
Table Of Contents

 	
 - Table Of Contents -

 	
 Praise for Fundamentals of Software Architecture

 	
 Fundamentals of Software Architecture

 	
 Fundamentals of Software Architecture

 	
 Preface: Invalidating Axioms

 	
 1. Introduction

 	
 I. Foundations

 	
 2. Architectural Thinking

 	
 3. Modularity

 	
 4. Architecture Characteristics Defined

 	
 5. Identifying Architectural Characteristics

 	
 6. Measuring and Governing Architecture Characteristics

 	
 7. Scope of Architecture Characteristics

 	
 8. Component-Based Thinking

 	
 II. Architecture Styles

 	
 9. Foundations

 	
 10. Layered Architecture Style

 	
 11. Pipeline Architecture Style

 	
 12. Microkernel Architecture Style

 	
 13. Service-Based Architecture Style

Praise for Fundamentals of Software Architecture

Praise for Fundamentals of Software Architecture

Neal and Mark aren’t just outstanding software architects; they are also exceptional teachers. With Fundamentals of Software Architecture, they have managed to condense the sprawling topic of architecture into a concise work that reflects their decades of experience. Whether you’re new to the role or you’ve been a practicing architect for many years, this book will help you be better at your job. I only wish they’d written this earlier in my career.

Nathaniel Schutta, Architect as a Service, ntschutta.io

Mark and Neal set out to achieve a formidable goal—to elucidate the many, layered fundamentals required to excel in software architecture—and they completed their quest. The software architecture field continuously evolves, and the role requires a daunting breadth and depth of knowledge and skills. This book will serve as a guide for many as they navigate their journey to software architecture mastery.

Rebecca J. Parsons, CTO, ThoughtWorks

Mark and Neal truly capture real world advice for technologists to drive architecture excellence. They achieve this by identifying common architecture characteristics and the trade-offs that are necessary to drive success.

Cassie Shum, Technical Director, ThoughtWorks

Fundamentals of Software Architecture

Fundamentals of Software Architecture

An Engineering Approach

Mark Richards and Neal Ford

Fundamentals of Software Architecture

 Fundamentals of Software Architecture

 by
 Mark
 Richards
 and
 Neal
 Ford

 Copyright © 2020 Mark Richards, Neal Ford. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 Chris Guzikowski

 	
 Development Editors:
 Alicia Young and Virginia Wilson

 	
 Production Editor:
 Christopher Faucher

 	
 Copyeditor:
 Sonia Saruba

 	
 Proofreader:
 Amanda Kersey

 	
 Indexer:
 Ellen Troutman-Zaig

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Rebecca Demarest

 	
 February 2020:
 First Edition

 Revision History for the First Edition

 	
 2020-01-27:
 First Release

 	
 2020-06-12:
 Second Release

 	
 2020-11-06:
 Third Release

 	
 2021-02-12:
 Fourth Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492043454
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Fundamentals of Software Architecture, the cover image, and related trade
 dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts ...

Preface: Invalidating Axioms

Preface: Invalidating Axioms

	Axiom

	
A statement or proposition which is regarded as being established, accepted, or self-evidently true.

Mathematicians create theories based on axioms, assumptions for things indisputably true. Software architects also build theories atop axioms, but the software world is, well, softer than mathematics: fundamental things continue to change at a rapid pace, including the axioms we base our theories upon.

The software development ecosystem exists in a constant state of dynamic equilibrium: while it exists in a balanced state at any given point in time, it exhibits dynamic behavior over the long term. A great modern example of the nature of this ecosystem follows the ascension of containerization and the attendant changes: tools like Kubernetes didn’t exist a decade ago, yet now entire software conferences exist to service its users. The software ecosystem changes chaotically: one small change causes another small change; when repeated hundreds of times, it generates a new ecosystem.

Architects have an important responsibility to question assumptions and axioms left over from previous eras. Many of the books about software architecture were written in an era that only barely resembles the current world. In fact, the authors believe that we must question fundamental axioms on a regular basis, in light of improved engineering practices, operational ecosystems, software development processes—everything that makes up the messy, dynamic equilibrium ...

1. Introduction

Chapter 1. Introduction

The job “software architect” appears near the top of numerous lists of best jobs across the world. Yet when readers look at the other jobs on those lists (like nurse practitioner or finance manager), there’s a clear career path for them. Why is there no path for software architects?

First, the industry doesn’t have a good definition of software architecture itself. When we teach foundational classes, students often ask for a concise definition of what a software architect does, and we have adamantly refused to give one. And we’re not the only ones. In his famous whitepaper “Who Needs an Architect?” Martin Fowler famously refused to try to define it, instead falling back on the famous quote:

Architecture is about the important stuff…whatever that is.

Ralph Johnson

When pressed, we created the mindmap shown in Figure 1-1, which is woefully incomplete but indicative of the scope of software architecture. We will, in fact, offer our definition of software architecture shortly.

Second, as illustrated in the mindmap, the role of software architect embodies a massive amount and scope of responsibility that continues to expand. A decade ago, software architects dealt only with the purely technical aspects of architecture, like modularity, components, and patterns. Since then, because of new architectural styles that leverage a wider swath of capabilities (like microservices), the role of software architect has expanded. We cover the many intersections of architecture ...

I. Foundations

Part I. Foundations

To understand important trade-offs in architecture, developers must understand some basic concepts and terminology concerning components, modularity, coupling, and connascence.

2. Architectural Thinking

Chapter 2. Architectural Thinking

An architect sees things differently from a developer’s point of view, much in the same way a meteorologist might see clouds differently from an artist’s point of view. This is called architectural thinking. Unfortunately, too many architects believe that architectural thinking is simply just “thinking about the architecture.”

Architectural thinking is much more than that. It is seeing things with an architectural eye, or an architectural point of view. There are four main aspects of thinking like an architect. First, it’s understanding the difference between architecture and design and knowing how to collaborate with development teams to make architecture work. Second, it’s about having a wide breadth of technical knowledge while still maintaining a certain level of technical depth, allowing the architect to see solutions and possibilities that others do not see. Third, it’s about understanding, analyzing, and reconciling trade-offs between various solutions and technologies. Finally, it’s about understanding the importance of business drivers and how they translate to architectural concerns.

In this chapter we explore these four aspects of thinking like an architect and seeing things with an architectural eye.

Architecture Versus Design

The difference between architecture and design is often a confusing one. Where does architecture end and design begin? What responsibilities does an architect have versus those of a developer? Thinking like ...

3. Modularity

Chapter 3. Modularity

First, we want to untangle some common terms used and overused in discussions about architecture surrounding modularity and provide definitions for use throughout the book.

95% of the words [about software architecture] are spent extolling the benefits of “modularity” and that little, if anything, is said about how to achieve it.

Glenford J. Myers (1978)

Different platforms offer different reuse mechanisms for code, but all support some way of grouping related code together into modules. While this concept is universal in software architecture, it has proven slippery to define. A casual internet search yields dozens of definitions, with no consistency (and some contradictions). As you can see from the quote from Myers, this isn’t a new problem. However, because no recognized definition exists, we must jump into the fray and provide our own definitions for the sake of consistency throughout the book.

Understanding modularity and its many incarnations in the development platform of choice is critical for architects. Many of the tools we have to analyze architecture (such as metrics, fitness functions, and visualizations) rely on these modularity concepts. Modularity is an organizing principle. If an architect designs a system without paying attention to how the pieces wire together, they end up creating a system that presents myriad difficulties. To use a physics analogy, software systems model complex systems, which tend toward entropy (or disorder). Energy ...

4. Architecture Characteristics Defined

Chapter 4. Architecture Characteristics Defined

A company decides to solve a particular problem using software, so it gathers a list of requirements for that system. A wide variety of techniques exist for the exercise of requirements gathering, generally defined by the software development process used by the team. But the architect must consider many other factors in designing a software solution, as illustrated in Figure 4-1.

[image: Requirements]
Figure 4-1. A software solution consists of both domain requirements and architectural characteristics

Architects may collaborate on defining the domain or business requirements, but one key responsibility entails defining, discovering, and otherwise analyzing all the things the software must do that isn’t directly related to the domain functionality: architectural characteristics.

What distinguishes software architecture from coding and design? Many things, including the role that architects have in defining architectural characteristics, the important aspects of the system independent of the problem domain. Many organizations describe these features of software with a variety of terms, including nonfunctional requirements, but we dislike that term because it is self-denigrating. Architects created that term to distinguish architecture characteristics from functional requirements, but naming something nonfunctional has a negative impact from a language ...

5. Identifying Architectural Characteristics

Chapter 5. Identifying Architectural Characteristics

Identifying the driving architectural characteristics is one of the first steps in creating an architecture or determining the validity of an existing architecture. Identifying the correct architectural characteristics (“-ilities”) for a given problem or application requires an architect to not only understand the domain problem, but also collaborate with the problem domain stakeholders to determine what is truly important from a domain perspective.

An architect uncovers architecture characteristics in at least three ways by extracting from domain concerns, requirements, and implicit domain knowledge. We previously discussed implicit characteristics and we cover the other two here.

Extracting Architecture Characteristics from Domain Concerns

An architect must be able to translate domain concerns to identify the right architectural characteristics. For example, is scalability the most important concern, or is it fault tolerance, security, or performance? Perhaps the system requires all four characteristics combined. Understanding the key domain goals and domain situation allows an architect to translate those domain concerns to “-ilities,” which then forms the basis for correct and justifiable architecture decisions.

One tip when collaborating with domain stakeholders to define the driving architecture characteristics is to work hard to keep the final list as short as possible. A common anti-pattern in architecture entails trying ...

6. Measuring and Governing Architecture Characteristics

Chapter 6. Measuring and Governing Architecture Characteristics

Architects must deal with the extraordinarily wide variety of architecture characteristics across all different aspects of software projects. Operational aspects like performance, elasticity, and scalability comingle with structural concerns such as modularity and deployability. This chapter focuses on concretely defining some of the more common architecture characteristics and building governance mechanisms for them.

Measuring Architecture Characteristics

Several common problems exist around the definition of architecture characteristics in organizations:

	They aren’t physics

	
Many architecture characteristics in common usage have vague meanings. For example, how does an architect design for agility or deployability? The industry has wildly differing perspectives on common terms, sometimes driven by legitimate differing contexts, and sometimes accidental.

	Wildly varying definitions

	
Even within the same organization, different departments may disagree on the definition of critical features such as performance. Until developers, architecture, and operations can unify on a common definition, a proper conversation is difficult.

	Too composite

	
Many desirable architecture characteristics comprise many others at a smaller scale. For example, developers can decompose agility into characteristics such as modularity, deployability, and testability.

Objective definitions for architecture characteristics solve all three ...

7. Scope of Architecture Characteristics

Chapter 7. Scope of Architecture Characteristics

A prevailing axiomatic assumption in the software architecture world had traditionally placed the scope of architecture characteristics at the system level. For example, when architects talk about scalability, they generally couch that discussion around the scalability of the entire system. That was a safe assumption a decade ago, when virtually all systems were monolithic. With the advent of modern engineering techniques and the architecture styles they enabled, such as microservices, the scope of architecture characteristics has narrowed considerably. This is a prime example of an axiom slowly becoming outdated as the software development ecosystem continues its relentless evolution.

During the writing of the Building Evolutionary Architectures book, the authors needed a technique to measure the structural evolvability of particular architecture styles. None of the existing measures offered the correct level of detail. In “Structural Measures”, we discuss a variety of code-level metrics that allow architects to analyze structural aspects of an architecture. However, all these metrics only reveal low-level details about the code, and cannot evaluate dependent components (such as databases) outside the code base that still impact many architecture characteristics, especially operational ones. For example, no matter how much an architect puts effort into designing a performant or elastic code base, if the system uses a database that ...

8. Component-Based Thinking

Chapter 8. Component-Based Thinking

In Chapter 3, we discussed modules as a collection of related code. However, architects typically think in terms of components, the physical manifestation of a module.

Developers physically package modules in different ways, sometimes depending on their development platform. We call physical packaging of modules components. Most languages support physical packaging as well: jar files in Java, dll in .NET, gem in Ruby, and so on. In this chapter, we discuss architectural considerations around components, ranging from scope to discovery.

Component Scope

Developers find it useful to subdivide the concept of component based on a wide host of factors, a few of which appear in Figure 8-1.

Components offer a language-specific mechanism to group artifacts together, often nesting them to create stratification. As shown in Figure 8-1, the simplest component wraps code at a higher level of modularity than classes (or functions, in nonobject-oriented languages). This simple wrapper is often called a library, which tends to run in the same memory address as the calling code and communicate via language function call mechanisms. Libraries are usually compile-time dependencies (with notable exceptions like dynamic link libraries [DLLs] that were the bane of Windows users for many years).

[image: image-placeholder]
Figure 8-1. Different varieties of components

Components also appear ...

II. Architecture Styles

Part II. Architecture Styles

The difference between an architecture style and an architecture pattern can be confusing. We define an architecture style as the overarching structure of how the user interface and backend source code are organized (such as within layers of a monolithic deployment or separately deployed services) and how that source code interacts with a datastore. Architecture patterns, on the other hand, are lower-level design structures that help form specific solutions within an architecture style (such as how to achieve high scalability or high performance within a set of operations or between sets of services).

Understanding architecture styles occupies much of the time and effort for new architects because they share importance and abundance. Architects must understand the various styles and the trade-offs encapsulated within each to make effective decisions; each architecture style embodies a well-known set of trade-offs that help an architect make the right choice for a particular business problem.

9. Foundations

Chapter 9. Foundations

Architecture styles, sometimes called architecture patterns, describe a named relationship of components covering a variety of architecture characteristics. An architecture style name, similar to design patterns, creates a single name that acts as shorthand between experienced architects. For example, when an architect talks about a layered monolith, their target in the conversation understands aspects of structure, which kinds of architecture characteristics work well (and which ones can cause problems), typical deployment models, data strategies, and a host of other information. Thus, architects should be familiar with the basic names of fundamental generic architecture styles.

Each name captures a wealth of understood detail, one of the purposes of design patterns. An architecture style describes the topology, assumed and default architecture characteristics, both beneficial and detrimental. We cover many common modern architecture patterns in the remainder of this section of the book (Part II). However, architects should be familiar with several fundamental patterns that appear embedded within the larger patterns.

Fundamental Patterns

Several fundamental patterns appear again and again throughout the history of software architecture because they provide a useful perspective on organizing code, deployments, or other aspects of architecture. For example, the concept of layers in architecture, separating different concerns based on functionality, is as ...

10. Layered Architecture Style

Chapter 10. Layered Architecture Style

The layered architecture, also known as the n-tiered architecture style, is one of the most common architecture styles. This style of architecture is the de facto standard for most applications, primarily because of its simplicity, familiarity, and low cost. It is also a very natural way to develop applications due to Conway’s law, which states that organizations that design systems are constrained to produce designs which are copies of the communication structures of these organizations. In most organizations there are user interface (UI) developers, backend developers, rules developers, and database experts (DBAs). These organizational layers fit nicely into the tiers of a traditional layered architecture, making it a natural choice for many business applications. The layered architecture style also falls into several architectural anti-patterns, including the architecture by implication anti-pattern and the accidental architecture anti-pattern. If a developer or architect is unsure which architecture style they are using, or if an Agile development team “just starts coding,” chances are good that it is the layered architecture style they are implementing.

Topology

Components within the layered architecture style are organized into logical horizontal layers, with each layer performing a specific role within the application (such as presentation logic or business logic). Although there are no specific restrictions in terms of the number ...

11. Pipeline Architecture Style

Chapter 11. Pipeline Architecture Style

One of the fundamental styles in software architecture that appears again and again is the pipeline architecture (also known as the pipes and filters architecture). As soon as developers and architects decided to split functionality into discrete parts, this pattern followed. Most developers know this architecture as this underlying principle behind Unix terminal shell languages, such as Bash and Zsh.

Developers in many functional programming languages will see parallels between language constructs and elements of this architecture. In fact, many tools that utilize the MapReduce programming model follow this basic topology. While these examples show a low-level implementation of the pipeline architecture style, it can also be used for higher-level business applications.

Topology

The topology of the pipeline architecture consists of pipes and filters, illustrated in Figure 11-1.

[image: image-placeholder]
Figure 11-1. Basic topology for pipeline architecture

The pipes and filters coordinate in a specific fashion, with pipes forming one-way communication between filters, usually in a point-to-point fashion.

Pipes

Pipes in this architecture form the communication channel between filters. Each pipe is typically unidirectional and point-to-point (rather than broadcast) for performance reasons, accepting input from one source and always directing output to another. The ...

12. Microkernel Architecture Style

Chapter 12. Microkernel Architecture Style

The microkernel architecture style (also referred to as the plug-in architecture) was coined several decades ago and is still widely used today. This architecture style is a natural fit for product-based applications (packaged and made available for download and installation as a single, monolithic deployment, typically installed on the customer’s site as a third-party product) but is widely used in many nonproduct custom business applications as well.

Topology

The microkernel architecture style is a relatively simple monolithic architecture consisting of two architecture components: a core system and plug-in components. Application logic is divided between independent plug-in components and the basic core system, providing extensibility, adaptability, and isolation of application features and custom processing logic. Figure 12-1 illustrates the basic topology of the microkernel architecture style.

[image: Microkernel architecture components]
Figure 12-1. Basic components of the microkernel architecture style

Core System

The core system is formally defined as the minimal functionality required to run the system. The Eclipse IDE is a good example of this. The core system of Eclipse is just a basic text editor: open a file, change some text, and save the file. It’s not until you add plug-ins that Eclipse starts becoming a usable product. However, another definition of the core ...

13. Service-Based Architecture Style

Chapter 13. Service-Based Architecture Style

Service-based architecture is a hybrid of the microservices architecture style and is considered one of the most pragmatic architecture styles, mostly due to its architectural flexibility. Although service-based architecture is a distributed architecture, it doesn’t have the same level of complexity and cost as other distributed architectures, such as microservices or event-driven architecture, making it a very popular choice for many business-related applications.

Topology

The basic topology of service-based architecture follows a distributed macro layered structure consisting of a separately deployed user interface, separately deployed remote coarse-grained services, and a monolithic database. This basic topology is illustrated in Figure 13-1.

Services within this architecture style are typically coarse-grained “portions of an application” (usually called domain services) that are independent and separately deployed. Services are typically deployed in the same manner as any monolithic application would be (such as an EAR file, WAR file, or assembly) and as such do not require containerization (although you could deploy a domain service in a container such as Docker). Because the services typically share a single monolithic database, the number of services within an application context generally range between 4 and 12 services, with the average being about 7 services.

Figure 13-1. Basic topology of the service-based architecture ...

OEBPS/cover.png
O'REILLY"

Fundamentals of
Software

Architecture

An Engineering Approach

Mark Richards & Neal Ford

OEBPS/images/cd97a05e-4079-443d-91a1-ae955c5c678a.png
Wrapper of related code
Layer or subsystem
service
—
> (D

Event processor

Distributed service

OEBPS/images/3985aa13-f379-47c8-bcc0-0f5e6712e07a.png
Audltablllty Performance Securlty Reqmrements Data Legallty Scalablllty

OEBPS/images/631d6eb4-d963-4cab-a274-50e8b134c8dc.png
Plug-in
Component

Plug-in
Component

Plug-in
Component

\.

J

Core System

Plug-in
Component

e —
)

Plug-in
Component

 —
)

Plug-in
Component

\. J

OEBPS/images/0e7b16fc-71c4-4cdc-884e-101712d7e669.png
Pipe Pipe

Pipe

v

