INACTI

Michael Kaufmann
Rob Bos

Marcel de Vries

/II MANNING

IN ACTI

Michael Kaufmann
Rob Bos
Marcel de Vries

I
MEA

| | BTYTIIT:

GitHub Actions in Action

welcome
1_Introduction_to_GitHub_Actions
2_Hands-on:_My_first Actions_Workflow
3_Workflows

4 GitHub Actions

5 Runners

6_Self-hosted runners

LCONO AW =

7_Managing your_self-hosted_runners
8_Continuous_Integration_(CI

welcome

Thank you for purchasing the MEAP for GitHub Actions in Action. We hope
it will give you a kick-start into what is in our opinion the best and most
flexible workflow platform for engineers.

The book consists of three parts. Part 1 explains the basics of GitHub actions.
It uses a practical, hands-on approach — but it covers all basics with simple
examples. Part 2 explains the workflow runtime in depth. This knowledge
will help you completely understand the platform's architecture and security
considerations. Part 3 covers the whole topic of CI/CD — the main use case
for GitHub Actions. This part contains more complex real-life examples. It
also dives into security, compliance, and optimizing performance and costs.

Please let us know your thoughts in the liveBook Discussion forum on what's
been written so far [and what you'd like to see in the rest of the book]. Your
feedback will be invaluable in improving GitHub Actions in Action.

Thanks again for your interest and for purchasing the MEAP!
—Michael Kaufmann, Rob Bos, Marcel de Vries

In this book

welcome 1 Introduction to GitHub Actions 2 Hands-on: My first Actions
Workflow 3 Workflows 4 GitHub Actions 5 Runners 6 Self-hosted runners 7

Managing vour self-hosted runners 8 Continuous Integration (CI)

1 Introduction to GitHub Actions

This chapter covers the following topics

e Getting an introduction to the GitHub universe

e Understanding what GitHub Actions and Workflows are

e Learning about the possibilities of GitHub Actions that go beyond
CI/CD pipelines

e Understanding licenses and pricing for GitHub and GitHub Actions

GitHub is more than just a platform for hosting and sharing code. It has
become the beating heart of the open-source community, with millions of
developers from all over the world collaborating on projects of every type
and size. Founded in 2008, GitHub has since grown to host over 200 million
repositories and 100 million users, with a staggering 3.5 billion contributions
made in the last year alone.

And now, with GitHub Actions, developers have access to a powerful and
flexible toolset for automating their workflows, from Continuous Integration
(CI) and Continuous Deployment (CD) to custom automation tasks and
beyond. GitHub Actions is much more than just a CI/CD tool —it's a
comprehensive automation platform that can help streamline your entire
development workflow.

This book will show you how to make the most of GitHub Actions and take
your development process to the next level. It is for everyone that wants to
learn more about GitHub Actions — from complete beginners to already
advanced users that want to bring their knowledge to the next level. You will
learn how to use Actions effectively and secure, and it brings a lot of real-
world examples for using it for CI/CD scenarios.

1.1 An introduction to the GitHub universe

At the core of GitHub lies the essential component of version control, namely
git. This system has played a significant role in transforming the way in

which software is developed and is widely considered the standard for the
versioning of code, which in this case does not just refer to program code. It
includes infrastructure, configuration, documentation, and many other types
of files. Git has risen to prominence due to its remarkable flexibility, which
stems from its classification as a distributed version control system rather
than a central one. As a result, developers can work while disconnected from
the central repository, utilizing the full functionality of the version control
system, and later synchronize changes with another repository. The efficacy
of git's distributed architecture is attributed to its ability to store snapshots of
files with changes in its database.

GitHub has extended beyond its function as a hosting platform for git and has
evolved into a comprehensive DevOps platform that supports collaborative
coding through asynchronous means, such as pull requests and issues. The
platform's capabilities have expanded into six broad categories, which
include:

collaborative coding,
planning and tracking,
workflows and CI/CD,
developer productivity,
client applications, and
security.

These categories encapsulate the key features that GitHub offers, making it a
versatile and comprehensive DevOps platform that supports various stages of
software development.

From its inception, GitHub has prioritized a developer-centric approach,
resulting in a platform that places utmost importance on webhooks and APIs.
Developers can leverage either the REST API or the graph API to manipulate
all aspects of the GitHub platform. Authentication is also a straightforward
process, and developers can use GitHub as an identity provider to access their
applications. This user-friendly approach facilitates seamless integration with
other tools and platforms, making GitHub a versatile option not only for
open-source projects but also for commercial products. GitHub's extensive
ecosystem, which boasts over 100 million users, comprises the entire open-
source community, who collaborate to expand and enrich its functionality.

So, to understand the vastness of the GitHub ecosystem, one must also take
into account the various integrations available:

¢ Planning and tracking: In addition to issues and milestones, GitHub
offers GitHub Discussions, an entire forum for collaboration on ideas.
Furthermore, GitHub Projects is a flexible planning solution that is fully
integrated with issues and pull requests, and it supports nested backlogs,
boards, and roadmaps. Moreover, GitHub integrates seamlessly with
other popular planning and tracking solutions such as Azure Boards and
Jira.

e Client applications: GitHub provides a fully-featured code editor that
can be accessed directly in the browser. It also offers mobile
applications for both iOS and Android platforms, enabling teams to
collaborate from anywhere. Additionally, there is a cross-platform
desktop application and an extensible CLI available. Furthermore,
GitHub integrates smoothly with popular client applications such as
Visual Studio, Visual Studio Code, and Eclipse. Moreover, it seamlessly
integrates with popular chat platforms such as Slack and Teams.

e Security: GitHub provides a comprehensive solution for ensuring
software supply-chain security, which includes several key features. For
example, it generates Software Bills of Material (SBoMs) to keep track
of all the components that are included in your software. And, with the
Dependabot functionality, GitHub can alert you whenever
vulnerabilities are detected in any of the dependencies you're using.
Furthermore, GitHub can scan your repository to detect secrets, and it
boasts a sophisticated code analysis engine called CodeQL. The
platform also supports integrations with other security tools like Snyk,
Veracode, or Checkmarx, and it can be integrated into Microsoft’s
Defender for DevOps.

e Developer Productivity: In GitHub, developers can quickly create a
customized containerized development environment using GitHub
Codespaces. This allows new developers to be productive right away.
Additionally, Copilot, an Al-powered assistant, can generate code based
on the context of comments or other code. This can significantly
increase productivity, with reports of up to 50% gains. GitHub also
offers code search, the command palette, and other features that can
further enhance developer productivity.

e Workflows and CI/CD: In the world of continuous integration and
continuous delivery (CI/CD), GitHub is a popular platform that enjoys
widespread support from most CI/CD tools in the market. Furthermore,
GitHub provides a secure integration with all the major cloud providers
for CI/CD workflows using Open ID Connect (OIDC). This ensures a
secure and streamlined experience for developers who rely on cloud-
based services. Additionally, GitHub Packages is equipped with a robust
package registry that supports a wide range of package formats,
providing a powerful and versatile tool for developers to manage and
distribute their code packages.

GitHub Actions serves as the automation engine for the GitHub ecosystem
(see Figure 1.1). It allows users to automate various tasks, with a vast library
of over 18,000 actions available in the marketplace. From issue triaging to
automatic documentation generation, there is a building block — called
Action — available to address nearly any task. With GitHub Actions, users
can easily and securely automate their workflows.

Figure 1.1 The GitHub ecosystem has thousands of integrations

Planning & tracking Workflows

=3 7 P ~
e A \\
/ “é ‘\
‘ |i

&‘ \Jenkins o

Actions Circle ClI |

Jira /Discussions

\
? Issues

'\'.\Boards Projects —_
N — /! N
/Is Azure
T Search _

/ Teams |
| Desktop Copilot - o LVATASS |
| % Advanced | T |
Visual Studio Security > 3 /
\Code ; 7 R /
\ -' . |/ Checkmarx | \Google Cloud ~~
_Slack "\ - -
—\ VERACODE / -
Client applications snyk / Productmty

o~

Secu r|ty

That’s why GitHub Actions is more than just CI/CD. It is an automation
engine that can be used to automate any kind of manual tasks in engineering,
and it is already used by millions of developers worldwide. It can be used to
not only automate GitHub — but the entire GitHub Universe.

1.2 What are GitHub Actions and Workflows

GitHub Actions is both the name of the workflow engine and the name of an
individual, reusable, and easily sharable workflow step within GitHub. This
can lead to confusion. Workflows are composed of YAML files that are
stored in a specific repository location (.github/workflows). In Chapter 3,
GitHub Action Workflows, you will gain a comprehensive understanding of
GitHub Action workflows and the YAML syntax. Triggers initiate the
workflow, and one or more jobs are included in the workflow. Jobs are
executed on a workflow runner, which can be a machine or container with an
installed runner service. GitHub offers runners with Linux, macOS, and
Windows operating systems in various machine sizes, but you can also host

your own runners. In Part 2, Workflow Runtime, you will learn about runners
and the essential security measures to consider when hosting your own
runners. Jobs execute in parallel by default, but the needs property can be
used to chain jobs together. This enables you to fan out your workflow and
run multiple jobs in parallel while waiting for all parallel jobs to complete
before proceeding.

Environments in GitHub Actions provide a way to protect jobs by defining
protection rules such as manual approvals, wait timers, and protected secrets.
With this, you can create visual workflows that track for example your entire
release pipeline, giving you complete control over your deployment process.
Please refer to Figure 1.2 for an example of a workflow with environments
and approvals.

Figure 1.2 A GitHub Workflow with environments and approvals

* Staged Deployment #25

L
O Tost StagedDeployment.ym|
]

@ Build © Load-Test © staging 3 Production

Deployment protection rules

‘wulfland
- -
e
3 wulfland N

A job is comprised of one or more steps that are executed sequentially. A step
can take the form of a command line, script, or reusable step that is easily
shareable, known as a GitHub Action. These Actions can be authored in
JavaScript or TypeScript and executed in a NodeJS environment.
Additionally, it is possible to run containers as Actions or create composite
Actions that serve as a wrapper for one or multiple other Actions. Actions are
covered in more depth in Chapter 4, GitHub Actions.

In Figure 1.3 you can see an overview of the basic elements that make up a
workflow and their syntax.

Figure 1.3 The basic syntax and elements that make up a GitHub Actions workflow

Name of the workflow —————— name: Build and Publish Package

Events that trigger the workflow ———— on:
(with filters) release:
types: [created]

Jobs ——— jobs:
build:

The runner that executes the job —————— runs-on: ubuntu-latest

StEpS steps:
- uses: actions/checkout@v3

- uses: actions/setup-node@v3
with:
node-version: 16

Actions with input parameters ————»

- run: npm ci

)) - run: npm test
Shell execution with secrets as ;
. X ———————%— run: npm publish
environment variables Sy

NODE_AUTH_TOKEN: ${{secrets.npm_token}}

You will learn more about workflow syntax, YAML, GitHub Actions, and
authoring and debugging workflows and Actions in Chapter 3, GitHub
Action Workflows, and in Chapter 4, GitHub Actions.

1.3 GitHub Actions - More than CI/CD pipelines

GitHub workflows are intended to automate various tasks. In addition to
pushing code, there are numerous triggers available. A workflow can be
activated when a label is added to an issue, when a pull request is opened, or
when a repository is starred.

In Listing 1.1 you can find an example workflow that applies labels to opened
or edited issues based on the content of the body of the issue.

Listing 1.1 A sample GitHub Actions workflow that can help triage GitHub issues

name: Issue triage
on:
issues:
types: [opened, edited]

jobs:

triage:
runs-on: ubuntu-latest
steps:
- name: Label issue
run: |
if (contains(github.event.issue.body, 'bug')) {
echo '::add-labels: bug';
} else if (contains(github.event.issue.body, 'feature')

echo '::add-labels: feature';

} else {
echo 'Labeling issue as needs-triage';
echo '::add-labels: needs-triage';

}

This is just an example to show you the power of GitHub actions.

GitHub does not automatically download or clone your repository when a
workflow is executed. In many automation scenarios, the repository's code or
files may not be required, and the workflow can be completed much faster
without cloning the repository. If you intend to utilize GitHub Actions for
CI/CD purposes, the first step in a job should be to download the code by
utilizing the checkout action.:

steps:
- name: Checkout repository
uses: actions/checkout@v3

This action will clone your repository, allowing you to build and test your
solution.

In Part 3, CI/CD with GitHub Actions, you will learn in depth how to use
GitHub Actions for CI/CD in a secure and compliant way.

1.4 Hosting and pricing for GitHub and GitHub
Actions

GitHub (https://github.com) is hosted in data centers located in the United
States. Signing up for GitHub is free and provides users with unlimited
private and public repositories. While many features on GitHub are available
for free on open-source projects, they may not be available for private

repositories.
Enterprises have a variety of options for hosting GitHub (see Figure 1.4).

Figure 1.4 GitHub Enterprise Cloud, GitHub Enterprise Server, and GitHub Connect

GHEC | GHES

| GitHub Enterprise Cloud Connect | GitHub Enterprise Server

lea

GitHub

(https://github.com)

‘i

1.4.1 GitHub Enterprise Cloud

GitHub Enterprise Cloud (GHEC) is a Software as a Service (SaaS)
offering from GitHub, and it is fully hosted on its cloud infrastructure in the
United States. GHEC provides additional security features and supports
single sign-on for users. With GHCE, users can host private and public
repositories, including open-source projects within their enterprise
environment.

GHEC guarantees a monthly uptime Service Level Agreement (SLA) of
99.9%, which translates to a maximum downtime of 45 minutes per month.

1.4.2 GitHub Enterprise Server

The GitHub Enterprise Server (GHES) is a system that can be hosted

anywhere, either in a private data center or in a cloud environment like
Azure, AWS, or GCP. Using GitHub Connect, it is possible to connect to
GitHub.com, which enables the sharing of licenses and the use of open
source on the server.

GHES is based on the same source as GHEC, which means that all features
eventually become available on the server a few months later. However,
some features provided in the cloud must be managed independently on
GHES. For instance, runners in GitHub Actions require self-hosted solutions,
whereas the cloud provides GitHub-hosted runners.

Managed Services are also available that provide hosting for GHES,
including in an Azure data center within the user's region. This approach
ensures full data residency and eliminates the need to manage the servers
personally. Some Managed Services also include hosting for managed
GitHub Actions runners.

1.4.3 Pricing for GitHub

It is important to Understand the pricing model of GitHub and GitHub
Actions when you start playing around with them, to not accidently burn
though all you free minutes.

GitHub's pricing model is based on a monthly per-user billing system and
consists of three tiers: Free, Team, and Enterprise (see Figure 1.5).

Figure 1.5 Overview of GitHub pricing triers

Free Team Enterprise

s0 per user/month S 4 per user/month $ 21 per user/month
v Unlimited public and private v 3,000 GitHub Actions minutes ¥ 50,000 GitHub Actions
repositories v 2GB Package storage minutes

v Public repositories: v Access to Codespaces v 50GB Package storage

v Actions free ¥ Protected branches ¥ Server and Cloud

v Packages free v Codeowners v GitHub Connect
v Private repositories: v Advances pull request v" Single sign-on (SAML, LDAP)

v 2,000 Actions minutes features v IP allow list

v 500MB Package storage v" Enterprise Managed Users
v Dependency graph v SCIM
¥ Dependabot ¥ Auditing / Policies

Available add-ons:
v Premium Support
v Advanced Security

Public repositories, and therefore open-source projects, are entirely free of
charge and offer many features such as Actions, Packages, and various
security features. Private repositories are also available for free, but with
limited functionality, including 2,000 Action minutes and 500 MB of storage
per month.

To collaborate on private repositories with advanced features such as
protected branches, codeowners, and enhanced pull request features, a team
license is required. This license also includes access to Codespaces, although
this feature requires a separate payment. Additionally, the team tier provides
3,000 free Action minutes per month and 2GB of monthly storage for
packages.

Free and Team tiers are only available on GitHub.com. If users require
GitHub Enterprise Cloud or Server, the GitHub enterprise license must be
purchased. This license includes all enterprise features, such as single sign-
on, user management, auditing, and policies, along with 50,000 Action
minutes and 50GB of storage for packages per month. It also allows for the
purchase of additional add-ons, such as Advanced Security or Premium
Support.

1.4.4 Pricing for GitHub Actions

Hosted runners are provided for free to users with public repositories. The
amount of storage and monthly build minutes available to users depends on

their GitHub edition, as shown in Table 1.1:

Table 1.1 Included storage and minutes for the different GitHub editions

GitHub edition Storage | Minutes Max concurrent jobs
GitHub Free 500 MB | 2,000 20 (5 for macOS)
GitHub Pro 1GB 3,000 40 (5 for macOS)
GitHub Free for 500 MB | 2,000 20 (5 for macOS)
organizations

GitHub Team 2 GB 3,000 60 (5 for macOS)
GitHub Enterprise 50 GB 50,000 180 (50 for macOS)
Cloud

If you have purchased GitHub Enterprise through your Microsoft Enterprise
Agreement, it is possible to link your Azure Subscription ID to your GitHub
Enterprise account. This will allow you to use Azure Billing to pay for
additional GitHub Actions usage beyond what is already included in your
GitHub edition.

It is important to note that jobs running on Windows and macOS runners
consume more build minutes than those running on Linux. Windows
consumes build minutes at a rate of 2x and macOS consumes build minutes at
a rate of 10x, meaning that using 1,000 Windows minutes would use up

2,000 of the minutes included in your account, while using 1,000 macOS
minutes would use up 10,000 minutes included in your account. This is due
to the higher cost of build minutes on these operating systems.

Users can pay for additional build minutes on top of what is included in their
GitHub edition, with the following build minute costs for each operating
system:

e Linux: $0.008
e macOS: $0.08
e Windows: $0.016

These prices are for the standard machines with 2 cores.

The charges for extra storage are uniform for all runners, set at $0.25 per GB.

In Chapter 5, Runners, you will learn in more detail, how minutes and extra
storage are calculated.

If you are a customer who is billed monthly, your account is subject to a
default spending limit of $0 (USD), which restricts the use of extra storage or
build minutes. However, if you pay by invoice, your account is given an
unrestricted spending limit by default.

If you set a spending limit above $0, any additional storage or minutes
utilized beyond the included amounts in your account will be invoiced until
the spending limit is reached. By setting up a spending limit, the Enterprise
Administrators will receive e-mail notifications at reaching 75%, 90%, and
100% of the spending limit, on top of the default notifications for utilizing
the same percentages of the included minutes in their monthly plan.

You won't incur any costs when using self-hosted runners since you provide
your own computing resources.

It is important that you are aware of the costs when playing around with
workflows. Especially if you try certain triggers. Best is to just use public
repos for training purposes — in this case the workflows are free of charge in
any case.

1.5 Conclusion

In this chapter, you have learned about the GitHub ecosystem and the myriad
of possibilities it offers for automating tasks, extending beyond just CI/CD,
using GitHub Actions. You have become familiar with key terms and
concepts related to Workflows and Actions, enabling you to better navigate
and utilize these features. Additionally, you have explored the hosting
options and pricing models available for both GitHub and GitHub Actions.

Moving forward, the next chapter will provide an opportunity for practical
application, as you embark on writing your first workflow. This initial
exercise will serve as a useful foundation before delving further into the
syntax and nuances of GitHub Action Workflows, which will be covered in
Chapter 3.

1.6 Summary

e The GitHub universe consists of a vast ecosystem of products, partners,
and communities around the areas of collaborative coding, planning, and
tracking, workflows and CI/CD, developer productivity, client
applications, and security.

e GitHub Actions is a workflow engine to automate any kind of manual
tasks in engineering in the GitHub ecosystem beyond CI/CD.

e GitHub Action workflows are YAML files in a repository in the folder
.github/workflows and contain triggers, jobs, and steps.

e A GitHub Action is reusable workflow step that can be easily shared
through the GitHub marketplace.

e GitHub Actions are free for public repositories and paid per minute for
private ones if you use the GitHub hosted runners; but you have free
included Actions minutes in all GitHub pricing tears.

e Private runners are always free — but the pricing for hosted runners
varies depending on the machine size and type.

2 Hands-on: My first Actions
Workflow

This chapter covers the following topics

e Creating a new workflow

e Using the workflow editor

e Using actions from the marketplace
e Running the workflow

Before we dive into the details of the workflow and YAML syntax in
Chapter 3, GitHub Workflows, it’s a good idea to familiarize ourselves with
the workflow editor, gain some practical experience in creating a workflow,
and test it out to see it in action. This hands-on approach will help us better
understand the concepts and give us the ability to quickly try something out,
if it is unclear. Don’t worry if there are parts of the workflow syntax that you
don’t understand yet— we’ll be covering those in detail in the upcoming
chapters.

2.1 Creating a new workflow

Let's begin this hands-on lab by signing into your GitHub account. Then,
follow the link https://github.com/new to create a new repository. To ensure
you have unlimited Action minutes, create a new public repository in your
user profile and name it ActionInAction. Initialize the repository with a
readme so that we can retrieve the files in the workflow later on. Lastly, click
on the Create repository button to complete the process (refer to Figure 2.1).

Figure 2.1 Creating a new repository

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Repository template
No template ~

Start your repository with a template repository's contents.

Owner * Repository name *

d wulfland ~ / ActionsinAction

@ ActionsinAction is available.

Great repository names are short and memorable. Need inspiration? How about expert-journey?

Description (optional)

o q Public

Anyone on the internet can see this repository. You choose who can commit

5 Private

You choose who can see and commit to this repository.

Initialize this repository with:
Add a README file

This is where you can write a long description for your project. Learn more about READMEs.

Add .gitignore
.gitignore template: None ~

Choose which files not to track from a list of templates. Learn more about ignoring files.

Choose a license

License: None ~

A license tells others what they can and can't do with your code. Learn more about licenses.

This will set Fmain as the default branch. Change the default name in your settings.

@ You are creating a public repository in your personal account.

The repository

You can find companion repositories in the GitHub Organization
https://github.com/GitHubActionsInAction If you have already cloned the
companion repository https://github.com/GitHubActionsInAction/Part1, you
can also create a new workflow in this repository instead of creating a new
one.

Now, let's navigate to the Actions tab inside the repository. If this is a new
repository and there are no workflows set up yet, you will automatically be
redirected to the new Action page (Actions/new). This is the same page you

would land on if you clicked the New workflow button in the workflow
overview page, which is displayed if there are workflows in the repository.
The new workflow page presents a plethora of templates for different
languages and scenarios. You can certainly explore these available templates,
but for our first workflow, we want to create the workflow ourselves. To
proceed, simply click on the corresponding link as illustrated in Figure 2.2.

Figure 2.2 Set up a new workflow in the workflow editor

3 wulfland [ActionsinAction Pub @uUnwatech 1 ~ ¥ Fork 0 - fr Star 0~

<> Code () Issues I Pullrequests|] () Actions |3 Projects 0[O0 wiki (@ Security |~ Insights &3 Settings

Get started with GitHub Actions

reviews, branch m

Q Sear

Suggested for this repository

Simple workflow

Deployment

Deploy Node.js to A Deploy to Amazon aws. Build and Deploy to Terraform v
Azure Web App ECS GKE 1

An empty workflow will be created and opened in the workflow editor.

2.2 Using the workflow editor

It's worth noting that a workflow is essentially a YAML file that resides in
the folder .github/workflows. You can modify the filename as necessary
from the top of the editor window. On the right side of the editor, you'll find
the marketplace as well as the workflow documentation. The documentation
provides valuable guidance to get you started. Moreover, the editor supports
auto-complete when you use the Ctrl+Space keyboard shortcut. To give you
a better idea of the key components of the editor, please refer to Figure 2.3.

Figure 2.3 The workflow editor

& wulfland [ActionsInAction Public @unwatch 1 = Y Fok 0 Ty Star 0
<> Code () Issues 11 Pullrequests () Actions [Projects [0 Wiki @ Security |~ Insights 3 Settings
711 ActionsinAction / .github / workflows | mainyml in main Cancel changes Commit changes...

Edit = Preview Spaces ¢ 2 ¢ No wrap ¢ [D Marketplace

Epter file contents here

Getting started with a workflow

name The name of your workflow

To help you get started, this guide shows you some
basic examples. For the full GitHub Actions
documentation on workflows, see "Configuring

workflows."

Customizing when workflow runs are
triggered

+ Set your workflow to run on push events to the
main and release/+ branches

fffff

« Set your workflow to run on pull_request
events that target the main branch

77777

I e Control + Space Option + Space l trigger autocomplete most situations. + Set your workflow to run every day of the week

To begin, let's change the filename of the workflow file to
MyFirstwWorkflow.yml. Once that's done, click into the editor and open the
auto-complete using ctrl+Space. From the list of valid elements, choose
name. The auto-complete feature will automatically add name: including the
correct spacing to the file. Next, name the workflow My First Workflow and
hit enter to start a new line.

Now, let's add triggers that will initiate the workflow. Begin a new line and
press Ctrl+Space once again. From the options presented, select on and then
push. Auto-complete will generate the following line, which will start the
workflow upon any push in any branch:

on: [push]

Suppose you want to trigger the workflow from only certain branches. In that
case, you need to add additional parameters to the push trigger. First, delete
the [push] and press enter to start a new line. Use the tab key to get the
correct indentation. Next, press Ctrl+Space again, select push, and notice
how auto-complete now functions differently. It will automatically create a

new line and offer all the available options for the push trigger. From there,
choose branches and add the main branch, as shown in the documentation.

Create a new line with the same indentation as the push trigger and add a
workflow_dispatch trigger, which will enable you to trigger the workflow
manually. At this point, your workflow should resemble the one depicted in
Figure 2.4.

Figure 2.4 Naming the workflow and adding triggers

& wulfland | ActionsInAction Public @ Unwateh 1 ~ Y Fok 0~ tr Star O
<> Code (© Issues Il Pullrequests () Actions [Projects [Wiki (O Security |~ Insights &3 Settings
3,1 ActionsinAction / .github / workflows /| MyFirstWorkflow.yml in main Cancel changes Commit changes...

Edit Preview Spaces & 2 & Nowrap ¢ [Marketplace Documentation

name: My First Workflow Getting started with a workflow

1 To help you get started, this guide shows you some
branches: basic examples. For the full GitHub Actions
I documentation on workflows, see "Configuring
workflows."
workf Low_run

workflow_dispatch Customizing when workflow runs are
workflow_call triggered

+ Set your workflow to run on push events to the
main and release/s branches

nnnnn

« Set your workflow to run on pull_request
events that target the main branch

n:
pull_request:
branches:

To add a job to the workflow, create a new line in the workflow file with no
indentation (same as name and on). Use auto-complete to write jobs: and
move to the next line. Note that auto-complete won't work here, as the name
of the job is expected. Enter MyFirstJob:, press enter to start a new line, and
tab to indent one level. Auto-complete should work again now. Choose runs-
on and enter ubuntu-latest, which will execute the job on the latest Ubuntu
machine hosted by GitHub.

Next, add a step to the job. If you choose steps from auto-complete, it will
insert a small snippet with a YAML array that you can use to enter your first
step. For example, you can output Hello World to the console using run and
echo (see Listing 2.1).

Listing 2.1 The first step outputs Hello World to the console

jobs:
MyFirstJob:
runs-on: ubuntu-latest

steps:
- run: echo "§ Hello world!"

Error checking in the editor

It's important to note that if there are errors in your workflow file, the editor
will mark the corresponding parts and you can hover over it with the mouse
to get additional information and other suggestions (see Figure 2.5).

The editor will highlight structural errors, unexpected values, or even
conflicting values, such as an invalid shell value for the chosen operating
system.

Figure 2.5 Editor highlighting errors in the file and providing suggestions

Edit Preview

Unknown key branch
name Did you mean branches?

1

2

3 on: Other suggestions... ¢
4 pu-...

5 branc,.;\:

6 - main

7 workflow_dispatch:

8

In the next step we will add a GitHub Action from the marketplace.

2.3 Using actions from the marketplace

In the right pane, next to documentation, you can find the marketplace for
GitHub Actions. To locate the Checkout action from GitHub Actions, start by
typing checkout in the search bar (see Figure 2.6). Please note that the author
of the Action is not GitHub, but actions, and that it has a blue badge with a
checkmark, indicating that the author is a verified creator.

Figure 2.6 Searching in the marketplace from within the editor

& wulfland / ActionsinAction Publ ©Unwateh 1 v Y Fork 0 ~ ?r star 0

<> Code () Issues Il Pullrequests (Actions [Projects [0 Wiki @ Security |~ Insights &3 Settings
B ActionsinAction / .github [workflows [MyFirstWorkflowymi in main Cancel changes [T TN
Edit Preview Spaces ¢ 2 ¢ Nowap ¢ [I Marketplace | Documentation
X x
name: My First Workflow
I checko I
Marketplace | Search results
Checkout
Qe
heckout a Git repository at a
particular versic

Checkov GitHub Action s
ecrowio @
C

pac tio
o CheckoutPlus 4

If you click on the marketplace listing, you will be taken to a page with more
details about the action. You can also copy the template using the copy
button (see Figure 2.7) or copy parts of the YAML code snippet provided in
the Installation section. The parameters for the action are under the with:
property. They are all optional, so you can delete them all or just copy over
name: and uses:. Paste the action as a step to the workflow like illustrated in
Figure 2.7.

Figure 2.7 Adding the action from the marketplace to the workflow

= wulfland / ActionsinAction pubic @Unwatch 1 + Y Fork 0 {r Str 0~

<> Code () Issues 11 Pullrequests (Actions [Projects [0 wiki @ Security | Insights @3 Settings

Edit | Preview Spaces ¢ 2 ¢ Nowap ¢ [Marketplace Documentation

name: My First Workflow Marketplace [Search results | Checkout

on:

Checkout
push:
branches: @ °© 1Y ak
- ispatch: Checkout a Git repository at a particular versior
.
ob

As a last step, we add a script that displays the files in the repository using
the tree command. Use the name property to set the name that is displayed
in the workflow log. In this step we use a multi-line script using the pipe

operator | and a two-blank indentation for the script. In the first line we
output the name of the repository. We use an expression for that. We then use
the tree command to output the files in the repository (see Listing 2.2):

Listing 2.2 Run a multiline script to display all files in the repository

- name: List files in repository
run: |
echo "The repository ${{ github.repository }} contains the fo
tree

If the editor does not indicate any errors, commit the workflow now to your
main branch (see Figure 2.8).

Figure 2.8 Committing the new workflow file

Commit changes

Commit mes:
I Create MyFirstWerkflowyml I"/—

Extended description

Add an optional extended description..

IO ‘Commit directly to the main bfanchl
() Create a new branch for this commit and start a pull request

Learn more about pull requests.

Cancel Commit changes

This will automatically trigger a workflow run because of the push trigger.

2.4 Running the workflow

The workflow will start automatically because of the push trigger on the main
branch. To observe the workflow run, navigate to the Actions tab (see Figure
2.9). In the case of a push trigger, the name of the workflow run corresponds

to the commit message. Additionally, you can view the branch on which the
workflow was executed, as well as the time and duration of the run. Clicking
on the workflow run will provide you with more detailed information.

Figure 2.9 The workflow runs in the Action tab

& wulfland / ActionsinAction Pub Dunwateh 1 ~ Y Fork 0~ Tr Str 0

Code O lssues 11 puumeme brojects MWk © Security | Insights Setings

Actions New workflow All workflows
| Anworkfiows

1 workflow run
My First Workflow

@ Update MyFirstWorkflow.ym| - 8
My First Workflow " ¢

Within the workflow run overview page, you will come across a detail pane
situated at the top, providing information about the trigger, status, and
duration of the workflow. On the left-hand side, you will find a list displaying
the jobs, while the workflow designer is located in the center (see Figure
2.10). Clicking on a specific job will redirect you to the corresponding job
details page.

Figure 2.10 The workflow run overview
& wulfland / ActionsInAction

Code (Issues Il Pullrequests (Actions ([Projects [0 wiki @ Security Insights @ Settings

@ Update MyFirstWorkflow.yml #3 Re-run all jobs.

| @ summary

| 2 waulfland pushed © b139be5 Success 13s

MyFirstWorkflow.yml

© MyFirstlob

On the job details page, you will discover a log that allows you to track the
progress of the running workflow. Each step within the workflow has its own
collapsible section for easy navigation. Additionally, you will notice an
additional Set up job section, providing additional details about the runner
image, operating system, installed software, and workflow permissions.

Each line in the workflow log is equipped with a deep link, enabling you to
directly access a specific line within the log. In the top-right corner, you will
find a settings menu where you can choose to display timestamps in the log
or download the entire log for further analysis (see Figure 2.11).

Figure 2.11 The job details containing the workflow run log

2 wulfland | ActionsinAction pubiic @uUnwatch 1 ~ Y Fork 0~ ¢ star 0

<> Code (O Issues I Pullrequests () Actions [Projects [0 wiki @ Security |~ Insights & Settings

€ My First Workflow

@ Update MyFirstWorkflow.yml #3 Re-run all jobs

() Summary

MyFirstJob

obs

| © myFirstiob v °

Run details
5 Usage

& Workflow file

eckout@v3.5.2' (SHA:BeSe7e5ab8b370d6c

2 Complete job

With the inclusion of the workflow_dispatch trigger in your workflow, you
now have the ability to manually run the workflow. To initiate the workflow
manually, return to the Actions tab and select the workflow from the left-
hand side, as illustrated in Figure 2.12. Once selected, you will encounter a
Run workflow menu that you can utilize to trigger the workflow.

Figure 2.12 Triggering a workflow manually

& wulfland / ActionsIinAction Public @ Unwatch 1 = ¥ Fok 0~ fr Star 0~

<> Code () Issues I Pullrequests | () Actions | [Projects 0[O0 wiki (@ Security |~ Insights &3 Settings

Actions New workflow My First Workflow Q Filter workflow runs
MyFirstWorkflow.ym|
All workflows

1 workflow run vent~ Status~ Branch~ Actor~
| My First workfiow S ‘ ' ! ’

Use workflow from

E: Caches

main
..... € i by wulflan Branch: main ~

]

While the workflow is starting, go to the workflow overview page and the job
details page to observe the workflow in real time.

2.5 Conclusion

In this chapter, you have familiarized yourself with the workflow editor and
have gained practical experience in creating and executing a workflow. You
have also explored the documentation and incorporated a GitHub Action
from the marketplace.

In the upcoming chapter, you will delve into the intricacies of YAML and
workflow syntax. The chapter will provide comprehensive insights into
advanced concepts, including expressions and workflow commands.

2.6 Summary

e New workflows are created under Actions/new.

e The workflow editor contains documentation and the marketplace.

e The workflow editor helps you writing the workflow with syntax-
highlighting, auto-complete, and error checking.

® You can simply copy and paste actions from the marketplace into you
workflow to use them.

e The workflow has a live-log with deep-linking that provides all the
information for the workflow run.

3 Workflows

This chapter covers the following topics

Understanding YAML and the YAML syntax

Learning the basics of the workflow syntax

Understanding workflow triggers, expressions, and contexts

Getting an introduction into advanced workflow concepts like workflow
commands

e [Learning best practices for authoring and debugging workflows

Now that you have gained the first practical experience, it is time to fully
understand the syntax for workflows.

Workflows are written in YAML. That’s why it is really important to fully
understand YAML before writing workflows.

3.1 YAML

YAML stands for YAML Ain't Markup Language and is a data-serialization
language optimized to be directly writable and readable by humans. It is a
strict superset of JSON but with syntactically relevant newlines and
indentation instead of braces. In the next sections we go through all the
YAML elements that are important for writing workflows.

3.1.1 YAML Basics

YAML files are text files and have a .yml or .yaml extension. Because
YAML uses indentation instead of braces these text files can be versioned
very well with git as changes are always per line.

YAML files can have different encodings — but GitHub uses UTF-8 for the
workflows. You can write comments in YAML by prefixing text with a hash

(#):

A full-line comment in YAML
key:value # A in-line comment

Comments can occur anywhere in a line.

3.1.2 Data types

In YAML you have various data types available. There are simple (scalar)
data types and more complex collection types.

Scalar types

In YAML you can assign a value to a variable with the following syntax.

key: value

The key is the name of the variable. Depending on the data type of value the
type of the variable will be different. In Listing 3.1 you can see the syntax for
all basic data types: integer, float, string, Boolean, and datetime. Please note
that in the listing the key is just the name of the variable. So, age: 42 will
assign the value 42 to an integer variable called age.

Listing 3.1 assigning basic scalar types to variables in YAML

integer: 42

float: 42.0

string: a text value

boolean: true

null value: null

datetime: 1999-12-31T723:59:43.1Z

Types in YAML

Types in YAML are more complex. For example, the datetime format —
called timestamp in YAML - can be written in multiple forms. But I barely
see this relevant for authoring workflows. If you want to learn more about
types in YAML please see the documentation on https://yaml.org/type.

Note that keys and values can contain spaces and do not need quotation!

You can quote keys and values with single or double quotes, but you only
have to do so if they contain some special characters or if the characters
would indicate to YAML a wrong data type. Double quotes use the backslash
as the escape pattern, single quotes use an additional single quote for this:

'single quotes': 'have ''one quote'' as the escape pattern'
"double quotes": "have the \"backslash \" escape pattern"

Especially for writing scripts in YAML workflows, it is important to
understand this.

String variables can also span multiple lines using the pipe operator and a
four spaces indentation. The multi-line text block can also contain line breaks
and empty lines and continues until the next element:

literal_block: |
Text blocks use four spaces as indentation. The entire
block is assigned to the key 'literal_block' and keeps
line breaks and empty lines.

The block continuous until the next YAML element with the sam
indentation as the literal block.

This makes writing complex scripts in YAML workflows much easier than in
other formats where you must quote variables.

Collection types

In YAML there are two different collection types: nested types called maps
and lists — also called sequences.

Maps use two spaces of indentation and the same syntax as assigning
variables:

parent:
keyl: valuel
key2: value2
child:
keyl: valuel

Since YAML is a superset of JSON you can also use the JSON syntax to put

maps in one line:

parent: {keyl: valuel, key2: value2, child: {keyl: valuel}}

A sequence is an ordered list of items and has a dash before each line:

sequence:
- itemi
- item2
- item3

You can also write this in one line using the JSON syntax:

sequence: [iteml, item2, item3]
Learn more about YAML

This is just the tip of the iceberg and there is so much more you can learn
about YAML. For working with GitHub Action workflows many topics are
not relevant. Topics like file directives (- - -), tags, the different syntax
variations for scalar types, like datetime or decimal, and folded literal block
(with > instead of |) are not needed for writing workflows effectively. If you
want to dive deeper in the YAML syntax you can go to:

https://yaml.org/spec/1.2.2/#13-terminology.

This is enough YAML knowledge to understand the workflow syntax.

3.2 The workflow syntax

The first element in a workflow file is typically the name of the workflow.
The workflow can have a different name than the workflow file itself. In the
example in Chapter 2, Hands-on: My first Actions Workflow, the workflow
file is named MyFirstWorkflow.yml — but the workflow itself is named My
First Workflow. The name is set using the name property:

name: My First Workflow

This is just a convention. You could also start the workflow file with one of
the other valid root elements. The name property is typically followed by the

triggers that start the workflow.

You also might want to add a comment on top of the workflow to document
what the workflow does.

3.3 Events and triggers

There are three categories of triggers:

e Webhook triggers
e Scheduled triggers
e Manual triggers

All triggers follow the key on: in the workflow file.

3.3.1 Webhook triggers

Webhook triggers start the workflow based on an event in GitHub. This can
be a git push to the repository:

on: push

It can also be a pull request in the repo:

on: [push, pull_request]

Most webhook triggers can be configured to only start the workflow on
certain conditions. You can, for example, start a workflow only when
pushing to certain branches, or pushing when certain files in a path (paths)
have been updated. The following example will only trigger the workflow,
when files in the doc folder have changed and the changes are pushed to the
main branch or a branch starting with release/:

on:
push:
branches:
- 'main'
- 'release/**!

paths:

_ ldOC/**l

Note

The character * is a special character in YAML so you have to quote all
strings that contain values with wildcards.

There are many webhook triggers available. For example, you could run a
workflow on an issues event. Supported activity type filters are: opened,
edited, deleted, transferred, pinned, unpinned, closed, reopened, assigned,
unassigned, labeled, unlabeled, locked, unlocked, milestoned, and
demilestoned. Any time one of these events happen to an issue, it will trigger
the workflow to run.

You can also run a workflow when your repository is starred (watch), a
branch_protection_rule is created, edited, or deleted, or when you
repository visibility is changed from private to public. For a complete list of
the events that can trigger workflows, please refer to:
https://docs.github.com/en/actions/using-workflows/events-that-trigger-
workflows.

3.3.2 Scheduled triggers

Schedule triggers allow you to start a workflow at a scheduled time. They use
the same syntax as cron jobs. The syntax consists of five fields that represent
the minute (0 — 59), hour (0 — 23), day of month (1 — 31), month (1 — 12 or
JAN — DEC) and day of week (0 — 6 or SUN-SAT). You can use the
operators in Table 3.1:

Table 3.1 Operators for scheduled events

Operator Description

* Any value

, Value list separator if you
specify multiple values

- Range of values (from — to)
/ Step values

In Listing 3.2 you can find some examples of scheduled triggers and when
and how often they would be triggered.

Listing 3.2 Examples for scheduled workflows

on:
schedule:
Runs at every 15th minute
cron: '*/15 * * * *!
Runs every hour from 9am to 5pm
cron: 'O 9-17 * * *!
Runs every Friday at midnight
cron: '0 @ * * FRI'
Runs every quarter (00:00 on day 1 every 3rd month)
cron: 'e 01 */3 *!'

[~ N T « Y T~ « |

As you can see in the examples, you can combine multiple schedule triggers
in the same workflow, which can be helpful if you have a combination of
multiple timings. The workflow designer is a great help when writing
scheduled triggers as it will translate the cron job syntax into a human
readable string (see Figure 3.1).

Figure 3.1 The workflow editor translates the cron job syntax into a human readable string

on:
schedule:
Runs at every 15th minute
- cron: '%/15 ¥ k k x'
Runs every hour from 9am to 5pm
- cron: '@ 9-17 * * X'

Runs ev
uhs % Runs at 00:00, on day 1 of the month, every 3 months.

Actions schedules run at most every 5 minutes using UTC time. Learn more
Runs eve.,

- cron: '00 1@*/3 s

= cron.:

3.3.3 Manual triggers

Manual triggers allow you to start a workflow manually. To do this using the
GitHub UI or CLI you can use the workflow_dispatch trigger:

on: workflow_dispatch

The trigger always accepts one input: the branch the workflow runs on. The
value defaults to the default branch of the repository — normally main.

In the GitHub UI you can trigger the workflow with the dialog displayed in
Figure 3.2.

Figure 3.2 Triggering a workflow manually

Event ~ Status ~ Branch ~ Actor -

This workflow has a workflow_dispatch event trigger. Run workflow ~

Use workflow from

@ Create NewFile.md
My First Workflow #7: Commit 8537418 pushed b Branch: main v

wulfland
. @
@ Update MyFirstWorkflow.yml .

My First Workflow #6: Commit 611410a pushed by main 3 weeksago *°*
wulfland ('-') 12s

You can also trigger the workflow using the GitHub CLI, either by name, id,
or filename relative to .github/workflow:

$ gh workflow run WORKFLOW_FILENAME

The name of the workflow might contain blanks. That means you must quote
it on the command line. The workflow id can be obtained by running gh
workflow list. Butthe most practical approach is normally the name of the
workflow file.

You can configure custom input arguments for a manual workflow start. The
inputs can be required, optional, or you provide default values. They can be
of the type string, Boolean, or choice. For choice you provide a fix list of
values that are allowed. There is also the special type Environment that will
give you a choice field over all environments found in the repository.
(Environments have to be created manually in the repository. You will learn
more about secrets and Environments later in this chapter). In Listing 3.3 you
can see an example that provides different custom inputs for a manual trigger.

Listing 3.3 Custom inputs for the workflow_dispatch trigger

workflow_dispatch:
inputs:

homedrive:
description: 'The home drive on the machine'
required: true

logLevel:
description: 'Log level'
default: 'warning'
type: choice
options:
- info
- warning
- debug

tag:
description: 'Apply tag after successfull test run'
required: true
type: boolean

environment:
description: 'Environment to run tests against'
type: environment
required: true

If the workflow is triggered through the user interface, the inputs are entered
in a generated form like in Figure 3.3.

Figure 3.3 Providing custom-defined input when starting a workflow in the UI

Run workflow ~

Use workflow from

Branch: main v

The home drive on the machine *
[/home|]

Log level

warning s

Apply tag after successfull test run
Environment to run tests against *

Staging s

W

X Aas

If you trigger the workflow using the CLI, it will prompt you for the inputs.
Alternatively, you can pass the inputs to the command using the -f (--
field) argument:

$ gh workflow run MyFirstWorkflow.yml -f homedrive=/home -f loglLe

In the case that you already have the input in JSON format, you can pipe it
into the command using the standard input together with the - - json switch:

$ echo '{"homedrive":"/home", "environment":"Staging", "tag":"tru

In the workflow the values of the inputs can be accessed using the inputs
context:

steps:
- run: |

echo "Homedrive: ${{ inputs.homedrive }}"
echo "Log level: ${{ inputs.logLevel }}"
echo "Tag source: ${{ inputs.tag }}"
echo "Environment ${{ inputs.environment }}"

name: Workflow Inputs

if: ${{ github.event_name == 'workflow_dispatch' }}

You will learn more about context and expression syntax in the next section
of this chapter.

Another manual trigger is the repository_dispatch trigger that can be used
to start all workflows in the repository that listen to that trigger using the
GitHub API. This trigger can be used for integration scenarios with other
systems.

If added to a workflow, the trigger can have one or more event types that can
then specified when calling the API if you only want to trigger certain
workflows:

on:
repository_dispatch:
types: [eventl, event2]

The API endpoint is
https://api.github.com/repos/{owner}/{repo}/dispatches and you
provide the event type in the following way:

$ curl \
-X POST \
-H "Accept: application/vnd.github.v3+json" \

https://api.github.com/repos/{owner}/{repo}/dispatches \
-d '{"event_type":"eventl"}'

You can also pass in additional JSON as a client_payload:

{

"event_type": "eventl
"client_payload": {
"passed": false,
"message": "Error: timeout"
}
}

The payload can then be access through the github.event context:

- run: |
echo "Payload: ${{ toJSON(github.event.client_payload) }}"
name: Payload
if: ${{ github.event_name == 'repository_dispatch' }}

There are multiple ways that you can call the GitHub API. You can use curl,
like in the example above. You can use the GitHub CLI:

$ gh api -X POST -H "Accept: application/vnd.github.v3+json" \
/repos/{owner}/{repo}/dispatches \
-f event_type=eventl \
-f 'client_payload[passed]=false' \
-f 'client_payload[message]=Error: timeout'

There is also an SDK for many programming languages called octokit. Here
is an example on how to call the dispatch API in JavaScript:

await octokit.request('POST /repos/{owner}/{repo}/dispatches', {

owner: '{owner}',
repo: '{repo}',
event_type: 'eventl'
client_payload: {
passed: "false",
message: "Error: timeout",

i
1)

If you want to learn more on working with the GitHub API, please refer to:

https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api.

Workflow triggers are very important. If you chose the right triggers and
configure them right, you need less complex workflow logic. But before we
learn more about expressions and context we should first have a look at the
main workflow elements: workflow jobs and steps.

3.4 Workflow jobs and steps

The logic of the workflow is configured in the jobs section. Every job is
executed on a runner. The runner can be self-hosted, or you can pick one
from the cloud. There are different versions available in the cloud for all
platforms. If you want to always use the latest version you can use ubuntu-
latest, windows-latest, or macos-latest. You’ll learn mor about runners
in Chapter 5, Runners, and in Chapter 6, Self-hosted runners.

3.4.1 Workflow jobs

Jobs are a YAML map and not a list — and they run in parallel per default.
You can chain them in a sequence by depending a job on the successful
output of one or multiple other jobs using the needs keyword. Listing 3.4
shows an example of 4 jobs. Two that run in parallel after the first job, and a
last one that runs after the two parallel have finished:

Listing 3.4 Chaining of jobs

jobs:
job_1:
runs-on: ubuntu-latest
steps:
- run: "echo Job: ${{ github.job }}"
job_2:

runs-on: ubuntu-latest
needs: job_1
steps:
- run: "echo Job: ${{ github.job }}"

job_3:
runs-on: ubuntu-latest

needs: job_1
steps:
- run: "echo Job: ${{ github.job }}"

job_4:
runs-on: ubuntu-latest
needs: [job_2, job_3]
steps:
- run: "echo Job: ${{ github.job }}"

The resulting workflow would look like in Figure 3.4:
Figure 3.4 Visual representation of chained workflow jobs in GitHub
main.yml|

@ job_1 0s @ job_2 0s @ job_4

@ job_3

3.4.2 Workflow steps

A job contains a sequence of steps, and each step can run a command. Steps
are always executed one after the other:

steps:
- name: Install Dependencies
run: npm install
- run: npm run build

The name property is optional and defines how the step is displayed in the
workflow log.

Literal blocks allow you to write multi-line scripts in one workflow step. If
you want the workflow to run in a different shell than the default shell, you
can configure it together with other values like the working-directory:

- name: Clean install dependencies and build
run: |
npm install
npm run build
working-directory: ./temp

shell: bash
The following shells are available (see Table 3.2):

Table 3.2 Available shells in GitHub workflows

Parameter Description

bash Bash shell. The default shell on all non-Windows
platforms with a fallback to sh . When specified
on Windows, the bash shell included with Git is
used.

pwsh PowerShell Core. Default on the Windows
platform.

python The python shell — allows you to run python
scripts

cmd Windows only! The windows command prompt.

powershell | Windows only! The classical Windows
PowerShell.

The default shell on non-windows systems is bash with a fallback to sh. The
default on windows is pwsh with a fallback to cmd.

You can also configure a custom shell with the with the syntax shell:
command [options] {0}. The placeholder {0} will be replaced with the
script you provide. Here is an example for running a perl script:

- run: print %ENV
shell: perl {0}

You will learn more about shells in Chapter 5, Runners.

3.4.3 Using GitHub Actions

Most of the time you want to use reusable steps — called GitHub Actions. You
can reference an action using the uses keyword and the following syntax:

{owner}/{repo}@{ref}

The {owner}/{repo} is the path to the actions repository in GitHub. If you
have multiple actions in a repository the syntax is the following:

{owner}/{repo}/{path}@{ref}
But in this case the action cannot be published to the marketplace.

The reference {ref} is the version of the action. It is a git reference to the
point in time in the history of changes. The reference can be all kind of valid
git references. A tag, a branch, or an individual commit referenced by its
SHA-1 value. The most common is using tags for explicit versioning with
major and minor versions.

Reference a version using a tag
- uses: actions/checkout@v3
- uses: actions/checkout@v3.5.2

Reference the current head of a branch
- uses: actions/checkout@main

Reference a specific commit
- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab

If your action is in the same repository as the workflow, you can use a
relative path to the action:

uses: ./.github/actions/my-action

If the action has defined inputs, you can specify them using the with
property:

- name: My first Action step
uses: ActionsInAction/Helloworld@vi
with:
wWhoToGreet: Mona

Inputs can be optional or required. You can also set environment variables for
steps using the env property:

- uses: ActionsInAction/Helloworld@vi
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WhoToGreet: Mona

You can also set variables for the entire workflow, or a job and they will
automatically be available to the action.

Every docker container stored in a container registry like Docker Hub or
GitHub Packages can be used as a step in the workflow using the syntax
docker://{image}:{tag}:

uses: docker://alpine:3.8

This is very handy if you want to integrate existing solutions in docker into
your workflows. Only limitation is that the container registry must be
accessible for the workflow without credentials.

In Chapter 4, GitHub Actions, you will learn how to author GitHub Actions
and you will learn how they work internally.

3.4.4 The strategy matrix

Jobs can be run with different configurations using the matrix strategy. The
matrix can be a one-dimensional array and the workflow will execute one job
for each value in the array. Furthermore, the matrix can consist of multiple
arrays and the workflow will execute a job for all combinations of all values
in the matrix. You can think of this as nested for-loops over all arrays.

The keys in the matrix can be anything and you refer to them using the
expression ${{ matrix.key }}. You can choose if the matrix should abort
execution when an error occurs in one of the jobs in the matrix, or if it should
continue executing the other jobs using the fail-fast property. The
maximum number of jobs that run in parallel can be set using max-parallel.
Listing 3.5 shows an example that will run the same job for the NodeJS
versions 12, 14, and 16 on ubuntu and macOS.

Listing 3.5 Executing jobs with different configurations

jobs:
job_1:
strategy:
fail-fast: false

max-parallel: 3

matrix:
os_version: [macos-latest, ubuntu-latest]
node_version: [12, 14, 16]

name: My first job
runs-on: ${{ matrix.os_version }}
steps:
- uses: actions/setup-node@v3.6.0
with:
node-version: ${{ matrix.node_version }}

This code will result in 6 jobs with all combinations and the workflow output
will look like Figure 3.5. The job name will be suffixed with the values of the
matrix.

Figure 3.5 Output of a job with multiple configurations

l (R Summary

Jobs

@ My first job (macos-latest, 12)
@ My first job (macos-latest, 14)
@ My first job (macos-latest, 16)
@ My first job (ubuntu-latest, 12)

@ My first job (ubuntu-latest, 14)

@ My first job (ubuntu-latest, 16)

There is also the possibility to include or exclude some values for specific
configurations. Please refer to https://docs.github.com/en/actions/using-
jobs/using-a-matrix-for-your-jobs for the latest documentation.

3.5 Expressions and Contexts

You have already seen some expressions — in the first hands-on, when we had
a look at manual triggers and the matrix strategy. An expression has the
following syntax:

${{ <expression> }}

Expression can access context information and combine them with operators.

There are different objects available that provide context information, like
matrix, github, env, vars, needs, runner, or input. With github.sha, for
example, you can access the commit SHA that had triggered the workflow.
With runner.os you can get the operating system of the runner and with env
you can access environment variables. For a complete list see of all context
object and all properties please refer to:

https://docs.github.com/en/actions/reference/context-and-expression-syntax-
for-github-actions#contexts.

There are two possible syntaxes to access context properties:

context['key']
context.key

The latter, the property syntax, is the more common.

Depending on the format of the key you might have to use the first option.
This might be the case if the key starts with a number or contains special
characters other than dash (-) and underscore (_).

Expressions are often used in the if object to run jobs or steps on different
conditions. The following example will only execute the job deploy if the
workflow was triggered by a push to main:

jobs:
deploy:
if: ${{ github.ref == 'refs/heads/main' }}
runs-on: ubuntu-latest
steps:

- run: echo "Deploying branch ${{ github.ref }} "

The expression must return true or false and can be used on steps and jobs
to control the flow of the workflow by conditionally executing them.

To write expressions and compare context with static values you can use of
the operators from Table 3.3.

Table 3.3 Operators for expressions

Operator Description

() Logical grouping

[] Index

. Property de-reference

! Not

<, <= Less than, less than or equal
> >= Greater than, greater than or equal
== Equal

I= Not equal

&& And

I Or

GitHub offers a set of built-in functions that you can use in expressions. They
can help you searching in strings, formatting output, or working with arrays.
See Table 3.4 for a list of available functions.

Table 3.4 Built-in functions in GitHub for expressions

Function Description
contains(search, item) | Returns true if search contains item.
Examples:

contains('Hello world', 'llo") returns true.
contains(github.event.issue.labels.*.name,
'bug’) returns true if the issue related to
the event has a label bug .

startsWith(search, Returns true when search starts with item.
iten)
endsWith(search, Returns true when search ends with item.
item)

format(string, v0, v1,

)

Replaces values in the string.

Example:

format('Hello {0} {1} {2}', 'Mona', 'the’,
'Octocat’) returns 'Hello Mona the
Octocat'.

join(array, optS)

All values in array are concatenated into a
string. If you provide the optional

separator optS , it is inserted between the
concatenated values. Otherwise, the
default separator ', is used.

toJSON(value) Returns a pretty-print JSON
representation of value.

fromJSON(value) Returns a JSON object or JSON data type
for value.

hashFiles(path) Returns a single hash for the set of files

that matches the path pattern.

There are also some special functions to check the status of the current job. In
the following example, the step displayed would only be executed if a
previous step of the jobs has failed:

steps:

- name: The job has failed
if: ${{ failure() }}

For a list of available function to check the status of the job see Table 3.5.

Table 3.5 Functions to check status of the workflow job

Function Description

success() Returns true if none of the previous steps have
failed or been cancelled.

always() Returns true even if a previous step was

cancelled and causes the step to always get
executed anyway.

cancelled() Returns only true if the workflow was
canceled.

failure() Returns true if a previous step of the job had
failed.

You can use the * syntax to apply object filters for arrays and objects. If you
have an array of objects called fruits with the following values:

fruits=|[
{ "name": "apple", "quantity": 1 },

{ "name": "orange", "quantity": 2 },
{ "name": "pear", "quantity": 1 }

]

The filter fruits. *.name returns the array ["apple", "orange", "pear"]
and the filter fruits.*.quantity returns [1, 2, 1].

Expressions are a powerful way to control the flow and execution of your
workflow and you will learn more examples in the rest of the book.

3.6 Workflow commands

Workflow steps and actions can communicate with the workflow and the
runner machine using workflow commands. They can be used to write
messages to the workflow log, pass values to other steps or actions, set
environment variables, or write debug messages.

Workflow commands use the echo command with a specific format, or they
are invoked by writing to a specific environment file.

echo "::workflow-command parameterl={data}, parameter2={data}::{co

If you are using JavaScript, the toolkit (https://github.com/actions/toolkit)
provides a lot of wrappers that can be used instead of using echo to write to
stdout. For example, if you want to log an error the workflow log, you can
use the following echo command:

- run: echo "::error file=app.js,line=1::Missing semicolon"
With the toolkit you can achieve the same in the following form:

core.error('Missing semicolon', {file: 'app.js', startLine: 1})

For a complete list of available workflow commands please refer to:

https://docs.github.com/en/actions/using-workflows/workflow-commands-
for-github-actions.

In the subsequent sections you will learn some examples of useful workflow

commands.

3.6.1 Writing a debug message

You can print debug message to the workflow log. To see the debug
messages set by this command in the log, you must create a variable named
ACTIONS_STEP_DEBUG with the value true. You will learn later in this chapter
how to set variables. The syntax is:

::debug: : {message}

Debug messages are extremely useful to being able to debug your workflows
without cluttering the log if you are not debugging.

3.6.2 Creating error or warning messages

The same way you can create warning and error messages and print them to
the log. The messages will create an annotation, which can associate the
message with a particular file in your repository. Optionally, your message
can specify a position within the file.

::warning file={name}, line={line}, endLine={el}, title={title}::{me
r:error file={name}, line={line},endLine={el}, title={title}::{mess

The parameters are the following:

Title: a custom title for the message

File: the filename that raised the error or warning
Col: Column / character number, starting at 1
EndColumn: End column number

Line: The line number in the file starting with 1
EndLine: End line number

Here is an example how these two commands can be used:

echo "::warning file=app.js,line=1,co0l=5,endColumn=7::Missing sem
echo "::error file=app.js,line=1,col=5,endColumn=7::Error in app.

You can see the output of these commands in the log in Figure 3.6.

Figure 3.6 Warning and error messages in the workflow log

Write messages to the log

» Run echo "::debug::This is a debug message"
Warning: Missing semicolon
Error: Error in app.js

The annotations will be added to the workflow overview page and the link to
the file is clickable (see Figure 3.7).

Figure 3.7 Annotations in the workflow overview page

Annotations
1 error and 1 warning

© main: app.js#L2
Error in app.js

/\ main: app.js#L1
Missing semicolon

The link will redirect you to the corresponding line in the file if it is part of
the source commit of the workflow. If the workflow is associated with a pull
request, then you can see the messages on the correct lines in the Files
changed tab (see Figure 3.8).

Figure 3.8 Warning and error messages shown as pull request decorations

) Conversation 0 -~ Commits 3 [l Checks a Files changed 1
Changes from all commits v File filter v Conversations ¥ Jumpto v @ b

v % 4 mmmm app.js (O

ee -1,5 +1,5 @@
1L - import React, { Component, Fragment } from "react";
1 + import React, { Component, Fragment } from "react"

A Check warning on line 1in app.js

GitHub Actions / main

Missing semicolon

2 2 import { Route, Router, Redirect } from "react-router-dom";

X Check failure on line 2 in app.js

GitHub Actions / main

Error in app.js

3.6.3 Passing output to subsequent steps and jobs

The syntax to pass output values to subsequent tasks is different. Instead of
using a workflow command with echo you have to pipe a name-value pair to
the environment file $GITHUB_OUTPUT:

echo "{name}={value}" >> "$GITHUB_OUTPUT"

The operator >> appends the name-value pair to the end of the file. The path
and filename of the file are stored in the environment variable
$GITHUB_OUTPUT. You can access the output using the output property of the
step in the steps context:

- name: Set color
id: color-generator
run: echo "SELECTED_COLOR=green" >> "$GITHUB_OUTPUT"

- name: Get color
run: echo "${{ steps.color-generator.outputs.SELECTED_COLOR }}"

Outputs are Unicode strings and cannot exceed one MB in size. The total of
all outputs in a workflow run cannot exceed 50 MB.

If you want to mask output in the log you can use : :add-mask: : {value}.
This will mask the output in the log - even when you pass the value to other
steps or jobs. The value will be preserved — only the output is masked. You

can find an example in Listing 3.6 demonstrating that.
Listing 3.6 Masking secret values across multiple steps

on: push
jobs:
generate-a-secret-output:
runs-on: ubuntu-latest
steps:
- 1id: sets-a-secret
name: Generate, mask, and output a secret

run: |
the_secret=$((RANDOM))
echo "::add-mask::$the_secret"

echo "secret-number=$the_secret" >> "$GITHUB_OUTPUT"
- name: Use that secret output (protected by a mask)
run: |
echo "the secret number is ${{ steps.sets-a-secret.outp

3.6.4 Environment files

During the execution of a workflow, the runner generates temporary files that
you can manipulate to perform certain actions. The output file was one
example. The paths to these files are exposed via environment variables — in
this case $GITHUB_OUTPUT.

Another use case for environment file is setting an environment variable for
subsequent steps in a job. The corresponding environment file is
$GITHUB_ENV. And again, you just append another name-value pair to the end
of the file:

echo "{environment_variable_name}={value}" >> "$GITHUB_ENV"

Note that the name is case sensitive! Here is a complete example how to set
an environment variable in one step and access it in a subsequent step using
the env context:

steps:
- name: Set the value
id: step_one
run: |
echo "action_state=yellow" >> "$GITHUB_ENV"

- run: |
echo "${{ env.action_state }}" # This will output 'yellow'

For a complete reference on environment files, please refer to:

https://docs.github.com/en/actions/using-workflows/workflow-commands-
for-github-actions?tool=bash#environment-files

Another example for environment files is adding a job summary in a
workflow.

3.6.5 Job summaries

You can set some custom Markdown for each workflow job. The rendered
markdown will then be displayed on the summary page of the workflow run.
You can use job summaries to display content, such as test or code coverage
results, so that someone viewing the result of a workflow run doesn't need to
go into the logs or an external system.

Job summaries support GitHub flavored markdown. But since Markdown is
HTML, you can also output html to the job summary file.

Add results from your step to the job summary by appending markdown to
the following file:

echo "{markdown content}" >> $GITHUB_STEP_SUMMARY

The steps are isolated and restricted to 1 MiB (1.04858 MB). It is isolated so
that malformed Markdown from a single step cannot break Markdown
rendering for subsequent steps. Only 20 steps can write to the summary, the
output of any step after that will not be visible.

Here is an example that adds markdown and plain html to the job summary:
- run: echo '### Hello world! :rocket:' >> $GITHUB_STEP_SUMMARY

- run: echo '### Love this feature! :medal_sports:' >> $GITHUB_ST
- run: echo '<hil>Great feature!</h1>' >> $GITHUB_STEP_SUMMARY

The result looks like Figure 3.9.

Figure 3.9 Markdown and HTML displayed on the workflow summary page

job1 summary

Hello world! %/

Love this feature! Y

Great feature!

Job summary generated at run-time

If you have more complex scenarios or you are authoring you action in
JavaScript anyway, then you can use the toolKkit
(https://github.com/actions/toolkit) function core.summary to write tables or
links. Listing 3.7 shows an example of that.

Listing 3.7 Writing a job summary using the toolkit

- name: Write Summary from Action
uses: actions/github-script@v6.1.0
with:
script: |
await core.summary
.addHeading('Test Results')
.addTable([
[{data: 'File', header: true}, {data: 'Result', header:
['foo.js', 'Pass [4'],
['bar.js', 'Fail X '],
['test.js', 'Pass ']
1)
.addLink('View staging deployment!', 'https://github.com')
.write()

The result will look like in Figure 3.10.

Figure 3.10 Job summary created by the toolkit

t

job2 summary

Test Results

File Result
foojs Pass
bar.js Fail

testjs Pass

View staging deployment!

Job summary generated at run-time

3.7 Secrets and variables

You can create configuration variables for use across multiple workflows by
defining them on one of the following levels:

e Organization level
e Repository level
e Environment level

The three levels work like a hierarchy: you can override a variable or secret
on a lower level by providing a new value to the same key. Figure 3.11
illustrates the hierarchy.

Figure 3.11 The hierarchy for configuration variables and secrets

Organization

Repository

Environment

A special form of configuration variables are secrets. They are stored
encrypted and are only decrypted at runtime. They are also protected and
masked in the workflow log.

Secrets can be accessed using the secret context and variables using the
vars context. Here is an example of how you can pass secrets and variables
to a GitHub Action:

- name: Set secret and var as input
uses: ActionsInAction/HelloWorld@vi
with:
MY_SECRET: ${{ secrets.secret-name }}
MY_VAR: ${{ vars.variable-name }}

Secrets and variables can be set using the UI or CLI. You must be part of the
admin role to do this. In the Ul you can do this under Settings | Secrets and
variables | Actions on the corresponding hierarchy level. In a repository you
can set secrets with write access — but you have to use the CLI to do so as
you have no access to the settings. There you can switch using the tabs
between Secrets and Variables and you will find the New repository secret
button (/settings/secrets/actions/new) or New repository variable button
(/settings/variables/actions/new) that you can use to create new entries (see
Figure 3.12).

Figure 3.12 Setting secrets and variables using the GitHub UI

& wulfland / ActionsInAction Pubiic 2 F @Unwatch 1 -~ % Fork 0
<> Code (2 Issues [Pullrequests 1 ® Actions [Projects [0 wiki () Security |~ Insights | @ Settings

& General Actions secrets and variables

Secrets and variables allow you to manage reusable configuration data. Secrets are encrypted and are used for
Ay Collaborators sensitive data. Learn more about encrypted secrets. Variables are shown as plain text and are used for non-sensitive
data. Learn more about variables

) Moderation options v
Anyone with collaborator access to this repository can use these secrets and variables for actions. They are not

Code and automat ion passed to workflows that are triggered by a pull request from a fork.
¥ Branches 5

Secrets Variables New repository secret
© Tags
B3 Rules (Beta) v
o
). Actions Environment secrets Manage environments
&5 Webhooks
8 Environments 6 CONNECTION_STRING staging Updated 1 minute ago
S Codespaces

& CONNECTION_STRING Production Updated now

B3 Pages

Security
(D] i i .
() Code security and analysis Repository secrets
&2 Deploy keys

(¥] Secrets and variables ~ B CONNECTION_STRING Updated 1 minute ago 7 U

I

When creating secrets or variables, please take into account the Naming

conventions for secrets and variables.

Naming conventions for secrets and variables

Secret names are not case-sensitive, and they can only contain normal
characters ([a-z] and [A-Z]), numbers ([0-9]), and the underscore (_). They
must not start with GITHUB_ or a number.

Best practice is to name the secrets with upper-case words separated by the
underscore character.

Secrets and variables for organizations work the same way. Create the secret
or variable under Settings | Secrets and variables | Actions. New
organization secrets or variables can have an access policy to

e All repositories,
¢ Private repositories, or
e Selected repositories.

When choosing Selected repositories, you can grant access to individual
repositories.

If you prefer the GitHub CLI, you can use gh secret or gh variable to set
to create new entries:

$ gh secret set secret-name

$ gh variable set var-name

You will be prompted for the secret or variable value or you can read the
value from a file, pipe it to the command, or specify it as the body (-b or --
body):

$ gh secret set secret-name < secret.txt

$ gh variable set var-name --body config-value

If the entry is for an environment, you can specify it using the --env (-e)
argument. For organization secrets you set the visibility (--visibility or -
v) to all, private, or selected. For selected you must specify one or more

repos using - -repos (-r):
$ gh secret set secret-name --env environment-name

$ gh secret set secret-name --org org -v private
$ gh secret set secret-name --org org -v selected -r repo

3.8 Workflow permissions

A special secret is the GITHUB_TOKEN secret. It is automatically created by
GitHub and it can be accessed through the github context (github.token) or
the secrets context (secrets.GITHUB_TOKEN). The token can be accessed by
a GitHub action, even if the workflow does not provide it as an input or
environment variable. The token can be used to authenticate the workflow
when accessing GitHub resources. The default permissions can be set to
permissive (read and write) or restricted (read only) — but the permissions can
be adjusted in the workflow. You can see the workflow permissions in the
workflow log under Set up job | GITHUB_TOKEN Permissions. It is best
practice to always explicitly set the permissions your workflow needs. All
other permissions will be set to none automatically. The permissions can be
set for an individual job or the entire workflow.

Here is an example of a workflow that will apply labels to pull requests
depending on the files that are changed. The workflow needs read
permissions for content to read the configuration and it needs write
permissions for pull-requests to apply the label. All other permissions will be
non:

on: pull_request_target

permissions:
contents: read
pull-requests: write

jobs:
triage:
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v4

Actions performed with the GITHUB_TOKEN will be in the history as performed
by the github-actions bot (see Figure 3.13). They will also not trigger new
workflow runs to avoid infinite loops by recursive workflow runs.

Figure 3.13 Actions performed with the GITHUB_TOKEN will be in the log as performed by the
github-actions bot.

Update README.md #3

joXeI M wulfland wants to merge 1 commit into main from wulfland-patch-1 ((J

) Conversation 0 - Commits 1 E) Checks o Files changed 1

97 wulfland commented now

No description provided.

(©)

o & update README.md

© (@) github-actions bot added the (B8 label now

The default access for the GITHUB_TOKEN is restricted. This grants read
permission for contents and metadata. You could set the default to read and
write, but the recommended way is to have this restricted and grant
permissions on workflow or job level. In Chapter 10, security, you’ll learn

more about the security implications of the permissions for the
GITHUB_TOKEN.

When authoring workflow, you should be aware of the permissions your
workflow will need. You should also keep in mind what will happen when
the workflow runs from a fork. Private repositories can configure if pull
requests from forks are able to run workflows or not. The maximum
permissions for the GITHUB_TOKEN in workflows triggered from a fork will
always be read for all individual permissions.

3.9 Authoring and debugging workflows

The workflow designer is a great help when authoring workflows, as you
have experienced in Chapter 2, Hands-on: My first Actions Workflow. Auto-
complete, error checking, and the integration of the documentation and the

marketplace in the UI are a great help when writing you workflow.

If you start in a greenfield repository, it is best to just write your workflows
in the main branch. However, if you have to create the workflow in a
repository that developers are working in, you don’t want to get in their way.
It is possible to write workflows in a branch and merge them back to the main
branch using a pull request - however, some triggers might not work as
expected. If you want to run your workflow manually using the
workflow_dispatch trigger, you first must merge the workflow with the
trigger back to main or use the API to trigger the workflow. After that you
can author the workflow in a branch and select the branch when triggering
the workflow through the UI.

If your workflow needs webhook triggers like push, pull_request, or
pull_request_target, it is best to create the workflow in a fork of the
repository. This way you can test and debug the workflow without interfering
with the developers work, and once you are done you can merge it back to
the original repository.

The workflow designer in the web can help a lot when authoring GitHub
Actions — but an even better experience is provided by the Visual Studio
Code Extension GitHub Actions: https://marketplace.visualstudio.com/items?
itemName=GitHub.vscode-github-actions.

The extension provides the following features:

Managing workflows and monitoring workflow runs
Manually triggering workflows

Syntax highlighting for workflows and expressions
Integrated documentation

Validation and code completion

Smart validation

Especially the smart validation is a great help. It supports code completion
for referenced actions and reusable workflows and will parses parameters,
inputs, and outputs for referenced actions and provides validation, code
completion, and inline documentation. Together with GitHub Copilot this
increases quality and speed for authoring workflows tremendously.

Figure 3.14 shows some of the most important features of the extension.

Figure 3.14 The Visual Studio Code Extension for GitHub Actions

MyFirstWorkflowyml — ActionsinAction D@ [os
GITHUB ACTIONS =+ R MyFirstWorkflowyml 3,M X 0 - 0 1

*/ CURRENT BRANCH thub > wor
> @ My First Workflow #31
> @ My First Workflow #30

kflows

% MyFirstWorkflowym

> @ Main #8

0 > @ My First Workflow #29
> @ Main #7
> @ My First Workflow #28
> @ Workflow in Branch #9 steps: 1

> My First Workflow #27 run: echo "% Hello World!™

> @ Main #6
~ WORKFLOWS

E eckout
u + actions/checkout@v3.5.2

> Labeler

t List files in repository

33 echo "The repository ${{ github. }} contains th efollowing files:"
tree te) action
(#) action_path
QC\ SETTINGS [e) action_ref &
(¢] action_repository
. : p DEBUG RMINA o x
> B Environments PROBLEMS (&) (@) action_status
> 8 Secrets v % MyFirstWorkflow.yml .githul (=) actor
> abc Variables ® Unexpected value 'view' (e) api_url
-~ (] ba ref
® Unexpected value 'admin' [Ln 23, Cal 22 ::_ :mslt £
® Unexpected symbol: 'EOF' [Ln 33, Col 32] S
[e] event_name
(e) event_path
Vs in® <04 11 3 Ln 33, | Spaces: JTF-8 L GitHub A Waorkfl 8 t: W]

There is also a GitHub Action available that can lint all your workflow in
your repo: https://github.com/devops-actions/actionlint. It can surface a lot of
mistakes — for example if you use potentially untrusted inputs in scripts like
the github.head_ref. The linter can also run on pull requests and annotate
you changes in workflow files. You can add the linter as a step to your
workflow after checking out the repository.

jobs:
main:

runs-on: ubuntu-latest

permissions:
contents: read
pull-requests: write

steps:
- uses: actions/checkout@v3
- uses: devops-actions/actionlint@v0.1.2

In general, it is normally the best approach to first run and debug deployment
scripts locally or on a virtual machine first and move them to the workflow
when you know they will work. But even then, you might experience strange
behavior. In this case you can enable debug logging by adding a variable
ACTIONS_STEP_DEBUG to your repository and set the value to true. This will

add a very verbose output to your workflow log and all debug messages from
all actions will be displayed. If your issue is related to a runner, you can
activate additional logs the same way by setting a variable
ACTIONS_RUNNER_DEBUG to true. In Chapter 6, Self-hosted Runners, you will
learn more about self-hosted runners and logging. If you want to learn more
about debug logging, please refer to:
https://docs.github.com/en/actions/monitoring-and-troubleshooting-
workflows/enabling-debug-logging

3.10 Conclusion

In this chapter you have learned the important things on YAML and the
workflow syntax you need to know to start authoring workflows. In the next
chapter you will learn how to author and share you own GitHub Actions.

3.11 Summary

e YAML is a text-based data-serialization language optimized to be
directly writable and readable by humans and it is a strict superset of
JSON with syntactically relevant newlines and indentation instead of
braces.

e There are three types of events that can trigger workflows: webhook
triggers, scheduled triggers, manual triggers.

e Jobs run in parallel per default if they do not depend on other jobs,
whereas steps run in a sequence.

e A workflow step can be a command line that is executed in a shell or a
reusable action.

® You can store configuration variables and secrets on organization,
repository, or environment level and access them in your workflow.

e The GITHUB_TOKEN can be used to authenticate the workflow when
accessing GitHub resource and you can set the permissions in a job or
workflow.

¢ You can author your workflows in a branch — but sometimes it’s better
to create the workflow in a fork to not get in the way with developing
the application.

4 GitHub Actions

This chapter covers the following topics:

Types of actions

Authoring actions

Hands-on: my first Docker container action
Sharing actions

Advanced action development

Now that we have explored the YAML and workflow syntax in detail, this
chapter will dive into the core building block of GitHub Actions — the
reusable and sharable actions themselves that give the product its name.

The chapter will cover the different types of actions and some tips to get
started writing your first actions. We will cover this in detail in a hands-on
lab, where you can follow along step by step. Additionally, the chapter will
cover sharing actions in the marketplace and internally, and some advanced
topics for action authors.

4.1 Types of Actions

There are three different types of actions:

e Docker container actions
e JavaScript actions
e Composite actions

Docker container Actions only run on Linux whereas JavaScript and
composite Actions can be used on any platforms.

All actions have in common, that they are defined by a file action.yml (or
action.yaml) that contains the metadata for the action. This file cannot be
named differently, meaning a action must reside in its own repository or
folder. The run section in the action.yml file defines what type of action it

is.
4.1.1 Docker container actions

The docker container actions contain all their dependencies and are therefore
very consistent. They allow you to develop your actions in any language —
the only restriction is that it has to run on Linux. Docker container actions are
slower then JavaScript actions because of the time retrieving or building the
image and starting the container.

Docker container actions can reference an image in a container registry like
Docker Hub or GitHub Packages. It can also build a Dockerfile at runtime
that you provide with the action files. In this case you specify Dockerfile as
the image name.

You can pass inputs of the action to the container by either specifying them
as arguments to the container or setting them as environment variables.
Listing 4.1 shows an example of an action.yml for a container action.

Listing 4.1 An example action.yml file for a Docker container action

name: 'Your name here'
description: 'Provide a description here'
author: 'Your name or organization here'
inputs:
input_one:
description: 'Some info passed to the container
required: false
input_two:
default: 'some default value'
description: 'Some info passed to the container'
required: false
runs: #A
using: 'docker'
image: 'docker://ghcr.io/wulfland/container-demo:latest'
args: #B
- ${{ inputs.input_one }}
- ${{ inputs.input_two }}
env: #C
VARIABLE1: ${{ inputs.input_one }}
VARIABLE2: ${{ inputs.input_two }}

Later in this chapter we will provide you with a hands-on lab that gives you
the possibility to create your own Docker container action and pass in inputs
and process outputs in subsequent steps.

4.1.2 JavaScript actions

JavaScript actions run directly on the runner and are executed in NodeJS.
They are faster than Docker container actions and they support all operating
systems. Normally, there are two NodeJS versions supported. Older versions
will be deprecated at some point. This means you have to maintain your
actions and update to newer versions from time to time. That is not necessary
for Docker-container-based actions as the container contains all its
dependencies.

JavaScript actions support TypeScript — as TypeScript compiles to normal
JavaScript code. That’s why it is best practice to develop your actions in
TypeScript to have static typing, enhanced tooling, better readability and
maintainability, and earlier error detection. Keep in mind that the action must
contain all dependencies in the repository. This means you have to commit
the node_modules folder and all transpiled TypeScript code.

In JavaScript as well as TypeScript actions you can use the toolkit
(https://github.com/actions/toolkit) to easily access input variables, write to
the workflow log, or set output variables.

If you want to start writing JavaScript actions in TypeScript you can use the

following template: https://github.com/actions/typescript-action. It will get
you started quickly.

Listing 4.2 shows an example for a TypeScript action running on NodeJS 16.
Listing 4.2 An example for a TypeScript action.yml file

name: 'Your name here'
description: 'Provide a description here'
author: 'Your name or organization here'
inputs:
input_one:
required: true

description: 'input description here'
default: 'default value if applicable’
runs:
using: 'nodel6'
main: 'dist/index.js'

4.1.3 Composite actions

The third type of actions are the composite actions. They are nothing more
than a wrapper for other steps or actions. You can use them to bundle
together multiple run commands and actions, or to provide default values for
other actions to the users in your organization.

Composite actions just have steps in the runs section of the action.yml file —
like you would have in a normal workflow. You can access input arguments
using the inputs context. Output parameters can be accessed using the
outputs of the step in the steps context. Listing 4.3 shows an example of a
composite action and how you can process inputs and outputs.

Listing 4.3 An example for a composite action

name: 'Hello World'
description: 'Greet someone'
inputs:
who-to-greet:
description: 'Who to greet'
required: true
default: 'World'
outputs:
random-number:
description: "Random number"
value: ${{ steps.random-number-generator.outputs.random-id }}
runs:
using: "composite"

steps:
- run: echo "Hello ${{ inputs.who-to-greet }}."
shell: bash

- id: random-number-generator
run: echo "random-id=$(echo $RANDOM)" >> $GITHUB_OUTPUT
shell: bash

- run: echo "Goodbye $YOU"

shell: bash
env:
YOU: ${{ inputs.who-to-greet }}

Note that if you use run: in composite actions, the shell parameter is
required. In normal workflows it is optional. Keep in mind that you action
might run on different operating systems. Bash is a shell that is most likely
available on all of them.

4.2 Authoring Actions

If you want to start authoring actions on your own, you first must decide what
kind of action you want to use. If you already know NodeJS and TypeScript
than this is probably your natural choice. If not, you have to balance the
effort of learning a new language and ecosystem with the fact that you have
the toolkit in JavaScript actions and that Docker container actions are slower
to start up.

Composite actions can be used to wrap recuring scenarios together. This is
very useful in an enterprise context, but there are also some actions in the
marketplace that do this. If you write bash scripts, composite actions are also
a simple solution you might consider.

If you already have a solution that runs in a container, then it is probably very
easy to port it to GitHub Actions.

4.2.1 Getting started

Independent of the type of action you want to write — the best thing is to get
started with a template. You can find templates for all kind of actions under

https://github.com/actions/:

e JavaScript: https://github.com/actions/javascript-action
e TypeScript: https://github.com/actions/typescript-action
o
o

Docker container: https://github.com/actions/hello-world-docker-action
An example for a composite action: https://github.com/actions/upload-

pages-artifact

The composite action is just an example — the others are template
repositories, and you can generate a new repository directly from the template
and modify the files there.

Depending on your technical background, you might have a different choice
for tools and approaches. If you are familiar with GitHub Actions and REST
but not with TypeScript, you might want to try out a solution first in a
workflow using the actions/github-script action. This action is pre-
authenticated and has a reference to the toolkit. This action allows you to
validate fast if your solutions works and you can later move the code to the
TypeScript action template.

Make sure to pick a toolset and approach that fits your background and that
allows you to get fast feedback and iterate in short cycles on your solution.

4.2.2 Storing actions in GitHub

Actions are files located in GitHub. GitHub uses the action.yml file to
discover actions. Since you cannot change that name, this means your actions
must either reside in their own repository or in a folder. Storing them in
folders allows you to have multiple actions in one repository. This can be
better for easy discoverability in an enterprise context if you just want to
publish a few composite actions. It’s also a valid solution if some actions
belong together and share the same dependencies and versioning.

The downside is that you cannot publish these actions in the marketplace. If
you want to publish your actions to the marketplace you must store them in
their own, public repository and the action.yml must be in the root of the
repository. The other downside is, that you have to version all actions
together if they reside in the same repository. Figure 4.1 shows a comparison
of storing actions in a repo or in folders.

Figure 4.1 Actions can be stored in a repository or a folder

Repository Repository

Action1

action.yml
README.md

-
=]
—
&y Action2

action.yml
README.md

I‘ Publish to marketplace I‘ Discoverability in
enterprise

The recommended way is storing each action in its own repository and have
its own lifecycle. In an enterprise context you can store all your actions in a
separate organization. This helps with the discoverability and management.

4.2.3 Compatibility with GitHub Enterprise Server

When writing actions — especially if you plan to share them publicly — try to
keep them compatible with GitHub Enterprise Server. There are still many
customers that run GitHub on premises. This means that you cannot hardcode
any URLs to GitHub APIs. For the GitHub REST API you can use the
GITHUB_API_URL environment variable and for the GitHub GraphQL API you
can use the GITHUB_GRAPHQL_URL environment variable. This way you don’t
have to hardcode the URL and stay compatible with GitHub Enterprise server
deployments.

4.2.4 Release management

It is important to have a proper release management for your action in place.
Best practice is to use tags together with GitHub releases (see
https://docs.github.com/en/repositories/releasing-projects-on-github) together
with sematic versioning. Using GitHub release is required if you want to
publish your action to the marketplace.

Since you will learn more about semantic versioning and how you can
automate release management for GitHub Actions in Chapter 8, Continuous

Integration (CI), we will not cover this here in depth. But when you are
starting to author actions. You should make sure to include the following
from the beginning:

e Create a tag with a semantic version for every version of the action that
you want to publish.

e Mark the version latest if you publish the action to the marketplace.

e Create a CI build that tests your action before releasing it.

e Make sure to add additional tags for major version and update these tags
if you provide a security or bug fix. For example, if you have a version
v3.0.0 — also provide a version v3 and update v3 to a new commit in
case you release a version v3.0.1 with an important fix.

In the following hands-on lab, you will create a basic docker container action
with a workflow that will test the action on any change to one of the files.

4.3 Hands-on: a docker container action in action

In this hands-on lab you will create a docker container action that uses input
and output parameters. Furthermore, you will create a CI build that tests the
action every time a change is made to one of the files.

Hands-on:

The following instruction can also be followed on:

https://github.com/GitHubA ctionsInAction/ActionlnAction. This allows you
to also copy and paste the values to the files without having to type them.

4.3.1 Use the template to create a new repository

In the repository https://github.com/GitHubActionsInAction/ActionlnAction,

click on Use this template and select Create new repository (see Figure
4.2).

Figure 4.2 Create a new repository from the template

Go to file Add file ~ <> Code ~ Use this template ~

Create a new repository

cd7fa7¢ 9M 5penin a codespace
9 minutes ago

9 minutes ago

Pick your GitHub username as the owner and enter MyActionInAction as the
repository name. Make the repository public and click Create repository
from template (see Figure 4.3)

Figure 4.3 Create a public repo for the action

Create a new repository from ActioninAction

The new repository will start with the same files and folders as GitHubActionsinAction/ActioninAction.

Owner * Repository name *
GitHubActionsInAction ~ [MyActioninAction v

Great repository names are short and memorable. Need inspiration? How about sturdy-octo-robot?

Description (optional)

® Public

[Anyone on the internet can see this repository. You choose who can commit
O Private

You choose who can see and commit to this repository.

[J Include all branches
Copy all branches from GitHubActionsinAction/ActioninAction and not just main.

@ You are creating a public repository in the GitHubActionsInAction organization.

Create repository from template

4.3.2 Create the Dockerfile for the action

The action will use a docker container to execute a script. We will create this
docker container using a Dockerfile. Create a new file called Dockerfile and
add the following content:

Container image that runs your code

FROM alpine:latest

Copies entrypoint.sh from your repo to the path ‘/’ of the cont
COPY entrypoint.sh /entrypoint.sh

Make the script executable
RUN chmod +x entrypoint.sh

Executes ‘/entrypoint.sh’ when the docker container starts up
ENTRYPOINT [“/entrypoint.sh”]

Commit the file to the main branch.

The Dockerfile defines the docker container for the action. It uses the latest
alpine image and copies a local script — that yet has to be created — to the
container and marks it executable (chmod +x). The container will then
execute the script.

You could also use an existing image, but we want to build everything from
scratch so that we know what the container exactly does.

4.3.3 Create the action.yml file

GitHub identifies actions by looking for an action.yml manifest that defines
the action. Create a new file called action.yml. Add the content from Listing
4.4 to the file and replace the placeholder {GitHub username} with your
GitHub username.

Listing 4.4 Writing the action.yml file that defines the action

name: "{GitHub username}'s Action in Action"
description: 'Greets someone and returns always 42.'
inputs:
who-to-greet: # id of input
description: 'Who to greet'
required: true
default: 'World'
outputs:
answer: # id of output
description: 'The answer to everything (always 42)'
runs:
using: 'docker'

image: 'Dockerfile'
args:
- ${{ inputs.who-to-greet }}

Commit the file to the main branch.

This action file defines the action and the input and output parameters. The
runs section is the part that defines the action type — in this case we use
docker together with a Dockerfile instead of an image. We pass the input to
the container as an argument (args).

4.3.4 Create the entrypoint.sh script

The script that is executed in the container is called entrypoint.sh in our
Dockerfile. Create the file and add the following content:

#!/bin/sh -1

echo "Hello $1"
echo "answer=42" >> $GITHUB_OUTPUT

This simple script writes Hello and the input who-to-greet, that was passed
in as the first argument ($1) to the container, to the standard output. It also
sets the output parameter to 42.

Commit the file to the main branch.

4.3.5 Create a workflow to test the container

The action is now ready to be used. To see it in action, we’ll create a
workflow that uses it locally. Create a new file called
.github/workflows/test-action.yml and add the content from Listing 4.5.

Listing 4.5 Testing an action in a local workflow

name: Test Action
on: [push]

jobs:
test:

runs-on: ubuntu-latest
steps:
- name: Checkout repo to use the action locally
uses: actions/checkout@v3.5.3

- name: Run my own container action
id: my-action
uses: ./
with:
who-to-greet: '@wulfland'

- name: Output the answer
run: echo "The answer is ${{ steps.my-action.outputs.answ

- name: Test the container
if: ${{ steps.my-action.outputs.answer != 42 }}
run: |
echo "::error file=entrypoint.sh,line=4,title=Error in
exit 1

In this workflow we use the local version of the action (uses: ./). In this
case it is required to check out the repository first using the checkout action.
This is not necessary if you reference an action by a git reference (action-
owner/action-name@reference). To access the output parameters, you have
to set the id property of the step. The outputs can then be accessed using the
step context (step.name-of-step.outputs.name-of-output).

The workflow will automatically run because of the push trigger after
committing the file. Inspect the output — how the container is created, how it
writes the greeting to the workflow log, and how the output is passed to the
next step (see Figure 4.4).

Figure 4.4 Output of the action in the test workflow

mailto:actions.html

v @ Runmy own container action

»Run ./
» Building docker image

Hello @wulfland

Output the answer

»Run echo "The answer is 42"
The answer is 42

The last step of the workflow will only run if the output does not have the
expected value. The step will write an error message to the log and fail the
workflow by returning a non-zero return value using exit. To test this, just
set the value in entrypoint.sh to another value and commit the changes. The
workflow will be triggered and fail with a message like displayed in Figure
4.5.

Figure 4.5 Fail the workflow if the action returns the wrong value

€ Test Action

© Update entrypoint.sh #7 2 Re-runjobs ~

(R) Summary

Jobs

I © test

et up job

Run details) Checkout repo to use the action locally
(9 Usage
&Y Workflow file

un my own container action
& Output the answer
Test the container os
r file=entrypoint.sh,line=4,title=Error in container::The answer

was not expe d
completed with exit code 1.

& Post Checkout repo to use the action locally

omplete job

Make sure to reset the value again in case you also want to try out sharing the
action to the marketplace.

4.4 Sharing Actions

Actions are the core building blocks for workflows, and they are built in way
that is it easy to reuse and share them. You can share actions internally in
your organization from within private repositories or publicly in the GitHub
marketplace.

4.4.1 Sharing actions in your organization

You can grant GitHub actions access to private repositories in your
organization. Per default, workflows cannot access other repositories. But by
granting permissions for GitHub Actions it is easy to share actions and
reusable workflows within your organization.

Reusable Workflows

Reusable workflows are building blocks like actions and can also be shared
in your organization — but not in the marketplace. Reusable workflows use
the on: [workflow_call] trigger that you can also use to define inputs and
outputs. Reusable workflow can contain multiple jobs that are executed on
different runners. The calling workflow will use the keyword uses instead of
runs-on on a job level in the same way you use it for actions on the step level
(path in git plus a reference — or a local path if your repository is checked out.
Please refer to the documentation: https://docs.github.com/en/actions/using-
workflows/reusing-workflows

You will learn more about reusable workflows in action in Chapter 9,
Improving workflows performance and costs.

Compared with composite actions, reusable workflows give you control over
multiple jobs and environments that can run on different runners and have
interdependencies. Composite actions are always executed in one job and
only give you control over the steps inside the job.

To grant access to GitHub actions and reusable workflows in a repo, you can
go to Settings | Actions in the repository. In the section Access you can grant
access to repositories in your organization or enterprise (see Figure 4.6).

Figure 4.6 Allowing access to actions and reusable workflows in private repositories

Access

Control how this repository is used by GitHub Actions workflows in other repositories. Learn more about allowing
other repositories to access to Actions components in this repository.

O Not accessible
Workflows in other repositories cannot access this repository.

@® Accessible from repositories in the 'GitHubActionsInAction' organization
Workflows in other repositories that are part of the 'GitHubActionsInAction' organization can access the actions

and reusable workflows in this repository. Access is allowed only from private repositories.

Save
&

This has to be configured for each repository, that contains actions or
reusable workflows.

4.4.2 Sharing actions publicly

GitHub will automatically detect if you have an action.yml file in your
repository and propose to draft a release to publish it to the marketplace (see
Figure 4.7).

Figure 4.7 GitHub automatically detects if you have an action.yml file in the root of the
repository

i ActionInAction public template ¢z EditPins + Watch 0

@ Publish this Action to Marketplace
Make your Action discoverable on GitHub Marketplace and in GitHub search.

¥ main - ¥ 2branches ©1tag Go to file Add file ~ <> Code ~ Use this template

0 Your main branch isn't protected
P g or deletion,

stect this branch from force pushing or

Draft a release X

Protect this branch X
quire status checks before merging. Learn more

When creating a release, you will find a new section Release Action in the
dialog. You must accept the GitHub Marketplace Developer Agreement
before being able to publish a release to the marketplace (see Figure 4.8).

Figure 4.8 You must accept the GitHub Marketplace Developer Agreement before being able to
publish a release

Release Action

Publish this release to the GitHub Marketplace 8
GitHubActionsIinAction must accept the GitHub Marketplace Developer Agreement before publishing an Action.

Once you have accepted the agreement you can select the checkbox. GitHub
will then check your action and give you guidance on important properties
for your action:

e Name: the name must be unique.

¢ Description: The action should have a description what it does.

e Branding: The action should have an icon and a color. GitHub will give
you a list of available colors and icons.

e Readme: The action should contain a README . md file.

The check looks like in Figure 4.9 if you try it with the action that you have
created in the hands-on lab earlier.

Figure 4.9 GitHub will check the properties of your action

Release Action
Publish this Action to the GitHub Marketplace
Your Action will be d verable in t Marketplace and ava

& actionyml Z

/A Improve your Action by adding labels for icon and color.

v Name @wulfland's Action in Action

v Description Greets someone and returns always 42.

A Icon See list of avajlable icons

/A Color See list of available colors.

00 README 4

v A README exists.

To add an icon and color, pick one from each list and add them to the
action.yml file like this:

branding:
icon: 'alert-triangle'
color: 'orange'

A list of the current available icons and colors can be found on
https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-

github-actions#branding.

You can now draft a release by picking a tag or creating a new one. Pick one
or two categories for the marketplace that will define where the action will be
listed.

Note the feature to automatically create release notes for your release. It will
pick up your pull requests and first-time contributors and automatically create
good release notes as shown below in Figure 4.10.

Figure 4.10 Creating a release with release notes that will be published to the marketplace

Primary Category Another Category — optional

Learning : Choose an option

© v1.00 ~ ¥ Target: main ~

Excellent! This tag will be created from the target when you publish this release.
v1.0.0
Write Preview

H B I = o é ZEEE @ C 4

What's Changed
* Solution by @wulfland in https://github.com/GitHubActionsinAction/ActioninAction/pull/1

New Contributors

* @wulfland made their first contribution in https://github.com/GitHubActionsinAction/ActioninAction/pull/1

Full Changelog: https://github.com/GitHubActionsinAction/ActioninAction/commits/v1.0.0

Attach files by dragging & dropping, selecting or pasting them co

\L Attach binaries by dropping them here or selecting them.

Set as a pre-release
This release will be labeled as non-production ready

Publish release Save draft
-

The result will look like in Figure 4.11. In the screenshot you can see that the

release contains a link to the marketplace. It also contains a label indicating
that the release is the latest release. This makes it the default in the
marketplace listing.

Figure 4.11 A release that is listed in the marketplace

Releases / v1.0.0

V1,0_0 (@ Marketplace

¢ wulfland released thisnow © v1.00 -0 7d306dd &

What's Changed

« Solution by @wulfland in #1

New Contributors

« @wulfland made their first contribution in #1

Full Changelog: https://github.com/GitHubActionsIinAction/ActioninAction/commits/v1.0.0

If you follow the link, it will take you to the listing that looks like Figure
4.12. You will see the README.md, the versions, contributors, and links to
your repository. This page is also the place where you can delist your action
from the marketplace if you want to stop sharing it.

Figure 4.12 The marketplace listing of the GitHub action

GitHub Action

@wulfland's Action in Action

{Latast varsian)
© v1.0.0 (Latest version

A

Hands-on: a docker container action in action

In this hands-on lab you will create a docker container action that uses input and output
parameters. Furthermore, you will create a Cl build that tests the action every time y change is
made to one of the files.

The lab consists of the following parts:

1. Use the template to create a new repo
2. Create the dockerfile for the action

3. Create the action.yml file

4. Create the entrypoint.sh file

5. Create a workflow to test the action

Use the template to create a new repo

In this repository, under Code, click on 'Use this template' and select Create new repository.

Create a new repository

Go to file Add file - <> Code ~

€47¢ OM pan in a codespace

@ minitas ann

Use latest version D

Choose a version

v1.0.0
v1.0.0

v Star 0

Contributors

J

Categories

Learning
Links

=
GitHubActionsinAction/ActioninAction
(© Openissues 0
11 Pull requests 0

[D Rreport abuse

@waulfland's Action in Action is not
certified by GitHub. It is provided by a
third-party and is governed by separate
terms of service, privacy policy, and
support documentation.

Once the action is published to the marketplace, you can also find it from
within the workflow editor (see Figure 4.13).

Figure 4.13 The action will be discoverable in the workflow editor

ActioninAction /[.github [workflows | test-mp.yml in main
Edit Preview Spaces ¢ 2 ¢ No wrap L] E[]
1 name: Test Action in Marketplace
2 on: [workflow_dispatch]
3
4 jobs:
5 test:
L} runs-on: ubuntu-latest
7 steps:
8
9 - name: Run my own container action
10 id: action
11 uses: GitHubActionsInAction/ActionInAction@vl.2.l
12 with:
13 who-to-greet: '@wulfland’
14
15 - name: Output the answer
16 run: echo "The answer is ${{ steps.action.outputs.answer }}"
17

If you want to try this out, you can modify
one in another repository — and pick the ve

Cancel changes Commit changes...

Docurr

Marketplace | Search results
@wulfland's Action in Ac...

Greets someone and returns always 42

@wulfland's Action in
Action

Owvi21 wo

View full Marketplace listing

Installation
Copy and paste the following snippet into your . yml
file.
Version: v1.2.1 + i
- name: @wulfland's Action in Action
You may pin to the exact commit or
uses: GitHubActionsInAction/Actionl
uses: GitHubActionsInAction/ActionInA
with:
Who to greet
who-to-greet: # default is World

your workflow — or create a new

rsion from the marketplace like

you would use any other action.

name: Test Action in Marketplace
on: [workflow_dispatch]

jobs:
test:
runs-on: ubuntu-latest
steps:

- name: Run my own container action
id: action
uses: GitHubActionsInAction/ActionInAction@v1.2.1
with:
who-to-greet: '@wulfland'

- name: Output the answer
run: echo "The answer is ${{ steps.action.outputs.answer

But make sure to delist your action again from the marketplace to not clutter
the marketplace unnecessary with actions that you don’t have any intent to
maintain them. In the marketplace offering you will find a Delist button in
the right top corner to do so.

4.5 Advanced Action development

If you want to build actions, you will probably need to interact with GitHub.
GitHub has two different APIs that you can use:

e REST API: Use the REST API to create integrations, retrieve data, and
automate your workflows. The rest API is easy to use because you send
a simple request and get a response. And yet it is very powerful and you
can automate with it everything. See https://docs.github.com/en/rest for
the complete documentation.

e GraphQL API: The GitHub GraphQL API offers more precise and
flexible queries than the GitHub REST API. It is better suited for
complex scenarios where you have to control the flow of data and the
amount of data being transmitted. One example would be paging of big
lists. It is more complicated because you have to specify in your request
the data and fields that should be included in the result. See

https://docs.github.com/en/graphgl for the complete documentation.

There is an SDK available called Octokit (see https://github.com/octokit).
The SDK is supported by GitHub, and it is available for the following
languages:

e JavaScript and TypeScript
e C# .NET

e Ruby

e Terraform

But there are many third-party libraries available. For Java, Erlang, Haskell,
python, Rust, and many more. You can find a complete list under
https://docs.github.com/en/rest/overview/libraries.

The SDKs are a good starting point to learn how to authenticate using the
GitHub token and performing actions in GitHub from within your code.

4.6 Best practices

When authoring actions that you want to share — publicly or within your
organization — there are some best practices that you should follow:

e Small and focused: Keep the action small and focused and adhere to the
Single Responsibility Principle. An action should do one thing well and
not many things mediocrely. To avoid this problem, try not to create
“Swiss army knives” that have many inputs and can do a lot of different
things.

e Write tests and a test workflow: Make sure to have sufficient tests for
your code - and a test workflow that runs the action as an action. Good
tests will give you the confidence to release frequently.

e Semantic versioning: Use semantic versioning with your releases to
indicate what has changed. Use multiple tags and update the major
versions with patches if you fix a bug. For example: if you release a
version v3.0.0 — also add a tag v3 for the current major version. If you
provide a bugfix (v3.0.1), move the tag v3 to the fixed version.

e Documentation: Make sure you have good documentation and a proper

README.md that helps the users of your action to understand what it
does and how it is supposed to be used. Give one or more concrete
examples of how the actions is supposed to be used. Also provide
documentation on how people can contribute changes.

e Proper action.yml metadata: Provide good metadata in your
action.yml and especially for your inputs and outputs. Try to avoid
required inputs and provide default values whenever possible. This will
make it much easier to consume your action.

e SDKs: Use the toolkit (github.com/actions/toolkit) or the other SDKs to
interact with GitHub and the APIs.

e Publish the Action: Last but not least — publish the action to the
marketplace to make it discoverable and to potentially get other people
to contribute to it or provide you with feedback.

4.7 Conclusion

In this chapter you have learned what actions are and some tips and best
practices if you want to start writing and sharing actions.

This is the end of part 1 and you have now a good understanding of GitHub
Actions workflows, the workflow syntax, and writing GitHub Actions. In part
2 we will now dive deep into how runners execute your workflows and the
security implications of this before we cover the more practical part of using
actions for CI/CD in part 3.

4.8 Summary

e There are three types of GitHub Actions: Docker container actions,
JavaScript actions, and Composite actions

e Docker container actions only run on Linux and not on Windows or
macOS

e Docker container actions can retrieve an image from a Docker library
like Docker Hub or build a Dockerfile

e JavaScript actions run directly on the runner using NodeJS and are faster
than container actions

e Composite actions are a wrapper for other steps or actions

e You publish actions to the marketplace by placing them in their own
repository and publishing a GitHub release

¢ You can share actions internally by granting access to workflows in your
organization in a private repository

e You can use the octokit SDK to interact with the GitHub APIs in your
actions

5 Runners

This chapter covers

Getting to know GitHub runners

What does the runner service do

Using GitHub hosted runners

Analyzing utilization of GitHub hosted runners
When to use self-hosted runners

The runtime of GitHub Actions is provided by a service that is called
Runners. Runners are standalone instances that continuously ask GitHub if
there is work for them to execute. They provide the runtime for your job
definitions: they will execute the steps defined in the job for you and provide
information about the outcome back to GitHub, as well as the logs and any
data uploaded to GitHub, for example artifacts and cache information.

In this chapter we will focus on the runners that GitHub hosts for you as a
service. These are called GitHub hosted runners and come with certain
compute power, preinstalled software, and are maintained with the latest
security- and Operating System (OS) updates. Since GitHub does all the
maintenance for you, there is a cost attached to using these runners.
Depending on you plan, you will have a certain amount of action minutes
included for free. See Paragraph 5.4, GitHub hosted runners, for more
information.

5.1 Targeting a runner

Job definitions have to specify a set of labels they want to use for the GitHub
service to find a match when a job is queued to be executed. See Listing 5.1,
An example of targeting multiple labels to run the job. A job has to target
at least one runner label and can target multiple labels if needed. The GitHub
hosted runners have several default labels available that indicate for example
the operating system of the runner.

Listing 5.1 An example of targeting multiple labels to run the job

jobs:
example-job:
runs-on: [ubuntu-latest]
steps:
run: echo '"Job is running on ${{ runner.os }}’

GitHub will use the list of labels to find a runner that is online and that is
ready to handle jobs. For a job to find a runner, all labels in the runs-on array
need to match.

You can also install the runner yourself, in your own environment, we call
those ‘self-hosted runners’. Since you define where the service is being
hosted (local machine, cloud, etc.), you are already paying for that compute.
GitHub is not to charging you for self-hosted runners or for parallel job
executions. With self-hosted runners you can add extra labels associated with
the runner as well. There is always one extra label that is added to the self-
hosted runner so that users can differentiate it from the GitHub runners. The
value of that label is self-hosted. This is available next to the label that
indicates the OS and the bitness of the environment. You can find more
information about self-hosted runners in Chapter 6: Self-hosted runners.

5.2 Queuing jobs

A job can be queued in many different ways. See Chapter 3 for ways to
trigger a job to be queued. When the event is triggered, GitHub will start
queueing the relevant jobs from the workflow and will start searching for an
available runner that has the correct labels (and is available for your
repository). For GitHub hosted runners, the queuing of the job will fail if
there are no runners available with the requested label(s) within 45 minutes.
For self-hosted runners the job will stay queued until a matching runner
comes online. The maximum duration of being queued is 24 hours. If there is
no runner available within this period, the job will be terminated. The most
common reason the workflow does not start is because the runner label does
not exist or is not available for the current repository. It could be for example
that the label for a self-hosted runner is used, which does not exist on GitHub
hosted runners.

5.3 The runner application

The runner application is based on .NET core and can be installed on a virtual
machine, a container, or any other environment that can run .NET core code.
That means it can be installed on Linux, Windows, MacOS operating
systems, as well as on X86, X64 and ARM processors. This allows you the
flexibility of hosting it where it makes sense to you: whether it is on a full-
fledged server (physical or virtual) or on a containerized environment. You
can run it in an AWS Lambda, an Azure Function, or in Kubernetes. The
application itself can be installed as a service and has configuration options to
start when the environment starts, to only run on demand, or to run
ephemeral. Configuring a runner as ephemeral means that the runner will
only handle one single job, after which it will stop asking for more work.
That gives you the opportunity to clean up after each run, or to completely
destroy the environment and start up new environments as needed.

The source code of the runner is open source, so you can see how it works
and can even contribute issues and pull requests to make the service even
better. The release notes of the runner contain important information about
upcoming changes, like we have seen for example with the planned
deprecation of ‘set-output’ and ‘save-state’: actions and scripts that used
these calls, got warnings in the months before the actual deprecation. You
can look at the source code and follow along with the updates from here:

https://github.com/actions/runner.

The runner service will execute job definition and handles things like:

Downloading action repositories.

Writing the logs back to GitHub for later retrieval.

Up- and downloading artifacts to and from GitHub.

Reading and writing to the cache service provided by GitHub.

5.4 GitHub hosted runners

GitHub hosts runners for their users to enable them quickly started using
GitHub Actions. That means that GitHub hosts the environments that execute
the runner service, makes sure the OS is secured, continuously updated, as

well as installing all security updates. Any tool that they provide on the
environment also needs to be updated with the latest versions and security
fixes. What is installed on the environment can be found in this public
repository: https://github.com/actions/runner-images. You can find for each
job execution what version of the environment was used by checking the
execution logs. See Figure 5.1, Set up job step with information about the
environment.

Figure 5.1 Set up job step with information about the environment

v @ Setupjob

s/1inux/Ubuntu2204-Readme . md

80221332adas
aa5156f9321bb

In the https://github.com/actions/runner-images repository you find the list of
installed software, the versions that were used during installation as well as

any information about deprecated versions of software on the environment.
An example of the information from the used environment can be found in
Figure 5.2: Information about the runner image.

Figure 5.2 Information about the runner image

& actions / runner-images Pubiic

<» Code (©) Issues 30 i Pull requests 5 CD Discussions () Actions B Projects 0] Security |* Insights

[Code runner-images / image %/ Ubuntu2204-Readme.md (&
© ubuntu22/20230... v Q 459680 lating ime file for ubuntt rsion 5 v
Q

Preview Code Blame
> github

> vscode

docs
helpers
images.Cl
images
Inux
config
post-generation
ﬂCH'ﬂ‘»
toolsets
) Ubuntu2004-Readme.md
[Ubuntu2204-Readme.md
O ubuntu2004.json

3 ubuntu2204.pkr.hcl

Announcements

python2.7 will be removed from the images on May 15, 2

Ubuntu 22.04

* OS Version: 22.04.2 LTS

* Kernel Version: 5.15.0-1037-azure

* Image Version: 20230507.1

* Systemd version: 249.11-Oubuntu3.9

Installed Software

Language and Runtime

The images are updated on a weekly basis, or more often when needed. The
version is linked to the date (in ISO format) of the Monday of the week the
image was created, and starts with version 0, for example ‘20230417.0°. If
there are any extra updates needed during the week (normally only to fix
broken software deployments or security updates), they update the version
number but not the date, for example 20230417.1, 20230417.2, and so on.
New versions are gradually rolled out based on the US time zone in
California, as most of the engineering teams responsible are located in that
time zone. In case any deployment issues arise, they can quickly mitigate the
problem. For example by stopping the rollout, by reverting back to a previous
version, or rolling out a fix.

5.5 Hosted operating systems

GitHub hosts three different operating systems for you to choose from:

e Linux based (Ubuntu)
e Windows base
e macOS based

For each operating systems GitHub usually hosts the two or three most recent
versions, which can be targeted with the label for that specific version. See
Table 5.1: Overview of supported runner Operating Systems. You can
always find the latest version in the documentation here:
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-

hosted-runners#supported-runners-and-hardware-resources

Table 5.1 Overview of supported runner Operating Systems

Operating System Version label available
Ubuntu ubuntu-20.04
ubuntu-22.04
Windows windows-2019
windows-2022
macOS macos-12
macos-11

Next to the version labels, there is always a ‘latest’ version of each operating
system available:

e ubuntu-latest
e windows-latest
e macos-latest

These labels are there for your convenience. It is up to GitHub to decide what
version that ‘latest’ means at any given time. Any changes to the meaning of
‘latest’ is communicated up front through the runner-images repository, as
well as deprecation warning messages in the action logs. In the past we have
seen changes to the latest version being communicated up to six months
before they started to mean the new version. Right before the new version
becomes latest, GitHub also flips the meaning of ‘latest’ for a percentage of
the runners, and carefully checks their telemetry for any big spikes in errors
coming from the change.

5.6 Installed software

A lot of software comes preinstalled with the GitHub hosted runners. It

includes the operating systems’ build-in tools and shells. For example,
Ubuntu and macOS runners include “grep’, ‘find’, and "which’, among other
default tools. The software list is available in the runner-images repositories,
and is dependent on the operating system itself, as not everything is available
for Linux, Windows as well as MacOS. GitHub works together with the user
community to define what software will get installed on the environment.
They focus on the most used SDK’s, shells, package ecosystems, etc. If you
have the need for software that is missing, you can create an issue in the
runner-images repository and propose it for adoption. Since it is GitHub who
then is responsible for installation, maintenance, and security, it is up to them
to decide if they think it is worth the effort of including the new software on
the environment. See Figure 5.3: Partial list of preinstalled software on an
Ubuntu runner for a part of the installed languages.

Figure 5.3 Partial list of preinstalled software on an Ubuntu runner

Q
Installed Software
> .github
> e Language and Runtime
> docs Bash 5.1.16(1)-release
> helpers * Clang: 12.0.1, 13.0.1, 14.0.0
> images.Cl * Clang-format: 12.0.1, 13.0.1, 14.0.0
: ¢ Clang-tidy: 12.0.1, 13.0.1, 14.0.0
v I"ﬂﬂgﬂi
. ¢ Dash 0.5.11+git20210903 +057cd650aded-3build1
v nux
¢ GNU C++:9.5.0,10.4.0, 11.3.0, 12.1.0
f
- * GNU Fortran: 9.5.0, 10.4.0, 11.3.0, 12.1.0
> post-generation e Julia 1.8.5
’ scripts * Kotlin 1.8.21-release-380
> toolsets * Mono 6.12.0.182
(3 Ubuntu2004-Readme.md ¢ MSBuild 16.10.1.31701 (Mono 6.12.0.182)
[Ubuntu2204-Readme.md * NOdEJS 18.16.0
* Perl 5.34.0
[ubuntu2004 json
® Python 3.10.6
l 204 pkr.hcl
Y ubuntu220. pkr.hc * Python3 3.10.6
> W macos * Ruby 3.0.2p107
> win * Swift 5.8

It is not recommended to assume that a specific versions of an SDK (or other
software) is always installed on the runners by default. It’s up to GitHub to
decide when a version is updated to a newer version, which could potentially
break your job definition. When a version is being deprecated, GitHub
announces that up front, and will start generating warnings in the runner logs
to urge users to start upgrading. We have seen this for example with the

deprecation of Node 12 in favor of Node 16: large amounts of GitHub
Actions where still using the older version, and a lot of jobs started to fail
because of it. Usually this means that the latest LTS (Long-Term Support)
release is supported.

When you know your job is dependent on having for example Node 14
installed, then specify that in the job definition itself. See Listing 5.2: Define
node version needed for an example.

Listing 5.2 Define node version needed

steps:
name: Install node with correct version
uses: actions/setup-node@v3
with:
node-version: 14

name: build you node application
run: |

npm install

npm run build

There are setup actions available for widely used SDK’s and maintained by
GitHub in their ‘actions’ organization, for example:

actions/setup-dotnet
actions/setup-java
actions/setup-go
actions/setup-node
actions/setup-python

By specifying the version you need, the job will always have the right version
available, which saves you time and errors when the default environment is
updated to the latest LTS of that SDK. For popular versions, the last three
versions are also cached on the runner image. So, when the LTS version of
Node on the runners is 18, versions 16 and 14 are stored in the
‘opt/hostedtoolcache ’ folder of the GitHub hosted runner. The actions that
can switch between versions know about this common folder and will use the
version for the corresponding folder when told to do so. Switching to the

correct version will not require a full download to save execution time. If the
version is no longer in the ‘hostedtoolscache’ directory, the setup actions will
download it from the corresponding GitHub repository and install it from
there.

5.7 Default shells

What the default shell used for your steps in your job depends on the
operating system:

e Windows: pwsh (PowerShell core)
e Linux: bash
e macOS: bash

You can always check if the OS you are using has other shells installed as
well. For example, each GitHub hosted operating system has the following
already pre-installed for you:

e bash (on Windows, the bash shell included with Git for Windows is
used)

e pwsh (PowerShell code)

e python

You can then specify the shell to use for each run step as seen in Listing 5.3.

Listing 5.3 Specifying the shell

steps:
run: echo “Hello world”
shell: pwsh

You can also make the desired shell the default for all jobs in the workflow
as shown in Listing 5.4. Using that will set the default shell for any step in
every job in the workflow to your value. If a single step still needs a different
shell, you can use the shell keyword at the step level to override the default.

Listing 5.4 Specify the default shell for all jobs

name: example-workflow
on:

workflow_dispatch:
default:
shell: pwsh

5.8 Installing extra software

If the software you need is not installed on the runner environment, there are
lots of actions available on the public marketplace that will install the
software for you. Do be aware of the security implications of these actions:
they download binaries from somewhere (often they download from the
GitHub releases of their corresponding repositories) and start installing it on
the runner. There are actions that perform the download themselves, as well
as actions that download and execute an installation script from a vendor (for
example through an npm package). Verify those actions beforehand and
follow best practices for using them, like pinning their version with a commit
SHA hash for the version you have checked. For more information on version
pinning, see Chapter 3.

5.9 Location and hardware specifications of the
hosted runners

GitHub hosted runners are either hosted by GitHub directly (Linux +
Windows runners are hosted in Microsoft Azure) or by a third party (for
macOS runners). Currently there is no option to define in which region the
runners are hosted. If you have data residency requirements, you will have to
create a setup for self-hosted runners in the region of your choice.

The default Linux and Windows based runners are hosted on
Standard_DS2_v2 in Microsoft Azure. That means they have the following
specs available:

e 2-core processors (x86_64)
e 7GB RAM
e 14 GB of hard storage

macOS based runners have these specs available:

e 3-core processors (x86_64)
e 14 GB RAM
e 14 GB of hard disk storage

Next to the default runners there are also more powerful macOS runners in
case you need extra compute to speed up you jobs. This can be very helpful if
you have CPU / RAM intensive workloads that hit the limits of the default
runners. Read chapter 7 for more information about finding the resources
used in your runners.

The extra large macOs runners can be targeted with the following labels:
macos-12-x1 or macos-latest-x1. These runners have 12 core CPU’s
available and for the rest the same specs as the normal macOS runners.

5.10 Concurrent jobs

Depending on the plan you are in there are some limitations on the amount of
jobs that can run at the same time. See Table 5.2: Overview of maximum
concurrent jobs.

Table 5.2 Overview of maximum concurrent jobs

GitHub plan | Total concurrent jobs | Maximum concurrent macOS jobs
Free 20 5

Pro 40 5

Team 60 5

Enterprise 5000 50

5.11 Larger GitHub hosted runners

When the hardware specs for the normal hosted runners are not enough for
your workload, you can use larger GitHub hosted runners. Larger runners are
only available in GitHub Enterprise Cloud and not on the server. With these
runners you can control how much hardware capacity you give the runners

(CPU, RAM, and diskspace) and how many runners can be spun up on
demand for you (see Figure 5.4, Creating custom hosted runners with
more hardware options). The maximum amount of concurrent jobs for these
runners can be configure from 1 to 250 per configuration. For the entire
organization only 500 of these runners can be active at the same time. That
means 500 concurrent jobs can be executed at the same time on this type of
runners.

Figure 5.4 Creating custom hosted runners with more hardware options

Runners [Create custom hosted runner

Name

Runner image

. @ Ubuntu == Windows Server

Ubuntu version
20.04

Runner size

4-cores - 16 GB RAM - 150 GB HDD

v 4-cores

8-cores Maximum runners
1

16-cores

4 GB RAM

32-cores

64-cores

6 GB RAM

UNNEr group will GETErnTINe WINCH OfganiZations ana repositories can use the runner. Leam more

After creating the runners and adding them to a runner group, you can target
them either with a label for their OS (‘linux’ or “‘windows’) or for the runner
configuration you created (without spaces). See Figure 5.5: Larger GitHub
hosted runners for an example.

Figure 5.5 Larger GitHub hosted runners

Runner gr'Oup/ o GltHUbACthnSlnACthn Ready) Remove runner Edit

up: Larger-runners-groug Image: Ubuntu Latest (22.04)
ize: 4-cores - 16 GB RAM - 150 GB SSD Public IP range: 20.99.255.32/28

All jobs usage 5/25 Labels

GitHubActionsInAction

This type of runners also allows you to assign a static public IP address
range, which will be unique to your configuration. That means that no one
else will have a runner executing with a public IP address in this range. The
runners will get assigned a public IP address from a reserved range based on
the configuration group. That gives you the opportunity to use that range for
allowing connectivity into your resources (like an API endpoint, or a
database). The IP address is reserved for the configuration for 30 days. If the
group is not used in the last 30 days, the address range is removed cannot be
recovered. In that case you can edit the configuration and let it provision a
new IP range for you.

Note that you can provision a maximum of 10 larger runner configurations
with IP address ranges per organization, and another 10 that are shared
across the entire Enterprise.

5.12 GitHub hosted runners in your own Azure
Virtual Network

It’s also possible to let GitHub host their Linux or Windows runners inside of
your own virtual network in Azure. That means you configure a virtual
network in your Azure subscription in such a way that you can connect from
the runners to your own private resources, and still let GitHub manage the
virtual machines, including the software and runner that is installed on them.
Billing of those runners will go through the normal billing process, as the
only thing hosted on your Azure subscription, are the Virtual Network, a
Network security group and the Network interfaces that GitHub uses for the
virtual machines. An example of the resource group in Azure is shown in
Figure 5.6. The setup of these runners is configuring a normal runner group

in your organization or enterprise, and linking that to a preconfigured virtual
network in Azure with a list of inbound and outbound networking rules that
can be found in the GitHub documentation.

Figure 5.6 Bring your own Azure virtual network

Resources Recommendations (2)

Filter for any field... Type equals all X< Location equals all X 7 Add filter

Showing 1 to 3 of 3 records. D Show hidden types ©

D Name T Type Tu. Location T}
D @8 githubactionsrunner_938da66f04fbdc11_06ecbb50 Network Interface North Europe
D \ nners-nsg Network security group North Europe
U 4> runners-vnet Virtual network North Europe

5.13 Billing of GitHub hosted runners

For GitHub hosted runners, GitHub Actions is billed at the minute level per
job (self-hosted runners are free). If your job takes 4 minutes and 30 seconds,
you will be billed 5 minutes of action minutes for that job. See Figure 5.7,
Example of action minutes usage of a workflow, for an example of the job
overview.

In Table 5.1, Example of billable time, you can see the calculation of
billable time if I used a private repository for this workflow. This example
would costs me 8 minutes instead of the 3m 37s that the total runtime has
been as you can see in the column ‘billable time’.

This example shows why it can be worthwhile to have sequential steps in a
job, instead of running everything in parallel jobs. Running everything in
parallel can save you time, to get feedback faster back to a developer, but can
also cost more action minutes. Take this into account when creating
workflows: depending on the trigger used, you might not need to run
everything in parallel to get fast feedback to a developer. An example of this
is running on a pull request trigger: a pull request is often an asynchronous
event that gives you more time to run all the checks you need to allow the
pull request to be merged. Therefore, you do not need the fasted run duration

and have time to run steps as a sequence, instead of running them in parallel
across more than one job.

Figure 5.7 Example of action minutes usage of a workflow
< ity
@ New action request: everlytic/branch-merge #5 Re-run all jobs

(A Summary
Run and billable time

@ find-action-name Job Run time Billable time
@ Load action code languages
O find-action-name 65 m
@ Fork action to test organization
@ check-action-security-setup & Load action code languages 1m 30s 2m
@ enable-dependabot
O Fork action to test organization 6s Tm
@ codeql
@ display-results H check-action-security-setup Ss Tm
Run detail {) enable-dependabot 2s m
© Usage
I 9 O codeql 1m 46s 2m
& Workflow file
O display-results 6s im
3m 41s 9m

Depending on the OS of the hosted runner, there is also a multiplier
calculated on top of the time you use the runner (see Table 5.3: Breakdown
of costs for action minutes based on dual core processors). Billing only
applies to workflow runs in private or internal repositories. Runs in public
repositories are for free for the default hosted runners (See Paragraph 5.4
GitHub Hosted Runners).

Table 5.3 Breakdown of costs for action minutes based on dual core processors

OS Per minute | Multiplier | Description
rate
Ubuntu | $0.08 x1 Base unit for calculations
Windows | $ 0.16 x2 Additional hosting and licensing cost
macOS | $0.80 x10 More hardware requirements and
licensing cost

For larger runners (see Paragraph 5.11 Larger GitHub hosted runners) the
calculation is based on the default (2 or 3 core runner) with a multiplier for

the number of cores the larger runner has. So, if the larger Windows based
runner has 32 cores, the action minutes on this runner will be 32/2 = 16 times
more expensive than the run on the default Windows runner.

Depending on the plan you use with the account, you get several action
minutes for free each month. The free action minutes included in the plan are
only available for the standard dual core processor based GitHub hosted
runners (as well as the default 3 core processor variant for macOS). Runs on
larger runners will not count against this free entitlement. The list of included
minutes and storage per plan can be found in Table 5.4: Action minutes and
storage included per plan.

Table 5.4 Action minutes and storage included per plan

Plan Storage Minutes (per month)
GitHub Free 500 MB 2,000

GitHub Pro 1GB 3,000

GitHub Free for 500 MB 2,000

organizations

GitHub Team 2 GB 3,000

GitHub Enterprise 50 GB 50,000

Cloud

The storage used by a repository is the total storage used by GitHub Actions
artifacts and GitHub Packages. Storage is calculated based on hourly usage
and is rounded up to the nearest MB per month. For that reason it is
recommended to look at the amount and size of artifacts generated in each
run. Check if you really need to retain those artefacts for the default 90 day
period. The retention period for artifacts can be set as a default value at the
Enterprise and Organization level, or be configured on a per repository basis.
See Figure 5.8: Artifact retention settings at the organization level for an
example how you can configure the retention period.

Figure 5.8 Artifact retention settings at the organization level.

Artifact and log retention

Choose the default repository settings for artifacts and logs.

Artifact and log retention

100 days Save

Your enterprise has set a maximum limit of 400 days. Learn more.

Let’s look at an example how storage is calculated. Note that prices for the
storage in Actions and Packages are combined. You store an artefact of 100
MB when running a workflow. Five hours after running the workflow you
delete it’s history. That means we have stored the 100 MB for 5 hours. This
needs to be calculated against the total amount of hours in a month, which
can be calculated as 744 hours (in a month with 31 days). For the two hours
we can calculate the Mb-Hours as 5 * 100 = 500 MB-hours. That means that
the price of 500 MB for that duration can be calculated as MB-Hours divided
by the hours in a month. That will be 500 / 744 = 0,672 MB-Months. This
number will be rounded up to the nearest MB before billing, so that means
we’ll need to pay for 1 MB. Prices for the storage in Actions and Packages
are $0.248 for storing 1 GB of data for the entire month (of 31 days).

5.14 Analyze usage of GitHub hosted runners

You can get insights into the usage of GitHub Actions at the following levels:

e Enterprise
e Organization
e Personal user account

At each level you can go into settings | billing and get insights into the action
minutes being used in the current billing period. You will need to have
‘Admin’ access for the level you request this information for, or be in the
‘billing manager’ role. You can see the overall usage in Figure 5.9: Billing
and usage information for GitHub Actions. In it you can find when the
billing period resets (in this example in 30 days), the monthly free minutes

included in your plan, and see the split between the different GitHub hosted
runner types. If you have configured a monthly spending limit you will also
see how far along the usage for the current billing period is.

Figure 5.9 Billing and usage information for GitHub Actions

Actions monthly usage

G Usage minutes $945.58

rice / minute Total

P
$0.008 $941.76
§
$

macO$ 3-core 0.08 $0.00

$5,000.00 monthly spending limit | Updat $945.58

To get detailed information on a per repository and per workflow basis, you
can request the usage report. A selection screen will offer you to choose from
the following periods to get the usage information for:

e Last 7 days

e Last 30 days
e Last 90 days
e Last 180 days

A link to download the report in comma separated values (CSV) will be send
to your email address. Generating the report can take up to a couple of hours.
The information included in the CSV can be found in Table 5.5: Overview
of columns in the usage report. Be aware that there is currently no way to
set up automatic reporting for you spending on GitHub.

Table 5.5 Overview of columns in the usage report

Column Description

Date Information is grouped per day (based on UTC)

Product Either ‘Actions’ or ‘Shared storage’

SKU ‘Compute + OS’ for Actions and ‘Shared storage’ for the
storage results

Quantity Number of units used on that date

Unit Type Either action minutes or GB per day (for ‘Shared storage’)

Price Per Unit | Cost per unit

($)

Multiplier Multiplier on the action minutes (Windows and macQOS are
more expensive)

Owner Owner of the repository (organization or user)

Repository The short name of the repository the workflow belongs to

Slug

Username The user that triggered the workflow

Actions Path to the workflow file inside of the repository

Workflow

5.15 Self-hosted runners

In addition to GitHub hosted runners it is also possible to host your own
runners. Those runners are under your control regarding installation and
configuration. That also means it is your responsibility to keep the
environments maintained, updated, as well as secured properly. Self-hosted
runners can be helpful if you need more control over the environment, like
for example running them in your own network so they can communicate
with your internal environment, like connecting to a database, or other
internal/private service. When you need hardware or software that is not
available from the GitHub hosted runners, self-hosted runners can be an
option as well: you can install them anywhere you need it. Most often the
use-case we see for self-hosted runners is having a runner inside of your
company firewall, licensed software that need to be installed, or adding more
powerful hardware combinations, like a GPU enabled environment.

There are several security related aspects to be aware of when using self-
hosted runners, which you will learn about in Chapter 6 where we dive
deeper into setting up you own runner.

5.16 Summary

In this chapter you have learned about:

e The runner application provides the runtime of the jobs and executes the

steps in your job definition

The differences between GitHub hosted runners and self-hosted runners
How to target GitHub hosted runners with either the latest version of
that runner or provide a version specific label

The differences between the different hosting environments across the
provided OS-es, like providing a different default shell and installed
tools

How to install extra software on the runners that is not available by
default, or specify a version that you rely on

You can create larger hosted runners to give your jobs more hardware to
execute your jobs on, potentially making your jobs more efficient

How billing of GitHub hosted runners works and how to get insights
into the biggest users of your action minutes and storage

6 Self-hosted runners

This chapter covers

Setting up self-hosted runners

Securely configuring your runners

Using ephemeral runners

Choosing autoscaling options

Setting up autoscaling with actions-runner-controller

In Chapter 5, Runners, we have seen how we can use GitHub hosted
runners, for which purposes they can be used, as well as how billing works
for those hosted runners. You can also install your own runners in your own
environments. These are then called self-hosted runners. Creating self-hosted
runners gives you full control over their execution environment, like placing
it inside of the company network, or adding specific hardware or software
capabilities. Self-hosted runners can also be beneficial from a cost
perspective, since you do not need to pay any Action minutes to GitHub for
jobs that run on self-hosted runners. There is, of course, a ‘cost’ associated
with hosting, setup, and system administrative tasks that you will have to do
to keep the environments you host the runners on up to date and secure.

One example where self-hosted runners can be beneficial is that you can run
a self-hosted runner inside of your company network so the runtime can
connect to a database service to run certain integration test or deploy into
your production environment that cannot be accessed from outside the
company perimeter. Maybe you need to have a GPU enabled machine for
certain jobs. Or perhaps you have a need for certain (larger) Docker
containers: installing a self-hosted runner on a machine that already has those
containers downloaded and pre-cached can save a lot of time and network
bandwidth.

6.1 Setting up self-hosted runners

Setting up a self-hosted runner can be done by installing the runner
application and following the steps from the documentation for the OS that
will be hosting the service. The service itself is Open Source and can be
found in the following repository: https://github.com/actions/runner. This
repository also hosts the releases of the application as well. The application is
based on .NET Core runtime and can be executed on a large number of
Operating Systems and processor types. For example, from x86 / x64 to
ARM processors, and on Linux, Windows and macOS. That means you can
even run the service inside of a Docker container, or on a Raspberry Pi!

The supported operating systems for self-hosted runners can be found in
Table 6.1: Overview of supported Operating Systems for self-hosted
runners. For the current list of supported systems, check the documentation

at https://docs.github.com/en/actions/hosting-your-own-runners/managing-
self-hosted-runners/about-self-hosted-runners#supported-architectures-and-
operating-systems-for-self-hosted-runners.

Table 6.1 Overview of supported Operating Systems for self-hosted runners

Operating system | Supported

Linux Red Hat Enterprise Linux 7 or later

CentOS 7 or later

Oracle Linux 7

Fedora 29 or later

Debian 9 or later

Ubuntu 16.04 or later

Linux Mint 18 or later

openSUSE 15 or later

SUSE Enterprise Linux (SLES) 12 SP2 or later

Windows Windows 7 64-bit

Windows 8.1 64-bit

Windows 10 64-bit

Windows Server 2012 R2 64-bit

Windows Server 2019 64-bit

macOS macOS 10.13 (High Sierra) or later

To get started installing the runner you will need to have an environment that

is supported by the .NET core version (see the docs
https://github.com/actions/runner for the current version). .NET core does not
need to be preinstalled, the runner is self-contained. It also includes the two
most recent versions of the node binaries it supports, as most of the public
actions will need node to execute. For running the checkout action you will
need to have a recent version of git installed.

If you want to run Docker based actions, you will also need to have Docker
installed and you need to install the runner on a Linux machine. Windows
and macOS are not supported for running Docker based actions.

The environment also needs to be able to connect either to GitHub or a self-
hosted GitHub Enterprise Server. On Linux you will also need to have an
account to run the service as ‘root’, so you will need sudo privileges. On
Windows you will need to have ‘administrative’ privileges to configure the
runner as a service. Installing the service is done by downloading the runner
and executing the configuration to tell it the following information:

e To which GitHub service does this runner need to connect? It can either
be github.com or against your own GitHub server. This cannot be
changed after installation.

e For which hierarchical level is this runner created? A runner can be
linked to an entire Enterprise, for a specific Organization, or for a
specific Repository. This setting cannot be changed after the installation.

e A configuration token that is used for the installation. The token can be
generated by a user (it is shown in the GitHub UI by default) and is only
valid for 1 hour. You can only use a token one time and only during
installation. You can create an installation token through the REST API
on demand by sending a POST request to
https://api.github.com/orgs/<ORG>/actions/runners/registration-token.
The token in the result will also be valid for only 1 hour. The expiration
date is also present in the response.

e Name of the runner, will default to the hostname. Cannot be changed
afterwards

e Runner group to place this runner in, will default to the runner group
named ‘default’. This can be changed afterwards, as the runner itself has
no idea what group it belongs to after the installation: this is all stored

on the GitHub side. With runner groups you can allow a group of
runners to be used on certain repositories. This will be explained in more
detail in Chapter 7.

The labels that will be associated with this runner. You can add more
labels through the UI or API later on as the runner itself has no ideas of
the labels that are assigned to it. That configuration is stored on the
GitHub side so it can be used from that end to find the appropriate
runner to send the job to when queued. There is no upper limit on the
amount of labels you can add, so you can be as specific as you prefer.
The only restriction is that the label cannot be longer than 256 characters
and cannot contain spaces.

See Listing 6.1: Installation script for creating a runner on Linux for an
example of downloading the runner software from a GitHub release and
extracting it to get started. Listing 6.2 then contains the script for configuring
the runner for an organization with only the default token that is present in
the GitHub UL This token is valid for one hour.

Listing 6.1 Installation script fro creating a runner on Linux

& F#F & FH* # H*

© F#F

Create a folder
mkdir actions-runner && cd actions-runner

Download the latest runner package
curl -o actions-runner-linux-x64-2.305.0.tar.gz -L https://gith

Optional: Validate the hash
echo "737bdcef6287a11672d6a5a752d70a7c96b4934de512b7eb283be651

Extract the installer
tar xzf ./actions-runner-1linux-x64-2.305.0.tar.gz

Listing 6.2 Configure and start the runner

Create the runner and start the configuration experience
$./config.sh --url https://github.com/devops-actions --token ABO

Last step, run it!
$./run.sh

Some extra configurations parameters that are not required are:

e work: overwrite the default location where the downloaded work will be
stored. Defaults to the ‘_work’ directory relative to the runner
application directory.

e Replace: indicate if you want to replace an existing runner with the same
name. Defaults to false.

On Windows the configuration script will ask you if you want to execute the
runner as a service, so that it will start with the start of the environment. On
Linux you will have to configure the service yourself using the svc. sh script.
See Listing 6.3 for an example.

Listing 6.3 Install the runner as a service on Linux

Install the service, parameter USERNAME is optional to run as a
sudo ./svc.sh install

Start the service
sudo ./svc.sh start

Check the status of the service
sudo ./svc.sh status

Stop the service
sudo ./svc.sh stop

Uninstall the service
sudo ./svc.sh uninstall

For removing and deregistering the service on Windows, you can run the
config command again with the ‘remove’ parameter. The token needed to
deregister is the same type of token as with the installation: it’s a one-time
token, generated specifically for the (de)registration at that level in the
GitHub environment (Enterprise / Organization / Repository). The token that
you use has to come from the same configuration point that you used for the
registration, or else the removal command will fail. So get a token from the
same enterprise, organization, or repository where you registered the runner.
See Figure 6.1: Deregister and removing a runner.

Figure 6.1 Deregister and removing a runner

RobBosCRob-XPS9700 , M C:\temp\gh-runner
./config.cmd remove

Runner removal

Enter runner remove token: **x*xkxkkkkkkkkkhkkhkhkkkkkhkhkhkhkkkkk

Runner removed successfully
Removed .credentials
Removed .runner

After configuring the service, you can either start the process as a service (so
that it will always be running and ready to receive work) or start it as a one-
time process. As a one-time process it will announce itself to GitHub, wait
for the work to come in, and then stop. It will also not be started together
with the operating system when not configured as a service. An example of a
running service that is waiting for work and then executing a job can be
found in Figure 6.2: Runner service is executing work.

Figure 6.2 Runner service is executing work

2 RobBosCRob-XPS59708] C:\temp\gh-runner 89:11:26
.\run.cmd
1 file(s) copied.

Connected to GitHub

Current runner version: '2.384.0'
6 Listening for Jobs
Running job: self-hosted-numberl
Job self-hosted-numberl completed with result: Failed

2023-05-16 14:25:38Z: Runner reconnected.

If the runner is configured as a service you can also check it’s connectivity
back to GitHub by running the following command: .\run.cmd --check --
url <url> --pat <personal access token>. You need a Personal Access
Token (PAT) because the runner does not have this authentication
information available to connect back to the URL.

The runner will show up in the runner list at the corresponding level it was
created for (Enterprise/Organization/Repository) under Settings a Actions a
Runners. See Figure 6.3: Runner overview. In this view you can search for
runners with a certain label by using the search box and using for example
this search query: label:self-hosted.

Figure 6.3 Runner overview

@ Generl Runners
I s us ssed to run jc y tHub A s workflow I

Ax Collaborators

©) Moderation options

B3 ROB-XPS9700 self-hosted Window X64 e Idle
¥ Branches
O Tags
E3 Rules Beta) “

) Actions ~

6.1.1 Runner communication

The way the runner communicates with GitHub, is by setting up an outgoing
https connection. The communication is created as what is called ‘a long poll
connection’: it asks GitHub if there is work queued to be executed for this
specific runner, and then waits for 50 seconds for a response, before the
connection is severed. Immediately after closing the connection, a new
connection is started that does the same thing, and so on until the runner is
completely stopped. The nice part about this setup is that you can configure
the runner anywhere, as long as the firewall is open for outgoing connections
over port 443. There is no inbound connection to be made from GitHub back
into your network.

The runner itself has no knowledge of the GitHub side of the connection. For
example, it does not know for which repositories it is configured to run, the
GitHub organizations that can use it, or if it has been setup on the Enterprise
or Repository level. It only knows the GitHub url it needs to use to ask for
work. There is no GitHub user associated with the runner itself. A runner also
has no idea what kind of environment it is running in. During installation, it
checks the type of operating system that is used (Linux / Windows / MacQS),
the CPU architecture of the environment (x64, ARM32, ARM64) and sends
that to GitHub as labels that can be used for jobs to ‘target’ a runner. The
labels can later be changed on the GitHub side, since the runners have no idea
what labels are assigned to them.

The runner installation will create two files that are important for its

communication back to GitHub. In Listing 6.4 you’ll find the content of the
.runner file in the application folder of the installed runner. As you can see it
is stored as a JSON file with settings for the agent Id and Name, together
with the settings for the runner group (pool) it was configured with. Here you
also find the server being used and the GitHub url that was used during
configuration. If you move the runner between runner groups this information
will not be updated, it’s only written when configuring the runner. The
gitHuburl property does have an owner/repo in the url but this is only used
for asking the GitHub environment for work.

Listing 6.4 Content of .runner file

{
"agentId": 23,
"agentName": "ROB-XPS9700",
"poolId": 1,
"poolName": "Default",
"serverUrl": "https://pipelines.actions.githubusercontent.com/f
"gitHubUrl": "https://github.com/GitHubActionsInAction/demo-act
"workFolder": "_work"
}

In Listing 6.5 you can find the content of the .credentials file where a longer
lived authentication token is stored after the runner is registered to GitHub
with the registration token in the config command.

Listing 6.5 Content of the .credentials file

{
"scheme": "OAuth",
"data": {
"clientId": "2lecclca-2dla-4c44-abcd-309480c44a33",
"authorizationUrl": "https://vstoken.actions.githubuserconten
"requireFipsCryptography": "True"
}
}

The OAuth credential that are used to authenticate the connection to GitHub
with are stored in the file .credentials_rsaparams, which is encrypted on
Windows with an RSA private key with 2048 bit length encryption and can

only be read on the local machine. On Linux this file is not encrypted and
can be copied over to another machine and start the runner process there. The
file is needed for runners that are expected to reboot (for example after
upgrading) and then register themselves again. It is also used to refresh the
long polling connection that times out after 50 minutes.

The one thing you can do with these credentials, is execute the runner service
and wait for an incoming job to execute. Having this file available for reading
from the user that is used to execute the runner is considered a security risk.
The job could read all the information and start a new runner elsewhere with
the same configuration. This setup is there for backwards compatibility
reasons and are a know risk. The recommended configuration for the runners
is using the Just-in-Time (JIT) setup discussed in a later chapter. The JIT
setup uses the same files, but the token used for configuration is only valid
once.

Since the runner communication is an outgoing channel from the runner to
the GitHub environment, there are events that happen when the
communication stops. When there is no communication from the self-hosted
runner to GitHub for more than 14 days, the runner will be removed from the
listing and will need to be reconfigured before it is allowed to reconnect.
When the runner is configured as ephemeral, it will be removed after 1 day of
non-communication.

To be able to communicate with GitHub you must ensure that certain hosts
can be reached from the runner environment. You can find the full list in the
documentation here: https://docs.github.com/en/actions/hosting-your-own-

runners/managing-self-hosted-runners/about-self-hosted-

runners#communication-between-self-hosted-runners-and-github. Some
interesting hosts are shown in Table 6.2: Hosts that the runner needs to be

able to reach.

Table 6.2 Hosts that the runner needs to be able to reach

Purpose Hosts

Essential operations github.com
api.github.com

* actions.githubusercontent.com

Downloading actions codeload.github.com

Up/downloading job actions-results-receiver-

summaries and logs production.githubapp.com
productionresultssa*.blob.core.windows.net

Runner version updates objects.githubusercontent.com

objects-origin.githubusercontent.com
github-releases.githubusercontent.com
github-registry-files.githubusercontent.com

Up/downloading artifacts * blob.core.windows.net
and cache

6.1.2 Queued jobs

When a job is queued for a certain combination of labels, the job will stay in
the queue if there is no runner online that matches all the labels the job is
targeting. An example of a queued job with the labels that where targeted can
be found in Figure 6.4: Queued job waiting for a runner to become active
with the self-hosted label. The maximum duration of being queued for self-
hosted runners is 24 hours. If there is no runner available within this period,
the job will be terminated and a cancelation message is send to the user that
triggered the job. Currently there is no API or User Interface to get an
overview of all the jobs that are queued for either the
Enterprise/Organization/Repository level.

Figure 6.4 Queued job waiting for a runner to become active with the self-hosted label.

self-hosted-number1
tart

Requested labels: self-hosted
Job defined at: devops-actions/.github/.github/workflows/self-hosted-demo.yml@refs/heads/main

Waiting for a runner to pick up this job...

You can only load that per workflow using the API, or for an entire
repository like shown in Figure 6.5: Overview of queued workflows for a
repository, where the overview has been filtered using the ‘is queued’ query.

Figure 6.5 Overview of queued workflows for a repository

<> Code (© lIssues 5 11 Pull requests 6) Discussions () Actions [Projects 1 O wiki @& Security

Actions New workflow All workflows Q is:queued (%]
wing runs from al rkf
| Al workflows
2 workflow run results

.github/workflows/onboardin...

Async standup \ctor

Check permissions

® self-hosted B

Cl demo self-hosted

Composite vs Reusable

6.1.3 Updating self-hosted runners

Self-hosted runners will automatically check with each job they execute if
there is a new version of the runner available, by either calling the public
GitHub repository on https://www.github.com/actions/runner where all
runner releases are stored, or calling the GitHub Enterprise Server if you are
using that. If the runner has not been used for seven days, it will also check
for updates and run them if needed. New releases are created by GitHub
when needed, which has been almost once a month in the past. The updates
contain both fixes and updates. In case you host your runners in a locked
down environment with for example no direct internet connection, you will
need to make sure to keep the runners up to date yourself by pulling in
updates regularly in your setup environment. In that case, also configure the
runner with the disable-autoupdate parameter.

6.1.4 Available runners

You can find out which runners already have been configured for your
Enterprise/Organization/Repository by going into the Settings of that level
and then to Actions | Runners. An example is given in Figure 6.5: Available
runners. Here we can see which GitHub hosted runners are available, as well
as the labels that are available for those types of runners. If there are any
runners executing a job, they will be visible in the ‘Active jobs’ panel.

Figure 6.6 Available runners

Runners / GitHub-hosted runners

All jobs usage 0/20 Labels

windows-2016 windows-2019 windows-2022 windows-latest ubuntu-18.04

@ Linux0 @ wing 0 @ macoso ubuntu-20.04 ubuntu-latest macos-10.15 macos-11 macos-latest

Active jobs

There are currently no running jobs

Add ‘runs-on: ubuntu-latest’ to your workflow's YAML to send jobs to GitHub-hosted runners.

6.1.5 Downloading actions & source code

When there is work queued for a self-hosted runner, the runner will first
download the definition of the work that needs to be done from GitHub and
then starts executing it. It will download the job definition and the extract all
GitHub Actions statements that are included directly in the job definition.
The next step is to download the repositories of the actions that are needed by
going to the GitHub API and download the correct version of the action repo
as a zip file. Each action (and version used) will be stored in the subfolder
_work_actions\actions\<action-name>\<version-reference>\, so that
it only needs to be stored on disk once per job. See Figure 6.7: Runner action
folder on disk for a screenshot of the runner folder on disk, with the
actions/checkout action downloaded with a v2 folder as the version tag. Here
you can also see that the entire repository is downloaded, but not as a git repo
(the .git folder is missing). That also means that every version you use in
the job that is executed, will get its own version folder as well.

Figure 6.7 Runner action folder on disk

v gh-runner) Name

8 _diag .github
v _work licenses
> .github _test__
> __dotnet_runtime__ adrs
> _ externals__ dist
v _actions src
v actions .eslintignore
b checkout .eslintrc.json
> v2 .gitattributes

If the action is running a Docker container, the runner will either download
the Docker image or start building the included Dockerfile, depending on the
setup of the action. Using a prebuild image can significantly save time
executing the action, since it will skip the time needed to build the action.
Also note that the image will be built for every single run that the runner
executes.

The runner uses the URL that was entered during the installation of the
application for downloading the actions. It will suffix this URL the actions’
using statement to get a link to the action repository it needs to download.
This means it will use www.github.com when connected to GitHub in the
cloud, or the URL to your GitHub Enterprise server when connected to a
server.

In the case of composite actions or reusable workflows, the runner will
download the definition to make sure it exists, but only expands these
configurations and download those actions if and when the step or job is
executed. This way the runner only downloads what is needed.

Keep in mind that the folder _work_actions\actions\ will be cleaned at
the start of each job the runner executes, to prevent any issues when an action
stores data in these folders that might get overwritten during the job
execution.

When downloading repositories with the actions/checkout action, a new
directory is created in the _work folder with the name of the repository where
the executing workflow is defined and then a folder with the name of the
repository that is checked out. Usually these are the same, so in the example
in Figure 6.8: Actions/checkout folder creation you end up with ‘demo-
actions/demo-actions’, as that is the repository we are working with. You can
also see that this is an actual git repository, as the .git folder is there. This
gives you the option to switch branches if needed, create new commits and
push them back upstream, or work with any tool that uses the git repo
information, like for example the GitHub CLI that uses this to execute
commands like creating issues and pull requests from the current repository.

Figure 6.8 Actions/checkout folder creation

v gh-runner J Name
? _diag git
v _work .github
> .github issues
> __dotnet_runtime__ (e
_ externals__ test
_actions .gitignore
> _PipelineMapping ¥ README.md
_temp
_tool
> _update
v demo-actions

demo-actions

6.1.6 Runner capabilities

The runner gets it capabilities from the environment it is installed in: if there
is software installed in the runner, the job that is executed can make use of
that software. The environment defines the compute power the runner has,

depending on how much RAM, CPU, and network capabilities it has. If there
is a GPU available for the environment, the runner will automatically pick
that up as well. If you want to execute a Docker based action, you will need
to install Docker on the host. Be aware that a runner can only run a single job
at the same time. It is possible to install multiple runners at the same
environment, but from a security perspective that is not recommended:
concurrent jobs can then influence and interfere with each other, since the
runner will have access to the entire environment.

A best practice for indicating runner capabilities is to add them as labels to
the runners so that users can target the capabilities they need. An example
could be that there is a GPU available, then add the label gpu. You can also
run with a default self-hosted label on all runners, and if you need a runner
with more RAM available, target the runners for example with the label x1.
You could even go so far as to have labels for both large RAM (ram-x1) and
another one for disk size (disk-x1). This will also guide users into thinking
about what they actually need and specify that with the labels they target: a
simple linter job should not have to run on a runner with 64GB of RAM
available if it does not need that much power. To make this message even
more clear you can make use of internal billing for Action minutes used, with
your own cost per minute for the different runner types. See Chapter 7:
Managing self-hosted runners for more example on internal billing.

6.1.7 Self-hosted runner behind a proxy

Proxy support is available for self-hosted runners. You can either use the
standard environment variables (https_proxy, http_proxy, and no_proxy) to
pass in the information or use an .env file in the runner application folder,
containing the information shown in Listing 6.6. If you are also using Docker
based actions, you also need to update the Docker configuration by adding
the proxy settings to the ~/.docker/config. json file.

Listing 6.6 Proxy configuration in .env

https_proxy=http://proxy.local:8080
no_proxy=example.com, myserver.local:443
https://username:password@proxy.local

6.1.8 Usage limits of self-hosted runners

Even though GitHub does not restrict the amount of concurrent jobs executed
on self-hosted runners, or enforces the normal time outs for jobs, there are
still some limits to be aware of when using self-hosted runners:

e The total workflow duration cannot be longer than 35 days. This
includes job execution and time spent on waiting and approvals.

e Maximum queue time for a job on self-hosted runners is 24 hours. If the
job has not started executing within this timeframe, it will be terminated.

e A job matrix can generate a maximum of 256 jobs per workflow run. If
it generates more, the workflow run will be terminated and fails to
complete.

e No more than 500 workflow runs can be queued in a 10 second interval
per repository. Additionally queued jobs will fail to start.

6.1.9 Installing extra software

You are in full control of what you install on the self-hosted runners. After
installation and adding it to the $PATH, you can use the software in your
workflow definitions. You can either preinstall the software on the runner or
install it on-demand. In general, you do not want to make your job definitions
dependent on a specific type of runner to give you more freedom to switch
runners. For the job itself it should not matter where it is running: if the job is
self-contained, it will install the software it needs itself, like for example
downloading the latest version of the Node and installing it. If the job needs
it, it can specify the dependency itself:

steps:

- name: Install Node with version
uses: actions/setup-node@v3
with:

version: 18.%

- uses: actions/checkout@v3

- name: use the CLI
run: node --version # check the installed version

If you decide to start preinstalling software on the runner itself, like in a
virtual machine setup, the general recommendation is to try and keep your
runners as uniformly as possible. What we often see is that different user
groups (e.g., teams) have different needs. When the runner definition starts to
diverge, it can become unclear to the users what they can expect of the self-
hosted runners. The best practice is then to add the installed software /
capability as a label to the runner, so that the users can specify the right label
to target the right runner. Keep in mind that jobs will only be queued on a
runner if all the labels on the job match. An example would be:

runs-on: [self-hosted, gh-cli, kubectl]

This job can only run on a runner that has all three labels. Some of the
software that we have seen used the most are system tools that are often used
in jobs:

e The GitHub CLI

e Libraries that help you work with json or yaml, like ‘jq’ or ‘powershell-
yaml’.

e Cloud specific CLI/ SDK’s, or other tools (AWS’s CDK, Azure CLI,
etc.)

e SDK’s for the coding languages used the most in the company

e (Caching the most used Docker images to save bandwidth costs and time
to download the images

e Container tooling (Docker, BuildX, Buildah) and Kubernetes tooling
(Helm, kubectl, etc.)

e Mobile Application tooling (Android studio, XCode)

Another option for this setup is to have a list of container images that your
users can configure themselves when they need it. They then configure the
use of the image with the container keyword on the job level (See Listing 6.7
for an example). All the steps in that job will run inside of the container, with
any tool that you have installed in that container as well.

Listing 6.7 Run the entire job in you own container

jobs:
run-in-container:

runs-on: ubtuntu-latest
container: alpine:3.1.2
steps:

- uses: actions/checkout@v3

We often get the question how to get the same images for the runner as the
VM image that GitHub uses for their hosted runners. Due to licensing reasons
GitHub cannot distribute so called ‘golden images’ that already have
everything pre-installed. They do give you the installation scripts to run and
build your own image from the source code in the runner images repository.
You can find the scripts to get started from this repository:

https://github.com/actions/runner-

images/blob/ubuntu22/20230611.1/docs/create-image-and-azure-
resources.md. All the pre-requisites to get started can be found in the same

documentation.

6.1.10 Runner service account

The runner gets the rights to its environment from the way it was installed.
On Windows you can configure it to run as a service with a certain service
account. It will then have access to everything on the environment that the
service account has access to, including any networking access.

For Linux and macOS the default setup is to run the service as root. You can
configure it to use a non-root account. Be aware that this often causes some
issues with actions or jobs that run inside of a container on non-ephemeral
runners. The container runs with its own account setup, which is often root.
The GITHUB_WORKSPACE folder will get mounted inside of the container. When
the steps executed inside the container change a file or folder in the
workspace, those files will get the root level access attached to them as well.
Any subsequent cleanup of those files afterwards on the runner will fail if the
runner is not executing as root.

6.1.11 Pre- and post-job scripts

The runner service can be setup with an environment variable that holds the
path to a script that can either run as a step at the beginning of a job or as the

last step of the job. This can be used to prepare the runner environment with
internal configurations. We have used this for configuring default read-only
accounts to internal package managers and Docker registries. To configure
the pre- and post-job scripts you need to save a script in a location the runner
account will have access to, and then configure the corresponding
environment variables for each hook:

® ACTIONS_RUNNER_HOOK_JOB_STARTED
® ACTIONS_RUNNER_HOOK_JOB_COMPLETED

Another option is storing these values as key-value pairs in a .env file inside
of the runner application directory. The value of the settings needs to be the
full path to the script that can be executed. If the runner account does not
have access to that path, the setup runner will fail.

When the startup hook is configured, it will show up on the logs of the jobs
that are executed on that runner as an extra step at the beginning of the job. In
Figure 6.9: Setup runner job an example is shown. Note that the extra step
runs after downloading all the action definitions. The job completed hook
does the same thing, but at the end of the job as a last step.

Figure 6.9 Setup runner job
self-hosted-number1

Set up job

Set up runner

A job started hook has been configured by the self-hosted runner administrator
» Run ‘c:\temp\ACTIONS_RUNNER_HOOK_JOB_STARTED.psl’
Hello from job started

Run actions/checkout@v2

The environment variables can be set at any time, including after the
installation, as long as they have been set before the next job executes. Any
changes during a job execution will not be used.

The scripts are executed synchronously for the job run, just as a normal step.
If the exit code for the script is non-zero, the step will fail, and the job will

stop executing. Additionally, these scripts will not have a timeout applied to
them from the runner, so if needed you will need to configure a timeout
handler inside of the script itself. The scripts also have access to the default
variables as they are treated as a normal step in the job. That means you have
access to variables like the GITHUB_WORKSPACE or GITHUB_TOKEN.

6.1.12 Adding extra information to your logs

There is support for showing extra information to your logs by placing a file
called .setup_info in the runner’s application folder. See listing 6.8 for the
contents that GitHub uses for hosting their runners. The information is
grouped with a tile for the group, which will result in grouped information in
the set up job step in each run on this runner. The result is shown in figure
6.10. Note the use of \n for adding breaks in the output and start a new line.

Listing 6.8 Contents of the .setup_info file on GitHub hosted runners

[
{
"group": "Operating System",
"detail": "Ubuntu\n22.04.2\nLTS"
iy
{
"group": "Runner Image",
"detail": "Image: ubuntu-22.04\nVersion: 20230702.1.0\nInclud
iy
{
"group": "Runner Image Provisioner",
"detail": "2.0.238.1"
}
]

Figure 6.10 Results of the .setup_info file

v @ Set up job 5s

Current runner version: '2.305.0'
2 ¥Operating System
Ubuntu
22.04.2
LTS
¥ Runner Image
Image: ubuntu-22.04
Version: 20230702.1.0

Included Software:

Image Release:
1 ¥ Runner Image Provisioner
2.0.238.1

6.1.13 Customizing the containers during a job

With the keyword container, users can specify that their job will run inside
of a Docker container. The runner has default setups for the ‘docker create’
and ‘docker run’ commands it executes to get the container setup and
running. You can overwrite the default commands with you own custom
JavaScript file that runs when a job is assigned to the runner, but before the
runner starts executing the job. This allows you to add custom volume
mounts, configure your private container registry, or always run with a
sidecar container. To configure the customization, store a reference to the
script you want to run in the ACTIONS_RUNNER_REQUIRE_JOB_CONTAINER
environment variable, or store this configuration in an .env file in the
runners’ application folder as a key-value pair, where the value is the path to
the JavaScript file.

Be aware that the script will run synchronously and thus will block the
execution of the job until the script completes. There is also no timeout for
the script, so you will need to handle a timeout mechanism inside of the
script. The script will run in the context of the runner service, with the
corresponding system and networking access.

The following configuration commands are available:

prepare_job: Called when a job is started.

cleanup_job: Called at the end of a job.

run_container_step: Called once for each container action in the job.
run_script_step: Runs any step that is not a container action.

Each command has its own definition file, with the filename being the name
of the command and the json file extension. Another option is to use an
index. js file that can trigger the correct command when it is called.
Examples for setting up projects for docker, hooklib, and k8s can be found in
this example repository from GitHub: https://github.com/actions/runner-
container-hooks.

6.2 Security risks of self-hosted runners

Running jobs on self-hosted runners comes with a risk as well. The self-
hosted runner might have too much access into your network and could be
used for network traversal attacks (travel to other machines in the network,
either for reconnaissance, or execute an attack and encrypt all files it has
access to). On reused runners, data might be persisted on disk as well, leading
to attacks like:

e Cache poisoning: overwriting node_modules at the runner level for
example. The next job will use the dependency from the cache. This
applies for any package manager’s local caching system. An attacked
can even prep your local Docker images with their own version, by
mislabeling their version of a Docker image with a label you are using.

e Changing environment variables or things like SSH keys and
configuration files for your package managers, like .npmrc, .bashrc,
etc. This could be misused to let the package manager search for all
packages on an endpoint controlled by an attacker, instead of using the
default package managers URL.

e Overwriting tools in the /opt/hostedtoolcache/ directory, which is the
default storage for the actions like setup-node, setup-java, setup-go.

e The credentials used to register the runner with are always stored in the
runner folder itself, which means it is accessible from inside a job. In the
one of the next paragraphs about Just-in-time runners you will find a
way to mitigate the risk of using these credentials to spin up a new
runner in a different location.

As a general best practice, we always recommend to never run a job on a self-
hosted runner without having full control over the job definition. Especially
with public repos hosted on https://github.com, where any authenticated user

can craft a pull request to attack your setup, we cannot stress it enough to
never run a job on your self-hosted runner, with access to your private
network. GitHub protects you for these types of attacks by limiting the
GITHUB_TOKEN for the on: pull_request trigger and by not running
workflows automatically on incoming pull requests from new contributors as
shown in Figure 6.11 Settings for running workflows from outside
collaborators.

Figure 6.11 Settings for running workflows from outside collaborators

Fork pull request workflows from outside collaborators

Choose which subset of outside collaborators will require approval to run workflows on their pull requests.
from pubilic forks.

Require approval for first-time contributors who are new to GitHub

Only first-time contributors who recently created a GitHub account will require approval to run workflows

Require approval for first-time contributors

Only first-time contributors will require approval to run workflows.

© Require approval for all outside collaborators

If you still have a need to run a job on your self-hosted runner, then either run
it on a contained runner that is ephemeral (single use), does not have any
networking connection options, and is only allowed to run after running
stringent security checks, both manually and automated. You can for example
run specific linters for GitHub Actions on your workflows to detect things
like shell-injection attacks (running injected code from run commands). One
of those linters is the ActionLinter from: https://github.com/devops-
actions/actionlint, that will check for shell-injection attacks based on
untrusted user input, like for example the title of an issue, the name of a
branch, or the body of a pull request, etc.

Another way to protect your workflows and thus self-hosted runners is to
have environment protection rules that allow a job to only run when for
example a (manual) approval is given, or when custom checks (environment
protection rules) have completed successfully. You can even configure an
environment to only allow jobs to run when they come from a certain branch.
In Figure 6.12: Environment protection rules you can find an example where
a custom protection rule has been configured by using a GitHub App that will
run the checks. Additionally, GitHub already blocks workflows to run when

coming from a fork, or from a new contributor to the repository.

Figure 6.12 Environment protection rules

11 Pull requests ® Actions [Projects @ Security |~ Insights €3 Settings

& Genera Environments / Configure Prod

Deployment protection rules

Ay Collaborators and teams

L) Moderation options ~
B Required reviewers
de and automation

Add up to 5 more reviewers
P Branches

© Tags

. rajbos X

£+ Rules

(® Actions ~

& Wait timer
& Webhooks

I £ Environments 5 minutes

3 Pages

o Deployment-protection-rule

6.3 Single use runners

There are three different runtime options for setting up self-hosted runners:

e Environments that are continuously available to run new jobs (running
as a service). That means that the same machine is always ready to
handle a queued job.

e Ephemeral runners that only are available for executing a single job and
shuts down when that job is completed.

e Ephemeral runners with just-in-time tokens: only available for a single
job and the token to register the runner with can only be used once.

Our recommendation is to use ephemeral runners with Just-in-time tokens
whenever possible, because of the security concerns of persisting data from
job1 that then can be (mis)used in job2 on the same runner. The GitHub
hosted runners are configured the same way to protect data being leaked
between customers. With this setup you also get a new fresh runner with
every job, so there is less change of becoming dependent on a specific runner
that has some files cached or software preinstalled. You are now required to
specify all the tools you need to execute, in your job definition. This highly
increases portability of your workloads as well.

6.3.1 Ephemeral runners

You configure an ephemeral runner by adding the - -ephemeral parameter to
the runner configuration script. This will let the runner to be online, waiting
for a job to run. When a single job has been executed, the runner will
deregister itself, and stop running. Not a single extra job will land on that
runner. Be aware that the environment for the runner itself will still linger
around, depending on the solution. For example, if you install this ephemeral
runner on a virtual machine (VM), the VM will still be up and running, even
though the runner itself deregistered itself from the GitHub environment and
stopped itself from running. You can use the
ACTIONS_RUNNER_HOOK_JOB_COMPLETED hook to handle the
completion of the job, and for example clean up the VM (and spin up a new
VM to handle new incoming jobs the same way).

6.3.2 Just-in-time runners

The token that is used to register self-hosted runners is always valid for an
hour and is stored on the runner itself and available from inside a job. That
makes it possible to steal these credentials and start a new runner with the
same credentials in a different location. If you want to make this setup more
secure by limiting the exposure of that ‘long lived’ credential, then you can
use ‘Just-in-time’ runner configuration (JIT). The JIT runners work the same
as with the ephemeral setup: The validity duration of the installation token is
the only difference (one hour vs one time usage).

To get the configuration needed to register a new runner with the JIT
configuration, you need to make an API call to the following endpoint
(shown in Listing 6.9: Creating JIT runners):
/orgs/{org}/actions/runners/generate-jitconfig. The response can be
used in the script to start up the runner. Instead of - -ephemeral you call the
script as follows: ./run.sh --jitconfig ${encoded_jit_config}. The
encoded JIT configuration value is only valid for one installation of a self-
hosted runner, and it cannot be reused.

The new just-in-time runner will only accept one single job execution. On
completion of that job, it is automatically removed from the Enterprise /

Organization / Repository level for which it was created, and the service
stops running. It is still your own responsibility to clean up the runner and
prevent reuse of the same environment. For that you can use the
ACTIONS_RUNNER_HOOK_JOB_COMPLETED hook to handle the
completion of the job.

Listing 6.9 Creating a JIT runner

curl --location 'https://api.github.com/orgs/GitHubActionsInActio
--header 'X-GitHub-Api-Version: 2022-11-28' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic <encrypted token>' \
--data '{
"name": "New JIT runner",
"runner_group_id": 1,
"labels": ["jitconfig"]
} 1

6.4 Disabling self-hosted runner creation

Keep in mind that by default, every user with admin level access (enterprise,
organization, or repository level) can get to the self-hosted runner screen and
start installing a runner in their environment. To control this, it is possible to
disable the creation of self-hosted runners at the enterprise or organization
level. In Figure 6.13: Disable self-hosted runner at the organization level you
can see the options you have at the organization level. This gives you more
control over where a self-hosted runner can be created. At the organization
level you can either allow for all repositories, disable it for all repositories, or
enable the creation for specific repositories.

Figure 6.13 Disable self-hosted runner at the organization level

Runners

Choose which repositories are allowed to create repository-level self-hosted runners.

All repositories ~

v All repositories
Repo-level self-hosted runners can be used

by any repository in the organization

Selected repositories 7 logs:
Repo-level self-hosted runners can be used
by specifically selected repositories
Disabled
Repo-level self-hosted runners are disabled
rn more

for all repositories in the organization

On the enterprise level you can completely disable the creation of self-hosted
runners for all organizations. The user interface for this can be seen in Figure
6.14: Disable self-hosted runners at the enterprise level. If you have
Enterprise Managed User (EMU) organizations, then it is also possible to
disable it for any repositories in the personal namespace that are in the user
space for those organizations.

Figure 6.14 Disable self-hosted runners at the enterprise level

Runners

Choose which organizations are allowed to self manage self-hosted runners at the repository level.

Disable for all organizations

Repository-level runners will be disabled across all organizations in your Enterprise.

Disable for all Enterprise Managed User (EMU) repositories

Repository runners will be disabled across all EMU personal namespaces in your organization.

Save

After disabling the creation of self-hosted runners, users will get the warning
as shown in Figure 6.15: Self-hosted runner creation disabled. Any runners
that have been created before these settings were enabled, will still be
running, and executing jobs. You will need to check the organizations where
you disallowed self-hosted runners and then remove the existing runners

manually. Do note that users can still create self-hosted runners for
repositories created in their own user space.

Figure 6.15 Self-hosted runner creation disabled

Runners
Host your own runners and customize the environment used to run jobs in your GitHub Actions workflows. Le

(U Self-hosted runners were disabled by your organization admin

1 runner

1 Self-hosted runner self L ® Disabled

6.5 Autoscaling options

For setting up runners in an automated way, we recommend looking at the
curated list of solutions in this repository:
https://github.com/jonico/awesome-runners. There are options to host runners
on Amazon EC2 instances, AWS Lambdas, Kubernetes clusters, OpenShift,
Azure VM'’s and you can of course setup an Azure scale set yourself as well.
Some of the solutions will scale for you by itself, by using GitHub API
endpoints to check for incoming jobs. Several solutions also support rules
that let you scale up or down based on time of day (for example scale up
between business hours, and down outside of business hours), or scale up and
down based on the number/percentage of runners that are executing a job at
the moment.

It's also possible to scale with a webhook in a GitHub App on the event
workflow_job. This webhook is triggered every time a job is queued,
waiting, in progress or completed. These events let you trigger the creation
and deletion of a runner with for example the corresponding labels for that
job. Using this webhook gives you full control over the runners that are
available, including where to create them (for example in the correct
network) or which hardware capabilities the runner will get. Setting up a
webhook can be done at the organization or enterprise level, as shown in
Figure 6.16: Scaling webhook setup.

Figure 6.16 Scaling webhook setup

Webhooks / Add webhook

We'll send a posT request to the URL below with details of any subscribed events. You can also specify which data format you'd like to receive
(JSON, x-wem-form-urlencoded, etc). More information can be found in our developer ¢ t

Payload URL *
https://example.com/postreceiveM

Content type

application/x-www-form-urlencoded +
Secret

My-secret-code

SSL verification

O By default, w

® Enable SSL verification Disable (not recommended

6.5.1 Autoscaling with actions-runner-controller

The actions-runner-controller (ARC) solution is owned by GitHub and gives
you an option to host a scalable runner setup inside your own Kubernetes
cluster (a setup where multiple computers share the workload and scheduling
is handled for you). If you have the option to host you own Kubernetes
cluster for this and be in control how the cluster is utilized and scales, then
we recommend this solution over others. Do note that ARC only supports
Linux based Kubernetes nodes, so there is no option to run with Windows
based nodes in your cluster. With ARC you get control over the Docker
image that is executed so you can configure extra tools that are preinstalled
by adding it to the container you configure. You also have control over the
available hardware resources that the runner has by configuring the resource
limits on the pod deployments. Since you manage and maintain the
Kubernetes cluster, you have also control over what the runners can connect
to, so you can really limit access to the internet for example, something that
some enterprises do require. ARC runners are setup as ephemeral runners by
default: the container will execute one job and exit the container. As it is
using Kubernetes replica sets, Kubernetes will spin up a new container
automatically.

Within ARC there are options to:

e Scale up and down based on a schedule.

e Scale based on percentage of runners that are busy executing a job (and
then scale up / down by a configurable number of runners).

e Spin up new runners when on-demand, by listening to the API webhook
that GitHub will trigger when a new pull-request is created.

The ARC solution supports creating runners at the Enterprise, Organization,
as well as the Repository level, giving you the most flexibility of creating
shared runners. You can also configure a scale set for Team A, and another
one (with different scaling rules and a different even container image!) for
Team B. By using a Helm chart to configure the scale set, you can let the
configuration land in different Kubernetes namespaces, to give you more
separation between them, as well as options for networking and limit access
across namespaces.

Note that the ARC solution will spin up ephemeral runners, so any caching
you want to do in the runners, will have to be done inside of the container
images you use or rely on for example Kubernetes to cache the Docker
containers you use. The images can be spun up using a rootless setup, making
the setup a lot more secure (as breaking out of the container is harder when
using rootless).

6.5.2 Communication in ARC

ARC lets you configure the communication with either a Personal Access
Token (PAT) or a GitHub App. Since there is no GitHub App support to
configure runners at the Enterprise level a PAT is required there. For all the
other levels (Organization or Repository) we recommend using a GitHub
App: that way you are not tied to a single user account and can really setup a
fine grained App that can only be used to register runners, and nothing else.
Usage of a PAT is discouraged as the PAT can impersonate everything the
user can do instead of having fine grained control over the available scopes of
the token. Additionally the engineer whose token is used, can leave the
company and thus invalidate the PAT, leaving you with a broken setup that
will take some time to figure out what happened. GitHub Apps also do not
take up a license seat, saving on those costs as well.

With a GitHub App, you’ll get an installation ID and a private key file (PEM
file) that can be given to the ARC controller as a Kubernetes secret, that will
be used to register and deregister runners. You can also use the GitHub App
to be the receiving end for the webhooks available in GitHub to trigger a
runner to be created whenever a job is queued.

Each time a new runner is requested, the GitHub App information will be
used to get a fresh installation token from the GitHub API, and then the
runner will be registered with that token.

6.5.3 ARC monitoring

There is very little monitoring for action runners in general, as you can see in
Chapter 7: Managing self-hosted runners. The only user interface
available is the one that shows you at each level which runners are available
and if they are busy. Even the available API’s are only showing that
information: which runners are available, are they busy, and which labels are
assigned. There is also no method to get that information out of ARC, like
getting a count of available runners for a certain label, or get information
about the percentage of runners that is busy at the moment. For monitoring
purposes you will need to set something up yourself. You can use Kubernetes
monitoring to check how many pods are up and running, and link that with
dynamic scaling settings to see how you are doing, and then configure alerts
if you are scaling up or down relatively fast. Alternatively you can create a
workflow and use an action from the marketplace, for example
https://github.com/devops-actions/load-runner-info and use that to get all the
information of available runners, and determine the amount of runners
available for a certain label (and alert if the count is lower than expected), or
check how many runners are busy executing a job or not.

6.6 Conclusion

In this chapter you have seen what self-hosted runners are and when to use
them as well as security risks and the different setup options you have
available.

e Self-hosted runners can be configured in any environment that supports

.NET core, git, and node.

Installing Docker is optional, but needed for running actions that are
based on a Docker image.

The self-hosted runner communicates with an outbound HTTPS
connection, which makes installation in your network easier and more
secure.

You have a lot of configuration options for the runners to customize
what happens before and after a job.

The best way to setup a runner is by configuring it as ephemeral. Then it
will only run a single job and deregister itself and not accept any more
jobs. That gives you the option to clean up the environment and prevent
a lot of security risks.

There are several autoscaling options available, and the one that is
managed and supported by GitHub is the actions runner controller. This
can scale based on time, runner utilization, and just in time by
configuring a webhook in GitHub that triggers whenever a workflow job
is queued.

7 Managing your self-hosted
runners

This chapter covers

Managing runner groups

Monitoring your runners

Finding runner utilization and capacity needs
Internal billing for action usage

When you start creating your self-hosted runners you will have the need to
find out how and when your runners are being utilized, by which repositories
and teams. With that information you can then both scale the runners
appropriately and guide your users into better patterns of using them. There
are options to segment runners into groups and only allow a group to be used
by specific repositories, for example by a single team.

7.1 Runner groups

With runner groups you can segment your runners into different clusters and
manage access to the runners in the group with specific options. You can use
runner groups for example to segment the runners for the repos of a specific
team, and make sure that they always have a specific number of runners
available. Or make sure that a group of runners with a certain capability (for
example GPU enabled) are only available to certain repositories and thus
users. You do not want to run simple linting jobs on those expensive runners,
so you better make sure to separate these runners from the default runners
that have the ‘self-hosted’ label!

Runner groups can only be created at the Enterprise or Organization level and
not at the repository level. When you navigate in the organization to Settings
a Actions a Runner groups, you’ll find the overview of all your runner groups
as shown in Figure 7.1: Runner groups. On the enterprise level you can find

runner groups under Settings a Policies a Actions and then the Runner groups
tab. By design, there is always a group called default where new runners get
registered unless you indicate otherwise in the configuration process. New
groups can only be created using either the user interface or by using the
REST API as shown in Listing 7.1.

Listing 7.1 Creating a new runner group

curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer <YOUR-TOKEN>"\
-H "X-GitHub-Api-Version: 2022-11-28" \

https://api.github.com/orgs/0ORG/actions/runner-groups \

-d '{"name":"gpu-group",
"visibility":"selected",
"selected_repository_ids":[123,456],
"restricted_to_workflows": true,
"selected_workflows":
["<ORG-NAME>/<REPONAME>/.github/workflows/<WORKFLOW>.yml
} 1

In the overview depicted in Figure 7.1:Runner groups you can see how many
runners are in each group, as well as the overall settings per group. Creating
or editing a specific group will bring you to the settings as shown in Figure
7.2: Changing a runner group. You can configure if the runners in the group
are available to be used by all repositories (or all organizations on the
Enterprise level) or only a select subset of them. There is also an option to
specify if the group can be used by public repositories or not. In Chapter 6:
self-hosted runners we have shown the security implications of self-hosted
runners. Especially for the use of self-hosted runners on public repositories it
is crucial that you have a secure setup and don’t let anyone create pull
requests against your public repository that will directly run against your self-
hosted runner! That is why this setting is not enabled by default.

Figure 7.1 Runner groups

Runner groups

Control access to your runners by specifying the repositories that are able to use your shared organization runners.
Default &) 0
A F itorie €] G tor
BIG
Larger-runners-group

Test

Figure 7.2 Changing a runner group

Runner groups / BIG Remove group

Group name

BIG Save

Repository access

Selected repositories ~ 4 selected repositories £83

Allow public repositories

Workflow access
All workflows ~

New runner ~

jo]

) test-16 | test-16 Big
nr roup: BIG i Disabled

® Ready

You can even go a step further and configure the runner group to only be
used for specific workflows, as shown below in Figure 7.3. This can be
helpful if you have for example a runner with a GPU enabled, but you do not
want every workflow in a repo to be able to run on that runner, as that could
be a waste of resources. There can also be security reasons for separating
your runners like this. You can configure one or more workflows that are
allowed to use the runners in a group. Adding a specific reference to the
workflow is required and has to be in the form of
<organization>/<repository>/.github/workflows/<filename>@<reference>.
Wildcards are not allowed. The reference can be any valid git reference, so

the name of a branch or tag will work, as well as a SHA hash of a commit.

Locking down a runner group to a workflow can be ideal for spinning up a
runner on-demand by listening to a webhook. To achieve that, configure the
group for a specific workflow and a specific revision, which will make that
this run (and only this run) lands on the newly created runner. Configuration
of the webhook has been shown in Chapter 6: Self-hosted runners. From
automation in the webhook you can create a runner group on demand and
lock it down to the workflow that triggered the runner creation as shown in
Listing 7.1. Then create a new runner inside of the newly created runner
group, which can now only be used by the correct workflow.

Figure 7.3 Locking a runner group to a specific workflow

Workflow access X

Enter the workflow files allowed to use this runner group:

monalisa/octocat/.github/workflows/cd.yaml@main

monalisa/octocat/.github/workflows/build.yaml@v2

References are mandatory: branches, tags, and SHAs are allowed

Learn more about managing access to runner groups

Do note that it is not possible to lock down a runner group directly to a
specific team. You can only do that on the repository level, by configuring
that the repository is allowed to use the runners in the group.

7.1.1 Assigning a runner to a runner group

The group a runner is part of will be configured by default on the creation of
the runner. If you do not configure it, the runner will be added to the group
named Default, which can be used by any repo at the level where the group
exists (enterprise or organization). Listing 7.2 shows an example of
configuring the runner group in the config script by passing in the name of

the group. A runner can only be assigned to a single group at the same time.
Listing 7.2 Adding a runner to a group during configuration
./config.sh --url <url> --token <token> --runnergroup <name of

When the runner has been created, you can still move it to another runner
group by either using the REST API, or use the web interface as shown in
7.4: Moving the runner to a different group. The runner does not even need to
be online to be able to move it. The runner will have the security setup
immediately after saving the changes and can then be used from the
repositories that have access to that group. Any running jobs will finish first
with the security rules for the runners when the job started.

Figure 7.4 Moving the runner to a different group

Runners / Rob-XPS9700

Configuration: linux x64

Runner group: GPU enabled ~

Move runner to group X
[Move runner to group]

Default

BIG

GPU enabled

Larger-runners-group
Test

vhet-injected-runners-group

7.2 Monitoring your runners

You can view the available runners on the organization or repository level by
going into ‘Settings’ a ‘Actions’ a ‘Runners’ or use the ‘Runner groups’ entry
in the same menu. For the enterprise level runners, you can go to ‘Enterprise
settings’ a ‘Policies’ a ‘Actions’ and then open the Runner tab or use the
Runner groups tab. In the runner overview you find all runners that have been
registered successfully with GitHub together with their status. A runner can
be in one of four states here:

e Idle: Online and waiting for a job to execute.

e Active: Executing a job.

e Offline: no communication with the server, runner could be offline or
updating to a newer version of the service.

e Ready: This state is used for GitHub hosted runners and indicates that
there is no running online at the moment, but the setup is ready to spin
up a runner on demand.

In the runner overview you can search for runners with a certain name, or use
the search query as shown in Figure 7.5: Checking runner status to search for
all runners that have a specific label.

Figure 7.5 Checking runner status

Runners

ncludes all runners across self-hosted and GitHub-hosted runners

©) GitHubActionsInAction GitHubActionsinAction

Larger-runners-group Pu Enabled

® Ready

Searching can only be done on the part of the runner’s name, or by specifying
one or more labels to search on: team-a label:linux label:x1. An
example of this is shown in Listing 7.3, where we search for a runner that has
a name that has ‘team-a’ in the name and has both the labels mentioned in the
search. Note that this search query is case-insensitive, and spaces have a
meaning to break between search commands. Searching with for example
wildcards on the name is not supported. Searching for a part of the label is
also not supported.

The runner group overview gives an overview of the number of runners in
that group as well as the security settings on the group, but does not give any
indication of the status of the runners in the group. The search on this screen
only allows you to search on a part of the name of the group.

Figure 7.6 Runner groups overview

Runner groups

Control access to your runners by specifying the repositories that are able to use your shared organization runners

Default O

Big runners

GPU enabled
Larger-runners-group

vnet-injected-runners-group

That means for monitoring of uptime and utilization you will need to
implement your own solution.

7.2.1 What to monitor

What you want to monitor is dependent on the type of runners and the setup
you have chosen. With for example actions-runner-controller, the autoscaling
solution from GitHub as shown in Chapter 6, you need to monitor two
important metrics:

1. Queue time of the jobs
2. Triggering of scaling up and down

If you have a solution of spinning runners up on demand, then the queue time
of the jobs is the most important metric to keep track of. This will indicate if
your runners are spinning up fast enough to prevent your users from waiting
until their job is being started. Especially on bursty workloads (large amounts
of jobs being queued at the same time), queue time can start to become longer
rather quickly if your runners cannot spin up fast enough. Scaling down to
fast is also not a great option, as that will potentially create a loop between
scaling up and down constantly.

Keeping track of the number of concurrent jobs being executed is interesting
from the perspective of knowing how many jobs, and therefor runners, you
need at normal times, but be aware that the queuing of jobs can be very
spikey, depending on your users. There are always user groups that have

nightly jobs scheduled, and other groups that schedule those jobs at the
beginning of their workday. Depending on how geographically your user
base is spread out, this can easily mean a big spike in the middle of the
afternoon or evening. Your scaling or just in time solution needs to be able to
handle these spikes gracefully, without scaling out of control just for that
single user that is trying out the matrix strategy in their workflow for the first
time and running it at maximum scale (256 jobs in one matrix) and
scheduling those runs every 5 minutes. This can create some serious load on
your runner setup (as well as the GitHub environment) and the question will
be if this single spike will mean that all users have to wait for the queue to
clear up, or if your solution is set up to handle these use cases.

Staying with the example of the recommended scaling solution of actions-
runner-controller (ARC), you’ll probably want to either configure this with
the job queued webhook and spin up a runner on demand, or work with the
deployment setup where you configure that you always have a certain amount
of runners available, and let ARC handle the scaling up and down in case of
need. In the second example, ARC will monitor your runners and check
every period the amount of runners that are busy, and based on configurable
rules will for example scale up if over the period of the last 10 minutes, 70
percent of the runners where busy executing a job. You can then indicate to
scale up by a percentage of new runners. This can also mean that scaling up
for a bursty load can take quite some time! Take the example that you have
50 runners available at any given time as a minimum. You have a rule that
looks at 70% of runners busy that gets evaluated every 10 minutes. If the
70% busy threshold is reached, you scale up by 25% of runners. With this
setup, one or more users schedule 100 jobs that take a while to run, let’s say
an hour. Scaling will happen after the first 10 minutes, where 25% times 50
runners = 12 new runners will be started. All existing and new runners are
immediately busy executing jobs. It takes another 10 minutes to scale again.
The rest of the example can be found in Table 7.1 scaling out runners. You
can see that it takes 40 minutes with this setup to scale to a burst of new jobs
getting queued, which are more than the runners you had available. It's up to
you to define the needs of the organization, which can only be done by
monitoring the use of your runners.

Table 7.1 Scaling out runners

Duration | Action Number | Jobs Jobs Percentage
(mins) of runners | queued | running | busy

0 100 jobs get 50 50 50 100%

queued

10 Scale out by 25% | 62 38 62 100%

20 Scale out by 25% | 77 23 77 100%

30 Scale out by 25% | 96 4 96 100%

40 Scale out by 25% | 120 0 100 83%

Depending on the time it takes to spin up a new runner, you can define a
different strategy of scaling as well. If spinning up a runner is rather fast (less
than a minute), then your users can most probably live with that delay. In that
case it is advisable to work with the webhook and spin up runners on
demand: every time a job is queued, a new runner is created. Spin them up as
ephemeral and remove them on completion of the job. You can still have a
pool of runners available on standby, and create new runners as the jobs
come in: that way you can skip any larger startup time.

Another strategy for scaling is time based: if your users need the runners
mostly during office hours, then you can spin up and down based on that.
Create 100 runners at the start of the day and scale down at the end of the
day. These strategies can be combined when using a solution like ARC by
configuring multiple scaling rules.

7.2.2 Monitoring available runners using GitHub Actions

GitHub Actions is not meant for any sort of monitoring, as there are no
guarantees that events are triggered immediately, or that cron schedules are
followed on the second. There can always be some lag in triggering a
workflow or a job. That said, since there are no out of the box solutions
available from GitHub, you could utilize a workflow that runs and checks if
the expected amount of runners is connected. If the amount of runners is less
than a predefined number, you can trigger an alert into your tool of choice
(for example Slack, Teams, or something else). One example is using the free
https://github.com/devops-actions/load-runner-info action to get information
about the amount of runners available. This action will for example give you
a number of runners available per label. This can then be combined with your

own rules and your own notification channel to trigger an update to your
team. An entire workflow example can be found in the readme of the action
itself. The downside here is the information can only be loaded on a recurring
schedule and cannot be retrieved real-time. Using this option can at least be
the starting point for getting some insights into how your runners are being
used, but not for scaling the runner setup on the fly.

7.2.3 Building a custom solution

Another option is to look at the free github-actions-exporter project and
export the usage of actions on a schedule from the GitHub API into a
monitoring solution of your choice: https://github.com/Spendesk/github-
actions-exporter by using the OpenTelemetry output from the exporter. It can
be used by default to export into Prometheus for example. Although the
solution has not been touched and updated for a while, the basic premise and
setup is still valid. After exporting the data you need into a type of storage,
you can create your own dashboards, queries, and alerts. This will give you
full control over the solution, but can take quite some time to have a working
solution. You can think of tools like Grafana or Prometheus to build your
own dashboards and alerts on top of the exported data. The downside here is
again that the results will not be available real-time, only after the fact when
you run a download cycle. The Prometheus setup does this every 30 seconds
by default, which can cause some rate limiting issues. This method can still
be very useful to get insights into the usage patterns of your runners. An
example of a Grafana dashboard can be found in Figure 7.7 Example of a
Grafana dashboard.

Figure 7.7 Example of a Grafana dashboard

88 General / GitHub En

~ System Health - 108-143-162-130

CPU - 108-143-162-130 Memory - 108-143-162-130

ystem w= softirq == steal

Load - 108-143-162-130 rocesses - 108-143-162-130

7.2.4 Using a monitoring solution

There are several monitoring solutions available that integrate with GitHub
Actions. DataDog has a paid GitHub integration that will pull information
from the GitHub API and give you insights into your GitHub workflows,
indicating how long a workflow run took, as well as the individual jobs and
steps. For more information see https://www.datadoghg.com/blog/datadog-
github-actions-ci-visibility/. One important metric it will show you is the
queue time of the jobs. The DataDog integration does not retrieve any metrics
on the runner level at the moment, like for example how many runners are
available / busy at a point in time. The recommendation is to look at the
queue time of your jobs, which is included in the DataDog integration.

This solution is also running on a cron schedule to retrieve the information
using the GitHub API and will not give you real-time information. You can
still learn a great deal of information from the usage patterns of you runners
from this setup. This is very helpful when you get started running GitHub
Action workflows at scale.

Alternatively, you can use a webhook at the organization or enterprise level
to send notifications of jobs getting queued, starting and completing into a
monitoring solution of your choice. This is the best solution for real-time
information being available. An example of the hook configuration can be

seen in Figure 7.8. The webhook can be sent anywhere, as long as GitHub
can reach that url. The payload of the webhook can be ingested by an
application like Azure Log Analytics, Splunk, or any other tool that can
visualize the JSON formatted data being send in. There is a Splunk App
available that, amongst other visualizations, gives you information about the
amount of workflows being triggered, as well as the job outcomes and
duration. You can find more information on the app here:
https://splunkbase.splunk.com/app/5596. The benefit of using the app is that
the queries have been prewritten and can give you a first overview quite fast.
The downside is that the out-of-the-box dashboards don’t go far enough to
properly manage your self-hosted runners. It does not show queue times for
example. Adding your own custom dashboards on the data is straightforward
if you are familiar with Splunk. The data that is used and the initial queries
can be taken from the existing dashboards and can then be the base of your
custom queries and alerts.

Figure 7.8 Configure a webhook to send information about jobs starting

Webhooks / Add webhook

We'll send a posT request to the URL below with details of any subscribed events. You can also specify which data format you'd like to receive
(JSON, x-www-form-urlencoded, etc). More information can be found in our developer documentation

Payload URL *
https://example.com/postrecei

Content type

application/x-www-form-urlencoded +

Secret

Which events would you like to trigger this webhook?
Just the push event.
O Send me everything.

® Let me select individual events.

Workflow jobs O Workflow runs
Workf ’ t Jorkf

Active

Add webhook

7.3 Runner utilization and capacity needs

When you start creating your own runners the need for defining the
capabilities for them will start to arise. Often, we see that people start with
rather simple runners: maybe a dual core processor and 2GB of RAM. This is
fine for most normal workflows, where you lint code, or build an application.
For some projects, these hardware specs are not enough to complete your
workload within a reasonable amount of time. If you are using modern
working practices like CI/CD (discussed in the next chapters), you want your
build validation to happen as fast as possible, so that the developers get fast
feedback. If they have to wait long for a build to complete, they will start
doing something else, which comes with the cost of context switching. Most
of the time you can shorten the time the developer has to wait by adding more
hardware capacity: give the runner more RAM or more CPU cores (or both).
This can significantly speed up build times and shorten the feedback cycle for
the developers. An example of making a multi-hour workflow job complete
faster and the hidden developer costs for it, can be found in this post from
GitHub: https://github.blog/2022-12-08-experiment-the-hidden-costs-of-

waiting-on-slow-build-times/.

There is no golden rule available for finding out how much compute power a
workflow job needs. You can monitor you runner environments for their
utilization, which will give you a hint if adding more power will be of any
help or not. If the entire job only uses 50% of your compute, then adding
more resources will probably not have any impact. But if the usage spikes
close to 90% utilization, then it might be worthwhile to try out a bigger
runner.

The same goes for jobs that execute on a runner with way too much power:
running them on a smaller runner will probably take almost as much time, but
frees up the larger runner for other workloads. It makes no sense to run a
code linting job that takes 30 seconds to run, execute on a big 64 core runner
with 32GB of RAM: that machine can probable be used more effectively.

Monitoring can be done by using your normal monitoring solutions in the
form of agents that are installed on the runners and they sent data to your
central monitoring server for reviewing after the fact. Depending on the

monitoring solution you can add additional data fields like the name of the
runner, repository name, and workflow. With this information you can
correlate the runner utilization to the workflow job that was executed.

Another option is to point your users to the telemetry action and use it in
their jobs: https://github.com/runforesight/workflow-telemetry-action. The
action will start logging information about step duration, CPU, RAM, disk
IO, and network 10. At the completion of the job the information will be
shown in MermaidJS charts in your workflow summary. An example of the
CPU Metrics can be seen in Figure 7.9 CPU utilization of the runner. This
action uses tracing of the metrics through NodelJS and therefor works across
Ubuntu, Windows, and macOS based runners. It does not work on container-
based jobs though.

Figure 7.9 CPU utilization of the runner

CPU Metrics

CPU Load (%)

15:44:20 15:44:30 15:44:40 15:44:50 15:45:00 154510 154520 154530 154540 154550 15:46:00 1546:10 15:46:20 15:46:30 15:46:40 15:46:50 15:47:00

Time

7.4 Monitoring network access

You need to be aware of what the runners are doing inside of the
environment you have setup for them. By default, the runners need access to
the internet to be able to download and run actions. If the action is based on a
container, that image will need to be downloaded as well. As most container
actions from the public marketplace use a local Dockerfile, this will need to

be built at runtime as well, with all the dependencies it needs. The default
setup of the runner also includes an auto-update mechanism, so the runner
will need internet access for that as well. If you are running GitHub Actions
against Enterprise Server, the runner updates will be downloaded from the
server itself.

The main reason to look at outgoing connections is for security purposes.
You want to be aware of what actions and scripts are doing on your runners
and see if that matches your expectations. For example: why would an action
that is intended to lint your code for guidelines, need to connect to a third-
party API endpoint? It would be weird if it did, as that does not match the
expectations of a linter. As an action is built on top of an ecosystem like npm,
attack vectors for the action are numerous. Therefor you need a way to
monitor and limit networking access on top of vetting the actions before they
are used by your end-users.

7.4.1 Monitor and limit network access

The runner service itself has no options for monitoring or limiting network
access. The whole setup assumes internet access is available, and that the
runner can always download the action repositories and all the necessary
dependencies. That means you will need to setup your own monitoring
solution. The options for this depend heavily on the platform and setup that is
chosen. If you run the runner on a Virtual Machine in a cloud environment,
you can setup networking monitoring and rules on that level. This will give
you some insights, but stopping outgoing connections can become more
cumbersome as the usage of your runners increases. Segmenting your runners
into different networking segments can be done by deploying them
differently and giving the runners labels that match the networking
capabilities. You can also use the runner groups to configure them for certain
repositories with only the access those repos need for their type of workloads.

Additionally, there are solutions of vendors like StepSecurity
(https://www.stepsecurity.io) that can help you with monitoring the outgoing
connections from your runners by installing an agent at runtime. That agent is
called ‘harden-runner’ and is free to use for public repositories. For private
repositories it is a paid product. The harden runner starts with an initial

testing phase to gather the connections being made by a job and logging those
connections to the Saa$S service of the product. After knowing and analyzing
the connections that are made, you can then add an allow list to the workflow
and lock down the connections it can make. The solution from StepSecurity
works by leveraging a custom Linux DNS setup and needs sudo rights. That
means it does not work on macOS or Windows runners. Container support is
also not present at the time of writing. There is also support for the ARC
setup where they leverage tooling on the Kubernetes cluster level, so that not
every workflow needs to install the harden runner by itself. This greatly
improves the usability for the end users. For the ARC support you do need to
have a paid license.

An example of configuring the harden-runner action to analyze the outgoing
network connections being made from the job can be found in Listing 7.3.
From running this workflow you will learn that the setup-terraform action
will download the binaries from https://releases.hashicorp.com, which is
expected. Next to that you will also learn that running terraform version
also makes an outgoing connection to https://checkpoint-api.hashicorp.com,
as it is also checking if there is a newer version to download and log a
warning if that is the case. The harden runner setup can then give you fine
grained control over the connections you want to allow to be made. Shown in
Listing 7.4 is an example where all outgoing connections will be blocked
(and logged), except for the endpoints in the allow-list. The code used for the
agent is written in Go and open sourced at https://github.com/step-

security/agent.

Listing 7.3 Configure harden-runner

name: harden runner demo
on:
workflow_dispatch:

jobs:
demo:
runs-on: ubuntu-latest
steps:
- name: Harden Runner
uses: step-security/harden-runner@v2.1.0
with:
egress-policy: audit # TODO: change to 'egress-policy:

- uses: actions/checkout@v3
- uses: hashicorp/setup-terraform@v2

- run: terraform version
Listing 7.4 Harden-runner with block policy

- name: Harden Runner
uses: step-security/harden-runner@v2.1.0
with:
egress-policy: block
allowed-enpoints: >
api.nuget.org:443
github.com:443

You can also use your own networking setup to limit the outgoing
connections from your runners. If you are using actions-runner-controller on
Kubernetes as described in Chapter 6, then it is possible to use egress control
using network policies around your runners to allow or deny certain traffic to
connect to the internet, or limit it to certain endpoints. Tools to look at for
this are for example Cilium and Calico.

If you host your runners in your own networking setup, it is possible to
segment the networks for the runners, and only configure certain endpoints to
be used. Having a pool of runners ready for each type, will create some
overhead as you need to have a warm pool of runners available for each
group. Next to that you need to handle scaling up and down for each pool
yourself.

7.4.2 Recommended setup

There is a tradeoff between being very restrictive for your runners and what
they are capable of doing in terms of connecting to external endpoints then
your GitHub environment. Connections back to GitHub have to be made in
any case, and next to that your users will want to use GitHub Actions and
download them from a marketplace.

Our recommendation is to use a declarative style in your workflows like for

example StepSecurity uses, and have the users specifically configure to
which endpoints they need to make connections to. This will prevent leaking
out data to third party endpoints without being aware of it. With the block
policy from StepSecurity, any extra connection that is made will be blocked
initially and it will be logged centrally for your security team to keep track of
new connections being requested. This will greatly improve your runners and
workflows security!

7.5 Internal billing for action usage

Self-hosted runners come with setup costs, hosting costs, as well as
maintenance costs. Even if you use them on GitHub Enterprise Cloud, the
usage for self-hosted runners is not included in the usage reports. It can be
very helpful to show teams how they have been using the runners over time
and make them more aware of the costs of having them online all the time.
Those costs can be split between hosting the machines as well as the amount
of energy used and thus CO2 they generate. Both aspects can be used to let
user think if they really need to use 5 jobs in parallel, or if it would be better
to run the same steps in sequence (and use less concurrent machines doing
S0).

For the usage aspects you can either use the information already available in
your monitoring tool (e.g., Splunk) and separate the information out per
repository or team. If you don’t have a monitoring tool in place, you can also
use the https://github.com/self-actuated/actions-usage tool. This uses the
GitHub Api to get the actions usage information per workflow, and get an
overview like the example in Figure 7.10 Action minutes overview report.
Most tools only call the GitHub API on the workflow level and calculate the
duration of the entire workflow. It is possible to do the same on the job level,
but that will not include extra information (like the used label for the job).
That is why most tools do not make the extra API calls to load that
information as well. This also means that it is harder to make the split
between GitHub hosted and self-hosted runners, if you mix these in the same
repository or workflow! You could take the extra step of getting the
information on the job level, as that will include the commit SHA of the
workflow definition. You can then download that version of the workflow
and parse the definition yourself.

Figure 7.10 Action minutes overview report

228 27
11

14 12

When you have the action minutes used per repository, you can calculate the
price of the runs by multiplying the minutes with a predefined cost. Combine
that with the used network traffic and you have a more complete picture of all
the things the users are doing in their repositories and workflows.

Rolling up the repositories can be done to a team level or any other level if
you add topics to the repository and use that for slicing the information into
groups. Showing this information in for example a monthly report or in a
dashboard, can help the users to become more aware of what they are actually
doing in their workflows. We have seen examples where a repository of
300MB was cloned 4 times in the same workflow file, to get seven lines of
shell script and execute it. The seven lines of script where in total 11 bytes.
By doing a shallow clone of only the script, we saved 1.2GB of network
traffic in every single workflow run (this workflow was used everywhere!).

7.6 Summary

In this chapter we have seen:

e How to monitor your runners for availability and how they are being
used.

e Using the right size of runners and how to report back this information
to your end users.

e Runners can be configured to only be used by certain repositories, by
placing them into runner groups.

e Runners can be moved between runner groups, but can only be part of a
single group.

Monitoring you self-hosted runners is important to check if there are
enough runners available for your users.

Even by using scaling solutions, you still need to monitor for scaling
actions, to see if you’re not scaling in and out constantly, or if you are
scaling up fast enough.

Getting information out of GitHub on how your repositories are using
the runners is not available out of the box. Existing open source
solutions have their pro’s and con’s. They can be used to get started
loading the information, but more specific information like runner labels
can be needed to have a full overview.

Make the use of reporting back the usage information to your users to
make them thing about how they are using your runners: should they
really clone the repo every time for running a simple script, or can this
be done more intelligently?

8 Continuous Integration (CI)

This chapter covers

Achieving fast feedback with Continuous Integration (CI)
Differentiating different types of integration workflows

Defining the generic set of steps of every CI workflow

Ensuring the integrity of the artifacts produced

Creating a release that can trigger your Continuous Delivery (CD)
workflows

e Setting up a CI workflow that prepares the deployment of a sample
application

Continuous integration (CI) is a DevOps practice where you regularly merge
code changes into the central repository and where automated builds and tests
are run to check the correctness and quality of the code. CI aims to provide
rapid feedback and identify and correct defects as soon as possible. CI relies
on the source code version control system to trigger builds and tests at every
commit.

CI is comprised of a set of steps that delivers the output artifacts we need to
run a system in production. Which set of steps are required depends on the
programming language and tools you are using and the platforms you are
targeting with your product. In this chapter, we will lay out the generic set of
steps each Continuous Integration process typically entails and how you can
setup GitHub actions to trigger on each commit and deliver this as a set of
artifacts that can be picked up in a subsequent process of Continuous
Delivery (CD), where you deploy the product to preferably a production
environment. CD is covered in Chapter 9, Continuous Deployment (CD).

8.1 GloboTicket, a Sample Application

In the next paragraphs, I will guide you on how you can build an application.
We will cover how we will deploy this application to production in Chapter

9.In order to give some real-world examples of how you can create a CI and
CD workflow, we will use an application written in C# and deployed to the
Azure Cloud. We picked a solution that can be deployed to a Kubernetes
cluster since that is very common these days. Remember, the application is
used to illustrate the concepts, and all steps and concepts we use to build and
deploy an application to the cloud are applicable to any piece of software you
have yourself. With GitHub actions, you can deploy any application to any
infrastructure. The architectural diagram for the application is visualized in
Figure 8.1. You see, we have a web application that shows the front end of
the application, which is a web app. The application uses two API’s. One is
to retrieve the tickets that can be sold (Catalog), and the other is to register
the orders that have been placed (ordering).

Figure 8.1 globoticket architecture.

GloboTicket Shop Architecture

4)

G g AP e 7
Get catalog items | -
Grorssssnstcccns 1 Event Catalog S =
- =0
O VU 7 gz
ASP.NET Events
Core MVC
----- APl ===~
Order Received H) :
--------------- Ordering H
. L

K GloboTicket /

The moment we deploy this application, you should see a website that shows
you tickets you can buy to attend a concert. The deployed application is
shown in Figure 8.2.

Figure 8.2 Globoticket home page

@®osomicker

$135

i

You can find the sample application yourself at the following location:
https://github.com/ GitHubA ctionsInAction/Globoticket

The application is based on a microservices architecture and requires three
containers to be deployed to a Kubernetes cluster.

8.2 Why Continuous Integration

The first mention of Continuous Integration dates to 1989 from a computer
Software & Applications conference in Orlando. (Proceedings of the
Thirteenth Annual International Computer Software & Applications
Conference. Orlando, Florida. pp. 552—-558.
doi:10.1109/CMPSAC.1989.65147) In the 90’s software methodologies like
Extreme programming also experimented with this concept. It really picked
up popularity in the early 2000’s right after the Agile Manifesto got traction.
The agile manifesto is based on twelve principles, and the first principle
states: “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.”
(http://agilemanifesto.org/principles.html) To get into the state of continuous
delivery, we first need to get into a state where we ensure our codebase is
always in a so-called “buildable state”. Where in the past, we built our
codebase infrequently and had to take a significant amount of time to
integrate changes of many team members who committed changes over a
period of time. When you implement CI you spend way less time on

integrating the software with the changes of others, and this ultimately
reduces the waste that is spent in resolving code change conflicts. So, the
bottom line is that we use CI to reduce waste in our software delivery process
by integrating the software at each commit to the central repository instead of
spending a lot of time fixing all integrations that would otherwise be
accumulated over time.

8.3 Types of CI

Because we strive to integrate the software as soon as possible on each
commit to the central repository, we also distinguish different types of CI.
Each of these types of CI strives for different goals as part of the final goal of
moving software to production as fast as possible. We can run these different
types of CI in parallel with each other to produce results much faster and give
the developer feedback as soon as possible. While working with many
different companies, we see there is a common pattern in categories of
workflows. First, you have the category that has the goal to create feedback
on the integration as soon as possible. This is the primary reason for CI. The
workflow needs to be as fast as possible. The second category has various
goals that differ from this fast feedback CI. This can be the creation of
packages for the final delivery of the software, it can be reporting on the
quality of the software, it can be providing insights in security, etc. Because
they have a different purpose, you can trigger them less frequently and can
have slower response times regarding the feedback to the developers. This is
represented in Figure 8.3.

Figure 8.3 Different types of CI

Fast feedback Cl Category Additional ClI Flows Category

Quality Control

Integration
- Packaging

Security Testing

Let’s have a deeper look at when we would trigger each type of workflow
and what the goal of each type of workflow actually is. For this we will refer
to the way we work with our code repository with a specific branch strategy.
The strategy chosen is the most popular strategy that is known by the name
GitHub Flow.

8.3.1 Branching strategy GitHub Flow

GitHub flow is the advertised way of working when you use git and deliver a
software product the DevOps way. With GitHub Flow, you create a branch
with the name feature/name-of-feature, and you commit your changes to that
branch. When you think your feature is complete, you open a pull request
where you solicit feedback and have the peer review of your code. After
some discussion and final approval from your team members, the pull request
is accepted, and the change is merged into the main branch and then deployed
to production. This workflow is visualized in Figure 8.4:

Figure 8.4 Branching Strategy GitHub Flow

GitHub flow

Main Branch

Commit changes Submit Pull Request Discuss proposed changes

P Ve Fat Pt O >
" A" v v v v

o]

We can set up GitHub in such a way that you protect the main branch from
any direct commits and that every change needs to come from a pull request.
This way of working is encouraged since it gives a great way of controlling
the quality of what goes into the main branch and you also enforce a four-
eyes principle, which is needed in most compliance frameworks. Using this
way of working also enables you to comply with regulations in industries
with heavy governance. Enforcing this flow also enables you to set up action
workflows that can receive very fast feedback on the work you do on the
feature branch, and it ensures there is always a stable main branch that is
always in a deployable state. In the remainder of this chapter, we describe
what types of CI you can distinguish, and it can save you a lot of time and
compute resources when you apply the various action workflows to particular
steps in the GitHub Flow process. We assume GitHub Flow for the remainder
of the book since it is the most used way of working nowadays. This way, all
the examples we provide can be used immediately without many
modifications.

8.3.2 CI for Integration

This CI process strives for validation if the software you just committed to
the repo can be integrated into the source code. This entails compiling the
code to the type of artifact you need for production. The integration CI strives
to provide results as fast as possible, and you should strive for swift feedback
to the developer. If failures occur, this implies the code is not integrated, and
the developer typically takes action immediately to fix the integration
problems. Errors that occur here are often of the type of compiler errors and
warnings. This workflow is normally triggered on the feature branch in
GitHub flow. The workflow on the main branch often entails more steps, to
ensure complete validation of all we need before we want to deploy.

8.3.3 CI for Quality Control

This process validates the quality of the source code that was committed.
This involves simple quality control checks like linting of the source code for
readability, checking if the code has multiple duplications of the code, or if
the code itself has not passed a set of maintainability metrics. There are also
some more involved quality control checks, like validation if the code is

written securely and if the code delivers the functionality based on automated
tests. In this process, you can include a variety of tools that will give you
insights into the quality of the code currently in your source code repository.
Tools you can think of that are typically part of a CI build for quality control
are Linting Tools to check the syntax of the code against a set of rules, Code
metric tools like SonarQube that provide insights into maintainability and
other code smells, Unit testing tools that validate the overall functional
workings of the code base, and security tools that can validate if your code
might be vulnerable to all kinds of known ways to attack software. Typically,
these builds take longer to complete and often result in work that is placed
back on the backlog to fix in a later stage of the development process. This
workflow is often triggered when you create a pull request, so it provides
input for the reviewers and helps ensure quality in the main branch.

8.3.4 CI for Security Testing

This process is there to check if the software that is written is secure by
default. It uses tools we know as Static Application Security Testing (SAST)
and Dynamic Application Security Testing tools (DAST). GitHub itself also
provides these tools as part of the tool suite and they are fully integrated with
GitHub Actions and the user interface on the web. When you have GitHub
Enterprise, you can buy the rights to use the tools as an add-on capability.
This product is called Advanced Security, which is free for public
repositories. With Advanced security, you can create a security testing
workflow that does advanced scanning of the software on known
vulnerabilities that might have been introduced in your own software. You
can also, of course, use any other tools you can find in the market that can
help you do security scanning on your software. Well-known vendors here
are Snyk, Black Duck, and Mend. This CI type is also triggered at the
moment of a pull request, so we ensure we don’t bring new security
vulnerabilities to the main branch. It also should be part of a regular schedule
on the main branch since new vulnerabilities emerge in the software
ecosystem without us needing to change our code. Having this on a schedule
on the main branch ensures we always know the potential security issues that
we ship to production. We also can decide to block releasing the software as
part of this action workflow to ensure vulnerabilities of a certain severity
level are always mitigated before release.

8.3.5 CI for Packaging

This process aims to produce the final artifacts to deliver the software to
production. Here we can target multiple platforms and create builds that are
optimized for production purposes. While previous builds can, for example,
still include debug type of builds, these builds provide the clean artifacts we
move to production. Removing debug information is often forgotten and can
besides creating a larger size artifact also create a potential security risk. The
end result of this build is that we get the final artifacts delivered to either an
artifact store, e.g., the package management store, the container registry, or
upload the artifacts to GitHub actions storage so that it can be picked up at a
later moment by the Continuous Delivery actions workflow.

8.4 Generic CI Workflow Steps

Every CI Workflow has the same set of generic steps.

e Get the sources

e Building sources into artifacts and some initial checks that are very fast
to execute.

e Publish results.

Let’s have a look at these steps and see how we can optimize them for each
type of CIL.

8.4.1 Getting the Sources

You get the sources from your repo with the action actions/checkout. The
action to get sources can also be tuned to what you actually need to get from
the source repository. To speed up your workflows, it often makes a lot of
sense not to fully clone the repository but get only the tip of the main branch.
This can speed up the operation significantly, especially for repositories with
a longer lifespan. You can also control which branches are retrieved and the
depth of the repository you clone. To show an example, I created listing 8.1,
where we only retrieve the tip of the main branch since this is often the only
data you need to see, for example, if the source code compiles and integrates
with what is in the current repository.

Listing 8.1 Checkout action

- uses: actions/checkout@v3
with:
ref: 'main' #not naming the ref will fetch the default branch
fetch-depth: '1' #1 is default and 0 fetches the full depth o

If you want to get the repository with the full history, you can set the property
fetch-depth to 0, this will get you the full history of the repo. This is only
needed when you are going to traverse the history of the repo as part of the
next steps in your CI. Sometimes other actions might need this, so it is good
to know it is possible with only a simple change. The default for fetch-
depthis 0.

8.4.2 Building the Sources Into Artifacts

Once you have the sources available, you can take steps to build the source
into artifacts that you need to validate if the software is doing what it is
supposed to do. A common practice is that you compile the sources into
binary files or create container images that can be used to deploy the
application.

We use the sample application to give you a concrete example of the next
step in your workflow. This application first needs to be compiled, then we
run the basic unit tests to validate the basic behavior of the application, after
which we create container images that can be used for deployment.

Since the sample application is a .NET Core application, the step to compile
the sources requires using a tool called the dotnet command line interface.
Some tools are already installed on the GitHub hosted action runners. The
dotnet tooling is a good example of this. To get a full list of the tools installed
on the runners, visit the following location: https://github.com/actions/runner-
images, as described in chapter 6. Listing 8.2 shows how to compile the
.NET code into binaries.

Listing 8.2 Compile .NET core code

- name: Setup .NET
uses: actions/setup-dotnet@v3

with:
dotnet-version: 6.0.Xx

- name: Restore dependencies
run: dotnet restore

- name: Build
run: dotnet build --no-restore

The code example in Listing 8.3 only builds the code. The sample application
will eventually run on a Kubernetes Infrastructure, so we must create a
container image. Now, we can make a choice here always to build a container
image, but this would significantly slow down the workflow compared to a
simple build of the C# files in the project.

If we go back to the GitHub flow approach of branching, we can also divert
this and make this part of the processing of the pull request. That way, you
can suffice with only fast feedback if the sources are in good shape. The
following workflow you need has a different purpose: to produce the required
artifacts for us to deploy to an environment and validate if the code adheres
to coding standards, license checks, etc., before it is accepted into the main
branch. This is not needed for your feature branches, but only when you
merge to the main branch. You can trigger the next workflow the moment
you create the pull request.

Note

You might think this is a bad idea if your compile step takes a few hours
because you are building a large code base. When Actions started, this was
true, but nowadays, we have a caching option where we can decide what the
cache key will be. When you share the key between jobs, you can use the
cached artifacts and nicely separate the concerns of CI and the steps to create
the final output for delivery. More on caching can be found in Chapter 12

8.4.3 Testing the Artifacts

The tests we run during the CI for Validation only involve tests that can show
if the integration of the sources is successful. Preferably this would only
involve the tests that can verify the impact of the change. Often this is not

easy to determine, and the most common tests you run in this step are the
Unit Tests that are part of the sources you are building. In our case, this is
.NET, and we can use the dotnet command line to kick off the tests. The
result of the test run should indicate success or failure, which we can use in
our other steps in the workflow as an indicator if we should continue our run.
Any test tool you use can set the workflow state to failure by producing an
exit status code other than 0.

For example, you can run the unit tests that are part of the sample application
by running the dotnet command line dotnet test. It will produce an exit
code >0, indicating the number of tests that have failed. If all tests pass, the
command line will return 0, indicating success.

Listing 8.3 Use of command line to run tests

- name: Test
run: dotnet test --no-build --verbosity normal

8.4.4 Test Result Reporting

By default, GitHub has no other way than the console output built-in
reporting if it comes to test results. But especially when tests fail, you like to
see a report of which test failed and which was successful. You can still get
the data in the final workflow report by adding information to the job
summary description. This is done by outputting data to the output variable
available in your workflow run. It is called $GITHUB_STEP_SUMMARY.

You get things in the result summary by pushing any text in markdown
format. This is then rendered in the output report of the job.

In Listing 8.4 you can see an example of outputting text to this variable and
the results that will be outputted to the job results page.

Listing 8.4 Using SGITHUB_STEP_SUMMARY to visualize test result output

name: "chapter 08: Generate job output using markdown"
on:

workflow_dispatch:
jobs:

build:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Generate markdown
run: |
echo "## Test results" >> "$GITHUB_STEP_SUMMARY"
echo "| **Test Name** | **Result**|" >> "$GITHUB_STEP_S

echo "|--|--]" >> "$GITHUB_STEP_SUMMARY"

echo "| validate numbers are > 0 |:white_check_mark: |"
echo "| validate numbers are < 10 |:white_check_mark: |
echo "| validate numbers are odd |:x: |" >> "$GITHUB_ST
echo "| validate numbers are even|:white_check_mark: |"

This will result in a summary that contains a nicely formatted table with the
results. This is shown in Figure 8.5.

Figure 8.5 Summary results in markdown

I @ Stnenary Generate-job-output-using-markdown.yml
Jobs o : o
@ build
N @ build
Run details
& Usage -
<) Workflow file =2

build summary

Test results

Test Name Result
validate numbers are > 0
validate numbers are < 10
validate numbers are odd)4

validate numbers are even

There are various test tools available for different ecosystems. Some of them
produce markdown reports that you can integrate with the workflow by

utilizing the GitHub step summary and pushing the data of such a file to this
output. At the end of this chapter, we will show you how this is done with a
concrete example of using a markdown logger that can be integrated with the
dotnet tools.

8.4.5 The Use of Containers for Jobs

When we showed how to build sources into deployable artifacts, we could
also have picked an alternative way to run those tools. Instead of relying on
available tools on the GitHub runners or installing it during the run, you can
also pick a container image yourself that you use to run your tools. You can
select any image from the docker hub, refer to your container registry, and
retrieve your container image to run a build. You only need to specify the
container and set up a mounted volume to point to the sources you get from
GitHub and where you place the produced output. Using container images
versus relying on the available tools on the runners is a matter of preference.
This can also sometimes be a way to circumvent issues with licensing of tools
that require elaborate setup and setting licensing keys. One other advantage
might be that you can also run the build locally with a docker command and
don’t need a separate setup for local work. You also have full control over the
history. Even 10 years later, you are able to build the sources again as long as
you don’t delete the image.

Note

Since the container image you want to use needs to be downloaded, you can
incur some slowdown at the start of the workflow.

You can also use images that come from a private repository. For this, you do
need to provide the location and credentials to pull the image from the
runner. In the listing below, you can see the exact same steps for how to build
the dotnet application, but now it runs from a container image hosted on
docker hub. You can execute actions like you are used to in any action
workflow, the big difference is that you don’t need to set up all kinds of tools
and configuration, you can start directly with the task at hand.

As an example, you can see in Listing 8.5 the exact same workflow as

previously shown to build the frontend of the globoticket application using
the dotnet tools. Using the available Microsoft SDK container image saves
you from installing and configuring the right tools and you can start the build
process immediately.

Listing 8.5 Using a container for jobs

name: Build inside container
on:
push:
branches: [main]
workflow_dispatch:
jobs:
container-build-job:
runs-on: ubuntu-latest
container:
image: mcr.microsoft.com/dotnet/sdk:6.0
steps:
- uses: actions/checkout@v3
- name: Build
run: dotnet build
- name: Test
run: dotnet test --no-build --verbosity normal

8.4.6 Multiple Workflows vs. Multiple Jobs, What to Choose?

An action workflow always has one or more jobs. These jobs are run in
parallel and can have dependencies with other jobs. When a job is dependent
on another job, these jobs are executed in sequence. A workflow is contained
in one yaml file, and you can have more jobs in one file. You can create
multiple workflows for a repository.

When should you choose a new workflow or a new job to do some work?

In most examples you see on the web and in examples given by GitHub itself,
you often see multiple jobs in one file. While this is convenient in terms of
keeping everything in one place, it also creates some issues.

The main issue is who will maintain the workflow file and who gets to
review this file before the change is accepted? Especially in highly regulated
organizations, there needs to be a strict separation of duties when making

changes that can impact the deployment to a production environment.

Another question is, what changes when I make changes to my software?
When I make changes to the source code and its dependencies, this should
only impact a small part of the system, not everything you have in terms of
automation.

You can even boil this down to a very commonly used term in software
development and part of the Solid Principles. In Solid, the ‘S’ stands for
Single Responsibility, and we use this so we can keep changes to a minimum
and make maintenance less hard and brittle over time. If you keep the work
that needs to be done simple and you have clearly defined reasons when you
want to run a particular workflow that has specific goals, you will end up
with some more workflow files, that all have a single job. When you combine
this with a well-defined branching strategy, you can very nicely use the
different event types that we have in the development cycle as the moments
you want to trigger a particular piece of automation.

When we come to Continuous Delivery, we often need to run automation on
different machines. A job also has the ability to run on another machine. For
this reason, it does make total sense to have multiple jobs, since each job can
then execute on another machine. In this case, the jobs are a means to
distribute the work, but the type of work is exactly the same, as we will see in
the next chapter. Based on this, we propose a set of small workflow files with
a specific purpose or goal. It keeps the cognitive load during maintenance on
those files low, the group of people that need to review is also specific from
an audit perspective. Please treat this as guidance, not a must-follow rule. If
there is a reason to have multiple jobs, then please do so.

8.4.7 Parallel Execution of Jobs

In some situations, you might want to run a set of jobs in parallel that do the
same thing but only with a few other parameters. An example of this would
be building artifacts for various platforms like arm and x86. For this we can
use the concept of matrix job strategy. With the matrix strategy you can use
different variables to build the same code in a single job definition for

different platforms and tooling. In Listing 8.6 you can find an example of a

matrix strategy that builds the code on two platforms with three different
node versions.

Listing 8.6 Using Matrix for parallel execution of Jobs

jobs:
build:
strategy:
matrix:
dotnet-version: [6, 7]
processor: [x86, arm]

In this example, we would start parallel jobs for the following builds:

¢ dotnet version 6, processor x86
e dotnet version 6, processor arm
¢ dotnet version 7, processor arm
e dotnet version 7, processor x86

8.5 Preparing for Deployment

In your CI workflow that creates the final artifacts, you need to define where
you want to store them for the next phase in the process, which is the
Continuous Delivery phase. There are a few things that are important when
we are preparing for release. We want to ensure we can trace back which
change was made, by whom and how we can track this back from the
environment we deployed to. We also want to ensure we use proper version
numbering, and we want to ensure you can deploy the created artifacts in the
most convenient way to the various environments.

Let’s dive a bit deeper into traceability, versioning, and creating a GitHub
Release. After we create a release, we then use GitHub package management
to store our artifacts in GitHub Package management or the GitHub
Container Registry.

8.5.1 Traceability of Source to Artifacts

When you work in more compliance-heavy organizations, you need to be

able to proof a certain change in the source code is tied to a requirement and
that this particular source change is deployed in an environment. With
GitHub you can make use of the fact that not only the actions are integrated
with your source repository, but GitHub also provides ways to track
requirements, defects, feature requests and more. This is all done with the use
of GitHub issues.

When you commit source code to the repository, you can e.g. enforce you
want the code to be validated before it is committed. For this Pull Requests
are used and you can enforce them to be used by setting a branch policy. In
your guidelines for approving a pull request, you can check that at least one
issue is attached to the pull request so there is a traceable history to the
requirement that was implemented with the code change. Unfortunately,
branch policies don’t have a way to enforce the required traceability to issues.
So, you need to have the reviewer check themselves or create an action
yourself to do this verification. Setting the branch policy is crucial here. You
can set branch policies using the settings page, as shown in Figure 8.6.

Figure 8.6 Branch Protection Rules

Branch protection rule
Branch name pattern *

main

Applies to 1 branch

main

Protect matching branches

[JJ Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull request before they can be merged intc

a branch that matches this rule

() Require status checks to pass before merging
“hoose which status checks must pass before branches can be merged into a branch that matches this rule. When enabled, commits

must first be pushed to another branch, then merged or pushed directly to a branch that matches this rule after status checks have

[J Require conversation resolution before merging
When enabled, all conversations on code must be resolved before a pull request can be merged into a branch that matches this rule

earn more about requiring conversation completion before mergin

]

[Require signed commits

ommits pushed to matching branches must have verified signatures

[J Require linear history
Pre merge commits from being pushed to matching branches

When you use a pull request to merge the changes into the main branch, you
can ensure there is always traceability to the requirements and that there is a
four-eyes principle in place, which is a requirement in almost any governance
framework you use for your compliance.

Figure 8.7 Tracing back to requirements

Update site.css #5

vriesmarcel merged ymmits into main from feature/featurel (0J on Jul 1
Q) Conversation 0 < nm 2 [} Checks 1 [® Files changed 2
- vriesmarcel commented on Jun 24, 2023 Owner **=
Lo
fixes #2
® (&1
E3 vriesmarcel added 2 ¢
"
o g Vi X
™
< £ Vi 1) v o
0 2 vriesmarcel merged commit 6d7b6b8 into main on Jul 1 View details Revert

P @ vriesmarcel deleted the featu eaturel bra onths agc Restore branch

With these comments in the commit messages, we now make it possible to
track any change back to a requirement or change request defined as an issue.

You can see in Figure 8.7 how you can refer in a pull request to an issue, to
ensure we trace the changes back to the requirement.

8.5.2 Ensuring Delivery Integrity, the SBOM

With the attack on SolarWinds
(https://msrc.microsoft.com/blog/2020/12/december-21st-2020-solorigate-
resource-center/), our industry became more aware of a new way of attacking
our customers: via the CI/CD infrastructure we use as developers. This now
imposes a new burden on us to validate if the software we created is actually
the software we expected to deliver and validate if everything we used during
the creation of the software was not tampered with. In May 2021, the
president of the United States even ordered a presidential Executive Order
that states software companies must help improve the nation’s cyber security.
This entails a way to validate the integrity of the software in production. You
can find the executive order here https://www.nist.gov/itl/executive-order-
14028-improving-nations-cybersecurity When we are running workflows that
create artifacts, we want to ensure the integrity of those artifacts to ensure
they are not tampered with after or during creation. This entails a set of

things, including the individual validation of the files used during creation as
well as the assertation that the tools we used are not compromised.

This requires multiple layers of validation for each workflow. We need to
check which actions we used with a workflow, and we need to check where
the files we used are coming from. Also, when we produce an artifact that we
will use later in our Delivery workflow, we need a way to transfer those files
securely and easily. In section 8.5 Preparing for Deployment we will go into
more detail about where you can store the artifacts before you start the
deployment.

We also need to ensure this list of items we used while running a workflow.
For this, the industry has defined a set of standards to create a so-called “bill
of materials”. In full this is the Software Bill of Materials, in short called the
SBOM. You can generate an SBOM in several ways. One for your repository
dependencies. This one can be retrieved from the user interface when you go
to the dependencies overview.

When you want to have an SBOM every time you create software artifacts,
then you are better off using a GitHub action and making this part of your
standard workflow that prepares artifacts before deployment. With GitHub
Actions, you can create an SBOM by using several actions that are available
in the marketplace. In listing 8.7 you can see how to use the Microsoft
SBOM generator action that generates an SBOM that is compliant with the
NTIA specifications and delivers this in a SPDX format. SPDX is Software
Package Data eXchange format. This is the open standard for communicating
software bill of material information. It is good to note there are two
competing standards, CycloneDX and SPDX. Microsoft and GitHub have
chosen to use the SPDX standard.

Listing 8.7 Generate an SBOM using the Microsoft SBOM tool

name: Generate SBOM
run: |
curl -Lo $RUNNER_TEMP/sbom-tool https://github.com/micros
chmod +x $RUNNER_TEMP/sbom-tool
$RUNNER_TEMP/sbom-tool generate -b ./buildOutput -bc . -p

Note that the example only shows you how to generate the SBOM. Normally

you also want to use this file as part of your release and you should upload it
to the release as an artifact that is part of the release.

8.5.3 Versioning

One important part about releasing software that is often forgotten or an
afterthought is the versioning of what you release. There are many ways we
are creating version numbers in our industry, and in the last few years, you
might have seen the industry is moving to a more standardized versioning.
Two of the most used types of versioning are named semantic versioning and
calendar versioning.

Semantic versioning

As the name implies, it means that we adhere to a set of semantics when we
bump a version number. The basic idea behind semantic versioning is that
based on the version number, you can tell if a new version of a package,
library, image, or artifact is backward compatible. The thinking behind this
and all the details can be found here: https://semver.org.

In a nutshell, the versioning works as follows:
Given a version number MAJOR.MINOR.PATCH, increment the:

e MAJOR version when you make incompatible API changes

e MINOR version when you add functionality in a backward-compatible
manner

e PATCH version when you make backward-compatible bug fixes

If you want the version number to be calculated based on your branches, you
can use an action called GitVversion (see https://gitversion.net/). GitVersion
is part of the GitTools action (see
https://github.com/marketplace/actions/gittools). GitVersion looks at your
git history and works out the Semantic Version of the commit being built. For
GitVersion to function properly, you have to perform a so-called un-shallow
clone. You do this by adding the fetch-depth parameter to the checkout action
and setting it to 0. Next, install GitVersion and run the execute action. Set an

id if you want to get details of the semantic version. This is shown in Listing
8.8:

Listing 8.8 Use of GitVersion action

steps:
- uses: actions/checkout@v3
with: fetch-depth: 0

- name: Install GitVersion
uses: gittools/actions/gitversion/setup@v0.9.7
with:
versionSpec: '5.x'

- name: Determine Version
id: gitversion
uses: gittools/actions/gitversion/execute@v0.9.7

The calculated final semantic version number is stored as the environment
variable $SGITVERSION_SEMVER. You can use this, for example, as the
input for the version of a package that you publish.

If you need to access details from GitVersion (such as major, minor, or
patch), you can access them as output parameters of the gitversion task:

Listing 8.9 Use of version number by referring previous step

- name: Display GitVersion outputs
run: | echo "Major: ${{ steps.gitversion.outputs.major }}"

It is also possible with Semantic versioning to indicate the quality of the build
as part of the version number. You do this on pre-releases or alpha versions
of a soon to be stable new version. It is common to use for this the notation:
v1.0.0-preorvi.0.0-alpha

Calendar versioning

As this name implies the version number is generated based on the calendar
and the moment the workflow is executed. Depending on the release
frequency of your application you can choose to include the date up until the

minute of release, or simply keep it to the date of today. In Listing 8.10 you
can see an example of how we can generate a calendar-based version. If we
assume it is May 29 in the year 2023 then the output in the variable is 2023-
05-29 and can be used in subsequent parts of the workflow by referencing the
variable $BUILD_VERSION using the environment context.

Listing 8.10 Use of Calendar action

- name: Set Release Version
run: echo "BUILD_VERSION=$(date --rfc-3339=date)" >> $GITHUB_EN

- name: use the variable
run: echo ${{ env.BUILD_VERSION }}

8.5.4 Testing for Security with Container Scanning

In general, when you prepare artifacts that are going to be deployed to a
production environment, you like them to be scanned if they are secure.
When building containers, we can use various tools to run a validation if
there are known vulnerabilities in the container image. I like to use the open-
source tool provided by aqua security called Trivy. You can add Trivy
scanning to your workflow by adding one additional step. In Listing 8.11,
you can see how to use this action to scan your image and fail when it finds a
vulnerability with the severity of Critical or High.

Listing 8.11 Adding container image scanning step

- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
with:
image-ref: '${{env.containerRegistry}}/${{env.1imageReposi
format: 'table'
severity: 'CRITICAL,HIGH'
exit-code: '1'

By adding this extra step, your workflow will fail when a vulnerability is
found in the container image preventing you from pushing the image to the
image registry. A best practice is always to scan before you push your image
to the registry, preventing it from ever getting into an environment and hence
preventing you from being breached. Adding security as early as possible in

the development cycle is often referred to as shifting left.

8.5.5 Using GitHub Package Management and Container

Registry

Many organizations use artifact repositories to keep the artifacts in a safe
place where we can pull them from when we move to the deployment phase.
GitHub also provides capabilities to act as an artifact repository. This is
called GitHub packages and is available for multiple package management
solutions. You can find the supported artifacts in table 8.1.

Table 8.1 Supported Artifacts

Language

Description

Package format

Package
client

JavaScript

Node package
manager

package.json

npm

Ruby

RubyGems
package manager

Gemfile

gem

Java

Apache Maven
project
management and
comprehension
tool

pom.xml

mvin

Java

Gradle build
automation tool
for Java

build.gradle or build.gradle.kts

gradle

NET

NuGet package
management for
NET

nupkg

dotnet CLI

N/A

Docker container
management

Dockerfile

Docker

As the last step in your workflow, you can use the package manager that
matches the ecosystem you are working on and push it to the GitHub Artifact

registry.

You publish packages when you are building libraries that are used between
projects or when you have a shared solution between various components or
microservices. Packages are published and from there on used by other CI
workflows. When you publish a package to an ecosystem like npm, NuGet or
RubyGemis it is a good practice to also create a release when you publish.
This way it is clear you released a new version of your package, so others can
pick it up. Creating a release is described further down in this chapter, since it
can also be a source to start a deployment. You find more about creating a
release in paragraph 5.5.8

GitHub also provides a container registry where you can store container
images you create during your CI workflows. To authenticate against the
package management capability, we need to extend our authorization token to
include write permissions on packages. In listing 8.12 you can see how to set
these permissions and some examples of how to push a container image to
the GitHub packages endpoint.

Listing 8.12 creating a container image and upload to GitHub

name: "chapter 08: create-container-and-push-frontend"
permissions:

actions: write

packages: write

contents: read

on:
push:
branches: ["main"]
paths:
- 'frontend/**'

workflow_dispatch:

jobs:
build:

uses: ./.github/workflows/create-container-and-push.yml

with:
imageRepository: 'frontend'
containerRegistry: 'ghcr.io/githubactionsinaction'
dockerfilePath: 'frontend/Dockerfile'
namespace: 'globoticket'

secrets:
registryPassword: '${{ secrets.EXTENDED_ACCESSTOKEN }}'

Because we need to create a container image for every service we have in our
application, we used a reusable workflow that actually builds the container.
You see the reference to uses: ./.github/workflows/create-container-
and-push.yml; this refers to the reusable action workflow that is shown in
listing 8.13

Listing 8.13 reusable workflow that creates and pushes the container

name: "chapter 08: create-container-and-push"
permissions:
actions: write
packages: write
contents: read
on:
#define the input parameters for this workflow used in the work
workflow_call:
inputs:
imageRepository:
required: true
type: string
containerRegistry:
required: true
type: string
dockerfilePath:
required: true
type: string
namespace:
required: true
type: string
secrets:
registryPassword:
required: true
the input parameters are also defined for a manual trigger
workflow_dispatch:
inputs:
imageRepository:
required: true
type: string
default: 'frontend'
containerRegistry:
required: true
type: string
default: 'ghcr.io/vriesmarcel'
dockerfilePath:
required: true

type: string
default: 'frontend/Dockerfile'

namespace:

jobs:
build:

required: true
type: string
default: 'globoticket'

we check out the sources, determine the version number and
login to the container registry

runs-on: ubuntu-latest

steps:

name: Checkout repository
uses: actions/checkout@v3
with:

fetch-depth: 0

name: Install GitVersion
uses: gittools/actions/gitversion/setup@v0.10.2
with:

versionSpec: '5.x'

name: Determine Version
id: gitversion
uses: gittools/actions/gitversion/execute@v0.10.2

name: Login to GitHUb
uses: docker/login-action@v2
with:

registry: ghcr.io

username: ${{ github.actor }}

password: ${{ secrets.registryPassword }}
we use docker buildx to create a builder instance and the
build and push the image
name: select docker driver
run: |

docker buildx create --use --driver=docker-container
we use this action to determine the labels for the image
name: Docker meta

id: meta
uses: docker/metadata-action@v4
with:

images: actions-with-actions/globoticket
build and push the image to the container registry
name: Build and push
uses: docker/build-push-action@v4
with:

context: ${{github.workspace}}

file: ${{inputs.dockerfilePath}}

push: true

tags: ${{inputs.containerRegistry}}/${{inputs.imageRe
cache-from: type=gha

cache-to: type=gha, mode=max

labels: ${{steps.meta.outputs.labels}}

You can see in the reusable action workflow that we push the resulting
artifact to the GitHub artifact registry. You can do this in a similar way if you
are pushing Packages that are from any of the supported package managers.
When Pushing a package you also use the GitHub Token to authenticate
against the package registry.

Linking the package to the repo

It is important to note that you need to link the package that you publish to
the repository. Linking it back to the source repository enables it to also send
events that you can use to trigger e.g. the release and deployment. You enable
this by either creating the link in the GitHub postal using the page that you
find when you look the details of the package. This is shown in Figure 8.8.

Figure 8.8 Link package to repo

<@

oL0

Link this package to a repository

By linking to a repository, you can automatically add a Readme, link discussions
and show contributors on this page.
Connect Repository
Or link via Dockerfile Learn more
To locally connect your container image to a repository, you must add this line to
your Dockerfile:

You can also enable this link back to the source repository by providing the
metadata during publication on the docker push action, or by adding the label
to the docker image when you build it.

8.5.6 Using the Upload/Download Capability to Store Artifacts

In the case you are not using container images or packages and have a set of
binaries or a zip file that you want to retain as part of your CI workflow, you
can use an action called actions/upload-artifact. This action can take any
set of arbitrary files and upload them to GitHub. Another workflow can then
retrieve these files using the actions/download-artifact action.

When creating artifacts to deploy our sample application to a Kubernetes
cluster, we need to produce a deployment descriptor file that references the
newly created container during our CI. A way to do this is by using an action
that can annotate an existing file you have in your repository and then
outputting the altered results as an artifact we are going to store on GitHub.
This can then later be retrieved by the deployment workflow.

Listing 8.14 shows a simple example of a workflow storing a file and
retrieving it in a second job.

Listing 8.14 Upload Artifacts to GitHub

name: Upload and Download arbitrary artifacts

on:

workflow_dispatch:
env:

deploymentFile: 'file-I-want-to-use-in-deploy-phase.txt'
jobs:

build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: create a file we will use in next job
run: |

touch ${{github.workspace}}/${{env.deploymentFile}}

- name: Upload a Build Artifact
uses: actions/upload-artifact@v3
with:
name: deployfile
path: ${{github.workspace}}/${{env.deploymentFile}}

deploy:

runs-on: ubuntu-latest

needs: build

steps:

- name: Download artifact from build job
uses: actions/download-artifact@v3
with:

name: deployfile

- name: show files downloaded

run: |
1s ${{github.workspace}}

The result of this workflow is that we uploaded a file, and we can also see
this result in a second job that was started with the name deploy.

You can see the artifacts you create in the Ul as shown in figure 8.9:

Figure 8.9 Artifact publishing

I] Summary
tanually triggered 1 minute ago Status otal duration

Jobs 2 vriesmarcel -0 Oeacf37 main Success 22s 1

© build

deplo:
© deploy generate-artifacts.yaml|
Run details

(b Usage

Y Workflow file @ build 55 @ deploy

Artifacts
Produced during runtime

Name Size

(w]

@ deployfile 192 Bytes

8.5.7 Preparing Deployment Artifacts

When you release your software, you want to get a fully prepared package
that you can deploy. In the case with the example we are using, we need not
only a set of containers in the container registry, but we also need a set of
files that we use to run the deployment to the Kubernetes cluster. These are
deployment files that contain a reference to the image we want to run.

To ensure you have a complete package that is good and traceable to the
source and changes, it is preferred to prepare the deployment files as part of
the CI workflow. In the case of the deployment of globoticket, this means we
take the Kubernetes deployment file that we use as a template for the
deployment and replace variables in this template file. After creating the
containers and scanning them for known vulnerabilities, you then create the
deployment file with the tags that got created while building the containers.
After the replacement of the variables in the template, you can make this part
of the artifacts that get pushed to the repo for another workflow to pick them

up.

For transformation of existing files, we use the action cschleiden/replace-

tokens. This action has the option to specify a replacement token you like,
and then replace this across a set of files. The example here is the tag of the
container that will get pulled by Kubernetes with the tag created while
creating the container.

Listing 8.15 shows how to prepare a Kubernetes deployment file.
Listing 8.15 Kubernetes template Deployment File

apivVersion: apps/vil
Kubernetes deployment specification. We want to deploy our
container frontend to the cluster, in the namespace globoticket
kind: Deployment
metadata:
name: frontend
namespace: globoticket
labels:
app: frontend
We want to deploy 3 replicas of the frontend and deploy
them with a rolling update strategy
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 2
maxUnavailable: 0
selector:
matchLabels:
app: frontend
template:
metadata:
labels:
app: frontend
here is the specification of the container we want to deploy
we set the resource limits and requests according to best prac
we pull the image from github container registry, using the se
defined in the pullsecret
spec:
containers:
- name: frontend
image: ghcr.io/vriesmarcel/frontend:#{Build.version}#
resources:
requests:
memory: "500Mi"

cpu: "250m"

limits:
memory: "1G1i"
cpu: "750m"
env:

- name: ASPNETCORE_ENVIRONMENT
value: Development

- name: ApiConfigs__EventsCatalog__Uri
value: http://catalog:8080

- name: ApiConfigs__Ordering_ Uri
value: http://ordering:8080

ports:

- containerPort: 80

imagePullPolicy: Always

imagePullSecrets:
- name: pullsecret

When you look at the file, you see the markers that can be used to replace. In
this case, I am going to replace the part that states #{Build.version}# with
the number of the build that we are running. This is the same as the number
we generate when we create the image and push the image to the registry. By
ensuring these numbers are the same, you guarantee that you deploy exactly
those images.

Replacement can now be done by pointing to this file and defining the
replacement tokens and the variable for Build.version. How to do this is
shown in Listing 8.16:

Listing 8.16 Replacing tokens

- name: Replace tokens
uses: cschleiden/replace-tokens@vl.0
with:
files: '["${{github.workspace}}/${{env.deploymentfileFo
/frontend.yaml"]"'
env:
Build.version: ${{env.FRONTED_VERSION}}

After replacing the tokens in the file, you then upload them to the artifact
store as described in the previous paragraph, so they can be retrieved the
moment we want to run the deployment.

8.5.8 Creating a Release

Creating a release is the starting point of moving the created deployment
artifacts to the outside world. It is the handoff moment to the CD Workflow
that does the actual deployment. The deployment artifacts can be a set of
packages that are going to be published, a set of container images to be pulled
from a container registry.

You can create a release in GitHub by using the create release page in
GitHub. When using this page, you are doing it manually, which can be a
good practice if you want to separate duties of people who can create releases
or not. This release defines what we want to release, and we prefer to add all
artifacts that we deploy to be part of this release.

It is preferred to create a release using an action in the CI workflow. When
using a branching strategy like GitHub flow or Trunk based development,
you create a new release the moment you merged a change into the main
branch. The main branch is the source to release to the production
environments. How this is done is normally via a pull request that is merged,
helping you to ensure compliance by providing good traceability and a 4 eyes
principle before something can move to a production environment.

You can define that regardless of how the change moved to the main branch,
the moment we detect a change, we want to trigger the CI workflows first and
after all have completed and are successful, we want to create a release that in
its turn will trigger the CD workflow that moves the software to a production
environment, with the necessary steps based on the process you want to
follow.

You can trigger the release, e.g., the moment a new container image is
published by one of the previous workflows. Listing 8.17 shows the
workflow that is triggered by the publication of the container image, picks up
the version number from the image and produces a file that is used for
deployment to the Kubernetes cluster. This file is attached as an artifact that
is part of the release, so it can be used by the CD workflow that we discuss in
the next chapter.

Listing 8.17 Creating a release automatically

name: "chapter 08: create release"
permissions:

actions: write

packages: write

contents: read

on.

registry_package:
types: [published]

env.

deploymentFolder: 'deployment-automation'

GH_TOKEN: ${{ secrets.EXTENDED_ACCESSTOKEN }} #required for gh
only run this workflow when a package is published with a tag
that is not empty. We cancel any other releases that are in pro

we use these to patch the deployment files with the correct ver
and then create a release with the version provided by the pack

obs:

#
#
before we create the GH Release, we need the latest version of
#
#
]

release:

if:

github.event.registry_package.package_version.container_m

concurrency:
group: ${{github.event.registry_package.package_version.con
cancel-in-progress: true

runs-on: ubuntu-latest

steps:

#

name: Checkout repository
uses: actions/checkout@v3
get the versions of the images from the package registry
name: Retrieve latest image version frontend
run: |
export FRONTED_VERSION=
$(gh api user/packages/container/frontend/versions |
jg -r '.[0].metadata.container.tags[0]")
echo "FRONTED_VERSION=$FRONTED_VERSION" >> $GITHUB_ENV
export ORDERING_VERSION=
$(gh api user/packages/container/ordering/versions |
jg -r '.[0].metadata.container.tags[0]")
echo "ORDERING_VERSION=$ORDERING_VERSION" >> $GITHUB_EN
export CATALOG_VERSION=
$(gh api user/packages/container/catalog/versions |
jg -r '.[0].metadata.container.tags[0]")
echo "CATALOG_VERSION=$CATALOG_VERSION" >> $GITHUB_ENV

patch the deployment files with the correct versions.
we do this for catalog, frontend and ordering

name: Replace tokens

uses: cschleiden/replace-tokens@vl.0

with:

files: '["${{github.workspace}}/${{env.deploymentFolder
env:
Build.version: ${{env.CATALOG_VERSION}}

- name: Replace tokens
uses: cschleiden/replace-tokens@vl.o
with:
files: '["${{github.workspace}}/${{env.deploymentFolder
env:
Build.version: ${{env.FRONTED_VERSION}}

- name: Replace tokens
uses: cschleiden/replace-tokens@vl.0
with:
files: '["${{github.workspace}}/${{env.deploymentFolder
env:
Build.version: ${{env.ORDERING_VERSION}}

create a release with the version provided by package pus
contains the deployment files

- name: create a relase with version provided by package pu
uses: softprops/action-gh-release@vil
with:
token: "${{ secrets.EXTENDED_ACCESSTOKEN }}"
tag_name: "v${{github.event.registry_package.package_ve
generate_release_notes: true
files: | ${{github.workspace}}/${{env.deploymentfileFol
${{github.workspace}}/${{env.deploymentfileFolder}}/ordering.yaml
${{github.workspace}}/${{env.deploymentfileFolder}}/catalog.yaml

After running this workflow, you will find the release in the releases section

of GitHub, and more important, an event is generated to signal a new release
is created. It is also possible to use the GitHub API to add files to the release,
you an think e.g. attaching the SBOM that we discussed in paragraph 8.5.2

This is also the reason this workflow uses a different token than the standard
GitHub token that is available in the workflow. If we use the default token,
the release will not trigger any new workflows that could e.g. take care of the
deployment. The token that is stored in GitHub secrets provides the ability to
trigger a new workflow as part of the publication process.

This way of working ensures you have a very clear and simple workflow that
has a focus on creating the CI end result, a release. Now it becomes better
maintainable and can be secured in terms of who is allowed to review the
change before acceptance. It is a good practice to upload all files you need as
part of the deployment process. That way the release becomes the container
of all deliverables you need to execute a release and hence the perfect hand-
over to the CD workflows we cover in the next chapter.

8.6 The CI Workflows for GloboTicket

Now that we have the concepts in place, let’s start creating the CI workflows
we need to get our GloboTicket application ready for deployment.
GloboTicket has two API’s and one front-end web application that needs to
get deployed. If we take this application and design the CI workflows then
we need the following:

¢ One workflow to validate the integration on each pull request

e The same workflow that validates the integration in the main branch

e One workflow that tests the API’s or the frond-end application using the
available unit tests

e One workflow to check for known vulnerabilities in the committed
sources and the dependencies in use

e One workflow that creates the artifacts ready for the deployment to a
Kubernetes cluster

Let us go through these workflows one by one, so you get a full end-to-end
view on how we can prepare everything for deployment to the cloud.

8.6.1 The Integration CI for API’s and Front-end

This workflow will trigger the moment we commit a change to any feature
branch. The first step is to get the sources and then we use the dotnet tools to
compile the sources. This workflow only compiles the source so we know
that what we committed integrates and compiles. This way we get as fast as
possible feedback to the developer that is building a new feature on a feature
branch. The action workflow for this CI is shown in listing 8.18

Listing 8.18

name: "chapter 08: Compile and Test fast feedback"
permissions:

actions: write

contents: read

on:

workflow_dispatch:

push:
branches: ["feature/*"]
paths:
- 'frontend/**'
- 'catalog/**'
- 'ordering/**'

jobs:
build:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3
- name: Setup .NET
uses: actions/setup-dotnet@v3
with:
dotnet-version: 6.0.X

- name: Restore dependencies
run: dotnet restore

- name: Build
run: dotnet build --no-restore

8.6.2 The CI Workflows for Quality Control

This workflow aims to check if the software is still working according to
requirements. This is validated by running the Unit Test projects that are part
of the project. In dotnet this involves using the built-in test tools. To get the
right test results in the output, it is possible to use a specific logger that can
produce markdown output. This output file can then be output to the step
results, so it shows up in the final report. This way, you get a nice report that
is visible in the GitHub user interface.

Figure 8.10 Test result summary

build summary

Test Run

Run Summary

Overall Result: +/ Pass

Pass Rate: 100%

Run Duration: 4s 257ms

Date: 2023-09-04 00:06:26 - 2023-09-04 00:06:31
Framework: .NETCoreApp,Version=v6.0

Total Tests: 1

 Passed X Failed i, Skipped

1 0 0

100% 0% 0%
Result Sets

Tests.Playwright.dll - 100%

» Full Results

Run Messages
» Informational

» Warning

» Error

After you run the workflow, you will see the results as shown here in Figure
8.10

The workflow for Quality Control on GloboTicket is shown in Listing 8.19.
We run this workflow the moment we create a pull request. This provides
input to the team of reviewers and the developer of the feature what the state
of the feature is. It is fine to combine the first CI and this CI workflows into
one, when the unit tests provide fast feedback. The moment this can take
several minutes, it makes more sense to split them.

Listing 8.19

name: Compile and Test --fast feedback
permissions:

actions: write

contents: read
env:

GH_TOKEN: ${{ github.token }}

on:
workflow_dispatch:

pull_request:
branches: ["main"]
paths:
- 'frontend/**'
- 'catalog/**'
- 'ordering/**'

jobs:
build:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3

- name: Setup .NET
uses: actions/setup-dotnet@v3
with:
dotnet-version: 6.0.x

- name: add markdown report logger for frontend project
run: dotnet add unittests/unittests.csproj package LiquidT

- name: Test
run: dotnet test --logger "liquid.md;logfilename=testResult

- name: Output the results to the actions jobsummary
if: always()
run: cat $(find . -name testResults.md) >> $GITHUB_STEP_SUM

8.6.3 The CI Workflow for Security Testing

This workflow aims to periodically check the software on the main branch
and the moment we push changes. The software will be checked on known
vulnerabilities that are present in the software produced by the development
team. This is done using the GitHub Advanced Security scanning tool, which

is reported back to the GitHub security dashboard in the UI. This is done by
activating Advanced Security in the account and selecting the setup CodeQL
Analysis.

This is shown in Figure 8.11

Figure 8.11 GitHub advanced security

Code scanning
Automatica |'.‘ .i""‘ t common vu ""‘r‘.} 11 tes -1'\.’ XAING errors

Tools

i R e

Default
cher tt'a‘olls‘ . i lows

Advanced
Protection rules A

Check runs failure threshold
Select the alert severity level for code scanning check runs to fail. Create a branch High or higher / Only errors ~
ruleset to prevent a branch from merging when these checks fail.

Secret scanning
Receive alerts on GitHub for detected secrets, keys, or other tokens.

will always send alerts to partners for detected secrets in public repositories. Learn more about partner patterns.

Enable

When you run this workflow, you will find the CodeQL Analysis finds four
known vulnerabilities in the code we have for GloboTicket. All with a
severity of High! You can see the results in Figure 8.12.

Figure 8.12 Code Scanning Results

Code scanning
9 A s are working as expected §? Tool status 1 + Add tool

Q isiopen bral

@ 40pen v 1

© Inefficient regular expression (Higt

© Inefficient regular expression (Hig!

C QL in frontendy/.../dist/additional-methods.js:1

@ Inefficient regular expression (High

eQL in frontend)/.../dist/additional-methods.js:

© Log entries created from user input (Higt

CodeQl in frontend/Controllers/CheckoutController.cs

Q ProTip!

After scanning for known vulnerabilities in the code, the next step is to also
scan for known vulnerabilities in the container images. For this, the workflow
determines the latest version of the container images available and then runs
the tools shown the paragraph 5.5.4 . We can also extend this to use the
same GitHub Security Dashboard, by configuring the Trivy security scanner
to output a sarif format and then upload this to GitHub. SARIF (Static
Analysis Results Interchange Format) is an OASIS Standard that defines an
output file format. The SARIF standard is used to streamline how static
analysis tools share their results.

This workflow will find multiple known vulnerabilities in the container
images. Solving these vulnerabilities is easy to mitigate by changing the
default base images used for .NET Core containers to Alpine instead of
Ubuntu.

The result of the workflow will show up in the code scanning results, as
shown in Figure 8.12

The workflow for Security is also triggered on a pull request since it takes
some more time to complete. It is also set up to run on the main branch when
there is a push and on a schedule, so we always keep an eye on potential new
vulnerabilities. The listing for the workflow is shown in listing 8.20

Listing 8.20 Security testing

name: "chapter 08: Security Testing"

env:
imageRepository: 'frontend'
containerRegistry: 'ghcr.io/xpiritcommunityevents'
dockerfilePath: 'frontend/Dockerfile’

on:
workflow_dispatch:

jobs:
run the codegl analysis on the code
we use a matrix to run the analysis on multiple languages
we define the languages c# and javascript

analyzecode:
name: Analyze
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') |
"ubuntu-latest' }}
timeout-minutes: ${{ (matrix.language == 'swift' && 120) ||
360 }}
permissions:

actions: read
contents: read
security-events: write

strategy:
fail-fast: false
matrix:
language: [‘csharp’, ‘javascript’]

steps:
- name: Checkout repository
uses: actions/checkout@v3

- name: Initialize CodeQL
uses: github/codegl-action/init@v2
with:
languages: ${{ matrix.language }}
- name: Autobuild
uses: github/codegl-action/autobuild@v?2

- name: Perform CodeQL Analysis
uses: github/codegl-action/analyze@v2
with:
category: “/language:${{matrix.language}}”

next we run the trivy vulnerability scanner on
our container images. This way we can find vulnerabilities

in our container images. We determine the latest version of
the images and use that version to scan. This is done with
the GitVersion tool.
analyzecontainers:
runs-on: ubuntu-latest
permissions:
actions: read
contents: read
security-events: write
packages: read

steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 0
#determine the version of the image
- name: Install GitVersion
uses: gittools/actions/gitversion/setup@v0.9.7
with:
versionSpec: '5.x'

- name: Determine Version
id: gitversion
uses: gittools/actions/gitversion/execute@v0.9.7

use trivy to scan the container image
- name: Run Trivy vulnerability scanner

uses: aquasecurity/trivy-action@master

with:
image-ref: ${{env.containerRegistry}}/${{env.imageRepos
format: 'sarif'
output: 'trivy-results.sarif'

env:
TRIVY_USERNAME: ${{ github.actor }}
TRIVY_PASSWORD: ${{ secrets.GITHUB_TOKEN }}

upload the results to the security tab in github
this is the same place where the codeql results are uploa

- name: Upload Trivy scan results to GitHub Security tab
uses: github/codegl-action/upload-sarif@v2
with:
sarif_file: 'trivy-results.sarif'

8.6.4 The CI Workflows for Container Image creation and

Publishing

This workflow gets triggered the moment the sources are pushed to the main
branch.

It will only create and push the new images to the registry, and we let the
container registry trigger the creation of a new release. When you don’t use
containers, this would also be the workflow that would create the release
immediately after the creation of the artifacts and it would store those in the
release so it can be used for the deployment.

The workflow that creates and publishes the containers uses the reusable
workflow defined in listing 8.15. In listing 8.16 you find the yaml to create
the container.

8.6.5 Creating a release

The moment the container images are published, we can use that as a trigger
to create a release. We create the Kubernetes deployment files that go with
the release. We need to determine what version numbers the various
containers have at the container registry and use the correct version numbers
in the deployment descriptor files we need at deployment. It will pick up the
version numbers from the container images that got published, so that is all in
sync. It also publishes the deployment file as an artifact of the release so that
can be used during deployment. The listing for the yaml is in listing 8.19

8.7 Bringing it all together

In this chapter we started by describing the goals of Continuous Integration.
We defined the types of integration workflows we typically use and described
how you can split up your CI workflows. We use the GitHubFlow branching
strategy and have small action workflows that have a very specific tasks and
trigger on specific points in the GitHubFlow process. The overall structure is
shown in figure 8.13.

Figure 8.13 GitHub Flow and the various workflow triggers

Create & Publish Images

®©
v Create Release

Security 1
Main Branch

Commit changes Submit Pull Request Discuss proposed changes

’ Fast Feedback CI } \

[Code Quality ‘
‘ Security ‘

We start with a feature branch and there we run the workflow that provides
fast feedback, by compiling the sources that are committed to the branch. The
moment we want think we are ready to move the changes to main, we create
a pull request and on this pull request we trigger a set of workflows that help
us determine the quality of the changes, not only from a testing perspective,
but also from the perspective of security. The moment these quality checks
are done we can accept the pull request and at this moment the workflow
triggers that will create a set of container images, that get pushed to the
container registry provided by GitHub.

This publication when finished, triggers a release. This release is versioned
according to the version numbers the containers have and the release contains
the artifacts needed to go to the next phase deployment. This release on its
turn can trigger a new workflow that supports continuous delivery. This is
described in the next Chapter.

8.8 Summary

e When your Branching strategy and action workflows are aligned, you
get a clear sense of the purpose of each workflow and a very clean way
of handling the CI process.

e Each workflow should have a specific purpose like: integration, quality
control, security testing and packaging

e The CI workflows are there to provide fast feedback on integration and

code quality. The final step in CI is to package up the artifacts for
Continuous Delivery (CD). The most appropriate handoff mechanism in
GitHub is to use the release and package the artifacts for deployment as
part of the release.

Artifacts are stored as part of a workflow execution and can be made
part of a release. The latter is a great moment to hand off to release and
provide a version number.

For GloboTicket we create container images and push them to the
container registry. We also created deployment descriptors that are used
to deploy the containers to the Kubernetes cluster. These files are
created and stored in the release.

	welcome
	1_Introduction_to_GitHub_Actions
	2_Hands-on:_My_first_Actions_Workflow
	3_Workflows
	4_GitHub_Actions
	5_Runners
	6_Self-hosted_runners
	7_Managing_your_self-hosted_runners
	8_Continuous_Integration_(CI)

