
Wei-Meng Lee

DuckDB DuckDB
Up & RunningUp & Running
Fast Data Analytics and Reporting

ISBN: 978-1-098-15969-6
US $69.99	 CAN $87.99

DATA

Wei-Meng Lee is a technologist
and founder of Developer Learning
Solutions, a company that provides
hands-on training on the latest
technologies.

DuckDB, an open source in-process database created for OLAP workloads, provides key advantages over
more mainstream OLAP solutions: It’s embeddable and optimized for analytics. It also integrates well with
Python and is compatible with SQL, giving you the performance and flexibility of SQL right within your
Python environment. This handy guide shows you how to get started with this versatile and powerful tool.

Author Wei-Meng Lee takes developers and data professionals through DuckDB’s primary features and
functions, best practices, and practical examples of how you can use DuckDB for a variety of data analytics
tasks. You’ll also dive into specific topics, including how to import data into DuckDB, work with tables,
perform exploratory data analysis, visualize data, perform spatial analysis, and use DuckDB with JSON files,
Polars, and JupySQL.

•	 Understand the purpose of DuckDB
and its main functions

•	 Conduct data analytics tasks using DuckDB

•	 Integrate DuckDB with pandas, Polars,
and JupySQL

•	 Use DuckDB to query your data

•	 Perform spatial analysis using DuckDB’s
spatial extension

•	 Work with a diverse range of data including
Parquet, CSV, and JSON

DuckDB: Up & Running

“The book is a must-read for anyone interested in learning DuckDB.
The author’s clear explanations and practical examples make this
complex topic accessible to both beginners and experienced developers.”
Karen Zhang, data engineer

“This book is a comprehensive and insightful guide, offering both
newcomers and seasoned data engineers an exceptional road
map to mastering DuckDB.”

		Balachandar Paulraj, tech lead, data engineering, PlayStation

Praise for DuckDB: Up and Running

The book is a must read for anyone interested in learning DuckDB. The author’s clear
explanations and practical examples make this complex topic accessible to both beginners

and experienced developers. This book is particularly insightful about the growing trend
of data-intensive applications, offering valuable guidance on how to optimize

performance and scale efficiently.
—Karen Zhang, data engineer

This book is a comprehensive and insightful guide, offering both newcomers and
seasoned data engineers an exceptional roadmap to mastering DuckDB.

—Balachandar Paulraj, tech lead, data engineering, PlayStation

This book is a great reference for using DuckDB in an enterprise environment. Database
administrators, engineers, and architects should refer to this book to realize the full

potential of DuckDB across on premise and cloud platforms.
—Akhil Behl, Red Hat

A good beginner-friendly book for those starting out
to explore data analytics with SQL and Python using DuckDB.

—Vivek Vaddina, freelance data scientist

Wei-Meng Lee

DuckDB: Up and Running
Fast Data Analytics and Reporting

978-1-098-15969-6

[LSI]

DuckDB: Up and Running
by Wei-Meng Lee

Copyright © 2025 Wei-Meng Lee. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Andy Kwan
Development Editor: Melissa Potter
Production Editor: Clare Laylock
Copyeditor: Penelope Perkins
Proofreader: Helena Stirling

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2024: First Edition

Revision History for the First Edition
2024-12-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098159696 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DuckDB: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098159696

Table of Contents

Preface. ix

1. Getting Started with DuckDB. 1
Introduction to DuckDB 2

Why Use DuckDB? 2
High-Performance Analytical Queries 4
Versatile Integration and Ease of Use Across

Multiple Programming Languages 6
Open Source 7

A Quick Look at DuckDB 7
Loading Data into DuckDB 8
Inserting a Record 9
Querying a Table 9
Performing Aggregation 10
Joining Tables 12
Reading Data from pandas 14

Why DuckDB Is More Efficient 17
Execution Speed 17
Memory Usage 20

Summary 21

2. Importing Data into DuckDB. 23
Creating DuckDB Databases 23
Loading Data from Different Data Sources and Formats 24

Working with CSV Files 24
Working with Parquet Files 34
Working with Excel Files 39
Working with MySQL 44

Summary 48

v

3. A Primer on SQL. 51
Using the DuckDB CLI 51

Importing Data into DuckDB 54
Dot Commands 55
Persisting the In-Memory Database on Disk 59

DuckDB SQL Primer 61
Creating a Database 62
Creating Tables 63
Viewing the Schemas of Tables 64
Dropping a Table 64

Working with Tables 65
Populating Tables with Rows 65
Updating Rows 68
Deleting Rows 68
Querying Tables 69
Joining Tables 70
Aggregating Data 76
Analytics 78

Summary 81

4. Using DuckDB with Polars. 83
Introduction to Polars 83

Creating a Polars DataFrame 84
Understanding Lazy Evaluation in Polars 93

Querying Polars DataFrames Using DuckDB 98
Using the sql() Function 98
Using the DuckDBPyRelation Object 103

Summary 107

5. Performing EDA with DuckDB. 109
Our Dataset: The 2015 Flight Delays Dataset 110
Geospatial Analysis 111

Displaying a Map 112
Displaying All Airports on the Map 114
Using the spatial Extension in DuckDB 117

Performing Descriptive Analytics 127
Finding the Airports for Each State and City 128
Aggregating the Total Number of Airports in Each State 131
Obtaining the Flight Counts for Each Pair of Origin and

Destination Airports 136
Getting the Canceled Flights from Airlines 138
Getting the Flight Count for Each Day of the Week 144

vi | Table of Contents

Finding the Most Common Timeslot for Flight Delays 150
Finding the Airlines with the Most and Fewest Delays 153

Summary 158

6. Using DuckDB with JSON Files. 159
Primer on JSON 159

Object 160
String 160
Boolean 160
Number 161
Nested Object 161
Array 161
null 162

Loading JSON Files into DuckDB 163
Using the read_json_auto() Function 164
Using the read_json() Function 166
Using the COPY-FROM Statement 177

Exporting Tables to JSON 178
Summary 179

7. Using DuckDB with JupySQL. 181
What Is JupySQL? 182

Installing JupySQL 183
Loading the sql Extension 183
Integrating with DuckDB 184
Performing Queries 185
Storing Snippets 188

Visualization 190
Histograms 191
Box Plots 196
Pie Charts 198
Bar Plots 200

Integrating with MySQL 204
Using Environment Variables 204
Using an .ini File 207
Using keyring 209

Summary 210

8. Accessing Remote Data Using DuckDB. 211
DuckDB’s httpfs Extension 211
Querying CSV and Parquet Files Remotely 212

Accessing CSV Files 212

Table of Contents | vii

Accessing Parquet Files 216
Querying Hugging Face Datasets 220

Using Hugging Face Datasets 221
Reading the Dataset Using hf:// Paths 224
Accessing Files Within a Folder 225
Querying Multiple Files Using the Glob Syntax 228
Working with Private Hugging Face Datasets 231

Summary 243

9. Using DuckDB in the Cloud with MotherDuck. 245
Introduction to MotherDuck 246

Signing Up for MotherDuck 246
MotherDuck Plans 249

Getting Started with MotherDuck 250
Adding Tables 252
Creating Schemas 255
Sharing Databases 257
Creating a Database 263
Detaching a Database 263

Using the Databases in MotherDuck 264
Querying Your Database 264
Writing SQL Using AI 270

Using MotherDuck Through the DuckDB CLI 274
Connecting to MotherDuck 274
Querying Databases on MotherDuck 278
Creating Databases on MotherDuck 279
Performing Hybrid Queries 281

Summary 283

Index. 285

viii | Table of Contents

Preface

In an era where data reigns supreme, the ability to efficiently analyze and derive
insights from vast datasets is more crucial than ever. Organizations, researchers, and
data enthusiasts are constantly seeking tools that not only streamline their analytical
processes but also deliver high performance without the overhead often associated with
traditional database systems. DuckDB emerges as a beacon in this landscape—a power‐
ful, in-memory database management system designed specifically for analytical work‐
loads. It stands out for its simplicity, efficiency, and versatility, making it an ideal choice
for users ranging from individual data scientists to large-scale enterprises.

This book serves as a comprehensive guide to understanding and mastering DuckDB,
providing readers with the knowledge and tools to harness its full potential in diverse
applications. From the initial installation to advanced querying techniques, each chap‐
ter guides you through a well-structured learning path. The intent is to equip both
beginners and experienced users with the skills necessary to leverage DuckDB effec‐
tively, whether for personal projects or within larger organizational frameworks.

Chapter 1, “Getting Started with DuckDB”, begins with an introduction to DuckDB,
exploring its unique features and advantages over other database solutions. We will
dive into why DuckDB is a preferred choice for high-performance analytical queries
and will showcase its ability to integrate seamlessly with multiple programming lan‐
guages and environments. This chapter sets the stage for a deeper exploration of the
functionalities that make DuckDB a compelling option for data analysis.

Chapter 2, “Importing Data into DuckDB”, delves into the practical aspects of
importing data into DuckDB. You will learn how to create databases, load data from
various sources such as CSV, Parquet, and Excel files, and utilize different methods
for loading data, including SQL queries and registration methods. This foundational
knowledge is crucial for efficiently working with data in DuckDB.

In Chapter 3, “A Primer on SQL”, we’ll provide a primer on SQL tailored specifically
for DuckDB users. Understanding SQL is essential for any data analyst or engineer, and
this chapter will cover everything from basic commands to complex joins and

ix

aggregations. The hands-on examples will help you become proficient in querying and
manipulating data and will make you more comfortable with DuckDB’s SQL syntax.

Building on the SQL knowledge from Chapter 3, Chapter 4, “Using DuckDB with
Polars”, introduces Polars, an exciting DataFrame library that synergizes perfectly with
DuckDB. This chapter will guide you through creating, manipulating, and querying
Polars DataFrames using DuckDB, while emphasizing the benefits of lazy evaluation
and efficient memory usage. Polars and DuckDB together can significantly enhance
your data analysis workflows, and this chapter will showcase how to harness their com‐
bined power.

Chapter 5, “Performing EDA with DuckDB”, shifts the focus to exploratory data anal‐
ysis (EDA), utilizing the 2015 Flight Delays and Cancellations dataset as a practical
case study. Here, you will learn how to conduct various analyses, from basic descrip‐
tive statistics to advanced geospatial analysis using DuckDB’s spatial extension. This
chapter provides insights into real-world data challenges and demonstrates how
DuckDB can be used to uncover meaningful patterns and trends in data.

Chapter 6, “Using DuckDB with JSON Files”, explores the intricacies of working with
JSON files, a common data format in today’s web applications. You will learn how to
load, query, and export JSON data within DuckDB, including handling complex
nested structures and arrays. Understanding how to work with JSON effectively
expands your capabilities in data manipulation and analysis.

In Chapter 7, “Using DuckDB with JupySQL”, we explore JupySQL, a powerful tool
that integrates SQL capabilities directly into Jupyter Notebooks. This chapter will
cover installation, usage, and best practices for combining DuckDB with Jupyter,
allowing for interactive and visual data analysis. You will also discover how to create
compelling visualizations to represent your data insights effectively.

As we progress, Chapter 8, “Accessing Remote Data Using DuckDB”, focuses on
accessing remote data using DuckDB’s httpfs extension. This chapter will teach you
how to query remote CSV and Parquet files hosted on platforms like GitHub and Hug‐
ging Face, enabling you to work with datasets from anywhere. The ability to access and
analyse remote data opens new avenues for data exploration and collaboration.

Chapter 9, “Using DuckDB in the Cloud with MotherDuck”, concludes the book with
a deep dive into using DuckDB in the cloud through MotherDuck. You will learn how
to sign up for MotherDuck, create and manage databases, and perform hybrid queries
that combine local and cloud datasets. This chapter highlights the future of data ana‐
lytics in a cloud-centric world, providing you with the tools to adapt to emerging
trends in data management.

This book is designed for a diverse audience, including data analysts, data scientists,
software developers, and decision-makers who are looking for efficient solutions to
their data challenges. Whether you are new to DuckDB or have some experience with

x | Preface

it, you will find valuable insights, practical examples, and best practices that will
enhance your understanding and application of this powerful database system.

I invite you to embark on this journey through DuckDB, exploring its capabilities and
applications across various domains. May this book serve as a valuable resource in your
quest for data-driven insights, enabling you to unlock the full potential of your datasets.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user. In some
cases, constant width bold is used to highlight the code currently under
discussion.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xi

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/supp-DuckDB.

If you have a technical question or a problem using the code examples, please send an
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “DuckDB: Up and Running by Wei-
Meng Lee (O’Reilly). Copyright 2025 Wei-Meng Lee, 978-1-098-15969-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xii | Preface

https://oreil.ly/supp-DuckDB
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/duckDB_upAndRunning.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgements
I would like to extend my heartfelt gratitude to everyone who contributed to the real‐
ization of this book.

First and foremost, I would like to thank my family for their unwavering support and
encouragement throughout this journey. Their patience and understanding have been
invaluable.

I am deeply appreciative of my technical reviewers—Balachandar Paulraj, Vivek Vad‐
dina, Karen Zhang, and Akhil Behl. Your expertise and insightful feedback greatly
enhanced the quality of this book. Your contributions have helped ensure that the
content is accurate, relevant, and beneficial to readers.

I would also like to express my gratitude to Melissa Potter, my content development
editor. Your guidance and keen eye for detail have been instrumental in shaping the
structure and flow of the chapters, making the material more accessible to readers.

A special thank you to Andy Kwan, my acquisitions editor, for believing in this
project and providing the support needed to bring it to fruition. Your vision and
encouragement were key motivators in the development of this book.

Preface | xiii

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/duckDB_upAndRunning
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

I would also like to express my gratitude to my copy editor, Penelope Perkins, and my
production editor, Clare Laylock, for enhancing the readability and enjoyment of this
book!

To all of you, thank you for your invaluable contributions. This book would not have
been possible without your support and expertise.

xiv | Preface

CHAPTER 1

Getting Started with DuckDB

When it comes to data analytics, pandas is often the go-to library for many develop‐
ers. Recently, Polars has emerged as a faster and more efficient alternative for han‐
dling DataFrames. However, despite the popularity of these libraries, SQL (Structured
Query Language) remains the most widely recognized and used language among
developers. If your data is stored in a database that supports SQL, using SQL to query
and manipulate that data is often the most intuitive and effective approach.

While Python has become the dominant language in data science—particularly for
working with data in tabular formats through DataFrame objects—SQL continues to
be the universal language of data. Given that most developers are already comfortable
with SQL, wouldn’t it be more efficient to use SQL directly for data manipulation?

This is where DuckDB shines. DuckDB was initially conceptualized in 2018 as an
OLAP (online analytical processing) database optimized for fast analytical queries. Its
aim was to bridge the gap between fully-fledged database systems and the simplicity
of embedded DBs like SQLite, but with a focus on analytical rather than transactional
workloads. The first stable release of DuckDB was in 2019, and its ease of integration
with Python and R made it a very popular choice among the data science and analyt‐
ics communities. While DuckDB is open source, DuckDB Labs was founded in 2021
to provide commercial support and further development. To bring DuckDB to the
cloud, MotherDuck was built around DuckDB, enabling users to access it as a SaaS
(software as a service). With MotherDuck, developers can now use DuckDB in a dis‐
tributed and managed environment, making it much easier to scale for larger datasets
and collaborative use cases (more on this in Chapter 9).

In this chapter, we’ll dive into what DuckDB is, why it’s a powerful tool for data ana‐
lytics, and how you can harness its capabilities to streamline your data analysis tasks.
DuckDB offers the performance and flexibility of SQL right within your Python envi‐
ronment, making it an invaluable tool for any data scientist or analyst.

1

Introduction to DuckDB
DuckDB is a relational database management system (RDBMS) that supports SQL
and is specifically engineered for OLAP, making it ideal for data analytics tasks.

Unlike traditional database systems that require a separate installation process,
DuckDB operates entirely in-process, so you don’t need to worry about installation or
setup. One of the most compelling features of DuckDB is its ability to run SQL quer‐
ies directly on pandas data without the need for importing or duplicating the data.
This seamless integration with pandas makes DuckDB an exceptionally powerful tool
for data scientists and analysts who are already familiar with the pandas ecosystem.

Moreover, DuckDB is built with vectorized data processing, significantly boosting its
efficiency by processing data in CPU-friendly chunks within a single machine. This
contrasts with big data frameworks like Spark or Flink, which distribute data and
computation across multiple nodes to achieve scalability through parallelism in large
clusters.

Additionally, instead of using the traditional row-based storage format found in data‐
bases like MySQL and SQLite, DuckDB employs a columnar storage format. This col‐
umnar structure is key to its high performance—particularly for large-scale analytical
queries—enabling DuckDB to excel in scenarios where speed and efficiency are
critical.

Why Use DuckDB?
Today, your datasets typically come from one or more of the following sources:

• CSV (comma-separated values) files
• Excel spreadsheets
• XML files
• JSON files
• Parquet files
• Databases

If you want to use SQL in an ELT (extract, load, transform) process, you’d typically
first load the dataset (such as a CSV file) into a database server. From there, you
would load the data into a pandas DataFrame through an application (such as written
in Python) using SQL (see Figure 1-1).

2 | Chapter 1: Getting Started with DuckDB

Figure 1-1. You typically have to load your dataset into a database server before you can
process it

ELT is a data integration process used in data pipelines to move
and prepare data for analysis. Its three main steps are:

• Extract data from multiple sources such as databases, APIs, or
flat files.

• Load the extracted data directly into a target system, such as a
data warehouse or data lake.

• Transform the data, such as by filtering, aggregating, cleaning,
etc.

DuckDB eliminates the need to load the dataset into a database server, allowing you
to directly manipulate the dataset using SQL. This streamlined process simplifies data
manipulation and analysis, enabling you to work more efficiently with your data (see
Figure 1-2).

Figure 1-2. With DuckDB, you can directly query your datasets without needing to load
them into database servers

Once the pandas DataFrame is loaded, you can use DuckDB and SQL to further slice
and dice the data. This allows for powerful and flexible data manipulation directly
within your Python environment, leveraging the strengths of SQL without the over‐
head of a separate database server (see Figure 1-3).

Introduction to DuckDB | 3

Figure 1-3. You can use DuckDB to work directly with pandas DataFrames

In the following sections, you will learn about the various features of DuckDB and
what makes it so powerful.

High-Performance Analytical Queries
One of DuckDB’s strengths lies in its ability to execute fast analytical queries, making
it a powerful tool for data-intensive tasks. This performance is driven by several key
design features:

Columnar storage format
Unlike traditional databases and file systems that store data in a row-based for‐
mat (in which all fields of a row are stored together), DuckDB uses a columnar
storage format. In a columnar format, data is stored column by column, rather
than row by row. This design is particularly beneficial for analytical workloads,
where queries often require reading and analyzing a small subset of columns over
many rows (e.g., summing or filtering one or two columns across a large dataset).

By reading only the necessary columns from disk, DuckDB significantly reduces
the amount of data that needs to be transferred into memory, speeding up query
execution. For example, if a query needs data from only two columns out of ten,
DuckDB can ignore the rest, whereas a row-based database would need to load
all columns of every row.

Vectorized execution engine
DuckDB processes data in vectors, operating with chunks of rows rather than
processing one row at a time. This technique, known as vectorized execution,
allows for more efficient use of the CPU. By working on multiple rows in one go,
DuckDB minimizes the overhead that comes with handling data row-by-row,
such as memory access and instruction dispatch, which can slow down
processing.

Additionally, vectorized execution makes better use of the CPU cache, reducing
the frequency of cache misses (when the CPU has to access slower memory).
This design optimizes the use of modern hardware, leading to faster execution
times, especially for complex analytical queries.

4 | Chapter 1: Getting Started with DuckDB

Efficient memory usage
DuckDB is designed to work directly on in-memory data structures, meaning
that it doesn’t need to create unnecessary copies of data that could potentially
slow down operations. This allows DuckDB to handle large datasets without
requiring excessive amounts of memory, and it manages memory intelligently to
prevent bottlenecks during query execution.

DuckDB’s ability to process data in chunks also plays a role here, as it can operate
on data that’s too large to fit into memory all at once by processing it piece-by-
piece, further optimizing resource usage.

Parallel execution
Modern CPUs typically have multiple cores, allowing them to perform multiple
operations at the same time. DuckDB takes full advantage of this by running
queries in parallel across different CPU cores. This parallel execution allows it to
process large datasets more quickly, as parts of the query can be run simultane‐
ously on different portions of the data.

For example, if you are performing an aggregation or a join across a large dataset,
DuckDB can break this task into smaller chunks and process them concurrently,
leveraging all available processing power to complete the task more quickly.

Late materialization
DuckDB uses a technique called late materialization, where data is only fetched
or processed when absolutely necessary. In traditional databases, materializing
data (i.e., fetching and loading full rows into memory) is done early in query exe‐
cution, even if only a subset of columns is needed for the final result. DuckDB,
however, postpones this materialization step as much as possible, working with
metadata (e.g., column indices) rather than actual row data until it needs to
materialize only the specific columns required for the query result.

This approach minimizes unnecessary data movement and processing, leading to
substantial performance improvements, especially for complex queries that
involve filtering or joining large datasets.

Optimized query planner
DuckDB features an optimized query planner that analyzes and restructures quer‐
ies before they are executed. The query planner’s job is to find the most efficient
way to execute a query, especially for operations that are typically resource-
intensive, such as joins, aggregations, and filtering operations.

By reorganizing the query plan and applying advanced optimization techniques
like predicate pushdown (pushing filters as close as possible to the data source)
and join reordering (choosing the most efficient order in which to join tables),
DuckDB reduces the computational load, making query execution faster and
more efficient.

Introduction to DuckDB | 5

Portability
One of DuckDB’s standout features is its portability. Unlike many traditional
database systems that require complex server setups or external dependencies,
DuckDB is an in-process database, meaning it runs directly within the application
without needing a separate server. This makes it highly portable, as it can be
embedded into a wide range of environments, from local applications to data sci‐
ence notebooks, without any special configuration.

DuckDB’s portability is particularly beneficial for data scientists and developers
who want to analyze data on their own machines without relying on heavy infra‐
structure. It can be embedded in Python, R, or even inside other applications
with minimal effort. Additionally, DuckDB’s small footprint and ability to work
seamlessly with various file formats like CSV and Parquet mean it can be used
across different platforms (Windows, Linux, macOS) with ease, allowing users to
take their analytical workflows anywhere.

The powerful performance features of DuckDB are complemented by its versatility
and ease of use across multiple programming environments, which you will learn in
the next section.

Versatile Integration and Ease of Use Across
Multiple Programming Languages
DuckDB offers full support for standard SQL syntax, including SELECT, INSERT,
UPDATE, and DELETE statements. It integrates smoothly with various data formats,
such as CSV, Parquet, JSON, and pandas DataFrames. By running directly within the
same process as your application—whether it’s a Jupyter Notebook or a Python
script—DuckDB eliminates the need for complex setups or network communications.

Its ease of handling basic operations makes DuckDB an excellent choice for both
beginners and experienced users. Whether you’re executing simple queries, loading
data, or performing quick transformations, DuckDB provides a fast, efficient, and
user-friendly experience that enhances productivity and supports a broad range of
data processing tasks.

DuckDB is also designed to work seamlessly with several programming languages,
making it a versatile option for data analysis and processing in various environments.
Here are some of the languages that DuckDB supports:

• Python
• R
• C/C++
• Julia

• Java
• Go
• Node.js
• Rust

6 | Chapter 1: Getting Started with DuckDB

In addition to its broad language support, DuckDB is open source, which greatly
enhances its appeal.

Open Source
DuckDB is open source, making it freely accessible to anyone who wants to use, mod‐
ify, or contribute to its development. As an open source project, DuckDB’s source
code is available to the public, allowing developers and data professionals to inspect,
enhance, and tailor the software to their specific needs. This brings several key
advantages:

Transparency
Users can view exactly how DuckDB is implemented, fostering trust and confi‐
dence among developers through its open and transparent design.

Rapid iteration and updates
The open source nature of DuckDB enables quick iteration and the continuous
addition of new features. The community can propose, test, and implement
improvements swiftly, ensuring the software stays at the forefront of technologi‐
cal advancements.

Cost-effective
DuckDB is completely free, with no licensing fees, allowing users to deploy it in
any environment without concerns about cost.

Strong ecosystem
The open source model nurtures the growth of a vibrant ecosystem of tools,
libraries, and extensions that enhance DuckDB’s functionality. Users gain access
to a wealth of community-contributed resources, including documentation, tuto‐
rials, and plug-ins.

Now that you have seen the features that make DuckDB so useful and powerful, it is
time to dive in and see how it works.

A Quick Look at DuckDB
In the following sections, we will walk through a few examples of how to use
DuckDB to:

• Create a database
• Create a table
• Insert records into the table
• Retrieve records from the table
• Perform aggregation on the records

A Quick Look at DuckDB | 7

• Perform joins on multiple tables
• Load data directly from pandas DataFrames

For this book, we’ll be using Jupyter Notebook for coding, unless
stated otherwise. You can use the Jupyter Notebook for Windows,
macOS, or Linux.

To use DuckDB, you first need to install the duckdb package. You can do so via the
pip command in Jupyter Notebook:

!pip install duckdb

To create a DuckDB database, you can use the connect() function of the duckdb
package:

import duckdb

create a connection to a new DuckDB database file
conn = duckdb.connect('my_duckdb_database.db')

This creates a persistent database file named my_duckdb_database.db in the current
directory where you launched your Jupyter Notebook.

Alternatively, you can create an in-memory copy of the database by passing
the :memory: argument to the connect() function:

alternatively, to create an in-memory database:
conn = duckdb.connect(':memory:')

Whatever changes you made to the in-memory database will be
lost when you shut down the database. To retain data between ses‐
sions, you should use a persistent DuckDB database file instead of
an in-memory database.

In the next section, you will learn how to create a table within the database that you
have just created.

Loading Data into DuckDB
Once you have created the database, you can create a table by passing the CREATE
TABLE SQL statement to the connection’s execute() method:

create a table
conn.execute('''
 CREATE TABLE employees (
 id INTEGER PRIMARY KEY,
 name VARCHAR,

8 | Chapter 1: Getting Started with DuckDB

 age INTEGER,
 department VARCHAR
)
''')

To verify that the table is created correctly, use the SHOW TABLES statement:
conn.execute('SHOW TABLES').df()

Because the execute() method runs the SQL query and returns a DuckDB result set,
you need to convert it to a DataFrame so that you can view the result.

Figure 1-4 shows the table name returned as a DataFrame.

Figure 1-4. The DuckDB database contains a table named employees

Now that the table is created, it is time to insert a few records into the table. The next
section shows you how.

Inserting a Record
Now let’s insert a few rows into the table using the INSERT INTO statement:

insert data into the table
conn.execute('''
 INSERT INTO employees VALUES
 (1, 'Alice', 30, 'HR'),
 (2, 'Bob', 35, 'Engineering'),
 (3, 'Charlie', 28, 'Marketing'),
 (4, 'David', 40, 'Engineering')
''')

In this statement, I added three rows to the employees table. To verify that the records
are correctly inserted into the table, we’ll perform a query, which you will see demon‐
strated in the next section.

Querying a Table
Now that the records are inserted into the table, we can retrieve them by using the
SELECT statement:

conn.execute('''
 SELECT * FROM employees
''').df()

A Quick Look at DuckDB | 9

Figure 1-5 shows the result.

Figure 1-5. The result of querying the employees table

Performing Aggregation
A common operation performed on a table is aggregation, which involves summariz‐
ing data by grouping it based on one or more columns and then applying functions
such as COUNT, SUM, AVERAGE, MIN, and MAX. Aggregation is essential for extracting
insights, as it condenses large datasets into meaningful summaries, enabling more
straightforward analysis.

Let’s perform some aggregation on the records in our table. First, let’s count the num‐
ber of employees in each department using the COUNT function and the GROUP BY
statement in SQL:

conn.execute('''
 SELECT
 department,
 COUNT(*) AS employee_count
 FROM
 employees
 GROUP BY
 department
''').df()

Figure 1-6 shows the result returned as a DataFrame.

Figure 1-6. The number of employees in each department

You can calculate the average age of employees in the company using the AVG
function:

conn.execute('''
 SELECT

10 | Chapter 1: Getting Started with DuckDB

 AVG(age) AS average_age
 FROM
 employees
''').df()

Figure 1-7 shows the result as a DataFrame.

Figure 1-7. The average age of employees in the company

If you want to find the oldest employee in each department, use the MAX function in
SQL:

conn.execute('''
 SELECT
 department,
 MAX(age) AS oldest_age
 FROM
 employees
 GROUP BY
 department
''').df()

Figure 1-8 shows the result as a DataFrame.

Figure 1-8. The oldest employee in each department

Finally, you can find the average age of employees in each department:
conn.execute('''
 SELECT
 department,
 AVG(age) AS average_age
 FROM
 employees
 GROUP BY
 department
''').df()

Figure 1-9 shows the result.

A Quick Look at DuckDB | 11

Figure 1-9. The average age of employees in each department

Now that you have seen how to perform aggregation on your table, let’s see in the
next section how to perform joins, another common operation involving multiple
tables in a database.

Joining Tables
In addition to working with single tables, DuckDB enables you to perform joins on
multiple tables. Let’s illustrate this by creating two tables in the existing database and
then populating them with some records:

create an in-memory copy of the database
conn = duckdb.connect()

create first table - orders
conn.execute('''
 CREATE TABLE orders (
 order_id INTEGER,
 customer_id INTEGER,
 amount FLOAT)
 ''')

add some records to the orders table
conn.execute('''
 INSERT INTO orders
 VALUES (1, 1, 100.0),
 (2, 2, 200.0),
 (3, 1, 150.0)
''')

create second table - customers
conn.execute('''
 CREATE TABLE customers (
 customer_id INTEGER,
 name VARCHAR)
''')

conn.execute('''
 INSERT INTO customers
 VALUES (1, 'Alice'),
 (2, 'Bob')
''')

Let’s display the contents of the two tables we just created:

12 | Chapter 1: Getting Started with DuckDB

display(conn.execute('''
 SELECT * FROM orders
''').df()
)
display(conn.execute('''
 SELECT * FROM customers
''').df()
)

Figure 1-10 shows the contents of the two tables.

Figure 1-10. The contents of the orders and customers tables

Suppose you want a list of amounts spent by each customer. You can achieve this by
joining the orders and customers tables based on the customer_id field in each table:

join the two tables
conn.execute('''
 SELECT
 customers.customer_id,
 customers.name,
 orders.amount,
 FROM
 orders
 JOIN
 customers
 ON
 orders.customer_id = customers.customer_id
 ORDER by
 customers.customer_id
''').df()

The result is shown as a DataFrame (see Figure 1-11).

Figure 1-11. The result of joining the two tables

A Quick Look at DuckDB | 13

Suppose you now want to know the total amount spent by each customer. You can
achieve this by aggregating the amount spent using the SUM function in SQL. In addi‐
tion, you need to use the GROUP BY statement for aggregating the total amount spent:

join the two tables
conn.execute('''
 SELECT
 customers.customer_id,
 customers.name,
 SUM(orders.amount) as total_spent
 FROM
 orders
 JOIN
 customers
 ON
 orders.customer_id = customers.customer_id
 GROUP BY
 customers.customer_id,
 customers.name
 ORDER by
 customers.customer_id
''').df()

The result is shown as a DataFrame (see Figure 1-12).

Figure 1-12. The result of joining the two tables and aggregating the total amount spent
for each customer

The next section will show how to use DuckDB to directly manipulate pandas Data‐
Frames.

Reading Data from pandas
All the examples up to this point have involved creating the database directly in
DuckDB. What if your data is already in a pandas DataFrame? Well, DuckDB can
work directly with the pandas DataFrames that you already have in memory.

Suppose you have the following DataFrames:
import pandas as pd

Employee DataFrame
employees = pd.DataFrame({
 'employee_id': [1, 2, 3, 4],
 'name': ['Alice', 'Bob', 'Charlie', 'David'],
 'age': [30, 35, 28, 40],
 'department': ['HR', 'Engineering', 'Marketing', 'Engineering']
})

14 | Chapter 1: Getting Started with DuckDB

Sales DataFrame
sales = pd.DataFrame({
 'sale_id': [101, 102, 103, 104, 105],
 'employee_id': [1, 2, 1, 3, 4],
 'sale_amount': [200, 500, 150, 300, 700],
 'sale_date': ['2023-01-01', '2023-01-03', '2023-01-04',
 '2023-01-05', '2023-01-07']
})

display(employees)
display(sales)

Figure 1-13 shows the contents of the employees and the sales DataFrames.

Figure 1-13. The contents of the employees and sales DataFrames

Suppose you want to find the total sales for each department, as well as find out the
average sales per employee for each department. To do this, you’ll need to join the
two DataFrames and perform some aggregations. Most importantly, in DuckDB you
simply refer to the DataFrames by their names, as this code snippet shows:

create an in-memory copy of the database using DuckDB
conn = duckdb.connect()

join the DataFrames, group by department, and perform aggregations
query = '''
 SELECT
 e.department,
 SUM(s.sale_amount) AS total_sales,
 AVG(s.sale_amount) AS average_sale_per_employee,
 COUNT(DISTINCT e.employee_id) AS number_of_employees
 FROM
 employees e

A Quick Look at DuckDB | 15

 LEFT JOIN
 sales s ON e.employee_id = s.employee_id
 GROUP BY
 e.department
'''

conn.execute(query).df()

The result is shown in Figure 1-14.

Figure 1-14. Finding the average sales per employee for each department

How about finding the top performers in the company and listing their departments?
The following code snippet shows how this is done:

query = '''
 SELECT
 e.department,
 e.name AS top_employee,
 MAX(s.sale_amount) AS top_sale_amount
 FROM
 employees e
 LEFT JOIN
 sales s ON e.employee_id = s.employee_id
 GROUP BY
 e.department,
 e.name
 ORDER BY
 top_sale_amount DESC
'''

conn.execute(query).df()

Figure 1-15 shows the result of the query.

Figure 1-15. Getting the top performers in the company

16 | Chapter 1: Getting Started with DuckDB

As demonstrated, DuckDB enables direct reference to pandas DataFrames within
SQL statements.

Why DuckDB Is More Efficient
Earlier in this chapter, we mentioned that DuckDB is both efficient and high-
performing. When working with CSV files, for example, it does not need to load the
entire CSV file into memory before it can process it. Rather, DuckDB can read and
process data from the file on the fly. To see this in action, let’s use the 2015 Flight
Delays and Cancellations dataset.

We’ll use this dataset more in Chapter 2, where you learn how to
download the various CSV files in the dataset.

For this example, we will use the flights.csv file in the dataset, which contains the
details of all the flights in the US for 2015. This file is a good candidate for evaluating
the efficiency of DuckDB, as it is relatively large (nearly 600 MB) and has more than
5.8 million rows of data. It has the following fields: YEAR, MONTH, DAY,
DAY_OF_WEEK, AIRLINE, FLIGHT_NUMBER, TAIL_NUMBER, ORIGIN_AIR‐
PORT, DESTINATION_AIRPORT, SCHEDULED_DEPARTURE, DEPARTURE_
TIME, DEPARTURE_DELAY, TAXI_OUT, WHEELS_OFF, SCHEDULED_TIME,
ELAPSED_TIME, AIR_TIME, DISTANCE, WHEELS_ON, TAXI_IN, SCHED‐
ULED_ARRIVAL, ARRIVAL_TIME, ARRIVAL_DELAY, DIVERTED, CANCELLED,
CANCELLATION_REASON, AIR_SYSTEM_DELAY, SECURITY_DELAY, AIR‐
LINE_DELAY, LATE_AIRCRAFT_DELAY, WEATHER_DELAY.

There are two aspects that we will examine in this example:

• The speed of execution of DuckDB
• The memory usage of DuckDB

Execution Speed
Let’s examine the traditional approach of manipulating the CSV file using pandas.
First, you need to load the CSV file into a pandas DataFrame:

import pandas as pd

load the CSV file and time it
%timeit df = pd.read_csv('flights.csv')

Why DuckDB Is More Efficient | 17

This code uses the %timeit magic command in Jupyter Notebook to measure the
time it takes to load the CSV file into a DataFrame. On my machine, it took about 7.5
seconds to load the 5.8 millions rows of data:

7.46 s ± 568 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The percent symbol (%), when used in Jupyter Notebook, is a pre‐
fix to denote a magic command. Magic commands are special com‐
mands that provide various functionalities and utilities for working
within the Jupyter environment.

Next, we will perform a simple aggregation on the data by calculating the mean
arrival delay time for each airline:

df = pd.read_csv('flights.csv')
%timeit df.groupby('AIRLINE')['ARRIVAL_DELAY'].mean().reset_index()

Running the aggregation without the %timeit magic command should yield the
result shown in Figure 1-16:

df.groupby('AIRLINE')['ARRIVAL_DELAY'].mean().reset_index()

Figure 1-16. Calculating the mean arrival delay for each airline

On average, it took pandas about 186 milliseconds to perform the aggregation:
186 ms ± 8.74 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

18 | Chapter 1: Getting Started with DuckDB

In total, using the pandas approach took about 7.5 seconds.

Let’s now try the aggregation using DuckDB. DuckDB has a function named
read_csv_auto() to read the CSV file:

import duckdb

conn = duckdb.connect()
query = '''
 SELECT
 AIRLINE,
 AVG(ARRIVAL_DELAY) AS MEAN_ARRIVAL_DELAY
 FROM
 read_csv_auto('flights.csv')
 GROUP BY
 AIRLINE
 ORDER BY
 AIRLINE;
'''
%timeit df = conn.execute(query).df()

The read_csv_auto() function does not need to load the CSV file into memory;
rather, it processes the data on the fly, allowing for efficient querying without the
overhead of memory consumption associated with loading the entire dataset. This
enables DuckDB to handle larger datasets seamlessly, leveraging disk I/O for analyti‐
cal operations while maintaining low memory usage. At the same time, the above
statements also perform the data aggregation.

These statements took about half a second to complete:
496 ms ± 29.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

From this simple example, you can draw the following observations:

• Using DuckDB dramatically shortens the time needed to perform analytics on
your data. This is because DuckDB doesn’t need to spend extra time loading the
CSV into memory before it starts to perform the data aggregation. This is useful
if you usually perform one-off operations on your CSV file.

• If you need to perform multiple operations on your data, it might be more effi‐
cient to load your data into a pandas DataFrame if you have enough memory on
your system to store the data.

• Overall, DuckDB works efficiently on large datasets.

Now that we have examined the performance aspect of DuckDB, let’s examine its
memory usage.

Why DuckDB Is More Efficient | 19

Memory Usage
To examine the memory usage of DuckDB, let’s first create a function to calculate the
memory used by a process using the psutil package:

import psutil

def memory_usage():
 process = psutil.Process()
 return process.memory_info().rss / (1024 ** 2) # convert bytes to MB

Let’s measure the memory used by the current process before and after loading the
CSV file into a DataFrame:

import pandas as pd

measure memory before query execution
memory_before = memory_usage()
print(f"Memory used before query: {memory_before:.2f} MB")

load the CSV file
df = pd.read_csv('flights.csv')

measure memory after query execution
memory_after = memory_usage()
print(f"Memory used after query: {memory_after:.2f} MB")

You’ll see something like the following:
Memory used before query: 130.64 MB
Memory used after query: 4362.61 MB

Be sure to restart the kernel in your Jupyter Notebook to get a
more accurate view of the memory used by the DataFrame.

The memory used is a whopping 4.2 GB! All of this memory was used just to load the
CSV file into a DataFrame in memory. Let’s now compare it with DuckDB, where we
don’t have to load the entire CSV file into memory before we can perform processing:

import duckdb

conn = duckdb.connect()
query = '''
 SELECT
 AIRLINE,
 AVG(ARRIVAL_DELAY) AS MEAN_ARRIVAL_DELAY
 FROM
 read_csv_auto('flights.csv')
 GROUP BY
 AIRLINE
 ORDER BY
 AIRLINE;
'''

20 | Chapter 1: Getting Started with DuckDB

measure memory before query execution
memory_before = memory_usage()
print(f"Memory used before query: {memory_before:.2f} MB")

run the query
df = conn.execute(query).df()

measure memory after query execution
memory_after = memory_usage()
print(f"Memory used after query: {memory_after:.2f} MB")

The result looks like the following:
Memory used before query: 72.19 MB
Memory used after query: 348.48 MB

As you can see, DuckDB used only about 280 MB of memory, compared to the 4.2
GB used by pandas.

Summary
In this chapter, I have introduced some of the key features of DuckDB and provided a
quick overview of its capabilities and features. I began by introducing what DuckDB
is and why it stands out in the realm of data management and analytics. Its high-
performance analytical queries—combined with versatile integration across multiple
programming languages—make DuckDB a powerful tool for various data processing
tasks.

I also highlighted DuckDB’s open source nature, which not only makes it cost-
effective but also fosters a robust, community-driven ecosystem that continuously
enhances its functionality.

Through a quick look at DuckDB, we covered essential operations including loading
data, inserting records, querying tables, performing aggregations, and joining tables.
We also demonstrated how to seamlessly read data from pandas, showcasing
DuckDB’s compatibility with popular data science tools.

Overall, DuckDB offers a unique blend of performance, flexibility, and ease of use,
making it an excellent choice for both simple and complex data processing needs.
Whether you’re a beginner looking for a straightforward solution or an experienced
user seeking a high-performance analytics tool, DuckDB provides a versatile and
powerful platform to support your data-driven projects.

In the next chapter, you’ll learn how to use DuckDB to work with various data for‐
mats—CSV, Parquet, Excel, and MySQL databases.

Summary | 21

CHAPTER 2

Importing Data into DuckDB

In Chapter 1, you saw how you can create a simple DuckDB database and load tables
into it. In the real world, your data often comes from different data sources and file
formats—such as CSV, Excel, Parquet, or database servers. In this chapter, you’ll first
learn the different ways to create your DuckDB databases, and then learn how to load
them using various data sources. By the end of this chapter, you’ll have a clear idea of
how to work with each data source, as well as tips and tricks for dealing with them.

Creating DuckDB Databases
In this section, we will dive into the different ways you can create DuckDB databases
and provide suggestions on which methods may suit your purposes.

The simplest way to create a DuckDB database is to use the connect() function in the
duckdb module:

import duckdb

conn = duckdb.connect()

The connect() function returns a DuckDBPyConnection object. By default, this state‐
ment opens a modifiable in-memory database, as seen here:

conn = duckdb.connect(':memory:')

If you wish to create a DuckDB database that is persisted on storage, set the database
argument to the name of a database, for example, mydb.duckdb (you can use any
extension you wish for the filename):

conn = duckdb.connect(database = 'mydb.duckdb', read_only = False)

23

The first time you run this statement, the mydb.duckdb database file
will be created in the same folder as your code (such as Jupyter
Notebook). You can set the read_only argument to True only if the
database file already exists. Opening the file in read-only mode is
required if multiple Python processes need to access the same data‐
base file at the same time.

After you run this statement, you’ll see the mydb.duckdb file in your current directory.

If you create an in-memory DuckDB database and set the read_only
argument to True, the database becomes immutable (read-only), and
you will not be able to attach any tables to it. Hence, for in-memory
databases, be sure to set the read_only argument to False (or simply
omit it, as False is the default).

Now that the DuckDB database has been created, in the next section you’ll learn how
to load it with data from different data sources and formats.

Loading Data from Different Data Sources and Formats
DuckDB supports different types of data sources and file formats. In this section,
you’ll learn how to load data from:

• CSV files
• Parquet files
• Excel files
• MySQL databases

Working with CSV Files
One of the most common data source file formats is the CSV file, a common and
straightforward way to store and exchange tabular data. CSV files are:

Lightweight
CSV files don’t have complex metadata or formatting. This makes them very suit‐
able for data exchange between devices and platforms.

Simple
CSV files consist of plain text data organized into rows and columns. Each line
represents a row and the values in each column are separated by a delimiter.

24 | Chapter 2: Importing Data into DuckDB

Flexible
CSV files can store different types of data, such as numbers, strings, dates, and
more.

For this chapter, you’ll be using the 2015 Flight Delays and Cancellations dataset from
Kaggle (Licensing: CC0: Public Domain). This dataset contains three CSV files:

airlines.csv
A list of American airlines

airports.csv
A list of airports in the US

flights.csv
A list of flight details for the various airlines in 2015

Once you’ve downloaded the dataset, unzip the individual files and put them into the
same folder as your Jupyter Notebook.

In this section, you’ll learn two ways to load CSV files into a DuckDB database (the
SQL query method and the register method) as well as explore exporting data from
DuckDB to CSV.

Loading using the SQL query method
The first method we will use to load a CSV file into a DuckDB database is the SQL
query method. We’ll use the CREATE TABLE statement, together with the SELECT FROM
SQL statement, to load the CSV file via the execute() method of the connection
object:

import duckdb

conn = duckdb.connect()

conn.execute('''
 CREATE TABLE flights
 as
 SELECT
 *
 FROM read_csv_auto('flights.csv')
''')

The read_csv_auto() function is the simplest method of loading CSV files. It tries to
figure out the correct configuration of the CSV header and automatically deduces the
data types of the columns in the CSV file. If the CSV file has a header, it will use the
names found in that header to name the columns. If not, the columns will be named
with the default names column0, column1, column2, etc.

Loading Data from Different Data Sources and Formats | 25

https://oreil.ly/5WXfY
https://oreil.ly/5WXfY

You can specify the location of a file using its relative path or abso‐
lute path. If you specify just the filename, the path is assumed to be
in the same location as your Jupyter Notebook.

The execute() method returns a DuckDBPyConnection object. To examine the result
of what has been loaded, you can call the df() method on the DuckDBPyConnection
object to return a pandas DataFrame:

import duckdb

conn = duckdb.connect()

conn.execute('''
 CREATE TABLE flights
 as
 SELECT
 *
 FROM read_csv_auto('flights.csv')
''').df()

In this code snippet, DuckDB is configured to use in-memory storage and the flights
table is created in memory. Even though we loaded the CSV file into DuckDB,
DuckDB does not fully load everything into memory until you later query or manip‐
ulate it. It optimizes memory usage by only bringing data into memory when needed
(lazy loading), even though the table itself is stored in memory rather than on disk.
When you call the df() method, DuckDB will then load the content of the table into
a pandas DataFrame. In practice, you should only use the df() method when you
want to examine the final result of your query.

Figure 2-1 shows the DataFrame containing the number of rows loaded from the
CSV file. Observe that the flights.csv file has more than 5.8 million rows. This
explains why it takes a bit of time for these statements to execute.

Figure 2-1. The number of rows loaded into the DuckDB database table

The SELECT clause is optional, as is the read_csv_auto() function. To retrieve all col‐
umns from the CSV file, you can simply rewrite your SQL statement without them:

conn.execute('''
 CREATE TABLE flights
 as
 FROM 'flights.csv'
''').df()

26 | Chapter 2: Importing Data into DuckDB

If you attempt to create a table in DuckDB that already exists, an
error will occur. To avoid this, you can drop the existing table
before creating a new one:

conn.execute('''
 DROP TABLE IF EXISTS flights;
 CREATE TABLE flights
 as
 FROM 'flights.csv'
''').df()

Alternatively, you can use the CREATE OR REPLACE statement:
conn.execute('''
 CREATE OR REPLACE TABLE flights
 as
 FROM 'flights.csv'
''').df()

If your CSV file is large—as this one is—you may want to load only a portion of it.
For example, you can use the LIMIT clause to load only the first 1,000 rows:

conn.execute('''
 DROP TABLE IF EXISTS flights;
 CREATE TABLE flights
 as
 FROM read_csv_auto('flights.csv')
 LIMIT 1000
''').df()

To verify the tables created in the DuckDB database, use the SHOW TABLES query:
display(conn.execute('SHOW TABLES').df())

Figure 2-2 shows that the DuckDB database contains a single table named flights.

Figure 2-2. The DuckDB database contains a single table

To view the content of the flights table, use the SELECT statement with the execute()
method:

display(conn.execute('SELECT * FROM flights').df())

Loading Data from Different Data Sources and Formats | 27

Figure 2-3 shows the content of the flights table.

Figure 2-3. The content of the flights table in the database

Another way to load a CSV file is by manually creating a table and then using the
COPY statement to load the data into the table:

conn.execute('''
 CREATE TABLE airports(
 IATA_CODE VARCHAR, AIRPORT VARCHAR, CITY VARCHAR,
 STATE VARCHAR, COUNTRY VARCHAR, LATITUDE VARCHAR,
 LONGITUDE VARCHAR);
 COPY airports FROM 'airports.csv' (AUTO_DETECT TRUE);
''')

display(conn.execute('SELECT * FROM airports').df())

When you use this method, the total number of columns in the CSV file must match
the total number of columns in the table. In addition, the contents of the columns
must be convertible to the column types specified in the table. If they are not, an error
will be thrown.

This approach is often used when you want to have more control
over the data loading process. For example, you might want to
define specific data types or constraints for each column in the
table. Another advantage of using this method to load your CSV
file is that you have the flexibility to define the column headers of
the table. Additionally, the COPY command yields the best perfor‐
mance for large datasets.

28 | Chapter 2: Importing Data into DuckDB

An alternative is to set the names of the columns in the names parameter of the
read_csv() function:

conn.execute('''
 DROP TABLE IF EXISTS airports;
 CREATE TABLE airports
 AS
 FROM
 read_csv('airports.csv',
 names=['IATA_CODE', 'AIRPORT', 'CITY',
 'STATE', 'COUNTRY', 'LATITUDE',
 'LONGITUDE'
])
''')

If you want to check the total number of columns created for a
table, you can use the information_schema.columns table that
contains metadata about columns in all tables:

result = conn.execute('''
 SELECT COUNT(*) AS column_count
 FROM information_schema.columns
 WHERE table_name = 'airports';
''').fetchall()

Figure 2-4 shows the content of the airports table.

Figure 2-4. The content of the airports table in the database

Loading Data from Different Data Sources and Formats | 29

Note that if you want to treat all the columns in your CSV file as string types (regard‐
less of the actual data type in the file), you can specify the all_varchar parameter in
the read_csv() function and set it to true:

conn.execute('''
 DROP TABLE IF EXISTS airports;
 CREATE TABLE airports
 AS
 FROM read_csv('airports.csv', all_varchar=true)
''')

There are now two tables in the database (see Figure 2-5):
display(conn.execute('SHOW TABLES').df())

Figure 2-5. The two tables in the DuckDB database

Loading using the register() method

Another way to load a CSV file into DuckDB is to use the register() method of the
connection object. The register() method enables you to load a CSV file or other
external data sources as an in-memory virtual table without needing to explicitly cre‐
ate or copy data into a DuckDB table. This method is useful in scenarios where flexi‐
bility and temporary access to external data are desired. Let’s see how it’s done.

The following code snippet shows how you can use a SELECT statement together with
the read_csv() function to load the contents of the file airlines.csv and return it as a
pandas DataFrame:

airlines = conn.execute('''
 SELECT
 *
 FROM read_csv('airlines.csv',
 Header = True,
 Columns = {'IATA_CODE': 'VARCHAR', 'AIRLINE': 'VARCHAR'})
''').df()
airlines

The airlines DataFrame is shown in Figure 2-6.

30 | Chapter 2: Importing Data into DuckDB

Figure 2-6. The content of the airlines DataFrame

read_csv_auto() versus read_csv()]
Observe that for this example, instead of read_csv_auto(), we used read_csv()
along with the Header argument to indicate that the first row in the CSV file is the
header. We then used the Columns argument to specify the column names and their
associated types. This is sometimes required because the CSV file might not be prop‐
erly formatted, or the header in the CSV file may contain values that resemble data
entries.

If you use the read_csv_auto() function instead, you will soon realize that the first
row of the CSV file was not recognized as the header (see Figure 2-7):

airlines = conn.execute('''
 SELECT
 *
 FROM read_csv_auto('airlines.csv')
''').df()

airlines

Loading Data from Different Data Sources and Formats | 31

Figure 2-7. The first row in the CSV file is not recognized as the header of the table

Note that this behavior might change in a future release of DuckDB, so you should
always experiment with both functions and see if they worked correctly.

Once the airlines DataFrame is loaded, you need to use the register() method to
associate the table with the DuckDB database:

conn.register("airlines", airlines)

You can now verify that the airlines table is in the database using the SHOW TABLES
query:

display(conn.execute('SHOW TABLES').df())

Figure 2-8 shows the three tables currently in the DuckDB database.

Figure 2-8. The three tables in the DuckDB database

To verify that the airlines table is loaded correctly, use the SELECT statement:
display(conn.execute('SELECT * FROM airlines').df())

The output should be the same as Figure 2-6.

If you don’t want to use the connection object to load the CSV file, you can optionally
use the more traditional method of loading the CSV file with the pandas read_csv()
function and then use the register() method:

import pandas as pd

load the CSV using pandas
df_airlines = pd.read_csv("airlines.csv")

32 | Chapter 2: Importing Data into DuckDB

associate the DataFrame with the DuckDB database
conn.register("airlines", df_airlines)

Exporting a table to CSV
So far we have discussed loading CSV files into DuckDB databases. What about
exporting data from DuckDB databases to CSV files? To do that, you can use the COPY
statement:

conn.execute('''
 COPY
 (SELECT IATA_CODE, LATITUDE, LONGITUDE FROM airports)
 TO
 'airports_location.csv' WITH (HEADER 1, DELIMITER ',');
''')

The HEADER 1 argument indicates that the CSV file should include a header row (col‐
umn name). This code snippet creates a CSV file named airports_location.csv with
three columns:

IATA_CODE,LATITUDE,LONGITUDE
ABE,40.65236,-75.4404
ABI,32.41132,-99.6819
ABQ,35.04022,-106.60919
ABR,45.44906,-98.42183
ABY,31.53552,-84.19447
...

If you want to copy part of a file to another file without loading any data into
DuckDB, you can read the data directly from a file and specify the number of rows to
copy:

conn.execute('''
 COPY
 (SELECT
 IATA_CODE, LATITUDE, LONGITUDE
 FROM 'airports.csv'
 LIMIT 10)
 TO
 'airports_location.csv' WITH (HEADER 1, DELIMITER ',');
''')

These statements copy three columns from the first 10 rows of the airports.csv file
into a file named airports_location.csv.

When you are done with your connection, remember to close it:
conn.close()

Now that you have seen how to work with CSV files using DuckDB, let’s move to the
next file format—Parquet.

Loading Data from Different Data Sources and Formats | 33

Working with Parquet Files
Another file format that is gaining popularity among data scientists is Parquet. Par‐
quet, or Apache Parquet, is a file format designed to support fast data processing for
complex data. It is an open source format under the Apache Hadoop license and is
compatible with most Hadoop processing frameworks. Parquet is self-describing—
metadata, including the schema and structure, is embedded within each file. More
importantly, Parquet stores your data in columns, rather than rows.

Consider the DataFrame shown in Figure 2-9 with three columns.

Figure 2-9. A sample DataFrame with three columns

When you save the DataFrame as a CSV file, it uses row-based storage. When a CSV
file is loaded into a DataFrame, each row is loaded one at a time, and each row con‐
tains three different data types (see Figure 2-10).

Figure 2-10. Using row-based storage to store a DataFrame

Parquet, however, stores your data using column-based storage. Each column of data
is organized as a column of a specific data type (see Figure 2-11).

34 | Chapter 2: Importing Data into DuckDB

Figure 2-11. Using column-based storage to store a DataFrame

In short, when you store your data in column-based storage, your file will be more
lightweight, since all similar data types are grouped together and you can apply com‐
pressions to each column. More importantly, using column-based storage makes it
really efficient to extract specific columns, something you often need to do in data
analytics projects—especially in OLAP workloads, which DuckDB was designed to
deal with. Because of this, Parquet is one of the most popular file formats for data
analysts.

Loading Parquet files
Now that you have a better idea of how Parquet organizes its data, let’s see how we
can work with Parquet using DuckDB.

For the example in this section, since we don’t have a Parquet file we’ll create one
using the CSV file that we have: you’ll load the airlines.csv file into a pandas Data‐
Frame and then save it in Parquet format using the fastparquet engine. Fastparquet is
an open source Python library that provides a fast and efficient engine for reading
and writing Parquet files. To use fastparquet, you need to install it using the pip
command:

$ pip install fastparquet

You can now read the CSV file as a pandas DataFrame and then save it as a Parquet
file:

import pandas as pd

df_airports = pd.read_csv("airports.csv")
df_airports.to_parquet('airports.parquet', engine='fastparquet')

If you want to view a Parquet file, you can download Tad, a viewer for CSV, Parquet,
SQLite, and DuckDB databases.

Loading Data from Different Data Sources and Formats | 35

https://www.tadviewer.com

Figure 2-12 shows Tad displaying the airports.parquet file.

Figure 2-12. Viewing a Parquet file using the Tad application

To load a Parquet file into a DuckDB database, use the read_parquet() function:
import duckdb

conn = duckdb.connect()
conn.execute('''
 CREATE TABLE airports
 as
 SELECT * FROM read_parquet('airports.parquet')
 LIMIT 100
''')

In this code snippet, we loaded the first 100 rows of the Parquet file into a table
named airports in the DuckDB database. Once the table is loaded, you can view its
content:

display(conn.execute('SELECT * FROM airports').df())

36 | Chapter 2: Importing Data into DuckDB

Figure 2-13 shows the content of the airports table.

Figure 2-13. The content of the airports table in the database

If you want to load the last 100 rows, you can use the ORDER BY 1 DESC statement to
sort the rows by the first column in descending order and then load the first 100
rows. This effectively retrieves the last 100 rows in the Parquet file:

conn.execute('''
 INSERT INTO airports
 SELECT * FROM read_parquet('airports.parquet')
 ORDER BY 1 DESC
 LIMIT 100
''')

display(conn.execute('SELECT * FROM airports').df())

Figure 2-14 shows that the airports table now has the first 100 and last 100 rows from
the Parquet file.

Loading Data from Different Data Sources and Formats | 37

Figure 2-14. The table now has the first 100 and last 100 rows from the Parquet file

To load a Parquet file into an existing table in a DuckDB database, use the COPY FROM
statement:

conn.execute('''
 COPY airports
 FROM 'airports.parquet' (FORMAT PARQUET);
''')

Exporting Parquet files
To export a table in DuckDB to a Parquet file, use the following query:

conn.execute('''
 COPY airports
 TO
 'airports_all.parquet' (FORMAT PARQUET);
''')

This exports all the rows in the airports table and saves them into a file named
airports_all.parquet.

If you want to export only some rows, you can use LIMIT:
conn.execute('''
 COPY
 (SELECT * FROM airports LIMIT 100)
 TO
 'airports_100.parquet' (FORMAT PARQUET);
''')

This exports the first 100 rows from the airports table and saves them into a file
named airports_100.parquet.

38 | Chapter 2: Importing Data into DuckDB

Exporting data to Parquet from DuckDB is useful in scenarios where efficient storage,
fast querying, and interoperability with big data tools are required. Because of its
optimized structure for columnar data and support for compression, Parquet is a go-
to format for cloud storage, data lakes, analytical workloads, and machine learning
pipelines.

Now that you have learned how to work with Parquet files in DuckDB, it’s time to
move to the most popular data file format of all time—Excel files.

Working with Excel Files
Excel is a versatile spreadsheet application that is widely used across all industries and
multiple professions. Whether you are a programmer or not, chances are you have
used Excel in one way or another. In this section, you’ll learn how to work with Excel
files in DuckDB.

For the demos in this section, we’ll use an Excel file that has two worksheets: airports
and airlines (see Figure 2-15). The content of the airports worksheet is from the
airports.csv file, while the content for the airlines worksheet is from airlines.csv.

Figure 2-15. The contents of the Excel spreadsheet

Loading Data from Different Data Sources and Formats | 39

Observe that the airlines worksheet has no header. This is done on
purpose so that we can learn how to specify the header manually
when loading the worksheet into a table in DuckDB.

Loading Excel files

To load data from an Excel spreadsheet, you need to use the spatial extension,
which provides support for geospatial data processing in DuckDB.

DuckDB supports a number of extensions:

• httpfs enables reading and writing files over HTTP or cloud
storage.

• icu provides advanced string processing and internationaliza‐
tion features via the ICU (International Components for Uni‐
code) library.

• sqlite provides the ability to read and query SQLite database
files.

• inet adds support for working with IP addresses and network
data.

To install these extensions, you use the INSTALL keyword, a SQL
command used to download and install extensions.

First, let’s load an Excel worksheet into a DuckDB database. The following code snip‐
pet loads the airports worksheet into a DuckDB table named airports:

import duckdb

conn = duckdb.connect()

conn.execute('INSTALL spatial')
conn.execute('LOAD spatial')
conn.execute('''
 CREATE TABLE airports
 as
 SELECT * FROM st_read('airports_and_airlines.xlsx', layer='airports');
''')
display(conn.execute('SELECT * FROM airports').df())

There are a few points worth explaining:

• The spatial extension must be installed and loaded before importing the Excel
data. This needs to be done only once—the extension will be remembered until
DuckDB is uninstalled.

40 | Chapter 2: Importing Data into DuckDB

• The st_read() function reads from the Excel spreadsheet. The worksheet to load
is specified through the layer argument. DuckDB doesn’t currently support
reading a password-protected Excel spreadsheet. If your file is password-
protected, you’ll need to decrypt it first.

The output is shown in Figure 2-16.

Figure 2-16. The content of the airports table loaded from the Excel spreadsheet

As you can see, the values in the first row of the worksheet are automatically detected
and used as the column names for the table. However, this behavior can be controlled
through the use of the environment variable OGR_XLSX_HEADERS, which is part of the
GDAL/OGR library, which DuckDB uses to read Excel files.

If you don’t want to use the fields in the first row as the column names for your table,
set the OGR_XLSX_HEADERS environment variable to DISABLE:

import os

os.environ['OGR_XLSX_HEADERS'] = 'DISABLE'

Once you do this, the default column names will be Field1, Field2, and so on.

However, if you want to force the fields in the first row to be used as the column
names for your table, set the environment variable to FORCE:

os.environ['OGR_XLSX_HEADERS'] = 'FORCE'

The default value for the environment variable is AUTO, which means that the behav‐
ior is automatic, allowing the OGR driver for Excel files to decide whether or not to
treat the first row as column headers based on its content:

os.environ['OGR_XLSX_HEADERS'] = 'AUTO'

Loading Data from Different Data Sources and Formats | 41

https://oreil.ly/SgTDo

Let’s now try loading the airlines worksheet into DuckDB:
conn.execute('''
 CREATE TABLE airlines
 AS
 SELECT * FROM st_read('airports_and_airlines.xlsx', layer='airlines');
''')
display(conn.execute('SELECT * FROM airlines').df())

This time, observe that the st_read() function has detected that there are no field
names that can be used as column names for your table. Hence, the default column
names are Field1 and Field2 (see Figure 2-17).

Figure 2-17. The column names are set to defaults

To ensure that your table has custom column names, you can first create a table with
the desired column names and data types, and then use the INSERT statement to load
the data from the Excel spreadsheet:

conn = duckdb.connect()

conn.execute('INSTALL spatial')
conn.execute('LOAD spatial')
conn.execute('''
 CREATE TABLE airlines (
 IATA_CODE STRING,
 AIRLINES STRING

42 | Chapter 2: Importing Data into DuckDB

);
 INSERT INTO airlines
 SELECT * FROM st_read('airports_and_airlines.xlsx', layer='airlines');
''')
display(conn.execute('SELECT * FROM airlines').df())

Beware of the performance implications of using the INSERT state‐
ment in DuckDB. In general, try to avoid using INSERT to insert
rows individually, especially if your dataset is large. Also, note that
the COPY statement in DuckDB doesn’t work with Excel files.

Figure 2-18 shows the table with the column names applied.

Figure 2-18. The table with the correct column names

Another environment variable that you can use when loading Excel data is
OGR_XLSX_FIELD_TYPES. By default, when parsing Excel spreadsheets, DuckDB will
automatically detect the data types in the file. If you want to force all the data types to
string, set this environment variable to STRING:

os.environ['OGR_XLSX_FIELD_TYPES'] = 'STRING' # default is AUTO

Loading Data from Different Data Sources and Formats | 43

https://oreil.ly/45GqV
https://oreil.ly/45GqV

Exporting tables to Excel
Just like with the other file formats, you can export a DuckDB table to Excel format:

conn.execute('''
 COPY airlines
 TO 'airlines.xlsx' WITH (FORMAT GDAL, DRIVER 'xlsx');
''')

In this code snippet, the airlines table is saved to the airlines.xlsx file. The FORMAT
GDAL option enables you to export data to a file format that is supported by GDAL
(Geospatial Data Abstraction Library).

If the destination file already exists, an error will be thrown. Also,
dates and timestamps are not supported by the xlsx writer driver. If
your table contains columns of these types, be sure to cast them to
VARCHAR prior to creating the xlsx file.

With all the popular file formats covered, it’s time to move to the last section in this
chapter and learn how to use DuckDB to load your data from a database server. For
this example, we’ll be using MySQL server.

Working with MySQL
The last file format that we will discuss in this chapter is MySQL. Very often, your
source data might be stored in a database server, such as MySQL. Hence, it would be
useful to be able to load your data stored in MySQL into DuckDB.

For the example in this section, we’ll assume the following:

• You have an instance of MySQL server running on your computer
• You have a database named My_DB, containing a single table named airlines. The

content of the airlines table is shown in Figure 2-19.
• You have an account on the MySQL server named user1, with a password of

“password”. This account has privileges to access the My_DB database and its
tables.

44 | Chapter 2: Importing Data into DuckDB

Figure 2-19. The content of the airlines table in the My_DB database on the MySQL
database server

To load a table from MySQL into DuckDB, here are the steps you need to take:

1. Create a DuckDB connection.
2. Create a MySQL connection.
3. Retrieve the data from the MySQL server.
4. Create a table in the DuckDB database with the same schema as that of the table

in MySQL.
5. Iterate through each row obtained from MySQL and insert it into the DuckDB

table.
6. Close the connections to MySQL and DuckDB.

To connect to a MySQL database using Python, you need to install the mysql-
connector-python library using:

!pip install mysql-connector-python

Loading Data from Different Data Sources and Formats | 45

The following code snippet implements these steps:
import mysql.connector
import duckdb

MySQL connection information
mysql_host = 'localhost'
mysql_user = 'user1'
mysql_password = 'password'
mysql_database = 'My_DB'
mysql_table = 'airlines'

create a DuckDB connection
duckdb_conn = duckdb.connect()

connect to MySQL
mysql_conn = mysql.connector.connect(
 host = mysql_host,
 user = mysql_user,
 password = mysql_password,
 database = mysql_database
)

create a cursor for MySQL
mysql_cursor = mysql_conn.cursor()

query data from MySQL
mysql_query = f'SELECT * FROM {mysql_table}'
mysql_cursor.execute(mysql_query)

create a DuckDB table with the same schema as MySQL
duckdb_create_table_query = \
 f'CREATE TABLE airlines (IATA_CODE VARCHAR(2), AIRLINES VARCHAR)'
duckdb_conn.execute(duckdb_create_table_query)

get column names from MySQL result
mysql_columns = [column[0] for column in mysql_cursor.description]

fetch data from MySQL and insert into DuckDB table
duckdb_insert_query = \
 f'INSERT INTO airlines VALUES ({", ".join(["?" for _ in mysql_columns])})'
for row in mysql_cursor.fetchall():
 duckdb_conn.execute(duckdb_insert_query, row)

query the data in DuckDB
display(duckdb_conn.execute('SELECT * FROM airlines').df())

close the MySQL and DuckDB connections
mysql_cursor.close()
mysql_conn.close()
duckdb_conn.close()

46 | Chapter 2: Importing Data into DuckDB

Figure 2-20 shows the results of the airlines table stored in DuckDB.

Figure 2-20. The content of the airlines table loaded from MySQL

Alternatively, you can use the mysql extension and load the table from the database in
MySQL directly using DuckDB:

import duckdb

create a DuckDB connection
conn = duckdb.connect()

install and load the MySQL extension
conn.execute('INSTALL mysql')
conn.execute('LOAD mysql')

define MySQL connection parameters
mysql_host = 'localhost'
mysql_user = 'user1'
mysql_password = 'password'
mysql_database = 'My_DB'
mysql_table = 'airlines'
mysql_port = 3306

create a MySQL connection
mysql_connection = \
 f'mysql://{mysql_user}:{mysql_password}@{mysql_host}/{mysql_database}'

Loading Data from Different Data Sources and Formats | 47

attach the MySQL database with authentication
attach_command = f'''
 ATTACH 'host={mysql_host}
 user={mysql_user}
 password={mysql_password}
 port={mysql_port}
 database={mysql_database}'
 AS mysqldb (TYPE MYSQL);
'''
conn.execute(attach_command)
conn.execute('USE mysqldb;')

display(conn.execute(f'''
 SELECT * FROM {mysql_table}
''').df())

display(conn.execute(f'''
 show tables
''').df())

close the DuckDB connection
conn.close()

The output is the same as Figure 2-20.

So which method is better? Here’s a general rule of thumb:

• If you need simplicity, better performance, and direct access to MySQL data with
minimal setup, the mysql extension is the better choice.

• If you need greater flexibility in controlling the schema, performing transforma‐
tions, or dealing with environments where the extension cannot be used, the
manual method is more appropriate.

For most use cases involving frequent data access and analysis, the mysql extension
will likely be the better option due to its efficiency and ease of use.

Summary
In this chapter, you learned techniques to load different types of data into your
DuckDB database:

CSV files
For large datasets, consider using the COPY command for optimal performance.

Parquet files
Parquet is an efficient file format, and importing data from it into DuckDB can
be efficient too.

48 | Chapter 2: Importing Data into DuckDB

Excel files
DuckDB doesn’t have direct support for Excel files, but you can either use the
special extension to load Excel data into DuckDB databases or convert your
Excel files into CSV before loading into DuckDB.

MySQL databases
You can create a DuckDB table with the same schema as your MySQL table and
the load the data into DuckDB. Alternatively, you can use the mysql extension
supported by DuckDB.

With this knowledge, you are now ready to learn the various ways to manipulate the
data in your DuckDB databases using SQL, which is the focus of the next chapter. See
you in the next chapter!

Summary | 49

CHAPTER 3

A Primer on SQL

In Chapter 2, you learned how to import various data sources (CSV, Parquet, Excel,
and databases) into DuckDB through the Python programming language. With that
knowledge, the next step for you to work on is manipulating the data loaded into
DuckDB using SQL. After all, using SQL in DuckDB is one of the main features of
DuckDB. And so in this chapter, our focus is on using SQL in DuckDB. Specifically,
this chapter will focus on two areas:

• Using the DuckDB CLI (command line interface) to work with DuckDB data‐
bases without the need to use a programming language such as Python.

• Using SQL with DuckDB databases. Rather than providing an exhaustive explo‐
ration of SQL, our focus will be on learning through practical examples.

With that, let’s dive right in!

Using the DuckDB CLI
The DuckDB CLI is a tool that allows users to interact with DuckDB directly from
the command line. In Chapter 2, you saw how to interact with DuckDB using
Python. However, there are times where you simply want to work with the databases
directly—such as when creating new tables, importing data from different data sour‐
ces, and performing database-related tasks. In such instances, it is much more effi‐
cient to use the DuckDB CLI directly.

The DuckDB CLI has been precompiled for the various platforms: Windows, macOS,
and Linux. See the installation page for instructions on installing the DuckDB CLI for
your platform (see Figure 3-1).

51

https://oreil.ly/mJjZn

Figure 3-1. Downloading the DuckDB CLI

For example, for macOS, you can install (no admin privileges required) the DuckDB
CLI using a package manager such as brew:

$ brew install duckdb

Homebrew, often referred to as “brew,” is a popular package man‐
ager for macOS and Linux. It simplifies the process of installing,
updating, and managing software packages and dependencies on
these operating systems. You can install brew on your machine
using the following command (one single line):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com
/Homebrew/install/HEAD/install.sh)"

52 | Chapter 3: A Primer on SQL

For Windows, you can download the DuckDB CLI using the Windows Package Man‐
ager at a command prompt:

winget install DuckDB.cli

Once the DuckDB CLI is downloaded, you can use it with the following syntax:
$ duckdb [OPTIONS] [FILENAME]

You can get the full list of command-line argument options from the DuckDB web‐
site. Alternatively, you can use the -help option to display a list of options:

$ duckdb -help
Usage: duckdb [OPTIONS] FILENAME [SQL]
FILENAME is the name of an DuckDB database. A new database is created
if the file does not previously exist.
OPTIONS include:
 -append append the database to the end of the file
 -ascii set output mode to 'ascii'
 -bail stop after hitting an error
 -batch force batch I/O
 -box set output mode to 'box'
 -column set output mode to 'column'
 -cmd COMMAND run "COMMAND" before reading stdin
 -c COMMAND run "COMMAND" and exit
 -csv set output mode to 'csv'
 -echo print commands before execution
 -init FILENAME read/process named file
 -[no]header turn headers on or off
 -help show this message
 -html set output mode to HTML
 -interactive force interactive I/O
 -json set output mode to 'json'
 -line set output mode to 'line'
 -list set output mode to 'list'
 -markdown set output mode to 'markdown'
 -newline SEP set output row separator. Default: '\n'
 -nofollow refuse to open symbolic links to database files
 -no-stdin exit after processing options instead of reading stdin
 -nullvalue TEXT set text string for NULL values. Default ''
 -quote set output mode to 'quote'
 -readonly open the database read-only
 -s COMMAND run "COMMAND" and exit
 -separator SEP set output column separator. Default: '|'
 -stats print memory stats before each finalize
 -table set output mode to 'table'
 -unredacted allow printing unredacted secrets
 -unsigned allow loading of unsigned extensions
 -version show DuckDB version

If you don’t supply a FILENAME argument, the DuckDB CLI will open a temporary in-
memory database and display the version number, information on the connection,
and a prompt starting with a D:

$ duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
Connected to a transient in-memory database.

Using the DuckDB CLI | 53

https://oreil.ly/G2PjO
https://oreil.ly/G2PjO

Use ".open FILENAME" to reopen on a persistent database.
D

When you create an in-memory database, everything is lost when you exit the
DuckDB CLI. So this option is only useful if you want to experiment with how
DuckDB works.

To exit the DuckDB CLI, press Ctrl+C twice on macOS and Linux, or press Ctrl+C
once on Windows.

A more common use of the DuckDB CLI is with a persistent database. This ensures
data is saved across sessions, allowing for long-term use and reuse without needing to
reload or reprocess data every time.

The following example shows how you can use the DuckDB CLI together with a per‐
sistent database (named mydb.duckdb):

$ duckdb mydb.duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
D

Now that the database has been created, you can learn how to import data into it.

Importing Data into DuckDB
When you are in the DuckDB CLI, you can import data into your database by first
creating a table and then importing data from a CSV file.

The following statement assumes that there is currently a file named airlines.csv in the
same directory from which you launched the DuckDB CLI:

D CREATE TABLE airlines as FROM airlines.csv;

Chapter 2 discussed the various functions that you can use to load
files from data sources into DuckDB. For this chapter, the focus is
on manipulating tables using SQL. So for simplicity, we will
directly read a CSV file into DuckDB.

Please ensure that your command ends with a semicolon (;). Omitting it will prompt
the DuckDB CLI to await further statements upon pressing Enter. Execution will only
occur once the semicolon is added.

If you run the above on a persistent database (e.g., mydb.duckdb), the persistent data‐
base will be created in the file system.

This statement creates a table named airlines in the database, and then reads the
airlines.csv file and imports it into the airlines table. To confirm the existence of the
airlines table, you can use the show tables statement:

54 | Chapter 3: A Primer on SQL

D show tables;
┌──────────┐
│ name │
│ varchar │
├──────────┤
│ airlines │
└──────────┘

To verify that the CSV file has indeed been loaded into the airlines table, use the
SELECT statement:

D SELECT * FROM airlines;
┌───────────┬──────────────────────────────┐
│ IATA_CODE │ AIRLINE │
│ varchar │ varchar │
├───────────┼──────────────────────────────┤
│ UA │ United Air Lines Inc. │
│ AA │ American Airlines Inc. │
│ US │ US Airways Inc. │
│ F9 │ Frontier Airlines Inc. │
│ B6 │ JetBlue Airways │
│ OO │ Skywest Airlines Inc. │
│ AS │ Alaska Airlines Inc. │
│ NK │ Spirit Air Lines │
│ WN │ Southwest Airlines Co. │
│ DL │ Delta Air Lines Inc. │
│ EV │ Atlantic Southeast Airlines │
│ HA │ Hawaiian Airlines Inc. │
│ MQ │ American Eagle Airlines Inc. │
│ VX │ Virgin America │
├───────────┴──────────────────────────────┤
│ 14 rows 2 columns │
└──┘

The DuckDB CLI provides a set of commands to perform administrative tasks,
known as the dot commands. In the next section, you will see how you can use some
of them to administer your database.

Dot Commands
Within the DuckDB CLI, you can execute commands that are specific to the DuckDB
CLI environment using the dot (.) command. For example, if you want to view the list
of dot commands available within the DuckDB CLI, use the .help command:

D .help
.bail on|off Stop after hitting an error. Default OFF
.binary on|off Turn binary output on or off. Default OFF
.cd DIRECTORY Change the working directory to DIRECTORY
.changes on|off Show number of rows changed by SQL
.check GLOB Fail if output since .testcase does not match
.columns Column-wise rendering of query results
.constant ?COLOR? Sets the syntax highlighting color used for
 constant values
.constantcode ?CODE? Sets the syntax highlighting terminal code
 used for constant values
.databases List names and files of attached databases
.dump ?TABLE? Render database content as SQL

Using the DuckDB CLI | 55

.echo on|off Turn command echo on or off

.excel Display the output of next command in spreadsheet

.exit ?CODE? Exit this program with return-code CODE

.explain ?on|off|auto? Change the EXPLAIN formatting mode. Default: auto

.fullschema ?--indent? Show schema and the content of sqlite_stat tables

.headers on|off Turn display of headers on or off

.help ?-all? ?PATTERN? Show help text for PATTERN

.highlight [on|off] Toggle syntax highlighting in the shell on/off

.import FILE TABLE Import data from FILE into TABLE

.indexes ?TABLE? Show names of indexes

.keyword ?COLOR? Sets the syntax highlighting color used for keywords

.keywordcode ?CODE? Sets the syntax highlighting terminal code used
 for keywords
.lint OPTIONS Report potential schema issues.
.log FILE|off Turn logging on or off. FILE can be stderr/stdout
.maxrows COUNT Sets the maximum number of rows for display
 (default: 40). Only for duckbox mode.
.maxwidth COUNT Sets the maximum width in characters. 0 defaults
 to terminal width. Only for duckbox mode.
.mode MODE ?TABLE? Set output mode
.nullvalue STRING Use STRING in place of NULL values
.once ?OPTIONS? ?FILE? Output for the next SQL command only to FILE
.open ?OPTIONS? ?FILE? Close existing database and reopen FILE
.output ?FILE? Send output to FILE or stdout if FILE is omitted
.parameter CMD ... Manage SQL parameter bindings
.print STRING... Print literal STRING
.prompt MAIN CONTINUE Replace the standard prompts
.quit Exit this program
.read FILE Read input from FILE
.rows Row-wise rendering of query results (default)
.schema ?PATTERN? Show the CREATE statements matching PATTERN
.separator COL ?ROW? Change the column and row separators
.sha3sum ... Compute a SHA3 hash of database content
.shell CMD ARGS... Run CMD ARGS... in a system shell
.show Show the current values for various settings
.system CMD ARGS... Run CMD ARGS... in a system shell
.tables ?TABLE? List names of tables matching LIKE pattern TABLE
.testcase NAME Begin redirecting output to 'testcase-out.txt'
.timer on|off Turn SQL timer on or off
.width NUM1 NUM2 ... Set minimum column widths for columnar output

While normal DuckDB queries require a semicolon at the end of
each statement, dot commands do not.

The following sections highlight some of the commonly used dot commands.

.database

To view the current database in use, use the .database command:
D .database
mydb: mydb.duckdb

56 | Chapter 3: A Primer on SQL

This command shows that the current database in use is mydb.duckdb, with the alias
mydb.

If you initially run the DuckDB CLI without a filename, you will see the following
when you use the .database command:

D .database
memory:

This indicates that you are now using an in-memory database.

.open
Say you started the DuckDB CLI with no filename specified, and then later you deci‐
ded that you want to open an existing (or new) DuckDB database. You can do so by
using the .open command:

% duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
D .open mydb2.duckdb
D CREATE TABLE airports as FROM airports.csv;
D show tables;
┌──────────┐
│ name │
│ varchar │
├──────────┤
│ airports │
└──────────┘

In this example, we first launched the DuckDB CLI without any filename. Then, we
opened the database named mydb2.duckdb using the .open command. Because
mydb2.duckdb is a new database file, it will be created in the same directory where
you launched the DuckDB CLI.

We then loaded the airports.csv file into a newly created table named airports.

The .open command closes the existing database and opens a new one. If you want to
keep the current database open and work with an additional one, use the ATTACH
statement:

D ATTACH 'mydb.duckdb';

You can optionally specify an alias for the database that you are attaching. The fol‐
lowing example is the same as the previous statement. If you don’t specify the alias, it
will use the filename as the alias by default:

D ATTACH 'mydb.duckdb' as mydb;

Using the DuckDB CLI | 57

You must enclose the filename in single or double quotes.

You can now verify that you have two databases:
D .database
mydb2: mydb2.duckdb
mydb: mydb.duckdb

The first database that is listed is the currently active one. To use a particular data‐
base, use the USE statement and specify the alias for the database you want to use:

D USE mydb2;

.table

If you want to quickly look at all the tables you have in your databases, use the .table
command:

D .table
airlines airports

This command shows that there are two tables currently in the two databases—
airlines and airports. This is useful when you have multiple tables in your database.

.dump

If you want to render the content of a table as SQL statements, use the .dump
command:

D .dump airlines
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE airlines(IATA_CODE VARCHAR, AIRLINE VARCHAR);;
INSERT INTO airlines VALUES('UA','United Air Lines Inc.');
INSERT INTO airlines VALUES('AA','American Airlines Inc.');
INSERT INTO airlines VALUES('US','US Airways Inc.');
INSERT INTO airlines VALUES('F9','Frontier Airlines Inc.');
INSERT INTO airlines VALUES('B6','JetBlue Airways');
INSERT INTO airlines VALUES('OO','Skywest Airlines Inc.');
INSERT INTO airlines VALUES('AS','Alaska Airlines Inc.');
INSERT INTO airlines VALUES('NK','Spirit Air Lines');
INSERT INTO airlines VALUES('WN','Southwest Airlines Co.');
INSERT INTO airlines VALUES('DL','Delta Air Lines Inc.');
INSERT INTO airlines VALUES('EV','Atlantic Southeast Airlines');
INSERT INTO airlines VALUES('HA','Hawaiian Airlines Inc.');
INSERT INTO airlines VALUES('MQ','American Eagle Airlines Inc.');
INSERT INTO airlines VALUES('VX','Virgin America');
COMMIT;

58 | Chapter 3: A Primer on SQL

This command dumps the airlines table as a series of SQL statements. This is useful if
you need to import the content of a table in DuckDB into a table of another database
(such as MySQL).

The table you are trying to dump must be in the database that you
are currently using. If it’s not in the current database, use the USE
statement to switch to the correct database.

.read

The .read command in DuckDB CLI is used to execute SQL commands from a file.
Here’s an example of how to use it. Suppose you have a text file named commands.sql
with the following content:

CREATE TABLE airports2 as FROM airports.csv;
SELECT * FROM airports2;

You can use the .read command to read and execute the commands stored in the
commands.sql file:

D .read commands.sql

You should now see the content of the airports2 table:
┌───────────┬──────────────────────┬───┬─────────┬──────────┬────────────┐
│ IATA_CODE │ AIRPORT │ … │ COUNTRY │ LATITUDE │ LONGITUDE │
│ varchar │ varchar │ │ varchar │ double │ double │
├───────────┼──────────────────────┼───┼─────────┼──────────┼────────────┤
│ ABE │ Lehigh Valley Inte… │ … │ USA │ 40.65236 │ -75.4404 │
│ ABI │ Abilene Regional A… │ … │ USA │ 32.41132 │ -99.6819 │
│ ABQ │ Albuquerque Intern… │ … │ USA │ 35.04022 │ -106.60919 │
...
│ YAK │ Yakutat Airport │ … │ USA │ 59.50336 │ -139.66023 │
│ YUM │ Yuma International… │ … │ USA │ 32.65658 │ -114.60597 │
├───────────┴──────────────────────┴───┴─────────┴──────────┴────────────┤
│ 322 rows (40 shown) 7 columns (5 shown) │
└──┘

Next, you will learn how to persist in-memory databases to disk.

Persisting the In-Memory Database on Disk
Suppose you use an in-memory database with the DuckDB CLI and load the
airports.csv into a table named airports:

% duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
D CREATE TABLE airports as FROM read_csv_auto(airports.csv);

Using the DuckDB CLI | 59

Remember, in-memory databases will be destroyed when you exit the DuckDB CLI.
To save them, you need to persist them to disk. To do so, use the EXPORT DATABASE
statement:

D EXPORT DATABASE 'airports_db';

This will create a folder named airports_db in the current directory (where you
launched the DuckDB CLI), with the files shown in Figure 3-2.

Figure 3-2. The exported database and its files

Within this folder you will find the following files:

airports.csv
The CSV file from which you loaded the table.

load.sql
The statement to load the CSV file into the table. It looks like this:

COPY airports FROM 'airports_db/airports.csv' (FORMAT 'csv', quote '"',
delimiter ',', header 1);

schema.sql
The SQL statement to create the table in the database. It looks like this:

CREATE TABLE airports(IATA_CODE VARCHAR, AIRPORT VARCHAR,
 CITY VARCHAR, STATE VARCHAR, COUNTRY VARCHAR, LATITUDE DOUBLE,
 LONGITUDE DOUBLE);

To load the files contained within the airports_db folder into a new DuckDB database,
use the following commands (you must run the DuckDB CLI in the directory that
contains the airports_db folder):

$ duckdb mydb3.duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
D IMPORT DATABASE 'airports_db';
D show tables;
┌──────────┐
│ name │
│ varchar │
├──────────┤
│ airports │
└──────────┘

60 | Chapter 3: A Primer on SQL

Now the mydb3.duckdb file contains the airports table.

In the next section, you’ll learn the syntax of DuckDB SQL and how you can use it to
manipulate tables in your databases.

DuckDB SQL Primer
Now that you’ve familiarized yourself with the DuckDB CLI for managing databases
and tables, let’s shift our focus to delve deeper into SQL. Rather than delving into the
syntax of SQL word by word, a more effective approach to learning SQL is through
practical examples. Hence, for this section, we will construct a database for a mini-
library. This library database has four tables:

Authors
Contains information about authors, such as name, nationality, and birth year.

Books
Contains information about books, such as title, author, genre, and publication
year.

Borrowers
Contains information about book borrowers, such as name, email, and date since
becoming members.

Borrowings
Keeps track of books borrowed by people and contains details such as borrowing
date, return date, and status of borrowing.

DuckDB is largely compatible with SQL standards (particularly
SQL:1999) and follows typical SQL syntax for most operations. So,
for the most part, the following discussions on DuckDB SQL
should be similar to standard SQL.

Figure 3-3 shows the schema of the tables in the DuckDB database.

DuckDB SQL Primer | 61

Figure 3-3. The schema of the various tables in the database

In the next few sections, you will learn how to use the DuckDB CLI to create the vari‐
ous tables in the database. You will also learn how to populate them with sample
records and use SQL to perform various processes such as retrieval, updating, and
deletion.

Creating a Database
Using the DuckDB CLI, create a DuckDB database using the following command:

% duckdb library.duckdb
v0.10.1 4a89d97db8
Enter ".help" for usage hints.
D

The library in this example is named library.duckdb. We will next create the various
tables in the DuckDB database.

62 | Chapter 3: A Primer on SQL

Creating Tables
Let’s first create the four tables using SQL:

D CREATE TABLE Authors (
 author_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 nationality TEXT,
 birth_year INTEGER
);

D CREATE TABLE Borrowers (
 borrower_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT,
 member_since DATE
);

D CREATE TABLE Books (
 book_id INTEGER PRIMARY KEY,
 title TEXT NOT NULL,
 author_id INTEGER NOT NULL,
 genre TEXT,
 publication_year INTEGER,
 FOREIGN KEY (author_id) REFERENCES Authors(author_id)
);

D CREATE TABLE Borrowings (
 borrowing_id INTEGER PRIMARY KEY,
 book_id INTEGER NOT NULL,
 borrower_id INTEGER NOT NULL,
 borrow_date DATE,
 return_date DATE,
 status TEXT,
 FOREIGN KEY (book_id) REFERENCES Books(book_id),
 FOREIGN KEY (borrower_id) REFERENCES Borrowers(borrower_id)
);

To create a table in SQL, you use the CREATE TABLE statement followed by the table
name and a list of columns with their data types and optional constraints.

The FOREIGN KEY and REFERENCES keywords are used in SQL to establish relation‐
ships between tables. They enforce referential integrity for the data in the tables. For
example, in the following SQL statement, which you used to create the Books table:

FOREIGN KEY (author_id) REFERENCES Authors(author_id)

The FOREIGN KEY statement indicates that the value in the author_id column REFER
ENCES the author_id column in the Authors table. In other words, it ensures that the
author_id you specify in a record in the Books table must be available in the
author_id column of the Authors table.

DuckDB SQL Primer | 63

Let’s confirm that the tables are created:
D show tables;
┌────────────┐
│ name │
│ varchar │
├────────────┤
│ Authors │
│ Books │
│ Borrowers │
│ Borrowings │
└────────────┘

If you can see the above output, the tables are created correctly.

Viewing the Schemas of Tables
To view the schema of a table, you can use the DESCRIBE statement. For example, let’s
look at the schema of the Authors table:

D DESCRIBE Authors;
┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │ null │ key │ default │ extra │
│ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ author_id │ INTEGER │ NO │ PRI │ │ │
│ name │ VARCHAR │ NO │ │ │ │
│ nationality │ VARCHAR │ YES │ │ │ │
│ birth_year │ INTEGER │ YES │ │ │ │
└─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┘

Alternatively, you can use the SHOW statement:
D SHOW Authors;

If you want to view the schema of the entire database, use the .schema command:
D .schema
CREATE TABLE Authors(author_id INTEGER PRIMARY KEY, "name" VARCHAR
NOT NULL, nationality VARCHAR, birth_year INTEGER);
CREATE TABLE Books(book_id INTEGER PRIMARY KEY, title VARCHAR NOT NULL,
author_id INTEGER NOT NULL, genre VARCHAR, publication_year INTEGER,
FOREIGN KEY (author_id) REFERENCES Authors(author_id));
CREATE TABLE Borrowers(borrower_id INTEGER PRIMARY KEY, "name" VARCHAR
NOT NULL, email VARCHAR, member_since DATE);
CREATE TABLE Borrowings(borrowing_id INTEGER PRIMARY KEY, book_id
INTEGER NOT NULL, borrower_id INTEGER NOT NULL, borrow_date DATE,
return_date DATE, status VARCHAR, FOREIGN KEY (book_id) REFERENCES
Books(book_id), FOREIGN KEY (borrower_id) REFERENCES
Borrowers(borrower_id));

Dropping a Table
If you need to drop (delete) a table in DuckDB, use the DROP TABLE statement. For
example, if you have created a table named OverdueBorrowers that is no longer
needed, you can drop it as in the following example:

64 | Chapter 3: A Primer on SQL

D CREATE TABLE OverdueBorrowers (
 borrower_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT,
 member_since DATE
);

D DROP TABLE OverdueBorrowers;

If you try to drop a table that is referenced by another table, you’ll get an error. For
example, if you try to drop the Authors table, you’ll see the error:

Catalog Error: Could not drop the table because this table is
main key table of the table "Books"

This is because the Authors table contains the author_id column that is referenced in
the Books table.

In the next section, you will learn how to use SQL to work with tables.

Working with Tables
Now that you have seen how to create the database and the tables within it, it’s time to
populate the tables with some sample records. In the following sections, you’ll learn
how to:

• Populate tables with records
• Update records within a table
• Delete records within a table
• Query tables
• Join tables
• Perform aggregation of data in tables
• Perform analytics of data in tables

The first four operations are usually referred to as CRUD opera‐
tions—create, retrieve, update, and delete.

Let’s start with how to populate tables.

Populating Tables with Rows
With the Authors table created, let’s now insert some rows into it with some author
data:

Working with Tables | 65

D INSERT INTO Authors (author_id, name, nationality, birth_year)
 VALUES
 (1, 'Jane Austen', 'British', 1775),
 (2, 'Charles Dickens', 'British', 1812),
 (3, 'Agatha Christie', 'British', 1890),
 (4, 'J.K. Rowling', 'British', 1965),
 (5, 'Tolkien', 'British', 1892);

This statement inserts five rows into the Authors table, with each value enclosed
within parentheses and separated by commas.

The following statement inserts a single row into the Authors table:
D INSERT INTO Authors (author_id, name, nationality, birth_year)
 VALUES (6, 'Mark Twain', 'American', 1835);

With the records added to the Authors table, you can now retrieve them using the
SELECT statement:

D SELECT * FROM Authors;
┌───────────┬─────────────────┬─────────────┬────────────┐
│ author_id │ name │ nationality │ birth_year │
│ int32 │ varchar │ varchar │ int32 │
├───────────┼─────────────────┼─────────────┼────────────┤
│ 1 │ Jane Austen │ British │ 1775 │
│ 2 │ Charles Dickens │ British │ 1812 │
│ 3 │ Agatha Christie │ British │ 1890 │
│ 4 │ J.K. Rowling │ British │ 1965 │
│ 5 │ Tolkien │ British │ 1892 │
│ 6 │ Mark Twain │ American │ 1835 │
└───────────┴─────────────────┴─────────────┴────────────┘

With the Authors table populated, let’s now populate the other tables. First, the Bor‐
rowers table:

D INSERT INTO Borrowers (borrower_id, name, email, member_since)
 VALUES
 (1, 'John Smith', 'john.smith@example.com', '2022-01-01'),
 (2, 'Emma Johnson', 'emma.johnson@example.com', '2021-12-15'),
 (3, 'Michael Brown', 'michael.brown@example.com', '2022-02-20'),
 (4, 'Sophia Wilson', 'sophia.wilson@example.com', '2022-03-10'),
 (5, 'William Taylor', 'william.taylor@example.com', '2022-04-05'),
 (6, 'Jane Doe', 'jane.doe@example.com', '2022-03-05');

D SELECT * FROM Borrowers;
┌─────────────┬────────────────┬────────────────────────────┬──────────────┐
│ borrower_id │ name │ email │ member_since │
│ int32 │ varchar │ varchar │ date │
├─────────────┼────────────────┼────────────────────────────┼──────────────┤
│ 1 │ John Smith │ john.smith@example.com │ 2022-01-01 │
│ 2 │ Emma Johnson │ emma.johnson@example.com │ 2021-12-15 │
│ 3 │ Michael Brown │ michael.brown@example.com │ 2022-02-20 │
│ 4 │ Sophia Wilson │ sophia.wilson@example.com │ 2022-03-10 │
│ 5 │ William Taylor │ william.taylor@example.com │ 2022-04-05 │
│ 6 │ Jane Doe │ jane.doe@example.com │ 2022-03-05 │
└─────────────┴────────────────┴────────────────────────────┴──────────────┘

66 | Chapter 3: A Primer on SQL

Then, populate the Books table:
D INSERT INTO Books (book_id, title, author_id, genre, publication_year)
 VALUES
 (1, 'Pride and Prejudice', 1, 'Classic', 1813),
 (2, 'Oliver Twist', 2, 'Novel', 1837),
 (3, 'Murder on the Orient Express', 3, 'Mystery', 1934),
 (4, 'Harry Potter and the Philosopher''s Stone', 4, 'Fantasy', 1997),
 (5, 'The Hobbit', 5, 'Fantasy', 1937);

D SELECT * FROM Books;
┌─────────┬───────────────────────────┬───────────┬─────────┬──────────────────┐
│ book_id │ title │ author_id │ genre │ publication_year │
│ int32 │ varchar │ int32 │ varchar │ int32 │
├─────────┼───────────────────────────┼───────────┼─────────┼──────────────────┤
│ 1 │ Pride and Prejudice │ 1 │ Classic │ 1813 │
│ 2 │ Oliver Twist │ 2 │ Novel │ 1837 │
│ 3 │ Murder on the Orient Ex… │ 3 │ Mystery │ 1934 │
│ 4 │ Harry Potter and the Ph… │ 4 │ Fantasy │ 1997 │
│ 5 │ The Hobbit │ 5 │ Fantasy │ 1937 │
└─────────┴───────────────────────────┴───────────┴─────────┴──────────────────┘

Remember that the author_id column in the Books table references the author_id col‐
umn in the Authors table. Hence, the value for author_id must be a valid author id—
1 to 6 in this example.

Finally, populate the Borrowings table:
D INSERT INTO Borrowings (borrowing_id, book_id, borrower_id,
 borrow_date, return_date, status)
 VALUES
 (1, 1, 1, '2022-04-10', '2022-04-25', 'Returned'),
 (2, 3, 2, '2022-03-20', NULL, 'On Loan'),
 (3, 4, 3, '2022-04-05', NULL, 'On Loan'),
 (4, 2, 4, '2022-04-15', NULL, 'On Loan'),
 (5, 5, 5, '2022-03-30', '2022-04-20', 'Returned'),
 (6, 1, 3, '2022-04-26', NULL, 'On Loan');

D SELECT * FROM Borrowings;
┌──────────────┬─────────┬─────────────┬─────────────┬─────────────┬──────────┐
│ borrowing_id │ book_id │ borrower_id │ borrow_date │ return_date │ status │
│ int32 │ int32 │ int32 │ date │ date │ varchar │
├──────────────┼─────────┼─────────────┼─────────────┼─────────────┼──────────┤
│ 1 │ 1 │ 1 │ 2022-04-10 │ 2022-04-25 │ Returned │
│ 2 │ 3 │ 2 │ 2022-03-20 │ │ On Loan │
│ 3 │ 4 │ 3 │ 2022-04-05 │ │ On Loan │
│ 4 │ 2 │ 4 │ 2022-04-15 │ │ On Loan │
│ 5 │ 5 │ 5 │ 2022-03-30 │ 2022-04-20 │ Returned │
│ 6 │ 1 │ 3 │ 2022-04-26 │ │ On Loan │
└──────────────┴─────────┴─────────────┴─────────────┴─────────────┴──────────┘

Again, the book_id and borrower_id columns reference the book_id column in the
Books table and the borrower_id column in the Borrowers table, respectively. Hence,
for book_id the values must be from 1 to 5, and for borrower_id the values must be
from 1 to 6.

Working with Tables | 67

Updating Rows
To update a specific row in a table, use the UPDATE statement together with keywords
like SET and WHERE. For this example, let’s assume you want to modify the return sta‐
tus of a particular book. Here are the details you want to modify:

• borrowing_id is 3
• Set status to “Returned”
• Set return_date to 2022-04-05

You can now use the following SQL statement to modify the record:
D UPDATE Borrowings
 SET return_date = '2022-04-05',
 status = 'Returned'
 WHERE borrowing_id = 3;

To be sure that the updates are performed correctly, let’s view the updated Borrowings
table again:

D SELECT * FROM Borrowings;
┌──────────────┬─────────┬─────────────┬─────────────┬─────────────┬──────────┐
│ borrowing_id │ book_id │ borrower_id │ borrow_date │ return_date │ status │
│ int32 │ int32 │ int32 │ date │ date │ varchar │
├──────────────┼─────────┼─────────────┼─────────────┼─────────────┼──────────┤
│ 1 │ 1 │ 1 │ 2022-04-10 │ 2022-04-25 │ Returned │
│ 2 │ 3 │ 2 │ 2022-03-20 │ │ On Loan │
│ 3 │ 4 │ 3 │ 2022-04-05 │ 2022-04-05 │ Returned │
│ 4 │ 2 │ 4 │ 2022-04-15 │ │ On Loan │
│ 5 │ 5 │ 5 │ 2022-03-30 │ 2022-04-20 │ Returned │
│ 6 │ 1 │ 3 │ 2022-04-26 │ │ On Loan │
└──────────────┴─────────┴─────────────┴─────────────┴─────────────┴──────────┘

Deleting Rows
To delete a record, you can use the DELETE statement together with the WHERE key‐
word to specify the condition. For example, the following statement deletes the
record from the Borrowers table where the borrower name is “Jane Doe”:

D DELETE FROM Borrowers
 WHERE name = 'Jane Doe';

You can now view the records from the Borrowers table to confirm that the record has
indeed been deleted:

68 | Chapter 3: A Primer on SQL

D SELECT * FROM borrowers;
┌─────────────┬────────────────┬────────────────────────────┬──────────────┐
│ borrower_id │ name │ email │ member_since │
│ int32 │ varchar │ varchar │ date │
├─────────────┼────────────────┼────────────────────────────┼──────────────┤
│ 1 │ John Smith │ john.smith@example.com │ 2022-01-01 │
│ 2 │ Emma Johnson │ emma.johnson@example.com │ 2021-12-15 │
│ 3 │ Michael Brown │ michael.brown@example.com │ 2022-02-20 │
│ 4 │ Sophia Wilson │ sophia.wilson@example.com │ 2022-03-10 │
│ 5 │ William Taylor │ william.taylor@example.com │ 2022-04-05 │
└─────────────┴────────────────┴────────────────────────────┴──────────────┘

Of course, there are other ways of deleting a record. A more common one is to delete
a record based on its borrower_id, like the following example shows (it is also delet‐
ing the Jane Doe record):

D DELETE FROM Borrowers
 WHERE borrower_id = 6;

If you want to delete a record whose name contains the word “Jane”, you can use the
LIKE keyword together with the % wildcards:

D DELETE FROM Borrowers
 WHERE name LIKE '%Jane%';

The % symbols are wildcards that match any characters before and after “Jane” in the
name column, allowing you to delete rows where the name contains “Jane” anywhere
in the string.

Querying Tables
So far you have seen how to perform queries with your tables using the SELECT state‐
ment. Let’s now dive into the SELECT statement in more detail and use it to perform
more sophisticated queries.

For a start, let’s retrieve all the authors who were born more than 100 years ago:
D SELECT *
 FROM Authors
 WHERE (YEAR(CURRENT_DATE) - birth_year) > 100;
┌───────────┬─────────────────┬─────────────┬────────────┐
│ author_id │ name │ nationality │ birth_year │
│ int32 │ varchar │ varchar │ int32 │
├───────────┼─────────────────┼─────────────┼────────────┤
│ 1 │ Jane Austen │ British │ 1775 │
│ 2 │ Charles Dickens │ British │ 1812 │
│ 3 │ Agatha Christie │ British │ 1890 │
│ 5 │ Tolkien │ British │ 1892 │
│ 6 │ Mark Twain │ American │ 1835 │
└───────────┴─────────────────┴─────────────┴────────────┘

Working with Tables | 69

The CURRENT_DATE function returns the current date (at the time of writing it is
2024-04-18). The YEAR function extracts the year from the current date. So, the above
statement obtains the current year, subtracts the birth year of each author, and then
returns all of the rows whose results are greater than 100.

If you want to find all the books belonging to the “Fantasy” genre, you can use the
following statement:

D SELECT *
 FROM Books
 WHERE genre = 'Fantasy';
┌─────────┬───────────────────────────┬───────────┬─────────┬──────────────────┐
│ book_id │ title │ author_id │ genre │ publication_year │
│ int32 │ varchar │ int32 │ varchar │ int32 │
├─────────┼───────────────────────────┼───────────┼─────────┼──────────────────┤
│ 4 │ Harry Potter and the Ph… │ 4 │ Fantasy │ 1997 │
│ 5 │ The Hobbit │ 5 │ Fantasy │ 1937 │
└─────────┴───────────────────────────┴───────────┴─────────┴──────────────────┘

For date columns (such as the member_since column in the Borrowers table), you can
perform date comparisons directly. For example, to find all borrowers who were
members since the start of 2022, you’d use the following statement to retrieve borrow‐
ers who became members on or after January 1, 2022:

D SELECT *
 FROM Borrowers
 WHERE member_since >= '2022-01-01';
┌─────────────┬────────────────┬────────────────────────────┬──────────────┐
│ borrower_id │ name │ email │ member_since │
│ int32 │ varchar │ varchar │ date │
├─────────────┼────────────────┼────────────────────────────┼──────────────┤
│ 1 │ John Smith │ john.smith@example.com │ 2022-01-01 │
│ 3 │ Michael Brown │ michael.brown@example.com │ 2022-02-20 │
│ 4 │ Sophia Wilson │ sophia.wilson@example.com │ 2022-03-10 │
│ 5 │ William Taylor │ william.taylor@example.com │ 2022-04-05 │
└─────────────┴────────────────┴────────────────────────────┴──────────────┘

Joining Tables
Frequently, when extracting data from your database, you’ll need to fetch information
from multiple tables. To do this, you need to perform joins, which allow you to com‐
bine data from different tables based on common columns or relationships between
them. DuckDB supports the following types of joins:

• Left outer join (commonly known as left join)
• Right outer join (commonly known as right join)
• Inner join
• Full join
• Cross join

70 | Chapter 3: A Primer on SQL

Let’s dig into these, starting with left join.

Left join
Let’s use an example to demonstrate the use of left join. Using the Books and Authors
table, we want to list the title of each book and its associated author. In this case, you
can use the following SQL statement:

D SELECT b.book_id, b.title, a.name
 FROM Books b
 LEFT JOIN Authors a ON b.author_id = a.author_id;
┌─────────┬──┬─────────────────┐
│ book_id │ title │ name │
│ int32 │ varchar │ varchar │
├─────────┼──┼─────────────────┤
│ 1 │ Pride and Prejudice │ Jane Austen │
│ 2 │ Oliver Twist │ Charles Dickens │
│ 3 │ Murder on the Orient Express │ Agatha Christie │
│ 4 │ Harry Potter and the Philosopher's Stone │ J.K. Rowling │
│ 5 │ The Hobbit │ Tolkien │
└─────────┴──┴─────────────────┘

In this SQL query, LEFT JOIN Authors a ON b.author_id = a.author_id performs
a left outer join between the Books table (b) and the Authors table (a). This means that
all rows from the Books table (which is the left table) will be included in the result set,
and matching rows from the Authors table will be joined based on the condition
b.author_id = a.author_id.

If there is no matching author for a book (i.e., author_id is NULL in the Authors
table), the columns from the Authors table (a.name in this case) will be NULL in the
result set. Figure 3-4 shows how the left outer join works. In a left outer join, all rows
from the left table are included in the result, regardless of whether they have match‐
ing rows in the right table.

Figure 3-4. Left outer join

Working with Tables | 71

Consider the following example, where we flip the order of the tables and make
Authors the left table:

D SELECT a.name, b.book_id, b.title
 FROM Authors a
 LEFT JOIN Books b on a.author_id = b.author_id;
┌─────────────────┬─────────┬──┐
│ name │ book_id │ title │
│ varchar │ int32 │ varchar │
├─────────────────┼─────────┼──┤
│ Jane Austen │ 1 │ Pride and Prejudice │
│ Charles Dickens │ 2 │ Oliver Twist │
│ Agatha Christie │ 3 │ Murder on the Orient Express │
│ J.K. Rowling │ 4 │ Harry Potter and the Philosopher's Stone │
│ Tolkien │ 5 │ The Hobbit │
│ Mark Twain │ │ │
└─────────────────┴─────────┴──┘

Observe that this time around, the result has six rows. The last row contains the
author Mark Twain, but since he has no books listed in the Books table, the value of
the book_id and title columns are both NULL.

Right join
The right join is similar to the left join, except that the right join includes all rows
from the right table, even if there are no matching rows in the left table. In other
words, the right join ensures that every row from the right table appears in the result
set, with NULL values filled in for columns from the left table where there is no
match. This type of join is useful when you want to prioritize data from the right
table and include all of its rows in the output, regardless of whether they have corre‐
sponding matches in the left table.

Figure 3-5 shows how the right join works.

Figure 3-5. Right outer join

72 | Chapter 3: A Primer on SQL

Here is an example of a right outer join:
D SELECT b.book_id, b.title, a.name
 FROM Books b
 RIGHT JOIN Authors a ON b.author_id = a.author_id;
┌─────────┬──┬─────────────────┐
│ book_id │ title │ name │
│ int32 │ varchar │ varchar │
├─────────┼──┼─────────────────┤
│ 1 │ Pride and Prejudice │ Jane Austen │
│ 2 │ Oliver Twist │ Charles Dickens │
│ 3 │ Murder on the Orient Express │ Agatha Christie │
│ 4 │ Harry Potter and the Philosopher's Stone │ J.K. Rowling │
│ 5 │ The Hobbit │ Tolkien │
│ │ │ Mark Twain │
└─────────┴──┴─────────────────┘

The result contains all the authors in the Authors table.

Inner join
The inner join combines rows from two or more tables based on related columns
between them. It retrieves only the rows where there is a match between the columns
in the specified join condition. Continuing with our example, if you only want to list
titles with matching authors, you’d use an inner join:

D SELECT b.book_id, b.title, a.name
 FROM Books b
 INNER JOIN Authors a ON b.author_id = a.author_id;
┌─────────┬──┬─────────────────┐
│ book_id │ title │ name │
│ int32 │ varchar │ varchar │
├─────────┼──┼─────────────────┤
│ 1 │ Pride and Prejudice │ Jane Austen │
│ 2 │ Oliver Twist │ Charles Dickens │
│ 3 │ Murder on the Orient Express │ Agatha Christie │
│ 4 │ Harry Potter and the Philosopher's Stone │ J.K. Rowling │
│ 5 │ The Hobbit │ Tolkien │
└─────────┴──┴─────────────────┘

This query returns the book_id, title, and author’s name for each book, ensuring that
only books with corresponding authors are included in the result set. An inner join
includes only the rows that have matching values in both tables. Figure 3-6 shows
how inner join works.

Figure 3-6. Inner join

Working with Tables | 73

Full join
The result of a full join will include rows from both tables, regardless of whether
there is a match in the join condition. Here’s an example:

D SELECT b.book_id, b.title, a.name
 FROM Books b
 FULL JOIN Authors a ON b.author_id = a.author_id;
┌─────────┬──┬─────────────────┐
│ book_id │ title │ name │
│ int32 │ varchar │ varchar │
├─────────┼──┼─────────────────┤
│ 1 │ Pride and Prejudice │ Jane Austen │
│ 2 │ Oliver Twist │ Charles Dickens │
│ 3 │ Murder on the Orient Express │ Agatha Christie │
│ 4 │ Harry Potter and the Philosopher's Stone │ J.K. Rowling │
│ 5 │ The Hobbit │ Tolkien │
│ │ │ Mark Twain │
└─────────┴──┴─────────────────┘

A full join includes all rows from both tables in the result set, matching rows where
they exist and including NULL values for unmatched rows. Figure 3-7 shows how full
join works.

Figure 3-7. Full join

Multiple table joins
Now that you understand the use of the various joins, let’s use them to join multiple
tables so that you can explore complex relationships and retrieve comprehensive data
from your database.

First, let’s find all the books borrowed by John Smith:
D SELECT b.title AS book_title
 FROM Books b
 INNER JOIN Borrowings br ON b.book_id = br.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE bw.name = 'John Smith';
┌─────────────────────┐
│ book_title │
│ varchar │
├─────────────────────┤
│ Pride and Prejudice │
└─────────────────────┘

74 | Chapter 3: A Primer on SQL

This SQL statement performs two inner joins—one between the Books and Borrow‐
ings tables based on the book_id column, and one between Borrowings and Borrowers
based on the borrower_id column. The result is then filtered on the name column in
the Borrowers table. The result shows that the book borrowed by John Smith is Pride
and Prejudice.

Next, let’s find all books that have been borrowed and list the borrower’s name along
with the book titles:

D SELECT bw.name AS borrower_name, b.title AS book_title
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id;
┌────────────────┬──┐
│ borrower_name │ book_title │
│ varchar │ varchar │
├────────────────┼──┤
│ Michael Brown │ Pride and Prejudice │
│ Sophia Wilson │ Oliver Twist │
│ Emma Johnson │ Murder on the Orient Express │
│ Michael Brown │ Harry Potter and the Philosopher's Stone │
│ William Taylor │ The Hobbit │
│ John Smith │ Pride and Prejudice │
└────────────────┴──┘

This query is similar to the previous one, except that you also listed the borrower’s
name. However, there is no filtering for a particular borrower this time around.

Your results may not be in the same order as shown. To display
results in a consistent order, add an ORDER BY statement to the
query:

SELECT bw.name AS borrower_name, b.title AS book_title
FROM Borrowings br
INNER JOIN Books b ON br.book_id = b.book_id
INNER JOIN Borrowers bw ON
 br.borrower_id = bw.borrower_id
ORDER BY bw.name, b.title;

The result will now be sorted alphabetically by the borrower’s
name, followed by the book title.

To include the author’s name along with the book title in the results, you can further
join the Authors table with the Books table based on the author_id column:

Working with Tables | 75

D SELECT bw.name AS borrower_name, b.title AS book_title, a.name AS author_name
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 INNER JOIN Authors a ON b.author_id = a.author_id;
┌────────────────┬──┬─────────────────┐
│ borrower_name │ book_title │ author_name │
│ varchar │ varchar │ varchar │
├────────────────┼──┼─────────────────┤
│ Michael Brown │ Pride and Prejudice │ Jane Austen │
│ Sophia Wilson │ Oliver Twist │ Charles Dickens │
│ Emma Johnson │ Murder on the Orient Express │ Agatha Christie │
│ Michael Brown │ Harry Potter and the Philosopher's Stone │ J.K. Rowling │
│ William Taylor │ The Hobbit │ Tolkien │
│ John Smith │ Pride and Prejudice │ Jane Austen │
└────────────────┴──┴─────────────────┘

Let’s now see which are the books borrowed by Michael Brown, the borrowing dates,
and the return status of each book:

D SELECT b.book_id, b.title, br.borrow_date, br.return_date
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE bw.name = 'Michael Brown';
┌─────────┬──┬─────────────┬─────────────┐
│ book_id │ title │ borrow_date │ return_date │
│ int32 │ varchar │ date │ date │
├─────────┼──┼─────────────┼─────────────┤
│ 1 │ Pride and Prejudice │ 2022-04-26 │ │
│ 4 │ Harry Potter and the Philosopher's S… │ 2022-04-05 │ 2022-04-05 │
└─────────┴──┴─────────────┴─────────────┘

Aggregating Data
Aggregation in SQL refers to the process of summarizing or aggregating multiple rows
of data into a single value. Let’s learn how to do this using a few examples.

First, let’s sum up the number of books borrowed by each borrower:
D SELECT bw.name AS borrower_name, COUNT(br.book_id) AS books_borrowed
 FROM Borrowings br
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 GROUP BY bw.name
 ORDER BY bw.name;
┌────────────────┬────────────────┐
│ borrower_name │ books_borrowed │
│ varchar │ int64 │
├────────────────┼────────────────┤
│ Emma Johnson │ 1 │
│ John Smith │ 1 │
│ Michael Brown │ 2 │
│ Sophia Wilson │ 1 │
│ William Taylor │ 1 │
└────────────────┴────────────────┘

76 | Chapter 3: A Primer on SQL

This SQL statement performs an inner join between the Borrowings and Borrowers
tables based on the borrower_id column. It uses the COUNT function to count the
number of book_id entries in the Borrowings table and create an alias named
books_borrowed. Finally, it groups and sorts the result by the name column of the
Borrowers table.

You can also use the COUNT function to find out which book is the most borrowed:
D SELECT b.book_id, b.title AS book_name, COUNT(*) AS num_borrowings
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 GROUP BY b.book_id, b.title
 ORDER BY num_borrowings DESC
 LIMIT 1;
┌─────────┬─────────────────────┬────────────────┐
│ book_id │ book_name │ num_borrowings │
│ int32 │ varchar │ int64 │
├─────────┼─────────────────────┼────────────────┤
│ 1 │ Pride and Prejudice │ 2 │
└─────────┴─────────────────────┴────────────────┘

The ORDER BY num_borrowings DESC line orders the results in descending order
based on the number of borrowings, so the book with the highest number of borrow‐
ings will appear first. We use LIMIT 1 to limit the result to only the top-most row,
which corresponds to the most borrowed book.

Out of curiosity, you might want to know the average age of all the authors, since
there is a birth_year column in the Authors table. To find the average age of all
authors in the Authors table, you can find the age of each author using the current
year and their birth year, and then use the AVG function to calculate the average of
these ages:

D SELECT AVG(YEAR(CURRENT_DATE) - birth_year) AS average_age_of_authors
 FROM Authors;
┌────────────────────────┐
│ average_age_of_authors │
│ double │
├────────────────────────┤
│ 162.5 │
└────────────────────────┘

Using the AVG function, you can also find the average publication year of all the
books:

D SELECT AVG(publication_year) AS avg_publication_year
 FROM Books;
┌──────────────────────┐
│ avg_publication_year │
│ double │
├──────────────────────┤
│ 1903.6 │
└──────────────────────┘

Working with Tables | 77

If you want to know who the oldest author is, use the MIN function:
D SELECT name, birth_year, YEAR(CURRENT_DATE) - birth_year AS age
 FROM Authors
 WHERE birth_year = (SELECT MIN(birth_year) FROM Authors);
┌─────────────┬────────────┬───────┐
│ name │ birth_year │ age │
│ varchar │ int32 │ int64 │
├─────────────┼────────────┼───────┤
│ Jane Austen │ 1775 │ 249 │
└─────────────┴────────────┴───────┘

As you can see from the result, Jane Austen is 249 years old (as of 2024)!

Analytics
Using the techniques you have learned from the previous sections, you can use SQL
to perform some interesting analytics on the various tables.

Let’s start with finding overdue books. Assuming the loan period for a book is a maxi‐
mum of 14 days, let’s find the names of the borrowers who returned books late. Addi‐
tionally, we want to determine the number of days the returned book was overdue.

Here, you can use the INNER JOIN statement to join three tables—Borrowings, Books,
and Borrowers—so that you can obtain the book name and borrower name, as well as
the date of return. To find out how many days the returned book was overdue, you
can use the DATEDIFF function to calculate the difference between the return date and
borrowing date, and then deduct 14 days from it:

D SELECT bw.name AS borrower_name, b.title AS book_title, br.borrow_date,
 br.return_date,
 DATEDIFF('day', br.borrow_date, br.return_date) - 14 AS overdue
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE br.return_date IS NOT NULL AND
 DATEDIFF('day', br.borrow_date, br.return_date) > 14;
┌────────────────┬─────────────────────┬─────────────┬─────────────┬─────────┐
│ borrower_name │ book_title │ borrow_date │ return_date │ overdue │
│ varchar │ varchar │ date │ date │ int64 │
├────────────────┼─────────────────────┼─────────────┼─────────────┼─────────┤
│ John Smith │ Pride and Prejudice │ 2022-04-10 │ 2022-04-25 │ 1 │
│ William Taylor │ The Hobbit │ 2022-03-30 │ 2022-04-20 │ 7 │
└────────────────┴─────────────────────┴─────────────┴─────────────┴─────────┘

You can see that John Smith returned his book one day late, while William Taylor
returned his book one week late.

The preceding SQL statement could be saved as a view (a view is essentially a saved
query) so that users can reference it later as if it were a table. You can create a view
using the CREATE VIEW statement:

78 | Chapter 3: A Primer on SQL

D CREATE VIEW overdue_borrowings AS
 SELECT bw.name AS borrower_name,
 b.title AS book_title,
 br.borrow_date,
 br.return_date,
 DATEDIFF('day', br.borrow_date, br.return_date) - 14 AS overdue
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE br.return_date IS NOT NULL
 AND DATEDIFF('day', br.borrow_date, br.return_date) > 14;

The view created is persisted to the DuckDB database. You can now quickly see who
returned their books late using this view:

D SELECT * FROM overdue_borrowings;

Now that we know who has returned books late, we also want to know which books
are overdue and by how many days:

D SELECT b.book_id, b.title, bw.name AS borrower_name, br.borrow_date,
 DATEDIFF('day', br.borrow_date, CURRENT_DATE()) - 14 AS overdue
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE br.return_date IS NULL AND
 DATEDIFF('day', br.borrow_date, CURRENT_DATE()) > 14;

┌─────────┬──────────────────────────────┬───────────────┬─────────────┬─────────┐
│ book_id │ title │ borrower_name │ borrow_date │ overdue │
│ int32 │ varchar │ varchar │ date │ int64 │
├─────────┼──────────────────────────────┼───────────────┼─────────────┼─────────┤
│ 1 │ Pride and Prejudice │ Michael Brown │ 2022-04-26 │ 710 │
│ 2 │ Oliver Twist │ Sophia Wilson │ 2022-04-15 │ 721 │
│ 3 │ Murder on the Orient Express │ Emma Johnson │ 2022-03-20 │ 747 │
└─────────┴──────────────────────────────┴───────────────┴─────────────┴─────────┘

Because we’re calculating from the current date, the values in the overdue column are
quite large. If you want to know the books that are overdue on a particular day (say,
2022-06-10), you can replace the CURRENT_DATE() function with a specific date:

D SELECT b.book_id, b.title, bw.name AS borrower_name, br.borrow_date,
 DATEDIFF('day', br.borrow_date, '2022-06-10') - 14 AS overdue
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE br.return_date IS NULL AND
 DATEDIFF('day', br.borrow_date, '2022-06-10') > 14;
┌─────────┬──────────────────────────────┬───────────────┬─────────────┬─────────┐
│ book_id │ title │ borrower_name │ borrow_date │ overdue │
│ int32 │ varchar │ varchar │ date │ int64 │
├─────────┼──────────────────────────────┼───────────────┼─────────────┼─────────┤
│ 1 │ Pride and Prejudice │ Michael Brown │ 2022-04-26 │ 31 │
│ 2 │ Oliver Twist │ Sophia Wilson │ 2022-04-15 │ 42 │
│ 3 │ Murder on the Orient Express │ Emma Johnson │ 2022-03-20 │ 68 │
└─────────┴──────────────────────────────┴───────────────┴─────────────┴─────────┘

Working with Tables | 79

Finally, let’s find out which is the most borrowed book. You want to show the title,
who borrowed it, when it was loaned out, and when it was returned:

D SELECT b.book_id, b.title AS book_name,
 bw.name AS borrower_name,
 br.borrow_date AS loan_date, br.return_date
 FROM Borrowings br
 INNER JOIN Books b ON br.book_id = b.book_id
 INNER JOIN Borrowers bw ON br.borrower_id = bw.borrower_id
 WHERE b.book_id IN (
 SELECT book_id
 FROM Borrowings
 GROUP BY book_id
 HAVING COUNT(*) = (
 SELECT MAX(num_borrowings)
 FROM (
 SELECT COUNT(*) AS num_borrowings
 FROM Borrowings
 GROUP BY book_id
) AS counts
)
)
 GROUP BY b.book_id, b.title, br.borrower_id, bw.name, br.borrow_date,
 br.return_date;

┌─────────┬─────────────────────┬───────────────┬────────────┬─────────────┐
│ book_id │ book_name │ borrower_name │ loan_date │ return_date │
│ int32 │ varchar │ varchar │ date │ date │
├─────────┼─────────────────────┼───────────────┼────────────┼─────────────┤
│ 1 │ Pride and Prejudice │ John Smith │ 2022-04-10 │ 2022-04-25 │
│ 1 │ Pride and Prejudice │ Michael Brown │ 2022-04-26 │ │
└─────────┴─────────────────────┴───────────────┴────────────┴─────────────┘

Observe that these SQL statements contain three nested SELECT statements (see also
Figure 3-8).

Here’s how each statement works:

Innermost SELECT statement (1)
The innermost SELECT statement counts the number of borrowings for each
book_id in the Borrowings table. This query groups the results by book_id and
returns a count of borrowings for each book.

Intermediate SELECT statement (2)
The second SELECT statement retrieves the maximum borrow count
(MAX(num_borrowings)) from the results of the innermost query. This gives the
maximum number of borrowings any book has.

Outer WHERE clause (3)
The outer WHERE clause uses the IN condition to filter for book_ids from the Bor‐
rowings table that have a borrowing count equal to this maximum value. This
means it identifies all books that have the highest borrowing count in order to
account for books that have the same borrow counts.

80 | Chapter 3: A Primer on SQL

Outer SELECT statement (4)
Finally, the outer SELECT statement retrieves details about these most borrowed
books by performing inner joins with the Borrowings, Books, and Borrowers
tables. This join connects the data based on book_id and borrower_id, allowing
the retrieval of fields such as book title, borrower name, loan date, and
return date.

Figure 3-8. The query is made up of three SELECT statements

Summary
The chapter offers a thorough examination of DuckDB, beginning with an explora‐
tion of its CLI and data import techniques. It discusses dot commands and database
persistence to enhance data management and accessibility. The subsequent section
serves as a primer on SQL, encompassing topics such as database and table creation,
data querying, and different join types for data manipulation. Additionally, you
gained insight into data aggregation and advanced analytics techniques using SQL
statements, enabling you to extract valuable insights from your DuckDB database.

Summary | 81

Understanding the CLI and data import techniques is crucial for efficiently managing
your DuckDB environment. The dot commands provide powerful capabilities to
streamline your workflow, so make sure to get comfortable with these commands.
Database persistence is another key area; ensuring your data is saved and accessible
will prevent data loss and improve your ability to manage large datasets.

When it comes to SQL, the foundation you build here will serve you well across many
database platforms. Practice creating and manipulating databases and tables, as these
skills are fundamental. Pay special attention to different join types, as these will allow
you to combine datasets in meaningful ways, unlocking deeper analytical possibili‐
ties. These skills will enable you to perform complex analyses and extract valuable
insights from your data, driving better decision making.

In the next chapter, you’ll learn how to use DuckDB with Polars, a DataFrame library
that is designed to be fast and efficient.

82 | Chapter 3: A Primer on SQL

CHAPTER 4

Using DuckDB with Polars

Most data scientists and data analysts are familiar with the pandas library. With pan‐
das, you can organize your dataset into Series or DataFrame structures and employ
the diverse array of functions provided by the pandas library for data manipulation.
However, one of the main complaints about pandas is its slow speed and inefficien‐
cies when dealing with large datasets. This is because pandas was originally designed
to work with tabular data that fits in memory. When dealing with large datasets, it
becomes slow because it needs to swap data in and out of memory.

To address the inefficiencies of pandas in working with large datasets, there is a com‐
peting library—Polars. The first part of this chapter provides an introduction to
Polars and how you can work with it (just like with pandas). The second part of this
chapter shows how you can query Polars DataFrames using DuckDB.

Introduction to Polars
Polars is a DataFrame library that is completely written in Rust. Polars is designed
with the following in mind:

Speed
Polars leverages Rust, a system programming language known for its
performance.

Parallelism
Polars can take advantage of multicore processors, which provide substantial
speed improvements for CPU-bound operations.

83

Memory efficiency
Polars uses lazy evaluation, which means an operation is not performed until it is
needed. In addition, queries can be chained and optimized before execution,
resulting in much more efficient execution.

Efficient storage of data
Polars stores data in columnar format, which is more efficient than the row-
based storage in pandas.

Ease of use
Polars supports a SQL-like syntax for data manipulation, making it immediately
accessible to a large group of users. In addition, it has many methods that are
similar to pandas, making it very easy for pandas users to migrate to.

To install Polars, use the pip command:
!pip install polars

The version of Polars used in this book is 1.8.2.

In the following sections, you’ll learn how to get started with the Polars library and
understand the magic behind the efficiencies of Polars—lazy evaluation.

Creating a Polars DataFrame
Let’s start off with the basics. Let’s create a Polars DataFrame using a Python dictio‐
nary. The following code snippet creates a Polars DataFrame containing six columns
and eight rows (see Figure 4-1):

import polars as pl

df = pl.DataFrame(
 {
 'Model': ['Camry','Corolla','RAV4',
 'Mustang','F-150','Escape',
 'Golf','Tiguan'],
 'Year': [1982,1966,1994,1964,1975,2000,1974,2007],
 'Engine_Min':[2.5,1.8,2.0,2.3,2.7,1.5,1.0,1.4],
 'Engine_Max':[3.5,2.0,2.5,5.0,5.0,2.5,2.0,2.0],
 'AWD':[False,False,True,False,True,True,True,True],
 'Company': ['Toyota','Toyota','Toyota','Ford',
 'Ford','Ford','Volkswagen','Volkswagen'],
 }
)
df

84 | Chapter 4: Using DuckDB with Polars

Figure 4-1. The Polars DataFrame containing six columns and eight rows

Just like pandas, Jupyter Notebook will pretty-print the Polars
DataFrame when you print it out.

If you observe the output, you should find it similar to a pandas DataFrame, except:

• A Polars DataFrame does not have an index. This is one of the design philoso‐
phies behind Polars: the index in a DataFrame is not useful and seldom needed.

• Below the headers of the DataFrame, Polars displays the data type of each col‐
umn (str, i64, f64, and bool)

To display the full name of the data type of each column in the Polars DataFrame, use
the dtypes property:

df.dtypes

For the DataFrame in Figure 4-1, this statement displays the following result:
[String, Int64, Float64, Float64, Boolean, String]

To get the column names, use the columns property:
df.columns
['Model', 'Year', 'Engine_Min', 'Engine_Max', 'AWD', 'Company']

Introduction to Polars | 85

If you want to get all the rows of the DataFrame, use the rows() method:
df.rows()

The rows are returned as a list of tuples:
[('Camry', 1982, 2.5, 3.5, False, 'Toyota'),
 ('Corolla', 1966, 1.8, 2.0, False, 'Toyota'),
 ('RAV4', 1994, 2.0, 2.5, True, 'Toyota'),
 ('Mustang', 1964, 2.3, 5.0, False, 'Ford'),
 ('F-150', 1975, 2.7, 5.0, True, 'Ford'),
 ('Escape', 2000, 1.5, 2.5, True, 'Ford'),
 ('Golf', 1974, 1.0, 2.0, True, 'Volkswagen'),
 ('Tiguan', 2007, 1.4, 2.0, True, 'Volkswagen')]

With the DataFrame loaded, the next few sections will show you how to select parts
(such as columns and rows) of the DataFrame.

Selecting columns

To select a particular column in the DataFrame, use the select() method:
df.select(
 'Model'
)

This returns the column named Model (see Figure 4-2).

Figure 4-2. The DataFrame with the Model column printed

86 | Chapter 4: Using DuckDB with Polars

If you’re familiar with pandas, you might be wondering if the square
bracket indexing method still works. Well, df['Model'] works just
like using the select() method. However, the Polars documentation
specifically mentions that the square bracket indexing method is an
anti-pattern for Polars because it is sometimes confusing. So, while
df['Model'] works, there is a possibility that the square bracket
indexing method may be removed in a future version of Polars.

If you need to retrieve more than one column, enclose the column names in a list (or
simply specify the additional column names):

df.select(
 ['Model','Company'] # or 'Model','Company'
)

If you want to retrieve all the string columns (that is, columns of type pl.String) in
the DataFrame, you can use an expression within the select() method:

df.select(
 pl.col(pl.String)
)

The statement pl.col(pl.String) is known as an expression in
Polars. You can interpret this expression as “get me all the columns
whose data type is String”.

Introduction to Polars | 87

This statement prints out the Model and Company columns (see Figure 4-3).

Figure 4-3. The DataFrame with the Model and Company columns printed

Expressions are powerful in Polars. For example, you can pipe together multiple
expressions:

df.select(
 pl.col(['Year','Model','Engine_Max'])
 .sort_by(['Engine_Max','Year'],descending = [False,True])
)

In this code snippet, the first expression selects the three columns Year, Model, and
Engine_Max. The result of the first expression is then piped to the second expression,
which sorts the column Engine_Max in ascending order and the Year column in
descending order. The result is shown in Figure 4-4.

88 | Chapter 4: Using DuckDB with Polars

Figure 4-4. The DataFrame with the Year, Model, and Engine_Max columns printed

You can also group multiple expressions in a list. For example the following code
snippet lists all the string columns plus the Year column:

df.select(
 [pl.col(pl.String), 'Year']
)

Selecting rows

If you want to get a particular row in a Polars DataFrame, you can use the row()
method and pass in a row number. For example, the following statement retrieves the
first row in the table:

df.row(0)
('Camry', 1982, 2.5, 3.5, False, 'Toyota')

If you want to get multiple rows, you can use the square bracket indexing method,
though this is not recommended:

df[1:3] # returns the second and third rows

Instead of using square bracket indexing, Polars encourages the use
of more explicit forms of querying and functions to manipulate
data. In the real world, you often retrieve rows based on certain cri‐
teria, instead of specific row numbers. Despite this, Polars still pro‐
vides support for square bracket indexing (at least for now).

Like pandas, Polars supports common methods like head(), tail(), and sample().

Introduction to Polars | 89

To select rows, Polars recommends using the filter() method. For example, if you
want to select all the rows that contains cars from Toyota, use the filter() method
with the following expression:

df.filter(
 pl.col('Company') == 'Toyota'
)

Figure 4-5 shows all rows containing cars from Toyota.

Figure 4-5. The DataFrame contains all the cars from Toyota

You can also specify multiple conditions using logical operators. The following exam‐
ple retrieves all cars that are from Toyota or Ford:

df.filter(
 (pl.col('Company') == 'Toyota') |
 (pl.col('Company') == 'Ford')
)

Remember to use a pair of parentheses to enclose each condition.

If you want to match multiple brands of cars, it is easier to use the is_in() method:
df.filter(
 (pl.col('Company').is_in(['Toyota','Ford']))
)

The following example retrieves all cars from Toyota that were launched after 1980:
df.filter(
 (pl.col('Company') == 'Toyota') &
 (pl.col('Year') > 1980)
)

90 | Chapter 4: Using DuckDB with Polars

The following example retrieves all the cars other than Toyota:
df.filter(
 ~(pl.col('Company') == 'Toyota')
)

Alternatively, you can also use the != operator:
df.filter(
 (pl.col('Company') != 'Toyota')
)

Selecting rows and columns

Now that you have seen how to use the select() method to select columns and the
filter() method to select rows from a Polars DataFrame, let’s see how you can chain
them together to select specific rows and columns.

For example, if you want to get all the various models from Toyota, you can chain the
filter() and select() methods:

df.filter(
 pl.col('Company') == 'Toyota'
).select(
 'Model'
)

This code snippet prints out all the models from Toyota (see Figure 4-6).

Figure 4-6. The DataFrame contains all the models from Toyota

If you want to select multiple columns, simply contain the column names using a list:
df.filter(
 pl.col('Company') == 'Toyota'
).select(
 ['Model','Year']
)

Introduction to Polars | 91

Using SQL on Polars
While you can use the various methods in Polars to select rows and columns from the
DataFrame, you can also use SQL to directly query a Polars DataFrame. This is done
through the SQLContext class. In Polars, SQLContext provides a way to execute SQL
statements against Polars DataFrames using SQL syntax.

Here is an example:
ctx = pl.SQLContext(cars = df)
ctx.execute("SELECT * FROM cars", eager=True)

SQLContext takes a named parameter (cars in this case) with its value set to the Polars
DataFrame. You use the SQLContext object to execute the SQL statement against the
Polars DataFrame. Figure 4-7 shows the result returned by the SQL statement.

Figure 4-7. The result of the SQL query

Here’s another example using SQL to find the average minimum and maximum
engine capacities for each company:

ctx.execute('''
 SELECT Company,
 AVG(Engine_Min) AS avg_engine_min,
 AVG(Engine_Max) AS avg_engine_max
 FROM cars
 GROUP BY Company;
''', eager=True)

92 | Chapter 4: Using DuckDB with Polars

Figure 4-8 shows the output of this query.

Figure 4-8. The average minimum and maximum engine capacities of each company’s
cars

Up to this point, you have seen the techniques to select rows and columns from a
Polars DataFrame. But you have not seen the most compelling reason to use Polars
yet—lazy evaluation. In the next section, you’ll see how Polars uses this technique to
improve performance when manipulating DataFrames.

Understanding Lazy Evaluation in Polars
One of the key features of Polars is its support for lazy evaluation. Lazy evaluation is a
technique that allows for the construction of query plans that represent a sequence of
operations without immediately executing them. Rather, the operations are executed
only when the final result is explicitly requested. This approach makes it very efficient
when dealing with large datasets or complex transformations because it avoids
unnecessary computations.

To really understand why this efficiency measure is so important, you need to first
understand how things are done in pandas. In pandas, you usually use the
read_csv() function to read a CSV file into a pandas DataFrame:

import pandas as pd

df = pd.read_csv('flights.csv')
df

If your CSV file is large, you will spend a long time (and a lot of memory) to load all
the rows in the CSV file into the pandas DataFrame. The flights.csv file has more than
5.8 million rows; hence it takes a significant amount of memory to load the entire file
into memory (see Figure 4-9).

Introduction to Polars | 93

Figure 4-9. Loading a large CSV file using pandas

A typical operation with pandas is to load the CSV file into a DataFrame and then
perform some filtering on it:

df = pd.read_csv('flights.csv')
df = df[(df['MONTH'] == 5) &
 (df['ORIGIN_AIRPORT'] == 'SFO') &
 (df['DESTINATION_AIRPORT'] == 'SEA')]
df

This is inefficient because you must load the entire CSV file into memory only to fil‐
ter out a subset of it. In Polars, there is a much more efficient way of loading a Data‐
Frame, known as lazy evaluation. There are two types of lazy evaluation:

Implicit lazy evaluation
This is where you use functions that inherently support lazy evaluation (such as
the scan_csv() function, which you’ll see in the next section).

Explicit lazy evaluation
This is where you use functions that do not inherently support lazy evaluation
(such as the read_csv() function), and you explicitly make them use lazy
evaluation.

Let’s dig a little deeper into each of these.

Implicit lazy evaluation
To understand how lazy evaluation works, let’s walk through an example. Instead of
using the read_csv() function (which also works with Polars), you use the
scan_csv() function:

94 | Chapter 4: Using DuckDB with Polars

import polars as pl

q = pl.scan_csv('flights.csv')
type(q)

The scan_csv() function returns an object of type polars.lazyframe.frame.Lazy
Frame, which is a representation of a lazy computation graph/query against a Data‐
Frame. Put simply, when you use the scan_csv() function to load a CSV file, the
contents of the CSV file are not loaded immediately. Instead, the function waits for
further queries so that it can optimize the entire set of queries before loading the con‐
tents of the CSV file.

Contrast this with using the read_csv() function to load a CSV file in Polars:
df = pl.read_csv('flights.csv')
type(df)

The read_csv() function returns a polars.dataframe.frame.DataFrame object,
which is similar to a pandas DataFrame. However, unlike the scan_csv() method,
the read_csv() method uses eager execution mode, which means that it will immedi‐
ately load the entire dataset into the DataFrame before you perform any other
queries.

Once you have obtained a LazyFrame object, you can apply your queries to it:
q = pl.scan_csv('flights.csv')
q = q.select(['MONTH', 'ORIGIN_AIRPORT','DESTINATION_AIRPORT'])
q = q.filter(
 (pl.col('MONTH') == 5) &
 (pl.col('ORIGIN_AIRPORT') == 'SFO') &
 (pl.col('DESTINATION_AIRPORT') == 'SEA'))

The select() and filter() methods work on Polars DataFrames
as well as on LazyFrame objects.

For readability, you should ideally use a pair of parentheses to chain up the various
methods in Polars:

q = (
 pl.scan_csv('flights.csv')
 .select(['MONTH', 'ORIGIN_AIRPORT','DESTINATION_AIRPORT'])
 .filter(
 (pl.col('MONTH') == 5) &
 (pl.col('ORIGIN_AIRPORT') == 'SFO') &
 (pl.col('DESTINATION_AIRPORT') == 'SEA'))
)

You can call the show_graph() method to show the execution graph:
q.show_graph(optimized=True)

Introduction to Polars | 95

Figure 4-10 shows the execution graph of your query. You can see that it first scans
the CSV file (top of the graph), and then performs a filter (bottom of the graph).

Figure 4-10. The execution graph of the optimized query

In contrast, if you call the show_graph() method with the optimized argument set to
False, you will see that it performs a scan of the CSV file, loads all 31 columns, and
only then performs the filter one-by-one (see Figure 4-11):

q.show_graph(optimized=False)

Figure 4-11. The execution graph of the unoptimized query

By default, show_graph() prints out the query in its optimized for‐
mat. However, if you print out the q object, it displays the graph in
non-optimized mode.

To execute the queries, call the collect() method:
q.collect()

The collect() method returns the result of the queries as a Polars DataFrame (see
Figure 4-12).

96 | Chapter 4: Using DuckDB with Polars

Figure 4-12. The DataFrame returned by the collect() method

Explicit lazy evaluation

Earlier I mentioned that if you use the read_csv() function to read a CSV file, Polars
will use eager execution and immediately load the DataFrame. Consider the following
code snippet:

df = (
 pl.read_csv('flights.csv')
 .select(['MONTH', 'ORIGIN_AIRPORT','DESTINATION_AIRPORT'])
 .filter(
 (pl.col('MONTH') == 5) &
 (pl.col('ORIGIN_AIRPORT') == 'SFO') &
 (pl.col('DESTINATION_AIRPORT') == 'SEA'))
)
df

Observe that after loading the CSV file, we perform a selection of columns followed
by filtering of rows. All these queries are cascaded and are performed one after
another. This is because the read_csv() function does not implicitly support lazy
evaluation.

To ensure that all the subsequent queries after the CSV is loaded can be optimized,
use the lazy() method immediately after the read_csv() function to explicitly indi‐
cate that you want the read_csv() function to use lazy evaluation:

q = (
 pl.read_csv('flights.csv')
 .lazy()
 .select(['MONTH', 'ORIGIN_AIRPORT','DESTINATION_AIRPORT'])
 .filter(

Introduction to Polars | 97

 (pl.col('MONTH') == 5) &
 (pl.col('ORIGIN_AIRPORT') == 'SFO') &
 (pl.col('DESTINATION_AIRPORT') == 'SEA'))
)
df = q.collect()
display(df)

The lazy() function returns a LazyFrame object, and with that you can chain further
queries using methods such as select(), filter(), and so on. All the queries will
now be optimized before execution.

Now that you are familiar with the basics of Polars, it’s time to see how it can be used
together with DuckDB so that we can have the best of both worlds: the ability to har‐
ness the efficiency of the Polars database, together with the use of SQL for querying
the dataset.

Querying Polars DataFrames Using DuckDB
Despite the ease of use, manipulating Polars DataFrames still requires a bit of practice
and has a relatively steep learning curve for beginners. But since most developers are
already familiar with SQL, isn’t it more convenient to manipulate the DataFrames
directly using SQL? Using this approach, developers have the best of both worlds:

• The ability to query Polars DataFrames using all the various functions.
• The ability to use SQL for cases where it is much more natural and easier to

extract the data that they want.

The good news is that DuckDB has support for Polars DataFrames through Apache
Arrow. This means that you can use SQL to directly query a Polars DataFrame.

Apache Arrow is a development platform for in-memory analytics.
It contains a set of technologies that enable big data systems to
store, process, and move data quickly. PyArrow is the Python
implementation of Arrow.

Using the sql() Function
Let’s now cover how you can use DuckDB to query a Polars DataFrame. For this, we’ll
use the Polars DataFrame that we created earlier:

import polars as pl
df = pl.DataFrame(
 {
 'Model': ['Camry','Corolla','RAV4',
 'Mustang','F-150','Escape',
 'Golf','Tiguan'],
 'Year': [1982,1966,1994,1964,1975,2000,1974,2007],
 'Engine_Min':[2.5,1.8,2.0,2.3,2.7,1.5,1.0,1.4],

98 | Chapter 4: Using DuckDB with Polars

 'Engine_Max':[3.5,2.0,2.5,5.0,5.0,2.5,2.0,2.0],
 'AWD':[False,False,True,False,True,True,True,True],
 'Company': ['Toyota','Toyota','Toyota','Ford',
 'Ford','Ford','Volkswagen','Volkswagen'],
 }
)

To use DuckDB to query a Polars DataFrame, you need to install the PyArrow
library:

pip install pyarrow

You can perform the installation either in Jupyter Notebook or in
Terminal/Command Prompt. In Jupyter Notebook, after the instal‐
lation, remember to restart the kernel.

To select all the rows from df, use the sql() function from the duckdb module:
import duckdb

result = duckdb.sql('''
 SELECT *
 FROM df
''')
result

The sql() function returns a duckdb.DuckDBPyRelation object, which is displayed as
a table when printed in Jupyter Notebook (see Figure 4-13).

Figure 4-13. The result from the sql() function is displayed as a table in Jupyter
Notebook

A DuckDBPyRelation object is part of DuckDB’s Relational API, which can be used to
construct queries. Later in this chapter, we’ll discuss this object in more detail.

Querying Polars DataFrames Using DuckDB | 99

To convert the DuckDBPyRelation object to a Polars DataFrame, use the pl()
method:

result.pl()

To convert the DuckDBPyRelation object to a pandas DataFrame,
use the df() method.

With the DuckDBPyRelation object, you can perform several tasks. For example, you
can use the describe() method to generate some basic statistics (e.g., min, max,
median, count) for each column in the DataFrame:

result.describe()

The result of describe() is yet another DuckDBPyRelation object, which you can
convert to a Polars or pandas DataFrame if you wish.

Figure 4-14 shows the output of the describe() method when called on the result
object.

Figure 4-14. The output from the describe() method

You can sort the result using the order() method:
result.order('Year')

100 | Chapter 4: Using DuckDB with Polars

In this example, the result is sorted by year in ascending order (see Figure 4-15).

Figure 4-15. The output when sorted by year

If you want to sort by year in descending order, use the DESC keyword:
result.order('Year DESC')

You can use the apply() method to apply a function to a particular column, such as if
you want to get the minimum value in the Year column:

result.apply('min', 'Year')

Figure 4-16 shows the output.

Figure 4-16. Getting the minimum value in the Year column

While you can use the various methods from the DuckDBPyRelation object to extract
data, there are always instances where it is easier to accomplish the same task using
SQL. For example, say you want to sort the rows based on company followed by
model. It would be very easy to accomplish this using SQL:

duckdb.sql('''
 SELECT Company, Model
 FROM df
 ORDER by Company, Model
''').pl()

Querying Polars DataFrames Using DuckDB | 101

Figure 4-17 shows the result of this query.

Figure 4-17. Sorting the output by company and model using SQL

Or, if you want to count the number of models for each company, you can use the
SQL GROUP BY statement:

duckdb.sql('''
 SELECT Company, count(Model) as count
 FROM df
 GROUP BY Company
''').pl()

Figure 4-18 shows the output of this query.

Figure 4-18. Using GROUP BY to count the number of models for each company

102 | Chapter 4: Using DuckDB with Polars

You can perform the same query in Polars using the following statement:
result.pl().select(
 pl.col('Company').value_counts()
).unnest('Company')

In the next section, you’ll learn more about the DuckDBPyRelation object and how
you can use it to perform various DataFrame operations.

Using the DuckDBPyRelation Object
In the previous sections, you saw several mentions of the DuckDBPyRelation object.
This object represents an alternative way for you to construct queries to extract data
from your databases. Typically, you create DuckDBPyRelation objects from SQL quer‐
ies or directly from a connection object.

Let’s first create a DuckDB connection and then use the connection to create three
tables: customers, products, and sales.

The following code snippet shows how this is done:
import duckdb

conn = duckdb.connect()

conn.execute('''
 CREATE TABLE customers
 (customer_id INTEGER PRIMARY KEY, name STRING)
''')

conn.execute('''
 CREATE TABLE products
 (product_id INTEGER PRIMARY KEY, product_name STRING)
''')

conn.execute('''
 CREATE TABLE sales
 (customer_id INTEGER, product_id INTEGER, qty INTEGER,
 PRIMARY KEY(customer_id,product_id))
''')

Now that the tables are created in DuckDB, you can load a specific table using the
table() method from the conn object:

customers_relation = conn.table('customers')

Querying Polars DataFrames Using DuckDB | 103

The result from the table() method is a duckdb.DuckDBPyRelation object. As you
learned earlier in this chapter, you can convert this object to a pandas or Polars
DataFrame:

convert to a pandas DataFrame
customers_relation.df()

convert to a Polars DataFrame
customers_relation.pl()

Inserting rows

Using the DuckDBPyRelation object, you can call the insert() function to insert a
new row into the table. The following code snippet inserts three rows into the
customers table:

customers_relation.insert([1, 'Alice'])
customers_relation.insert([2, 'Bob'])
customers_relation.insert([3, 'Charlie'])

At the same time, let’s also insert rows into the products and sales tables:
products_relation = conn.table('products')
products_relation.insert([10, 'Paperclips'])
products_relation.insert([20, 'Staple'])
products_relation.insert([30, 'Notebook'])

sales_relation = conn.table("sales")
sales_relation.insert([1,20,1])
sales_relation.insert([1,10,2])
sales_relation.insert([2,30,7])
sales_relation.insert([3,10,3])
sales_relation.insert([3,20,2])

Joining tables

Now that we have three DuckDBPyRelation objects representing the three tables, we
can perform joins between the tables using the join() method:

result = customers_relation.join(
 sales_relation,
 condition = "customer_id",
 how = "inner"
).join(
 products_relation,
 condition = "product_id",
 how = "inner"
)

In this code snippet, the customers table is joined to the sales table, and the result is
then joined with the products table.

To see the resultant table after the joins, simply print out the value of result.
Figure 4-19 shows the result.

104 | Chapter 4: Using DuckDB with Polars

Figure 4-19. The output of the join operation

Filtering rows
After you have performed a join on the tables, you can use the result to extract the
rows that you want using the filter() method:

result.filter('customer_id = 1')

Figure 4-20 shows the products bought by Alice (customer ID 1).

Figure 4-20. The result shows the products bought by Alice

Alternatively, you can use the execute() method and pass in a SQL statement:
execute a query on the result to fetch and print the joined data
conn.execute('''
 SELECT *
 FROM result
 WHERE customer_id = 1
''').pl()

Aggregating rows

You can also perform aggregation using a DuckDBPyRelation object. Suppose you
want to sum up the purchases for all customers. You can use the aggregate()
method like this:

result.aggregate('customer_id, MAX(name) AS Name, ' +
 'SUM(qty) as "Total Qty"',
 'customer_id')

Querying Polars DataFrames Using DuckDB | 105

The first argument takes in an aggregate expression, while the second argument takes
in a group expression. The result is shown in Figure 4-21.

Figure 4-21. The total quantity of items bought by each customer

This aggregate function is identical to the following GROUP BY statement:
SELECT customer_id as 'Customer ID', MAX(name) AS Name,
 sum(qty) as 'Total Qty'
FROM result
GROUP BY customer_id

Projecting columns

Using the DuckDBPyRelation object, you can select specific columns to display using
the project() method:

result.project('name, qty, product_name')

This statement displays the three columns—name, qty, and product_name—in the
result (see Figure 4-22).

Figure 4-22. Displaying specific columns using the project() method

Limiting rows

To limit the number of rows returned, use the limit() method:
result.limit(3)

106 | Chapter 4: Using DuckDB with Polars

Figure 4-23 shows the first three rows in the result object.

Figure 4-23. Use the limit() method to specify the number of rows to return

If you want to start with the third row and display the next three rows, specify the
number of rows to display, followed by the offset:

result.limit(3,2) # display 3 rows, starting at offset 2 (third row)

The result is shown in Figure 4-24.

Figure 4-24. Displaying three rows, starting from offset 2 (third row)

Summary
In this chapter, you have learned about the Polars DataFrame library, including the
basics of extracting rows and columns, followed by an explanation of how lazy evalu‐
ation works in Polars. More importantly, you also learned how DuckDB and Polars
can be used together to query DataFrames. Utilizing both libraries gives you the best
of both worlds—you can manipulate your data using methods that you are already
familiar with and you can use a familiar querying language (SQL) to query an effi‐
cient DataFrame.

In the next chapter, you’ll learn how to perform exploratory data analysis with
DuckDB using a real-world dataset!

Summary | 107

CHAPTER 5

Performing EDA with DuckDB

By this point, you should have a pretty good grip on the basics of DuckDB. You have
seen how to load up your DuckDB databases from data stored in file formats such as
CSV and Parquet, and have also learned how to load it up from database servers, such
as MySQL. In this chapter, we’ll apply DuckDB in practical scenarios, utilizing it for
conducting exploratory data analysis.

EDA is an approach to analyzing and visualizing datasets to summarize their main
characteristics. The key goal of EDA is to understand the patterns, trends, and rela‐
tionships within the data. In EDA, we often use the following techniques on our data:

Data summarization
Uses descriptive statistics (such as mean, median, standard deviation, and more)
to understand the distribution of the dataset.

Data visualization
Uses libraries such as Matplotlib and Seaborn to plot various types of charts
(such as bar charts, pie charts, and more) to visually inspect the distribution of
data and the relationships between different types of data.

Trends identification
Identifies the patterns, trends, and anomalies within the data and provides
insights into potential factors affecting these observations.

In this chapter, you will learn how to use DuckDB to explore and visualize the 2015
Flight Delays dataset. In particular, you will learn about geospatial analysis, where you
will learn how to:

• Display a map
• Display all the airports on a map

109

• Use the spatial extension in DuckDB
• Convert latitude and longitude to the Point data type
• Find nearby airports

You will also perform descriptive analytics, where you will learn how to:

• Find the airports for each state and city
• Aggregate the total number of airports in each state
• Obtain the flight counts for each pair of origin and destination airports
• Get the canceled flights from airlines
• Get the flight count for each day of the week
• Find the most common timeslot for flight delays
• Find the airlines with the most and fewest delays

Let’s start by loading our dataset.

Our Dataset: The 2015 Flight Delays Dataset
For consistency reasons, we will be using the 2015 Flight Delays and Cancellations
dataset that you saw in Chapter 2 for all the examples in this chapter. If you recall, this
dataset contains three CSV files:

airlines.csv
A list of American airlines

airports.csv
A list of airports in the US

flights.csv
A list of flight details for the various airlines in 2015

We’ll be loading these three CSV files into our DuckDB database. So let’s start by cre‐
ating a DuckDB connection:

import duckdb
conn = duckdb.connect()

Once the connection is created, let’s load the three CSV files into the DuckDB data‐
base. First, load the flights.csv file:

conn.execute('''
 CREATE TABLE flights
 as
 SELECT
 *

110 | Chapter 5: Performing EDA with DuckDB

 FROM read_csv_auto('flights.csv')
''')

Then, load the airports.csv file:
conn.execute('''
 CREATE TABLE airports
 as
 SELECT
 *
 FROM read_csv_auto('airports.csv')
''')

And, finally, the airlines.csv file:
conn.execute('''
 CREATE TABLE airlines
 as
 SELECT
 *
 FROM read_csv('airlines.csv')
''')

You now should have three tables in your DuckDB database. You can confirm this by
using the following statement:

display(conn.execute('SHOW TABLES').df())

Figure 5-1 shows the three tables in the database.

Figure 5-1. The three tables in the DuckDB database

With the three tables loaded, let’s start performing some geospatial analysis using the
airports table. The next section will demonstrate how to plot the locations of each air‐
port on a map, as well as how to use the spatial extension in DuckDB to work with
geospatial data.

Geospatial Analysis
Geospatial analysis—also known as spatial analysis or geographic information system
(GIS) analysis—is a field of study that involves examining, interpreting, and visualiz‐
ing spatial data to understand patterns, relationships, and trends within geographical
areas. A common use case for geospatial analysis is in urban planning and transpor‐
tation. For example, a city’s public transportation department wants to optimize bus
routes to improve efficiency and reduce travel time. To achieve this, they use geospa‐
tial analysis to analyze the city’s bus stops, traffic patterns, and population density.

Geospatial Analysis | 111

Since the airports table contains locations of airports, this is a good time for us to do
some geospatial analysis.

Let’s plot the location of each airport on a map. This would be useful for us to visual‐
ize the geolocation of each airport on the map. For this purpose, we will use the
folium library, a Python wrapper for the leaflet.js library, which is a JavaScript library
for plotting interactive maps. Using folium, you can now easily add geospatial visuali‐
zation to your Python projects, directly in a Jupyter Notebook.

To install folium, use the pip command in Jupyter Notebook:
!pip install folium

Once the library is installed, you are ready to display a map. The following few sec‐
tions will show you how to use folium to display a map and then add markers to it.

Displaying a Map
Let’s first display a map using folium. For this, we want to position the US at the cen‐
ter of the map, and so we select a latitude and longitude of 47.116386 and
-101.299591, respectively, and then pass those values to the Map class of the folium
library:

import folium

mymap = folium.Map(location = [47.116386, -101.299591],
 width = 950,
 height = 550,
 zoom_start = 3,
 tiles = 'openstreetmap')
mymap

Figure 5-2 shows the United States in the center of the map.

In this code snippet, observe the following:

• You set the location using the location parameter and pass in the latitude and
longitude using a list.

• You set the size of the map using the width and height parameters.
• The zoom_start parameter sets the initial zoom level of the map; the higher the

number, the more zoomed in the map is.
• The tiles parameter specifies the tileset (a collection of map tiles that are used to

create a continuous map display) to use; the default is openstreetmap.

112 | Chapter 5: Performing EDA with DuckDB

Figure 5-2. Displaying the United States in the center of the folium map

For the tiles parameter, besides openstreetmap you can use one of the following
built-in tilesets:

• cartodbpositron

• cartodbdark_matter

Instead of fixing the map to use a particular tileset through the tiles parameter, you
can add different tilesets to the map using the TileLayerclass. The following state‐
ments in bold add two tilesets to the current map:

import folium
mymap = folium.Map(location = [47.116386, -101.299591],
 width = 950,
 height = 550,
 zoom_start = 3,
 tiles = 'openstreetmap')

folium.TileLayer('cartodbpositron',
 attr = 'cartodbpositron',
 show = False).add_to(mymap)
folium.TileLayer('cartodbdark_matter',
 attr = 'cartodbdark_matter',
 show = False).add_to(mymap)

folium.LayerControl().add_to(mymap)

mymap

Geospatial Analysis | 113

You can switch between the different tilesets by clicking the tiles icon at the top right
corner of the map (see Figure 5-3) and selecting the one that you want to display.

Figure 5-3. Selecting the tileset to use for the folium map

Now that you know how to display a map using folium, it’s time to display the airport
locations stored in the airports table on the map.

Displaying All Airports on the Map
First, extract all the airports and store the result in the df variable:

df = conn.execute('''
 SELECT
 latitude as lat,
 longitude as lng,
 airport as airport
 FROM airports
 WHERE
 (lat is not null) or
 (lng is not null)
''').df()

114 | Chapter 5: Performing EDA with DuckDB

Then, iterate through all the rows in the DataFrame to extract the latitude, longitude,
and name of the airport, and add a marker to the map using the CircleMarker class:

import math

for lat, lng, airport in zip(df['lat'], df['lng'], df['airport']):
 airport = folium.CircleMarker(
 location = [lat, lng], # location of the marker
 radius = 4, # size of the marker
 color = 'red', # color of the marker
 fill = True, # fill the marker with color
 fill_color = 'yellow', # fill the marker with yellow color
 fill_opacity = 0.5, # make the marker translucent
 popup = airport) # name of the airport

 # add the circle marker to the map
 airport.add_to(mymap)
mymap

Figure 5-4 shows the map with the markers in the OpenStreetMap tile.

Figure 5-4. The individual airports are represented by circle markers

Geospatial Analysis | 115

When you click on a marker, a pop-up displaying the airport name will appear (see
Figure 5-5).

Figure 5-5. Zooming in on the map and clicking on a marker to reveal the airport name

Instead of the circle marker, you can add a simple stock Leaflet marker with an icon
in it:

for lat, lng, airport in zip(df['lat'], df['lng'], df['airport']):
 airport = folium.Marker(
 location = [lat, lng],
 popup = airport,
 icon = folium.Icon(color = 'lightgray', # icon to display in
 icon = 'plane-arrival', # the marker
 prefix = 'fa'),
)
 airport.add_to(mymap)
mymap

The list of icons you can display inside the marker is available at
Font Awesome.

116 | Chapter 5: Performing EDA with DuckDB

https://oreil.ly/nbBVx

Figure 5-6 shows a sample of the marker with the icon and the pop-up showing the
name of the airport.

Figure 5-6. Using the stock Leaflet marker with an icon in it

So far, plotting the various airports locations on the map has been easy and fun. How
about finding airports that are nearest to a particular location? Well, DuckDB has the
spatial extension that makes this task a walk in the park. The next section will walk
you through some of the things you can do with the spatial extension in DuckDB.

Using the spatial Extension in DuckDB
DuckDB provides the spatial extension to support geospatial processing. Using this
extension, you can perform a number of spatial processing tasks easily in DuckDB,
such as:

• Finding the distance between points
• Determining if two locations are within a specified distance from each other

For more information on the spatial extension in DuckDB, see
the documentation.

Geospatial Analysis | 117

https://oreil.ly/teXax

Let’s use the spatial extension in DuckDB to see how we can perform some spatial
processing with the airports table.

First, let’s load the airports.csv file into a pandas DataFrame:
import pandas as pd
df = pd.read_csv('airports.csv')

Next, you need to perform some conversions with the latitudes and longitudes so that
the spatial extension can work with them.

Converting latitude and longitude to the Point data type

The airports table has two location-specific columns—latitude and longitude. To
work with the spatial extension in DuckDB, we need to add a new column to the
DataFrame. This column will contain the values of the location represented in the
Point data type.

The Point data type represents a single point in space represented
in various coordinate systems, such as the Cartesian coordinate
system, geographic coordinates (longitude, latitude), polar coordi‐
nates, etc.

There are two ways to convert latitude and longitude to the Point data type:

• Use the Shapely library
• Use the spatial extension in DuckDB

Let’s first see how you can use the Shapely library, a Python package for manipulation
and analysis of geometric objects. You can install Shapely using the pip command:

!pip install shapely

Using the Point class in the geometry module (from the Shapely library), convert the
latitude and longitude values into a Point object and save it in WKT (well-known
text) format:

from shapely.geometry import Point

df['geometry'] = df.apply(
 lambda row: Point(row['LONGITUDE'], row['LATITUDE']).wkt, axis=1)
df

WKT is a text-based format for representing geometric objects in a human-readable
form. The location in this example is stored in the EPSG:4326 format.

118 | Chapter 5: Performing EDA with DuckDB

EPSG:4326 is a specific coordinate reference system (CRS) often
used in geospatial applications and GIS. The EPSG (European Petro‐
leum Survey Group, now known as the Geomatics Committee of the
International Association of Oil and Gas Producers) maintains a
database of coordinate reference systems and related parameters. An
example of EPSG:4326 format is POINT (-75.4404 40.65236). The
EPSG:4326 system is also known as WGS 84 (World Geodetic Sys‐
tem 1984).

Figure 5-7 shows how the DataFrame looks after the conversion, with the additional
of the geometry column.

Figure 5-7. The DataFrame with the added geometry column

Now that we’ve updated the DataFrame, we’ll load it into the DuckDB database and
name it “airports_2”:

conn.execute("CREATE TABLE airports_2 AS SELECT * FROM df")

For the second approach to converting latitude and longitude, we’ll perform the con‐
version directly in DuckDB using the spatial extension. To use the spatial exten‐
sion, you need to first install and load it:

conn.execute('INSTALL spatial;')
conn.execute('LOAD spatial;')

Geospatial Analysis | 119

Then, use the ST_AsPoint() function to convert the latitude and longitude to Point
objects:

conn.execute('''
 DROP TABLE IF EXISTS airports_2 ;
 CREATE TABLE airports_2 as
 SELECT
 *,
 ST_AsText(ST_Point(LONGITUDE,LATITUDE)) as geometry
 FROM airports
''')

Using either approach, the DuckDB database now contains a new table named
airports_2.

Converting a pandas DataFrame to a GeoPandas GeoDataFrame

To perform spatial analysis on the geometry column, you need to convert the pandas
DataFrame to a GeoPandas GeoDataFrame.

A GeoDataFrame is a tabular data structure in the geospatial library
GeoPandas, which extends the capabilities of a regular pandas
DataFrame to handle spatial data. GeoPandas is built on top of the
pandas and Shapely libraries, combining the tabular data manipu‐
lation capabilities of pandas with the geometric operations pro‐
vided by Shapely.

To convert a pandas DataFrame to a GeoDataFrame, we will use the leafmap library, a
Python library designed for interactive geospatial data visualization. You can install
leafmap in Jupyter Notebook using the pip command:

!pip install leafmap

In addition, install the mapclassify and geopandas packages:
!pip install mapclassify
!pip install geopandas

You can now perform the conversion using the df_to_gdf() function:
import leafmap
 df_airports_gdf = leafmap.df_to_gdf(
 conn.execute('SELECT * FROM airports_2').df(),
 geometry = 'geometry',
 src_crs="EPSG:4326",
 dst_crs="EPSG:4326")

120 | Chapter 5: Performing EDA with DuckDB

In this statement, we specified the original location format as EPSG:4326 and the des‐
tination format to convert to also as EPSG:4326. The column to convert (geometry) is
indicated by the geometry parameter. Essentially, this operation converts the data
type of the geometry column from object to geometry.

With the DataFrame converted, you can now use it to perform some cool geospatial
visualization, as the next few sections illustrate.

Displaying airport locations on the map

You can now call the explore() method on GeoDataFrame to create an interactive
map based on folium and leaflet.js:

df_airports_gdf.explore()

Figure 5-8 shows a folium map displaying circle markers depicting all the airports in
the US.

Figure 5-8. A folium map displaying all the airports in the US

Geospatial Analysis | 121

Clicking on a marker displays the airport details (see Figure 5-9).

Figure 5-9. Clicking the marker displays the airport details

At this point, you can see that using a GeoDataFrame makes it very easy to display the
various airports on the map—you don’t even need to know how to create the map as
everything is done automatically for you. But that’s not all to using a GeoDataFrame.
How about finding the nearest airports, or calculating the distance between two loca‐
tions? The next section shows you how!

Finding nearby airports
Suppose you have a location in Miami (latitude 25.7824017 and longitude
-80.2706578; see the location on Google Maps as shown in Figure 5-10). Say you want
to find some of the nearest airports closest to this location.

122 | Chapter 5: Performing EDA with DuckDB

Figure 5-10. The location in Miami as shown in Google Maps

The spatial extension in DuckDB has a number of functions that you can use to do
this. Here are two you can use:

• ST_DWithin() determines whether two geometries are within a specified distance
of each other.

• ST_Distance() calculates the distance between two geometries

Let’s first use the ST_DWithin() function to find airports that are within three degrees
of the location in Miami:

conn.execute('INSTALL spatial;')
conn.execute('LOAD spatial;')

miami
LOCATION_LNGLAT = (-80.2706578, 25.7824017)

within 3 degrees
df_airports_near_miami = conn.sql(f"""
 SELECT *
 FROM airports_2

Geospatial Analysis | 123

 WHERE ST_DWithin(
 ST_GeomFromText(geometry),
 ST_GeomFromText('POINT ({LOCATION_LNGLAT[0]} {LOCATION_LNGLAT[1]})'),
 3);
""").df()
df_airports_near_miami

Figure 5-11 shows the list of airports that are within three degrees of the location you
specified.

Figure 5-11. The list of airports within three degrees of the location in Miami

Notice that in this case, there are eight airports nearest to our location in Miami. If
you want a smaller range of airports, change the three degrees to two degrees:

 SELECT *
 FROM airports_2
 WHERE ST_DWithin(
 ST_GeomFromText(geometry),
 ST_GeomFromText('POINT ({LOCATION_LNGLAT[0]} {LOCATION_LNGLAT[1]})'),
 2);

You will now get only five airports.

What if you want to get the three closest airports? In this case, you are better off using
the ST_Distance() function:

df_airports_near_miami = conn.sql(f"""
 SELECT *,
 ST_Distance(ST_GeomFromText(geometry),
 ST_GeomFromText('POINT (
 {LOCATION_LNGLAT[0]}
 {LOCATION_LNGLAT[1]}))') as distance
 FROM airports_2;
""").df()
df_airports_near_miami

The ST_Distance() function calculates the distance between two geometries.
Figure 5-12 shows the DataFrame with a new column named distance, representing
the distance of each airport from our location in Miami.

124 | Chapter 5: Performing EDA with DuckDB

Figure 5-12. The DataFrame with the new distance column

If you want the top three nearest airports, sort the distance column in ascending
order and get the top three:

df_airports_near_miami = conn.sql(f"""
 SELECT *,
 ST_Distance(ST_GeomFromText(geometry),
 ST_GeomFromText('POINT (
 {LOCATION_LNGLAT[0]}
 {LOCATION_LNGLAT[1]}))') as distance
 FROM airports_2
 ORDER by distance
 LIMIT 3
""").df()
df_airports_near_miami

Figure 5-13 now shows the three nearest airports to our location in Miami.

Figure 5-13. The three nearest airports to our location in Miami

Geospatial Analysis | 125

To plot the airports on a map, convert the result to the GeoDataFrame object and call
the explore() function:

import leafmap

df_airports_near_miami_gdf = leafmap.df_to_gdf(df_airports_near_miami)
folium_map = df_airports_near_miami_gdf.explore()
folium_map

Figure 5-14 shows the three airports on the map (with the callouts added).

Figure 5-14. The three airports closest to our location in Miami

Using the reference to the folium map returned by the explore() function, let’s add a
marker to our location in Miami:

import folium

add a popup at Miami
folium.Marker(location = [LOCATION_LNGLAT[1],LOCATION_LNGLAT[0]],
 popup='Miami').add_to(folium_map)
folium_map

Figure 5-15 shows the marker added to the map.

126 | Chapter 5: Performing EDA with DuckDB

Figure 5-15. The marker showing our location in Miami

So far, we have learned how to:

• Display a map using the folium library
• Display multiple tilesets in our maps
• Display all the airports on a map using markers
• Use the spatial extension in DuckDB
• Convert the latitude and longitude to the Point data type using the Shapely

library and the spatial extension in DuckDB
• Display the airport locations using a GeoDataFrame object
• Find nearby airports by degrees and distance

In the next section, we’ll turn our attention to using the dataset for descriptive analyt‐
ics. This will allow us to gain additional insights that would not be possible otherwise.

Performing Descriptive Analytics
Now that you have seen how to use the spatial extension in DuckDB for geospatial
analysis, let’s turn our attention to descriptive analytics. Descriptive analytics involves
the interpretation and summary of historical data to understand patterns, trends, and
insights about past events. Using the Flight Delays dataset, we can use descriptive
analytics to obtain answers to the following questions:

Performing Descriptive Analytics | 127

• How many airports are there in each state?
• How many flights are there from one airport to another?
• Which day of the week has the fewest number of flights from one airport to

another?
• What is the best time of the day to travel to avoid delays?
• Which airlines have the greatest number of canceled flights?
• Which airlines have the greatest number of delayed flights?

The following sections will show you how to get the answers to these questions!

Finding the Airports for Each State and City
Let’s start with the easy one. We want to group all the airports based on state and city:

df_city_state = conn.execute('''
 SELECT
 *
 FROM airports
 ORDER BY STATE, CITY
''').df()

df_city_state

Figure 5-16 shows the resulting DataFrame containing the airports details grouped by
state and city.

Figure 5-16. The DataFrame containing all the airport details grouped by state and city

128 | Chapter 5: Performing EDA with DuckDB

We can use the set_index() method to make this a multi-index DataFrame:
df_city_state.set_index(['STATE','CITY'], inplace = True)
df_city_state

Figure 5-17 shows the DataFrame with the STATE and CITY as its index.

Figure 5-17. The DataFrame converted to a multi-index DataFrame

If you want to find all the airports in California (CA), you can simply specify “CA”
using the loc[] indexer:

df_city_state.loc['CA']

Figure 5-18 shows all the airports in California.

Performing Descriptive Analytics | 129

Figure 5-18. All the airports in California

If you want to locate an airport in a specific city in California, such as San Francisco,
then pass the state and city as a tuple to the loc[] indexer:

df_city_state.loc[('CA','San Francisco')]

Figure 5-19 now shows you the airport in San Francisco, California.

130 | Chapter 5: Performing EDA with DuckDB

Figure 5-19. The airport in San Francisco, California

The next section will show you how to tally up the number of airports in each state.

Aggregating the Total Number of Airports in Each State
Let’s now make a count of all the airports in each state and then order the count in
decreasing order:

df_airports_state = conn.execute('''
 SELECT
 STATE,
 count(*) as COUNT
 FROM airports
 GROUP BY STATE
 ORDER BY Count DESC
''').df()
df_airports_state.head()

Figure 5-20 shows the top five states by airport count.

Figure 5-20. The top five states by airport count

It would be interesting to plot this as a pie chart:
import matplotlib.pyplot as plt
import seaborn

palette_color = seaborn.color_palette('pastel')
plt.figure(figsize = (7, 7))
plt.pie(df_airports_state['COUNT'],
 labels = df_airports_state['STATE'],
 colors = palette_color,
 autopct = '%.0f%%',)

plt.legend(df_airports_state['STATE'], loc = "best")

Since there is quite a long list of states, the pie chart looks kind of messy (see
Figure 5-21).

Performing Descriptive Analytics | 131

Figure 5-21. The pie chart showing the distribution of airports in each state

132 | Chapter 5: Performing EDA with DuckDB

To clean this up a bit, it might be useful to reduce the data to the top ten states with
the most airports using the LIMIT 10 statement:

 SELECT
 STATE,
 count(*) as COUNT
 FROM airports
 GROUP BY STATE
 ORDER BY Count DESC
 LIMIT 10

When you replot, you will see the pie chart as shown in Figure 5-22.

Figure 5-22. The updated pie chart showing the distribution of airports for the top 10
states

But there is still room for improvement. It doesn’t make a lot of sense to show the
percentage of each slice—we actually want to know how many airports there are in
each state. To do that, let’s define a function named fmt() to help format the pie
chart. Pass the fmt() function into the autopct parameter of the pie() function:

total number of airports
total = df_airports_state['COUNT'].sum()

Performing Descriptive Analytics | 133

def fmt(x):
 return '{:.1f}%\n({:.0f} airports)'.format(x, total * x / 100)

palette_color = seaborn.color_palette('pastel')
plt.figure(figsize = (7, 7))

plt.pie(df_airports_state['COUNT'],
 labels = df_airports_state['STATE'],
 colors = palette_color,
 autopct = fmt)

plt.legend(df_airports_state['STATE'], loc = "best")

When plotting the pie chart, Matplotlib calls the fmt() function for each slice that it
is plotting. The value of x is the percentage of each slice. So multiplying the percent‐
age by the total count of airports will give the actual airport count for each slice.

Figure 5-23 shows the updated pie chart with the total number of airports for each
state.

Figure 5-23. The updated pie chart showing the number of airports for each state

134 | Chapter 5: Performing EDA with DuckDB

While a pie chart may look appealing, some may argue that pie charts are problematic
(see “Why Pie Charts Are Evil” for arguments as to why). Another way to present this
information is with a bar chart:

create the bar chart
plt.bar(df_airports_state['STATE'],
 df_airports_state['COUNT'],
 color='skyblue')

plt.xlabel('State')
plt.ylabel('Number of Airports')
plt.title('Top 10 States with Most Airports')
plt.xticks(rotation = 45)

Figure 5-24 shows the bar chart plotted using this code snippet.

Figure 5-24. The bar chart showing the number of airports for each state

The next thing we want to do is to find out more details about the flights, such as:

• The count of flights departing from each airport
• The number of flights for each combination of origin and destination airports

The next section will dive into these in detail.

Performing Descriptive Analytics | 135

https://oreil.ly/A41ud

Obtaining the Flight Counts for Each Pair of Origin and
Destination Airports
Let’s start with the simplest task—getting the number of flights for each origin
airport:

conn.execute('''
 SELECT
 ORIGIN_AIRPORT, COUNT(ORIGIN_AIRPORT) as COUNT
 FROM flights
 GROUP BY ORIGIN_AIRPORT
 ORDER BY COUNT DESC
''').df()

Figure 5-25 shows the departing flight count for each origin airport. For example,
there were 346,846 flights departing from ATL (Hartsfield–Jackson Atlanta Interna‐
tional Airport), 285,884 flights departing from ORD (O’Hare International Airport),
and so on.

Figure 5-25. The total number of flights from each originating airport

A more interesting task is to obtain the flight count for each pair of origin and desti‐
nation airports:

conn.execute('''
 SELECT
 ORIGIN_AIRPORT, DESTINATION_AIRPORT,
 COUNT(*) as COUNT
 FROM flights
 GROUP BY ORIGIN_AIRPORT, DESTINATION_AIRPORT
 ORDER BY COUNT DESC
''').df()

136 | Chapter 5: Performing EDA with DuckDB

Figure 5-26 shows that flights between SFO (San Francisco International Airport)
and LAX (Los Angeles International Airport) are the most frequent.

Figure 5-26. The count of flights from one airport to another

What if we limit the selection to flights exclusively provided by Delta Air Lines (DL)?
Here we go:

conn.execute('''
 SELECT
 ORIGIN_AIRPORT, DESTINATION_AIRPORT,
 COUNT(*) as COUNT
 FROM flights
 WHERE AIRLINE='DL'
 GROUP BY ORIGIN_AIRPORT, DESTINATION_AIRPORT
 ORDER BY COUNT DESC
''').df()

Figure 5-27 shows that the most popular flight from Delta Air Lines is from LGA
(LaGuardia Airport) to ATL.

Performing Descriptive Analytics | 137

Figure 5-27. The flight count for each origin-destination airport pair on Delta

Using the same SQL statement, you can modify the airline code to get the flights pro‐
vided by any particular airline.

In the next section, we’re going to find out which airline has the most canceled flights.

Getting the Canceled Flights from Airlines
In the flights table, all canceled flights have the CANCELLED field set to 1. Using this,
let’s find out how many flights have been canceled by Delta Air Lines in 2015:

conn.execute('''
 SELECT
 ORIGIN_AIRPORT, DESTINATION_AIRPORT,
 COUNT(*) as COUNT
 FROM flights
 WHERE AIRLINE='DL' AND CANCELLED = 1
 GROUP BY ORIGIN_AIRPORT, DESTINATION_AIRPORT
 ORDER BY COUNT DESC
'''
).df()

138 | Chapter 5: Performing EDA with DuckDB

Figure 5-28 shows the flights canceled by Delta Air Lines.

Figure 5-28. The number of flights canceled by Delta Air Lines

Understanding the percentage of flights canceled is more meaningful than knowing
the absolute number:

conn.execute('''
 SELECT
 ORIGIN_AIRPORT, DESTINATION_AIRPORT,
 (SUM(CANCELLED) * 100.0) / COUNT(*) as CANCELLED_PERCENT
 FROM flights
 WHERE AIRLINE = 'DL'
 GROUP BY ORIGIN_AIRPORT, DESTINATION_AIRPORT
 ORDER BY CANCELLED_PERCENT DESC
'''
).df()

Performing Descriptive Analytics | 139

Figure 5-29 shows the canceled percentage for Delta Air Lines.

Figure 5-29. The result showing the percentage of flights canceled by Delta Air Lines

It looks like flights from BOS (Boston Logan International Airport) to LGA, and vice
versa, have had high cancellations.

Finally, if you want to know overall what percentage of flights from Delta Air Lines
have been canceled:

conn.execute('''
 SELECT
 (SUM(CANCELLED) * 100.0) / COUNT(*) as CANCELLED_PERCENT
 FROM flights
 WHERE AIRLINE = 'DL'
'''
).df()

Figure 5-30 shows that Delta Air Lines canceled 0.44% of all its flights in 2015.

Figure 5-30. The percentage of flights canceled by Delta Air Lines

140 | Chapter 5: Performing EDA with DuckDB

But just showing the cancellation percentage of one airline does not really give you an
idea of how good or how bad the cancellation rate is; it is more useful to be able to
compare across all the airlines. And here we go:

import matplotlib.pyplot as plt

df = conn.execute('''
 SELECT AIRLINE,
 (SUM(CANCELLED) * 100.0) / COUNT(*) as CANCELLED_PERCENT
 FROM flights
 -- WHERE AIRLINE = 'DL'
 GROUP BY AIRLINE
 ORDER BY CANCELLED_PERCENT DESC
'''
).df()
display(df)

The -- in the SQL statement comments out the WHERE condition, and so the result
now is the cancellation percentages for all airlines (see Figure 5-31).

Figure 5-31. The flights cancellation percentages for all airlines

You can see that Delta Air Lines is not that bad after all; in terms of cancellation it is
third from the last. Let’s plot a bar chart to see how all the other airlines fared:

df.plot(kind='bar', x='AIRLINE', y='CANCELLED_PERCENT')
plt.xlabel('Airlines')
plt.ylabel('Cancellation Percentage')
plt.title('Cancellation Percentage for Different Airlines')

Performing Descriptive Analytics | 141

Figure 5-32 shows you the cancellation percentage for all the airlines.

Figure 5-32. The cancellation percentage for all airlines

Note that the labels for the x-axis are the airline codes. It would be better to display
the airline names in full. For this, you need to do a JOIN operation with the airlines
table:

import matplotlib.pyplot as plt

df = conn.execute('''
 SELECT
 a.AIRLINE,
 (SUM(f.CANCELLED) * 100.0) / COUNT(*) as CANCELLED_PERCENT
 FROM flights f
 JOIN airlines a ON f.AIRLINE = a.IATA_CODE
 GROUP BY a.AIRLINE
 ORDER BY CANCELLED_PERCENT DESC
'''
).df()

df.plot(kind='bar', x='AIRLINE', y='CANCELLED_PERCENT')
plt.xlabel('Airlines')
plt.ylabel('Cancellation Percentage')
plt.title('Cancellation Percentage for Different Airlines')

142 | Chapter 5: Performing EDA with DuckDB

Figure 5-33 shows the updated bar chart with the airline names displayed on the
x-axis.

Figure 5-33. The updated bar chart with the airline names displayed on the x-axis

It would also be useful to display the cancellation percentages using a pie chart:
ax = df.plot(kind='pie',
 x='AIRLINE',
 y='CANCELLED_PERCENT',
 labels = df['AIRLINE'],
 autopct = '%.0f%%',
 legend=False
)
ax.get_yaxis().set_visible(False)
plt.xlabel('Airlines')
plt.title('Cancellation Percentage for Different Airlines')

Figure 5-34 shows the pie chart of cancellation percentages.

Performing Descriptive Analytics | 143

Figure 5-34. Using a pie chart to display the percentage of flights canceled by all airlines

Another set of statistics that would be very useful to us is the number of flights for
each day of the week. We’ll examine this set in the next section.

Getting the Flight Count for Each Day of the Week
For each flight combination (origin to destination airport), we want to know the
flight count for each day of the week to see if certain days have fewer flights.

Let’s create the DataFrame that groups all the flight combinations by day of week:
df_flights_day_of_week = conn.execute('''
 SELECT
 day_of_week,
 origin_airport,
 destination_airport,
 COUNT(*) AS flight_count
 FROM
 flights
 WHERE
 CANCELLED = 0 -- Exclude cancelled flights
 GROUP BY
 day_of_week,
 origin_airport,
 destination_airport
 ORDER BY
 day_of_week,
 origin_airport,
 destination_airport;
''').df()

df_flights_day_of_week

144 | Chapter 5: Performing EDA with DuckDB

Figure 5-35 shows the result.

Figure 5-35. The count for each flight combination grouped by day of week

Verifying Airport Codes
Upon reviewing the results, you’ll notice that in the first five rows, both the
ORIGIN_AIRPORT and DESTINATION_AIRPORT fields contain numeric values for airport
codes rather than alphabetic ones. In fact, this pattern is consistent throughout the
entire month of October 2015. You can confirm this by checking for non-numeric
values in both columns using the following query:

conn.execute('''
 SELECT YEAR, MONTH, DAY, ORIGIN_AIRPORT, DESTINATION_AIRPORT
 FROM flights
 WHERE ORIGIN_AIRPORT NOT SIMILAR TO '[A-Za-z]+'
 OR DESTINATION_AIRPORT NOT SIMILAR TO '[A-Za-z]+';
''').df()

As shown in Figure 5-36, the result confirms that in October 2015, both the
ORIGIN_AIRPORT and DESTINATION_AIRPORT columns contain numeric values.

Performing Descriptive Analytics | 145

Figure 5-36. Numeric values in the ORIGIN_AIRPORT and DESTINATION_AIRPORT
columns for October

Numeric values in the fields ORIGIN_AIRPORT and DESTINATION_AIRPORT typically
represent special cases, such as system-assigned codes for smaller airports, freight-
only hubs, or unspecified locations. These codes may also appear in cases of diver‐
sions or operational exceptions where specific airport codes were unavailable. For
simplicity, we’ll consider these numeric values as distinct airport codes.

The result in Figure 5-35 itself contains all the flight combinations. So, let’s plot the
flight count for all the flights from SFO to LAX using a bar chart:

from_airport = 'SFO'
to_airport = 'LAX'

df_flights_result = df_flights_day_of_week.query(
 f'ORIGIN_AIRPORT=="{from_airport}" & DESTINATION_AIRPORT=="{to_airport}"')

df_flights_result.plot(kind='bar',
 x = 'DAY_OF_WEEK',
 y = 'flight_count',
 legend = False)

plt.xlabel('Day of Week')
plt.ylabel('Number of Flights')
plt.title(f'Number of Flights from {from_airport} to {to_airport}')
plt.xticks(df_flights_result['DAY_OF_WEEK'] - 1,
 ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])
plt.show()

146 | Chapter 5: Performing EDA with DuckDB

Figure 5-37 shows that there seem to be fewer flights from SFO to LAX on Saturdays
and Sundays.

Figure 5-37. The total number of flights from SFO to LAX on each day of the week

Instead of just counting the number of flights for each flight combination for each
day of the week, you could compute the percentage.

The following query calculates the percentage of flights on each weekday for given
origin and destination airports, excluding canceled flights. It achieves this by using
two common table expressions (CTEs) to first gather the flight counts by day of the
week and then gather the total flight counts for each origin-destination pair:

df_flights_weekday = conn.execute('''
 with t1 as (
 SELECT
 day_of_week,
 origin_airport,
 destination_airport,
 COUNT(*) AS flight_count_per_weekday
 FROM
 flights
 WHERE
 CANCELLED = 0 -- Exclude cancelled flights
 GROUP BY
 day_of_week,
 origin_airport,
 destination_airport
 ORDER BY
 day_of_week,
 origin_airport,

Performing Descriptive Analytics | 147

 destination_airport
),
 t2 as (
 SELECT
 origin_airport,
 destination_airport,
 count(*) as total_flight_count
 FROM
 flights
 WHERE
 CANCELLED = 0 -- Exclude cancelled flights
 GROUP BY
 origin_airport,
 destination_airport
)
 SELECT
 t1.origin_airport,
 t1.destination_airport,
 t1.day_of_week,
 t2.total_flight_count,
 100. * (t1.flight_count_per_weekday / t2.total_flight_count) as
 percent_flights_on_weekday
 FROM t1
 JOIN t2
 ON
 t1.origin_airport = t2.origin_airport AND
 t1.destination_airport = t2.destination_airport
''').df()
df_flights_weekday

Figure 5-38 shows the result returned by the query.

Figure 5-38. The percentage of flight counts for each flight combination grouped by day
of week

148 | Chapter 5: Performing EDA with DuckDB

You can now plot the result as a bar chart:
from_airport = 'SFO'
to_airport = 'LAX'

step 1: Filter the DataFrame for SFO to LAX
sfo_to_las_flights = df_flights_weekday.query(
 f'ORIGIN_AIRPORT=="{from_airport}" & DESTINATION_AIRPORT=="{to_airport}"')

step 2: Plotting
plt.figure(figsize=(10, 6))
plt.bar(sfo_to_las_flights['DAY_OF_WEEK'],
 sfo_to_las_flights['percent_flights_on_weekday'],
 color='skyblue')

plt.xticks(sfo_to_las_flights['DAY_OF_WEEK'].sort_values(),
 ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])

plt.title(f'Percentage of Flights from {from_airport} ' +
 f'to {to_airport} by Day of the Week')
plt.xlabel('Day of the Week')
plt.ylabel('Percentage of Flights')
plt.xticks(rotation=45)
plt.grid(axis='y')

Figure 5-39 shows the same result as a bar chart.

Figure 5-39. The percentage of flights from SFO to LAX on each day of the week

Performing Descriptive Analytics | 149

Another interesting statistic to gather would be the time of the day delays occur most
often. You will learn how to do this in the next section.

Finding the Most Common Timeslot for Flight Delays
To find the time where delays occur most often, we will divide the day into four time
slots:

• 12 a.m. to 6 a.m.
• 6 a.m. to 12 p.m.
• 12 p.m. to 6 p.m.
• 6 p.m. to 12 a.m.

Using these time slots, we can create a SQL query that finds the flight delays for each
slot:

df_delays_by_week = conn.execute('''
SELECT
 DAY_OF_WEEK,
 CASE
 WHEN SCHEDULED_DEPARTURE BETWEEN '0000' AND '0559' THEN '00:00-06:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '0600' AND '1159' THEN '06:00-12:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '1200' AND '1759' THEN '12:00-18:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '1800' AND '2400' THEN '18:00-24:00'
 ELSE 'Other'
 END AS DEPARTURE_TIME_INTERVAL,
 AVG(ARRIVAL_DELAY) AS AVG_ARRIVAL_DELAY
FROM
 flights
WHERE
 ARRIVAL_DELAY > 0
GROUP BY
 DAY_OF_WEEK,
 CASE
 WHEN SCHEDULED_DEPARTURE BETWEEN '0000' AND '0559' THEN '00:00-06:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '0600' AND '1159' THEN '06:00-12:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '1200' AND '1759' THEN '12:00-18:00'
 WHEN SCHEDULED_DEPARTURE BETWEEN '1800' AND '2400' THEN '18:00-24:00'
 ELSE 'Other'
 END
ORDER BY
 DAY_OF_WEEK, DEPARTURE_TIME_INTERVAL;
''').df()

df_delays_by_week

If you wish, you can divide the day into more time slots, but for now Figure 5-40
shows the result.

150 | Chapter 5: Performing EDA with DuckDB

Figure 5-40. The DataFrame containing the flight delays for each time slot grouped by
day of week

Performing Descriptive Analytics | 151

Just looking at the DataFrame is not very useful. And so we’ll plot a bar chart to show
the delays for each time slot. But before you begin, you need to pivot (reshape) the
DataFrame so that the index of the DataFrame is the DAY_OF_WEEK and the columns
are the time slots:

df_delays_by_week_pivot = df_delays_by_week.pivot(
 index = 'DAY_OF_WEEK',
 columns = 'DEPARTURE_TIME_INTERVAL',
 values = 'AVG_ARRIVAL_DELAY')
df_delays_by_week_pivot

Figure 5-41 shows the reshaped DataFrame.

Figure 5-41. The result of reshaping the DataFrame

You can now plot a bar chart:
plotting a bar chart
df_delays_by_week_pivot.plot(kind='bar',
 stacked=False,
 figsize=(10, 6))

updating the x-ticks to show the days of the week
days_of_week = ['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday']
plt.xticks(ticks=range(len(days_of_week)), labels=days_of_week, rotation=0)

plt.title('Average Arrival Delay by Departure Time and Day of Week')
plt.xlabel('Day of Week')
plt.ylabel('Average Arrival Delay (minutes)')
plt.legend(title='Departure Time Interval', bbox_to_anchor=(1, 1))
plt.tight_layout() # Adjust layout to avoid clipping of labels
plt.show()

152 | Chapter 5: Performing EDA with DuckDB

Figure 5-42 shows that for all flights that have delays:

• The evening time slot (6 p.m. to 12 a.m.) has the longest mean delay.
• On most days (except Thursday, Friday, and Sunday), the morning time slot

(6 a.m. to 12 p.m.) has the shortest mean delay.
• If you want to have minimum flight delays, try to travel on Thursday or Friday, in

the very early morning (from 12 a.m. to 6 a.m.).

Figure 5-42. Mean arrival delays based on departure time for each day of the week

Now that we know what is the best time to travel in order to avoid delays, let’s see
which airlines have the most and fewest delays.

Finding the Airlines with the Most and Fewest Delays
Let’s first sum up the number of delays for each airline:

df_most_delays = conn.execute('''
 SELECT
 count(airlines.AIRLINE) as Count,
 airlines.AIRLINE
 FROM flights, airlines
 WHERE airlines.IATA_CODE = flights.AIRLINE AND flights.ARRIVAL_DELAY > 0
 GROUP BY airlines.AIRLINE
 ORDER BY COUNT DESC
''').df()
df_most_delays

Performing Descriptive Analytics | 153

Figure 5-43 shows the total number of flights that have delays for each airline.

Figure 5-43. The total number of flights from each airline that were delayed

If you simply counted the number of delayed flights for an airline and use this num‐
ber to determine which airline has the most delayed flights, it might not be fair. Imag‐
ine an airline only has two flights per day and one of them is delayed. While it only
has one delayed flight, its delayed flights percentage is actually 50%!

A much more accurate way to determine which airline has the most delays is to cal‐
culate the percentage of flight delays for each airline. You can do so via the following
SQL query:

df_percent_delay = conn.execute('''
 WITH flight_delays AS (
 SELECT
 AIRLINE,
 1.0 * count(*) as TotalFlights,
 1.0 * sum(case when ARRIVAL_DELAY > 0 then 1 else 0 end) as Delays,
 (1.0 * sum(case when ARRIVAL_DELAY > 0 then 1 else 0 end) /
 count(*)) * 100 as Percentage
 FROM flights
 GROUP BY AIRLINE
)
 SELECT
 flight_delays.Percentage,
 airlines.IATA_CODE,
 airlines.AIRLINE
 FROM flight_delays

154 | Chapter 5: Performing EDA with DuckDB

 JOIN airlines ON airlines.IATA_CODE = flight_delays.AIRLINE
 ORDER BY flight_delays.Percentage DESC;
''').df()

df_percent_delay

Figure 5-44 shows the result.

Figure 5-44. The percentage of delayed flights for each airline

Let’s plot the result using a bar chart:
plt.bar(df_percent_delay['AIRLINE'],
 df_percent_delay['Percentage'],
 color='skyblue')
plt.title('Percentage of Delayed Flights by Airline')
plt.xlabel('Airlines')
plt.ylabel('Percentage of Delayed Flights')
plt.xticks(rotation = 90)
plt.grid(axis='y')

Performing Descriptive Analytics | 155

Figure 5-45 shows the result.

Figure 5-45. The bar chart showing airlines and their share of flight delays

For now, Spirit Air Lines is the leader when it comes to delays—48.46% of its flights
were not on time. And if you want to find the airlines that are always on time (and
even arrived earlier)? Easy, just swap the sign from > to <=:

df_percent_on_time = conn.execute('''
 WITH flight_delays AS (
 SELECT
 AIRLINE,
 1.0 * count(*) as TotalFlights,
 1.0 * sum(case when ARRIVAL_DELAY <= 0 then 1 else 0 end) as
 OnTimeFlights,
 (1.0 * sum(case when ARRIVAL_DELAY <= 0 then 1 else 0 end) /
 count(*)) * 100 as Percentage
 FROM flights
 GROUP BY AIRLINE
)
 SELECT
 flight_delays.Percentage,
 airlines.IATA_CODE,
 airlines.AIRLINE

156 | Chapter 5: Performing EDA with DuckDB

 FROM flight_delays
 JOIN airlines ON airlines.IATA_CODE = flight_delays.AIRLINE
 ORDER BY flight_delays.Percentage DESC;
''').df()

df_percent_on_time

Figure 5-46 shows the result.

Figure 5-46. The percentage of on-time flights for each airline

Let’s plot the bar chart:
plt.bar(df_percent_on_time['AIRLINE'],
 df_percent_on_time['Percentage'],
 color='skyblue')
plt.title('Percentage of Ontime Flights by Airline')
plt.xlabel('Airlines')
plt.ylabel('Percentage of Flights Ontime')
plt.xticks(rotation = 90)
plt.grid(axis='y')

Figure 5-47 shows that Delta Air Lines takes the lead, with 70.72% of its flights arriv‐
ing on time (or early).

Performing Descriptive Analytics | 157

Figure 5-47. The bar chart showing airlines with percentages of on-time flights

Summary
This chapter taught us some of the exciting practical applications of DuckDB through
exploratory data analysis of the 2015 Flight Delays dataset. Our journey started with
mapping all airport locations onto the folium map. Then, we harnessed DuckDB’s
spatial extension for geospatial analysis, finding that the spatial extension’s func‐
tions significantly streamline such analyses. The spatial extension offers a multitude
of possibilities, and this chapter merely scratches the surface. The latter part of the
chapter shifted focus to the descriptive analytics aspect, revealing valuable insights into
flight delays, cancellations, and flight frequencies across different days of the week.

The methodologies and tools used here can be applied to diverse datasets, offering val‐
uable perspectives for decision making in fields such as transportation management,
business planning, and data-driven strategies across various industries. In the next
chapter, you’ll learn how to work with JSON files in DuckDB and how to manipulate
JSON files that have complex structures.

158 | Chapter 5: Performing EDA with DuckDB

CHAPTER 6

Using DuckDB with JSON Files

In Chapter 2, you learned how to load data in different formats— CSV, Parquet, Excel
files, and MySQL databases—into DuckDB. Another important file format that is
popular among developers is JSON (JavaScript Object Notation).

One of the notable features of JSON is its flexible and dynamic structure: there is no
fixed schema that you need to follow, and you are able to use dynamic key/value pairs
to represent your own data. In DuckDB, there are several techniques you can use to
work with JSON files, and hence JSON deserves a dedicated chapter.

In this chapter, we’ll examine the various ways you can load JSON files into DuckDB.
We will look at a few JSON files with different structures and provide recommenda‐
tions on which function you can use for loading them.

Primer on JSON
This section is a quick primer for those who are new to the JSON file format. If you’re
already familiar with JSON, feel free to jump straight to the next section.

JSON is a lightweight data representation format that’s easy for humans to read and
interpret, and very efficient for computers to manipulate and generate. JSON sup‐
ports the following data types:

• Object
• String
• Boolean

• Number
• Array
• null

The following sections will elaborate on each of the data types.

159

Object
An object is an unordered collection of key/value pairs enclosed in a pair of curly
braces ({}). Here is an example:

{
 "key": "value"
}

Objects can also contain no key/value pairs. These objects are known as empty
objects. The following is an example of an empty object:

{}

String
The key in an object must be a string, while the value can be a string, Boolean, num‐
ber, array, null, or another object. The following shows an object with one key/value
pair:

{
 "firstName": "John"
}

An object can have multiple key/value pairs, for example:
{
 "firstName": "John",
 "lastName": "Doe"
}

Each key/value pair must be separated by a comma (,). Note that no comma is
needed after the last key/value pair.

Each key in the object must be unique. For example, the following example is not a
valid JSON string since there are two firstName keys in the object:

{
 "firstName": "John",
 "firstName": "Doe"
}

Boolean
A Boolean value can be either true or false, as the following example shows:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "single": false,
}

160 | Chapter 6: Using DuckDB with JSON Files

Number
A number value can either be an integer or a floating-point number:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "single": false,
 "weight": 79.5,
 "height": 1.73,
 "children": 3
}

Nested Object
The value of a key can be another object, as the following example shows:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "single": false,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 }
}

Array
An array is an ordered sequence of objects:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "single": false,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 },
 "phone": [
 {
 "type": "work",
 "number": "1234567"
 },
 {

Primer on JSON | 161

 "type": "home",
 "number": "8765432"
 },
 {
 "type": "mobile",
 "number": "1234876"
 }
]
}

Note that arrays are denoted with a pair of square brackets ([]), and all the objects
are separated by commas (,).

null
When a key has no value, you can assign a null to it:

{
 "firstName": "John",
 "lastName": "Doe",
 "isMember": true,
 "single": false,
 "weight": 79.5,
 "height": 1.73,
 "children": 3,
 "address": {
 "line1": "123 Street",
 "line2": "San Francisco",
 "state": "CA",
 "postal": "12345"
 },
 "phone": [
 {
 "type": "work",
 "number": "1234567"
 },
 {
 "type": "home",
 "number": "8765432"
 },
 {
 "type": "mobile",
 "number": "1234876"
 }
],
 "oldMembershipNo": null
}

With this knowledge of JSON, you are now ready to see how you can load a JSON file
into DuckDB. The next section shows you the various ways to do just that.

162 | Chapter 6: Using DuckDB with JSON Files

Loading JSON Files into DuckDB
Having acquainted yourself with the JSON syntax, it is now time to learn how to
work with it in DuckDB. For a demonstration, let’s examine the contents of a file
called json1.json, which contains the following data:

[
 {
 "id": 1,
 "name": "Sarah Johnson",
 "address": "4321 Oak Street Apartment 304 Los Angeles, CA 90001",
 "email":"sarah_johnson478@gmail.com",
 "weight": 140.50
 },
 {
 "id": 2,
 "name": "David Martinez",
 "address": "789 Maple Avenue Suite 102 New York, NY 10001",
 "email":"david_martinez431@gmail.com",
 "weight": 155.0
 },
 {
 "id": 3,
 "name": "Emily Wilson",
 "address": "567 Pine Road Unit 5B Chicago, IL 60601",
 "email":"emily_wilson998@gmail.com",
 "weight": 200.1
 }
]

In this JSON file, there is an array of JSON objects, each containing the following
fields:

• id

• name

• address

• email

• weight

In the coming sections, you will learn how to load JSON files of different structures
into DuckDB using the following:

• read_json_auto()

• read_json()

• COPY-FROM

Let’s get started with the read_json_auto() function first.

Loading JSON Files into DuckDB | 163

Using the read_json_auto() Function
To load the JSON file using DuckDB, use the read_json_auto() function:

import duckdb
conn = duckdb.connect()
conn.execute('''
 SELECT
 *
 FROM read_json_auto('json1.json')
''').df()

This code snippet returns a table with five fields, as shown in Figure 6-1.

Figure 6-1. The JSON file is loaded into DuckDB and a five-column table is created

To save the table in DuckDB, you can modify the query as follows:
conn.execute('''
 CREATE TABLE People
 as
 FROM 'json1.json'
''')

The read_json_auto() function automatically parses the various key/value pairs in
the JSON file and then loads it into DuckDB. Observe that the result (Figure 6-1) is a
table with five columns, which match the key/value pairs in the JSON file.

Recall that in Chapter 3 we discussed the DuckDB CLI. Using the DuckDB CLI, if
you use the following SQL query to load the JSON file, you will see the following
output:

D SELECT *
 FROM read_json_auto('json1.json');
┌───────┬────────────────┬───┬──────────────────────┬────────┐
│ id │ name │ … │ email │ weight │
│ int64 │ varchar │ │ varchar │ double │
├───────┼────────────────┼───┼──────────────────────┼────────┤
│ 1 │ Sarah Johnson │ … │ sarah_johnson478@g… │ 140.5 │
│ 2 │ David Martinez │ … │ david_martinez431@… │ 155.0 │
│ 3 │ Emily Wilson │ … │ emily_wilson998@gm… │ 200.1 │
├───────┴────────────────┴───┴──────────────────────┴────────┤
│ 3 rows 5 columns (4 shown) │
└──┘

In particular, note that the output shows the data type for each column. This is espe‐
cially helpful when we need to know the type of data that is loaded.

164 | Chapter 6: Using DuckDB with JSON Files

What if you want to load each object as a row and then put all the key/value pairs in a
single column? To do that, set the records parameter to false:

conn.execute('''
 SELECT
 *
 FROM read_json_auto('json1.json', records = false)
''').df()

Figure 6-2 shows the result. All the key/value pairs are now stored in a single column.

Figure 6-2. Using the records parameter to control how the key/value pairs are loaded

By default, records is set to true. Because the JSON extension expects JSON objects,
it unpacks the fields into individual columns automatically.

Using the DuckDB CLI, the output looks like this:
D SELECT *
 FROM read_json_auto('json1.json', records = false);
┌──┐
│ json │
│ struct(id bigint, "name" varchar, address varchar, email varchar, weight d… │
├──┤
│ {'id': 1, 'name': Sarah Johnson, 'address': 4321 Oak Street Apartment 304 … │
│ {'id': 2, 'name': David Martinez, 'address': 789 Maple Avenue Suite 102 Ne… │
│ {'id': 3, 'name': Emily Wilson, 'address': 567 Pine Road Unit 5B Chicago, … │
└──┘

You can also selectively load specific fields from the JSON file. For example, say you
only want to load the name and email key/value pairs:

conn.execute('''
 SELECT
 name, email
 FROM read_json_auto('json1.json')
''').df()

Figure 6-3 shows that only the name and email fields are loaded.

Figure 6-3. Loading only the name and email key/value pairs

Loading JSON Files into DuckDB | 165

In most cases, the read_json_auto() function in DuckDB will do the job of loading
your JSON files. However, in some special cases, you may need to manually load a
JSON file. You can do this by using the read_json() function, which we will discuss
next.

Using the read_json() Function
The read_json_auto() function is actually an alias for the read_json() function,
with auto detection turned on. In most cases, you should use the read_json_auto()
function. In some rare cases, that function is not able to automatically detect the for‐
mat of your file, in which case you should use the read_json() function and specify
the format and schema of your data.

The following sections will take a look at a few examples of different JSON file struc‐
tures and show you how to use the read_json() function to load them correctly.

Array of JSON objects
Earlier you saw that json1.json contains an array of JSON objects. Using the
read_json() function, you can read the content by setting the format to auto, and
then specifying which columns (and their types) you want to load:

conn.execute('''
 SELECT
 *
 FROM read_json('json1.json',
 format = 'auto',
 columns =
 {
 id:'INTEGER',
 name:'STRING',
 weight:'FLOAT'
 })
''').df()

For the format parameter, you can specify one of the following values:

• array

• newline_delimited or nd
• unstructured

• auto

Figure 6-4 shows the three columns that are loaded into DuckDB.

166 | Chapter 6: Using DuckDB with JSON Files

Figure 6-4. The table loaded into DuckDB

Using the DuckDB CLI, you can verify the types of each column:
D SELECT *
 FROM read_json('json1.json',
 format = 'auto',
 columns =
 {
 id:'INTEGER',
 name:'STRING',
 weight:'FLOAT'
 });

┌───────┬────────────────┬────────┐
│ id │ name │ weight │
│ int32 │ varchar │ float │
├───────┼────────────────┼────────┤
│ 1 │ Sarah Johnson │ 140.5 │
│ 2 │ David Martinez │ 155.0 │
│ 3 │ Emily Wilson │ 200.1 │
└───────┴────────────────┴────────┘

If you want to read all the key/value pairs, simply omit the columns parameter:
conn.execute('''
 SELECT
 *
 FROM read_json('json1.json',
 format = 'auto')
''').df()

Figure 6-5 shows the output of all the key/value pairs loaded into columns.

Figure 6-5. Loading all the key/value pairs

What about the other formats? The next section shows when to use the new
line_delimited format.

Loading JSON Files into DuckDB | 167

Newline-delimited (ND) JSON
Suppose you have another file named json1_a.json that contains three lines of JSON
objects, each separated by a newline character:

{"id": 1, "name": "Sarah Johnson", "address":
 {"line1":"4321 Oak Street Apartment","line2":"304 Los Angeles",
 "state":"CA", "zip":90001}, "email":"sarah_johnson478@gmail.com",
 "weight": 140.50}
{"id": 2, "name": "David Martinez", "address":
 {"line1":"789 Maple Avenue ","line2":"Suite 102 New York",
 "state":"NY","zip":10001}, "email":"david_martinez431@gmail.com",
 "weight": 155.0}
{"id": 3, "name": "Emily Wilson", "address":
 {"line1":"567 Pine Road Unit 5B Chicago",
 "state":"IL", "zip":60601}, "email":"emily_wilson998@gmail.com",
 "weight": 200.1}

This is known as a newline-delimited JSON file. To load this JSON file using the
read_json() function, set the format to newline_delimited:

conn.execute('''
 SELECT
 *
 FROM read_json('json1_a.json',
 format = 'newline_delimited',
 columns =
 {
 id:'INTEGER',
 name:'STRING',
 weight:'FLOAT'
 })
''').df()

In addition to the newline_delimited format, you can also use the nd or unstruc
tured format. The unstructured format can include any type of JSON, including
newline-delimited JSON, as well as more free-form or irregular JSON.

An alternative way of reading a newline-delimited JSON file is to use the
read_ndjson_auto() function, which does not require you to specify the format
parameter:

conn.execute('''
 SELECT
 *
 FROM read_ndjson_auto('json1_a.json',
 columns =
 {
 id:'INTEGER',
 name:'STRING',
 weight:'FLOAT'
 })
''').df()

This code snippet produces the same output as Figure 6-4.

168 | Chapter 6: Using DuckDB with JSON Files

Nested JSON
Let’s consider another example JSON file (json2.json) where the objects are nested
(highlighted in bold):

[
 {
 "id": 1,
 "name": "Sarah Johnson",
 "address": {
 "line1":"4321 Oak Street Apartment",
 "line2":"304 Los Angeles",
 "state":"CA",
 "zip":90001
 },
 "email":"sarah_johnson478@gmail.com",
 "weight": 140.50
 },
 {
 "id": 2,
 "name": "David Martinez",
 "address": {
 "line1":"789 Maple Avenue ",
 "line2":"Suite 102 New York",
 "state":"NY",
 "zip":10001
 },
 "email":"david_martinez431@gmail.com",
 "weight": 155.0
 },
 {
 "id": 3,
 "name": "Emily Wilson",
 "address": {
 "line1":"567 Pine Road Unit 5B Chicago",
 "state":"IL",
 "zip":60601
 },
 "email":"emily_wilson998@gmail.com",
 "weight": 200.1
 }
]

Here, you can see that the value of the address key is further split into four more
keys: line1, line2, state, and zip. The exception is the third object, where the value
of the address key does not have the line2 key.

Let’s use the read_json() function to load this file:
conn.execute('''
 SELECT
 *
 FROM read_json('json2.json')
''').df()

Loading JSON Files into DuckDB | 169

You will see that the value of the address field is now contained in a single column, as
shown in Figure 6-6.

Figure 6-6. The value of the address field is now contained within a single column

What if you want the value of the address field to be represented in individual col‐
umns? In this example, you want to have four columns: line1, line2, state, and zip.
You can accomplish this by specifying the individual keys in the SQL statement:

conn.execute('''
 SELECT
 id,
 name,
 address['line1'] as line1,
 address['line2'] as line2,
 address['state'] as state,
 address['zip'] as zip,
 email,
 weight
 FROM read_json('json2.json')
''').df()

Figure 6-7 shows the contents of the address field now represented in four columns.

Figure 6-7. The value of the address field is now represented in four columns

What happens if there is another nested object in the address key? The following
example (json2_a.json) shows that within the value of the address key, there is
another location key, which contains three more key/value pairs:

[
 {
 "id": 1,
 "name": "Sarah Johnson",
 "address": {
 "line1":"4321 Oak Street Apartment",
 "line2":"304 Los Angeles",

170 | Chapter 6: Using DuckDB with JSON Files

 "location" : {
 "state":"CA",
 "city":"Calexico",
 "zip":90001
 }
 },
 "email":"sarah_johnson478@gmail.com",
 "weight": 140.50
 },
 {
 "id": 2,
 "name": "David Martinez",
 "address": {
 "line1":"789 Maple Avenue ",
 "line2":"Suite 102 New York",
 "location" : {
 "state":"NY",
 "city":"Coney Island",
 "zip":10001
 }
 },
 "email":"david_martinez431@gmail.com",
 "weight": 155.0
 },
 {
 "id": 3,
 "name": "Emily Wilson",
 "address": {
 "line1":"567 Pine Road Unit 5B Chicago",
 "location" : {
 "state":"IL",
 "city":"Brookfield",
 "zip":60601
 }
 },
 "email":"emily_wilson998@gmail.com",
 "weight": 200.1
 }
]

In this case, you simply modify your SQL statement like this:
conn.execute('''
 SELECT
 address['line1'] as line1,
 address['line2'] as line2,
 address['location']['state'] as state,
 address['location']['city'] as city,
 address['location']['zip'] as zip,
 email,
 weight
 FROM read_json('json2_a.json')
''').df()

Loading JSON Files into DuckDB | 171

Figure 6-8 shows the output.

Figure 6-8. The contents of the location field are now represented in three columns

What if your JSON file contains specific structures where there are no clear repeating
patterns? The next section shows you how to work with it.

Custom JSON file

Consider the following JSON file (json3.json), which contains the people key whose
value is an array of JSON objects:

{
 "people": [
 {
 "id": 1,
 "name": "Sarah Johnson",
 "address": {
 "line1":"4321 Oak Street Apartment",
 "line2":"304 Los Angeles",
 "state":"CA",
 "zip":90001
 },
 "email":"sarah_johnson478@gmail.com",
 "weight": 140.50
 },
 {
 "id": 2,
 "name": "David Martinez",
 "address": {
 "line1":"789 Maple Avenue ",
 "line2":"Suite 102 New York",
 "state":"NY",
 "zip":10001
 },
 "email":"david_martinez431@gmail.com",
 "weight": 155.0
 },
 {
 "id": 3,
 "name": "Emily Wilson",
 "address": {
 "line1":"567 Pine Road Unit 5B Chicago",
 "state":"IL",
 "zip":60601
 },
 "email":"emily_wilson998@gmail.com",

172 | Chapter 6: Using DuckDB with JSON Files

 "weight": 200.1
 }
]
}

Let’s try to load it into DuckDB using the read_json() function:
conn.execute('''
 SELECT
 *
 FROM read_json('json3.json')
''').df()

Figure 6-9 shows the output. Interestingly, the value of the people key is loaded into a
single column.

Figure 6-9. The value of the people key is loaded as a single column

Since the people key in the JSON file contains a JSON array of objects, let’s try to use
the unnest() function in SQL to transform each element in the array into rows:

conn.execute('''
 SELECT unnest(people) p
 FROM read_json('json3.json')
''').df()

Figure 6-10 shows the output. Things are looking better now—at least each object is
transformed into a row.

Figure 6-10. Each object in the people key is now represented as a row

The next step would be to unpack the contents of each row. We can do that with the
variable p, which contains the contents of each row:

conn.execute('''
 SELECT
 p.id,
 p.name,
 p.address['line1'] as line1,
 p.address['line2'] as line2,
 p.address['state'] as state,
 p.address['zip'] as zip,
 p.email,
 p.weight

Loading JSON Files into DuckDB | 173

 FROM
 (
 SELECT unnest(people) p
 FROM read_json('json3.json')
)
''').df()

Note that this query can also be written as follows, with the contents of each row
wrapped in square brackets:

conn.execute('''
 SELECT
 p['id'],
 p['name'],
 p['address']['line1'] as line1,
 p['address']['line2'] as line2,
 p['address']['state'] as state,
 p['address']['zip'] as zip,
 p['email'],
 p['weight']
 FROM
 (
 SELECT unnest(people) p
 FROM read_json('json3.json')
)
''').df()

Figure 6-11 shows that the contents of each row are now unpacked into their individ‐
ual columns.

Figure 6-11. The contents of each row, unpacked into individual columns

The next section will discuss how you can load multiple JSON files into DuckDB
using the read_json() function.

Loading multiple JSON files
So far, we have been loading individual JSON files into DuckDB. However, oftentimes
you may need to load multiple JSON files all at once. Let’s discuss how you can do
that.

174 | Chapter 6: Using DuckDB with JSON Files

Consider the following JSON file (json4.json):
[
 {
 "id": 1,
 "name": "Sarah Johnson",
 "address": "4321 Oak Street Apartment 304 Los Angeles, CA 90001",
 "email":"sarah_johnson478@gmail.com",
 "weight": 140.50
 },
 {
 "id": 2,
 "name": "David Martinez",
 "address": "789 Maple Avenue Suite 102 New York, NY 10001",
 "email":"david_martinez431@gmail.com",
 "weight": 155.0
 }
]

And consider this additional JSON file (json5.json):
[
 {
 "id": 3,
 "name": "Emily Wilson",
 "address": {
 "line1":"567 Pine Road Unit 5B Chicago",
 "state":"IL",
 "zip":60601
 },
 "height": 66
 }
]

Observe that both files have the same general structure—an array of objects. The key
difference is the composition of each object: the weight and email keys are missing
in the second JSON file and the contents of the address key are different for the two
files.

Let’s now load the two files together by passing a list of filenames to the read_json()
function:

conn.execute('''
 SELECT
 *
 FROM read_json(['json4.json','json5.json'])
''').df()

When you load multiple JSON files in DuckDB and a field has a string value in one
file but a numeric value in another, DuckDB will attempt to infer the data type for
that field. If there’s a type conflict, DuckDB might cast the numeric value to a string to
maintain consistency, resulting in the entire column being treated as strings. In some
cases, if the type conflict is severe, it may throw an error. To avoid this, ensure data
type consistency across files or explicitly cast the field to a desired type in the query.

Loading JSON Files into DuckDB | 175

Figure 6-12 shows the output.

Figure 6-12. The result of loading two JSON files

Observe the following:

• The result is the combination of the two files loaded.
• The resultant columns match the names of the keys in the JSON files. The order

of the keys in the JSON files is not important.
• For fields that are missing in each row, a NaN value is inserted for numeric fields,

while a None value is inserted for string fields.

In general, when loading multiple files, you should ideally ensure that all the files
have the same structure.

You can always write a Python script to ensure that two JSON files
have the same structure.

Rather than supplying a list of filenames to load, you can optionally use the glob syn‐
tax (commonly known as wildcard syntax). You can use the following wildcards to
read multiple JSON files:

Wildcard symbol What it does
* Matches any number of any characters (including none)
** Matches any number of subdirectories (including none)
? Matches any single character
[abc] Matches one character given in the brackets
[a-z] Matches one character from the range given in the brackets

The following code snippet loads all the files in the current directory whose filenames
begin with “json” and end with a “.json” extension:

176 | Chapter 6: Using DuckDB with JSON Files

conn.execute('''
 SELECT
 *
 FROM read_json('json*.json')
''').df()

If you only want to load JSON files in the current directory whose filenames begin
with “json,” followed by a single character, and then end with “.json,” use the ? wild‐
card character:

conn.execute('''
 SELECT
 *
 FROM read_json('json?.json')
''').df()

This code snippet loads json1.json, json2.json, json3.json, json4.json, and json5.json.

Now that we have seen how to use the read_json() and read_json_auto() func‐
tions, let’s look at the third way to load JSON files into DuckDB.

Using the COPY-FROM Statement
The third way to load JSON files into DuckDB is to use the COPY-FROM statement.
This offers significant advantages over read_json(), particularly when dealing with
large datasets. COPY-FROM is optimized for performance and scalability. It enables
more efficient handling of large files by loading data in batches, which reduces mem‐
ory consumption and improves speed. COPY-FROM takes full advantage of DuckDB’s
parallel processing capabilities, further boosting performance when loading gigabytes
of data. Additionally, COPY-FROM integrates more smoothly into database workflows
by directly loading data into tables with minimal preprocessing and automatic
schema inference, ensuring data consistency.

In contrast, read_json() loads the entire file into memory, which can cause perfor‐
mance bottlenecks with large files and often requires additional steps to enforce
schema consistency or insert the data into a database. Therefore, COPY-FROM is better
suited for high-performance, large-scale data ingestion, while read_json() is more
appropriate for smaller, interactive tasks.

To use the COPY-FROM statement to load a JSON file, you need to first create a table
with the correct schema to match the JSON structure, and then use COPY-FROM to load
the file. The following code snippet creates a people table in DuckDB to store the con‐
tents of the json1.json file:

conn = duckdb.connect()
conn.execute('''
 CREATE TABLE people (id INT, name STRING, address STRING,
 email STRING, weight FLOAT);
 COPY people FROM 'json1.json' (FORMAT JSON, AUTO_DETECT true);
 SELECT * FROM people;
''').df()

Loading JSON Files into DuckDB | 177

This code snippet produces the result shown in Figure 6-13.

Figure 6-13. Loading the JSON file using the COPY-FROM statement

You need to use the (FORMAT JSON, AUTO_DETECT true) statement to load the JSON
file properly. If your JSON file has a complex structure (such as json5.json), this
method is not recommended.

In the next section, you will learn how to export DuckDB tables to JSON.

Exporting Tables to JSON
Often, we might want to persist the tables that we have in DuckDB to a JSON file.
This is useful when you want to exchange data with other platforms, or simply as a
way to back up your data. You can export your data to JSON easily using the COPY
statement that we discussed in the previous section.

Consider the following code snippet, where a table named people is loaded from a
JSON file:

conn = duckdb.connect()
conn.execute('''
 CREATE OR REPLACE TABLE people
 as
 SELECT
 name,
 weight
 FROM read_ndjson_auto('json1_a.json')
''')
display(conn.execute('SELECT * FROM people').df())

Figure 6-14 shows the content of the people table.

Figure 6-14. The content of the people table

178 | Chapter 6: Using DuckDB with JSON Files

To write the content of the people table to a file named people.json, use the COPY-TO
statement and specify FORMAT JSON (optional, as DuckDB deduces the file type based
on the file extension):

conn.execute('''
 COPY people
 TO
 'people.json' (FORMAT JSON);
''')

The content of people.json looks like this:
{"id":1,"name":"Sarah Johnson","weight":140.5}
{"id":2,"name":"David Martinez","weight":155.0}
{"id":3,"name":"Emily Wilson","weight":200.1}

Observe that the content is not strictly standard JSON; it is actually a newline-
delimited JSON file, where each line contains a separate JSON object. If you want the
output to be strictly JSON, specify ARRAY TRUE:

conn.execute('''
 COPY people
 TO
 'people_array.json' (ARRAY TRUE);
''')

The content of people_array.json will look like this:
[
 {"name":"Sarah Johnson","weight":140.5},
 {"name":"David Martinez","weight":155.0},
 {"name":"Emily Wilson","weight":200.1}
]

This is a valid JSON string.

Summary
In this chapter, you learned several methods for loading JSON files into DuckDB:

• Use the read_json_auto() function. This method is the most direct, and you
should always try this method first.

• Use the read_json() function. If your JSON file has some complex structure and
the read_json_auto() function is not able to load it properly, you should try
using the read_json() function to load your file.

• Use the COPY-FROM statement. To use this method, you need to manually create a
table in DuckDB first before loading the JSON file. Use this method if the struc‐
ture of your JSON file is relatively simple; otherwise, you should always try to use
the read_json_auto() or read_json() functions.

Summary | 179

Finally, you also learned how to export the tables in your DuckDB to a JSON file
using the COPY-TO statement.

In the next chapter, you will learn how to use JupySQL, a SQL client for Jupyter Note‐
book. Using JupySQL enables you to access your datasets directly in Jupyter
Notebook using SQL.

180 | Chapter 6: Using DuckDB with JSON Files

CHAPTER 7

Using DuckDB with JupySQL

Traditionally, data scientists use Jupyter Notebook to pull data from database servers
or from external datasets (such as CSV, JSON files, etc.) and store it into pandas Data‐
Frames (see Figure 7-1).

Figure 7-1. Traditional way of querying data as pandas DataFrames and then using
them for data visualization

They then use the DataFrames for visualization purposes. This approach has a couple
of drawbacks:

• Querying a database server may degrade the performance of the database server,
which may not be optimized for analytical workloads.

• Loading the data into DataFrames takes up precious resources, including mem‐
ory and compute. For example, if the intention is to visualize certain aspects of
the dataset, you need to load the entire dataset into memory before you can per‐
form visualization on it.

181

• Plotting visualizations using Matplotlib also uses a significant amount of mem‐
ory. Behind the scenes, Matplotlib maintains various objects such as figures, axes,
lines, text, and other graphical elements in memory. Each of these elements con‐
sumes resources as they are created and rendered. Additionally, Matplotlib han‐
dles data arrays used for plotting and temporarily stores them in memory for
processing. If you’re creating multiple plots or figures, each figure and its associ‐
ated data remain in memory until explicitly closed or cleared, leading to
increased memory usage. Furthermore, backends used for rendering (e.g., inter‐
active or static backends) also play a role, with some backends requiring more
memory to handle complex visual elements and graphical interfaces. This can be
especially noticeable when working with high-resolution plots, multiple subplots,
or large datasets.

While tools like Power BI, Domo, Tableau, and Excel simplify the process of loading
and visualizing data, pandas remains an excellent choice for quick, in-line visualiza‐
tions during EDA due to its built-in plotting features. With minimal effort, users can
generate basic visualizations such as line plots, bar charts, histograms, and scatter
plots directly from pandas DataFrames or Series. This makes it convenient for quickly
visualizing data distributions, trends, and patterns while working on data manipula‐
tion—without needing to switch to other libraries or perform extra steps.

To improve performance, ideally the processing of the data (all the data wrangling
and filtering) should be offloaded to a client that is able to perform the data analytics
efficiently and return the result to be used for visualization. And this is the topic of
this chapter—JupySQL.

While DuckDB also allows you to access your datasets directly
using SQL, operations with JupySQL can be done as SQL cells in
the Notebook.

What Is JupySQL?
JupySQL is a SQL client for Jupyter Notebook, enabling you to access your datasets
directly in Jupyter Notebook using SQL. The main idea of JupySQL is to run SQL in a
Jupyter Notebook, hence its name. JupySQL is a fork of ipython-sql, which adds SQL
cells to Jupyter. It is currently actively maintained and enhanced by the team at
Ploomber.

JupySQL enables you to query your dataset using SQL, without your needing to
maintain the DataFrame to store your dataset. For example, you could use JupySQL
to connect to a database server (such as MySQL or PostgreSQL) or CSV files through

182 | Chapter 7: Using DuckDB with JupySQL

the DuckDB engine. The result of your query can then be directly used for visualiza‐
tion. Figure 7-2 shows how JupySQL works.

Figure 7-2. How JupySQL works with DuckDB to query various data sources and use
them for data visualization

In the following sections, you will learn how to install JupySQL, use it in your Jupyter
Notebook, and use it with DuckDB.

Installing JupySQL
To use JupySQL in your Jupyter Notebook, you need to install the jupysql package.
In addition, to work with DuckDB within JupySQL, you also need to install the
duckdb-engine package. The following statement installs both:

!pip install jupysql duckdb-engine

The duckdb-engine package is the SQLAlchemy driver for DuckDB. SQLAlchemy is
an open source Python library for working with relational databases. It provides a set
of high-level and low-level tools for interacting with databases in a flexible and effi‐
cient manner. You should also install the SQLAlchemy library:

!pip install SQLAlchemy

You can use the following magic commands (denoted by a % symbol) in your Jupyter
Notebook to use JupySQL to interact with your data sources.

Option What it does
%sql A line magic command to execute an SQL statement

%%sql A cell magic command to execute multiline SQL statements

%sqlplot A line magic command to plot a chart

Loading the sql Extension
With the necessary packages installed, let’s see how you can use SQL directly in your
Jupyter Notebook using JupySQL.

What Is JupySQL? | 183

First, create a new Jupyter Notebook. Next, create a new cell and load the sql exten‐
sion using the %load_ext line magic command (see Figure 7-3):

%load_ext sql

Figure 7-3. Loading the sql extension using %load_ext line magic command

One important point to note here: do not put your comments in the same line as the
%load_ext magic command. This will cause errors on your SQL statement. For exam‐
ple, suppose you want to put a comment on the preceding statement, such as:

%load_ext sql # load the sql extension

This will try to load the module named “sql # load the sql extension,” resulting in an
error. To add a comment, put it on a separate line:

load the sql extension
%load_ext sql

Integrating with DuckDB
With the sql extension loaded, you need to load a database engine in which you can
use it to process your data. For this section, you will use DuckDB. The following
statement starts a DuckDB in-memory database:

%sql duckdb://

This statement uses a SQLAlchemy-style connection string to connect to the database
engine—in this case, the DuckDB engine. If you want to use a persistent DuckDB
database, specify the name of the file, like this:

%sql duckdb:///MyDB.db

JupySQL generally manages the connection for you. When you run SQL commands
using %sql, it opens a connection, executes the command, and closes the connection
automatically after execution.

184 | Chapter 7: Using DuckDB with JupySQL

If you need help with JupySQL, you can always use the %sql? line magic command to
display the docstring (see Figure 7-4):

%sql?

Figure 7-4. Displaying the docstring for JupySQL

Performing Queries
Let’s start off by using the %sql magic command in Jupyter Notebook to perform a
query on the CSV file airlines.csv:

%sql SELECT * FROM airlines.csv

What Is JupySQL? | 185

You will see the result of loading the airlines.csv file in Figure 7-5.

Figure 7-5. The CSV file is loaded into DuckDB

The result of the %sql magic command is a sql.run.ResultSet object. You can con‐
vert the result into a pandas DataFrame if you wish:

rs = %sql SELECT * FROM 'airlines.csv'
df = rs.DataFrame() # convert to pandas DataFrame

Note that there is a default display limit of 10 rows for the result. If you want to dis‐
play all the rows, use the following statement:

%config SqlMagic.displaylimit = None # or set to 0

Configuration details can also be read from a file (e.g., at
~/.jupysql/config), which requires installation of the toml pack‐
age (pip install toml).

If your query spans multiple lines, use the %%sql cell magic command:
%%sql
SELECT
 count(*) as Count, STATE
FROM airports.csv
GROUP BY STATE
ORDER BY Count

The result is shown in Figure 7-6.

186 | Chapter 7: Using DuckDB with JupySQL

https://oreil.ly/2Vf_N

Figure 7-6. Counting the number of airports for each state

While the preceding queries can load CSV files into DuckDB, the data is not persisted
as tables in the DuckDB database. If you want to make use of the airlines content, you
must perform the query again. To persist the table in the DuckDB database, you need
to use the CREATE TABLE statement:

%%sql
CREATE TABLE airlines
as
FROM 'airlines.csv'

The content of airlines.csv is now saved in the table named airlines (within the
MyDB.db file since we are using a file-backed DuckDB database). To retrieve the con‐
tent of the airlines table, use the following statement:

%sql SELECT * FROM airlines

Note that if you open the DuckDB database with a persistent database, the tables are
automatically saved in the database. The next time you open the database, the tables
will still be there. For in-memory DuckDB databases, all the tables will be lost when
you restart the Jupyter kernel.

To check the tables in the DuckDB database, use the %sqlcmd command:
%sqlcmd tables

Figure 7-7 shows the airlines table in the DuckDB database.

What Is JupySQL? | 187

Figure 7-7. The airlines table stored in the DuckDB database

To view the schema for the table, use the %sqlcmd columns command with the -t
argument:

%sqlcmd columns -t airlines

Figure 7-8 shows the schema for the airlines table.

Figure 7-8. Viewing the schema for the airlines table

If you want to generate statistics about the table, use the %sqlcmd profile command
with the -t argument:

%sqlcmd profile -t airlines

Figure 7-9 shows the statistics for the airlines table.

Figure 7-9. Generating statistics for the airlines table

Storing Snippets
Besides saving the result of your queries as tables in your DuckDB database, you can
also save the queries (known as snippets) so that you can invoke them again later.

188 | Chapter 7: Using DuckDB with JupySQL

The following example saves a snippet and names it state_count:
%%sql --save state_count
SELECT
 count(*) as Count, STATE
FROM airports.csv
GROUP BY STATE
ORDER BY Count DESC
LIMIT 10

Figure 7-10 shows the result of this query.

Figure 7-10. JupySQL runs the snippet that you created

Stored snippets are not persisted to DuckDB databases (even with
persistent databases).

To run this snippet again, you just use the snippet name:
%sql SELECT * FROM state_count

Figure 7-11 shows JupySQL is running the query from the stored snippet.

What Is JupySQL? | 189

Figure 7-11. The output of running the stored snippet

If you do not want to execute the query when you define the snippet, use the no-
execute option:

%%sql --save state_count --no-execute
SELECT
 count(*) as Count, STATE
FROM airports.csv
GROUP BY STATE
ORDER BY Count

Now that you have learned how to use JupySQL to work with your data sources, it is
time for you to visualize your data using JupySQL! The next section will discuss the
various types of plots you can create using JupySQL.

Visualization
JupySQL enables you to plot charts using the %sqlplot line magic command. In the
following sections, you will learn how to plot:

• Histograms
• Box plots
• Pie charts
• Bar plots

190 | Chapter 7: Using DuckDB with JupySQL

Histograms
Let’s start by plotting a histogram. Before you start plotting, you need to ensure that
the Matplotlib package is installed on your computer:

!pip install matplotlib

Next, create and save a query and name it airports_A:
%%sql --save airports_A --no-execute
SELECT
*
FROM airports.csv
WHERE state LIKE 'A%'

This query finds all the airports belong to states with names starting with “A”—that is,
AK, AL, AR, AS, and AZ. The --no-execute option prevents the query from being
executed immediately, so no data is retrieved or processed at this time.

To plot a histogram showing the number of airports for each of the states starting
with “A”, use the %sqlplot line magic command:

%sqlplot histogram --table airports_A --column STATE

Here are the options used:

Option What it does
--table Specifies the table/query to use for plotting.

--column Specifies the field name to use as the column for the plot.

The histogram also supports the following options:

Option What it does
-s/--schema Schema to use. No need to pass if using a default schema.

-b/--bins Number of bins. The default is 50.

-B/--breaks Custom bin intervals.

-W/--binwidth Width of each bin.

-w/--with Use a previously saved query as input data.

Visualization | 191

Figure 7-12 shows the histogram.

Figure 7-12. Histogram showing the number of airports in states starting with “A”

Let’s try another query—this time from the Boston housing dataset (Licensing: CC0:
Public Domain). Let’s create a query to load the boston.csv file:

%%sql --save boston
SELECT
 *
FROM boston.csv

Figure 7-13 shows the content of the Boston dataset.

192 | Chapter 7: Using DuckDB with JupySQL

https://oreil.ly/W9Wxr
https://oreil.ly/Rq8FR
https://oreil.ly/Rq8FR

Figure 7-13. The content of the Boston dataset

Specifically, we want to plot the distribution of age and median dollar value of owner-
occupied homes in thousands (medv):

%sqlplot histogram --column age medv --table boston

Figure 7-14 shows the histogram. For this histogram, you used two fields, age and
medv.

Figure 7-14. The histogram for the age and medv fields

Visualization | 193

The next dataset you will use is the Titanic dataset from Kaggle (titanic_train.csv;
licensing: Database Contents License (DbCL) v1.0).

As usual, let’s first create a query for it:
%%sql --save titanic
SELECT
 *
FROM titanic_train.csv
WHERE age NOT NULL AND embarked NOT NULL

Figure 7-15 shows the Titanic dataset.

Figure 7-15. The content of the Titanic dataset

Let’s plot the distribution of age in the Titanic dataset, with the age grouped into 10
bins:

%sqlplot histogram --column age --bins 10 --table titanic

A bin in a histogram is the range of values used to group data
points, with the height of each bin representing the frequency of
data within that range.

Figure 7-16 shows the distribution of age in the Titanic dataset. As you can see from
the histogram, most passengers were in their thirties.

194 | Chapter 7: Using DuckDB with JupySQL

https://oreil.ly/Kyv6X

Figure 7-16. The histogram showing the distribution of age in the Titanic dataset

You can also customize the plot by assigning the it to a variable, which is of type
matplotlib.axes._subplots.AxesSubplot:

ax = %sqlplot histogram --column age --bins 10 --table titanic

By doing this, you gain more control over various aspects of the plot. For example,
you can adjust the title, labels, gridlines, and tick marks, as well as modify the legend,
customize colors and styles of lines, markers, or bars, and even add annotations or
additional subplots. This approach enables you to fine-tune every element of the plot,
making it highly tailored to your specific needs and preferences.

To customize the plot, install the Seaborn package:
!pip install seaborn

Using the AxesSubplot object, you can obtain the patches within the plot and then
set their properties, such as alpha, color, and edge color:

ax = %sqlplot histogram --column age --bins 10 --table titanic

import seaborn

https://seaborn.pydata.org/generated/seaborn.color_palette.html
palette_color = seaborn.color_palette('pastel')

for i, bar in enumerate(ax.patches):
 bar.set_alpha(0.8)
 bar.set_color(palette_color[i])
 bar.set_edgecolor('black')

Visualization | 195

ax.set_title("Distribution of Age on Titanic")
ax.set_xlabel("Age")

In Matplotlib, patches are 2-D shapes or graphical objects that can
be added to a plot to represent geometric forms including rectan‐
gles, circles, polygons, ellipses, and more.

Figure 7-17 shows the modified histogram with the bars set to different colors.

Figure 7-17. The modified histogram with the bars set to different colors

Box Plots
Another popular plot that you can create with JupySQL is a box plot. A box plot, also
known as a whisker plot, is typically used to display the distribution of a dataset by
summarizing its minimum, first quartile (Q1), median (Q2), third quartile (Q3), and
maximum values. It visually represents the spread and skewness of the data while
highlighting potential outliers. The central box encompasses the interquartile range
(IQR), which contains the middle 50% of the data, while the lines extending from the
box (whiskers) indicate the range of the data outside the quartiles, excluding outliers.
Box plots are particularly useful for comparing distributions across different groups
and quickly identifying variability and symmetry in the data.

196 | Chapter 7: Using DuckDB with JupySQL

Using the titanic table that we saved in the previous section, let’s now use a box plot to
show the distribution of the age field:

%sqlplot boxplot --column age --table titanic

Figure 7-18 shows the box plot showing the distribution of age. The circles are the
outliers.

Outliers are data points that significantly deviate from the other
observations in a dataset. They are typically defined as values that
lie outside the general distribution of the data, often being much
higher or lower than the rest of the data points. Outliers can occur
due to variability in the data, measurement errors, or they may
indicate a novel phenomenon.

Figure 7-18. The box plot showing the distribution of the age in the Titanic dataset

boxplot supports the following options:

Option What it does
-t/--table Table to use. If using DuckDB, you can provide a file path (such as a CSV or JSON file) to query directly as a

table.
-s/--schema Schema to use. No need to pass if using a default schema.

-c/--column Columns to plot. You may pass more than one value (e.g., -c a b c).

-o/--orient Boxplot orientation (h for horizontal, v for vertical).

-w/--with Use a previously saved query as input data.

Visualization | 197

To plot the box horizontally, use the --orient option:
%sqlplot boxplot --column age --table titanic --orient h

Figure 7-19 shows the box plot in a horizontal orientation.

Figure 7-19. The box plot in horizontal orientation

Pie Charts
JupySQL can also plot pie charts. Using the airports.csv file, create the following query
to get the number of airports for each state:

%%sql --save airports_by_state
SELECT count(*) as Count, STATE
FROM airports.csv
GROUP BY STATE
ORDER BY Count
DESC LIMIT 5

To make the pie chart manageable, we’ll extract only the top five states (see
Figure 7-20).

198 | Chapter 7: Using DuckDB with JupySQL

Figure 7-20. The top five states with the most airports

To display a pie chart, use the following statement:
%sqlplot pie --table airports_by_state --column STATE count --show-numbers

The pie chart supports the following options:

Option What it does
-t/--table The table to use. If using DuckDB, you can provide a file path (such as a CSV or JSON file) to query

directly as a table.
-s/--schema The schema to use. No need to pass if using a default schema.

-c/--column The columns to plot.

-w/--with Use a previously saved query as input data.

-S/--show-numbers Show the percentages on the pie.

The --show-numbers option shows the percentage on each slice of the pie (see
Figure 7-21).

Figure 7-21. The pie chart showing the percentage of airports for five states

Visualization | 199

Bar Plots
The last type of plot we want to discuss in this section is the bar plot.

First, let’s use the airports_by_state snippet that we have saved in the previous sec‐
tion to plot a bar chart showing the number of airports in each state:

%sqlplot bar --table airports_by_state --column STATE Count --show-numbers

The --show-numbers option displays the number on top of each bar (see
Figure 7-22).

Figure 7-22. The number of airports for each state plotted as a bar chart

Like the examples earlier, you can customize the bars by using the patches property
of the AxesSubplot object:

ax = %sqlplot bar --table airports_by_state --column STATE Count --show-numbers

import seaborn

palette_color = seaborn.color_palette('pastel')

iterate through each bar
for i, bar in enumerate(ax.patches):
 bar.set_alpha(0.8) # set the transparency
 bar.set_color(palette_color[i]) # set the color
 bar.set_edgecolor('black') # set the border color

ax.set_title("Number of airports for each state")
ax.set_xlabel("State")

200 | Chapter 7: Using DuckDB with JupySQL

Figure 7-23 shows the bars in different colors, as well as the change in the x-axis label
and the title of the plot.

Figure 7-23. Each bar in the bar chart has its own color

Let’s return to the Titanic dataset. Suppose you want to look at the survival rates
across different age groups to determine whether age influenced likelihood of sur‐
vival. To do this, you need to define the various age groups and then count how many
survived and how many did not for each group:

%%sql --save titanic_age_groups
SELECT
 AgeGroup,
 SUM(CASE WHEN Survived = 1 THEN 1 ELSE 0 END) AS SurvivedCount,
 SUM(CASE WHEN Survived = 0 THEN 1 ELSE 0 END) AS NotSurvivedCount
FROM (
 SELECT
 CASE
 WHEN Age >= 0 AND Age < 10 THEN '0-9'
 WHEN Age >= 10 AND Age < 20 THEN '10-19'
 WHEN Age >= 20 AND Age < 30 THEN '20-29'
 WHEN Age >= 30 AND Age < 40 THEN '30-39'
 WHEN Age >= 40 AND Age < 50 THEN '40-49'
 WHEN Age >= 50 AND Age < 60 THEN '50-59'
 ELSE '60+' -- Assuming age 60 and above
 END AS AgeGroup,
 Survived
 FROM titanic_train.csv
) AS AgeGroups
GROUP BY AgeGroup
ORDER BY AgeGroup;

Visualization | 201

This query returns the output shown in Figure 7-24.

Figure 7-24. The output of the query to determine survival by age

Let’s plot the bar chart for those who survived (see Figure 7-25 for the output):
ax1 = %sqlplot bar --column AgeGroup SurvivedCount --table titanic_age_groups
for i, bar in enumerate(ax1.patches):
 bar.set_alpha(0.4)
 bar.set_edgecolor('black')

Figure 7-25. The bar chart showing the age of those who survived

202 | Chapter 7: Using DuckDB with JupySQL

We can overlay a second bar chart by adding another block of statements plotting
those who did not survive (bolded code):

ax1 = %sqlplot bar --column AgeGroup SurvivedCount --table titanic_age_groups
for i, bar in enumerate(ax1.patches):
 bar.set_alpha(0.4)
 bar.set_edgecolor('black')

ax2 = %sqlplot bar --column AgeGroup NotSurvivedCount --table titanic_age_groups
ax2.legend(["Survived", "Did not survive"],loc='upper left')
for i, bar in enumerate(ax2.patches):
 bar.set_alpha(0.4)
 bar.set_edgecolor('black')
ax2.set_ylabel("Count")
ax2.set_title("Survivability for different age groups")

Figure 7-26 shows the two bar charts overlapping each other.

Figure 7-26. The bar chart showing the age of those who survived and did not survive

As you can gather from the updated chart, more than half of the children below the
age of 9 survived, while more than half of the individuals in other age groups died.
Also, the ratio of passengers older than 60 who died is greater than in any other age
group.

So far all the examples that we have discussed are based on CSV files. However, in the
real world a lot of data resides in databases—especially on database servers, such as
MySQL server or PostgreSQL. In the next section, you will learn how to use JupySQL
to work with a database server.

Visualization | 203

Integrating with MySQL
In this section, you’ll learn how you can use JupySQL to load data from a database
server. Specifically, we’ll use MySQL in this section.

For JupySQL to connect to a database server, you need to install the driver for that
specific database server. For example, to connect to a MySQL Server, you need to
install the mysqlclient package:

!conda install mysqlclient -c conda-forge -y

JupySQL can connect to other database servers as well, including
PostgreSQL, Microsoft SQL Server, and Oracle. You can obtain
more information about using JupySQL with different data sources
and platforms from the JupySQL Quick Start guide.
Here are links to the JupySQL documentation for some common
database servers:

• PostgreSQL
• Microsoft SQL Server
• Oracle

There are three main ways to connect to your database server in JupySQL:

• Using environment variables
• Using an .ini file
• Using keyring

You’ll learn about each of these methods in the following sections.

Using Environment Variables
The first way to connect to your database server is using the DATABASE_URL environ‐
ment variable. To do this, you first need to create a SQLAlchemy URL standard con‐
nection string to point to your database and assign it to the DATABASE_URL
environment variable. Then, the %sql magic command will automatically connect to
the specified database server.

Let’s create the connection string to connect to a MySQL server:
from getpass import getpass

password = getpass()
username = 'user1'
host = 'localhost'
db = 'My_DB'

204 | Chapter 7: Using DuckDB with JupySQL

https://oreil.ly/4bL9k
https://oreil.ly/iFePy
https://oreil.ly/9wSXG
https://oreil.ly/b37eZ

connection strings are SQLAlchemy URL standard
connection_string = f"mysql://{username}:{password}@{host}/{db}"

For this example, assume that you have the following (as described in Chapter 2):

• An instance of MySQL server running on your computer.
• A database named My_DB, containing a single table named airlines.
• An account on the MySQL server named “user1,” with a password of “password”.

This account has the necessary privileges to access the My_DB database and its
tables.

Instead of hardcoding the password for the user account, this code uses the get
pass() function to prompt the user (see Figure 7-27) for the password. Once the user
has entered the password, you’ll use it to create the connection string.

Figure 7-27. Prompting the user to enter the password instead of hardcoding it

The connection string looks like this (assuming the password is “password”):
'mysql://user1:password@localhost/My_DB'

Next, assign the connection string to the DATABASE_URL environment variable:
from os import environ
environ["DATABASE_URL"] = connection_string

Once this is done, you can load the sql extension:
%load_ext sql

To load the connection to the database server, use the %sql magic command and
JupySQL will automatically load the database connection:

%sql

To view the connections, use the connections option:
%sql --connections

You can see the connection, as shown in Figure 7-28.

Integrating with MySQL | 205

Figure 7-28. The connections to the MySQL database

To view the tables in the connection, use the %sqlcmd magic command:
%sqlcmd tables

Figure 7-29 shows the airlines table in the My_DB database.

Figure 7-29. The table in the My_DB database

You can verify the content of the airlines table using the following query:
%%sql
SELECT * FROM airlines

Figure 7-30 shows the output of this query.

Figure 7-30. The content of the airlines table in the My_DB database

206 | Chapter 7: Using DuckDB with JupySQL

Using an .ini File
The second way to connect to the database server is to store the database connection
details in an .ini file. Storing database connection details in an .ini file is beneficial for
separating configuration from code, enhancing flexibility and security. It allows dif‐
ferent configurations for different environments (development, testing, and produc‐
tion) without altering the codebase, enabling easier maintenance and updates.
Sensitive information such as usernames and passwords can be kept out of the source
code, reducing the risk of exposure in version control systems.

Let’s see how this is done. First, make sure you load the sql extension if you have not
already done so:

%load_ext sql

Next, use the %config line magic command with the SqlMagic.dsn_filename option
to view the file in which JupySQL will find the connection details:

%config SqlMagic.dsn_filename

This statement returns the following:
'/Users/weimenglee/.jupysql/connections.ini'

By default, JupySQL looks for the file named connections.ini located in the .jupysql
folder (a hidden folder) of your home directory. You can change the location as well
as the name of this file. For example, the following command sets the connections.ini
file to be in the same folder as your Jupyter Notebook:

%config SqlMagic.dsn_filename = "connections.ini"

Once you have determined the location of the connections.ini file, the next step is to
populate it with the details of the database connections:

[mysqldb]
drivername = mysql
username = user1
password = password
host = localhost
port = 3306
database = My_DB

[mysqldb2]
drivername = mysql
username = user1
password = password
host = localhost
port = 3306
database = Titanic

Our file has two sections—mysql and mysqldb2 enclosed in square brackets ([]; bol‐
ded for emphasis). The first section contains the details for connecting to the My_DB
database while the second is the connection to the Titanic database (assuming you
have a database on the MySQL server named Titanic).

Integrating with MySQL | 207

To load the settings from the mysqldb section, use the section option followed by the
section name:

%sql --section mysqldb

You’ll see that JupySQL has now switched to the mysqldb connection:
Connecting and switching to connection 'mysqldb'

To view the current connections, use the connections option:
%sql --connections

Figure 7-31 shows that you now have two connections—one created in the previous
section using an environment variable and the new one that you have just created.

Figure 7-31. The current database connections for JupySQL

The * in Figure 7-31 shows the currently active connection. To verify that the connec‐
tion is working, view the content of the airlines table:

%%sql
SELECT * FROM airlines

You should see the same output as shown in Figure 7-29.

To load the mysqldb2 section, use the following statement:
%sql --section mysqldb2

You’ll see that the connection is switched to mysqldb2:
Connecting and switching to connection 'mysqldb2'

When you view the current connections, you’ll now see three (see Figure 7-32):
%sql --connections

Figure 7-32. JupySQL currently has three connections

208 | Chapter 7: Using DuckDB with JupySQL

To change to a different connection, use the %sql magic command and specify the
connection that you want to change to:

%sql mysqldb

If you want to change to the first connection (created using the environment vari‐
able), use this command:

%sql mysql://user1:***@localhost/My_DB

Using keyring
So far you’ve used two methods to connect to MySQL databases:

• The environment variable approach, while secure, requires the user to enter the
password every time you run the Jupyter Notebook. This poses a problem if you
want to automate the running of your Jupyter Notebook.

• The .ini file approach, while not requiring you to hardcode the password in the
Jupyter Notebook, still saves the password in plain text in the connections.ini file.

A much more secure approach is to see the operating system’s credentials manager to
securely store your password. To do so, you can use the keyring library. The keyring
library provides an easy way to access the system keyring service from Python.

You can install the keyring library using the pip command:
!pip install keyring

Next, in Jupyter Notebook, define the constants of your database connection details:
username = 'user1'
host = 'localhost'
db = 'My_DB'

Use the getpass() function to prompt the user for the user account password and
then save it to the operating system using the keyring library:

from getpass import getpass
import keyring

password = getpass()
keyring.set_password(db, username, password)

Once the password is saved, the previous code snippet is no longer needed, and you
can delete it.

To retrieve the password, use the get_password() function from the keyring library
and then use it to create the connection string:

import keyring

password = keyring.get_password(db, username)
db_url = f"mysql://{username}:{password}@{host}/{db}"

Integrating with MySQL | 209

With the connection string, you can now use the create_engine() function from the
SQLAlchemy library to create the database engine:

from sqlalchemy import create_engine
engine = create_engine(db_url)

You can now load the connection using the %sql engine command:
%load_ext sql
%sql engine

To verify that the connection is established correctly, use the connections option:
%sql --connections

Figure 7-33 shows the current connections in JupySQL. Note that the active connec‐
tion is the same as the one that was loaded by the environment variable method.

Figure 7-33. Viewing the database connections for JupySQL

Summary
This chapter introduced the simplicity and efficiency of querying data sources in
Jupyter Notebooks using JupySQL. We explored JupySQL’s integration with the
DuckDB engine and gained insights into tips and tricks for optimizing your queries.
Additionally, you acquired the skills to perform data visualization, creating various
charts like histograms, pie charts, and bar plots. Towards the end, you delved into
integrating JupySQL with a database server like MySQL. Of the three ways to connect
to the database, the keyring method is the recommended method as it is the most
secure of the lot, making use of the operating system credentials manager to securely
store your password.

In the upcoming chapter, you will expand your knowledge by discovering how to use
DuckDB for visualizing remotely stored data.

210 | Chapter 7: Using DuckDB with JupySQL

CHAPTER 8

Accessing Remote Data Using DuckDB

So far, in all the previous chapters, you have used DuckDB to work with local data,
whether the data is in MySQL databases or in CSV, JSON, and Parquet files. In practi‐
cal scenarios, the data you work with typically resides on remote servers and is fre‐
quently sourced from multiple locations. Fortunately, DuckDB provides the httpfs
extension to enable you to access remote datasets. What’s more, DuckDB also pro‐
vides support for accessing datasets hosted by Hugging Face, a platform where users
can share pretrained models for machine learning. Hugging Face also hosts a large
repository of datasets, which developers can download for training their own models.

In this chapter, you’ll learn how to use the httpfs extension in DuckDB to work with
remote datasets, as well as use DuckDB to access the vast datasets hosted by Hugging
Face.

DuckDB’s httpfs Extension
DuckDB’s httpfs extension is an autoloadable extension that implements a file sys‐
tem that allows reading and writing remote files. This extension enables DuckDB to
read and write files directly over the HTTP and HTTPS protocols, without needing
to download them locally first. This is particularly helpful when handling large data‐
sets that exceed local storage, accessing real-time or frequently updated data, query‐
ing distributed data from multiple remote sources, or integrating seamlessly with
cloud storage. It enables efficient remote data analysis, making it ideal for scenarios
involving cloud-based data lakes, web APIs, or distributed file systems.

The httpfs extension supports various file formats such as CSV, Parquet, and others
that DuckDB natively supports.

211

The httpfs extension also supports reading and writing for object
storage and file globbing using the Amazon S3 (Simple Storage Ser‐
vice) API.

To use the httpfs extension, you need to install and load it in your DuckDB session:
import duckdb

conn = duckdb.connect()
conn.execute('''
 INSTALL httpfs;
 LOAD httpfs;
''')

Note that you only need to install and load the httpfs extension once per DuckDB
session.

In the next section, you’ll learn how to use the httpfs extension to query CSV and
Parquet files that are stored remotely.

Querying CSV and Parquet Files Remotely
With the httpfs extension, you can access files that are located remotely. If you have
a file stored on a web server, simply use the URL that directly points to the file you
want to read or write, and DuckDB will handle it without needing to download it
locally first. But for files stored on sites such as GitHub, you need to obtain the URL
that contains the raw file. In the next two sections, you’ll:

• Learn how to access files stored on GitHub
• Learn how to access Parquet files and only download the columns that you need

Accessing CSV Files
To demonstrate how to download a file stored on GitHub using the httpfs extension,
I will use a sample CSV file that is hosted on GitHub. This CSV file contains the his‐
torical stock prices of Amazon.com.

To access this CSV file remotely on GitHub, you need to obtain the URL of the raw
file (the original form of the data). To do so, load the sample CSV file URL in your
web browser and then click on the Raw button as shown in Figure 8-1.

212 | Chapter 8: Accessing Remote Data Using DuckDB

https://oreil.ly/ZKP1R
http://Amazon.com

Figure 8-1. Obtaining the URL for a raw file on GitHub

You’ll be directed to a page that loads the raw CSV file. Copy the URL of this page,
which should be https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/
AMZN.csv. DuckDB can use this URL to perform the query.

Querying CSV and Parquet Files Remotely | 213

https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/AMZN.csv
https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/AMZN.csv

The following code snippet loads the CSV file remotely from GitHub and converts it
into a pandas DataFrame (see Figure 8-2).

conn.execute('''
 SELECT
 *
 FROM
 'https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/AMZN.csv';
''').df()

Figure 8-2. The remote CSV file downloaded and converted into a pandas DataFrame

You can also perform filtering on the remote data. The following code snippet shows
how to retrieve all the rows for the year 2018:

conn.execute('''
 SELECT
 *
 FROM
 'https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/AMZN.csv'
 WHERE year(Date) = 2018;
''').df()

214 | Chapter 8: Accessing Remote Data Using DuckDB

Figure 8-3 shows the query returning all the rows for the year 2018.

Figure 8-3. The query returning all the rows for the year 2018

If you want to read multiple CSV files at once, you can use the read_csv() function:
conn.execute('''
 SELECT
 *
 FROM read_csv([
 'https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/AMZN.csv',
 'https://raw.githubusercontent.com/weimenglee/DuckDB_Book/main/GOOG.csv'
]);
''').df()

This code snippet loads two CSV files from GitHub and concatenates the contents of
the two files (see Figure 8-4). Note that if the two CSV files have different schemas,
the contents will not be concatenated in row-wise fashion.

Querying CSV and Parquet Files Remotely | 215

Figure 8-4. The result of loading two CSV files

Note that the CSV files will be downloaded entirely to the local machine in most
cases, because CSV stores the data in row-based format. This is time consuming,
especially if you are dealing with large files. A much more efficient way to fetch
remote data is to use Parquet format, which you’ll learn about in the next section.

You can refer to Chapter 2 for the basics of the Parquet file format.

Accessing Parquet Files
For Parquet files, DuckDB uses a combination of the Parquet metadata and HTTP
range requests to partially download the parts of the file that are actually required by
the query.

Consider the following example where you access a Parquet file that is converted
from a CSV file. This Parquet file is located on GitHub.

216 | Chapter 8: Accessing Remote Data Using DuckDB

https://oreil.ly/xzOLV
https://oreil.ly/uio_T

The following code snippet downloads the Parquet file using DuckDB:
conn.execute('''
 SELECT
 *
 FROM
 'https://github.com/weimenglee/DuckDB_Book/raw/main/travel%20insurance.parquet';
''').df()

This query downloads the entire Parquet file and converts it to a pandas DataFrame
(see Figure 8-5).

Figure 8-5. The Parquet file downloaded and converted to a pandas DataFrame

However, you often do not need to use all the columns in a file. A better approach
would first to get the schema of the remote file without downloading it and then
decide which columns to download. The following code snippet downloads the
schema of the remote file:

conn.execute('''
 DESCRIBE TABLE
'https://github.com/weimenglee/DuckDB_Book/raw/main/travel%20insurance.parquet';
''').df()

Querying CSV and Parquet Files Remotely | 217

Figure 8-6 shows the output.

Figure 8-6. The schema of the Parquet file

You can now decide which columns you want to download. The following code snip‐
pet only downloads the Agency and Agency Type columns from the Parquet file
(recall from Chapter 2 that Parquet files store their data in column-wise format):

conn.execute('''
 SELECT
 Agency, "Agency Type"
 FROM
 'https://github.com/weimenglee/DuckDB_Book/raw/main/travel%20insurance.parquet';
''').df()

Figure 8-7 shows the DataFrame with two columns.

218 | Chapter 8: Accessing Remote Data Using DuckDB

Figure 8-7. The result of the query contains two columns

The following code snippet only needs to download the age column and then it com‐
putes the mean of all the ages:

conn.execute('''
 SELECT
 avg(age)
 FROM
 'https://github.com/weimenglee/DuckDB_Book/raw/main/travel%20insurance.parquet';
''').df()

Figure 8-8 shows the result returned by the query.

Figure 8-8. The result shows the mean of the age column

For the next query, DuckDB does not even need to download any data, as it can sim‐
ply read the result from the metadata of the Parquet file:

conn.execute('''
 SELECT
 count(*)
 FROM
 'https://github.com/weimenglee/DuckDB_Book/raw/main/travel%20insurance.parquet';
''').df()

Querying CSV and Parquet Files Remotely | 219

Figure 8-9 shows the result returned by the query.

Figure 8-9. The result contains the number of rows in the Parquet file

Now that you have learned how to query CSV and Parquet files, in the next section
you will learn how to query files from Hugging Face Datasets.

Querying Hugging Face Datasets
In addition to querying remote datasets over the HTTP(S) protocols using the
httpfs extension, DuckDB also supports querying datasets hosted by Hugging Face.
Hugging Face Datasets is a library that simplifies access to large-scale datasets for
machine learning and natural language processing (NLP) tasks. It provides a vast col‐
lection of ready-to-use datasets for training, evaluation, and benchmarking models,
eliminating the need for manual data collection and preprocessing. The platform also
supports custom data handling with built-in functions for efficient loading, trans‐
forming, and splitting of datasets.

Additionally, Hugging Face Datasets is optimized for distributed and efficient data
loading, making it ideal for large-scale projects. Its seamless integration with the Hug‐
ging Face Transformers library further streamlines workflows, making it a valuable
tool for researchers and developers working on NLP and machine learning tasks.

Hugging Face is a company and open source community focused
on NLP and machine learning. It hosts a wide variety of pretrained
machine learning models and provides a wide array of tools, libra‐
ries, and resources to facilitate the development and deployment of
machine learning projects.

In the following sections, you will learn how to use the various datasets in Hugging
Face in DuckDB, as well as how to create private datasets in Hugging Face and access
them remotely using DuckDB.

220 | Chapter 8: Accessing Remote Data Using DuckDB

Using Hugging Face Datasets
To use the Hugging Face datasets in DuckDB, you need to first understand how they
are structured. Let’s consider an example. Figure 8-10 shows the Hugging Face data‐
sets page. You can search and filter for the dataset that you want to use.

Figure 8-10. The Hugging Face datasets main page

Suppose you have located a particular dataset on Hugging Face that you want to use—
in this case, the Tips dataset that ships with the scikit-learn (sklearn) library (see
Figure 8-11).

Querying Hugging Face Datasets | 221

https://oreil.ly/oE-4T
https://oreil.ly/7fL-6

Figure 8-11. The Tips dataset that ships with sklearn

From the Tips dataset page, you can derive the user name and dataset name (see
Figure 8-12).

Figure 8-12. Getting the user name and dataset name

On the same page, click on the Files tab (1) to reveal the files available for this dataset.
Specifically, look for the CSV, JSON, or Parquet files that you want to download (2).
In this example, you want to download the tips.csv file (see Figure 8-13).

222 | Chapter 8: Accessing Remote Data Using DuckDB

Figure 8-13. Locating the file to download for the dataset

You now have all the information needed to construct the URL that DuckDB needs to
download the dataset from Hugging Face. Figure 8-14 shows how to put together the
URL based on this information using the hf:// path.

Figure 8-14. Forming the URL to download the file from Hugging Face

Querying Hugging Face Datasets | 223

Reading the Dataset Using hf:// Paths
Using the URL format shown in Figure 8-13, you can now remotely access the file
from Hugging Face:

import duckdb

conn = duckdb.connect()
conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/scikit-learn/tips/tips.csv';
''').df()

Figure 8-15 shows the Hugging Face dataset loaded and converted to a pandas
DataFrame.

Figure 8-15. The tips file downloaded from Hugging Face

I recommend that you save the data in a DuckDB table so that you don’t have to
access the remote endpoint for every subsequent query. To do this, modify the query
as follows:

conn.execute('''
 CREATE TABLE Tips AS
 FROM
 'hf://datasets/scikit-learn/tips/tips.csv';
''')

224 | Chapter 8: Accessing Remote Data Using DuckDB

When you run this query, the Tips dataset will be saved into the Tips table. To query
the Tips table, you can now use the following:

conn.execute('''
 SELECT
 *
 FROM
 Tips
''').df()

Sometimes, files in a Hugging Face dataset are stored in specific folders. The next sec‐
tion shows you how to access them.

Accessing Files Within a Folder
Consider the example of the Adult Census Income dataset (see Figure 8-16).

Figure 8-16. The Adult Census Income dataset on Hugging Face

Querying Hugging Face Datasets | 225

https://oreil.ly/uhHPu

When you click on the Files tab, you will see the data folder (see Figure 8-17).

Figure 8-17. The data folder contains all the files for the dataset

The data folder contains the files that you want to download. To download a file, click
on the icon displayed next to the file name (1) and then copy the file name (2), as
shown in Figure 8-18.

226 | Chapter 8: Accessing Remote Data Using DuckDB

Figure 8-18. Viewing files in a folder and getting names of the files you want to
download

For this example, the file we want to download is a Parquet file. The full URL will
look like this (note the addition of the data folder name):

hf://datasets/AiresPucrs/adult-census-income/data/
train-00000-of-00001-7e70ed54d8cbb057.parquet

Using this URL, you can now download the file using the following code snippet:
conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/AiresPucrs/adult-census-income'
 '/data/train-00000-of-00001-7e70ed54d8cbb057.parquet'
''').df()

Querying Hugging Face Datasets | 227

Figure 8-19 shows the output.

Figure 8-19. The Parquet file downloaded from Hugging Face and converted to a
DataFrame

So far, you have only been querying single files. The next section shows you how to
query multiple files using the glob syntax.

Querying Multiple Files Using the Glob Syntax
You can query multiple files using the glob syntax (as discussed in Chapter 6). As a
reminder, here is the list of the glob patterns:

Wildcard symbol What it does
* Matches any number of any characters (including none)
** Matches any number of subdirectories (including none)
? Matches any single character
[abc] Matches one character given in the brackets
[a-z] Matches one character from the range given in the brackets

228 | Chapter 8: Accessing Remote Data Using DuckDB

Consider the dataset on Hugging Face. Figure 8-20 shows the files available in this
dataset: geo_test.csv and geo_train.csv.

Figure 8-20. Viewing the files available for download

To load all the CSV files, you can use the following code snippet:
conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/gabrielwu/city_country/*.csv';
''').df()

All the files you are loading using the glob pattern must have the
same schema. If they don’t, an exception will occur.

Querying Hugging Face Datasets | 229

https://oreil.ly/NPnrZ

Figure 8-21 shows the DataFrame containing the contents of both CSV files.

Figure 8-21. The DataFrame containing the contents of both CSV files

With the ability to access multiple files at once, it is now very easy for you to perform
queries. The following code snippet looks for rows where the question contains the
word “Huaibei”:

conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/gabrielwu/city_country/*.csv'
 WHERE question LIKE '%Huaibei%';
''').df()

Figure 8-22 shows the result.

Figure 8-22. The result containing one row whose question contains the word “Huaibei”

The glob pattern is most useful when dealing with Parquet files because there is often
no need to download the entire set of files. For example, consider this dataset, which
has two Parquet files. Using the following code snippet, you can download only the
question column from the two Parquet files and display only the rows that contain
the word “happened”:

230 | Chapter 8: Accessing Remote Data Using DuckDB

https://oreil.ly/tLuLD

conn.execute('''
 SELECT
 question
 FROM
 'hf://datasets/Stanford/web_questions/data/*.parquet'
 WHERE question LIKE '%happened%';
''').df()

Figure 8-23 shows the DataFrame returned by the query.

Figure 8-23. The query returns all questions that contain the word “happened”

What happens if the dataset you are accessing is a private one? The next section
shows you how to access private Hugging Face datasets.

Working with Private Hugging Face Datasets
So far, you have learned how to access public Hugging Face datasets. How about pri‐
vate datasets hosted on Hugging Face? The main difference between accessing public
and private datasets is that for private datasets you need to provide the relevant cre‐
dentials before you can access them. In the following sections, you will learn how to:

• Create a private dataset by uploading a CSV file to Hugging Face
• Create an access token to access the private dataset
• Provide the access token so that you can remotely access the private dataset using

DuckDB

Before you can do all this, you need to create an account on Hugging Face. Go to
https://huggingface.co and click on the Sign Up button. You’ll see the page shown in
Figure 8-24.

Querying Hugging Face Datasets | 231

https://huggingface.co

Figure 8-24. Creating an account on Hugging Face

Provide your email address and the password you would like to use and click Next.

Now we’re ready to dig in! First, we’ll create a private dataset.

232 | Chapter 8: Accessing Remote Data Using DuckDB

Uploading a private dataset
Once you have set up your Hugging Face account, you can create a private dataset
and upload some files to it.

Click on the user icon (1) and then click on New Dataset (2) as shown in Figure 8-25.

Figure 8-25. Creating a new dataset in Hugging Face

Querying Hugging Face Datasets | 233

Fill in the details for your new dataset as shown in Figure 8-26. The Owner field
should reflect your own user name. Also, make sure the dataset is set to Private. Once
you’ve done that, click the Create dataset button.

Figure 8-26. Creating a new dataset repository

234 | Chapter 8: Accessing Remote Data Using DuckDB

On the next page, click the Files tab (1), then click the “Add file” button (2), and
finally click the “Upload files” item (3), as shown in Figure 8-27.

Figure 8-27. Preparing to upload files to Hugging Face

Querying Hugging Face Datasets | 235

Drag and drop the files you want to upload to the dataset. Once they are uploaded,
the files will appear as shown in Figure 8-28. For this example, I have uploaded a CSV
file containing the historical stock prices for Amazon.com.

Figure 8-28. Uploading files to the dataset

236 | Chapter 8: Accessing Remote Data Using DuckDB

http://Amazon.com

At the bottom of the same page, select “Commit directly to the main branch.” Once
uploaded, your file will appear under the Files tab (see Figure 8-29).

Figure 8-29. Verifying that files are uploaded to the dataset

With the file uploaded, you next need to create an access token so that you can use it
to access your files. The next section shows you how.

Querying Hugging Face Datasets | 237

Creating an access token
To access a private dataset, you need to create an access token in Hugging Face. To do
that, click the user icon (1) and then click Settings (2) as shown in Figure 8-30.

Figure 8-30. Going to the Settings page

238 | Chapter 8: Accessing Remote Data Using DuckDB

Then, click on Access Tokens (see Figure 8-31).

Figure 8-31. Clicking on Access Tokens to create a new access token

Querying Hugging Face Datasets | 239

To create a new access token, click the New Token button. Click the Read button and
then enter a name to describe the use of this token (see Figure 8-32). Click the “Cre‐
ate token” button.

Figure 8-32. Creating a new access token

This will generate your access token (see Figure 8-33).

Figure 8-33. The generated access token

240 | Chapter 8: Accessing Remote Data Using DuckDB

Click the copy icon to copy the access token and then paste it to a safe location. This
token will not be shown again when you come back to it later. If you lose the access
token, you’ll need to invalidate and refresh it to generate a new token.

Performing authentication
Now that the access token is generated, you can use it to access your private dataset
using DuckDB. There are two main providers that DuckDB supports:

CONFIG provider method
This method requires you to specify your access token using a CREATE SECRET
statement.

CREDENTIAL_CHAIN provider method
This method automatically tries to fetch the access token from a directory on
your local computer.

Let’s see how to use the CONFIG provider method first. In this method, you manually
provide authentication credentials, specifically the access token, when connecting to
Hugging Face. This method is ideal when you need to authenticate using a specific,
known token, such as when you’re working in environments where tokens are rotated
frequently or you need to set explicit credentials for each service.

You will use the CREATE SECRET statement to create an hf_token variable and set its
value to the access token:

import duckdb

conn = duckdb.connect()
conn.execute('''
 CREATE SECRET hf_token (
 TYPE HUGGINGFACE,
 TOKEN '<HuggingFace_Token>'
);
''')

You can now access the private dataset just like accessing a file from a public dataset:
conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/Wei-Meng/StockPrices/AMZN.csv';
''').df()

This code snippet displays the Amazon stock prices as a pandas DataFrame (see
Figure 8-34).

Querying Hugging Face Datasets | 241

Figure 8-34. Retrieving the private dataset and converting it to a pandas DataFrame

The CONFIG provider method of accessing private datasets exposes the access token in
your code. The CREDENTIAL_CHAIN method, where you store your access token in a file,
is much more secure. This method relies on DuckDB automatically fetching credentials
from a default location, such as your local machine, an environment variable, or a cre‐
dentials file. The system follows a credential chain process, which means that it checks
multiple predefined locations for credentials, stopping when it finds valid authentica‐
tion information. This method is beneficial for scenarios where you want seamless
authentication, particularly in environments like cloud-based virtual machines or local
development where credentials are stored and managed automatically.

Let’s explore how to use the CREDENTIAL_CHAIN method now.

First, install the Hugging Face Hub Python package using the pip command:
$ pip install huggingface_hub

Once the package is installed, run the huggingface_cli utility with the login option:
$ huggingface-cli login
Token: <HuggingFace_Token>

You’ll be prompted for your access token. Paste your access token (note that there will
be no feedback on screen) and then press Enter. Next, you’ll be asked if you want to
add the access token as a git credential. Type n and press Enter:

Add token as git credential? (Y/n) n
Token is valid (permission: read).
Your token has been saved to /Users/weimenglee/.cache/huggingface/token
Login successful

242 | Chapter 8: Accessing Remote Data Using DuckDB

The access token will now be saved in a file named token in the ~/.cache/huggingface/
directory. You can now use the CREATE SECRET statement to create an hf_token vari‐
able and set its value to the access token using the CREDENTIAL_CHAIN provider
method:

import duckdb

conn = duckdb.connect()
conn.execute('''
 CREATE SECRET hf_token (
 TYPE HUGGINGFACE,
 PROVIDER CREDENTIAL_CHAIN
);
''')
conn.execute('''
 SELECT
 *
 FROM
 'hf://datasets/Wei-Meng/StockPrices/AMZN.csv';
''').df()

You should now see the same output as shown in Figure 8-34.

If the token becomes invalid (for example, if you have deleted it on Hugging Face),
you can simply delete the token file in the ~/.cache/huggingface/ directory. If the token
changes, you can update it in the token file.

Summary
In this chapter, you saw how DuckDB can easily help you to fetch remote files (CSV,
Parquet, JSON, etc.) using the httpfs extension. Due to the way Parquet stores its
content, fetching remote Parquet files is particularly efficient because only the
required columns need to be downloaded to the local machine.

In addition, DuckDB supports accessing datasets from Hugging Face, an online
repository of pretrained machine learning models and training sets. Using the hf://
path, you can access files from Hugging Face datasets, both public and private.

Finally, you learned the two methods of accessing private datasets in Hugging Face—
the CONFIG provider method as well as the CREDENTIAL_CHAIN provider method.

In the next chapter, you’ll learn how to use MotherDuck, a cloud native data platform
that leverages the capabilities of DuckDB. Using MotherDuck, you can perform
advanced data analytics with ease, seamlessly integrate with various data sources, col‐
laborate in real time with your team, create interactive visualizations, scale your data
processing tasks efficiently, simplify data management, ensure robust security and
compliance, and optimize costs with a user-friendly platform.

Summary | 243

CHAPTER 9

Using DuckDB in the Cloud
with MotherDuck

So far, we’ve learned how to use DuckDB installed on your machine to manipulate
your data, whether that data is stored locally or on a remote server. Using DuckDB on
your machine involves installing DuckDB and setting up the development environ‐
ment, such as with Anaconda. But what if you want a fast way to analyze your data
without the hassle of setting up your machine? Enter MotherDuck.

MotherDuck is a serverless cloud analytics platform built on DuckDB. It enhances
DuckDB by providing cloud-based manageability, scalability, and advanced analytics
capabilities. In essence, you can perform all the operations you’ve learned in this book
using MotherDuck, without needing to set up your own machine. Exciting, isn’t it?

In this chapter, I’ll guide you through getting started with MotherDuck and using it
for analytical tasks. Specifically, you’ll learn how to:

• Upload and create databases
• Share databases with others
• Attach shared databases
• Query databases
• Use AI to help write your SDL statements
• Connect your local DuckDB databases with MotherDuck
• Perform hybrid queries to work with local and remote DuckDB databases

We’ll start with some basics about MotherDuck.

245

Introduction to MotherDuck
For many data analytics users, complex data infrastructure isn’t always necessary.
What they often need is a serverless data warehouse that can easily host and share
their data. This is where MotherDuck comes in. With MotherDuck, you can effort‐
lessly upload your data to the cloud and begin querying it. MotherDuck supports var‐
ious data formats such as Parquet, CSV, JSON, Iceberg, and Delta Lake. Moreover,
through a feature called Dual Execution, you can run parts of your queries locally and
other parts in the cloud.

Additionally, MotherDuck assigns separate, isolated compute instances to each user,
streamlining administration and reducing costs for organizations. These compute
instances can scale individually to manage workloads spanning several terabytes.

In the upcoming sections, I’ll demonstrate how to get started with MotherDuck and
create databases in the cloud.

Signing Up for MotherDuck
To start using MotherDuck, begin with the free 30-day trial. After the trial period,
you can opt to continue with a free account or upgrade to a paid plan. Here’s how to
get started:

1. Visit https://motherduck.com.
2. Click on the 30-DAY TRIAL button (see Figure 9-1).

MotherDuck’s production infrastructure is hosted on Amazon Web
Services and its services run primarily as Kubernetes-controlled
containers.

This trial period lets you explore MotherDuck’s features before deciding on your
account preference.

246 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

https://motherduck.com

Figure 9-1. The MotherDuck home page

Choose your method of signing in; you can use a Google account, a GitHub account,
or simply use your email and create a password (see Figure 9-2).

Introduction to MotherDuck | 247

Figure 9-2. The various ways to sign in to MotherDuck

After signing in, you’ll access MotherDuck’s web UI (refer to Figure 9-3). On the left
side, you’ll find panels with sections such as Notebooks and Attached databases. On
the right side, there’s a notebook where you can write SQL queries. The interface
resembles Jupyter Notebooks, providing a familiar environment for seamless naviga‐
tion and query writing.

248 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-3. The web UI of MotherDuck resembles Jupyter Notebook

MotherDuck Plans
If you click on the “Learn more” button at the top of the screen, you’ll be able to view
the two plans that MotherDuck offers (see Figure 9-4).

Once your 30-day trial ends, you can switch to the free plan by clicking the “Switch to
Free” button. If you need more resources than it offers, you can upgrade immediately
to the standard plan. The primary distinction between these plans lies in the compute
units (CUs) and storage options available. The standard plan allows you to purchase
additional CUs and storage, while the free plan does not offer these options.

Introduction to MotherDuck | 249

https://oreil.ly/Ub7Lw

Figure 9-4. The two plans that MotherDuck offers

Getting Started with MotherDuck
Once signed in, you’ll notice two main sections on the left side of the window:

• Notebooks
• Attached databases

I’ll cover Notebooks in the next section, but for now, let’s focus on the Attached data‐
bases section.

250 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-5 shows that you have the following databases attached to your account by
default:

my_db
A database where you can upload and manage your own data

sample_data
A sample database containing several tables for experimentation and practice

Within each database, you can organize your tables into one or more schemas. Sche‐
mas serve as a logical grouping for related tables, helping to structure and manage
your data effectively. Figure 9-5 shows the various items in the attached databases.

Figure 9-5. The organization of the attached databases

Notice that the sample_data database icon features an image of a person, indicating
that it is a shared database accessible to multiple users. Hovering your mouse over the
database name will display its type and permissions. For instance, you have read and
write access to the my_db database (refer to Figure 9-6), whereas you only have read
access to the shared sample_data database, as it is shared among multiple users.

Getting Started with MotherDuck | 251

Figure 9-6. Revealing the type and permissions of a database

In the next couple of sections, I’ll demonstrate how to add your own tables to the
databases, share them with others, and remove them once they are no longer needed.

Adding Tables
To upload your own data to MotherDuck, click the Add Data button (see Figure 9-7)
located at the top of the left panel in MotherDuck.

Figure 9-7. Click the Add Data button to add your own data to MotherDuck

252 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

You will be prompted to select the file you want to upload to MotherDuck. Choose a
CSV file for this example. Once the CSV file is selected, a new cell is created, display‐
ing its content (refer to Figure 9-8). In this example, I am using the airlines.csv file.

Figure 9-8. The statement that is automatically created for you when you are uploading
a file to MotherDuck

The statement in the cell looks like this:
CREATE OR REPLACE TABLE airlines AS SELECT *
FROM read_csv_auto(['airlines.csv']);

Before running the code, you need to specify the destination where the data will be
stored—specifically, the database and schema. Given that the my_db database has a
schema named “main,” you can simply insert the content of the airlines.csv file into
the main schema:

CREATE OR REPLACE TABLE my_db.main.airlines AS SELECT *
FROM read_csv_auto(['airlines.csv']);

Getting Started with MotherDuck | 253

Figure 9-9 shows the modified SQL statement.

Figure 9-9. Modifying the SQL statement to indicate the destination of the data to
upload

To execute this query, click the Run button. Once the data has been uploaded to
MotherDuck, you should be able to see the airlines table listed under the main
schema (see Figure 9-10).

Figure 9-10. Verifying that the data has been successfully uploaded to MotherDuck

If you don’t see the newly created airlines table, refresh the page.

If you wish to remove the airlines table once you no longer need it, you can use the
DROP TABLE statement:

DROP TABLE my_db.main.airlines;

254 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Doing so will remove the airlines table from the main schema of the my_db database.

Next, let’s learn how to create schemas in MotherDuck.

Creating Schemas
While you can upload your data and organize it under the default main schema, you
may want to create your own schema for grouping related tables together. You can do
this with the CREATE SCHEMA statement.

First, click on the Add Cell button below the current cell (see Figure 9-11) to add a
new cell.

Figure 9-11. Adding a new cell to the notebook

Then, type the CREATE SCHEMA statement in the cell, together with the name of the
database followed by the schema name (see Figure 9-12):

CREATE SCHEMA my_db.Titanic

Figure 9-12. Creating a new schema called Titanic under my_db

After you run the statement, a new schema named Titanic will be created under the
my_db database (see Figure 9-13).

Figure 9-13. The newly created Titanic schema

Getting Started with MotherDuck | 255

To upload a new dataset under this new schema, click the Add Data button, select the
CSV file, and then specify the database name, schema, and the proposed table name
in your SQL statement:

CREATE OR REPLACE TABLE my_db.Titanic.Titanic_train AS
SELECT * FROM read_csv_auto(['Titanic_train.csv']);

This loads the Titanic_train.csv file as a table named Titanic_train under the Titanic
schema (see Figure 9-14). You can upload your own CSV file for this example if you
prefer.

Figure 9-14. The Titanic_train table under the Titanic schema

If you need to remove the schema that you have created, you can use the DROP
SCHEMA statement:

DROP SCHEMA Titanic;

However, do take note that you won’t be able to delete the schema if there’s a database
under it. You can either delete the table first before deleting the schema, or use the
DROP … CASCADE statement:

-- delete the schema, along with databases contained within it
DROP SCHEMA Titanic CASCADE

256 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

In the next section, you’ll learn how to share your databases with other MotherDuck
users.

Sharing Databases
One of the standout features of MotherDuck is its capability to share databases with
users, both within your organization and publicly. For instance, if you have a large
dataset with millions of rows, rather than having each team member load the dataset
into their account, you can upload it once and share access. When you share a data‐
base, users create a link to it—no duplicate copies are made, ensuring efficient data
management and collaboration.

To share a database, click on the three vertical dots shown next to the database name
and select Share (see Figure 9-15).

Figure 9-15. Sharing a database

You can specify a share name and choose whether to share with people in your orga‐
nization or with any MotherDuck user (see Figure 9-16). For this example, let’s name
the share “my_db_WeiMengLee” and share it with everyone (using the “Anyone with
the share link” option). Click the “Create share” button to proceed.

The first access option—“Anyone in my organization”—allows you
to share data with all members of your organization. This is a com‐
mon use case for small, highly collaborative data teams.

Getting Started with MotherDuck | 257

https://oreil.ly/q_4Z4

Figure 9-16. Creating a share and specifying the level of access

Once the share is created, you’ll see the SQL statement as shown in Figure 9-17. Note
that shared databases are read-only—users will not be able to modify them.

258 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-17. The share link for connecting to the shared database

At the same time, you’ll see the newly created share in the “Shares I’ve created” sec‐
tion (see Figure 9-18).

Figure 9-18. Viewing the shares you created

To connect to the shared database, users simply run the generated SQL statement
provided, which adds the database to their MotherDuck account:

-- Run this snippet to attach database
ATTACH 'md:_share/my_db_WeiMengLee/79ec5e33-a605-4ee2-a350-78b0378976c7';

Getting Started with MotherDuck | 259

This statement loads the shared database into the user’s current attached databases.
Because the user might already have a database named my_db, it is advisable to
rename the shared database to something more distinctive. Let’s modify the database
name to my_db_WML:

-- Run this snippet to attach database
ATTACH 'md:_share/my_db_WML/79ec5e33-a605-4ee2-a350-78b0378976c7';

When you run this statement in another MotherDuck account (see Figure 9-19), the
shared database will be loaded as my_db_WML (see Figure 9-20).

Figure 9-19. Loading a shared database

Figure 9-20. Viewing the shared database

If changes have been made to the original shared database, you can propagate those
changes to other users who have access to your shared database by using the UPDATE
SHARE statement:

UPDATE SHARE my_db_WeiMengLee;

260 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

If you want to view the databases you are sharing, use the LIST SHARES statement (see
Figure 9-21):

LIST SHARES

Figure 9-21. Listing the databases you are currently sharing

If you decide to revoke access to the shared database from specific users, click on the
three vertical dots and select Alter (refer to Figure 9-22).

Figure 9-22. Altering the share access of a database

You can now change the access of the database (see Figure 9-23).

Getting Started with MotherDuck | 261

Figure 9-23. Changing the access control of the shared database

To stop the sharing, simply click on the three vertical dots next to the share and select
Drop (see Figure 9-24).

Figure 9-24. Stopping the share

Once you drop the shared database, it is no longer accessible to or shared with other
users.

262 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Creating a Database
Besides the my_db that comes by default with your MotherDuck account, you can
create your own database using the CREATE DATABASE statement:

CREATE DATABASE flights_db;

This statement creates a new database named flights_db. Upon creation, it automati‐
cally includes a schema named “main” (refer to Figure 9-25).

Figure 9-25. Creating a new database

When you have multiple databases in your MotherDuck account, use the USE state‐
ment to set the currently active database:

USE flights_db;

This statement sets flights_db as the active database and all future queries will be
directed to it.

Currently, you can only create a new database using an SQL statement; creating a
database through the web UI is not supported at this time.

Detaching a Database
Sometimes, when working with multiple databases, it’s beneficial to detach databases
that are not currently in use. This helps focus on the active database while freeing up
memory and other resources allocated to attached databases.

To detach a database (whether it is local or a shared remote database) from your
account, click on the three vertical dots next to the database you wish to detach, and
select Detach (see Figure 9-26).

Getting Started with MotherDuck | 263

Figure 9-26. Detaching a database

Alternatively, you can use the DETACH statement:
DETACH flights_db;

Once a database is detached, it will be listed in the “Detached databases” section
(refer to Figure 9-27) on the left side of the window.

Figure 9-27. The detached database will be listed in the “Detached databases” section

To reattach it to the account, click the three vertical dots next to the detached data‐
base and select Attach.

Now that you have a good understanding of how to manipulate databases in Mother‐
Duck, it’s time to focus on the core feature of MotherDuck: performing analytics in
the cloud.

Using the Databases in MotherDuck
Now let’s explore how MotherDuck makes querying your databases easy and efficient.
In the following sections, you will learn how to examine the results returned by a
query and how to leverage AI to automatically generate SQL statements for your
queries. How cool is that?

Querying Your Database
Remember when you first logged in to MotherDuck and saw the cell with the query as
seen in Figure 9-28? Running this query extracts the URLs and their respective counts
from the service_requests table (within the nyc schema) in the sample_data database.

264 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-28. Running the query that is created by default

On the right of the window, you will also see statistics for the four fields in the result:
agency, complaint_type, landmark, and resolution_description (see Figure 9-29).

Figure 9-29. MotherDuck displays statistics for the fields in the result

Clicking on the fields will display detailed statistics (see Figure 9-30). For example,
since agency is a string field, it shows the distribution of counts for unique agency

Using the Databases in MotherDuck | 265

names. If the field is a numeric field, it will display summary statistics such as the
maximum count, minimum count, and other relevant metrics.

Figure 9-30. Displaying the statistics for the result fields

Let’s try some queries using the Titanic_train table that we uploaded earlier. The fol‐
lowing query retrieves all passengers whose age and embarked fields are not null:

SELECT
 Survived, PClass, Sex, Age
FROM my_db.Titanic.titanic_train
WHERE age NOT NULL AND embarked NOT NULL

266 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

You will see the result as shown in Figure 9-31.

Figure 9-31. The result for the Titanic query

On the right side of the result, there is a list of fields that were returned with the
query results. For example, clicking on the Survived field will display a histogram
showing the number of people who survived and those who did not (refer to
Figure 9-32).

Using the Databases in MotherDuck | 267

Figure 9-32. Histogram showing the number of passengers who survived and those who
did not

If you click on the Pclass field, it similarly shows a histogram depicting the number
of passengers in each class (see Figure 9-33).

268 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-33. Histogram showing the number of passengers in each class

The same applies to the Sex field, which displays a bar chart showing the number of
male and female passengers (see Figure 9-34).

Figure 9-34. Bar chart showing the number of male and female passengers

For the Age field, it displays both the distribution of ages as well as the summary sta‐
tistics of the field (see Figure 9-35).

Using the Databases in MotherDuck | 269

Figure 9-35. Displaying a histogram and summary statistics of the Age field

Writing SQL Using AI
One exciting feature of MotherDuck is its AI capabilities, which enhance the plat‐
form’s functionality and usability. These AI functions and pragmas provide advanced
tools for performing automated tasks and optimizing analytical workflows. They
enable users to streamline query generation, automate data analysis tasks, and lever‐
age machine learning algorithms directly within the database environment. This inte‐
gration of AI empowers users to extract deeper insights, make data-driven decisions
faster, and efficiently manage large datasets with enhanced precision and efficiency.

Functions in MotherDuck execute specific tasks or computations within SQL queries,
while pragmas provide directives to control database behavior and optimizations
without executing tasks directly.

270 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Here are some AI functions/pragmas you can use:

Function/pragma What it does
prompt_sql() A function to generate a SQL statement for your query

prompt_query A pragma to answer questions about your data

prompt_fixup() A function to correct and fix your SQL query

prompt_fix_line() A function to correct and fix your SQL query line-by-line

prompt_schema() A function to help you understand the contents of a database

prompt_explain() A function to help you understand a SQL query

Let’s use the prompt_sql() function as an example. Imagine you’re interested in dis‐
covering how many solo passengers on the Titanic survived. You can call the
prompt_sql() function using the CALL statement. Before you ask the question, be
sure to set the active database with the USE statement:

USE my_db;
CALL prompt_sql("How many people who were alone survived");

The result is a generated SQL statement, as shown in Figure 9-36.

Figure 9-36. The SQL statement generated by the prompt_sql() function

You can now execute the SQL statement:
SELECT COUNT(*) FROM Titanic.Titanic_train WHERE Survived = 1 AND SibSp = 0 AND Parch = 0;

And the result is 163. Pretty impressive!

As another example, let’s calculate the survival chance for each age group to deter‐
mine which age group had the highest survival rate. To do this, let’s call the function
with the following question:

CALL prompt_sql("Calculate the survival chance for each age group")

Using the Databases in MotherDuck | 271

And the function returns the following SQL statements:
SELECT
 CASE
 WHEN Age < 10 THEN '0-9'
 WHEN Age BETWEEN 10 AND 19 THEN '10-19'
 WHEN Age BETWEEN 20 AND 29 THEN '20-29'
 WHEN Age BETWEEN 30 AND 39 THEN '30-39'
 WHEN Age BETWEEN 40 AND 49 THEN '40-49'
 WHEN Age BETWEEN 50 AND 59 THEN '50-59'
 WHEN Age BETWEEN 60 AND 69 THEN '60-69'
 WHEN Age >= 70 THEN '70+'
 ELSE 'Unknown'
 END AS age_group,
 AVG(Survived) * 100 AS survival_chance
FROM Titanic.Titanic_train
GROUP BY age_group
ORDER BY age_group;

Executing this query returns the results shown in Figure 9-37, demonstrating that
children had the best chance of survival when the Titanic sank.

Figure 9-37. The survival chances for different age groups

What if you just want the result but not the SQL statement? Use the prompt_query
pragma! For example, if you want to know how many airlines are in the airlines table,
you could use the following statement:

PRAGMA prompt_query('How many airlines are there?')

It returns a result of 14 (see Figure 9-38). Isn’t it cool?

272 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-38. The prompt_query pragma returns the result directly

One more example. Let’s say I want to know what the SQL query about age and sur‐
vival on the Titanic is doing. I can use the prompt_explain() function to help me
understand (see Figure 9-39).

Figure 9-39. Calling the prompt_explain() function to explain what the SQL statement
is doing

The function returns the following explanation:

This SQL query categorizes passengers from the Titanic based on their age into groups
(such as ‘0-9’, ‘10-19’, ‘20-29’, etc.) and calculates the average survival rate for each age
group, presenting it as a percentage. It creates an `age_group` for the passengers’ age
ranges and calculates the `survival_chance` by averaging the `Survived` column for
each age group. The results are then grouped by `age_group` and ordered by
`age_group`.

Using the Databases in MotherDuck | 273

In the next section, I’ll demonstrate how to use MotherDuck via the DuckDB CLI,
which is especially useful for working in environments like Terminal or SSH.

Using MotherDuck Through the DuckDB CLI
With all the databases uploaded to MotherDuck, you might sometimes prefer to exe‐
cute queries directly from the command line instead of using the web UI. In the fol‐
lowing sections, I will show you how to:

• Connect to MotherDuck through the DuckDB CLI
• Query the databases on MotherDuck
• Create new databases on MotherDuck
• Perform hybrid queries using local data as well as data hosted on MotherDuck

Before you continue, make sure to update DuckDB to the latest version. You should
use the stable release of DuckDB 1.0.0 or higher.

Connecting to MotherDuck
To connect to MotherDuck using the command line, first launch the DuckDB CLI
(discussed in Chapter 3):

$ duckdb
v1.0.0 1f98600c2c
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
D

Then, type the ATTACH command to connect to MotherDuck:
D ATTACH 'md:';
Attempting to automatically open the SSO authorization page in your default browser.
1. Please open this link to login into your account: https://auth.motherduck.com/activate
2. Enter the following code: CQMP-DQHV

274 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

https://oreil.ly/b51BJ

This will generate a code (CQMP-DQHV in the preceding example). Your web browser
should now display a confirmation message (see Figure 9-40). Ensure that the code
displayed on this page matches that displayed by the DuckDB CLI. Click the Confirm
button.

Figure 9-40. Confirming the code generated on the MotherDuck Extension

If you’re not already logged in to MotherDuck, you’ll be prompted to log in (see
Figure 9-41).

Using MotherDuck Through the DuckDB CLI | 275

Figure 9-41. Logging in to MotherDuck

Once you’ve logged in, you should see a message indicating that the MotherDuck
Extension is requesting access to your MotherDuck account. Click Accept (see
Figure 9-42).

276 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-42. The MotherDuck Extension requests access to your MotherDuck account

On the DuckDB CLI, you’ll see the following:
Token successfully retrieved ✅

You can display the token and store it as an environment variable to avoid
having to log in again:
 PRAGMA PRINT_MD_TOKEN;
100% ▕██▏
D

You are now ready to query your databases stored on DuckDB. The next section will
show you some examples.

Using MotherDuck Through the DuckDB CLI | 277

Querying Databases on MotherDuck
With MotherDuck connected, we’ll begin by checking what databases are available:

D SHOW databases;
┌───────────────┐
│ database_name │
│ varchar │
├───────────────┤
│ memory │
│ my_db │
│ sample_data │
└───────────────┘

It’s also useful to view the current database:
D SELECT current_database();
┌────────────────────┐
│ current_database() │
│ varchar │
├────────────────────┤
│ memory │
└────────────────────┘

In addition, you can see the current schema:
D SELECT current_schema();
┌──────────────────┐
│ current_schema() │
│ varchar │
├──────────────────┤
│ main │
└──────────────────┘

Let’s query the titanic_train table by specifying its full database name, schema, and
table name:

D SELECT
 Survived, PClass, Sex, Age
 FROM my_db.Titanic.titanic_train
 WHERE age NOT NULL AND embarked NOT NULL;

┌──────────┬────────┬─────────┬────────┐
│ Survived │ Pclass │ Sex │ Age │
│ int64 │ int64 │ varchar │ double │
├──────────┼────────┼─────────┼────────┤
│ 0 │ 3 │ male │ 22.0 │
│ 1 │ 1 │ female │ 38.0 │
│ 1 │ 3 │ female │ 26.0 │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ · │ · │ · │ · │
│ 1 │ 1 │ female │ 19.0 │
│ 1 │ 1 │ male │ 26.0 │
│ 0 │ 3 │ male │ 32.0 │
├──────────┴────────┴─────────┴────────┤
│ 712 rows (40 shown) 4 columns │
└──────────────────────────────────────┘
D

278 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

To make querying easier, you can set the database name and schema with the USE
statement:

D USE my_db.Titanic;

This statement sets the current database to my_db and the current schema to Titanic.

To verify this use the current_database() and current_schema() functions again:
D SELECT current_database();
┌────────────────────┐
│ current_database() │
│ varchar │
├────────────────────┤
│ my_db │
└────────────────────┘

D SELECT current_schema();
┌──────────────────┐
│ current_schema() │
│ varchar │
├──────────────────┤
│ Titanic │
└──────────────────┘

You can now access the titanic_train table using the table name directly:
D SELECT count(*) FROM titanic_train;
┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 891 │
└──────────────┘

Besides accessing databases on MotherDuck, you can also create new ones. The next
section shows you how.

Creating Databases on MotherDuck
Using the DuckDB CLI, you can upload data directly into MotherDuck just like you
did in the web UI, as well as create new databases.

First, let’s upload the airports.csv file to MotherDuck and place it under the my_db
database within the main schema:

D CREATE OR REPLACE TABLE my_db.main.airports AS SELECT *
 FROM read_csv_auto(['airports.csv']);

Please ensure that the airports.csv file is in the same directory from which you
launched the DuckDB CLI.

If you go to the MotherDuck web UI, you should see that the airports table has been
created (see Figure 9-43).

Using MotherDuck Through the DuckDB CLI | 279

Figure 9-43. The airports table created in the my_db database

Now let’s create a new database, schema, and table on MotherDuck:
D CREATE DATABASE new_db;
D USE new_db;
D CREATE SCHEMA new_schema;
D USE new_schema;
D CREATE TABLE new_schema.example_table (
 id INTEGER,
 name TEXT
);
D INSERT INTO new_schema.example_table (id, name) VALUES (1, 'Sample Data');
D SELECT * FROM new_schema.example_table;
┌───────┬─────────────┐
│ id │ name │
│ int32 │ varchar │
├───────┼─────────────┤
│ 1 │ Sample Data │
└───────┴─────────────┘

This example first connects to the MotherDuck service using the token you obtained
earlier. Once connected, you create a new database named new_db and set it as the
current database. Next, you create a new schema and then create a table named
example_table within that schema. Finally, you insert a record into the table and ver‐
ify that the record was successfully inserted. You can verify that the new database was
indeed created in MotherDuck by refreshing the page (see Figure 9-44).

280 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Figure 9-44. The new_db database created on MotherDuck using the DuckDB CLI

In the next section, I’ll demonstrate how to perform hybrid queries. You’ll learn to
seamlessly combine tables from local databases with those hosted on MotherDuck.

Performing Hybrid Queries
One very cool feature of MotherDuck is its ability to perform hybrid queries, allow‐
ing you to query your local DuckDB databases alongside the databases in
MotherDuck.

Remember earlier we had the airlines table in MotherDuck? Let’s view its content:
D SELECT * from my_db.main.airlines;
┌───────────┬──────────────────────────────┐
│ IATA_CODE │ AIRLINE │
│ varchar │ varchar │
├───────────┼──────────────────────────────┤
│ UA │ United Air Lines Inc. │
│ AA │ American Airlines Inc. │
│ US │ US Airways Inc. │
│ F9 │ Frontier Airlines Inc. │
│ B6 │ JetBlue Airways │
│ OO │ Skywest Airlines Inc. │
│ AS │ Alaska Airlines Inc. │
│ NK │ Spirit Air Lines │
│ WN │ Southwest Airlines Co. │
│ DL │ Delta Air Lines Inc. │
│ EV │ Atlantic Southeast Airlines │
│ HA │ Hawaiian Airlines Inc. │
│ MQ │ American Eagle Airlines Inc. │
│ VX │ Virgin America │
├───────────┴──────────────────────────────┤
│ 14 rows 2 columns │
└──┘

Using MotherDuck Through the DuckDB CLI | 281

I have another file, flights.csv (first used in Chapter 2), which I want to load locally as
a DuckDB database. The following statement loads the first 10 rows (and two col‐
umns) into the local database:

D SELECT AIRLINE, FLIGHT_NUMBER FROM './flights.csv' LIMIT 10;
┌─────────┬───────────────┐
│ AIRLINE │ FLIGHT_NUMBER │
│ varchar │ int64 │
├─────────┼───────────────┤
│ AS │ 98 │
│ AA │ 2336 │
│ US │ 840 │
│ AA │ 258 │
│ AS │ 135 │
│ DL │ 806 │
│ NK │ 612 │
│ US │ 2013 │
│ AA │ 1112 │
│ DL │ 1173 │
├─────────┴───────────────┤
│ 10 rows 2 columns │
└─────────────────────────┘

For this table, I want to display the airline name for each row. Since each airline is
represented by its airline code, I need to perform a join with the airlines table (which
is hosted on MotherDuck) to display the full airline name. To do this, I can execute
the following hybrid query:

D SELECT f.AIRLINE, f.FLIGHT_NUMBER, a.AIRLINE
 FROM (SELECT AIRLINE, FLIGHT_NUMBER FROM './flights.csv' LIMIT 10) AS f
 JOIN my_db.main.airlines AS a
 ON f.AIRLINE = a.IATA_CODE;
┌─────────┬───────────────┬────────────────────────┐
│ AIRLINE │ FLIGHT_NUMBER │ AIRLINE │
│ varchar │ int64 │ varchar │
├─────────┼───────────────┼────────────────────────┤
│ AS │ 98 │ Alaska Airlines Inc. │
│ AA │ 2336 │ American Airlines Inc. │
│ US │ 840 │ US Airways Inc. │
│ AA │ 258 │ American Airlines Inc. │
│ AS │ 135 │ Alaska Airlines Inc. │
│ DL │ 806 │ Delta Air Lines Inc. │
│ NK │ 612 │ Spirit Air Lines │
│ US │ 2013 │ US Airways Inc. │
│ AA │ 1112 │ American Airlines Inc. │
│ DL │ 1173 │ Delta Air Lines Inc. │
├─────────┴───────────────┴────────────────────────┤
│ 10 rows 3 columns │
└──┘

The result of the hybrid query combines data from both the local DuckDB database
and the table hosted on MotherDuck, providing a comprehensive view that includes
the airline codes and the corresponding full airline names. This approach leverages
the hybrid query capability of MotherDuck to seamlessly integrate and analyze data
from different sources in a single query execution.

282 | Chapter 9: Using DuckDB in the Cloud with MotherDuck

Summary
This chapter has provided you with a comprehensive understanding of how to man‐
age and manipulate databases using MotherDuck. You’ve learned how to add new
data, perform complex queries, and leverage AI functionalities to simplify and
enhance your data analysis processes.

Additionally, we covered how to execute queries both in the web UI and via the com‐
mand line, enabling you to work seamlessly across different environments. With
these skills, you are now well-equipped to use MotherDuck’s powerful features for
efficient and effective data analytics in the cloud.

So, is MotherDuck the solution for you? If you’re looking for a powerful, cloud-based
analytics platform that simplifies data management, enhances query performance,
and integrates seamlessly with local and remote databases, then MotherDuck could
be the ideal choice. Its combination of serverless architecture, AI capabilities, and
user-friendly interface makes it a robust tool for modern data analysis. Whether
you’re working independently or as part of a team, MotherDuck provides the scalabil‐
ity, efficiency, and flexibility to handle complex data tasks with ease.

In conclusion, DuckDB represents a significant advancement in the realm of analyti‐
cal database systems, offering a unique combination of high performance, flexibility,
and ease of use. Throughout this book, we explored how DuckDB’s efficient design—
rooted in its columnar storage, vectorized execution, and in-process architecture—
empowers it to handle complex queries with remarkable speed. We also delved into
its seamless integration with various data frameworks such as pandas and Polars, sup‐
port for a wide range of data formats, and straightforward deployment within exist‐
ing workflows.

As you move forward, I hope this book has equipped you with the knowledge and
confidence to fully leverage DuckDB’s capabilities in your projects, opening new pos‐
sibilities for efficient data processing and analysis.

Summary | 283

Index

Symbols
2015 Flight Delays and Cancellations

CSV files, 25-33
descriptive analytics, 127-157
EDA and, 110
Excel files, 39-44
MySQL, 44-48
Parquet files, 34

A
aggregation, 10-12, 76-78

descriptive analytics, 131-135
AI (artificial intelligence) in MotherDuck,

270-274
analytics, tables, 78-81
Apache Parquet (see Parquet files)
array data type, 161

B
backends, Matplotlib, 182
bar plots, JupySQL, 200-203
Boolean data type, 160
box plots, JupySQL, 196-198

C
chart plotting

bar plots, 200-203
box plots, 196-198
histograms, 191-196
pie charts, 198-199
Seaborn package, 195
variables, 195

cloud computing, 246

(see also MotherDuck)
column-based storage, Parquet, 34
columnar storage format, 2, 4
CSV (comma-separated values) files, 24

2015 Flight Delays and Cancellations, 25-33
exporting tables to, 33
flights.csv, 93-98
lazy loading, 26
loading, 110
register() method, 30-32
remote access, queries, 212-216
SQL query method, 25-30

D
data import, DuckDB CLI, 54-55
data loading, 8-9
data processing, vectorized, 2
data summaries, EDA, 109
data types, JSON, 159

array, 161
Boolean, 160
nested object, 161
null, 162
number, 161
object, 160
string, 160

data visualization, EDA, 109
databases

creating, 8, 23-24
with DuckDB CLI, 62

detaching, MotherDuck, 263-264
immutable, 24
in-memory copies, 8

285

in-process, 6
MotherDuck

creating, 263
querying, 264-269
sharing, 257-262

persistent files, 8
read-only, 24

DataFrames (see Polars DataFrames)
datasets

distribution, 196
outliers, 197

descriptive analytics, 127
airport locations, 128-131
airport number aggregation, 131-135
canceled flights, 138-144
common timeslots, 150-157
flight count every week day, 144-150
flight counts, 136-138

distribution of a dataset, 196
dot commands, 55

.database, 56

.dump, 58

.open, 57

.read, 59

.table, 58
DuckDB

efficiency, 17
execution speed, 17-19
memory usage, 20-21

extensions, 40
importing data, 54-55
in-process operation, 2
MotherDuck, 1
OLAP and, 1
Python integration, 1
R integration, 1
reasons to use, 2-4

DuckDB CLI, 51
databases, creating, 62
dot commands, 55

.database, 56

.dump, 58

.open, 57

.read, 59

.table, 58
importing data and, 54-55
in-memory databases, 54, 59-61

Linux, 51
macOS, 51
MotherDuck, 274

connecting, 274-277
database creation, 279-281
hybrid queries, 281-282
querying, 278-279

persistent databases, 54
semicolons, 54
tables

creating, 63
dropping, 64-65
schemas, viewing, 64

Windows, 51
duckdb package installation, 8
duckdb-engine package, 183
DuckDBPyRelation object, 103-107

E
EDA (exploratory data analysis)

2015 Flight Delays and Cancellations, 110
data summarization, 109
data visualization, 109
trends and, 109

efficiency, 17
execution speed, 17-19
memory usage, 20-21

ELT (Extract-Load-Transform), SQL in, 2
environment variables, 204-206
Excel files, 39

2015 Flight Delays and Cancellations, 39-44
loading, 40-44

execution
parallel, 5
vectorized, 4

explicit lazy evaluation, 97-98
extensions, 40

F
fastparquet, 35
flights.csv file, 93-98
folium library, 112

maps, 112-114
airport display, 114-117

286 | Index

G
GeoPandas GeoDataFrame, 120
geospatial analysis, 109, 111

(see also GIS (geographic information sys‐
tem); spatial analysis)

all airports map, 114-117
folium, 112

map display, 112-127
GeoPandas GeoDataFrame, 120
pandas DataFrame, 120
Point data type, 118-120
spatial extension, 117-127

GIS (geographic information system), 111
(see also geospatial analysis)

glob pattern, 229
glob syntax, 228-231

H
histograms

bins, 194
JupySQL, 191-196
variables, 195

Homebrew, 52
httpfs extension, 40

remote file access, 211-212
Hugging Face Datasets

Adult Census Income dataset, 225-228
file access, 225-228
glob syntax, 228-231
hf://Paths, 224
NLP (natural language processing), 220
private, 231

access tokens, 238-241
authentication, 241-243
uploading, 233-237

queries
multiple files, 228-231
remote access, 220-243

Tips dataset, 222

I
icu extension, 40
immutability, 24
implicit lazy evaluation, 94-97
in-memory databases, 8

DuckDB CLI, 54, 59-61

in-process databases, 6
inet extension, 40
.ini files, 207-209
integration, 6-7
interquartile range (IQR), 196
ipython-sql (see JupySQL)
IQR (interquartile range), 196

J
JavaScript, folium library, 112
join reordering, 5
joins, 12-14

tables, 70
full join, 74
inner join, 73
left join, 71-72
multiple, 74-76
right join, 72-73

JSON (JavaScript Object Notation), 159
COPY-FROM statement, 177-178
data types supported, 159

array, 161
Boolean, 160
nested object, 161
null, 162
number, 161
object, 160
string, 160

exporting tables to, 178-179
file upload to DuckDB, 163-178
files

custom, 172-174
multiple, 174-177
objects, 163

read_json() function, 166
custom files, 172-174
multiple file load, 174-177
ND (newline-delimited), 168
nested JSON, 169-172
object arrays, 166-167

read_json_auto() function, 164-166
tables, 164-165

JupySQL, 182
bar plots, 200-203
box plots, 196-198
commands, 183

Index | 287

DuckDB integration, 184
duckdb-engine package, 183
histograms, 191-196
installation, 183
MySQL integration, 204

environment variables, 204-206
.ini files, 207-209
keyring library, 209-210

pie charts, 198-199
queries, 182, 185-188

snippet storage, 188-190
sql extension, 183-184

Jupyter Notebook
commands, JupySQL, 183
Polars DataFrames, printing, 85

K
keyring library, 209-210

L
languages supported, 6
late materialization, 5
lazy evaluation, 93

explicit, 94, 97-98
implicit, 94-97

lazy loading, 26
Linux, DuckDB CLI, 51

M
macOS, DuckDB CLI, 51
maps, folium, 112-114

airport display, 114-117
Matplotlib, 182

histograms, 191-196
patches, 196

memory
efficient usage, 5
usage, 20-21

metadata, self-describing, 34
MotherDuck, 1, 245

AI and, 270-274
Attached databases, 250
data upload, 252-255
databases

creating, 263
detaching, 263-264

querying, 264-269
sharing, 257-262

DuckDB CLI, 274
connecting, 274-277
database creation, 279-281
hybrid queries, 281-282
querying, 278-279

plans, 249
schemas, 251-252

creating, 255-257
sign-up, 246-248
tables, 252-255

MySQL, 44
2015 Flight Delays and Cancellations, 44-48
JupySQL integration, 204

environment variables, 204-206
.ini files, 207-209
keyring library, 209-210

tables, loading, 45-48

N
nested JSON, 169-172
nested object data type, 161
newline characters, JSON, 168
NLP (natural language processing), 220
null data type, 162
number data type, 161

O
object data type, 160
OLAP (online analytical processing), 1
open source, 7
optimized query planner, 5
outliers in datasets, 197

P
pandas, 1

reading data from, 14-17
visualizations, 182

pandas DataFrames
converting to GeoDataFrame, 120
visualization, 181-182

parallel execution, 5
Parquet files, 34-35

2015 Flight Delays and Cancellations, 34
exporting, 38-39

288 | Index

fastparquet, 35
loading, 35-38
remote access, queries, 216-220
viewing, 35

persistent databases, DuckDB CLI, 54
pie charts, JupySQL, 198-199
Point data type, geospatial analysis, 118
point data, geospatial analysis, 120
Polars, 1

data storage, 84
lazy evaluation, 84, 93

explicit, 94, 97-98
implicit, 94-97

Rust and, 83
Polars DataFrames

column selection, 86-89
creating, 84-93
printing, 85
querying, 98

DuckDBPyRelation object, 103-107
sql() function, 98-103

row and column selection, 91
row selection, 89-91
SQL and, 92-93

portability, 6
predicate pushdown, 5
Python, 1

Q
queries, 4-6, 9

JupySQL, 182, 185-188
snippet storage, 188-190

MotherDuck, 264-269
DuckDB CLI, 278-279
hybrid, 281-282

optimized query planner, 5
Polars DataFrames, 98

DuckDBPyRelation object, 103-107
sql() function, 98-103

remote access
CSV files, 212-216
Hugging Face Datasets, 220-243
Parquet files, 216-220

querying tables, 69-70

R
RDBMSs (relational database management sys‐

tems), 2
read-only databases, 24
record aggregation, 10
register() method, loading CSV files, 30-32
relational database management systems

(RDBMSs), 2
remote file access

CSV file queries, 212-216
httpfs extension, 211-212
Hugging Face Dataset queries, 220-243
Parquet file queries, 216-220

rows
deleting, 68-69
inserting, 9, 65-67
updating, 68

Rust, 83

S
SaaS (software as a service), 1
Seaborn package, 195
self-describing metadata, 34
snippet storage, 188-190
software as a service (SaaS), 1
spatial analysis, 111

(see also geospatial analysis)
spatial extension, 40

Excel worksheet loading, 40
SQL (Structured Query Language)

CREATE TABLE statement, 25
ELT (Extract-Load-Transform), 2
mini-library database example, 61-65
query method for loading CSV files, 25-30
SELECT FROM SQL statement, 25
syntax, 6

sql extension, JupySQL, 183-184
sql() function, 98-103
SQLAlchemy, 183
sqlite extension, 40
string data type, 160

T
tables

analytics, 78-81
creating, 8-9

Index | 289

DuckDB CLI, 63-65
exporting

to CSV, 33
to Excel, 44
to JSON, 178-179

joining, 70
full joins, 74
inner joins, 73
left joins, 71-72
multiple tables, 74-76
right joins, 72-73

joins, 12-14
JSON files, 164-165
MotherDuck, 252-255
populating with rows, 65-67
queries, 9
querying, 69-70
rows, 65-67

deleting, 68-69
inserting, 9

updating, 68
schemas, 64

trends, EDA and, 109

V
variables, environment, 204-206
vectorized data processing, 2
vectorized execution, 4
visualization, 109

(see also data visualization, EDA)
JupySQL (see JupySQL)
Matplotlib, 182
panda DataFrames, 182
pandas, 182
pandas DataFrames, 181-182

W
whisker plots, JupySQL, 196-198
Windows, DuckDB CLI, 51

290 | Index

About the Author
Wei-Meng Lee is a technologist and founder of Developer Learning Solutions, a com‐
pany that provides hands-on training on the latest technologies. He is an established
developer and trainer, specializing in data science, blockchain, and mobile technolo‐
gies. Wei-Meng speaks regularly at international conferences and has authored and
co-authored numerous books on topics ranging from blockchain to machine learn‐
ing. He currently writes a regular column for Medium and CODE Magazine, with a
focus on making complex technologies easy for beginners to understand.

Colophon
The animal on the cover of DuckDB: Up and Running is a tufted duck (Aythya fuli‐
gula). The name comes from the tassel at the back of their heads, while the Latin
“fuligula” from their scientific name means “sooty throat.”

The male duck is depicted on the front of this book, while the female is a little more
brown and less sharply contrasted in coloring. Tufted ducks are native to northern
Eurasia, although they have been seen in coastal regions of the United States and
Canada—and as far south as Australia. Their habitat is near water with vegetation for
nesting purposes.

During mating season, male and female choose a location for the nest, which the
female then builds out of grass and other materials in a process that can last about a
week. She then lays 8 to 11 eggs, although her nest can house more eggs (sometimes
up to 22) due to a practice called “egg dumping.” The timing of the egg-laying is often
chosen based on insect patterns and availability. For example, in Scotland, tufted
ducks tend to lay their eggs such that the adult midges are most plentiful when the
ducklings hatch.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique engraving from
British Birds. The series design is by Edie Freedman, Ellie Volckhausen, and Karen
Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The text font
is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

https://www.oreilly.com/start-trial/?utm_medium=content+synd&utm_source=general+ad&utm_campaign=tria

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgements

	Chapter 1. Getting Started with DuckDB
	Introduction to DuckDB
	Why Use DuckDB?
	High-Performance Analytical Queries
	Versatile Integration and Ease of Use Across Multiple Programming Languages
	Open Source

	A Quick Look at DuckDB
	Loading Data into DuckDB
	Inserting a Record
	Querying a Table
	Performing Aggregation
	Joining Tables
	Reading Data from pandas

	Why DuckDB Is More Efficient
	Execution Speed
	Memory Usage

	Summary

	Chapter 2. Importing Data into DuckDB
	Creating DuckDB Databases
	Loading Data from Different Data Sources and Formats
	Working with CSV Files
	Working with Parquet Files
	Working with Excel Files
	Working with MySQL

	Summary

	Chapter 3. A Primer on SQL
	Using the DuckDB CLI
	Importing Data into DuckDB
	Dot Commands
	Persisting the In-Memory Database on Disk

	DuckDB SQL Primer
	Creating a Database
	Creating Tables
	Viewing the Schemas of Tables
	Dropping a Table

	Working with Tables
	Populating Tables with Rows
	Updating Rows
	Deleting Rows
	Querying Tables
	Joining Tables
	Aggregating Data
	Analytics

	Summary

	Chapter 4. Using DuckDB with Polars
	Introduction to Polars
	Creating a Polars DataFrame
	Understanding Lazy Evaluation in Polars

	Querying Polars DataFrames Using DuckDB
	Using the sql() Function
	Using the DuckDBPyRelation Object

	Summary

	Chapter 5. Performing EDA with DuckDB
	Our Dataset: The 2015 Flight Delays Dataset
	Geospatial Analysis
	Displaying a Map
	Displaying All Airports on the Map
	Using the spatial Extension in DuckDB

	Performing Descriptive Analytics
	Finding the Airports for Each State and City
	Aggregating the Total Number of Airports in Each State
	Obtaining the Flight Counts for Each Pair of Origin and Destination Airports
	Getting the Canceled Flights from Airlines
	Getting the Flight Count for Each Day of the Week
	Finding the Most Common Timeslot for Flight Delays
	Finding the Airlines with the Most and Fewest Delays

	Summary

	Chapter 6. Using DuckDB with JSON Files
	Primer on JSON
	Object
	String
	Boolean
	Number
	Nested Object
	Array
	null

	Loading JSON Files into DuckDB
	Using the read_json_auto() Function
	Using the read_json() Function
	Using the COPY-FROM Statement

	Exporting Tables to JSON
	Summary

	Chapter 7. Using DuckDB with JupySQL
	What Is JupySQL?
	Installing JupySQL
	Loading the sql Extension
	Integrating with DuckDB
	Performing Queries
	Storing Snippets

	Visualization
	Histograms
	Box Plots
	Pie Charts
	Bar Plots

	Integrating with MySQL
	Using Environment Variables
	Using an .ini File
	Using keyring

	Summary

	Chapter 8. Accessing Remote Data Using DuckDB
	DuckDB’s httpfs Extension
	Querying CSV and Parquet Files Remotely
	Accessing CSV Files
	Accessing Parquet Files

	Querying Hugging Face Datasets
	Using Hugging Face Datasets
	Reading the Dataset Using hf:// Paths
	Accessing Files Within a Folder
	Querying Multiple Files Using the Glob Syntax
	Working with Private Hugging Face Datasets

	Summary

	Chapter 9. Using DuckDB in the Cloud with MotherDuck
	Introduction to MotherDuck
	Signing Up for MotherDuck
	MotherDuck Plans

	Getting Started with MotherDuck
	Adding Tables
	Creating Schemas
	Sharing Databases
	Creating a Database
	Detaching a Database

	Using the Databases in MotherDuck
	Querying Your Database
	Writing SQL Using AI

	Using MotherDuck Through the DuckDB CLI
	Connecting to MotherDuck
	Querying Databases on MotherDuck
	Creating Databases on MotherDuck
	Performing Hybrid Queries

	Summary

	Index
	About the Author
	Colophon

