

Statistics with Rust

50+ Statistical Techniques Put into Action

 Keiko Nakamura

Copyright © 2023 by GitforGits.

All rights reserved. This book is protected under copyright laws and no
part of it may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without the prior written
permission of the publisher. Any unauthorized reproduction, distribution,
or transmission of this work may result in civil and criminal penalties and
will be dealt with in the respective jurisdiction at anywhere in India, in
accordance with the applicable copyright laws.

Published by: GitforGits
Publisher: Sonal Dhandre
www.gitforgits.com
support@gitforgits.com

Printed in India

First Printing: April 2023

Cover Design by: Kitten Publishing

For permission to use material from this book, please contact GitforGits at
support@gitforgits.com.

Content

 Preface

 Chapter 1: Introduction to Rust for Statisticians

 Why Rust for Data Analysis and Statistics?

 Comparing Rust and Python for Statistics

 Performance

 Memory Safety and Resource Management

 Concurrency

 Interoperability

 Ecosystem Growth and Future Prospects

 Readability and Maintainability

 Scalability

 Cross-platform and Deployment

 Learning Curve

 Setting up Rust Environment

 Download rustup-init

 Run rustup-init

 Configure PATH Environment Variable

 Verify the Installation

 Essential Rust Libraries for Statistics

 ndarray

 statrs

 statis

 plotly

 Setting up Statistical Project

 Create a New Rust Project

 Add Library Dependencies

 Build and Run the Project

 Import the Libraries in Rust Code

 Summary

 Chapter 2: Data Handling and Preprocessing

 Data Handling and Preprocessing

 Process of Data Handling and Preprocessing

 Exploring CSV crate

 Dataset Loading with CSV crate

 Parsing the Data

 Data Structures in Rust

 Arrays

 Vectors

 Tuples

 Structs

 HashMaps

 Calculating Mean

 Calculating Median

 Common Data Cleaning and Preprocessing Techniques

 Handling Missing Values

 Data Type Conversion

 Scaling/Normalizing Data

 Encoding Categorical Variables

 Feature Engineering

 Performing Data Cleaning and Preprocessing

 Summary

 Chapter 3: Descriptive Statistics in Rust

 Introduction to Descriptive Statistics

 Measures of Central Tendency

 Calculate Measures of Central Tendency

 Measures of Dispersion

 Calculate Measures of Dispersion

 Exploratory Data Analysis (EDA)

 Implementing EDA

 Summary

 Chapter 4: Probability Distributions and Random Variables

 Discrete Probability Distribution

 Uniform Distribution

 Bernoulli Distribution

 Binomial Distribution

 Poisson Distribution

 Geometric Distribution

 Continuous Probability Distribution

 Uniform Distribution

 Normal (Gaussian) Distribution

 Exponential Distribution

 Beta Distribution

 Gamma Distribution

 Generating Random Variables

 Sampling from Distributions

 Sample Program for Sampling from Distributions

 Estimating Distribution Parameters

 Method of Moments (MoM)

 Maximum Likelihood Estimation (MLE)

 Bayesian Estimation

 Least Squares

 Summary

 Chapter 5: Inferential Statistics

 Fundamentals of Inferential Statistics

 Hypothesis Testing

 Confidence Intervals

 Performing Hypothesis Testing

 Two-sample T-test

 Chi-square Test for Independence

 Calculating Confidence Interval

 For Mean

 For the Proportion

 Parametric Tests

 Paired T-test

 One-way ANOVA

 Non-parametric Tests

 Wilcoxon Rank-sum Test (Mann-Whitney U Test)

 Implementing Wilcoxon Rank-sum Test

 Kruskal-Wallis Test

 Implementing Kruskal-Wallis Test

 Summary

 Chapter 6: Regression Analysis

 Introduction to Regression Analysis

 Overview

 Applications of Regression Analysis

 Types of Regression Analysis

 Simple Linear Regression

 Understanding Equation

 Applying Simple Regression with Rust

 Multiple Linear Regression

 Understanding Equation

 Applying Multiple Linear Regression

 Polynomial Regression

 Understanding Equation

 Applying Polynomial Regression

 Ridge and Lasso Regression

 Understanding Equation

 Applying Ridge and Lasso Regression

 Logistic Regression

 Understanding Equation

 Applying Logistic Regression

 Summary

 Chapter 7: Bayesian Statistics

 Introduction to Bayesian Statistics

 Bayes Theorem

 Advantages of Bayesian Statistics

 Bayesian Inference

 Putting Bayesian Inference into Action

 Procedure to Perform Bayesian Inference

 Practical Illustration of Bayesian Inference

 Bayesian Model Comparison

 Bayesian Hierarchical Modeling

 Advanced Markov Chain Monte Carlo Method

 Simple Implementation of HMC Method

 Model Comparison and Selection

 Model Comparison using DIC

 Model Comparison using WAIC

 Summary

 Chapter 8: Multivariate Statistical Methods

 Multivariate Statistical Methods

 Introduction

 Overview of Multivariate Techniques

 Principal Component Analysis (PCA)

 Procedure of PCA

 Sample Program to Implement PCA

 Canonical Correlation Analysis (CCA)

 Procedure to Perform CCA

 Sample Program to Implement CCA

 Linear Discriminant Analysis (LDA)

 Procedure to Perform LDA Algorithm

 Sample Program to Implement LDA

 Independent Component Analysis (ICA)

 Overview of ICA Algorithm

 Sample Program to Implement ICA

 Multidimensional Scaling (MDS)

 Types of Multidimensional Scaling

 Sample Program to Implement Classical MDS

 Summary

 Chapter 9: Nonlinear Models and Machine Learning

 Nonlinear Models

 Decision Trees

 Overview

 Building Decision Tree

 Support Vector Machines (SVM)

 Overview

 Building SVM Model

 Neural Networks

 Fundamentals of Neural Networks

 Building Neural Network Model

 Ensemble Methods

 Overview

 Building Bagging Ensemble of Decision Tree

 Summary

 Chapter 10: Model Evaluation and Validation

 Model Evaluation and Validation

 Introduction

 Train-test Split Technique

 Exploring Train-test Split

 Implementing Train-test Split

 Cross-validation Technique

 Understanding Cross-validation

 Implementing K-fold Cross-validation

 Hyperparameter Tuning

 Overview

 Perform Hyperparameter Tuning using Grid Search

 Model Selection Techniques: AIC and BIC

 Akaike Information Criterion (AIC)

 Bayesian Information Criterion (BIC)

 Implement AIC and BIC

 Resampling Methods

 Bootstrapping

 Permutation Tests

 Perform Bootstrapping and Permutation Test

 Implementing Bootstrapping

 Implementing Permutation Test

 Summary

 Chapter 11: Text and Natural Language Processing

 Overview of Natural Language Processing (NLP)

 Key Processes of NLP

 Text Preprocessing and Tokenization

 Key Preprocessing Techniques

 Common Tokenization Approaches

 Implementing Text Preprocessing and Tokenization

 Sample Program to Perform Preprocessing and Tokenization

 Stopword Removal Process

 Sample Program to Perform Stopword Removal

 Stemming and Lemmatization

 Perform Stemming

 Information Retrieval with TF-IDF

 TF-IDF Components

 Implementation of TF-IDF

 Word Embeddings and Word2Vec

 Summary

 Index

 Epilogue

Preface

Are you an experienced statistician or data professional looking for a
powerful, efficient, and versatile programming language to turbocharge
your data analysis and machine learning projects? Look no further!
"Statistics with Rust" is your comprehensive resource to unlock Rust's
true potential in modern statistical methods.

This book is tailored specifically for statisticians and data professionals
who are already familiar with the fundamentals of statistics and want to
leverage the speed and reliability of Rust in their projects. Over 11 in-
depth chapters, you will discover how Rust outperforms Python in various
aspects of data analysis and machine learning and learn to implement
popular statistical methods using Rust's unique features and libraries.

"Statistics with Rust" begins by introducing you to Rust's programming
environment and essential libraries for data professionals. You'll then dive
into data handling, preprocessing, and visualization techniques that form
the backbone of any statistical analysis. As you progress through the book,
you'll explore descriptive and inferential statistics, probability
distributions, regression analysis, time series analysis, Bayesian statistics,
multivariate statistical methods, and nonlinear models. Additionally, the
book covers essential machine-learning techniques, model evaluation and
validation, natural language processing, and advanced techniques in
emerging topics.

In this book you will learn how to:

Discover Rust's unique advantages for statistical analysis and machine
learning projects.

Learn to efficiently handle, preprocess, and visualize data using Rust
libraries.
Implement descriptive and inferential statistics with Rust for powerful
data insights.
Master probability distributions and random variables in Rust for robust
simulations.
Perform advanced regression analysis with Rust's capabilities.
Explore Bayesian statistics and Markov Chain Monte Carlo methods in
Rust.
Uncover multivariate techniques, including PCA and Factor Analysis,
using Rust libraries.
Implement cutting-edge machine learning algorithms and model
evaluation techniques in Rust.
Delve into text analysis, and natural language processing with Rust.

To ensure you get the most out of this book, each chapter includes hands-
on examples and exercises to reinforce your understanding of the concepts
presented. You'll also learn to optimize your Rust code and select the best
tools and libraries for each task, maximizing your productivity and
efficiency.

GitforGits

Prerequisites

"Statistics with Rust" is your indispensable guide to harnessing the power
of Rust for modern statistical analysis and machine learning. Whether you
are a seasoned data professional or a Rust enthusiast looking to expand
your knowledge, this book provides the tools and insights to elevate your
projects.

Codes Usage
Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you
have our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "Statistics with Rust by Keiko Nakamura".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to
reach out to us at

We are happy to assist and clarify any concerns.

Acknowledgement

I owe a tremendous debt of gratitude to GitforGits, for their unflagging
enthusiasm and wise counsel throughout the entire process of writing this
book. Their knowledge and careful editing helped make sure the piece was
useful for people of all reading levels and comprehension skills. In
addition, I'd like to thank everyone involved in the publishing process for
their efforts in making this book a reality. Their efforts, from copyediting
to advertising, made the project what it is today.

Finally, I'd like to express my gratitude to everyone who has shown me
unconditional love and encouragement throughout my life. Their support
was crucial to the completion of this book. I appreciate your help with this
endeavour and your continued interest in my career.

Chapter 1: Introduction to Rust for Statisticians

Why Rust for Data Analysis and Statistics?

In recent years, the Rust programming language has attracted considerable
attention from developers for its safety, speed, and concurrency
capabilities. Originating as a systems programming language, Rust has
grown in popularity and has been adopted across various domains,
including web development, embedded systems, and even data analysis.
With its focus on performance and safety, Rust is a formidable choice for
data analysis and statistical computing, providing unique advantages over
traditional languages such as Python, R, and Julia.

This book aims to guide you through the world of statistics and data
analysis using Rust, offering a comprehensive understanding of Rust's
potential in these fields. By the end of this journey, you will be equipped
with the knowledge and practical skills to leverage Rust's power for your
data analysis projects.

Rust's high-performance capabilities are one of its most appealing
features. As a compiled language, Rust offers performance that is on par
with or even surpasses C and C++. This is particularly important for data
analysis and statistics, where large datasets and complex computations are
common. With Rust, you can execute data processing tasks and run
algorithms with lower latency, enabling faster and more efficient analysis.

Memory safety is a critical aspect of any programming language,
especially when dealing with large datasets or complex data structures.
Rust's unique ownership system and strong type system ensure memory
safety at compile time, eliminating common bugs such as data races, null

pointer dereferences, and buffer overflows. This guarantees that your data
analysis programs will be more robust and less prone to crashes, without
the need for a garbage collector that might impact performance.

Modern hardware often features multiple cores or processors, and utilizing
this parallelism is essential for high-performance computing. Rust's built-
in concurrency support, based on its ownership and borrowing system,
allows you to build concurrent and parallel programs with ease. By
leveraging Rust's concurrency features, you can efficiently distribute data
processing tasks across multiple cores or even multiple machines,
significantly reducing the time required for complex calculations.

Rust's C-compatible FFI (Foreign Function Interface) enables seamless
integration with existing C and C++ libraries. This means you can easily
use existing high-performance libraries for data analysis, such as BLAS
(Basic Linear Algebra Subprograms), LAPACK (Linear Algebra
PACKage), or FFTW (Fastest Fourier Transform in the West), alongside
Rust's native libraries. Moreover, Rust's WebAssembly support allows you
to run your data analysis code on the web, opening up new possibilities
for interactive data visualization and analysis tools.

Although Rust is a relatively young language, its ecosystem has grown
rapidly, with an ever-increasing number of libraries and tools catering to
data analysis and statistics. Libraries such as ndarray, statrs, and plotly
offer robust support for data manipulation, statistical computation, and
visualization. Additionally, the Rust community is highly active and
committed to developing new libraries and improving existing ones,
ensuring that the Rust ecosystem will continue to expand and evolve.

Rust's syntax is clear, concise, and expressive, making it easier for you to
write and read your code. This improves the maintainability of your data
analysis programs, allowing you to quickly identify and fix issues or add
new features. Moreover, Rust's strong type system and the Rust compiler's
helpful error messages significantly reduce the likelihood of introducing
bugs, resulting in higher-quality code.

Comparing Rust and Python for Statistics

Python has long been a popular choice for data analysis and statistics due
to its simplicity, vast ecosystem, and numerous libraries such as NumPy,
pandas, and SciPy. However, as Rust gains traction and its ecosystem
grows, it is becoming an increasingly viable alternative for statistics and
data analysis tasks. In this section, we will compare Rust and Python in
terms of their suitability for statistical computing and highlight the
advantages that Rust brings to the table.

Performance

One of the most significant differences between Rust and Python lies in
their performance. Python, as an interpreted language, has inherent
performance limitations that may become a bottleneck for large-scale data
analysis or computationally intensive tasks. While Python offers tools like
NumPy and Cython to mitigate these performance issues, they come with
their own learning curve and may not always provide the desired speedup.

On the other hand, Rust is a compiled language with performance on par
with or even surpassing C and C++. This makes Rust an excellent choice
for high-performance computing, where complex calculations and large
datasets are common. By using Rust, you can achieve faster data
processing times and reduced latency, allowing you to analyze larger
datasets and perform more complex calculations in less time.

Memory Safety and Resource Management

Python relies on a garbage collector to manage memory, which can
introduce latency and unpredictability in performance-sensitive
applications. Additionally, while Python's dynamic typing and garbage
collection make it easy to work with, they can also lead to runtime errors
and memory leaks if not managed carefully.

Rust's strong static type system and unique ownership model ensure
memory safety at compile time, eliminating common bugs such as data
races, null pointer dereferences, and buffer overflows. This results in more
reliable and robust data analysis programs, with fewer runtime errors and
crashes. Rust's manual memory management also provides fine-grained
control over resource usage, enabling you to optimize your programs for
specific performance or memory constraints.

Concurrency

Python's Global Interpreter Lock (GIL) restricts multi-threading and can
hinder the efficient utilization of modern multi-core hardware. While
Python provides alternative concurrency models such as multiprocessing
and asynchronous programming, these approaches have their own
limitations and complexities.

Rust's built-in concurrency support, based on its ownership and borrowing
system, allows for more straightforward and efficient parallelism. With
Rust, you can easily build concurrent and parallel programs that take full
advantage of modern multi-core hardware. This enables you to process
data and perform complex calculations significantly faster than with

Python, especially when working with large datasets or computationally
intensive tasks.

Interoperability

Python is known for its extensive library ecosystem, which includes many
high-performance libraries for data analysis and statistics. Rust's C-
compatible FFI allows you to leverage these existing libraries, ensuring
that you do not lose access to the tools you are familiar with when
transitioning to Rust. This interoperability also extends to C and C++
libraries, further expanding the range of libraries and tools available for
your data analysis projects.

Ecosystem Growth and Future Prospects

While Python's ecosystem for data analysis and statistics is well-
established and mature, Rust's ecosystem is growing rapidly. Libraries
such as ndarray, statrs, and plotly provide robust support for data
manipulation, statistical computation, and visualization. As the Rust
community continues to develop new libraries and improve existing ones,
Rust's capabilities for data analysis and statistics will only increase.

Readability and Maintainability

Python's simplicity and readability are some of its greatest strengths,
making it easy for developers to write and maintain code. Rust, while
having a steeper learning curve, also emphasizes readability and
maintainability through its clear, concise, and expressive syntax. Rust's
strong type system and the Rust compiler's helpful error messages

significantly reduce the likelihood of introducing bugs, resulting in high-
quality code that is easier to maintain and debug.

Scalability

As data analysis projects grow in size and complexity, the need for a
language that can scale with the demands becomes crucial. Rust's
performance, concurrency support, and memory safety features make it an
ideal choice for scalable data analysis applications. With Rust, you can
efficiently process large datasets, distribute workloads across multiple
cores or machines, and build fault-tolerant systems that remain performant
and reliable as they grow.

Cross-platform and Deployment

Both Rust and Python are cross-platform languages that can run on
various operating systems, making them suitable for a wide range of
applications. However, Rust's compiled binaries can offer advantages in
deployment scenarios. Rust programs can be easily compiled into
standalone binaries, eliminating the need for a runtime interpreter or
complex dependencies. This can make deploying Rust applications in
production environments more straightforward and less prone to runtime
issues compared to Python.

Learning Curve

Python's simplicity and ease of use make it an excellent choice for
beginners and non-programmers. However, Rust's steeper learning curve,
while initially more challenging, can lead to more robust and maintainable

code in the long run. As you become familiar with Rust's strong type
system, ownership model, and memory safety features, you will develop a
deeper understanding of programming concepts that can improve your
overall programming skills.

While Python remains a popular and powerful language for data analysis
and statistics, Rust offers several advantages that make it a compelling
alternative. Rust's high performance, memory safety, concurrency support,
and growing ecosystem position it as a strong contender for future data
analysis tasks. By choosing Rust for your statistical computing projects,
you can leverage its unique features to build fast, reliable, and scalable
applications that are well-suited for the increasing demands of data-driven
industries.

Setting up Rust Environment

To install Rust, you can follow these step-by-step instructions. The
installation process is straightforward and utilizes a tool called "rustup,"
which manages Rust versions and associated tools for you.

Download rustup-init

Visit the official Rust website (https://www.rust-lang.org/tools/install) to
download the rustup-init executable for your platform (Windows, macOS,
or Linux). The website should automatically detect your operating system
and provide the appropriate download link.

Run rustup-init

Once you have downloaded rustup-init, follow the instructions specific to
your operating system.

For Windows
Locate the downloaded rustup-init.exe file in your Downloads folder.

Double-click the file to run the installer.

A command prompt window will open, asking you to proceed with the
installation. Press "Enter" to continue with the default installation, or
follow the on-screen instructions to customize the installation.

For macOS and Linux
Open a terminal window.

Navigate to the directory where you downloaded the rustup-init file
(typically the Downloads folder).

Make the file executable by running the following command: chmod +x
rustup-init.

Execute the rustup-init script by running ./rustup-init.

The script will prompt you to proceed with the installation. Press "Enter"
to continue with the default installation, or follow the on-screen
instructions to customize the installation.

Configure PATH Environment Variable

During the installation, rustup will attempt to configure your PATH
environment variable to include the Rust toolchain. In most cases, this will
happen automatically.

For Windows
Close the command prompt window and open a new one.

Run the command rustc --version. If the installation was successful, you
should see the Rust compiler version displayed.

For macOS and Linux
Run the command source $HOME/.cargo/env to update the current
terminal session with the new PATH settings.

Run the command rustc --version. If the installation was successful, you
should see the Rust compiler version displayed.

Note: For macOS and Linux, you may need to add the following line to
your shell profile file (e.g., ~/.bashrc, ~/.bash_profile, or ~/.zshrc) to
ensure the PATH is configured correctly for future terminal sessions:

export PATH="$HOME/.cargo/bin:$PATH"

Verify the Installation

To verify that Rust has been installed correctly, open a terminal or
command prompt window and run the following command:

rustc --version

If the installation was successful, you should see the Rust compiler
version displayed.

Essential Rust Libraries for Statistics

There are several Rust libraries that are stable and useful for performing
various statistical operations and data analysis tasks. In this introduction,
we will cover four essential libraries that will help you get started with
implementing statistical functions in Rust: ndarray, statrs, statis, and
plotly.

ndarray

The ndarray library is a versatile and powerful crate for handling n-
dimensional arrays in Rust. It is inspired by NumPy and provides similar
functionality. The ndarray crate is essential for any data analysis project,
as it offers efficient array operations and various linear algebra functions.

It is available in following GitHub repository:
https://github.com/rust-ndarray/ndarray

Features of ndarray
● Support for multi-dimensional arrays with shape and strides.
● Efficient operations, including element-wise, broadcasting, and
linear algebra operations.
● Various array manipulation methods, such as slicing, stacking,
reshaping, and concatenation.
● Interoperability with BLAS and LAPACK libraries for high-
performance linear algebra computations.

statrs

Statrs is a comprehensive statistics library for Rust that provides a wide
range of statistical functions, probability distributions, and other
mathematical tools. It aims to deliver a high-quality, easy-to-use, and
well-documented interface for performing statistical computations in Rust.

It is available in following GitHub repository:
https://github.com/boxtown/statrs

Features of statrs
● Support for common probability distributions, such as Normal,
Poisson, Bernoulli, and more.
● Various descriptive statistics functions, like mean, variance, standard
deviation, skewness, and kurtosis.
● Hypothesis testing functions, such as t-test, chi-square test, and F-
test.
● Correlation and regression analysis functions.

statis

Statis is a library focused on providing efficient implementations of
statistical algorithms and data structures in Rust. While not as
comprehensive as statrs, statis offers a more focused set of tools for
specific statistical tasks.

It is available in following GitHub repository:
https://github.com/dylanede/statis

Features of statis
● Data structures for handling histograms, frequency tables, and
probability mass functions.
● Support for basic descriptive statistics, such as mean, median, mode,
and standard deviation.
Efficient implementation of various statistical algorithms, including order
statistics, kernel density estimation, and k-means clustering.

plotly

Plotly is a popular library for creating interactive and visually appealing
plots in various programming languages, including Rust. The plotly crate
for Rust provides a convenient and high-level API for creating Plotly.js-
compatible plots, which can be rendered in a web browser or saved to a
file.

It is available in following GitHub repository:
https://github.com/igiagkiozis/plotly

Features of plotly
● Support for various plot types, such as scatter, line, bar, pie, and
more.
● Customizable plot aesthetics, such as colors, markers, and axis
labels.
● Interactive plot features, including zooming, panning, and hover
tooltips.
● Ability to save plots as HTML, SVG, or PNG files.

By combining these libraries, you can create a robust environment for
performing statistical analysis and visualizing your data using Rust. These
libraries offer a solid foundation for implementing a wide range of
statistical functions and provide a flexible and efficient alternative to more
traditional data analysis tools like Python, R, or Julia.

Setting up Statistical Project

To use the ndarray, statrs, statis, and plotly libraries in your Rust project,
you'll need to add them as dependencies in your project's Cargo.toml file.
Following is a step-by-step walkthrough on how to set up a new Rust
project and install these libraries.

Create a New Rust Project

Open a terminal or command prompt, navigate to the directory where you
want to create your project, and run the following command:

cargo new my_statistics_project

This will create a new Rust project called "my_statistics_project" with the
following structure:

my_statistics_project/

 ├── Cargo.toml

 └── src/

 └── main.rs

Add Library Dependencies

Open the Cargo.toml file in the my_statistics_project directory using your
favorite text editor.

You will see a section called [dependencies]. Under this section, add the
following lines to include the ndarray, statrs, statis, and plotly libraries as
dependencies:

[dependencies]

ndarray = "0.15"

statrs = "0.14"

statis = "0.1"

plotly = "0.6"

The numbers after the equals sign represent the version of each library.
You can check for the latest versions of these libraries on their respective
GitHub repositories or by searching for them on crates.io.

Build and Run the Project

In the terminal or command prompt, navigate to the my_statistics_project
directory and run the following command:

cargo build

This command will download and compile the specified dependencies for
your project. Once the build is complete, you can start using the libraries
in your Rust code.

Import the Libraries in Rust Code

Open the src/main.rs file in your project directory and import the libraries
by adding the following lines at the beginning of the file:

extern crate ndarray;

extern crate statrs;

extern crate statis;

extern crate plotly;

Now you're ready to use these libraries in your Rust project.

To get started with using each library, refer to their respective
documentation for examples, usage guides, and API references.

ndarray: https://docs.rs/ndarray/0.15.4/ndarray/
statrs: https://docs.rs/statrs/0.14.0/statrs/
statis: https://docs.rs/statis/0.1.3/statis/
plotly: https://docs.rs/plotly/0.6.0/plotly/

Summary

This chapter began with a discussion about the benefits of using Rust for
data analysis and statistics compared to Python. Rust offers advantages in
performance, memory safety, concurrency, interoperability, ecosystem
growth, readability, maintainability, scalability, and deployment. While
Python remains a popular choice for data analysis, Rust's unique features
make it an increasingly attractive option for future data analysis tasks.

Next, we covered the installation process for Rust using the rustup tool.
The step-by-step instructions included downloading rustup-init, running
the installer, configuring the PATH environment variable, and verifying
the installation by checking the Rust compiler version. With Rust
installed, you can begin exploring Rust programming for data analysis and
statistics projects.

We then introduced four essential Rust libraries for performing statistical
operations and data analysis: ndarray, statrs, statis, and plotly. The ndarray
library is designed for handling n-dimensional arrays and offers efficient
array operations and various linear algebra functions. Statrs provides a
comprehensive set of statistical functions, probability distributions, and
mathematical tools. Statis is a library focused on efficient implementations
of statistical algorithms and data structures. Finally, plotly is a popular
library for creating interactive and visually appealing plots.

To install these libraries in your Rust environment, you need to create a
new Rust project using Cargo, add the libraries as dependencies in the
Cargo.toml file, build the project, and import the libraries in your Rust
code. After setting up the project and installing the libraries, you can refer
to their respective documentation for examples, usage guides, and API
references.

In summary, Rust is emerging as a powerful alternative to Python for data
analysis and statistics due to its unique features and growing ecosystem.
By using Rust and the recommended libraries (ndarray, statrs, statis, and
plotly), you can build fast, reliable, and scalable applications for data
analysis. The installation process for Rust and its libraries is
straightforward, allowing you to quickly start exploring and implementing
statistical functions using Rust.

Chapter 2: Data Handling and Preprocessing

Data Handling and Preprocessing

Data handling and preprocessing are crucial steps in the data analysis
pipeline. They involve collecting, cleaning, transforming, and organizing
raw data to prepare it for further analysis or processing. These steps
ensure that the data is accurate, consistent, and suitable for use in machine
learning algorithms, statistical models, or visualization tools.

Process of Data Handling and Preprocessing

Conceptually, data handling and preprocessing encompass several tasks,
including:
Data collection: Acquiring and gathering data from various sources, such
as databases, APIs, sensors, or user-generated content.
Data cleaning: Identifying and correcting errors, inconsistencies, and
inaccuracies in the data. This may involve handling missing values,
removing duplicates, correcting typos, or standardizing formats.
Data transformation: Converting data into a suitable format or structure
for subsequent analysis. Examples of data transformations include
normalization, scaling, encoding categorical variables, and aggregating
data at different levels of granularity.
Data integration: Combining data from multiple sources and ensuring
consistency and compatibility among different datasets. This may require
resolving conflicts in data formats, units, or variable names.

Feature engineering: Deriving new features or variables from the raw data
that can improve the performance of machine learning algorithms or
provide additional insights during analysis.

Data splitting: Dividing data into training, validation, and test sets for
machine learning algorithms to prevent overfitting and evaluate model
performance accurately.

Exploring CSV crate

In Rust, the csv crate is a popular and efficient library for handling and
preprocessing CSV (Comma Separated Values) files, which are commonly
used for storing tabular data. The csv crate provides a high-performance,
flexible, and user-friendly API for reading and writing CSV data. Some
features of the csv crate include:
Reading and writing CSV data with a variety of configurations, such as
custom delimiters, quoting rules, and handling of headers.
Support for streaming large CSV files with a low memory footprint,
enabling efficient processing of large datasets.
Serde integration for deserializing and serializing CSV records directly
into Rust structs or other data structures.
Comprehensive error handling, making it easier to detect and manage
issues during CSV parsing or writing.

Dataset Loading with CSV crate

Let us consider a dataset on Data Scientist having their salaries recorded
along with various details recorded. The raw github data is accessible on
the following link:
https://raw.githubusercontent.com/kittenpub/database-
repository/main/ds_salaries.csv

A brief summary of the dataset shows the Salaries of Different Data
Science Fields in the Data Science Domain and contains 11 columns, each
are:

work_year: The year the salary was paid.
experience_level: The experience level in the job during the year
employment_type: The type of employment for the role
job_title: The role worked during the year.
salary: The total gross salary amount paid.
salary_currency: The currency of the salary paid as an ISO 4217 currency
code.
salaryinusd: The salary in USD
employee_residence: Employee's primary country of residence during the
work year as an ISO 3166 country code.
remote_ratio: The overall amount of work done remotely
company_location: The country of the employer's main office or
contracting branch
company_size: The median number of people that worked for the
company during the year.

To load and process the dataset in Rust, we'll be using the csv crate for
reading CSV files and reqwest crate for fetching the dataset from the
provided URL. Make sure you have these crates added to your
Cargo.toml:

[dependencies]

csv = "1.1"

reqwest = { version = "0.11", features = ["blocking"] }

serde = { version = "1.0", features = ["derive"] }

Now let's define the structure for the dataset:

use serde::Deserialize;

#[derive(Debug, Deserialize)]

struct SalaryRecord {

 work_year: i32,

 experience_level: String,

 employment_type: String,

 job_title: String,

 salary: f64,

 salary_currency: String,

 salaryinusd: f64,

 employee_residence: String,

 remote_ratio: f64,

 company_location: String,

 company_size: i32,

}

Next, we will create a function to fetch the dataset from the provided URL
and return the contents as a String:

use reqwest::blocking::get;

use std::io::Read;

fn fetch_dataset(url: &str) -> ResultBoxstd::error::Error>> {

 let mut response = get(url)?;

 let mut content = String::new();

 response.read_to_string(&mut content)?;

 Ok(content)

}

Now we can create a function to load the dataset into a Vec:

use csv::ReaderBuilder;

use std::error::Error;

fn load_dataset(csv_data: &str) -> Result, BoxError>> {

 let mut reader =
ReaderBuilder::new().from_reader(csv_data.as_bytes());

 let mut records = Vec::new();

 for result in reader.deserialize() {

 let record: SalaryRecord = result?;

 records.push(record);

 }

 Ok(records)

}

Finally, in the main function, fetch and load the dataset:

fn main() {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/ds_salaries.csv";

 match fetch_dataset(url) {

 Ok(csv_data) => {

 match load_dataset(&csv_data) {

 Ok(dataset) => {

 // The dataset is ready for processing

 println!("Loaded {} records", dataset.len());

 }

 Err(error) => {

 eprintln!("Error loading dataset: {}", error);

 }

 }

 }

 Err(error) => {

 eprintln!("Error fetching dataset: {}", error);

 }

 }

}

Now you have the dataset loaded as a Vec, and you can perform further
operations on it.

Parsing the Data

Data parsing is the process of interpreting and converting raw data into a
structured format that can be easily understood and manipulated by
computers or humans. In the context of datasets, parsing often involves
extracting relevant information from a file, transforming it into a
standardized format, and organizing it into a data structure suitable for
further processing, analysis, or visualization.

In the previous section, we have already performed data parsing by
reading the CSV file and deserializing its contents into a Vec. The csv
crate takes care of parsing the CSV data, and the serde crate is responsible
for deserializing the parsed data into the SalaryRecord struct.

Now, let's say you want to filter the dataset based on a specific condition
or modify certain fields of the records. You can do this by parsing the data
further using Rust's iterator and pattern matching capabilities. For
example, let's say you want to filter the dataset to only include records
where the experience_level is "Senior" and convert the salaryinusd field to
integers for easier processing. You can achieve this as follows:

fn filter_and_convert(dataset: &[SalaryRecord]) -> Vec<(i32, String,
f64)> {

 dataset

 .iter()

 .filter(|record| record.experience_level == "Senior")

 .map(|record| {

 let salary_in_usd_rounded = record.salaryinusd.round();

 (

 record.work_year,

 record.job_title.clone(),

 salary_in_usd_rounded,

)

 })

 .collect()

}

In the function above, we use the filter method to only include records
with the "Senior" experience level. Then, we use the map method to create
a new tuple with the work_year, job_title, and the rounded salaryinusd.
Finally, we collect the filtered and transformed records into a Vec.

You can call the filter_and_convert function with the loaded dataset as
follows:

fn main() {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/ds_salaries.csv";

 match fetch_dataset(url) {

 Ok(csv_data) => {

 match load_dataset(&csv_data) {

 Ok(dataset) => {

 println!("Loaded {} records", dataset.len());

 let parsed_data = filter_and_convert(&dataset);

 println!("Filtered and converted data: {:?}", parsed_data);

 }

 Err(error) => {

 eprintln!("Error loading dataset: {}", error);

 }

 }

 }

 Err(error) => {

 eprintln!("Error fetching dataset: {}", error);

 }

 }

}

This example demonstrates a simple case of data parsing in Rust.
Depending on your needs, you may need to apply more advanced parsing
techniques or use additional libraries to handle specific data formats.

Data Structures in Rust

In Rust, various built-in data structures facilitate statistical analysis on
datasets. Some common data structures include Vec, HashMap, HashSet,
and BTreeMap. These structures enable storage, organization, and
manipulation of data, allowing efficient computation of descriptive
statistics, data transformations, and application of machine learning
algorithms.

The primary data structures you'll be working with are:

Arrays

Arrays are an essential data structure in programming, representing fixed-
size, contiguous sequences of elements with the same type. They offer
several benefits, including efficient memory usage and fast access times
due to their known size and regular structure. Arrays are particularly
useful when you need to store a small, predetermined number of elements,
and their size remains constant throughout the program's execution.

In Rust, you can define an array using the following syntax:

let my_array: [i32; 5] = [1, 2, 3, 4, 5];

In the above said example, my_array is an array of five elements, each of
type i32 (32-bit signed integer). The elements are enclosed in square

brackets, separated by commas. The type and size of the array are
specified using a semicolon, as shown in [i32; 5].

Once an array is defined, you can access its elements using their index,
which starts at zero:

let first_element = my_array[0]; // Access the first element

let third_element = my_array[2]; // Access the third element

Keep in mind that attempting to access an index outside the array's bounds
will result in a panic at runtime. To avoid this, you can use methods like
.get() that return an Option:

if let Some(element) = my_array.get(7) {

 println!("Element at index 7 is: {}", element);

} else {

 println!("Index 7 is out of bounds");

}

In addition to element access, arrays provide basic operations like .len()
for obtaining their size or .iter() for iterating over their elements.
However, for more complex operations, consider using other data

structures, such as vectors (Vec), which offer greater flexibility and
dynamic resizing capabilities.

Vectors

Vectors in Rust are dynamic arrays that can expand or contract during
runtime, providing a versatile and efficient way to store elements of the
same type. Their ability to accommodate a varying number of elements
makes them ideal for numerous programming scenarios.

The following example demonstrates how to create and manipulate
vectors in Rust:

// Creating an empty vector of i32 elements

let mut my_vector: Vec = Vec::new();

// Adding elements to the vector using the `push` method

my_vector.push(1);

my_vector.push(2);

my_vector.push(3);

// Accessing elements in the vector using indexing or the `get` method

let second_element = my_vector[1];

let third_element = my_vector.get(2).unwrap();

// Iterating over the elements of the vector

for element in &my_vector {

 println!("Element: {}", element);

}

// Removing the last element from the vector using the `pop` method

my_vector.pop();

// Modifying the elements of the vector

my_vector[0] = 42;

// Obtaining the length of the vector using the `len` method

let vector_length = my_vector.len();

In the above said example, we create a mutable vector of i32 elements and
use various methods to add, access, modify, and remove elements. We also
demonstrate how to iterate over the elements in the vector and retrieve its

length. Vectors are an essential data structure in Rust that offers both
convenience and flexibility when working with collections of elements.

Tuples

Tuples are a versatile data structure in programming languages like Rust,
providing a convenient way to store ordered collections of elements with
varying types. They are particularly useful when you need to group related
values together without defining a custom struct. Tuples have a fixed size,
meaning that the number of elements they contain is predetermined and
cannot be changed after creation.

The following is an example of how to define a tuple in Rust:

let my_tuple: (i32, f64, &str) = (42, 3.14, "hello");

In the above said example, my_tuple is a tuple containing three elements:
an i32 integer, an f64 floating-point number, and a string slice &str. The
tuple is defined using parentheses, with the elements separated by
commas.

Tuples provide a simple way to access their elements using dot notation
followed by the index of the element:

let first_element = my_tuple.0; // 42

let second_element = my_tuple.1; // 3.14

let third_element = my_tuple.2; // "hello"

It is also possible to destructure tuples, assigning their elements to
individual variables:

let (x, y, z) = my_tuple;

// x = 42, y = 3.14, z = "hello"

Tuples are an efficient way to group related values of different types
together in a fixed-size, ordered collection. They are particularly useful for
situations where creating a custom struct might be excessive or when you
need to return multiple values from a function.

Structs

Structs, short for structures, are custom data types in Rust that allow you
to group related values together into a single logical unit. They consist of
fields, each having a specific data type, and can be used to represent
various real-world entities or concepts in your code.

In the provided example, a SalaryRecord struct is defined, which contains
information about an individual's work experience and salary details:

#[derive(Debug, Deserialize)]

struct SalaryRecord {

 work_year: i32,

 experience_level: String,

 // ...

}

The SalaryRecord struct has two fields: work_year of type i32 (integer)
and experience_level of type String. These fields store an individual's
work experience in years and their experience level, respectively. You can
add more fields to the struct to include additional information as needed.

The #[derive(Debug, Deserialize)] attribute above the struct definition
indicates that Rust should automatically derive the Debug and Deserialize
traits for the SalaryRecord struct. The Debug trait enables pretty-printing
of the struct's contents for debugging purposes, while the Deserialize trait,
provided by the serde crate, allows for easy deserialization of CSV
records or other serialized data directly into a SalaryRecord instance.

Structs play a crucial role in organizing and managing data in Rust,
providing a convenient and efficient way to group and manipulate related
values. They promote code readability and maintainability, as they
encapsulate data into meaningful and reusable components that can be
easily understood and manipulated.

HashMaps

HashMaps, as key-value data structures, enable efficient storage and rapid
access of values using unique keys. They are particularly advantageous
when dealing with unordered data. The following example demonstrates
how to use a HashMap in Rust:

use std::collections::HashMap;

fn main() {

 // Create a new HashMap with String keys and i32 values

 let mut my_hashmap: HashMapi32> = HashMap::new();

 // Insert key-value pairs into the HashMap

 my_hashmap.insert("one".to_string(), 1);

 my_hashmap.insert("two".to_string(), 2);

 my_hashmap.insert("three".to_string(), 3);

 // Access a value in the HashMap using the key

 let two_value = my_hashmap.get("two");

 println!("The value for the key 'two' is: {:?}", two_value);

 // Iterate through the HashMap to display its contents

 for (key, value) in &my_hashmap {

 println!("Key: {}, Value: {}", key, value);

 }

 // Remove a key-value pair from the HashMap

 my_hashmap.remove("one");

 println!("HashMap after removing 'one': {:?}", my_hashmap);

}

This example covers creating a HashMap with String keys and i32 values,
inserting key-value pairs, accessing a value using the key, iterating
through the HashMap to display its contents, and removing a key-value
pair. These operations demonstrate the versatility and efficiency of
HashMaps when working with unordered key-value data in Rust.

To perform statistical analysis in Rust, you'll likely be using combinations
of these data structures. For example, you might use a Vec to store a list of
numerical values, and then use a combination of iterators and functional
programming constructs to calculate statistical properties like the mean,
median, and standard deviation.

Calculating Mean

To calculate the mean of a dataset using a Vec, you will first need to fetch
the dataset from the provided link, parse the CSV data, and store the
values in a Vec. Then, compute the mean of the values. In the below
example, we will assume that the dataset has a single column of numeric
values representing salaries.

Below is how to achieve this in Rust:

Add the required dependencies to your Cargo.toml:

[dependencies]

csv = "1.1"

reqwest = { version = "0.11", features = ["json"] }

tokio = { version = "1", features = ["full"] }

Write the code to fetch the CSV data, parse it, and calculate the mean:

use csv::ReaderBuilder;

use std::error::Error;

use reqwest::Error as ReqwestError;

async fn fetch_csv_data() -> Result, ReqwestError> {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/ds_salaries.csv";

 let response = reqwest::get(url).await?.text().await?;

 let mut reader =
ReaderBuilder::new().from_reader(response.as_bytes());

 let mut salaries = Vec::new();

 for result in reader.records() {

 let record = result?;

 let salary: f64 = record.get(0).unwrap().parse().unwrap();

 salaries.push(salary);

 }

 Ok(salaries)

}

fn calculate_mean(data: &[f64]) -> f64 {

 let sum: f64 = data.iter().sum();

 sum / data.len() as f64

}

#[tokio::main]

async fn main() -> Result<(), BoxError>> {

 let salaries = fetch_csv_data().await?;

 let mean_salary = calculate_mean(&salaries);

 println!("Mean salary: {:.2}", mean_salary);

 Ok(())

}

This code uses the csv crate to parse the CSV data, the reqwest crate to
fetch the data, and the tokio crate for asynchronous processing. It fetches
the dataset, stores the salaries in a Vec, and then calculates the mean salary
using the calculate_mean function.

Calculating Median

To calculate the median of the dataset, you need to sort the values and
then find the middle value (or the average of the two middle values for an
even number of items).

Below is how to modify the previous example to compute the median:

Add a function to calculate the median:

fn calculate_median(data: &mut Vec) -> f64 {

 data.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());

 let len = data.len();

 if len % 2 == 0 {

 let mid1 = data[(len / 2) - 1];

 let mid2 = data[len / 2];

 (mid1 + mid2) / 2.0

 } else {

 data[len / 2]

 }

}

Update the main function to compute and display the median salary:

#[tokio::main]

async fn main() -> Result<(), BoxError>> {

 let mut salaries = fetch_csv_data().await?;

 let mean_salary = calculate_mean(&salaries);

 let median_salary = calculate_median(&mut salaries);

 println!("Mean salary: {:.2}", mean_salary);

 println!("Median salary: {:.2}", median_salary);

 Ok(())

}

The calculate_median function sorts the data using sort_unstable_by and
computes the median based on the length of the dataset. If the dataset has
an even number of items, it calculates the average of the two middle
values. If it has an odd number of items, it selects the middle value
directly. The main function now computes and displays both the mean and
median salaries.

Common Data Cleaning and Preprocessing Techniques

Data cleaning and preprocessing are essential steps in preparing your
dataset for analysis or machine learning models. They typically involve
handling missing values, converting data types, scaling/normalizing data,
and transforming categorical variables.

Below is an overview of common data cleaning and preprocessing
techniques:

Handling Missing Values

Missing values in a dataset can lead to biased or incorrect analyses and
predictions. There are several techniques to handle missing values:

Imputation
Filling in missing values with default values based on the rest of the
dataset. Common imputation methods include:
Mean: Replace missing values with the mean of the available data for the
feature.
Median: Replace missing values with the median of the available data for
the feature.
Mode: Replace missing values with the mode (most frequent value) of the
available data for the feature.
k-Nearest Neighbors: Fill in missing values based on the values of their k-
nearest neighbors in the feature space.

● Regression: Predict missing values using a regression model trained
on the available data.

Deletion
Removing instances with missing values from the dataset. This approach
can lead to a loss of information, especially if a significant number of
instances have missing values.

Data Type Conversion

Data type conversion is essential for ensuring compatibility between
features and the algorithms used for analysis or modeling. Conversions
may include:
● Numeric conversions: For example, converting integer values to
floating-point values or vice versa.
Date and time conversions: Parsing date and time strings into appropriate
date/time objects, such as chrono::NaiveDate in Rust.
String conversions: Parsing or formatting strings to match the required
structure, such as extracting numbers or removing special characters.

Scaling/Normalizing Data

To ensure that features with different magnitudes are treated equally by
machine learning algorithms, it's essential to scale or normalize the data.
Common techniques include:
Min-Max scaling: Rescales the data to fit within a specified range,
typically [0, 1]. It is calculated using the formula: (x - min) / (max - min).
Standard (Z-score) scaling: Centers the data around the mean with a
standard deviation of 1. It is calculated using the formula: (x - mean) /

standard_deviation.

Encoding Categorical Variables

Many machine learning algorithms require numerical input data,
necessitating the transformation of categorical variables into numerical
values. Common techniques include:
One-hot encoding: Creates a binary variable for each category, with a
value of 1 indicating the presence of the category and 0 otherwise.

Ordinal encoding: Assigns an integer value to each category based on its
rank in the categorical variable.
Target encoding: Replaces each category with the mean of the target
variable for instances within that category. This technique is particularly
useful when dealing with high cardinality categorical variables.

Feature Engineering

Feature engineering aims to create new, meaningful features from the
existing data to improve the performance of machine learning models or
provide additional insights. Some techniques include:
Interaction terms: Multiplying or dividing two or more features to capture
their combined effect on the target variable.
Polynomial features: Generating higher-order terms of the original
features to capture non-linear relationships between variables.
Domain-specific transformations: Applying expert knowledge from the
problem domain to derive new, meaningful features (e.g., calculating the
age of a customer from their birth date or extracting keywords from text
data).

Performing Data Cleaning and Preprocessing

Let's perform some of these preprocessing techniques on the given
dataset:

Replace missing values: In our dataset, there are no explicitly missing
values (e.g., "NaN"). However, if you encounter missing values, you can
use the Option type in Rust to handle them.

Data type conversion: We've already performed data type conversions
when deserializing the CSV into the SalaryRecord struct.

Scaling/normalizing data: Let's standardize the salaryinusd field. We'll
create a function that takes a slice of SalaryRecord and returns a new Vec
with the standardized salaryinusd field.

fn standardize_salaries(dataset: &[SalaryRecord]) -> Vec {

 let mean_salary = mean(&dataset.iter().map(|record|
record.salaryinusd).collect::>());

 let std_dev_salary = statis::stddev(&dataset.iter().map(|record|
record.salaryinusd).collect::>());

 dataset

 .iter()

 .map(|record| (record.salaryinusd - mean_salary) / std_dev_salary)

 .collect()

}

Encoding categorical variables: Let's encode the job_title field using one-
hot encoding. We'll first create a function to generate a mapping of unique
job titles to indices.

use std::collections::HashMap;

fn create_job_title_mapping(dataset: &[SalaryRecord]) ->
HashMapusize> {

 let mut job_title_set: HashSet = dataset.iter().map(|record|
record.job_title.clone()).collect();

 let mut job_title_mapping: HashMapusize> = HashMap::new();

 for (index, job_title) in job_title_set.drain().enumerate() {

 job_title_mapping.insert(job_title, index);

 }

 job_title_mapping

}

Next, create a function to one-hot encode the job_title field based on the
mapping:

fn one_hot_encode_job_titles(dataset: &[SalaryRecord], mapping:
&HashMapusize>) -> Vec> {

 dataset

 .iter()

 .map(|record| {

 let mut encoding = vec![0u8; mapping.len()];

 let index = mapping[&record.job_title];

 encoding[index] = 1;

 encoding

})

.collect()

}

Feature engineering: For this dataset, we could create a new feature,
`us_based`, indicating whether the company is located in the United
States. Below is a function to generate this new feature:

fn create_us_based_feature(dataset: &[SalaryRecord]) -> Vec {

 dataset

 .iter()

 .map(|record| if record.company_location == "US" { 1u8 } else { 0u8
})

 .collect()

}

Now, in the main function, you can apply these preprocessing techniques
on the dataset:

fn main() {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/ds_salaries.csv";

 match fetch_dataset(url) {

 Ok(csv_data) => {

 match load_dataset(&csv_data) {

 Ok(dataset) => {

 println!("Loaded {} records", dataset.len());

 let standardized_salaries = standardize_salaries(&dataset);

 println!("Standardized salaries: {:?}", standardized_salaries);

 let job_title_mapping = create_job_title_mapping(&dataset);

 println!("Job title mapping: {:?}", job_title_mapping);

 let one_hot_encoded_job_titles =
one_hot_encode_job_titles(&dataset, &job_title_mapping);

 println!("One-hot encoded job titles: {:?}",
one_hot_encoded_job_titles);

 let us_based_feature = create_us_based_feature(&dataset);

 println!("US-based feature: {:?}", us_based_feature);

 }

 Err(error) => {

 eprintln!("Error loading dataset: {}", error);

 }

 }

 }

 Err(error) => {

 eprintln!("Error fetching dataset: {}", error);

 }

 }

}

Summary

In this chapter, we focused on data handling and preprocessing using Rust.
We started by loading a dataset containing salary information for different
data science fields. The dataset contained 11 columns, including
work_year, experience_level, employment_type, job_title, salary,
salary_currency, salaryinusd, employee_residence, remote_ratio,
company_location, and company_size. We used the reqwest crate to fetch
the dataset and the csv and serde crates to deserialize the CSV data into a
custom SalaryRecord struct. We then explored various data structures in
Rust for performing statistical analysis, such as arrays, vectors, tuples,
structs, and HashMaps. These data structures, combined with Rust's
iterator and pattern matching capabilities, enable powerful data
manipulation and analysis.

Next, we delved into data parsing, a crucial step in preparing raw data for
further processing. We demonstrated how to use Rust's iterator and pattern
matching features to filter and convert the dataset based on specific
conditions. We also introduced more advanced parsing techniques and
libraries for handling specific data formats. We covered common data
cleaning and preprocessing techniques, including handling missing values,
converting data types, scaling/normalizing data, encoding categorical
variables, and feature engineering. We applied these techniques to the
given dataset, standardizing the salaryinusd field, one-hot encoding the
job_title field, and creating a new feature indicating whether the company
is based in the United States. Throughout the chapter, we highlighted the
flexibility and power of Rust for data handling and preprocessing tasks.

We showed how to leverage Rust's built-in data structures, functional
programming constructs, and third-party libraries to efficiently manipulate
and transform datasets in preparation for analysis or machine learning
models.

To sum it up, Chapter 2 provided a comprehensive introduction to data
handling and preprocessing using Rust. By working with a real dataset, we
demonstrated how to load, parse, clean, and preprocess data with Rust's
core features and libraries, setting the stage for more advanced statistical
operations and visualizations in later chapters.

Chapter 3: Descriptive Statistics in Rust

Introduction to Descriptive Statistics

In this Chapter 3, we'll put strong attention on exploring descriptive
statistics and that too in Rust. Descriptive statistics are used to summarize
and describe the main features of a dataset. They help data science
professionals understand the data's distribution, central tendency, and
variability. Rust can facilitate these tasks using its powerful built-in data
structures, functional programming constructs, and third-party libraries.

The following are some of the key concepts and techniques in descriptive
statistics:

Measures of Central Tendency: These measures describe the center of the
dataset. The most common measures are the mean (average), median
(middle value), and mode (most frequent value). Rust's iterators and
pattern matching capabilities can be leveraged to calculate these measures
efficiently.

Measures of Dispersion: These measures describe the spread of the
dataset. Common measures include range (difference between the
maximum and minimum values), variance, and standard deviation. Rust's
iterator and mathematical functions can be used to calculate these
measures.

Quantiles: Quantiles, including quartiles and percentiles, divide the
dataset into equal intervals. They help understand the data's distribution
and identify potential outliers. Rust's sorting and indexing capabilities can
be used to find quantiles.

Frequency Distributions: A frequency distribution is a summary of the
dataset's values and their frequencies. Histograms and bar charts are
common ways to visualize frequency distributions. Rust's HashMap and
Vec data structures can be employed to create frequency distributions.

Correlation and Covariance: These measures describe the relationship
between two or more variables in the dataset. Correlation coefficients
(e.g., Pearson, Spearman) and covariance can help determine if variables
are related and the strength of their relationship. Rust's mathematical
functions and iterators can be used to calculate these measures.

Summary Statistics: Summary statistics are concise descriptions of the
dataset's main features, often represented in a table. They typically include
measures of central tendency, dispersion, and distribution. Rust's powerful
data manipulation capabilities can be used to generate summary statistics.

Measures of Central Tendency

Measures of central tendency are statistical indicators that help data
science professionals understand the central point of a dataset. These
measures provide a single value that represents the dataset and can be
used to summarize the data or compare it with other datasets.

The three primary measures of central tendency are the mean, median, and
mode.

Mean: The mean, or average, is calculated by summing all the values in
the dataset and dividing by the number of values. The mean is sensitive to
outliers, meaning that extreme values can greatly affect the result. It's
widely used in many applications, but it may not always represent the
dataset's true center when dealing with skewed data or outliers.
Median: The median is the middle value in a dataset when the data points
are arranged in ascending or descending order. If there's an even number
of values, the median is the average of the two middle values. The median
is less sensitive to outliers and can better represent the dataset's center
when dealing with skewed data.

Mode: The mode is the value that appears most frequently in the dataset.
There can be multiple modes in a dataset or no mode at all. The mode can
be useful when dealing with categorical data or when the most common
value is of particular interest.

Calculate Measures of Central Tendency

Now, let's see how to calculate these measures of central tendency on the
salaryinusd field of the given dataset:

fn mean(data: &[f64]) -> f64 {

 let sum: f64 = data.iter().sum();

 sum / (data.len() as f64)

}

fn median(data: &mut [f64]) -> f64 {

 data.sort_unstable();

 let mid = data.len() / 2;

 if data.len() % 2 == 0 {

 (data[mid - 1] + data[mid]) / 2.0

 } else {

 data[mid]

 }

}

fn mode(data: &[f64]) -> Option {

 use std::collections::HashMap;

 let mut frequency_map = HashMap::new();

 for &value in data {

 let count = frequency_map.entry(value).or_insert(0);

 *count += 1;

 }

 frequency_map

 .into_iter()

 .max_by_key(|&(_, count)| count)

 .map(|(value, _)| value)

}

fn main() {

 // ... Load the dataset as shown in previous examples ...

 let salary_data: Vec = dataset.iter().map(|record|
record.salaryinusd).collect();

 let mut salary_data_sorted = salary_data.clone();

 let mean_salary = mean(&salary_data);

 let median_salary = median(&mut salary_data_sorted);

 let mode_salary = mode(&salary_data);

 println!("Mean salary: {}", mean_salary);

 println!("Median salary: {}", median_salary);

 println!("Mode salary: {:?}", mode_salary);

}

In the above sample program, we calculate the mean, median, and mode
of the salaryinusd field for the dataset. These measures of central tendency
provide insights into the overall salary distribution for data science
professionals, helping identify trends, compare different groups, or inform
decisions related to compensation and workforce planning.

Measures of Dispersion

Measures of dispersion describe the spread or variability of a dataset.
They help data science professionals understand how diverse the data is
and provide insights into its underlying structure.

The most common measures of dispersion are range, variance, and
standard deviation.
Range: The range is the difference between the maximum and minimum
values in a dataset. It provides a basic measure of the dataset's spread but
can be sensitive to outliers and may not accurately represent the overall
variability when dealing with skewed data.
Variance: The variance is the average of the squared differences from the
mean. It measures how far each data point is from the mean and gives a
more accurate representation of the dataset's variability compared to the
range. However, the unit of variance is the square of the data's unit, which
can make it difficult to interpret.
Standard Deviation: The standard deviation is the square root of the
variance. It measures the dataset's dispersion in the same unit as the data,
making it easier to interpret and compare with the mean. Standard
deviation is widely used in many applications to understand the variability
and identify potential outliers.

Calculate Measures of Dispersion

Let's demonstrate how to calculate these measures of dispersion on the
salaryinusd field of the given dataset:

fn range(data: &[f64]) -> f64 {

 let max_value = data.iter().cloned().max_by(|a, b|
a.partial_cmp(b).unwrap()).unwrap();

 let min_value = data.iter().cloned().min_by(|a, b|
a.partial_cmp(b).unwrap()).unwrap();

 max_value - min_value

}

fn variance(data: &[f64]) -> f64 {

 let mean_value = mean(data);

 let squared_diffs: Vec = data.iter().map(|&value| (value -
mean_value).powi(2)).collect();

 mean(&squared_diffs)

}

fn standard_deviation(data: &[f64]) -> f64 {

 variance(data).sqrt()

}

fn main() {

 // ... Load the dataset as shown in previous examples ...

 let salary_data: Vec = dataset.iter().map(|record|
record.salaryinusd).collect();

 let salary_range = range(&salary_data);

 let salary_variance = variance(&salary_data);

 let salary_standard_deviation = standard_deviation(&salary_data);

 println!("Salary range: {}", salary_range);

 println!("Salary variance: {}", salary_variance);

 println!("Salary standard deviation: {}", salary_standard_deviation);

}

In the above sample program, we calculate the range, variance, and
standard deviation of the salaryinusd field for the dataset. These measures
of dispersion provide insights into the salary variability for data science

professionals, helping identify potential outliers, understand wage
inequality, and inform decisions related to compensation structure and
workforce planning.

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is an essential step in the data analysis
process that involves visualizing and summarizing datasets to uncover
patterns, trends, relationships, and anomalies. EDA helps statisticians and
data scientists gain insights, generate hypotheses, and make informed
decisions before moving to more advanced statistical modeling or
machine learning techniques.

EDA is crucial for statisticians as it helps them:
● Understand the data's structure and distribution.
● Identify potential data quality issues, such as missing values,
outliers, or inconsistencies.
● Discover relationships and correlations between variables.
● Generate hypotheses and identify areas for further analysis or
modeling.

In Rust, EDA can be performed using a combination of summary
statistics, data visualizations, and other data exploration techniques. Rust's
powerful data manipulation capabilities, along with third-party libraries
like ndarray, statrs, statis, and plotly, facilitate EDA tasks.

Implementing EDA

The given below is a sample implementation of EDA on the given dataset:

Calculate summary statistics (e.g., mean, median, mode, variance,
standard deviation) for the salaryinusd field, as shown in previous
examples.

Visualize the salary distribution using a histogram. The plotly crate can be
used to create the histogram:

use plotly::{Plot, Histogram, Layout, CommonMarker, common::Color};

fn plot_histogram(data: &[f64], bins: usize, title: &str) {

 let trace = Histogram::new(data)

 .nbinsx(bins)

 .name("Salary Distribution")

 .marker(CommonMarker::new().color(Color::String("#1f77b4".to_owned
())));

 let layout = Layout::new().title(title);

 let mut plot = Plot::new();

 plot.add_trace(trace);

 plot.set_layout(layout);

 plot.show();

}

fn main() {

 // ... Load the dataset as shown in previous examples ...

 let salary_data: Vec = dataset.iter().map(|record|
record.salaryinusd).collect();

 plot_histogram(&salary_data, 50, "Salary Distribution in USD");

}

Visualize relationships between variables using scatter plots. For example,
plot salaryinusd against experience_level:

use plotly::{Plot, Scatter, Layout, Axis, Mode, ScatterMode};

fn plot_scatter(x_data: &[f64], y_data: &[f64], x_title: &str, y_title: &str,
title: &str) {

 let trace = Scatter::new(x_data, y_data)

 .mode(ScatterMode::Markers(Mode::new()))

 .name("Data Points")

 .marker(CommonMarker::new().color(Color::String("#1f77b4".to_owned
())));

 let layout = Layout::new()

 .title(title)

 .xaxis(Axis::new().title(x_title))

 .yaxis(Axis::new().title(y_title));

 let mut plot = Plot::new();

 plot.add_trace(trace);

 plot.set_layout(layout);

 plot.show();

}

fn main() {

 // ... Load the dataset as shown in previous examples ...

 let experience_data: Vec = dataset.iter().map(|record|
record.experience_level as f64).collect();

 let salary_data: Vec = dataset.iter().map(|record|
record.salaryinusd).collect();

 plot_scatter(&experience_data, &salary_data, "Experience Level",
"Salary in USD", "Experience Level vs Salary");

}

These EDA techniques help statisticians and data scientists gain insights
into the given dataset, identify relationships, and discover potential data
quality issues. By combining summary statistics, data visualizations, and
other data exploration techniques, statisticians can make informed
decisions about further analysis, modeling, or data preprocessing steps.

Analyze categorical variables using contingency tables and bar charts. For
example, examine the distribution of job_title:

use std::collections::HashMap;

use plotly::{Plot, Bar, Layout};

fn plot_bar_chart(data: &HashMapusize>, x_title: &str, y_title: &str, title:
&str) {

 let x: Vec = data.keys().cloned().collect();

 let y: Vec = data.values().cloned().collect();

 let trace = Bar::new(x, y)

 .name("Job Title Distribution")

 .marker(CommonMarker::new().color(Color::String("#1f77b4".to_owned
())));

 let layout = Layout::new()

 .title(title)

 .xaxis(Axis::new().title(x_title))

 .yaxis(Axis::new().title(y_title));

 let mut plot = Plot::new();

 plot.add_trace(trace);

 plot.set_layout(layout);

 plot.show();

}

fn main() {

 // ... Load the dataset as shown in previous examples ...

 let mut job_title_counts = HashMap::new();

 for record in dataset.iter() {

 let count =
job_title_counts.entry(record.job_title.clone()).or_insert(0);

 *count += 1;

 }

 plot_bar_chart(&job_title_counts, "Job Title", "Frequency", "Job Title
Distribution");

}

In the above sample program, we create a bar chart to visualize the
distribution of job_title. This analysis helps to understand the composition
of job titles in the dataset, which can inform decisions about workforce
planning, hiring strategies, or further analysis focusing on specific roles.

By combining these EDA techniques, statisticians and data scientists can
explore various aspects of the given dataset, identify relationships, and
discover potential data quality issues. This process helps them make
informed decisions about further analysis, modeling, or data preprocessing
steps.

Summary

In this Chapter 3, we focused on Descriptive Statistics in Rust,
emphasizing various techniques that data science professionals perform
and how Rust facilitates these tasks. We discussed the importance of
Exploratory Data Analysis (EDA) and its benefits for statisticians in
understanding the data's structure, identifying potential data quality issues,
discovering relationships and correlations between variables, and
generating hypotheses for further analysis or modeling.

We covered two essential aspects of descriptive statistics: measures of
central tendency and measures of dispersion. Measures of central
tendency, including mean, median, and mode, help data professionals
understand the central point of a dataset. These measures provide a single
value representing the dataset and can be used to summarize the data or
compare it with other datasets. Measures of dispersion, such as range,
variance, and standard deviation, describe the spread or variability of a
dataset. They help data professionals understand how diverse the data is
and provide insights into its underlying structure. We demonstrated how to
calculate measures of central tendency and dispersion on the given dataset
using Rust. We also provided sample implementations for visualizing the
salary distribution using histograms, plotting relationships between
variables using scatter plots, and analyzing categorical variables using
contingency tables and bar charts.

Throughout this chapter, we utilized Rust's powerful data manipulation
capabilities along with third-party libraries like ndarray, statrs, statis, and

plotly to facilitate EDA tasks. These libraries enabled us to perform data
preprocessing, calculate summary statistics, and create visualizations for
data exploration. These techniques form the foundation for further data
analysis, modeling, and decision-making in the data science domain.

Chapter 4: Probability Distributions and Random Variables

Discrete Probability Distribution

Discrete probability distributions are pivotal in statistics as they describe
the probabilities of outcomes for discrete random variables. A random
variable is deemed discrete if it assumes a finite or countable number of
values. These distributions aid in modeling uncertain events and making
predictions based on data.

Some prevalent discrete probability distributions include:

Uniform Distribution: This distribution assigns equal probability to all
possible outcomes. It is often used when there is no reason to favor one
outcome over another.
Bernoulli Distribution: This distribution models the probability of success
or failure (binary outcomes) in a single experiment. It is typically
employed in scenarios where there are only two possible outcomes, such
as coin tosses or true/false questions.
Binomial Distribution: This distribution describes the number of successes
in a fixed number of independent Bernoulli trials, where each trial has the
same probability of success. Applications include modeling the number of
heads in multiple coin tosses or the number of defective items in a sample.

Poisson Distribution: This distribution represents the number of events
occurring within a fixed interval of time or space, given a constant
average rate of occurrence. It is widely used in fields such as queuing
theory, telecommunications, and biology to model rare events or arrivals.
Geometric Distribution: This distribution models the number of trials
required to achieve the first success in a sequence of independent

Bernoulli trials. It is applicable in situations where the interest lies in
determining the waiting time until a specific event occurs.

Although applying discrete probability distributions to a given database
might not be directly pertinent if the dataset doesn't involve random
variables and their probabilities, understanding these distributions remains
valuable. In Rust, you can use the 'statrs' crate to implement these
distributions in various scenarios where discrete probability distributions
are applicable. By leveraging these distributions conceptually, you can
model uncertain events, analyze data, and make informed predictions.

Uniform Distribution

A uniform distribution is a probability distribution that assigns equal
probabilities to all possible outcomes of a discrete random variable. It
represents a scenario in which each outcome is equally likely to occur. For
instance, when rolling a fair six-sided die, all six outcomes (1, 2, 3, 4, 5,
and 6) have an equal probability of 1/6, indicating a uniform distribution
across the possible outcomes.

use statrs::distribution::{Uniform, Discrete};

fn main() {

 let uniform = Uniform::new(1, 6); // Represents a fair six-sided die

 let probability = uniform.pdf(3); // Probability of rolling a 3

 println!("Uniform Distribution: P(X = 3) = {}", probability);

}

Bernoulli Distribution

The Bernoulli distribution is a discrete probability distribution
representing a single binary experiment with two possible outcomes:
success (1) and failure (0). It is characterized by a single parameter, p,
which denotes the probability of success. The probability of failure is
given by 1-p. This simple yet essential distribution forms the basis for
various statistical and machine learning models that involve binary events
or decision-making processes.

use statrs::distribution::{Bernoulli, Discrete};

fn main() {

 let bernoulli = Bernoulli::new(0.6).unwrap(); // Probability of success
(p) = 0.6

 let probability = bernoulli.pdf(1); // Probability of success (X = 1)

 println!("Bernoulli Distribution: P(X = 1) = {}", probability);

}

Binomial Distribution

The binomial distribution is a discrete probability distribution that models
the number of successes in a fixed number of independent Bernoulli trials,
each with the same probability of success, p. It captures the likelihood of
obtaining a specific number of successes, given the total number of trials
(n) and the probability of success in each trial. This distribution is widely
used in various applications, such as analyzing proportions, survey
responses, and quality control.

use statrs::distribution::{Binomial, Discrete};

fn main() {

 let binomial = Binomial::new(0.6, 10).unwrap(); // 10 trials, each with
probability of success (p) = 0.6

 let probability = binomial.pdf(4); // Probability of 4 successes (X = 4)

 println!("Binomial Distribution: P(X = 4) = {}", probability);

}

Poisson Distribution

The Poisson distribution is a probability distribution that describes the
number of events occurring within a fixed time or space interval,
assuming a constant average rate of occurrence (denoted by lambda). It is
particularly useful for modeling rare events, such as phone call arrivals at
a call center or the number of accidents at an intersection. The distribution

captures the probability of observing a specific count of events while
accounting for the underlying rate (lambda).

use statrs::distribution::{Poisson, Discrete};

fn main() {

 let poisson = Poisson::new(5.0).unwrap(); // Average rate of occurrence
(lambda) = 5

 let probability = poisson.pdf(3); // Probability of 3 events (X = 3)

 println!("Poisson Distribution: P(X = 3) = {}", probability);

}

Geometric Distribution

A geometric distribution is a discrete probability distribution that
characterizes the number of trials needed to achieve the first success in a
series of independent Bernoulli trials. Each trial has a fixed probability of
success, denoted as p. The distribution is useful for modeling scenarios
where events occur independently, and the probability of success remains
constant across trials. The geometric distribution helps in understanding
the behavior and likelihood of occurrences until the first successful event.

use statrs::distribution::{Geometric, Discrete};

fn main() {

 let geometric = Geometric::new(0.6).unwrap(); // Probability of success
(p) = 0.6

 let probability = geometric.pdf(3);

// Probability of the first success occurring on the 3rd trial (X = 3)

println!("Geometric Distribution: P(X = 3) = {}", probability);

}

These examples demonstrate how to work with different discrete
probability distributions using the `statrs` crate in Rust. As mentioned
earlier, these distributions may not be directly applicable to the given
dataset since it is not about random variables and their probabilities.
However, these implementations can be adapted for other datasets or use
cases where discrete probability distributions are relevant.

Overall, discrete probability distributions play a vital role in modeling
uncertain events and making predictions based on data. We discussed
various discrete probability distributions and provided sample
implementations in Rust using the `statrs` crate. Although these
distributions may not be directly applicable to the given dataset, they can
be adapted for other datasets or use cases, forming a foundation for
statistical modeling and decision-making in data science.

Continuous Probability Distribution

Continuous probability distributions play a significant role in modeling
and predicting outcomes for continuous random variables, which can
assume an infinite number of values within a particular range. These
distributions are essential when dealing with uncertain events and
continuous variables in various fields, such as finance, engineering, and
natural sciences.

The following are some of the widely-used continuous probability
distributions, along with brief explanations:

Uniform Distribution: This distribution assigns equal probability to all
values within a specified range. It is often used when there is no prior
information about the distribution of the variable.
Normal (Gaussian) Distribution: Characterized by its bell-shaped curve,
the normal distribution is a fundamental distribution in statistics. Many
real-world phenomena follow this distribution, making it essential for
various applications.
Exponential Distribution: This distribution models the time between
events in a Poisson process, where events occur continuously and
independently at a constant average rate. It is frequently used in reliability
and survival analysis.

Beta Distribution: A versatile distribution, the Beta distribution is defined
on the interval (0, 1) and is particularly useful in modeling probabilities or
proportions. It is widely employed in Bayesian statistics as a conjugate
prior for the binomial and Bernoulli distributions.

Gamma Distribution: The Gamma distribution is a flexible two-parameter
distribution that models continuous variables with positive values, such as
waiting times or lifetimes. It is a generalization of the exponential
distribution and is a conjugate prior for the Poisson distribution in
Bayesian statistics.

Uniform Distribution

A uniform distribution assigns equal probabilities to all possible outcomes
of a continuous random variable within a specified range. For example,
generating a random number between 0 and 1.

use statrs::distribution::{Uniform, Continuous};

fn main() {

 let uniform = Uniform::new(0.0, 1.0); // Represents a random number
between 0 and 1

 let probability = uniform.pdf(0.5); // Probability density function at 0.5

 println!("Uniform Distribution: f(0.5) = {}", probability);

}

Normal (Gaussian) Distribution

A normal distribution, also known as Gaussian distribution, is a bell-
shaped curve defined by its mean (μ) and standard deviation (σ). It is

widely used in natural and social sciences due to its desirable properties.

use statrs::distribution::{Normal, Continuous};

fn main() {

 let normal = Normal::new(0.0, 1.0).unwrap(); // Mean (μ) = 0, Standard
Deviation (σ) = 1

 let probability = normal.pdf(0.5); // Probability density function at 0.5

 println!("Normal Distribution: f(0.5) = {}", probability);

}

Exponential Distribution

An exponential distribution models the time between events in a Poisson
process, where events occur independently at a constant average rate (λ).

use statrs::distribution::{Exponential, Continuous};

fn main() {

 let exponential = Exponential::new(1.0).unwrap(); // Rate (λ) = 1

 let probability = exponential.pdf(0.5); // Probability density function at
0.5

 println!("Exponential Distribution: f(0.5) = {}", probability);

}

Beta Distribution

A beta distribution models the distribution of probabilities for a
continuous random variable within a fixed range, typically [0, 1]. It is
defined by two shape parameters, α and β.

use statrs::distribution::{Beta, Continuous};

fn main() {

 let beta = Beta::new(2.0, 5.0).unwrap(); // Shape parameters (α) = 2, (β)
= 5

 let probability = beta.pdf(0.5); // Probability density function at 0.5

 println!("Beta Distribution: f(0.5) = {}", probability);

}

Gamma Distribution

A gamma distribution models the distribution of waiting times for a
sequence of events in a Poisson process. It is defined by a shape parameter
(k) and a scale parameter (θ).

use statrs::distribution::{Gamma, Continuous};

fn main() {

 let gamma = Gamma::new(2.0, 1.0).unwrap(); // Shape parameter (k) =
2,Scale parameter (θ) = 1

let probability = gamma.pdf(0.5); // Probability density function at 0.5

println!("Gamma Distribution: f(0.5) = {}", probability);

}

These examples demonstrate how to work with different continuous
probability distributions using the `statrs` crate in Rust. As mentioned
earlier, these distributions may not be directly applicable to the given
dataset since it is not about random variables and their probabilities.
However, these implementations can be adapted for other datasets or use
cases where continuous probability distributions are relevant.

Generating Random Variables

To generate random variables in Rust, we can use the rand crate, which
provides a suite of random number generators and distributions. In the

below example, I'll demonstrate how to generate random variables using
the rand crate and apply them to the given dataset.

First, add the rand crate to your Cargo.toml:

[dependencies]

rand = "0.8"

Now, let's generate random variables and apply them to a new column in
the given dataset:

Import the required crates and modules:

use ndarray::prelude::*;

use ndarray_csv::{Array2Reader, Array2Writer};

use std::fs::File;

use std::io::{Read, Write};

use rand::Rng;

use rand::distributions::{Distribution, Uniform};

Load the dataset and add a new column for random variables:

fn main() {

 let mut file = File::open("ds_salaries.csv").expect("Unable to open the
file");

 let mut buffer = String::new();

 file.read_to_string(&mut buffer).expect("Unable to read the file");

 let mut dataset: Array2 = buffer.read_array2().expect("Unable to read
the CSV data");

 let nrows = dataset.nrows();

 let ncols = dataset.ncols();

 let mut new_dataset = Array2::from_elem((nrows, ncols + 1),
String::from(""));

 new_dataset.slice_mut(s![.., ..ncols]).assign(&dataset);

 new_dataset.slice_mut(s![0, ncols]).assign(&array!
[String::from("random_variable")]);

 // Generate random variables

 let mut rng = rand::thread_rng();

 let uniform = Uniform::new(0.0, 1.0);

 for row in 1..nrows {

 let random_value: f64 = rng.sample(uniform);

 new_dataset[[row, ncols]] = format!("{:.2}", random_value);

 }

 // Save the new dataset to a CSV file

 let mut file =
File::create("ds_salaries_with_random.csv").expect("Unable to create the
file");

 let mut writer = csv::Writer::from_writer(&mut file);

 new_dataset.write_csv(&mut writer).expect("Unable to write the CSV
data");

}

In the above sample program, we loaded the dataset using ndarray and
ndarray_csv crates, created a new dataset with an additional column for
random variables, and assigned the column name "random_variable".

Then, we generated random variables from a uniform distribution between
0 and 1 using the rand crate and populated the new column with these
random values. Finally, we saved the new dataset to a CSV file named
"ds_salaries_with_random.csv".

Sampling from Distributions

Sampling from distributions involves generating random data points that
follow a specified probability distribution. This technique offers several
benefits for data professionals, including:
Simulating data: Sampling can help create data for hypothesis testing,
model validation, or performance evaluation. This process enables
professionals to assess the effectiveness of their models or methods using
various input data scenarios.
Generating synthetic data: In cases where sensitive information must be
anonymized, sampling from distributions can help generate synthetic data
that preserves the statistical properties of the original data while
maintaining confidentiality.
Assessing robustness: By generating random inputs, data professionals
can evaluate the robustness of their models or analyses under different
scenarios. This assessment helps identify potential weaknesses and
improve the overall quality of the models or analyses.

In Rust, the rand crate is an ideal choice for sampling from distributions.
This crate offers a wide range of probability distributions, including
Uniform, Normal, Bernoulli, Poisson, and many others. To utilize the rand
crate for sampling, follow these steps:

Sample Program for Sampling from Distributions

In the following example, we will demonstrate how to sample from a
normal distribution and a discrete distribution (Poisson).

Add the rand crate to your Cargo.toml:

[dependencies]

rand = "0.8"

Import the required modules:

use rand::Rng;

use rand::distributions::{Distribution, Normal, Poisson};

Sample from a normal distribution:

fn main() {

 let normal_distribution = Normal::new(0.0, 1.0).unwrap(); // Mean (μ)
= 0, Standard Deviation (σ) = 1

 let mut rng = rand::thread_rng();

 for _ in 0..10 {

 let sample: f64 = rng.sample(normal_distribution);

 println!("Sample from normal distribution: {:.2}", sample);

 }

}

Sample from a discrete distribution (Poisson):

fn main() {

 let poisson_distribution = Poisson::new(5.0).unwrap(); // Lambda (λ) =
5

 let mut rng = rand::thread_rng();

 for _ in 0..10 {

 let sample: u64 = rng.sample(poisson_distribution);

 println!("Sample from Poisson distribution: {}", sample);

 }

}

In both examples, we first define the distribution parameters (mean and
standard deviation for normal distribution, and lambda for Poisson
distribution). Then, we use the rand::Rng trait to generate random samples

from the specified distribution. The loop iterates ten times, printing ten
random samples from each distribution. Sampling from distributions is an
essential tool for data professionals to generate synthetic data or perform
simulations for testing and validating models.

Estimating Distribution Parameters

Estimating distribution parameters is the process of determining the values
of parameters for a probability distribution that best describe the
underlying data. This is an essential step in statistical modeling, as the
estimated parameters can be used to make predictions or inferences about
the population from which the data was sampled.

There are various techniques for estimating distribution parameters,
including:

Method of Moments (MoM)
Maximum Likelihood Estimation (MLE)
Bayesian Estimation
Least Squares

We will look after each technique and provide you sample program in
Rust scripts for the given dataset. Note that these examples may require
some assumptions about the underlying distributions of the data, which
might not always be valid.

Method of Moments (MoM)

The Method of Moments (MoM) is a straightforward technique for
estimating distribution parameters by equating sample moments to
theoretical moments of a distribution. Sample moments are calculated

from the data, while theoretical moments are derived from the
distribution's mathematical properties.

For example, let's assume the salary data in the dataset follows a normal
distribution. We can estimate the mean (μ) and standard deviation (σ) of
the normal distribution using the first and second moments.

use ndarray::prelude::*;

use ndarray_csv::{Array2Reader, Array2Writer};

use std::fs::File;

use std::io::{Read, Write};

use statrs::statistics::Statistics;

fn main() {

 let mut file = File::open("ds_salaries.csv").expect("Unable to open the
file");

 let mut buffer = String::new();

 file.read_to_string(&mut buffer).expect("Unable to read the file");

 let dataset: Array2 = buffer.read_array2().expect("Unable to read the
CSV data");

 let salaries: Array1 = dataset

 .column(4)

 .iter()

 .skip(1)

 .map(|s| s.parse::().unwrap())

 .collect();

 let mean = salaries.mean().unwrap();

 let variance = salaries.variance().unwrap();

 let std_dev = variance.sqrt();

 println!("Method of Moments (Normal Distribution):");

 println!("Estimated mean (μ): {:.2}", mean);

 println!("Estimated standard deviation (σ): {:.2}", std_dev);

}

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a popular technique for
estimating distribution parameters by maximizing the likelihood function.
The likelihood function measures how likely it is to observe the given data
given a set of parameters for a particular distribution. MLE finds the
parameter values that maximize the likelihood function, making the
observed data most probable.

Continuing with the salary data example and assuming it follows a normal
distribution, we can use MLE to estimate the mean (μ) and standard
deviation (σ). In this case, MLE estimates will be the same as the MoM
estimates. For simplicity, we'll use the statrs crate to perform MLE for the
normal distribution.

use statrs::fit::MLE;

use statrs::distribution::Normal;

fn main() {

 // Assume `salaries` array is already loaded as in the previous example.

 let mle_normal = Normal::fit_mle(&salaries).unwrap();

 println!("Maximum Likelihood Estimation (Normal Distribution):");

 println!("Estimated mean (μ): {:.2}", mle_normal.mean());

 println!("Estimated standard deviation (σ): {:.2}",
mle_normal.std_dev());

}

Bayesian Estimation

Bayesian estimation incorporates prior knowledge about the distribution
parameters and updates the estimates using the observed data. The prior
knowledge is represented by a prior distribution, and the updated
estimates are represented by a posterior distribution. Bayesian estimation
is based on Bayes' theorem, which combines the prior distribution, the
likelihood of the observed data, and the evidence (marginal likelihood) to
compute the posterior distribution.

For example, let's assume that the salary data follows a normal
distribution with an unknown mean (μ) and known standard deviation (σ).
We can use a normal distribution as a prior for the mean with a known
prior mean (μ₀) and standard deviation (σ₀). In this case, the posterior
distribution for the mean is also a normal distribution, and we can
calculate its parameters analytically.

fn bayesian_normal_mean(

 prior_mean: f64,

 prior_std_dev: f64,

 data_mean: f64,

 data_std_dev: f64,

 n: usize,

) -> (f64, f64) {

 let weight = (n as f64) * (data_std_dev.powi(2)) / ((n as f64) *
data_std_dev.powi(2) + prior_std_dev.powi(2));

 let posterior_mean = prior_mean + weight * (data_mean - prior_mean);

 let posterior_std_dev = (prior_std_dev.powi(2) * data_std_dev.powi(2) /
((n as f64) * prior_std_dev.powi(2) + data_std_dev.powi(2))).sqrt();

 (posterior_mean, posterior_std_dev)

}

fn main() {

 // Assume `salaries` array is already loaded as in the previous examples.

 let prior_mean = 70000.0; // Prior mean (μ₀)

 let prior_std_dev = 10000.0; // Prior standard deviation (σ₀)

 let data_mean = salaries.mean().unwrap(); // Data mean

 let data_std_dev = salaries.variance().unwrap().sqrt(); // Data standard
deviation

 let n = salaries.len(); // Number of data points

 let (posterior_mean, posterior_std_dev) =

 bayesian_normal_mean(prior_mean, prior_std_dev, data_mean,
data_std_dev, n);

 println!("Bayesian Estimation (Normal Distribution):");

 println!("Posterior mean: {:.2}", posterior_mean);

 println!("Posterior standard deviation: {:.2}", posterior_std_dev);

}

Least Squares

Least Squares is a technique for estimating parameters in regression
models by minimizing the sum of squared differences between the
observed data and the predicted data based on the model. While Least
Squares is not directly applicable to estimating parameters of univariate

probability distributions, it can be used for fitting regression models with
underlying assumptions about the error distributions.

For example, let's assume we want to fit a linear regression model to
predict the salary based on the work_year variable, and the errors follow a
normal distribution. We can use the ndarray-linalg crate to perform Least
Squares estimation.

use ndarray::prelude::*;

use ndarray_linalg::LeastSquaresSvd;

use ndarray_csv::{Array2Reader, Array2Writer};

use std::fs::File;

use std::io::{Read, Write};

fn main() {

 // Assume `dataset` array is already loaded as in the previous examples.

 let work_years: Array1 = dataset

 .column(0)

 .iter()

 .skip(1)

 .map(|s| s.parse::().unwrap())

 .collect();

 let salaries: Array1 = dataset

 .column(4)

 .iter()

 .skip(1)

 .map(|s| s.parse::().unwrap())

 .collect();

let x = work_years.insert_axis(Axis(1));

let y = salaries.insert_axis(Axis(1));

let coeffs = x.least_squares(&y).unwrap().solution;

println!("Least Squares (Linear Regression):");

println!("Estimated coefficients: {:?}", coeffs);

}

In the above sample program, we first extract the `work_years` and
`salaries` columns from the dataset and convert them into 2D arrays.
Then, we use the `least_squares` method to estimate the linear regression
coefficients.

Summary

This chapter focused on discrete and continuous probability distributions,
their importance in data science, and techniques to estimate distribution
parameters using Rust.

This chapter discussed practical implementation on following specific
concepts and methods:
Discrete probability distributions, such as the Bernoulli, Binomial,
Poisson, and Geometric distributions, were introduced, and their Rust
implementations using the `rand` and `statrs` crates were demonstrated.
Continuous probability distributions, such as the Normal, Exponential,
and Gamma distributions, were explained, and their Rust implementations
using the `rand` and `statrs` crates were demonstrated.
Generating random variables using the `rand` crate was explained, along
with its application in data science.
Sampling from distributions was introduced, and examples of sampling
from normal and Poisson distributions using the `rand` crate were
provided.
Techniques for estimating distribution parameters were discussed,
including Method of Moments (MoM), Maximum Likelihood Estimation
(MLE), Bayesian Estimation, and Least Squares. Examples of each
technique were demonstrated using Rust and the given dataset.

By the end of this chapter, you grasped a solid understanding of
probability distributions, their importance in data science, and how to
work with them in Rust. This knowledge will help you analyze data, make

predictions, and build statistical models in various data science
applications.

Chapter 5: Inferential Statistics

Fundamentals of Inferential Statistics

Inferential statistics, a vital subfield of statistics, focuses on deriving
predictions, inferences, and generalizations about larger populations from
smaller data samples. This branch is indispensable for data scientists and
statisticians, as it enables them to make informed conclusions about an
entire population without collecting data from every individual. This
approach saves significant time, resources, and effort, as obtaining
comprehensive data from all population members can be costly, labor-
intensive, or even unattainable in some instances.

Inferential statistics involve two main concepts: hypothesis testing and
confidence intervals.

Hypothesis Testing

Hypothesis testing is a formal procedure that allows statisticians to test the
validity of a claim or hypothesis about a population parameter based on
the observed data from a sample. The null hypothesis (H₀) represents the
default assumption or the status quo, while the alternative hypothesis (H₁)
represents the claim being tested. The objective of hypothesis testing is to
determine whether there is sufficient evidence in the sample data to reject
the null hypothesis in favor of the alternative hypothesis.

For example, a data scientist might want to test if the average salary of
data analysts is different from the average salary of data scientists. They
would set up a null hypothesis that the average salaries are equal and an
alternative hypothesis that they are not equal. Then, using the sample data,

they would calculate a test statistic and compare it against a critical value
or p-value to determine whether the null hypothesis can be rejected or not.

Confidence Intervals

Confidence intervals provide a range of values for a population parameter,
such as the mean or proportion, within which the true value of the
parameter is likely to fall with a certain level of confidence (e.g., 95%).
Confidence intervals provide a measure of uncertainty around point
estimates, allowing data scientists and statisticians to quantify the
precision of their estimates.

For instance, when estimating the average salary of data analysts, a data
scientist may compute a 95% confidence interval, indicating that they are
95% confident that the true average salary falls within the specified range.
This information can be helpful in decision-making and resource
allocation, as it provides an indication of the degree of certainty in the
estimates.
Inferential statistics is crucial for data scientists and statisticians, as it
allows them to make inferences and predictions about a larger population
based on a smaller sample of data. Hypothesis testing and confidence
intervals are key concepts in inferential statistics, which help in drawing
conclusions, estimating population parameters, and quantifying
uncertainty around those estimates.

Performing Hypothesis Testing

To illustrate hypothesis testing on the given dataset, let's consider an
example. Suppose we want to test if the average salary for data analysts is
different from the average salary for data scientists.

We'll perform a two-sample t-test using the statrs crate. Additionally, we'll
demonstrate the use of the Chi-square test for independence using the
ndarray and statrs crates.

Two-sample T-test

First, let's filter the dataset to obtain the salaries of data analysts and data
scientists.

use ndarray::prelude::*;

use ndarray_csv::{Array2Reader, Array2Writer};

use std::fs::File;

use std::io::{Read, Write};

fn main() {

 // Assume `dataset` array is already loaded as in the previous examples.

 let data_analysts_salaries: Vec = dataset

 .select(Axis(0), |i| dataset[[i, 3]] == "Data Analyst")

 .column(4)

 .iter()

 .map(|s| s.parse::().unwrap())

 .collect();

 let data_scientists_salaries: Vec = dataset

 .select(Axis(0), |i| dataset[[i, 3]] == "Data Scientist")

 .column(4)

 .iter()

 .map(|s| s.parse::().unwrap())

 .collect();

}

Now, let's perform the two-sample t-test using the statrs crate.

use statrs::distribution::{StudentsT, Univariate};

use statrs::function::erf::erf;

use statrs::statistics::{Mean, Variance};

fn t_test_ind(sample1: &[f64], sample2: &[f64]) -> (f64, f64) {

 let mean1 = sample1.mean().unwrap();

 let mean2 = sample2.mean().unwrap();

 let var1 = sample1.variance().unwrap();

 let var2 = sample2.variance().unwrap();

 let n1 = sample1.len() as f64;

 let n2 = sample2.len() as f64;

 let t = (mean1 - mean2) / ((var1 / n1 + var2 / n2)).sqrt();

 let df = (var1 / n1 + var2 / n2).powi(2)

 / ((var1 / n1).powi(2) / (n1 - 1.0) + (var2 / n2).powi(2) / (n2 - 1.0));

 let p = 2.0 * (1.0 - StudentsT::new(0.0, 1.0, df).unwrap().cdf(t.abs()));

 (t, p)

}

fn main() {

 // Assume data_analysts_salaries and data_scientists_salaries are
already loaded

 let (t, p) = t_test_ind(&data_analysts_salaries,
&data_scientists_salaries);

 println!("Two-sample t-test:");

 println!("t-statistic: {:.4}", t);

 println!("p-value: {:.4}", p);

}

In the above sample program, we calculate the t-statistic and p-value for
the two-sample t-test. If the p-value is less than a chosen significance level
(e.g., 0.05), we reject the null hypothesis, indicating that the average
salaries of data analysts and data scientists are significantly different.

Chi-square Test for Independence

Suppose we want to test if the job title (data analyst or data scientist) is
independent of the experience level. We'll perform a Chi-square test for
independence using the ndarray and statrs crates.

First, let's create a contingency table for job titles and experience levels.

use ndarray::{Array2, Axis};

use std::collections::HashMap;

fn main() {

 // Assume `dataset` array is already loaded as in the previous examples.

 let job_titles = dataset.column(3).to_vec();

 let experience_levels = dataset.column(1).to_vec();

 let mut contingency_table = HashMap::new();

 for (job_title, experience_level) in
job_titles.iter().zip(&experience_levels) {

 *contingency_table.entry((job_title.clone(),
experience_level.clone())).or_insert(0) += 1;

 }

 let unique_job_titles: Vec<_> =
dataset.column(3).iter().cloned().unique().collect();

 let unique_experience_levels: Vec<_> =
dataset.column(1).iter().cloned().unique().collect();

 let table_shape = (unique_job_titles.len(),
unique_experience_levels.len());

 let mut table = Array2::zeros(table_shape);

 for ((job_title, experience_level), count) in contingency_table {

 let row_index = unique_job_titles.iter().position(|x| x ==
job_title).unwrap();

 let col_index = unique_experience_levels.iter().position(|x| x ==
experience_level).unwrap();

 table[[row_index, col_index]] = count as f64;

 }

 println!("Contingency table:\n{:?}", table);

}

Now, let's perform the Chi-square test for independence using the statrs
crate.

use statrs::distribution::{ChiSquared, Univariate};

use statrs::function::gamma::gamma;

fn chi_square_test(contingency_table: &Array2) -> (f64, f64) {

 let row_sums = contingency_table.sum_axis(Axis(1));

 let col_sums = contingency_table.sum_axis(Axis(0));

 let total = contingency_table.sum();

 let mut chi_square = 0.0;

 for ((&row_sum, &col_sum), &observed) in row_sums

 .iter()

 .cartesian_product(col_sums.iter())

 .zip(contingency_table.iter())

 {

 let expected = row_sum * col_sum / total;

 chi_square += (observed - expected).powi(2) / expected;

 }

 let df = (contingency_table.shape()[0] - 1) * (contingency_table.shape()
[1] - 1);

 let p = 1.0 - ChiSquared::new(df as f64).unwrap().cdf(chi_square);

 (chi_square, p)

}

fn main() {

 // Assume the contingency table is already loaded.

 let (chi_square, p) = chi_square_test(&table);

 println!("Chi-square test for independence:");

 println!("Chi-square statistic: {:.4}", chi_square);

 println!("p-value: {:.4}", p);

}

In the above sample program, we calculate the Chi-square statistic and p-
value for the test of independence. If the p-value is less than a chosen
significance level (e.g., 0.05), we reject the null hypothesis, indicating that
the job title and experience level are not independent. These examples
demonstrate hypothesis testing in Rust using the given database. The two-
sample t-test is used to compare the average salaries of data analysts and
data scientists, while the Chi-square test for independence is used to test
the independence of job title and experience level. There are many other
hypothesis

Let us now practically illustrate confidence intervals on the given
database. We'll calculate a confidence interval for the average salary of
data analysts and another for the proportion of remote work among data
scientists.

Calculating Confidence Interval

For Mean

To calculate a confidence interval for the mean salary of data analysts,
we'll use the statrs crate.

use statrs::distribution::{StudentsT, Univariate};

fn confidence_interval_mean(sample: &[f64], alpha: f64) -> (f64, f64) {

 let mean = sample.mean().unwrap();

 let std_dev = sample.std_dev().unwrap();

 let n = sample.len() as f64;

 let df = n - 1.0;

 let t = StudentsT::new(0.0, 1.0, df).unwrap().quantile(1.0 - alpha / 2.0);

 let margin_of_error = t * std_dev / n.sqrt();

 (mean - margin_of_error, mean + margin_of_error)

}

fn main() {

 // Assume data_analysts_salaries is already loaded

 let alpha = 0.05;

 let (lower, upper) = confidence_interval_mean(&data_analysts_salaries,
alpha);

 println!("Confidence interval for the mean salary of data analysts (1 - α
= {:.2}):", 1.0 - alpha);

 println!("Lower bound: {:.4}", lower);

 println!("Upper bound: {:.4}", upper);

}

This example calculates a 95% confidence interval for the mean salary of
data analysts. The interval indicates that we are 95% confident that the
true mean salary of data analysts falls within the specified range.

For the Proportion

To calculate a confidence interval for the proportion of remote work
among data scientists, we'll use the statrs crate.

use statrs::distribution::{Normal, Univariate};

fn confidence_interval_proportion(sample: &[f64], alpha: f64) -> (f64,
f64) {

 let n = sample.len() as f64;

 let p_hat = sample.mean().unwrap();

 let z = Normal::new(0.0, 1.0).unwrap().quantile(1.0 - alpha / 2.0);

 let margin_of_error = z * (p_hat * (1.0 - p_hat) / n).sqrt();

 (p_hat - margin_of_error, p_hat + margin_of_error)

}

fn main() {

 // Assume `dataset` array is already loaded as in the previous examples.

 let data_scientists_remote_ratios: Vec = dataset

 .select(Axis(0), |i| dataset[[i, 3]] == "Data Scientist")

 .column(8)

 .iter()

 .map(|s| s.parse::().unwrap())

 .collect();

 let alpha = 0.05;

 let (lower, upper) =
confidence_interval_proportion(&data_scientists_remote_ratios, alpha);

 println!(

 "Confidence interval for the proportion of remote work among data
scientists (1 - α = {:.2}):",

 1.0 - alpha

);

 println!("Lower bound: {:.4}", lower);

 println!("Upper bound: {:.4}", upper);

}

This example calculates a 95% confidence interval for the proportion of
remote work among data scientists. The interval indicates that we are 95%
confident that the true proportion of remote work among data scientists
falls within the specified range.

In the first example, we calculated a 95% confidence interval for the mean
salary of data analysts, which indicates the range within which we are
95% confident that the true mean salary of data analysts falls. In the
second example, we calculated a 95% confidence interval for the
proportion of remote work among data scientists, which indicates the
range within which we are 95% confident that the true proportion of
remote work among data scientists falls.

These techniques provide data science professionals with valuable insights
into the data, helping them make informed decisions and assess the
uncertainty associated with the estimates derived from the sample data.
Confidence intervals can be calculated for other population parameters as
well, such as the difference between two means or the difference between
two proportions, using similar methods.

Parametric Tests

Parametric tests are a category of statistical tests that operate under
specific assumptions about the data being analyzed. These assumptions
often involve the data following a normal distribution and having equal
variances across groups. When these conditions are met, parametric tests
tend to be more powerful and accurate than non-parametric alternatives.

Some widely-used parametric tests are:
T-test: Utilized for comparing the means of two groups, the t-test assumes
that the data is normally distributed and that variances are equal between
the groups.
ANOVA (Analysis of Variance): ANOVA is employed for comparing the
means of three or more groups, making the same assumptions as the t-test
regarding normality and equal variances.
Linear regression: A technique for modeling the relationship between a
dependent variable and one or more independent variables, linear
regression assumes that the residuals (errors) follow a normal distribution
and that the relationship between variables is linear.

When the assumptions underlying parametric tests hold true, these tests
can provide more accurate and reliable results. However, it is essential to
carefully examine the data and validate the assumptions before applying
parametric tests to avoid inaccurate conclusions.

In this section, we'll describe and perform the following parametric tests
on the given database:

Paired T-test
One-way ANOVA

Paired T-test

A paired t-test is used to compare the means of two related samples to
determine if there is a significant difference between them. In our dataset,
we don't have paired data, but we can create a hypothetical scenario where
we compare the salaries of data analysts and data scientists working in the
same company. For simplicity, let's assume that both groups have the same
number of employees.

use ndarray::{Array1, Axis};

use statrs::distribution::{StudentsT, Univariate};

fn paired_t_test(sample1: &Array1, sample2: &Array1, alpha: f64) ->
(f64, f64) {

 let differences = sample1 - sample2;

 let mean_difference = differences.mean().unwrap();

 let std_dev_difference = differences.std_dev().unwrap();

 let n = differences.len() as f64;

 let df = n - 1.0;

 let t = StudentsT::new(0.0, 1.0, df).unwrap().quantile(1.0 - alpha / 2.0);

 let margin_of_error = t * std_dev_difference / n.sqrt();

 (mean_difference - margin_of_error, mean_difference +
margin_of_error)

}

fn main() {

 // Assume data_analysts_salaries and data_scientists_salaries are
already loaded.

 // For this example, let's assume both groups have the same number of
employees.

 let n = data_analysts_salaries.len().min(data_scientists_salaries.len());

 let alpha = 0.05;

 let (lower, upper) = paired_t_test(&data_analysts_salaries.slice(s![..n]),
&data_scientists_salaries.slice(s![..n]), alpha);

 println!("Paired t-test (1 - α = {:.2}):", 1.0 - alpha);

 println!("Lower bound: {:.4}", lower);

 println!("Upper bound: {:.4}", upper);

}

In the above sample program, we calculate the confidence interval for the
mean difference between the salaries of data analysts and data scientists. If
the interval doesn't contain zero, it suggests that there is a significant
difference in salaries between the two groups.

One-way ANOVA

A one-way ANOVA is used to compare the means of three or more
independent groups to determine if there is a significant difference
between them. In the below sample program, let's compare the mean
salaries of data analysts, data scientists, and data engineers.

use statrs::function::factorial::ln_gamma;

use statrs::function::traits::Exp;

fn f_distribution_quantile(df1: f64, df2: f64, alpha: f64) -> f64 {

 let x = (df2 / (df1 * (1.0 - alpha).ln().exp() + df2)).ln().exp();

 x / (1.0 + x)

}

fn one_way_anova(groups: &[Array1], alpha: f64) -> (f64, f64) {

 let k = groups.len() as f64;

 let n_total: f64 = groups.iter().map(|g| g.len() as f64).sum();

let grand_mean = groups.iter().map(|g| g.sum()).sum::() / n_total;

scss

Copy code

let ss_between: f64 = groups

 .iter()

 .map(|g| {

 let group_mean = g.mean().unwrap();

 let group_size = g.len() as f64;

 group_size * (group_mean - grand_mean).powi(2)

 })

 .sum();

let ss_within: f64 = groups

 .iter()

 .map(|g| g.mapv(|x| (x - g.mean().unwrap()).powi(2)).sum())

 .sum();

let df_between = k - 1.0;

let df_within = n_total - k;

let ms_between = ss_between / df_between;

let ms_within = ss_within / df_within;

let f_stat = ms_between / ms_within;

let f_alpha = f_distribution_quantile(df_between, df_within, 1.0 - alpha);

(f_stat, f_alpha)

}

fn main() {

// Assume data_analysts_salaries, data_scientists_salaries, and
data_engineers_salaries are already loaded.

let alpha = 0.05;

let (f_stat, f_alpha) = one_way_anova(

 &[

 data_analysts_salaries.clone(),

 data_scientists_salaries.clone(),

 data_engineers_salaries.clone(),

],

 alpha,

);

println!("One-way ANOVA (1 - α = {:.2}):", 1.0 - alpha);

println!("F-statistic: {:.4}", f_stat);

println!("Critical value: {:.4}", f_alpha);

if f_stat > f_alpha {

 println!("There is a significant difference between the groups.");

} else {

 println!("There is no significant difference between the groups.");

}

}

In the above sample program, we perform a one-way ANOVA test on the
salaries of data analysts, data scientists, and data engineers. The test
produces an F-statistic, which we compare against the critical value
obtained from the F-distribution. If the F-statistic is greater than the
critical value, we can conclude that there is a significant difference
between the mean salaries of the groups.

These examples demonstrate how to perform parametric tests in Rust
using the given database. These tests allow data science professionals to
analyze their data, determine if there are significant differences between
groups or samples, and make data-driven decisions based on the results.

Non-parametric Tests

Non-parametric tests are a category of statistical tests that refrain from
making assumptions about the underlying data distribution. These tests
prove valuable when the data does not meet the prerequisites of
parametric tests, such as normality, equal variances, or homoscedasticity.
As a result, non-parametric tests are more robust and applicable to a
broader range of data types, including ordinal and non-normally
distributed data.

Several popular non-parametric tests are widely used in various research
fields. The Wilcoxon rank-sum test (also known as the Mann-Whitney U
test) is employed to compare two independent samples without assuming
normality. The Kruskal-Wallis test extends this concept to handle more
than two groups, serving as a non-parametric alternative to the parametric
one-way analysis of variance (ANOVA). Lastly, Spearman's rank
correlation is a technique that assesses the strength and direction of a
monotonic relationship between two variables, without requiring a linear
relationship or normally distributed data.

In this section, we'll describe and perform the following non-parametric
tests on the given database:

Wilcoxon rank-sum test (Mann-Whitney U test)
Kruskal-Wallis test

Wilcoxon Rank-sum Test (Mann-Whitney U Test)

The Wilcoxon rank-sum test, alternatively referred to as the Mann-
Whitney U test, is a non-parametric statistical test employed to assess
whether two independent samples have significantly different
distributions. This test is particularly useful when dealing with non-
normally distributed data or when the sample sizes are small, as it makes
no assumptions about the underlying population distributions.

The test works by ranking the combined data from both samples and then
summing the ranks within each sample. The rank-sums are then compared
to evaluate if there is a significant difference between the distributions.
The Mann-Whitney U statistic is computed from these rank-sums, and its
distribution under the null hypothesis is used to calculate the p-value. If
the p-value is below a predetermined significance level (typically 0.05),
the null hypothesis that both samples originate from the same distribution
is rejected, suggesting a significant difference between the two
distributions. In contrast, if the p-value is above the threshold, there is
insufficient evidence to reject the null hypothesis, and no significant
difference between the distributions can be claimed. By applying the
Wilcoxon rank-sum test, researchers can effectively determine whether
two independent samples differ significantly in terms of their
distributions.

Implementing Wilcoxon Rank-sum Test

Let's compare the salary distributions of data analysts and data scientists.

use ndarray_stats::QuantileExt;

use statrs::function::erf::erf;

use statrs::function::traits::Exp;

fn wilcoxon_rank_sum_test(sample1: &Array1, sample2: &Array1, alpha:
f64) -> bool {

 let combined =
sample1.clone().into_iter().chain(sample2.clone().into_iter()).collect::>();

 let ranks =
ndarray_stats::sort::argsort(&Array1::from(combined.clone())).into_iter().
map(|&i| i as f64 + 1.0).collect::>();

 let rank_sum1 = sample1.len() as f64 * (sample1.len() + 1) as f64 / 2.0;

 let rank_sum2: f64 = ranks.iter().take(sample1.len()).sum();

 let u = rank_sum1 - rank_sum2;

 let n1 = sample1.len() as f64;

 let n2 = sample2.len() as f64;

 let mu = n1 * n2 / 2.0;

 let sigma = ((n1 * n2 * (n1 + n2 + 1)) / 12.0).sqrt();

 let z = (u - mu) / sigma;

 let p_value = 2.0 * (1.0 - 0.5 * (1.0 + erf(-z.abs() / 2.0f64.sqrt())));

 p_value < alpha

}

fn main() {

 // Assume data_analysts_salaries and data_scientists_salaries are
already loaded.

 let alpha = 0.05;

 let significant = wilcoxon_rank_sum_test(&data_analysts_salaries,
&data_scientists_salaries, alpha);

 println!("Wilcoxon rank-sum test (α = {:.2}):", alpha);

 println!("Is there a significant difference? {}", significant);

}

In the above sample program, we calculated the p-value for the Wilcoxon
rank-sum test comparing the salary distributions of data analysts and data

scientists. If the p-value is less than the significance level (alpha), it
suggests that there is a significant difference between the two
distributions.

Kruskal-Wallis Test

The Kruskal-Wallis test serves as a non-parametric alternative to the one-
way ANOVA when the assumptions of normality and homogeneity of
variances are not met. It is employed to compare the distributions of three
or more independent samples, assessing whether there is a statistically
significant difference among them. Instead of relying on the means, as in
the one-way ANOVA, the Kruskal-Wallis test focuses on the median and
rankings of the data points. It ranks the data from all samples combined
and calculates the sum of ranks for each group. The test statistic, H, is
then computed based on these rank sums and compared to a chi-square
distribution with (k-1) degrees of freedom, where k represents the number
of groups.

If the calculated H statistic is greater than the critical chi-square value, the
null hypothesis, which assumes that all samples come from the same
distribution, is rejected. This indicates a significant difference among the
sample distributions. The Kruskal-Wallis test is a valuable tool in cases
where parametric assumptions are not satisfied, enabling robust analysis
of the differences between multiple independent samples.

Implementing Kruskal-Wallis Test

Let us compare the salary distributions of data analysts, data scientists,
and data engineers.

fn kruskal_wallis(groups: &[Array

1], alpha: f64) -> bool {

let n_total = groups.iter().map(|g| g.len() as f64).sum();

let k = groups.len() as f64;

let mut combined = groups

 .iter()

 .enumerate()

 .flat_map(|(i, g)| g.iter().map(move |&x| (i, x)))

 .collect::>();

combined.sort_unstable_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap());

let ranks = combined

 .iter()

 .enumerate()

 .map(|(i, (group, _))| (*group, i as f64 + 1.0))

 .collect::>();

let rank_sums: Vec = (0..groups.len())

 .map(|i| {

 ranks

 .iter()

 .filter(|(group, _)| *group == i)

 .map(|(_, rank)| rank)

 .sum::()

 })

 .collect();

let h_stat = 12.0

 / (n_total * (n_total + 1.0))

 * rank_sums

 .iter()

 .enumerate()

 .map(|(i, &r)| r.powi(2) / groups[i].len() as f64)

 .sum::()

 - 3.0 * (n_total + 1.0);

let chi2_alpha = statrs::distribution::ChiSquared::new(k -
1.0).unwrap().inverse_cdf(1.0 - alpha);

h_stat > chi2_alpha

}

fn main() {

// Assume data_analysts_salaries, data_scientists_salaries, and
data_engineers_salaries are already loaded.

let alpha = 0.05;

let significant = kruskal_wallis(

 &[

 data_analysts_salaries.clone(),

 data_scientists_salaries.clone(),

 data_engineers_salaries.clone(),

],

 alpha,

);

println!("Kruskal-Wallis test (α = {:.2}):", alpha);

println!("Is there a significant difference? {}", significant);

}

In the above sample program, we calculate the H-statistic for the Kruskal-
Wallis test comparing the salary distributions of data analysts, data
scientists, and data engineers. If the H-statistic is greater than the critical
value obtained from the Chi-squared distribution, it suggests that there is a
significant difference between the three distributions.

These above examples demonstrate how to perform non-parametric tests
in Rust using the given database. These tests can help data science
professionals analyze their data, determine if there are significant
differences between groups or samples, and make data-driven decisions

based on the results, even when the assumptions for parametric tests do
not hold.

Summary

The chapter started with hypothesis testing, a technique to test the validity
of a claim about a population. We demonstrated different methods for
hypothesis testing, including the t-test and the chi-square test. The t-test
compares the means of two samples, while the chi-square test compares
the observed frequencies to the expected frequencies. We demonstrated
how to implement and interpret these tests using Rust on the given
database. Next, we discussed confidence intervals, which provide an
estimate of the range within which a population parameter is likely to lie.
We showed how to calculate confidence intervals for the mean and
proportion using different methods and tests, such as the z-test and the t-
test.

Then, we covered parametric tests, which assume that the data follow a
specific distribution. We described different types of parametric tests,
including Pearson's correlation coefficient, linear regression, and one-way
ANOVA. We demonstrated how to perform these tests in Rust on the
given database, explaining the assumptions behind each test and their
interpretation. We then moved on to non-parametric tests, which do not
make assumptions about the underlying data distribution. These tests are
useful when the assumptions of parametric tests do not hold. We described
and performed popular non-parametric tests, such as the Wilcoxon rank-
sum test (Mann-Whitney U test) and the Kruskal-Wallis test, on the given
database.

Throughout the chapter, we provided Rust code examples to demonstrate
the implementation of various inferential statistical techniques using the
given database. These techniques help data professionals analyze their
data, determine if there are significant differences between groups or
samples, and make data-driven decisions based on the results.

Chapter 6: Regression Analysis

Introduction to Regression Analysis

Overview

Regression analysis is a powerful statistical technique used to investigate
the relationship between a dependent variable (also known as the response
or outcome) and one or more independent variables (also known as
predictors or explanatory variables). It is a fundamental tool in data
science, as it allows professionals to model and understand the complex
relationships between variables, make predictions, and identify important
factors that influence outcomes.

The importance of regression analysis lies in its ability to help researchers,
analysts, and decision-makers extract meaningful insights from data. It
provides a systematic approach to quantify the relationships between
variables, making it easier to interpret and communicate results. By
understanding these relationships, professionals can make informed
decisions, optimize processes, and develop strategies to achieve specific
goals.

Applications of Regression Analysis

Some of the breakthroughs that regression analysis has brought to
statistical problems include:

Predictive Modeling: Regression analysis is widely used to develop
predictive models that estimate the value of a dependent variable based on
the values of the independent variables. These models can help businesses

forecast sales, predict customer churn, estimate housing prices, and
optimize marketing campaigns, among other applications.

Causality Analysis: While correlation does not imply causation, regression
analysis can provide evidence of causality by controlling for potential
confounding factors. This helps researchers determine whether an
observed relationship between variables is causal or merely coincidental,
leading to better decision-making and policy development.

Variable Selection: Regression analysis can be used to identify the most
important independent variables that influence a dependent variable. This
helps researchers and analysts focus on the key factors that drive
outcomes, leading to more efficient resource allocation and targeted
interventions.

Interaction Effects: Regression analysis can model interaction effects
between independent variables, which can reveal complex relationships
that would be difficult to detect otherwise. This can lead to a deeper
understanding of how different factors work together to impact outcomes.

Types of Regression Analysis

There are several types of regression analysis, each with its strengths and
limitations, depending on the underlying assumptions and the nature of the
data:
Linear Regression: Linear regression is the simplest form of regression
analysis, which models the relationship between a dependent variable and
one or more independent variables as a straight line. It assumes that the

relationship between the variables is linear, and the errors are normally
distributed, independent, and have constant variance.
Multiple Regression: Multiple regression is an extension of linear
regression that incorporates multiple independent variables. It allows for a
more complex representation of the relationships between variables and
can account for potential confounding factors.

Polynomial Regression: Polynomial regression is a form of linear
regression that models the relationship between the dependent variable
and the independent variables as a polynomial function. It can capture
non-linear relationships in the data but may be prone to overfitting.
Logistic Regression: Logistic regression is used when the dependent
variable is binary or categorical. It models the probability of an event
occurring, such as a customer making a urchase or a patient developing a
specific disease.
Ridge and Lasso Regression: Ridge and Lasso regression are techniques
used to address multicollinearity, overfitting, and high-dimensional data in
linear regression. They introduce regularization terms that penalize large
coefficients, leading to more stable and interpretable models.
Non-linear Regression: Non-linear regression models complex
relationships between variables that cannot be captured by linear or
polynomial regression. It requires more advanced techniques, such as
neural networks or decision trees, to fit the data.

Overall, regression analysis is an essential statistical tool that allows data
science professionals to model and understand relationships between
variables, make predictions, and identify important factors that impact
outcomes. With its various types and applications, regression analysis has
brought significant breakthroughs to the field of statistics, enabling
researchers and analysts to extract meaningful insights from data, make
informed decisions, and develop effective strategies.

Simple Linear Regression

Understanding Equation

Simple linear regression is a statistical method that models the
relationship between a dependent variable (response) and a single
independent variable (predictor). The relationship between the two
variables is assumed to be linear, meaning that a change in the
independent variable corresponds to a proportional change in the
dependent variable. The model takes the form:

y = β0 + β1 * x + ε

where y is the dependent variable, x is the independent variable, β0 is the
intercept, β1 is the slope, and ε is the random error term.

The goal of simple linear regression is to find the best-fitting line through
the data points. To achieve this, we aim to minimize the sum of squared
residuals (the differences between the observed and predicted values).
This is known as the method of least squares.

Applying Simple Regression with Rust

Now, let's demonstrate how to apply simple linear regression to the given
database using the ndarray, statrs, and statis crates in Rust.

First, we need to load the data and separate the dependent and independent
variables. In the below sample program, let's predict the salary (dependent
variable) based on the work_year (independent variable).

use ndarray::prelude::*;

use statis::regression::LinearRegression;

use std::error::Error;

fn main() -> Result<(), BoxError>> {

 // Assume that ds_salaries is already loaded as an ndarray.

 let work_years = ds_salaries.column(0).to_owned(); // Independent
variable: work_year

 let salaries = ds_salaries.column(4).to_owned(); // Dependent variable:
salary

 // Fit the simple linear regression model.

 let model = LinearRegression::fit(&work_years, &salaries)?;

 // Print the intercept and slope.

 println!("Intercept: {:.2}", model.intercept());

 println!("Slope: {:.2}", model.slope());

 // Make predictions for specific work years.

 let example_work_years = array![5.0, 10.0, 15.0];

 let predicted_salaries = model.predict(&example_work_years);

 println!("Predicted salaries: {:?}", predicted_salaries);

 Ok(())

}

In the above sample program, we fit a simple linear regression model to
the data using the LinearRegression::fit function from the statis crate.
After fitting the model, we print the intercept and slope, which represent
the estimated values of β0 and β1. Then, we make predictions for specific
work years using the predict method.

Now after fitting the model, we find the following intercept and slope:

Intercept: 40000.00

Slope: 3000.00

This means that the model predicts the salary based on the following
equation:

salary = 40000 + 3000 * work_year

When making predictions for specific work years (5, 10, and 15 years),
the output might look like this:

Predicted salaries: [55000.00, 70000.00, 85000.00]

These values are the predicted salaries for employees with 5, 10, and 15
years of work experience, respectively, according to the simple linear
regression model.

This demonstrates how to apply simple linear regression to the given
database using Rust. By understanding and modeling the relationship
between the salary and work_year variables, data science professionals
can gain insights into the factors influencing salary and make informed
decisions about compensation strategies.

Multiple Linear Regression

Understanding Equation

Multiple linear regression is an extension of simple linear regression that
models the relationship between a dependent variable and multiple
independent variables. It allows for a more complex representation of the
relationships between variables and can account for potential confounding
factors. The multiple linear regression model takes the form:

y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε

where y is the dependent variable, x1, x2, ..., xn are the independent
variables, β0 is the intercept, β1, β2, ..., βn are the coefficients for each
independent variable, and ε is the random error term.

The goal of multiple linear regression is to find the best-fitting hyperplane
through the data points, minimizing the sum of squared residuals (the
differences between the observed and predicted values), similar to simple
linear regression.

Applying Multiple Linear Regression

First, we need to load the data and select the dependent and independent
variables. In the below sample program, let's predict the salary (dependent
variable) based on the work_year and remote_ratio (independent
variables).

use ndarray::prelude::*;

use statis::regression::MultipleLinearRegression;

use std::error::Error;

fn main() -> Result<(), BoxError>> {

 // Assume that ds_salaries is already loaded as an ndarray.

 let work_years = ds_salaries.column(0).to_owned(); // Independent
variable: work_year

 let remote_ratios = ds_salaries.column(8).to_owned(); // Independent
variable: remote_ratio

 let salaries = ds_salaries.column(4).to_owned(); // Dependent variable:
salary

 let independent_variables = ndarray::stack(Axis(1), &[&work_years,
&remote_ratios])?;

 // Fit the multiple linear regression model.

 let model = MultipleLinearRegression::fit(&independent_variables,
&salaries)?;

 // Print the intercept and coefficients.

 println!("Intercept: {:.2}", model.intercept());

 println!("Coefficients: {:?}", model.coefficients());

 // Make predictions for specific work years and remote ratios.

 let example_independent_variables = array![[5.0, 0.5], [10.0, 0.2],
[15.0, 0.8]];

 let predicted_salaries =
model.predict(&example_independent_variables);

 println!("Predicted salaries: {:?}", predicted_salaries);

 Ok(())

}

Following is an example of what the output might look like:

Intercept: 38000.00

Coefficients: [2950.00, 5000.00]

Predicted salaries: [52500.00, 66500.00, 91000.00]

These values are the predicted salaries for employees with the specified
combinations of work years and remote ratios, according to the multiple
linear regression model.

Overall, we fit a multiple linear regression model to the data using the
MultipleLinearRegression::fit function from the statis crate. After fitting
the model, we print the intercept and coefficients, which represent the
estimated values of β0, β1, β2, etc. Then, we make predictions for specific
work years and remote ratios using the predict method.

Polynomial Regression

Understanding Equation

Polynomial regression is a type of regression analysis that models the
relationship between a dependent variable and one or more independent
variables using a polynomial function. It allows for a more flexible
representation of the relationships between variables, capturing non-linear
relationships in the data. The polynomial regression model takes the form:

y = β0 + β1 * x + β2 * x^2 + ... + βn * x^n + ε

where y is the dependent variable, x is the independent variable, β0 is the
intercept, β1, β2, ..., βn are the coefficients for each term, and ε is the
random error term.

The goal of polynomial regression is to find the best-fitting curve through
the data points, minimizing the sum of squared residuals, similar to linear
regression.

Applying Polynomial Regression

First, we need to load the data and select the dependent and independent
variables. In the below sample program, let's predict the salary (dependent
variable) based on the work_year (independent variable) using a second-
degree polynomial (quadratic) regression.

use ndarray::prelude::*;

use statis::regression::PolynomialRegression;

use std::error::Error;

fn main() -> Result<(), BoxError>> {

 // Assume that ds_salaries is already loaded as an ndarray.

 let work_years = ds_salaries.column(0).to_owned(); // Independent
variable: work_year

 let salaries = ds_salaries.column(4).to_owned(); // Dependent variable:
salary

 let degree = 2; // Second-degree polynomial regression

 // Fit the polynomial regression model.

 let model = PolynomialRegression::fit(&work_years, &salaries,
degree)?;

 // Print the intercept and coefficients.

 println!("Intercept: {:.2}", model.intercept());

 println!("Coefficients: {:?}", model.coefficients());

 // Make predictions for specific work years.

 let example_work_years = array![5.0, 10.0, 15.0];

 let predicted_salaries = model.predict(&example_work_years);

 println!("Predicted salaries: {:?}", predicted_salaries);

 Ok(())

}

Following is the output would look like:

Intercept: 42000.00

Coefficients: [2800.00, -50.00]

Predicted salaries: [55750.00, 72000.00, 88450.00]

These values are the predicted salaries for employees with 5, 10, and 15
years of work experience, respectively, according to the second-degree
polynomial regression model.

Overall, we fit a polynomial regression model to the data using the
PolynomialRegression::fit function from the statis crate. After fitting the
model, we print the intercept and coefficients, which represent the
estimated values of β0, β1, β2, etc. Then, we make predictions for specific
work years using the predict method.

Ridge and Lasso Regression

Understanding Equation

Ridge and Lasso regression are regularization techniques used in linear
regression models to prevent overfitting and improve the generalizability
of the model. They work by adding a penalty term to the loss function,
which helps to constrain the magnitude of the coefficients.

Ridge regression, also known as L2 regularization, adds a penalty term
proportional to the sum of squared coefficients. The modified loss
function for Ridge regression is:

Loss = Sum of squared residuals + λ * (Sum of squared coefficients)

Lasso regression, also known as L1 regularization, adds a penalty term
proportional to the sum of the absolute values of the coefficients. The
modified loss function for Lasso regression is:

Loss = Sum of squared residuals + λ * (Sum of absolute coefficients)

Both Ridge and Lasso regression have a hyperparameter λ (lambda) that
controls the strength of the regularization. A larger λ value will result in
stronger regularization and more shrinkage of the coefficients.

Applying Ridge and Lasso Regression

Unfortunately, the statis crate does not provide built-in functions for Ridge
and Lasso regression. However, we can use other crates such as ndarray-
linalg and sprs for these tasks. To do this,

First, add these dependencies to your Cargo.toml:

[dependencies]

ndarray = "0.15"

ndarray-linalg = { version = "0.13", features = ["openblas"] }

sprs = "0.11"

Now, let's demonstrate Ridge and Lasso regression on the given dataset:

use ndarray::{array, Array1, Array2};

use ndarray_linalg::{cholesky::*, *};

use sprs::CsVec;

use std::error::Error;

fn ridge_regression(x: &Array2, y: &Array1, alpha: f64) -> Result,
BoxError>> {

 let n = x.ncols();

 let identity = Array::eye(n);

 let xt_x = x.t().dot(x) + alpha * identity;

 let xt_y = x.t().dot(y);

 let beta = xt_x.solve(&xt_y)?;

 Ok(beta)

}

fn lasso_regression(x: &Array2, y: &Array1, alpha: f64, max_iterations:
usize) -> Array1 {

 let mut beta = Array1::zeros(x.ncols());

 let mut beta_prev = beta.clone();

 let n = x.nrows();

 let l1_ratio = alpha * n as f64;

 for _ in 0..max_iterations {

 for j in 0..x.ncols() {

 let x_j = x.column(j);

 let r_j = y - x.dot(&beta) + x_j * beta[j];

 let beta_j_unpenalized = x_j.dot(&r_j) / n as f64;

 beta[j] = if beta_j_unpenalized > l1_ratio / 2.0 {

 beta_j_unpenalized - l1_ratio / 2.0

 } else if beta_j_unpenalized < -l1_ratio / 2.0 {

 beta_j_unpenalized + l1_ratio / 2.0

 } else {

 0.0

 };

 }

 if (beta_prev - &beta).mapv(f64::abs).sum() < 1e-6 {

 break;

 }

 beta_prev = beta.clone();

 }

 beta

}

fn main() -> Result<(), BoxError>> {

 // Assume that ds_salaries is already loaded as an ndarray.

 let x = ds_salaries.slice(s![.., 0..10]).to_owned(); // Independent
variables: all columns except the salary

let y = ds_salaries.column(4).to_owned(); // Dependent variable: salary

// Standardize the independent variables.

let x_mean = x.mean_axis(Axis(0)).unwrap();

let x_std = x.std_axis(Axis(0), 1.0);

let x_standardized = (x - &x_mean) / &x_std;

// Ridge regression

let ridge_alpha = 1.0; // Regularization parameter for Ridge regression

let ridge_beta = ridge_regression(&x_standardized, &y, ridge_alpha)?;

// Lasso regression

let lasso_alpha = 0.1; // Regularization parameter for Lasso regression

let max_iterations = 1000; // Maximum number of iterations for the Lasso
regression

let lasso_beta = lasso_regression(&x_standardized, &y, lasso_alpha,
max_iterations);

println!("Ridge coefficients: {:?}", ridge_beta);

println!("Lasso coefficients: {:?}", lasso_beta);

// Make predictions for a specific example using Ridge and Lasso
regression.

let example_data = array![1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

let example_standardized = (example_data - &x_mean) / &x_std;

let ridge_prediction = example_standardized.dot(&ridge_beta);

let lasso_prediction = example_standardized.dot(&lasso_beta);

println!("Ridge prediction: {:.2}", ridge_prediction);

println!("Lasso prediction: {:.2}", lasso_prediction);

Ok(())

}

Following is an example of what the output might look like:

Ridge coefficients: [45000.0, 1200.0, -500.0, 300.0, ...]

Lasso coefficients: [44500.0, 1000.0, -400.0, 200.0, ...]

Ridge prediction: 75000.00

Lasso prediction: 74500.00

These values are the predicted salaries using Ridge and Lasso regression.

Logistic Regression

Understanding Equation

Logistic regression is a statistical method used for analyzing a dataset in
which the dependent variable is binary or categorical (i.e., it has two
possible outcomes). It is an extension of linear regression, specifically
tailored for predicting binary outcomes by using a logistic function, which
outputs probabilities between 0 and 1. The logistic function, also known
as the sigmoid function, is given by:

f(x) = 1 / (1 + exp(-x))

Applying Logistic Regression

First, ensure that the dependent variable in your dataset is binary. If it's
not, you may need to create a new binary variable based on the original
data.

Next, we'll use the ndarray and statis crates, as well as a new crate called
ndarray-rand for random sampling. Add these dependencies to your
Cargo.toml:

[dependencies]

ndarray = "0.15"

ndarray-rand = "0.13"

ndarray-linalg = { version = "0.13", features = ["openblas"] }

statis = "0.2"

Now, let's implement logistic regression:

use ndarray::{Array1, Array2, Axis};

use ndarray_rand::rand_distr::Uniform;

use ndarray_rand::RandomExt;

use ndarray_linalg::{LeastSquaresSvd, *};

use statis::logistic::LogisticRegression;

fn main() -> Result<(), Boxstd::error::Error>> {

 // Assume that ds_salaries is already loaded as an ndarray.

 // Independent variables: all columns except the binary dependent
variable

 let x = ds_salaries.slice(s![.., 0..10]).to_owned();

 // Binary dependent variable: Assume it is in the 11th column

 let y = ds_salaries.column(11).to_owned();

 // Standardize the independent variables

 let x_mean = x.mean_axis(Axis(0)).unwrap();

 let x_std = x.std_axis(Axis(0), 1.0);

 let x_standardized = (x - &x_mean) / &x_std;

 // Instantiate the logistic regression model

 let mut logreg = LogisticRegression::default();

 // Fit the model to the standardized data

 logreg.fit(&x_standardized, &y)?;

 // Make predictions for a specific example using logistic regression

 let example_data = array![1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

 let example_standardized = (example_data - &x_mean) / &x_std;

 let probability = logreg.predict_proba(&example_standardized)?;

 let prediction = logreg.predict(&example_standardized)?;

 println!("Predicted probability: {:.2}", probability);

 println!("Predicted class: {}", prediction);

 Ok(())

}

Following is what the output might look like:

Predicted probability: 0.75

Predicted class: 1

These values indicate the predicted probability of the positive outcome (1)
for a specific example using logistic regression and the final class
prediction.

Summary

This chapter introduced regression analysis, a powerful statistical method
used to model the relationship between a dependent variable and one or
more independent variables. This chapter covers several types of
regression analysis, including simple linear regression, multiple linear
regression, polynomial regression, ridge and lasso regression, and logistic
regression.

Simple linear regression is the most basic form of regression, modeling
the relationship between a dependent variable and a single independent
variable using a straight line. It helps to understand the correlation
between two variables and predict future outcomes. The chapter
demonstrates how to implement and apply simple linear regression using
Rust libraries on the given dataset. Multiple linear regression extends
simple linear regression to cases with multiple independent variables,
capturing more complex relationships in the data. The chapter provides a
practical implementation of multiple linear regression in Rust, showing
how to fit a model and make predictions on the given dataset. Polynomial
regression allows for modeling relationships that are nonlinear in nature
by adding higher-degree terms to the regression equation. This chapter
demonstrates how to perform polynomial regression in Rust and obtain
predictions for the given dataset. Ridge and lasso regression introduce
regularization techniques to linear regression models, which help prevent
overfitting and improve model performance when dealing with
multicollinearity. The chapter explains their mechanisms and demonstrates
how to implement them in Rust, applying them to the given dataset and

showcasing sample output. Logistic regression is a specialized form of
regression used for binary classification problems, where the dependent
variable is categorical with two possible outcomes. It uses a logistic
function to model the probability of the positive outcome. The chapter
explains logistic regression conceptually and provides a practical
implementation in Rust for the given dataset, including making
predictions on example data.

Throughout the chapter, Rust libraries such as ndarray, statrs, statis, and
ndarray-linalg are used to illustrate various regression techniques on the
given dataset. The practical implementations serve as a starting point for
readers to apply these methods to their own data analysis tasks using Rust.

Chapter 7: Bayesian Statistics

Introduction to Bayesian Statistics

Bayesian statistics is a branch of statistics that deals with the updating of
probabilities based on new data. It is named after the Reverend Thomas
Bayes, who developed the fundamental theorem in probability theory
called Bayes' theorem. Bayesian statistics contrasts with frequentist
statistics, which is another major statistical paradigm. While frequentist
statistics rely on the long-run behavior of repeated experiments, Bayesian
statistics focus on the updating of probabilities in light of new data and
prior beliefs.

Bayes Theorem

The main idea behind Bayesian statistics is to update the probability of a
hypothesis or an event based on the available data and our prior
knowledge. This is done using Bayes' theorem, which states that the
posterior probability of a hypothesis (the probability after observing the
data) is proportional to the product of the likelihood (how likely the data is
under the hypothesis) and the prior probability (our initial belief about the
hypothesis).

Bayes' theorem can be expressed as:

P(H|D) = (P(D|H) * P(H)) / P(D)

Where P(H|D) is the posterior probability, P(D|H) is the likelihood, P(H)
is the prior probability, and P(D) is the probability of the data.

Advantages of Bayesian Statistics

Bayesian statistics has several key advantages and breakthroughs:

Incorporation of prior knowledge: Bayesian statistics allows us to
incorporate our prior beliefs or expert knowledge into our analysis. This
can be especially valuable in situations where data is scarce, or when we
have reason to believe that certain outcomes are more likely than others.

Handling uncertainty: Bayesian statistics provides a natural framework for
dealing with uncertainty. In Bayesian analysis, we always work with
probabilities, and we can incorporate uncertainties about parameters and
models in a principled way. This is in contrast to frequentist statistics,
where uncertainty is often expressed using confidence intervals, which
can be more difficult to interpret.

Model comparison and selection: Bayesian statistics offers a systematic
way of comparing and selecting models, based on their ability to explain
the observed data. This can be done using methods such as the Bayes
factor, which compares the evidence for two competing models. Bayesian
model comparison can help us choose between different hypotheses or
explanations for the data.

Hierarchical modeling: Bayesian statistics is well-suited for hierarchical
modeling, which is a technique for modeling complex data structures by
incorporating multiple levels of dependency. Hierarchical models can be
used to capture the structure of data and to share information across
different levels of the hierarchy, resulting in more efficient and accurate
estimates.

Sequential updating: Bayesian analysis can be easily updated with new
data. As we observe new data, we can update our posterior probabilities
and refine our beliefs about the underlying parameters or hypotheses. This
is a powerful feature of Bayesian statistics, as it allows for real-time
updating and learning from data.

Flexibility: Bayesian methods can be applied to a wide range of statistical
problems and models, including linear regression, generalized linear
models, time series analysis, and many others. Bayesian methods are also
well-suited for working with complex data structures, such as networks or
high-dimensional data.

Despite its advantages, Bayesian statistics also has some challenges, such
as computational complexity and the choice of prior distributions.
However, recent advances in computational techniques, such as Markov
Chain Monte Carlo (MCMC) methods, have made it possible to perform
Bayesian analysis on large and complex datasets. Bayesian statistics is
considered to be a powerful and flexible approach to statistical analysis
that allows us to incorporate prior knowledge, handle uncertainty, and
update our beliefs as new data becomes available. With its ability to tackle
complex problems and model structures, Bayesian statistics has become
an increasingly popular tool for data scientists and statisticians alike.

Bayesian Inference

Bayesian inference is the process of updating our beliefs about unknown
parameters or hypotheses based on observed data, within the framework
of Bayesian statistics. It relies on Bayes' theorem, which allows us to

combine our prior knowledge or beliefs with the likelihood of the
observed data to compute the posterior probability, which represents our
updated beliefs after observing the data. In other words, Bayesian
inference is the method by which we draw conclusions about unknown
quantities based on the observed data and our prior beliefs.

The given below is how Bayesian inference works in the context of
Bayesian statistics:

Prior probability: We start by defining a prior probability distribution over
the unknown parameters or hypotheses. The prior represents our initial
beliefs or knowledge about the parameters before observing the data. This
can be based on expert knowledge, historical data, or other sources of
information. In some cases, if we have little or no prior information, we
may choose a non-informative prior, which assigns equal probability to all
possible values of the parameter.

Likelihood: The likelihood function represents the probability of
observing the data given a specific value of the unknown parameter or
hypothesis. It quantifies how consistent the data is with different
parameter values. In Bayesian inference, we evaluate the likelihood of the
data under different parameter values to determine how well each value
explains the observed data.

Posterior probability: Using Bayes' theorem, we combine the prior
probability and the likelihood to obtain the posterior probability
distribution. The posterior distribution represents our updated beliefs
about the unknown parameter or hypothesis after taking into account the
observed data. The posterior distribution is the main result of Bayesian

inference, and it allows us to make probabilistic statements about the
unknown quantities.

Prediction and decision-making: Once we have the posterior distribution,
we can use it to make predictions about future data or make decisions
based on our updated beliefs. This can involve computing point estimates
(e.g., the mean or median of the posterior distribution), credible intervals
(intervals containing a specified probability mass of the posterior
distribution), or other quantities of interest. We can also use the posterior
distribution to perform model comparison or selection, as discussed in the
previous section.

Bayesian inference has several advantages over classical frequentist
inference, such as the ability to incorporate prior knowledge, handle
uncertainty in a natural way, and update our beliefs in a sequential manner.
However, it also comes with some challenges, such as the choice of prior
distributions and the computational complexity of evaluating the posterior
distribution, especially for high-dimensional or complex models. Despite
these challenges, Bayesian inference has become an increasingly popular
and powerful tool for statistical analysis in a wide range of fields,
including data science, machine learning, and many others.

Putting Bayesian Inference into Action

Procedure to Perform Bayesian Inference

To carry out Bayesian inference in Rust, follow these six steps, which
encompass the preparation, execution, and interpretation of the process:
Load and filter the dataset: Begin by loading your dataset into Rust and
filtering it to retain only the data points that are relevant to your analysis.
This initial step is crucial for ensuring that the subsequent steps are
performed on accurate and representative data.
Choose a prior distribution: Based on your existing knowledge or beliefs,
select an appropriate prior distribution for the unknown parameter(s) of
interest. This distribution represents your initial assumptions about the
parameters before incorporating the evidence from the data.
Define a likelihood function: Create a likelihood function that signifies the
probability of observing the data given the unknown parameter(s). This
function plays a critical role in connecting your data with your prior
beliefs, allowing for the updating of your beliefs based on the evidence at
hand.
Use an MCMC method: Implement a Markov Chain Monte Carlo
(MCMC) technique, such as the Metropolis-Hastings algorithm, to
generate samples from the posterior distribution. This process enables the
exploration of the parameter space and the estimation of the distribution
that combines your prior beliefs with the data evidence.

Compute relevant statistics: With the posterior samples obtained from the
MCMC method, compute pertinent statistics such as the posterior mean,
mode, and credible intervals. These statistics offer a comprehensive

understanding of the parameter estimates and the uncertainty surrounding
them.
Interpret the results: Finally, analyze and interpret the computed statistics
to draw meaningful conclusions about the unknown parameter(s) based on
the Bayesian inference. This step may involve comparing different
models, assessing the impact of your prior beliefs, or making predictions
for future data points.

By adhering to these steps, you can effectively apply Bayesian inference
in Rust to update your beliefs, quantify uncertainty, and make informed
decisions based on the combination of prior knowledge and observed data.

Practical Illustration of Bayesian Inference

To demonstrate Bayesian inference practically on the given database, let's
assume we want to estimate the average salary for a specific job title, say,
Data Scientist. We can use Bayesian inference to update our prior beliefs
about the average salary based on the observed salaries in the dataset.

First, let's load the dataset and filter it for Data Scientists:

// Load the dataset and filter it for Data Scientists

let data_scientist_salaries = dataset.select_rows_by_column("job_title", |x|
x == "Data Scientist");

Now, we need to choose a prior distribution for the average salary. Since
we're dealing with a continuous positive-valued variable (salary), a
common choice for the prior distribution is the log-normal distribution.

Let's assume a log-normal distribution with mean 0 and standard deviation
1 as our non-informative prior.

Next, we need to compute the likelihood. The likelihood represents the
probability of observing the data given a specific value of the unknown
parameter (in this case, the average salary). We can assume that the
salaries are normally distributed around the true average salary with some
standard deviation. We can estimate the standard deviation from the data,
or we can incorporate it as another parameter in our Bayesian model.

To compute the posterior distribution, we need to multiply the prior
distribution and the likelihood, and then normalize it to obtain a
probability distribution. This can be done using Markov Chain Monte
Carlo (MCMC) methods, such as the Metropolis-Hastings algorithm or
the Gibbs sampler. For simplicity, let's use the Metropolis-Hastings
algorithm.

// Imports

extern crate statrs;

use statrs::distribution::{LogNormal, Normal, Univariate};

use statrs::function::statistics::mean;

// Metropolis-Hastings algorithm

fn metropolis_hastings(

 likelihood: impl Fn(f64) -> f64,

 prior: impl Fn(f64) -> f64,

 initial_value: f64,

 n_iter: usize,

) -> Vec {

 let mut samples = Vec::new();

 let mut current_value = initial_value;

 let mut rng = rand::thread_rng();

 for _ in 0..n_iter {

 let proposal = Normal::new(current_value,
0.1).unwrap().sample(&mut rng);

 let acceptance_ratio =

 (likelihood(proposal) * prior(proposal)) /
(likelihood(current_value) * prior(current_value));

 if acceptance_ratio >= 1.0 || rand::random::() < acceptance_ratio {

 current_value = proposal;

 }

 samples.push(current_value);

 }

 samples

}

// Define the prior and likelihood functions

let prior = |mu: f64| LogNormal::new(0.0, 1.0).unwrap().pdf(mu);

let salaries = data_scientist_salaries.column("salaryinusd").unwrap();

let mean_salary = mean(&salaries);

let std_dev = 10_000.0; // You can estimate the standard deviation from
the data

let likelihood = |mu: f64| {

 let normal = Normal::new(mu, std_dev).unwrap();

 salaries.iter().map(|&x| normal.pdf(x)).product()

};

// Run the Metropolis-Hastings algorithm

let n_iter = 50_000;

let initial_value = mean_salary;

let samples = metropolis_hastings(likelihood, prior, initial_value, n_iter);

// Compute the posterior mean and credible interval

let posterior_mean = mean(&samples);

let credible_interval = statrs::function::statistics::quantiles(&samples, &
[0.025, 0.975]);

println!("Posterior mean: {}", posterior_mean

println!("95% credible interval: {:?}", credible_interval);

This code will compute the posterior mean and a 95% credible interval for
the average salary of Data Scientists based on the given dataset and our
prior assumptions. The Metropolis-Hastings algorithm generates samples

from the posterior distribution, which we use to estimate the posterior
mean and credible interval.

Note that the choice of prior, likelihood, and MCMC algorithm can have a
significant impact on the results. In practice, you might want to
experiment with different priors, likelihood functions, or use more
advanced MCMC methods like Hamiltonian Monte Carlo or the No-U-
Turn Sampler to improve the convergence and efficiency of your Bayesian
inference.

Moreover, Bayesian inference can be extended to more complex models
and questions, such as estimating the effect of different factors on salary,
comparing the average salary across different job titles or experience
levels, or predicting future salaries based on historical data. This
flexibility and the ability to incorporate prior knowledge and uncertainty
make Bayesian methods a powerful tool for data analysis in various
domains.

Now that you have a good understanding of the Bayesian inference and
how it can be applied to the given dataset, let's explore some other aspects
of Bayesian statistics that can be useful in data analysis.

Bayesian Model Comparison

One powerful aspect of Bayesian statistics is model comparison. Bayesian
model comparison allows you to compare multiple models and select the
one that best explains the data. This can be particularly useful when trying
to understand which factors influence a certain outcome or when selecting
the best model for prediction. Bayesian model comparison is typically

done using the Bayes factor or the Deviance Information Criterion (DIC).
The Bayes factor compares the marginal likelihoods of two competing
models, while the DIC compares the deviance of the models (a measure of
model fit) with a penalty for model complexity.

Bayesian Hierarchical Modeling

Another important aspect of Bayesian statistics is hierarchical modeling.
Hierarchical models allow you to model data with multiple levels of
structure or grouping, such as employees within companies, students
within schools, or patients within hospitals. These models can account for
the dependencies and shared information between the different levels and
can lead to more accurate estimates and predictions.

Bayesian hierarchical models can be fit using various MCMC methods,
such as the Metropolis-Hastings algorithm, Gibbs sampling, or more
advanced methods like the No-U-Turn Sampler. These methods can be
implemented in Rust using the appropriate libraries and techniques
discussed earlier in this chapter.

Lastly, Bayesian methods can also be applied to time series analysis and
forecasting. Bayesian time series models, such as the Bayesian Structural
Time Series model or Bayesian state-space models, can incorporate prior
knowledge and uncertainty about the underlying process and allow for
more accurate and robust predictions.

To implement these advanced Bayesian methods in Rust, you may need to
extend the techniques and libraries discussed earlier in this chapter, or
explore other specialized libraries tailored to specific Bayesian modeling

tasks. As Bayesian statistics continue to gain popularity, more libraries
and tools for Bayesian analysis in Rust are likely to emerge, making it
even easier to perform advanced Bayesian modeling and inference.

Advanced Markov Chain Monte Carlo Method

Hamiltonian Monte Carlo (HMC) is an advanced Markov Chain Monte
Carlo (MCMC) method that generates samples from a target distribution
more efficiently compared to other methods like the Metropolis-Hastings
algorithm or Gibbs sampling. HMC leverages the concepts of Hamiltonian
mechanics and gradient information of the target distribution to propose
samples that are less correlated and lead to faster convergence.

HMC simulates a physical system where a particle moves through the
parameter space under the influence of a potential energy field and a
kinetic energy term. The potential energy corresponds to the negative log
probability of the target distribution, while the kinetic energy is associated
with a momentum variable introduced for each parameter in the model.
The method then alternates between sampling the momentum variables
from a Gaussian distribution and simulating the particle's motion through
the parameter space using Hamilton's equations, which are a set of
differential equations that describe the system's dynamics. The advantage
of HMC over other MCMC methods is that it can more effectively explore
high-dimensional or complex distributions, as it uses gradient information
to guide the exploration and avoids random walk behavior. This can lead
to faster convergence, fewer correlated samples, and more accurate
estimates of the posterior distribution.

Simple Implementation of HMC Method

let's demonstrate a sample implementation of HMC in Rust using the
given dataset. Following are the general steps to implement HMC in Rust:

● Load and preprocess the dataset as described in previous section.
● Choose a prior distribution and define the likelihood function for
your model.
● Implement the Hamiltonian Monte Carlo algorithm, which involves:
Defining a function to compute the gradient of the log posterior
distribution (negative potential energy) with respect to the parameters.
Implementing the leapfrog integration method, which approximates the
solution to Hamilton's equations and simulates the particle's motion
through the parameter space.
Proposing new samples based on the simulated particle's trajectory and
accepting or rejecting them according to the Metropolis-Hastings
acceptance criterion.
● Run the HMC algorithm to generate samples from the posterior
distribution.
Compute relevant statistics, such as the posterior mean and credible
intervals, from the posterior samples.

The general idea of the above implementation is to leverage the gradient
information to more efficiently explore the parameter space and generate
samples from the posterior distribution. If you are interested in
implementing HMC in Rust, you may want to refer to resources on the
HMC algorithm and its implementation in other programming languages,
such as Python or R, to gain more knowledge as these programming
languages are heavily explored for statistics than Rust.

Model Comparison and Selection

Model comparison and selection play a pivotal role in data analysis, as
they facilitate the identification of the most appropriate model for a given
problem. Within the Bayesian framework, several methods can be
employed to compare models, including the Bayes factor, the Deviance
Information Criterion (DIC), and the widely applicable information
criterion (WAIC).

The Bayes factor compares the marginal likelihoods of two competing
models, M1 and M2. The marginal likelihood is the probability of the
observed data under each model, after integrating out the unknown
parameters. A larger Bayes factor indicates stronger evidence in favor of
one model over the other. The Bayes factor can be difficult to compute,
especially for complex models, as it requires integration over the
parameter space.
The DIC is a model selection criterion that balances model fit with model
complexity. It is based on the deviance, a measure of model fit, and
includes a penalty term for the number of effective parameters in the
model. Lower DIC values indicate better models. The DIC can be easily
computed from the posterior samples generated by MCMC methods,
making it a convenient choice for model comparison.
Similarly, the widely applicable information criterion (WAIC) estimates
the predictive accuracy of a model while considering model complexity.
Like DIC, lower WAIC values are preferable, as they signify a better
trade-off between fit and complexity.

These model comparison methods enable analysts to make informed
decisions about which Bayesian model to select, striking the right balance
between explanatory power and model complexity. This careful selection
process ultimately leads to more accurate and reliable predictions and
inferences.

Model Comparison using DIC

The given below is a sample demonstration of model comparison using
the Deviance Information Criterion (DIC) on the given dataset:

Suppose we have two competing models for predicting the salary of data
science professionals:

Model 1: salary ~ experience_level + job_title
Model 2: salary ~ experience_level + job_title + company_size

First, fit both models using Bayesian regression and generate posterior
samples using an MCMC method like the Metropolis-Hastings algorithm,
Gibbs sampling, or HMC. For this demonstration, I'll assume you have
already generated the posterior samples.

Next, compute the DIC for each model:

fn compute_dic(posterior_samples: &Array2, data: &Array2, model:
&dyn Fn(&Array2) -> f64) -> f64 {

 let deviance = -2.0 * posterior_samples.mapv(|params|
model(¶ms)).mean_axis(Axis(0)).unwrap();

 let p_d = 2.0 * (posterior_samples.mapv(|params| -2.0 *
model(¶ms)).var_axis(Axis(0), 0.0).unwrap());

 let dic = deviance + p_d;

 dic

}

let dic_model_1 = compute_dic(&posterior_samples_model_1, &data,
&model_1);

let dic_model_2 = compute_dic(&posterior_samples_model_2, &data,
&model_2);

println!("DIC Model 1: {:.2}, DIC Model 2: {:.2}", dic_model_1,
dic_model_2);

Compare the DIC values of the two models. The model with the lower
DIC is preferred, as it balances model fit and complexity better. In the
above sample program, if dic_model_1 is lower than dic_model_2, then
Model 1 is considered the better model; otherwise, Model 2 is preferred.

Model Comparison using WAIC

Let's perform model comparison using the Widely Applicable Information
Criterion (WAIC) on the given dataset. Continuing from the previous

example of DIC, we have two competing models for predicting the salary
of data science professionals:

Model 1: salary ~ experience_level + job_title
Model 2: salary ~ experience_level + job_title + company_size

First, fit both models using Bayesian regression and generate posterior
samples using an MCMC method like the Metropolis-Hastings algorithm,
Gibbs sampling, or HMC. For this demonstration, I'll assume you have
already generated the posterior samples.

Next, compute the WAIC for each model:

fn compute_waic(posterior_samples: &Array2, data: &Array2, model:
&dyn Fn(&Array2) -> f64) -> f64 {

 let log_pointwise_predictive_density =
data.outer_iter().map(|observation| {

 let log_likelihood = posterior_samples.mapv(|params| model(¶ms));

 let log_predictive_density =
log_likelihood.exp().mean_axis(Axis(0)).unwrap().ln();

 log_predictive_density

 });

 let waic = -2.0 * log_pointwise_predictive_density.sum();

 waic

}

let waic_model_1 = compute_waic(&posterior_samples_model_1, &data,
&model_1);

let waic_model_2 = compute_waic(&posterior_samples_model_2, &data,
&model_2);

println!("WAIC Model 1: {:.2}, WAIC Model 2: {:.2}", waic_model_1,
waic_model_2);

Compare the WAIC values of the two models. The model with the lower
WAIC is preferred, as it balances model fit and complexity better. In the
above sample program, if waic_model_1 is lower than waic_model_2,
then Model 1 is considered the better model; otherwise, Model 2 is
preferred.

Summary

In this chapter, we focused on Bayesian Statistics, a powerful and flexible
approach to statistical modeling and inference that offers a robust
framework for dealing with uncertainty. The main advantage of Bayesian
methods is their ability to incorporate prior knowledge into the analysis,
which can improve the estimation of model parameters and predictions.
Bayesian methods have gained popularity in recent years due to advances
in computational techniques and their success in addressing complex
statistical challenges.

We began by exploring the conceptual foundations of Bayesian statistics,
including Bayes' theorem, which connects prior probabilities, likelihoods,
and posterior probabilities. We then discussed the process of Bayesian
inference, which involves updating our beliefs about the parameters of a
model based on observed data. We delved into prior and likelihood, two
key components of Bayesian inference, and learned about their roles in
determining the posterior distribution. Next, we examined Markov Chain
Monte Carlo (MCMC) methods, which are used to generate samples from
complex posterior distributions that cannot be directly computed. We
specifically discussed the Hamiltonian Monte Carlo (HMC) method,
which is a more efficient MCMC algorithm that can handle high-
dimensional and highly correlated parameter spaces. We also learned
about model comparison and selection, essential steps in the data analysis
process that help us choose the most suitable model for a given problem.
We discussed various criteria for model comparison, such as the Bayes
factor, the Deviance Information Criterion (DIC), and the Widely

Applicable Information Criterion (WAIC), which evaluate model fit while
accounting for model complexity.

Throughout the chapter, we provided practical examples and
demonstrations of Bayesian methods using Rust and the given dataset. We
showcased how to apply these techniques to real-world problems, such as
fitting regression models, generating random variables, and comparing
models using DIC and WAIC.

Chapter 8: Multivariate Statistical Methods

Multivariate Statistical Methods

Introduction

Multivariate statistical methods involve the analysis of data with multiple
variables, which allows us to understand the relationships and interactions
among these variables. As opposed to univariate or bivariate methods,
which focus on single or pairs of variables, multivariate techniques can
provide a more comprehensive view of complex datasets. This can lead to
better decision-making, improved predictions, and deeper insights into the
underlying structures of the data. Multivariate statistical methods have
gained significance in various fields, such as economics, biology, social
sciences, and engineering, due to their ability to handle high-dimensional
data and uncover hidden patterns.

Overview of Multivariate Techniques

Here, we will discuss some key multivariate techniques, their importance,
and the breakthroughs they bring to statistical challenges:

Principal Component Analysis (PCA): PCA is a dimensionality reduction
technique that transforms the original set of correlated variables into a
new set of uncorrelated variables called principal components. These
principal components capture most of the variance in the data while
reducing the number of dimensions. PCA is widely used for data
visualization, noise reduction, and preprocessing for other machine
learning algorithms. It enables us to identify and interpret the underlying
structure and patterns in high-dimensional data, which can be challenging
to analyze directly.

Factor Analysis (FA): FA is another dimensionality reduction method that
aims to identify the latent factors or underlying structures that explain the
observed correlations among the variables. It is based on the assumption
that the observed variables are linear combinations of the underlying
factors, plus some error terms. FA is often used in social sciences and
psychology to study unobservable constructs, such as intelligence,
personality traits, or customer satisfaction.

Canonical Correlation Analysis (CCA): CCA is a technique for studying
the relationship between two sets of variables. It finds linear combinations
of variables from each set that are maximally correlated with each other.
CCA can be used to identify shared patterns or trends between the two
sets, which may not be evident when analyzing each set separately.
Applications of CCA include studying the relationship between genetic
and environmental factors, economic indicators, or brain imaging data and
cognitive tasks.

Discriminant Analysis (DA): DA is a classification technique used to
separate observations into predefined groups based on their
characteristics. It creates linear decision boundaries that maximize the
separation between the groups, taking into account the within-group and
between-group variability. DA has been employed in various applications,
such as medical diagnosis, credit scoring, or species identification.

Cluster Analysis: Cluster analysis is an unsupervised learning technique
that seeks to partition observations into groups or clusters based on their
similarity in the multivariate space. The goal is to create clusters that are

homogeneous within themselves and heterogeneous between each other.
Cluster analysis can reveal natural groupings or structures within the data,
which can inform decision-making or further analysis. It has been applied
in fields like market segmentation, image analysis, and gene expression
studies.

Multivariate Regression: Multivariate regression extends the traditional
regression framework to include multiple dependent variables. This allows
us to model the relationships between multiple predictors and multiple
outcomes simultaneously, while accounting for the correlations among the
dependent variables. Applications of multivariate regression include
modeling the impact of multiple factors on multiple outcomes, such as the
influence of environmental factors on the health of multiple species or the
effects of marketing strategies on the sales of multiple products.

To summarize, multivariate statistical methods offer powerful tools for
understanding and interpreting complex, high-dimensional data. By
considering multiple variables simultaneously, these techniques can reveal
deeper insights and provide more accurate predictions than univariate or
bivariate methods. As data science professionals, having a solid grasp of
multivariate techniques is crucial for tackling the increasingly complex
datasets and statistical challenges that arise in modern research and
practice.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a prevalent multivariate method
employed for dimensionality reduction in various fields, including
machine learning, data analysis, and visualization. The primary objective
of PCA is to generate a new set of uncorrelated variables, referred to as
principal components. These components encapsulate most of the variance
present in the original dataset while simultaneously reducing the overall
number of dimensions, which helps mitigate the curse of dimensionality
and facilitate more efficient analysis.

The mathematical underpinnings of PCA are rooted in linear algebra and
eigenvalue decomposition. PCA starts by calculating the covariance
matrix of the dataset, which quantifies the degree of correlation between
the different features. Subsequently, it performs eigenvalue decomposition
on this matrix to identify its eigenvectors and eigenvalues. These
eigenvectors represent the principal components of the data, while their
corresponding eigenvalues indicate the amount of variance captured by
each component. The components are then sorted in descending order
based on their eigenvalues, ensuring that the first principal component
accounts for the largest proportion of variance, the second component
captures the next largest proportion, and so on. By selecting a subset of
principal components, we can effectively reduce the dimensionality of the
dataset while preserving most of its inherent structure and information.

Procedure of PCA

Following is a step-by-step walkthrough to the mathematical architecture
of PCA:

Standardize the dataset: Since PCA is sensitive to the scale of the
variables, it's essential to standardize the dataset, so each variable has a
mean of 0 and a standard deviation of 1.
Calculate the covariance matrix: This step involves calculating the
covariance matrix of the standardized dataset. The covariance matrix
quantifies the linear relationship between each pair of variables in the
dataset.
Compute the eigenvalues and eigenvectors of the covariance matrix:
Eigenvalues and eigenvectors are crucial in determining the principal
components. Eigenvectors represent the direction of the principal
components, while eigenvalues represent the magnitude of the variance
captured by each component.
Sort the eigenvalues in descending order and select the top k eigenvectors
corresponding to the k largest eigenvalues: The number of selected
eigenvectors (k) determines the number of principal components retained
in the analysis. These eigenvectors form a matrix called the loading
matrix.
Project the original dataset onto the loading matrix: Multiply the
standardized dataset by the loading matrix to obtain the new set of
principal components.

Sample Program to Implement PCA

Now, let's implement PCA on the given dataset using the ndarray and
ndarray-linalg crates:

use ndarray::prelude::*;

use ndarray_linalg::Eigh;

use ndarray_rand::{RandomExt, F32};

use ndarray_stats::QuantileExt;

use statrs::function::erf::erf;

fn main() {

 // Load the dataset

 let data = read_data_from_csv(); // Replace this with the function to
read your data from the CSV

 // Standardize the dataset

 let standardized_data = standardize_data(&data);

 // Calculate the covariance matrix

 let covariance_matrix = standardized_data.t().dot(&standardized_data) /
(standardized_data.nrows() - 1) as f64;

 // Compute the eigenvalues and eigenvectors

 let Eigh(vals, vecs) = covariance_matrix.eigh(UPLO::Upper).unwrap();

 // Sort the eigenvalues in descending order and select the top k
eigenvectors

 let k = 2; // Number of principal components

 let sorted_indices = vals.argsort_rev();

 let top_k_indices = &sorted_indices.slice(s![0..k]);

 let loading_matrix = vecs.select(Axis(1), top_k_indices);

 // Project the standardized data onto the loading matrix

 let principal_components = standardized_data.dot(&loading_matrix);

 // Output the principal components

 println!("Principal Components:\n{:?}", principal_components);

}

Replace the read_data_from_csv function with the appropriate function to
read your dataset.

After running the code, you will see the output displaying the first two
principal components for each observation in the dataset.

Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a sophisticated statistical
technique employed to investigate the associations between two sets of
multivariate variables. Its primary objective is to identify linear
combinations of variables from both sets that exhibit the highest degree of
correlation. In doing so, CCA helps uncover underlying patterns and
relationships between the variables, which can then be utilized for further
analysis or interpretation. CCA operates by computing the canonical
variates, which are linear combinations of variables from each set. The
coefficients of these linear combinations, known as canonical weights, are
chosen to maximize the correlation between the canonical variates.
Through this process, CCA yields multiple pairs of canonical variates and
their corresponding canonical correlations, which indicate the strength of
the relationships between the variables.

This technique is particularly useful in situations where researchers aim to
explore the complex relationships between two multivariate data sets,
such as psychological, socioeconomic, or environmental factors.
Additionally, CCA can be applied to reduce the dimensionality of the data,
making it more manageable and easier to analyze. However, it is
important to note that CCA assumes linearity in the relationships between
variables and requires a large sample size to ensure the stability of the
estimated correlations. Furthermore, the interpretation of the canonical
variates can sometimes be challenging, as they may not have a direct or
clear meaning in the context of the original data. Despite these limitations,

CCA remains a valuable technique for researchers seeking to uncover
meaningful connections between two sets of multivariate variables.

Procedure to Perform CCA

Below is an overview of the CCA algorithm:
Standardize the datasets: Similar to PCA, CCA also requires the data to be
standardized, with each variable having a mean of 0 and a standard
deviation of 1.
Calculate the cross-covariance matrix: Compute the cross-covariance
matrix between the two sets of variables. This matrix captures the
relationships between the variables in both sets.
Compute the eigenvalues and eigenvectors of the cross-covariance matrix:
Similar to PCA, the eigenvalues and eigenvectors are essential for
determining the canonical correlations and weights.
Sort the eigenvalues in descending order and select the top k eigenvectors
corresponding to the k largest eigenvalues: These eigenvectors form the
canonical weights for each set of variables.
Calculate the canonical correlations and canonical variates: Use the
canonical weights to compute the canonical correlations (the correlation
between the canonical variates) and the canonical variates (the linear
combinations of variables).

Sample Program to Implement CCA

Now, let's implement CCA on the given dataset using the ndarray and
ndarray-linalg crates:

use ndarray::prelude::*;

use ndarray_linalg::SVD;

use ndarray_rand::{RandomExt, F32};

use ndarray_stats::QuantileExt;

use statrs::function::erf::erf;

fn main() {

 // Load the dataset

 let (data1, data2) = read_data_from_csv(); // Replace this with the
function to read your data from the CSV and split it into two sets of
variables

 // Standardize the datasets

 let standardized_data1 = standardize_data(&data1);

 let standardized_data2 = standardize_data(&data2);

 // Calculate the cross-covariance matrix

 let cross_cov_matrix =
standardized_data1.t().dot(&standardized_data2) /
(standardized_data1.nrows() - 1) as f64;

 // Compute the singular value decomposition (SVD) of the cross-
covariance matrix

 let SVD { u, s, vt } = cross_cov_matrix.svd(true, true).unwrap();

 // Canonical correlations are the singular values of the cross-covariance
matrix

 let canonical_correlations = s;

 // Canonical weights are the left and right singular vectors

 let canonical_weights1 = u.unwrap();

 let canonical_weights2 = vt.unwrap().t();

 // Calculate the canonical variates

 let canonical_variates1 = standardized_data1.dot(&canonical_weights1);

 let canonical_variates2 = standardized_data2.dot(&canonical_weights2);

 // Output the canonical correlations and variates

 println!("Canonical Correlations:\n{:?}", canonical_correlations);

 println!("Canonical Variates 1:\n{:?}", canonical_variates1);

 println!("Canonical Variates 2:\n{:?}", canonical_variates2);

}

Revise the read_data_from_csv function with the suitable function to load
your dataset and partition it into two variable sets. Once the code
executes, observe the output, which exhibits the canonical correlations and
corresponding canonical variates for both sets of variables.

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a widely-used technique in the
realms of classification and dimensionality reduction. Its primary goal is
to identify the most effective linear combinations of features that can
optimally distinguish between two or more classes. This is accomplished
by maximizing the distance between class means and minimizing the
within-class scatter. LDA operates under the assumption that the data is
normally distributed and that the classes share identical covariance
matrices. These assumptions help simplify the computation process and
provide a linear boundary for separating the classes.

Despite its linear nature, LDA can be remarkably effective in various
scenarios. It excels in cases where the data adheres to the underlying
assumptions, leading to improved classification performance.
Additionally, the dimensionality reduction aspect of LDA can assist in
mitigating the curse of dimensionality and reduce the risk of overfitting,
ultimately enhancing the model's generalization capabilities. However,
LDA's reliance on these assumptions can also be a limitation when dealing
with data that does not follow a normal distribution or exhibits dissimilar
covariance matrices across classes. In such cases, alternative methods,
such as Quadratic Discriminant Analysis (QDA) or non-linear classifiers,
might be more suitable.

Procedure to Perform LDA Algorithm

Below is an overview of the LDA algorithm:

● Compute the mean of each class: Calculate the mean vector for each
class.

Calculate the within-class scatter matrix: Compute the scatter matrix for
each class and then sum them up to obtain the within-class scatter matrix.
● Calculate the between-class scatter matrix: Compute the scatter
matrix between the classes.
Compute the eigenvalues and eigenvectors of the matrix product of the
inverse of the within-class scatter matrix and the between-class scatter
matrix.
Sort the eigenvalues in descending order and select the top k eigenvectors
corresponding to the k largest eigenvalues: These eigenvectors form the
LDA transformation matrix.
Apply the LDA transformation matrix to the original dataset to obtain the
transformed dataset.

Sample Program to Implement LDA

Now, let's implement LDA on the given dataset using the ndarray,
ndarray-linalg, and statrs crates:

use ndarray::prelude::*;

use ndarray_linalg::Inverse;

use statrs::function::erf::erf;

fn main() {

 // Load the dataset and labels

 let (data, labels) = read_data_and_labels_from_csv(); // Replace this
with the function to read your data and labels from the CSV

 // Compute the mean of each class

 let means = compute_class_means(&data, &labels);

 // Calculate the within-class scatter matrix

 let within_class_scatter_matrix =
compute_within_class_scatter_matrix(&data, &labels, &means);

 // Calculate the between-class scatter matrix

 let between_class_scatter_matrix =
compute_between_class_scatter_matrix(&data, &labels, &means);

 // Compute the eigenvalues and eigenvectors of the matrix product of
the inverse of the within-class scatter matrix and the between-class scatter
matrix

 let matrix_product =
within_class_scatter_matrix.inv().unwrap().dot(&between_class_scatter_
matrix);

 let (eigenvalues, eigenvectors) =
matrix_product.eigh(UPLO::Upper).unwrap();

 // Sort the eigenvalues in descending order and select the top k
eigenvectors corresponding to the k largest eigenvalues

 let k = 2; // Choose the number of dimensions for the reduced dataset

 let sorted_indices =
eigenvalues.argsort(ndarray::SortOrder::Descending);

 let lda_transformation_matrix = eigenvectors.select(Axis(1),
&sorted_indices.slice(..k));

 // Apply the LDA transformation matrix to the original dataset to obtain
the transformed dataset

 let transformed_data = data.dot(&lda_transformation_matrix);

 // Output the transformed dataset

 println!("Transformed Data:\n{:?}", transformed_data);

}

As previously mentioned, replace the read_data_and_labels_from_csv
function with a suitable function to read your dataset and labels from the
CSV file. Once the code is executed, the output will display the
transformed dataset, showcasing the effects of applying LDA on the data.

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a prominent multivariate
statistical technique primarily employed for blind source separation or
feature extraction. The central aim of ICA is to disentangle a set of mixed
signals into their original sources, with the assumption that these sources
are non-Gaussian and statistically independent from one another. ICA's
underlying principle is based on the idea that the observed data is a linear
mixture of independent components. The technique strives to recover the
original sources by estimating a demixing matrix, which, when applied to
the observed data, yields the independent components.

One key distinction between ICA and other methods such as Principal
Component Analysis (PCA) lies in their objectives. PCA concentrates on
minimizing the variance and discovering orthogonal components, whereas
ICA focuses on identifying statistically independent components. This
difference in focus makes ICA particularly useful for applications where
the sources of interest exhibit statistical independence. ICA has found
widespread adoption in diverse fields, such as image processing, where it
can be employed to remove noise or artifacts; audio processing, where it
can separate mixed audio signals into distinct sources, such as individual
speakers or instruments; and financial data analysis, where it helps unveil
hidden patterns in financial time series data or detect fraudulent activities.

Moreover, ICA has proven valuable in the field of neuroscience,
particularly for analyzing electroencephalogram (EEG) and functional
magnetic resonance imaging (fMRI) data, as it helps isolate distinct neural

sources from the complex, mixed signals produced by the brain's electrical
activity. Despite its many advantages, ICA does have some limitations,
including its sensitivity to the initialization of the demixing matrix and its
dependence on the assumption of non-Gaussian sources. Nevertheless,
when applied appropriately, ICA serves as a powerful technique for
uncovering hidden patterns and sources in various types of data.

Overview of ICA Algorithm

Below is a high-level overview of the ICA algorithm:
● Center the data by subtracting the mean from each feature.
Whiten the data: Apply PCA or another whitening method to decorrelate
the features and make their variances equal to 1.
● Initialize a random square mixing matrix.
Optimize the mixing matrix using an iterative algorithm such as FastICA,
Infomax, or JADE until convergence.

Sample Program to Implement ICA

Now, let's implement ICA using the ndarray and ndarray-rand crates along
with the FastICA algorithm:

use ndarray::{Array2, Axis};

use ndarray_rand::RandomExt;

use ndarray_rand::rand_distr::StandardNormal;

fn main() {

 // Load the dataset

 let data = read_data_from_csv(); // Replace this with the function to
read your data from the CSV

 // Center the data

 let mean = data.mean_axis(Axis(0)).unwrap();

 let centered_data = &data - &mean;

 // Whiten the data

 let whitened_data = whiten_data(¢ered_data); // Replace this with a
function to whiten your data

 // Initialize a random square mixing matrix

 let n_components = data.ncols();

 let mut mixing_matrix: Array2 = Array2::random((n_components,
n_components), StandardNormal);

 // Optimize the mixing matrix using the FastICA algorithm

 let max_iter = 1000;

 let tolerance = 1e-4;

 let (unmixing_matrix, _) = fast_ica(&whitened_data, &mut
mixing_matrix, max_iter, tolerance); // Replace this with a function to
apply FastICA

 // Separate the original sources

 let separated_sources = whitened_data.dot(&unmixing_matrix.t());

 // Output the separated sources

 println!("Separated Sources:\n{:?}", separated_sources);

}

Once you execute the code, the output will showcase the separated
sources. ICA proves to be a potent tool when non-Gaussianity and
statistical independence assumptions are valid. Nevertheless, it is crucial
to be aware of these assumptions and constraints while employing ICA or
other multivariate statistical techniques on real-world datasets to ensure
accurate and reliable results.

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a versatile multivariate statistical
technique that aims to visualize the similarity or dissimilarity between
objects in a high-dimensional space by projecting them onto a lower-
dimensional space, typically 2D or 3D. This technique is applicable across
various fields, such as psychology, marketing, and network analysis,
offering valuable insights into complex data.

The primary goal of MDS is to maintain the pairwise distances between
objects as accurately as possible when mapping them to a lower-
dimensional space.

Types of Multidimensional Scaling

This technique can be categorized into two main types: Classical MDS
and Non-metric MDS.

Classical MDS (also known as Principal Coordinates Analysis): This type
of MDS assumes that the input data comes in the form of a distance
matrix. It employs eigendecomposition of the matrix to compute the
lower-dimensional representation. Classical MDS works best when the
data has a linear structure, and the actual distances between objects are
crucial to the analysis.

Non-metric MDS: In contrast to Classical MDS, Non-metric MDS focuses
on preserving the rank order of the distances between objects rather than

the actual distances. This method is more suitable for data with non-linear
relationships and is less sensitive to measurement scale differences. Non-
metric MDS uses iterative optimization techniques, such as the stress
majorization algorithm or the Shepard-Kruskal algorithm, to find the best-
fitting configuration.

MDS is a valuable tool for analyzing complex data sets and revealing
hidden structures within the data. The technique's ability to reduce
dimensionality while preserving critical relationships between objects
makes it an essential asset in various research areas. Some common
applications include the study of consumer preferences in marketing
research, social network analysis, the examination of similarities in
psychological traits, and the comparison of biological species in ecology.

Sample Program to Implement Classical MDS

Let's implement Classical MDS using ndarray and ndarray-linalg crates
for the given database:

use ndarray::{Array2, Axis};

use ndarray_linalg::Eigh;

fn main() {

 // Load the dataset

 let data = read_data_from_csv(); // Replace this with the function to
read your data from the CSV

 // Calculate the distance matrix

 let distance_matrix = calculate_distance_matrix(&data); // Replace this
with a function to calculate the distance matrix

 // Apply Classical MDS

 let (mds_coordinates, _) = classical_mds(&distance_matrix, 2); //
Replace this with a function to apply Classical MDS

 // Output the MDS coordinates

 println!("MDS Coordinates:\n{:?}", mds_coordinates);

}

Replace the read_data_from_csv, calculate_distance_matrix, and
classical_mds functions with appropriate functions to read your dataset
from the CSV, calculate the distance matrix, and apply Classical MDS,
respectively. After running the code, you will see the output displaying the
MDS coordinates in 2D.

MDS is useful for visualizing and understanding the structure and
relationships between objects in high-dimensional data. By reducing the
dimensionality, it helps users to spot patterns, clusters, and trends in the

data. However, it is essential to be aware that the lower-dimensional
representation might not capture all the information present in the original
high-dimensional space, and some information may be lost during the
dimensionality reduction process.

Summary

This chapter focuses on Multivariate Statistical Methods, which are
essential for analyzing datasets containing multiple variables
simultaneously. These methods aim to explore the relationships between
variables, reduce the dimensionality of the data, and uncover hidden
patterns or structures. The importance of multivariate statistical methods
lies in their ability to handle complex datasets and provide insights that
may not be apparent when analyzing each variable separately.

The chapter begins with PCA (Principal Component Analysis), a popular
technique for dimensionality reduction. PCA identifies orthogonal axes
(principal components) that explain the maximum variance in the data.
This method is suitable for linearly correlated data and can help reduce
noise and redundancy. It then demonstrates how to implement PCA on the
given dataset using Rust libraries. Next, the chapter introduces ICA
(Independent Component Analysis), designed to separate mixed signals
into statistically independent sources. ICA is useful for blind source
separation and feature extraction, particularly when the sources are non-
Gaussian and statistically independent. The implementation of ICA on the
given dataset is demonstrated using Rust. The chapter then proceeds to
MDS (Multidimensional Scaling), which is used to visualize the similarity
or dissimilarity between objects in a high-dimensional space by mapping
them to a lower-dimensional space. MDS is helpful for understanding the
structure and relationships between objects in high-dimensional data. A
sample implementation of MDS using Rust is provided for the given
dataset.

To sum it up, Chapter 8 provides a comprehensive overview of various
multivariate statistical methods, including PCA, ICA, and MDS. It
highlights their importance, key concepts, and applicability to different
datasets and goals. The chapter also demonstrates how to implement these
methods using Rust libraries on a sample dataset, emphasizing the
practical aspect of applying these techniques in data analysis. Ultimately,
the choice of the best method depends on the specific problem and dataset
characteristics, and it is often beneficial to try multiple techniques and
compare their results to gain a deeper understanding of the underlying
data structure and relationships.

Chapter 9: Nonlinear Models and Machine Learning

Nonlinear Models

Nonlinear models are crucial for addressing complex data patterns that
cannot be accurately represented by linear relationships. These models
provide superior flexibility and adaptability in tackling real-world
problems, where the connections between variables are frequently
complex and nonlinear. They have proven to be invaluable tools in diverse
domains such as finance, healthcare, and natural language processing,
among others.

Some popular nonlinear models include:
Decision Trees: These models recursively divide the data into subsets
based on input features, forming a tree-like structure. Decision trees can
be utilized for both regression and classification tasks. They are
straightforward, easy to interpret, and robust to outliers. Moreover, they
can handle both continuous and categorical variables.
Support Vector Machines (SVM): SVM is a versatile algorithm employed
for classification and regression tasks. It seeks to find the optimal
separating hyperplane (in the case of classification) or the best fitting
hyperplane (in the case of regression) by maximizing the margin between
classes or minimizing the regression error, respectively. SVMs can tackle
linear and nonlinear problems using kernel functions, which map the data
into a higher-dimensional space, thereby enabling the discovery of
nonlinear relationships.

Neural Networks: These are biologically-inspired models composed of
interconnected nodes (neurons) organized into layers. Neural networks
can approximate any continuous function and are highly effective in
learning complex patterns in large datasets. Deep learning, a subfield of

machine learning, emphasizes neural networks with numerous hidden
layers, facilitating the identification of intricate features in data.
Applications of neural networks include image recognition, natural
language processing, and game playing.
Ensemble Methods: Ensemble methods combine multiple models to
enhance predictive performance. Techniques such as bagging (Bootstrap
Aggregating), boosting, and stacking are employed to reduce overfitting,
increase accuracy, and make the model more robust. Popular ensemble
methods encompass Random Forests, Gradient Boosting Machines
(GBM), and XGBoost. These methods often outperform single-model
approaches and are widely used in various machine learning competitions.

The progression of statistics into machine learning (ML) has been
transformative, with ML algorithms furnishing potent tools for resolving
intricate problems. Some key breakthroughs encompass:
Handling Large Datasets: ML algorithms can effectively process and learn
from vast amounts of data, facilitating the discovery of sophisticated
patterns and relationships that would be challenging to uncover using
conventional statistical methods.

Feature Learning: ML techniques such as deep learning can automatically
learn and extract pertinent features from raw data, eliminating the
necessity for manual feature engineering. This capability significantly
reduces the time and effort required for data preprocessing and allows for
more accurate modeling.
Robustness and Adaptability: ML models can adapt to alterations in data
distributions and are frequently more robust to noise and outliers
compared to traditional statistical models. This makes them suitable for
handling real-world data, which often exhibits such characteristics.
Model Complexity: ML models can capture intricate, nonlinear
relationships in data, permitting them to model complex phenomena with
greater accuracy. This enables the development of models that can address

a wide range of problems, from simple linear regression to highly
complex deep learning tasks.
Generalization: ML algorithms can generalize well to unseen data,
rendering them appropriate for predictive modeling and decision-making
across various domains. This property is particularly important in
situations where models must adapt to new, previously unseen data.
Automation and Scalability: ML algorithms can be effortlessly automated
and scaled to handle extensive datasets, rendering them indispensable in
data-driven industries. This allows organizations to process and analyze
large volumes of data quickly and efficiently, enabling data-driven
decision-making and insights.

Nonlinear models have become essential tools for handling complex data
patterns that cannot be accurately captured by linear relationships. They
offer greater flexibility and adaptability in addressing real-world
problems, where relationships between variables are often intricate and
nonlinear. With the ongoing advancement. In further topics, we will
examine and implement each of these models and will explore how the
linear relationships are well correlated and captured.

Decision Trees

Overview

A decision tree is a versatile, flowchart-like structure used in machine
learning and data mining for making decisions or predictions based on a
set of input features. This tree-like structure consists of three primary
components: internal nodes, branches, and leaf nodes. Internal nodes
represent the decision points based on the values of the input features.
Branches, on the other hand, signify the possible outcomes or
consequences of those decisions. Lastly, leaf nodes symbolize the final
decision or prediction made by the tree.

The construction of decision trees involves a recursive algorithm that
iteratively selects the most suitable feature to split the dataset at each
internal node. This selection process is guided by a specific criterion, such
as Gini impurity or Information Gain. These criteria help determine the
homogeneity of the resulting subsets, with the ultimate goal of
maximizing the purity or information content of the splits. Decision trees
offer several advantages, including their ability to handle both numerical
and categorical data, their ease of interpretation, and their inherent feature
selection capability. However, they are also prone to overfitting, which
can be mitigated through techniques like pruning or by using ensemble
methods like Random Forests or Gradient Boosting Machines.

Building Decision Tree

The given below is a step-by-step illustration of building a decision tree
for the given dataset using Rust:

Import the required libraries:

use ndarray::prelude::*;

use ndarray_csv::Array2Reader;

use std::fs::File;

use std::io::BufReader;

use std::error::Error;

use decision_tree::prelude::*;

Load the dataset and preprocess it as required:

fn load_dataset() -> Result, BoxError>> {

 let file = File::open("ds_salaries.csv")?;

 let reader = BufReader::new(file);

 let dataset = Array2::from_reader(reader)?;

 // Preprocess the dataset as needed

 Ok(dataset)

}

Split the dataset into training and testing sets:

fn train_test_split(dataset: &Array2, test_size: f64) -> (Array2, Array2,
Array2, Array2) {

 // Implement the train-test split logic here

}

Create the decision tree model:

fn create_decision_tree() -> DecisionTreef64> {

 let mut tree = DecisionTree::new();

 tree.max_depth = Some(3);

 tree.min_samples_split = 2;

 tree

}

Train the decision tree model:

fn main() -> Result<(), BoxError>> {

 let dataset = load_dataset()?;

 let (x_train, x_test, y_train, y_test) = train_test_split(&dataset, 0.2);

 let mut tree = create_decision_tree();

 tree.fit(&x_train, &y_train)?;

 // Evaluate the model on the test set

}

Evaluate the model:

fn evaluate(tree: &DecisionTreef64>, x_test: &Array2, y_test: &Array2) {

 let predictions = tree.predict(&x_test).unwrap();

 // Compute evaluation metrics like accuracy, precision, recall, etc.

}

Visualize the decision tree (optional):
Visualizing the tree might not be straightforward in Rust. However, you
can export the tree to a format like JSON and use external libraries like
Graphviz in Python to visualize the tree.

This above practical program demonstrates how to build a decision tree
model for the given dataset using Rust. Please note that you may need to
preprocess the dataset, convert categorical variables into numerical values,
and handle missing values before training the model.

Support Vector Machines (SVM)

Overview

We will now delve into another prominent non-linear model known as
Support Vector Machines (SVM). As versatile classifiers, SVMs can
adeptly manage data that is either linearly or nonlinearly separable. They
achieve this by determining the most suitable separating hyperplane or
boundary that distinguishes between different classes.

At the heart of SVMs is the ingenious "kernel trick," which allows data to
be projected into a higher-dimensional space. This transformation renders
the previously non-linearly separable data linearly separable, making it
possible for SVMs to find the optimal hyperplane. The kernel trick uses a
wide variety of kernel functions, such as linear, polynomial, radial basis
function (RBF), and sigmoid, to cater to different data distributions and
patterns. SVMs are known for their strong generalization capabilities and
robustness, which make them suitable for a diverse range of classification
tasks. They excel at handling high-dimensional data and are less prone to
overfitting compared to some other machine learning models. However,
they may require more computational resources and careful
hyperparameter tuning to achieve the best results. With these qualities,
SVMs have earned a reputation as a powerful and flexible tool in the field
of machine learning.

Building SVM Model

The given below is a step-by-step illustration of building a Support Vector
Machine for the given dataset using Rust:

Import the required libraries:

use ndarray::prelude::*;

use ndarray_csv::Array2Reader;

use std::fs::File;

use std::io::BufReader;

use std::error::Error;

use rusty_machine::learning::svm::{SVM, SvmParameter};

use rusty_machine::learning::toolkit::kernel;

use rusty_machine::learning::SupModel;

Load the dataset and preprocess it as required (same as the previous
example):

fn load_dataset() -> Result, BoxError>> {

 // ...

}

fn train_test_split(dataset: &Array2, test_size: f64) -> (Array2, Array2,
Array2, Array2) {

 // ...

}

Create the SVM model:

fn create_svm() -> SVMkernel::RBF> {

 let svm_params = SvmParameter::default()

 .with_kernel(kernel::RBF::new(0.5)) // Change the kernel and its
parameters as needed

 .with_c(1.0)

 .with_shrinking(true);

 SVM::new(svm_params)

}

Train the SVM model:

fn main() -> Result<(), BoxError>> {

 let dataset = load_dataset()?;

 let (x_train, x_test, y_train, y_test) = train_test_split(&dataset, 0.2);

 let mut svm = create_svm();

 svm.train(&x_train, &y_train)?;

 // Evaluate the model on the test set

}

Evaluate the model:

fn evaluate(svm: &SVMkernel::RBF>, x_test: &Array2, y_test: &Array2)
{

 let predictions = svm.predict(&x_test).unwrap();

 // Compute evaluation metrics like accuracy, precision, recall, etc.

}

This example demonstrates how to build an SVM model for the given
dataset using Rust. Please note that you may need to preprocess the
dataset, convert categorical variables into numerical values, and handle
missing values before training the model.

Neural Networks

Fundamentals of Neural Networks

Neural Networks represent a formidable category of machine learning
models, especially adept at tackling intricate, high-dimensional data.
Inspired by the human brain's neural structure, these networks consist of
multiple layers of interconnected neurons, which are systematically
organized into three primary groups: input, hidden, and output layers. The
input layer is responsible for receiving raw data, while the output layer
produces the final predictions or classifications. Between these two layers
are the hidden layers, which perform complex transformations and feature
extraction to enable the model to learn intricate patterns within the data.
The neurons in each layer communicate through weighted connections,
allowing information to flow from one layer to another.

One of the key strengths of Neural Networks is their ability to learn
hierarchical representations, which means they can automatically identify
and extract relevant features from the data without manual intervention.
This makes them particularly effective in tasks such as image recognition,
natural language processing, and speech recognition, where traditional
algorithms struggle to cope with the complexity and scale of the data.
Moreover, Neural Networks can be scaled up by adding more layers and
neurons to increase their capacity for learning complex relationships,
resulting in deep learning models known as Deep Neural Networks
(DNNs). While their impressive capabilities come at the cost of increased
computational demands and training time, the use of modern hardware

accelerators like GPUs and dedicated AI chips has significantly improved
their efficiency.

Building Neural Network Model

The given below is a step-by-step illustration of building a simple Neural
Network for the given dataset using Rust:

Import the required libraries:

use ndarray::prelude::*;

use ndarray_csv::Array2Reader;

use std::fs::File;

use std::io::BufReader;

use std::error::Error;

use tch::{nn, nn::Module, nn::OptimizerConfig, Device, Tensor};

Load the dataset and preprocess it as required (same as the previous
example):

fn load_dataset() -> Result, BoxError>> {

 // ...

}

fn train_test_split(dataset: &Array2, test_size: f64) -> (Array2, Array2,
Array2, Array2) {

 // ...

}

Define the neural network structure:

fn create_net(vs: &nn::Path) -> impl nn::Module {

 nn::seq()

 .add(nn::linear(vs, 11, 64, Default::default())) // 11 input features

 .add_fn(|xs| xs.relu())

 .add(nn::linear(vs, 64, 64, Default::default()))

 .add_fn(|xs| xs.relu())

 .add(nn::linear(vs, 64, 1, Default::default())) // 1 output value

}

Train the neural network:

fn main() -> Result<(), BoxError>> {

 let dataset = load_dataset()?;

 let (x_train, x_test, y_train, y_test) = train_test_split(&dataset, 0.2);

 let device = Device::cuda_if_available();

 let vs = nn::VarStore::new(device);

 let net = create_net(&vs.root());

 let mut opt = nn::Adam::default().build(&vs, 1e-3)?;

 for epoch in 1..=500 {

 let loss = net

 .forward(&Tensor::from_ndarray(&x_train).to_device(device))

 .mse_loss(&Tensor::from_ndarray(&y_train).to_device(device),
tch::Reduction::Mean);

 opt.backward_step(&loss);

 println!("Epoch: {}, Loss: {:?}", epoch, f64::from(loss));

 }

 // Evaluate the model on the test set

}

Evaluate the model:

fn evaluate(net: &impl nn::Module, x_test: &Array2, y_test: &Array2) {

 let predictions =
net.forward(&Tensor::from_ndarray(&x_test)).to_ndarray().unwrap();

 // Compute evaluation metrics like Mean Squared Error, R2 Score, etc.

}

This example demonstrates how to build a simple Neural Network for the
given dataset using Rust and the tch-rs library. Please note that you may
need to preprocess the dataset, convert categorical variables into
numerical values, and handle missing values before training the model.

Ensemble Methods

Overview

Ensemble methods represent a category of machine learning techniques
designed to improve accuracy and generalization by aggregating the
predictions of multiple base models. This approach capitalizes on the
strengths of individual models while mitigating their weaknesses,
ultimately resulting in a more robust and accurate composite model.

There are several popular ensemble methods, including Bagging,
Boosting, and Stacking.
Bagging, or Bootstrap Aggregating, is a technique where multiple base
models are trained independently using random subsets of the training
data, sampled with replacement. The final prediction is obtained by
averaging the predictions (for regression tasks) or by taking a majority
vote (for classification tasks) across all base models. Bagging helps reduce
overfitting and variance while improving the overall stability of the
model.
Boosting, on the other hand, focuses on iteratively training base models to
correct the errors of their predecessors. Each subsequent model places
more emphasis on instances that were misclassified by the previous
model. The final prediction is derived by weighting the predictions of all
base models and then combining them. This method often leads to higher
accuracy compared to bagging but may be more prone to overfitting.

Stacking, also known as Stacked Generalization, is a technique that
involves training multiple base models using different algorithms or

configurations, and then training a higher-level meta-model to combine
their predictions. The meta-model learns to optimally weigh and blend the
predictions from the base models, leading to better overall performance.

These ensemble methods are widely employed in machine learning due to
their ability to improve prediction accuracy, generalization, and
robustness. By leveraging the strengths of multiple base models and
utilizing various strategies for combining their predictions, ensemble
techniques can effectively address complex problems and deliver superior
performance across a wide range of applications.

Building Bagging Ensemble of Decision Tree

The given below is a step-by-step illustration of building a simple
Bagging ensemble of Decision Trees for the given dataset using Rust:

Import the required libraries:

use ndarray::prelude::*;

use ndarray_csv::Array2Reader;

use std::fs::File;

use std::io::BufReader;

use std::error::Error;

use randomforest::RandomForestRegressor;

Load the dataset and preprocess it as required (same as the previous
examples):

fn load_dataset() -> Result, BoxError>> {

 // ...

}

fn train_test_split(dataset: &Array2, test_size: f64) -> (Array2, Array2,
Array2, Array2) {

 // ...

}

Train the Bagging ensemble of Decision Trees:

fn main() -> Result<(), BoxError>> {

 let dataset = load_dataset()?;

 let (x_train, x_test, y_train, y_test) = train_test_split(&dataset, 0.2);

 let mut rf = RandomForestRegressor::new(50); // 50 Decision Trees

 rf.fit(&x_train, &y_train.view().into_shape(y_train.len()).unwrap())?;

 // Evaluate the model on the test set

}

Evaluate the model:

fn evaluate(rf: &RandomForestRegressor, x_test: &Array2, y_test:
&Array2) {

 let predictions = Array::from(rf.predict(&x_test));

 // Compute evaluation metrics like Mean Squared Error, R2 Score, etc.

}

This example outlines the process of constructing a Bagging ensemble of
Decision Trees using Rust programming language and the randomforest
crate. Keep in mind that prior to training the model, it is essential to
preprocess the dataset. This includes converting categorical variables into
numerical values and addressing any missing values. Employing Rust and
the randomforest crate enables you to create a robust, efficient, and
scalable Bagging ensemble model, which can effectively handle various
data complexities and improve overall prediction accuracy.

Summary

This entire chapter delves into the realm of non-linear models and the
advancement of statistics into machine learning. It begins by discussing
various non-linear models and the significant breakthroughs that machine
learning algorithms and techniques have brought to statistical challenges.
These models play a vital role in capturing complex relationships within
data that linear models often fail to capture.

The chapter first introduces Decision Trees, a popular non-linear model,
and discusses their mathematical architecture. It then provides a step-by-
step demonstration of implementing Decision Trees on the given dataset
using Rust. The example shows how to preprocess the data, train the
model, and evaluate its performance. The chapter then moves on to
Random Forests, which are ensembles of Decision Trees, and explains
their mechanism and how they can help improve model accuracy and
generalization. A sample implementation of Random Forests using Rust is
provided, showing how to create an ensemble of Decision Trees, train the
model, and evaluate its performance.

Next, the chapter covers Support Vector Machines (SVM), a powerful
technique for classification and regression tasks. It explains the concepts
behind SVMs and provides a step-by-step example of implementing them
using Rust. The example demonstrates how to load and preprocess the
data, train an SVM model, and evaluate its performance on the given
dataset. The chapter then explores Ensemble methods, a class of machine
learning techniques that combine the predictions of multiple base models

to achieve better accuracy and generalization. Popular ensemble methods,
such as Bagging, Boosting, and Stacking, are discussed in detail. The
chapter provides a step-by-step illustration of building a simple Bagging
ensemble of Decision Trees for the given dataset using Rust, including
loading the dataset, preprocessing it, training the ensemble, and evaluating
its performance.

To sum it up, this chapter presents a comprehensive overview of non-
linear models and their significance in addressing complex data
relationships. It explains the underlying concepts of these models and
provides practical examples using Rust, demonstrating the growing
potential of Rust in the machine learning and statistics domain.

Chapter 10: Model Evaluation and Validation

Model Evaluation and Validation

Introduction

Model Evaluation and Validation Techniques are crucial aspects of the
machine learning and statistical modeling process. Model evaluation and
validation involve assessing the performance of a model and ensuring its
generalization to unseen data. These techniques help identify the best
models, fine-tune their parameters, and avoid overfitting, thus leading to
better predictions and more accurate insights.

The need for model evaluation and validation arises from the inherent
complexity and uncertainty in real-world data. Given a dataset, multiple
models may capture the underlying relationships in the data to varying
degrees of success. Therefore, it is essential to evaluate and compare
different models to choose the one that performs the best on unseen data.
Several model evaluation and validation techniques are used to assess
model performance and ensure that they generalize well to new data.

Some popular techniques include:
Train-test split: This technique involves dividing the dataset into training
and test sets. The model is trained on the training set and its performance
is evaluated on the test set. This approach helps assess the model's ability
to generalize to unseen data.

Cross-validation: Cross-validation is an extension of the train-test split
method, where the dataset is divided into 'k' equally-sized partitions or
"folds." The model is trained and tested 'k' times, each time using a
different fold as the test set and the remaining folds as the training set. The

average performance across all 'k' iterations is used to evaluate the model.
Cross-validation helps to mitigate the risk of overfitting and provides a
more robust estimate of model performance.
Metrics: Various metrics are used to measure model performance,
depending on the task (e.g., classification, regression, clustering). For
classification tasks, metrics such as accuracy, precision, recall, F1-score,
and area under the ROC curve (AUC-ROC) are commonly used. For
regression tasks, metrics like mean squared error (MSE), mean absolute
error (MAE), and R-squared are popular.
Confusion Matrix: A confusion matrix is a table that shows the true
positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions for a classification model. It helps visualize the
performance of the model and identify areas for improvement.
Learning Curves: Learning curves plot the model's performance on the
training and validation sets as a function of the number of training
samples or iterations. They can help diagnose issues like overfitting and
underfitting and guide the selection of the optimal model complexity.
Hyperparameter tuning: Models often have hyperparameters that control
their complexity or learning process. Techniques like grid search, random
search, and Bayesian optimization can be used to find the best set of
hyperparameters for a given model, leading to improved performance.

Model selection: Model selection techniques, such as Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and cross-
validated performance, help in comparing and choosing the best model
among several competing models.

Model evaluation and validation techniques are essential tools for
selecting and fine-tuning machine learning and statistical models. These
techniques help assess model performance, ensure generalization, and
avoid overfitting, ultimately resulting in more accurate and reliable
predictions.

Train-test Split Technique

Exploring Train-test Split

Train-test split is a fundamental and efficient method used to assess the
performance of a machine learning model. This technique revolves around
partitioning the available dataset into two distinct sets: the training set and
the test set. Generally, a larger portion of the dataset is allocated for
training purposes (typically around 70-80%), while the remaining smaller
portion is reserved for testing (usually about 20-30%). The primary
objective of this method is to teach the model using the training set, which
contains various features and associated target values. Once the model has
been trained, its performance is then evaluated using the test set. The test
set, containing previously unseen data, provides a means to measure how
effectively the model can generalize and make accurate predictions on
new, unexplored data points.

The train-test split technique is crucial in preventing overfitting, a
common issue in machine learning where a model performs exceptionally
well on the training data but fails to deliver satisfactory results when
exposed to unseen data. By segregating the dataset into separate training
and testing sets, it becomes possible to identify and mitigate overfitting
early in the development process.

Implementing Train-test Split

The given below is a step-by-step demonstration of how to carry out train-
test split on the given dataset using Rust:

Import necessary libraries and load the dataset

First, import the necessary libraries:

extern crate ndarray;

extern crate ndarray_csv;

extern crate rand;

use ndarray::{Array2, Axis};

use ndarray_csv::{Array2Reader, Array2Writer};

use rand::seq::SliceRandom;

use std::fs::File;

use std::io::{BufReader, BufWriter};

Now, load the dataset:

let file =
File::open("https://raw.githubusercontent.com/kittenpub/database-

repository/main/ds_salaries.csv").unwrap();

let buf_reader = BufReader::new(file);

let mut dataset = Array2::::read_csv(buf_reader).unwrap();

Shuffle the dataset

To ensure a fair distribution of data points in the training and test sets,
shuffle the dataset before splitting:

let mut rng = rand::thread_rng();

dataset.shuffle(Axis(0), &mut rng);

Determine the train-test split ratio and sizes

Choose a train-test split ratio, such as 80% for the training set and 20% for
the test set:

let train_ratio: f64 = 0.8;

let train_size = (train_ratio * dataset.nrows() as f64).round() as usize;

let test_size = dataset.nrows() - train_size;

Split the dataset into training and test sets

Slice the dataset to create the training and test sets:

let train_set = dataset.slice(s![0..train_size, ..]);

let test_set = dataset.slice(s![train_size.., ..]);

Save the training and test sets to CSV files (optional)

You can save the resulting sets to CSV files for further analysis:

let train_file = File::create("train_set.csv").unwrap();

let test_file = File::create("test_set.csv").unwrap();

let train_buf_writer = BufWriter::new(train_file);

let test_buf_writer = BufWriter::new(test_file);

let mut train_writer = csv::Writer::from_writer(train_buf_writer);

let mut test_writer = csv::Writer::from_writer(test_buf_writer);

train_set.write_csv(&mut train_writer).unwrap();

test_set.write_csv(&mut test_writer).unwrap();

Once done, you can then train your model on the train_set and evaluate its
performance on the test_set. The train-test split allows you to check if
your model can generalize well to new, unseen data.

Cross-validation Technique

Understanding Cross-validation

Cross-validation represents a more sophisticated technique for evaluating
models in comparison to the train-test split method. This approach is
especially valuable when working with limited data since it utilizes the
entire dataset for both training and testing purposes, thus mitigating the
risk of overfitting. Among the various cross-validation strategies, K-fold
cross-validation is widely recognized and employed.
The K-fold cross-validation method involves partitioning the dataset into
K equally sized segments, referred to as folds. The model undergoes
training and evaluation K times, with each iteration using a unique fold as
the testing set and the remaining K-1 folds as the training set. This process
ensures that every data point has the opportunity to be part of the test set,
enhancing the reliability of the model evaluation. Once all iterations are
complete, the final performance metric is derived by calculating the
average of the performance metrics obtained during each individual
iteration. This aggregated result offers a more comprehensive and accurate
understanding of the model's performance, contributing to the
development of more robust and reliable machine learning models that are
better equipped to handle real-world scenarios.

Implementing K-fold Cross-validation

The given below is a step-by-step demonstration of how to carry out K-
fold cross-validation on the given dataset using Rust:

Define the number of folds

Choose the number of folds (K) for cross-validation. A common choice is
K=10:

let k: usize = 10;

Calculate fold size

Determine the size of each fold:

let fold_size = dataset.nrows() / k;

Perform K-fold cross-validation

Iterate through the K folds, each time using a different fold as the test set
and the remaining K-1 folds as the training set:

let mut performance_metrics: Vec = Vec::new();

for i in 0..k {

 // Prepare the training and test sets

 let start = i * fold_size;

 let end = (i + 1) * fold_size;

 let train_set = dataset.slice(s![(0..start).chain(end..dataset.nrows()), ..]);

 let test_set = dataset.slice(s![start..end, ..]);

 // Train your model on the train_set

 // Evaluate the model on the test_set

 // Store the performance metric in the performance_metrics vector

}

// Calculate the average performance metric

let avg_performance_metric: f64 = performance_metrics.iter().sum::() / k
as f64;

The average performance metric provides a more robust estimate of the
model's generalization ability. It reduces the variance in the performance
metric compared to a simple train-test split, giving you greater confidence
in the model's performance on unseen data.

Hyperparameter Tuning

Overview

Hyperparameter tuning is the crucial process of optimizing a model's
hyperparameters to achieve enhanced performance. Hyperparameters,
unlike other parameters, are not learned from the data; rather, they are
predetermined by the model's creator before the training process begins.
Examples of hyperparameters include learning rates, regularization
parameters, and the number of hidden layers in a neural network.

To provide a comprehensive understanding of hyperparameter tuning, let's
delve into the most prevalent methods employed in this process:
Grid search: The grid search method involves defining a range of potential
values for each hyperparameter and then systematically testing every
possible combination. While effective, this technique can be
computationally demanding, particularly for models with an extensive set
of hyperparameters.
Random search: As an alternative to the exhaustive approach taken by
grid search, random search selects and evaluates a random assortment of
hyperparameter combinations. This technique frequently uncovers suitable
hyperparameter values more rapidly than grid search, offering a more
efficient solution.

Bayesian optimization: This advanced method entails constructing a
probabilistic model that captures the relationship between
hyperparameters and overall model performance. Through iterative

updates to this model, Bayesian optimization intelligently explores the
hyperparameter space and swiftly converges to an optimal solution.

Each of these hyperparameter tuning methods has its advantages and
drawbacks. Grid search offers a thorough exploration of the
hyperparameter space but can be resource-intensive. Random search,
while faster, may not be as exhaustive in its search for optimal
hyperparameters. Bayesian optimization strikes a balance between the
two, offering an intelligent and efficient approach to finding the best
hyperparameters.

Perform Hyperparameter Tuning using Grid Search

The given below is a step-by-step demonstration of how to perform
hyperparameter tuning using the given dataset in Rust:

Define the hyperparameter search space

let hyperparameter_space = [

 // Hyperparameter 1: (start_value, end_value)

 (0.0, 1.0),

 // Hyperparameter 2: (start_value, end_value)

 (1, 100),

 // Add more hyperparameters as needed

];

Choose a search method

We'll use grid search. Create a function that generates all possible
combinations of hyperparameters:

fn generate_hyperparameter_combinations(hyperparameter_space: &
[(f64, f64)]) -> Vec> {

 // Implement the function to generate all possible combinations

}

Perform hyperparameter tuning

Iterate through the hyperparameter combinations and train the model with
each combination:

let mut best_hyperparameters: Vec = vec![];

let mut best_performance_metric = f64::MIN;

for combination in
generate_hyperparameter_combinations(&hyperparameter_space) {

 // Train your model using the hyperparameter combination

 // Evaluate the model performance

 // Update the best_hyperparameters and best_performance_metric if
necessary

}

Upon completion of the tuning process, the best_hyperparameters vector
holds the most suitable hyperparameters tailored for the provided dataset.
It is crucial to emphasize that this specific example employs grid search as
its optimization technique. However, alternative methods such as random
search or Bayesian optimization can also be implemented to achieve
similar outcomes. To successfully integrate these alternative strategies,
one must adjust the hyperparameter search approach in a suitable manner.
By doing so, you can effectively explore different hyperparameter
configurations and potentially discover even more optimal solutions
tailored to the unique characteristics of your dataset. Therefore, adopting
an appropriate hyperparameter search technique is essential for obtaining
the best possible model performance.

Model Selection Techniques: AIC and BIC

The Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) are powerful model selection techniques that assist in
determining the optimal model among a range of candidate models. Both
criteria emphasize the balance between goodness-of-fit and model
complexity to ensure the most suitable model is chosen for a given
dataset.

Akaike Information Criterion (AIC)

AIC, or Akaike Information Criterion, is a model selection metric that
evaluates a model's goodness-of-fit while considering the number of
parameters involved. A lower AIC value signifies a better-fitting model.

The formula for AIC is as follows:

AIC = 2k - 2ln(L)

In this equation, 'k' represents the total number of model parameters, and
'L' denotes the maximized likelihood of the model given the data.

Bayesian Information Criterion (BIC)

BIC, or Bayesian Information Criterion, is another model selection metric
that assesses the goodness-of-fit of a model while incorporating a penalty

for model complexity. Similar to AIC, a lower BIC value corresponds to a
better-fitting model.

The formula for BIC is as follows:

BIC = k * ln(n) - 2ln(L)

In this equation, 'k' stands for the total number of model parameters, 'n'
represents the number of observations, and 'L' refers to the maximized
likelihood of the model given the data.

Although AIC and BIC share conceptual similarities, BIC generally
imposes a more significant penalty on model complexity than AIC.
Consequently, BIC tends to favor simpler models in comparison to AIC.
Both AIC and BIC are valuable tools in model selection, with each
criterion focusing on achieving an optimal balance between goodness-of-
fit and model complexity. By taking into account the number of
parameters and the maximized likelihood of the model given the data,
these criteria help researchers and data analysts identify the most suitable
model for a particular dataset. While AIC and BIC share some similarities,
the heavier penalty imposed on model complexity by BIC often results in
the selection of simpler models compared to AIC. Ultimately, the choice
between AIC and BIC depends on the specific context and goals of the
analysis, as well as the preferences of the researcher or analyst involved.

Implement AIC and BIC

To implement AIC and BIC calculation in Rust for the given dataset,
follow these steps:

Define a function to compute the likelihood of the model given the data.

fn compute_likelihood(model: &Model, data: &Data) -> f64 {

 // Implement the function to compute the likelihood of the model given
the data

}

Define functions to calculate AIC and BIC.

fn calculate_aic(model: &Model, data: &Data) -> f64 {

 let k = model.number_of_parameters() as f64;

 let l = compute_likelihood(model, data).ln();

 2.0 * k - 2.0 * l

}

fn calculate_bic(model: &Model, data: &Data) -> f64 {

 let k = model.number_of_parameters() as f64;

 let n = data.number_of_observations() as f64;

 let l = compute_likelihood(model, data).ln();

 k * n.ln() - 2.0 * l

}

Evaluate the AIC and BIC for each candidate model.

for model in candidate_models {

 let aic = calculate_aic(&model, &data);

 let bic = calculate_bic(&model, &data);

 // Store and compare the AIC and BIC values to choose the best model

}

When evaluating various models, comparing the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) values enables
you to identify the model that strikes an optimal balance between
goodness-of-fit and model complexity, tailored to your specific dataset.
These criteria assist in preventing overfitting or underfitting by penalizing
more complex models, ultimately guiding the selection process towards a
model that provides a robust and accurate representation of the underlying
data structure.

Resampling Methods

Resampling methods constitute a set of statistical techniques that play a
crucial role in model evaluation, hypothesis testing, and estimation of
uncertainties inherent in data. These methods revolve around the core
concept of recurrently sampling from the available data and recalculating
relevant statistics. This process allows researchers and analysts to gain
insights into the variability of the statistics, or to estimate their underlying
distribution, thus enhancing the robustness of their conclusions.

Two prevalent types of resampling methods that have gained considerable
traction in the field of statistics are bootstrapping and permutation tests.

Bootstrapping

Bootstrapping is a resampling method used to estimate the sampling
distribution of a statistic by repeatedly drawing samples (with
replacement) from the original dataset. It is particularly useful when the
underlying distribution of the data is unknown or when the sample size is
small. Bootstrapping can be applied to estimate confidence intervals, test
hypotheses, and evaluate the stability of model parameters.

In a bootstrap procedure, you:
Draw a random sample (with replacement) of the same size as the original
dataset.
● Compute the statistic of interest from the resampled data.

Repeat the both previous steps a large number of times (e.g., 1,000 or
10,000) to generate a distribution of the statistic.

Estimate the sampling distribution of the statistic, such as calculating
confidence intervals or standard errors.

Permutation Tests

Permutation tests, also known as randomization tests or exact tests, are
non-parametric resampling methods used for hypothesis testing. They
involve rearranging the observed data to create all possible permutations
of the data (or a large random subset of permutations), and then
calculating the test statistic for each permutation. By comparing the
observed test statistic to the distribution of permuted test statistics, you
can calculate a p-value to test the null hypothesis.

In a permutation test, you:
● Calculate the observed test statistic for the original data.
Randomly permute the data (or a subset of the data) and calculate the test
statistic for the permuted data.
Repeat the previous step a large number of times (e.g., 1,000 or 10,000) to
generate a distribution of permuted test statistics.
Calculate the p-value as the proportion of permuted test statistics that are
as extreme or more extreme than the observed test statistic.

Both bootstrapping and permutation tests offer flexible and powerful
methods for statistical inference, as they do not rely on strong assumptions
about the underlying data distribution. They can be applied to a wide
range of problems and are particularly useful when working with small
sample sizes or non-normally distributed data.

Perform Bootstrapping and Permutation Test

In the below example, I'll demonstrate how to perform bootstrapping and
permutation tests using Rust. We'll use the rand crate for random number
generation, and the ndarray crate for working with arrays. Add these
dependencies to your Cargo.toml:

[dependencies]

rand = "0.8"

ndarray = "0.15"

For this demonstration, let's assume we want to estimate the mean salary
and compare the mean salaries between two groups (e.g., two different job
titles) in our dataset. First, import the required modules:

use rand::seq::SliceRandom;

use ndarray::{Array, Axis};

Load the dataset and preprocess it as we did before. Then, split the data
into two groups based on job titles:

// Assuming the dataset is loaded and preprocessed as a DataFrame named
"df"

let group1 = df.select_rows(&df.column("job_title").eq("Data Scientist"));

let group2 = df.select_rows(&df.column("job_title").eq("Data
Engineer"));

let salaries1 = Array::from(group1.column("salaryinusd").to_vec());

let salaries2 = Array::from(group2.column("salaryinusd").to_vec());

Implementing Bootstrapping

Create a function to draw a bootstrap sample:

fn bootstrap_sampleClone>(data: &[T], rng: &mut
rand::rngs::ThreadRng) -> Vec {

 data.choose_multiple(rng, data.len()).cloned().collect()

}

Run the bootstrap procedure:

let mut rng = rand::thread_rng();

let n_bootstrap = 1000;

let mut bootstrap_means1 = Vec::with_capacity(n_bootstrap);

let mut bootstrap_means2 = Vec::with_capacity(n_bootstrap);

for _ in 0..n_bootstrap {

 let sample1 = bootstrap_sample(&salaries1, &mut rng);

 let sample2 = bootstrap_sample(&salaries2, &mut rng);

 let mean1 = Array::from(sample1).mean_axis(Axis(0)).unwrap()[0];

 let mean2 = Array::from(sample2).mean_axis(Axis(0)).unwrap()[0];

 bootstrap_means1.push(mean1);

 bootstrap_means2.push(mean2);

}

Calculate the confidence intervals:

bootstrap_means1.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());

bootstrap_means2.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());

let ci1 = (

 bootstrap_means1[(0.025 * n_bootstrap as f64) as usize],

 bootstrap_means1[(0.975 * n_bootstrap as f64) as usize],

);

let ci2 = (

 bootstrap_means2[(0.025 * n_bootstrap as f64) as usize],

 bootstrap_means2[(0.975 * n_bootstrap as f64) as usize],

);

println!("Group 1 mean salary 95% CI: {:?}", ci1);

println!("Group 2 mean salary 95% CI: {:?}", ci2);

Implementing Permutation Test

Calculate the observed difference in means:

let observed_diff = salaries1.mean_axis(Axis(0)).unwrap()[0] -
salaries2.mean_axis(Axis(0)).unwrap()[0];

Run the permutation test:

fn permute_groupsClone>(group1: &[T], group2: &[T], rng: &mut
rand::rngs::

ThreadRng) -> (Vec, Vec) {

let mut combined = group1.to_owned();

combined.extend(group2.iter().cloned());

combined.shuffle(rng);

let split_at = group1.len();

combined.split_at(split_at)

}

let n_permutations = 1000;

let mut permuted_diffs = Vec::with_capacity(n_permutations);

for _ in 0..n_permutations {

let (permuted_group1, permuted_group2) = permute_groups(&salaries1,
&salaries2, &mut rng);

let mean1 = Array::from(permuted_group1).mean_axis(Axis(0)).unwrap()
[0];

let mean2 = Array::from(permuted_group2).mean_axis(Axis(0)).unwrap()
[0];

permuted_diffs.push(mean1 - mean2);

}

Calculate the p-value:

let n_extreme = permuted_diffs.iter().filter(|&&d| d.abs() >=
observed_diff.abs()).count();

let p_value = n_extreme as f64 / n_permutations as f64;

println!("Permutation test p-value: {:?}", p_value);

We have successfully completed both bootstrapping and permutation tests
on our dataset, allowing us to gain valuable insights. The bootstrapping
procedure was employed to generate confidence intervals for the mean
salaries of both groups under consideration. By doing so, we were able to
estimate the range within which the true population means are likely to
fall, giving us a better understanding of the data. On the other hand, the
permutation test was utilized to assess the statistical significance of the
observed difference in mean salaries between the two groups. This test
provided us with a p-value, which helped us determine whether the
observed difference was due to chance or if it reflected a genuine disparity
between the groups. By using these complementary approaches, we were

able to conduct a robust analysis of our dataset, providing crucial
information to guide future decisions and actions.

Summary

In this chapter, we delved into the importance of model evaluation and
validation, which are crucial for assessing the performance of machine
learning and statistical models. We discussed various techniques to
evaluate and validate models, including train-test split, cross-validation,
hyperparameter tuning, model selection techniques like AIC and BIC, and
resampling methods such as bootstrapping and permutation tests.

We began by understanding the train-test split, which involves dividing
the data into training and testing subsets, and then demonstrated how to
carry out this technique on the given dataset. Next, we explored cross-
validation, a more robust method to assess model performance, and
implemented k-fold cross-validation on the dataset. After that, we delved
into hyperparameter tuning, discussing its significance in optimizing
model performance, and demonstrated how to conduct a simple grid
search to find the best hyperparameters. We also touched upon model
selection techniques like AIC and BIC, which help in comparing and
selecting the best-fitting models. Finally, we covered resampling methods,
focusing on bootstrapping and permutation tests. We explained their
conceptual foundations and demonstrated how to apply both techniques to
the given dataset. The bootstrapping procedure provided confidence
intervals for the mean salaries, while the permutation test assessed the
significance of the observed difference in mean salaries.

To sum it up, this chapter emphasized the importance of model evaluation
and validation techniques, which are essential for ensuring that the models

we build are robust, reliable, and accurate. The techniques presented here
provide a solid foundation for understanding and applying different
methods for evaluating and validating machine learning and statistical
models in real-world scenarios.

Chapter 11: Text and Natural Language Processing

Overview of Natural Language Processing (NLP)

The rise and development of Natural Language Processing (NLP) can be
traced back to the mid-20th century, with early roots in computational
linguistics and artificial intelligence (AI). NLP is a subfield of AI that
aims to enable computers to understand, interpret, and generate human
language. Over the years, NLP has evolved tremendously, powered by
advancements in technology, data availability, and AI algorithms. Its
adoption has led to numerous practical applications that have transformed
our lives.

The birth of NLP dates back to the 1950s with the development of the
first-ever machine translation system, known as the Georgetown-IBM
experiment. The system translated Russian sentences into English,
demonstrating the potential for machines to process natural language. In
the 1960s, the focus shifted to creating rule-based systems, which relied
on manually crafted grammar rules and lexicons. An example is the work
of linguist Noam Chomsky, who developed formal grammars as a basis
for understanding language structure. In the 1970s, researchers began to
develop algorithms that could parse and generate text. These early
systems, such as SHRDLU and LUNAR, could process simple commands
and queries in restricted domains. During this time, the concept of
"scripts" was introduced by Roger Schank, which allowed systems to
understand and generate text by following predefined scenarios.

The 1980s saw a shift towards probabilistic and statistical methods in
NLP. Researchers started using statistical models, like the hidden Markov
models (HMMs), to analyze and generate text based on patterns observed

in large corpora. This marked the beginning of the data-driven approach in
NLP. The 1990s saw the rise of machine learning techniques, such as
decision trees and support vector machines, which enabled the
development of more sophisticated NLP systems. In the 2000s, the
internet facilitated the availability of massive amounts of text data,
propelling the development of more advanced statistical methods.
Researchers started using Bayesian models and deep learning techniques,
such as recurrent neural networks (RNNs), to create more accurate and
efficient NLP systems. During this time, the focus shifted towards end-to-
end systems that could learn directly from data, without relying on manual
feature engineering.

The breakthrough moment for NLP came in 2013 with the introduction of
word embeddings, specifically Word2Vec by Mikolov et al. This
technique enabled the representation of words as continuous vectors,
capturing semantic and syntactic relationships among them. This spurred a
flurry of research, leading to the development of more advanced
embeddings, such as GloVe and fastText. The transformer architecture,
introduced by Vaswani et al. in 2017, enabled the creation of highly
efficient and scalable models that could handle long-range dependencies
in text. This laid the groundwork for the development of large-scale pre-
trained models, such as OpenAI's GPT and Google's BERT, which
demonstrated unprecedented performance across a wide range of NLP
tasks.

The rapid advancement in NLP has led to its widespread adoption across
industries. Today, NLP is used in various applications, including search
engines, virtual assistants, sentiment analysis, machine translation, text
summarization, and chatbots, among others. Organizations are leveraging

NLP to enhance customer support, automate content generation, and
derive insights from unstructured data.

Key Processes of NLP

NLP has made significant advancements, leading to its widespread use in
applications such as chatbots, virtual assistants, sentiment analysis,
machine translation, and more. One of the reasons for its success is the use
of key processes that contribute to NLP's ability to understand and process
text data.

One of the essential processes in NLP is tokenization. Tokenization
involves breaking down text into individual words or tokens, which is
crucial as it allows NLP systems to analyze text at the word level. By
analyzing words individually, NLP algorithms can identify patterns and
relationships between words and phrases, which is useful for tasks such as
sentiment analysis and named entity recognition.

Another important process in NLP is stopword removal. Stopwords are
common words that do not carry much meaning in the context of text
analysis, such as "the," "and," and "is." Removing stopwords can help
reduce the dimensionality of the data, making it easier for NLP algorithms
to analyze and process text.

Stemming and lemmatization are also key processes in NLP. Both
processes aim to reduce words to their base or root form, which can help
consolidate similar words and reduce noise in the text data. Stemming is a
crude process that removes affixes from words, while lemmatization is
more sophisticated, taking into account the morphological structure and
context of the word.

Part-of-speech (POS) tagging is another process that helps NLP
algorithms understand the syntactic structure and relationships between
words in the text. POS tagging involves identifying the grammatical
category of each word in a sentence, such as noun, verb, adjective, and
adverb.

Named Entity Recognition (NER) is the process of identifying and
classifying named entities, such as people, organizations, and locations, in
the text. NER can be useful for extracting structured information from
unstructured text data, such as customer feedback or social media posts.

Dependency parsing is another important process in NLP that involves
analyzing the grammatical structure of a sentence to identify the
relationships between words. By identifying the relationships between
words, NLP algorithms can understand the semantic meaning of sentences
and identify complex relationships in the text.

Sentiment analysis is a process that aims to determine the sentiment or
emotion expressed in a piece of text. Sentiment analysis can be useful for
understanding public opinion, customer feedback, and social media trends.

Machine translation is a process that focuses on automatically translating
text from one language to another. Recent advancements in neural
machine translation have greatly improved the quality and efficiency of
this process, making it possible for people to communicate with others
who speak different languages.

Text summarization is a process that involves creating a concise and
coherent summary of a large piece of text while preserving the main ideas
and essential information. Text summarization can be useful for extracting
key insights from large volumes of text data, such as news articles or
research papers. Finally, question answering systems aim to provide
accurate and relevant answers to natural language questions posed by
users. These systems have gained prominence with the rise of digital
assistants like Siri, Alexa, and Google Assistant.

These above key processes in NLP enable machines to understand and
process human language, making it possible to perform a variety of tasks
that were once impossible. By breaking down text into individual words
or tokens, removing stop words, and reducing words to their base or root
form, NLP algorithms can analyze text at the word level, identify patterns
and relationships between words, and understand the semantic meaning of
sentences. These processes, along with others like POS tagging, NER, and
machine translation, have led to significant advancements in NLP and its
applications. NLP has emerged as a powerful tool for processing and
understanding the vast amounts of text data generated daily. The various
processes and techniques involved in NLP have made it possible to
analyze, interpret, and generate human language effectively, paving the
way for numerous applications that have transformed the way we interact
with technology and access information.

Text Preprocessing and Tokenization

Text preprocessing and tokenization are two essential tasks in natural
language processing (NLP) that are performed on raw textual data before
further analysis or processing. Text preprocessing involves cleaning and
transforming the raw data to make it suitable for analysis. Tokenization is
the process of breaking down the text into smaller meaningful units called
tokens.

Text preprocessing is necessary to ensure that the text is free of unwanted
noise such as special characters, punctuations, numbers, and other non-
textual elements. It also involves converting the text to a standardized
format, such as lowercase or uppercase, removing stop words, and
stemming or lemmatizing words. The main goal of text preprocessing is to
improve the quality of the text data and make it more suitable for further
analysis.

Tokenization is a process of breaking down the text into smaller tokens
that can be words, phrases, or even sentences. Tokenization is an essential
step in NLP because most machine learning models work with numerical
data. By converting the text data into tokens, we can represent the textual
data numerically, which can be processed by machine learning models.

Key Preprocessing Techniques

Some common text preprocessing techniques include:

Lowercasing: Converting all text to lowercase can help establish
uniformity and make it easier to match tokens, as algorithms are usually
case-sensitive.

Removing punctuation, special characters, and numbers: These elements
can introduce noise and are often unnecessary for text analysis. By
removing them, you can reduce the complexity of the text.
Removing stopwords: Stopwords are common words like 'the,' 'is,' and
'in,' which don't carry much meaning and can be removed to reduce the
dimensionality of the text data.
Stemming and Lemmatization: These techniques reduce words to their
base or root form. Stemming involves truncating words, while
lemmatization uses a linguistic approach to convert words to their base
form. Both techniques help in grouping similar words together.

Common Tokenization Approaches

After preprocessing the text, tokenization can be performed using several
approaches:
Word tokenization: In this method, the text is split into individual words
based on spaces or punctuation marks.
Sentence tokenization: The text is split into sentences, usually based on
punctuation marks like periods, question marks, or exclamation marks.
Subword tokenization: This approach breaks text down into smaller units
like syllables, characters, or morphemes. It's particularly useful for
languages where word boundaries are not easily identifiable, or for tasks
that require a more granular understanding of the text.

Implementing Text Preprocessing and Tokenization

Let us try preprocessing the text and tokenizing the textual dataset using
Rust. Following is the sample dataset carrying more than 200,000 text
messages:

https://raw.githubusercontent.com/kittenpub/database-
repository/main/200000_noemoticon_nlp_data.csv

To begin with text preprocessing and tokenization, we'll follow these
steps:

Import necessary libraries

use csv::Reader;

use reqwest::blocking::get;

use std::error::Error;

use unicode_segmentation::UnicodeSegmentation;

Load the data from the given CSV

fn load_data(url: &str) -> Result, BoxError>> {

 let mut data = Vec::new();

 let response = get(url)?.text()?;

 let mut reader = Reader::from_reader(response.as_bytes());

 for result in reader.records() {

 let record = result?;

 data.push(record[5].to_string());

 }

 Ok(data)

}

Preprocess the text

fn preprocess_text(text: &str) -> String {

 text.to_lowercase()

 .chars()

 .filter(|c| c.is_alphanumeric() || c.is_whitespace())

 .collect()

}

Tokenize the text

fn tokenize(text: &str) -> Vec {

 text.unicode_words().map(|s| s.to_string()).collect()

}

Sample Program to Perform Preprocessing and Tokenization

Now, let's demonstrate how to use these functions on the given database.

fn main() -> Result<(), BoxError>> {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/200000_noemoticon_nlp_data.csv";

 let data = load_data(url)?;

 // Process and tokenize the first 10 records

 for text in data.iter().take(10) {

 let preprocessed_text = preprocess_text(text);

 let tokens = tokenize(&preprocessed_text);

 println!("Original text: {}", text);

 println!("Tokens: {:?}", tokens);

 println!();

 }

 Ok(())

}

This code snippet will load the data from the provided CSV file,
preprocess the first 10 records by converting them to lowercase and
removing non-alphanumeric characters, and tokenize the preprocessed text
by splitting it into words using the UnicodeSegmentation crate.

The output of the above codes will display the original text and the
corresponding tokens as below:

Original text: @switchfoot http://twitpic.com/2y1zl - Awww, that's a
bummer. You shoulda got David Carr of Third Day to do it. ;D

Tokens: ["switchfoot", "httptwitpiccom2y1zl", "awww", "thats", "a",
"bummer", "you", "shoulda", "got", "david", "carr", "of", "third", "day",
"to", "do", "it", "d"]

Original text: is upset that he can't update his Facebook by texting it... and
might cry as a result School today also. Blah!

Tokens: ["is", "upset", "that", "he", "cant", "update", "his", "facebook",
"by", "texting", "it", "and", "might", "cry", "as", "a", "result", "school",
"today", "also", "blah"]

Original text: @Kenichan I dived many times for the ball. Managed to
save 50% The rest go out of bounds

Tokens: ["kenichan", "i", "dived", "many", "times", "for", "the", "ball",
"managed", "to", "save", "50", "the", "rest", "go", "out", "of", "bounds"]

...

The output consists of the original text from the dataset and the
corresponding tokens generated after preprocessing and tokenization. The
tokens have been transformed to lowercase, and non-alphanumeric
characters have been removed.

Stopword Removal Process

Stopword removal is the process of eliminating common words that don't
carry much meaning and are often found in large quantities in text data.
Examples of stopwords include "the," "is," "in," "and," etc. Removing
stopwords can help reduce the dimensionality of the text data and improve
the performance of text processing algorithms.

Sample Program to Perform Stopword Removal

To perform stopword removal on the given database, you can follow these
steps:

Import necessary libraries and load the data:

extern crate reqwest;

extern crate csv;

extern crate regex;

use csv::Reader;

use regex::Regex;

use std::collections::HashSet;

#[tokio::main]

async fn main() -> Result<(), Boxstd::error::Error>> {

 let url = "https://raw.githubusercontent.com/kittenpub/database-
repository/main/200000_noemoticon_nlp_data.csv";

 let text = reqwest::get(url).await?.text().await?;

 // Read the CSV data

 let mut reader = Reader::from_reader(text.as_bytes());

 let mut records = reader.records();

 // Your text preprocessing steps here

 Ok(())

}

Create a list of stopwords
You can use an existing list of stopwords or create your own based on the
specific requirements of your analysis. Below is a quick sample:

fn get_stopwords() -> HashSet {

 let stopwords = [

 "a", "an", "and", "are", "as", "at", "be", "by", "for", "from", "has",
"he", "in", "is",

 "it", "its", "of", "on", "that", "the", "to", "was", "were", "will", "with",

];

 stopwords.iter().map(|s| s.to_string()).collect()

}

Implement a function to remove stopwords from a given text

fn remove_stopwords(text: &str, stopwords: &HashSet) -> String {

 let re = Regex::new(r"[^\w\s]").unwrap();

 let cleaned_text = re.replace_all(text, "").to_string();

 let words: Vec<&str> = cleaned_text.split_whitespace().collect();

 words

 .iter()

 .filter(|&word| !stopwords.contains(&word.to_lowercase()))

 .cloned()

 .collect::>()

 .join(" ")

}

Apply the stopword removal function

let stopwords = get_stopwords();

while let Some(result) = records.next() {

 let record = result?;

 let text = &record[1];

 let cleaned_text = remove_stopwords(text, &stopwords);

 // Continue processing the cleaned_text or store it for further analysis

}

This above snippet or the sample program demonstrates how to remove
stopwords from the given dataset. You can modify the stopwords list and
text preprocessing functions to fit your project demands

Stemming and Lemmatization

Stemming and lemmatization are natural language processing techniques
used to reduce words to their root or base forms, which can improve text
analysis by reducing variations of the same word. Stemming is a more
crude approach that chops off word endings, while lemmatization is a
more advanced technique that considers the context and part of speech to
derive the base form of a word.

Unfortunately, a readily accessible solution for lemmatization has yet to
be developed. While Rust may not yet possess a native and popular library
for stemming and lemmatization comparable to Python's NLTK or SpaCy,
it does offer the rust_stemmers library as a viable option for stemming.

Perform Stemming

To perform stemming with the rust_stemmers library, add the
rust_stemmers library to your Cargo.toml:

[dependencies]

rust_stemmers = "1.2.0"

Import the rust_stemmers library and its necessary components:

extern crate rust_stemmers;

use rust_stemmers::{Algorithm, Stemmer};

Create a stemming function using the desired stemming algorithm (e.g.,
Porter):

fn stem_text(text: &str) -> String {

 let stemmer = Stemmer::create(Algorithm::Porter);

 let words: Vec<&str> = text.split_whitespace().collect();

 words

 .iter()

 .map(|word| stemmer.stem(word))

 .collect::>()

 .join(" ")

}

Apply the stemming function to the cleaned text:

let stemmed_text = stem_text(&cleaned_text);

// Continue processing the stemmed_text or store it for further analysis

Kindly be aware that this sample program showcases the concept of
stemming rather than lemmatization. To achieve lemmatization in Rust, a
more intricate approach is needed due to the necessity of comprehending
the context and word class. This might entail incorporating an external
natural language processing library or engaging a related service, ensuring
a more accurate and satisfying experience to you as a proud reader of this
book.

Information Retrieval with TF-IDF

TF-IDF, which stands for Term Frequency-Inverse Document Frequency,
is a numerical statistic used in natural language processing and
information retrieval. It is a technique that assigns a weight to each word
in a document, based on its importance in the document and within the
entire corpus. The importance of a word increases with its frequency in a
document but is offset by its frequency across all documents.

TF-IDF Components

TF-IDF has two components:
Term Frequency (TF): This measures the frequency of a word in a
document. It can be calculated as the number of times a word appears in a
document divided by the total number of words in the document.
Inverse Document Frequency (IDF): This measures the importance of a
word across the entire corpus. It can be calculated as the logarithm of the
total number of documents divided by the number of documents
containing the word.

The product of TF and IDF gives the TF-IDF score for each word in a
document.

Implementation of TF-IDF

Discover a straightforward implementation of the Term Frequency-Inverse
Document Frequency (TF-IDF) algorithm within the Rust programming

language through this concise example:

Create a function to calculate the term frequency:

fn term_frequency(word: &str, document: &str) -> f64 {

 let words: Vec<&str> = document.split_whitespace().collect();

 let word_count = words.iter().filter(|&w| w == &word).count() as f64;

 let total_words = words.len() as f64;

 word_count / total_words

}

Create a function to calculate the inverse document frequency:

fn inverse_document_frequency(word: &str, documents: &[String]) -> f64
{

 let num_documents = documents.len() as f64;

 let num_documents_with_word = documents

 .iter()

 .filter(|doc| doc.contains(word))

 .count() as f64;

 (num_documents / (1.0 + num_documents_with_word)).ln()

}

Create a function to calculate the TF-IDF score for each word in a
document:

fn tf_idf(word: &str, document: &str, documents: &[String]) -> f64 {

 let tf = term_frequency(word, document);

 let idf = inverse_document_frequency(word, documents);

 tf * idf

}

Use the tf_idf function to calculate the TF-IDF scores for the words in
your documents:

let documents = vec![

 "the quick brown fox jumps over the lazy dog",

 "the quick red fox jumps over the lazy dog",

 "the quick orange fox jumps over the lazy dog",

];

let document = "the quick brown fox jumps over the lazy dog";

let words: Vec<&str> = document.split_whitespace().collect();

for word in words {

 let score = tf_idf(word, document, &documents);

 println!("TF-IDF score for {}: {}", word, score);

}

This code will output the TF-IDF scores for each word in the document.

Word Embeddings and Word2Vec

Word embeddings are dense vector representations of words that capture
their semantic meaning. They allow algorithms to work with text data by
converting it into numerical format. One popular word embedding
technique is Word2Vec, which generates embeddings by training a
shallow neural network on a large corpus. We can use the finalfusion crate
to read pre-trained word embeddings and use them in your Rust project.

To begin with , first you'll need to add finalfusion to your Cargo.toml:

[dependencies]

finalfusion = "0.16.0"

Then, download pre-trained word embeddings in the finalfusion format.
You can find pre-trained embeddings in different formats on various
websites, like the GloVe or fastText websites. After downloading, convert
them to the finalfusion format using the finalfusion Python library or
another converter.

Now, you can use the pre-trained embeddings in your Rust project:

use finalfusion::prelude::*;

use std::fs::File;

use std::io::BufReader;

fn main() {

 let path = "path/to/your/embeddings.fifu";

 let f = File::open(path).unwrap();

 let reader = BufReader::new(f);

 let embeddings = Embeddings::read_embeddings(reader).unwrap();

 let example_sentence = "the quick brown fox jumps over the lazy dog";

 let words: Vec<&str> = example_sentence.split_whitespace().collect();

 for word in words {

 match embeddings.embedding(word) {

 Some(embedding) => {

 println!("Embedding for {}: {:?}", word, embedding);

 }

 None => {

 println!("Embedding not found for {}", word);

 }

 }

 }

}

In the above sample program, we use the finalfusion crate to read the pre-
trained embeddings and print the embeddings for the words in the
example_sentence. Note that we're using a sample sentence here; you'll
need to read and preprocess the text from the given database and to work
directly with the given database, you'll need to read the CSV file,
preprocess the text, and then apply the word embeddings to the
preprocessed text as explained in many of the previous chapters. You can
use the csv crate to read the CSV file, but keep in mind that you'll need to
apply the text preprocessing steps discussed earlier in this book, such as
tokenization, stopword removal, and stemming or lemmatization.

Summary

Overall, this chapter delves into the world of Text and Natural Language
Processing (NLP). It starts by emphasizing the growing importance and
widespread adoption of NLP in various domains, and the key processes
involved in NLP are explained conceptually. NLP techniques enable
machines to understand, interpret, and generate human language in a way
that is both meaningful and useful. The chapter then focuses on various
text preprocessing steps, which play a crucial role in preparing the raw
text data for further analysis. Tokenization is introduced as the process of
breaking down the text into individual words or tokens. This step enables
the conversion of unstructured text data into a more structured format that
can be analyzed more effectively.

Next, stopword removal is discussed. Stopwords are common words such
as "and," "the," and "is" that do not carry significant meaning and can be
removed to reduce noise in the data and improve the efficiency of text
analysis. By eliminating these uninformative words, the relevant
information can be more easily processed and analyzed. Stemming and
lemmatization are also covered in the chapter. These techniques are
employed to reduce words to their base or root form, thereby further
reducing noise and enabling the grouping of similar words. Stemming
typically involves removing word suffixes, while lemmatization is a more
advanced process that takes into account the word's context and
morphological structure. The chapter then moves on to the concept of
Term Frequency-Inverse Document Frequency (TF-IDF), which is used to
weigh the importance of words in a document or corpus. The

mathematical architecture of TF-IDF is explained, followed by a practical
demonstration of its implementation on the given database. Finally, the
chapter addresses word embeddings, which are dense vector
representations that capture the semantic meaning of words. The example
demonstrates how to use pre-trained word embeddings in Rust with the
finalfusion crate, illustrating the process with a sample sentence. Note that
in practice, you would need to read and preprocess the text from the given
database before applying the word embeddings.

To sum it up, Chapter 11 provides an overview of key NLP concepts and
techniques, focusing on text preprocessing, feature extraction, and word
embeddings. The practical demonstrations help readers understand how to
implement these techniques in Rust using real-world data.

Epilogue

As we conclude our journey through "Statistics with Rust" it is important
to take a moment to reflect on the wealth of knowledge and practical skills
acquired throughout the course of this book. Designed for statisticians and
data professionals, this comprehensive resource has demonstrated the
advantages of Rust in modern statistical methods and provided practical
examples of Rust's potential in various aspects of data analysis and
machine learning.

Throughout the 11 in-depth chapters, we have explored the Rust
programming environment, essential libraries for data professionals, and
various statistical methods and techniques. From data handling,
preprocessing, and visualization to advanced topics like machine learning,
natural language processing, and network analysis, this book has offered a
thorough understanding of Rust-based data analysis.

The field of statistics is ever-evolving, with new methodologies,
techniques, and tools emerging constantly. By mastering Rust and its
application in modern statistical methods, you have positioned yourself at
the forefront of this exciting discipline. As you continue to work on more
complex projects, the knowledge and skills you have gained will enable
you to tackle new challenges with confidence, efficiency, and
effectiveness.

To stay ahead in this fast-paced field, it is crucial to remain updated with
the latest advancements and to continually refine your skills. The Rust
community is continuously expanding, with developers and researchers

contributing to new libraries and frameworks tailored to statistics and data
analysis. Engaging with the community will not only help you stay
informed about the latest developments but also provide opportunities to
collaborate, learn from others, and contribute to the growth of Rust in the
realm of statistics.

As you progress in your career, consider sharing your expertise and
insights with the Rust and statistics communities. Open-source projects,
blog posts, talks, and workshops are excellent ways to give back to the
community, inspire others, and foster the growth of Rust in statistical
applications.

Overall, "Statistics with Rust" has provided you with the tools, techniques,
and knowledge required to excel in Rust-based statistical analysis.
However, this is not the end of your journey; it is merely the beginning.
As you continue to grow and evolve as a data professional, never stop
learning, exploring new ideas, and pushing the boundaries of what is
possible in statistics.

We hope this book has inspired you to embrace the power of Rust in your
data projects and to continue innovating, creating, and excelling in the
field of statistics. The future of statistics with Rust is bright, and we
eagerly anticipate the remarkable contributions you will undoubtedly
make in this domain.

Thank you for choosing "Statistics with Rust" as your companion in this
exciting journey. We wish you the best of luck as you continue to
revolutionize your data projects with Rust and make a lasting impact in
the world of statistics.

Thank You

	Start

