with the same vel-
ocity, and from the same position, then they would follow the identical
‘streamline’ in phase space.
It is not possible to draw a 2n-dimensional space, and so we give some

simple examples of two-dimensional phase spaces (that is, n = 1). In
Figure 7.2, we have a longitudinal spring, fixed at one end, and free to
oscillate at the other end.21

18 (Even in 4 or more dimensions, it is possible to give meanings to the terms
‘straight’ and ‘perpendicular’.)

19 For example, for a system of N free particles, we can define the metric, ds, (see
Section 3.6) according to:T = 1

2m(
ds
dt )

2 and then setm = 1.We then find that the C-point
behaves like one particle of mass 1 and kinetic energy T, moving in a 3N-dimensional
configuration space.

20 (but see Figure 7.4 - the explanation is in the nearby text)
21 Calculated using Scilab, to reproduce Fig. 6 in Lanczos, page 179.
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Figure 7.2 An oscillating spring.

The coordinate q measures the extension of the spring, and the
coordinate p is a measure of the speed of the free end of the spring.
Each elliptical streamline is for the same spring released from a differ-
ent starting extension. (The number on the streamline is the constant
value of action on that streamline.) One can see that whenever the
spring is maximally extended, that’s when the speed is slowest (p goes
through zero).
In Figure 7.3, there is a simple pendulum.22 The bob has two modes -

circulating or oscillating. When circulating, it starts by hanging straight
down (θ = 0) and then circulates to being straight up (θ = ±π ) and
then continues on in the same direction (clockwise or anticlockwise),
and eventually reaches hanging straight down again, but immediately
continues circulating, and so on, and so on (as we are ignoring dis-
sipation). The circulation streamlines are the open almost horizontal
curves at the top and bottomof the figure.When oscillating, the bob has
small angular displacements but never reaches θ = ±π . The oscilla-
tion streamlines are the closed oval-shaped curves. There is one special
streamline, the eye-shaped ‘separatrix’, that separates circulation from
oscillation. For all the streamlines, the speed is at a maximum as the

22 Figure 7.3 was generated with Scilab using initial parameter-values as in G J
Sussman and J Wisdom, Structure and Interpretation of Classical Mechanics, MIT Press (2001),
Figure 3.4 page 208.
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Figure 7.3 Simple pendulum (length 1 m, bob of mass 1 kg, and the acceler-
ation of gravity is 9.8 m s–2.)

bob passes through zero. (As in the previous example, the number on
the streamline, or ‘iso-action’ curve, is the constant value of action on
that streamline.)
The final example is for an axially-symmetric spinning top

(Figure 7.4).23 Because of symmetries in the system, we only have to
consider the angle of tilt, θ , of the top from the vertical. (The other
Euler angles, ψ and φ are ‘ignorable’ - see Sections 6.9 and 7.6. Also,
setting pψ = pφ means that θ = 0 when the top is vertical.) The Figure
shows streamlines of pθ against θ for a given constant rotation, ω, of
the top about its symmetry axis. Note that there is a point where the
streamlines cross - but, wait a minute, didn’t we just say that this could
never happen in phase space? The resolution is that, starting from any-
where on this ‘figure-of-8’ streamline, it takes an infinitely long time to
reach the crossing-point. . .
All in all, we are awed by the fact that the flowing-fluid metaphor is

holding strong - even when applied to systems as ‘non fluid-like’ as an
oscillating spring, a pendulum, and a spinning top.
One signal advantage of using Hamilton’s Mechanics, and phase

space, is that, even where some problems may be too difficult to solve

23 Figure 7.4 was generated with Scilab using initial parameter-values as in Sussman
and Wisdom, Figure 3.7 page 216.
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Figure 7.4 Spinning top (calculated using parameters from Sussman and
Wisdom, Structure and Interpretation of Classical Mechanics, MIT Press, 2001,
Figure 3.7, page 216. θ is the angle between the top’s axis and the vertical. The
rotation rate is set at ω = 90 rad s–1.)

exactly, or the data doesn’t exist, or is too copious (for example, having
to know the position and velocity of every molecule in a gas at a given
time), nevertheless very useful qualitative results can still be obtained. In
fact, by ignoring some information one can end up with more insight
(like being able to see the wood for the trees). A remarkable tech-
nique that does just this (it throws away data) is the ‘surface of section’
method discovered by Poincaré in 1892.24 The astronomers, Hénon and
Heiles, put this technique to spectacular use in the 1960s.25 Even where
equations couldn’t be solved exactly (analytically), they were able to

24 Henri Poincaré, Méthodes Nouvelles de la Mécanique Céleste, Paris, 1892; Dover
Publications, 1957; NewMethods of Celestial Mechanics (English translation), edited by
D Goroff, American Institute of Physics, New York, 1993.

25 From G J Sussman and J Wisdom, Structure and Interpretation of Classical Mechanics,
MIT Press (2001); M Hénon, Numerical Exploration of Hamiltonian Systems, in Chaotic Behaviour
of Deterministic Systems, North-Holland Publishing Co. (1983).
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gain insight by using computers to carry out numerical approximations
(but still using Hamiltonian Mechanics). They could tell such things as
whether a systemwas sensitive to starting conditions, whether the solu-
tions would be chaotic or settle down, whether certain regions of phase
space were avoided, and so on. Michel Hénon captured the philosophy
perfectly when he wrote:

“Numerical experiments [in Hamiltonian systems] are just what their
name implies: experiments. . . [the aim is to] understand the fundamental
properties of dynamical systems rather than to prove them.”26

7.6 Conservation Theorems
When considering an actual fluid, the metaphor of a phase fluid is espe-
cially apt. We can model the motion of a real hydrodynamical fluid in
everyday 3-D space in two ways: we can use the ‘particle description’, or
we can use the ‘field description’. In the first case we watch the change
in position with time of a tiny volume-element (‘particle’) of fluid; in
the second case we look at the ‘velocity field’ - the instantaneous vel-
ocity at each point in the fluid. This three-dimensional hydrodynamical
picture carries over completely into the 2n-dimensional phase space.
The remarkable thing is that certain well-known and important con-
servation theorems apply equally well to real fluids (well, that is to say,
idealized zero-viscosity, real fluids) and to the phase fluid. We discuss
these now.

1) Liouville’s Theorem
It turns out that the abstract phase fluid has the same proper-

ties as a real fluid that is incompressible. An incompressible real
fluid is one in which any volume-element of fluid (any sample of
neighbouring ‘particles’) cannot be compressed, that is, it keeps
the same volume. Likewise, for the phase fluid we may examine
any small 2n-dimensional volume-element within the fluid, and
watch this volume as it is ‘carried along’ by the flow. Although
the shape of the volume-element may become distorted yet its
total volume always remains unchanged:

26 From G J Sussman and J Wisdom, Structure and Interpretation of Classical Mechanics, MIT
Press (2001); M Hénon and C Heiles, The Applicability of the Third Integral of Motion:
Some numerical experiments,Astronomical Journal 69 (1964) pp 73–9.
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volume-element =

∫
dq1, . . . , dqn; dp1, . . . , dpn = constant

(7.10)

(The case where an integral comes out constant is what the
French mathematician, Henri Poincaré (1859–1912), called an
‘integral invariant’ of the phase fluid.) An equivalent way of stat-
ing this, in the ‘velocity-field description’ of the fluid, is to say that
the divergence of the velocity is zero. It would be too much of a
digression to explain the meaning of ‘divergence’ in physics, but
the interesting thing to learn is that, for the phase fluid, its diver-
gence is guaranteed to be zero because of the canonical equations.
This is shown in Appendix A7.4. In other words, the phase fluid is
incompressible by definition.

2) Helmholtz’s Circulation Theorem
Another of Poincaré’s ‘integral invariants’ concerns the ‘circu-

lation’ of the phase fluid. The ‘circulation’ is a property of real
fluids, and it was discovered by the German physicist Hermann
von Helmholtz (1821–94) in 1858. (Helmholtz was also one of the
discoverers of ‘energy’.27)

We consider a ‘material’ line28 in the fluid - a line that goes from one
specific ‘particle’ to the neighbouring ‘particle’, and to the next neigh-
bouring ‘particle’, and so on (a bit like beads on a necklace). Suppose
this material line - defined at one given time - forms a closed loop. As
time progresses, the loop moves forward (as it is the line that joins ‘par-
ticles’ which themselves move forward in time). We can now consider
increments, dqi, along this line, and at each increment form the scalar
product with the velocity-field, pi, at that point (the mass is assumed
constant and so the velocity-field is equivalent to the momentum-
field). Finally, we can sum up (integrate) all these products. We end up
with a closed line integral of the velocity-field around an area-element
of the fluid.29 This is the ‘circulation’. In the phase fluid, it is:

27 Coopersmith J, Energy, the Subtle Concept, Oxford University Press (2015).
28 (not just a mathematical curve but a line that links specific massy ‘particles’

together)
29 Clarification: the summation is over all the different ‘particles’, i = 1 to n; the

integral is along the closed loop encircling an area in phase space.
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Circulation of phase fluid, � =

∮ ∑n

i=1
pidqi (7.11)

According to Helmholtz, the ‘circulation’ of a zero-viscosity hydro-
dynamical fluid is a constant:

Circulation of ideal real fluid = � = constant (7.12)

This has the physical meaning that, given that there is no dissipation
(no viscosity), then a fluid which contains no vortices will continue to
contain no vortices, whereas a fluid which does contain vortices will
continue to contain vortices: in other words, vortices cannot be created
or destroyed. The constancy of the circulation in the case of the phase
fluid likewise means that vortices cannot be created or destroyed in phase space.

Commentary 3)
In configuration space, the action integral is over a curve, and the
ends of the curve are fixed during variations. When it comes to mini-
mization problems in phase space, however, we have to do with a
fluid rather than a curve. Therefore, instead of end-points of a curve
we now have cross-sectional areas through a fluid. Now that we have
to dowith end-areas rather than end-points, it is appropriate to allow
variations at these ends (within the end-area). We therefore relax the
usual ban and do allow variations of the qi s at the ends of the action
integral.30 The condition of stationarity in phase space is then:

δ(Action) =
[∑n

i=1
piδqi
]t2
t1
= 0 δqi(t1) �= 0 and δqi(t2) �= 0

The term in square brackets is a ‘boundary term’ (cf. equation 6.6,
Section 6.2,), and, curiously, it has exactly the same form as the cir-
culation. Is this a coincidence? No, nothing in physics happens by
coincidence; the boundary term and the circulation are defined in the
same way because: both relate to perfect differentials, of dual dimen-
sionality (an area), which exist at a boundary (a line going around the
edge of the area), and which sum or integrate to a constant (zero, if
taken round a closed sum or loop).

30 We also allow variations of the pi s at the ends because, as we have said in
Commentary 2) and Appendix A7.2, the pi-variation makes no difference to δ(Action).



164 The Lazy Universe

Everything we have already remarked about the profound link
between conserved properties and symmetries in LagrangianMechanics
(Section 6.9) applies again in Hamiltonian Mechanics, but more so. As
before, conserved properties and symmetries are linked in the follow-
ing way: a system is ‘symmetric’ with respect to a coordinate, qi, if small
changes in that coordinate leave everything looking exactly the same.
(We are talking here of continuous symmetries - not discontinuous sym-
metries such as ‘reflection in a mirror’, or ‘changing all particles into
antiparticles’.) For example, if we have a bench-top experiment and
nothing changes after displacing the equipment gently through a small
distance,�x, along the bench-top, then the system displays symmetry
in this x-direction. This is the same as saying that nothing in the system
depends on x, and so x doesn’t occur in the Hamiltonian. We say that x
is an absent or ‘ignorable’ coordinate (cf. Section 6.9).
But (the difference between the two Mechanics is that) Hamilton’s

Canonical Equations are exceptionally well-suited to the bringing out
of conserved properties - because if x is ‘ignorable’ then it doesn’t occur
in H, and so ∂H/∂x will be zero, and then from (7.9) ṗx = 0, and so
px = constant. Therefore, we have a conserved quantity arising out of a sym-
metry. Specifically, we have a conserved ‘conjugate’ momentum, px,
arising from a symmetry with respect to the absent (‘ignorable’) vari-
able, x. We had similar arguments in the case of Lagrangian Mechanics
but now, because of Hamilton’s Canonical Equations, the link between
symmetries and conserved ‘conjugatemomenta’ is evenmore transpar-
ent. Some well-known conservation theorems that enter in this way
are the conservation of linear momentum (arising out of a symmetry
with respect to linear translations), and the conservation of angular
momentum (arising when the system is symmetric with respect to
rotations).

7.7 Hamilton’s Mechanics and the conservation
of energy

There is another special conservation theorem - the famous conserva-
tion of energy - and it arises in two special ways. In the first way, we have
a system which does not depend explicitly on time. (There is always an
implicit dependence on time, for example, a swing changes its position
with time, but it is not explicit - there are no sudden gusts of wind at spe-
cific times.) Because t does not occur explicitly in the Hamiltonian, then
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the phase fluid shows a special kind of motion - steady-state motion.
There is motion (the velocities are not all zero) but the velocities (the
p s) are always constant at their respective q s. For such conservative,
steady-state systems, the streamlines in phase space have an additional
property - they trace out curves of constant H (we could call them iso-
H curves). Actually, they are curves only in the simplest case of two
dimensions; generally, in more than two dimensions, the p s and q s
‘dance’ forever on a hyper-surface of constant H (the subscripts, i, have
been left out, for clarity). Now asH, in this special case, does not depend
explicitly on t, then we have:

dH

dt
=

n∑
i=1

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
= 0 (7.13)

However, the canonical equations tell us that q̇ = ∂H/∂pi and
ṗ=– ∂H/∂qi. Substituting these into (7.13) we obtain dH/dt = 0 or, in
other words, H = constant. We have therefore found that energy is con-
served (in this time-independent case). As we remarked already with
regards to d’Alembert’s Principle (Section 5.5), and Hamilton’s Principle
(Section 6.7), we have not had to assert energy conservation but have
been able to deduce it - in the present case by assuming only time-
independence and the validity of the canonical equations of motion.
The second way in which a system can be conservative is rather

remarkable. We consider the more general case, where there is an expli-
cit dependence on time, but then we ‘get rid’ of t by pretending it’s
one of the q-coordinates (the number of these thereby increases from
n to n + 1). Once again, we end up with a fluid flowing in an abstract
space, but it is a space of 2n + 1 dimensions - that is, n + 1 q-coordinates
and n p-coordinates). The French mathematician, Élie Cartan (1869–
1951), called this the ‘state space’. In this state space the problem of
motion is completely geometrized - it’s like taking a photo at every
time, and then dispensing with time and looking at an infinite collec-
tion of photographs instead. But we can do even better than this. We
can absorb t into the position coordinates, as just explained, but then
we consider all 2n + 1 coordinates as functions of yet another coord-
inate, say, τ . (This makes sense as, having got rid of the independent
variable, t, we now need a new independent variable - one which ‘puts
the photos into order’.) We call this the ‘extended phase space’. Then a
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curious thing happens: having inflated the number of ‘position’ coord-
inates, and introduced a new independent variable, it turns out that
the new system is conservative; t doesn’t occur, and to compensate for
bringing in the new variable, τ , there is a new condition - the very condi-
tion that energymust be conserved. (How this happensmathematically
is shown in Appendix A7.5.) In short, any system, even one with an
explicit time-dependence, can be recast so as to be conservative.

7.8 The Hamilton-Jacobi Equation

“What I tell you three times is true”
Lewis Carroll, The Hunting of the Snark

This section has much mathematics. The treatment is gentle, but
the whole section may be skimmed or skipped without much loss of
continuity.
The aim of mechanics is to solve the equations of motion, qi =

qi(t), for all the generalised particles, i = 1 to n, - or is it? Sometimes
these equations are impossible to solve (too many, too difficult, or the
input data are unavailable) and then we are content to learn other
information: general qualitative information about how the system
evolves, what are the symmetries, are there any conserved properties?
In Hamilton’s Mechanics we would like to know how the ‘ray property’
comes about (how the ‘wavefronts’ move forward in time, and why the
‘rays’ are perpendicular to these wavefronts), what the Hamiltonian is,
and why at a given time the p s and q s stay on a surface of constant H.
The trouble is, these things happen in different spaces (the wavefronts
occur in configuration space, whereas the surfaces-of-constant-H occur
in phase space). Coordinate transformations will come to the rescue.
It may seem strange that something so arid and mathematical as a

coordinate transformation can bring in physical insight but already,
at the end of the previous section, we saw how the important energy
conservation principle came in this way,31 and anyway we have already
swallowed the pill that a ‘mathematical test in an abstract space’ is an
indispensable, physically-telling procedure. So far in this book we have
had three transformations: 1) from everyday space to configuration
space; 2) from configuration space to phase space; 3) from phase space

31 We re-branded t as a position coordinate, and then introduced a new ‘dummy’
independent coordinate, τ .
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to ‘extended phase space’. We have already seen the utility of coordinate
transformations, but we’re about to discover that this is only the begin-
ning. To paraphrase Lewis Carroll (start of section): “What I transform
at least three times is still true.” We’ll need a lot more than three trans-
formations, in fact, we’ll need an infinite number of them. It’s going to
be a long story, involving a little hand waving, andmuch hard thinking.
It goes like this.
A coordinate transformation is something brought about by a func-

tion - a function that transforms all the coordinates from old to new,
say, from Qi to qi, for all i. We want to find that special transform-
ation, call it S, which acts as a ‘generating function’, the function that
makes the ‘wavefronts’ move forward in time. What we’re going to do
is to try and home in on S by subjecting it to more and more stringent
conditions.
First, we require that S does depend explicitly on time (we drop our

usual incantation ‘and possibly t’) as it will be this very dependence
on t that drives the transformation forward, generating the infinite
succession of wavefronts. Next, we stipulate that S must be a continu-
ous function: that is, if the input time, t, increases by a small amount,
�t, then the output, qi, must increase by a small amount,�qi, without
any gaps. (This is a standard stipulation - most functions we deal with
in analytical mechanics are continuous functions.) Another condition
we insist upon is that all the transformations must satisfy Hamilton’s
Canonical Equations. That is to say, we can transform from old coord-
inates to new coordinates but then the Canonical Equations (7.9) must
still apply in these new coordinates. Transformations that comply are
known as Canonical Transformations (CTs). Yet another condition
that S must satisfy is that the ‘circulation’ (7.12) must be an invariant
(the difference between successive ‘circulations’ must be zero). This is
shown in Appendix A7.6. Curiously, defining S in this way automatic-
ally means that it satisfies the following transformation equations (see
Appendix A7.7):

pi =
∂S

∂qi
and Pi = –

∂S

∂Qi
, i = 1 to n (7.14)

(In fact, even more curious, the three conditions - the transformations
(7.14), the invariance of the circulation, and the requirement of being
canonical - are all very closely connected.) The special thing about
equations (7.14) is that they are reminiscent of the equations for ‘grad’
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(also called del, and symbolized∇). This is an operator in vector calcu-
lus, which in Cartesian coordinates has the form ( ∂

∂x ,
∂
∂y ,

∂
∂z ), and this

is similar to ( ∂
∂q1

, ∂
∂q2

, . . . ∂
∂qn
) in generalized coordinates. Without going

further into the mathematics, we just need to know that ‘grad’ has the
ability to seek out the paths of steepest gradient away from a given sur-
face. This is exactly what we need for our programme - it guarantees the
‘ray property’ because ‘steepest’ is the same as ‘perpendicular’ as regards
ways of leaving a surface.32 (The perpendicularity of a path within the
wavefront and leaving the wavefront is shown in Appendix A7.9.)
This is very promising, but there is still a problem. S (sometimes

called a ‘generating function’) is a function of qi and Qi, and it implicitly
defines a transformation between old coordinates, Qi, and new coord-
inates, qi. However, it’s a transformation that doesn’t cleanly separate
the new and old coordinates onto opposite sides of an equation but
mixes them up together on both sides of the equation. We would like
a transformation that doesn’t tangle up forward and backward but is
purely progressive and,moreover, progressive in time.33 That is, we desire
a transformation which expresses new coordinates purely in terms of
old coordinates, and all increasing continuously as time increases con-
tinuously. This is rather a special desire and it can only be met because
of three special factors:

(i) Continuity
At t, S implicitly defines a canonical transformation, CT, that

maps some starting position, say, Qi, into qi; whereas at the
neighbouring (slightly later) time t′, S′ implicitly defines CT′
that transforms the same starting position, Qi, into q′i which
neighbours qi (we have t′ = t+�t and q′i = qi +�qi where both
�t and�qi are small.34) In summary:

32 Relations (7.14) lead to paths that lie along the ‘momentum vector’, p, formed
by all the pi s. By the definition of momentum, p has the direction of the tangent to
the mechanical path, ensuring the perpendicularity of the ‘wavefronts’ and the ‘rays’ as
they leave the ‘wavefronts’. Likewise, the second set of equations in (7.14) lead to paths
that lie along P formed by all the Pi s, ensuring the perpendicularity of the ‘rays’ as they
arrive at the ‘wavefronts’.

33 As an analogy, consider geneology of the Greek Gods. We can jump backward and
forward in time and say “Hephaestus was the grandson of the son of the grandfather of
Zeus”, or, much better, we can say that “Uranus was the father of Cronus who was the
father of Zeus who was the father of Hephaestus”.

34 Notation: the prime indicates a transformed coordinate, not differentiation.
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At t, S implies CT which does Qi 	→qi
At t′, S′ implies CT′ which does Qi 	→q′i
S′ is close to S, t′ neighbours t, and q′i neighbours qi.

The crucial property of ‘neighbourliness’ follows from the fact
that S and S′ are continuous functions.

(ii) Canonicity and the group property
As mentioned earlier, S doesn’t define just any transform-

ation, it defines specifically a canonical transformation. It so
happens that canonical transformations satisfy the “group prop-
erty”.35 This means that if two transformations are canonical
then any composition of them will also be canonical. Also, if a
transformation is canonical then its inverse will be canonical. Of
relevance to our needs, the transformation qi 	→ q′i can be com-
posed of two others: the inverse transformation, [Qi 	→ qi]–1,
followed by the transformation, Qi 	→ q′i . These two are canon-
ical, so by the‘group property’ we are assured that qi 	→ q′i is also
canonical. In short, the transformation qi 	→ q′i may be written
as qi 	→ qi +�qi, and it is exactly what we require: it is canon-
ical, the arbitrary startingQi has disappeared, and qi is a ‘running
variable’, moving forward in time.

(iii) The pi 	→ qi transformation equations, (7.14)
Finally, using (7.14), everything we have just said about trans-

forming the qi s can be made to apply to the pi s as well, that is,
we can arrive at the canonical transformations pi 	→ pi +�pi.
(Once again, the arbitrary starting Pi has disappeared, and once
again, pi is a ‘running variable’, moving forward in time.)

Altogether we have:

qi 	→ qi +�qi

pi 	→ pi +�pi i = 1 to n (7.15)

These transformations are rather remarkable. They creep for-
ward in tiny - in the limit, infinitesimal - steps, and each point
of phase space is transformed - mapped - into a neighbour-
ing point. As they are infinitesimal and constantly canonical,

35 If this is unfamiliar, jump straight to the concluding sentence: “In short. . . forward
in time”.
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they are known as infinitesimal canonical transformations,
ICTs. Remarkably, the transformation itself can change at each
instant (through the dependence of S on t), and so we have an
infinite number of ICTs generating themotion of the phase fluid
in phase space. The outstanding property of an ICT is that it
leads to an explicitmapping - that is, the starting parameters are
on the left, the final parameters are on the right.

That’s not all. The qi and pi are running coordinates, as desired, but
now comes the coup de grâce. We’ve got rid of the arbitrary starting coord-
inates, Qi and Pi, but now we’d like to get rid of even our running
coordinates and end up with only relative coordinates,�qi and�pi. How
we achieve this is we form the difference S′-S, at two close times,�t, and
then allow�t to become infinitesimal.36 The mathematics is shown in
Appendix A7.8. We finally arrive at:

�qi = –
∂ [ ∂S
∂ t ]

∂pi
�t

�pi =
∂ [ ∂S
∂ t ]

∂qi
�t i = 1 to n (7.16)

The expression in square brackets is ∂S/∂ t. As S is an unknown function,
then so is ‘∂S/∂ t’ an unknown function, so let’s call itX - a good symbol
to represent something unknown. (Besides, ∂S/∂ t is messy and too tiny

36 In physics, even when you can’t say something absolute, you can often say some-
thing absolute about a difference. Also, it is often the case that certain final outcomes can
only be achieved by taking infinitesimal steps (for example, we have just found that for
CTs to be ‘progressive’ they must be ICTs). A totally different example occurs in the
case of rotations. A finite rotation of an object in everyday 3-D space can be made up of
a succession of infinitesimal rotations carried out in any order. However, for large rota-
tions, say through 90◦, then the order doesmake a difference. Try it right now! Put your
bookmark in, close this book, (or press pause on your e-book) and then carry out the fol-
lowing sequence of rotations: (i) 90◦ about the spine, then 90◦ about the base; and then
start again from fresh and carry out (ii) 90◦ about the base, then 90◦ about the spine.
The outcome is totally different in (i) and (ii). However, with a sequence of infinitesimal
rotations, the outcome will be identical, irrespective of the order. We begin to appreciate why
the ‘absolute geometry’, and Variational Mechanics, have to do with infinitesimals, in
particular, differentials.
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to read.) We can also remove the square brackets, and equations (7.16)
become:

�qi = –
∂X

∂pi
�t

�pi =
∂X

∂qi
�t i = 1 to n (7.17)

These equations have the same virtues as the “remarkable relation”
in Appendix A7.8: there are no absolute coordinates, only intervals
between coordinates; moreover these intervals are tiny; the time-
dependence is neatly together on one side. Finally, we divide both sides
by �t, and allow this time interval to become infinitesimal, and, hey
presto, we arrive at:

q̇i = –
∂X

∂pi

ṗi =
∂X

∂qi
i = 1 to n (7.18)

These remind us of Hamilton’s Canonical Equations, (7.9). In fact, if we
say that our mystery function, X, is equal to minus the Hamiltonian
function, H, then equations (7.18) are the Canonical Equations. In other
words, we have discovered that X = –H, and therefore that ∂S/∂ t =
X = –H, or:

∂S/∂ t + H = 0 (7.19)

This is sublime in its simplicity. In addition, we have at long last dis-
covered something about S. (Remember, H is a known function - derived
from prior knowledge of the given mechanical system, which is subject
to given constraints, and a given potential energy function, V.)
We are not done yet. S is a function of qi, Qi, and t, and so ∂S/∂ t

is, likewise, a function of qi, Qi, and t, but H is a function of qi and
pi (and possibly t) - all for i = 1 to n. However in one equation we
should stick to one space. We can either convert S into being a func-
tion of qi and pi, or convert H into being a function of qi and Qi. We
choose the latter conversion, as we aremost interested to find out about
how the ‘wavefronts’ are generated, and this occurs in configuration
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space.37 To achieve this we benefit from relations (7.14), and so wher-
ever pi occurs in H we replace it by ∂S/∂qi (this does the trick because S
and hence also ∂S/∂qi are functions of qi and Qi - but never pi). Thus, we
can write out equation (7.19) again, this time with the arguments of H
indicated:

Hamilton-Jacobi Equation

∂S/∂ t + H(qi, ∂S/∂qi; ; t) = 0 (7.20)

This is a landmark equation, discovered by Jacobi (between 1834 to 1837),
and is known as the ‘Hamilton-Jacobi Equation’. It is exactly what we
want - an equation that links together the Hamiltonian (the energy
function that determines the ‘dance’ between the pi s and the qi s) and
the ‘generating’ function, S (that determines how the ‘wavefronts’ -
surfaces of common action - move forward in time).
Let us pause to look at the geometric and physical meaning of this

equation. Which space are the surfaces of common action moving in?
As we have explained before, it is configuration space; we know this
by comparison with Hamilton’s Optical theory (see earlier footnote),
and because S depends on the qi s but not the pi s. Knowing what space
we’re in, let’s set the clock a-ticking and see what happens. We take
the starting S to be a constant, say, zero. The Hamilton-Jacobi equation
then determines that as t increases S spreads out, approximately radi-
ally, as one forward-moving surface propagated like a shock wave (cf.
the sound wave produced by an explosion). See Figure 7.5.
Why doesn’t the wavefront spread out symmetrically (that is, as per-

fect circles centred on the source)? It is because E – V is usually not
uniform over the whole space, so some ‘particles’ will be speeded up
or slowed down relative to other ‘particles’ (in Section 7.8, we will
learn that

√
2m(E – V), in mechanics, acts as a quasi ‘refractive index’).

One thing to note is that the surface, despite being called a wavefront,
has no wavy properties (it is not oscillatory, and has no frequency or
wavelength) - this also will be touched on in Section 7.8. Finally, we
ask: what of the Hamiltonian? We find that there are surfaces (strictly-
speaking, hyper-surfaces) of common H - but these occur in phase space.

37 See the discussion near the beginning of Section 7.3. It was there explained that the
wavefronts in optics are surfaces in everyday space, and so the wavefronts in mechanics
will be surfaces in configuration space which, exceptionally, reduces to everyday space.
(By contrast, phase space never reduces to everyday space.)
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Figure 7.5 Wavefront of common action in configuration space (adapted from
Brillouin L, Tensors in Mechanics and Elasticity, Academic Press (1964) Fig. VIII.4,
page 219.)

It is on these surfaces that the pi s and qi s perform their perpetual
‘dance’. In time-independent cases,H = E = constant, and we find that
there is a linear relation between the surfaces of constant action and
the surfaces of constant H (S = C – Et, where C is a constant, the
surface-of-constant-action at time t).
If we can find out what functional form S has, then we can deter-

mine first the ∂S/∂qi, then the pi s, and then the trajectories. In other
words, knowledge of the function S completely solves the mechanical
problem. But this is a bit like saying: if we had the answer, we’d have
the answer - so, how can we obtain this function, this ‘open sesame’ of
mechanics? We started off this section saying that mechanics was tan-
tamount to finding the solution to n equations of motion, qi = qi(t),
each having one independent variable, t, whereas now equation (7.20) has
brought us to an extraordinary turnaround: our quest is turned inside-
out and we desire to solve just one equation, with just one dependent
variable, S, but n independent variables, qi, (plus also the time, t).
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Despite there being only one dependent variable, equation (7.20) is
a partial differential equation, and - as we have just admitted - it is
not easy to solve (in Hamilton’s original version, involving two sim-
ultaneous partial differential equations,38 it is a well nigh impossible
problem to solve). In only a very few cases can a complete solution
to the Hamilton-Jacobi equation be obtained. We work through two
examples in Appendix A7.10. The examples have been adapted from
Herbert Goldstein’s classic text, “Classical Mechanics”, and, as Goldstein
says, it is a case of “using a sledgehammer to crack a peanut”.39 The
trouble is that this method can only be used in very simple problems
- just exactly those problems where easier methods are available. The
truemotivation for using the Hamilton-Jacobi approach is for the phys-
ical insights to be learned. Themost famous will be discussed in the next
section. For now, we end with a brief mention of time.
‘Time’ and ‘energy’ are two subtle concepts in physics. We have

already seen how inHamilton’sMechanics the energy function,H, takes
centre stage.40 We are about to learn something more. In the ‘extended
phase space’, where t is re-branded as the (n + 1)th position coordin-
ate, qn+1 (see Section 7.6 and Appendix A7.5), we can ask “what is the
conjugate momentum associated with qn+1?” From equations (7.14) we
have pn+1 = ∂S/∂qn+1, but this may alternatively be written pt = ∂S/∂ t.
Now, from the Hamilton-Jacobi equation, we know that ∂S/∂ t = –H.
Putting the two together, we find that pt = –H. Therefore, saying ‘pt
is conjugate to t’ is the same as saying ‘–H is conjugate to t’, or, in
other words, ‘–energy’ and ‘time’ are conjugates of each other.41 Confirmation of
this startling liaison comes from the fact that energy×time has units
of action, but we can push our understanding even further. Not only
does ‘time’ often act as a ‘running coordinate’, but a ‘running coord-
inate’ stripped bare of all other duties. It is then hardly surprising that
its conjugate coordinate has structure and extensivity galore - it is the
energy.

38 Lanczos, page 227, equations (79.20).
39 Goldstein H, Classical Mechanics, 2nd Edition, Addison-Wesley, 1980. Goldstein

makes this comparison when solving a simple problem with canonical transformation
theory.

40 (see the comments about H in Section 7.5)
41 Furthermore, when t is ‘ignorable’ (the system doesn’t depend on time) then pt,

the energy, is constant - as expected.
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7.9 The royal road to quantummechanics42

“Put off thy shoes from off thy feet, for the place whereon thou
standest is holy ground.” 43

Old Testament, EXODUS III, 5

From Hamilton’s original insight of the fundamental identity between
optics andmechanics came eventually (a hundred years later) the wave-
particle duality, and quantum mechanics. (There were, of course, new
experimental phenomena and additional physics postulates that were
required for this next development.) Let us follow how each theory
(optics and mechanics) helped the other one along, and how quantum
mechanics emerged.
Some 150 years before Hamilton, during the time when the cor-

puscular theory of light held sway, the Dutch diplomat and natural
philosopher, Christiaan Huygens (we have met him in Chapter 2), put
forward a wave theory of light. He proposed, in (1678), in the Huygens
Principle, that every point on a surface-of-simultaneous-arrival of light
acts as a secondary source of light. These infinite number of adjacent
sources emit the light (forward44) in all directions. At the next instant
of time, the new surface-of-simultaneous-arrival - or ‘wavefront’ - is the
envelope of all these secondarywavelets. From this newwavefront there
will be another infinity of light-sources, producing another infinity
of wavelets, and the next wavefront may be constructed - and so on,
and so on (see Figure 7.6).
From Section 7.8 we see that Huygens Principle is also the basis

for constructing the wavefronts-of-common-action that occur in
Hamilton’s Mechanics. Staying first with optics, we zoom in and scatter
little hypothetical ‘porcupine quills’ over a wavefront, each one per-
pendicular to the surface, and each representing the path of a light
ray. Suppose we wish to find out what will be the new surface after a
small interval of time, say, ε time. How we find this out is we mark off
the small distance, �(light), travelled by light along a quill during the

42 The quote has been adapted from “A royal road to quantization”, Arnold
Sommerfeld, as in Goldstein H, Classical Mechanics, page 483.

43 As quoted in Lanczos, page 229. Regardless of religious beliefs, one is moved by the
cultural freight of these words, written around two thousand five hundred years ago.

44 The Principle does not explain why the wavefronts aren’t also generated to move
backward.
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Δ(light) = vt

= c
n ∈time

vt

Figure 7.6 Huygens’s wavelets.

time ε time. We do the same thing for many quills (rays), always start-
ing from the same starting wavefront, and always for the same time
interval, ε time. The magnitude of�(light) along a given quill is evidently
governed by the local speed of light, itself determined by the refract-
ive index, n(x, y, z), of the optical medium in the vicinity of that quill.
Finally, we join up all the ray-tips, and and together they define the
new wavefront-surface.
It’s a similar procedure in mechanics. We have some agreed start-

ing wavefront,Wstart, and then we scatter little hypothetical ‘porcupine
quills’ over it, each quill perpendicular to the wavefront, and each one rep-
resenting a mechanical ‘ray’. We want to find out what will be the new
wavefront after a small interval of action, εaction, and so we mark off
the small distance, �(particle), travelled along the quill, starting from
Wstart, ‘during’ εaction. Now our interval, εaction, is the same whatever ray
(quill) we’re following, but the increment travelled along the ray (the
magnitude of�(particle)) will be different for each ray, governed by the
‘refractive index’ in that local vicinity. Finally, we join up the tips of the
rays, and together they define the newwavefront,Wnew = Wstart + εaction.
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Wstart + ∈action

Wstart

Δ(particle) ∝ εaction

v

∝ εaction

n

Figure 7.7 Construction of the next wavefront.

These wavefront constructions are governed, ultimately, by equa-
tions. We know that in mechanics we have the Hamilton-Jacobi equation,
but now we ask - is there an equivalent (first-order, partial differen-
tial) equation that generates the surfaces in optics? Yes, there is such an
equation in geometrical optics, it is called the Eikonal Equation (see
Appendix A7.11). This Appendix is optional reading, but we transport
a result back into the main text. It is that in mechanics, as we have
already hinted, wemay imagine that the ‘rays’ pass through a hypothet-
ical medium with a certain ‘refractive index’: we can now state that (in
conservative cases) this hypothetical ‘refractive index’ is proportional to√
2m(E – V).
A historically startling fact: It is humbling to learn that over three

hundred years ago the Swiss mathematician, Johann Bernoulli (him
of the brachystochrone curve, and the Principle of Virtual Work, see
Chapter 2), treated the motion of a particle of constant mass m falling
under gravity as if the particle was a quasi light-ray moving through a
fictitious mediumwith a gently graduated refractive index. He took the
refractive index to be proportional to

√
(E – V).
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Despite this close analogy between optics and mechanics, it is not
perfect - after all, light and massy particles are not the same. The
analogy holds good when it concerns the paths, but not when it con-
cerns how fast the particles travel along those paths. We know that, in
the usual way, the distance, �(light), travelled by light during a given
time-interval, ε time, is proportional to the speed of light; however, in
mechanics, the ‘distance’, �(particle), travelled along a ‘ray’ during a
given εaction is inversely proportional to the speed of that particle. (So, in
mechanics, the wavefronts are closer together the faster the particles,
while in optics the wavefronts are further apart the faster the light.)
There are some other caveats which we give below as optional extra
information.

Optional Commentary

Caveats of the ‘ray property’

(1) Whether in optics or mechanics, we preselect for consider-
ation rays that already are perpendicular to the wavefront.

(2) We preselect for our consideration only rays that are mono-
chromatic (optics), or monoenergetic (mechanics).

(3) We preselect rays that are perpendicular, yes, but not neces-
sarily in the Euclidean sense. (For example, for most crystals,
the light rays are not usually orthogonal to the surfaces; and
an electron moving in a magnetic field does not cross the
surfaces S = constant perpendicularly.) However, the orthog-
onality is restored if we think in terms of ‘intrinsic’ rather
than Euclidean geometry.

(4) The optics ‘field’ is static (the shape of the lenses and mirrors,
and their refractive indices, are fixed), but this isn’t generally
true for mechanics.

We have an even bigger caveat than all those above - it is that the
whole of geometrical optics is only an approximation to the truth. We
learn the laws of geometrical optics in high school (the laws of reflection
and refraction of rays, how to draw little diagrams showing upside-
down trees in order to determine focal length, and so on). What is often
not emphasized is that all these laws are only approximate. They only
apply when the angular spread of rays in a beam is ‘small’, and when
the wavelengths are infinitesimal. (This makes sense - it is exactly in
the case when the wavelengths are insignificant that ray-like behaviour
predominates.)
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So, we have rays, and we have wavefronts, but what about the actual
waviness of waves - properties like periodicity, frequency, wavelength,
and superposition? All these attributes come in when we go over into
the theory known as physical optics.45

In physical optics we assume that the optical disturbance is not
merely a ray but a wave - having an oscillatory (up and down) amp-
litude, and having a definite frequency, ν. The wavefronts then become
surfaces of equal phase (for example, wemightwatch the verywavecrest as
it moves along). Therefore, instead of having surfaces-of-simultaneous-
arrival-time, say, φ, we now have surfaces-of-given-phase, say, φ̄, such
that φ̄ = νφ. Now, from the theory of geometric optics, there is an
equation for φ (see Appendix A7.11), and we learn that |∇φ|2 =
1/(speed)2, and so this will become: |∇φ̄|2 = ν2|∇φ|2 = ν2/(speed)2.
Here, (speed) is the speed of the wave-surface, but we also know (from
the usual theory of waves) that (speed) = νλ, where λ is the wavelength
of the wave. Putting this altogether, we find that: |∇φ̄|2 = 1/λ2.
Everything in the previous paragraph relates to optics. Let us now

employ Hamilton’s optico-mechanical analogy and shift the discussion
into the realm of mechanics. Specifically, we consider the case of an
electron in orbit around the atomic nucleus. An electron is a particle,
but we will forget about this, for the moment, and consider only its
path around the nucleus. Moreover, we’ll consider its path as a kind
of ‘light ray’.
The path is a closed orbit, and therefore, in order not to have destruc-

tive interference of the ‘light ray’, the orbit must be made up from a
whole number of wavelengths. This is equivalent to saying that the
phase change between the beginning and end of the orbit must be pro-
portional to awhole number,�φ̄ = 1, 2, 3, . . .We canword this another
way: the phase change,�φ̄, can only take on certain discrete allowed val-
ues. At this stage of the history of physics, various experimental results
to do with atoms came into the theory:46 it was found that in the
atomic regime certain physical features were always found to have tiny
discrete values, or ‘quanta’ (the physical features were said to be quant-
ized). There were Bohr’s quantized energy levels, and Sommerfeld’s and

45 (Physical optics is a more correct theory than geometrical optics, but it is still not
the last word - for that we need Maxwell’s equations, and we need to allow for the
possibility of vector fields.)

46 (Of course, one cannot arrive at quantum mechanics wholly from Hamilton’s
Mechanics.)
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Wilson’s quantized orbit-areas in phase space. Then Einstein came into
the story, with his unearthly ability to get to the heart of a problem.
Sommerfeld’s and Wilson’s results depended on having a special choice
of coordinate system, but Einstein saw that the truly fundamental par-
ameter was a sum over the total action, S, and using this knowledge he
could remove the dependence on an arbitrary choice of coordinates,
and arrive at an invariant outcome. (How this comes about is explained
in Appendix A7.12. Strange to say, but Einstein’s vital contribution to
the transition from Hamilton to Schrödinger has been almost entirely
forgotten.) This is the same S as occurs in theHamilton-Jacobi Equation,
and it is proportional to the phase, S = hφ̄, where h is a constant of pro-
portionality. In short, the condition�φ̄ = 1, 2, 3, . . . in ‘electron-optics’
becomes �S = h, 2h, 3h, . . . in ‘atom-mechanics’, and also, the relation
|∇φ̄|2 = 1

λ2
becomes |∇S|2 = h2

λ2
.47 But we also know that |∇S|2 =

2m(E – V) (we showed this earlier in Appendix A7.11). Furthermore,
in the case where E = T + V then (E – V) = T = 1

2mv
2 (where v is the

speed of the electron and m is its mass). Putting this altogether we have:
|∇S|2 = m2v2 = h2

λ2
. Taking the (positive) square root, and rearranging,

we finally arrive at a famous result:

‘de Broglie wavelength’, λ =
h

mv
(7.21)

What this equation states is that a particle of momentum, mv, may be
considered as a wave, with wavelength, λ, - the celebrated wave-particle
duality. This result was postulated by the French physicist, Louis de
Broglie, in 1923 (and published in 1924), after an inspiredmerging of the-
ory and experimental findings.48 The postulate applies to all particles
(not just to electrons), and also applies in reverse - any radiation will
have a corresponding momentum. Why do we not associate a billiard
ball with a corresponding wave? Ah, it’s all to do with that constant of
proportionality, h. We mentioned it earlier, in passing, but never said
what it’s magnitude was. It turns out that h is more than just a ‘con-
stant of proportionality’, it is Planck’s Constant,49 a universal constant,

47 Note that�means ‘a small increment’, and∇ (called del, or grad) is an operator
in vector calculus.

48 The main experimental result was Einstein’s photoelectric effect in 1905.
49 Max Planck, (1858–1947), discovered (somewhat reluctantly) that the radiation

emitted by a ‘black body’ was quantized, E = hν. (By the way, it wasn’t Planck who
attached his name to h.)
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having a magnitude that can be experimentally determined. It is: h =
6.62607004× 10–34 Js. This very very small magnitude means that the
wavelengths in (7.21) are very very small - especially in comparisonwith
the typical ‘mv’ for a billiard ball - and that’s why a billiard ball doesn’t
do wavy things.
We have admitted that geometrical optics applies only in the case of

vanishingly small wavelengths. However, it is the low-λ limit of a more
accurate and general theory - one which applies also to finite λ. The
more general and accurate theory is a theory in physical optics, and
it uses a ‘wave equation’ discovered by the French physicist Augustin-
Jean Fresnel (1788–1827).50 Now the pertinent question is: inmechanics,
might it be that the Hamilton-Jacobi equation is, likewise, the low-
λ limit of a more accurate theory? That is to say, is there another
‘wave equation’, the mechanical counterpart of the Fresnel equation,
and which accounts for certain mechanical phenomena when λ is
finite?51 Yes, there is such a ‘wave equation’ in mechanics - it is known
as the Schrödinger Equation.52 This is it, this is the point where quan-
tum mechanics throws a rope bridge to classical mechanics, across the
chasm.
The Schrödinger Equation is a famous equation, the foundation of

‘wavemechanics’ also known as ‘quantummechanics’. (This is the same
Schrödinger who we quoted in Section 7.4, praising Hamilton, and ‘the
Hamiltonian’.) Now Fresnel’s Equation is an equation in optics, and it is
a function of the phase of the wave, φ, whereas Schrödinger put forward
a (time-independent) wave equation dependent on the amplitude of the
wave. He called this amplitudeψ .
There is the intriguing question: how does Schrödinger’sψ function

tell us where the particle is - in other words, what is it that’s waving?
When it comes to light, it is the intensity (the amplitude squared) of the
oscillating electric and magnetic fields at position, x, which determines
the intensity of the light at x (we simplify the discussion by consider-
ing just one space dimension, x). A clue, in quantummechanics, comes
from a curious fact: the speed of a particle is not the same as the speed

50 The wave equation is: ∂2φ
∂x2

+ ∂2φ
∂y2

+ ∂2φ
∂z2

– n2

c2
∂2φ
∂ t2

= 0. To honour Fresnel,

Lanczos refers to this as ‘Fresnel’s Equation’.
51 (although λ would still have to be ‘small’ - crucially, of the same order of

magnitude as ‘mv’)
52 Erwin Schrödinger (1887–1961), Equation: ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ 8mπ2

h2
(E –

V)ψ = 0.



182 The Lazy Universe

of its wave.53 Now it is well known that the speed of an infinitely long
wave (a perfect sin or cos wave) is given byλν whereλ is the wavelength
and ν is the frequency. However, a perfect wave, defined by just one ν,
never exists in nature (just like we never have a perfect point or a perfect
line). In practice we always have a small spread of ν s, and then sum-
ming over the amplitude-contributions from all these ν s we can end
up with a wave that is not infinitely long but forms a localized bump or
‘wave-packet’,ψ(x), centred at x. (It is essential thatψ has the property
of superposition, that is, it can be added, and then the different contri-
butions can combine constructively or destructively.) It turns out that
the speed of this wave-packet is identical to the particle’s speed. This sug-
gests that maybe the wave-packet, taken as a whole (ignoring internal
details), is the particle? Yes - and it also turns out that the intensity of
the wave-packet, |ψ(x)|2, tells us the probability of finding the particle
at the position, x. We shall have more to say about quantum mechan-
ics in the next chapter, but it must be admitted that everything in this
last paragraph arises from purely quantum effects rather than from an
extension of Hamilton’s Mechanics.

53 (We have met this recently, soon after Figure 7.7 - the speed of the wavefronts, S,
is not the same as the speed of the ‘particles’ along the perpendicular ‘rays’.)
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The whole of physics

We give a broad survey, at a semi-popular and qualitative level, of how
the Principle of Least Action and the Variational Mechanics come into
all of physics. One everyday example occurs in a modern wonder - the
smartphone. Instead of measuring positions and angles in the old way
using sightlines (relative to a presumed ‘absolute space’), the phone
contains three tiny accelerometers and measures tiny motions in three
directions of the local gravity-field - a testimony to the approach taken
in Variational Mechanics.

8.1 Classical mechanics
Before we can analyse a given problem we must first identify what are
the ‘particles’, and what are the independent ‘motions’ they undergo.
Then, we must supply the functional forms of the kinetic and potential
energies. After this homework, an amazing simplicity follows. The sys-
tem follows that path through time, between prescribed initial and final
states (never very far apart), that minimizes the difference between the
kinetic and potential energies - uses up the least action. For example, the
rotating swing-seats at the funfair finely adjust their height so that they
achieve exactly the right balance between kinetic and potential energy,
at each instant. Also, a ball thrown vertically up against gravity adjusts
its speed and height, instant by instant, so that again exactly the right
balance is struck between an increasing potential energy and a decreas-
ing kinetic energy as it rises, and between a decreasing potential energy
and an increasing kinetic energy as it falls.
For free ‘particles’ (there are no external forces), it is possible to con-

sider the constraints as introducing a ‘curvature’ into ‘space’. If the
constraints are static (unchanging through time) then the ‘particles’
follow the ‘straightest lines’ - the geodesics - of this ‘curved space’.
We have said many times that the Principle of Least Action cannot

deal with dissipative effects. However, this is entirely a question of the
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formalism: if the effect can be expressed in the form of a function, then
it can be incorporated into Variational Mechanics. (For example, Lord
Rayleigh, in 1873, proposed a functional form for velocity-dependent
frictional forces.) Whenever such a dissipation function is used, it has
the effect of bringing a ‘right-hand side’ into the Lagrange Equations
(see Appendix A6.5).

8.2 Light and electromagnetic waves
It is one of the founding tenets of Special Relativity that the speed of
light (in a vacuum) is a constant - but let us change the emphasis to
throw relevance toward the Principle of Least Action: light is the limiting
speed at which any signal can be transmitted. It is hardly surprising,
therefore, that light will exhibit extremal behaviour (cf. the Principle of
Least Time, which is a version of the Principle of Least Action, andwhich
leads to the laws of reflection and refraction of light).
Consider electromagnetic waves (light is an example). We have an

electrical oscillation which generates a magnetic oscillation which gen-
erates an electric oscillation and so on and so on (in accordance with
Maxwell’s Equations). It would not do for the electric and magnetic
oscillations to get out of step - they could generate each other to infinity
or cancel each other out to zero, both very unphysical outcomes. The
extent to which each generates the other depends on the rate of change
of each, and so, in order not to get out of step, the electric oscillations
and themagnetic oscillationsmust travel at the same speed and just the
right speed - the speed of light, of course. Another equivalent way of
saying this is that the total action must be minimized.

8.3 Special Relativity (SR)
SR requires that the speed of light (c) is a universal constant, but as c
is still just a speed then it is still defined in the usual ‘speedy’ way as
‘distance over time’. However, as c is an absolute, then it is evident that
distances and times must now relinquish this status. The consequences
are profound: ‘space’ becomes four-dimensional - it’s known as space-
time; moving clocks run slow; moving rulers may shrink; and, most
amazing of all, energy and mass are equivalent, E = mc2.



The whole of physics 185

Something that is invariant (the same for all observers) is the ‘distance
interval’, ds,1 between ‘events’. An ‘event’ is a location in spacetime,
often selected to mark a special happening such as a birth, an explo-
sion, or the start and end of a given particle’s worldline. ds onlymanages
to be invariant by mixing up space and time in the following way:
(ds)2 = [ (�position)2 – (�time)2 ]. (This is in units where c = 1.) From this
defining equation, we find that (other things being equal) ds is smaller
as (�position) is smaller, and smaller as (�time) is larger. Here comes the
clever bit: by considering everything from the point of view of the rest
frame, rf , then �(position)rf is definitionally zero, and so ds ≡ �(time)rf ,
and furthermore �(time)rf is automatically a maximum (non-moving
clocks run fastest of all). (A ‘clock’ could be an excited caesium atom, a
person, a decaying muon, and so on.) Time in the rest frame is called
proper time and symbolized, τ , and so with this notation we obtain
ds ≡ �(time)rf ≡ �τ . Also, we pass from the finite interval, �τ , to its
differential version, dτ .
We now inject a result from Special Relativity. It is that the

Lagrangian for a free uncharged particle of rest mass m0 has the form
L = –m0c2dτ /dt. (As mentioned at the end of Chapter 7, we can’t answer
to all physics from the Principle of Least Action alone). This means that
the action integral becomes A =

∫
–m0c2dτ , taken between events at

τstart and τstart. Notice an important fact: because of the minus sign in
the Lagrangian then minimizing action, A, is equivalent to maximiz-
ing proper time, τ (the multiplying factor, m0c2, is a constant). In short,
the Principle of Least Action has been translated into the Principle of
Maximum Ageing.
An objection: by choosing the rest frame, haven’t we gone against the

spirit of the Principle of Relativity and selected a special reference frame?
In a sense, yes, but it’s an unambiguous choice, and different obser-
vers can still determine and agree upon the elapsed time that would be
displayed on a clock in their own frame of reference. Evenmore import-
ant, by the Principle of Relativity, the outcomes are transportable and
apply in all other (valid) reference frames. This is consonant with our
experience: we find that the world-line with the maximal ageing is the

1 This is the ‘metric’ or Riemann distance function, ds, that we mentioned in
Section 3.6, Chapter 3.
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one chosen in nature - things age, they do not ‘youthify’.2 This everyday
observation comes from a totally different arena of physics - the Second
Law of Thermodynamics. Now as the Second Law is an empirical law, it
doesn’t prove the case - but it is hard to see how the Second Law could
ever have emerged from a Principle of Least Ageing. One other objec-
tion: how can we go from a minimization problem to a maximization
problem? The ‘trick’ is explained in an analogy - the twins’ conundrum.
Jack wants to prove to Jill that his bicycle is the slowest - but how can
anyone ride as slowly as possible? Jill comes up with a solution: knowing
that one can’t ride slowest, they must swap bikes and each try and ride
the fastest.

8.4 Electrodynamics
Everything in 8.3 applies again, and this is hardly surprising as
Einstein’s landmark 1905 paper introducing Special Relativity was
entitled “Electrodynamics of moving bodies”. We mention electrodynamics
here mainly to note that it is the first arena in which the potential
energy, V, does depend on velocity (the velocity of an electric charge
in a magnetic field), and, by the way, it is thereby the first arena in
which Newtonian Mechanics fails. The kinetic energy, T, must also be
defined in a new generalized way (the mass is no longer a constant, and
the form is no longer purely ‘quadratic’ in the speeds). The Principle of
Least Action carries on as usual - it is only necessary to ensure that the
Lagrangian is of the appropriate ‘covariant’ form.
Finally, there is in electrodynamics an empirical law (really a ‘rule

of thumb’), known as Lenz’s Law, which finds its true explanation in
the Principle of Least Action. Lenz’s Law states that the direction of an
induced current is always such as to oppose the change which produced
it. For example: drop a permanently magnetized iron pellet down the
shaft of an upright piece of copper pipe, and you will find that the des-
cent of the magnet is noticeably slower than when dropped outside the
pipe. The explanation is that the electric currents induced in the pipe
have associated magnetic fields which retard the magnet’s motion. Yes,
but the bigger explanation is that these various microscopic responses
happen in just the right way such as to guarantee the Principle of Least
Action.

2 (There is no word because this never happens.)
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8.5 General Relativity, Einstein’s Theory
of Gravitation (GR)

The spacetime of SR is ‘flat’ whereas in GR there are large energy-
sources, and large momenta, and these distort spacetime, making it
‘curved’. The Principle of Maximum Ageing applies as before, even in
the vicinity of a star, neutron star, or black hole: that is, a freely-falling
body follows the path ofmaximumproper time (between given events),
even in this curved spacetime. The result is amazing - gravity is totally
explained by geometry, without need of a force.
One difference from SR is that the proper time is now not only

influenced by motion (‘moving clocks run slow’) but also by sources
of gravity (‘clocks near a very large mass run slow’). Consider a wrist-
watch in orbit around Earth. If it is displaced to a slightly smaller radius
its orbital speed will be greater but time will be more dilated whereas
for a slightly larger radius its orbital speed will be slower but time
will be less dilated. The time dilation (from both SR and GR) and the
orbital speed act in opposition. The actual orbit is the one along which
wristwatch-time is stationary - maximized.
We have stressed again and again that the start- and end-states in the

action integral must be ‘close together’, but what if one wants to exam-
ine vast tracts of ‘space’ (in other words, what if one wants to arrive
at a global theory)? The remedy in Einstein’s Gravitation Theory is to
cover ‘space’ with a patchwork of small regions, and then stitch them
together, with no ‘puckering’ at the joins. Themore strongly the space-
time is curved, the smaller the local reference frames must be. Thus,
instead of one reference frame of infinite extent and Newton’s Law of
Gravity, we have a multitude of reference frames of only local extent,
and the Principle of Maximum Ageing. This is more philosophically
correct, and means that even strongly curved regions can be explored
(where Newton’s Mechanics would break down).
Einstein’s Theory of Gravitation (and Variational Mechanics) is yet

more remarkable: it is a complete theory, that is, it not only tells how
bodies will move due to the curvature of spacetime, but also how that
curvature is generated. Instead of one vectorial ‘force of gravity’ there
are many scalar contributions at every point in a ‘field’. These con-
tributions are summarized neatly in a mathematical object called a
tensor, known as the ‘stress energy momentum’ tensor. Why not just
mass being the source of gravity? It is because of Einstein’s mass-energy
equivalence (so mass alone doesn’t cover all possibilities), which in turn
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arose out of the need for ‘Relativity’ between observers. The sources of
gravity are: energy density, momentum density, and stress (a bit like
pressure). Strange to say, but it’s the same in materials science - there
is a stress energy tensor which determines how a slab of some material
may shear, bend, twist, or stretch (all deviations from the Newtonian
assumption of rigidity). One can even say that materials science has a
family connection with Einstein’s Gravitation Theory.

8.6 Hydrodynamics
In view of the parallels between real fluids and the phase fluid
(Section 7.5) it is hardly surprising that the methods of variational
mechanics can be applied in hydrodynamics and hydrostatics. However,
the fluids (which could include gases) must be ‘ideal’, that is, they must
not have any viscosity. This is because viscosity would introduce fric-
tional effects, and these cannot easily be treated by variational methods.
The advantage of using variational mechanics is that it is not neces-

sary to know the forces that maintain certain kinematical conditions.
For example, there may be strong forces that prevent the molecules of
a fluid from being squashed close together, and weak forces resisting a
change in shape of a given volume-element of fluid. We don’t need to
know either of these forces, we can simply assert (have as our ‘kinematic
condition’) that the volume of the fluid remains constant.

8.7 Statistical mechanics
In classical mechanics we can usually use the Principle of Least Action
directly because we have perfect information about the system (apart
from knowing the solutions, of course). In statistical mechanics, how-
ever, we have verymany degrees of freedom, andwe do not have perfect
information. For example, we may wish to determine the velocity of
molecules in a gas at some time in the future, but as there are trillions
upon trillions of molecules (for example, around 1025 in a glass of water
including ice cubes) then it is impossible to know the positions and
velocities of every one of these molecules, either now or at any other
time. An entirely different strategy must be adopted. The phase space
is perfect for the job, and it was the American physicist and physical
chemist, Willard Gibbs (1839–1903), who realized this, and who indeed
coined the term, phase space, and founded the branch of physics known
as statistical mechanics.
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In statistical mechanics, we give up trying to follow the precise
changes of state in one system, and look instead at the range of possi-
bilities in a very large collection (‘ensemble’) of hypothetical identical
systems (identical apart from the question of what state they’re in). The
distribution of states is plotted in phase space, and for each distinct pos-
sible state of the system there is a unique point of the space. Finally, from
an examination of the behaviour of the whole ensemble, we can make
predictions of what may be expected, on average, for the one system of
interest.
Note that, in hydrodynamics, statistical mechanics, physical chemis-

try, and so on, there are so very many degrees of freedom (for example,
around 1027 air molecules in a typical room) that Hamilton’s doubling
of coordinates (say, from 1027 to 2× 1027) is no big disadvantage.

8.8 The quantum world
In common with statistical mechanics, in the quantum world we are
always dealing with imperfect information. In fact, despite the incred-
ible success of our theories (for example, the precision and agreement
with experiment of quantum electrodynamics is outstanding and with-
out parallel in the whole of physics), hardly any of the problems are
capable of exact solution. Fortunately, the Hamiltonian often differs
only slightly from the Hamiltonian for the rigorously solvable prob-
lem, and then it becomes possible to use certain well-tried methods of
approximation, such as ‘canonical perturbation theory’.
But let’s step back and ask - what is quantum mechanics? Suppose

we have the physical laws describing billiard-ball collisions, and then
we scale down the billiard balls to 3

4 -size and use a
3
4 -size billiards table

and a 3
4 -size cue - we should still expect those same laws to apply. What

if we scale down by 0.1? 0.01? 0.001? Will the same laws still apply? Of
course, we shall have to attend more and more carefully to things like
air-resistance, and the roughness of the baize, and so on, but we have
the feeling that we should be able to keep scaling down - after all, the
laws have ‘m’ for mass, they do not specify a mass range of, say, 0.15-
0.17 kg. We can make things smaller, and smaller, but eventually we do
arrive at a different regime, a regime where the old laws don’t apply,
and where a new ‘mechanics’ must be used. We could say that quantum
mechanics defines that regime where things are not just smaller, they
are absolutely small. The next question is: how small is absolutely small?
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Ah, we know this fromwhere Hamilton’s optical analogy goes over into
Schrödinger’s WaveMechanics. This occurs when the dimensions in the
problem are smaller than, or of the order of, that constant of propor-
tionality, h. (Looking back at Chapter 7, we can remind ourselves that h is
the proportionality between the action and phase surfaces, S and φ; and
the constant of proportionality between λ and 1/p in de Broglie’s ‘wave-
particle duality’; and also h is the proportionality between the energy, E,
and the radiation frequency, ν (as found in the relation, E = hν).) As we
mentioned in Chapter 7, h is tiny (it has a value of 6.62607004× 10–34 Js),
and so this is where ‘absolutely small’ begins. But let us notice another
thing about this crucial arbiter of smallness - its units are the units of action.
‘Action’ comes into the quantum world in so many ways (and

remember that, from Hamilton’s optical analogy, we have learned that
quantum mechanics is the true accurate theory, to which classical
mechanics is a mere approximation.) Apart from those already noted, it
gives the order ofmagnitude of the discrete chunks - known as ‘quanta’.
For example, the energy of the radiation emitted by a ‘black body’ (the
Planck relationmentioned above), and the allowed energies for an elec-
tron in an atom. (We are familiar with these ideas now, but they were
shocking and revolutionary at the beginning - a bit like saying someone
is only allowed to run at certain speeds.) The action, in the form h/2π ,
also occurs in the Heisenberg Uncertainty Relationship, and here it sets
the limit of precision to which the conjugate coordinates (momentum
and position; or energy and time) can be determined simultaneously for one
particle. It also occurs in the Dirac commutator relations (discovered by
the British theoretical physicist, Paul Dirac (1902–84)) which show that
the order in which measurements of these conjugate coordinates are
carried out does make a difference - a tiny difference of magnitude h/2π .
Never again, post quantummechanics, can there be any doubt about

the deep significance of action in physics. Moreover, there is a version
of quantum mechanics (strictly speaking, quantum electrodynamics)
which uses the Principle of Least Action directly, albeit with a quantum-
mechanical twist. This is the ‘many paths’ theory of Feynman.3 In this
theory, the quantum particle (be it a photon, a positron, an electron,
and so on) goes from an initial event to a (nearby) later event along

3 Feynman R P, and Hibbs A R, Quantum Mechanical Path Integrals, McGraw-Hill, 1965;
Feynman’s brilliant popular account, QED: The Strange Theory of Light and Matter, Princeton
University Press 1985.
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each and every path - there’s an infinity of them (shades of Huygens
Principle). The final amplitude is found by adding up the contribu-
tions from all these alternative paths. However, as the different paths
have different lengths, then the phase-advance will be different and not
necessarily equal to a whole number of wavelengths, and so the waves
will not arrive in step. Only a very few nearby paths will add coher-
ently and contribute significantly to the final amplitude;most pathswill
add destructively and yield no net contribution. (As Freeman Dyson
reported it:4 “Dick Feynman told me. . . “The electron does anything it
likes. . . It just goes in any direction at any speed. . . however it likes, and
then you add up the amplitude and it gives you the wave-function.” I
said to him, “You’re crazy.” But he wasn’t.”) Feynman’s beautifully sim-
ple theory not only agrees very precisely with experiment but explains
away the teleological objection - that the particle doesn’t ‘know’ which
path to follow - wrong, it follows all paths. Also, the theory goes over
into the classical limit: for massive particles, say, a football moving at 10
ms–1, the wavelength is so miniscule (around 10–34 m) that there isn’t
the remotest hope for paths to interfere constructively - only one path
survives, the very path predicted by the Principle of Least Action.

4 Reference 13 in Edwin F Taylor’s “A call to action”; see Taylor’s excellent website,
www.eftaylor.com.
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Final words

“We have done considerable mountain climbing. Now we are in
the rarified atmosphere of theories of excessive beauty. . . ”

Cornelius Lanczos1

The Principle of Least Action postulates that when a physical system
goes from a prescribed initial state to a nearby prescribed later state, the
path connecting these states is a path of tiny incremental changes in
action, and, of all possible paths, the path actually followed is the one
for which the total change in action has exactly the same value as it
does for all infinitesimally close-by paths - in other words, the actual
path occurs in a ‘flat’ region of the ‘space-of-paths’. This is a mouthful,
muchmore so than ‘F = ma’, but if we ever do discover a ‘TOE’ (Theory
of Everything), expressible as one long equation, then you can be sure
that every term in that equation will require a whole library of books to
explain it.
Granted that we have to do with a minimum principle, there are two

main inputs into the Principle of Least Action postulate. There is the
physics input - that what we are minimizing is in fact action; and there
is the mathematics input - that determines what in fact is the ‘shortest
path’ for a given ‘space’. There is even a third input - the requirement
of philosophical fitness. We discuss these inputs in turn.
The physics input. This asserts that it is ‘action’ which is the primal

physical quantity. This is plausible because action is connected with the
all-important energy functions (the kinetic energy, and the potential
energy, V); it is the telltale of absolute smallness (where the quan-
tum world begins); and it is made out of the two conjugate variables,
p and q. That these conjugate coordinates are the definitive ones is dem-
onstrated in countless scenarios. For example, take the cases of: (i) a gas
expanding to fill its container, (ii) the clumping of cosmic matter into
stars and planets - do (i) and (ii) contradict each other? No, because the

1 Lanczos, page 229.

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001
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stars and planets are gravity-wells, and although the matter is confined
spatially within a well (that is, the spread in q values is small), the speeds,
corresponding to the p values, increase as matter falls into the well (and
so the spread in p values is large). Furthermore, from the Second Law of
Thermodynamics, we know that the increase in the p s - a sort of ‘heat’ -
more than compensates for the confinement of the q s. All told, it’s clear
that both p and q are essential variables.
The mathematics input. There are two abstract mathematical

‘spaces’ that occur in the variational mechanics: there is the configur-
ation space of Lagrangian Mechanics - we could call it ‘Narnia’; and the
phase space of Hamiltonian Mechanics - we could call it ‘Never Never
Land’. The surprising thing is that from these abstract spaces (Narnia
and Never Never Land) we learn some very real results. This is due to
the peculiar advantage of an abstract mathematical space - it is specially
contrived to have perfect fiducial properties which no real space could
ever have.
Philosophical input. Lanczos reminds us of the crucial importance of

philosophical questions but always with the understanding that “when
the physics is right then the philosophy is right, no matter how long
it takes the philosophers to come around.”2 The true laws of physics
must free themselves from the artifice of a particular point of view,
and must build up a picture from purely local information. In the final
analysis, ‘far away’ and ‘long ago’ aremere conjecture. (Descartes antici-
pated this: despite having discovered coordinates along infinite axes, he
believed that only local motion made any sense.) The Principle of Least
Action satisfies these requirements as it yields an invariant result (the
action is least independently of what coordinates are used, what frame
of reference is used, and even whether or not the frame of reference is
moving); and, although the initial and final states are a finite ‘distance’
apart, the ‘space’ is explored incrementally and locally, both in ‘time’
and ‘space’. Newton postulates the prior existence of an absolute Space
and an absolute Time, whereas Einstein, and the Variational Mechanics,
make no such assumptions.
Also related to philosophy, during the eighteenth and nineteenth

centuries the Principle fell out of favour because of the teleological ques-
tion - how does the particle know which path to choose? Although
we should not judge one century from another, we can now see
that this was a non-question: the particle does not ‘choose’ a path

2 Coopersmith J, EtSC, 2nd edition, page 356.
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anymore than a Newtonian particle ‘knows how to calculate the accel-
eration’ in order to ‘know where to move to next’. This is confirmed
in Feynman’s ‘many histories’ version of quantum mechanics where
it is clear that choice doesn’t come into it - all the possible paths are
taken.
The main objection to using the Principle of Least Action is its

counter-intuitiveness: it has to do with complicated scalar energy func-
tions rather than simple, vectorial, forces. For sure, in answering certain
simple vectorial questions (such as, what tensions are required for equi-
librium when three taut cords meet at a point), it is correct to use the
Newtonian approach. However, in modern physics the force-analysis
has been superseded by an energy-analysis. Forces are crucial to the
understanding of simple problems, yes, but just as children use count-
ing numbers while mathematicians have graduated to the use of real
numbers, so we must graduate from forces to kinetic energy and to the
energy ‘structure’ functions. Also, in the VariationalMechanics we look
for solutions between two pre-determined end-states. This is less intui-
tive than the forward-marching directive of Newton’s Second Law of
Motion. Apparently, Feynman was, at first exposure to the Principle of
Least Action, repelled by it.3 However, our intuition has not always been
this way. To Galileo, the idea of a body moving along an unbounded
path, heading out into the infinite void, was anathema - all ‘natural’
motion was in a circle. More fundamentally, we appreciate that there
is always a duality inherent in the acquisition of knowledge:4 it is built
up, ultimately, by comparing one thing with another - like the defin-
itions of words in a dictionary. We remember that while we paddle and
luxuriate in the warm waters of ‘common sense’, these waters are shal-
low, and we must be prepared to follow the logic of our mathematical
arguments, and train up our intuition accordingly. Hamilton jolts us
out of our complacency. For example, when explaining how gravity,
so familiar, was yet not at all obvious, he wrote: “Do you think that

3 James Gleick, “Genius: The Life and Science of Richard Feynman”, Pantheon Books 1992.
4 Author’s speculation: The ‘absolute geometry’ (aka differential geometry) assumes

this duality. For example, tensors, however many dimensions they may have, they only
ever have two kinds of indices (the so-called raising and lowering operators, or contrav-
ariant and covariant forms). But perhaps amore general triality, quadrality, . . . , may yet
be discovered?
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we [actually] see the [gravitational] attraction of the planets? We scarcely
[even] see their orbits.”5

A truly fundamental theory will have repercussions in all sorts of
ways, and in all sorts of previously disconnected areas of enquiry.
Hamilton was motivated to explain everything purely algebraically but
ended up bringing in a theory that was geometrical and visual. Another
example comes fromEinstein. His Theory of Special Relativity, designed
to cope with speeds near c, resulted in a radically new understand-
ing of energy (the famous E = mc2) that applies at low or even zero
speed. Likewise, from the Variational Mechanics we have learned to
understand energy in a new more fundamental way, and to realize
that ‘kinetic energy’ and ‘potential energy’ are, respectively, examples
of ‘component-energy’ and ‘whole-system energy’, but also to appreciate that
these are not hard and fast categories, they depend on the frame of
reference.
Why does the Principle of Least Action work? It works because of the

importance of modelling the system in the right way. Forces and par-
ticles are elemental but they are not necessarily (in fact, not usually) the
right elements. Instead we need new system-specific elements like, for
example, the stress energy tensor. An analogy comes with economics.
Many economics theories base themselves just on the needs of indi-
viduals. Some even go so far as to deny the existence of society. This
is wrong: a society is more than the sum of its individuals. Likewise, a
physical system is more than the sum of its parts and moreover those
parts are not Newtonian.
We have found that the Principle of Least Action applies across all

scales, from the realm of the microscopic (actually, tinier than that)
to the everyday (classical mechanics, engineering, optics, the transmis-
sion of radiation, physical chemistry, statistical mechanics, continuum
mechanics), and on to the whole cosmos (gravitation due to stars, plan-
ets, black holes, and gravity waves). From Hamilton’s optical analogy
comes the wisdom, not only about the common ancestry of the clas-
sical and quantum worlds, but actually that quantum mechanics is
the more fundamental theory. (So, instead of always trying to explain
quantum weirdness, we should perhaps be trying to explain classical
weirdness.) Dissipation must also ultimately come under the ambit of

5 W R Hamilton, in Hankins, T L, “Sir William Rowan Hamilton”, John Hopkins
Uinversity Press 1980, p 177.
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the Principle of Least Action - after all, nature has no sharp divisions,
and, as Lanczos advises, dissipative processes do come in functional
form when explained at the microscopic level. Even more apropos, the
Second Law of Thermodynamics involves tiny incremental processes
and an extremal (the maximizing of entropy). Perhaps the true theory
combining action and thermodynamics (the Second Law) still awaits
discovery - maybe a reader of this book will pick up the baton?
D’Alembert, at the start of this book, proposed that the universe was

a unique truth - provided only that the viewpoint was all-embracing,
that is, objective. Einstein refined the idea, and put it forward humbly
as a question:

“What I’m really interested in is whether God could have made the
world in a different way; that is, whether the necessity of logical
simplicity leaves any freedom at all.”6

We pose the idea in yet a third way: would the laws of physics end up
the same if the historical progression had been different? For example,
instead of starting with forces and particles, could we have started dir-
ectly with energy and action? The Principle of Least Action shows us
that the answer is - yes!7 Note that this still doesn’t answer Einstein’s
question; all we can say is that the Principle of Least Action is our best
candidate for a necessary theory.
In whatever domain, and on whatever scale, it seems that nature

seeks out the flat (it abhors a gradient), and the universe really is as lazy
as possible.

6 Einstein’s remark to his assistant, Ernst Straus, see HoltonG in “The Nature of Scientific
Discovery”, ed Gingerich, Smithsonian Institution Press, Washington (1975).

7 For example, we have Lanczos’s wisdom that it is kinetic energy that is the true
most primitive measure of inertia (Section 3.4); and we find in certain cases that
the kinetic energy serves directly as the Riemannian ‘distance function’ (footnote in
Section 7.5, Optional reading in Section 3.6, and the end of Appendix A7.9).



APPENDIX A1.1

Newton’s Laws of Motion

Law I

EVERY BODY PERSEVERES IN ITS STATE OF REST, OR OF
UNIFORMMOTION IN A RIGHT LINE, UNLESS IT IS

COMPELLED TO CHANGE THAT STATE BY
FORCES IMPRESSED THEREON.

Law II

THE ALTERATION OFMOTION IS EVER PROPORTIONAL TO
THEMOTIVE FORCE IMPRESSED; AND IS MADE IN THE

DIRECTION OF THE RIGHT LINE IN WHICH
THAT FORCE IS IMPRESSED.

Law III

TO EVERY ACTION THERE IS ALWAYS OPPOSED AN EQUAL
REACTION: OR THEMUTUAL ACTION OF TWO BODIES UPON

EACH OTHER ARE ALWAYS EQUAL, AND DIRECTED TO
CONTRARY PARTS.

Philosophiae naturalis principia mathematica (The Mathematical Principles of Natural
Philosophy), by Isaac Newton, familiarly known as The Principia, first published
in 1687, translated in 1729 by Motte. The Laws occur in Book I.
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Portraits of the physicists

Pierre de Fermat (1601 or 7–65)
Johann Bernoulli (1667–1748)
Pierre Louis de Maupertuis (1698–1759)
Leonhard Euler (1707–83)
Jean le Rond d’Alembert (1717–83)
Joseph-Louis Lagrange (1736–1813)
William Rowan Hamilton (1805–65)
Carl Gustav Jacobi (1804–51)
Emmy Noether (1882–1935)
Erwin Schrödinger (1887–1961)
Cornelius Lanczos (1893–1974)
Richard Feynman (1918–88)

Permissions

Thank you to the following for permission to reproduce the images:

Pierre de Fermat - ©Jean Lepage, Musée de Narbonne, Ville de Narbonne
William Rowan Hamilton - By permission of the Royal Irish Academy © RIA
Emmy Noether - courtesy of Bryn Mawr College, copyright-holder unknown
Cornelius Lanczos - The Dublin Institute for Advanced Studies
Erwin Schrödinger - Special Collections, Oregon State University, copyright-
holder unknown
Richard Feynman - courtesy of the Estate of Richard P Feynman

Remaining images - thank you to Wikimedia Commons, a donation has been
made.
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Cornelius Lanczos
(1893–1974)
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(1918–88)
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Reversible displacements

We require that the virtual displacements are reversible, in other words, both
+δx and –δx must be possible. The reason for this requirement is as follows.
We are trying to establish a stationary condition and this is usually also an
extremum - a maximum or a minimum. However the reverse is not always
true - we can have an extremum without it being a stationary point. For
example, consider looking at a washing-line through a kitchen window. As
seen from inside the kitchen, the curve of the washing-line has a maximum
at position a, and a minimum at position b, but neither of these is stationary (in
fact, the stationary position is a minimum and is at c, outside the frame).
The conclusion: to rule out false alarms (extrema which don’t correspond

to stationary points) we must veto points on a boundary, and only investi-
gate points where the displacements can occur in both positive and negative
directions.

Figure A3.1 Washing-line seen through a window.
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Worked examples in Lagrangian Mechanics

1) One particle, mass m, potential V, Cartesian, 2-D

Coordinates: q1 = x, q2 = y

T = 1
2m(ẋ

2 + ẏ2), V = V(x, y) (note, V is not a function of ẋ or ẏ)

L = T – V = 1
2m(ẋ

2 + ẏ2) – V(x, y)

The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2

For i = 1, we have: q1 = x, ∂L/∂q1 = – ∂V/∂x, ∂L/∂ q̇1 = mẋ and
d
dt (∂L/∂ q̇1) = mẍ

Therefore the Lagrange Equation for i = 1 is:

mẍ – (–∂V/∂x) = 0

Rearranging, and noting that Fx = –∂V/∂x, we obtain:

mẍ = Fx

For i = 2, in an identical manner, we find:

mÿ = Fy

In other words, we have arrived at Newton’s Second Law of Motion.
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y

x

r

θ

m

Figure A6.1.1 Plane polar coordinates.

2) One particle, mass m, potential V, plane polar coordinates

Coordinates: q1 = r, q2 = θ

transformation equations:

x = rcosθ

y = rsinθ

ẋ = ṙcosθ – rθ̇ sinθ

ẏ = ṙsinθ + rθ̇ cosθ

T = 1
2m(ẋ

2 + ẏ2) becomes T = 1
2m(ṙ

2 + r2θ̇ 2)

The potential energy is V = V(r, θ )

L = T – V and so L = 1
2m(ṙ

2 + r2θ̇ 2) – V(r, θ )

The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2

For i = 1:

q1 = r, ∂L/∂ r = mrθ̇ 2 – ∂V/∂ r, ∂L/∂ ṙ = mṙ and d
dt

(
∂L/∂ ṙ

)
= mr̈

From the Lagrange Equation, mr̈ – (mrθ̇ 2 – ∂V/∂ r) = 0

⇒ mr̈ – mrθ̇ 2 = –∂V/∂ r = Qr
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For i = 2:

q2 = θ , ∂L/∂θ = –∂V/∂θ , ∂L/∂θ̇ = mr2θ̇ and
d

dt

(
∂L/∂θ̇

)
= mr2θ̈ + 2mrṙθ̇

Substituting into the second Lagrange Equation:

mr2θ̈ + 2mrṙθ̇ – (–∂V/∂θ ) = 0

⇒ mr2θ̈ + 2mrṙθ̇ = –∂V/∂θ = Qθ

Qr and Qθ are the generalized forces (Appendix A6.5):

Qr = Fr·∂rr/∂ r + Fθ ·∂rθ /∂ r = Fr·∂rr/∂ r = Fr and

Qθ = Fr·∂rr/∂θ + Fθ ·∂rθ /∂θ = Fθ ·r n = rFθ

(as ∂rθ /∂ r and ∂rr/∂θ are zero, and n is a unit vector in the direction of changes
in θ ).
Collecting all these results together, the equations of motion are:

mr̈ – mrθ̇ 2︸︷︷︸
centripetal

= Qr = Fr and

mr2θ̈ + 2mrṙθ̇ =
d

dt
(mr2θ̇ ) = Qθ = rFθ

where mrθ̇ 2 is the centripetal force, and mr2θ̇ is the angular momentum - so we
have arrived at the standard torque equation of classical mechanics.
Note that examples 1) and 2) are the same scenario but in different coordin-

ates - but angular momentum and the centripetal force occur only in 2). Now the coordinate,
θ does not occur in T (only θ̇ occurs), and so if V also doesn’t depend on
θ - that is, we have a central potential, V = V(r) only - then we have L with
θ as an ‘absent’ or ‘ignorable’ coordinate. We will then find that the angular
momentum is a constant of the motion, and so Qθ = 0.

3) N free particles, mass mi

In Cartesian coordinates we have:

T =
1

2

N∑
i=1

mi(ẋ
2
i + ẏ2i + ż2i ) and V = 0
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In generalized coordinates we have:

T =
1

2

3N∑
i=1

mi(q̇
2
i ) and V = 0

where m1 = m2 = m3, m4 = m5 = m6, and so on.

We have L = T – V = 1
2

3N∑
i=1
mi(q̇2i ) and the Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 to 3N

Now ∂L/∂qi = 0, ∂L/∂ q̇i = miq̇i, and
d
dt

(
∂L/∂ q̇i

)
= miq̈i,

therefore the Lagrange Equation for any i yields:

miq̈i = Qi = 0

Note how we have gone fromN particles in three-dimensional Cartesian space
to 3N particles in 3N-dimensional configuration space.

4) Atwood’s Machine

Masses m1 and m2 are attached at the ends of an inextensible cord which passes
without friction over a pulley. The cord and pulley have negligible mass. We
can consider two coordinates, x1 and x2, and the constraint condition that x1 +
x2 = l, or we can have just one coordinate, x, as shown in the figure.

m2

m1

x

l-x

Figure A6.1.2 Atwood’s Machine.
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We adopt the sign convention that x increases down toward m1 where m1 ≥ m2.

T =
1

2
(m1 + m2)ẋ

2, V = –m1gx – m2g(l – x)

(g is the acceleration due to gravity)

L = T – V =
1

2
(m1 + m2)ẋ

2 + m1gx + m2g(l – x)

Now ∂L/∂x = (m1 – m2)g, ∂L/∂ ẋ = (m1 + m2)ẋ and
d
dt∂L/∂ ẋ = (m1 + m2)ẍ

The Lagrange Equation is:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 where q = x

⇒ (m1 + m2)ẍ = (m1 – m2)g⇒ ẍ = (m1 – m2)g/(m1 + m2)

This is the familiar Newtonian result, but at no stage have we had to determine the tension
in the cord.

5) ‘Half-Atwood’ - or Connected Masses Revisited

We consider the same problem as given in Chapter 4 but now analysed using
Lagrangian Mechanics instead of the Principle of Virtual Work:
There is one degree of freedom, x, and we adopt the sign convention that x

increases downward. We have:

T =
1

2
(m1 + m2)ẋ

2, V = –m2gx

x

m2

m1

Figure A6.1.3 The ‘Half-Atwood’ Machine.
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(g is the acceleration due to gravity)

L = T – V =
1

2
(m1 + m2)ẋ

2 + m2gx and therefore

∂L/∂x = m2g, ∂L/∂ ẋ = (m1 + m2)ẋ, and
d

dt
∂L/∂ ẋ = (m1 + m2)ẍ

The Lagrange Equation is:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 where q = x

and therefore (m1 + m2)ẍ – m2g = 0

⇒ ẍ = m2g/(m1 + m2)

(Compare with the Newtonian approach:

balance of forces at m1, m1ẍ = Ftension
balance of forces at m2, m2ẍ = m2g – Ftension

eliminate Ftension, and then find that ẍ = m2g/(m1 + m2) as before.)

6) Mass, m, attached to a spring

There is one coordinate, the extension of the spring, x, (it is measured from the
unextended length of the spring, x0). The spring has stiffness constant, k, and
we assume that its mass is negligible, that x is ‘small’ (so Hooke’s Law applies),
and that there is no dissipation. We have:

m

x0 x

Figure A6.1.4 Mass attached to a spring.
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T =
1

2
mẋ2, V =

1

2
kx2

L = T – V =
1

2
(mẋ2 – kx2)

∂L/∂x = –kx, ∂L/∂ ẋ = mẋ, and
d

dt
∂L/∂ ẋ = mẍ

The Lagrange Equation is:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 where q = x

and so mẍ = –kx as expected.

7) Planet in orbit around the Sun

Assume the orbit is in a plane, and that the Sun is fixed at the origin of
coordinates. We use plane polar coordinates, q1 = r and q2 = θ , and have:

T =
1

2
m(ṙ2 + r2θ̇ 2) and V = –GmM/r

(m and M are the masses of the planet and the Sun respectively, G is the
gravitational constant).

L = T – V and so L =
1

2
m(ṙ2 + r2θ̇ 2) + GmM/r

The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2

For i = 1:

q1 = r, ∂L/∂ r = mrθ̇ 2 – GmM/r2, ∂L/∂ ṙ = mṙ, and
d

dt

(
∂L/∂ ṙ

)
= mr̈

Therefore, from the first Lagrange Equation,

mr̈ = mrθ̇ 2 – GmM/r2
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where mrθ̇ 2 arises from a centripetal force, and –GmM/r2 arises from ∂V/∂ r.
For i = 2:

q2 = θ , ∂L/∂θ = 0, ∂L/∂θ̇ = mr2θ̇ and
d

dt

(
∂L/∂θ̇

)
= mr2θ̈ + 2mrṙθ̇

Therefore, from the second Lagrange Equation:

d

dt

(
∂L/∂θ̇

)
= 0 and this implies that ∂L/∂θ̇ = constant

Bearing inmind that ∂L/∂θ̇ = mr2θ̇ = angular momentum, then from the sec-
ond Lagrange Equation we learn that the angular momentum of the planet
remains constant during its motion - and this is not surprising as the expression
for L does not contain θ , in other words, the system is symmetric with respect
to rotations, or, equivalently, the system-space is isotropic.
If we are on the planet but are not aware of the change in angle, θ̇ (say,

we’re in thick fog all the time) then the 1
2mr

2θ̇ 2 term in L can be considered as
a contribution to potential energy, V, rather than to kinetic energy, T. If we’re
not aware of our orbital motion at all (say we’re pre-Copernicans!) then L will
still have the same form but all of it will be considered as potential energy. (The
strength of gravity will change slightly throughout the planet-year, and a very
sensitive Foucault’s pendulum could still detect the orbital rotation - note that
we are ignoring spin.)

8) Spherical pendulum

q1 = θ and q2 = φ

T =
1

2
ml2(θ̇ 2 + (sin θ )2φ̇2)

V = mgl (1 – cos θ )

L = T – V =
1

2
ml2(θ̇ 2 + (sin θ )2φ̇2) – mgl(1 – cos θ )

The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2
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θ

m

φ

l

Figure A6.1.5 Spherical pendulum.

For i = 1:

q1 = θ , ∂L/∂θ = ml2 sin θ cos θφ̇2 – mgl sin θ

∂L/∂θ̇ = ml2θ̇ ,
d

dt

(
∂L/∂θ̇

)
= ml2θ̈

From the Lagrange Equation:

ml2θ̈ – ml2 sin θ cos θφ̇2 + mgl sin θ = 0

⇒ θ̈ – sin θ cos θφ̇2 + g sin θ /l = 0

For i = 2:

q2 = φ, ∂L/∂φ = 0, ∂L/∂φ̇ = ml2(sin θ )2φ̇ and

d

dt

(
∂L/∂φ̇

)
= ml2(2 sin θ cos θ θ̇ φ̇ + (sin θ )2φ̈)⇒ φ̈ + 2θ̇ φ̇/ tan θ = 0

9) Projectile motion, Cartesian coordinates, 2-D (ignoring air resistance)

q1 = x, q2 = y, T =
1

2
m(ẋ2 + ẏ2), V = mgy, therefore :

L = T – V =
1

2
m(ẋ2 + ẏ2) – mgy

The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2
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m

height, y

horizontal position, x

Figure A6.1.6 Projectile motion.

For i = 1:

∂L/∂x = 0, ∂L/∂ ẋ = mẋ,
d

dt
(∂L/∂ ẋ) = mẍ

The Lagrange Equation leads to: ẍ = 0
For i = 2:

∂L/∂y = –mg, ∂L/∂ ẏ = mẏ,
d

dt
(∂L/∂ ẏ) = mÿ

The Lagrange Equation leads to: ÿ = –g
Solving for x and y we obtain the usual equations:

x = vx0t and y = vy0t –
1

2
gt2

where vx0 and vy0 are the starting speeds in the x and y directions respectively.

10) Bead sliding on a uniformly rotating straight wire (from Goldstein,
Classical Mechanics, 2nd Edition, page 29)

As the rate of rotation of the wire,ω, is constant, then the system is symmetric
(there is no dependence on θ ) and so there is just one degree of freedom, q = r,
the position of the bead along the wire. The bead has mass m, and the wire is
assumed to have a negligiblemass. Also, we assume that the bead slides without
friction.
We have:

T =
1

2
mṙ2 +

1

2
mr2ω2
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(Note that the second term in T has no dependency on speed, ṙ, squared or
otherwise.)
We have the constraint that the bead must stay on the wire but there is no

external force-field (that is, V = 0). So we have:

L = T – V = T =
1

2
mṙ2 +

1

2
mr2ω2 and

∂L/∂ r = mrω2, ∂L/∂ ṙ = mṙ, and
d

dt
(∂L/∂ ṙ) = mr̈

The Lagrange Equation is:

d

dt

(
∂L

∂ q̇

)
–
∂L

∂q
= 0 q = r

⇒ mr̈ – mrω2 = 0⇒ r̈ = rω2

In other words, the bead accelerates outward along the wire (in the direction
of increasing r), and this acceleration depends on both r and ω2.

Note that at no stage have we needed to know the force that constrains the bead to stay on
the wire. Also, if we change to a different reference frame sited on the bead, then
r = 0 and so the kinetic energy is zero, but the bead will ‘feel’ as if there’s a force
acting on it which steadily increases with time. In effect, we go from V = 0 to
T = 0 depending on the reference frame.

11) Particle with mass m, charge e, in an electromagnetic field (Cartesian
coordinates)

The coordinates are x, y, and zmaking up the velocity vector, v. The Lagrangian
function is:

L =
1

2
mv2 – eφ + eA · v

where φ is the scalar potential associated with the electric field, E, and A
is the vector potential associated with the magnetic field, B. The Lagrange
Equations are:
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d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 q1 = x, q2 = y, q3 = z

This problem is continued in an analysis using Hamilton’s Mechanics, see
Appendix A7.3. Note the important advance: although the potential does depend on
velocity (on both speed and direction of motion), a suitable Lagrangian can be
found, and the Principle of Least Action can be applied in the usual way.

12) Electrical and mechanical systems compared

We assume the idealizations implicit in a circuit diagram, and also that the
inductances are independent of the current going through them (e.g. they
don’t have iron cores). The chargesQ1,Q2, . . . and currents I1, I2, . . . are, respect-
ively, the generalized coordinates, q1, q2, . . . and generalized speeds, q̇1, q̇2, . . . .
Now, because the total chargemust be conserved, then not all the currents can
be independently chosen, and it is Kirchoff’s Laws which provide the equations
of constraint. We have:

L = T – V where

T =
1

2

∑
i

Liq̇
2
i +

1

2

∑
ik,i�=k

Mikq̇iq̇k and

V =
∑
i

q2i /(2Ci) –
∑
i

εi(t)qi

where the Li are self-inductances, Mik are mutual inductances, Ci are capaci-
tances, and εi(t) are time-dependent external emfs. Also, we have dissipative
forces, Fdissi ,

Fdissi = –∂F /∂ q̇i

where F is the (speed-dependent) dissipation function, 1
2

∑
i
Riq̇2i , and the Ri

are resistances.
The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= Fdissi
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Figure A6.1.7 Electrical and mechanical systems compared.

Note how the dissipative force introduces a ‘right-hand side’ to the Lagrange
Equations (see Appendix A6.5).
As these equations are universally applicable, we can apply the same analysis,

and gain the same insights, for an electrical or a mechanical system - includ-
ing dissipation (adapted from Dare Wells, Lagrangian Dynamics, Schaum Outline
Series, 1967, p309):

Mechanical Electrical

L = 1
2mẏ

2 – 1
2 k(y + y0)2 + mgy L = 1

2Mq̇
2 – 1

2 q
2/C + εq

Dissipative force:

viscous drag = –αẏ electrical resistive force = –Rq̇

the equations of motion are:

mÿ + ky = –αẏ Mq̈ + q/C = –Rq̇

(as mg = ky0)

Note that Lagrangian Mechanics is here able to cope with dissipative effects,
as these are modelled in a functional form. Note also that components in an
electrical circuit can now be considered as having massy inertial attributes.
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m1

x1

x2

m2

45°

Figure A6.1.8 One block sliding on another block (adapted from Donald
Greenwood, Classical Dynamics, Dover, 1977, p59).

13) One block sliding on another block, thereby setting the latter inmotion

A block of mass, m2, slides, without friction, down the inclined surface of
another block, m1, which in turn slides without friction along a horizontal
surface. The generalized coordinates are q1 = x1 and q2 = x2. We have:

L = T – V =
1

2
m1ẋ

2
1 +

1

2
m2(ẋ

2
1 + ẋ22 –

√
2ẋ1ẋ2) – (–m2gx2/

√
2)

(g is the acceleration due to gravity)
The Lagrange Equations are:

d

dt

(
∂L

∂ q̇i

)
–
∂L

∂qi
= 0 i = 1 and 2

For i = 1: ∂L/∂x1 = 0, ∂L/∂ ẋ1 = (m1 + m2)ẋ1 – m2ẋ2/
√
2, and

d

dt
(∂L/∂ ẋ1) = (m1 + m2)ẍ1 – m2ẍ2/

√
2

From the Lagrange Equation, (m1 + m2)ẍ1 – m2ẍ2/
√
2 = 0⇒

ẍ1 = m2ẍ2/
√
2(m1 + m2) (1)
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(Note that x1 doesn’t occur in L and is therefore an ‘ignored coordinate’, and so
the momentum in the x1 direction remains constant.)

For i = 2: ∂L/∂x2 = m2g/
√
2, ∂L/∂ ẋ2 = m2ẋ2 – m2ẋ1/

√
2, and

d

dt
(∂L/∂ ẋ2) = m2(–ẍ1/

√
2 + ẍ2)

From the Lagrange Equation, m2(–ẍ1/
√
2 + ẍ2 – m2g/

√
2 = 0⇒

√
2ẍ2 – ẍ1 = g (2)

Solving (1) and (2) we obtain:

ẍ2 =
√
2g(m1 + m2)/(2m1 + m2) and ẍ1 = gm2/(2m1 + m2)

Optional
What is the force between the blocks? Greenwood determines this using the

method of Lagrange Multipliers (Appendix A6.4). He says that the force acts at
right angles to the inclined slope, in a new direction, x3. He finds that this force
has magnitude:

generalized force = λ =
√
2gm1m2/(2m1 + m2)

This is a constraint force and is compressive in nature (it stops m2 from sinking
into the surface of m1). The derivation is curious as it relies upon the constraint
condition, ẋ3 = 0, and yet ẋ3 does nowhere appear in the Lagrangian (equation
(2-79) in Greenwood).



APPENDIX A6.2

Proof that T is a function of v2

The author gratefully acknowledges the priority of Maimon1.

We hypothesize that for any particle of mass, m, and speed, v, there exists a
universal kinetic energy function, T, and that it depends on m and v in some, as
yet, unknown way,2 T = T(m, v).
Consider a ball of putty of mass, m, and speed, v. If the ball is brought to a

standstill by crashing into a wall then, by energy conservation, all of its kin-
etic energy must be converted into heat (we ignore damage to the wall, sound
energy, and so on). Therefore we have: T(m, v) = �heat. Also, we have the
empirical knowledge that the amount of heating is proportional to themass of
the ball (a ball of n times themass will generate n times the amount of heating).
So we must have:

T(m, v) = �heat = mT(v) (A6.2.1)

This result shows that kinetic energy can be calibrated by amethod which does
not depend on motion - for example, we could use a thermometer.
We now consider an inelastic collision between two identical balls of putty,

each of mass m, and each approaching the other with speed v, (see Table I).
We view this collision from two reference frames, one at rest, �rest, and one
moving at speed v in the same direction as one of the balls,�′. By the Galilean
and Einsteinian Principles of Relativity, energy conservation will apply in each
reference frame.
By symmetry: the balls must stick together after the collision (and this is

then true in any reference frame); and the total heating must be equal to twice
the heating of one ball (in effect each ball acts as a ‘wall’ for the other). Also, by
Einstein’s Principle of Relativity, the same physics must occur in all reference
frames, and so we must have �heat′ = �heat (we are also assuming that the
mass m, is independent of the reference frame).
Conservation of energy in the moving reference frame requires that

before collision after collision

mT(2v) = 2mT(v) +�heat′ (A6.2.2)

1 Ron Maimon, physics.stackexchange.com/questions/535/
2 The notation F = F(a, b, c, . . .) means that F is some function of a, b, c, . . ..
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Table A6.2.1 Maimon: Inelastic collision viewed from two reference frames.

v

∑rest

∑´

Ebefore =  mT(v) + mT(v) Eafter =  Δ heat

E’after =  2mT(v) + Δ heat´E´before =  mT(2v)

= 2mT(v)

Reference Frame Before Collision After Collision

But we also know that:

2mT(v) +�heat′ = 2mT(v) +�heat = 2mT(v) + 2mT(v) (A6.2.3)

Therefore, combining equations (A6.2.2) and (A6.2.3), we have:

mT(2v) = 2mT(v) + 2mT(v) (A6.2.4)

or

T(2v) = 4T(v) (A6.2.5)

The only way this can be true is if T is a quadratic function of v, in other words, we
must have T = T(v2). Finally, bringing back the dependence on m, wemust have:

T = mT(v2) (A6.2.6)

This is fine as far as balls of putty go, but we started out wanting to deter-
mine the kinetic energy function for particles. We can imagine conducting the
collision again and again, each time using balls of putty that are progres-
sively smaller and smaller - but they can never become particles as particles
can’t heat up, and can’t act as ‘walls’. To remedy this, we consider another
proof, due to Ehlers, Rindler, and Penrose.3 This proof involves only particles,

3 Energy conservation as the basis of relativistic mechanics, II, J Ehlers, W Rindler
and R Penrose, American Journal of Physics 33 (1965) 995.
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Table A6.2.2 Ehlers et al: Approaching particles viewed from two reference
frames.

Frame schematic particle (speed)2 Total energy

�rest →← 1 v2 mT(v2) + mT(v2)
2 v2

↓ 3 v2 mT(v2) + mT(v2)
↑ 4 v2

�′→vx 1 v21 = (v – vx)2 mT(v21) + mT(v22)
2 v22 = (v + vx)2

↙ 3 v23 = v2 + v2x mT(v23) + mT(v24)
↖ 4 v24 = v2 + v2x = 2mT(v2 + v2x)

and only kinetic energy (although the authors in principle allow for internal
changes-of-state, in fact their proof doesn’t involve these).
Ehlers et al adopt a different tack to Maimon: instead of comparing one sys-

tem before and after a collision, they compare two systems each before the
impending collision. They then require that the total before-collision energy
is identical, whatever the reference frame. (Note, we shall be following their
non-relativistic proof.) They consider, first, a system in which two identical
free particles (called 1 and 2), each of mass, m, approach each other with equal
speeds, v, along the x-axis; and then another system in which the same particles
(now called 3 and 4) approach each other with equal speeds, v, along the y-axis
(Table II). They look at these systems from a stationary reference frame, �rest,
and from a reference frame, �′, moving at uniform speed, vx, in the positive
x-direction. The speed-components for particles 1 and 2, and for particles 3 and
4, are given in Table II.
All the speed-components have been given as squares, but there is no need

to take the square root - we simply define the kinetic energy as some function
of speed-squared and see if this leads to a contradiction.
Now, viewed from�′, the total energy in system (1,2) is mT(v21) + mT(v22) and

the total energy in system (3,4) is 2mT(v2 + v2x). We also know that (v2 + v2x) =
1
2 (v

2
1 + v22) and therefore the total energy in system (3,4) may be written as

2mT( 12 (v
2
1 + v22)). Finally, we also require that the total energies in the two sys-

tems are identical (as they were identical when viewed from �rest). Therefore,
(cancelling out the masses, for now) we must have:

T(v21) + T(v22) = 2T

(
1

2
(v21 + v22)

)
(A6.2.7)
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or

1

2

(
T(v21) + T(v22)

)
= T

(
1

2
(v21 + v22)

)
(A6.2.8)

In words, this equation reads: “the average of T at v21, and T at v
2
2, equals T at the

average of v21 and v
2
2”. In the usual way (continued halving and the requirement

that T is continuous) it follows that T must be a linear function of v2:

T = 1
2mv

2 + T0 (A6.2.9)

T0 is a constant; the mass has been re-introduced as a scalar coefficient; and the
factor of 1

2 is included so that this result coincides with the relativistic result in
the limit of low speeds.
It is very interesting that the proof has shown that the kinetic energy includes

a term, T0, which is not dependent on speed: in other words, even as the
speed becomes zero, there is still some ‘kinetic’ energy left over. In the non-
relativistic case, this zero-point of kinetic energy is usually normalized to zero,
but, in the relativistic case, the authors point out that it is no longer arbitrary
but is determined by the theory. Readers will feel a shiver of recognition to learn
that T0 = mc2 (where, here, m stands for the so-called rest-mass).
This paper is nevertheless, like Maimon’s, not applicable to 100 per cent of

cases. There is a caveat4 in which it is required that the total energy is inde-
pendent of the speed of the reference frame (and indeed it is evident that vx
does not occur in the equations for T). However, this is wrong: famously, in
the case of a single free particle, or many free particles moving in parallel and
in the same direction, then the total energy is dependent on the speed of the
reference frame. In these especially simple cases there is no escape, one must
simply define the energy of each particle to be T = 1

2mv
2 (granted that, in the

non-relativistic case, T0 may be normalized to zero).

Optional

This quadratic form for kinetic energy is, moreover, consistent with the
requirement that it has dual ‘dimensionality’, that is, it refers to two config-
uration spaces, one containing the covariant vector, v = viei, the other con-
taining the contravariant vector, v = viei (using tensor notation and Einstein’s

4 (after Assumption II in Ehlers et al - see earlier footnote for the reference)
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summation convention). Furthermore, in those cases where T has a linear
dependence on speed (see main text), the externally imposed kinematic con-
dition is usually also linear in speed, and so together the dual ‘dimensionality’ is
maintained.
Note also, from W Rindler’s book “Special Relativity”, Oliver and Boyd (1969),

that conservation of 4-momentummeans that the ratios of all the ms are deter-
mined (page 85); and that it is an empirical and not fully understood fact that
m is always positive (page 87).
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Energy conservation and the homogeneity of time

We consider a case where the Lagrangian has no explicit dependence on time.
Thenwe perform a translation of the time coordinate, t 	→ τ , where τ = t – ε,
and where ε is some small constant. Invariance of the action principle before
and after the translation implies that:

δ

∫ tb

ta

L(qi(t), q̇i(t)) dt = δ

∫ τb

τa

L̄(qi(τ ), q
′
i(τ )) dτ = 0 (A6.3.1)

(q̇means
d(q)

dt
, q′ means

d(q)

dτ
, and L̄ refers to the transformed Lagrangian).

Next we consider a more general time translation in which ε itself is a func-
tion of time, ε = ε(τ ). We stipulate that ε(τ ) is infinitesimal, continuous, and
that at the boundaries t is not transformed, in other words, ta = τa and tb = τb,
or ε(τa) = ε(τa) = 0.

From t = τ + ε(τ ) we deduce that d(t)dτ = 1 + d(ε)
dτ , and therefore that:

dt = (1 + ε′)dτ (A6.3.2)

(remembering that ′ is a shorthand for d
dτ ). Also, we have q̇ =

d(q)
dt = d(q)

dτ
d(τ )
dt =

q′(1 + ε′)–1. Therefore, to first order, we have:

q̇ = q′(1 – ε′) (A6.3.3)

Substituting τ for t, and d
dτ for

d
dt , we find that L(qi, q̇i) becomes L̄(qi, q′i(1 – ε′)).

As ε is small then ε′ also is small and L̄ may be expanded in a Taylor series
expansion in ε′ which, to first order, gives:

L̄(qi, q
′
i(1 – ε

′)) = L̄(qi, q
′
i) –

(∑
i

(
∂ L̄

∂q′i

)
q′i

)
ε′ (A6.3.4)
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Also, in the action integral, dt becomes (1 + ε′)dτ . Collecting all these parts
together, and ignoring 2nd- and higher-order terms, we finally arrive at:

δA = δ

∫ tb

ta

L(qi, q̇i) dt

= δ

∫ τb

τa

L̄(qi, q
′
i) dτ – δ

∫ τb

τa

[(∑
i

(
∂ L̄

∂q′i

)
q′i

)
– L̄

]
ε′dτ = 0 (A6.3.5)

Now, from the Action Principle, we know that δ
∫ tb
ta
L(qi, q̇i) dt and

δ
∫ τb
τa
L̄(qi, q′ i) dτ are already guaranteed to be zero. So, we are left with a

requirement just involving the last term:

δ

∫ τb

τa

[(∑
i

(
∂ L̄

∂q′i

)
q′i

)
– L̄

]
ε′dτ = 0 (A6.3.6)

We use our old trick1 - integration by parts - and arrive at:

δA = δ

∫ τb

τa

d

dτ

[(∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
ε

]
dτ

– δ

∫ τb

τa

d

dτ

(∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
ε dτ = 0 (A6.3.7)

The first integral contains nothing apart from a total differential, and so it
becomes a boundary term:

[(∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
ε

]τb
τa

(A6.3.8)

However, because of our condition, ε(τa) = ε(τa) = 0, then this boundary
term is zero. Finally, we are left with just the second integral in (A6.3.7):

δ

∫ τb

τa

d

dτ

(∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
ε dτ = 0 (A6.3.9)

1 (Chapter 4 and the beginning of Chapter 6)
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The integral is preceded by the variation symbol, δ, but what is being varied? It
is the infinitesimal function, ε, which acts as a ‘variation’, and because this vari-
ation is arbitrary (the function ε can have any form - provided it is infinitesimal,
continuous, and disappears at the boundaries), then it must be the coefficient
of ε which vanishes. In other words, in order that the integral is zero for arbitrary
infinitesimal variations, it is necessary that:

d

dτ

(∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
= 0 (A6.3.10)

which means that: (∑
i

(
∂ L̄

∂q′i

)
q′i – L̄

)
= constant (A6.3.11)

Without loss of generality, we may assert this same result in t coordinates:(∑
i

(
∂L

∂ q̇i

)
q̇i – L

)
= constant (A6.3.12)

This conserved quantity has units of energy. No assumptions have been made
about L except that it is independent of the time. However, when we con-
sider the simplest default form for L (T is quadratic in the speed coordinates, V
depends only on the position coordinates, and L= T – V), then it turns out (see

Section 6.7, Chapter 6) that
(∑(

∂L
∂ q̇i

)
q̇i – L

)
= E, where E is the total energy.

Thus, assuming the validity of the Principle of Least Action, and assuming
the homogeneity of time (the requirement of invariance following a time transformation,
even a time-dependent one!), has resulted in the conservation of energy.
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The method of Lagrange Multipliers

Suppose we have a system of n generalized coordinates, q1, q2, . . . qn, and a func-
tion, F = F(q1, q2, . . . qn). From Section (3.7), Chapter 3, we know that in order
to find the stationary value of a function, F, we set its ‘variation’, δF, to zero:

δF =
∂F

∂q1
δq1 +

∂F

∂q2
δq2 + . . . +

∂F

∂qn
δqn = 0 (A6.4.1)

Now it is possible that the coordinatesmay be subject to some extra (‘auxiliary’)
conditions. For example, in the case of one particle in 3 rectangular coordin-
ates, the particle may be constrained to lie on the surface of a certain sphere of
radius, r:

x2 + y2 + z2 = r2 (A6.4.2)

The number of truly independent coordinates has thereby been reduced from
3 to 2, and we could therefore use (A6.4.2) to express one of the coordinates in
terms of the other two, for example

y =
√
r2 – (x2 + z2) (A6.4.3)

This isn’t very satisfactory, as, from the symmetry of (A6.4.2), there is no reason
to single out one coordinate as the dependent one. An alternative strategy - due
to Lagrange, in 1788 - is as follows.
First, we re-express the auxiliary condition in the form of a function, f , set

to zero,

f = f (q1, q2, . . . qn) = 0 (A6.4.4)

(For example, in the case of the condition in (A6.4.2), we have the function
f = (x2 + y2 + z2) – r2 = 0.) Next, we take the variation of the condition
equation:

δf =
∂ f

∂q1
δq1 +

∂ f

∂q2
δq2 + . . . +

∂ f

∂qn
δqn = 0 (A6.4.5)

We now have two expressions of identical form - the stationarity of F (equation
(A6.4.1)), and the variation of the condition (equation (A6.4.5)) - may we not
combine them? Yes, but first wemultiply both sides of (A6.4.5) by a constant, λ,
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λ δf = λ

(
∂ f

∂q1
δq1 +

∂ f

∂q2
δq2 + . . . +

∂ f

∂qn
δqn

)
= 0 (A6.4.6)

and then add this to (A6.4.1):

∂F

∂q1
δq1 + . . . +

∂F

∂qn
δqn + λ

(
∂ f

∂q1
δq1 + . . . +

∂ f

∂qn
δqn

)
= 0 (A6.4.7)

We have, at first glance, merely rescaled zero back to zero, and then added this
zero to δF. However, this step is not trivial, as we have added a sum of terms,
and only the whole sum is necessarily zero. More compactly, (A6.4.7) may be
written as:

n∑
i=1

(
∂F

∂qi
+ λ

∂ f

∂qi

)
δqi = 0 (A6.4.8)

Only (n – 1) of our qi s are independent; and we could choose to eliminate one
of them, say, the nth one, qn. But, rather than eliminating qn, we could instead -
Lagrange’s stroke of genius - specially select the value of λ in order tomake the
bracket multiplying δqn vanish:(

∂F

∂qn
+ λ

∂ f

∂qn

)
= 0 (A6.4.9)

This dispenses with the need to eliminate qn, and we now have a sum over only
(n – 1) terms:

n–1∑
i=1

(
∂F

∂qi
+ λ

∂ f

∂qi

)
δqi = 0 (A6.4.10)

All these δqi s are now independent of each other, and may be chosen arbitrar-
ily. We therefore have a free variation problem, in which the coefficient of each
δqi, for i = 1 to n – 1, must vanish:

(
∂F

∂qi
+ λ

∂ f

∂qi

)
= 0 i = 1 to n – 1 (A6.4.11)

But now these conditions, (A6.4.11), combined with our one earlier condition,
(A6.4.9), lead us right back where we started - to one sum over all n, (A6.4.8),
and where all the brackets must vanish (as if all the δqi s were free variations
after all).
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The net result is that we can recast the whole problem and consider it as one
involving the variation of a new function, F̄, defined as:

F̄ = F + λf (A6.4.12)

where

δF̄ = δ(F + λf ) = δF + δλ f + λ δf (A6.4.13)

which reduces to

δF̄ = δ(F + λf ) = δF + λ δf (A6.4.14)

as the term δλ f vanishes on account of our initial auxiliary condition, f = 0.
We have thus converted a variation problem with an auxiliary condition into a
free variation problemwith no auxiliary condition. The price that has been paid
is that the freely varied function is now one with an extra parameter (degree of
freedom), λ.
The method can be extended to the variation of integrals, in which F is now

the integrand, say, the Lagrangian, L, and F̄ is the modified Lagrangian, L̄. Also,
we can have many (say, m) auxiliary conditions, f1, f2, . . . , fm, each scaled by a
different λ-parameter:

δĀ = δ

∫ tb

ta

L̄ dt = δ

∫ tb

ta

(L + λ1f1 + λ2f2 + . . . + λmfm) dt (A6.4.15)

As we are now concerned with an integral, the λjs ( j = 1 to m) as well as the qis
(i = 1 to n) may all be functions of time.
In summary, the method of Lagrange multipliers has treated a problem

with m auxiliary conditions in the following way: instead of eliminating sur-
plus (non-independent) variables, the Lagrangian is modified by the addition of
the conditions, each one scaled by an undetermined multiplier, λj. The prob-
lem is then treated as a free variation (no auxiliary conditions) of this modified
Lagrangian, L̄. The λjs are determined afterward, as functions of t, by demand-
ing that they satisfy the m auxiliary conditions (which now come into play);
likewise the qis are determined as functions of t by demanding that they satisfy
the n Lagrange Equations.
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Generalized Forces

What is the connection between the potential energy function, V, the force,
F, and the generalized force, Q? The virtual work, for N particles, may be
transformed from rectangular to generalized coordinates as follows:

N∑
i=1

Fi · δri =
M∑
j=1

[
N∑
i=1

[
Fi · ∂ri

∂qj

]]
δqj =

M∑
j=1

Qjδqj (A6.5.1)

Therefore the generalized forces, Qj, are given by:

Qj =
N∑
i=1

[
Fi · ∂ri

∂qj

]
j = 1 toM (A6.5.2)

Note how the upper limits, N, orM, are not the same. In the especially simple
case of a ‘central potential’, that is, V = V(r1, r2, . . . rN), we have:

Fi = –
∂V

∂ri
i = 1 to N, and

Qj =
N∑
i=1

[
–
∂V

∂ri
· ∂ri
∂qj

]
= –

∂V

∂qj
j = 1 toM (A6.5.3)

More generally we have V = V(r1, r2, . . . rN ; ṙ1, ṙ2, . . . ṙN ; t), and then

Qj = –
∂V

∂qj
+
d

dt

(
∂V

∂ q̇j

)
j = 1 toM (A6.5.4)

and the Lagrange Equations become

d

dt

(
∂L

∂ q̇j

)
–
∂L

∂qj
= Qj j = 1 toM (A6.5.5)
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where L includes only the conservative forces, and Qj comprises the non-
conservative forces such as frictional forces. (Note that these non-conservative
forces are still to be expressed in functional form, for example, Qj = –∂F /∂ q̇j
whereF is Rayleigh’s dissipation function.) In summary, the non-conservative
forces introduce a ‘right-hand side’ to the Lagrange Equations.
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Hamilton’s Transformation, examples

1) Charged particle moving in an electromagnetic field

In Cartesian coordinates, consider a single particle with electric charge, e,
non-relativistic velocity, v (and speed v), moving through a field with scalar
potential φ, and vector potential A. The Lagrangian is (with units such that
c = 1):

L = T – V =
1

2
mv2 – (eφ – eA·v)

=
1

2
m

3∑
i=1

ẋ2i –

(
eφ – e

3∑
i=1

Aiẋi

)
(A7.1.1)

FromHamilton’s transformation equation (7.1), (a type of Legendre transform-
ation), we have:

pi =
∂L

∂ q̇i
=
∂L

∂ ẋi
= mẋi + eAi, i = 1 to 3 (A7.1.2)

2) Particle in a central force field, V

Rectangular coordinates:

L =
1

2
m(ẋ21 + ẋ22 + ẋ23) – V, where V = V(x1, x2, x3), (A7.1.3)

and we find that

pi =
∂L

∂ ẋi
= mẋi i = 1 to 3. (A7.1.4)

Spherical polar coordinates:

L =
1

2
m(ṙ2 + r2 sin2 θ φ̇2 + r2θ̇ 2) – V, where V = V(r) (A7.1.5)
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θ

m

φ

l

Figure A7.1 Coordinates for the spherical pendulum.

leading to

pr =
∂L

∂ ṙ
= mṙ, pφ =

∂L

∂φ̇
= mr2 sin2 θ φ̇, pθ =

∂L

∂θ̇
= mr2θ̇ (A7.1.6)

3) Spherical pendulum

L = T – V =
1

2
m[(lθ̇ )2 + (lφ̇ sin θ )2] – mgl(1 – cos θ ) (A7.1.7)

leading to

pθ = ml2θ̇ and pφ = ml2 sin2 θ φ̇ = constant (A7.1.8)

(as φ is ‘ignorable’).
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Demonstration that the pi s are independent
coordinates

We can write the Lagrangian as L = T – H where H is the Hamiltonian, and T,
the kinetic energy, has the special form T =

∑
piq̇i. Considering the variation

of L, but, for now, the variation of L only with respect to the p-coordinates, then
δL is defined as:

δL =

[
∂T

∂p1
δp1 +

∂T

∂p2
δp2 + . . .

∂T

∂pn
δpn

]
–

[
∂H

∂p1
δp1 + . . .

∂H

∂p2
δp2 + . . .

∂H

∂pn
δpn

]
(A7.2.1)

However, because of the special form for T, each ∂T/∂pi ends up exactly as q̇i.
We can therefore rewrite (A7.2.1) as:

δL =
n∑
i=1

[
q̇i –

∂H

∂pi

]
δpi (A7.2.2)

Also, we must remember that we are subject to the canonical equations of
motion, q̇i =

∂H
∂pi
, for all i (equations (7.9) in the main text). This means that

the square bracket in (A7.2.2) is always zero. But this then means that each
term in the sum in (A7.2.2) is always zero - and zero irrespective of the δpi s. But
then δL is also zero irrespective of the δpi s. The grand conclusion: action ismin-
imized irrespective of the δpi s, and so the variations of the pi s don’t make any
difference, so the pi s may be considered as truly independent coordinates.
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Worked examples in Hamiltonian Mechanics

1) Charged particle moving in an electromagnetic field
We repeat and extend the example started in Appendix A7.1. In Cartesian
coordinates, consider a single particle with electric charge, e, non-relativistic
velocity, v (and speed v), moving through a field with scalar potential φ, and
vector potential A. These potentials are functions of position and time (they give
the field at the instantaneous position of the moving particle). The Lagrangian
is (in units where the speed of light, c, equals 1):

L = T – V =
1

2
mv2 – (eφ – eA·v)

=
1

2
m(ẋ2 + ẏ2 + ż2) – e[φ – (Axẋ + Ayẏ + Azż)] (A7.3.1)

From Hamilton’s transformation equation (7.1), we have:

px =
∂L

∂ ẋ
= mẋ + eAx

py =
∂L

∂ ẏ
= mẏ + eAy

pz =
∂L

∂ ż
= mż + eAz (A7.3.2)

(Note that themomentum is not justmass×speed, there is an extra term, eAi.)
The Hamiltonian is given by:

H = p · v – L =
1

2
mv2 + eφ (A7.3.3)

This is a scalar and is equal to a kinetic energy termplus a potential energy term,
as expected. Furthermore, H is equal to the total energy of the system (this is
not true for every problem in mechanics, although it is always the case that
H has units of energy). While the formulation, (A7.3.3), is correct, it will not
lead on to the canonical equations of motion - for that we need to re-express
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H just in terms of p- and q-coordinates (remember from the main text that
H = H(q, p)). The most useful form for H is therefore:

H =
1

2m
(p – eA)2 + eφ (A7.3.4)

From Hamilton’s canonical equations, (7.9), we obtain:

ẋ =
∂H

∂px
=

1

m
(px – eAx)

ẏ =
∂H

∂py
=

1

m
(py – eAy)

ż =
∂H

∂pz
=

1

m
(pz – eAz) (A7.3.5)

and

ṗx = –e
∂φ

∂x
+
e

m

[
(px – eAx)

∂Ax
∂x

+ (py – eAy)
∂Ay
∂x

+ (pz – eAz)
∂Az
∂x

]

ṗy = –e
∂φ

∂y
+
e

m

[
(px – eAx)

∂Ax
∂y

+ (py – eAy)
∂Ay
∂y

+ (pz – eAz)
∂Az
∂y

]

ṗz = –e
∂φ

∂z
+
e

m

[
(px – eAx)

∂Ax
∂z

+ (py – eAy)
∂Ay
∂z

+ (pz – eAz)
∂Az
∂z

]
(A7.3.6)

In vector form, this is

ṗ = –e∇φ + e∇(v · A) (A7.3.7)

(Knowing the identity, v× (∇ × A) = ∇(v · A) – (v · ∇)A, from vector cal-
culus, and knowing that E = –∇φ – ∂A

∂ t , and B = ∇ × A, the usual Lorentz
force law can be recovered, ṗ = FLorentz = e(E + v× B).)

2) Particle of constant mass, m, in a central force field, V

Cartesian coordinates:

L =
1

2
m(ẋ21 + ẋ22 + ẋ23) – V, where V = V(x1, x2, x3), (A7.3.8)

and we find that

pi =
∂L

∂ ẋi
= mẋi i = 1 to 3. (A7.3.9)
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The Hamiltonian is:

H =
1

2m
(p21 + p22 + p23) + V(x1, x2, x3) (A7.3.10)

and the canonical equations, (7.9), are:

ẋ1 =
p1
m
, ẋ2 =

p2
m
, ẋ3 =

p3
m

(A7.3.11)

and

ṗ1 = –
∂V

∂x1
, ṗ2 = –

∂V

∂x2
, ṗ3 = –

∂V

∂x3
, (A7.3.12)

(Differentiating equations (A7.3.11) with respect to time we arrive at ṗi = mẍi,
and noting that mẍi = Fi, we return to Fi = –∂V/∂xi, the standard result for a
central potential.)

Spherical polar coordinates:

L =
1

2
m(ṙ2 + r2 sin2 θ φ̇2 + r2θ̇ 2) – V, where V = V(r) (A7.3.13)

leading to

pr =
∂L

∂ ṙ
= mṙ, pφ =

∂L

∂φ̇
= mr2 sin2 θ φ̇, pθ =

∂L

∂θ̇
= mr2θ̇ (A7.3.14)

and therefore also to

ṙ =
pr
m
, φ̇ =

pφ
mr2 sin2 θ

, θ̇ =
pθ
mr2

(A7.3.15)

The Hamiltonian is given by:

H =
3∑
i=1

piq̇i – L = prṙ + pφφ̇ + pθ θ̇ – L (A7.3.16)

therefore

H =
p2r
2m

+
p2φ

2mr2 sin2 θ
+

p2θ
2mr2

+ V(r) (A7.3.17)

(Alternatively, we could have arrived directly at (A7.3.17) with the
foreknowledge that H = T + V in time-independent cases, and where T is in
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‘quadratic form’.) Forming the canonical equations ofmotion (7.9), we arrive at

ṙ =
∂H

∂pr
=
pr
m
, φ̇ =

∂H

∂pφ
=

pφ
mr2 sin2θ

, θ̇ =
∂H

∂pθ
=

pθ
mr2

(A7.3.18)

and

ṗr = –
∂H

∂ r
=

p2θ
mr3

+
p2φ

mr3 sin2θ
–
∂V

∂ r

ṗθ = –
∂H

∂θ
=

p2φ cos θ

mr2 sin3θ
–
∂V

∂θ

ṗφ = –
∂H

∂φ
= –

∂V

∂φ
(A7.3.19)

Finally, knowing that we have a central potential (that is, V �= V(φ) and V �=
V(θ )) we have:

ṗr = –
∂H

∂ r
=

p2θ
mr3

+
p2φ

mr3 sin2θ
–
∂V

∂ r

ṗθ = –
∂H

∂θ
=

p2φ cos θ

mr2 sin3θ

ṗφ = –
∂H

∂φ
= 0 and therefore pφ = constant (A7.3.20)

We could have predicted that pφ (the angular momentum for rotations within
a plane of fixed θ ) would be constant, as φ does not appear in the Hamiltonian
- it is ‘absent’, indicating that the system is symmetrical with respect to changes
in φ (but φ̇ does still appear).



APPENDIX A7.4

Incompressibility of the phase fluid

Consider a real fluid in three dimensions, x, y, z. In the ‘field description’ of the
fluid the speeds ẋ, ẏ, ż, are functions u, v, w, respectively:

ẋ = u(x, y, z, t)

ẏ = v(x, y, z, t)

ż = w(x, y, z, t) (A7.4.1)

These speeds are components of the velocity vector, v. The condition of
incompressibility is:

div v =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (A7.4.2)

For the phase fluid in 2n-dimensional phase space (as oppose to a real fluid in
everyday space), the generalization of (A7.4.2) is:

div v =
n∑
i=1

(
∂ q̇i
∂qi

+
∂ ṗi
∂pi

)
= 0 (A7.4.3)

Now, from the canonical equations (7.9), we know that q̇i = ∂H/∂p and
ṗi = –∂H/∂q. Substituting these into (A7.4.3) we obtain:

div v =
n∑
i=1

(
∂2H

∂qi∂pi
–
∂2H

∂pi∂qi

)
= 0 (A7.4.4)

However, as we are dealing with ‘regular’ functions (functions that are con-
tinuous, finite, and twice-differentiable), the order of differentiation doesn’t
make a difference, and we can be assured that ∂2H

∂qi∂pi
= ∂2H

∂pi∂qi
. But this then

means that the summation and hence the divergence is automatically zero.
In other words, the phase fluid is automatically incompressible, whatever are
the functions H, qi, and pi (provided they are ‘regular’).
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Energy conservation in extended phase space

We consider a system in 2n dimensions where the Hamiltonian does depend
explicitly on time, t. However, we straightaway re-brand t as the (n + 1)th pos-
ition coordinate, t 	→ qn+1. Then, having lost our independent variable, we
introduce a replacement independent parameter, τ . We already have the nota-
tional convention dqi/dt = q̇i, and we adopt as well the notational convention
dqi/dτ = q′i . This means that the speed variables, q̇i, become in the new param-
eterized version, q′i /q′n+1. (This follows from: q̇i = dqi/dt = dqi/dτ × dτ /dt = q′i ×
dτ /dt = q′i /(dt/dτ ) = q′i /q′n+1.) Note that for the (n + 1)th coordinate, this means
that q̇n+1 becomes q′n+1/q

′
n+1 = 1. Finally, dt is transformed to (dt/dτ )× dτ =

t′dτ = q′n+1dτ . Making all the substitutions we find that the new parameterized
action integral is:

A =

∫ τb

τa

Lpara dτ =

∫ τb

τa

[L q′n+1] dτ (A7.5.1)

where

L = L

(
q1, q2, . . . qn+1;

q′1
q′n+1

,
q′2
q′n+1

, . . .
q′n
q′n+1

)
(A7.5.2)

There are two comments to make: Lpara does not depend on τ - so the system
is conservative; no dependence on τ is equivalent to no dependence on qn+1, in
other words, qn+1 is an ‘absent’ or ‘ignorable’ coordinate - but this then means
that the conjugate momentum associated with qn+1 (that is, pn+1) is a constant
(see Sections 6.9 and 7.6 in the main text.).
This makes us ask - what is the form of Lpara in phase space? (Equation

(A7.5.2) is in configuration space.) Scrapping the ‘speed variables’ and sub-
stituting instead the p coordinates (see Section 7.3, main text), we will then
be in a space of 2n + 2 variables (not only n + 1 q-variables but also n + 1 p-
variables). We call this the “extended phase space”. A curious thing happens
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in this extended phase space: it is found that Lpara becomes identical with its
kinetic term, and the Hamiltonian term vanishes:

Lpara =
n+1∑
i=1

piq
′
i – H

=
n+1∑
i=1

piq
′
i and H = 0 (A7.5.3)

(This happens because Lpara is a first-order homogeneous function - see Lanczos,
page 187.) It seems nonsensical to have a zero Hamiltonian, but there are two
ways around this impasse.

(i) Apart from stating that it is a constant, we still haven’t defined the
conjugate momentum, pn+1. If we choose to equate it to minus the
Hamiltonian, pn+1 = –H, we recover the usual action integral with a
Hamiltonian (we must also revert back to unparameterized space):

A =

∫ tb

ta

[
n∑
i=1

piq̇i + pn+1q̇n+1

]
dt =

∫ tb

ta

[
n∑
i=1

piq̇i – H

]
dt (A7.5.4)

(Take note of the change in the limits of the sum between (A7.5.3) and
(A7.5.4). Also, remember how earlier on we found that q̇n+1 = 1.)

(ii) Alternatively, we stay in parameterized ‘extended phase space’, and
introduce a condition, K, connecting all the coordinates:

K = K(q1, q2, . . . , qn+1; p1, p2, . . . , pn+1) = 0 (A7.5.5)

This extra condition can then be introduced into the action integral,
using the method of Lagrange Multipliers (Appendix A6.4):

Ā =

∫ τb

τa

[
n+1∑
i=1

piq
′
i – λK

]
dτ (A7.5.6)

Without loss of generality, we can set the ‘Lagrange multiplier’ λ, equal
to 1 (as we don’t know the value of K, the value of λ can be absorbed
into K). We then obtain:

Ā =

∫ τb

τa

[
n+1∑
i=1

piq
′
i – K

]
dτ (A7.5.7)
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This is the familiar action integral but now in extended phase space
(there are p and q variables, 2n + 2 of them altogether), and K does not
contain τ - the system is conservative.

We can even go further and merge these two ‘work arounds’. From
(i) we have pn+1 = –H, that is, pn+1 + H = 0; from (ii) we have K = 0.
We combine these by setting: K = pn+1 + H = 0. Now K is in effect our
new Hamiltonian (in extended phase space) - we call it the ‘extended
Hamiltonian’.1 We can insert this K into the action integral (A7.5.7),
and minimize it in the usual way, in other words, solve δĀ = 0. We end
up with the usual canonical equations of motion (but now in extended
phase space):

Parametric formulation of the canonical equations

q′i =
∂K

∂pi
and p′i = –

∂K

∂qi
i = 1 to n + 1 (A7.5.8)

This is the most advanced form for the canonical equations. Some
interesting results emerge.

- Our normalization of λ to 1 means that q′n+1 = 1 which in turn means
that qn+1 = τ = t. We have pn+1 equal to minus the total energy, H,
but pn+1 is also the ‘momentum’ conjugate to qn+1. Putting these facts
altogether, we find that the time and minus the total energy are conjugates of each
other.

- After ‘disguising’ time as a position coordinate, the ‘extended
Hamiltonian’ doesn’t depend on the independent variable, τ , and
so every system becomes conservative. The phase fluid in extended phase space is
therefore static,2 and every ‘particle’ of the fluid remains permanently on
a definite hyper-surface, K = constant. (As the value ‘0’ is certainly an
example of a constant, then condition (A7.5.5) is satisfied.)

- Finally, it can be shown that all the traditional Principles of Least Action
(that due to Euler and Lagrange for t-independent systems, that due
to Jacobi, and the one known as Hamilton’s Principle) are equivalent
to each other,3 and differ only because of different choices for the
condition, K = 0.

1 Goldstein dubs it ‘the Kamiltonian’ - see Goldstein H, Classical Mechanics, second
edition, Addison-Wesley (1980).

2 (there is still motion in configuration space, that is, the speeds are not all zero, but
at every position q, there is a fixed p).

3 Lanczos, page 191.
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Link between the action, S, and the ‘circulation’

1) The action function, S, is a function of coordinates qi and Qi, for i = 1 to n.
Now S has the special property that the change in action,�S, between a given

starting state (qstarti , Qstarti ), and a given final state, (q
final
i , Q

final
i ), depends only on

these end-states and not on the route connecting them:1

∫ final

start
dS = �S irrespective of route (A7.6.1)

It then follows that if the start- and final-states coincide, then�S will be zero:∮
dS = 0 (A7.6.2)

This equation brings to mind the ‘circulation’ of the phase fluid (equation
(7.11)), as it also concerns a closed line integral:

∮ n∑
i=1

pidqi = constant (A7.6.3)

The ‘circulation’ is not only a constant, it is invariant - that is to say, it is the
same constant irrespective of the choice of coordinates. This constant is conven-
tionally symbolized, �. Thus, invariance of the circulation (for a given system)
implies:

∮ n∑
i=1

pidqi =

∮ n∑
i=1

PidQi = � (A7.6.4)

Therefore the difference between the two circulations is zero:

∮ ( n∑
i=1

pidqi –
n∑
i=1

PidQi

)
= 0 (A7.6.5)

1 This can only be guaranteed if the states are ‘close’, that is, if�S is ‘small’.
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From equations (A7.6.2) and (A7.6.5), we obtain

∮ ( n∑
i=1

pidqi –
n∑
i=1

PidQi

)
=

∮
dS (A7.6.6)

and therefore

n∑
i=1

(pidqi – PidQi) = dS (A7.6.7)

Finally, by passing from ‘differentials’ to ‘variations’, we arrive at:

n∑
i=1

(piδqi – PiδQi) = δS (A7.6.8)

(We are entitled to go from ‘differentials’ to ‘variations’ only because S is a
‘regular’2 function, and because the variations are ‘small’.)

2 It is finite, continuous, and differentiable.
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Transformation equations linking p and q via S

From Appendix A7.6 we know that

n∑
i=1

(piδqi – PiδQi) = δS (A7.7.1)

but also δS is a perfect differential and so it satisfies:

δS =
n∑
i=1

(
∂S

∂qi
δqi +

∂S

∂Qi
δQi

)
. (A7.7.2)

(in cases where S is a function of qi and Qi). As the variations δqi and δQi are
chosen independently, the only way that δS from (A7.7.1) and from (A7.7.2)
can be equal is if the coefficients of δqi are equal between (A7.7.1) and (A7.7.2),
and likewise the coefficients of δQi are equal between (A7.7.1) and (A7.7.2). That
is, we require the coefficients of δq1 to be equal, the coefficients of δq2 to be
equal, . . . , the coefficients of δqn to be equal, and also the coefficients of δQ1 to
be equal, the coefficients of δQ2 to be equal, . . . , and the coefficients of δQn to be
equal. So we arrive at

pi =
∂S

∂qi
for all i from 1 to n (A7.7.3)

and

Pi = –
∂S

∂Qi
for all i from 1 to n (A7.7.4)
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Infinitesimal canonical transformations

From invariance of the ‘circulation’ of the phase fluid we know that

n∑
i=1

(PiδQi – piδqi) = δS (A7.8.1)

Also, we know that S is the action function, A =
∫ tb
ta
dS. Finally, as well as

satisfying (A7.8.1), and being the action function, S has yet another role - it
implicitly defines a canonical transformation, a function that transforms from
one set of coordinates to another while satisfying the canonical equations of
motion, (7.9), in both the new and old coordinates. We shall now introduce
one more feature: we let S depend explicitly on t, and see how this affects the
canonical transformation functions.
For example, we consider two action functions, S, and, S′, occurring at

nearby times, t, and, t +�t, thereby implicitly defining the canonical trans-
formations, CT, and, CT′, respectively:

S, at time t implicitly defines the transformation:

CT, (P1, . . . , Pn;Q1, . . . ,Qn) 	→ (p1, . . . , pn; q1, . . . , qn)

while satisfying

δS =
n∑
i=1

[
(PiδQi) – (piδqi)

]
(A7.8.2)

S′, at time t +�t implicitly defines the transformation:

CT′, (P1, . . . , Pn;Q1, . . . ,Qn) 	→ (p1+�p1, . . . , pn+�pn; q1+�q1, . . . , qn+�qn)

while satisfying

δS′ =
n∑
i=1

[
(PiδQi) – (pi +�pi)δ(qi +�qi)

]
(A7.8.3)

Note that �t is a very small time-interval, and S′, which occurs at t +�t, is
only a very slightly different function to S, which occurs at t. Therefore: p1
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is very close to p′1, p2 is very close to p′2, . . . qn–1 is very close to q′n–1, qn is very
close to q′n. These proximities are guaranteed only because we insist that S and
S′ are continuous functions. The implications are that the�qi s and�pi s are small
quantities whose product and squares are insignificant, and, crucially, S′ edges
forward as t edges forward.
Now transformations that are canonical form a ‘group’, known as a Lie

group. This means that, as CT′ and CT are canonical, then any composition of
operations will also be in the group and will also be canonical. In particular, the
composition CT′ � CT–1 is canonical (CT–1 is the inverse ofCT and is also in the
group - has the property of being canonical). But the composition CT′ � CT–1
happens to perform the following transformation:

(pi, qi) 	→ (pi +�pi, qi +�qi), i = 1 to n

while satisfying

δ(S′ – S) =
n∑
i=1

[
(pi +�pi)δ(qi +�qi) – (piδqi)

]
(A7.8.4)

Putting this line of enquiry to one side for the moment, we remember that S
has yet another identity: it is a ‘generating function’ (it takes the ‘wavefront’
of common action from one position to the next to the next, and so on, in
configuration space). It has the functional form1 S = S(qi, . . . , qn;Qi, . . . ,Qn; t),
and so, to first order, we have

�S =
n∑
i=1

[
∂S

∂qi
�qi +

∂S

∂Qi
�Qi

]
+
∂S

∂ t
�t (A7.8.5)

Furthermore, in our present case�Qi = 0 for all i (as we start from a fixed initial
point), and therefore we obtain

�S = (S′ – S) =
n∑
i=1

[
∂S

∂qi
�qi

]
+
∂S

∂ t
�t (A7.8.6)

We now take the variation on both sides of (A7.8.6), and end up with:

δ(S′ – S) =
n∑
i=1

[
δ

(
∂S

∂qi

)
�qi

]
+ δ

(
∂S

∂ t

)
�t (A7.8.7)

1 Lanczos, page 217, equation (77.4).
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(The� s do not get varied.) Then, using the relations ∂S/∂qi = pi (see equations
(7.14) or Appendix A7.7), we obtain

δ(S′ – S) =
n∑
i=1

δpi�qi + δ

(
∂S

∂ t

)
�t (A7.8.8)

Equating the right-hand sides of (7.8.4) and (7.8.8), we find

n∑
i=1

[
(pi +�pi)δ(qi +�qi) – (piδqi)

]
=

n∑
i=1

δpi�qi + δ

(
∂S

∂ t

)
�t (A7.8.9)

Multiplying out the brackets, throwing away variations of � s, and ignoring
products of two� s, we finally arrive at:

n∑
i=1

(�piδqi – δpi�qi) = δ

(
∂S

∂ t

)
�t (A7.8.10)

Lanczos calls this a “remarkable relation”:2 all the coordinates are relative coord-
inates (only � s and δ s appear); moreover, all the coordinate intervals are
‘small’; and lastly the t-dependence is neatly collected together in one place (on
the right-hand side). Why is this so - why doesn’t t show up on the left? This
is explained in the following way. The left-hand side of (A7.8.10) arises from
different ‘slices’ through the phase fluid (such as (A7.8.2) and (A7.8.3)), and we
could label each slice with the time that this snapshot was taken. We would
then end up with an infinite sequence of ‘photos’, each with their own t-
number and corresponding S. Time thus shows up as a parameter (the photos
can be put in order) but it doesn’t bring in a functional dependence (we cannot
say that S = 3t2 + 4, for example). On the other hand, the right-hand side does
have a functional dependence on t (through S = S(q1, . . . , qn;Q1, . . . ,Qn; t), and
a similar form for ∂S/∂ t).
We have just seen how the left side of (A7.8.10) depends on pi s and qi s, while

the right side depends on (q1, . . . , qn;Q1, . . . ,Qn; t). However, we want to have
both sides in the same space, that is to say, phase space. We therefore determine
all the pi s from pi = ∂S/∂qi (relations (7.14)), and this means that the pi s are
then given as functions of (q1, . . . , qn;Q1, . . . ,Qn; t). We then ‘invert’ these pi-
functions and obtain the Qi s as functions of (q1, . . . , qn; p1, . . . , pn; t). Finally, we
replace the Qi s in ∂S/∂ t by these Qi-functions, and so obtain a new function,

2 Lanczos, page 218.
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say, –X, in phase-space coordinates:(
∂S

∂ t

)
= –X(q1, . . . , qn; p1, . . . , pn; t) (A7.8.11)

Taking variations of both sides we obtain

–δ

(
∂S

∂ t

)
= δX(q1, . . . , qn; p1, . . . , pn; t) =

n∑
i=1

[
∂X

∂qi
δqi +

∂X

∂pi
δpi

]
+
∂X

∂ t
δt

(A7.8.12)
However we don’t allow variation of the time (that is, δt = 0). Therefore,
(A7.8.12) becomes

–δ

(
∂S

∂ t

)
=

n∑
i=1

[
∂X

∂qi
δqi +

∂X

∂pi
δpi

]
(A7.8.13)

At last, we have δ
(
∂S/∂ t

)
in (p, q) coordinates, and we substitute this form into

our “remarkable relation” (A7.8.10):

n∑
i=1

(�piδqi – δpi�qi) = –
n∑
i=1

[
∂X

∂qi
δqi +

∂X

∂pi
δpi

]
�t (A7.8.14)

The variations, δpi, are independent, and also the variations, δqi, are
independent - therefore the coefficients of each δpi must be equal on both sides
of (A7.8.14), and also the coefficients of each δqi must be equal on both sides of
(A7.8.14). This leads to the relations:

�qi =
∂X

∂pi
�t

�pi = –
∂X

∂qi
�t i = 1 to n (A7.8.15)

Finally, to reach our place in the main text, equations (7.16), we substitute
–∂S/∂ t back for X and arrive at:

�qi = –
∂ [ ∂S
∂ t ]

∂pi
�t

�pi =
∂ [ ∂S
∂ t ]

∂qi
�t i = 1 to n (A7.8.16)
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Perpendicularity of wavefronts and rays

The surface of common action, S, is the wavefront. We consider a point X in
configuration space just as thewavefront passes through it.We draw the vector,
δqi, starting at X and lying in the wavefront hyper-surface (in other words, it’s
a vector in the tangent hyper-plane at X). Now this displacement, δqi, from X
cannot change the value of S, as we stay in a surface of constant S. Therefore
we must have (in n dimensions)

Surface Displacement, δqi, satisfying,

n∑
i=1

∂S

∂qi
δqi = 0 (A7.9.1)

There is also a displacement, dqi, along the trajectory or ray. Now dqi is
proportional to the speed, q̇i

Displacement along Ray, dqi
dqi = q̇i dt (A7.9.2)

In many scenarios, with a suitable choice of metric (see below), we have the
conjugate momentum given by pi = q̇i. We also know, from relations (7.14),
that pi = ∂S/∂qi. Making the substitution q̇i for ∂S/∂qi in (A7.9.1) we obtain

n∑
i=1

q̇iδq
i = 0 (A7.9.3)

But this also implies:

n∑
i=1

dqiδq
i = 0 (A7.9.4)

(A7.9.4) is the scalar product of two vectors and it is zero - therefore the two vec-
tors are orthogonal. In other words, displacements, δqi, within the wavefront, and
displacements, dqi, along the ray, are perpendicular to each other.
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Note that we have used tensor notation (upper and lower indices). Also, the
metric in this case, ds2, is defined by the kinetic energy, T, as follows:

T =
1

2

(
ds

dt

)2

=
1

2

n∑
i,j=1

Mijq̇
iq̇j (A7.9.5)

where theMij are the ‘generalized masses’, or moments of inertia.
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Problems solved using the Hamilton-Jacobi
Equation

We consider only cases where the Hamiltonian is independent of time.

1) Harmonic oscillator

We examine once again the one-dimensional harmonic oscillator already
treated in Appendix A7.3. ‘One-dimension’ refers to configuration space, and
so in phase space we have two coordinates, qi = q and pi = p. The Hamiltonian
for the system is:

H =
1

2

(
p2

m
+ mω2q2

)
, ω =

√
k/m (A7.10.1)

where a mass m, attached to a spring of negligible mass and spring-constant k,
oscillates with frequencyω, and at any instant has momentum p, and displace-
ment x = q. At the start, the spring is extended and then released (energy is put
into the system) but after this no further forces are applied, and we also assume
that there is no dissipation. This means that the Hamiltonian does not depend
explicitly on time, and so the Hamilton-Jacobi equation reduces to

∂S

∂ t
+ H

(
q,
∂S

∂q

)
= 0 (A7.10.2)

We seek an S-function that can be separated into a time-independent part,W,
and a time-dependent part, ht,

S(q,Q, t) = W(q,Q) – ht (A7.10.3)

where h is a constant. It then follows that ∂S/∂q = ∂W/∂q, and ∂S/∂ t = –h, and
so the Hamilton-Jacobi equation becomes

H

(
q,
∂W

∂q

)
= h (A7.10.4)
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Our transformation equations, (7.14), tell us that p = ∂S/∂q ≡ ∂W/∂q, and
this along with the form forH given in (A7.10.1), means that (A7.10.4) becomes

1

2

(
1

m

(
∂W

∂q

)2

+ mω2q2
)
= h (A7.10.5)

We find that h is not just any constant, it is the total energy, E. Rearranging
(A7.10.5), and substituting E for h, we obtain

∂W

∂q
=
√
m
√
2E – mω2q2 (A7.10.6)

and this can be integrated to give:

W =
√
m

∫ √
2E – mω2q2 dq (A7.10.7)

(The constant of integration has been ignored but there is no lack of rigour
because it will later on be absorbed into another constant, β .)
We pause to explain a few things before continuing. The Hamilton-Jacobi

Equation (A7.10.2), can be looked at in a new way. We could view it as a trans-
formation from an original Hamiltonian H in original coordinates (p, q), to a
transformed Hamiltonian H′ in transformed coordinates (P,Q), where it just
so happens that the transformed Hamiltonian is identically zero:

∂S

∂ t
= –H(q, p) 	→ –H′(Q, P) ≡ 0. (A7.10.8)

But this zero H′ then means that the transformed canonical equations are:

Q̇ =
∂H′

∂P
= 0 and

Ṗ = –
∂H′

∂Q
= 0 (A7.10.9)

and this in turn implies that Q = constant, say, α; and P = constant, say, β . Our
transformation equations, (7.14), also imply that P = –∂S/∂Q.
Now, we can choose α = E, and this leads to ∂S/∂Q = ∂S/∂E. Also, as we

found that h = E (see above) then ∂S/∂E = ∂W/∂E – t. Finally, from P = β and
P = –∂S/∂Q, we have β = –∂S/∂Q = –∂S/∂E = t – ∂W/∂E. We are now ready
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to return to (A7.10.7). If we differentiate both sides with respect to E (we can
differentiate within the integral sign), thenwe can set the answer equal to t – β ,

∂W

∂E
=

1

ω

∫
dq

/√(
2E

mω2
– q2
)

= t – β (A7.10.10)

This integral can be solved for q, and we find that

q =

(
2E

mω2

) 1
2

sinω(t – β) (A7.10.11)

This is the familiar sinusoidal motion of an oscillating spring. Also, the amp-
litude when squared is proportional to the energy E (this is as expected - the
more energy that’s put in, the bigger is the amplitude), and the other constant
β , gives the phase of the oscillation.
We can also determine the conjugate ‘momentum’ p, from the usual trans-

formation equation, p = ∂S/∂q, which in this case is the same as ∂W/∂q. Using
(A7.10.6) we obtain

p = ∂W/∂q =
√
2mE – m2ω2q2 (A7.10.12)

and substituting in q from (A7.10.11) we arrive at

p = (2mE)
1
2 cosω(t – β) (A7.10.13)

(It is easy to verify that p = mq̇, as expected.)

2) Planetary motion in 2-D

We consider,more briefly, Kepler’s problemof planetarymotion1 with a central
‘force-field’ V(r), a planet of mass m, and two (‘plane polar’) coordinates q1 = r,
and q2 = θ . The problem is assumed time-independent (the masses and gravity
aren’t changing):

H(r, θ , pr, pθ ) = H(r, , pr, pθ ) (θ is ‘absent’, and there’s no t)

=
1

2m
(p2r + p2θ /r

2) + V(r) (A7.10.14)

We assume S is separable into time-dependent and time-independent parts,
S = St +W(r, θ ), and W is further separable as follows: W = Wr(r) +Wθ (θ ).

1 The problem has been adapted from Goldstein H, Classical Mechanics, 2nd Edition,
Addison-Wesley Publishing Co (1980) pp 454-5.
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Therefore (the time-independent version of) the Hamilton-Jacobi equation
becomes

∂St
∂ t

+ H(r, ∂Wr/∂ r, ∂Wθ /∂θ ) = 0 (A7.10.15)

Now this equation has two terms each depending on totally different things,
and yet always summing to zero. The only way this can be satisfied is by having
the two terms equal and opposite and constant. The constant is E, the total
energy of the system:

∂St/∂ t = –E and H(r, ∂Wr/∂ r, ∂Wθ /∂θ ) = E (A7.10.16)

Furthermore, as θ is ‘absent’, then pθ = ∂Wθ /∂θ = constant, and setting this
constant to αθ , (A7.10.14) may be written:

1

2m
((∂Wr/∂ r)

2 + α2θ /r
2) + V(r) = E (A7.10.17)

Rearranging and taking the positive square root,

∂Wr/∂ r =
√
2m(E – V) – α2θ /r

2 (A7.10.18)

Integration of (A7.10.18) with respect to r, and of ∂Wθ /∂θ with respect to θ ,
yields:

Wr =

∫ √
2m(E – V) – α2θ /r

2 dr and Wθ = αθθ (A7.10.19)

(ignoring constants of integration). We are not done yet asW = Wr +Wθ has
still more conditions to satisfy: it must comply with our usual transformation
equations connecting conjugate coordinates (cf. equations (7.14) in the main
text). In this present problem we have:

t + βt = ∂W/∂E =

∫
m dr√

2m(E – V) – α2θ /r
2

(A7.10.20a)

and

βθ = ∂W/∂αθ = –

∫
αθ dr

r2
√
2m(E – V) – α2θ /r

2
+ θ (A7.10.20b)
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obtained by differentiating within the integral. The βt and βθ are constants
(initial values of t and θ respectively), and αθ is also a constant - the orbital
angular momentum of the planet, pθ = mr2θ̇ , often symbolized as l. Equation
(A7.10.20b) can be solved to give θ as a function of r - the ‘orbit equation’.

General comment
It may seem strange that in both 1) and 2) the method involves
differentiating with respect to constants E, or pθ , but this is in keep-
ing with the approach of Hamilton’s Mechanics: the energy and the
orbital angular momentum are not just constants they are parameters,
and much general wisdom is obtained by running the problem again
and again with a different energy or a different angular momentum
each time.



APPENDIX A7.11

Quasi refractive index in mechanics

The basic differential equation of geometrical optics, discovered by Hamilton,
and expressing Huygens’s Principle in infinitesimal form, is the Eikonal
Equation:

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

=
n2

c2
(A7.11.1)

where φ is the ‘wavefront’, and n is the refractive index of the optical medium
that the light is passing through. For light, n = c/v, that is, n is inversely propor-
tional to the speed of light, v, in themedium. Also, by the conventions of vector
calculus, the left-hand side of (A7.11.1) may be written |∇φ|2. Therefore
altogether the above equation may be re-written as |∇φ|2 = 1/(speed)2.
In the mechanics case, for a time-independent system in Cartesian coordin-

ates, we have:

1

2m
(p2x + p2y + p2z ) + V(x, y, z) = E (A7.11.2)

We can rearrange this to:

(p2x + p2y + p2z ) = 2m(E – V) (A7.11.3)

Identifying (∂φ/∂i)2 with (pi)2, and comparing (A7.11.1) and (A7.11.3) we can
correlate an optical problem to a mechanical problem by defining - in the
mechanics case - a ‘refractive index’ for a ‘hypothetical optical medium’, as
follows:

nmech
c

= const
√
2m(E – V) (A7.11.4)

where const is some constant of proportionality.
(Note an important difference between light and mechanics. nmech is propor-

tional to
√
2m(E – V), that is, it is directly proportional to the speed, v, of the

mass, m; whereas earlier we stated that n for light was inversely proportional to
the speed, v, of the light.)



APPENDIX A7.12

Einstein’s link between Action and the de Broglie
waves

The following is a condensed version from Lanczos’s book, “The Einstein Decade
(1905–1915)”, Academic Press Inc (1974), pages 113–5.
In the early quantum theory, in Bohr’s model of the atom (proposed by

Niels Bohr (1885–1962) in 1913), the electron orbits were assumed to be circu-
lar and with quantized energy levels, E = n× hν, where n had integer values,
n = 1, 2, 3, . . . (h is Planck’s constant). Soon afterward it was realized that the
truly decisive quantity that should be quantized was not energy but action:∮

pdq = nh (A7.12.1)

Now this result was only valid for circular orbits, that is, orbits with just one
degree of freedom (the radius of the orbit). The more general case with many
degrees of freedomwas tackled by the physicists Sommerfeld, andWilson. They
independently of each other came up with a partial solution - the Hamiltonian
had to be ‘separable’ (there had to be oneHamiltonian for each conjugate pair):

H = H1(q1, p1) + H2(q2, p2) + . . .Hn(qn, pn) (A7.12.2)

with associated quantization conditions:

∮
p1dq1 = n1h,

∮
p2dq2 = n2h, . . . .

∮
pndqn = nnh (A7.12.3)

However Einstein could not believe that the particular coordinates, in which
the Hamiltonian was accidentally separable, should have a decisive significance
for the physical phenomena - the choice of coordinates should not make a
fundamental difference. With characteristic ingenuity, he reformulated the
‘Sommerfeld-Wilson’ quantization conditions in a radically new way. He pos-
tulated that it was the sum of these conditions that was the quantity of true
physical significance:

n∑
i=1

∮
pidqi = nh (A7.12.4)
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where n is again an integer (but nothing to do with the n we had before). Now,
we know that pi = ∂S/∂qi (from equations (7.14) in the main text), and so we
arrive at: ∮ n∑

i=1

pidqi =

∮ n∑
i=1

∂S

∂qi
dqi =

∮
dS = �S = nh (A7.12.5)

(Note that the order of summing and integration has been swapped between
equations (A7.12.4) and (A7.12.5).)

Optional commentary

At the beginning of Appendix A7.6 we had a closed integral over
the perfect differential, dS, being zero - doesn’t this contradict equa-
tion (A7.12.5)? Yes, but in Appendix A7.6 that was the classical world
whereas now this is the quantum world; and in this quantum world
tiny finite values sometimes occur where before we had zero (cf. the
order of carrying out observations on conjugate variables).

Einstein’s function S, is the same as the action function S, and is proportional to
the phase function φ̄, used in Chapter 7.1 In other words, equation (A7.12.5),
discovered by Einstein in 1917, leads to�φ̄ = 1, 2, 3, . . ., which brings us “dir-
ectly to the doors of de Broglies’s matter waves [discovered in 1923]”, and “It
seems astonishing that this very beautiful idea of Einstein,. . . is not mentioned
in any of the early histories of quantum theory, although it is such a vital
link. . . ”2

1 Notation: Lanczos changes from the phase function, φ̄, in “The Variational Principles of
Dynamics”, to�/2π , in “The Einstein Decade (1905-1915)”.

2 Lanczos L, “The Einstein Decade”, page 115.
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