
M A N N I N G

Yuan Tang

Distributed Machine Learning Patterns

Distributed Machine
Learning Patterns

YUAN TANG

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Patrick Barb and Karen Miller
20 Baldwin Road Technical editor: Gerald Kuch
PO Box 761 Review editor: Mihaela Batinić
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Alisa Larson
Proofreader: Jason Everett

Technical proofreader: Ninoslav Cerkez
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617299025
Printed in the United States of America

www.manning.com

v

brief contents
PART 1 BASIC CONCEPTS AND BACKGROUND1

1 ■ Introduction to distributed machine learning systems 3

PART 2 PATTERNS OF DISTRIBUTED MACHINE
LEARNING SYSTEMS ...15

2 ■ Data ingestion patterns 17

3 ■ Distributed training patterns 41

4 ■ Model serving patterns 66

5 ■ Workflow patterns 90

6 ■ Operation patterns 114

PART 3 BUILDING A DISTRIBUTED MACHINE LEARNING
WORKFLOW ...135

7 ■ Project overview and system architecture 137

8 ■ Overview of relevant technologies 155

9 ■ A complete implementation 187

contents
preface xi
acknowledgments xiii
about this book xv
about the author xviii
about the cover illustration xix

PART 1—BASIC CONCEPTS AND BACKGROUND....................1

1 Introduction to distributed machine learning systems 3
1.1 Large-scale machine learning 4

The growing scale 4 ■ What can we do? 5

1.2 Distributed systems 7
What is a distributed system? 7 ■ The complexity and patterns 7

1.3 Distributed machine learning systems 8
What is a distributed machine learning system? 8 ■ Are there
similar patterns? 9 ■ When should we use a distributed machine
learning system? 10 ■ When should we not use a distributed
machine learning system? 11

1.4 What we will learn in this book 11
vi

CONTENTS vii
PART 2—PATTERNS OF DISTRIBUTED MACHINE
LEARNING SYSTEMS..15

2 Data ingestion patterns 17
2.1 What is data ingestion? 18
2.2 The Fashion-MNIST dataset 19
2.3 Batching pattern 22

The problem: Performing expensive operations for Fashion
MNIST dataset with limited memory 22 ■ The solution 23
Discussion 26 ■ Exercises 27

2.4 Sharding pattern: Splitting extremely large datasets
among multiple machines 28
The problem 28 ■ The solution 29 ■ Discussion 32
Exercises 35

2.5 Caching pattern 35
The problem: Re-accessing previously used data for efficient multi-
epoch model training 36 ■ The solution 36 ■ Discussion 38
Exercises 40

2.6 Answers to exercises 40

3 Distributed training patterns 41
3.1 What is distributed training? 42
3.2 Parameter server pattern: Tagging entities in 8 million

YouTube videos 43
The problem 45 ■ The solution 45 ■ Discussion 50
Exercises 51

3.3 Collective communication pattern 51
The problem: Improving performance when parameter servers become
a bottleneck 53 ■ The solution 53 ■ Discussion 59
Exercises 60

3.4 Elasticity and fault-tolerance pattern 60
The problem: Handling unexpected failures when training with
limited computational resources 61 ■ The solution 61
Discussion 64 ■ Exercises 64

3.5 Answers to exercises 64

CONTENTSviii
4 Model serving patterns 66
4.1 What is model serving? 67
4.2 Replicated services pattern: Handling the growing

number of serving requests 68
The problem 70 ■ The solution 70 ■ Discussion 73
Exercises 74

4.3 Sharded services pattern 74
The problem: Processing large model serving requests with high-
resolution videos 75 ■ The solution 76 ■ Discussion 78
Exercises 79

4.4 The event-driven processing pattern 79
The problem: Responding to model serving requests based
on events 82 ■ The solution 82 ■ Discussion 87
Exercises 88

4.5 Answers to exercises 88

5 Workflow patterns 90

5.1 What is workflow? 91
5.2 Fan-in and fan-out patterns: Composing complex machine

learning workflows 95
The problem 96 ■ The solution 96 ■ Discussion 101
Exercises 102

5.3 Synchronous and asynchronous patterns: Accelerating
workflows with concurrency 102
The problem 103 ■ The solution 103 ■ Discussion 106
Exercises 107

5.4 Step memoization pattern: Skipping redundant workloads
via memoized steps 107
The problem 108 ■ The solution 109 ■ Discussion 111
Exercises 112

5.5 Answers to exercises 112

CONTENTS ix
6 Operation patterns 114
6.1 What are operations in machine learning systems? 115
6.2 Scheduling patterns: Assigning resources effectively

in a shared cluster 117
The problem 118 ■ The solution 118 ■ Discussion 125
Exercises 126

6.3 Metadata pattern: Handle failures appropriately to
minimize the negative effect on users 126
The problem 127 ■ The solution 128 ■ Discussion 132
Exercises 133

6.4 Answers to exercises 134

PART 3—BUILDING A DISTRIBUTED MACHINE
LEARNING WORKFLOW135

7 Project overview and system architecture 137
7.1 Project overview 138

Project background 138 ■ System components 139

7.2 Data ingestion 140
The problem 140 ■ The solution 142 ■ Exercises 144

7.3 Model training 144
The problem 145 ■ The solution 145 ■ Exercises 147

7.4 Model serving 147
The problem 147 ■ The solution 148 ■ Exercises 150

7.5 End-to-end workflow 150
The problems 151 ■ The solutions 151 ■ Exercises 153

7.6 Answers to exercises 154

8 Overview of relevant technologies 155
8.1 TensorFlow: The machine learning framework 156

The basics 156 ■ Exercises 162

8.2 Kubernetes: The distributed container orchestration
system 162
The basics 163 ■ Exercises 168

CONTENTSx
8.3 Kubeflow: Machine learning workloads on
Kubernetes 169
The basics 172 ■ Exercises 176

8.4 Argo Workflows: Container-native workflow engine 176
The basics 178 ■ Exercises 185

8.5 Answers to exercises 185

9 A complete implementation 187
9.1 Data ingestion 188

Single-node data pipeline 189 ■ Distributed data pipeline 191

9.2 Model training 191
Model definition and single-node training 192 ■ Distributed
model training 195 ■ Model selection 200

9.3 Model serving 202
Single-server model inference 202 ■ Replicated model servers 207

9.4 The end-to-end workflow 209
Sequential steps 210 ■ Step memoization 214

index 219

preface
In recent years, advances in machine learning have made tremendous progress, yet
large-scale machine learning remains challenging. Take model training as an exam-
ple. With the variety of machine learning frameworks such as TensorFlow, PyTorch,
and XGBoost, it’s not easy to automate the process of training machine learning mod-
els on distributed Kubernetes clusters. Different models require different distributed
training strategies, such as utilizing parameter servers and collective communication
strategies that use the network structure. In a real-world machine learning system,
many other essential components, such as data ingestion, model serving, and work-
flow orchestration, must be designed carefully to make the system scalable, efficient,
and portable. Machine learning researchers with little or no DevOps experience can-
not easily launch and manage distributed training tasks.

 Many books have been written on either machine learning or distributed systems.
However, there is currently no book available that talks about the combination of both
and bridges the gap between them. This book will introduce many patterns and best
practices in large-scale machine learning systems in distributed environments.

 This book also includes a hands-on project that builds an end-to-end distributed
machine learning system that incorporates a lot of the patterns that we cover in the
book. We will use several state-of-art technologies to implement the system, including
Kubernetes, Kubeflow, TensorFlow, and Argo. These technologies are popular choices
when building a distributed machine learning system from scratch in a cloud-native
way, making it very scalable and portable.
xi

PREFACExii
 I’ve worked in this area for years, including maintaining some of the open source
tools used in this book and leading teams to provide scalable machine learning infra-
structure. These patterns and their tradeoffs are always considered when designing
systems from scratch or improving existing systems in my daily work. I hope this book
will be helpful to you as well!

acknowledgments
First and foremost, I want to thank my wife, Wenxuan. You’ve always supported me,
always patiently listened while I struggled to get this book done, always made me
believe I could finish this project, and helped take care of the kids while I was working
on the book. Thanks to my three lovely kids, who brought smiles to me whenever I got
stuck. I love you all.

 Next, I’d like to acknowledge Patrick Barb, my previous development editor, for
your patience and guidance over the years. I also thank Michael Stephens for guiding
the direction of this book and helping me get through the tough times when I
doubted myself. Thanks also to Karen Miller and Malena Selic for providing a smooth
transition and helping me move quickly to the production stage. Your commitment to
the quality of this book has made it better for everyone who reads it. Thanks as well to
all the other folks at Manning who worked with me on the production and promotion
of the book. It was truly a team effort.

 Thanks also to my technical editor, Gerald Kuch, who brought over 30 years of
industry experience from several large companies as well as startups and research
labs. Gerald’s knowledge and teaching experience covering data structures and algo-
rithms, functional programming, concurrent programming, distributed systems, big
data, data engineering, and data science made him an excellent resource for me as
the manuscript was developed.

 Finally, I’d also like to thank the reviewers who took the time to read my manu-
script at various stages during its development and provided invaluable feedback. To
Al Krinker, Aldo Salzberg, Alexey Vyskubov, Amaresh Rajasekharan, Bojan Tunguz,
xiii

ACKNOWLEDGMENTSxiv
Cass Petrus, Christopher Kottmyer, Chunxu Tang, David Yakobovitch, Deepika
Fernandez, Helder C. R. Oliveira, Hongliang Liu, James Lamb, Jiri Pik, Joel Holmes,
Joseph Wang, Keith Kim, Lawrence Nderu, Levi McClenny, Mary Anne Thygesen,
Matt Welke, Matthew Sarmiento, Michael Aydinbas, Michael Kareev, Mikael Dautrey,
Mingjie Tang, Oleksandr Lapshyn, Pablo Roccatagliata, Pierluigi Riti, Prithvi Maddi,
Richard Vaughan, Simon Verhoeven, Sruti Shivakumar, Sumit Pal, Vidhya Vinay,
Vladimir Pasman, and Wei Yan, your suggestions helped me improve this book.

about this book
Distributed Machine Learning Patterns is filled with practical patterns for running
machine learning systems on distributed Kubernetes clusters in the cloud. Each pat-
tern is designed to help solve common challenges faced when building distributed
machine learning systems, including supporting distributed model training, handling
unexpected failures, and dynamic model serving traffic. Real-world scenarios provide
clear examples of how to apply each pattern, alongside the potential tradeoffs for
each approach. Once you’ve mastered these cutting-edge techniques, you’ll put them
all into practice and finish up by building a comprehensive distributed machine learn-
ing system.

Who should read this book?
Distributed Machine Learning Patterns is for data analysts, data scientists, and software
engineers familiar with the basics of machine learning algorithms and running
machine learning in production. Readers should be familiar with the basics of Bash,
Python, and Docker.

How this book is organized: A roadmap
The book has three sections that cover nine chapters.

 Part 1 provides some background and concepts around distributed machine learn-
ing systems. We will discuss the growing scale of machine learning applications and
the complexity of distributed systems and introduce a couple of patterns often seen in
both distributed systems and distributed machine learning systems.
xv

ABOUT THIS BOOKxvi
 Part 2 presents some of the challenges involved in various components of a
machine learning system and introduces a few established patterns adopted heavily in
industries to address those challenges:

 Chapter 2 introduces the data ingestion patterns, including batching, sharding,
and caching, to efficiently process large datasets.

 Chapter 3 includes three patterns that are often seen in distributed model
training, which involves parameter servers, and collective communication, as
well as elasticity and fault-tolerance.

 Chapter 4 demonstrates how useful replicated services, sharded services, and
event-driven processing can be to model serving.

 Chapter 5 describes several workflow patterns, including fan-in and fan-out pat-
terns, synchronous and asynchronous patterns, and step memoization patterns,
which will usually be used to create complex and distributed machine learning
workflows.

 Chapter 6 ends this part with scheduling and metadata patterns that can be use-
ful for operations.

Part 3 goes deep into an end-to-end machine learning system to apply what we
learned previously. Readers will gain hands-on experience implementing many pat-
terns previously learned in this project:

 Chapter 7 goes through the project background and system components.
 Chapter 8 covers the fundamentals of the technologies we will use for our project.
 Chapter 9 ends the book with a complete implementation of an end-to-end

machine learning system.

In general, if readers already know what a distributed machine learning system is, Part
1 can be skipped. All chapters in Part 2 can be read independently since each covers a
different perspective in distributed machine learning systems. Chapters 7 and 8 are
prerequisites for the project we build in chapter 9. Chapter 8 can be skipped if read-
ers are already familiar with the technologies.

About the code
You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/distributed-machine-learning-patterns.
The complete code for the examples in the book is available for download from the
Manning website at www.manning.com and from the GitHub repo at https://github
.com/terrytangyuan/distributed-ml-patterns. Please submit any issues to the GitHub
repo, which will be actively watched and maintained.

liveBook discussion forum
Purchase of Distributed Machine Learning Patterns includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you

https://livebook.manning.com/book/distributed-machine-learning-patterns
http://www.manning.com
https://github.com/terrytangyuan/distributed-ml-patterns
https://github.com/terrytangyuan/distributed-ml-patterns
https://github.com/terrytangyuan/distributed-ml-patterns

ABOUT THIS BOOK xvii
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/distributed-machine-learning-patterns/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/book/distributed-machine-learning-patterns/discussion
https://livebook.manning.com/book/distributed-machine-learning-patterns/discussion
https://livebook.manning.com/book/distributed-machine-learning-patterns/discussion

about the author
YUAN TANG is a founding engineer at Akuity, building an enter-
prise-ready platform for developers. He has previously led data
science and engineering teams at Alibaba and Uptake, focusing
on AI infrastructure and AutoML platforms. He’s a project lead
of Argo and Kubeflow, a maintainer of TensorFlow and XGBoost,
and the author of numerous open source projects. In addition,
Yuan has authored three machine learning books and several
publications. He’s a regular speaker at various conferences and
a technical advisor, leader, and mentor at various organizations.
xviii

about the cover illustration
The figure on the cover of Distributed Machine Learning Patterns is “Homme Corfiote,”
or “Man from Corfu,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xix

Part 1

Basic concepts
and background

This part of the book will provide some background and concepts related to
distributed machine learning systems. We will start by discussing the growing
scale of machine learning applications (given users’ demand for faster responses
to meet real-life requirements), machine learning pipelines, and model architec-
tures. Then we will talk about what a distributed system is, describe its complex-
ity, and introduce one concrete example pattern that’s often used in distributed
systems.

 In addition, we will discuss what distributed machine learning systems are,
examine similar patterns that are often used in those systems, and talk about
some real-life scenarios. At the end of this part, we will take a glance at what we’ll
be learning in this book.

Introduction
to distributed machine

learning systems
Machine learning systems are becoming more important nowadays. Recommenda-
tion systems learn to generate recommendations of potential interest with the right
context according to user feedback and interactions, anomalous event detection
systems help monitor assets to prevent downtime due to extreme conditions, and
fraud detection systems protect financial institutions from security attacks and mali-
cious fraud behaviors.

 There is increasing demand for building large-scale distributed machine learn-
ing systems. If a data analyst, data scientist, or software engineer has basic knowl-
edge of and hands-on experience in building machine learning models in Python
and wants to take things a step further by learning how to build something more
robust, scalable, and reliable, this book is the right one to read. Although experi-
ence in production environments or distributed systems is not a requirement, I

This chapter covers
 Handling the growing scale in large-scale machine

learning applications

 Establishing patterns to build scalable and
reliable distributed systems

 Using patterns in distributed systems and
building reusable patterns
3

4 CHAPTER 1 Introduction to distributed machine learning systems
expect readers in this position to have at least some exposure to machine learning
applications running in production and should have written Python and Bash scripts
for at least one year.

 Being able to handle large-scale problems and take what’s developed on your lap-
top to large distributed clusters is exciting. This book introduces best practices in
various patterns that help you speed up the development and deployment of
machine learning models, use automations from different tools, and benefit from
hardware acceleration. After reading this book, you will be able to choose and apply
the correct patterns for building and deploying distributed machine learning systems;
use common tooling such as TensorFlow (https://www.tensorflow.org), Kubernetes
(https://kubernetes.io), Kubeflow (https://www.kubeflow.org), and Argo Workflows
appropriately within a machine learning workflow; and gain practical experience in
managing and automating machine learning tasks in Kubernetes. A comprehensive,
hands-on project in chapter 9 provides an opportunity to build a real-life distributed
machine learning system that uses many of the patterns we learn in the second part of
the book. In addition, supplemental exercises at the end of some sections in the fol-
lowing chapters recap what we’ve learned.

1.1 Large-scale machine learning
The scale of machine learning applications has become unprecedentedly large. Users
are demanding faster responses to meet real-life requirements, and machine learning
pipelines and model architectures are getting more complex. In this section, we’ll talk
about the growing scale in more detail and what we can do to address the challenges.

1.1.1 The growing scale

As the demand for machine learning grows, the complexity involved in building
machine learning systems is increasing as well. Machine learning researchers and data
analysts are no longer satisfied with building simple machine learning models on their
laptops on gigabytes of Microsoft Excel sheets. Due to the growing demand and com-
plexity, machine learning systems have to be built with the ability to handle the grow-
ing scale, including the increasing volume of historical data; frequent batches of
incoming data; complex machine learning architectures; heavy model serving traffic;
and complicated end-to-end machine learning pipelines.

 Let’s consider two scenarios. First, imagine that you have a small machine learning
model that has been trained on a small dataset (less than 1 GB). This approach might
work well for your analysis at hand because you have a laptop with sufficient computa-
tional resources. But you realize that the dataset grows by 1 GB every hour, so the orig-
inal model is no longer useful and predictive in real life. Suppose that you want to build
a time-series model that predicts whether a component of a train will fail in the next
hour to prevent failures and downtime. In this case, we have to build a machine learn-
ing model that uses the knowledge gained from the original data and the most recent
data that arrives every hour to generate more accurate predictions. Unfortunately, your

https://www.tensorflow.org/
https://kubernetes.io/
https://www.kubeflow.org/

51.1 Large-scale machine learning
laptop has a fixed amount of computational resources and is no longer sufficient for
building a new model that uses the entire dataset.

 Second, suppose that you have successfully trained a model and developed a sim-
ple web application that uses the trained model to make predictions based on the
user’s input. The web application may have worked well in the beginning, generating
accurate predictions, and the user was quite happy with the results. This user’s friends
heard about the good experience and decided to try it as well, so they sat in the same
room and opened the website. Ironically, they started seeing longer delays when they
tried to see the prediction results. The reason for the delays is that the single server
used to run the web application can’t handle the increasing number of user requests
as the application gets more popular. This scenario is a common challenge that many
machine learning applications will encounter as they grow from beta products to pop-
ular applications. These applications need to be built on scalable machine learning
system patterns to handle the growing scale of throughput.

1.1.2 What can we do?

When the dataset is too large to fit in a single machine, as in the first scenario in sec-
tion 1.1.1, how can we store the large dataset? Perhaps we can store different parts of
the dataset on different machines and then train the machine learning model by
sequentially looping through the various parts of the dataset on different machines.

 If we have a 30 GB dataset like the one in figure 1.1, we can divide it into three par-
titions of 10 GB data, with each partition sitting on a separate machine that has
enough disk storage. Then, we can consume the partitions one by one without having
to train the machine learning model by using the entire dataset at the same time.

Then, we might ask what will happen if looping through different parts of the dataset
is quite time-consuming. Assume that the dataset at hand has been divided into three
partitions. As illustrated in figure 1.2, first, we initialize the machine learning model
on the first machine, and then we train it, using all the data in the first data partition.
Next, we transfer the trained model to the second machine, which continues training

Partition 1

Machine 1 with
10 GB storage

Machine 2 with
10 GB storage

Machine 3 with
10 GB storage

Partition 2 Partition 3

Original 30 GB dataset

Figure 1.1 An example of
dividing a large dataset into three
partitions on three separate
machines that have sufficient
disk storage

6 CHAPTER 1 Introduction to distributed machine learning systems
by using the second data partition. If each partition is large and time-consuming, we’ll
spend a significant amount of time waiting.

In this case, we can think about adding workers. Each worker is responsible for con-
suming each of the data partitions, and all workers train the same model in parallel
without waiting for others. This approach is definitely good for speeding up the
model training process. But what if some workers finish consuming the data partitions
that they are responsible for and want to update the model at the same time? Which
of the worker’s results (gradients) should we use to update the model first? Then, we
must consider the conflicts and tradeoffs between performance and model quality. In
figure 1.2, if the data partition that the first worker uses has better quality due to a
more rigorous data collection process than the one that the second worker uses, using
the first worker’s results first would produce a more accurate model. On the other
hand, if the second worker has a smaller partition, it could finish training faster, so we
could start using that worker’s computational resources to train a new data partition.
When more workers are added, such as the three workers shown in figure 1.2, the con-
flicts in completion time for data consumption by different workers become even
more obvious.

 Similarly, if the application that uses the trained machine learning model to make
predictions observes much heavier traffic, can we simply add servers, with each new
server handling a certain percentage of the traffic? Unfortunately, the answer is not
that simple. This naive solution would need to take other things into consideration,
such as deciding the best load balancer strategy and processing duplicate requests in
different servers.

 We will learn more about handling these types of problems in the second part of
the book. For now, the main takeaway is that we have established patterns and best
practices to deal with certain situations, and we will use those patterns to make the
most of our limited computational resources.

Partition 1

Machine 1 with
10 GB storage

Machine 2 with
10 GB storage

Transfer and update model

Initialize and train model

Machine 3 with
10 GB storage

Partition 2 Partition 3

Model

Figure 1.2 An example
of training the model
sequentially on each
data partition

71.2 Distributed systems
1.2 Distributed systems
A single machine or laptop can’t satisfy the requirements for training a large machine
learning model with a large amount of data. We need to write programs that can run
on multiple machines and be accessed by people all over the world. In this section,
we’ll talk about what a distributed system is and discuss one concrete example pattern
that’s often used in distributed systems.

1.2.1 What is a distributed system?

Computer programs have evolved from being able to run on only one machine to
working with multiple machines. The increasing demand for computing power and
the pursuit of higher efficiency, reliability, and scalability have boosted the advance-
ment of large-scale data centers that consist of hundreds or thousands of computers
communicating via the shared network, which have resulted in the development of
distributed systems. A distributed system is one in which components are located on dif-
ferent networked computers and can communicate with one another to coordinate
workloads and work together via message passing.

 Figure 1.3 illustrates a small distributed system consisting of two machines commu-
nicating with each other via message passing. One machine contains two CPUs, and
the other machine contains three CPUs. Obviously, a machine contains computa-
tional resources other than the CPUs; we use only CPUs here for illustration purposes.
In real-world distributed systems, the number of machines can be extremely large—
tens of thousands, depending on the use case. Machines with more computational
resources can handle larger workloads and share the results with other machines.

1.2.2 The complexity and patterns

These distributed systems can run on multiple machines and be accessed by users all
over the world. They are often complex and need to be designed carefully to be more
reliable and scalable. Bad architectural considerations can lead to problems, often on
a large scale, and result in unnecessary costs.

 Lots of good patterns and reusable components are available for distributed sys-
tems. The work-queue pattern in a batch processing system, for example, makes sure
that each piece of work is independent of the others and can be processed without

CPU

CPU

CPU

Machine with 3 CPUs

CPU

CPU

Machine with 2 CPUs

Message passing

Figure 1.3 An example of a small
distributed system consisting of two
machines with different amounts of
computational resources communicating
with each other via message passing

8 CHAPTER 1 Introduction to distributed machine learning systems
any interventions within a certain amount of time. In addition, workers can be scaled
up and down to ensure that the workload can be handled properly.

 Figure 1.4 depicts seven work items, each of which might be an image that needs
to be modified to grayscale by the system in the processing queue. Each of the three
existing workers takes two to three work items from the processing queue, ensuring
that no worker is idle to avoid waste of computational resources and maximizing the
performance by processing multiple images at the same time. This performance is
possible because each work item is independent of the others.

1.3 Distributed machine learning systems
Distributed systems are useful not only for general computing tasks but also for
machine learning applications. Imagine that we could use multiple machines with
large amounts of computational resources in a distributed system to consume parts of
the large dataset, store different partitions of a large machine learning model, and so
on. Distributed systems can greatly speed up machine learning applications with scal-
ability and reliability in mind. In this section, we’ll introduce distributed machine
learning systems, present a few patterns that are often used in those systems, and talk
about some real-life scenarios.

1.3.1 What is a distributed machine learning system?

A distributed machine learning system is a distributed system consisting of a pipeline of steps
and components that are responsible for different steps in machine learning applica-
tions, such as data ingestion, model training, and model serving. It uses patterns and
best practices similar to those of a distributed system, as well as patterns designed spe-
cifically to benefit machine learning applications. Through careful design, a distrib-
uted machine learning system is more scalable and reliable for handling large-scale

Work items

Worker 1 Worker 2 Worker 3

Figure 1.4 An example of a batch processing system using the work-queue pattern to modify images
to grayscale

91.3 Distributed machine learning systems
problems, such as large datasets, large models, heavy model serving traffic, and com-
plicated model selection or architecture optimization.

1.3.2 Are there similar patterns?

To handle the increasing demand for and scale of machine learning systems that will
be deployed in real-life applications, we need to design the components in a distrib-
uted machine learning pipeline carefully. Design is often nontrivial, but using good
patterns and best practices allows us to speed the development and deployment of
machine learning models, use automations from different tools, and benefit from
hardware accelerations.

 There are similar patterns in distributed machine learning systems. As an example,
multiple workers can be used to train the machine learning model asynchronously,
with each worker being responsible for consuming certain partitions of the dataset. This
approach, which is similar to the work-queue pattern used in distributed systems, can
speed up the model training process significantly. Figure 1.5 illustrates how we can
apply this pattern to distributed machine learning systems by replacing the work items
with data partitions. Each worker takes some data partitions from the original data
stored in a database and then uses them to train a centralized machine learning model.

Another example pattern commonly used in machine learning systems instead of gen-
eral distributed systems is the parameter server pattern for distributed model training. As

Data partitions

Worker 1 Worker 2 Worker 3

Original data

Figure 1.5 An example of applying the work-queue pattern in distributed machine learning systems

10 CHAPTER 1 Introduction to distributed machine learning systems
shown in figure 1.6, the parameter servers are responsible for storing and updating a
particular part of the trained model. Each worker node is responsible for taking a par-
ticular part of the dataset that will be used to update a certain part of the model
parameters. This pattern is useful when the model is too large to fit in a single server
and dedicated parameter servers for storing model partitions without allocating
unnecessary computational resources.

Part 2 of this book illustrates patterns like these. For now, keep in mind that some pat-
terns in distributed machine learning systems also appear in general-purpose distrib-
uted systems, as well as patterns specially designed to handle machine learning
workloads at large scale.

1.3.3 When should we use a distributed machine learning system?

If the dataset is too large to fit on our local laptops, as illustrated in figures 1.1 and 1.2,
we can use patterns such as data partitioning or introduce additional workers to speed
up model training. We should start thinking about designing a distributed machine
learning system when any of the following scenarios occurs:

 The model is large, consisting of millions of parameters that a single machine
cannot store and that must be partitioned on different machines.

 The machine learning application needs to handle increasing amounts of heavy
traffic that a single server can no longer manage.

 The task at hand involves many parts of the model’s life cycle, such as data inges-
tion, model serving, data/model versioning, and performance monitoring.

Parameter server

Worker node Worker node Worker node

Figure 1.6 An example of applying the parameter server pattern in a distributed machine learning
system

111.4 What we will learn in this book
 We want to use many computing resources for acceleration, such as dozens of
servers that have many GPUs each.

If any of these scenarios occur, it’s usually a sign that a well-designed distributed
machine learning system will be needed in the near future.

1.3.4 When should we not use a distributed machine learning system?

Although a distributed machine learning system is helpful in many situations, it is usu-
ally harder to design and requires experience to operate efficiently. Additional over-
head and tradeoffs are involved in developing and maintaining such a complicated
system. If you encounter any of the following cases, stick with a simple approach that
already works well:

 The dataset is small, such as a CSV file smaller than 10 GBs.
 The model is simple and doesn’t require heavy computation, such as linear

regression.
 Computing resources are limited but sufficient for the tasks at hand.

1.4 What we will learn in this book
In this book, we’ll learn to choose and apply the correct patterns for building and
deploying distributed machine learning systems to gain practical experience in man-
aging and automating machine learning tasks. We’ll use several popular frameworks
and cutting-edge technologies to build components of a distributed machine learning
workflow, including the following:

 TensorFlow (https://www.tensorflow.org)
 Kubernetes (https://kubernetes.io)
 Kubeflow (https://www.kubeflow.org)
 Docker (https://www.docker.com)
 Argo Workflows (https://argoproj.github.io/workflows/)

A comprehensive hands-on project in the last part of the book consists of an end-to-end
distributed machine learning pipeline system. Figure 1.7 is the architecture diagram of
the system that we will be building. We will gain hands-on experience implementing
many of the patterns covered in the following chapters. Handling large-scale prob-
lems and taking what we’ve developed on our personal laptops to large distributed
clusters should be exciting.

 We’ll be using TensorFlow with Python to build machine learning and deep learn-
ing models for various tasks, such as building useful features based on a real-life data-
set, training predictive models, and making real-time predictions. We’ll also use
Kubeflow to run distributed machine learning tasks in a Kubernetes cluster. Further-
more, we will use Argo Workflows to build a machine learning pipeline that consists of
many important components of a distributed machine learning system. The basics of
these technologies are introduced in chapter 2, and we’ll gain hands-on experience

https://www.tensorflow.org/
https://kubernetes.io/
https://www.kubeflow.org/
https://www.docker.com/
https://argoproj.github.io/workflows/

12 CHAPTER 1 Introduction to distributed machine learning systems
with them in part 2. Table 1.1 shows the key technologies that will be covered in this
book and example uses.

Before we dive into details in chapter 2, I recommend that readers have basic knowl-
edge of and hands-on experience in building machine learning models in Python.
Although experience in production environments or distributed systems is not a require-
ment, I expect readers in this position to have at least some exposure to machine learn-
ing applications running in production and to have written Python and Bash scripts for
at least one year. In addition, understanding the basics of Docker and being able to
manage images/containers by using the Docker command-line interface is required.
Familiarity with basic YAML syntax is helpful but not required; the syntax is intuitive and
should be easy to pick up along the way. If most of these topics are new to you, I suggest
that you learn more about them from other resources before reading further.

Table 1.1 The technologies covered in this book and their uses

Technology Use

TensorFlow Building machine learning and deep learning models

Kubernetes Managing distributed environments and resources

Kubeflow Submitting and managing distributed training jobs easily on Kubernetes clusters

Argo Workflows Defining, orchestrating, and managing workflows

Docker Building and managing images to be used for starting containerized environments

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Three model training
steps train different
models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

This step picks the top
model that will be used
in the following model
serving steps.

The results from the two
model serving steps are
then aggregated via a
result aggregation step
to present to users.

Figure 1.7 An architecture diagram of the end-to-end machine learning system that we will be building in the
last part of the book

13Summary
Summary
 Machine learning systems deployed in real-life applications usually need to han-

dle the growing scale of larger datasets and heavier model serving traffic.
 It’s nontrivial to design large-scale distributed machine learning systems.
 A distributed machine learning system is usually a pipeline of many compo-

nents, such as data ingestion, model training, serving, and monitoring.
 Using good patterns to design the components of a machine learning system

can speed up the development and deployment of machine learning models,
enable the use of automations from different tools, and benefit from hardware
acceleration.

Part 2

Patterns of distributed
machine learning systems

Now that you know the basic concepts and background of distributed
machine learning systems, you should be able to proceed to this part of the
book. We will explore some of the challenges involved in various components of
a machine learning system and introduce a few established patterns adopted
heavily in industries to address those challenges.

 Chapter 2 introduces the batching pattern, used to handle and prepare large
datasets for model training; the sharding pattern, used to split huge datasets into
multiple data shards that spread among multiple worker machines; and the
caching pattern, which could greatly speed the data ingestion process when a
previously used dataset is re-accessed for model training.

 In chapter 3, we will explore the challenges of the distributed model training
process. We’ll cover the challenges of training large machine learning models
that tag main themes in new YouTube videos but cannot fit on a single machine.
The chapter also covers how to overcome the difficulty of using the parameter
server pattern. In addition, we see how to use the collective communication pat-
tern to speed distributed training for smaller models and avoid unnecessary
communication overhead among parameter servers and workers. At the end of
this chapter, we talk about some of the vulnerabilities of distributed machine
learning systems due to corrupted datasets, unstable networks, and preemptive
worker machines, and we see how we can address those issues.

16 PART 2 Patterns of distributed machine learning systems
 Chapter 4 focuses on the model serving component, which needs to be scalable
and reliable to handle the growing number of user requests and the growing size of
individual requests. We will go through the tradeoffs of making design decisions to
build a distributed model serving system. We will use the replicated services to handle
the growing number of model serving requests. We will also learn how to assess model
serving systems and determine whether the event-driven design would be beneficial in
real-world scenarios.

 In chapter 5, we’ll see how to build a system that executes complex machine learn-
ing workflows to train multiple machine learning models and pick the most perfor-
mant models to provide good entity tagging results in the model serving system, using
the fan-in and fan-out patterns. We’ll also incorporate the synchronous and asynchro-
nous patterns to make machine learning workflows more efficient and avoid delays
due to the long-running model training steps that block consecutive steps.

 Chapter 6, the last chapter in this part of the book, covers some operational efforts
and patterns that can greatly accelerate the end-to-end workflow, as well as reduce the
maintenance and communication efforts that arise when engineering and data sci-
ence teams collaborate. We’ll introduce a couple of scheduling techniques that pre-
vent resource starvation and deadlocks when many team members work in the same
cluster with limited computational resources. We will also discuss the benefits of the
metadata pattern, which we could use to gain insights from the individual steps in
machine learning workflows and handle failures more appropriately to reduce the
negative effect on users.

Data ingestion patterns
Chapter 1 discussed the growing scale of modern machine learning applications
such as larger datasets and heavier traffic for model serving. It also talked about the
complexity and challenges of building distributed systems—distributed systems for
machine learning applications in particular. We learned that a distributed machine
learning system is usually a pipeline of many components, such as data ingestion,
model training, serving, and monitoring, and that some established patterns are

This chapter covers
 Understanding data ingestion and its

responsibilities

 Handling large datasets in memory by
consuming smaller datasets in batches
(the batching pattern)

 Preprocessing extremely large datasets as
smaller chunks on multiple machines (the
sharding pattern)

 Fetching and re-accessing the same dataset
for multiple training rounds (the caching
pattern)
17

18 CHAPTER 2 Data ingestion patterns
available for designing each component to handle the scale and complexity of real-
world machine learning applications.

 All data analysts and scientists should have some level of exposure to data inges-
tion, either hands-on experience in building a data ingestion component or simply
using a dataset from the engineering team or customer. Designing a good data inges-
tion component is nontrivial and requires understanding the characteristics of the
dataset we want to use for building a machine learning model. Fortunately, we can fol-
low established patterns to build that model on a reliable and efficient foundation.

 This chapter explores some of the challenges involved in the data ingestion pro-
cess and introduces a few established patterns adopted heavily in industries. In section
2.3, we will use the batching pattern in cases where we want to handle and prepare
large datasets for model training, either when the machine learning framework we are
using cannot handle large datasets or requires domain expertise in the underlying
implementation of the framework. In section 2.4, we will learn how to apply the shard-
ing pattern to split extremely large datasets into multiple data shards spread among
multiple worker machines; then we speed up the training process as we add worker
machines that are responsible for model training on each data shard independently.
Section 2.5 introduces the caching pattern, which could greatly speed up the data
ingestion process when a previously used dataset is re-accessed and processed for
multi-epoch model training.

2.1 What is data ingestion?
Let’s assume that we have a dataset at hand, and we would like to build a machine
learning system that builds a machine learning model from it. What is the first thing
we should think about? The answer is quite intuitive: first, we should get a better
understanding of the dataset. Where did the dataset come from, and how was it col-
lected? Are the source and the size of the dataset changing over time? What are the
infrastructure requirements for handling the dataset? We should ask these types of
questions first. We should also consider different perspectives that might affect the
process of handling the dataset before we start building a distributed machine learn-
ing system. We will walk through these questions and considerations in the examples
in the remaining sections of this chapter and learn how to address some of the prob-
lems we may encounter by using different established patterns.

 Data ingestion is the process that monitors the data source, consumes the data all at
once (nonstreaming) or in a streaming fashion, and performs preprocessing to pre-
pare for the training process of machine learning models. In short, streaming data
ingestion often requires long-running processes to monitor the changes in data
sources; nonstreaming data ingestion happens in the form of offline batch jobs that
process datasets on demand. Additionally, the data grows over time in streaming data
ingestion, whereas the size of the dataset is fixed in nonstreaming data ingestion.
Table 2.1 summarizes the differences.

192.2 The Fashion-MNIST dataset
The remaining sections of this chapter focus on data ingestion patterns from a non-
streaming perspective, but they can be applied to streaming data ingestion as well.

 Data ingestion is the first step and an inevitable step in a machine learning pipe-
line, as shown in figure 2.1. Without a properly ingested dataset, the rest of the pro-
cesses in a machine learning pipeline would not be able to proceed.

The next section introduces the Fashion-MNIST dataset, which I use to illustrate the
patterns in the remaining sections of this chapter. I focus on building patterns around
data ingestion in distributed machine learning applications, which are distinct from
data ingestion that happens on local machines or laptops. Data ingestion in distrib-
uted machine learning applications is often more complex and requires careful
design to handle large-scale datasets or datasets that are growing rapidly.

2.2 The Fashion-MNIST dataset
The MNIST dataset by LeCun et al. (http://yann.lecun.com/exdb/mnist/) is one of
the most widely used datasets for image classification. It contains 60,000 training
images and 10,000 testing images extracted from images of handwritten digits; it is
used widely in the machine learning research community as a benchmark dataset to
validate state-of-art algorithms and machine learning models. Figure 2.2 shows some
example images of handwritten digits, with each row representing images of a particu-
lar handwritten digit.

Table 2.1 Comparison of streaming and nonstreaming data ingestion in machine learning applications

Streaming data ingestion Nonstreaming data Ingestion

Dataset size Increases over time Fixed size

Infrastructure requirements Long-running processes to monitor
the changes in data source

Offline batch jobs to process
datasets on demand

Model
deployment

Data ingestion Model training Model selection

The rest of the processes in the machine learning pipeline
are all dependent on the success of data ingestion.

Data ingestion is the first step
in a machine learning pipeline.

Figure 2.1 A flowchart that represents the machine learning pipeline. Note that data ingestion is the
first step in the pipeline.

http://yann.lecun.com/exdb/mnist/

20 CHAPTER 2 Data ingestion patterns
Despite wide adoption in the community, researchers have found this dataset to be
unsuitable for distinguishing between stronger models and weaker ones; many simple
models nowadays can achieve good classification accuracy over 95%. As a result, the
MNIST dataset now serves as more a sanity check than a benchmark.

NOTE The creators of the MNIST dataset kept a list of the machine learning
methods tested on the dataset. In the original paper, “Gradient-Based Learn-
ing Applied to Document Recognition,” published in 1998 on the MNIST
dataset (http://yann.lecun.com/exdb/publis/index.html#lecun-98), LeCun
et al. stated that they used a support-vector machine model to get an error
rate of 0.8%. A similar but extended dataset called EMNIST was published in
2017. EMNIST contains 240,000 training images and 40,000 testing images of
handwritten digits and characters.

Instead of using MNIST in several examples throughout this book, I will focus on a
quantitatively similar but relatively more complex dataset: the Fashion-MNIST dataset,
which was released in 2017 (https://github.com/zalandoresearch/fashion-mnist).
Fashion-MNIST is a dataset of Zalando’s article images consisting of a training set of
60,000 examples and a test set of 10,000 examples. Each example is a 28 × 28 grayscale
image associated with a label from ten classes. The Fashion-MNIST dataset is designed
to serve as a direct drop-in replacement for the original MNIST dataset for bench-
marking machine learning algorithms. It uses the same image size and structure for
training and testing splits.

 Figure 2.3 shows the collection of images for all 10 classes (T-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot) from Fashion-MNIST.
Each class takes up three rows of the screenshot.

 Figure 2.4 provides a closer look at the first few example images in the training
set, together with their corresponding text labels. Next, I discuss the scenario for
the case study.

Each row represents images
for a particular handwritten
digit. For example, the first
row represents images of
the digit 0.

Figure 2.2 A screenshot of some example images for handwritten digits from 0 to 9, with each
row representing images of a particular handwritten digit (Source: Josep Steffan, licensed under
CC BY-SA 4.0)

http://yann.lecun.com/exdb/publis/index.html#lecun-98
https://github.com/zalandoresearch/fashion-mnist

212.2 The Fashion-MNIST dataset
Assume that we’ve downloaded the Fashion-MNIST dataset. The compressed version
should only take 30 MB on disk. Even though the dataset is small, it’s trivial to load the
downloaded dataset into memory at one time by using available implementations. If
we’re using a machine learning framework like TensorFlow, for example, we can
download and load the entire Fashion-MNIST dataset into memory with a couple of
lines of Python code, as shown in the following listing.

Every three rows represent
example images that represent a
class. For example, the top three
rows are images of T-shirts.

Figure 2.3 A screenshot of the collection of images from Fashion-MNIST dataset for all 10 classes:
T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot (Source: Zalando
SE, licensed under MIT License)

Figure 2.4 The first few example images in the training set (Source: Zalando SE, licensed under MIT License)

22 CHAPTER 2 Data ingestion patterns
> import tensorflow as tf
>
> train, test = tf.keras.datasets.fashion_mnist.load_data()

32768/29515 [=================================] - 0s 0us/step
26427392/26421880 [==============================] - 0s 0us/step
8192/5148 [===] - 0s 0us/step
4423680/4422102 [==============================] - 0s 0us/step

Alternatively, if the dataset is already in memory—in the form of NumPy (https://
numpy.org) arrays, for example—we can load the dataset from an in-memory array
representation into formats that the machine learning framework accepts, such as
tf.Tensor objects, which can easily be used for model training later. The following
listing shows an example.

> from tensorflow.data import Dataset
>
> images, labels = train
> images = images/255
>
> dataset = Dataset.from_tensor_slices((images, labels))
> dataset
<TensorSliceDataset shapes: ((28, 28), ()), types: (tf.float64, tf.uint8)>

2.3 Batching pattern
Now that we know what the Fashion-MNIST dataset looks like, let’s examine a poten-
tial problem we might face in a real-world scenario.

2.3.1 The problem: Performing expensive operations for Fashion MNIST
dataset with limited memory

Even though it’s easy to load a small dataset like Fashion-MNIST into memory to pre-
pare for model training, in real-world machine learning applications, this process can
be challenging. The code snippet in listing 2.1, for example, can be used to load the
Fashion-MNIST into memory to prepare for model training in TensorFlow; it embeds
the features and labels arrays in our TensorFlow graph as tf.constant() operations.
This process works well for a small dataset, but it wastes memory because the contents
of the NumPy array will be copied multiple times and can run into the 2 GB limit for
the tf.GraphDef protocol buffer that TensorFlow uses. In real-world applications, the

Listing 2.1 Loading the Fashion-MNIST dataset into memory with TensorFlow

Listing 2.2 Loading the Fashion-MNIST dataset from memory into TensorFlow

Loads the
TensorFlow library

Downloads the
Fashion-MNIST
dataset and
then loads it
into memory

Splits the training
dataset object into
images and labels

Normalizes the images

Loads in-memory
array representation
into a tf.data.Dataset
object that will make
it easier to use for
training in TensorFlow

Inspects the dataset’s information,
such as shapes and data types

https://numpy.org
https://numpy.org
https://numpy.org

232.3 Batching pattern
datasets are much larger, especially in distributed machine learning systems in which
datasets grow over time.

 Figure 2.5 shows a 1.5-GB in-memory NumPy array representation that will be cop-
ied two times with a tf.constant() operation. This operation would result in an out-
of-memory error because the total 3 GB exceeds the maximum size of the tf.Graph-
Def protocol buffer that TensorFlow uses.

Problems like this one happen often in different machine learning or data loading
frameworks. Users may not be using the specific framework in an optimal way, or the
framework may not be able to handle larger datasets.

 In addition, even for small datasets like Fashion-MNIST, we may perform addi-
tional computations before feeding the dataset into the model, which is common in
tasks that require additional transformations and cleaning. For computer vision
tasks, images often need to be resized, normalized, or converted to grayscale, or
they may require even more complex mathematical operations, such as convolution
operations. These operations may require a lot of additional memory space alloca-
tion, but we may not have many computational resources available after we load the
entire dataset into memory.

2.3.2 The solution

Consider the first problem mentioned in section 2.2. We’d like to use TensorFlow’s
from_tensor_slices() API to load the Fashion-MNIST dataset from an in-memory

1.5 GB in-memory
representation
(NumPy array)

3 GB tf.GraphDef

protocol buffer
(out-of-memory

error)

tf.constant() operation

1.5 GB in-memory
representation (copy)

1.5 GB in-memory
representation (copy)

These additional copies would
result in out of memory error
since the total 3 GB hits the
maximum size of tf.GraphDef
protocol buffer that TensorFlow
uses.

The operationtf.constant()

involves making additional
copies of the original in-memory
NumPy representation.

Figure 2.5 An example 1.5-GB in-memory NumPy array representation that hits an out-of-memory error when
being converted to a tf.GraphDef protocol buffer

24 CHAPTER 2 Data ingestion patterns
NumPy array representation to a tf.Dataset object that TensorFlow’s model training
program can use. Because the contents of the NumPy array will be copied multiple
times, however, we can run into the 2 GB limit for the tf.GraphDef protocol buffer. As
a result, we cannot load larger datasets that go beyond this limit.

 It’s not uncommon to see problems like this one for specific frameworks like Ten-
sorFlow. In this case, the solution is simple because we are not making the best use of
TensorFlow. Other APIs allow us to load large datasets without loading the entire data-
set into in-memory representation first.

 TensorFlow’s I/O library, for example, is a collection of filesystems and file formats
that are not available in TensorFlow’s built-in support. We can load datasets like
MNIST from a URL to access the dataset files that are passed directly to the
tfio.IODataset.from_mnist() API call, as shown in the following listing. This ability
is due to the inherent support that TensorFlow (https://github.com/tensorflow/io)
I/O library provides for the HTTP filesystem, eliminating the need to download and
save datasets in a local directory.

> import tensorflow_io as tfio
>
> d_train = tfio.IODataset.from_mnist(
 'http:/ /yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
 'http:/ /yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

For larger datasets that might be stored in distributed file systems or databases,
some APIs can load them without having to download everything at one time, which
could cause memory- or disk-related problems. For demonstration purposes, with-
out going into too many details here, the following listing shows how to load a data-
set from a PostgreSQL database (https://www.postgresql.org). (You’ll need to set up
your own PostgreSQL database and provide the required environment variables to
run this example.)

> import os
> import tensorflow_io as tfio
>
> endpoint="postgresql://{}:{}@{}?port={}&dbname={}".format(
 os.environ['TFIO_DEMO_DATABASE_USER'],
 os.environ['TFIO_DEMO_DATABASE_PASS'],
 os.environ['TFIO_DEMO_DATABASE_HOST'],

Listing 2.3 Loading the MNIST dataset with TensorFlow I/O

Listing 2.4 Loading a dataset from the PostgreSQL database

Loads the TensorFlow
I/O library

Loads the MNIST dataset
from a URL to access
dataset files directly
without downloading via
HTTP filesystem support

Loads Python’s built-in OS library for
loading environment variables related
to the PostgreSQL database Loads the

TensorFlow
I/O library

Constructs the
endpoint for
accessing the
PostgreSQL
database

https://github.com/tensorflow/io
https://www.postgresql.org

252.3 Batching pattern
 os.environ['TFIO_DEMO_DATABASE_PORT'],
 os.environ['TFIO_DEMO_DATABASE_NAME'],
)
>
> dataset = tfio.experimental.IODataset.from_sql(
 query="SELECT co, pt08s1 FROM AirQualityUCI;",
 endpoint=endpoint)
> print(dataset.element_spec)
{
 'co': TensorSpec(shape=(), dtype=tf.float32, name=None),
 'pt08s1': TensorSpec(shape=(), dtype=tf.int32, name=None)
}

Now let’s go back to our scenario. In this case, assume that TensorFlow does not pro-
vide APIs like TensorFlow I/O that can deal with large datasets. Given that we don’t
have too much free memory, we should not load the entire Fashion-MNIST dataset
into memory directly. Let’s assume that the mathematical operations we would like to
perform on the dataset can be performed on subsets of the entire dataset. Then we
can divide the dataset into smaller subsets (mini-batches), load each mini-batch of
example images, perform expensive mathematical operations on each batch, and use
only one mini-batch of images in each model training iteration.

 If the first mini-batch consists of the 19 example images in figure 2.4, we can per-
form convolution or other heavy mathematical operations on those images first and
then send the transformed images to the machine learning model for model training.
We repeat the same process for the remaining mini-batches while continuing model
training in the meantime.

 Because we’ve divided the dataset into many small subsets or mini-batches, we
avoid potential out-of-memory problems when performing the heavy mathematical
operations necessary for achieving an accurate classification model. Then we can
handle even larger datasets by reducing the size of the mini-batches. This approach
is called batching. In data ingestion, batching involves grouping data records from
the entire dataset into batches that will be used to train the machine learning model
sequentially.

 If we have a dataset with 100 records, we can take 50 of the 100 records to form a
batch and then train the model using this batch of records. We repeat this batching
and model training process for the remaining records. In other words, we make two
batches in total; each batch consists of 50 records, and the model we are training con-
sumes the batches one by one. Figure 2.6 illustrates the process of dividing the origi-
nal dataset into two batches. The first batch gets consumed to train the model at time
t0, and the second batch gets consumed at time t1. As a result, we don’t have to load
the entire dataset into memory at one time; instead, we are consuming the dataset
sequentially, batch by batch.

Selects two columns
from the AirQualityUCI
table in the database
and instantiates a
tf.data.Dataset object

Inspects the specification of the dataset, such
as the shape and data type of each column

26 CHAPTER 2 Data ingestion patterns
This batching pattern can be summarized as the pseudocode in the following listing,
where we continuously try to read the next batch from the dataset and train the
model, using the batches until no more are left.

batch = read_next_batch(dataset)
while batch is not None:
 model.train(batch)
 batch = read_next_batch(dataset)

We can apply the batching pattern when we want to handle and prepare large datasets
for model training. When the framework we are using can handle only in-memory
datasets, we can process small batches of the entire large datasets to ensure that each
batch can be handled within limited memory. In addition, if a dataset is divided into
batches, we can perform heavy computations on each batch sequentially without
requiring a huge amount of computational resources. We’ll apply this pattern in sec-
tion 9.1.2.

2.3.3 Discussion

Other considerations need to be taken into account when performing batching. This
approach is feasible only if the mathematical operations or algorithms we are per-
forming can be done on subsets of the entire dataset in a streaming fashion. If an
algorithm requires knowledge of the entire dataset, such as the sum of a particular
feature over the entire dataset, batching would no longer be a feasible approach, as
it’s not possible to obtain this information over a subset of the entire dataset.

 In addition, machine learning researchers and practitioners often try different
machine learning models on the Fashion-MNIST dataset to get a better-performing,
more accurate model. If an algorithm would like to see at least 10 examples for each
class to initialize some of its model parameters, for example, batching is not an

Listing 2.5 Pseudocode for batching

Entire dataset Batching Batch 1 (½
of the original

dataset)

Model fitting at t0 Batch 2 (½
of the original

dataset)

Model fitting at t1
Trained model

The two batches of the dataset are
consumed sequentially for model training.

Figure 2.6 The dataset gets divided into two batches. The first batch gets consumed to train the model at
time t0, and the second batch gets consumed at time t1.

Reads the next batch
in the dataset

Trains the model
with this batch

Reads the next batch after
training the current batch

272.3 Batching pattern
appropriate approach. There is no guarantee that every mini-batch contains at least
10 examples from each class, especially when batch sizes are small. In an extreme case,
the batch size would be 10, and it would be rare to see at least one image from each
class in all batches.

 Another thing to keep in mind is that the batch size of a machine learning model,
especially for deep learning models, depends strongly on allocation of resources, mak-
ing it particularly difficult to decide in advance in shared-resource environments.
Also, the allocation of resources that a machine learning job can use efficiently
depends not only on the structure of the model being trained but also on the batch
size. This codependency between the resources and the batch size creates a complex
web of considerations that a machine learning practitioner must make to configure
their job for efficient execution and resource use.

 Fortunately, algorithms and frameworks are available that eliminate manual tun-
ing of batch size. AdaptDL (https://github.com/petuum/adaptdl), for example,
offers automatic batch-size scaling, enabling efficient distributed training without
requiring any effort to tune the batch size manually. It measures the system perfor-
mance and gradient noise scale during training and adaptively selects the most effi-
cient batch size. Figure 2.7 compares the effects of automatically and manually tuned
batch sizes on the overall training time of the ResNet18 model (https://arxiv.org/
abs/1512.03385).

The batching pattern provides a great way to extract subsets of the entire dataset so
that we can feed the batches sequentially for model training. For extremely large data-
sets that may not fit in a single machine, we’ll need other techniques. The next sec-
tion introduces a new pattern in that addresses the challenges.

2.3.4 Exercises

1 Are we training the model using the batches in parallel or sequentially?
2 If the machine learning framework we are using does not handle large datasets,

can we use the batching pattern?

Figure 2.7 A comparison of
the effect of automatically and
manually tuned batch sizes on
the overall training time of the
ResNet18 model (Source:
Petuum, licensed under
Apache License 2.0)

https://github.com/petuum/adaptdl
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

28 CHAPTER 2 Data ingestion patterns
3 If a machine learning model requires knowing the mean of a feature of the
entire dataset, can we still use the batching pattern?

2.4 Sharding pattern: Splitting extremely large datasets
among multiple machines
Section 2.3 introduced the Fashion-MNIST dataset, the compressed version of which
takes only 30 MB on disk. Even though it is trivial to load the whole dataset into mem-
ory at one time, it’s challenging to load larger datasets for model training.

 The batching pattern covered in section 2.3 addresses the problem by grouping
data records from the entire dataset into batches that will be used to train the
machine learning model sequentially. We can apply the batching pattern when we
want to handle and prepare large datasets for model training, either when the frame-
work we are using cannot handle large datasets or when the underlying implementa-
tion of the framework requires domain expertise.

 Suppose that we have a much larger dataset at hand. This dataset is about 1,000
times bigger than the Fashion-MNIST dataset. In other words, the compressed version
of it takes 30 MB × 1,000 = 30 GB on disk, and it’s about 50 GB when it’s decom-
pressed. This new dataset has 60,000 × 1,000 = 60,000,000 training examples.

 We’ll try to use this larger dataset to train our machine learning model to classify
images into classes in the expanded Fashion-MNIST dataset (T-shirts, bags, and so
on). For now, I won’t address the detailed architecture of the machine learning model
(chapter 3); instead, I’ll focus on its data ingestion component. Assume that we are
allowed to use three machines for any potential speed-ups.

 Given our experience, because the dataset is large, we could try applying the batch-
ing pattern first, dividing the entire dataset into batches small enough to load into
memory for model training. Let’s assume that our laptop has enough resources to
store the entire 50 GB decompressed dataset on disk. We divide the dataset into 10
small batches (5 GB each). With this batching approach, we can handle large datasets
as long as our laptop can store the large datasets and divide them into batches.

 Next, we start the model training process by using the batches of data. In sec-
tion 2.3, we trained the model sequentially. In other words, one batch was completely
consumed by the machine learning model before the next batch was consumed. In
figure 2.8, the second batch is consumed at time t1 by model fitting only after the first
batch has been completely consumed by the model at time t0. t0 and t1 represent two
consecutive time points in this process.

2.4.1 The problem

Unfortunately, this sequential process of consuming data can be slow. If each 5 GB
batch of data takes about 1 hour to complete for the specific model we are training, it
would take 10 hours to finish the model training process on the entire dataset. In
other words, the batching approach may work well if we have enough time to train the
model sequentially, batch by batch. In real-world applications, however, there’s always

292.4 Sharding pattern: Splitting extremely large datasets among multiple machines
demand for more efficient model training, which will be affected by the time spent
ingesting batches of data.

2.4.2 The solution

Now that we understand the slowness of training the model sequentially by using the
batching pattern alone, what can we do to speed up the data ingestion part, which will
greatly affect the model training process? The major problem is that we need to train
the model sequentially, batch by batch. Can we prepare multiple batches and then
send them to the machine learning model for consumption at the same time? Fig-
ure 2.9 shows that the dataset gets divided into two batches, with each batch being
consumed to train the model at the same time. This approach does not work yet, as we
cannot keep the entire dataset (two batches) in memory at the same time, but it is
close to the solution.

Let’s assume that we have multiple worker machines, each of which contains a copy
of the machine learning model. Each copy can consume one batch of the original

Entire dataset Batching Batch 1 (½
of the original

dataset)

Model fitting at t0 Batch 2 (½
of the original

dataset)

Model fitting at t1
Trained model

The two batches of the dataset are getting
consumed sequentially for model training.

Figure 2.8 The dataset gets divided into two batches. The first batch gets consumed to train the model at
time t0, and the second batch gets consumed at time t1.

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0

Trained model

Model fitting at t0

Figure 2.9 The dataset gets divided into two batches; each batch is consumed to train the model
at the same time.

30 CHAPTER 2 Data ingestion patterns
dataset; hence, the worker machines can consume multiple batches independently.
Figure 2.10 shows an architecture diagram of multiple worker machines; each con-
sumes batches independently to train the copy of the model located on it.

You may wonder how multiple model copies would work if they consumed multiple
different batches independently and where we would obtain the final machine learn-
ing model from these model copies. These are great questions. Rest assured that I will
go through how the model training process works in chapter 3. For now, assume that
we have patterns that allow multiple worker machines to consume multiple batches of
datasets independently. These patterns will greatly speed up the model training pro-
cess, which was slowed down due to the nature of sequential model training.

NOTE We will be using a pattern called the collection communication pattern in
chapter 3 to train models with multiple model copies located on multiple
worker machines. The collective communication pattern, for example, will be
responsible for communicating updates of gradient calculations among
worker machines and keeping the model copies in sync.

How would we produce the batches used by those worker machines? In our scenario,
the dataset has 60 million training examples, and three worker machines are avail-
able. It’s simple to split the dataset into multiple non-overlapping subsets and then
send each to the three worker machines, as shown in figure 2.11. The process of
breaking large datasets into smaller chunks spread across multiple machines is called
sharding, and the smaller data chunks are called data shards. Figure 2.11 shows the
original dataset being sharded into multiple non-overlapping data shards and then
consumed by multiple worker machines.

Data batches

Worker 1 Worker 2 Worker 3

Consume data
batch

Consume data
batch

Consume data
batch

Figure 2.10 An architecture diagram of multiple worker machines. Each worker machine consumes
batches independently to train the copy of the model located on it.

312.4 Sharding pattern: Splitting extremely large datasets among multiple machines
NOTE Although I am introducing sharding here, the concept isn’t new; it’s
often used in distributed databases. Sharding in distributed databases is
extremely useful for solving scaling challenges such as providing high avail-
ability of the databases, increasing throughput, and reducing query response
time.

A shard is essentially a horizontal data partition that contains a subset of the entire
dataset, and sharding is also referred to as horizontal partitioning. The distinction
between horizontal and vertical comes from the traditional tabular view of a data-
base. A database can be split vertically—storing different table columns in a separate
database—or horizontally—storing rows of the same table in multiple databases.
Figure 2.12 compares vertical partitioning and horizontal partitioning. Note that for
vertical partitioning, we split the database into columns. Some of the columns may
be empty, which is why we see only three of the five rows in the partition on the right
side of the figure.

 This sharding pattern can be summarized in the pseudocode in listing 2.6, where,
first, we create data shards from one of the worker machines (in this case, worker
machine with rank 0) and then send it to all other worker machines. Next, on each
worker machine, we continuously try to read the next shard locally that will be used to
train the model until no more shards are left locally.

Data shards (non-overlapping)

Worker 1 Worker 2 Worker 3

Consume data
shards

Consume data
shards

Consume data
shards

Entire dataset

Figure 2.11 An architecture diagram in which the original dataset gets sharded into multiple non-
overlapping data shards and then consumed by multiple worker machines

32 CHAPTER 2 Data ingestion patterns
if get_worker_rank() == 0:
 create_and_send_shards(dataset)
shard = read_next_shard_locally()
while shard is not None:
 model.train(shard)
 shard = read_next_shard_locally()

With the help of the sharding pattern, we can split extremely large datasets into multi-
ple data shards that can be spread among multiple worker machines, and then each of
the worker machines is responsible for consuming individual data shards inde-
pendently. As a result, we have just avoided the slowness of sequential model training
due to the batching pattern. Sometimes it’s also useful to shard large datasets into sub-
sets of different sizes so that each shard can run different computational workloads
depending on the amount of computational resource available in each worker
machine. We’ll apply this pattern in section 9.1.2.

2.4.3 Discussion

We have successfully used the sharding pattern to split an extremely large dataset into
multiple data shards that spread among multiple worker machines and then sped up
the training process as we add additional worker machines that are responsible for
model training on each of the data shards independently. This is great, and with this
approach, we can train machine learning models on extremely large datasets.

Listing 2.6 Pseudocode for sharding

Vertical partitioning stores different
table columns in a separate database.

Horizontal partitioning stores rows of
the same table in multiple databases.

Vertical partitioning (column-based) Horizontal partitioning (row-based)

Figure 2.12 Vertical partitioning vs. horizontal partitioning (Source: YugabyteDB, licensed under
Apache License 2.0)

Creates and sends shards to all other worker
machines from the worker machine with rank 0

Reads the next shard
available locally in this
worker machine

Trains the model using the
shard we just read from the
worker machine locally

Reads the next shard once we are
done training with the current shard

332.4 Sharding pattern: Splitting extremely large datasets among multiple machines
 Now here comes the question: What if the dataset is growing continuously and we
need to incorporate the new data that just arrived into the model training process? In
this case, we’ll have to reshard every once in a while if the dataset has been updated to
rebalance each data shard to make sure they are split relatively evenly among the dif-
ferent worker machines.

 In section 2.3.2, we simply divided the dataset into two non-overlapping shards, but
unfortunately in real-world systems, this manual approach is not ideal and may not
work at all. One of the most significant challenges with manual sharding is uneven
shard allocation. The disproportionate distribution of data could cause shards to
become unbalanced, with some overloaded while others remain relatively empty. This
imbalance could cause unexpected hanging of the model training process that
involves multiple worker machines, which we’ll talk about further in the next chapter.
Figure 2.13 is an example where the original dataset gets sharded into multiple imbal-
anced data shards and then consumed by multiple worker machines.

It’s best to avoid having too much data in one individual shard, which could lead to
slowdowns and machine crashes. This problem could also happen when we force the
dataset to be spread across too few shards. This approach is acceptable in develop-
ment and testing environments but not ideal in production.

Data shards (imbalanced)

Worker 1 Worker 2 Worker 3

Consume data
shards

Consume data
shards

Consume data
shards

Entire dataset

Figure 2.13 The original dataset gets sharded into multiple imbalanced data shards and then
consumed by multiple worker machines.

34 CHAPTER 2 Data ingestion patterns
 In addition, when manual sharding is used every time we see an update in the
growing dataset, the operational process is nontrivial. Now we will have to perform
backups for multiple worker machines, and we must carefully coordinate data migra-
tion and schema changes to ensure that all shards have the same schema copy.

 To address that problem, we can apply autosharding based on algorithms instead
of manually sharding datasets. Hash sharding, shown in figure 2.14, takes the key
value of a data shard, which generates a hash value. Then the generated hash value is
used to determine where a subset of the dataset should be located. With a uniform
hashing algorithm, the hash function can distribute data evenly across different
machines, reducing the problems mentioned earlier. In addition, data with shard keys
that are close to one another are unlikely to be placed in the same shard.

The sharding pattern works by splitting extremely large datasets into multiple data
shards spread among multiple worker machines; then each of the worker machines
is responsible for consuming individual data shards independently. With this
approach, we can avoid the slowness of sequential model training due to the batch-
ing pattern. Both the batching and sharding patterns work well for the model training
process; eventually, the dataset will be iterated thoroughly. Some machine learning
algorithms, however, require multiple scans of the dataset, which means that we
might perform batching and sharding twice. The next section introduces a pattern
to speed up this process.

The subsets of the dataset
are located on different
machines of the cluster
based on the generated
hash value.

The hash function takes
the key’s value of a data
shard that would
generate a hash value.

Figure 2.14 A diagram of hash sharding. A hash value is generated to determine where a subset of
the dataset should be located. (Source: YugabyteDB, licensed under Apache License 2.0)

352.5 Caching pattern
2.4.4 Exercises

1 Does the sharding pattern introduced in this section use horizontal partition-
ing or vertical partitioning?

2 Where does the model read each shard from?
3 Is there any alternative to manual sharding?

2.5 Caching pattern
Let’s recap the patterns we’ve learned so far. In section 2.3, we successfully used the
batching pattern to handle and prepare large datasets for model training when the
machine learning framework could not handle large datasets or the underlying imple-
mentation of the framework required domain expertise. With the help of batching,
we can process large datasets and perform expensive operations under limited mem-
ory. In section 2.4, we applied the sharding pattern to split large datasets into multiple
data shards spread among multiple worker machines. We speed up the training pro-
cess as we add more worker machines that are responsible for model training on each
data shard independently. Both of these patterns are great approaches that allow us to
train machine learning models on large datasets that won’t fit on a single machine or
that slows down the model training process.

 One fact that I haven’t mentioned is that modern machine learning algorithms,
such as tree-based algorithms and deep learning algorithms, often require training for
multiple epochs. Each epoch is a full pass-through of all the data we are training on,
when every sample has been seen once. A single epoch refers to the single time the
model sees all examples in the dataset. A single epoch in the Fashion-MNIST dataset
means that the model we are training has processed and consumed all the 60,000
examples once. Figure 2.15 shows model training for multiple epochs.

Training these types of machine learning algorithms usually involves optimizing a
large set of parameters that are heavily interdependent. In fact, it can require a lot of
labeled training examples to get the model close to the optimal solution. This problem

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0, t1, ...

Trained model

Model fitting at t0, t1, ...

Figure 2.15 A diagram of model training for multiple epochs at time t0, t1, and so on

36 CHAPTER 2 Data ingestion patterns
is exacerbated by the stochastic nature of batch gradient descent in deep learning
algorithms, in which the underlying optimization algorithm is data-hungry.

 Unfortunately, the types of multidimensional data that these algorithms require,
such as the data in the Fashion-MNIST dataset, may be expensive to label and take up
large amounts of storage space. As a result, even though we need to feed the model
lots of data, the number of samples available is generally much smaller than the num-
ber of samples that the optimization algorithm needs to reach a good-enough solu-
tion. There may be enough information in these training samples, but the gradient
descent algorithm takes time to extract it.

 Fortunately, we can compensate for the limited number of samples by making mul-
tiple passes over the data. This approach gives the algorithm time to converge without
requiring an impractical amount of data. In other words, we can train a good-enough
model that consumes the training dataset for multiple epochs.

2.5.1 The problem: Re-accessing previously used data for efficient
multi-epoch model training

Now that we know that we can train a machine learning model for multiple epochs on
the training dataset, let’s assume that we want to do this on the Fashion-MNIST data-
set. If training one epoch on the entire training dataset takes 3 hours, we need to dou-
ble the amount of time spent on model training if we want to train two epochs, as
shown in figure 2.16. In real-world machine learning systems, an even larger number
of epochs is often required, so this approach is not efficient.

2.5.2 The solution

Given the unreasonable amount of time needed to train a machine learning model
for multiple epochs, is there anything we can do to speed up the process? There isn’t
anything we can do to improve the process for the first epoch because that epoch is
the first time that the machine learning model sees the entire set of training datasets.

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0 (3 hours),
t1 (3 hours), ...

Trained model

Model fitting at t0 (3 hours),
t1 (3 hours), ...

Figure 2.16 A diagram of model training for multiple epochs at time t0, t1, and so on. We spent 3 hours
on each epoch.

372.5 Caching pattern
What about the second epoch? Can we make use of the fact that the model has already
seen the entire training dataset once?

 Assume that the laptop we are using to train the model has sufficient computa-
tional resources, such as memory and disk space. As soon as the machine learning
model consumes each training example from the entire dataset, we can hold off recy-
cling, instead keeping the consumed training examples in memory. In other words, we
are storing a cache of the training examples in the form of in-memory representation,
which could provide speed-ups when we access it again in the following training epochs.

 In figure 2.17, after we finish fitting the model for the first epoch, we store a cache
for both of the batches that we used for the first epoch of model training. Then we
can start training the model for the second epoch by feeding the stored in-memory
cache to the model directly without having to read from the data source again for
future epochs.

This caching pattern can be summarized as the pseudocode in the following listing. We
read the next batch to train the model and then append this batch to the initialized
cache during the first epoch. For the remaining epochs, we read batches from the
cache and then use those batches for model training.

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0

Trained model

Model fitting at t0

Cache 1 (in-
memory)

Cache 2 (in-
memory)

Model fitting at t1, ...

Model fitting at t1, ...

Figure 2.17 A diagram of model training for multiple epochs at time t0, t1, and so on, using a cache
instead of reading from the data source again

38 CHAPTER 2 Data ingestion patterns
batch = read_next_batch(dataset)
cache = initialize_cache(batch)
while batch is not None:
 model.train(batch)
 cache.append(batch)
 batch = read_next_batch(dataset)
while current_epoch() <= total_epochs:
 batch = cache.read_next_batch()
 model.train(batch)

If we have performed expensive preprocessing steps on the original dataset, we could
cache the processed dataset instead of the original dataset and avoid wasting time by
processing the dataset again. The pseudocode is shown in the following listing.

batch = read_next_batch(dataset)
cache = initialize_cache(preprocess(batch))
while batch is not None:
 batch = preprocess(batch)
 model.train(batch)
 cache.append(batch)
 batch = read_next_batch(dataset)
while current_epoch() <= total_epochs:
 processed_batch = cache.read_next_batch()
 model.train(processed_batch)

Note that listing 2.8 is similar to listing 2.7. Two slight differences are that we initialize
the cache with the preprocessed batch instead of the raw batch, as in listing 2.7, and
we read the processed batch from the batch directly without having to preprocess the
batch again before model training.

 With the help of the caching pattern, we can greatly speed up re-access to the data-
set for a model training process that involves training on the same dataset for multiple
epochs. Caching can also be useful for recovering from any failures quickly; a
machine learning system can easily re-access the cached dataset and continue the rest
of the processes in the pipeline. We’ll apply this pattern in section 9.1.1.

2.5.3 Discussion

We have successfully used the caching pattern to store the cache in memory on each
worker machine, speeding up the process of accessing previously used data for multi-
ple epochs of model training. What if a failure happens on the worker machine? If the
training process gets killed due to an out-of-memory error, for example, we would lose
all the previously stored cache in memory.

Listing 2.7 Pseudocode for caching

Listing 2.8 Pseudocode for caching with preprocessing

Reads the next batch
of the dataset Initializes the

cache for this
batch

Trains the model by iterating
through the batches

Trains the model for additional
epochs, using the batches that
were cached previously

Initializes the
cache with the
preprocessed batch

Retrieves the processed
batch from the cache and
uses it for model training

392.5 Caching pattern
 To avoid losing the previously stored cache, we can write the cache to disk instead
of storing it in memory and persist it as long as the model training process still needs
it. This way, we can easily recover the training process by using a previously stored
cache of training data on disk. Chapter 3 discusses in depth how to recover the train-
ing process or make the training process more tolerant of failure.

 Storing the cache on disk is a good solution. One thing to note, however, that
reading from or writing to memory is about six times faster when we are doing
sequential access but about 100,000 times faster when we are doing random access
rather than accessing from disk. Random-access memory (RAM) takes nanoseconds,
whereas hard drive access speed is measured in milliseconds. In other words, there’s
a tradeoff between storing a cache in memory and storing it on a disk due to the dif-
ference in access speedspeed. Figure 2.18 provides a diagram of model training with
an on-disk cache.

Generally speaking, storing a cache on disk is preferable if we want to build a more reli-
able and fault-tolerant system; storing a cache in memory is preferable when we want to
have more efficient model training and data ingestion processes. An on-disk cache can
be extremely useful when the machine learning system requires reading from remote

Entire dataset Batching

Note that the cache is stored on-
disk and the read/write operations
from it would usually be slower
than from in-memory cache.

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0

Trained model

Model fitting at t0

Write to disk (slow)

Write to disk (slow)

Read from disk (slow)

Read from disk (slow)

Cache 1 (in-
memory)

Cache 2 (in-
memory)

Model fitting at t1, ...

Model fitting at t1, ...

Figure 2.18 A diagram of model training for multiple epochs at time t0, t1, and so on with an on-disk
cache

40 CHAPTER 2 Data ingestion patterns
databases, whereas reading from memory cache is much faster than reading from
remote databases, especially when the network connection isn’t fast and stable enough.

 What if the dataset gets updated and accumulated over time, as in section 2.3.3,
where the data shard on each worker machine needs to be redistributed and bal-
anced? In this case, we should take the freshness of the cache into account and update
it on a schedule based on the specific application.

2.5.4 Exercises

1 Is caching useful for model training that requires training on the same dataset
or on a different dataset for multiple epochs?

2 What should we store in the cache if the dataset needs to be preprocessed?
3 Is an on-disk cache faster to access than an in-memory cache?

2.6 Answers to exercises

Section 2.3.4

1 Sequentially
2 Yes. That’s one of the main use cases of batching.
3 No

Section 2.4.4

1 Horizontal partitioning
2 Locally on each worker machine
3 Automatic sharding, such as hash sharding

Section 2.5.4

1 Same dataset
2 We should store the preprocessed batches in the cache to avoid wasting time on

preprocessing again in the following epochs.
3 No. Generally, an in-memory cache is faster to access.

Summary
 Data ingestion is usually the beginning process of a machine learning system,

responsible for monitoring any incoming data and performing necessary pro-
cessing steps to prepare for model training.

 The batching pattern helps handle large datasets in memory by consuming
datasets in small batches.

 The sharding pattern prepares extremely large datasets as smaller chunks that
are located on different machines.

 The caching pattern makes data fetching for multiple training rounds more
efficient by caching previously accessed data that can be reused for the addi-
tional rounds of model training on the same dataset.

Distributed
training patterns
The previous chapter introduced a couple of practical patterns that can be incor-
porated into the data ingestion process, which is usually the beginning process in a
distributed machine learning system that’s responsible for monitoring any incom-
ing data and performing necessary preprocessing steps to prepare model training.

 Distributed training, the next step after the data ingestion process, is what dis-
tinguishes distributed machine learning systems from other distributed systems. It’s
the most critical part of a distributed machine learning system.

 The system design needs to be scalable and reliable to handle datasets and mod-
els of different sizes and various levels of complexity. Some large and complex

This chapter covers
 Distinguishing the traditional model training

process from the distributed training process

 Using parameter servers to build models that
cannot fit in a single machine

 Improving distributed model training performance
using the collective communication pattern

 Handling unexpected failures during the
distributed model training process
41

42 CHAPTER 3 Distributed training patterns
models cannot fit in a single machine, and some medium-size models that are small
enough to fit in single machines struggle to improve the computational performance
of distributed training.

 It’s also essential to know what to do when we see performance bottlenecks and
unexpected failures. Parts of the dataset may be corrupted or cannot be used to train
the model successfully, or the distributed cluster that the distributed training depends
on may experience an unstable or even disconnected network due to weather condi-
tions or human error.

 In this chapter, I’ll explore some of the challenges involved in the distributed
training process and introduce a few established patterns adopted heavily in indus-
tries. Section 3.2 discusses challenges in training large machine learning models that
tag main themes in new YouTube videos but cannot fit in a single machine; it also
shows how to overcome the difficulty using the parameter server pattern. Section 3.3
shows how to use the collective communication pattern to speed up distributed train-
ing for smaller models and avoid unnecessary communication overhead among
parameter servers and workers. The last section discusses some of the vulnerabilities
of distributed machine learning systems due to corrupted datasets, unstable networks,
and preemptive worker machines, as well as ways to address those problems.

3.1 What is distributed training?
Distributed training is the process of taking the data that has already been processed by
data ingestion (discussed in chapter 2), initializing the machine learning model, and
then training the model with the processed data in a distributed environment such as
multiple nodes. It’s easy to get this process confused with the traditional training pro-
cess of machine learning models, which takes place in a single-node environment
where the datasets and the machine learning model objects are on the same machine,
such as a laptop. By contrast, distributed model training usually happens in a cluster
of machines that could work concurrently to greatly speed up the training process.

 In addition, the dataset is often located on the local disk of a single laptop or
machine in traditional model training, whereas in distributed model training, a
remote distributed database is used to store the dataset, or the dataset has to be parti-
tioned on disks of multiple machines. If the model is not small enough to fit on a sin-
gle machine, it’s not possible to train the model in a traditional way with a single
machine. From a network infrastructure perspective, an InfiniBand (https://wiki
.archlinux.org/title/InfiniBand) or remote direct memory access (RDMA; https://
www.geeksforgeeks.org/remote-direct-memory-access-rdma/) network is often pre-
ferred for distributed training instead of a single local host. Table 3.1 provides a com-
parison of these training methods.

https://wiki.archlinux.org/title/InfiniBand
https://wiki.archlinux.org/title/InfiniBand
https://wiki.archlinux.org/title/InfiniBand
https://www.geeksforgeeks.org/remote-direct-memory-access-rdma/
https://www.geeksforgeeks.org/remote-direct-memory-access-rdma/
https://www.geeksforgeeks.org/remote-direct-memory-access-rdma/

433.2 Parameter server pattern: Tagging entities in 8 million YouTube videos
3.2 Parameter server pattern: Tagging entities in 8 million
YouTube videos
Suppose that we have a dataset called YouTube-8M (http://research.google.com/
youtube8m; figure 3.1) that consists of millions of YouTube video IDs, with high-quality
machine-generated annotations from a diverse vocabulary of more than 3,800 visual
entities (such as Food, Car, and Music). We’d like to train a machine learning model
to tag the main themes of YouTube videos that the model hasn’t seen.

 This dataset consists of both coarse and fine-grained entities. Coarse entities are the
ones nondomain experts can recognize after studying some existing examples, and
fine-grained entities can be identified by domain experts who know how to differentiate
among extremely similar entities. These entities have been semiautomatically curated
and manually verified by three raters to be visually recognizable. Each entity has at
least 200 corresponding video examples, with an average 3,552 training videos. When
the raters identify the entities in the videos, they are given a guideline to assess how
specific and visually recognizable each entity is, using a discrete scale from 1 to 5,
where 1 represents an entity that a layperson can easily identify (figure 3.2).

 In the online dataset explorer provided by YouTube-8M (http://research.goo-
gle.com/youtube8m/explore.html), the list of entities appears on the left side, and

Table 3.1 Comparison of traditional (nondistributed) training and distributed training for machine
learning models

Traditional model training Distributed model training

Computational resources Laptop or single remote server Cluster of machines

Dataset location Local disk on a single laptop or
machine

Remote distributed database or par-
titions on disks of multiple machines

Network infrastructure Local hosts InfiniBand or RDMA

Model size Small enough to fit on a single
machine

Medium to large

InfiniBand and RDMA
InfiniBand is a computer networking communications standard used in high-perfor-
mance computing. It features high throughput and low latency for data interconnect-
ing both among and within computers or storage systems, which is often required for
distributed training.

RDMA provides direct access from the memory of multiple machines without involving
any machine’s operating system. This standard permits high-throughput, low-latency
networking—especially useful in the distributed training process, in which communi-
cations among machines are frequent.

http://research.google.com/youtube8m
http://research.google.com/youtube8m
http://research.google.com/youtube8m
http://research.google.com/youtube8m/explore.html
http://research.google.com/youtube8m/explore.html

44 CHAPTER 3 Distributed training patterns
the number of videos that belong to each entity appears next to the entity name (fig-
ure 3.3).

 Note that in the dataset explorer, the entities are ordered by the number of videos
in each entity. In figure 3.3, the three most popular entities are Games, Video game,

Figure 3.1 The website that hosts the YouTube-8M dataset, featuring millions of YouTube videos from a diverse
vocabulary of more than 3,800 visual entities (Source: Sudheendra Vijayanarasimhan et al. Licensed under
Nonexclusive License 1.0)

Raters are given the
question to assess how
specific and visually
recognizable each entity is.

The description of an entity
that would give the reader
a sense of how the entity
looks like.

Figure 3.2 A screenshot of a question and guideline displayed to human raters for identifying the entities in
the YouTube videos to assess how visually recognizable each entity is (Source: Sudheendra Vijayanarasimhan
et al. Licensed under Nonexclusive License 1.0)

453.2 Parameter server pattern: Tagging entities in 8 million YouTube videos
and Vehicle, respectively, ranging from 415,890 to 788,288 training examples. The
least popular entities (not shown in the figure) are Cylinder and Mortar, with 123 and
127 training videos, respectively.

3.2.1 The problem

With this dataset, we’d like to train a machine learning model to tag the main themes
of new YouTube videos that the model hasn’t seen. This task may be trivial for a sim-
pler dataset and machine learning model, but that’s certainly not the case for the You-
Tube-8M dataset. This dataset comes with precomputed audiovisual features from
billions of frames and audio segments, so we don’t have to calculate and obtain them
on our own—tasks that often take a long time and require a large amount of computa-
tional resources.

 Even though it is possible to train a strong baseline model on this dataset in less
than a day on a single GPU, the dataset’s scale and diversity can enable deep explora-
tion of complex audiovisual models that can take weeks to train. Is there any solution
for training this potentially large model efficiently?

3.2.2 The solution

First, let’s take a look at some of the entities using the data explorer on the YouTube-
8M website and see whether any relationships exist among the entities. Are these enti-
ties unrelated, for example, or do they have some level of overlap in content? After
some exploration, we will make necessary adjustments to the model to take those rela-
tionships into account.

 Figure 3.4 shows a list of YouTube videos that belong to the Pet entity. In the third
video of the first row, a child is playing with a dog.

Different entities are
listed here and they are
ordered by the number
of videos in each entity.
For example, the entity
Games is the most
popular entity in this
dataset.

Figure 3.3 A screenshot of the dataset explorer provided by the YouTube-8M website, ordering the entities
by number of videos (Source: Sudheendra Vijayanarasimhan et al. Licensed under Nonexclusive License 1.0)

46 CHAPTER 3 Distributed training patterns
Let’s a look a similar entity. Figure 3.5 shows a list of YouTube videos that belong to
the Animal entity, in which we can see animals such as fish, horses, and pandas. Inter-
estingly, a cat is getting cleaned by a vacuum in the third video of the fifth row. One

The entity Pet has
been selected here.

For example, here’s a video
in this entity where a kid is
playing with a dog.

Figure 3.4 Example videos that belong to the Pet entity (Source: Sudheendra Vijayanarasimhan et al. Licensed
under Nonexclusive License 1.0)

Here we’ve selected the
Animal entity to see a list
of videos with animals.

Figure 3.5 Example videos that belong to the Animal entity (Source: Sudheendra Vijayanarasimhan et al.
Licensed under Nonexclusive License 1.0)

473.2 Parameter server pattern: Tagging entities in 8 million YouTube videos
might guess that this video is in the Pet entity as well because a cat can be a pet if it’s
adopted by human beings.

 If we’d like to build machine learning models for this dataset, we may need to do
some additional feature engineering before fitting the model directly to the dataset.
We might combine the audiovisual features of these two entities (Animal and Pet)
into a derived feature because they provide similar information and overlap, which
can boost the model’s performance depending on the specific machine learning
model we selected. If we continue exploring the combinations of the existing audiovi-
sual features in the entities or perform a huge number of feature engineering steps,
we may no longer be able to train a machine learning model on this dataset in less
than a day on a single GPU.

 If we are using a deep learning model instead of a traditional machine learning
model that requires a lot of feature engineering and exploration of the dataset, the
model itself learns the underlying relationships among features, such as audiovisual
features of similar entities. Each neural network layer in the model architecture con-
sists of vectors of weights and biases representing a trained neural network layer that
gets updated over training iterations as the model gathers more knowledge from
the dataset.

 If we use only 10 of the 3,862 entities, we could build a LeNet model (figure 3.6)
that classifies new YouTube videos into 1 of the 10 selected entities. At a high level,
LeNet consists of a convolutional encoder consisting of two convolutional layers and a
dense block consisting of three fully connected layers. For simplicity, we assume that
each individual frame from the videos is a 28 × 28 image and that it will be processed
by various convolution and pooling layers that learn the underlying feature mapping
between the audiovisual features and the entities.

In fact, those learned feature maps contain parameters that are related to the model.
These parameters are numeric vectors that are used as weights and biases for this layer
of model representation. For each training iteration, the model takes every frame in
the YouTube videos as features, calculates the loss, and then updates those model
parameters to optimize the model’s objective so that the relationships between fea-
tures and the entities can be modeled more closely.

Brief history of LeNet
LeNet (https://en.wikipedia.org/wiki/LeNet) is one of the first published convolu-
tional neural networks (CNNs; https://en.wikipedia.org/wiki/Convolutional_neural_
network) to capture wide attention for its performance on computer vision tasks. It
was introduced by Yann LeCun, a researcher at AT&T Bell Labs, to recognize hand-
written digits in images. In 1989, LeCun published the first study that successfully
trained CNNs via backpropagation after a decade of research and development.

At that time, LeNet achieved outstanding results matching the performance of support
vector machines, the dominant approach in supervised machine learning algorithms.

https://en.wikipedia.org/wiki/LeNet
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

48 CHAPTER 3 Distributed training patterns
Unfortunately, this training process is slow, as it involves updating all the parameters
in different layers. We have two potential solutions to speed up the training process.

 Let’s take a look at the first approach. We want to make an assumption here, and
we’ll remove it later when we discuss a better approach. Let’s assume that the model is
not too large and we can fit the entire model using existing resources without any pos-
sibility of out-of-memory or disk errors.

 In this case, we can use one dedicated server to store all the LeNet model parame-
ters and use multiple worker machines to split the computational workloads. Figure 3.7
shows an architecture diagram.

 Each worker node takes a particular part of the dataset to calculate the gradients
and then sends the results to the dedicated server to update the LeNet model param-
eters. Because the worker nodes use isolated computational resources, they can per-
form the heavy computations asynchronously without having to communicate.
Therefore, we’ve achieved around a triple speedup simply by introducing additional
worker nodes if costs such as message passing among nodes are neglected.

 This dedicated single server responsible for storing and updating the model
parameters is called a parameter server. We’ve designed a more efficient distributed
machine learning training system by incorporating the parameter server pattern.

 Next comes the real-world challenge. Deep learning models often get complex;
additional layers with custom structures can be added on top of a baseline model.
Those complex models usually take up a lot of disk space due to the large number of
model parameters in those additional layers. A lot of computational resources are

The original image that
represents a single frame
of the YouTube video.

The original image is processed by various convolution and
pooling layers that learns the underlying feature mapping.

28x28 image 6@28x28
C1 feature map

6@14x14
S2 feature map

16@10x10
C3 feature map

16@5x5
S4 feature map

Dense

10
-O

ut

8
4

 -
 F

6
 f
u

ll

1
2

0
 -

 F
5

 f
u

ll

Dense

DensePooling

Pooling

ConvolutionConvolution

Figure 3.6 LeNet model architecture that could be used to classify new YouTube videos in 1 of 10 selected
entities. (Source: Aston Zhang et al. Licensed under Creative Commons Attribution-ShareAlike 4.0 International
Public License)

493.2 Parameter server pattern: Tagging entities in 8 million YouTube videos
required to meet the memory footprint requirement for successful training. What if the
model is large, and we cannot fit all of its parameters on a single parameter server?

 A second solution could address the challenges in this situation. We can introduce
additional parameter servers, each responsible for storing and updating a particular
model partition. Each worker node is responsible for taking a particular part of the data-
set to update the model parameters in a model partition.

 Figure 3.8 shows an architecture diagram of this pattern using multiple parameter
servers. This diagram is different from figure 3.7, in which a single server stores all the

Single server

Worker node Worker node Worker node

LeNet Model

Figure 3.7 A machine learning training component with a single parameter server

Parameter server

Worker node

Push updates Pull updates Push updates Pull updates Push updates Pull updates

Worker node Worker node

Figure 3.8 A machine learning training component with multiple parameter servers

50 CHAPTER 3 Distributed training patterns
LeNet model parameters and use worker machines split the computational workloads.
Each worker node takes a subset of the dataset, performs the calculations required in
each neural network layer, and then sends the calculated gradients to update one
model partition that’s stored in one of the parameter servers. Note that because all
workers perform calculations in an asynchronous fashion, the model partitions that
each worker node uses to calculate the gradients may not be up to date. To guarantee
that the model partitions each worker node is using or each parameter server is stor-
ing are the most recent ones, we constantly have to pull and push updates of the
model among the worker nodes.

 With the help of parameter servers, we could effectively resolve the challenges of
building a machine learning model to tag the main themes of new YouTube videos
that the model hasn’t seen. Figure 3.9 shows a list of YouTube videos that are not used
for model training, tagged with the Aircraft theme by the trained machine learning
model. Even when the model is too large to fit on a single machine, we could train the
model efficiently. Note that although the parameter server pattern would be useful in
this scenario, it is specially designed to train models with a lot of parameters.

3.2.3 Discussion

The previous section introduced the parameter server pattern and showed how it can
be used to address potential challenges in the YouTube-8M video identification appli-

Figure 3.9 A list of new YouTube videos not used for model training, tagged with the Aircraft theme
(Source: Sudheendra Vijayanarasimhan et al. Licensed under Nonexclusive License 1.0)

513.3 Collective communication pattern
cation. Even though the parameter server pattern is useful when the model is too large
to fit on a single machine and even though the patterns seem like a straightforward
approach to the challenge, in real-world applications, we still have to make decisions
to make the distributed training system efficient.

 Machine learning researchers and DevOps engineers often struggle to figure out a
good ratio between the number of parameter servers and the number of workers for
different machine learning applications. There are nontrivial communication costs to
send the calculated gradients from workers to parameter servers, as well as costs for
pulling and pushing the updates of the most recent model partitions. If we find that
the model is getting larger and adds too many parameter servers to the system, the sys-
tem will end up spending a lot of time communicating among nodes and a small
amount of time making the computations among neural network layers.

 Section 3.3 discusses these practical challenges in more detail. The section intro-
duces a pattern that addresses these challenges so that engineers no longer need to
spend time tuning the performance of workers and parameter servers for different
types of models.

3.2.4 Exercises

1 If we’d like to train a model with multiple CPUs or GPUs on a single laptop, is
this process considered distributed training?

2 What’s the result of increasing the number of workers or parameter servers?
3 What types of computational resources (such as CPUs, GPUs, memory, or disk)

should we allocate to parameter servers, and how much of those types of
resources should we allocate?

3.3 Collective communication pattern
Section 3.2.2 introduced the parameter server pattern, which comes in handy when
the model is too large to fit in a single machine, such as the one we would have to
build to tag entities in 8 million YouTube videos. Although we could use parameter
servers to handle extremely large and complex models with a large number of param-
eters, it’s nontrivial to incorporate the pattern into the design of an efficient distrib-
uted training system.

 Section 3.2.3 stated that DevOps engineers, who support the distributed machine
learning infrastructure for data scientists or analysts, often have a hard time figuring
out a good ratio between the number of parameter servers and the number of work-
ers for different machine learning applications. Suppose that there are three parame-
ter servers and three workers in the model training component of our machine
learning system, as shown in figure 3.10. All three workers perform intensive compu-
tations asynchronously and then send the calculated gradients to the parameter serv-
ers to update different partitions of the model’s parameters.

52 CHAPTER 3 Distributed training patterns
In reality, worker nodes and parameter servers do not provide one-on-one mapping,
particularly if the number of worker nodes is different from the number of parameter
servers. In other words, multiple workers may send updates to the same subset of
parameter servers. Now suppose that two workers have finished calculating the gradi-
ents at the same time, and they both want to update the model parameters stored on
the same parameter server (figure 3.11).

Worker node

Push updates Pull updates Push updates

PS #1 PS #2 PS #3

Pull updates Push updates Pull updates

Worker node Worker node

Figure 3.10 A distributed model training component that consists of three parameter servers and three
worker nodes

Worker node

Push updates
at time t0

Push updates
at time t0

Which one of
them can be
accepted?

PS 1 PS 2 PS 3

Push updates

Worker node Worker node

Figure 3.11 Two of the worker nodes have finished calculating gradients and want to push updates to the first
parameter server at the same time.

533.3 Collective communication pattern
As a result, the two workers are blocking each other from sending the gradients to the
parameter server. In other words, the gradients from both worker nodes cannot be
accepted by the same parameter server simultaneously.

3.3.1 The problem: Improving performance when parameter servers
become a bottleneck

In this case, only two workers are blocking each other when sending gradients to the
same parameter server, which makes it hard to gather the calculated gradients on time
and which requires a strategy to resolve the blocking problem. Unfortunately, in real-
world distributed training systems that incorporate parameter servers, multiple work-
ers may be sending the gradients at the same time; thus, we must resolve many com-
munications blocks.

 When the ratio between the number of workers and the number of parameter
servers is not optimal, for example, many workers are sending gradients to the same
parameter server at the same time. The problem gets even worse, and eventually, the
blocking of communications among different workers or parameter servers becomes a
bottleneck. Is there a way to prevent this problem?

3.3.2 The solution

In this situation, the two workers need to figure out an approach to continue. They
have to reconcile, decide which worker will take the next step first, and then take
turns sending the calculated gradients to that particular parameter server. In addition,
when one worker finishes sending gradients to update the model parameters on that
parameter server, the parameter server starts sending the updated model partition
back to that worker. Thus, the worker has the most up-to-date model to be fine-tuned
as it’s fed incoming data. If, at the same time, another worker is also sending calcu-
lated gradients to that parameter server, as shown in figure 3.12, another blocking
communication occurs, and the workers need to reconcile again.

 This time, unfortunately, the reconciliation may not be easy to resolve, as the
worker that is trying to send the calculated gradients may not have used the latest
model when calculating the gradients. This situation may be fine when the differences
among model versions are small, but eventually, it may cause a huge difference in the
statistical performance of the trained model.

 If each parameter server stores different model partitions unevenly—perhaps
the first parameter server stores two-thirds of the model parameters, as shown in
figure 3.13—calculated gradients using this outdated model partition will have a
huge effect on the final trained model. In such cases, we may want to drop the cal-
culated gradients and let the other worker send the updated gradients to the parame-
ter servers.

 Now another challenge arises. What if the dropped gradients that we consider
to be outdated were calculated from a larger portion of the entire training data,
and it could take a long time to recalculate them using the latest model partition

54 CHAPTER 3 Distributed training patterns
(figure 3.14)? In this case, we probably want to keep those gradients so we don’t waste
too much time recalculating them.

 In real-world distributed machine learning systems with parameter servers, we may
encounter many challenges and problems that cannot be resolved completely. When

Worker node

Push updates
at time t0

Push updates
at time t1

Pull updates at
time t1

PS 1 PS 2 PS 3

Push updates

Worker node
Model is from
time t0 (outdated).

Worker node

Figure 3.12 One worker is pulling updates while another worker is pushing updates to the same parameter
server.

Worker node

Push updates
at time t0

Push updates
at time t1

Pull updates at
time t1

PS 1 with ⅔ of model

parameters
PS 2 PS 3

Push updates

Worker node
Model is from
time t0 (outdated).

Worker node

Figure 3.13 An example of imbalanced model partitions in which the first parameter server contains two-
thirds of the entire set of model parameters.

553.3 Collective communication pattern
those situations happen, we have to consider reconciliation and tradeoff approaches.
As the numbers of workers and parameter servers increase, the cost of reconciliation
and communication required to pull and push model parameters among workers and
parameter servers becomes nontrivial. The system will end up spending a lot of time
communicating between nodes and a small amount of making computations among
neural network layers.

 Even though we may have a lot of experience with the tradeoffs and performance
differences involved in applying different ratios and computational resources for
parameter servers and workers to our system, it still seems counterintuitive and time-
consuming to tune toward a perfect system. In some circumstances, some of the workers
or parameters fail during training, or the network becomes unstable, causing problems
when nodes are communicating with push and pull updates. In other words, the param-
eter server pattern may not be suitable for a particular use case due to our lack of exper-
tise or available time to work with the underlying distributed infrastructure.

 Is there any alternative to this problem? The parameter server pattern may be one
of the few good options for large models, but for simplicity and demonstration pur-
poses, let’s assume that the model size does not change. The whole model is small
enough to fit on a single machine. In other words, each machine has enough disk
space to store the model.

Worker node

Push updates
at time t0

Push updates
at time t1

Pull updates at
time t1

PS 1 PS 2 PS 3

Push updates

Worker node
Model is from
time t0 (outdated).

Worker node

¼ training data ¼ training data ¼ training data

Figure 3.14 The second worker is trying to push gradients calculated from half of the training data.

56 CHAPTER 3 Distributed training patterns
 With that assumption in mind, what would be an alternative to parameter servers if
we want only to improve the performance of distributed training? Without parameter
servers, we have only worker nodes, each of which node stores a copy of the entire set
of model parameters, as shown in figure 3.15.

How do we perform model training in this case? Recall that every worker consumes
some portions of data and calculates the gradients required to update the model
parameters stored locally on this worker node. When all the worker nodes have suc-
cessfully completed their calculations of gradients, we need to aggregate all the gradi-
ents and make sure that every worker’s entire set of model parameters is updated
based on the aggregated gradients. In other words, each worker should store a copy of
the same updated model. How do we aggregate all the gradients?

 We are already familiar with the process for sending gradients from one node to
another, such as sending the calculated gradients from a worker node to a parame-
ter server to update the model parameters in a particular model partition. In gen-
eral, that process is called point-to-point communication (figure 3.16). No other process
is involved.

Each of these workers contains a copy of the entire set of model
parameters and consumes partitions of data to calculate the gradients.

Data partitions

Worker 1 Worker 2 Worker 3

Consumes data
partition

Consumes data
partition

Consumes data
partition

Figure 3.15 A distributed model training component with only worker nodes. Every worker stores a
copy of the entire set of model parameters and consumes partitions of data to calculate the gradients.

Data transfers between
the two processesProcess

1

Process

2

Figure 3.16 An example of point-to-point
communication with data being transferred
between two processes. Note that no other
process is involved.

573.3 Collective communication pattern
In this situation, point-to-point communication is somewhat inefficient. Only worker
nodes are involved, and we need to perform some kind of aggregation on the results
from all workers. Fortunately, we can use another type of communication. Collective
communication allows communication patterns across all processes in a group, which is
composed of a subset of all processes. Figure 3.17 illustrates collective communication
between one process and a group that consists of three other processes. In this case,
each worker node carries the gradients and wants to send them to a group, includ-
ing the rest of the worker nodes, so that all worker nodes will obtain the results from
every worker.

For our machine learning models, we usually perform some kind of aggregate opera-
tion on all the received gradients before sending the aggregated result to all the work-
ers. This type of aggregation is called a reduce function, which involves making a set of
numbers into a smaller set of numbers. Examples of reduce functions are finding the
sum, maximum, minimum, or average of the set of numbers—in our case, the gradi-
ents we received from all the workers.

 Figure 3.18 illustrates a reduce operation. Vectors v0, v1, and v2 in each of the pro-
cesses in the process group are merged with the first process via a reduce operation.

 When the gradients are reduced in a distributed fashion, we send the reduced gra-
dients to all the workers so that they are on the same page and can update the model
parameters in the same way, ensuring that they have exactly the same models. This
kind of operation is called a broadcast operation and is often used to perform collec-
tive communications. Figure 3.19 illustrates a broadcast operation that sends a value
to every process in the process group.

 The combination of reduce and broadcast operations here is called allreduce,
which reduces the results based on a specified reduce function and then distributes

Process

1

Process

3

Process

4

Process

2

Group

Data transfer

Data transfer

Data transfer

Figure 3.17 An example of collective
communication between one process
and a group that consists of three
other processes

58 CHAPTER 3 Distributed training patterns
the reduced results to all processes—in our case, to all the workers so that the model
stored on each worker is exactly the same and is up to date (figure 3.20). When we fin-
ish a round of an allreduce operation, we start the next round by feeding new data to
the updated model, calculating gradients, and performing the allreduce operation
again to gather all gradients from workers to update the model.

 Let’s take a break to see what we’ve accomplished. We’ve successfully used the col-
lective communication pattern, which takes advantage of the underlying network
infrastructure, to perform allreduce operations for communicating gradients among
multiple workers and allows us to train a medium-sized machine learning model in a
distributed fashion. As a result, we no longer need parameter servers; thus, there is no

Process

1

Process

3

Process

4

Process

2

Group

Data transfer

Data transfer

Data transfer

[v0]

[v1]

[v2]

[v0, v1, v2]

Figure 3.18 An example of a
reduce operation with the sum
as the reduce function

Process

1

Process

3

Process

4

Process

2

Group

Data transfer

Data transfer

Data transfer

[v0]

[v0]

[v0]

[v0]

Figure 3.19 An example of a
broadcast operation that sends
a value to every process in the
process group

593.3 Collective communication pattern
communication overhead between parameter servers and workers. The collective
communication pattern is useful in machine learning systems and also in distributed
and parallel computing systems, where concurrency is applied to computations and
communication primitives such as broadcast and reduce are critical for communicat-
ing among different nodes. We’ll apply this pattern in section 9.2.2.

3.3.3 Discussion

The collective communication pattern is a great alternative to parameter servers when
the machine learning model we are building is not too large. As a result, there is no
communication overhead among parameter servers and workers, and it’s no longer
necessary to spend a lot of effort on tuning the ratio between the number of workers
and parameter servers. In other words, we can easily add workers to speed up the
model training process without worrying about performance regression.

 One potential problem is worth mentioning, though. After we incorporate the col-
lective communication pattern by applying the allreduce operation, each worker will
need to communicate with all its peer workers, which may slow down the entire train-
ing process if the number of workers becomes large. Actually, collective communica-
tions rely on communication over the network infrastructure, and we still haven’t fully
used all the benefits of that yet in the allreduce operation.

 Fortunately, we could use better collective communication algorithms to update
the model more efficiently. One example is the ring-allreduce algorithm. The process is
similar to that of the allreduce operation, but the data is transferred in ringlike fash-
ion without the reduce operation. Each N worker needs to communicate with only

Process

3

Process

4

Process

2

Group

[v0, v1, v2]

[v0, v1, v2]

[v0, v1, v2]

Process

3

Process

4

Process

2

Group

[v0]

[v1]

[v2]

Figure 3.20 An example of an allreduce operation that reduces the results
on each process in the group and then sends the result to every process in
the group

60 CHAPTER 3 Distributed training patterns
two of its peer workers 2 * (N – 1) times to update all the model parameters com-
pletely. In other words, this algorithm is bandwidth-optimal; if the aggregated gradi-
ents are large enough, it will optimally use the underlying network infrastructure.

 Both the parameter server pattern and the collective communication pattern
make distributed training scalable and efficient. In practice, however, any of the work-
ers or parameter servers may not start due to a lack of resources and may fail in the
middle of distributed training. Section 3.4 introduces patterns that will help in those
situations and make the entire distributed training process more reliable.

3.3.4 Exercises

1 Do blocking communications happen only among the workers?
2 Do workers update the model parameters stored on them asynchronously or

synchronously?
3 Can you represent an allreduce operation with a composition of other collec-

tive communication operations?

3.4 Elasticity and fault-tolerance pattern
Both the parameter server pattern and the collective communication pattern enable
us to scale up the distributed model training process. Parameter servers can be useful
for handling large models that don’t fit on a single machine; a large model can be par-
titioned and stored on multiple parameter servers, while individual workers can per-
form heavy computations and update each individual partition of model parameters
asynchronously. When we observe too much communication overhead when using
parameter servers, however, we can use the collective communication pattern to speed
up the training process for medium-size models.

 Let’s assume that our distributed training component is well designed; can train
machine learning models efficiently; and can handle the requirements of different
types of models, using patterns such as parameter server and collective communica-
tion. One thing worth mentioning is that distributed model training is a long-running
task, usually persisting for hours, days, or even weeks. Like all other types of software
and systems, this long-running task is vulnerable to unexpected intervention. Because
model training is a long-running process, it may be affected by internal or external
intervention at any minute. Following are some examples of interventions that often
occur in a distributed model training system:

 Parts of the dataset are corrupted or cannot be used to train the model
successfully.

 The distributed cluster that the distributed training model depends on may
experience an unstable or disconnected network due to weather conditions or
human error.

 Some of the parameter servers or worker nodes are preempted; the computa-
tional resources they rely on are rescheduled for tasks and nodes that have
higher priority.

613.4 Elasticity and fault-tolerance pattern
3.4.1 The problem: Handling unexpected failures when training
with limited computational resources

When unexpected interventions happen, if no actions are taken to address them,
problems start to accumulate. In the first example in the preceding section, all work-
ers use the same logic to consume the data to fit the model; when they see corrupted
data that the training code is not able to handle, all of them fail eventually. In the sec-
ond example, when the network becomes unstable, communications among parame-
ter servers and workers will hang until the network recovers. In the third example,
when the parameter servers or worker nodes are preempted, the entire training pro-
cess is forced to stop, leading to unrecoverable failure. What should we do to help the
distributed training system recover in those situations? Do we have a way to prevent
unexpected failures?

3.4.2 The solution

Let’s take a look at the first situation. Assume that the training process encounters a
batch of data that’s corrupted. In figure 3.21, some of the videos in the YouTube-8M
dataset were accidentally modified by third-party video editing software after they
were downloaded from the original source. The first worker node is trying to read

Worker node

Exception:
Unable to read

the data

Push updates Push updatesPull updates Pull updates Pull updates

PS 1 PS 2 PS 3

Push updates

Worker node

Video data
being edited

Worker node

⅓ training data
(corrupted)

⅓ training data ⅓ training data

Figure 3.21 A worker encounters new batches of training data that’s being edited and cannot be consumed
successfully.

62 CHAPTER 3 Distributed training patterns
those portions of the data to feed the model. The machine learning model object that
was initialized earlier cannot be fed with the edited and incompatible video data.

 When this situation happens, the training process encounters an unexpected fail-
ure: the existing code does not contain the logic to handle an edited or corrupted
dataset. In other words, we need to modify the distributed model training logic to
handle this situation and then retrain the model from scratch.

 Let’s start the distributed training process again and see whether everything works
well. We can skip the batches of data that we found to be corrupted and continue to
train the machine learning model with the next batches of the remaining data.

 Unfortunately, after the model has been trained for hours with half of the data, we
realize that the new batches of data are being consumed much more slowly than
before. After some digging and communicating with the DevOps team, we found that
the network has become extremely unstable due to an incoming storm at one of our
data centers—the second scenario mentioned earlier. If our dataset is residing on a
remote machine instead of having been downloaded to a local machine, as shown in
figure 3.22, the training process would be stuck waiting for a successful connection
with the remote database. While waiting, we should checkpoint (store) the current
trained model parameters and pause the training process. Then we can easily resume
the training process when the network becomes stable again.

Worker node
Exception:
Failed to

connect to the
database

Push updates Push updatesPull updates Pull updates Pull updates

PS 1 PS 2 PS 3

Push updates

Worker nodeUnstable
network

Worker node

⅓ training data
(in remote
database)

⅓ training data
(in remote
database)

⅓ training data
(in remote
database)

Figure 3.22 A worker encounters an unstable network while fetching data from a remote database.

633.4 Elasticity and fault-tolerance pattern
Did the unstable network have other effects? We neglected one fact: we also rely on
the network for communication between worker and parameter server nodes to send
the calculated gradients and update the model parameters. Recall that if the collective
communication pattern is incorporated, the training process is synchronous. In other
words, one worker’s communication blocks other workers’ communications; we would
need to obtain all gradients from all workers to aggregate the results to update the
model parameters. If at least one worker becomes slow in communicating, the cascad-
ing effect eventually leads to a stuck training process.

 In figure 3.23, three worker processes in the same process group are performing
an allreduce operation. Two of the communications become slow due to the unsta-
ble network that the underlying distributed cluster is experiencing. As a result, two
of the processes that depend on the slow communications do not receive some val-
ues (denoted by question marks) on time, and the entire allreduce operation is stuck
until everything is received.

Can we do anything to continue training without being affected by the degrading net-
work performance of individual nodes? In this case, first, we can abandon the two
worker processes that are experiencing slow network connection; then we can abandon
the current allreduce operation. Given the nature of the collective communication pat-
tern, the remaining workers still have exactly the same copy of the model, so we can con-
tinue the training process by reconstructing a new worker process group that consists of
the remaining workers and then performing the allreduce operation again.

 The approach could also deal with situations in which some worker nodes are pre-
empted, with their computational resources rescheduled to higher-priority tasks and

Process

3

Process

4

Process

2

Group

[?, v1, v2]

[v0, v1, v2]

[v0, v1, ?]

Process

3

Process

4

Process

2

Group

Slow communication

Slow communication

[v0]

[v1]

[v2]

Figure 3.23 An allreduce process with slow communications due to the
unstable network that blocks the entire training process

64 CHAPTER 3 Distributed training patterns
nodes. When those workers get preempted, we reconstruct the worker process group
and then perform the allreduce operation. This approach allows us to avoid wasting
resources to train the model from scratch when unexpected failures happen. Instead,
we can pick up the training process from where it paused and use the existing workers
to which we’ve already allocated computational resources. If we have additional
resources, we can easily add workers and then reconstruct the worker process groups
to train more efficiently. In other words, we can easily scale the distributed training
system up and down so that the entire system is elastic in terms of available resources.
Many other distributed systems apply the same idea to make sure that the systems in
place are reliable and scalable.

3.4.3 Discussion

We’ve successfully continued and recovered the distributed training process without
wasting the resources we used to calculate the gradients from each worker. What if our
distributed training uses parameter servers instead of collective communications with
only workers?

 Recall that when parameter servers are used, each parameter server stores a model
partition that contains a subset of the complete set of model parameters. If we need to
abandon any of the workers or parameter servers, such as when some communications
failed or got stuck due to an unstable network on one parameter server or when the
workers got preempted, we need to checkpoint the model partition in the failed nodes
and then repartition the model partitions to the parameter servers that are still alive.

 In reality, many challenges are still involved. How do we checkpoint the model par-
titions, and where do we save them? How often should we checkpoint them to make
sure that they are as recent as possible?

3.4.4 Exercises

1 What is the most important thing to save in a checkpoint in case any failures
happen in the future?

2 When we abandon the workers that are stuck or unable to recover without hav-
ing time to make model checkpoints, where should we obtain the latest model,
assuming that we are using the collective communication pattern?

3.5 Answers to exercises

Section 3.2.4

1 No, because the training happens on a single laptop.
2 The system will end up spending a lot of time communicating between nodes and

a small amount of time making the computations among neural network layers.
3 We need more disk space for parameter servers to store large model partitions

and less CPUs/GPUs/memory on them because parameter servers do not per-
form heavy computations.

65Summary
Section 3.3.4

1 No. They also appear between workers and parameter servers.
2 Asynchronously
3 You use a reduce operation and then a broadcast operation.

Section 3.4.4

1 The most recent model parameters
2 Under the collective communication pattern, the remaining workers still have

the same copy of the model, which we can use to continue training.

Summary
 Distributed model training is different from the traditional model training pro-

cess, given the size and location of the dataset, the size of the model, the com-
putational resources, and the underlying network infrastructure.

 We can use parameter servers to build large and complex models, storing parti-
tions of the model parameters on each server.

 If communications between workers and parameter servers develop a bottle-
neck, we can switch to the collective communication pattern to improve distrib-
uted model training performance for small or medium-sized models.

 Unexpected failures happen during distributed model training, and we can
take various approaches to avoid wasting computational resources.

Model serving patterns
In the previous chapter, we explored some of the challenges involved in the distrib-
uted training component, and I introduced a couple of practical patterns that can
be incorporated into this component. Distributed training is the most critical part
of a distributed machine learning system. For example, we’ve seen challenges when
training very large machine learning models that tag main themes in new YouTube
videos but cannot fit in a single machine. We looked at how we can overcome the
difficulty of using the parameter server pattern. We also learned how to use the col-
lective communication pattern to speed up distributed training for smaller models

This chapter covers
 Using model serving to generate predictions or

make inferences on new data with previously
trained machine learning models

 Handling model serving requests and achieving
horizontal scaling with replicated model serving
services

 Processing large model serving requests using
the sharded services pattern

 Assessing model serving systems and event-
driven design
66

674.1 What is model serving?
and avoid unnecessary communication overhead between parameter servers and
workers. Last but not least, we talked about some of the vulnerabilities often seen in
distributed machine learning systems due to corrupted datasets, unstable networks,
and preempted worker machines and how we can address those problems.

 Model serving is the next step after we have successfully trained a machine learn-
ing model. It is one of the essential steps in a distributed machine learning system.
The model serving component needs to be scalable and reliable to handle the grow-
ing number of user requests and the growing size of individual requests. It’s also
essential to know what tradeoffs we may see when making different design decisions to
build a distributed model serving system.

 In this chapter, we’ll explore some of the challenges involved in distributed model
serving systems, and I’ll introduce a few established patterns adopted heavily in indus-
try. For example, we’ll see challenges when handling the increasing number of model
serving requests and how we can overcome these challenges to achieve horizontal scal-
ing with the help of replicated services. We’ll also discuss how the sharded services
pattern can help the system process large model serving requests. In addition, we’ll
learn how to assess model serving systems and determine whether event-driven design
would be beneficial in real-world scenarios.

4.1 What is model serving?
Model serving is the process of loading a previously trained machine learning model to
generate predictions or make inferences on new input data. It’s the step after we’ve
successfully trained a machine learning model. Figure 4.1 shows where model serving
fits in the machine learning pipeline.

Note that model serving is a general concept that appears in distributed and tradi-
tional machine learning applications. In traditional machine learning applications,

Data ingestion Model training

Model serving is the next step after we
have successfully trained a machine
learning model. We use the trained
model to generate predictions or
make inferences on new input data.

Model serving

Ingest the data and train a machine
learning model with the ingested data.

Figure 4.1 A diagram showing where model serving fits in the machine learning pipeline

68 CHAPTER 4 Model serving patterns
model serving is usually a single program that runs on a local desktop or machine and
generates predictions on new datasets that are not used for model training. Both the
dataset and the machine learning model used should be small enough to fit on a sin-
gle machine for traditional model serving, and they are stored in the local disk of a
single machine.

 In contrast, distributed model serving usually happens in a cluster of machines.
Both the dataset and the trained machine learning model used for model serving can
be very large and must be stored in a remote distributed database or partitioned on
disks of multiple machines. The differences between traditional model serving and
distributed model serving systems is summarized in table 4.1.

It’s nontrivial to build and manage a distributed model serving system that’s scalable,
reliable, and efficient for different use cases. We will examine a couple of use cases as
well as some established patterns that may address different challenges.

4.2 Replicated services pattern: Handling the growing
number of serving requests
As you may recall, in the previous chapter, we built a machine learning model to tag
the main themes of new videos that the model hasn’t seen before using the YouTube-
8M dataset (http://research.google.com/youtube8m/), which consists of millions of
YouTube video IDs, with high-quality machine-generated annotations from a diverse
vocabulary of 3,800+ visual entities such as Food, Car, Music, etc. A screenshot of what
the videos in the YouTube-8M dataset look like is shown in Figure 4.2.

 Now we would like to build a model serving system that allows users to upload new
videos. Then, the system would load the previously trained machine learning model
to tag entities/themes that appear in the uploaded videos. Note that the model serv-
ing system is stateless, so users’ requests won’t affect the model serving results.

 The system basically takes the videos uploaded by users and sends requests to the
model server. The model server then retrieves the previously trained entity-tagging
machine learning model from the model storage to process the videos and eventually
generate possible entities that appear in the videos. A high-level overview of the sys-
tem is shown in figure 4.3.

Table 4.1 Comparison between traditional model serving and distributed model serving systems

Traditional model serving Distributed model serving

Computational resources Personal laptop or single remote
server

Cluster of machines

Dataset location Local disk on a single laptop or
machine

Remote distributed database or
partitioned on disks of multiple
machines

Size of model and dataset Small enough to fit on a single
machine

Medium to large

http://research.google.com/youtube8m/

694.2 Replicated services pattern: Handling the growing number of serving requests
Note that this initial version of the model server only runs on a single machine and
responds to model serving requests from users on a first-come, first-served basis, as
shown in figure 4.4. This approach may work well if only very few users are testing the

Figure 4.2 A screenshot of what the videos in the YouTube-8M dataset look like. (Source: Sudheendra
Vijayanarasimhan et al. Licensed under Nonexclusive License 1.0)

Model storage

Trained ML model

Users uploads videos and then submit
requests to model serving system to
tag the entities within the videos.

Send request Retrieve model

Obtain modelSend data

Process dataGenerate entities
Dog
Pet
Bird
Fish
Swimmer
Horse
...

Model server
(single-node)

Figure 4.3 A high-level architecture diagram of the single-node model serving system

70 CHAPTER 4 Model serving patterns
system. However, as the number of users or model serving requests increases, users
will experience huge delays while waiting for the system to finish processing any previ-
ous requests. In the real world, this bad user experience would immediately lose our
users’ interest in engaging with this system.

4.2.1 The problem

The system takes the videos uploaded by users and then sends the requests to the
model server. These model serving requests are queued and must wait to be processed
by the model server.

 Unfortunately, due to the nature of the single-node model server, it can only effec-
tively serve a limited number of model serving requests on a first-come, first-served
basis. As the number of requests grows in the real world, the user experience worsens
when users must wait a long time to receive the model serving result. All requests are
waiting to be processed by the model serving system, but the computational resources
are bound to this single node. Is there a better way to handle model serving requests
than sequentially?

4.2.2 The solution

One fact we’ve neglected is that the existing model server is stateless, meaning that
the model serving results for each request aren’t affected by other requests, and the
machine learning model can only process a single request. In other words, the model
server doesn’t require a saved state to operate correctly.

 Since the model server is stateless, we can add more server instances to help han-
dle additional user requests without the requests interfering with each other, as shown
in figure 4.5. These additional model server instances are exact copies of the original

Model storage

Trained ML model

Send request
Retrieve model

Obtain modelSend data

Process dataGenerate entities
Bird
Dog
Cat

Model server
(single-node)

User requests are being processed on
first-come, first-served basis.

Figure 4.4 The model server only runs on a single machine and responds to model serving requests
from users on a first-come, first-served basis.

714.2 Replicated services pattern: Handling the growing number of serving requests
model server but with different server addresses, and each handles different model
serving requests. In other words, they are replicated services for model serving or, in
short, model server replicas.

 Adding additional resources into our system with more machines is called horizon-
tal scaling. Horizontal scaling systems handle more and more users or traffic by adding
more replicas. The opposite of horizontal scaling is vertical scaling, which is usually
implemented by adding computational resources to existing machines.

Let’s return to our original model serving system, which takes the videos uploaded by
users and sends requests to the model server. Unlike our previous design of the model
serving system, the system now has multiple model server replicas to process the model
serving requests asynchronously. Each model server replica takes a single request,
retrieves the previously trained entity-tagging machine learning model from model stor-
age, and then processes the videos in the request to tag possible entities in the videos.

 As a result, we’ve successfully scaled up our model server by adding model server
replicas to the existing model serving system. The new architecture is shown in fig-
ure 4.6. The model server replicas are capable of handling many requests at a time
since each replica can process individual model serving requests independently.

An analogy: Horizontal scaling vs. vertical scaling
You can think of vertical scaling like retiring your sports car and buying a race car
when you need more horsepower. While a race car is fast and looks amazing, it’s also
expensive and not very practical, and at the end of the day, they can only take you so
far before running out of gas. In addition, there’s only one seat, and the car must be
driven on a flat surface. It is really only suitable for racing.

Horizontal scaling gets you that added horsepower—not by favoring sports cars over
race cars, but by adding another vehicle to the mix. In fact, you can think of horizontal
scaling like several vehicles that could fit a lot of passengers at once. Maybe none
of these machines is a race car, but none of them need to be—across the fleet, you
have all the horsepower you need.

Scaling up

Scaling down

Horizontal scaling of the stateless server

Model server replicas

Figure 4.5 Additional server instances help handle additional user requests without the
requests interfering with each other.

72 CHAPTER 4 Model serving patterns
In the new architecture, multiple model serving requests from users are sent to the
model server replicas at the same time. However, we haven’t discussed how they are
being distributed and processed. For example, which request is being processed by
which model server replica? In other words, we haven’t yet defined a clear mapping
relationship between the requests and the model server replicas.

 To do that, we can add another layer—namely, a load balancer, which handles the
distribution of model serving requests among the replicas. For example, the load bal-
ancer takes multiple model serving requests from our users and then distributes the
requests evenly to each of the model server replicas, which then are responsible for
processing individual requests, including model retrieval and inference on the new
data in the request. Figure 4.7 illustrates this process.

 The load balancer uses different algorithms to decide which request goes to which
model server replica. Example algorithms for load balancing include round robin, the
least connection method, hashing, etc.

 The replicated services pattern provides a great way to scale our model serving sys-
tem horizontally. It can also be generalized for any systems that serve a large amount
of traffic. Whenever a single instance cannot handle the traffic, introducing this pat-
tern ensures that all traffic can be handled equivalently and efficiently. We’ll apply this
pattern in section 9.3.2.

Model storage

Trained ML model

Users upload videos and then submit
requests to model serving system to
tag the entities within the videos.

Send request

Model server replicas

Retrieve model

Obtain modelSend data

Process dataGenerate entities
Dog
Pet
Bird
Fish
Swimmer
Horse
...

Figure 4.6 The system architecture after we’ve scaled up our model server by adding model server
replicas to the system

734.2 Replicated services pattern: Handling the growing number of serving requests
4.2.3 Discussion

Now that we have load-balanced model server replicas in place, we should be able to
support the growing number of user requests, and the entire model serving system
achieves horizontal scaling. Not only can we handle model serving requests in a scal-
able way, but the overall model serving system also becomes highly available (https://
mng.bz/EQBd). High availability is a characteristic of a system that maintains an
agreed-on level of operational performance, usually uptime, for a longer-than-normal
period. It’s often expressed as a percentage of uptime in a given year.

Round robin for load balancing
Round robin is a simple technique in which the load balancer forwards each request
to a different server replica based on a rotating list.

Even though it’s easy to implement a load balancer with the round-robin algorithm,
the load is already on a load balancer server, and it might be dangerous if the load
balancer server itself receives a lot of requests that require expensive processing. It
may become overloaded past the point it can effectively do its job.

Model server replicas

Load balancer

Multiple model serving requests
from users

The load balancer distributes
the requests evenly to each of
the model server replicas.

Figure 4.7 A diagram showing how a loader balancer is used to distribute the requests
evenly across model server replicas

https://mng.bz/EQBd
https://mng.bz/EQBd
https://mng.bz/EQBd

74 CHAPTER 4 Model serving patterns
 For example, some organizations may require services to reach a highly available
service-level agreement, which means the service is up and running 99.9% of the time
(known as three-nines availability). In other words, the service can only get 1.4 min-
utes of downtime per day (24 hours × 60 minutes × 0.1%). With the help of replicated
model services, if any of the model server replicas crashes or gets preempted on a spot
instance, the remaining model server replicas are still available and ready to process
any incoming model serving requests from users, which provides a good user experi-
ence and makes the system reliable.

 In addition, since our model server replicas will need to retrieve previously trained
machine learning models from a remote model storage, they need to be ready in addi-
tion to being alive. It’s important to build and deploy readiness probes to inform the
load balancer that the replicas are all successfully established connections to the
remote model storage and are ready to serve model serving requests from users. A
readiness probe helps the system determine whether a particular replica is ready to
serve. With readiness probes, users do not experience unexpected behaviors when the
system is not ready due to internal system problems.

 The replicated services pattern addresses our horizontal scalability problem that
prevents our model serving system from supporting a large number of model serving
requests. However, in real-world model serving systems, not only the number of serv-
ing requests increases but also the size of each request, which can get extremely large
if the data or the payload is large. In that case, replicated services may not be able to
handle the large requests. We will talk about that scenario and introduce a pattern
that would alleviate the problem in the next section.

4.2.4 Exercises

1 Are replicated model servers stateless or stateful?
2 What happens when we don’t have a load balancer as part of the model serving

system?
3 Can we achieve three-nines service-level agreements with only one model server

instance?

4.3 Sharded services pattern
The replicated services pattern efficiently resolves our horizontal scalability problem
so that our model serving system can support a growing number of user requests. We
achieve the additional benefit of high availability with the help of model server repli-
cas and a load balancer.

NOTE Each model server replica has a limited and pre-allocated amount of
computational resources. More important, the amount of computational
resources for each replica must be identical for the load balancer to distribute
requests correctly and evenly.

Next, let’s imagine that a user wants to upload a high-resolution YouTube video that
needs to be tagged with an entity using the model server application. Even though the

754.3 Sharded services pattern
high-resolution video is too large, it may be uploaded successfully to the model server
replica if it has sufficient disk storage. However, we could not process the request in
any of the individual model server replicas themselves since processing this single
large request would require a larger memory allocated in the model server replica.
This need for a large amount of memory is often due to the complexity of the trained
machine learning model, as it may contain a lot of expensive matrix computations or
mathematical operations, as we’ve seen in the previous chapter.

 For instance, a user uploads a high-resolution video to the model serving system
through a large request. One of the model server replicas takes this request and suc-
cessfully retrieves the previously trained machine learning model. Unfortunately,
the model then fails to process the large data in the request since the model server
replica that’s responsible for processing this request does not have sufficient mem-
ory. Eventually, we may notify the user of this failure after they have waited a long
time, which results in a bad user experience. A diagram for this situation is shown in
figure 4.8.

4.3.1 The problem: Processing large model serving requests
with high-resolution videos

The requests the system is serving are large since the videos users upload are high res-
olution. In cases where the previously trained machine learning model may contain
expensive mathematical operations, these large video requests cannot be successfully

Model storage

Trained ML model

User uploads a high-resolution
video to the model serving system.

Send request

Model server replicas

Retrieve model

Obtain modelSend data

Process dataGenerate entities
Dog
Kid

This fails as the model server replica
that’s processing this large request
does not have enough computational
resources.

Figure 4.8 A diagram showing that model fails to process the large data in the request since
the model server replica responsible for processing this request does not have sufficient
memory

76 CHAPTER 4 Model serving patterns
processed and served by individual model server replicas with a limited amount of
memory. How do we design the model serving system to handle large requests of high-
resolution videos successfully?

4.3.2 The solution

Given our requirement for the computational resources on each model server replica,
can we scale vertically by increasing each replica’s computational resources so it can
handle large requests like high-resolution videos? Since we are vertically scaling all the
replicas by the same amount, we will not affect our load balancer’s work.

 Unfortunately, we cannot simply scale the model server replicas vertically since we
don’t know how many such large requests there are. Imagine only a couple of users
have high-resolution videos needing to be processed (e.g., professional photogra-
phers who have high-end cameras that capture high-resolution videos), and the
remaining vast majority of the users only upload videos from their smartphones with
much smaller resolutions. As a result, most of the added computational resources on
the model server replicas are idling, which results in very low resource utilization. We
will examine the resource utilization perspective in the next section, but for now, we
know that this approach is not practical.

 Remember we introduced the parameter server pattern in chapter 3, which allows
us to partition a very large model? Figure 4.9 is the diagram we discussed in chapter 3
that shows distributed model training with multiple parameter servers; the large
model has been partitioned, and each partition is located on different parameter serv-
ers. Each worker node takes a subset of the dataset, performs calculations required in
each neural network layer, and then sends the calculated gradients to update one
model partition stored in one of the parameter servers.

Parameter server

Worker node

Push updates Pull updates Push updates Pull updates Push updates Pull updates

Worker node Worker node

Figure 4.9 Distributed model training with multiple parameter servers where the large model has been
sharded and each partition is located on different parameter servers

774.3 Sharded services pattern
To deal with our problem of large model serving requests, we can borrow the same
idea and apply it to our particular scenario.

 We first divide the original high-resolution video into multiple separate videos, and
then each video is processed by multiple model server shards independently. The model
server shards are partitions from a single model server instance, and each is responsi-
ble for processing a subset of a large request.

 The diagram in figure 4.10 is an example architecture of the sharded services pattern. In
the diagram, a high-resolution video that contains a dog and a kid gets divided into two
separate videos where each of the videos represents a subset of the original large request.
One of the separated videos contains the part where the dog appears, and the other
video contains the part where the kid appears. These two separated videos become two
separate requests and are processed by different model server shards independently.

After the model server shards receive the sub-requests where each contains part of the
original large model serving request, each model server shard then retrieves the previ-
ously trained entity-tagging machine learning model from model storage and then
processes the videos in the request to tag possible entities that appear in the videos,
similar to the previous model serving system we’ve designed. Once all the sub-requests
have been processed by each of the model server shards, we merge the model infer-
ence result from two sub-requests—namely, the two entities, dog and kid—to obtain a
result for the original large model serving request with the high-resolution video.

 How do we distribute the two sub-requests to different model server shards? Simi-
lar to the algorithms we use to implement the load balancer, we can use a sharding

Model
storage

Trained ML
model

The high-resolution video is divided
into two separate videos and sent
to each of the model server shard.

Send request

Retrieve
model

Obtain
modelSend data

Process
data

Generate entities
Dog
Kid

Model server shards

Send request

Figure 4.10 An example architecture of the sharded services pattern where a high-resolution video gets
divided into two separate videos. Each video represents a subset of the original large request and is processed
by different model server shard independently.

78 CHAPTER 4 Model serving patterns
function, which is very similar to a hashing function, to determine which shard in the
list of model server shards should be responsible for processing each sub-request.

 Usually, the sharding function is defined using a hashing function and the modulo
(%) operator. For example, hash(request) % 10 would return 10 shards even when
the outputs of the hash function are significantly larger than the number of shards in
a sharded service.

The sharded services pattern solves the problem we encounter when building model
serving systems at scale and provides a great way to handle large model serving
requests. It’s similar to the data-sharding pattern we introduced in chapter 2: instead
of applying sharding to datasets, we apply sharding to model serving requests. When a
distributed system has limited computational resources for a single machine, we can
apply this pattern to offload the computational burden to multiple machines.

4.3.3 Discussion

The sharded services pattern helps handle large requests and efficiently distributes
the workload of processing large model serving requests to multiple model server
shards. It’s generally useful when considering any sort of service where the data
exceeds what can fit on a single machine.

 However, unlike the replicated services pattern we discussed in the previous sec-
tion, which is useful when building stateless services, the sharded services pattern is
generally used for building stateful services. In our case, we need to maintain the state
or the results from serving the sub-requests from the original large request using
sharded services and then merge the results into the final response so it includes all
entities from the original high-resolution video.

 In some cases, this approach may not work well because it depends on how we divide
the original large request into smaller requests. For example, if the original video has
been divided into more than two sub-requests, some may not be meaningful since they
don’t contain any complete entities that are recognizable by the machine learning model
we’ve trained. For situations like that, we need additional handling and cleaning of the
merged result to remove meaningless entities that are not useful to our application.

Characteristics of hashing functions for sharding
The hashing function that defines the sharding function transforms an arbitrary
object into an integer representing a particular shard index. It has two important
characteristics:

1 The output from hashing is always the same for a given input.
2 The distribution of outputs is always uniform within the output space.

These characteristics are important and can ensure that a particular request will
always be processed by the same shard server and that the requests are evenly dis-
tributed among the shards.

794.4 The event-driven processing pattern
 Both the replicated services pattern and sharded services pattern are valuable
when building a model serving system at scale to handle a great number of large
model serving requests. However, to incorporate them into the model serving system,
we need to know the required computational resources at hand, which may not be
available if the traffic is rather dynamic. In the next section, I will introduce another
pattern focusing on model serving systems that can handle dynamic traffic.

4.3.4 Exercises

1 Would vertical scaling be helpful when handling large requests?
2 Are the model server shards stateful or stateless?

4.4 The event-driven processing pattern
The replicated services pattern we examined in section 4.2 helps handle a large
number of model serving requests, and the sharded services pattern in section 4.3
can be used to process very large requests that may not fit in a single model server
instance. While these patterns address the challenges of building model serving sys-
tems at scale, they are more suitable when the system knows how much computa-
tional resources, model server replicas, or model server shards to allocate before the
system starts taking user requests. However, for cases in which we do not know how
much model serving traffic the system will be receiving, it’s hard to allocate and use
resources efficiently.

 Now imagine that we work for a company that provides holiday and event planning
services to subscribed customers. We’d like to provide a new service that will use a
trained machine learning model to predict hotel prices per night for the hotels
located in resort areas, given a range of dates and a specific location where our cus-
tomers would like to spend their holidays.

 To provide that service, we can design a machine learning model serving system.
This model serving system provides a user interface where users can enter the range
of dates and locations they are interested in staying for holidays. Once the requests
are sent to the model server, the previously trained machine learning model will be
retrieved from the distributed database and process the data in the requests (dates
and locations). Eventually, the model server will return the predicted hotel prices
for each location within the given date range. The complete process is shown in fig-
ure 4.11.

 After we test this model serving system for one year on selected customers, we
will have collected sufficient data to plot the model serving traffic over time. As it
turns out, people prefer to book their holidays at the last moment, so traffic increases
abruptly shortly before holidays and then decreases again after the holiday periods.
The problem with this traffic pattern is that it introduces a very low resource utiliza-
tion rate.

 In our current architecture of model serving system, the underlying computational
resources allocated to the model remain unchanged at all times. This strategy seems far

80 CHAPTER 4 Model serving patterns
from optimal: during periods of low traffic, most of our resources are idling and thus
wasted, whereas during periods of high traffic, our system struggles to respond in a timely
fashion, and more resources than normal are required to operate. In other words, the
system has to deal with either high or low traffic with the same amount of computational
resources (e.g., 10 CPUs and 100 GB of memory), as shown in figure 4.12.

From: 2022-11-25

To: 2022-12-25

City: San Francisco
Distributed
database

Trained ML model

Hotel name Price/night

Hotel 1 $75.00

Hotel 2 $80.00

Users enter date range and location and
then submit requests to the serving system.

Model server instances

Send request
Retrieve model

Obtain modelSend data

Process data
Generate price
predictions

Figure 4.11 A diagram of the model serving system to predict hotel prices

time

Number of total

requests per day

ChristmasThanksgiving

Most of our users start using our hotel
price prediction system at about three
weeks away from Christmas
(10 CPUs and 100 GBs of memory).

The peak traffic arrives at about
one week away from Christmas
(10 CPUs and 100 GBs of memory).

The traffic decreases dramatically
during Christmas
(10 CPUs and 100 GBs of memory).

There is very little traffic at
two weeks after Christmas
(10 CPUs and 100 GBs of
memory).

Figure 4.12 The traffic changes of the model serving system over time with an equal amount of computational
resources allocated all the time.

814.4 The event-driven processing pattern
Since we know, more or less, when those holiday periods are, why don’t we plan
accordingly? Unfortunately, some events make it hard to predict surges in traffic. For
example, a huge international conference may be planned near one of the resorts, as
shown in figure 4.13. This unexpected event, which happens before Christmas, has
suddenly added traffic at that particular time window (solid line). Not knowing about
the conferences, we would miss a window that should be taken into account when allo-
cating computational resources. Specifically, in our scenario, two CPUs and 20 GB of
memory, although optimized for our use case, no longer is sufficient to handle all
resources within this time window. The user experience would be very bad. Imagine
all the conference attendants sitting in front of their laptops, waiting a long time to
book a hotel room.

In other words, this naive solution is still not very practical and effective since it’s non-
trivial to figure out the time windows to allocate different amounts of resources and
how much additional resources are needed for each time window. Can we come up
with any better approach?

 In our scenario, we are dealing with a dynamic number of model serving requests
that varies over time and is highly correlated to times around holidays. What if we can
guarantee we have enough resources and forget about our goal of increasing the
resource utilization rate for now? If the computational resources are guaranteed to be

time

Number of total

requests per day

ChristmasThanksgiving

2 CPUs and 20 GBs of memory
Resource utilization rate: high

10 CPUs and 100 GBs of memory
Resource utilization rate: high

Huge international
conference

20 CPUs and 200 GBs of memory
Resource utilization rate: high

1 CPU and 10 GBs of memory
Resource utilization rate: high

2 CPUs and 20 GBs of memory
Resource utilization rate: high and
unable to handle all requests within
this time window

Figure 4.13 The traffic of our model serving system over time with an optimal amount of computational
resources allocated for different time windows. In addition, an unexpected event happened before Christmas
that suddenly added traffic during that particular time window (solid line).

82 CHAPTER 4 Model serving patterns
more than sufficient at all times, we can make sure that the model serving system can
handle heavy traffic during holiday seasons.

4.4.1 The problem: Responding to model serving requests based
on events

The naive approach, which is to estimate and allocate computational resources accord-
ingly before identifying any possible time windows in which the system might experi-
ence a high volume of traffic, is not feasible. It’s not easy to determine the exact dates
of the high-traffic time windows and the exact amount of computational resources
needed during each.

 Simply increasing the computational resources to an amount sufficient at all times
also is not practical, as the resource utilization rate we were concerned about earlier
remains low. For example, if nearly no user requests are made during a particular
time period, the computational resources we have allocated are, unfortunately, mostly
idling and thus wasted. Is there another approach that allocates and uses computa-
tional resources more wisely?

4.4.2 The solution

The solution to our problem is maintaining a pool of computational resources (e.g.,
CPUs, memory, disk, etc.) allocated not only to this particular model serving system
but also to model serving of other applications or other components of the distrib-
uted machine learning pipeline.

 Figure 4.14 is an example architecture diagram where a shared resource pool is
used by different systems—for example, data ingestion, model training, model selec-
tion, model deployment, and model serving—at the same time. This shared resource
pool gives us enough resources to handle peak traffic for the model serving system by
pre-allocating resources required during historical peak traffic and autoscaling when
the limit is reached. Therefore, we only use resources when needed and only the spe-
cific amount of resources required for each particular model serving request.

 For our discussions, I only focus on the model serving system in the diagram, and
details for other systems are neglected here. In addition, here I assume that the model
training component only utilizes similar types of resources, such as CPUs. If the model
training component requires GPUs or a mix of CPUs/GPUs, it may be better to use a
separate resource pool, depending on specific use cases.

 When the users of our hotel price prediction application enter into the UI the
range of dates and locations that they are interested in staying for holidays, the model
serving requests are sent to the model serving system. Upon receiving each request,
the system notifies the shared resource pool that certain amounts of computational
resources are being used by the system.

 For example, figure 4.15 shows the traffic of our model serving system over time
with an unexpected bump. The unexpected bump is due to a new very large interna-
tional conference that happens before Christmas. This event suddenly adds traffic,

834.4 The event-driven processing pattern
Shared resource pool

Model deploymentData ingestion Model training Model selection

Model serving
system 1

Pull resources

Pull resources Pull resources

Pull resources Pull resources

Model serving requests

Figure 4.14 An architecture diagram in which a shared resource pool is being used by different components—
for example, data ingestion, model training, model selection, and model deployment—and two different model
serving systems at the same time. The arrows with solid lines indicate resources, and the arrows with dashed
lines indicate requests.

days

Number of total

requests per day

ChristmasThanksgiving

2 CPUs and 20 GBs of memory
Resource utilization rate: high

10 CPUs and 100 GBs of memory
Resource utilization rate: high

Huge international
conference

20 CPUs and 200 GBs of memory
Resource utilization rate: high

1 CPU and 10 GBs of memory
Resource utilization rate: high

“Borrow” necessary resource from resource pool
Resource utilization rate: high

Figure 4.15 The traffic of our model serving system over time. An unexpected bump happened before
Christmas that suddenly added traffic. The jump in requests is handled successfully by the model serving
system by borrowing the necessary amount of resources from the shared resource pool. The resource utilization
rate remains high during this unexpected event.

84 CHAPTER 4 Model serving patterns
but the model serving system successfully handles the surge in traffic by borrowing a
necessary amount of resources from the shared resource pool. With the help of the
shared resource pool, the resource utilization rate remains high during this unex-
pected event. The shared resource pool monitors the current amount of available
resources and autoscales when needed.

 This approach, in which the system listens to the user requests and only responds
and utilizes the computational resources when the user request is being made, is
called event-driven processing.

In our scenario, each model serving request made from our hotel price prediction sys-
tem represents an event. Our serving system listens for this type of event, utilizes neces-
sary resources from the shared resource pool, and retrieves and loads the trained
machine learning model from the distributed database to estimate the hotel prices for
the specified time/location query. Figure 4.16 is a diagram of this event-driven model
serving system.

 Using this event-driven processing pattern for our serving system, we can make
sure that our system is using only the resources necessary to process every request
without concerning ourselves with resource utilization and idling. As a result, the sys-
tem has sufficient resources to deal with peak traffic and return the predicted prices
without users experiencing noticeable delays or lags when using the system.

 Even though we now have a shared pool of sufficient computational resources
where we can borrow computational resources from the shared resource pool to han-
dle user requests on demand, we should also build a mechanism in our model serving
system to defend denial-of-service attacks. Denial-of-service attacks interrupt an autho-
rized user’s access to a computer network, typically caused with malicious intent and
often seen in model serving systems. These attacks can cause unexpected use of com-
putational resources from the shared resource pool, which may eventually lead to
resource scarcity for other services that rely on the shared resource pool.

 Denial-of-service attacks may happen in various cases. For example, they may come
from users who accidentally send a huge amount of model serving requests in a very

Event-driven processing vs. long-running serving systems
Event-driven processing is different from the model serving systems that we’ve
looked at in previous sections (e.g., systems using replicated services [section 4.2]
and sharded services patterns [section 4.3]), where the servers that handle user
requests are always up and running. Those long-running serving systems work well
for many applications that are under heavy load, keep a large amount of data in mem-
ory, or require some sort of background processing.

However, for applications that handle very few requests during nonpeak periods or
respond to specific events, such as our hotel price prediction system, the event-driven
processing pattern is more suitable. This event-driven processing pattern has flour-
ished in recent years as cloud providers have developed function-as-a-service products.

854.4 The event-driven processing pattern
short period of time. Developers may have misconfigured a client that uses our model
serving APIs, so it sends requests constantly or accidentally kicks off an unexpected
load/stress test in a production environment.

 To deal with these situations, which often happen in real-world applications, it
makes sense to introduce a defense mechanism for denial-of-service attacks. One
approach to avoid these attacks is via rate limiting, which adds the model serving requests
to a queue and limits the rate the system is processing the requests in the queue.

 Figure 4.17 is a flowchart showing four model serving requests sent to the model
serving system. However, only two are under the current rate limit, which allows a
maximum of two concurrent model serving requests. In this case, the rate-limiting
queue for model serving requests first checks whether the requests received are under
the current rate limit. Once the system has finished processing those two requests, it
will proceed to the remaining two requests in the queue.

 If we are deploying and exposing an API for a model serving service to our users,
it’s also generally a best practice to have a relatively small rate limit (e.g., only one
request is allowed within 1 hour) for users with anonymous access and then ask users
to log in to obtain a higher rate limit. This system would allow the model serving sys-
tem to better control and monitor the users’ behavior and traffic so that we can take
necessary actions to address any potential problems or denial-of-service attacks. For
example, requiring a login provides auditing to find out which users/events are
responsible for the unexpectedly large number of model serving requests.

From: 2022-11-25

To: 2022-12-25

City: San Francisco
Distributed
database

Trained ML model

Hotel name Price/night

Hotel 1 $75.00

Hotel 2 $80.00

Users enter date range and location and
then submit requests to the serving system.

Model server instances

Send request
Retrieve model

Obtain modelSend data

Process data
Generate price
predictions

Shared resource pool

Pull resources

Figure 4.16 A diagram of the event-driven model serving system to predict hotel prices

86 CHAPTER 4 Model serving patterns
Figure 4.18 demonstrates the previously described strategy. In the diagram, the flow-
chart on the left side is the same as figure 4.17 where four total model serving
requests from unauthenticated users are sent to the model serving system. However,

Requests rate

limiting queue

Model serving requests

Model serving
system

Ok to add to the queue?

Model serving requests
that are under rate limit:
2 maximum concurrent
requests

Figure 4.17 A flowchart of four model
serving requests sent to the model serving
system. However, only two are under the
current rate limit, which allows a maximum
of two concurrent model serving requests.
Once the system has finished processing
those two requests, it will proceed to the
remaining two requests in the queue.

Requests rate

limiting queue

Model serving requests from
unauthenticated users

Model serving
system

Ok to add to the queue?

Model serving requests that are
under rate limit:
2 maximum concurrent requests
for unauthenticated users

Requests rate

limiting queue

Model serving requests from
authenticated users

Model serving
system

Ok to add to the queue?

Model serving requests that are
under rate limit:
3 maximum concurrent requests
for usersauthenticated

Figure 4.18 A comparison of behaviors from different rate limits applied to authenticated and
unauthenticated users

874.4 The event-driven processing pattern
only two can be served by the system due to the current rate limit, which allows a
maximum of two concurrent model serving requests for unauthenticated users.
Conversely, the model serving requests in the flowchart on the right side all come
from authenticated users. Thus, three requests can be processed by the model serv-
ing system since the limit of maximum concurrent requests for authenticated users
is three.

 Rate limits differ depending on whether the user is authenticated. Rate limits
thus effectively control the traffic of the model serving system and prevent malicious
denial-of-service attacks, which could cause unexpected use of computational resources
from the shared resource pool and eventually lead to resource scarcity of other ser-
vices that rely on it.

4.4.3 Discussion

Even though we’ve seen how the event-driven processing pattern benefits our particu-
lar serving system, we should not attempt to use this pattern as a universal solution.
The use of many tools and patterns can help you develop a distributed system to meet
unique real-world requirements.

 For machine learning applications with consistent traffic—for example, model
predictions calculated regularly based on a schedule—an event-driven processing
approach is unnecessary as the system already knows when to process the requests,
and there will be too much overhead trying to monitor this regular traffic. In addi-
tion, applications that can tolerate less-accurate predictions can work well without
being driven by events; they can also recalculate and provide good-enough predic-
tions to a particular granularity level, such as per day or per week.

 Event-driven processing is more suitable for applications with different traffic pat-
terns that are complicated for the system to prepare beforehand necessary computa-
tional resources. With event-driven processing, the model serving system only requests
a necessary amount of computational resources on demand. The applications can also
provide more accurate and real-time predictions since they obtain the predictions
right after the users send requests instead of relying on precalculated prediction
results based on a schedule.

 From developers’ perspective, one benefit of the event-driven processing pattern is
that it’s very intuitive. For example, it greatly simplifies the process of deploying code
to running services since there is no end artifact to create or push beyond the source
code itself. The event-driven processing pattern makes it simple to deploy code from
our laptops or web browser to run code in the cloud.

 In our scenario, we only need to deploy the trained machine learning model that
may be used as a function to be triggered based on user requests. Once deployed, this
model serving function is then managed and scaled automatically without the need to
allocate resources manually by developers. In other words, as more traffic is loaded
onto the service, more instances of the model serving function are created to handle
the increase in traffic using the shared resource pool. If the model serving function

88 CHAPTER 4 Model serving patterns
fails due to machine failures, it will be restarted automatically on other machines in
the shared resource pool.

 Given the nature of the event-driven processing pattern, each function that’s
used to process the model serving requests needs to be stateless and independent
from other model serving requests. Each function instance cannot have local mem-
ory, which requires all states to be stored in a storage service. For example, if our
machine learning models depend heavily on the results from previous predictions
(e.g., a time-series model), in this case, the event-driven processing pattern may not
be suitable.

4.4.4 Exercises

1 Suppose we allocate the same amount of computational resources over the life-
time of the model serving system for hotel price prediction. What would the
resource utilization rate look like over time?

2 Are the replicated services or sharded services long-running systems?
3 Is event-driven processing stateless or stateful?

4.5 Answers to exercises

Section 4.2

1 Stateless
2 The model server replicas would not know which requests from users to pro-

cess, and there will be potential conflicts or duplicate work when multiple
model server replicas try to process the same requests.

3 Yes, only if the single server has no more than 1.4 minutes of downtime per day

Section 4.3

1 Yes, it helps, but it would decrease the overall resource utilization.
2 Stateful

Section 4.4

1 It varies over time depending on the traffic.
2 Yes. Servers are required to keep them running to accept user requests, and

computational resources need to be allocated and occupied all the time.
3 Stateless

Summary
 Model serving is the process of loading a previously trained machine learning

model, generating predictions, or making inferences on new input data.
 Replicated services help handle the growing number of model serving requests

and achieve horizontal scaling with the help of replicated services.

89Summary
 The sharded services pattern allows the system to handle large requests and effi-
ciently distributes the workload of processing large model serving requests to
multiple model server shards.

 With the event-driven processing pattern, we can ensure that our system only
uses the resources necessary to process every request without worrying about
resource utilization and idling.

Workflow patterns
Model serving is a critical step after successfully training a machine learning model.
It is the final artifact produced by the entire machine learning workflow, and the
results from model serving are presented to users directly. Previously, we explored
some of the challenges involved in distributed model serving systems—for example,
how to handle the growing number of model serving requests and the increased size
of those requests—and investigated a few established patterns heavily adopted in
industry. We learned how to achieve horizontal scaling with the help of replicated
services to address these challenges and how the sharded services pattern can help

This chapter covers
 Using workflows to connect machine learning

system components

 Composing complex but maintainable structures
within machine learning workflows with the fan-in
and fan-out patterns

 Accelerating machine learning workloads with
concurrent steps using synchronous and
asynchronous patterns

 Improving performance with the step memoization
pattern
90

915.1 What is workflow?
the system process large model serving requests. Finally, we learned how to assess
model serving systems and determine whether an event-driven design would be bene-
ficial in real-world scenarios.

 Workflow is an essential component in machine learning systems as it connects all
other components in the system. A machine learning workflow can be as easy as chain-
ing data ingestion, model training, and model serving. However, it can be very com-
plex to handle real-world scenarios requiring additional steps and performance
optimizations as part of the entire workflow. It’s essential to know what tradeoffs we
may see when making design decisions to meet different business and performance
requirements.

 In this chapter, we’ll explore some of the challenges involved when building
machine learning workflows in practice. Each of these established patterns can be
reused to build simple to complex machine learning workflows that are efficient and
scalable. For example, we’ll see how to build a system to execute complex machine
learning workflows to train multiple machine learning models. We will use the fan-
in and fan-out patterns to select the most performant models that provide good
entity-tagging results in the model serving system. We’ll also incorporate synchro-
nous and asynchronous patterns to make machine learning workflows more effi-
cient and avoid delays due to the long-running model training steps that block
other consecutive steps.

5.1 What is workflow?
Workflow is the process of connecting multiple components or steps in an end-to-end
machine learning system. A workflow consists of arbitrary combinations of the com-
ponents commonly seen in real-world machine learning applications, such as data
ingestion, distributed model training, and model serving, as discussed in the previ-
ous chapters.

 Figure 5.1 shows a simple machine learning workflow. This workflow connects mul-
tiple components or steps in an end-to-end machine learning system that includes the
following steps:

1 Data ingestion—Consumes the Youtube-8M videos dataset
2 Model training—Trains an entity-tagging model
3 Model serving—Tags entities in unseen videos

NOTE A machine learning workflow is often referred to as a machine learning
pipeline. I use these two terms interchangeably. Although I use different terms
to refer to different technologies, there is no difference between the two
terms in this book.

Since a machine learning workflow may consist of any combination of the compo-
nents, we often see machine learning workflows in different forms in different situa-
tions. Unlike the straightforward workflow shown in figure 5.1, figure 5.2 illustrates a
more complicated workflow where two separate model training steps are launched

92 CHAPTER 5 Workflow patterns
after a single data ingestion step, and then two separate model serving steps are used
to serve different models trained via different model training steps.

Data ingestion Model training

The arrow indicates the direction
that the workflow executes the
model serving step after the model
training step is completed.

Model serving

A workflow connects multiple components or
steps in an end-to-end machine learning system.

Figure 5.1 A diagram showing a simple machine learning workflow, including data ingestion,
model training, and model serving. The arrows indicate directions. For example, the arrow on the
right-hand side denotes the order of the step execution (e.g., the workflow executes the model
serving step after the model training step is completed).

Data ingestion

Model training 1 Model serving 1

Two separate model training steps are launched after
a single data ingestion step, and then two separate
model serving steps are used to serve different models
trained via different model training steps.

Model training 2 Model serving 2

Figure 5.2 A more complicated workflow, where two separate model training steps are launched after
a single data ingestion step, and then two separate model serving steps are used to serve different
models trained via different model training steps

935.1 What is workflow?
 Figures 5.1 and 5.2 are just some common examples. In practice, the complexity of
machine learning workflows varies, which increases the difficulty of building and
maintaining scalable machine learning systems.

 We will discuss some of the more complex machine learning workflows in this
chapter, but to start, I’ll introduce and distinguish the differences between the follow-
ing two concepts: sequential workflow and directed acyclic graph (DAG).

 A sequential workflow represents a series of steps performed one after another until
the last step in the series is complete. The exact order of execution varies, but steps
will always be sequential. Figure 5.3 is an example sequential workflow with three steps
executed sequentially.

A workflow can be seen as a DAG if it only consists of steps directed from one step to
another but never form a closed loop.

 For example, the workflow in figure 5.3 is a valid DAG since the three steps are
directed from step A to step B and then from step B to step C—the loop is not closed.
Another example workflow, shown in figure 5.4, however, is not a valid DAG since
there’s an additional step D that connects from step C and points to step A, which
forms a closed loop.

 If step D does not point back to step A, as shown in figure 5.5, where the arrow is
crossed out, this workflow becomes a valid DAG. The loop is no longer closed, and
thus it becomes a simple sequential workflow, similar to figure 5.3.

 In real-world machine learning applications, workflows necessary to meet the
requirements of different use cases (e.g., batch retraining of the models, hyperparam-
eter tuning experiments, etc.) can get really complicated. We will go through some
more complex workflows and abstract the structural patterns that can be reused to
compose workflows for various scenarios.

A B

Step C executes after
step B has completed.

C

A sequential workflow represents a series of steps performed one
after another until the last step in the series has completed. The
exact order of execution varies, but steps will always be sequential.

Figure 5.3 An example sequential workflow with three steps that execute in the
following order: A, B, and C.

94 CHAPTER 5 Workflow patterns
A B

D

C

A workflow where there’s an additional step D that connects
from step C and points to step A. These connections form a
closed loop and thus the entire workflow is not a valid DAG.

Figure 5.4 An example workflow where step D connects from step C and points
to step A. These connections form a closed loop and thus the entire workflow is
not a valid DAG.

A B

D

C

This workflow becomes a valid DAG since the closed loop
no longer exists, and this becomes a simple sequential
workflow similar to what we’ve seen previously.

The closed loop no longer
exists since this arrow
is crossed out.

Figure 5.5 An example workflow where the last step D does not point back to
step A. This workflow is not a valid DAG since the closed loop no longer exists.
Instead, it is a simple sequential workflow similar to figure 5.3.

955.2 Fan-in and fan-out patterns: Composing complex machine learning workflows
5.2 Fan-in and fan-out patterns: Composing complex
machine learning workflows
In chapter 3, we built a machine learning model to tag the main themes of new videos
that the model hadn’t seen before using the YouTube-8M dataset. The YouTube-8M
dataset consists of millions of YouTube video IDs, with high-quality machine-generated
annotations from a diverse vocabulary of 3,800+ visual entities such as Food, Car,
Music, etc. In chapter 4, we also discussed patterns that are helpful to build scalable
model serving systems where users can upload new videos, and then the system loads
the previously trained machine learning model to tag entities/themes that appear in
the uploaded videos. In real-world applications, we often want to chain these steps
together and package them in a way that can be easily reused and distributed.

 For example, what if the original YouTube-8M dataset has been updated, and we’d
like to train a new model from scratch using the same model architecture? In this
case, it’s pretty easy to containerize each of these components and chain them
together in a machine learning workflow that can be reused by re-executing the end-
to-end workflow when the data gets updated. As shown in figure 5.6, new videos are
regularly being added to the original YouTube-8M dataset, and the workflow is exe-
cuted every time the dataset is updated. The next model training step trains the entity-
tagging model using the most recent dataset. Then, the last model serving step uses
the trained model to tag entities in unseen videos.

Now, let’s take a look at a more complex real-world scenario. Let’s assume we know the
implementation details for model training of any machine learning model architecture.

Data ingestion Model training Model serving

New videos are being added to the original
YouTube-8M dataset regularly, and the
workflow is being executed every time the
dataset has been updated.

Trains the entity tagging model
using the most recent dataset

Uses the trained model to
tag entities in unseen videos

Figure 5.6 New videos are regularly added to the original YouTube-8M dataset, and the
workflow is executed every time the dataset is updated.

96 CHAPTER 5 Workflow patterns
We want to build a machine learning system to train different models. We then want
to use the top two models to generate predictions so that the entire system is less likely
to miss any entities in the videos since the two models may capture information from
different perspectives.

5.2.1 The problem

We want to build a machine learning workflow that would train different models after
the system has ingested data from the data source. Then, we want to select the top two
models and use the knowledge from both to provide model serving that generates
predictions for users.

 Building a workflow that includes the end-to-end normal process of a machine
learning system with only data ingestion, model training, and model serving, where
each component only appears once as an individual step in the workflow, is pretty
straightforward. However, in our particular scenario, the workflow is much more com-
plex as we need to include multiple model training steps as well as multiple model
serving steps. How do we formalize and generalize the structure of this complex work-
flow so that it can be easily packaged, reused, and distributed?

5.2.2 The solution

Let’s start with the most basic machine learning workflow that includes only data
ingestion, model training, and model serving, where each of these components only
appears once as an individual step in the workflow. We will build our system based on
this workflow to serve as our baseline, as shown in figure 5.7.

Our goal is to represent the machine learning workflow that builds and selects the top
two best-performing models that will be used for model serving to give better infer-
ence results. Let’s take a moment to understand why this approach might be used in
practice. For example, figure 5.8 shows two models: the first model has knowledge of
four entities, and the second model has knowledge of three entities. Thus, each can

Data ingestion Model training Model serving

Baseline workflow that includes only data ingestion, model
training, and model serving where each of these components
only appears once as individual steps in the workflow

Figure 5.7 A baseline workflow including only data ingestion, model training,
and model serving, where each of these components only appears once as an
individual step in the workflow

975.2 Fan-in and fan-out patterns: Composing complex machine learning workflows
tag the entities it knows from the videos. We can use both models to tag entities at the
same time and then aggregate their results. The aggregated result is obviously more
knowledgeable and is able to cover more entities. In other words, two models can be
more effective and produce more comprehensive entity-tagging results.

Now that we understand the motivation behind building this complex workflow, let’s
look at an overview of the entire end-to-end workflow process. We want to build a
machine learning workflow that performs the following functions sequentially:

1 Ingests data from the same data source
2 Trains multiple different models, either different sets of hyperparameters of the

same model architecture or various model architectures
3 Picks the two top-performing models to be used for model serving for each of

the trained models
4 Aggregates the models’ results of the two model serving systems to present

to users

Let’s first add some placeholders to the baseline workflow for multiple model training
steps after data ingestion. We can then add multiple model serving steps once the
multiple model training steps finish. A diagram of the enhanced baseline workflow is
shown in figure 5.9.

 The key difference from what we’ve dealt with before in the baseline is the pres-
ence of multiple model training and model serving components. The steps do not
have direct, one-to-one relationships. For example, each model training step may
be connected to a single model serving step or not connected to any steps at all.

Dog

Fish

Swimmer

Horse

Dog

Pet

Bird

Dog

Fish

Pet

Swimmer

Horse

Bird

Model 1

Model 2
Predicts

Predicts

Aggregates

Figure 5.8 A diagram of models where the first model has knowledge of four entities and the second model
has knowledge of three entities. Thus, each can tag the entities it knows from the videos. We can use both
models to tag entities at the same time and then aggregate their results. The aggregated result covers more
entities than each individual model.

98 CHAPTER 5 Workflow patterns
Figure 5.10 shows that the models trained from the first two model training steps out-
perform the model trained from the third model training step. Thus, only the first
two model training steps are connected to the model serving steps.

Model training 1 Model serving 1

Data ingestion Model training 2 Model serving 2

Model training 3 Model serving 3

Figure 5.9 A diagram of the enhanced baseline workflow where multiple model training
steps occur after data ingestion, followed by multiple model serving steps

Model training 1

Data ingestion

The models trained from the first two model
training step outperform the model trained
from the third model training step. Thus,
only the first two model training steps are
connected to model serving steps.

Model training 2

Model serving 1

Model serving 2

Model training 3

Figure 5.10 The models trained from the first two model training steps outperform the model
trained from the third model training step. Thus, only the first two model training steps are
connected to the model serving steps.

995.2 Fan-in and fan-out patterns: Composing complex machine learning workflows
We can compose this workflow as follows. On successful data ingestion, multiple
model training steps are connected to the data ingestion step so that they can use the
shared data that’s ingested and cleaned from the original data source. Next, a single
step is connected to the model training steps to select the top two performing models.
It produces two model serving steps that use the selected models to handle model
serving requests from users. A final step at the end of this machine learning workflow
is connected to the two model serving steps to aggregate the model inference results
that will be presented to the users.

 A diagram of the complete workflow is shown in figure 5.11. This workflow trains
different models via three model training steps resulting in varying accuracy when tag-
ging entities. A model selection step picks the top two models with at least 90% accu-
racy trained from the first two model training steps that will be used in the following
two separate model serving steps. The results from the two model serving steps are
then aggregated to present to users via a result aggregation step.

We can abstract out two patterns from this complex workflow. The first one we observe
is the fan-out pattern. Fan-out describes the process of starting multiple separate steps
to handle input from the workflow. In our workflow, the fan-out pattern appears when
multiple separate model training steps connect to the data ingestion step, as shown in
figure 5.12.

 There’s also the fan-in pattern in our workflow, where we have one single aggre-
gation step that combines the results from the two model serving steps, as shown in

Data ingestion

Model
training 1

Accuracy: 91%

Model
serving 1

Model
training 2

Accuracy: 93%

Model
serving 2

Model
training 3

Accuracy: 85%

Result

aggregation

Model

selection

Three model training steps train
different models that arrive at
different accuracies when tagging
entities. This step picks the top two models

that will be used in the following
two separate model serving steps.

The results from the two
model serving steps are
then aggregated via a result
aggregation step to present
to users.

Figure 5.11 A machine learning workflow that trains different models that result in varying accuracy when
tagging entities and then selects the top two models with at least 90% accuracy to be used for model serving.
The results from the two model serving steps are then aggregated to present to users.

100 CHAPTER 5 Workflow patterns
figure 5.13. Fan-in describes the process of combining results from multiple steps into
one step.

Formalizing these patterns would help us build and organize more complex work-
flows by using different patterns for workflows based on real-world requirements.

 We have successfully built the system as a complex workflow that trains different
models and then uses the top two models to generate predictions so that the entire sys-
tem is less likely to miss any entities in the videos. These patterns are powerful when
constructing complex workflows to meet real-world requirements. We can construct var-
ious workflows, from a single data processing step to multiple model training steps to
train different models with the same dataset. We can also start more than one model
serving step from each of these model training steps if the predictions from different
models are useful in real-world applications. We’ll apply this pattern in section 9.4.1.

Data ingestion

Model training 1

Model training 2

Model training 3

Fanning out to three separate model
training steps from one data ingestion
step.

Figure 5.12 A diagram of the fan-out
pattern that appears when multiple separate
model training steps are connected to the
data ingestion step

Fanning in from two model serving
steps to one result aggregation step.

Model serving 1

Model serving 2

Result aggregation

Figure 5.13 A diagram of the fan-in pattern,
where we have one single aggregation step
that combines the results from the two
model serving steps

1015.2 Fan-in and fan-out patterns: Composing complex machine learning workflows
5.2.3 Discussion

By using the fan-in and fan-out patterns in the system, the system is now able to execute
complex workflows that train multiple machine learning models and pick the most per-
formant ones to provide good entity-tagging results in the model serving system.

 These patterns are great abstractions that can be incorporated into very complex
workflows to meet the increasing demand for complex distributed machine learning
workflows in the real world. But what kind of workflows are suitable for the fan-in and
fan-out patterns? In general, if both of the following applies, we can consider incorpo-
rating these patterns:

 The multiple steps that we are fanning-in or fanning-out are independent of
each other.

 It takes a long time for these steps to run sequentially.

The multiple steps need to be order-independent because we don’t know the order
in which concurrent copies of those steps will run or the order in which they will
return. For example, if the workflow also contains a step that trains an ensemble
of other models (also known as ensemble learning; http://mng.bz/N2vn) to provide a
better-aggregated model, this ensemble model depends on the completion of other
model training steps. Consequently, we cannot use the fan-in pattern because the
ensemble model training step will need to wait for other model training to complete
before it can start running, which would require some extra waiting and delay the
entire workflow.

The fan-in and fan-out patterns can create very complex workflows that meet most
of the requirements of machine learning systems. However, to achieve good perfor-
mance on those complex workflows, we need to determine which parts of the work-
flows to run first and which parts of the workflows can be executed in parallel. As a
result of the optimization, data science teams would spend less time waiting for
workflows to complete, thus reducing infrastructure costs. I will introduce some pat-
terns to help us organize the steps in the workflow from a computational perspec-
tive in the next section.

Ensemble models
An ensemble model uses multiple machine learning models to obtain better predic-
tive performance than could be obtained from any of the constituent models alone.
It often consists of a number of alternative models that can learn the relationships
in the dataset from different perspectives.

Ensemble models tend to yield better results when diversity among the constituent
models is significant. Therefore, many ensemble approaches try to increase the diver-
sity of the models they combine.

http://mng.bz/N2vn

102 CHAPTER 5 Workflow patterns
5.2.4 Exercises

1 If the steps are not independent of each other, can we use the fan-in or fan-out
patterns?

2 What’s the main problem when trying to build ensemble models with the fan-in
pattern?

5.3 Synchronous and asynchronous patterns: Accelerating
workflows with concurrency
Each model training step in the system takes a long time to complete; however, their
durations may vary across different model architectures or model parameters. Imag-
ine an extreme case where one of the model training steps takes two weeks to com-
plete since it is training a complex machine learning model that requires a huge
amount of computational resources. All other model training steps only take one
week to complete. Many of the steps, such as model selection and model serving, in
the machine learning workflow we built earlier that uses the fan-in and fan-out pat-
terns will have to wait an additional week until this long-running model training step
is completed. A diagram that illustrates the duration differences among the three
model training steps is shown in figure 5.14.

In this case, since the model selection step and the steps following it require all model
training steps to finish, the model training step that takes two weeks to complete will
slow down the workflow by an entire week. We would rather use that additional week

Data ingestion Model selection
Result

aggregation

Model

training 1

Duration:

2 weeks

Model
serving 1

Model

training 2

Duration:

1 week

Model
serving 2

Model

training 3

Duration:

1 week

One of the model training steps takes two weeks to complete since
it is training a complex machine learning model that requires a huge
amount of computational resources, whereas each of the rest of
the model training steps only takes one week to complete.

The following steps will have to wait for an additional week
until this long-running model training step is completed.

Figure 5.14 A workflow that illustrates the duration differences for the three model training steps

1035.3 Synchronous and asynchronous patterns: Accelerating workflows with concurrency
to re-execute all the model training steps that take one week to complete instead of
wasting time waiting for one step!

5.3.1 The problem

We want to build a machine learning workflow that trains different models and then
selects the top two models to use for model serving, which generates predictions
based on the knowledge of both models. Due to varying completion times for each
model training step in the existing machine learning workflow, the start of the follow-
ing steps, such as the model selection step and the model serving, depends on the
completion of the previous steps.

 However, a problem occurs when at least one of the model training steps takes
much longer to complete than the remaining steps because the model selection
step that follows can only start after this long model training step has completed. As
a result, the entire workflow is delayed by this particularly long-running step. Is
there a way to accelerate this workflow so it will not be affected by the duration of
individual steps?

5.3.2 The solution

We want to build the same machine learning workflow as we did previously, which
would train different models after the system has ingested data from the data source,
select the top two models, and then use these two models to provide model serving to
generate predictions using knowledge from both models.

 However, this time we noticed a performance bottleneck because the start of each
following step, such as model selection and model serving, depends on the comple-
tion of its previous steps. In our case, we have one long-running model training step
that must complete before we can proceed to the next step.

 What if we can exclude the long-running model training step completely? Once
we do that, the rest of the model training steps will have consistent completion
times. Thus, the remaining steps in the workflow can be executed without waiting
for a particular step that’s still running. A diagram of the updated workflow is shown
in figure 5.15.

 This naive approach may resolve our problem of extra waiting time for long-running
steps. However, our original goal was to use this type of complex workflow to experi-
ment with different machine learning model architectures and different sets of hyper-
parameters of those models to select the best-performing models to use for model
serving. If we simply exclude the long-running model training step, we are essentially
throwing away the opportunity to experiment with advanced models that may better
capture the entities in the videos.

 Is there a better way to speed up the workflow so that it will not be affected by the
duration of this individual step? Let’s focus on the model training steps that only take
one week to complete. What can we do when those short-running model training
steps are complete?

104 CHAPTER 5 Workflow patterns
When a model training step finishes, we have successfully obtained a trained machine
learning model. In fact, we can use this trained model in our model serving system
without waiting for the rest of the model training steps to complete. As a result, the
users can see the results of tagged entities from their model serving requests that con-
tain videos as soon as we have trained one model from one of the steps in the work-
flow. A diagram of this workflow is shown in figure 5.16.

 After a second model training step finishes, we can then pass the two trained
models directly to model serving. The aggregated inference results are presented to

Data ingestion Model selection
Result

aggregation

Model

serving 1
Model

training 2

Duration:

1 week
Model

serving 2
Model

training 3

Duration:

1 week

After the long-running model training step is excluded, the rest
of the model training steps will have consistent completion time.
Thus, the remaining steps in the workflow can be executed without
having to wait for any particular step that’s still running.

Figure 5.15 The new workflow after the long-running model training step has been removed

Data ingestion
Model

serving

Model
training 1
Duration:
2 weeks

Model
training 2
Duration:
1 week

Model

training 3

Duration:

1 week
Uses the trained model from this short-running
model training step that finishes earlier directly
in our model serving system without waiting for
the rest of the model training steps to complete

Figure 5.16 A workflow where the trained model from a short-running model training
step is applied directly to our model serving system without waiting for the remaining
model training steps to complete

1055.3 Synchronous and asynchronous patterns: Accelerating workflows with concurrency
users instead of the results from only the model we obtained initially, as shown in
figure 5.17.

Note that while we can continue to use the trained models for model selection and
model serving, the long-running model training step is still running. In other words,
the steps are executed asynchronously—they don’t depend on each other’s completion.
The workflow starts executing the next step before the previous step finishes.

 Sequential steps are performed one at a time, and only when one has completed
does the following step become unblocked. In other words, you must wait for a step to
finish to move to the next one. For example, the data ingestion step must be com-
pleted before we start any of the model training steps.

 Contrary to asynchronous steps, synchronous steps can start running at the same
time once dependencies are met. For example, the model training steps can run con-
currently, as soon as the previous data ingestion step has finished. A different model
training step does not have to wait for another to start. The synchronous pattern is
typically useful when you have multiple similar workloads that can run concurrently
and finish near the same time.

 By incorporating these patterns, the entire workflow will no longer be blocked by
the long-running model training step. Instead, it can continue using the already-
trained models from the short-running model training steps in the model serving sys-
tem, which can start handling users’ model serving requests.

 The synchronous and asynchronous patterns are also extremely useful in other dis-
tributed systems to optimize system performance and maximize the use of existing

Data ingestion
Model

selection

Result

aggregation

Model
training 1
Duration:
2 weeks

Model

serving 1

Model

training 2

Duration:

1 week
Model

serving 2

Model

training 3

Duration:

1 week

After a second model training step finishes, we can pass the two
trained models directly to be used for model serving, and the
aggregated inference results will be presented to users instead of
the results from only the one model that we obtained initially.

Both short-running model training steps have finished.

Figure 5.17 After a second model training step finishes, we pass the two trained models directly to model
serving. The aggregated inference results are presented to users instead of only the results from the model that
we obtained initially.

106 CHAPTER 5 Workflow patterns
computational resources—especially when the amount of computational resources
for heavy workloads is limited. We’ll apply this pattern in section 9.4.1.

5.3.3 Discussion

By mixing synchronous and asynchronous patterns, we can create more efficient
machine learning workflows and avoid any delays due to steps that prevent others
from executing, such as a long-running model training step. However, the models
trained from the short-running model training steps may not be very accurate. That is,
the models with simpler architectures may not discover as many entities in the videos
as the more complex model of the long-running model training step (figure 5.18).

As a result, we should keep in mind that the models we get early on may not be the
best and may only be able to tag a small number of entities, which may not be satisfac-
tory to our users.

 When we deploy this end-to-end workflow to real-world applications, we need to
consider whether users seeing inference results faster or seeing better results is more
important. If the goal is to allow users to see the inference results as soon as a new

Data ingestion
Model

selection

Result

aggregation

Model
training 1
Duration:
2 weeks

Identifies

Identifies

Model

serving 1

Model

training 2

Duration:

1 week
Model

serving 2

Model

training 3

Duration:

1 week

Figure 5.18 A model trained from two finished short-running model training steps with very simple models that
serve as a baseline. They can only identify a small number of entities, whereas the model trained from the most
time-consuming step can identify many more entities.

1075.4 Step memoization pattern: Skipping redundant workloads via memoized steps
model is available, they may not see the results they were expecting. However, if users
can tolerate a certain period of delay, it’s better to wait for more model training steps
to finish. Then, we can be selective about the models we’ve trained and pick the best-
performing models that provide very good entity-tagging results. Whether a delay is
acceptable is subject to the requirements of real-world applications.

 By using synchronous and asynchronous patterns, we can organize the steps in
machine learning workflows from structural and computational perspectives. As a
result, data science teams can spend less time waiting for workflows to complete to
maximize performance, thus reducing infrastructure costs and idling computational
resources. In the next section, we’ll introduce another pattern used very often in real-
world systems that can save more computational resources and make workflows run
even faster.

5.3.4 Exercises

1 What causes each step of the model training steps to start?
2 Are the steps blocking each other if they are running asynchronously?
3 What do we need to consider when deciding whether we want to use any avail-

able trained model as early as possible?

5.4 Step memoization pattern: Skipping redundant
workloads via memoized steps
With the fan-in and fan-out patterns in the workflow, the system can execute complex
workflows that train multiple machine learning models and pick the most performant
models to provide good entity-tagging results in the model serving system. The work-
flows we’ve seen in this chapter contain only a single data ingestion step. In other
words, the data ingestion step in the workflows always executes first before the remain-
ing steps, such as model training and model serving, can begin to process.

 Unfortunately, in real-world machine learning applications, the dataset does not
always remain unchanged. Now, imagine that new YouTube videos are becoming avail-
able and are being added to the YouTube-8M dataset every week. Following our exist-
ing workflow architecture, if we would like to retrain the model so that it accounts for
the additional videos that arrive on a regular basis, we need to run the entire workflow
regularly from scratch—from the data ingestion step to the model serving step—as
shown in figure 5.19.

 Say the dataset does not change, but we want to experiment with new model archi-
tectures or new sets of hyperparameters, which is very common for machine learn-
ing practitioners (figure 5.20). For example, we may change the model architecture
from simple linear models to more complex models such as tree-based models or
convolutional neural networks. We can also stick with the particular model architec-
ture we’ve used and only change the set of model hyperparameters, such as the
number of layers and hidden units in each of those layers for neural network mod-
els or the maximum depth of each tree for tree-based models. For cases like these, we

108 CHAPTER 5 Workflow patterns
still need to run the end-to-end workflow, which includes the data ingestion step to re-
ingest the data from the original data source from scratch. Performing data ingestion
again is very time-consuming.

5.4.1 The problem

Machine learning workflows usually start with a data ingestion step. If the dataset is
being updated regularly, we may want to rerun the entire workflow to train a fresh
machine learning model that takes the new data into account. To do so, we need to

Data ingestion Model training Model serving

New videos are added to the original
YouTube-8M dataset regularly.

The entire workflow is re-executed every
time the dataset has been updated.

Figure 5.19 A diagram of the entire workflow that is re-executed every time the dataset is
updated

Data ingestion Model training Model serving

The dataset does
not change.

New model type?

1. Linear model
2. Tree-based model
3. Convolutional neural networks
4. ...

New set of model hyperparameters?

1. Number of layers and hidden units
in each of the layers

2. Maximum depth of each tree
3. Maximum delta step we allow each

leaf output to be
4. ...

Figure 5.20 A diagram where the entire workflow is re-executed every time we
experiment with a new model type or hyperparameter even though the dataset has
not changed

1095.4 Step memoization pattern: Skipping redundant workloads via memoized steps
execute the data ingestion step every time. Alternatively, if the dataset is not updated,
but we want to experiment with new models, we still need to execute the entire work-
flow, including the data ingestion step. However, the data ingestion step can take a
long time to complete depending on the size of the dataset. Is there a way to make this
workflow more efficient?

5.4.2 The solution

Given how time-consuming data ingestion steps usually are, we probably don’t want to
re-execute it to retrain or update our entity tagging models every time the workflow
runs. Let’s first think about the root cause of this problem. The dataset of YouTube
videos is being updated regularly, and the new data is persisted to the data source on a
regular basis (e.g., once a month).

 We have two use cases in which we need to re-execute the entire machine learning
workflow:

 After the dataset has been updated, rerun the workflow to train a new model
that uses the updated dataset.

 We want to experiment with a new model architecture using that dataset that’s
already ingested, which may not have been updated yet.

The fundamental problem is the time-consuming data ingestion step. With the cur-
rent workflow architecture, the data ingestion step will need to be executed regardless
of whether the dataset has been updated.

 Ideally, if the new data has not been updated, we don’t want to re-ingest the data
that’s already collected. In other words, we would like to execute the data ingestion
step only when we know that the dataset has been updated, as shown in figure 5.21.

Now the challenge comes down to determining whether the dataset has been updated.
Once we have a way to identify that, we can conditionally reconstruct the machine
learning workflow and control whether we want to include a data ingestion step to be
re-executed (figure 5.21).

Data ingestion Model training Model serving

The dataset has beennot

updated yet.
New model type or hyperparameters?

Figure 5.21 A diagram where the data ingestion step is skipped when the dataset
has not been updated

110 CHAPTER 5 Workflow patterns
 One way to identify whether the dataset has been updated is through the use of
cache. Since our dataset is being updated regularly on a fixed schedule (e.g., once a
month), we can create a time-based cache that stores the location of the ingested and
cleaned dataset (assuming the dataset is located in a remote database) and the time-
stamp of its last updated time. The data ingestion step in the workflow will then be
constructed and executed dynamically based on whether the last updated timestamp
is within a particular window. For example, if the time window is set to two weeks, we
consider the ingested data as fresh if it has been updated within the past two weeks.
The data ingestion step will be skipped, and the following model training steps will
use the already-ingested dataset from the location that’s stored in the cache.

 Figure 5.22 illustrates the case where a workflow has been triggered, and we check
whether the data has been updated within the last two weeks by accessing the cache. If
the data is fresh, we skip the execution of the unnecessary data ingestion step and exe-
cute the model training step directly.

The time window can be used to control how old a cache can be before we consider
the dataset fresh enough to be used directly for model training instead of re-ingesting
the data again from scratch.

 Alternatively, we can store some of the important metadata about the data source
in the cache, such as the number of records in the original data source currently
available. This type of cache is called content-based cache since it stores information
extracted from a particular step, such as the input and output information. With
this type of cache, we can identify whether the data source has significant changes
(e.g., the number of original records has doubled in the data source). If there’s a
significant change, it’s usually a signal to re-execute the data ingestion step since the

Data ingestion Model training Model serving

The workflow is triggered.

Cache store

The data has not

been updated within
the last two weeks.

The data has been updated
within the last two weeks.

Writes new cache
or reads existing
cache that contains
timestamp information

Figure 5.22 The workflow has been triggered, and we check whether the data has been updated within
the last two weeks by accessing the cache. If the data is fresh, we skip the execution of the
unnecessary data ingestion step and execute the model training step directly.

1115.4 Step memoization pattern: Skipping redundant workloads via memoized steps
current dataset is very old and outdated. A workflow that illustrates this approach is
shown in figure 5.23.

This pattern, which uses the cache to determine whether a step should be executed or
skipped, is called step memoization. With the help of step memoization, a workflow
can identify the steps with redundant workloads that can be skipped without being
re-executed and thus greatly accelerate the execution of the end-to-end workflow.
We’ll apply this pattern in section 9.4.2.

5.4.3 Discussion

In real-world machine learning applications, many workloads besides data ingestion
are computationally heavy and time-consuming. For example, the model training step
uses a lot of computational resources to achieve high-performance model training
and can sometimes take weeks to complete. If we are only experimenting with other
components that do not require updating the trained model, it might make sense to
avoid re-executing the expensive model training step. The step memoization pattern
comes in handy when deciding whether you can skip heavy and redundant steps.

 If we are creating content-based caches, the decision about the type of information
to extract and store in the cache may not be trivial. For example, if we are trying to
cache the results from a model training step, we may want to consider using the
trained model artifact that includes information such as the type of machine learn-
ing model and the set of hyperparameters of the model. When the workflow is exe-
cuted again, it will decide whether to re-execute the model training step based on
whether we are trying the same model. Alternatively, we may store information like

Data ingestion Model training Model serving

The workflow is triggered.

Cache store

The number of records in
the dataset has updated so
a re-ingestion is required.

The number of records in the
dataset has not changed.

Writes new cache or
reads existing cache that
contains metadata about
the dataset itself

Figure 5.23 The workflow has been triggered, and we check whether the metadata collected from the
dataset, such as the number of records in the dataset, has changed significantly. If it’s not significant, we
then skip the execution of the unnecessary data ingestion step and execute the model training step directly.

112 CHAPTER 5 Workflow patterns
the performance statistics (e.g., accuracy, mean-squared error, etc.) to identify
whether it’s beyond a threshold and worth training a more performant model.

 Furthermore, when applying the step memoization pattern in practice, be aware
that it requires a certain level of maintenance efforts to manage the life cycle of the
created cache. For example, if 1,000 machine learning workflows run every day with
an average of 100 steps for each workflow being memoized, 100,000 caches will be cre-
ated every day. Depending on the type of information they store, these caches require
a certain amount of space that can accumulate rather quickly.

 To apply this pattern at scale, a garbage collection mechanism must be in place to
delete unnecessary caches automatically to prevent the accumulation of caches from
taking up a huge amount of disk space. For example, one simple strategy is to record
the timestamp when the cache is last hit and used by a step in a workflow and then
scan the existing caches periodically to clean up those that are not used or hit after a
long time.

5.4.4 Exercises

1 What type of steps can most benefit from step memoization?
2 How do we tell whether a step’s execution can be skipped if its workflow has

been triggered to run again?
3 What do we need to manage and maintain once we’ve used the pattern to apply

the pattern at scale?

5.5 Answers to exercises

Section 5.2

1 No, because we have no guarantee in what order concurrent copies of those
steps will run

2 Training an ensemble model depends on completing other model training
steps for the sub-models. We cannot use the fan-in pattern because the ensem-
ble model training step will need to wait for other model training to complete
before it can start running, which would require some extra waiting and delay
the entire workflow.

Section 5.3

1 Due to the variation in completion times for each model training step in the exist-
ing machine learning workflow, the start of each following step, such as model
selection and model serving, depends on the completion of the previous step.

2 No, asynchronous steps won’t block each other.
3 We need to consider whether we want to use any available trained model as

early as possible from the user’s perspective. We should think about whether it’s
more important for users to see inference results faster or see better results. If
the goal is to allow users to see the inference results as soon as a new model is

113Summary
available, those results may not be good enough or what users are expecting.
Alternatively, if certain delays are acceptable to users, waiting for more model
training steps to finish is preferable. You can then be selective about the trained
models and pick the best-performing models that will provide very good entity-
tagging results.

Section 5.4

1 Steps that are time-consuming or require a huge amount of computational
resources

2 We can use the information stored in the cache, such as when the cache is ini-
tially created or metadata collected from the step, to decide whether we should
skip the execution of a particular step.

3 We need to set up a garbage collection mechanism to recycle and delete the
created caches automatically.

Summary
 Workflow is an essential component in machine learning systems as it connects all

other components in a machine learning system. A machine learning workflow
can be as easy as chaining data ingestion, model training, and model serving.

 The fan-in and fan-out patterns can be incorporated into complex workflows to
make them maintainable and composable.

 The synchronous and asynchronous patterns accelerate the machine learning
workloads with the help of concurrency.

 The step memoization pattern improves the performance of workflows by skip-
ping duplicate workloads.

Operation patterns
In chapter 5, we focused on machine learning workflows and the challenges of
building them in practice. Workflow is an essential component in machine learn-
ing systems as it connects all components in the system. A machine learning work-
flow can be as easy as chaining data ingestion, model training, and model serving.
It can also be very complex when handling real-world scenarios, requiring addi-
tional steps and performance optimizations to be part of the entire workflow.

 Knowing the tradeoffs we may encounter when making design decisions to
meet specific business and performance requirements is essential. I previously
introduced a few established patterns commonly adopted in industry. Each pattern

This chapter covers
 Recognizing areas of improvement in machine

learning systems, such as job scheduling and
metadata

 Preventing resource starvation and avoiding
deadlocks using scheduling techniques, such
as fair-share scheduling, priority scheduling,
and gang scheduling

 Handling failures more effectively to reduce any
negative effect on users via the metadata pattern
114

1156.1 What are operations in machine learning systems?
can be reused to build simple to complex machine learning workflows that are effi-
cient and scalable. For example, we learned how to use the fan-in and fan-out patterns
to build a system to execute complex machine learning workflows (section 5.2). This
system can train multiple machine learning models and pick the most performant
ones to provide good entity-tagging results. We also used synchronous and asynchro-
nous patterns to make machine learning workflows more efficient and avoid delays
due to the long-running model training steps that block other steps (section 5.3).

 Since real-world distributed machine learning workflows can be extremely com-
plex, as seen in chapter 5, a huge amount of operational work is involved to help main-
tain and manage the various components of the systems, such as improvements to
system efficiency, observability, monitoring, deployment, etc. These operational work
efforts usually require a lot of communication and collaboration between the DevOps
and data science teams. For instance, the DevOps team may not have enough domain
knowledge in machine learning algorithms used by the data science team to debug
any encountered problems or optimize the underlying infrastructure to accelerate the
machine learning workflows. For a data science team, the type of computational work-
load varies, depending on the team structure and the way team members collaborate.
As a result, there’s no universal way for the DevOps team to handle the requests of dif-
ferent workloads from the data science team.

 Fortunately, operational efforts and patterns can be used to greatly accelerate the
end-to-end workflow. They can also reduce maintenance and communication efforts
when engineering teams are collaborating with teams of data scientists or machine
learning practitioners before the systems become production ready.

 In this chapter, we’ll explore some of the challenges involved when performing
operations on machine learning systems in practice and introduce a few commonly
used patterns. For example, we’ll use scheduling techniques to prevent resource star-
vation and avoid deadlocks when many team members are working collaboratively in
the same cluster with limited computational resources. We will also discuss the bene-
fits of the metadata pattern, which can provide insights into the individual steps in
machine learning workflows and help us handle failures more appropriately to reduce
any negative effects on users.

6.1 What are operations in machine learning systems?
In this chapter, I will focus on operational techniques and patterns that are commonly
seen in more than one component or step in a machine learning workflow, instead of
patterns that are specific to each individual component. For example, the workflow
shown in figure 6.1 includes three failed steps in the multiple model training steps
that occur after data ingestion and in the multiple model serving steps that occur after
the multiple model training steps. Unfortunately, each step is like a black box, and we
don’t know many details about any of them yet. At this point, we only know whether
they fail and whether the failures have affected the following steps. As a result, they
are really hard to debug.

116 CHAPTER 6 Operation patterns
The operation patterns I introduce in this chapter can increase the visibility of the
entire workflow to help us understand the root cause of the failures and give us some
ideas on how to handle the failures properly. In addition, the increased observability
may help us develop improvements in system efficiency that are beneficial to future
executions of similar workflows.

Given how large the scope of MLOps can be, depending on the context, I will only
focus on a selected set of mature patterns at the time of writing. You can expect some
updates to any future versions of this chapter as this field evolves.

What about MLOps?
We often hear about MLOps nowadays, which is a term derived from machine learning
and operations. It usually means a collection of practices for managing machine learn-
ing lifecycles in production, including practices from machine learning and DevOps, to
efficiently and reliably deploy and manage machine learning models in production.

MLOps usually require communication and collaboration between DevOps and data
science teams. It focuses on improving the quality of production machine learning
and embracing automation while maintaining business requirements. The scope of
MLOps can be extremely large and varies depending on the context.

Model training 1 Model serving 1

Data ingestion Model training 2 Model serving 2

Model training 3 Model serving 3

Failed

Failed

Failed

Three steps failed in this workflow, but we don’t know what the root
cause of the failures is just by looking at the workflow at a higher level.

We don’t know what exactly failed here.
Perhaps it failed to connect to the database
or the workers for model training ran out of memory.

Figure 6.1 An example workflow where multiple model training steps occur after data ingestion and
multiple model serving steps occur after the multiple model training steps. Note the three failed steps.

1176.2 Scheduling patterns: Assigning resources effectively in a shared cluster
6.2 Scheduling patterns: Assigning resources effectively
in a shared cluster
Let’s assume we have successfully set up the distributed infrastructure for users to sub-
mit distributed model training jobs that are scheduled to run on multiple CPUs by a
default scheduler. A scheduler is responsible for assigning computational resources to
perform tasks requested by the system. It is designed to keep computational resources
busy and allow multiple users to collaborate with shared resources more easily. Multi-
ple users are trying to build models using the shared computational resources in the
cluster for different scenarios. For example, one user is working on a fraud detection
model that tries to identify fraudulent financial behaviors such as international money
laundering. Another user is working on a condition monitoring model that can gener-
ate a health score to represent the current condition for industrial assets such as com-
ponents on trains, airplanes, wind turbines, etc.

 Our beginning infrastructure only provides a simple scheduler, which schedules
jobs on a first-come, first-served basis, as shown in figure 6.2. For example, the third
job is scheduled after the second job has been scheduled, and each job’s computa-
tional resources are allocated on scheduling.

In other words, the users who schedule jobs later must wait for all previously submit-
ted jobs to finish before their model training jobs can start executing. Unfortunately,
in the real world, users often want to submit multiple model training jobs to experi-
ment with different sets of models or hyperparameters. These multiple models block
other users’ model training jobs from executing since those previously submitted
experiments are already utilizing all the available computational resources.

 In this case, users must compete for resources (e.g., waking up in the middle of the
night to submit model training jobs when fewer users are using the system). As a result,
collaboration among team members may not be pleasant. Some jobs include training

Job 1 Job 2 Job 3

The current infrastructure uses a simple scheduler
that schedules jobs on a first-come, first-served basis.

Job 3 is scheduled after job 2 has been scheduled.

Figure 6.2 A diagram of an infrastructure that only provides a simple scheduler,
which schedules jobs on a first-come, first-served basis

118 CHAPTER 6 Operation patterns
very large machine learning models, which usually consume a lot of computational
resources and thus increase the time other users have to wait for their jobs to execute.

 In addition, if we only schedule some of the requested workers for a distributed
model training job, the model training cannot execute until all of the requested work-
ers are ready; the nature of the distribution strategy is distributed training with the
collective communication pattern. If necessary computational resources are lacking,
the job will never start, and the already-allocated computational resources for the
existing workers will be wasted.

6.2.1 The problem

We have set up a distributed infrastructure for users to submit distributed model train-
ing jobs scheduled to run by a default scheduler responsible for assigning computa-
tional resources to perform various tasks requested by the users. However, the default
scheduler only provides a simple scheduler that schedules jobs on a first-come, first-
served basis. As a result, when multiple users attempt to use this cluster, they often
need to wait a long time for available computational resources—that is, until the pre-
viously submitted jobs are completed. In addition, distributed model training jobs
cannot begin to execute until all of the requested workers are ready due to the nature
of the distributed training strategy, such as a collective communication strategy. Are
there any alternatives to the existing default scheduler so we could assign the compu-
tational resources more effectively in a shared cluster?

6.2.2 The solution

In our scenario, the problem starts to occur when multiple users are trying to use the
system to submit distributed model training jobs at the same time. Since the jobs are
being executed on a first-come, first-served basis, the waiting times for jobs submitted
later are long, even when those jobs are submitted by multiple users.

 It’s easy to identify different users, so an intuitive solution would be to limit how
much of the total computational resources each user is allotted. For example, say
there are four users (A, B, C, and D). Once user A submits a job that uses 25% of the
total available CPU cycles (https://techterms.com/definition/clockcycle), they can-
not submit another job until those allocated resources are released and ready to be
allocated to new jobs. Other users could submit jobs independent of how much
resources user A is using. For example, if user B starts two processes that use the
same amount of resources, those processes will be attributed 12.5% of the total CPU
cycles each, giving user B 25% of total resources. Each of the other users still
receives 25% of the total cycles. Figure 6.3 illustrates the resource allocations for
these four users.

 If a new user E starts a process on the system, the scheduler will reapportion the
available CPU cycles so that each user gets 20% of the whole (100% / 5 = 20%). The
way we schedule our workloads to execute in our cluster in figure 6.3 is called fair-share
scheduling. It is a scheduling algorithm for computer operating systems in which the

https://techterms.com/definition/clockcycle

1196.2 Scheduling patterns: Assigning resources effectively in a shared cluster
CPU usage is equally distributed among system users or groups, as opposed to equal
distribution among processes.

 So far, we have only discussed partitioning resources among the users. When multi-
ple teams are using the system to train their machine learning models and each team
has multiple members, we can partition users into different groups and then apply the
fair-share scheduling algorithm to both the users and the groups. Specifically, we first
divide the available CPU cycles among the groups and then divide further among the
users within each group. For example, if three groups contain three, two, and four
users, respectively, each group will be able to use 33.3% (100% / 3) of the total avail-
able CPU cycles. We can then calculate the available CPU cycles for each user in each
group as follows:

 Group 1—33.3% / 3 users = 11.1% per user
 Group 2—33.3% / 2 users = 16.7% per user
 Group 3—33.3% / 4 users = 8.3% per user

Figure 6.4 summarizes the resource allocation we calculated for each individual user
in the three groups.

 Fair-share scheduling would help us resolve the problem of multiple users running
distributed training jobs concurrently. We can apply this scheduling strategy at each
level of abstraction, such as processes, users, groups, etc. All users have their own pool
of available resources without interfering with each other.

 However, in some situations, certain jobs should be executed earlier. For example,
a cluster administrator would like to submit jobs for cluster maintenance, such as

User A (job 1)
12.5%

User A (job 2)
12.5%

User B
25%

User C
25%

User D
25%

User C’s resources are independent of
how much resources user A is using.

The resources are only split among the
total available CPU cycles for user A.

Figure 6.3 The resource allocations for the four users (A, B, C, and D)

120 CHAPTER 6 Operation patterns
deleting jobs that have been stuck and taking up resources for a long time. Executing
these cluster maintenance jobs earlier would help make more computational
resources available and thus unblock others from submitting new jobs.

 Let’s assume the cluster administrator is user 1 in group 1. Two other nonadmin
users are also in group 1, as in the previous example. User 2 is running job 1, which is
using all of the 11.1% of the CPU cycles allocated to them based on the fair-share
scheduling algorithm.

 Even though user 2 has enough computational power to perform job 1, the job
depends on the success of job 2 from user 3. For example, job 2 from user 3 pro-
duces a table in the database that job 1 needs to perform a distributed model train-
ing task. Figure 6.5 summarizes the resource allocations and usages for each user in
the first group.

 Unfortunately, job 2 is stuck due to an unstable database connection and keeps try-
ing to reconnect to produce the data that job 1 needs. To fix the problem, the admin-
istrator needs to submit job 3 that kills and then restarts the stuck job 2.

 Now assume that the admin user 1 is already using 11.1% of the total CPU cycles
available. As a result, since maintenance job 3 is submitted later than all previous jobs,
it is added to the job queue and waits to be executed when resources are released,
based on the first-come, first-served nature of our fair-share scheduling algorithm. As
a result, we encounter a deadlock where no job can proceed, as illustrated in figure 6.6.

 To fix this problem, we can allow users to assign priorities to each of the jobs so that
jobs with higher priority are executed earlier, in contrast to the first-come, first-served
nature of the fair-share scheduling algorithm. In addition, the jobs that are already

Each group has the
same amount of
allocated resources.

Each user in this
group has the same
percentage of
allocated resources.

Group 1
33.3%

Group 2
33.3%

Group 3
33.3%

User 1
11.1%

User 2
11.1%

User 3
11.1%

User 4
16.7%

User 5
16.7%

User 6
8.3%

User 7
8.3%

User 8
8.3%

User 9
8.3%

Figure 6.4 A summary of the resource allocation for each user in three groups

1216.2 Scheduling patterns: Assigning resources effectively in a shared cluster
running can be preempted or evicted to make room for jobs with higher priorities if not
enough computational resources are available. This way of scheduling jobs based on
priorities is called priority scheduling.

Job 1 depends on
a table that job 2
produces in the
database.

Group 1
33.3%

Group 2
33.3%

Group 3
33.3%

User 1 (admin)
11.1% (fully utilized)

User 2
11.1% (job 1)

User 3
11.1% (job 2)

User 4
16.7%

User 5
16.7%

User 6
8.3%

User 7
8.3%

User 8
8.3%

User 9
8.3%

Figure 6.5 A summary of resource allocations and usages for each user in the first group

We are already using 11.1%
of the total CPU cycles
available so the new job 3
is being queued.

Group 1
33.3%

Group 2
33.3%

Group 3
33.3%

User 1 (admin)
11.1% (fully utilized and

new job 3 is queued)

User 2
11.1% (job 1)

User 3
11.1% (job 2)

User 4
16.7%

User 5
16.7%

User 6
8.3%

User 7
8.3%

User 8
8.3%

User 9
8.3%

Job 1 depends on a table
that job 2 produces in
the database.

Job 2 is stuck due to
unstable data base
connection and keeps
trying to reconnect in
order to produce the
data that job 1 needs.

Figure 6.6 The admin user (user 1) in group 1 is trying to schedule a job to restart the stuck job (job 3) but
encounters a deadlock where no job can proceed.

122 CHAPTER 6 Operation patterns
 Say, for example, four jobs (A, B, C, and D) have been submitted concurrently.
Each job has been marked with priorities by the users. Jobs A and C are high priority,
whereas job B is low priority, and job D is medium priority. With priority scheduling,
jobs A and C will be executed first since they have the highest priorities, followed by
the execution of job D with medium priority and, eventually low-priority job B. Fig-
ure 6.7 illustrates the order of execution for the four jobs (A, B, C, and D) when prior-
ity scheduling is used.

Let’s consider another example. Assume three jobs (B, C, and D) with different prior-
ities are submitted concurrently and are executed based on their priorities, similar to
the previous example. If another job (job A) with high priority is submitted after job
B, which is low priority, has already started running, job B will be preempted, and
then job A will start. The computational resources previously allocated to job B will be
released and taken over by job A. Figure 6.8 summarizes the order of execution for
the four jobs (A, B, C, and D) where the low-priority job B already running is pre-
empted by a new job (job A) with higher priority.

 With priority scheduling, we can effectively eliminate the problem we previously
encountered, where jobs can only be executed sequentially on a first-come, first-
served basis. Jobs can now be preempted in favor of tasks with high priorities.

 However, for distributed machine learning tasks—specifically, model training
tasks—we want to ensure that all workers are ready before starting distributed train-
ing. Otherwise, the ones that are ready would be waiting for the remaining workers
before the training can proceed, which wastes resources.

 For example, in figure 6.9, three worker processes in the same process group are
performing an allreduce operation. However, two workers are not ready because the

Job A

Priority: high

Job B

Priority: low

Job C

Priority: high

Job D

Priority: medium

1. These two jobs are executed first
since they have the highest priorities.

3. Job B is executed last since
it has the lowest priority.

2. Job D is executed next
right after jobs A and C.

Figure 6.7 The order of execution for the four concurrently submitted jobs (A, B, C, and D) when priority
scheduling is used

1236.2 Scheduling patterns: Assigning resources effectively in a shared cluster
underlying distributed cluster is experiencing an unstable network. As a result, two of
the processes (processes 1 and 3) that depend on those affected communications would
not receive some of the calculated gradient values (v0 and v2) on time (denoted by
question marks in figure 6.9), and the entire allreduce operation is stuck until every-
thing is received.

Gang scheduling is usually used to run distributed model training tasks. It ensures that
if two or more workers communicate with each other, they will be ready to do so at the

Job B

Priority: low

Job A

Priority: high

Job C

Priority: high

Job D

Priority: medium

1. These three jobs are executed based on their priorities (C D B).→ →

2. Job A (high priority) is submitted after job B (low
priority) has already started running.

3. Job B will be preempted, and then job A will start.

Figure 6.8 The order of execution for the four jobs (A, B, C, and D) where the running low-priority job is
preempted by a new job with higher priority

Process

2

Process

3

Process

1

Group 2

[?, v1, v2]

[v0, v1, v2]

[v0, v1, ?]

Process

2

Process

3

Process

1

Group 1

Unstable network

Unstable network

[v0]

[v1]

[v2]

These worker processes
won’t start sending gradients
until all of them are ready
when the network becomes stable.

Two of the processes that depend
on those affected communications
do not receive some of the
calculated gradient values (v0 and
v2) on time.

Figure 6.9 An example of the allreduce process with an unstable network between the worker processes that
blocks the entire model training process

124 CHAPTER 6 Operation patterns
same time. In other words, gang scheduling only schedules workers when enough
workers are available and ready to communicate.

 If they are not gang scheduled, one worker may wait to send or receive a message
while the other worker is sleeping, and vice versa. When the workers are waiting for
other workers to be ready for communication, we are wasting allocated resources on
the workers that are ready, and the entire distributed model training task is stuck.

 For example, for collective communication–based distributed model training
tasks, all workers must be ready to communicate the calculated gradients and update
the models on each worker to complete an allreduce operation. I assume that the
machine learning framework does not support elastic scheduling yet, which we will
discuss in the next section. As shown in figure 6.10, the gradients are all denoted by
question marks since they have not yet arrived in any of those worker processes in the
second worker group. All worker processes have not yet started sending the gradients,
and they won’t until they all move to the ready state after the network stabilizes.

With gang scheduling, we can make sure not to start any of the worker processes until
all workers are ready, so none of them will be waiting for the remaining worker pro-
cesses. As a result, we can avoid wasting computational resources. Once the network
becomes stable, all of the gradients (v0, v1, and v2) arrive on each worker process
after a successful allreduce operation, as shown in figure 6.11.

NOTE The details of different types of gang scheduling and their algorithms
are out of the scope of this book and will not be discussed here. However, we
will be using an existing open source framework to integrate gang scheduling
into distributed training in the last part of the book.

Process

2

Process

3

Process

1

Group 2

[?, ?, ?]

[?, ?, ?]

[?, ?, ?]

Process

2

Process

3

Process

1

Group 1

Unstable network

Unstable network

[v0]

[v1]

[v2]

All of the worker
processes will not
start sending the
gradients until they
are all in a ready state
when the network
becomes stable.

Figure 6.10 With gang scheduling, the worker processes will not start sending the gradients until they are
all in the ready state after the network becomes stable.

Process

2

Process

3

Process

1

Group 2

[?, ?, ?]

[?, ?, ?]

[?, ?, ?]

Process

2

Process

3

Process

1

Group 1

Unstable network

Unstable network

[v0]

[v1]

[v2]

All of the worker
processes will not
start sending the
gradients until they
are all in a ready state
when the network
becomes stable.

1256.2 Scheduling patterns: Assigning resources effectively in a shared cluster
By incorporating different scheduling patterns, we are able to address various prob-
lems that arise when multiple users are using the infrastructure to schedule different
types of jobs. Although we looked at a few specific use cases for these scheduling pat-
terns, the patterns can be found in many systems that require careful management of
computational resources, especially when resources are scarce. Many scheduling tech-
niques are applied to even lower-level operating systems to make sure the applications
run efficiently and reasonably share resources.

6.2.3 Discussion

We’ve seen how fair-share scheduling can help us solve the problem of multiple users
running distributed training jobs concurrently. Fair-share scheduling allows us to
apply a scheduling strategy at each level of abstraction, such as processes, users, groups,
etc. We also discussed priority scheduling, which can be used to effectively eliminate
the problem we encounter when jobs can only be executed sequentially on a first-
come, first-served basis. Priority scheduling allows jobs to be executed based on their
priority levels, preempting low-priority jobs to make room for high-priority jobs.

 With priority scheduling, if a cluster is used by a large number of users, a malicious
user could create jobs at the highest possible priority, causing other jobs to be evicted
or not get scheduled at all. To deal with this potential problem, administrators of real-
world clusters usually enforce certain rules and limits to prevent users from creating a
huge number of jobs at high priorities.

 We also discussed gang scheduling, which ensures if two or more workers commu-
nicate with each other, they will all be ready to communicate at the same time. Gang
scheduling is especially helpful for collective communication–based distributed

Process

2

Process

3

Process

1

Group 2

[v0, v1, v2]

[v0, v1, v2]

[v0, v1, v2]

Process

2

Process

3

Process

1

Group 1

Stable network

Stable network

[v0]

[v1]

[v2]

All of the gradients
arrive on each of the
worker processes
after a successful
allreduce operation
once the network
is stable.

Figure 6.11 All of the gradients arrive on each of the worker processes after a successful allreduce operation
once the network is stable.

126 CHAPTER 6 Operation patterns
model training jobs where all workers need to be ready to communicate the calcu-
lated gradients to avoid wasting computational resources.

 Some machine learning frameworks support elastic scheduling (see chapter 3),
which allows distributed model training jobs to start with any number of workers
available without waiting for all the requested workers to be ready. In this case, gang
scheduling is not suitable because we would need to wait for all workers to be ready.
Instead, we can begin making significant progress toward model training with elastic
scheduling.

 Because the number of workers may change during model training, the batch size
(sum of the size of mini-batches on each worker) will affect the model training accu-
racy. In that case, additional modifications to the model training strategy are needed.
For example, we can support a customized learning rate scheduler that will account
for epoch or batch or adjust the batch size dynamically based on the number of work-
ers. Together with these algorithmic improvements, we can allocate and utilize exist-
ing computational resources more wisely and improve the user experience.

 In practice, distributed model training jobs greatly benefit from scheduling pat-
terns like gang scheduling. As a result, we can avoid wasting computational resources.
However, one problem we might be neglecting is that any of these worker processes
scheduled by gang scheduling may fail, leading to unexpected consequences. Often
it’s hard to debug these types of failures. In the next section, I’ll introduce a pattern
that will make debugging and handling failures easier.

6.2.4 Exercises

1 Can we only apply fair-share scheduling at the user level?
2 Is gang scheduling suitable for all distributed model training jobs?

6.3 Metadata pattern: Handle failures appropriately
to minimize the negative effect on users
When building the most basic machine learning workflow that includes only data
ingestion, model training, and model serving, where each component only appears
once as an individual step in the workflow, everything seems pretty straightforward.
Each step runs sequentially to reach completion. If any of these steps fail, we pick up
where it’s left off. For example, imagine the model training step has failed to take the
ingested data (e.g., lost the connection to the database where the ingested data is
stored). We can retry the failed step and easily continue model training without rerun-
ning the entire data ingestion process, as shown in figure 6.12.

 However, when the workflow gets more complicated, any failures are not trivial to
handle. For example, consider the workflow from chapter 5. This workflow trains
models via three model training steps that arrive at different accuracies when tag-
ging entities. Then, a model selection step picks the top two models with at least
90% accuracy trained from the first two model training steps, which will be used in

1276.3 Metadata pattern: Handle failures appropriately to minimize the negative effect on users
the following two separate model serving steps. The results from the two model serv-
ing steps are then aggregated via a result aggregation step to present to users.

 Now let’s consider the case where the second and the third model training steps
have both failed during execution (e.g., some of the workers allocated for model
training are preempted). These two model training steps would have provided both
the most and the least accurate model if they had finished successfully, as shown in fig-
ure 6.13.

 At this point, one might think that we should rerun both steps to proceed to the
model selection and model serving steps. However, in practice, since we already
wasted some time training part of the models, we may not want to start everything
from scratch. It would be much longer before our users can see the aggregated results
from our best models. Is there a better way to handle such kinds of failures?

6.3.1 The problem

For complicated machine learning workflows, such as the one we discussed in chap-
ter 5, where we want to train multiple models and then select the top-performing
models for model serving, the decision on which strategy to use to handle failures of
certain steps due to real-world requirements is not always trivial. For example, when
two out of three model training steps fail due to preempted workers, we don’t want to
start training those models from scratch, which greatly increases the time needed to
complete the workflow. How do we handle these failures appropriately so the negative
effect on users can be minimized?

Data ingestion Model training

Retrying...

Failed

If any of the steps fail, we can easily retry
the failed step and pick up from what’s left.

Model serving

Baseline workflow that includes only data ingestion, model
training, and model serving where each of these components
only appears once as individual steps in the workflow

Figure 6.12 A baseline workflow where the model training step has failed to
take the ingested data. We retry the failed step and pick up from the failed step
to continue model training without rerunning the entire data ingestion process.

128 CHAPTER 6 Operation patterns
6.3.2 The solution

Whenever we encounter a failure in a machine learning workflow, we should first
understand the root cause (e.g., loss of network connections, lack of computational
resources, etc). Knowing the root cause is important because we need to understand
the nature of the failure to predict whether retrying the failed steps would help. If the
failures are due to some long-lasting shortages that could very likely lead to repetitive
failures when retrying, we could better utilize the computational resources to run some
other tasks. Figure 6.14 illustrates the difference in the effectiveness of retrying for per-
manent and temporary failures. When we retry the model training step when encoun-
tering permanent failures, the retries are ineffective and lead to repetitive failures.

 For example, in our case, we should first check whether the dependencies of a
model training step are met, such as whether the ingested data from the previous step
is still available. If the data has been persisted to a local disk to a database, we can pro-
ceed to model training. However, if the data was located in memory and lost when the
model training step failed, we cannot start model training without ingesting the data
again. Figure 6.15 shows the process of restarting the data ingestion step when there’s
a permanent failure during model training.

Data ingestion

Model
training 1

Accuracy: 91%

Model

serving 1
Model

training 2
Accuracy: 93%

(Failed)
Model

serving 2
Model

training 3
Accuracy: 85%

(Failed)

Result

aggregation

Model

selection

Three different model training steps train
different models that arrive at different
accuracies when tagging entities.

This step picks the top two models
that will be used in the following
two separate model serving steps.

These two model training steps both failed during
execution (e.g., some of the workers allocated for
model training are preempted).

These two model training steps would have provided
both the most and the least accurate model if they
finished successfully.

The results from the two
model serving steps are
then aggregated via a result
aggregation step to present
to users.

Figure 6.13 A machine learning workflow that trains models with different accuracies when tagging entities.
The model selection step identifies the top two models with at least 90% accuracy to be used for model serving.
The accuracies are crossed out in these two steps because the steps failed without arriving at the expected
accuracies. The results from the two model serving steps are then aggregated to present to users.

1296.3 Metadata pattern: Handle failures appropriately to minimize the negative effect on users
Similarly, if the model training step fails due to preempted training workers or out-of-
memory problems, we need to make sure we still have sufficient computational resources
allocated to rerun the model training step.

 However, we won’t know what information to analyze to determine the root cause
unless we intentionally record it as metadata during the runtime of each step in the
entire machine learning workflow. For example, for each model training step, we
can record metadata on the availability of the ingested data and whether different
computational resources, such as memory and CPU usage, exceeded the limit before
the step failed.

 Figure 6.16 is a workflow where the model training step failed. Metadata is col-
lected every 5 minutes on memory usage (in megabytes) and the availability of the

Data ingestion

Retrying
(ineffective)

Retrying
(effective)

Model training
(Failed)

Model serving

Permanent failures:

1. Disappeared training data
2. ...

Temporary failures:

1. Lack of resources
2. Loss of network connections
3. ...

Figure 6.14 The difference in the effectiveness of retrying for permanent and
temporary failures

Data ingestion

RetryingRestarting

Model training
(Failed)

Model serving

Disappeared training data in memory (permanent failure)

If the data was located in memory and was lost when
the model training step failed, then we cannot start
model training without starting ingesting the data again.

Figure 6.15 The process of restarting the data ingestion step when a permanent
failure occurs during model training

130 CHAPTER 6 Operation patterns
training data (yes/no) during the runtime of this step. We can notice a sudden huge
memory spike from 23 MB to 200 MB after 30 minutes. In this case, we can retry this
step with an increase in requested memory, and it would then successfully produce a
trained model that will be used for the next model serving step.

In practice, for complex workflows like in figure 6.13, even when we know all the
dependencies of model training steps are met (e.g., we have enough computational
resources and a good database connection to access the data source), we should also
think about whether we want to handle the failures and how we’d like to handle them.
We’ve spent a lot of time on the training steps already, but now, the steps have sud-
denly failed, and we’ve lost all the progress. In other words, we don’t want to start
re-training all the models from scratch, which may add considerable time before we
can deliver the aggregated results from our best models to users. Is there a better way
to handle this without a huge effect on our user experience?

 In addition to the metadata we’ve recorded for each of the model training steps,
we could save more useful metadata that can be used to figure out whether it’s worth
rerunning all the model training steps. For example, the model accuracy over time
indicates whether the model is being trained effectively.

 Model accuracy that remains steady or even decreases (from 30% to 27%, as shown
in figure 6.17) may indicate that the model already converges and continuing training
would no longer improve model accuracy. In this example, even though two model
training steps fail, it’s not necessary to retry the third model training step from scratch

Data ingestion
Model training

(Failed)
Model serving

There’s a huge memory spike from
23 MB to 200 MB suddenly after
30 minutes.

Metadata (collected every 5 min):
Memory usage: 10 MB, 20 MB, 25 MB, 23 MB, 200 MB
Data availability: yes, yes, yes, yes, yes

Trained model

Retrying (with increased memory)

Successful retry produces a trained model
that will be used next for model serving.

Figure 6.16 An example workflow where the model training step failed, with the metadata
collected showing an unexpected memory spike during runtime

1316.3 Metadata pattern: Handle failures appropriately to minimize the negative effect on users
since it would lead to a model that converges fast but with low accuracy. Another
example of metadata that can be potentially useful is the percentage of completed
model training (e.g., if we’ve iterated through all the requested number of batches
and epochs, the completion is 100%).

Once we have this additional metadata about model training steps, we can tell how
well each started model training step progresses. For example, for the workflow in fig-
ure 6.18, we could potentially conclude ahead of time that the third model training
step was progressing very slowly (only 1% of completion every 30 minutes) due to a
smaller amount of allocated computational resources or more complex model archi-
tecture. We know that it’s highly likely that, given the limited time, we end up with a
model with low accuracy. As a result, we can disregard this model training step in favor
of allocating more computational resources to the other model training steps with
more potential, which leads to more accurate models faster.

 Recording these metadata may help us derive more insights specific to each of the
failed steps in the end-to-end machine learning workflow. We can then decide on a
strategy to handle the failed steps appropriately to avoid wasting computational
resources and minimize the effect on existing users. The metadata patterns provide
great visibility into our machine learning pipelines. They can also be used to search,
filter, and analyze the artifacts produced in each step in the future if we run a lot of
pipelines on a regular basis. For example, we might want to know which models are

The model accuracy decreases, which might indicate that the
model already converges and continuing training would no
longer improve the model accuracy.

Data ingestion

It’s not necessary to
retry the third model
training step from
scratch since it would
lead to a model that
converges fast but
with low accuracy.

Model
training 1

Accuracy: 91%

Model
training 2
(Failed)

Model
training 3
(Failed)

Model

selection

Metadata (collected ev 30 min):ery
Memory usage: 101 M , 102 MB, 125 MBB , ...
Data availability: yes, yes, yes, ...
Accuracy: 80%, 88%, 89%, ...

Metadata (collected ev 30 min):ery
Memory usage: 230 M , 242 MB, 212 MBB , ...
Data availability: yes, yes, yes, ...
Accuracy: 20%, 40%, 65%, ...

Metadata (collected ev 30 min):ery
Memory usage: 101 M , 102 MB, 125 MBB , ...
Data availability: yes, yes, yes, ...
Accuracy: 20%, 30%, 27%, ...

Figure 6.17 An example workflow where two model training steps fail and one has decreasing model
accuracy

132 CHAPTER 6 Operation patterns
performant or which datasets contribute the most to those models based on the his-
torical training metrics.

6.3.3 Discussion

With the help of the metadata pattern, we can gain additional insights into the indi-
vidual steps in machine learning workflows. Then, if any fail, we can respond based
on what’s beneficial to our users and thus reduce any negative effect due to the step
failures.

 One common type of metadata is the various network performance (http://mng
.bz/D4lR) metrics while the model is being trained (e.g., bandwidth, throughput,
latency). This type of information is very useful for detecting when certain workers
experience poor network performance that blocks the entire training process. We can
take down slow workers and start new workers to continue training, assuming the under-
lying machine learning frameworks support elastic scheduling and fault-tolerance (see
chapter 3). For example, in figure 6.19, based on the metadata, the worker on the
right-hand side has extremely high latency (10 times the latency of the other workers),

This model training step was progressing very slowly
due to smaller amount of allocated computational
resources or more complex model architecture.

Data ingestion

We know that it is highly
likely to end up with a
model with low accuracy
given the limited time.

As a result, we can
disregard this model
training step in favor
of allocating more
computational resources
to the model training
steps with more potential,
which leads to more
accurate models faster .

Model
training 1

Accuracy: 91%

Model
training 2
(Failed)

Model
training 3
(Failed)

Model

selection

Metadata (collected every 30 min):
Memory usage: 101 MB, 102 MB, 125 MB, ...
Data availability: yes, yes, yes, ...
Accuracy: 80%, 88%, 89%, …
Progress: 50%, 70%, 90%, ...

Metadata (collected every 30 min):
Memory usage: 230 MB, 242 MB, 212 MB, ...
Data availability: yes, yes, yes, ...
Accuracy: 20%, 40%, 65%, …
Progress: 70%, 85%, 95%, ...

Metadata (collected every 30 min):
Memory usage: 101 MB, 102 MB, 125 MB, ...
Data availability: yes, yes, yes, ...
Accuracy: 20%, 30%, 31%, …
Progress: 10%, 11%, 12%, ...

Figure 6.18 An example workflow where two model training steps fail. One is disregarded because it is
progressing very slowly, and the model will likely have low accuracy given the limited time.

http://mng.bz/D4lR
http://mng.bz/D4lR
http://mng.bz/D4lR

1336.3 Metadata pattern: Handle failures appropriately to minimize the negative effect on users
which slows down the entire model training process. Ideally, this worker would be
taken down and restarted.

One additional benefit of introducing the metadata pattern to our machine learn-
ing workflows is to use the metadata recorded to establish relationships between the
individual steps or across different workflows. For example, modern model manage-
ment tools can use the recorded metadata to help users build the lineage of the
trained models and visualize what individual steps/factors contributed to the model
artifacts.

6.3.4 Exercises

1 If the training step failed due to the loss of training data source, what should
we do?

2 What type of metadata can be collected if we look at individual workers or
parameter servers?

Worker node

Push updates Push updatesPull updates Pull updates Pull updates

Parameter server 1 Parameter server 2 Parameter server 3

Push updates

Worker node Worker node

Metadata:
Bandwidth: 40 Mbps
Throughput: 2 Mbps
Latency: 50 ms

Metadata:
Bandwidth: 50 Mbps
Throughput: 1.5 Mbps
Latency: 55 ms

Metadata:
Bandwidth: 45 Mbps
Throughput: 2.3 Mbps
Latency: 500 ms

This worker node has extremely high latency (10
times the latency of the other workers) that slows
down the entire model training process.

Figure 6.19 An example parameter server–based model training where the worker on the right-hand side has
extremely high latency (10 times the latency of the other workers), which slows down the entire model training
process

134 CHAPTER 6 Operation patterns
6.4 Answers to exercises

Section 6.2

1 No, we can apply this scheduling strategy at each level of abstraction, such as
processes, users, groups, etc.

2 No, some machine learning frameworks support elastic scheduling, which
allows distributed model training jobs to start with any number of workers avail-
able without waiting for all the requested workers to be ready for communica-
tion. In this case, gang scheduling is not suitable.

Section 6.3

1 We should rerun data ingestion before retrying the model training step since
this failure is permanent, and simply retrying would lead to repetitive failures.

2 Various network performance metrics while the model is being trained (e.g.,
bandwidth, throughput, and latency). This type of information is very useful
when we want to detect when workers experience poor network performance
that blocks the entire training process.

Summary
 There are different areas of improvement related to operations in machine

learning systems, such as job scheduling and metadata.
 Various scheduling patterns, such as fair-share scheduling, priority scheduling,

and gang scheduling, can be used to prevent resource starvation and avoid
deadlocks.

 We can collect metadata to gain insights from machine learning workflows and
handle failures more appropriately to reduce any negative effects on users.

Part 3

Building a distributed
machine learning workflow

If you’ve survived the training up to this point, congratulations! You’ve just
learned many common patterns that can be used in real-world machine learning
systems, as well as understanding the tradeoffs when deciding which patterns to
apply to your system.

 In the last part of the book, we will build an end-to-end machine learning sys-
tem to apply what we learned previously. We will gain hands-on experience
implementing many patterns previously learned in this project. We’ll learn how
to solve problems at a larger scale and take what’s developed on our laptops to
large distributed clusters.

 In chapter 7, we’ll go through the project background and system compo-
nents. Then, we’ll go through the challenges in each of these components and
share the patterns that we will apply to address them. Chapter 8 covers the basic
concepts of the four technologies (TensorFlow, Kubernetes, Kubeflow, and Argo
Workflows) and provides an opportunity to gain hands-on experience in each
one of them to prepare our implementation of the final project.

 In the last chapter of the book, we’ll implement the end-to-end machine
learning system with the architecture we designed in chapter 7. Our complete
implementation of each of the components will incorporate the previously dis-
cussed patterns. We’ll use the technologies we learned in chapter 8 to build dif-
ferent components of a distributed machine learning workflow.

Project overview
and system architecture
In the previous chapters, we learned to choose and apply the correct patterns for
building and deploying distributed machine learning systems to gain practical
experience managing and automating machine learning tasks. In chapter 2, I intro-
duced a couple of practical patterns that can be incorporated into data ingestion,
usually the first process of a distributed machine learning system and responsible
for monitoring incoming data and performing necessary preprocessing steps to
prepare for model training.

This chapter covers
 Providing a high-level overall design of our system

 Optimizing the data ingestion component for
multiple epochs of the dataset

 Deciding which distributed model training strategy
best minimizes overhead

 Adding model server replicas for high-
performance model serving

 Accelerating the end-to-end workflow of our
machine learning system
137

138 CHAPTER 7 Project overview and system architecture
 In chapter 3, we explored some challenges dealing with the distributed training
component, and I introduced a couple of practical patterns that can be incorpo-
rated into the component. The distributed training component is the most critical
part of a distributed machine learning system and is what makes the system unique
from general distributed systems. In chapter 4, we covered the challenges involved
in distributed model serving systems, and I introduced a few commonly used pat-
terns. You can use replicated services to achieve horizontal scaling and the sharded
services pattern to process large model serving requests. You also learned how to
assess model serving systems and determine whether the event-driven design is ben-
eficial in real-world scenarios.

 In chapter 5, we discussed machine learning workflows, one of the most essential
components in machine learning systems, as it connects all other components in a
machine learning system. Finally, in chapter 6, we discussed some operational
efforts and patterns that can greatly accelerate the end-to-end workflow and reduce
maintenance and communication efforts when engineering teams collaborate with
teams of data scientists or machine learning practitioners before the systems
become production ready.

 For the remaining chapters of the book, we will build an end-to-end machine
learning system to apply what we learned previously. You will gain hands-on experi-
ence implementing many patterns we’ve previously discussed. You’ll learn how to
solve problems at a larger scale and take what you’ve developed on your laptop to
large distributed clusters. In this chapter, we’ll go through the project background
and system components. Then we’ll go through the challenges related to the compo-
nents and discuss the patterns we can apply to address them.

 Note that although we won’t dive into the implementation details in this chapter,
in the remaining chapters, we’ll use several popular frameworks and cutting-edge
technologies—particularly TensorFlow, Kubernetes, Kubeflow, Docker, and Argo
Workflows—to build the components of a distributed machine learning workflow.

7.1 Project overview
For this project, we will build an image classification system that takes raw images
downloaded from the data source, performs necessary data cleaning steps, builds a
machine learning model in a distributed Kubernetes cluster, and then deploys the
trained model to the model serving system for users to use. We also want to establish
an end-to-end workflow that is efficient and reusable. Next, I will introduce the proj-
ect background and the overall system architecture and components.

7.1.1 Project background

We will build an end-to-end machine learning system to apply what we learned previ-
ously. We’ll build a data ingestion component that downloads the Fashion-MNIST
dataset and a model training component to train and optimize the image classifica-
tion model. Once the final model is trained, we’ll build a high-performance model
serving system to start making predictions using the trained model.

1397.1 Project overview
 As previously mentioned, we will use several frameworks and technologies to build
distributed machine learning workflow components. For example, we’ll use Tensor-
Flow with Python to build the classification model on the Fashion-MNIST dataset and
make predictions. We’ll use Kubeflow to run distributed machine learning model
training on a Kubernetes cluster. Furthermore, we’ll use Argo Workflows to build a
machine learning pipeline that consists of many important components of a distrib-
uted machine learning system. The basics of these technologies will be introduced in
the next chapter, and you’ll gain hands-on experience with them before diving into
the actual implementation of the project in chapter 9. In the next section, we’ll exam-
ine the project’s system components.

7.1.2 System components

Figure 7.1 is the architecture diagram of the system we will be building. First, we will
build the data ingestion component responsible for ingesting data and storing the
dataset in the cache using some of the patterns discussed in chapter 2. Next, we will
build three different model training steps that train different models and incorporate
the collective communication pattern addressed in chapter 3. Once we finish the
model training steps, we will build the model selection step that picks the top model.
The selected optimal model will be used for model serving in the following two steps.
At the end of the model serving steps, we aggregate the predictions and present the
result to users. Finally, we want to ensure all these steps are part of a reproducible
workflow that can be executed at any time in any environment.

 We’ll build the system based on the architecture diagram in Figure 7.1 and dive
into the details of the individual components. We’ll also discuss the patterns we can
use to address the challenges in building those components.

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Three model training
steps train different
models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

This step picks the top
model that will be used
in the following model
serving steps.

The results from the two
model serving steps are
then aggregated via a
result aggregation step
to present to users.

Figure 7.1 The architecture diagram of the end-to-end machine learning system we will be building

140 CHAPTER 7 Project overview and system architecture
7.2 Data ingestion
For this project, we will use the Fashion-MNIST dataset, introduced in section 2.2, to
build the data ingestion component, as shown in figure 7.2. This dataset consists of a
training set of 60,000 examples and a test set of 10,000 examples. Each example is
a 28 × 28 grayscale image that represents one Zalando’s article image associated with a
label from 10 classes. Recall that the Fashion-MNIST dataset is designed to serve as
a direct drop-in replacement for the original MNIST dataset for benchmarking
machine learning algorithms. It shares the same image size and structure of training
and testing splits.

As a recap, figure 7.3 is a screenshot of the collection of images for all 10 classes
(T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot)
from Fashion-MNIST, where each class takes three rows in the screenshot.

 Figure 7.4 is a closer look at the first few example images in the training set together
with their corresponding text labels.

 The downloaded Fashion-MNIST dataset should only take 30 MBs on disk if com-
pressed. It’s easy to load the entire downloaded dataset into memory at once.

7.2.1 The problem

Although the Fashion-MNIST data is not large, we may want to perform additional
computations before feeding the dataset into the model, which is common for tasks
that require additional transformations and cleaning. We may want to resize, nor-
malize, or convert the images to grayscale. We also may want to perform complex
mathematical operations such as convolution operations, which can require large
additional memory space allocations. Our available computational resources may or

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

Figure 7.2 The data ingestion component (dark box) in the end-to-end machine learning system

1417.2 Data ingestion
may not be sufficient after we load the entire dataset in memory, depending on the
distributed cluster size.

 In addition, the machine learning model we are training from this dataset
requires multiple epochs on the training dataset. Suppose training one epoch on
the entire training dataset takes 3 hours. If we want to train two epochs, the time
needed for model training would double, as shown in figure 7.5.

Every three rows represent
example images that represent a
class. For example, the top three
rows are images of T-shirts.

Figure 7.3 A screenshot of the collection of images from the Fashion-MNIST dataset for all 10 classes
(T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot)

Figure 7.4 A closer look at the first few example images in the training set with their corresponding labels in text

142 CHAPTER 7 Project overview and system architecture
In real-world machine learning systems, a larger number of epochs is often needed,
and training each epoch sequentially is inefficient. In the next section, we will discuss
how we can tackle that inefficiency.

7.2.2 The solution

Let’s take a look at the first challenge we have: the mathematical operations in the
machine learning algorithms may require a lot of additional memory space alloca-
tions while computational resources may or may not be sufficient. Given that we don’t
have too much free memory, we should not load the entire Fashion-MNIST dataset
into memory directly. Let’s assume that the mathematical operations that we want to
perform on the dataset can be performed on subsets of the entire dataset. Then, we
could use the batching pattern introduced in chapter 2, which would group a number
of data records from the entire dataset into batches, which will be used to train the
machine learning model sequentially on each batch.

 To apply the batching pattern, we first divide the dataset into smaller subsets or
mini-batches, load each individual mini-batch of example images, perform expensive
mathematical operations on each batch, and then use only one mini-batch of images
in each model training iteration. For example, we can perform convolution or other
heavy mathematical operations on the first mini-batch, which consists of only 20
images, and then send the transformed images to the machine learning model for
model training. We then repeat the same process for the remaining mini-batches
while continuing to perform model training.

 Since we’ve divided the dataset into many small subsets (mini-batches), we can
avoid any potential problems with running out of memory when performing various
heavy mathematical operations on the entire dataset necessary for achieving an accu-
rate classification model on the Fashion-MNIST dataset. We can then handle even
larger datasets using this approach by reducing the size of the mini-batches.

 With the help of the batching pattern, we are no longer concerned about potential
out-of-memory problems when ingesting the dataset for model training. We don’t

Figure 7.5 A diagram of model training for multiple epochs at time t0, t1, etc. where we spent 3 hours
for each epoch

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0 (3 hours),
t1 (3 hours), ...

Trained model

Model fitting at t0 (3 hours),
t1 (3 hours), ...

1437.2 Data ingestion
have to load the entire dataset into memory at once, and instead, we are consuming
the dataset batch by batch sequentially. For example, if we have a dataset with 1,000
records, we can first take 500 of the 1,000 records to form a batch and then train the
model using this batch of records. Subsequently, we can repeat this batching and
model training process for the remaining records. Figure 7.6 illustrates this process,
where the original dataset gets divided into two batches and processed sequentially.
The first batch gets consumed to train the model at time t0, and the second batch gets
consumed at time t1.

Now, let’s tackle the second challenge mentioned in section 7.2.1: we want to avoid
wasting time if we need to train a machine learning model that involves iterating on
multiple epochs of the original dataset. Recall that, in chapter 2, we talked about the
caching pattern, which would solve this type of problem. With the help of the caching
pattern, we can greatly speed up the re-access to the dataset for the model training
process that involves training on the same dataset for multiple epochs.

 We can’t do anything special to the first epoch since it’s the first time the machine
learning model has seen the entire training dataset. We can store the cache of the
training examples in memory, making it much faster to re-access when needed for the
second and subsequent epochs.

 Let’s assume that the single laptop we use to train the model has sufficient compu-
tational resources such as memory and disk space. As soon as the machine learning
model consumes each training example from the entire dataset, we can hold off recy-
cling and instead keep the consumed training examples in memory. For example, in
figure 7.7, after we have finished fitting the model for the first epoch, we can store a
cache for both batches used for the first epoch of model training.

 Then, we can start training the model for the second epoch by feeding the stored
in-memory cache to the model directly without repeatedly reading from the data
source for future epochs. Next, we will discuss the model training component we will
build in our project.

Figure 7.6 The dataset is divided into two batches and processed sequentially. The first batch is consumed
to train the model at time t0, and the second batch is consumed at time t1.

Entire dataset Batching Batch 1 (½
of the original

dataset)

Model fitting at t0 Batch 2 (½
of the original

dataset)

Model fitting at t1
Trained model

The two batches of the dataset are
consumed sequentially for model training.

144 CHAPTER 7 Project overview and system architecture
7.2.3 Exercises

1 Where do we store the cache?
2 Can we use the batching pattern when the Fashion-MNIST dataset gets large?

7.3 Model training
In the previous section, we’ve talked about the data ingestion component of the sys-
tem we are building and how we can use the caching and batching pattern to handle
large datasets and make the system more efficient. Next, let’s discuss the model train-
ing component we are building. Figure 7.8 is a diagram of the model training compo-
nent in the overall architecture.

 In the diagram, three different model training steps are followed by a model selec-
tion step. These model training steps can train three different models competing with
each other for better statistical performance. The dedicated model selection step
then picks the top model, which will be used in the subsequent components in the
end-to-end machine learning workflow.

 In the next section, we will look more closely at the model training component in
figure 7.8 and discuss potential problems when implementing this component.

Figure 7.7 A diagram of model training for multiple epochs at time t0, t1, etc. using cache, making
reading from the data source repeatedly unnecessary

Entire dataset Batching

Batch 1 (½ of
the original

dataset)

Batch 2 (½ of
the original

dataset)

Model fitting at t0

Trained model

Model fitting at t0

Cache 1 (in-
memory)

Cache 2 (in-
memory)

Model fitting at t1, ...

Model fitting at t1, ...

1457.3 Model training
7.3.1 The problem

In chapter 3, I introduced the parameter server and the collective communication
patterns. The parameter server pattern is handy when the model is too large to fit in a
single machine, such as the one for tagging entities in the 8 million YouTube videos
(section 3.2). The collective communication pattern is useful to speed up the training
process for medium-sized models when the communication overhead is significant.
Which pattern should we select for our model training component?

7.3.2 The solution

With the help of parameter servers, we can effectively resolve the challenge of build-
ing an extremely large machine learning model that may not fit a single machine.
Even when the model is too large to fit in a single machine, we can still successfully
train the model efficiently with parameter servers. For example, figure 7.9 is an archi-
tecture diagram of the parameter server pattern using multiple parameter servers.
Each worker node takes a subset of the dataset, performs calculations required in
each neural network layer, and sends the calculated gradients to update one model
partition stored in one of the parameter servers.

 Because all workers perform calculations in an asynchronous fashion, the model
partitions each worker node uses to calculate the gradients may not be up to date. For
instance, two workers can block each other when sending gradients to the same
parameter server, which makes it hard to gather the calculated gradients on time and
requires a strategy to resolve the blocking problem. Unfortunately, in real-world dis-
tributed training systems where parameter servers are incorporated, multiple workers
may send the gradients at the same time, and thus many blocking communications
must be resolved.

Figure 7.8 The model training component (dark boxes) in the end-to-end machine learning system

Data ingestion
Model

training 2

Cache
store

This step picks the top two
models that will be used in
the following two separate
model serving steps.

Three model training steps
train different models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

146 CHAPTER 7 Project overview and system architecture
Another challenge comes when deciding the optimal ratio between the number of
workers and the number of parameter servers. For example, many workers are send-
ing gradients to the same parameter server at the same time; the problem gets even
worse, and eventually, the blocking communications between different workers or
parameter servers become a bottleneck.

 Now, let’s return to our original application, the Fashion-MNIST classification
model. The model we are building is not as large as large recommendation system
models; it can easily fit in a single machine if we give the machine sufficient computa-
tional resources. It’s only 30 MBs in compressed form. Thus, the collective communi-
cation model is perfect for the system we are building.

 Now, without parameter servers, each worker node stores a copy of the entire set of
model parameters, as shown in figure 7.10. I previously mentioned that every worker
consumes some portion of data and calculates the gradients needed to update the
model parameters stored locally on this worker node (see chapter 3). We want to
aggregate all the gradients as soon as all worker nodes have successfully completed
their calculation of gradients. We also want to make sure every worker’s entire set of
model parameters is updated based on the aggregated gradients. In other words, each
worker should store a copy of the exact same updated model.

 Going back to the architecture diagram in figure 7.8, each model training step
uses the collective communication pattern, taking advantage of the underlying net-
work infrastructure to perform allreduce operations to communicate gradients
between multiple workers. The collective communication pattern also allows us to
train multiple medium-sized machine learning models in a distributed setting. Once
the model is trained, we can start a separate process to pick the top model to be used
for model serving. This step is pretty intuitive, and I’ll defer the implementation

Figure 7.9 A machine learning training component with multiple parameter servers

Parameter server

Worker node

Push updates Pull updates Push updates Pull updates Push updates Pull updates

Worker node Worker node

1477.4 Model serving
details to chapter 9. In the next section, we will discuss the model serving component
of our system.

7.3.3 Exercises

1 Why isn’t the parameter server pattern a good fit for our model?
2 Does each worker store different parts of the model when using the collective

communication pattern?

7.4 Model serving
We’ve talked about both the data ingestion and model training components of the sys-
tem we are building. Next, let’s discuss the model server component, which is essen-
tial to the end-user experience. Figure 7.11 shows the serving training component in
the overall architecture.

 Next, let’s take a look at a potential problem and its solution we will encounter
when we begin building this component.

7.4.1 The problem

The model serving system needs to take raw images uploaded by users and send the
requests to the model server to make inferences using the trained model. These model
serving requests are being queued and waiting to be processed by the model server.

 If the model serving system is a single-node server, it can only serve a limited num-
ber of model serving requests on a first-come, first-served basis. As the number of
requests grows in the real world, the user experience suffers when users must wait a
long time to receive the model serving result. In other words, all requests are waiting

Figure 7.10 Distributed model training component with only worker nodes, where every worker stores
a copy of the entire set of model parameters and consumes partitions of data to calculate the gradients

Each of these workers contains a copy of the entire set of model
parameters and consumes partitions of data to calculate the gradients.

Data partitions

Worker 1 Worker 2 Worker 3

Consumes data
partition

Consumes data
partition

Consumes data
partition

148 CHAPTER 7 Project overview and system architecture
to be processed by the model serving system, but the computational resources are lim-
ited to this single node. How do we build a more efficient model serving system?

7.4.2 The solution

The previous section lays a perfect use case for the replicated services pattern dis-
cussed in chapter 4. Our model serving system takes the images uploaded by users and
sends requests to the model server. In addition, unlike the simple single-server design,
the system has multiple model server replicas to process the model serving requests
asynchronously. Each model server replica takes a single request, retrieves the previ-
ously trained classification model from the model training component, and classifies
the images that don’t existed in the Fashion-MNIST dataset.

 With the help of the replicated services pattern, we can easily scale up our model
server by adding model server replicas to the single-server model serving system.
The new architecture is shown in figure 7.12. The model server replicas can handle
many requests at a time since each replica can process individual model serving
requests independently.

 Multiple model serving requests from users are sent to the model server replicas at
the same time after we’ve introduced them. We also need to define a clear mapping
relationship between the requests and the model server replicas, which determines
which requests are processed by which of the model server replicas.

 To distribute the model server requests among the replicas, we need to add an addi-
tional load balancer layer. For example, the load balancer takes multiple model serving
requests from our users. It then distributes the requests evenly among the model server
replicas, which are responsible for processing individual requests, including model
retrieval and inference on the new data in the request. Figure 7.13 illustrates this process.

Figure 7.11 The model serving component (dark boxes) in the end-to-end machine learning system

Data ingestion
Model

training 2

Cache
store

The results from the two model
serving steps are then aggregated
via a result aggregation step to
present to users.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

1497.4 Model serving
Figure 7.12 The system architecture of the replicated model serving services

Model storage

Trained ML model

Users upload images and then submit
requests to the model serving system
for classification.

Sends
requests

Model server replicas

Retrieves
model

Obtains
model

Sends
data

Processes
data

Classifies
T-shirt
Coat
Dress
...

Figure 7.13 A diagram showing how a loader balancer distributes requests evenly across
the model server replicas

Model server replicas

Load balancer

Multiple model serving requests
from users

The load balancer distributes
the requests evenly among the
model server replicas.

150 CHAPTER 7 Project overview and system architecture
The load balancer uses different algorithms to determine which request goes to which
particular model server replica. Example algorithms for load balancing include round
robin, least-connection method, and hashing.

 Note that from our original architecture diagram in figure 7.11, there are two indi-
vidual steps for model serving, each using different models. Each model serving step
consists of a model serving service with multiple replicas to handle model serving traf-
fic for different models.

7.4.3 Exercises

1 What happens when we don’t have a load balancer as part of the model serving
system?

7.5 End-to-end workflow
Now that we’ve looked at the individual components, let’s see how to compose an
end-to-end workflow that consists of all those components in a scalable and efficient
way. We will also incorporate a few patterns from chapter 5 into the workflow. Fig-
ure 7.14 is a diagram of the end-to-end workflow we are building.

Instead of paying attention to individual components, we will look at the entire
machine learning system, which chains all the components together in an end-to-end
workflow.

Figure 7.14 The architecture diagram of the end-to-end machine learning system we will build

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Three model training
steps train different
models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

This step picks the top
model that will be used
in the following model
serving steps.

The results from the two
model serving steps are
then aggregated via a
result aggregation step
to present to users.

1517.5 End-to-end workflow
7.5.1 The problems

First, the Fashion-MNIST dataset is static and does not change over time. However, to
design a more realistic system, let’s assume we’ll manually update the Fashion-MNIST
dataset regularly. Whenever the updates happen, we may want to rerun the entire
machine learning workflow to train a fresh machine learning model that includes the
new data. In other words, we need to execute the data ingestion step every time when
changes happen. In the meantime, when the dataset is not updated, we want to exper-
iment with new machine learning models. Thus, we still need to execute the entire
workflow, including the data ingestion step. The data ingestion step is usually very
time consuming, especially for large datasets. Is there a way to make this workflow
more efficient?

 Second, we want to build a machine learning workflow that can train different
models and then select the top model, which will be used in model serving to gener-
ate predictions using the knowledge from both models. Due to the variance of com-
pletion time for each of the model training steps in the existing machine learning
workflow, the start of each following step, such as model selection and model serving,
depends on the completion of the previous steps. However, this sequential execu-
tion of steps in the workflow is quite time-consuming and blocks the rest of the
steps. For example, say one model training step takes much longer to complete than
the rest of the steps. The model selection step that follows can only start to execute
after this long-running model training step has completed. As a result, the entire
workflow is delayed by this particular step. Is there a way to accelerate this workflow
so it will not be affected by the duration of individual steps?

7.5.2 The solutions

For the first problem, we can use the step memoization pattern from chapter 5. Recall
that step memoization can help the system decide whether a step should be executed
or skipped. With the help of step memoization, a workflow can identify steps with
redundant workloads that can be skipped without being re-executed and thus greatly
accelerate the execution of the end-to-end workflow.

 For instance, figure 7.15 contains a simple workflow that only executes the data inges-
tion step when we know the dataset has been updated. In other words, we don’t want to
re-ingest the data that’s already collected if the new data has not been updated.

 Many strategies can be used to determine whether the dataset has been updated.
With a predefined strategy, we can conditionally reconstruct the machine learning
workflow and control whether we would like to include a data ingestion step to be re-
executed, as shown in figure 7.16.

 Cache is one way to identify whether a dataset has been updated. Since we suppose
our Fashion-MNIST dataset is being updated regularly on a fixed schedule (e.g., once
a month), we can create a time-based cache that stores the location of the ingested and
cleaned dataset (assuming the dataset is located in a remote database) and the time-
stamp of its last updated time.

152 CHAPTER 7 Project overview and system architecture
As in figure 7.16, the data ingestion step in the workflow will then be constructed and
executed dynamically based on whether the last updated timestamp is within a partic-
ular window. For example, if the time window is set to two weeks, we consider the
ingested data as fresh if it has been updated within the past two weeks. The data inges-
tion step will be skipped, and the following model training steps will use the already
ingested dataset from the location in the cache. The time window can be used to con-
trol how old a cache can be before we consider the dataset fresh enough to be used
directly for model training instead of re-ingesting the data from scratch.

Now, let’s take a look at the second problem: sequential execution of the steps blocks
the subsequent steps in the workflow and is inefficient. The synchronous and asyn-
chronous patterns introduced in chapter 5 can help.

 When a short-running model training step finishes—for example, model training
step 2 in figure 7.17—we successfully obtain a trained machine learning model. In

Figure 7.15 A diagram of skipping the data ingestion step when the dataset has not
been updated

Data ingestion Model training Model serving

The dataset has beennot

updated yet.
New model type or hyperparameters?

Figure 7.16 The workflow has been triggered. We check whether the data has been updated within the
last two weeks by accessing the cache. If the data is fresh, we can skip the unnecessary data ingestion
step and execute the model training step directly.

Data ingestion Model training Model serving

The workflow is triggered.

Cache store

The data has not

been updated within
the last two weeks.

The data has been updated
within the last two weeks.

Writes new cache
or reads existing
cache that contains
timestamp information

1537.5 End-to-end workflow
fact, we can use this already-trained model directly in our model serving system with-
out waiting for the rest of the model training steps to complete. As a result, users will
be able to see the results of image classification from their model serving requests that
contain videos as soon as we have trained one model from one of the steps in the
workflow. After a second model training step (figure 7.17, model training step 3) fin-
ishes, the two trained models are sent to model serving. Now, users benefit from the
aggregated results obtained from both models.

As a result, we can continue to use the trained models for model selection and model
serving; in the meantime, the long-running model training steps are still running. In
other words, they execute asynchronously without depending on each other’s comple-
tion. The workflow can proceed and execute the next step before the previous one
finishes. The long-running model training step will no longer block the entire work-
flow. Instead, it can continue to use the already-trained models from the short-running
model training steps in the model serving system. Thus, it can start handling users’
model serving requests.

7.5.3 Exercises

1 Which component can benefit the most from step memoization?
2 How do we tell whether a step’s execution can be skipped if its workflow has

been triggered to run again?

Figure 7.17 After a second model training step finishes, we can pass the two trained models directly to model
serving. The aggregated inference results will be presented to users instead of only the results from the first model.

Data ingestion
Model

selection

Result

aggregation

Model
training 1
Duration:
2 weeks

Model

serving 1

Model

training 2

Duration:

1 week
Model

serving 2

Model

training 3

Duration:

1 week

After a second model training step finishes, we can pass the two
trained models directly to be used for model serving, and the
aggregated inference results will be presented to users instead of
the results from only the one model that we obtained initially.

Both short-running model training steps have finished.

154 CHAPTER 7 Project overview and system architecture
7.6 Answers to exercises

Section 7.2

1 In memory
2 Yes

Section 7.3

1 There are blocking communications between workers and parameter servers.
2 No, each worker stores exactly the same copy of the model.

Section 7.4

1 We cannot balance or distribute the model serving requests among the replicas.

Section 7.5

1 The data ingestion component
2 Using the metadata in the step cache

Summary
 The data ingestion component uses the caching pattern to speed up the pro-

cessing of multiple epochs of the dataset.
 The model training component uses the collective communication pattern

to avoid the potential communication overhead between workers and param-
eter servers.

 We can use model server replicas, which are capable of handling many
requests at one time since each replica processes individual model serving
requests independently.

 We can chain all our components into a workflow and use caching to effectively
skip time-consuming components such as data ingestion.

Overview of relevant
technologies
In the previous chapter, we went through the project background and system com-
ponents to understand our strategies for implementing each component. We also
discussed the challenges related to each component and discussed the patterns we
will apply to address them. As previously mentioned, we will dive into the project’s
implementation details in chapter 9, the book’s last chapter. However, since we will
use different technologies in the project and it’s not easy to cover all the basics on the
fly, in this chapter, you will learn the basic concepts of the four technologies (Tensor-
Flow, Kubernetes, Kubeflow, and Argo Workflows) and gain hands-on experience.

 Each of these four technologies has a different purpose, but all will be used to
implement the final project in chapter 9. TensorFlow will be used for data processing,

This chapter covers
 Getting familiar with model building using

TensorFlow

 Understanding key terminologies on Kubernetes

 Running distributed machine learning workloads
with Kubeflow

 Deploying container-native workflows using Argo
Workflows
155

156 CHAPTER 8 Overview of relevant technologies
model building, and evaluation. We will use Kubernetes as our core distributed infra-
structure. On top of that, Kubeflow will be used for submitting distributed model
training jobs to the Kubernetes cluster, and Argo Workflows will be used to construct
and submit the end-to-end machine learning workflows.

8.1 TensorFlow: The machine learning framework
TensorFlow is an end-to-end machine learning platform. It has been widely adopted in
academia and industries for different applications and uses cases, such as image classi-
fication, recommendation systems, natural language processing, etc. TensorFlow is
highly portable, deployable on different hardware, and has multilanguage support.

 TensorFlow has a large ecosystem. The following are some highlighted projects in
this ecosystem:

 TensorFlow.js is a library for machine learning in JavaScript. Users can use
machine learning directly in the browser or in Node.js.

 TensorFlow Lite is a mobile library for deploying models on mobile, microcon-
trollers, and other edge devices.

 TFX is an end-to-end platform for deploying production machine learning
pipelines.

 TensorFlow Serving is a flexible, high-performance serving system for machine
learning models designed for production environments.

 TensorFlow Hub is a repository of trained machine learning models ready for
fine-tuning and deployable anywhere. Reuse trained models like BERT and
Faster R-CNN with just a few lines of code.

More can be found in the TensorFlow GitHub organization (https://github.com/
tensorflow). We will use TensorFlow Serving in our model serving component. In the
next section, we’ll walk through some basic examples in TensorFlow to train a
machine learning model locally using the MNIST dataset.

8.1.1 The basics

Let’s first install Anaconda for Python 3 for the basic examples we will use. Anaconda
(https://www.anaconda.com) is a distribution of the Python and R programming lan-
guages for scientific computing that aims to simplify package management and
deployment. The distribution includes data-science packages suitable for Windows,
Linux, and macOS. Once Anaconda is installed, use the following command in your
console to install a Conda environment with Python 3.9.

> conda create --name dist-ml python=3.9 -y

Next, we can activate this environment with the following code.

Listing 8.1 Creating a Conda environment

https://github.com/tensorflow
https://github.com/tensorflow
https://github.com/tensorflow
https://www.anaconda.com

1578.1 TensorFlow: The machine learning framework
> conda activate dist-ml

Then, we can install TensorFlow in this Python environment.

> pip install --upgrade pip
> pip install tensorflow==2.10.0

If you encounter any problems, please refer to the installation guide (https://www
.tensorflow.org/install).

 In some cases, you may need to uninstall your existing NumPy and reinstall it.

> pip install numpy --ignore-installed

If you are on Mac, check out the Metal plugin for acceleration (https://developer
.apple.com/metal/tensorflow-plugin/).

 Once we’ve successfully installed TensorFlow, we can start with a basic image classi-
fication example! Let’s first load and preprocess our simple MNIST dataset. Recall
that the MNIST dataset contains images for handwritten digits from 0 to 9. Each row
represents images for a particular handwritten digit, as shown in figure 8.1.

Keras API (tf.keras) is a high-level API for model training in TensorFlow, and we will
use it for both loading the built-in datasets and model training and evaluation.

Listing 8.2 Activating a Conda environment

Listing 8.3 Installing TensorFlow

Listing 8.4 Installing NumPy

Each row represents images
for a particular handwritten
digit. For example, the first
row represents images of
the digit 0.

Figure 8.1 Some example images for handwritten digits from 0 to 9 where each row represents
images for a particular handwritten digit

https://www.tensorflow.org/install
https://www.tensorflow.org/install
https://www.tensorflow.org/install
https://developer.apple.com/metal/tensorflow-plugin/
https://developer.apple.com/metal/tensorflow-plugin/
https://developer.apple.com/metal/tensorflow-plugin/

158 CHAPTER 8 Overview of relevant technologies
> import tensorflow as tf
> (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

The function load_data()uses a default path to save the MNIST dataset if we don’t
specify a path. This function will return NumPy arrays for training and testing images
and labels. We split the dataset into training and testing so we can run both model
training and evaluation in our example.

 A NumPy array is a common data type in Python’s scientific computing ecosystem.
It describes multidimensional arrays and has three properties: data, shape, and dtype.
Let’s use our training images as an example.

> x_train.data
<memory at 0x16a392310>
> x_train.shape
(60000, 28, 28)
> x_train.dtype
dtype('uint8')
> x_train.min()
0
> x_train.max()
255

x_train is a 60,000 × 28 × 28 three-dimensional array. The data type is uint8 from 0 to
255. In other words, this object contains 60,000 grayscale images with a resolution of
28 × 28.

 Next, we can perform some feature preprocessing on our raw images. Since many
algorithms and models are sensitive to the scale of the features, we often center and
scale features into a range such as [0, 1] or [-1, 1]. In our case, we can do this easily
by dividing the images by 255.

def preprocess(ds):
 return ds / 255.0

x_train = preprocess(x_train)
x_test = preprocess(x_test)

> x_train.dtype
dtype('float64')

> x_train.min()
0.0

> x_train.max()
1.0

Listing 8.5 Loading the MNIST dataset

Listing 8.6 Inspecting the dataset

Listing 8.7 The preprocessing function

1598.1 TensorFlow: The machine learning framework
After preprocessing the images in the training and testing set, we can instantiate
a simple multilayer neural network model. We use tf.keras to define the model
architecture. First, we use Flatten to expand the two-dimensional images into a one-
dimensional array by specifying the input shape as 28 × 28. The second layer is
densely connected and uses the 'relu' activation function to introduce some non-
linearity. The third layer is a dropout layer to reduce overfitting and make the
model more generalizable. Since the handwritten digits consist of 10 different digits
from 0 to 9, our last layer is densely connected for 10-class classification with soft-
max activation.

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])

After we’ve defined the model architecture, we need to specify three different compo-
nents: the evaluation metric, loss function, and optimizer.

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

We can then start our model training with five epochs as well as evaluation via the
following.

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

We should see training progress in the log:

Epoch 1/5
1875/1875 [======] - 11s 4ms/step - loss: 0.2949 - accuracy: 0.9150
Epoch 2/5
1875/1875 [======] - 9s 5ms/step - loss: 0.1389 - accuracy: 0.9581
Epoch 3/5
1875/1875 [======] - 9s 5ms/step - loss: 0.1038 - accuracy: 0.9682
Epoch 4/5
1875/1875 [======] - 8s 4ms/step - loss: 0.0841 - accuracy: 0.9740
Epoch 5/5
1875/1875 [======] - 8s 4ms/step - loss: 0.0707 - accuracy: 0.9779
10000/10000 [======] - 0s - loss: 0.0726 - accuracy: 0.9788

Listing 8.8 The sequential model definition

Listing 8.9 Model compilation with optimizer, loss function, and optimizer

Listing 8.10 Model training using the training data

160 CHAPTER 8 Overview of relevant technologies
And the log from the model evaluation should look like the following:

313/313 [======] - 1s 4ms/step - loss: 0.0789 - accuracy: 0.9763
[0.07886667549610138, 0.976300060749054]

We should observe that as the loss decreases during training, the accuracy increases to
97.8% on training data. The final trained model has an accuracy of 97.6% on the test-
ing data. Your result might be slightly different due to the randomness in the model-
ing process.

 After we’ve trained the model and are happy with its performance, we can save it
using the following code so that we don’t have to retrain it from scratch next time.

model.save('my_model.h5')

This code saves the model as file my_model.h5 in the current working directory. When
we start a new Python session, we can import TensorFlow and load the model object
from the my_model.h5 file.

import tensorflow as tf
model = tf.keras.models.load_model('my_model.h5')

We’ve learned how to train a model using TensorFlow’s Keras API for a single set of
hyperparameters. These hyperparameters remain constant over the training process
and directly affect the performance of your machine learning program. Let’s learn
how to tune hyperparameters for your TensorFlow program with Keras Tuner
(https://keras.io/keras_tuner/). First, install the Keras Tuner library.

pip install -q -U keras-tuner

Once it’s installed, you should be able to import all the required libraries.

import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt

We will use the same MNIST dataset and the preprocessing functions for our hyperpa-
rameter tuning example. We then wrap our model definition into a Python function.

Listing 8.11 Saving the trained model

Listing 8.12 Loading the saved model

Listing 8.13 Installing the Keras Tuner package

Listing 8.14 Importing necessary packages

https://keras.io/keras_tuner/

1618.1 TensorFlow: The machine learning framework
def model_builder(hp):
 model = keras.Sequential()
 model.add(keras.layers.Flatten(input_shape=(28, 28)))
 hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
 model.add(keras.layers.Dense(units=hp_units, activation='relu'))
 model.add(keras.layers.Dense(10))
 hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
 model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
 loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 metrics=['accuracy'])
 return model

This code is essentially the same as what we used previously for training a model
with a single set of hyperparameters, except that we also defined hp_units and
hp_learning_rate objects that are used in our dense layer and optimizer.

 The hp_units object instantiates an integer that will be tuned between 32 and
512 and used as the number of units in the first densely connected layer. The
hp_learning_rate object will tune the learning rate for the adam optimizer that will
be chosen from among these values: 0.01, 0.001, or 0.0001.

 Once the model builder is defined, we can then instantiate our tuner. There are
several tuning algorithms we can use (e.g., random search, Bayesian optimization,
Hyperband). Here we use the hyperband tuning algorithm. It uses adaptive resource
allocation and early stopping to converge faster on a high-performing model.

tuner = kt.Hyperband(model_builder,
 objective='val_accuracy',
 max_epochs=10,
 factor=3,
 directory='my_dir',
 project_name='intro_to_kt')

We use the validation accuracy as the objective, and the maximum number of epochs
is 10 during model tuning.

 To reduce overfitting, we can create an EarlyStopping callback to stop training as
soon as the model reaches a threshold for the validation loss. Make sure to reload the
dataset into memory if you’ve started a new Python session.

early_stop = tf.keras.callbacks.EarlyStopping(
 monitor='val_loss', patience=4)

Now we can start our hyperparameter search via tuner.search().

Listing 8.15 The model building function using TensorFlow and Keras Tuner

Listing 8.16 The Hyperband model tuner

Listing 8.17 The EarlyStopping callback

162 CHAPTER 8 Overview of relevant technologies
tuner.search(x_train, y_train,
 epochs=30, validation_split=0.2,
 callbacks=[early_stop])

Once the search is complete, we can identify the optimal hyperparameters and train
the model on the data for 30 epochs.

best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
model = tuner.hypermodel.build(best_hps)
model.fit(x_train, y_train, epochs=50, validation_split=0.2)

When we evaluate the model on our test data, we should see it’s more performant
than our baseline model without hyperparameter tuning.

model.evaluate(x_test, y_test)

You’ve learned how to run TensorFlow locally on a single machine. To take the most
advantage of TensorFlow, the model training process should be run in a distributed
cluster, which is where Kubernetes comes into play. In the next section, I will intro-
duce Kubernetes and provide hands-on examples of the fundamentals.

8.1.2 Exercises

1 Can you use the previously saved model directly for model evaluation?
2 Instead of using the Hyperband tuning algorithm, could you try the random

search algorithm?

8.2 Kubernetes: The distributed container
orchestration system
Kubernetes (also known as K8s) is an open source system for automating the deploy-
ment, scaling, and management of containerized applications. It abstracts away com-
plex container management and provides declarative configurations to orchestrate
containers in different computing environments.

 Containers are grouped into logical units for a particular application for easy man-
agement and discovery. Kubernetes builds upon more than 16 years of experience
running production workloads at Google, combined with best-in-class ideas and prac-
tices from the community. Its main design goal is to make it easy to deploy and man-
age complex distributed systems, while still benefiting from the improved utilization
that containers enable. It’s open source, which gives the community the freedom to

Listing 8.18 The Hyperparameter search with early-stopping

Listing 8.19 Obtaining the best hyperparameters and training the model

Listing 8.20 Model evaluation on the test data

1638.2 Kubernetes: The distributed container orchestration system
take advantage of on-premises, hybrid, or public cloud infrastructure and lets you
effortlessly move workloads to where it matters.

 Kubernetes is designed to scale without increasing your operations team. Figure 8.2
is an architecture diagram of Kubernetes and its components. However, we won’t be
discussing those components because they are not the focus of this book. We will,
however, use kubectl (on the left-hand side of the diagram), a command-line inter-
face of Kubernetes, to interact with the Kubernetes cluster and obtain information
that we are interested in.

We will go through some basic concepts and examples to build our knowledge and
prepare the following sections on Kubeflow and Argo Workflows.

8.2.1 The basics

First, let’s set up a local Kubernetes cluster. We’ll use k3d (https://k3d.io) to bootstrap
the local cluster. k3d is a lightweight wrapper to run k3s (a minimal Kubernetes distri-
bution provided by Rancher Lab) in Docker. k3d makes it very easy to create either
single-node or multinode k3s clusters in Docker for local development that requires a
Kubernetes cluster. Let’s create a Kubernetes cluster called distml via k3s.

> k3d cluster create distml --image rancher/k3s:v1.25.3-rc3-k3s1

We can get the list of nodes for the cluster we created via the following listing.

Listing 8.21 Creating a local Kubernetes cluster

Kubernetes cluster

Control Plane

NodeNode Node

Cloud
provider

API

API server

Cloud controller
manager

(optional)

Controller
manager

etcd
(persistence store)

kubelet

kube-proxy

Scheduler

Control plane

Node

Figure 8.2 An architecture diagram of Kubernetes

https://k3d.io

164 CHAPTER 8 Overview of relevant technologies
> kubectl get nodes

NAME STATUS ROLES AGE VERSION
K3d-distml-server-0 Ready control-plane,master 1m v1.25.3+k3s1

In this case, the node was created 1 minute ago, and we are running the v1.25.3+k3s1
version of the k3s distribution. The status is ready so that we can proceed to the
next steps.

 We can also look at the node’s details via kubectl describe node k3d-distml-
server-0. For example, the labels and system info contain information on the operat-
ing system and its architecture, whether this node is a master node, etc.:

Labels: beta.kubernetes.io/arch=arm64
 beta.kubernetes.io/instance-type=k3s
 beta.kubernetes.io/os=linux
 kubernetes.io/arch=arm64
 kubernetes.io/hostname=k3d-distml-server-0
 kubernetes.io/os=linux
 node-role.kubernetes.io/control-plane=true
 node-role.kubernetes.io/master=true
 node.kubernetes.io/instance-type=k3s

System Info:
 Machine ID:
 System UUID:
 Boot ID: 73db7620-c61d-432c-a1ab-343b28ab8563
 Kernel Version: 5.10.104-linuxkit
 OS Image: K3s dev
 Operating System: linux
 Architecture: arm64
 Container Runtime Version: containerd://1.5.9-k3s1
 Kubelet Version: v1.22.7+k3s1
 Kube-Proxy Version: v1.22.7+k3s1

The node’s addresses are shown as part of it:

Addresses:
 InternalIP: 172.18.0.3
 Hostname: k3d-distml-server-0

The capacity of the node is also available,
indicating how much computational resources are there:

Capacity:
 cpu: 4
 ephemeral-storage: 61255492Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 hugepages-32Mi: 0
 hugepages-64Ki: 0
 memory: 8142116Ki
 pods: 110

Listing 8.22 Obtaining the list of nodes in the cluster

1658.2 Kubernetes: The distributed container orchestration system
Then we’ll create a namespace called basics in this cluster for our project. Namespaces
in Kubernetes provide a mechanism for isolating groups of resources within a single
cluster (see http://mng.bz/BmN1). Names of resources need to be unique within a
namespace but not across namespaces. The following examples will be in this single
namespace.

> kubectl create ns basics

Once the cluster and namespace are set up, we’ll use a convenient tool called kubectx
to help us inspect and navigate between namespaces and clusters (https://github
.com/ahmetb/kubectx). Note that this tool is not required for day-to-day work with
Kubernetes, but it should make Kubernetes much easier to work with for developers.
For example, we can obtain a list of clusters and namespaces that we can connect to
via the following listing.

> kubectx
d3d-k3s-default
k3d-distml

> kubens
default
kube-system
kube-public
kube-node-lease
basics

For example, we can switch to the distml cluster via the k3d-distml context and the
basics namespace that we just created using the following listing.

> kubectx k3d-distml
Switched to context "k3d-distml".

> kubens basics
Active namespace is "basics".

Switching contexts and namespaces is often needed when working with multiple
clusters and namespaces. We are using the basics namespace to run the examples in
this chapter, but we will switch to another namespace dedicated to our project in the
next chapter.

 Next, we will create a Kubernetes Pod. Pods are the smallest deployable units of
computing that you can create and manage in Kubernetes. A Pod may consist of one

Listing 8.23 Creating a new namespace

Listing 8.24 Switching contexts and namespaces

Listing 8.25 Activate context

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx

166 CHAPTER 8 Overview of relevant technologies
or more containers with shared storage and network resources and a specification for
how to run the containers. A Pod’s contents are always co-located and co-scheduled
and run in a shared context. The concept of the Pod models an application-specific
“logical host,” meaning that it contains one or more application containers that are
relatively tightly coupled. In noncloud contexts, applications executed on the same
physical or virtual machine are analogous to cloud applications executed on the
same logical host. In other words, a Pod is similar to a set of containers with shared
namespaces and shared filesystem volumes.

 The following listing provides an example of a Pod that consists of a container run-
ning the image whalesay to print out a “hello world” message. We save the following
Pod spec in a file named hello-world.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: whalesay
spec:
 containers:
 - name: whalesay
 image: docker/whalesay:latest
 command: [cowsay]
 args: ["hello world"]

To create the Pod, run the following command.

> kubectl create -f basics/hello-world.yaml

pod/whalesay created

We can then check whether the Pod has been created by retrieving the list of Pods.
Note that pods is plural so we can get the full list of created Pods. We will use the sin-
gular form to get the details of this particular Pod later.

> kubectl get pods

NAME READY STATUS RESTARTS AGE
whalesay 0/1 Completed 2 (20s ago) 37s

The Pod status is Completed so we can look at what’s being printed out in the whalesay
container like in the following listing.

Listing 8.26 An example Pod

Listing 8.27 Creating the example Pod in the cluster

Listing 8.28 Getting the list of Pods in the cluster

1678.2 Kubernetes: The distributed container orchestration system
> kubectl logs whalesay

< hello world >

 \
 \
 \
 ## .
 ## ## ## ==
 ## ## ## ## ===
 /""""""""""""""""___/ ===
  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~   
     \______ o             __/             
      \      \      __/         
             \____\______/

We can also retrieve the raw YAML of the Pod via kubectl. Note that we use -o yaml
here to get the plain YAML, but other formats, such as JSON, are also supported. We
use the singular pod to get the details of this particular Pod instead of the full list of
existing Pods, as mentioned earlier.

> kubectl get pod whalesay -o yaml

apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: "2022-10-22T14:30:19Z"
  name: whalesay
  namespace: basics
  resourceVersion: "830"
  uid: 8e5e13f9-cd58-45e8-8070-c6bbb2dddb6e
spec:
  containers:
  - args:
    - hello world
    command:
    - cowsay
    image: docker/whalesay:latest
    imagePullPolicy: Always
    name: whalesay
    resources: {}
    terminationMessagePath: /dev/termination-log
    terminationMessagePolicy: File
    volumeMounts:
    - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
    name: kube-api-access-x826t
    readOnly: true

Listing 8.29 Checking the Pod logs

Listing 8.30 Getting the raw Pod YAML



168 CHAPTER 8 Overview of relevant technologies
  dnsPolicy: ClusterFirst
  enableServiceLinks: true
  nodeName: k3d-distml-server-

<...truncated…>

  volumes:
  - name: kube-api-access-x826t
    projected:
    defaultMode: 420
    sources:
    - serviceAccountToken:
          expirationSeconds: 3607
          path: token
    - configMap:
          items:
          - key: ca.crt
          path: ca.crt
          name: kube-root-ca.crt
    - downwardAPI:
          items:
            - fieldRef:
            apiVersion: v1
            fieldPath: metadata.namespace
            path: namespace
status:
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2022-10-22T14:30:19Z"
    status: "True"
    type: Initialized
  - lastProbeTime: null
    lastTransitionTime: "2022-10-22T14:30:19Z"
    message: 'containers with unready status: [whalesay]'
    reason: ContainersNotReady
    status: "False"
    type: Ready

You may be surprised how much additional content, such as status and conditions, has
been added to the original YAML we used to create the Pod. The additional informa-
tion is appended and updated via the Kubernetes server so that client-side applications
know the current status of the Pod. Even though we didn’t specify the namespace
explicitly, the Pod was created in the basics namespace since we have used the
kubens command to set the current namespace. 

 That’s it for the basics of Kubernetes! In the next section, we will study how to use
Kubeflow to run distributed model training jobs in the local Kubernetes cluster we
just set up. 

8.2.2 Exercises

1 How do you get the Pod information in JSON format?
2 Can a Pod contain multiplier containers?



1698.3 Kubeflow: Machine learning workloads on Kubernetes
8.3 Kubeflow: Machine learning workloads on Kubernetes
The Kubeflow project is dedicated to making deployments of machine learning work-
flows on Kubernetes simple, portable, and scalable. The goal of Kubeflow is not to
re-create other services but to provide a straightforward way to deploy best-in-class
open source systems for machine learning to diverse infrastructures. Anywhere you
run Kubernetes, you should be able to run Kubeflow. We will use Kubeflow to submit
distributed machine learning model training jobs to a Kubernetes cluster.

 Let’s first take a look at what components Kubeflow provides. Figure 8.3 is a dia-
gram that consists of the main components.

Kubeflow Pipelines (KFP; https://github.com/kubeflow/pipelines) provides Python
SDK to make machine learning pipelines easier. It is a platform for building and
deploying portable and scalable machine learning workflows using Docker contain-
ers. The primary objectives of KFP are to enable the following:

 End-to-end orchestration of ML workflows
 Pipeline composability through reusable components and pipelines
 Easy management, tracking, and visualization of pipeline definitions, runs,

experiments, and machine learning artifacts
 Efficient use of computing resources by eliminating redundant executions

through caching

Figure 8.3 Main components of Kubeflow

https://github.com/kubeflow/pipelines


170 CHAPTER 8 Overview of relevant technologies
 Cross-platform pipeline portability through a platform-neutral IR YAML pipe-
line definition

KFP uses Argo Workflows as the backend workflow engine, which I will introduce in
the next section, and we’ll use Argo Workflows directly instead of using a higher-
level wrapper like KFP. The ML metadata project has been merged into KFP and
serves as the backend for logging metadata produced in machine learning work-
flows written in KFP.

 Next is Katib (https://github.com/kubeflow/katib). Katib is a Kubernetes-native
project for automated machine learning. Katib supports hyperparameter tuning, early
stopping, and neural architecture search. Katib is agnostic to machine learning frame-
works. It can tune hyperparameters of applications written in any language of the
users’ choice and natively supports many machine learning frameworks, such as Ten-
sorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training
jobs using any Kubernetes custom resource with out-of-the-box support for Kubeflow
Training Operator, Argo Workflows, Tekton Pipelines, and many more. Figure 8.4 is a
screenshot of the Katib UI that performs experiment tracking.

This provides a summary
of the trials and highlights
the best parameters.

Here we can visualize
different training and
validation accuracies
for different set of
hyperparameters.

Figure 8.4 A screenshot of the Katib UI that performs experiment tracking

https://github.com/kubeflow/katib


1718.3 Kubeflow: Machine learning workloads on Kubernetes
KServe (https://github.com/kserve/kserve) was born as part of the Kubeflow project
and was previously known as KFServing. KServe provides a Kubernetes custom resource
definition (CRD) for serving machine learning models on arbitrary frameworks. It
aims to solve production model serving use cases by providing performant, high-
abstraction interfaces for common ML frameworks. It encapsulates the complexity of
autoscaling, networking, health checking, and server configuration to bring cutting-
edge serving features like GPU autoscaling, scale to zero, and canary rollouts to your
machine learning deployments. Figure 8.5 is a diagram that illustrates the position of
KServe in the ecosystem.

Kubeflow provides web UI. Figure 8.6 provides a screenshot of the UI. Users can
access the models, pipelines, experiments, artifacts, etc. to facilitate the iterative pro-
cess of the end-to-end model machine life cycle in each tab on the left side.

 The web UI is integrated with Jupyter Notebooks to be easily accessible. There are
also SDKs in different languages to help users integrate with any internal systems. In
addition, users can interact with all the Kubeflow components via kubectl since they
are all native Kubernetes custom resources and controllers. The training operator
(https://github.com/kubeflow/training-operator) provides Kubernetes custom
resources that make it easy to run distributed or nondistributed TensorFlow, PyTorch,
Apache MXNet, XGBoost, or MPI jobs on Kubernetes. 

 The Kubeflow project has accumulated more than 500 contributors and 20,000
GitHub stars. It’s heavily adopted in various companies and has more than 10 vendors,
including Amazon AWS, Azure, Google Cloud, IBM, etc. Seven working groups main-
tain different subprojects independently. We will use the training operator to submit

Figure 8.5 KServe positioning in the ecosystem

https://github.com/kserve/kserve
https://github.com/kubeflow/training-operator


172 CHAPTER 8 Overview of relevant technologies
distributed model training jobs and KServe to build our model serving component.
Once you complete the next chapter, I recommend trying out the other subprojects
in the Kubeflow ecosystem on your own when needed. For example, if you’d like to
tune the performance of the model, you can use Katib’s automated machine learning
and hyperparameter tuning functionalities.

8.3.1 The basics

Next, we’ll take a closer look at the distributed training operator of Kubeflow and sub-
mit a distributed model training job that runs locally in the Kubernetes local cluster
we created in the previous section. Let’s first create and activate a dedicated kubeflow
namespace for our examples and reuse the existing cluster we created earlier.

> kubectl create ns kubeflow
> kns kubeflow

Then, we must go back to our project folder and apply all the manifests to install all
the tools we need.

> cd code/project
> kubectl kustomize manifests | k apply -f -

Listing 8.31 Creating and switching to a new namespace

Listing 8.32 Applying all manifests and installing all the tools

Users can access the models, pipelines,
experiments, artifacts, etc., to facilitate
the iterative process of the end-to-end
model machine life cycle.

Figure 8.6 A screenshot of the Kubeflow UI



1738.3 Kubeflow: Machine learning workloads on Kubernetes
Note that we’ve bundled all the necessary tools in this manifests folder:

 Kubeflow Training Operator, which we will use in this chapter for distributed
model training.

 Argo Workflows (https://github.com/argoproj/argo-workflows), which we
address in chapter 9 when we discuss workflow orchestration and chain all the
components together in a machine learning pipeline. We can ignore Argo
Workflows for now.

As introduced earlier, the Kubeflow Training Operator provides Kubernetes custom
resources that make it easy to run distributed or nondistributed jobs on Kubernetes,
including TensorFlow, PyTorch, Apache MXNet, XGBoost, MPI jobs, etc.

 Before we dive into Kubeflow, we need to understand what custom resources are. A
custom resource is an extension of the Kubernetes API not necessarily available in a
default Kubernetes installation. It is a customization of a particular Kubernetes
installation. However, many core Kubernetes functions are now built using custom
resources, making Kubernetes more modular (http://mng.bz/lWw2).

 Custom resources can appear and disappear in a running cluster through dynamic
registration, and cluster admins can update custom resources independently of the
cluster. Once a custom resource is installed, users can create and access its objects
using kubectl, just as they do for built-in resources like Pods. For example, the follow-
ing listing defines the TFJob custom resource that allows us to instantiate and submit a
distributed TensorFlow training job to the Kubernetes cluster.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  annotations:
    controller-gen.kubebuilder.io/version: v0.4.1
  name: tfjobs.kubeflow.org
spec:
  group: kubeflow.org
  names:
    kind: TFJob
    listKind: TFJobList
    plural: tfjobs
    singular: tfjob

All instantiated TFJob custom resource objects (tfjobs) will be handled by the train-
ing operator. The following listing provides the definition of the deployment of the
training operator that runs a stateful controller to continuously monitor and process
any submitted tfjobs.

apiVersion: apps/v1
kind: Deployment

Listing 8.33 TFJob CRD

Listing 8.34 Training operator deployment

http://mng.bz/lWw2
https://github.com/argoproj/argo-workflows


174 CHAPTER 8 Overview of relevant technologies
metadata:
  name: training-operator
  labels:
    control-plane: kubeflow-training-operator
spec:
  selector:
    matchLabels:
      control-plane: kubeflow-training-operator
  replicas: 1
  template:
    metadata:
      labels:
        control-plane: kubeflow-training-operator
      annotations:
        sidecar.istio.io/inject: "false"
    spec:
      containers:
        - command:
            - /manager
          image: kubeflow/training-operator
          name: training-operator
          env:
            - name: MY_POD_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
            - name: MY_POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
          securityContext:
            allowPrivilegeEscalation: false
          livenessProbe:
            httpGet:
              path: /healthz
              port: 8081
            initialDelaySeconds: 15
            periodSeconds: 20
          readinessProbe:
            httpGet:
              path: /readyz
              port: 8081
            initialDelaySeconds: 5
            periodSeconds: 10
          resources:
            limits:
              cpu: 100m
              memory: 30Mi
            requests:
              cpu: 100m
              memory: 20Mi
      serviceAccountName: training-operator
      terminationGracePeriodSeconds: 10



1758.3 Kubeflow: Machine learning workloads on Kubernetes
With this abstraction, data science teams can focus on writing the Python code in Ten-
sorFlow that will be used as part of a TFJob specification and don’t have to manage the
infrastructure themselves. For now, we can skip the low-level details and use TFJob to
implement our distributed model training. Next, let’s define our TFJob in a file
named tfjob.yaml. 

apiVersion: kubeflow.org/v1
kind: TFJob
metadata:
  namespace: kubeflow
  generateName: distributed-tfjob-
spec:
  tfReplicaSpecs:
    Worker:
      replicas: 2
      restartPolicy: OnFailure
      template:
        spec:
          containers:
            - name: tensorflow
              image: gcr.io/kubeflow-ci/tf-mnist-with-summaries:1.0
              command:
                - "python"
                - "/var/tf_mnist/mnist_with_summaries.py"
                - "--log_dir=/train/metrics"
                - "--learning_rate=0.01"
                - "--batch_size=100"

In this spec, we are asking the controller to submit a distributed TensorFlow model
training model with two worker replicas where each worker replica follows the same
container definition, running the MNIST image classification example.

 Once it’s defined, we can submit it to our local Kubernetes cluster via the follow-
ing listing.

> kubectl create -f basics/tfjob.yaml
tfjob.kubeflow.org/distributed-tfjob-qc8fh created

We can see whether the TFJob has been submitted successfully by getting the TFJob list.

> kubectl get tfjob

NAME                         AGE
Distributed-tfjob-qc8fh      1s

Listing 8.35 An example TFJob definition

Listing 8.36 Submitting TFJob

Listing 8.37 Getting the TFJob list



176 CHAPTER 8 Overview of relevant technologies
When we get the list of Pods, we can see two worker Pods, distributed-tfjob-qc8fh-
worker-1 and distributed-tfjob-qc8fh-worker-0, have been created and started
running. The other Pods can be ignored since they are the Pods that are running the
Kubeflow and Argo Workflow operators.

> kubectl get pods

NAME                                  READY   STATUS   RESTARTS     AGE
workflow-controller-594494ffbd-2dpkj  1/1    Running       0        21m
training-operator-575698dc89-mzvwb    1/1    Running       0        21m
argo-server-68c46c5c47-vfh82          1/1    Running       0        21m
distributed-tfjob-qc8fh-worker-1      1/1    Running       0        10s
distributed-tfjob-qc8fh-worker-0      1/1    Running       0        12s

A machine learning system consists of many different components. We only used
Kubeflow to submit distributed model training jobs, but it’s not connected to other
components yet. In the next section, we’ll explore the basic functionalities of Argo
Workflows to connect different steps in a single workflow so that they can be executed
in a particular order. 

8.3.2 Exercises

1 If your model training requires parameter servers, can you express that in a
TFJob?

8.4 Argo Workflows: Container-native workflow engine
The Argo Project is a suite of open-source tools for deploying and running applica-
tions and workloads on Kubernetes. It extends the Kubernetes APIs and unlocks new
and powerful capabilities in application deployment, container orchestration, event
automation, progressive delivery, and more. It consists of four core projects: Argo CD,
Argo Rollouts, Argo Events, and Argo Workflows. Besides these core projects, many
other ecosystem projects are based on, extend, or work well with Argo. A complete list
of resources related to Argo can be found at https://github.com/terrytangyuan/
awesome-argo.

 Argo CD is a declarative, GitOps application delivery tool for Kubernetes. It man-
ages application definitions, configurations, and environments declaratively in Git.
Argo CD user experience makes Kubernetes application deployment and life-cycle
management automated, auditable, and easy to grasp. It comes with a UI so engineers
can see what’s happening in their clusters and watch for applications deployments,
etc. Figure 8.7 is a screenshot of the resource tree in the Argo CD UI.

 Argo Rollouts is a Kubernetes controller and set of CRDs that provides progres-
sive deployment capabilities. It introduces blue–green and canary deployments,
canary analysis, experimentation, and progressive delivery features to your Kuberne-
tes cluster.

Listing 8.38 Getting the list of Pods

https://github.com/terrytangyuan/awesome-argo
https://github.com/terrytangyuan/awesome-argo
https://github.com/terrytangyuan/awesome-argo


1778.4 Argo Workflows: Container-native workflow engine
Next is Argo Events. It’s an event-based dependency manager for Kubernetes. It can
define multiple dependencies from various event sources like webhooks, Amazon
S3, schedules, and streams and trigger Kubernetes objects after successful event
dependencies resolution. A complete list of available event sources can be found in
figure 8.8.

 Finally, Argo Workflows is a container-native workflow engine for orchestrating
parallel jobs, implemented as Kubernetes CRD. Users can define workflows where
each step is a separate container, model multistep workflows as a sequence of tasks or
capture the dependencies between tasks using a graph, and run compute-intensive
jobs for machine learning or data processing. Users often use Argo Workflows
together with Argo Events to trigger event-based workflows. The main use cases for
Argo Workflows are machine learning pipelines, data processing, ETL (extract, trans-
form, load), infrastructure automation, continuous delivery, and integration. 

 Argo Workflows also provides interfaces such as a command-line interface (CLI),
server, UI, and SDKs for different languages. The CLI is useful for managing work-
flows and performing operations such as submitting, suspending, and deleting work-
flows through the command line. The server is used for integrating with other
services. There are both REST and gRPC service interfaces. The UI is useful for man-
aging and visualizing workflows and any artifacts/logs created by the workflows, as
well as other useful information, such as resource usage analytics. We will walk
through some examples of Argo Workflows to prepare for our project.

Figure 8.7 A screenshot of the resources tree in Argo CD UI



178 CHAPTER 8 Overview of relevant technologies
8.4.1 The basics

Before we look at some examples, let’s make sure we have the Argo Workflows UI at
hand. It’s optional since you can still be successful in these examples in the command
line to interact directly with Kubernetes via kubectl, but it’s nice to see the directed-
acyclic graph (DAG) visualizations in the UI as well as access additional functional-
ities. By default, the Argo Workflows UI service is not exposed to an external IP. To
access the UI, use the method in the following listing.

> kubectl port-forward svc/argo-server 2746:2746

Next, visit the following URL to access the UI: https:/ /localhost:2746. Alternatively,
you can expose a load balancer to get an external IP to access the Argo Workflows UI
in your local cluster. Check out the official documentation for more details: https://
argoproj.github.io/argo-workflows/argo-server/. Figure 8.9 is a screenshot of what
the Argo Workflows UI looks like for a map-reduce–style workflow.

Listing 8.39 Port-forwarding the Argo server

Slack

PubSub

SNS

Streams

K8s
Resource

Schedule

Git

Webhook

S3

Figure 8.8 Available event sources in Argo Events

https://argoproj.github.io/argo-workflows/argo-server/
https://argoproj.github.io/argo-workflows/argo-server/
https://argoproj.github.io/argo-workflows/argo-server/


1798.4 Argo Workflows: Container-native workflow engine
The following listing is a basic “hello world” example of Argo Workflows. We can spec-
ify the container image and the command to run for this workflow and print out a
“hello world” message.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
  generateName: hello-world-
spec:
  entrypoint: whalesay
  serviceAccountName: argo
  templates:
  - name: whalesay
    container:
      image: docker/whalesay
      command: [cowsay]
      args: ["hello world"]

Let’s go ahead and submit the workflow to our cluster.
 
 

Listing 8.40 “Hello world” example

Figure 8.9 Argo Workflows UI illustrating a map-reduce–style workflow



180 CHAPTER 8 Overview of relevant technologies
> kubectl create -f basics/argo-hello-world.yaml
workflow.argoproj.io/hello-world-zns4g created

We can then check whether it was submitted successfully and has started running.

> kubectl get wf

NAME                STATUS    AGE
hello-world-zns4g   Running   2s

Once the workflow status has changed to Succeeded, we can check the statuses of the
Pods created by the workflow. First, let’s find all the Pods associated with the workflow.
We can use a label selector to get the list of Pods.

> kubectl get pods -l workflows.argoproj.io/workflow=hello-world-zns4g

NAME                READY   STATUS     RESTARTS   AGE
hello-world-zns4g   0/2     Completed  0          8m57s

Once we know the Pod name, we can get the logs of that Pod.

> kubectl logs hello-world-zns4g -c main

 _____________
< hello world >
 -------------
    \
    \
    \ 
                   ##      .        
            ## ## ##       ==       
            ## ## ## ##    ===      
     /""""""""""""""""___/ ===  
  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~   
 ______ o __/
 \ \ __/
 __________/

As expected, we get the same logs as the ones we had with the simple Kubernetes Pod
in the previous sections since this workflow only runs one “hello world” step.

 The next example uses a resource template where you can specify a Kubernetes
custom resource that will be submitted by the workflow to the Kubernetes cluster.

Listing 8.41 Submitting the workflow

Listing 8.42 Getting the list of workflows

Listing 8.43 Getting the list of Pods belonging to this workflow

Listing 8.44 Checking the Pod logs

1818.4 Argo Workflows: Container-native workflow engine
Here we create a Kubernetes config map named cm-example with a simple key-value
pair. The config map is a Kubernetes-native object to store key-value pairs.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: k8s-resource-
spec:
 entrypoint: k8s-resource
 serviceAccountName: argo
 templates:
 - name: k8s-resource
 resource:
 action: create
 manifest: |
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cm-example
 data:
 some: value

This example is perhaps most useful to Python users. You can write a Python script as
part of the template definition. We can generate some random numbers using the
built-in random Python module. Alternatively, you can specify the execution logic of
the script inside a container template without writing inline Python code, as seen in
the “hello world” example.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: script-tmpl-
spec:
 entrypoint: gen-random-int
 serviceAccountName: argo
 templates:
 - name: gen-random-int
 script:
 image: python:alpine3.6
 command: [python]
 source: |
 import random
 i = random.randint(1, 100)
 print(i)

Let’s submit it.

Listing 8.45 Resource template

Listing 8.46 Script template

182 CHAPTER 8 Overview of relevant technologies
> kubectl create -f basics/argo-script-template.yaml
workflow.argoproj.io/script-tmpl-c5lhb created

Now, let’s check its logs to see whether a random number was generated.

> kubectl logs script-tmpl-c5lhb
25

So far, we’ve only seen examples of single-step workflows. Argo Workflow also allows
users to define the workflow as a DAG by specifying the dependencies of each task.
The DAG can be simpler to maintain for complex workflows and allows maximum
parallelism when running tasks.

 Let’s look at an example of a diamond-shaped DAG created by Argo Workflows.
This DAG consists of four steps (A, B, C, and D), and each has its own dependencies.
For example, step C depends on step A, and step D depends on steps B and C.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: dag-diamond-
spec:
 serviceAccountName: argo
 entrypoint: diamond
 templates:
 - name: echo
 inputs:
 parameters:
 - name: message
 container:
 image: alpine:3.7
 command: [echo, "{{inputs.parameters.message}}"]
 - name: diamond
 dag:
 tasks:
 - name: A
 template: echo
 arguments:
 parameters: [{name: message, value: A}]
 - name: B
 dependencies: [A]
 template: echo
 arguments:
 parameters: [{name: message, value: B}]
 - name: C
 dependencies: [A]
 template: echo

Listing 8.47 Submitting the script template workflow

Listing 8.48 Check the Pod logs

Listing 8.49 A diamond example using DAG

1838.4 Argo Workflows: Container-native workflow engine
 arguments:
 parameters: [{name: message, value: C}]
 - name: D
 dependencies: [B, C]
 template: echo
 arguments:
 parameters: [{name: message, value: D}]

Let’s submit it.

> kubectl create -f basics/argo-dag-diamond.yaml
workflow.argoproj.io/dag-diamond-6swfg created

When the workflow is completed, we will see four Pods for each of the steps where
each step prints out its step name—A, B, C, and D.

> kubectl get pods -l workflows.argoproj.io/workflow=dag-diamond-6swfg

NAME READY STATUS RESTARTS AGE
dag-diamond-6swfg-echo-4189448097 0/2 Completed 0 76s
dag-diamond-6swfg-echo-4155892859 0/2 Completed 0 66s
dag-diamond-6swfg-echo-4139115240 0/2 Completed 0 66s
dag-diamond-6swfg-echo-4239780954 0/2 Completed 0 56s

The visualization of the DAG is available in the Argo Workflows UI. It’s usually more
intuitive to see how the workflow is executed in a diamond-shaped flow in the UI, as
seen in figure 8.10.

Next, we will look at a simple coin-flip example to showcase the conditional syntax
provided by Argo Workflows. We can specify a condition to indicate whether we want

Listing 8.50 Submitting the DAG workflow

Listing 8.51 Getting the list of Pods belonging to this workflow

Figure 8.10 A screenshot of a
diamond-shaped workflow in the UI

184 CHAPTER 8 Overview of relevant technologies
to run the next step. For example, we run the flip-coin step first, which is the Python
script we saw earlier, and if the result returns heads, we run the template called heads,
which prints another log saying it was heads. Otherwise, we print that it was tails. So
we can specify these conditionals inside the when clause in the different steps.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: coinflip-
spec:
 serviceAccountName: argo
 entrypoint: coinflip
 templates:
 - name: coinflip
 steps:
 - - name: flip-coin
 template: flip-coin
 - - name: heads
 template: heads
 when: "{{steps.flip-coin.outputs.result}} == heads"
 - name: tails
 template: tails
 when: "{{steps.flip-coin.outputs.result}} == tails"

 - name: flip-coin
 script:
 image: python:alpine3.6
 command: [python]
 source: |
 import random
 result = "heads" if random.randint(0,1) == 0 else "tails"
 print(result)

 - name: heads
 container:
 image: alpine:3.6
 command: [sh, -c]
 args: ["echo \"it was heads\""]

 - name: tails
 container:
 image: alpine:3.6
 command: [sh, -c]
 args: ["echo \"it was tails\""]

Let’s submit the workflow.

> kubectl create -f basics/argo-coinflip.yaml
workflow.argoproj.io/coinflip-p87ff created

Listing 8.52 Coin-flip example

Listing 8.53 Submitting the coin-flip example

1858.5 Answers to exercises
Figure 8.11 is a screenshot of what this flip-coin workflow looks like in the UI.

When we get the list of workflows, we find only two Pods.

> kubectl get pods -l workflows.argoproj.io/workflow=coinflip-p87ff

coinflip-p87ff-flip-coin-1071502578 0/2 Completed 0 23s
coinflip-p87ff-tails-2208102039 0/2 Completed 0 13s

We can check the logs of the flip-coin step to see whether it prints out tails since
the next step executed is the tails step:

> kubectl logs coinflip-p87ff-flip-coin-1071502578
tails

That’s a wrap! We’ve just learned the basic syntax of Argo Workflows, which should
cover all the prerequisites for the next chapter! In the next chapter, we will use Argo
Workflows to implement the end-to-end machine learning workflow that consists of
the actual system components introduced in chapter 7.

8.4.2 Exercises

1 Besides accessing the output of each step like {{steps.flip-coin.outputs
.result}}, what are other available variables?

2 Can you trigger workflows automatically by Git commits or other events?

8.5 Answers to exercises

Section 8.1

1 Yes, via model = tf.keras.models.load_model('my_model.h5'); modele

.evaluate(x_test, y_test)

Listing 8.54 Getting the list of Pods belonging to this workflow

Figure 8.11 Screenshot of the
flip-coin workflow in the UI

186 CHAPTER 8 Overview of relevant technologies
2 You should be able to do it easily by changing the tuner to kt.RandomSearch
(model_builder).

Section 8.2

1 kubectl get pod <pod-name> -o json
2 Yes, you can define additional containers in the pod.spec.containers in addi-

tion to the existing single container.

Section 8.3

1 Similar to worker replicas, define parameterServer replicas in your TFJob spec
to specify the number of parameter servers.

Section 8.4

1 The complete list is available here: http://mng.bz/d1Do.
2 Yes, you can use Argo Events to watch Git events and trigger workflows.

Summary
 We used TensorFlow to train a machine learning model for the MNIST dataset

in a single machine.
 We learned the basic concepts in Kubernetes and gained hands-on experience

by implementing them in a local Kubernetes cluster.
 We submitted distributed model training jobs to Kubernetes via Kubeflow.
 We learned about different types of templates and how to define either DAGs

or sequential steps using Argo Workflows.

http://mng.bz/d1Do

A complete
implementation
In the previous chapter of the book, we learned the basics of the four core technol-
ogies that we will use in our project: TensorFlow, Kubernetes, Kubeflow, and Argo
Workflows. We learned that TensorFlow performs data processing, model building,
and model evaluation. We also learned the basic concepts of Kubernetes and
started our local Kubernetes cluster, which we will use as our core distributed infra-
structure. In addition, we successfully submitted distributed model training jobs to
the local Kubernetes cluster using Kubeflow. At the end of the last chapter, we
learned how to use Argo Workflows to construct and submit a basic “hello world”
workflow and a complex DAG-structured workflow.

This chapter covers
 Implementing data ingestion component with

TensorFlow

 Defining the machine learning model and
submitting distributed model training jobs

 Implementing a single-instance model server
as well as replicated model servers

 Building an efficient end-to-end workflow of
our machine learning system
187

188 CHAPTER 9 A complete implementation
 In this chapter, we’ll implement the end-to-end machine learning system with the
architecture we designed in chapter 7. We will completely implement each compo-
nent, which will incorporate the previously discussed patterns. We’ll use several popu-
lar frameworks and cutting-edge technologies, particularly TensorFlow, Kubernetes,
Kubeflow, Docker, and Argo Workflows, which we introduced in chapter 8 to build dif-
ferent components of a distributed machine learning workflow in this chapter.

9.1 Data ingestion
The first component in our end-to-end workflow is data ingestion. We’ll be using the
Fashion-MNIST dataset introduced in section 2.2 to build the data ingestion compo-
nent. Figure 9.1 shows this component in the dark box on the left of the end-to-end
workflow.

Recall that this dataset consists of a training set of 60,000 examples and a test set of
10,000 examples. Each example is a 28 × 28 grayscale image representing one
Zalando’s article image and associated with a label from 10 classes. In addition, the
Fashion-MNIST dataset is designed to serve as a direct drop-in replacement for the
original MNIST dataset for benchmarking machine learning algorithms. It shares the
same image size and structure of training and testing splits. Figure 9.2 is a screenshot
of the collection of images for all 10 classes (T-shirt/top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, and ankle boot) from Fashion-MNIST, where each class
takes three rows in the screenshot.

 Figure 9.3 is a closer look at the first few example images in the training set
together with their corresponding labels in text above each of the images.

 In section 9.1.1, we’ll go through the implementation of a single-node data pipe-
line that ingests the Fashion-MNIST dataset. Furthermore, section 9.1.2 will cover the

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

Figure 9.1 The data ingestion component (dark box) in the end-to-end machine learning system

1899.1 Data ingestion
implementation of the distributed data pipeline to prepare the data for our distrib-
uted model training in section 9.2.

9.1.1 Single-node data pipeline

Let’s first take a look at how to build a single-node data pipeline that works locally on
your laptop without using a local Kubernetes cluster. The best way for a machine
learning program written in TensorFlow to consume data is through methods in
tf.data module. The tf.data API allows users to build complex input pipelines

Every three rows represent
example images that represent a
class. For example, the top three
rows are images of T-shirts.

Figure 9.2 A screenshot of the collection of images from the Fashion-MNIST dataset for all 10 classes
(T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot)

Figure 9.3 A closer look at the first few example images in the training set with their corresponding labels in text

190 CHAPTER 9 A complete implementation
easily. For example, the pipeline for an image model might aggregate data from files
in various file systems, apply random transformations to each image, and create
batches from the images for model training.

 The tf.data API enables it to handle large amounts of data, read from different
data formats, and perform complex transformations. It contains a tf.data.Dataset
abstraction that represents a sequence of elements, in which each element consists of
one or more components. Let’s use the image pipeline to illustrate this. An element
in an image input pipeline might be a single training example, with a pair of tensor
components representing the image and its label.

 The following listing provides the code snippet to load the Fashion-MNIST dataset
into a tf.data.Dataset object and performs some necessary preprocessing steps to
prepare for our model training:

1 Scale the dataset from the range (0, 255] to (0., 1.].
2 Cast the image multidimensional arrays into float32 type that our model can

accept.
3 Select the training data, cache it in memory to speed up training, and shuffle it

with a buffer size of 10,000.

import tensorflow_datasets as tfds
import tensorflow as tf
def make_datasets_unbatched():
 def scale(image, label):
 image = tf.cast(image, tf.float32)
 image /= 255
 return image, label
 datasets, _ = tfds.load(name='fashion_mnist',
 with_info=True, as_supervised=True)
 return datasets['train'].map(scale).cache().shuffle(10000)

Note that we imported tensorflow_datasets module. The TensorFlow Datasets,
which consists of a collection of datasets for various tasks such as image classification,
object detection, document summarization, etc., can be used with TensorFlow and
other Python machine learning frameworks.

 The tf.data.Dataset object is a shuffled dataset where each element consists of
the images and their labels with the shape and data type information as in the follow-
ing listing.

>>> ds = make_datasets_unbatched()
>>> ds
<ShuffleDataset element_spec=(
 TensorSpec(shape=(28, 28, 1),
 dtype=tf.float32, name=None),
TensorSpec(shape=(), dtype=tf.int64, name=None))>

Listing 9.1 Loading the Fashion-MNIST dataset

Listing 9.2 Inspecting the tf.data object

1919.2 Model training
9.1.2 Distributed data pipeline

Now let’s look at how we can consume our dataset in a distributed fashion. We’ll be
using tf.distribute.MultiWorkerMirroredStrategy for distributed training in the
next section. Let’s assume we have instantiated a strategy object. We will instantiate
our dataset inside the strategy’s scope via Python’s with syntax using the same func-
tion we previously defined for the single-node use case.

 We will need to tweak a few configurations to build our distributed input pipeline.
First, we create repeated batches of data where the total batch size equals the batch
size per replica times the number of replicas over which gradients are aggregated.
This ensures that we will have enough records to train each batch in each of the
model training workers. In other words, the number of replicas in sync equals the
number of devices taking part in the gradient allreduce operation during model train-
ing. For instance, when a user or the training code calls next() on the distributed
data iterator, a per replica batch size of data is returned on each replica. The
rebatched dataset cardinality will always be a multiple of the number of replicas.

 In addition, we want to configure tf.data to enable automatic data sharding.
Since the dataset is in the distributed scope, the input dataset will be sharded automat-
ically in multiworker training mode. More specifically, each dataset will be created on
the CPU device of the worker, and each set of workers will train the model on a sub-
set of the entire dataset when tf.data.experimental.AutoShardPolicy is set to
AutoShardPolicy.DATA. One benefit is that during each model training step, a global
batch size of non-overlapping dataset elements will be processed by each worker. Each
worker will process the whole dataset and discard the portion that is not for itself.
Note that for this mode to partition the dataset elements correctly, the dataset needs
to produce elements in a deterministic order, which should already be guaranteed by
the TensorFlow Datasets library we use.

BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
with strategy.scope():
 ds_train = make_datasets_unbatched().batch(BATCH_SIZE).repeat()
 options = tf.data.Options()
 options.experimental_distribute.auto_shard_policy = \
 tf.data.experimental.AutoShardPolicy.DATA
 ds_train = ds_train.with_options(options)
 model = build_and_compile_model()
model.fit(ds_train, epochs=1, steps_per_epoch=70)

9.2 Model training
We went through the implementation of the data ingestion component for both
local-node and distributed data pipelines and discussed how we can shard the data-
set properly across different workers so that it would work with distributed model

Listing 9.3 Configuring distributed data pipeline

192 CHAPTER 9 A complete implementation
training. In this section, let’s dive into the implementation details for our model
training component. An architecture diagram of the model training component can
be found in figure 9.4.

We will learn how to define those three models with TensorFlow in section 9.2.1 and
execute the distributed model training jobs with Kubeflow in section 9.2.2. In sec-
tion 9.2.3, we will implement the model selection step that picks the top model that will
be used in the model serving component in our end-to-end machine learning workflow.

9.2.1 Model definition and single-node training

Next, we’ll look at the TensorFlow code to define and initialize the first model, a con-
volutional neural network (CNN) model we introduced in previous chapters with
three convolutional layers. We initialize the model with Sequential(), meaning we’ll
add the layers sequentially. The first layer is the input layer, where we specify the shape
of the input pipeline that we defined previously. Note that we also explicitly give a
name to the input layer so we can pass the correct key in our inference inputs, which
we will discuss in more depth in section 9.3.

 After adding the input layer, three convolutional layers, followed by max-pooling
layers and dense layers, are added to the sequential model. We’ll then print out a sum-
mary of the model architecture and compile the model with Adam as its optimizer,
accuracy as the metric we use to evaluate the model, and sparse categorical cross-
entropy as the loss function.

Data ingestion
Model

training 2

Cache
store

Three mode training
steps train different
models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

This step picks the top model
that will be used in the following
two separate model serving steps.

Figure 9.4 A diagram of the model training component in the overall architecture. Three different
model training steps are followed by a model selection step. These model training steps would train
three different models—namely, CNN, CNN with dropout, and CNN with batch normalization—
competing with each other for better statistical performance.

1939.2 Model training
def build_and_compile_cnn_model():
 print("Training CNN model")
 model = models.Sequential()
 model.add(layers.Input(shape=(28, 28, 1), name='image_bytes'))
 model.add(
 layers.Conv2D(32, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10, activation='softmax'))
 model.summary()
 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
 return model

We’ve successfully defined our basic CNN model. Next, we define two models based
on the CNN model. One adds a batch normalization layer to force the pre-activations
to have zero mean and unit standard deviation for every neuron (activation) in a par-
ticular layer. The other model has an additional dropout layer where half of the hid-
den units will be dropped randomly to reduce the complexity of the model and speed
up computation. The rest of the code is the same as the basic CNN model.

def build_and_compile_cnn_model_with_batch_norm():
 print("Training CNN model with batch normalization")
 model = models.Sequential()
 model.add(layers.Input(shape=(28, 28, 1), name='image_bytes'))
 model.add(
 layers.Conv2D(32, (3, 3), activation='relu'))
 model.add(layers.BatchNormalization())
 model.add(layers.Activation('sigmoid'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.BatchNormalization())
 model.add(layers.Activation('sigmoid'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10, activation='softmax'))

 model.summary()

 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',

Listing 9.4 Defining the basic CNN model

Listing 9.5 Defining the variations of the basic CNN model

194 CHAPTER 9 A complete implementation
 metrics=['accuracy'])
 return model

def build_and_compile_cnn_model_with_dropout():
 print("Training CNN model with dropout")
 model = models.Sequential()
 model.add(layers.Input(shape=(28, 28, 1), name='image_bytes'))
 model.add(
 layers.Conv2D(32, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Dropout(0.5))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10, activation='softmax'))

 model.summary()

 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
 return model

Once the models are defined, we can train them locally on our laptops. Let’s use the
basic CNN model as an example. We will create four callbacks that will be executed
during model training:

1 PrintLR—Callback to print the learning rate at the end of each epoch
2 TensorBoard—Callback to start the interactive TensorBoard visualization to

monitor the training progress and model architecture
3 ModelCheckpoint—Callback to save model weights for model inference later
4 LearningRateScheduler—Callback to decay the learning rate at the end of

each epoch

Once these callbacks are defined, we’ll pass it to the fit() method for training. The
fit() method trains the model with a specified number of epochs and steps per
epoch. Note that the numbers here are for demonstration purposes only to speed up
our local experiments and may not sufficiently produce a model with good quality in
real-world applications.

single_worker_model = build_and_compile_cnn_model()
checkpoint_prefix = os.path.join(args.checkpoint_dir, "ckpt_{epoch}")

class PrintLR(tf.keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs=None):
 print('\nLearning rate for epoch {} is {}'.format(
 epoch + 1, multi_worker_model.optimizer.lr.numpy()))

Listing 9.6 Modeling training with callbacks

1959.2 Model training
callbacks = [
 tf.keras.callbacks.TensorBoard(log_dir='./logs'),
 tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
 save_weights_only=True),
 tf.keras.callbacks.LearningRateScheduler(decay),
 PrintLR()
]

single_worker_model.fit(ds_train,
 epochs=1,
 steps_per_epoch=70,
 callbacks=callbacks)

We’ll see the model training progress like the following in the logs:

Learning rate for epoch 1 is 0.0010000000474974513
70/70 [========] - 16s 136ms/step - loss: 1.2853
- accuracy: 0.5382 - lr: 0.0010

Here’s the summary of the model architecture in the logs:
Model: "sequential"
__
 Layer (type) Output Shape Param #
==
 conv2d (Conv2D) (None, 26, 26, 32) 320
 max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
 conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
 max_pooling2d_1 (MaxPooling2D) (None, 5, 5, 64) 0
 conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
 flatten (Flatten) (None, 576) 0
 dense (Dense) (None, 64) 36928
 dense_1 (Dense) (None, 10) 650
==
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

Based on this summary, 93,000 parameters will be trained during the process. The
shape and the number of parameters in each layer can also be found in the summary.

9.2.2 Distributed model training

Now that we’ve defined our models and can train them locally in a single machine,
the next step is to insert the distributed training logic in the code so that we can run
model training with multiple workers using the collective communication pattern that
we introduced in the book. We’ll use the tf.distribute module that contains Multi-
WorkerMirroredStrategy. It’s a distribution strategy for synchronous training on multi-
ple workers. It creates copies of all variables in the model’s layers on each device across
all workers. This strategy uses a distributed collective implementation (e.g., all-reduce),
so multiple workers can work together to speed up training. If you don’t have appropri-
ate GPUs, you can replace communication_options with other implementations. Since

196 CHAPTER 9 A complete implementation
we want to ensure the distributed training can run on different machines that might
not have GPUs, we’ll replace it with CollectiveCommunication.AUTO so that it will
pick any available hardware automatically.

 Once we define our distributed training strategy, we’ll initiate our distributed
input data pipeline (as mentioned previously in section 9.1.2) and the model inside
the strategy scope. Note that defining the model inside the strategy scope is required
since TensorFlow knows how to copy the variables in the model’s layers to each worker
adequately based on the strategy. Here we define different model types (basic CNN,
CNN with dropout, and CNN with batch normalization) based on the command-line
arguments we pass to this Python script.

 We’ll get to the rest of the flags soon. Once the data pipeline and the model are
defined inside the scope, we can use fit() to train the model outside the distribution
strategy scope.

strategy = tf.distribute.MultiWorkerMirroredStrategy(
 communication_options=tf.distribute.experimental.CommunicationOptions(
 implementation=tf.distribute.experimental.CollectiveCommunication.AUTO))

BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync

with strategy.scope():
 ds_train = make_datasets_unbatched().batch(BATCH_SIZE).repeat()
 options = tf.data.Options()
 options.experimental_distribute.auto_shard_policy = \
 tf.data.experimental.AutoShardPolicy.DATA
 ds_train = ds_train.with_options(options)
 if args.model_type == "cnn":
 multi_worker_model = build_and_compile_cnn_model()
 elif args.model_type == "dropout":
 multi_worker_model = build_and_compile_cnn_model_with_dropout()
 elif args.model_type == "batch_norm":
 multi_worker_model = build_and_compile_cnn_model_with_batch_norm()
 else:
 raise Exception("Unsupported model type: %s" % args.model_type)

multi_worker_model.fit(ds_train,
 epochs=1,
 steps_per_epoch=70)

Once the model training is finished via fit() function, we want to save the model.
One common mistake that users can easily make is saving models on all the workers,
which may not save the completed model correctly and wastes computational
resources and storage. The correct way to fix this problem is to save only the model
on the chief worker. We can inspect the environment variable TF_CONFIG, which
contains the cluster information, such as the task type and index, to see whether the

Listing 9.7 Distributed model training logic

1979.2 Model training
worker is chief. Also, we want to save the model to a unique path across workers to
avoid unexpected errors.

def is_chief():
 return TASK_INDEX == 0

tf_config = json.loads(os.environ.get('TF_CONFIG') or '{}')
TASK_INDEX = tf_config['task']['index']

if is_chief():
 model_path = args.saved_model_dir
else:
 model_path = args.saved_model_dir + '/worker_tmp_' + str(TASK_INDEX)

multi_worker_model.save(model_path)

So far, we’ve seen two command-line flags already—namely, saved_model_dir and
model_type. Listing 9.9 provides the rest of the main function that will parse those
command-line arguments. In addition to those two arguments, there’s another
checkpoint_dir argument that we will use to save our model to the TensorFlow
SavedModel format that can be easily consumed for our model serving component.
We will discuss that in detail in section 9.3. We also disabled the progress bar for the
TensorFlow Datasets module to reduce the logs we will see.

if __name__ == '__main__':
 tfds.disable_progress_bar()

 parser = argparse.ArgumentParser()
 parser.add_argument('--saved_model_dir',
 type=str,
 required=True,
 help='Tensorflow export directory.')

 parser.add_argument('--checkpoint_dir',
 type=str,
 required=True,
 help='Tensorflow checkpoint directory.')

 parser.add_argument('--model_type',
 type=str,
 required=True,
 help='Type of model to train.')

 parsed_args = parser.parse_args()
 main(parsed_args)

We’ve just finished writing our Python script that contains the distributed model train-
ing logic. Let’s containerize it and build the image used to run distributed training in
our local Kubernetes cluster. In our Dockerfile, we’ll use the Python 3.9 base image,

Listing 9.8 Saving a model with a chief worker

Listing 9.9 Entry point main function

198 CHAPTER 9 A complete implementation
install TensorFlow and TensorFlow Datasets modules via pip, and copy our multi-
worker distributed training Python script.

FROM python:3.9
RUN pip install tensorflow==2.11.0 tensorflow_datasets==4.7.0
COPY multi-worker-distributed-training.py /

We then build the image from the Dockerfile we just defined. We also need to import the
image to k3d cluster since our cluster does not have access to our local image registry. We
then set the current namespace to be “kubeflow”. Please read chapter 8 and follow the
instructions to install the required components we need for this project.

> docker build -f Dockerfile -t kubeflow/multi-worker-strategy:v0.1 .
> k3d image import kubeflow/multi-worker-strategy:v0.1 --cluster distml
> kubectl config set-context --current --namespace=kubeflow

Once the worker Pods are completed, all files in the Pod will be recycled. Since we are
running distributed model training across multiple workers in Kubernetes Pods, all
the model checkpoints will be lost, and we don’t have a trained model for model serv-
ing. To address this problem, we’ll use PersistentVolume (PV) and PersistentVolume-
Claim (PVC).

 PV is a storage in the cluster that has been provisioned by an administrator or
dynamically provisioned. It is a resource in the cluster, just like a node is a cluster
resource. PVs are volume plugins like Volumes, but have a life cycle independent of
any individual Pod that uses the PV. In other words, PVs will persist and live even after
the Pods are completed or deleted.

 A PVC is a request for storage by a user. It is similar to a Pod. Pods consume node
resources, and PVCs consume PV resources. Pods can request specific levels of resources
(CPU and memory). Claims can request specific size and access modes (e.g., they can
be mounted ReadWriteOnce, ReadOnlyMany, or ReadWriteMany).

 Let’s create a PVC to submit a request for storage that will be used in our worker
Pods to store the trained model. Here we only submit a request for 1 Gi storage with
ReadWriteOnce access mode.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: strategy-volume
spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

Listing 9.10 Containerization

Listing 9.11 Building and importing the docker image

Listing 9.12 Persistent volume claim

1999.2 Model training
Next, we’ll create the PVC.

> kubectl create -f multi-worker-pvc.yaml

Next, let’s define the TFJob spec we introduced in chapter 7 with the image we just
built that contains the distributed training script. We pass the necessary command
arguments to the container to train the basic CNN model. The volumes field in the
Worker spec specifies the name of the persistent volume claim that we just created,
and the volumeMounts field in the containers spec specifies what folder to mount
the files between the volume to the container. The model will be saved in the
/trained_model folder inside the volume.

apiVersion: kubeflow.org/v1
kind: TFJob
metadata:
 name: multi-worker-training
spec:
 runPolicy:
 cleanPodPolicy: None
 tfReplicaSpecs:
 Worker:
 replicas: 2
 restartPolicy: Never
 template:
 spec:
 containers:
 - name: tensorflow
 image: kubeflow/multi-worker-strategy:v0.1
 imagePullPolicy: IfNotPresent
 command: ["python",
 "/multi-worker-distributed-training.py",
 "--saved_model_dir",
 "/trained_model/saved_model_versions/2/",
 "--checkpoint_dir",
 "/trained_model/checkpoint",
 "--model_type", "cnn"]
 volumeMounts:
 - mountPath: /trained_model
 name: training
 resources:
 limits:
 cpu: 500m
 volumes:
 - name: training
 persistentVolumeClaim:
 claimName: strategy-volume

Listing 9.13 Creating the PVC

Listing 9.14 Distributed model training job definition

200 CHAPTER 9 A complete implementation
Then we can submit this TFJob to our cluster to start our distributed model training.

> kubectl create -f multi-worker-tfjob.yaml

Once the worker Pods are completed, we’ll notice the following logs from the Pods
that indicate we trained the model in a distributed fashion and the workers communi-
cated with each other successfully:

Started server with target:
grpc://multi-worker-training-worker-0.kubeflow.svc:2222
/job:worker/replica:0/task:1 has connected to coordination service.
/job:worker/replica:0/task:0 has connected to coordination service.
Coordination agent has successfully connected.

9.2.3 Model selection

So far, we’ve implemented our distributed model training component. We’ll eventu-
ally train three different models, as mentioned in section 9.2.1, and then pick the top
model for model serving. Let’s assume that we have trained those models successfully
by submitting three different TFJobs with different model types.

 Next, we write the Python code that loads the testing data and trained models and
then evaluate their performance. We will load each trained model from different fold-
ers by keras.models.load_model() function and execute model.evaluate(), which
returns the loss and accuracy. Once we find the model with the highest accuracy, we
can copy the model to a new version in a different folder—namely, 4—which will be
used by our model serving component.

import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_datasets as tfds
import shutil
import os

def scale(image, label):
 image = tf.cast(image, tf.float32)
 image /= 255
 return image, label

best_model_path = ""
best_accuracy = 0
for i in range(1, 4):
 model_path = "trained_model/saved_model_versions/" + str(i)
 model = keras.models.load_model(model_path)

Listing 9.15 Submitting TFJob

Listing 9.16 Model evaluation

2019.2 Model training
 datasets, _ = tfds.load(
 name='fashion_mnist', with_info=True, as_supervised=True)
 ds = datasets['test'].map(scale).cache().shuffle(10000).batch(64)
 _, accuracy = model.evaluate(ds)
 if accuracy > best_accuracy:
 best_accuracy = accuracy
 best_model_path = model_path

destination = "trained_model/saved_model_versions/4"
if os.path.exists(destination):
 shutil.rmtree(destination)

shutil.copytree(best_model_path, destination)
print("Best model with accuracy %f is copied to %s" % (
 best_accuracy, destination))

Note that the latest version, 4, in the trained_model/saved_model_versions folder will
be picked up by our serving component. We will talk about that in the next section.

 We then add this Python script to our Dockerfile, rebuild the container image, and
create a Pod that runs the model selection component. The following is the YAML file
that configures the model selection Pod.

apiVersion: v1
kind: Pod
metadata:
 name: model-selection
spec:
 containers:
 - name: predict
 image: kubeflow/multi-worker-strategy:v0.1
 command: ["python", "/model-selection.py"]
 volumeMounts:
 - name: model
 mountPath: /trained_model
 volumes:
 - name: model
 persistentVolumeClaim:
 claimName: strategy-volume

When inspecting the logs, we see the third model has the highest accuracy, so we will
copy it to a new version to be used for the model serving component:

157/157 [======] - 1s 5ms/step - loss: 0.7520 - accuracy: 0.7155
157/157 [======] - 1s 5ms/step - loss: 0.7568 - accuracy: 0.7267
157/157 [======] - 1s 5ms/step - loss: 0.7683 - accuracy: 0.7282

Listing 9.17 Model selection Pod definition

202 CHAPTER 9 A complete implementation
9.3 Model serving
Now that we have implemented our distributed model training as well as model selec-
tion among the trained models. The next component we will implement is the model
serving component. The model serving component is essential to the end-user experi-
ence since the results will be shown to our users directly, and if it’s not performant
enough, our users will know immediately. Figure 9.5 shows the model training compo-
nent in the overall architecture.

In figure 9.5, the model serving components are shown as the two dark boxes between
the model selection and result aggregation steps. Let’s first implement our single-
server model inference component in section 9.3.1 and then make it more scalable
and performant in section 9.3.2.

9.3.1 Single-server model inference

The model inference Python code is very similar to the model evaluation code. The
only difference is that we use the model.predict() method instead of evaluate()
after we load the trained model. This is an excellent way to test whether the trained
model can make predictions as expected.

import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_datasets as tfds
model = keras.models.load_model("trained_model/saved_model_versions")

Listing 9.18 Model prediction

Data ingestion
Model

training 2

Cache
store

The results from the two model
serving steps are then aggregated
via a result aggregation step to
present to users.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

Figure 9.5 Model serving component (dark boxes) in the end-to-end machine learning system

2039.3 Model serving
def scale(image, label):
 image = tf.cast(image, tf.float32)
 image /= 255
 return image, label
datasets, _ = tfds.load(
 name='fashion_mnist', with_info=True, as_supervised=True)
ds = datasets['test'].map(scale).cache().shuffle(10000).batch(64)
model.predict(ds)

Alternatively, you can start a TensorFlow Serving (https://github.com/tensorflow/
serving) server locally like in the following listing once it’s installed.

tensorflow_model_server --model_name=flower-sample \
 --port=9000 \
 --rest_api_port=8080 \
 --model_base_path=trained_model/saved_model \
 --rest_api_timeout_in_ms=60000

This seems straightforward and works well if we are only experimenting locally. How-
ever, there are more performant ways to build our model serving component that will
pave our path to running distributed model serving that incorporates the replicated
model server pattern that we introduced in previous chapters.

 Before we dive into a better solution, let’s make sure our trained model can work
with our prediction inputs, which will be a JSON-structured list of image bytes with the
key "instances" and "image_bytes", like the following:

{
 "instances":[
 {
 "image_bytes":{
 "b64":"/9j/4AAQSkZJRgABAQAAAQABAAD
…
<truncated>
/hWY4+UVEhkoIYUx0psR+apm6VBRUZcUYFSuKZgUAf//Z"
 }
 }
]
 }

Now is the time to modify our distributed model training code to make sure the
model has the correct serving signature that’s compatible with our supplied inputs.
We define the preprocessing function that does the following:

1 Decodes the images from bytes
2 Resizes the image to 28 × 28 that’s compatible with our model architecture
3 Casts the images to tf.uint8
4 Defines the input signature with string type and key as image_bytes

Listing 9.19 TensorFlow Serving command

https://github.com/tensorflow/serving
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving

204 CHAPTER 9 A complete implementation
Once the preprocessing function is defined, we can define the serving signature via
tf.TensorSpec() and then pass it to tf.saved_model.save() method to save the
model that is compatible with our input format and preprocess it before TensorFlow
Serving makes inference calls.

def _preprocess(bytes_inputs):
 decoded = tf.io.decode_jpeg(bytes_inputs, channels=1)
 resized = tf.image.resize(decoded, size=(28, 28))
 return tf.cast(resized, dtype=tf.uint8)

def _get_serve_image_fn(model):
@tf.function(
 input_signature=[tf.TensorSpec([None],
 dtype=tf.string, name='image_bytes')])
 def serve_image_fn(bytes_inputs):
 decoded_images = tf.map_fn(_preprocess, bytes_inputs, dtype=tf.uint8)
 return model(decoded_images)
 return serve_image_fn
signatures = {
 "serving_default":

_get_serve_image_fn(multi_worker_model).get_concrete_function(
 tf.TensorSpec(shape=[None], dtype=tf.string, name='image_bytes')
)
 }

tf.saved_model.save(multi_worker_model, model_path, signatures=signatures)

Once the distributed model training script is modified, we can rebuild our container
image and retrain our model from scratch, following the instructions in section 9.2.2.

 Next, we will use KServe, as we mentioned in the technologies overview, to create
an inference service. Listing 9.21 provides the YAML to define the KServe inference
service. We need to specify the model format so that KServe knows what to use for
serving the model (e.g., TensorFlow Serving). In addition, we need to supply the URI
to the trained model. In this case, we can specify the PVC name and the path to the
trained model, following the format pvc://<pvc-name>/<model-path>.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
 name: flower-sample
spec:
 predictor:
 model:
 modelFormat:
 name: tensorflow
 storageUri: "pvc://strategy-volume/saved_model_versions"

Listing 9.20 Model serving signature definitions

Listing 9.21 Inference service definition

2059.3 Model serving
Let’s install KServe and create our inference service!

> curl -s "https:/ /raw.githubusercontent.com/
 kserve/kserve/v0.10.0-rc1/hack/quick_install.sh" | bash
> kubectl create -f inference-service.yaml

We can check its status to make sure it’s ready for serving.

> kubectl get isvc
NAME URL READY AGE
flower-sample <truncated…example.com> True 25s

Once the service is created, we port-forward it to local so that we can send requests to
it locally.

> INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace \
istio-system --selector="app=istio-ingressgateway" --output \

jsonpath='{.items[0].metadata.name}')
> kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE}

8080:80

You should be able to see the following if the port-forwarding is successful:

Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

Let’s open another terminal and execute the following Python script to send a sample
inference request to our model serving service and print out the response text.

import requests
import json
input_path = "inference-input.json"

with open(input_path) as json_file:
 data = json.load(json_file)

r = requests.post(
 url="http:/ /localhost:8080/v1/models/flower-sample:predict",
 data=json.dumps(data),
 headers={'Host': 'flower-sample.kubeflow.example.com'})
print(r.text)

Listing 9.22 Installing KServe and creating the inference service

Listing 9.23 Getting the details of the inference service

Listing 9.24 Port-forwarding the inference service

Listing 9.25 Using Python to send an inference request

206 CHAPTER 9 A complete implementation
The response from our KServe model serving service, which includes the predicted
probabilities for each class in the Fashion-MNIST dataset, is as follows:

{
 "predictions": [[0.0, 0.0, 1.22209595e-11,
 0.0, 1.0, 0.0, 7.07406329e-32, 0.0, 0.0, 0.0]]
}

Alternatively, we can use curl to send requests.

Start another terminal
export INGRESS_HOST=localhost
export INGRESS_PORT=8080
MODEL_NAME=flower-sample
INPUT_PATH=@./inference-input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice \
${MODEL_NAME} -o jsonpath='{.status.url}' | \
cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" "http:/ /${INGRESS_HOST}:${INGRESS_PORT}/v1/
models/$MODEL_NAME:predict" -d $INPUT_PATH

The output probabilities should be the same as the ones we just saw:

* Trying ::1:8080...
* Connected to localhost (::1) port 8080 (#0)
> POST /v1/models/flower-sample:predict HTTP/1.1
> Host: flower-sample.kubeflow.example.com
> User-Agent: curl/7.77.0
> Accept: */*
> Content-Length: 16178
> Content-Type: application/x-www-form-urlencoded
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 102
< content-type: application/json
< date: Thu, 05 Jan 2023 21:11:36 GMT
< x-envoy-upstream-service-time: 78
< server: istio-envoy
<
{
 "predictions": [[0.0, 0.0, 1.22209595e-11, 0.0,
 1.0, 0.0, 7.07406329e-32, 0.0, 0.0, 0.0]
]
* Connection #0 to host localhost left intact
}

As mentioned previously, even though we specified the entire directory that contains
the trained model in the KServe InferenceService spec, the model serving service

Listing 9.26 Using curl to send an inference request

2079.3 Model serving
that utilizes TensorFlow Serving will pick the latest version 4 from that particular
folder, which is our best model we selected in section 9.2.3. We can observe that from
the logs of the serving Pod.

> kubectl logs flower-sample-predictor-default
-00001-deployment-f67767f6c2fntx -c kserve-container

Here’s the logs:

Building single TensorFlow model file config:
model_name: flower-sample model_base_path: /mnt/models
Adding/updating models.
…
<truncated>
Successfully loaded servable version
 {name: flower-sample version: 4}

9.3.2 Replicated model servers

In the previous section, we successfully deployed our model serving service in our
local Kubernetes cluster. This might be sufficient for running local serving experi-
ments, but it’s far from ideal if it’s deployed to production systems that serve real-
world model serving traffic. The current model serving service is a single Kubernetes
Pod, where the allocated computational resources are limited and requested in
advance. When the number of model serving requests increases, the single-instance
model server can no longer support the workloads and may run out of computa-
tional resources.

 To address the problem, we need to have multiple instances of model servers to
handle a larger amount of dynamic model serving requests. Fortunately, KServe can
autoscale based on the average number of in-flight requests per Pod, which uses the
Knative Serving autoscaler.

 The following listing provides the inference service spec with autoscaling enabled.
The scaleTarget field specifies the integer target value of the metric type the auto-
scaler watches for. In addition, the scaleMetric field defines the scaling metric type
watched by autoscaler. The possible metrics are concurrency, RPS, CPU, and memory.
Here we only allow one concurrent request to be processed by each inference service
instance. In other words, when there are more requests, we will start a new inference
service Pod to handle each additional request.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
 name: flower-sample

Listing 9.27 Inspecting the model server logs

Listing 9.28 Replicated model inference services

208 CHAPTER 9 A complete implementation
spec:
 predictor:
 scaleTarget: 1
 scaleMetric: concurrency
 model:
 modelFormat:
 name: tensorflow
 storageUri: "pvc://strategy-volume/saved_model_versions"

Let’s assume there’s no request, and we should only see one inference service Pod
that’s up and running. Next, let’s send traffic in 30-second spurts, maintaining five in-
flight requests. We use the same service hostname and ingress address, as well as the
same inference input and trained model. Note that we are using the tool hey, a tiny
program that sends some load to a web application. Follow the instructions at https://
github.com/rakyll/hey to install it before executing the following command.

> hey -z 30s -c 5 -m POST \
 -host ${SERVICE_HOSTNAME} \
 -D inference-input.json "http:/ /${INGRESS_HOST}:${INGRESS_PORT}
/v1/models/$MODEL_NAME:predict"

The following is the expected output from the command, which includes a summary of
how the inference service handled the requests. For example, the service has processed
230,160 bytes of inference inputs and 95.7483 requests per second. You can also find a
nice response-time histogram and a latency distribution that might be useful:

 Summary:
 Total: 30.0475 secs
 Slowest: 0.2797 secs
 Fastest: 0.0043 secs
 Average: 0.0522 secs
 Requests/sec: 95.7483
 Total data: 230160 bytes
 Size/request: 80 bytes
Response time histogram:
 0.004 [1] |
 0.032 [1437] |■■
 0.059 [3] |
 0.087 [823] |■■■■■■■■■■■■■■■■■■■■■■■
 0.114 [527] |■■■■■■■■■■■■■■■
 0.142 [22] |■
 0.170 [5] |
 0.197 [51] |■
 0.225 [7] |
 0.252 [0] |
 0.280 [1] |

 Latency distribution:
 10% in 0.0089 secs
 25% in 0.0123 secs

Listing 9.29 Sending traffic to test the load

https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://github.com/rakyll/hey

2099.4 The end-to-end workflow
 50% in 0.0337 secs
 75% in 0.0848 secs
 90% in 0.0966 secs
 95% in 0.1053 secs
 99% in 0.1835 secs
Details (average, fastest, slowest):
 DNS+dialup: 0.0000 secs, 0.0043 secs, 0.2797 secs
 DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0009 secs
 req write: 0.0000 secs, 0.0000 secs, 0.0002 secs
 resp wait: 0.0521 secs, 0.0042 secs, 0.2796 secs
 resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs
Status code distribution:
 [200] 2877 responses

As expected, we see five running inference service Pods processing the requests con-
currently, where each Pod handles only one request.

> kubectl get pods
NAME READY STATUS RESTARTS AGE
flower-<truncated>-sr5wd 3/3 Running 0 12s
flower--<truncated>-swnk5 3/3 Running 0 22s
flower--<truncated>-t2njf 3/3 Running 0 22s
flower--<truncated>-vdlp9 3/3 Running 0 22s
flower--<truncated>-vm58d 3/3 Running 0 42s

Once the hey command is completed, we will only see one running Pod.

> kubectl get pods
NAME READY STATUS RESTARTS AGE
flower-<truncated>-sr5wd 3/3 Running 0 62s

9.4 The end-to-end workflow
We have just implemented all the components in the previous sections. Now it’s time
to put things together! In this section, we’ll define an end-to-end workflow using Argo
Workflows that includes the components we just implemented. Please go back to pre-
vious sections if you are still unfamiliar with all the components and refresh your
knowledge of basic Argo Workflows from chapter 8.

 Here’s a recap of what the end-to-end workflow we will implement looks like. Fig-
ure 9.6 is a diagram of the end-to-end workflow that we are building. The diagram
includes two model serving steps for illustration purposes, but we will only implement
one step in our Argo workflow. It will autoscale to more instances based on requests
traffic, as mentioned in section 9.3.2.

 In the next sections, we will define the entire workflow by connecting the steps
sequentially with Argo and then optimize the workflow for future executions by imple-
menting step memoization.

Listing 9.30 Getting the list of model server Pods

Listing 9.31 Getting the list of model server Pods again

210 CHAPTER 9 A complete implementation
9.4.1 Sequential steps

First, let’s look at the entry point templates and the main steps involved in the work-
flow. The entry point template name is tfjob-wf, which consists of the following steps
(for simplicity, each step uses a template with the same name):

1 data-ingestion-step contains the data ingestion step, which we will use to
download and preprocess the dataset before model training.

2 distributed-tf-training-steps is a step group that consists of multiple sub-
steps, where each substep represents a distributed model training step for a spe-
cific model type.

3 model-selection-step is a step that selects the top model from among the dif-
ferent models we have trained in previous steps.

4 create-model-serving-service creates the model serving serve via KServe.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: tfjob-wf-
 namespace: kubeflow
spec:
 entrypoint: tfjob-wf
 podGC:
 strategy: OnPodSuccess
 volumes:
 - name: model
 persistentVolumeClaim:
 claimName: strategy-volume

Listing 9.32 Workflow entry point templates

Read/write cache

Data ingestion
Model

training 2

Cache
store

The machine learning
workflow is triggered.

Has the
data been
updated
recently?

Three model training
steps train different
models.

Model

training 1

Model

training 3

Model

serving 1

Model

serving 2

Result

aggregation

and

presentation

Model

selection

This step picks the top
model that will be used in
the following two separate
model serving steps.

The results from the two
model serving steps are
then aggregated via a
result aggregation step
to present to users.

Figure 9.6 An architecture diagram of the end-to-end machine learning system we are building

2119.4 The end-to-end workflow
 templates:
 - name: tfjob-wf
 steps:
 - - name: data-ingestion-step
 template: data-ingestion-step
 - - name: distributed-tf-training-steps
 template: distributed-tf-training-steps
 - - name: model-selection-step
 template: model-selection-step
 - - name: create-model-serving-service
 template: create-model-serving-service

Note that we specify the podGC strategy to be OnPodSuccess since we’ll be creating a
lot of Pods for different steps within our local k3s cluster with limited computational
resources, so deleting the Pods right after they are successful can free up computa-
tional resources for the subsequent steps. The OnPodCompletion strategy is also avail-
able; it deletes Pods on completion regardless of whether they failed or succeeded. We
won’t use that since we want to keep failed Pods to debug what went wrong.

 In addition, we also specify our volumes and PVC to ensure we can persist any files
that will be used in the steps. We can save the downloaded dataset into the persistent
volume for model training and then persist the trained model for the subsequent
model serving step.

 The first step, the data ingestion step, is very straightforward. It only specifies the
container image and the data ingestion Python script to execute. The Python script is
a one-line code with tfds.load(name='fashion_mnist') to download the dataset to
the container’s local storage, which will be mounted to our persistent volume.

 - name: data-ingestion-step
 serviceAccountName: argo
 container:
 image: kubeflow/multi-worker-strategy:v0.1
 imagePullPolicy: IfNotPresent
 command: ["python", "/data-ingestion.py"]

The next step is a step group that consists of multiple substeps, where each substep
represents a distributed model training step for a specific model type (e.g., basic
CNN, CNN with dropout, and CNN with batch norm). The following listing provides
the template that defines all the substeps. Distributed training steps for multiple mod-
els dictate that these will be executed in parallel.

 - name: distributed-tf-training-steps
 steps:
 - - name: cnn-model
 template: cnn-model
 - name: cnn-model-with-dropout

Listing 9.33 Data ingestion step

Listing 9.34 Distributed training step groups

212 CHAPTER 9 A complete implementation
 template: cnn-model-with-dropout
 - name: cnn-model-with-batch-norm
 template: cnn-model-with-batch-norm

Let’s use the first substep, which runs a distributed model training for the basic CNN
model, as an example. The main content of this step template is the resource field,
which includes the following:

 The custom resource definition (CRD) or manifest to take action upon. In our
case, we create a TFJob as part of this step.

 The conditions that indicate whether the CRD is created successfully. In our case,
we ask Argo to watch the field status.replicaStatuses.Worker.succeeded and
status.replicaStatuses.Worker.failed.

Inside the container spec in the TFJob definition, we specify the model type and save
the trained model to a different folder so it’s easy to pick and save the best model for
model serving in subsequent steps. We also want to make sure to attach the persistent
volumes so the trained model can be persisted.

 - name: cnn-model
 serviceAccountName: training-operator
 resource:
 action: create
 setOwnerReference: true
 successCondition: status.replicaStatuses.Worker.succeeded = 2
 failureCondition: status.replicaStatuses.Worker.failed > 0
 manifest: |
 apiVersion: kubeflow.org/v1
 kind: TFJob
 metadata:
 generateName: multi-worker-training-
 spec:
 runPolicy:
 cleanPodPolicy: None
 tfReplicaSpecs:
 Worker:
 replicas: 2
 restartPolicy: Never
 template:
 spec:
 containers:
 - name: tensorflow
 image: kubeflow/multi-worker-strategy:v0.1
 imagePullPolicy: IfNotPresent
 command: ["python",
"/multi-worker-distributed-training.py",
"--saved_model_dir",
"/trained_model/saved_model_versions/1/",
"--checkpoint_dir",
"/trained_model/checkpoint",
"--model_type", "cnn"]

Listing 9.35 CNN model training step

2139.4 The end-to-end workflow
 volumeMounts:
 - mountPath: /trained_model
 name: training
 resources:
 limits:
 cpu: 500m
 volumes:
 - name: training
 persistentVolumeClaim:
 claimName: strategy-volume

For the rest of the substeps in distributed-tf-training-steps, the spec is very simi-
lar, except the saved model directory and model type arguments are different. The
next step is model selection, for which we will supply the same container image but
execute the model selection Python script we implemented earlier.

 - name: model-selection-step
 serviceAccountName: argo
 container:
 image: kubeflow/multi-worker-strategy:v0.1
 imagePullPolicy: IfNotPresent
 command: ["python", "/model-selection.py"]
 volumeMounts:
 - name: model
 mountPath: /trained_model

Make sure these additional scripts are included in your Dockerfile and that you have
rebuilt the image and re-imported it to your local Kubernetes cluster.

 Once the model selection step is implemented, the last step in the workflow is the
model serving step that starts a KServe model inference service. It’s a resource tem-
plate similar to the model training steps but with KServe’s InferenceService CRD
and a success condition that applies to this specific CRD.

 - name: create-model-serving-service
 serviceAccountName: training-operator
 successCondition: status.modelStatus.states.transitionStatus = UpToDate
 resource:
 action: create
 setOwnerReference: true
 manifest: |
 apiVersion: serving.kserve.io/v1beta1
 kind: InferenceService
 metadata:
 name: flower-sample
 spec:
 predictor:
 model:

Listing 9.36 Model selection step Caption here

Listing 9.37 The model serving step

214 CHAPTER 9 A complete implementation
 modelFormat:
 name: tensorflow
 image: "emacski/tensorflow-serving:2.6.0"
 storageUri: "pvc://strategy-volume/saved_model_versions"

Let’s submit this workflow now!

> kubectl create -f workflow.yaml

Once the data ingestion step is completed, the associated Pod will be deleted. When
we list the Pods again while it’s executing the distributed model training steps, we’ll
see the Pods with names prefixed by tfjob-wf-f4bql-cnn-model-, which are the Pods
responsible for monitoring the status of distributed model training for different
model types. In addition, each model training for each model type contains two work-
ers with the name matching the pattern multi-worker-training-*-worker-*.

> kubectl get pods
NAME READY STATUS RESTARTS AGE
multi-<truncated>-worker-0 1/1 Running 0 50s
multi-<truncated -worker-1 1/1 Running 0 49s
multi-<truncated -worker-0 1/1 Running 0 47s
multi-<truncated -worker-1 1/1 Running 0 47s
multi-<truncated -worker-0 1/1 Running 0 54s
multi-<truncated -worker-1 1/1 Running 0 53s
<truncated>-cnn-model 1/1 Running 0 56s
<truncated>-batch-norm 1/1 Running 0 56s
<truncated>-dropout 1/1 Running 0 56s

Once the remaining steps are completed, and the model serving has started success-
fully, the workflow should have a Succeeded status. We’ve just finished the execution
of the end-to-end workflow.

9.4.2 Step memoization

To speed up future executions of workflows, we can utilize cache and skip certain
steps that have recently run. In our case, the data ingestion step can be skipped since
we don’t have to download the same dataset again and again.

 Let’s first take a look at the logs from our data ingestion step:

Downloading and preparing dataset 29.45 MiB
(download: 29.45 MiB, generated: 36.42 MiB,
total: 65.87 MiB) to
/root/tensorflow_datasets/fashion_mnist/3.0.1...
Dataset fashion_mnist downloaded and prepared to

/root/tensorflow_datasets/fashion_mnist/3.0.1.
Subsequent calls will reuse this data.

Listing 9.38 Submitting the end-to-end workflow

Listing 9.39 Getting the list of Pods

2159.4 The end-to-end workflow
The dataset has been downloaded to a path in the container. If the path is mounted to
our persistent volume, it will be available for any future workflow runs. Let’s use the
step memoization feature provided by Argo Workflows to optimize our workflow.

 Inside the step template, we supply the memoize field with the cache key and age of
the cache. When a step is completed, a cache will be saved. When this step runs again
in a new workflow, it will check whether the cache is created within the past hour. If
so, this step will be skipped, and the workflow will proceed to execute subsequent
steps. For our application, our dataset does not change so, theoretically, the cache
should always be used, and we specify 1 hour here for demonstration purposes only.
In real-world applications, you may want to adjust that according to how frequently
the data is updated.

 - name: data-ingestion-step
 serviceAccountName: argo
 memoize:
 key: "step-cache"
 maxAge: "1h"
 cache:
 configMap:
 name: my-config
 key: step-cache
 container:
 image: kubeflow/multi-worker-strategy:v0.1
 imagePullPolicy: IfNotPresent
 command: ["python", "/data-ingestion.py"]

Let’s run the workflow for the first time and pay attention to the Memoization Status
field in the workflow’s node status. The cache is not hit because this is the first time
the step is run.

> kubectl get wf tfjob-wf-kjj2q -o yaml
The following is the section for node statuses:
Status:
 Nodes:
 tfjob-wf-crfhx-2213815408:
 Boundary ID: tfjob-wf-crfhx
 Children:
 tfjob-wf-crfhx-579056679
 Display Name: data-ingestion-step
 Finished At: 2023-01-04T20:57:44Z
 Host Node Name: distml-control-plane
 Id: tfjob-wf-crfhx-2213815408
 Memoization Status:
 Cache Name: my-config
 Hit: false
 Key: step-cache
 Name: tfjob-wf-crfhx[0].data-ingestion-step

Listing 9.40 Memoization for the data ingestion step

Listing 9.41 Checking the node statuses of the workflow

216 CHAPTER 9 A complete implementation
If we run the same workflow again within one hour, we will notice that the step is
skipped (indicated by hit: true in the Memoization Status field):

Status:
 Nodes:
 tfjob-wf-kjj2q-1381200071:
 Boundary ID: tfjob-wf-kjj2q
 Children:
 tfjob-wf-kjj2q-2031651288
 Display Name: data-ingestion-step
 Finished At: 2023-01-04T20:58:31Z
 Id: tfjob-wf-kjj2q-1381200071
 Memoization Status:
 Cache Name: my-config
 Hit: true
 Key: step-cache
 Name: tfjob-wf-kjj2q[0].data-ingestion-step
 Outputs:
 Exit Code: 0
 Phase: Succeeded
 Progress: 1/1
 Started At: 2023-01-04T20:58:31Z
 Template Name: data-ingestion-step
 Template Scope: local/tfjob-wf-kjj2q
 Type: Pod

In addition, note that the Finished At and Started At timestamps are the same.
That is, this step is completed instantly without having to re-execute from scratch.

 All the cache in Argo Workflows is saved in a Kubernetes ConfigMap object. The
cache contains the node ID, step outputs, and cache creation timestamp, as well as the
timestamp when this cache is last hit.

> kubectl get configmap -o yaml my-config
apiVersion: v1
data:
 step-cache: '{"nodeID":"tfjob-wf-dmtn4-
3886957114","outputs":{"exitCode":"0"},
"creationTimestamp":"2023-01-04T20:44:55Z",
"lastHitTimestamp":"2023-01-04T20:57:44Z"}'
kind: ConfigMap
metadata:
 creationTimestamp: "2023-01-04T20:44:55Z"
 labels:
 workflows.argoproj.io/configmap-type: Cache
 name: my-config
 namespace: kubeflow
 resourceVersion: "806155"
 uid: 0810a68b-44f8-469f-b02c-7f62504145ba

Listing 9.42 Checking the details of the configmap

217Summary
Summary
 The data ingestion component implements a distributed input pipeline for the

Fashion-MNIST dataset with TensorFlow that makes it easy to integrate with dis-
tributed model training.

 Machine learning models and distributed model training logic can be defined
in TensorFlow and then executed in a distributed fashion in the Kubernetes
cluster with the help of Kubeflow.

 Both the single-instance model server and the replicated model servers can be
implemented via KServe. The autoscaling functionality of KServe can automati-
cally create additional model serving Pods to handle the increasing number of
model serving requests.

 We implemented our end-to-end workflow that includes all the components
of our system in Argo Workflows and used step memoization to avoid time-
consuming and redundant data ingestion step.

index
A

AdaptDL, framework 27
allreduce 195

definition 57
operation 59, 63, 191
stuck operation 63, 123

Anaconda for Python 3,
installing 156

Argo CD
definition and usage 176
resources tree 177

Argo Events
available event sources 178
definition and usage 177

Argo Project, definition and
usage 176

Argo Rollouts, definition and
usage 176

Argo Workflows 4, 11, 139
basic concepts and

examples 178–185
conditional syntax 183–185
creating DAG 182
definition and usage 177
for composing end-to-end

ML workflow 209
interfaces 177
main uses 177
overview 176–185
step memoization feature

215
usefulness 217
user interface 179

asynchronous pattern
overview 102–107
usefulness 105, 152

automations 4, 9
autosharding 34

See also sharding pattern

B

Bash, experience with 4, 12
batching approach

constraints 26–27
definition 25
when appropriate 28
when not appropriate

26
batching pattern

applying 142
main use 40
sequential training 25,

27–28
summarized 26
using 22–28

batch processing system 7–8,
38

batch size
dependencies 27
dynamically adjusting 27
processing 191
scaling 27

benchmark dataset 19
broadcast operation

definition 57
example 58

C

cache
avoiding losing stored 39
content-based 110
creation timestamp 216
in Argo Workflows 216
storing on disk vs. storing in

memory 39
time-based 110, 151
using for skipping steps in ML

workflow 214
caching pattern 143

main use 40
summarized 37
usefulness 38, 154
using 35–40

checkpoint
challenges 64
meaning 62
model callback 194–199

classification model 25, 139,
142, 146, 149

cluster maintenance 119
coarse entities, definition 43
collective communication,

definition 57
collective communication

model, perfect use case
146

collective communication
pattern 30, 139, 195

across all processes in a
group 57
219

INDEX220
collective communication pat-
tern (continued)

as alternative to parameter
servers 59

for resolving communication
blocks 51–60

main use 65
problems with 59
summarized 58
usefulness 145, 154

communication blocks 145
problem and solution 53

computational resources
adding to existing

machines 71
allocating

concerns when 81
pool of 82
significance of 27

assigning effectively when
shared 117–126

avoiding waste of 8
for acceleration 11
for model server replicas

and load balancer 74
for model serving 68
in shared-resource

environments 27
insufficient 140
isolated 48
large amounts of 8
limited 60
limited but sufficient 11
low utilization 76
maximizing use of 106
message passing 7
problems with unsufficient

5–6
rescheduling 63
shared 117
wasting due to incorrectly

saving models 196
computational workloads,

spliting 48, 50, 78
computer vision tasks 23,

47
Conda environment,

installing 156
container-native workflow

engine. See Argo Workflows
containers. See machine learning

applications, containerized

convolutional neural network
(CNN) model

building 192–194
LeNet 47
training 194–195, 199,

211–214
custom resource definition

(CRD) 171, 173, 212

D

DAG. See directed acyclic graph
(DAG)

data, as NumPy array property
158

data ingestion 8, 10, 126
building in projects 140–143
component building 139
component in end-to-end

ML system 140
definition 18
implementation details

188–191
in distributed machine learn-

ing applications 19
in simple ML workflows 91
main use 40
memoization 215
restarting 128
skipping 109, 152, 214
streaming vs.

nonstreaming 18
usefulness 217
using shared resource

pool 82
data/model versioning 10
data pipeline

distributed 191, 196
single-node 189–190

dataset
computations before feeding

into model 140
consuming batch by batch 25
corrupted 60, 62
determining whether

updated 110, 151
dividing 5, 25, 142

large high-resolution
video 77

growing continuously 33
in-memory 26
large 5, 25

loading larger, for ML model
training 28–34

relationships in 101
scaling 190
sharding 30
small 4, 11
understanding of 18

dataset explorer, online 43
data shards

definition 30
enabling automatically 191
unbalanced 33

deadlock, avoiding in distrib-
uted model training
jobs 115, 121, 134

dedicated server 10, 48
deep learning algorithms 35
deep learning models

and allocation of resources
27

building 11
getting complex 48
using instead of traditional

ML models 47
denial-of-service attacks 84

avoiding via rate limiting 85
preventing malicious 87

directed acyclic graph (DAG)
concept of ML workflow 93
created by Argo

Workflows 182
visualizations 178, 183

distributed database 31, 68, 79,
84

distributed machine learning
pipeline

allocating a pool of computa-
tional resources 82

steps and components 8–9
distributed machine learning

systems
architecture diagram 11
definition 8–9
introduction 3–13
large-scale 3
overview 8–11
patterns in 9–10
replacing work items with

data partitions 9
when not to use 11
when to use 10–11
with parameter servers 54

INDEX 221
distributed machine learning
workflow 138–139

distributed model serving sys-
tems

challenges 67
required features 68
vs. traditional model serving

systems 68
distributed model training jobs

assigning priorities 120
collective communication

based 124
deadlocks 120
definition script 199
preempted or evicted 120
scheduling 117
submitting 118, 172, 176

distributed model training sys-
tems

component with only worker
nodes 56

list of Pods 214
modifying code 203
modifying logic of 62
scaling up 60
scaling up and down 64
unexpected failures 60
with multiple parameter

servers 76, 146
distributed systems

complexity and patterns
7–8

definition 7
general-purpose, using pat-

terns in 10
overview 7–8

distributed training
critical part of distributed

ML systems 66
definition 42
overview 42–43
preferred networking

infrastructure 42
vs. traditional model

training 42
Docker 11–12

command-line interface 12
containers 169
creating k3s clusters in 163

Dockerfile 197, 213
dtype, as NumPy array

property 158

E

ecosystem
KServe position in 171
NumPy and Python’s 158
TensorFlow and large 156

elastic scheduling 132
usefulness 126

EMNIST dataset 20
end-to-end workflow

accelerating 151
composing 150–153

ensemble learning 101
ensemble model 101
entities

coarse 43
fine-grained 43
identifying 44
relationships among 45
similar 46
tagging 126

entry point templates 210–214
epochs

definition 35
maximum number of 161
multiple needed for

training 141
training for multiple 35–37,

39
event-based workflows,

triggering 177
event detection systems 3
event-driven model serving sys-

tem, for predicting hotel
prices 85

event-driven processing
definition 84
vs. long-running serving

systems 84
event-driven processing pattern

and function-as-a-service
products 84

intuitiveness 87
overview 79–88
suitability 87
usefulness 89

F

failures
handling unexpected 60–64
hard to debug 115, 126

in processing high-resolution
video request 75

minimizing negative effect
on users 126–133

permanent and
temporary 128

preventing unexpected
61–64

strategy for handling 127
understanding the root

cause 128
fair-share scheduling

applying 119–121
definition 118
usefulness 125

fan-in pattern
definition 99
when unsuitable 101

fan-out pattern, definition 99
Fashion-MNIST dataset 138,

140, 188
classification model 146
collection of images 21
expanded 28
overview 20–21
updating regularly 151
using of 21–40

fault-tolerance pattern
overview 60–64
supporting 132

feature engineering 47
fine-grain entities, definition

43
for 32
fraud detection systems 3, 117

G

gang scheduling
applying 124
definition 124
unexpected

consequences 126
usefulness 125

H

hardware accelerations 4, 9
hashing 34, 78
hello-world, example 166

Argo Workflows 179
Pod 166

INDEX222
high availability, definition 73
horizontal partitioning,

definition 31
See also sharding

horizontal scaling
definition 71
of model serving system 73
of stateless server 71
vs. vertical scaling 71

Hyperband, model tuner 161
hyperparameters 97, 103,

107–109
obtaining the best 162
real-world problems

with 117–118
single set of 161
tuning 160, 170

I

image classification, basic
example 157

inference service 204–207
Pods processing requests

concurrently 209
with autoscaling enabled

207
inferences. See inference service;

model inference
InfiniBand, communication

networking standard 42
vs. RDMA 43

K

K8s. See Kubernetes
Katib

definition and usage 170
UI for experiment

tracking 170
Keras API

definition 157
for a single set of hyper-

parameters 160
Keras Tuner 160
KServe

autoscaling 207
definition and usage 171
model inference service 204,

213
position in ecosystem 171
usefulness 217

kubectx tool 165
Kubeflow 4, 11, 139

basic concepts and
examples 172–176

main components 169
overview 169–176
usefulness 169
user interface 172

Kubeflow Pipeline (KFP)
and Argo Workflows 170
definition and usage 169

Kubeflow Training Operator,
definition and usage 173

Kubernetes 4, 11
architecture diagram 163
basic concepts and

examples 163–168
command-line interface 163
custom resources for 173,

180
definition 162
local cluster 197, 213
main design goal 162
overview 162–168
Pod, definition and usage

165
setting up a local cluster

163

L

large-scale data centers 7
large-scale machine learning

4–6
large-scale problems 9

handling 4, 11
learning rate 194–195

customized scheduler 126
LeNet

architecture 48
brief history 47
model 47–50

linear regression 11
load balancer

adding additional layer
of 148

computational resources
for 74

definition 72
exposing 178
round robin algorithm 72,

150

M

machine learning algorithms
benchmarking 20, 140, 188
requirements 35–36

machine learning applications
containerization of Python

script 197
heavy traffic 10
in real-world 107, 215
patterns for 8
speeding up 8
steps in 8

machine learning applications,
containerized 162, 197

machine learning models 4
aggregating gradients 57,

146, 191
building 3, 47
classifying images 28
data ingestion component 28
defining and initializing 192
experience in building 12
large 10
sequential training 25, 27–28
serving 10
simple 11
small 4
speeding development and

deployment 9
storing partitions of 8
training 5–6, 25

asynchronously 9
for multiple epochs 35–37,

39
to tag themes in extremly

large datasets 43
trying different 26

machine learning patterns 4
advantages of using 13
batching 22–28
caching 35–40
data ingestion 18–19
established, overview 17–18
scalable 5
sharding 28–35
work-queue 7

machine learning pipeline 91
building 11, 139
complicated 4
flowchart 19
using Argo Workflows for 177

INDEX 223
machine learning pipeline
(continued)

visibility 131
where model serving fits in 67

machine learning systems
areas of improvement 134
building 18
end-to-end 91, 188

architecture diagram 139,
150

growing demand and
complexity 4

importance of 3
operations in 115

machine learning workflow
accelerating with

concurrency 102–107
baseline 96
checking node statuses 215
complex 92, 107
composing complex 95–101
composing end-to-end

209–216
deciding on preferred

outcome 106
definition 113
end-to-end 107, 131
enhanced baseline 98
entry point templates

210–214
failures 115
re-executing 108, 151
sequential steps 210–214
simple 92
simple and complex 91
slowing down 103
speeding up 103
submitting 214
the most basic 126
training models in three

steps 99
when to re-execute 109
with two models 97

mathematical operations,
convolution 25, 48, 140,
142, 192

message passing 48
communicating via 7

metadata
collected 130
intentionally recording 129
storing important 110

metadata pattern
additional benefit of 133
overview 126–133
usefulness 132

mini-batches 25, 126, 142
MLOps, definition and

scope 116
MNIST dataset 24, 156

overview 19–20
model accuracy 130–132
model deployment, using shared

resource pool 82
model evaluation 200
model inferences

aggregated results 99–100,
104–106, 153

and callbacks 194
on new input data 67, 72–73
single-server 202
using trained model 147–148
vs. model evaluation 202

model partitions
description 49
imbalanced 54
most recent 51
repartitioning 64
storing 10, 49, 53, 65
updated 53
used for calculating

gradients 50, 145
model selection 128, 200–201

component building 139
Python script 213
using shared resource

pool 82
using trained models for 153

model server
replicas 71
scaled up 72
shards, definition 77
single-node 69
stateless 70

model server replicas
implementation details

207–209
load-balanced 73
multiple 148
preempted 74
ready and alive 74
unable to process high-resolu-

tion video request 75
usefulness 154

model serving 8, 10, 126, 128,
139

building in projects 147–150
code 213
definition 88
implementation details

202–209
in end-to-end machine learn-

ing system 147
in simple ML workflows 91
overview 67–68
passing trained models

directly to 105
picking the best model for 212
traditional vs. distributed 67
using shared resource

pool 82
using trained models for 153

model serving requests
concurrent 85
distributing among

replicas 148
distributing and

processing 72
dynamic number of 81, 207
from authenticated and unau-

thenticated users,
compared 87

handling 68–74
increasing number of 207
large 77
on a first-come, first-served

basis 69, 147
processing asynchronously

71, 148
processing large with high-

resolution videos 74–79
processing sequentially 70
responding based on

events 79–88
model serving signature,

definitions 203–204
model serving system

and unexpected event 81
building at scale 78
for predicting hotel prices 80
horizontal scaling 73
stateless 68
with constantly changing

traffic 80
with user interface for plan-

ning events 79

INDEX224
model training 5, 8, 126
building in projects 144–147
building multiple steps 139
dependencies 130
distributed 195–200
for multiple epochs 142, 144
implementation details

191–201
in end-to-end machine learn-

ing system 145, 148–149
in simple ML workflows 91
logic of distributed 196
permanent failure during 128
preparatory steps for 190
sequentially 142
single-node 192–195
slowed down 133
synchronous 195
using shared resource pool 82
using training data 159
with callbacks 194
with multiple epochs 159

multilanguage support, Tensor-
Flow and 156

N

namespaces
activating 172
creating 165
shared 166
switching contexts and 165

neural network
convolutional 47, 107
LeNet 47
multilayer model 159

NumPy, reinstalling 157
NumPy arrays 22–24

definition 158

O

out-of-memory error 23, 25, 38,
48, 129, 142

P

parameter server pattern 9
definition 48
for training extremely large

models 43–51
usefulness 145

parameter servers
alternative to 56
definition 48
main use 65
multiple 49
optimal number of 146
problem of blocking 53
usefulness 60

partitioning
data 10
horizontal and vertical

31–32
resources among users and

groups 119
patterns

asynchronous 102–107
batching 22–28
caching 35–40
collective communication 30,

51–60, 195
data ingestion 18–19
event-driven processing

79–88
fan-in and fan-out 95–101
fault-tolerant 60–64
metadata 126–133
parameter server 43–51
replicated services 68–74
scheduling 117–126
sharded services 74–79
sharding 28–35
step memoization 107–112
synchronous 102–107

performance monitoring 10, 41,
137

PersistentVolumeClaim (PVC)
definition and usage 198
specifying 211

PersistentVolume (PV), defini-
tion and usage 198

Pods
definition and usage 165
example 166
getting a list of 176, 209
vs. PVC 198

point-to-point
communication 56

PostgreSQL database, loading
datasets from 24

predictions
accurate 5, 87
aggregating 139

generating
on datasets not used for

model training 68
on new imput data 67
with two models 96, 100,

103, 151
on hotel prices 79
real-time 11, 87

preempted
jobs, based on priorities 120,

123
model server replicas 74
worker machines 67, 127,

129
worker nodes 60–61, 63

preprocessing function,
defining 158, 160, 203

priority scheduling
applying 122
assigning to jobs in model

training 120
definition 121
usefulness 125

processing queue 8, 85–86
project building, overview

background 138
system components 139

Python, experience with 4, 12

R

rate limiting 85–86
readiness probes, importance

of 74
recommendation systems 3,

146, 156
reduce function

definition 57
operation 58

redundant workloads,
skipping 107–112, 151

relu activation function 159,
193–194

remote direct memory access
(RDMA) 42

replicated services pattern 203
for scaling model serving sys-

tems horizontally 72
overview 68–74
scaling up model server 148
suitability of 74, 79

resource utilization rate 82, 84

INDEX 225
ring-allreduce algorithm,
definition 59

root cause
determining 129
of failure 109, 128

round robin algorithm, for load
balancing 72, 150

S

scheduler
customized learning rate 126
default 118
definition 117
simple 117

scheduling
fair-share 118
gang 124
jobs, based on priorities 121

scheduling patterns 117–126
sequential workflow

definition 93
vs. DAG 93

shape, as NumPy array
property 158

sharded services pattern
example architecture 77
overview 74–79
suitability of 79
used for building stateful

services 78
usefulness 78, 89

sharding
architecture diagram 31
definition 30

sharding function, for distribut-
ing sub-requests to model
server shards 78

sharding pattern
main use 40
problems with 33
summarized 31
using 28–35

shared resource pool 82–85,
87–88

autoscaling 84
unexpected use of 87

single epoch, definition 35
step memoization 214–216

step memoization pattern 151
considerations when

applying 112
definition 111
overview 107–112
usefulness 113

storing
cache of ML training

examples 37, 143
cache on disk 39
important metadata 110
key-value pairs 181
large datasets 5
model partitions 10, 49, 53,

65
synchronous pattern

mixing with
asynchronous 106

overview 102–107
usefulness 105, 152

T

TensorBoard, interactive
visualization 194

TensorFlow 4, 11, 21–22, 139
basic concepts and

examples 156–162
Datasets library 191
Datasets modules 198
I/O library 24
job definition 175
overview 156–162

TensorFlow Hub, definition
156

TensorFlow.js, definition 156
TensorFlow Lite, definition

156
TensorFlow Serving

command 203
definition 156

TFX, definition 156
three-nines availability,

definition 74
training operator,

deployment 173–175
tree-based

algorithms 35
models 107–108

U

unexpected
event 84
failures 60
load/stress test 85

V

vertical partitioning, vs. horizon-
tal partitioning 31

vertical scaling, useless for scal-
ing model server
replicas 76

video identification 50
vulnerability, of distributed

model training systems 60

W

worker machines
blocking each other 53, 145
chief 196
multiple 48, 195
multiple, architecture

diagram 29
preempted 67

workflow
definition 91
overview 91–93
See also machine learning

workflow
work-queue pattern 7, 9

Y

YAML, data serialization lan-
guage

experience with 12
for configuring model selec-

tion Pod 201
for defining KServe inference

service 204–206
hello-world.yaml 166–168,

180
tfjob.yaml 175–176

YouTube-8M dataset 61
tagging 43, 45, 50, 68
updated 95

For ordering information, go to www.manning.com

RELATED MANNING TITLES

Deep Learning with Python, Second Edition
by François Chollet

ISBN 9781617296864
504 pages, $59.99
October 2021

API Design Patterns
by JJ Geewax
Foreword by Jon Skeet

ISBN 9781617295850
480 pages, $59.99
June 2021

Microservices Patterns
by Chris Richardson

ISBN 9781617294549
520 pages, $49.99
October 2018

Designing Deep Learning Systems
by Chi Wang and Donald Szeto
Foreword by Silvio Savarese and Caiming Xiong

ISBN 9781633439863
360 pages, $59.99
June 2023

Yuan Tang

ISBN-13: 978-1-61729-902-5

D
eploying a machine learning application on a modern
distributed system puts the spotlight on reliability, perfor-
mance, security, and other operational concerns. In this

in-depth guide, Yuan Tang, project lead of Argo and Kube-
fl ow, shares patterns, examples, and hard-won insights on tak-
ing an ML model from a single device to a distributed cluster.

Distributed Machine Learning Patterns provides dozens of tech-
niques for designing and deploying distributed machine
learning systems. In it, you’ll learn patterns for distributed
model training, managing unexpected failures, and dynamic
model serving. You’ll appreciate the practical examples that
accompany each pattern along with a full-scale project that
implements distributed model training and inference with
autoscaling on Kubernetes.

What’s Inside
● Data ingestion, distributed training, model serving,
 and more
● Automating Kubernetes and TensorFlow with Kubefl ow
 and Argo Workfl ows
● Manage and monitor workloads at scale

For data analysts and engineers familiar with the basics of
machine learning, Bash, Python, and Docker.

Yuan Tang is a project lead of Argo and Kubefl ow, maintainer
of TensorFlow and XGBoost, and author of numerous open
source projects.

Gerald Kuch was the tehnical editor for this book.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Distributed Machine Learning Patterns

MACHINE LEARNING / SOFTWARE ENGINEERING

M A N N I N G

“Approachable for beginners
and inspirational for

experienced practitioners. As
soon as I fi nished reading,

I was ready to start building.”— James Lamb, SpotHero

“Exceptionally timely and
comprehensive. Its pattern
perspective, accompanied

by real-world examples and
widely adopted systems like
Kubernetes, Kubefl ow, and
 Argo, truly set it apart.”—Yuan Chen, Apple

“An amazing guide to
designing resilient and scalable
ML systems for both training

and serving models.”—Ryan Russon, Capital One

“A wonderful book!
Machine learning at scale
explained clearly and from

 fi rst principles!”—Laurence Moroney, Google

See first page

	Distributed Machine Learning Patterns
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Basic concepts and background
	1 Introduction to distributed machine learning systems
	1.1 Large-scale machine learning
	1.1.1 The growing scale
	1.1.2 What can we do?

	1.2 Distributed systems
	1.2.1 What is a distributed system?
	1.2.2 The complexity and patterns

	1.3 Distributed machine learning systems
	1.3.1 What is a distributed machine learning system?
	1.3.2 Are there similar patterns?
	1.3.3 When should we use a distributed machine learning system?
	1.3.4 When should we not use a distributed machine learning system?

	1.4 What we will learn in this book
	Summary

	Part 2—Patterns of distributed machine learning systems
	2 Data ingestion patterns
	2.1 What is data ingestion?
	2.2 The Fashion-MNIST dataset
	2.3 Batching pattern
	2.3.1 The problem: Performing expensive operations for Fashion MNIST dataset with limited memory
	2.3.2 The solution
	2.3.3 Discussion
	2.3.4 Exercises

	2.4 Sharding pattern: Splitting extremely large datasets among multiple machines
	2.4.1 The problem
	2.4.2 The solution
	2.4.3 Discussion
	2.4.4 Exercises

	2.5 Caching pattern
	2.5.1 The problem: Re-accessing previously used data for efficient multi-epoch model training
	2.5.2 The solution
	2.5.3 Discussion
	2.5.4 Exercises

	2.6 Answers to exercises
	Section 2.3.4
	Section 2.4.4
	Section 2.5.4

	Summary

	3 Distributed training patterns
	3.1 What is distributed training?
	3.2 Parameter server pattern: Tagging entities in 8 million YouTube videos
	3.2.1 The problem
	3.2.2 The solution
	3.2.3 Discussion
	3.2.4 Exercises

	3.3 Collective communication pattern
	3.3.1 The problem: Improving performance when parameter servers become a bottleneck
	3.3.2 The solution
	3.3.3 Discussion
	3.3.4 Exercises

	3.4 Elasticity and fault-tolerance pattern
	3.4.1 The problem: Handling unexpected failures when training with limited computational resources
	3.4.2 The solution
	3.4.3 Discussion
	3.4.4 Exercises

	3.5 Answers to exercises
	Section 3.2.4
	Section 3.3.4
	Section 3.4.4

	Summary

	4 Model serving patterns
	4.1 What is model serving?
	4.2 Replicated services pattern: Handling the growing number of serving requests
	4.2.1 The problem
	4.2.2 The solution
	4.2.3 Discussion
	4.2.4 Exercises

	4.3 Sharded services pattern
	4.3.1 The problem: Processing large model serving requests with high-resolution videos
	4.3.2 The solution
	4.3.3 Discussion
	4.3.4 Exercises

	4.4 The event-driven processing pattern
	4.4.1 The problem: Responding to model serving requests based on events
	4.4.2 The solution
	4.4.3 Discussion
	4.4.4 Exercises

	4.5 Answers to exercises
	Section 4.2
	Section 4.3
	Section 4.4

	Summary

	5 Workflow patterns
	5.1 What is workflow?
	5.2 Fan-in and fan-out patterns: Composing complex machine learning workflows
	5.2.1 The problem
	5.2.2 The solution
	5.2.3 Discussion
	5.2.4 Exercises

	5.3 Synchronous and asynchronous patterns: Accelerating workflows with concurrency
	5.3.1 The problem
	5.3.2 The solution
	5.3.3 Discussion
	5.3.4 Exercises

	5.4 Step memoization pattern: Skipping redundant workloads via memoized steps
	5.4.1 The problem
	5.4.2 The solution
	5.4.3 Discussion
	5.4.4 Exercises

	5.5 Answers to exercises
	Section 5.2
	Section 5.3
	Section 5.4

	Summary

	6 Operation patterns
	6.1 What are operations in machine learning systems?
	6.2 Scheduling patterns: Assigning resources effectively in a shared cluster
	6.2.1 The problem
	6.2.2 The solution
	6.2.3 Discussion
	6.2.4 Exercises

	6.3 Metadata pattern: Handle failures appropriately to minimize the negative effect on users
	6.3.1 The problem
	6.3.2 The solution
	6.3.3 Discussion
	6.3.4 Exercises

	6.4 Answers to exercises
	Section 6.2
	Section 6.3

	Summary

	Part 3—Building a distributed machine learning workflow
	7 Project overview and system architecture
	7.1 Project overview
	7.1.1 Project background
	7.1.2 System components

	7.2 Data ingestion
	7.2.1 The problem
	7.2.2 The solution
	7.2.3 Exercises

	7.3 Model training
	7.3.1 The problem
	7.3.2 The solution
	7.3.3 Exercises

	7.4 Model serving
	7.4.1 The problem
	7.4.2 The solution
	7.4.3 Exercises

	7.5 End-to-end workflow
	7.5.1 The problems
	7.5.2 The solutions
	7.5.3 Exercises

	7.6 Answers to exercises
	Section 7.2
	Section 7.3
	Section 7.4
	Section 7.5

	Summary

	8 Overview of relevant technologies
	8.1 TensorFlow: The machine learning framework
	8.1.1 The basics
	8.1.2 Exercises

	8.2 Kubernetes: The distributed container orchestration system
	8.2.1 The basics
	8.2.2 Exercises

	8.3 Kubeflow: Machine learning workloads on Kubernetes
	8.3.1 The basics
	8.3.2 Exercises

	8.4 Argo Workflows: Container-native workflow engine
	8.4.1 The basics
	8.4.2 Exercises

	8.5 Answers to exercises
	Section 8.1
	Section 8.2
	Section 8.3
	Section 8.4

	Summary

	9 A complete implementation
	9.1 Data ingestion
	9.1.1 Single-node data pipeline
	9.1.2 Distributed data pipeline

	9.2 Model training
	9.2.1 Model definition and single-node training
	9.2.2 Distributed model training
	9.2.3 Model selection

	9.3 Model serving
	9.3.1 Single-server model inference
	9.3.2 Replicated model servers

	9.4 The end-to-end workflow
	9.4.1 Sequential steps
	9.4.2 Step memoization

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

