

Data Storytelling with Generative AI

1. welcome
2. 1_Introducing_Data_Storytelling
3. 2_Running_your_first_data_story_in_Altair_and_GitHub_Copilot
4. 3_Reviewing_the_basic_concepts_of_Altair
5. 4_Generative_AI_Tools_for_Data_Storytelling
6. 5_Crafting_a_data_story_through_the_DIKW_Pyramid
7. 6_From_Data_to_Information:_Extracting_insights
8. 7_From_Information_to_Knowledge:_Building_textual_context
9. 8_From_Information_to_Knowledge:_Building_the_visual_context

10. 9_From_Knowledge_to_Wisdom:_Adding_Next_Steps
11. 10_Publishing_the_Data_Story
12. Appendix_A._Technical_Requirements
13. Appendix_B._Python_Pandas_DataFrame

welcome
Thank you for purchasing the MEAP for AI-Powered Data Storytelling. This
book combines three fundamental elements: Data Storytelling, Python, and
Generative AI to guide you toward building engaging data stories.

Data Storytelling is the main focus of this book. Many good books exist on
the market about this topic, especially focusing on the theory of data
storytelling. This book, instead, describes a practical approach to elevate your
basic data visualization skills and transform you into a data storyteller. In this
book, you will use the Data-Information-Knowledge-Wisdom (DIKW)
pyramid as a practical method to transform simple data visualization into data
stories. When I met the DIKW pyramid some years ago, I fell in love with it,
and since then, I have been using it as a teaching method for my students.

Python is the second ingredient of this book. As a data journalism professor, I
have experimented with many Python libraries for data visualization, such as
Matplotlib, Plotly, and Seaborn. However, at the end of my experiments, I
realized that the simplest library for data visualization is Altair. Unlike other
libraries, Altair is declarative, thus enabling you only to focus on the output
of your data visualization. Thus, this book will focus on Altair to build data
visualization. Although you can find many materials on the web about Altair,
they focus only on how to build raw charts. In this book, you’ll learn how to
build data stories with Altair and not simply raw charts.

Last but not least, you’ll learn how to use Generative AI tools for data
storytelling. This book won’t focus on Generative AI concepts and theory.
Instead, you will learn how to apply Generative AI tools, including GitHub
Copilot, ChatGPT, and DALL-E, to data storytelling.

Finally, throughout AI-Powered Data Storytelling, you’ll implement many
practical examples that will ease your learning process and make your
journey more fun.

To benefit most from this book, you’ll want to have some basic experience in

Python and basic knowledge about Pandas and data visualization. Even if you
don’t have such basic knowledge, you can still read this book, assimilating
the basic concepts of data storytelling and then using them with other tools or
programming languages.

I hope you find it as useful to read as I did to write it. Please be sure to post
any questions, comments, or suggestions you have about the book in the
liveBook discussion forum. Your feedback is essential in developing the best
book possible.

—Angelica Lo Duca

In this book

welcome 1 Introducing Data Storytelling 2 Running your first data story in
Altair and GitHub Copilot 3 Reviewing the basic concepts of Altair 4
Generative AI Tools for Data Storytelling 5 Crafting a data story through the
DIKW Pyramid 6 From Data to Information: Extracting insights 7 From
Information to Knowledge: Building textual context 8 From Information to
Knowledge: Building the visual context 9 From Knowledge to Wisdom:
Adding Next Steps 10 Publishing the Data Story
Appendix A. Technical Requirements Appendix B. Python Pandas
DataFrame

1 Introducing Data Storytelling
This chapter covers

Overview of data storytelling
The importance of data storytelling
Why you should use Python Altair and Generative AI tools for data
storytelling
When Altair and Generative AI tools are not useful for data storytelling
How to read this book
The DIKW pyramid

Data storytelling is a powerful way to share insights by transforming them
into narrative stories. Data storytelling is an art you can use for any industry,
such as government, education, finance, entertainment, and healthcare. Data
storytelling is not only for data scientists and analysts; it’s for anyone who
has ever wanted to tell a story with data.

1.1 The Art of Data Storytelling

Data scientists and analysts often allocate little time and attention to data
presentation. Frequently, throughout a data science project, we devote most
of the time and resources to preprocessing the data, followed by data
analysis, and lastly, data presentation. Unfortunately, this often entails
presenting graphs generated during the analytical phase to the audience,
resulting in limited engagement and understanding. Figure 1.1 shows the
journey from data to the intended audience, as viewed through the eyes of
both the skilled data scientist (represented on the left) and the eagerly
awaiting audience (represented on the right). The flow consists of three major
phases: data preprocessing, analysis, and presentation. The size of each box
reflects the amount of time devoted to its respective phase. While data
scientists and audiences share a common goal (that is, to grasp the essence of
the data truly), how they achieve said goal varies. Data scientists understand
data during the data analysis phase, whereas audiences take center stage

during data presentation.

Figure 1.1 The data science flow from the data scientist’s perspective (on the left) and the
audience’s perspective (on the right)

Data storytelling can help data scientists and analysts to present and
communicate data to an audience. You can think of data storytelling as the
grand finale of the data science life cycle. It entails taking the results of the
previous phases and transforming them into a narrative that effectively
communicates the results of data analysis to the audience. Rather than relying
on dull graphs and charts, data storytelling enables you to bring your data to
life and communicate insights compellingly and persuasively.

More formally, data storytelling builds compelling stories supported by data,
allowing analysts and data scientists to present and share their insights
interestingly and interactively. The ultimate goal of data storytelling is to
engage the audience and inspire them to make decisions. In some cases,
including business scenarios, you do not start from data but from a narrative
or a hypothesis you have in mind and then search for data that confirm or
negate it. In this case, you can still have data storytelling, but you must pay
attention not to alter your data to support your hypothesis. Brent Dykes, a
well-known consultant in storytelling training, suggests: Whenever you start
with the narrative and not the data, it requires discipline and open-
mindedness. In these scenarios, one source of risk will be confirmation bias.
You will be tempted to cherry-pick data that confirms your viewpoint and
ignore conflicting data that doesn’t (Dykes 2023). Remember to build your
data stories on accurate and unbiased data analysis. In addition, always
consider the data you are analyzing.

Some time ago, I had the opportunity to work on a cultural heritage project
where I had to automatically extract entities from the transcripts of a registry
of names dating back to around 1700-1800. The goal was to build a database
with information about the people in the register, such as name, surname,
date of birth, date of death, etc. Sitting at my computer, I implemented my
software, built the table with all the names, and calculated and visualized data
statistics, such as the most frequent names, the number of births per year, etc.
The project also involved linking these people to their graves to build an
interactive cemetery map. At some point in the project, I had the opportunity
to visit the cemetery. As I walked through the cemetery, the rows upon rows
of headstones made me stop. It hit me like a ton of bricks - every name
etched into those stones represented a life. Suddenly, the numbers and
statistics I had been poring over in my data sets became more than just data
points - they were the stories of real people. It was a powerful realization that
changed the way I approached my work. That's when I discovered the true
power of data storytelling. It's not just about creating fancy graphs and charts
- it's about bringing the people behind the data to life. We have a mission to
give these people a voice, to ensure that their stories are heard. And that's
exactly what data storytelling does - it gives a voice to people often buried
deep within the numbers. Our mission as data storytellers is to bring these
stories to the forefront and ensure they are heard loud and clear.

In this book, you’ll learn two technologies to transform data into stories:
Python Altair and Generative AI tools. Python Altair is a Python library for
data visualization. Unlike the most known Python libraries, such as
Matplotlib and Seaborn, Altair is a declarative library where you specify only
what you want to see in your visualization. This aspect is beneficial for
quickly building data stories without caring about how to build a
visualization. Altair also supports chart interactivity so that users can explore
data and interact with it directly.

Generative AI is the second technology you’ll use to build data stories in this
book. We will focus on ChatGPT to generate text, DALL-E to generate
images, and GitHub Copilot to generate the Altair code automatically. We
chose to use GitHub Copilot to generate code and not ChatGPT because
Copilot was trained with domain-specific texts, including GitHub and
StackOverflow codes. Instead, ChatGPT is more general purpose. At the time
of writing, Generative AI is a very recent technology, still in progress, that
translates a description of specifications or actions into text.1.2 Why Data
Visualization Alone Is Not Enough

Data storytelling is about more than just communicating data. It's about
inspiring your audience and inviting them to take action. Good data
storytelling requires a mix of art and science. Art comes in finding the right
story, while science understands how to use data to support that story. When
done well, data storytelling can be a potent tool for change. In this section,
we’ll briefly cover three fundamental questions about data storytelling.

1.1.1 Why Should You Use Data Storytelling?

More often than not, we delay data visualization until the last stage of our
data analysis process, when we're tired and exhausted from the other stages of
our project. As a result, we produce running graphs, which more or less
represent our data. Figure 1.2 shows an example of such a running chart,
where it is really difficult to extract a meaning.

Figure 1.2 An example of a bad chart

In other cases, we build dashboards that simply juxtapose charts next to each
other without any sense or logic (Figure 1.3).

Figure 1.3 An example of a bad dashboard

There is often the erroneous belief that if a chart is aesthetically beautiful,
then it is certainly also useful. This isn't exactly true. In his book The
Functional Art, Alberto Cairo says: If you accept that a visualization is,
above all, a tool, you are implicitly accepting that the discipline it belongs to
is not just art, but functional art, something that achieves beauty not through

the subjective, freely wandering self-expression of the painter or sculptor, but
through the careful and restrained tinkering of the engineer (Cairo 2012).

Data Storytelling allows you to fill the gap between simply visualizing data
and communicating it to an audience. Data storytelling improves your
communication skills and standardizes and simplifies the process of
communicating results, making it easier for people to understand and
remember information. Data storytelling also helps you learn to communicate
more effectively with others, improving personal and professional
relationships.

Use data storytelling if you want to:

Focus on the message you want to communicate and make data more
understandable and relatable
Communicate your findings to others in a way that is clear and
convincing
Connect with your audience on an emotional level, which makes them
more likely to take action
Make better decisions by helping you understand your data more deeply.

1.1.2 What Problems Can Data Storytelling Solve?

Use data storytelling if you want to communicate something to an audience
in the form of writing reports, doing presentations, and building dashboards.

Writing Reports

Imagine you must write a sales report for a retail company. Instead of
presenting raw numbers and figures, you can weave a data story around the
performance of different product categories. Start by identifying the most
crucial aspects of the data, such as the top-selling products, emerging trends,
or seasonal fluctuations. Then, use a combination of visualizations,
anecdotes, and a logical narrative flow to present the information.

You can build a story around your data, such as introducing a problem,
building suspense, and concluding with actionable recommendations.

When writing reports, use data storytelling to highlight the most important
parts of your data and make your reports more engaging and easier to
understand.

Doing Presentations

Consider a marketing presentation where you must demonstrate various
marketing campaigns' effectiveness. Instead of bombarding the audience with
numerous charts and statistics, focus on creating a compelling narrative that
guides them through how the campaigns unfolded and their impact on the
target audience. Finally, show the possible next steps to follow.

When doing presentations, use data storytelling to engage your audience and
help them understand your message better.

Building Dashboards

Let's imagine you are developing a sales performance dashboard for a retail
company. Instead of presenting a cluttered interface with overwhelming data,
focus on guiding users through a narrative highlighting key insights.

When building dashboards, use data storytelling to build more user-friendly
and informative dashboards.

1.1.3 How Is Data Storytelling Different From Data
Visualization?

Data visualization is primarily concerned with presenting data in a way that is
easy to understand, usually through charts and graphs. On the other hand,
data storytelling is more concerned with using data to tell a story that will
engage the audience and help them understand the problem. In addition, data
storytelling often uses narratives to explain the data, while data visualization
focuses on presenting the data itself. Anyway, good data storytelling includes
visualization elements.

Data storytelling helps analysts to communicate their findings in a way that is
both engaging and informative while also helping the audience understand a

problem in a new way and see the potential solutions more clearly.

Having covered the questions of when to use data storytelling, what problems
it can solve, and what makes it unique, we're now ready to consider questions
relating to our two tools: Python Altair and Generative AI tools. We will do
that in the next section.

1.1.4 What are the challenges of data storytelling?

Crafting compelling data stories is no easy feat. It demands both time and
financial investment to ensure engaging narratives packed with valuable
information. Moreover, it involves bringing together individuals from diverse
backgrounds, each with their own expertise and perspectives, to work
collaboratively. This collaboration can be challenging, but it's essential for
weaving together a cohesive and impactful data story.

The challenges of creating data stories involve two key factors: time and
teamwork. Investing in these areas is crucial to captivate audiences and
effectively communicate insights.

1.2 Why Should You Use Python Altair and
Generative AI for Data Storytelling?

Python provides you with many libraries for data visualization. Many of
them, including Matplotlib and Seaborn, are imperative libraries, meaning
you must define exactly how you want to build a visualization. Python Altair,
instead, is a declarative library where you specify only what to visualize.
Using Python Altair for data storytelling instead of other imperative libraries
lets you quickly build your visualizations.

For example, to plot a line chart using Matplotlib, you must specify explicitly
the x and y coordinates, set the plot title, labels, and customize the
appearance, as shown in Listing 1.1.

Listing 1.1 Imperative library

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]

y = [1, 4, 9, 16, 25]

plt.plot(x, y)

plt.title('Square Numbers')

plt.xlabel('X')

plt.ylabel('Y')

plt.show()

An example of an imperative library

The chart builds a line chart in Matplotlib. You must define the single steps
to build the chart: 1) set the title, 2) set the x-axis, 3) set the y-axis.

Instead, declarative visualization libraries, like Altair, enable you to define
the desired outcome without specifying the exact steps to achieve it. For
instance, using Altair, you can simply define the data, x and y variables, and
let the library handle the rest, including axes, labels, and styling, resulting in
a more concise and intuitive code (Listing 1.2).

Listing 1.2 Imperative library

import altair as alt

import pandas as pd

df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1, 4, 9, 16, 25]})

chart = alt.Chart(df).mark_line().encode(

 x='x',

 y='y'

).properties(

 title='Square Numbers'

)

An example of a declarative library

The chart builds a line chart in Altair. You must define the chart type
(mark_line), the variables, and the title.

Generative AI is a subset of artificial intelligence techniques involving

creating new, original content based on patterns and examples from existing
data. It enables computers to generate realistic and meaningful outputs, such
as text, images, or even code. In this book, we will focus on ChatGPT to
generate text, DALL-E to generate images, and GitHub Copilot, to assist you
while coding.

ChatGPT is an advanced language model developed by OpenAI.
Powered by the GPT-3.5 architecture, it is designed to engage in human-
like conversations and provide intelligent responses.
DALL-E is a generative AI model created by OpenAI. It combines the
power of GPT-3 with image generation capabilities, allowing it to create
unique and realistic images from textual descriptions.
GitHub Copilot is a recent tool powered by OpenAI Codex, assisting
you while writing your code. In GitHub Copilot, you describe the
sequence of actions that your software must run, and GitHub Copilot
transforms it into a runnable code in your preferred programming
language. The ability to use GitHub Copilot consists in learning how to
describe the sequence of actions.

Combining Python Altair and Generative AI tools will enable you to write
compelling data stories more quickly directly in Python. For example, we can
use Copilot to assist us in generating the necessary code snippets, such as
importing the required libraries, setting up the plot, and labeling the axes. In
addition, Copilot's contextual understanding helps it propose relevant
customization options, such as adding a legend or changing the color scheme,
saving us time and effort in searching for documentation or examples.

While generative AI tools are still at their early stages, some promising
statistics reveal they increase workers' productivity. A study by Duolingo,
one of the largest language learning apps, reveals that the use of Copilot in
their company has increased developers’ speed of 25% (Duolingo and
GitHub Enterprise 2022). Compass UOL, a digital media and technology
company, run another study by asking experienced developers to measure the
time it took to complete the use-case task (analysis, design, implementation,
testing, and deployment) during three distinct periods: before AI, utilizing AI
tools available until 2022, and employing new generative AI tools such as
ChatGPT (Compass UOL 2023). Results demonstrated that developers

completed the tasks in 78 hours before AI; 56 hours with the AI used through
2022, and 36 hours with the new Generative AI. Compared to the Pre-AI era,
there is an increase in speed of 53.85% with the new Generative AI (Figure
1.4).

Figure 1.4 The results of the tests conducted by Compass UOL

1.2.1 The Benefits of Using Python in All the Steps of the Data
Science Project Life Cycle

Many data scientists and analysts use Python to analyze their data. Thus it
should be natural to build the final report on the analyzed data still in Python.
However, data scientists and analysts often use Python only during the
central phases of the data science project life cycle. Then they move to other
tools, such as Tableau and Power BI, to build the final report, as shown in
Figure 1.5. This means adding other work, which includes exporting data
from Python and importing them into the external application. This
export/import operation in itself is not expensive, but if, while building the
report, you realize that you have made a mistake, you need to modify the data

in Python and then export the data again. If this process is repeated many
times, there is a risk of significantly increasing the overhead until it becomes
unmanageable.

Figure 1.5 In the traditional approach, data scientists use different technologies during the phases
of the data science project life cycle

This book enables data scientists and analysts to run each step of the data
science project life cycle in Python, filling the gap of exporting data to an
external tool or framework in the last phase of the project life cycle, as shown
in Figure 1.6.

Figure 1.6 In the approach proposed in this book, data scientists use the same technology during
all the phases of the data science project life cycle

The advantage of using Python Altair and Generative AI for data storytelling
is that programmers can build their reports even during the intermediate
stages of their experiments without wasting time transferring data to other
tools such as Tableau or Power BI.

1.2.2 The Benefits of Using Generative AI for Data Storytelling

In general, you can use Generative AI as an aid throughout all the life cycle
of a data science project. However, in this book, we will focus only on
generative AI in the data presentation phase, which corresponds to the data
storytelling phase.

The introduction of Generative AI tools to aid the data presentation phase
allows you to devote the same effort and time as you did without to the data
presentation phase, obtaining better results. Thanks to Generative AI tools,

you can make the audience understand your data (Figure 1.7).

Figure 1.7 Introducing Generative AI in the data presentation phase helps you to build better
charts in less time, enabling the audience to understand your message

Having discussed the benefits of the tools of choice in this book, we should
also briefly discuss contexts in which these tools are not as effective.

1.3 When Altair and Generative AI Tools are Not
Useful for Data Storytelling

While Python Altair and Generative AI tools are handy for building data

stories very quickly, they are not useful when analyzing big data, such as
gigabytes of data. You should not use them if you want to:

Do complex exploratory data analysis: exploratory data analysis helps
data analysts summarize a dataset's main features, identify relationships
between variables, and detect outliers. This approach is often used when
working with large datasets or datasets with many variables.
Do big data analytics: big data analytics analyzes large datasets to
uncover patterns and trends. To be effective, big data analytics requires
access to large amounts of data, powerful computers for processing that
data, and specialized software for analyzing it.
Write complex reports that summarize big data.

Altair enables you to build charts with datasets with 5,000 rows at maximum
quickly. If the number of rows exceeds 5,000, Altair still builds the chart, but
it’s slower.

For complex data analytics, use more sophisticated analytics platforms, such
as Tableau and Power BI.

In addition, consider that you should pay a fee to use Generative AI tools, so
do not use them if you do not have a sufficient budget.

1.4 Using the DIKW Pyramid for Data Storytelling

The primary focus of this book revolves around a significant concept known
as Data Information Knowledge Wisdom (DIKW) pyramid (Figure 1.8),
which we believe gives data scientists and analysts the macro steps to build
data stories. We’ll cover the DIKW pyramid more extensively in Chapter 5,
Crafting a Data Story through the DIKW Pyramid. Here, we introduce it
because it is fundamental to understand how we can use it to build data
stories.

The DIKW pyramid provides macro steps to transform data into knowledge,
following other intermediate steps, which include information and
knowledge.

Figure 1.8 The DIKW pyramid

The DIKW pyramid comprises the following elements:

Data is the building block at the bottom of the pyramid. Usually, we
start from a significant amount of data, more or less cleaned
Information involves extracting meaning from data. The information
represents organized and processed data that are easy to understand.
Knowledge is information interpreted and understood through a context
that defines the data background
Wisdom is the knowledge enriched with specific ethics that invites you
to act in some way. Wisdom also proposes the next steps to follow after
we have understood the data.

This book describes how to use the elements of the DIKW pyramid as
progressive steps to transform your data into compelling data stories. This

idea is not new in data storytelling; Berengueres et al. proposed this approach
(Berengueres 2019). The novelty of this book is the combination of the use of
the DIKW pyramid, Python Altair, and Generative AI. In this section, we will
introduce the fundamentals of DIKW that will be applied throughout this
book, and we’ll see how to climb each level of the pyramid.”

1.4.1 From Data to Information

To turn data into information, extract meaning from data. Consider the
following scenario:

The organizers of an event dedicated to pets are collecting the type of pets
that will participate. For each pet category, the organizers advertise the event
on specific websites dedicated to that category. The organizers ask you to
build a quick report about the current situation. The following table shows the
number of participants and the number of advertised websites divided by
type.

Table 1.1 Data related to pets involved in the event

Pet Number of participants Number of advertised websites

Cat 1138 150

Dog 130 28

Other 17 147

First, you focus on the number of participants. and build the following bar
chart.

Figure 1.9 A bar chart showing the number of pets participating in the event

With respect to Table 1.1, Figure 1.9 does not add any meaning. It’s simply a
visual representation of the table. For some aspects, the table is even clearer
than the bar chart.

To turn data into information, start understanding data. Ask the following
questions:

Who is the audience of my story?
What information do they want?
Are all the data relevant to answer the previous questions?

Let’s answer those questions. The organizers of the event are the audience for
our story. They want to know the current situation of animals involved in the
event. We could suppose that they want to elaborate a promotion plan to
increase the number of pets participating in the event.

Looking at the raw data in the table, you notice that the cat category has the
highest number of participants by some margin, followed by a relatively low
number of dogs. It seems that owners of other pets, judging by the almost
total lack of participants, are not interested in the event.

You may focus on one of the following options:

Remove the Other category because it is irrelevant
Focus on the Other category and propose a strategy to increase their
participation.

Let’s focus on the first possible course of action, removing the Other
category. Now, calculate the percentage of participants for each category, as
shown in the following table:

Table 1.2 Data related to pets involved in the event, with a focus on the percentage of the number
of participants

Pet Number of participants Percentage

Cat 1138 88.56

Dog 130 10.12

Notice that 88.56% of pets are cats and 10.12% are dogs. Usually, the final
audience may not be interested in the details of numbers, so approximate cats
at 90% and dogs at 10%. The extracted information is that one pet out of 10
is a dog, and 9 out of 10 is a cat. This is the meaning of your data.

Consider the following stacked bar chart describing the situation.

Figure 1.10 A stacked bar chart showing the current percentage of pets participating in the event

The figure is self-explanatory because the audience can understand the
situation immediately. You have extracted information (and thus, meaning)
from the data.

1.4.2 From Information to Knowledge

To turn information into knowledge, add context. Context involves all
circumstances around data, such as events, situations, etc. Adding context
helps the audience to understand data better.

Consider the previous example of dogs and cats. You already know that the
percentage of cats is greater than that of dogs. For example, adding context
means describing the events and situations in which motivated dog owners do
not participate. Let’s focus on the third column of the dataset described back
in Table 1.1, and which is recalled in Table 1.3: the number of advertised
websites. The number of advertised websites for cats is 150, and for dogs, 28.
This information is the context because it helps the audience to understand
why the number of cats is higher than the number of dogs.

Calculate the ratio between the number of participants and the number of
advertised websites to understand the participant's rate. Table 1.3 shows the
calculated values.

Table 1.3 Data related to pets involved in the event, with a focus on the participant's rate

Number of Number of advertised

Participant’s
rate

Pet participants Percentage websites #participants

/

#websites

Cat 1138 88.56 150 7.59

Dog 130 10.12 28 4.64

Cat’s participant rate is 7.59, meaning almost 8. Dog’s participation rate is
4.64, meaning almost 5. The participant rate helps the audience to understand
the context related to the number of participants in the event.

The following figure shows the stacked bar chart of Figure 1.10 enriched
with context.

Figure 1.11 A stacked bar chart showing the current percentage of pets participating in the event,
enriched with context

The context involves the following elements:

The title, which summarizes the chart content
The header, which describes the number of advertised websites
Two images, one for cats and the other for dogs, to facilitate reading.

The content described by the chart in Figure 1.6 is easier to read and
understand than that shown in the chart in Figure 1.4.

Adding context to the chart has enabled us to turn information into
knowledge.

1.4.3 From Knowledge to Wisdom

Turning knowledge into wisdom means adding a call to action, which invites
the audience to do something with the discovered knowledge.

A call to action is a very effective way to help drive conversions. Here are
some examples:

What changes can we make?
What opportunities do we have?
What advantages does our program offer?
What scenarios can we outline?
What are some examples of scenarios?

Alternatively, you may propose a possible solution to the questions or you
may invite the audience to discuss and listen to their proposals and answers to
our questions. It's here where the discussion takes place.

Your audience often needs the opportunity to voice their opinion and make
suggestions. Sometimes they may even have one or more questions.

Consider again the cats and dogs example. To add a call to action, change the
title from 9 pets out of 10 are cats to Increase the advertising campaign on
dog-related websites! Figure 1.12 shows the resulting chart, which adds the
call to action in the title.

Figure 1.12 A stacked bar chart showing the current percentage of pets participating in the event,
enriched with a call to action

The pets’ scenario demonstrated how to turn data into wisdom. Firstly, we
took data that contained the raw number of participants in the event. Then,
we extracted information that told us that 1 participant out of 10 is a dog and
the remaining 9 are cats. Next, we added a context that explained why dogs
were not interested in the event. The motivation was that the advertising
campaign for dogs was poor. Finally, we added a call to action that invited
the audience to increase the dog advertising campaign.

In this chapter, you have learned the basic concepts behind data storytelling
and how to transform data into stories using the DIKW pyramid. In the next
chapter, you’ll see how to use Python Altair and Generative AI to implement
the DIKW pyramid approach.

1.5 Summary

Data storytelling is a powerful tool that helps you communicate your
data more effectively. Data storytelling makes complex data more
relatable and easier to understand when used correctly.
Python Altair and Generative AI are great tools for creating stunning
data stories.
Do complex exploratory data analysis: exploratory data analysis helps
data analysts summarize a dataset's main features, identify relationships
between variables, and detect outliers. This approach is often used when
working with large datasets or datasets with many variables.
Don’t use Python Altair and Generative AI if you want to perform big
data analytics or write complex reports that summarize big data.
Use the DIKW pyramid to turn your data into wisdom.

1.6 References

Berengueres, J. and Sandell, M. (2019) Introduction to Data Visualization &
Storytelling: A Guide For The Data Scientist. Independently published.

Cairo, A. (2012). The Functional Art. New Riders.

Compass UOL (2023). Generative AI Speeds Up Software Development:
Compass UOL Study. https://blog.compass.uol/noticias/generative-ai-speeds-
up-software-development-compass-uol-study/ (Last Access, 2023/05/16)

Duolingo and GitHub Enterprise (2022). Duolingo empowers its engineers to
be force multipliers for expertise with GitHub Copilot,
Codespaces.https://github.com/customer-stories/duolingo (Last Access,
2023/05/16)

Dykes, B. (2023). LinkedIn post:
https://www.linkedin.com/feed/update/urn:li:activity:7061798908565336065/
(Last Access, 2023/05/10)

urn:li:activity:7061798908565336065.html

2 Running your first data story in
Altair and GitHub Copilot
This chapter covers

Introduction to Altair
Prerequisites
Use Case: Describing the Scenario
First Approach: Using Altair
Second Approach: Using Copilot

In this chapter, we will look at the basic concepts behind Altair, and then we
will implement a practical use case, which will allow us to transform a raw
dataset into a story. We will progressively apply the Data, Information,
Knowledge, Wisdom (DIKW) pyramid principles in Altair and see the results
achieved step by step. In the second part of the chapter, we will use Copilot
to automate some steps of the story creation process. We will focus only on
Copilot as a Generative-AI tool to keep the chapter simple and the flow
understandable. In the next chapters, we will introduce ChatGPT and DALL-
E to the DIKW pyramid.

2.1 Introduction to Altair

The Vega-Altair library (Altair, for short) is a declarative Python library for
statistical visualization based on the Vega and Vega-Lite visualization
grammars. Vega is a visualization grammar for creating expressive and
interactive data visualizations. Vega-Lite is a high-level declarative language
built on top of Vega, designed to simplify the creation of common data
visualizations with concise and intuitive syntax. We will discuss Vega and
Vega-lite in the next chapter.

Altair is a declarative library because you can describe the intended chart
outcome rather than manually programming every step, defining a concise

and intuitive syntax for creating interactive visualizations. We use declarative
libraries to specify what we want to see in a chart. We can specify the data
and the type of visualization we want, and the library creates the visualization
for us automatically. Declarative libraries stand in contrast to imperative
libraries, which instead focus on building a visualization manually, for
example specifying the desired axis, size, legend, and labels. Matplotlib is an
example of an imperative library.

Every Altair chart has at least three main elements: Chart, mark, and
encodings. We will cover each of these briefly in the following pages. Refer
to Appendix A to install Altair and the other Python libraries described in this
chapter. Refer to Appendix B for more details on the Pandas DataFrame
methods used in this chapter.

2.1.1 Chart

A Chart in Altair is an object acting as a starting point for constructing and
customizing interactive visualizations in Altair.. Use it to input the dataset
you would like to represent visually:

Listing 2.1 Chart in Altair

import altair as alt

import pandas as pd

Create data for the DataFrame

data = {'Name': ['Alice', 'Bob', 'Charlie'],

'Age': [25, 30, 35],

'City': ['New York', 'Paris', 'London']

}

Create the DataFrame from the data

df = pd.DataFrame(data)

Print the dataframe

print(df)

Create the chart

chart = alt.Chart(df)

Chart

First, import the required libraries, then build the DataFrame containing your
data. Finally, pass the DataFrame to, alt.Chart(). The example does not
create any visualization yet because we have not specified what we want to
represent.

2.1.2 Mark

A mark defines how to represent data. Examples of marks include bar charts,
line charts, area charts, and many more. To specify a mark, append it to the
Altair Chart. For example, in the listing below, we will specify that we want
to use a bar chart.

Listing 2.2 Mark in Altair

chart = alt.Chart(df).mark_bar()

Mark

Use mark_bar() to create a bar chartin Altair. If we run the code as it is, it
raises the following remarks: 1. from config import * 2.
configure_layout(chart) is required to display the diagram 3. This is because
we have not defined which dataset columns we want to represent.

Each mark is mark_<type_of_graph>(). Examples of marks are:

mark_bar() to plot a bar chart (Figure 2.1)

Figure 2.1 An example of a bar chart

mark_line() to plot a line chart (Figure 2.2)

Figure 2.2 An example of a line chart

mark_circle() to plot a scatter plot (Figure 2.3).

Figure 2.3 An example of a scatter plot

2.1.3 Encodings

Encodings specify the mapping between the DataFrame columns and their
visual representation in the Altair chart. In practice, encodings define where
to represent data in the chart, such as their position, size, and color. We call
channel every visual representation of data in the chart. Examples of channels
are axes, color, size, and so on. For example, in the listing below, we use
encodings to specify which columns of the DataFrame we must use in the x
and y axes:

Listing 2.3 Encodings in Altair

import pandas as pd

import altair as alt

Create data for the DataFrame

data = {'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35],

 'City': ['New York', 'Paris', 'London']

}

Create the DataFrame from the data

df = pd.DataFrame(data)

Create the chart

chart = alt.Chart(df).mark_bar(

).encode(

 x = 'Age:Q',

 y = 'Name:N'

)

chart.save('chart.html')

Encodings

Use encode() to define encodings in Altair. Place the Age variable of df on
the x-axis and the Name variable of df on the y-axis. Interpret Age as a
quantity (Q), and Name as a nominal value (N). Use
chart.save('chart.html') to export the chart as an HTML file. If you use a
Jupyter notebook, use chart.display() to plot the chart inline.

Figure 2.4 shows the chart produced by the code contained in Listing 2.3.

Figure 2.4 The chart produced by Listing 2.3

You can practice with basic charts in Altair through the examples provided in
the GitHub repository of the book. Start by cloning the GitHub repository of

the book, available at the following link: https://github.com/alod83/Data-
Storytelling-with-Python-Altair-and-Generative-AI[1]. To get started with
GitHub, follow the procedure described in Appendix A of the book or the
GitHub official documentation. Find the examples under 02/Basic
Chart.ipynb of the GitHub repository.

Now that you have learned the basic concepts behind Altair, we will review
the prerequisites for implementing a practical scenario in Altair and Copilot.

2.2 Use Case: Describing the Scenario

Let us suppose we are at the end of 2019, before the Covid-19 pandemic.
You work as a data analyst at a Portuguese hotel. Your boss has experienced
increased tourist arrivals in their hotel and wants to invest money to build a
new swimming pool. Before investing money, they ask you to study the
phenomenon to understand whether their investment will be successful. The
objective of your task is to see whether Portugal is seeing an increased
number of tourist arrivals in recent years relative to global trends.

You start your searches and find a dataset about arrivals at tourist
accommodation establishments[2], released as open data by Eurostat. For
simplicity, in this chapter, you consider only one dataset, but in a real use-
case scenario, you should consider more data, including the popularity of
swimming pools among tourists visiting Portugal, the cost of building a new
swimming pool at the hotel, and the potential revenue that the new swimming
pool could generate for the hotel.

The dataset contains the number of arrivals at tourist accommodation
establishments since 2019 in all European countries. For simplicity, focus
only on the following countries: Portugal, France, Italy, Germany, Spain, and
the United Kingdom.

Find the code described in this chapter in folder 02 of the GitHub repository
and the dataset in folder 02/source of the same repository.

2.2.1 The Dataset

Table 2.1 shows a sample of the dataset we will analyze. The dataset contains
the tourist arrivals at establishments from 1994 to 2019 for Italy (IT), France
(FR), Germany (DE), Portugal (PT), Spain (ES), and the United Kingdom
(UK).

Table 2.1 Arrivals at tourist arrivals establishments since 1994

Date IT FR DE PT ES UK

1990-
01-01 2.543.920 3.185.877 325.138 1723786 1.776.000

1990-
02-01 2.871.632 3.588.879 381.539 1885718 2.250.000

1990-
03-01 3.774.702 4.272.437 493.957 2337847 2.662.000

… … … … … … …

2019-
08-01 11.649.500 13.692.822 14.570.339 2.531.809 12893366 8.889.049

2019-
09-01 9.888.817 11.684.845 14.373.815 2.263.748 5.858.984

2019-
10-01 7.692.388 10.401.793 13.780.441 1.995.942 7.455.781

The table contains some missing values for some countries. Load the dataset
as a Pandas DataFrame:

Listing 2.4 Loading the dataset as a Pandas DataFrame

import pandas as pd

df = pd.read_csv('source/tourist_arrivals_countries.csv', parse_dates=['Date'])

Dataset loading

Use Pandas to load the dataset as a DataFrame. Use the parse_dates
parameter to load the Date field as a date.

Now, you are ready to perform basic data exploration.

2.2.2 Data Exploration

Exploratory Data Analysis (EDA) aims at analyzing and visualizing data to
extract insights and understanding of its underlying patterns, distributions,
and relationships. You may even use Generative AI to perform EDA.
Performing a complete data exploration is out of the scope of this book.
However, for quick data exploration, you can use an existing library, such as
ydata profiling[3] or Sweetviz[4]. In this chapter, we’ll use ydata-profiling.
Import the library, create a ProfileReport() object, and pass the Pandas
DataFrame as an input argument. Finally, build the report by invoking the
to_file() method:

Listing 2.5 Building a summary report

from ydata_profiling import ProfileReport

eda = ProfileReport(df)

eda.to_file(output_file='eda.html')

Dataset exploration

Use pandas-profiling to build a summary report of the dataset.

As a result, the to_file() method produces an HTML file that contains the
report. The following figure shows a snapshot of the produced report.

Figure 2.5 A snapshot of the report produced by pandas-profiling

The report contains many sections, as shown in the top right menu of Figure
2.5. The report may help you to

Understand the data: the report provides an overview of the dataset,
including the number of observations, variables, and missing values.
Use this information to understand the data quality.
Identify data types: the report identifies the data types of each variable
and provides a summary of their distribution, including measures such
as mean, median, standard deviation, and range. Use this information to
identify variables that may require further preprocessing.
Identify correlations: the report provides a correlation matrix, heatmap,
and scatter plot matrix, which can help identify variables that are highly
correlated or related.
Identify distributions: The report provides distribution plots, including
histograms and density plots, which can help identify the shape and
spread of the distribution of each variable. Use this information to
understand the underlying patterns and trends in the data.

In our case, the missing value section describes the presence of missing
values for some countries (France, Spain, and the United Kingdom), as
shown in the following figure:

Figure 2.6 The report highlights missing values for France, Spain, and the United Kingdom

Now that we have quickly explored the dataset, you are ready to build a data
story from that dataset. Let’s start with the first approach: using Altair.

2.3 First Approach: Altair

To transform data into a story, we will proceed step by step. First, we’ll build
a basic chart and then gradually enrich it with the elements necessary to
transform the chart into a story in its own right. We’ll use the principles of
the DIKW pyramid to implement this progressive enrichment:

From data to information
From information to knowledge
From knowledge to wisdom

Let’s start with the first step of the DIKW pyramid, turning data into
information.

2.3.1 From Data to Information

Turning data into information means extracting some meaning from data.
Start by drawing the raw chart, shown in the following code:

Listing 2.6 Building the raw chart in Altair

import altair as alt

df2 = pd.melt(df, id_vars='Date', value_name='Tourist Arrivals', var_name='Country')

chart = alt.Chart(df2).mark_line().encode(

 x = 'Date:T', #A

 y = 'Tourist Arrivals:Q', #B

 color=alt.Color('Country:N') #C

)

chart.save(‘chart.html)

The raw chart in Altair

Use the mark_line() property to build the raw chart in Altair. Draw the
number of tourist arrivals on the y-axis and the date on the x-axis.

Use the melt() function to unpivot the dataset, i.e., transform data rows into
columns. Then, build the chart. The chart uses three channels: x and y, to
describe the axes, and color, to group by countries. For each channel, specify
the column in the dataset (for example, Date for the x channel) and the data
type (T for temporal data, Q for quantitative data, and N for nominal data). The
following figure shows the produced chart:

Figure 2.7 The raw chart produced in Altair without any manipulation

The chart is difficult to read because all countries overlap. However, we can
extract the following highlight: all the trend lines have increased since 1990.
This is a positive message to communicate to our boss. From 1990 until
2019, there has been a progressive increase in the arrival of tourists. Let's
focus more on this information.

In all cases, we are not interested in knowing the intermediate data, as there
are no outliers, only the starting point (1990) and the final point of the time
series (2019). However, we note that for some countries, there is no data for

1990, and 2019 is incomplete (the data goes up to October). In this case, the
question is: what to do in the presence of missing values? The answer is: it
depends. In our case, we are dealing with a time series that grows
progressively (seasonality excluded), so we can restrict the analysis range
only to the dates for which we have data. Thus, we narrow our search to the
range 1994-2018.

Let’s implement this strategy in Altair.

Start by removing missing values from the dataset:

Listing 2.7 Removing missing values from the dataset

mask_fr = df['FR'].isnull() == False

mask_uk = df['UK'].isnull() == False

mask_es = df['ES'].isnull() == False

df = df[(mask_fr) & (mask_uk) & (mask_es)]

Removing missing values

Use the isnull() method to build a mask that selects missing values. Then
use the mask to filter missing values in the original dataset.

Then, group data by year and calculate the average value. Also, select only
data for 1994 (the first in the dataset) and 2018 (the penultimate in the
dataset).

Listing 2.8 Grouping by year and calculating the average value

df2 = df.copy()

df2.loc[:, 'Year'] = df['Date'].dt.year

df2 = df.groupby(by='Year').mean(numeric_only=True)

df2 = df2.iloc[[0, -2]]

df2.reset_index(inplace=True)

Extracting the first and the last year from the dataset

First, extract the year from the Date field, then group data by year and
calculate the average value. Next, select only the first year (1994) and the

penultimate year (2018). Finally, reset the index to retrieve the year.

Use loc to access a group of rows and columns by labels and iloc to access
group rows and columns by numerical indices. Use the reset_index()
function to create a new index column starting from 0 and move the current
index values to a new column.

Finally, build the chart in Altair:

Listing 2.9 Building the chart in Altair

df3 = pd.melt(df2, id_vars='Year',value_name='Tourist Arrivals', var_name='Country')

chart = alt.Chart(df3).mark_line(point=alt.OverlayMarkDef()).encode(

 x = alt.X('Year:O', title='', axis=alt.Axis(labelAngle=0)), #A

 y = 'Tourist Arrivals:Q',

 color=alt.Color('Country:N')

).properties(

 width=400,

 height=300,

 title='Countries Trend in Arrivals'

)

chart.save(‘chart.html’)

Building a line chart in Altair

Use the mark_line() property to build a line a chart in Altair. Pass
point=alt.OverlayMarkDef()to highlight points for each line. Configure the
label angle for the x channelwith axis=alt.Axis(labelAngle=0). Finally,
set the chart width, height, and title through the width, height and title
properties of the properties() function..

To encode the x channel, we have used the alt.X() object and not a simple
string as we did for the other channels. When we want to specify the channel
details, we can use the channel object instead of a simple string. For example,
we can use alt.Y() to set the properties of the y channel, alt.Color() for
the color channel, and so on. Within a channel object, you can set different
properties that depend on the channel. For example, for the x and y channels,
you can set the axis property. For each property within a channel, you can

define a value or an additional object. In practice, the same strategy of
channels applies to the channel properties. For example, axis is a property of
the x and y channels. We can use alt.Axis() to set additional properties of
the axis. In the example, we have set the labelAngle property of the axis.

To build the chart, we have also used the properties() function, which
configures the chart's general properties, such as the width, the height, and
the title.

The following figure shows the produced chart:

Figure 2.8 The produced chart after calculating the average value for each year and removing
intermediate years

The chart is clearer than that in Figure 2.7: you can easily distinguish the
trendline for each country. However, the presence of too many colors and
countries does not transmit the message. Our objective is to focus on
Portugal, which is the country about which our boss has asked for
information. In addition, we calculate the average number of tourist arrivals
to the other countriesfor comparison. The following listing describes how to
prepare the DataFrame for the chart:

Listing 2.10 Preparing the DataFrame

mask = df3['Country'] == 'PT' #A

df4 = df3.loc[~mask].groupby('Year').mean().reset_index() #B

df4['Country'] = 'Others (mean)' #C

df5 = df3.loc[mask].append(df4, ignore_index=True) #D

Prepare the DataFrame

Build a new DataFrame with two countries: Portugal and the average value
for the other countries.

Table 2.2 shows the resulting DataFrame.

Table 2.2 Arrivals at tourist arrivals establishments since 1994

Year Country Tourist Arrivals

1994 PT 563,354.83

2018 PT 1703,339.0

1994 Others (mean) 4,503,850.8

2018 Others (mean) 9,082,776.1

Now we can draw the chart, as shown in the following listing:

Listing 2.11 Drawing the chart with Portugal and Average

chart = alt.Chart(df5).mark_line(point=alt.OverlayMarkDef()).encode(

 x = alt.X('Year:O', title='', axis=alt.Axis(labelAngle=0)),

 y = 'Tourist Arrivals:Q',

 color=alt.Color('Country:N')

).properties(

 width=400,

 height=300,

 title='Countries Trend in Arrivals'

)

chart.save('chart.html')

Draw the chart

Use df5 to draw the new chart.

The following figure shows the resulting chart after selecting only Portugal
and the average value for the other countries.

Figure 2.9 The produced chart after selecting only Portugal and Germany

The increase in the number of tourists over time in the other countriesis
greater than that of Portugal. However, we are not interested in knowing the
absolute values, but rather the percentage increase of each country over time.
If we use absolute values, instead, we can’t answer the following questions
immediately:

For each country, what is the percentage increase since 1994?
Which of the two nations experiences the greater percentage increase?

If we use the percentage increases, we can put the two countries on a more
comparable level and we can answer the previous questions. Let’s calculate
the percentage increase since 1994 for each country and then plot the chart of
percentage increases instead of that of absolute values.

Calculate the percentage increase using the following formula:

Percentage Increase = (Final Value - Starting Value) / Starting Value * 100

In our case, calculate the percentage increase for each country as follows:

Listing 2.12 Calculating the percentage increase for each country

mask_first = df5['Year'] == 1994

mask_last = df5['Year'] == 2018

mask_pt = df5['Country'] == 'PT'

mask_ot = df5['Country'] == 'Others (mean)'

pi_pt = (df5[mask_last & mask_pt]['Tourist Arrivals'].values[0] - \

 df5[mask_first & mask_pt]['Tourist Arrivals'].values[0]) / \

 df5[mask_first & mask_pt]['Tourist Arrivals'].values[0]*100

pi_ot = (df5[mask_last & mask_ot]['Tourist Arrivals'].values[0] - \

 df5[mask_first & mask_ot]['Tourist Arrivals'].values[0]) / \

 df5[mask_first & mask_ot]['Tourist Arrivals'].values[0]*100

Percentage increase

First, build two masks, one for each year and for each country. Then calculate
the percentage increase for each country. Use df[field].values[0] to get
the value of the first row of a field.

Now, build again the chart, as shown below:

Listing 2.13 Drawing the chart of percentage increases

df_pi = pd.DataFrame({

 'Date' : [1994,2018,1994,2018],

 'Country' : ['PT', 'PT', 'Others (mean)', 'Others (mean)'],

 'Tourist Arrivals' : [0, pi_pt, 0, pi_ot]

})

chart = alt.Chart(df_pi).mark_line(point=alt.OverlayMarkDef()).encode(

 x = alt.X('Date:O', title='', axis=alt.Axis(labelAngle=0)),

 y = alt.Y('Tourist Arrivals:Q',title='%'),

 color=alt.Color('Country:N')

).properties(

 width=400,

 height=300,

 title='Percentage increase in Tourist Arrivals'

)

chart.save('chart.html')

Drawing the chart of percentage increase

First, create a new DataFrame with the required values. Then, draw the chart.
Use title to modify the title of the y axis..

The following figure shows the resulting chart:

Figure 2.10 The produced chart after calculating the percentage increase for each country

The chart shows that Portugal has experienced a higher percentage increase
in tourist arrivals than the other countries. This is an extraordinary discovery,
that answers our boss’ question. We have extracted information from the
data. To highlight our discovery, add an annotation to the chart, which
describes exactly the percentage increase value in correspondence of 2018.

Listing 2.14 Adding an annotation to the chart

df_ann = pd.DataFrame({

 'Text' : ['Portugal: ' + '{:.2f}'.format(pi_pt) + '%',

 'Others (mean): ' + '{:.2f}'.format(pi_ot) + '%'],

 'Y' : [pi_pt,pi_ot],

 'X' : [2018,2018],

 'Country' : ['PT', 'Others (mean)']

})

pi = alt.Chart(df_ann).mark_text(

 dx=10, #A

 align='left', #B

 fontSize=20 #C

).encode(

 text='Text:N',

 y='Y:Q',

 x='X:O',

 color=alt.Color('Country:N',

 scale=alt.Scale(domain=['Others (mean)', 'PT'],

 range=['lightgrey', 'orange']),

 legend=None)

)

total = (chart + pi).configure_view(strokeWidth=0)

total.save('chart.html')

Annotating the chart

First, build a DataFrame with the text to add to the chart and the position
where to place the text. Then, use the mark_text() property to draw the text.
Finally, combine the previous chart and the text annotation through the +
operator. Use configure_view(strokeWidth=0) to remove the borders of the
annotation chart. Also, note that we have defined a scale in the color channel.
The scale defines the range (colors to use) and the domain (the labels to
which apply colors)..

The mark_text() function (and the other mark_*() functions) can receive as
input some parameters that define some static properties of the chart. For
example, if you want to use a static color for all the texts in the chart, set the
color in the mark_*() function. Instead, if the color of the text depends on a
column in the DataFrame, set it in the encode() function.

The following figure shows the resulting chart at the end of the first step,
turning data into information:

Figure 2.11 The produced chart at the end of the first step: turning data into information

The chart is clear and easy to understand. Adding information means
extracting only the relevant data from data and representing them in a way
that is easy to understand by the audience without further calculation. Now
that you have turned data into information, it’s time to move to the next step
of the DIKW pyramid, turning information into knowledge.

2.3.2 From Information to Knowledge

Turning information into knowledge means adding context to the extracted
information. Usually, context answers the following question: why does this

situation happen? If possible, extend your search or look at the same dataset
to answer this question. In our case, the question is: Why has Portugal
experienced such an incredible increase in tourist arrivals over 25 years? To
answer this question, you searched on the Web and discovered that Portugal
(and other countries) introduced many low-cost flights in the early 1990s
(Dobruszkes 2013). This has allowed for more massive development of
tourism.

This finding is the context for our graph: Thanks to the introduction of low-
cost flights, Portugal has experienced an increase in tourist arrivals of over
200% in 25 years, even surpassing the increase in the other countries. Add
this discovery as an annotation in the chart:

Listing 2.15 Adding the context to the chart

annotation = f"""Thanks to the introduction ..."""

df_text = pd.DataFrame([{'text' : annotation}])

text = alt.Chart(df_text

).mark_text(

 lineBreak='\n',

 align='left',

 fontSize=20,

 y=100,

 color='orange'

).encode(

 text='text:N'

)

build the final chart

total = (chart + pi | text).configure_view(strokeWidth=0)

total.save('chart.html')

Adding context to the chart

First, build a DataFrame with the text to add to the chart. Then, use
mark_text() to draw the text. Also, specify the line break symbol
(lineBreak='\n'), how to align the text (align='left'), the font size
(fontSize=20), the position (y=100), and the color (color='orange').
Finally, combine the text with the previous chart through the + operator.

The following figure shows the resulting chart at the end of the second step,
turning information into knowledge:

Figure 2.12 The produced chart at the end of the second step: turning information into
knowledge

Thanks to context, the chart answers why this happens. Now that you have
turned information into knowledge, it’s time to move to the final step of the
DIKW pyramid, turning knowledge into wisdom.

2.3.3 From Knowledge to Wisdom

Turning knowledge into wisdom means adding a call to action to the chart
and proposing the next steps. In this chapter, we focus only on adding a call
to action. We’ll see how to add the next steps in the following chapters. The
call to action invites the audience to do something. In our case, the call to
action should answer our boss’s original question: can I build a new
swimming pool?

Given the results of the previous analysis, formulate the following call to
action: Yes, you can build a new swimming pool! Add the call to action as the

chart's title:

Listing 2.16 Adding the call to action to the chart

chart = alt.Chart(df_pi).mark_line(point=alt.OverlayMarkDef()).encode(

 x = alt.X('Date:O', title='', axis=alt.Axis(labelAngle=0)),

 y = alt.Y('Tourist Arrivals:Q',title='Percentage increase'),

 color=alt.Color('Country:N')

).properties(

 width=400,

 height=300,

 title='Yes, you can build a new swimming pool!'

)

total = (chart + pi | text

).configure_view(

 strokeWidth=0

).configure_title(

 fontSize=20,

 offset=25

)

total.save('chart.html')

Adding call to action to the chart

Set the font size of the title of the chart through fontSize=24 and the distance
between the title and the chart (offset=25).

The following figure shows the resulting chart at the end of the last step,
turning knowledge into wisdom:

Figure 2.13 The produced chart at the end of the final step: turning knowledge into wisdom

The chart contains the answer to your boss’s question. Comparing this chart
with Figure 2.5, you probably notice a big difference. The charts in Figures
2.9 and 2.10 show that the audience doesn't have to do any calculations or
processing. Just read the result. If, on the other hand, they look at the chart in
Figure 2.5, the audience has to extract the information by themselves.

Someone may argue that a lot of information was lost in the process, such as
what happened to the other European countries and what happened in the
years between 1994 and 2018. Thus the boss wouldn't want to make a big
investment based only on the numbers shown in the chart. This observation is
correct. However, we have simplified the example to show the workflow to
turn data into a story. Obviously, in a more complex scenario, you must
consider more factors and build an appropriate story, where each factor is a
single scene of your data story.

To have an idea of the differences between Altair and Matplotlib, in the next
section, we build the same chart using Matplotlib. If you are not familiar with
Matplotlib, jumpy directly to the next section, Second approach: Copilot.

2.3.4 Comparing Altair and Matplotlib

Matplotlib is a popular Python library for data visualization. Probably, it is
the first Python library you used to plot your data quickly. If you use
Matplotlib as an alternative to Altair, consider that Matplotlib is an
imperative library, so you must define all the steps to produce the chart. In
Altair, instead, you focus only on the desired output. Anyway, all the
concepts related to data storytelling described in this book are also valid for
Matplotlib, so use it if you prefer the imperative approach.

The following table compares the Altair code used to generate the chart in
Figure 2.13 with the equivalent code in Matplotlib. You can find the
complete code in Matplotlib in the GitHub repository of the book, under
02/Matplotlib Example.ipynb.

Table 2.3 A comparison between Altair and Matplotlib

Step Altair Code

Import
libraries

import altair as alt

Draw the main

chart = alt.Chart(df_pi).mark_line(

point=alt.OverlayMarkDef()

).encode(

x = alt.X(

'Date:O',

title='',

axis=alt.Axis(labelAngle=0)

),

y = alt.Y(

chart 'Tourist Arrivals:Q',

title='Percentage increase'),

color=alt.Color('Country:N')

).properties(

width=400,

height=300,

title='Yes, you can build a new swimming pool!'

)

Draw the line
annotations

pi = alt.Chart(df_ann).mark_text(

dx=10,

align='left',

fontSize=20

).encode(

text='Text:N',

y='Y:Q',

x='X:O',

color=

alt.Color('Country:N',

scale=alt.Scale(

domain=['Others (mean)', 'PT'], range=['lightgrey', 'orange']) legend=None)

)

Draw the
textual
annotation

text = alt.Chart(df_text

).mark_text(

lineBreak='\n',

align='left',

fontSize=20,

y=100,

color='orange'

).encode(

text='text:N'

)

Final
Configurations

total = (chart + pi | text

).configure_view(strokeWidth=0)

total.save('chart.html')

Figure 2.14 shows the produced chart in Matplotlib.

Figure 2.14 The produced chart in Matplotlib

The Altair code is more verbose than that in Matplotlib. However, in Altair,
you specify only the desired output, while in Matplotlib, you must also
specify some configurations not strictly related to the output layout, such as
blended_transform_factory(), to include annotations. In addition, in
Matplotlib, you must draw each line or text separately, while in Altair, you
pass the DataFrame, and the library draws a line or a mark in general for you.

Now that you have turned your data into wisdom by hand and seen the
differences between Altair and Matplotlib, we will move to the alternative
method: using GitHub Copilot to build the chart semi-automatically.

2.4 Second Approach: Copilot

Copilot enables you to write code to implement something automatically.
We’ll enable Copilot as an extension of Visual Studio Code (VSC). To
configure Copilot, please refer to Appendix A.

To use Copilot, it is sufficient to describe the sequence of operations to be
implemented orderly, and Copilot will do the rest for us, even proposing
different implementations options. In this section, we will use Copilot to
build the framework of the graph, i.e., its main parts. Then, we will add the
details by hand, using colors and font size. The main difficulty in using
Copilot is describing what the code needs to implement in natural language.

The clearer the text, the more consistent Copilot will be in implementation.

In this section, we’ll describe how to translate the code written in the
previous sections into a sequence of texts understandable by Copilot. We will
focus only on translating the framework of the graph into the natural
language without considering the details, such as the font size and the colors
used. Find the code generated by GitHub Copilot in the book's repository
under 02/GitHubCopilotExample.py.

We will split the problem into steps:

Loading and cleaning the dataset
Calculating the percentage increase
Building the chart
Plotting the basic chart in Altair
Enriching the chart

Let’s look at each point in turn, in the coming sections.

2.4.1 Loading and Cleaning the Dataset

Before using the dataset, you must load the required libraries, open the
dataset as a Pandas DataFrame, and calculate the percentage increases. The
idea is to prepare data to build the chart in Figure 2.13. For simplicity, we
will compare Portugal with Germany and not with the mean of the other
countries, but you can apply the same procedure also if you want to
generalize to the other countries.

Open VSC and write the following comments:

Listing 2.17 Loading and filtering the dataset

Import the necessary libraries

Read the following dataset into a pandas dataframe: 'source/tourist_arrivals_countries.csv' and parse the Date field as a date

Remove missing rows from the data

Extract the year from the Date field and create a new column called Year

Group the data by Year and calculate the average number of tourist arrivals for each year

Select only the rows where the year is 1994 or 2018

Select only the following columns: Year, PT and DE

Write the text to load and filter the dataset

Describe the sequence of operations to load and filter the dataset.

If you press Enter at the end of the last comment, and start writing import,
Copilot will propose to complete the statement. Just press Enter to accept the
generated code. Alternatively, hover over the proposed text with the mouse,
and open Copilot, as shown in the following figure:

Figure 2.15 How to open Copilot in VSC

Depending on the generated code, Copilot may propose different solutions, as
shown in the following figure:

Figure 2.16 The different solutions proposed by Copilot in VSC

Click on Accept Solution to accept a solution. In our case, the second
solution implements the described steps. Please notice that every time you
run Copilot, it may generate different solutions, even if you re-run the same
text.

2.4.2 Calculating the Percentage Increase

The next step involves building a new dataset, starting from the previously
cleaned dataset. The new dataset will contain the percentage increase values
for Portugal and Germany. Write the following sequence of operations:

Listing 2.18 Building a new DataFrame with percentage increase

Create a new dataframe df_pi with three columns Year, Country, and Percentage Increase

Add a new row to df_pi with the following values: 1994, PT, 0.0

Add a new row to df_pi with the following values: 1994, DE, 0.0

For columns PT and DE in the original dataframe df,

 calculate the percentage increase of the second row respect to first row and

 store the result as two new columns in df_pi. For the column year, add 2018

Build the df_pi DataFrame

Describe the structure of the df_pi DataFrame.

Similarly to the previous case, Copilot could propose multiple solutions.
Open Copilot to check the possible solutions and accept that implementing
your operations. If you don’t find any solution that implements your text,
rewrite the text by adding more details. If, even after rewriting the text, you
can't find any solution that implements your operations, accept the solution
closest to your requests and modify it according to your needs.

2.4.3 Plotting the Basic Chart in Altair

Now, we’ll instruct Copilot to build a chart similar to what we saw in Figure
2.13 regarding the percentage increase comparison of Portugal and Germany.

Listing 2.19 Building the chart in Altair

Use the Altair library to plot two lines in the same chart showing the PT and DE columns versus the Year column of df_pi. Use the color channel to discriminate for the Country column. Encode the x channel as ordinal. Set chart width to 400

Build the chart in Altair

Describe how the chart should look.

Copilot could propose multiple solutions. Open Copilot to check the possible
solutions and accept that implementing your operations.

2.4.4 Enriching the Chart

Instruct Copilot to add the context and the call to action (as we saw in our
approach using Altair), as a title. In addition, save the resulting chart into an
HTML file, named output.html.

Listing 2.20 Enriching the chart

Create a new chart with the following text: 'Thanks to the introduction of low-cost flights,Portugal has experienced an increase in tourist arrivals of over 200% in 25 years, even surpassing the increase in Germany, one of the favorite destinations for tourists ever.' Use the as a line break to format the text. Set the font size to 14.

Place the two graphs side by side. Set the title to 'Yes, you can build a new swimming pool!'

Save the chart as an HTML. Name the file output.html

Add the context and a title

Write the annotation and title to show in the chart.

Once the code is complete, save and run the script. The following figure
shows the resulting chart:

Figure 2.17 The chart produced by Copilot

The chart is a good starting point, but it still needs improvement. To improve
the chart, you can run the following steps manually:

Increase the font size of the title and the annotation
Rotate the labels of the x-axis
Split the annotation text on the right across multiple lines

In this chapter, you have learned how to turn a raw dataset into a data story,
using Altair and Copilot. In the next chapter, you’ll review the basic concepts
of Altair.

2.5 Summary

Altair is a declarative library for data manipulation and visualization. It
provides three main elements to build a chart: chart, mark, and
encodings. Use the chart element to specify the dataset to plot. Use the
mark to specify the type of chart to draw and encodings to set the
channels, such as the x and y axes.
To turn raw data into a data story, use the DIKW principles

progressively. Start by cleaning your dataset, and then extract only
meaningful information. Draw the extracted information. Then add a
context and a call to action as annotations.
Copilot is a very powerful tool to speed up your code generation. To
make Copilot generate your code, split the problem into small steps, and
describe each step using natural language. Although Copilot is not
perfect, it can assist you in building the framework of your code.
Use Copilot to generate your code's framework automatically, then
improve the code manually.

2.6 References

Dobruszkes, F. (2013). The geography of European low-cost airline
networks: a contemporary analysis. Journal of Transport Geography, 28, 75-
88.

[1] https://github.com/alod83/Data-Storytelling-with-Python-Altair-and-
Generative-AI

[2]

https://ec.europa.eu/eurostat/databrowser/view/tour_occ_arm/default/table?
lang=en

[3] https://pypi.org/project/pandas-profiling/

[4] https://pypi.org/project/sweetviz/

3 Reviewing the basic concepts of
Altair
This chapter covers

Vega and Vega-Lite
The basic components of an Altair chart
Case study

In this chapter, we will review the basic concepts behind Vega and Vega-lite,
the visualization grammars upon which Altair is built. Then, we’ll focus on
the Altair main components: encodings, marks, conditions, compound charts,
and interactivity. In the last part of the chapter, we’ll implement a practical
example.

3.1 Vega and Vega-Lite

Vega and Vega-Lite are two visualization grammars used by Altair. A
visualization grammar is a set of rules and principles defining how to
represent data visually, much like how a spoken language has its grammar. A
visualization grammar includes a vocabulary of visual elements, such as
points, lines, and bars, and rules for combining and arranging these elements
to create meaningful visualizations. Using a visualization grammar allows
you to create clear and effective data visualizations that convey insights and
tell stories.

Vega and Vega-lite provide declarative language for creating interactive
visualizations. Learning Vega and Vega-lite before Altair is important
because Altair is built on top of these two visualization libraries. By
mastering these foundational tools first, you can gain a deeper understanding
of how Altair works and leverage its full potential. Additionally, learning
Vega and Vega-lite enable you to create custom visualizations that may not
be possible with Altair alone, allowing for more flexibility and creativity in

data exploration and communication. In the following section, we'll explore
the main components of a Vega and Vega-Lite specification.

3.1.1 Vega

Vega is a visualization grammar to define the visual aspects and interactive
features of a chart by writing code in JSON format. Using Vega, you can
generate web-based views that utilize HTML5 Canvas or SVG to display the
resulting chart. HTML5 Canvas is a bitmap-based drawing technology that
enables you to render dynamic graphics and animations on the web. SVG is a
vector-based graphics format for building scalable and resolution-
independent graphics.

A Vega JSON file contains the specifications for the visual appearance and
interactive behavior of a chart. Listing 3.1 shows the basic structure of a
JSON specification. For testing, you can use the Vega Editor to render the
chart produced by Vega.

Listing 3.1 The basic structure of a Vega JSON file

{

 "$schema": "https://vega.github.io/schema/vega/v5.json",

 "description": "An example of vega specification.",

 "width": 600,

 "height": 400,

 "data": [],

 "scales": [],

 "axes": [],

 "marks": [],

 "signals": []

}

The Vega JSON file

First, define the version of the schema ($schema), a description, the width
and the height of the chart. Then, specify the main sections (signals, data,
and so on).

The main sections of a Vega JSON file include data, scales, axes, marks, and

signals. In the remainder of this section, we’ll describe an overview of the
main sections of a Vega specification. For more details, please refer to the
Vega official documentation.

Data

This section defines the data source to use. It specifies the data format, where
the data is located, and how it should be loaded and transformed. Listing 3.2
shows an example of a data section.

Listing 3.2 An example of data section

"data": [

 {

 "name": "mydata",

 "url" : "/path/to/csv/myfile.csv",

 "format": {"type": "csv"}

 }

]

The data section

Specify the list of data to use in the visualization. For each data, specify the
name and the content. The example retrieves the data from the myfile.csv file
at /path/to/csv/. Alternatively, you can retrieve data from other formats or
embed them in the JSON directly.

Scales

This section defines the scales that map the data to visual properties. Scales
map a data domain (input range) to a visual range (output range). Listing 3.3
shows an example of a scales section.

Listing 3.3 An example of scales section

"scales": [

 {

 "name": "xscale",

 "domain": {"data": "mydata", "field": "X"},

 "range": "width"

 },

 {

 "name": "yscale",

 "domain": {"data": "mydata", "field": "Y"},

 "range": "height"

 }

]

The scales section

Specify the list of scales to use in the visualization. For each scale, specify at
least the name, the range, and the domain. The example defines two scales,
one for the x-axis and the other for the y-axis. Specify the data to use as the
value of the domain attribute.

Axes

This section defines the axes of the chart. Use axes to define tick marks and
labels along an axis. Listing 3.4 shows an example of an axes section.

Listing 3.4 An example of axes section

"axes": [

 { "orient": "bottom", "scale": "xscale" },

 { "orient": "left", "scale": "yscale" }

]

The axes section

Specify the list of axes to use in the visualization. For each axis, specify at
least the scale and how to orient it. The example defines two axes, one for the
x-axis and the other for the y-axis.

Marks

This section defines the visual marks that represent the data. Marks include
points, lines, rectangles, areas, and other shapes. Use visual properties like
size, color, opacity, and shape to style marks. Listing 3.5 shows an example

of a marks section.

Listing 3.5 An example of marks section

"marks": [

 {

 "type": "line",

 "from": {"data":"mydata"},

 "encode": {

 "enter": {

 "x": {"scale": "xscale", "field": "X"},

 "y": {"scale": "yscale", "field": "Y"},

 "stroke": { "value": "#F67E00"}

 }

 }

 },

]

The marks section

Specify the list of marks to use in the visualization. For each mark, specify at
least the type (line, symbol, rect, and so on), the source of data (from), and
how to encode the data (encode). The example defines a line chart
representing data contained in the mydata variable defined in the data
section. It also defines two encoding channels, x and y and the color of the
line stroke.

Signals

This section defines the interactive signals you can use to modify the
visualization, such as sliders, dropdowns, and checkboxes. Every signal is
composed of two parts: the listener, which is identified by the signals
section, and the handler, which is defined by the keyword signal within the
marks section. The signal listener responds to signal changes, and the signal
handler determines how the visualization reacts. For example, a signal
handler might change the color or size of data points based on a signal's
value.

Listing 3.6 shows an example that changes the color of a selected bar in a bar
chart when the user hovers over the bar with the mouse (Figure 3.1).

Listing 3.6 An example of signals section

"signals": [

 {

 "name": "changeColor",

 "value": {},

 "on": [

 {"events": "rect:mouseover", "update": "datum"},

 {"events": "rect:mouseout", "update": "{}"}

]

 }

],

"marks": [

 {

 "type": "rect",

 ...

 "encode": {

 ...

 "update": {

 "fill": { "signal": "changeColor === datum ? '#80C11E' : '#636466'" }

 }

 }

 }

]

The signals section

Specify the list of signals to use in the visualization. For each signal, specify
the property to modify in the mark specification (value, in the example) and
the list of events to listen (on). Then, specify the handler, under the marks
section, through the signal property. The example defines a signal that
listens to mouse over and mouse out events on the bars of a bar chart. In case
of mouse over, the signal passes the current datum to the handler. Within the
update property of marks section, the example defines a handler that checks
whether the signal corresponds to the mouse over event (changeColor ===
datum) and then sets the color accordingly. Refer to the Vega documentation
for more details.

Figure 3.1 A bar chart highlighting a bar when hovering over it with the mouse

You can find the described example in the GitHub repository of the book
under 03/vega/json/spec.json. The repository also describes an example of
line chart specification in Vega (03/vega/json/spec2.json).

Now that you have learned the basic concepts behind Vega, let’s move to the
next step, Vega-lite.

3.1.2 Vega-lite

Vega-lite is a concise JSON of a Vega visualization. Vega-lite still maintains
the specifications already defined in Vega, but it represents them through a
more compact syntax. The basic sections of a Vega-lite JSON specification
are data, encoding, mark, and layer.

Data

This section specifies the data source for the visualization. Listing 3.7 shows
an example of a data section in Vega-lite.

Listing 3.7 An example of data section

"data": {

 "url": "/path/to/my/mydata.csv",

 "format": {"type": "csv"}

}

The data section

Specifies the data to use in the visualization. Refer to the Vega-lite
documentation for more details.

Encoding

This section maps the data fields to visual properties such as position, color,
and size. Listing 3.8 shows an example of an encoding section in Vega-lite.

Listing 3.8 An example of encoding section

"encoding": {

 "x": {"field": "X", "type": "quantitative"},

 "y": {"field": "Y", "type": "quantitative"}

 },

The encoding section

Specify the encodings to use in the visualization. The example defines two
channels, x and y, and specifies the data type as quantitative.

Mark

This section defines the type of visual mark such as bars, points, or lines.
Listing 3.9 shows an example of a mark section in Vega-lite.

Listing 3.9 An example of mark section

"mark": {"type": "line", "color": "#F67E00"}

The mark section

Specify the mark to use in the visualization. The example defines a line chart
and sets its color to #F67E00.

Layer

This section combines multiple marks in a single chart. Listing 3.10 shows an
example of a mark section in Vega-lite.

Listing 3.10 An example of layer section

"layer": [

 {"mark": {"type": "line", "color": "#F67E00"}},

 {"mark": {"type": "point", "shape": "circle", "size": 100, "color": "#F67E00"}}

]

The layer section

Specify the list of marks to combine. This combines two charts, a line chart,
and a point chart.

Now that you have learned the basic concepts behind Vega and Vega-lite,
let’s see how to render a Vega/Vega-lite visualization.

3.1.3 How to render a Vega/Vega-lite visualization

Both Vega and Vega-lite are JSON objects that need a renderer to be shown,
such as an external Javascript library, for the visualization into an HTML
page. Vega-lite provides a Javascript API that automatically builds both Vega
and Vega-lite visualizations.

To render a Vega or Vega-lite JSON, import the following Javascript libraries
in your HTML file:

https://cdn.jsdelivr.net/npm/vega@5.22.1

https://cdn.jsdelivr.net/npm/vega-lite@5.6.0
https://cdn.jsdelivr.net/npm/vega-embed@6.21.0

The library's versions may vary. In our case, we import version 5.22.1 for
vega, 5.6.0 for vega-lite, and 6.21 for vega-embed. Then, you can write the
code described in Listing 3.11 to render your Vega/Vega-lite JSON file.

Listing 3.11 Rendering a Vega/Vega-lite JSON specification

var request = new XMLHttpRequest();

request.open("GET", "/path/to/JSON/specification", false);

request.send(null)

var data = JSON.parse(request.responseText);

vegaEmbed('#vis', data);

The Javascript code to render a Vega/Vega-lite JSON specification

Open a new XMLHttpRequest() to load the JSON file and then use the
vegaEmbed() function to render the JSON. Note that you must provide a valid
external URL to the request object. You can’t use a local JSON file.

For example, to render the chart described in Listing 3.6, use the following
HTML specification:

Listing 3.12 The complete HTML file

<!DOCTYPE html>

<html>

 <head> #A

 <script src="https://cdn.jsdelivr.net/npm/vega@5.22.1"></script>

 <script src="https://cdn.jsdelivr.net/npm/vega-lite@5.6.0"></script>

 <script src="https://cdn.jsdelivr.net/npm/vega-embed@6.21.0"></script>

 </head>

 <body>

 <div id="vis"></div> #B

 <script type="text/javascript"> #C

 var request = new XMLHttpRequest();

 request.open(‘GET’, ‘/path/to/json/file’, false);

 request.send(null)

 var data = JSON.parse(request.responseText);

 vegaEmbed('#vis', data);

 </script>

 </body>

</html>

The HTML code

First, import the Vega and Vega-lite libraries in the header section. Then,
create a div that will contain the chart. Finally, build the chart. Use an
external JSON file to define the chart specifications.

You can find the complete example and other examples in the GitHub
repository of the book, section 03/vega and 03/vega-lite.

Now that you have learned the basic concepts behind Vega and Vega-lite,
let’s move to the next step, the basic components of an Altair chart.

3.2 The Basic Components of an Altair Chart

In this book, we will use the just-in-time teaching methodology, which
combines theory and practice so that you’ll learn a concept at the moment
you’ll need it. However, in this chapter, we will not use this methodology.
The reason for this is that we want to establish a strong foundation of
fundamental concepts about Altair before diving into the more advanced
topics covered later in the book. By deviating from the just-in-time teaching
methodology for this chapter, we can provide a comprehensive overview and
in-depth understanding of the underlying principles that will serve as building
blocks for the subsequent material.Altair is built on top of Vega-lite and
offers a user-friendly API to build charts. You have already learned how to
build a basic chart in Altair in Chapter 2, Running Your First Data Story in
Altair and GitHub Copilot. In this chapter, we’ll dive deep into the basic
components of an Altair chart.

The basic components of an Altair chart are:

Encodings define how data is mapped to visual properties, such as
color, shape, and size
Marks refer to the visual elements representing the data, such as bars,
points, and lines

Conditions enable us to create more complex visualizations by
specifying rules for when we should use certain encodings or marks
Compound charts combine multiple visual elements to create more
complex and informative visualizations
Interactivity enables us to interact with the visualization and explore
the data
Configurations define general properties for compound charts.

Let’s analyze each component separately, starting from the first one,
encodings. You can find some sample code in the 03/altair directory of the
GitHub repository of the book.

3.2.1 Encodings

Altair utilizes encodings to indicate where to show data. To define an
encoding, you mustdefine an encoding channel, which is the fundamental
component of visualizations in Altair. Each encoding channel corresponds to
a specific column of the DataFrame that can be mapped to a visual feature of
the plot. The encoding process determines where to display the data in the
chart according to the chosen channel type. Altair identifies several key types
of channels, including the following ones:

Position, which specifies the location of data in the chart
Mark Property, which determines the chart's appearance such as color,
size, and shape
Text and Tooltip, which offer supplementary annotations for the graph.

Table 3.1 shows a short description of the main encodings. For more details,
please refer to the Altair documentation.

Table 3.1 The main encodings in Altair

Type Channel Description

Horizontal

Position

x, y and vertical
positions

longitude, latitude
Geographical
coordinates

xError, xError
Error values
for x and y

x2,y2, longitude2, latitude2

Second
positions for
ranges

theta, theta2
Start and end
arc angles

Mark
Property

angle, radius

The angle
and the
radius of the
mark

color, fill

The color
and the fill
of the mark

opacity, fillOpacity

The opacity
and the fill
opacity of
the mark

shape, size

The shape
and the size
of the mark

stroke, strokeDash, strokeOpacity, strokeWidth

Stroke
properties of
the mark

Text
and
Tooltip

text
The text of
the mark

tooltip
The tooltip
of the mark

Refer to Chapter 2, Running Your First Data Story in Altair and GitHub
Copilot, to build a chart using encodings.

3.2.2 Marks

Marks enable you to represent data in visualizations. Examples of marks
include bar charts, line charts, heat maps, and box plots, among others. To
specify the type of mark, use the mark_<type>() function, where <type>
represents the specific type of mark. For instance, to create a bar chart, use
mark_bar(). Additionally, you can provide a list of attributes as input
parameters for each mark property defined in Table 3.1. When using a mark
property within the mark_<type>() function, the value of that property is
fixed to a constant value. For example, mark_circle(size=5) will draw
circles with a constant size of 5. However, if you want to vary the size of the
circles depending on a specific column of your DataFrame, use the size
channel within the encoding function.

Table 3.2 shows the main mark types provided by Altair.

Table 3.2 The main mark types provided by Altair

Method Description

mark_arc() A pie chart

mark_area() A filled area chart

mark_bar() A bar chart

mark_circle() A scatter plot with filled points

mark_geoshape() A geographic shape

mark_line() A line chart

mark_point() A scatter plot with configurable points

mark_rect() A filled rectangle for heatmaps

mark_rule() A vertical or horizontal line spanning the axis

mark_text() A text

Refer to Chapter 2, Running Your First Data Story in Altair and GitHub

Copilot, to build a chart using marks.

3.2.3 Conditions

Altair provides several ways to create conditions in visualizations, which
enable you to customize and control the appearance of your charts based on
specific criteria. One common way to create conditions in Altair is to use the
if-else statements in the encoding channels of a chart. To define a condition in
Altair, use the alt.condition() method, which takes three arguments:

A condition
A value to use when the condition is true
A value to use when the condition is false.

For instance, if we want to change the color of the bars in a bar chart based
on a specific condition, write the code shown in Listing 3.13.

Listing 3.13 Using the alt.condition() method

df = pd.DataFrame(

 {"Country": ["Japan", "USA", "Germany", "Spain", "France", "Italy"],

 "Medals": [4, 6, 10, 3, 7, 8],

 "Region":["Asia","Americas","Europe","Europe","Europe","Europe"]})

chart = alt.Chart(df).mark_bar().encode(

 x='Medals',

 y='Country',

 color=alt.condition(

 alt.datum.Region == 'Europe',

 alt.value('red'), # color to use when condition is true

 alt.value('blue') # color to use when condition is false

)

)

chart.show()

How to write a conditional statement in Altair

The condition in the example checks if the Regionis the Europe. If the
condition is true, the bars will be colored red, and if the condition is false, the
bars will be colored blue.

In addition to using if-else statements with the alt.condition() method and
the type-checking functions, Altair provides two other ways to create
conditions in visualizations: transformations and selections. You will see
transformations in Chapter 5, From Data to Information: Extracting
Meaning, and selections in Chapter 6, From Information to Knowledge:
Building Context.

3.2.4 Compound Charts

Compound charts enable you to combine visualizations together in a single
chart. Altair supports the following types of compound charts: layering,
horizontal concatenation, vertical concatenation, and repeated charts. To
explain how each type of compound chart works, consider the two charts
described in Listing 3.13.

Listing 3.14 Building two charts in Altair

import pandas as pd

import altair as alt

df = pd.DataFrame(

 {"Country": ["Japan", "USA", "Germany", "Spain", "France", "Italy"],

 "Medals": [4, 6, 10, 3, 7, 8],

 "Region":["Asia","Americas","Europe","Europe","Europe","Europe"]})

chart1 = alt.Chart(df).mark_bar(color='#636466').encode(

 x='Country',

 y='Medals'

).properties(width=width, title='A bar chart')

chart2 = alt.Chart(df).mark_line(color='#80C11E').encode(

 x='Country',

 y='Medals'

).properties(width=width, title='A line chart')

Two charts in Altair

Build a bar chart (chart1) and a line chart (chart2) from a Pandas
DataFrame. Use properties() to set the chart properties, such as the width
and the title.

Layering

Layering lets you combine charts on top of each other, as shown in Figure
3.2. In Altair, use the alt.layer(chart1,chart2) function to layer two
charts, or the + operator. If each chart has a title, and you don’t specify any
general title for the compound chart, layering will set the title of the layered
chart as that of the first chart.

Figure 3.2 A bar chart layered with a line chart

Horizontal Concatenation

Horizontal Concatenation enables you to concatenate charts horizontally, as
shown in Figure 3.3. In Altair, use the alt.hconcat(chart1,chart2)
function to layer two charts, or alternatively, the | operator.

Figure 3.3 A bar chart concatenated horizontally with a line chart

Vertical Concatenation

Vertical Concatenation enables you to concatenate charts vertically, as shown
in Figure 3.4. In Altair, use the alt.vconcat(chart1,chart2) function to
layer two charts or the & operator.

Figure 3.4 A bar chart concatenated vertically with a line chart

Repeated Charts

A repeated chart displays similar data views in a single visualization.
Through a repeated chart, you can create a set of charts, each displaying a
subset of the data, by repeating a base chart using different data subsets or by
changing a visual encoding.

Use the repeat() function to create a repeated chart in Altair. This function
takes the list of fields for the repeat, as shown in Listing 3.14.

Listing 3.15 Building a repeated chart in Altair

import pandas as pd

import altair as alt

df = pd.DataFrame({

'X' : [1,2,3,4],

'Y' : [2,4,5,6],

'Z' : [3,4,5,6],

'H' : [5,6,8,9],

'M' : [3,4,5,3],

'Country' : ['USA', 'EU', 'EU', 'USA']

})

fields = df.columns.tolist()

fields.remove('Country')

chart = alt.Chart(df).mark_circle(color='#80C11E').encode(

 alt.X(alt.repeat("column"), type='quantitative'),

 alt.Y(alt.repeat("row"), type='quantitative')

).properties(

 width=100,

 height=100

).repeat(

 row=fields,

 column=fields

)

chart.show()

A repeated chart

First create the Pandas DataFrame. Then, extract the list of fields to repeat
and store them in the fields variable. Next, define the repeat() method with
the rows and columns to repeat. Finally, use the row and column variables just
defined as a variable of the chart encodings.

Figure 3.5 shows the output of Listing 3.15: Altair has built 25 charts, one for
each combination of the columns of the DataFrame specified in the fields
variable.

Figure 3.5 A bar chart repeated varying the encodings

3.2.5 Interactivity

Interactivity refers to the ability to manipulate visualizations through user
input, such as hovering over data points, clicking on legends, or dragging
sliders. In Altair, use the interactive() method to enable features like
zooming, panning, and hovering over data points to display tooltips. Listing
3.16 shows an example of how to make a chart interactive, and Figure 3.6 the
resulting chart.

Listing 3.16 Building an interactive chart in Altair

import pandas as pd

import altair as alt

df = pd.DataFrame(

 {"Country": ["Japan", "USA", "Germany", "Spain", "France", "Italy"],

 "Medals": [4, 6, 10, 3, 7, 8],

 "Region":["Asia","Americas","Europe","Europe","Europe","Europe"]})

chart = alt.Chart(df).mark_bar(color='#636466').encode(

 x='Country',

 y='Medals',

 tooltip=['Country', 'Medals', 'Region']

).properties(

 width=width,

 title='A bar chart'

).interactive()

chart.show()

An interactive chart

First, create the Pandas DataFrame. Then, build the Altair chart appending
the interactive() method at the end. Also, add a tooltip to show. The
tooltip receives the list of DataFrame columns to show.

Figure 3.6 A bar chart with interactivity enabled

3.2.6 Configurations

To configure the basic properties of a single chart, use the properties()
method. For more complex properties and to configure a compound chart,
instead, you must use global configurations. Altair supports many global
configurations. In this section, we will describe axes, title, and view. We will
describe the other configurations later in the book, when we will require
them.

To show how configurations work, we will start with the chart described in
Figure 3.7 and generated through the code contained in the following listing:

Listing 3.17 Defining the basic chart

import pandas as pd

import altair as alt

df = pd.DataFrame(

 {"Country": ["Japan", "USA", "Germany", "Spain", "France", "Italy"],

 "Medals": [4, 6, 10, 3, 7, 8],

 "Region":["Asia","Americas","Europe","Europe","Europe","Europe"]})

chart = alt.Chart(df).mark_bar(color='#636466').encode(

 x='Country',

 y='Medals'

).properties(width=width, title='A bar chart')

chart.show()

The basic bar chart

Use chart.show() to render the chart.

Figure 3.7 The basic bar chart built by the default configuration

Now let’s start to modify the basic chart by configuring axes.

Configuring Axes

To configure axes at a global level, Altair supports three methods:

config_axis() configures both axes
configure_axisX() configures x-axis
configure_axisY() configures y-axis.

Configuring axes enables you to customize properties such as labels, tick
marks, scales, etc. The following listing shows an example:

Listing 3.18 Configuring axes

chart = chart.configure_axis(

 labelAngle=0, #A

 titleFontSize=14, #B

 labelFontSize=12 #C

)

chart.show()

How to configure axes

Use configure_axis() to configure labels and titles in axes. As an
alternative, use configure_axisX() to configure the x-axis and
configure_axisY() to configure the y-axis.

Figure 3.8 shows the difference between the layouts when using
configure_axis() (on the left) and not using configure_axis() (on the
right).

Figure 3.8 The difference between the layouts with configure_axis() and without configure_axis()

Configuring Title

Use the configure_title() method to customize the title properties of your
chart, such as color, font size, and font family. The following listing shows an
example of the usage of the configure_title() method.

Listing 3.19 Configuring title

chart = chart.configure_title(

 fontSize=20, #A

 color='#80C11E', #B

 offset=30, #C

 anchor='start' #D

)

chart.show()

How to configure the title

Use configure_title() to configure the title properties. Anchor must be one
of None, 'start', 'middle', 'end'.

Figure 3.9 shows the difference between the layouts when using
configure_title() (on the left) and not using configure_title() (on the
right).

Figure 3.9 The difference between the layouts with configure_title() and without configure_title()

Configuring View

Use the configure_view() method to customize the general view of the
chart. The following listing shows an example of usage of the
configure_view() method.

Listing 3.20 Configuring view

chart = chart.configure_view(

 strokeWidth=0, #A

 stroke='#80C11E', #B

 fill='#E0E0E0' #C

)

chart.show()

How to configure the view

Use configure_view() to configure the general view of the chart.

Figure 3.10 shows the difference between the layouts when using
configure_view() (on the left) and not using configure_view() (on the
right).

Figure 3.10 The difference between the layouts with configure_view() and without
configure_view()

Now that you have learned the basic components of an Altair chart, let’s
move to the next step, implementing a case study.

3.3 Case Study

Let us imagine you work as a researcher at the Global Demographic Analysis
Center (GDAC). You want to study the population growth in North America.
You have found the Population dataset, released by World Bank under the
CC BY-4.0 license[1]. You can find a cleaned version of the dataset in the
GitHub repository of the book under 03/data/population.csv. The dataset
contains the population from 1960 to 2021 for all the countries of the world,
as shown in Table.

Table 3.3 The population dataset

Country Name 1960 … 2021

Aruba 54,608 106,537

…

Zimbabwe 3,806,310 15,993,524

You start by drawing a raw chart (Listing 3.21), showing all the trendlines
from 1960 to 2021 for all the countries. Figure 3.11 shows the resulting chart.

Listing 3.21 Drawing the raw chart

import pandas as pd

import altair as alt

alt.data_transformers.disable_max_rows() #A

df = pd.read_csv('data/population.csv')

df = df.melt(id_vars='Country Name',

 var_name='Year',

 value_name='Population')

df['Year'] = df['Year'].astype('int') #B

chart = alt.Chart(df).mark_line().encode(

 x = 'Year:Q',

 y = 'Population:Q',

 color = 'Country Name:N'

) #C

chart.show()

How to draw the raw chart

Use mark_line() to draw the chart. To plot the different countries, use the

color channel.

Figure 3.11 The chart with raw data

The chart is very confusing because it presents the following problems: too
many countries, too many colors, and no focus in North America. To solve
these issues, let us use the DIKW pyramid, starting from the first step,
turning data into information.

3.3.1 From Data to Information

Turning data into information involves extracting meaning from data. From
the point of view of a chart, it means making the chart readable and
understandable. Start by grouping countries by continent. The dataset already
contains values for continents. List the countries using the unique() method
provided by the Pandas DataFrame applied to the Country Name column. For
more details on the unique() method, please refer to Appendix B. We note
that the list of countries also contains the continents, so we can build a list of

the continents and filter the DataFrame based on that list. Then, we plot the
resulting chart, as shown in the following listing.

Listing 3.22 Decluttering the chart

continents = ['Africa Eastern and Southern',

 'Africa Western and Central',

 'Middle East & North Africa',

 'Sub-Saharan Africa',

 'Europe & Central Asia',

 'Latin America & Caribbean',

 'North America',

 'Pacific island small states',

 'East Asia & Pacific'] #A

df = df[df['Country Name'].isin(continents)] #B

chart = alt.Chart(df).mark_line().encode(

 x = 'Year:Q',

 y = 'Population:Q',

 color = 'Country Name:N'

) #C

chart.show()

How to declutter the raw chart

Group data by continents to reduce the number of lines.

Figure 3.12 shows the resulting chart, which is more readable. However, it
still presents some problems: too many colors and no focus on North
America. In practice, it is difficult to compare North America with the other
countries.

Figure 3.12 The chart with a focus on continents

Change the chart by focusing on North America and grouping the other
continents by calculating their average value, as shown in the listing below:

Listing 3.23 Focussing on North America

mask = df['Country Name'].isin(['North America']) #A

df_mean = df[~mask].groupby(by='Year').mean().reset_index() #B

df_grouped = pd.DataFrame({

 'Year' : df[mask]['Year'].values,

 'North America' : df[mask]['Population'].values,

 'World': df_mean['Population'].values

}) #C

df_melt = df_grouped.melt(id_vars='Year', var_name='Continent', value_name='Population')

How to focus on a single continent

Focus on North America and calculate the average value of the other
continents.

Then, draw the chart, as shown in the listing below:

Listing 3.24 Drawing the chart

colors=['#80C11E', 'grey']

chart = alt.Chart(df_melt).mark_line().encode(

 x = alt.X('Year:Q',

 title=None,

 axis=alt.Axis(format='.0f',tickMinStep=10)), #A

 y = alt.Y('Population:Q',

 title='Difference of population from 1960',

 axis=alt.Axis(format='.2s')), #B

 color = alt.Color('Continent:N',

 scale=alt.Scale(range=colors), #C

 legend=None), #D

 opacity = alt.condition(alt.datum['Continent'] == 'North America', alt.value(1), alt.value(0.3))

).properties(

 title='Population in the North America over the last 50 years',

 width=400,

 height=250

).configure_axis(

 grid=False,#E

 titleFontSize=14,

 labelFontSize=12

).configure_title(

 fontSize=16,

 color='#80C11E'

).configure_view(

 strokeWidth=0

)

chart.show()

How to draw the chart

To format the x-axis labels, use the format parameter. Use .0f not to show
commas. Also, use the tickMinStep parameter to set the distance between
two labels. The example sets the value to 10, thus showing the years 10 by
10. To format the y-axis labels, set the format parameter to .2s, using
scientific notation with two significant figures.

Figure 3.13 shows the resulting chart. We have omitted the legend because
we will add it later. The chart is clearer. However, the audience needs to do
some calculations to understand the difference between the two lines

Figure 3.13 The chart focusing on North America

When drawing a chart, do the calculations instead of the audience to serve
them the ready-made dish. Let us calculate the difference from the starting
year (1960) for both lines, thus making them comparable. The listing below
shows how to calculate the difference.

Listing 3.25 Calculating the difference

baseline = df_melt[df_melt['Year'] == 1960]

continents = ['North America', 'World']

for continent in continents:

 baseline_value = baseline[baseline['Continent'] == continent]['Population'].values[0]

 m = df_melt['Continent'] == continent

 df_melt.loc[m, 'Diff'] = df_melt.loc[m,'Population'] - baseline_value

How to calculate the difference

Calculate the baseline value for 1960 and then, for each continent, calculate
the difference between each year and the baseline.

Once calculated the difference, draw the chart. The code is similar to that in
Listing 3.24. Change only the y-axis column to Diff. Figure 3.14 shows the
resulting chart.

Figure 3.14 The chart with a focus on the difference in population from 1960

The chart clearly shows the difference between the two lines, although it is
not explicit. To complete the chart, add a label for each line as an additional
textual mark, as shown in the listing below:

Listing 3.26 Adding labels

mask = df_melt['Year'] == 2021

na = df_melt[mask]['Diff'].values[0] #A

oth = df_melt[mask]['Diff'].values[1]

df_text = pd.DataFrame({'text' : ['Rest of the world','North America'],

 'x' : [2023,2023], #B

 'y' : [oth,na]}) #C

text = alt.Chart(df_text).mark_text(fontSize=14, align='left').encode(

 x = 'x',

 y = 'y',

 text = 'text',

 color = alt.condition(alt.datum.text == 'North America', alt.value('#80C11E'), alt.value('grey'))

)

How to add line labels

Use mark_text() to set the line labels. To label the lines, we place a text
annotation next to each line. We could have used the legend to label the lines,
but as Cole Nussbaumer Knaflic says in her book, it's clearer to use text

annotations for better clarity (Nussbaumer Knaflic 2015). To set the y text
position, use the coordinates of the last point in each line. For the x, instead,
slightly increase the coordinates of the last point in each line (e.g., 2023 in
the example, while the last point is 2021).

Now, combine the textual mark and the original chart, as shown in the
following listing:

Listing 3.27 Combining the chart and the text labels

total = (chart + text).configure_axis(

 grid=False,

 titleFontSize=14,

 labelFontSize=12

).configure_title(

 fontSize=16,

 color='#80C11E'

).configure_view(

 strokeWidth=0

)

total.show()

How to combine the chart and the label text

Use + to combine the two layers. Then use configure_axis(),
configure_title(), and configure_view() to set the global chart
configurations.

Figure 3.15 illustrates the resulting chart at the end of the information step.

Figure 3.15 The chart at the end of the information step

The next step of the DIKW pyramid is turning information into knowledge.
So let us proceed.

3.3.2 From Information to Knowledge

Turning information into knowledge involves adding context to the chart. We
add two types of context: an annotation showing the gap between the two
lines and a text explaining the causes of this gap.

Chart Annotation

The objective of the chart annotation is to ease the audience's life by making
explicit the gap between the two lines. Figure 3.16 shows the annotation we
are going to add to the chart. The annotation comprises two elements, a
vertical line, showing the gap between the two lines, and a Big Ass Number
(BAN), a big number containing the gap value.

Figure 3.16 The chart with an explicit annotation on the gap between North America and the rest
of the world.

To draw the chart annotation, use mark_line() to draw the vertical line and
mark_text() to draw the text. The following listing describes how to render
the previous annotations.

Listing 3.28 Adding the annotation

offset = 10000000 #A

mask = df_melt['Year'] == 2021

na = df_melt[mask]['Diff'].values[0] #B

oth = df_melt[mask]['Diff'].values[1] #C

df_vline = pd.DataFrame({'y' : [oth - offset,na + offset],

 'x' : [2021,2021]})

line = alt.Chart(df_vline).mark_line(color='black').encode(

 y = 'y',

 x = 'x'

) #D

df_ann = pd.DataFrame({'text' : ['367M'],

 'x' : [2022],

 'y' : [na + (oth-na)/2]}) #E

ann = alt.Chart(df_ann).mark_text(fontSize=30, align='left').encode(

 x = 'x',

 y = 'y',

 text = 'text'

) #F

total = chart + text + line + ann #G

total = total.configure_axis(

 grid=False,

 titleFontSize=14,

 labelFontSize=12

).configure_title(

 fontSize=16,

 color='#80C11E'

).configure_view(

 strokeWidth=0

)

total.show()

How to add the annotation

Use the last data points of the lines of the continents as y coordinates for the
vertical line and the BAN.

Text Annotation

Place the text annotation to the left of the graph to prepare your audience for
the chart. The text explains the possible causes of the gap between North
America and the other continents. The following listing describes how to add
a text annotation to the chart.

Listing 3.29 Adding a text annotation

df_context = pd.DataFrame({'text' : ['Why this gap?',

 '1. Lower Fertility Rate',

 '2. Lower Immigration Rate',

 '3. Higher Average Age'],

 'y': [0,1,2,3]})

context = alt.Chart(df_context).mark_text(fontSize=14, align='left', dy=50).encode(

 y = alt.Y('y:O', axis=None),

 text = 'text',

 stroke = alt.condition(alt.datum.y == 0, alt.value('#80C11E'), alt.value('black')),

 strokeWidth = alt.condition(alt.datum.y == 0, alt.value(1), alt.value(0))

)

total = (context | (chart + text + line + ann)).configure_axis(

 grid=False,

 titleFontSize=14,

 labelFontSize=12

).configure_title(

 fontSize=16,

 color='#80C11E'

).configure_view(

 strokeWidth=0

)

total.show()

How to add a text annotation to the chart

Use mark_text() to draw the text. Then, combine the text annotation with
the remaining chart.

Figure 3.17 shows the resulting chart at the end of the knowledge step.

Figure 3.17 The chart at the end of the knowledge step

The chart is almost ready. Let us proceed with the last step, turning
knowledge into wisdom.

3.3.3 From Knowledge to Wisdom

Turning information into wisdom involves adding a call to action to the chart.
In the previous chapters, we added a simple call to action in the title, inviting
the audience to do something. However, in a real scenario, the call to action
must include a proposal of possible next steps. The next step invites the
audience to do something concrete thus, the situation depicted in the chart
changes. For example, you can add the call to action as an additional chart,
which describes the percentage of success of each possible alternative. In our
example, we can add a bar chart with possible strategies to improve
population growth in North America. The percentages in the example are
imaginary and do not reflect reality. We've added them just to show how a
call to action works. The following listing shows how to build the call to
action as a bar chart and add it to the total chart.

Listing 3.30 Adding a call to action

df_cta = pd.DataFrame({

 'Strategy': ['Immigration Development', 'Enhance Family-Friendly Policies', 'Revitalize Rural Areas'],

 'Population Increase': [20, 30, 15] # Sample population increase percentages

})

cta = alt.Chart(df_cta).mark_bar(color='#80C11E').encode(

 x='Population Increase:Q',

 y=alt.Y('Strategy:N', sort='-x', title=None),

 tooltip=['Strategy', 'Population Increase']

).properties(

 title='Strategies for population growth in North America',

)

total = alt.vconcat((context | (chart + text + line + ann)), cta,center=True).configure_axis(

 grid=False,

 titleFontSize=14,

 labelFontSize=12

).configure_title(

 fontSize=20,

 color='#80C11E',

 offset=20

).configure_view(

 strokeWidth=0

).configure_concat(

 spacing=50

)

total.show()

How to add a call to action to the chart

Draw a chart specifying the possible alternatives and their percentage of
success.

Figure 3.18 shows the final chart. Following the steps specified by the
DIKW, we have transformed the raw chart of Figure 3.11 into a data story.

In this chapter, you have learned the basic concepts of Altair. In the next
chapter, you’ll review the basic concepts of Generative AI.

Figure 3.18 The final chart at the end of the wisdom step

3.4 Summary

Vega and Vega-lite are visualization grammars to define the visual
aspects and interactive features of a chart by writing code in JSON
format.
Altair is built at the top of Vega-lite and offers a user-friendly API to
build charts. The basic components of an Altair chart are encodings,
marks, conditions, compound charts, interactivity, and configurations.

3.5 References

Knaflic, C. N. (2015). Storytelling with data: A data visualization guide for
business professionals. John Wiley & Sons.

[1] https://data.worldbank.org/indicator/SP.POP.TOTL

4 Generative AI Tools for Data
Storytelling
This chapter covers

Basic Concepts: Artificial Intelligence, Machine Learning, Deep
Learning, and Generative AI
The Basic Structure of a ChatGPT Prompt
The Basic Structure of a DALL-E Prompt
GitHub Copilot

In this chapter, we will review the basic concepts behind Generative AI tools
and how to use them in the context of data storytelling. The chapter does not
describe the fundamentals of Generative AI. Instead, the first part gives a
quick overview of AI, Generative AI, and Generative AI tools. Next, the
chapter focuses on three main tools: ChatGPT, DALL-E, and GitHub
Copilot, and describes how to incorporate them in data storytelling. Finally, it
shows a practical use case, which demonstrates how you can combine the
three tools to build data stories quickly.

4.1 Generative AI Tools: on the Giants' Shoulders

Some time ago, I participated in a webinar entitled Considerations on GPT
technology[1], where panelists discussed the (possible) benefits introduced by
Generative AI. During the discussion, one particular intervention by Dr.
Michele Monti caught my attention. He drew an interesting analogy between
using ChatGPT to assist you while writing and using a satellite navigator on a
smartphone to assist you while going to a destination.

In the past, when satellite navigators were not readily available, travelers
relied on paper maps to reach a destination. However, with the advent of
satellite navigators, the convenience and efficiency they offered made paper
maps almost obsolete. Nowadays, very few people would consider using a

paper map when they have the option of using a satellite navigator.

A similar analysis could be done for Generative AI tools, especially
ChatGPT. Without the emergence of Generative AI tools, you have to write
your texts manually to manually write your texts. This could be time-
consuming and labor-intensive. As Generative AI continues to advance, it
could increasingly become the primary method for writing and generating
images.

In my original idea, the book was only supposed to describe how to do data
storytelling with Altair and the DIKW Pyramid. It was the editor (whom I
sincerely thank), in light of the rapid emergence of generative AI at the time
of writing, who suggested also including Generative AI. At first, I only
thought about Copilot, but then as I wrote the examples, I made more and
more use of other newly available Generative AI tools to complete the data
stories. And that's why I decided to also describe in the book how to do data
storytelling using Generative AI tools.

You might wonder why you had to wait until Chapter 4 to read about
ChatGPT and DALL-E. The real reason is that to apply the Generative AI
tools correctly, it is necessary first to understand the context in which you
work and then apply them. If we had immediately introduced ChatGPT and
DALL-E, the risk would have been to delegate everything to these tools
without building a solid foundation. Knowledge of how to do data
storytelling in Python would inevitably be superficial. Imagine the concepts
described in this book as a house, where the foundations are data storytelling
concepts, the various floors are Altair, and the roof and walls are Generative
AI. Just as you cannot build a house from the roof and the walls, you cannot
start immediately with Generative AI. However, to not leave you hungry for
Generative AI in the first chapters, we still wanted to mention GitHub
Copilot because, as they say, appetite comes with eating.

This book does not describe how to automate data storytelling but how to use
Generative AI tools as assistants in developing our ideas. Before seeing how
to use these tools to do data storytelling, let's try to understand what lies
behind the concept of Generative AI.

Generative Artificial Intelligence (AI) is a subfield of Artificial Intelligence;

more precisely, a subfield of Deep Learning. Describing the foundations of
Generative AI is out of the scope of this book, but a quick overview of it is
mandatory to understand the general context before we delve into its use. At
the time of writing this book, there is a lot of debate surrounding the use of
generative ai tools. On the one hand, some people argue that these tools are
dangerous, as they could take over humans in the more or less distant future.
On the other hand, other people highlight their benefits, recognizing the level
of innovation introduced by these tools under the supervision of a responsible
user. In this book, we do not take a specific position, leaving you the
responsibility to use these tools consciously.

In this book, we’ll try to have a conservative and responsible attitude toward
Generative AI tools. We will use them as assistants in helping us better
define our content, but they will never replace our supervision and ideas. By
conservative and responsible attitude, we mean that we will not use the
output produced by Generative AI tools as the absolute truth. Instead, we will
always check the produced output.

This section gives a quick overview of what Artificial Intelligence, Machine
Learning, Deep Learning, and Generative AI are. If you are impatient to get
to the application of Generative AI in Data Storytelling, skip this section and
jump to the next one directly.

4.1.1 What is Artificial Intelligence?

Artificial Intelligence (AI) is a discipline, like physics and mathematics,
aiming to construct intelligent agents capable of independent reasoning,
learning, and decision-making. AI focuses on developing theories and
methodologies to create agents that can emulate human-like thinking and
behavior. Figure 4.1 shows the main subfields of AI.

Figure 4.1 The main subfields of AI with a focus on Generative AI

The figure also highlights the subfield in which Generative AI falls.
Generative AI is a subfield of Deep Learning, which is a subfield of Machine
Learning, which is a subfield of Artificial Intelligence.

Now that you have learned the main subfields of AI, let’s focus on Machine
Learning.

4.1.2 What is Machine Learning?

Machine Learning (ML) is a subfield of AI that enables computers to acquire
knowledge and improve performance without explicit programming.
Different from traditional programming, where you must write the code line
by line to provide instructions, ML allows machines to learn from data and
make predictions or take actions based on that learned information. This
approach empowers machines to discover patterns, relationships, and insights
that may not be immediately apparent to human programmers. ML relies on
two types of learning: supervised learning and unsupervised learning.

Supervised Learning

In supervised learning there is a preliminary phase, called training, where
algorithms learn from labeled data. During training, each sample in the
training dataset is paired with its corresponding label or output. The
algorithm learns how to map input features to their respective outputs by

generalizing from the provided labeled data. During the training phase, the
algorithm optimizes its parameters to minimize the discrepancy between the
predicted outputs and the true labels. Once the training phase is completed,
the algorithm can make predictions or classify new, unseen instances based
on the patterns it has learned from the labeled data. Use this technique for
tasks such as image classification, sentiment analysis, spam detection, and
speech recognition.

Figure 4.2 shows an example of a classification model, which has already
been trained with labeled data. As a result of the training process, the model
has learned how to discriminate between two classes, circles and squares.
When the model receives new data as an input, it predicts the class associated
with each sample as an output.

Figure 4.2 An example of a classification model

Unsupervised Learning

In unsupervised learning algorithms identify the hidden structure and patterns
in unlabeled data. This technique operates on unlabeled data, where no
specific outputs or labels are provided during training. Common
unsupervised learning techniques include clustering, dimensionality
reduction, and anomaly detection.

Figure 4.3 shows an example of a clustering model. The model has not been
trained with previous data. Instead, it applies an internal formula to group
data. The model receives a dataset of squares and circles as an input and
groups them into two clusters, one for each shape.

Figure 4.3 An example of a clustering model

Now that you have learned the main types of ML, let’s move on a step further
and focus on Deep Learning.

4.1.3 What is Deep Learning?

Deep Learning (DL) is a subfield of ML that focuses on training artificial
neural networks to process and understand complex patterns in data. Inspired
by the human brain, DL models consist of multiple hidden layers of
interconnected nodes, known as artificial neurons or units. The greater the
number of layers, the more complex the data structure the network can
recognize. DL is quite resource-intensive because it requires high-
performance GPUs and large amounts of storage to train models. You can use
DL models to solve tasks such as image and speech recognition, natural
language processing, and even game-playing.

Figure 4.3 shows an example of a DL network with one input layer with three
nodes, three hidden layers, and two outputs.

Figure 4.4 An example of a DL network

Now that you have seen an overview of DL, let’s move on to the next step,
defining Generative AI.

4.1.4 What is Generative AI?

Generative AI is a subfield of DL aimed at creating new content based on
what it has learned from existing content. The result of the learning process
from existing content is a statistical model (generative model), which is used
to generate new content.

Generative models try to understand data distribution. Suppose we have a
dataset of pictures of circles and squares. Generative models learn the overall
patterns and characteristics of both circles and squares. Then, using this
understanding, they generate new pictures that look similar to the ones they
have seen.

Figure 4.5 shows an example of a generative model. The model takes a text
asking to generate a new circle as an input and produces a new circle as an
output.

Figure 4.5 An example of a generative model

A generative model takes a prompt as an input. A prompt is a piece of text
used to control output quality. It serves as a guide for the generative model to
generate responses or outputs that align with a specific desired outcome. The
basic prompt is a text asking the tool to perform a specific action. In Chapter
2, Running Your First Data Story in Altair and GitHub Copilot, you have
written some basic prompts to make Copilot generate the code to build an
Altair chart.

Prompt Engineering is a discipline aiming at carefully crafting and refining
the prompts to achieve the desired results. The goal of prompt engineering is
to elicit responses that are coherent, relevant, and aligned with the desired
outcome while minimizing any unintended biases or undesired behavior.

Now that you have learned what Generative AI is, let’s move on to
describing the Generative AI tools landscape.

4.1.5 Generative AI Tools Landscape

You can use Generative AI for multiple purposes, including text, image,
code, speech generation, and much more. For each specific task, you can use
a different tool. In all cases, you start from a text, and the tool will convert it
into the desired output (text, image, code, and so on) based on its specific
nature. Please notice that in most cases, you must pay a fee to use Generative
AI tools. However, some Generative AI tools have free-of-charge versions
with downgraded capabilities.

Figure 4.6 shows the main application fields of Generative AI tools
(Madhvani 2023). If not properly used, these tools may produce wrong or
biased information. Thus, you must carefully monitor and adjust the
generated output to ensure accuracy and fairness.

Figure 4.6 The main application fields of Generative AI tools. In this book we will focus on Code,
Text, and Image.

The figure also highlights the application fields used in this book:

Text-to-text tools: use them to generate text, such as content creation,
chatbots, virtual assistants, creative writing, and automating repetitive
tasks like writing emails or generating reports. Examples of Text-to-Text
tools are Open AI ChatGPT and Google Bard. In this book, we’ll focus
on ChatGPT.
Text-to-image tools: use them to generate visual representations based
on textual input. In this book we’ll use Open AI DALL-E. If you signed
up to DALL-E before April 6th, 2023, you will be granted free credits.
New users must buy credits for a small fee to use the service.
Text-to-image tools: use them to generate code. In this book, we’ll focus
on GitHub Copilot, which requires an active subscription.

You may ask why you should pay to use a tool. The main answer is that no
quality Generative AI tool is available without paying; free tools are either
not up to par, or are very limited until you pay or subscribe. Fortunately, the
fees are fairly small.

We could have used ChatGPT to generate code, but from personal

experience, I noticed that ChatGPT sometimes may invent a Python method
or function, as shown in Figure 4.7.

Figure 4.7 An example of a bad output produced by ChatGPT to generate code

We asked ChatGPT to generate a hexbin chart, and ChatGPT used the
mark_hex() method, which is not currently implemented in Altair.

We have chosen specific tools to generate text, images, and code for data
storytelling. However, you can easily adapt the described concepts to other
tools with minimal effort.

Now that you have quickly defined the context of Generative AI tools, we
can move on to the next step, using Generative AI tools for data storytelling.
We will start with ChatGPT, describe DALL-E, and finally, GitHub Copilot.

In all cases, it's crucial to give it accurate and concise instructions to ensure
the tool generates the correct output. Write specific and unambiguous
instructions, using simple language and avoiding complex terminology. Also,
write consistent instructions regarding syntax, language, and format.
Inconsistent instructions can confuse the tool, leading to incorrect outputs.

4.2 The Basic Structure of a ChatGPT Prompt

To interact with ChatGPT, you must write an input text (prompt) that defines
the instructions to be performed. You can use either the ChatGPT web
interface or the Open AI API, as described in Appendix A.

Different ways exist to structure a prompt for ChatGPT. In this book, we
consider a prompt to be composed of three main consecutive texts:

Telling ChatGPT to act in a specific [role] - for example “You are an
examiner looking at high school students’ English papers.”

Telling ChapGPT to tailor its outputs to an intended [audience] - for
example “Explain your gradings in a way that can be understood by
high schoolers.”
Define the [task] - for example “Grade this text and explain your
reasoning.”

Although we have tested this prompt structure, sometimes they do not
produce the desired output, so you can refine the prompt using different
iterations.

In the remainder of this section, we’ll describe all the parts of a prompt
separately. Although the structure of a prompt should be [Role] [Audience]
[Task], we’ll start by describing first the task to perform, to show how the
produced prompt changes while varying the roles and the audience.

We’ll show some examples of produced texts. If you try your own tool,
you’ll obtain different results since ChatGPT generates new content every
time you use it.

4.2.1 Defining the Task

A task is a specific objective ChatGPT must fulfill. A task includes clear
instructions to guide ChatGPT in generating responses relevant to the given
task. Examples of tasks are answering questions, generating creative content,
translating language, and more. In the context of data storytelling, we’ll focus
on the following tasks:

Generating a title

Generating a subtitle
Summarizing a text
Translating a text
Proposing ideas.

We’ll analyze each task in the next chapters in more detail.

Imagine a scenario where you must engage an audience striving for success
in their personal and professional lives. You have prepared the following text
that shows the contrast between appearing strong and perfect and showing
one's fragility:

In a world that glorifies strength and perfection, remember that fragility is
the essence of our humanity. Our struggles and imperfections make us
human, yet we often conceal them out of fear and shame. However, those who
embrace their weaknesses with courage and authenticity cultivate
remarkable resilience. Those who fear their fragility risk becoming rigid,
trapped in a facade of unattainable perfection. For it is in our vulnerabilities
that we grow and truly live.[2]

Suppose that your task is to generate a title for the previous text. Use
ChatGPT and formulate the following prompt: Generate the title for the text
in angular brackets <text>. Replace the text word with the previous text
about fragility and vulnerabilities. Examples of generating titles are:

Embracing Fragility: The Path to Remarkable Resilience and Authentic
Living
Fragility as the Gateway to Authenticity and Resilience in a Perfect-
Obsessed World
Fragility: Embracing Imperfections for Authentic Resilience and
Growth.

All the generated titles are general purpose. The next step is adding a role to
the prompt to make ChatGPT generate a more specific output.

4.2.2 Acting as a Role

There are at least the following goals when conveying a message:

Entertainment: The focus is on providing enjoyment, amusement, or
relaxation. You may want to make people laugh or evoke emotions.
Education: The focus is on providing knowledge, insights, or skills to
the audience to broaden the audience's knowledge base and encourage
learning.
Information: The focus is on keeping the public informed to the
audience about a specific topic, such as news updates or current events.
Inspiration: The focus is to motivate the audience, such as sparking
creativity or encouraging personal growth. Inspirational messages often
share success stories or showcase role models.
Invitation to action: The focus is to motivate the audience to engage in a
specific behavior or event.
Relationship Building: The focus is to foster connections with the
audience through personal anecdotes and shared experiences. The
message aims to build trust, strengthen existing relationships, or
cultivate a sense of community.

Depending on the goal, you’ll cover a different role, which uses specific
storytelling techniques. In some cases, in the same situation, you may cover
different roles, but generally, the role depends on the context where you will
present.

Consider again the scenario where you must engage an audience striving for
success in their personal and professional lives. Use ChatGPT to adapt the
text to your role. Use the following syntax to formulate the prompt for
ChatGPT: Act as a [role]. Generate the title for the text in angular brackets
<text>.

The table below shows the produced outputs for all the described roles.

Table 4.1 The result of the prompt for all roles

Role Output

Entertainer Unmasking Our Humanity: Embracing
Fragility and Thriving in Imperfection

Educator Nurturing Resilience: Embracing Fragility and

Embracing Imperfection for Personal Growth
and Well-being

Informer The Power of Embracing Fragility:
Celebrating Imperfections and Cultivating
Resilience

Inspirer Embrace Your Fragile Strength: Unleashing
Resilience and Embracing Imperfections for a
Fulfilling Life

Invitor to Action Embrace Your Fragile Humanity: Rise Above
Fear and Embrace Imperfection to Unleash
Your Resilient Potential.

Relationship Builder Embracing Fragility Together: Fostering
Authentic Connections and Building Resilient
Relationships

All the titles have the same structure ([text] [colons] [text]) but their goal
changes based on the role.

Now that you have learned how to influence the output using a different role
let’s move on to how to influence the output based on the different target
audiences.

4.2.3 Tailored to an Audience

Depending on the context where you will tell your data story, your audience
changes. For example, you could have an audience of stakeholders,
businessmen, or even children or philosophers. More generally, there are the
following types of audiences:

General Audience: A broad group of people with varied interests,
backgrounds, and demographics.
Target Audience: A specific group with well-defined interests,
backgrounds, and other factors.
Niche Audience: A relatively small group of people with specific
interests, preferences, or needs, such as enthusiasts of specific hobbies

or professionals in specific fields.
Mass Audience: A large and diverse group of people that consume
content on a wide scale.

Consider again the scenario where you must engage an audience striving for
success in their personal and professional lives. Use ChatGPT to adapt the
text to your audience. Use the following syntax to formulate the prompt for
ChatGPT: Act as a [role] tailored to [the audience]. Set the title for the text
in angular brackets <text>.

The table below shows the outputs for all the described audience types for the
relationship builder role.

Table 4.2 The result of the prompt for all the audience types

Audience Output

General Audience Embracing Fragility: The Path to Resilience
and Authentic Living

Target Audience of
businessmen

Embracing Vulnerability: The Power of
Authenticity and Resilience in Business
Relationships

Niche Audience of
football enthusiasts

The Beautiful Game: Celebrating Fragility as
the Heart of Football Passion

Mass Audience of young
people

Embracing Your Imperfections: Unleashing
Your Inner Strength as a Young Person

All the titles have the same structure ([text] [colons] [text]) but their meaning
is adapted to the specific audience. Consider again the title generated
specifying only the role: Embracing Fragility Together: Fostering Authentic
Connections and Building Resilient Relationships. This title is similar to that
generated for a general audience. When you add a specific audience, the title
is tailored to it.

Now that you have learned the basic concepts to define a prompt for
ChatGPT let’s move on to the next step, defining a prompt for DALL-E.

4.3 The Basic Structure of a DALL-E Prompt

To interact with DALL-E, you must write a prompt specifying the
instructions. You can use either the DALL-E web interface or the Open AI
API, as described in Appendix A.

Different ways exist to structure a prompt for DALL-E. In this book, we
consider a prompt composed of:

[Subject]
[Style].

In the remainder of this section, we’ll describe all the parts of a prompt
separately by starting with the subject.

Remember that if the output is not satisfying, you can refine it or use the Edit
Image tool, as described later in this section.

4.3.1 Subject

The subject of an image is the main focus that captures the viewer's attention.
Examples of subjects include persons, objects, or scenes. When defining the
subject of your image, be as specific as possible. A generic subject will
generate a generic image. For each input, DALL-E generates four output
images. In the remainder of the section, we’ll show some examples of
produced images. If you try your own the tool, you’ll obtain different
examples.

Figure 4.8 shows the output produced by DALL-E for the prompt A person.
Since the input is very generic, also the output is very generic. The four
generated images are different from each other.

Figure 4.8 The output for the prompt A person

To improve the focus of the image, you can add the following elements:

An adjective
An emotion
Context
Color.

Let’s start by adding an adjective that qualifies the subject. We will give a
specific example of generating images related to poor people. I chose this
theme to show the potential of inserting images into a data story to arouse
emotions in the audience. In fact, data storytelling also gives voice to the
people behind data.

Figure 4.9 shows the outputs for the prompt A poor person, where poor is the
qualifying adjective. All the produced images have a hand on the head and do
not show a poor person. Only the first image describes a poor person.
However, with respect to the generic output, we have obtained a better result.

Figure 4.9 The output for the prompt A poor person

To be more specific, add emotion, which describes the person’s mood. Figure
4.10 shows the output produced by the prompt a sad, poor person.

Figure 4.10 The output for the prompt A sad, poor person

The figure still needs to be improved. Let’s add a possible background, which
sets the context for the subject. Figure 4.11 shows the output produced by the
prompt a sad, poor person, with rubbish in the background.

Figure 4.11 The output for the prompt A sad, poor person, with rubbish in the background

Finally, let’s add color. Figure 4.12 shows the output for the prompt a sad,
poor person, wearing a torn brown shirt with rubbish in the background.

Figure 4.12 The output for the prompt A sad, poor person wearing a torn brown shirt with
rubbish in the background

The output is now satisfying so that we can proceed with the next step, i.e.,
adding style.

4.3.2 Style

Style defines the type of art, such as photographs, digital art, pencil drawing,
and so on. In addition, you can specify a particular artist’s style, such as Van
Gogh or Caravaggio. You just have to indulge your imagination!

Figure 4.13 shows the output for the prompt a sad, poor person, with rubbish
in the background, digital art, and Figure 4.14 for the prompt a sad, poor
person, with rubbish in the background, black and white photograph.

Figure 4.13 The output for the prompt A sad, poor person wearing a torn brown shirt with
rubbish in the background, digital art

Figure 4.14 The output for the prompt A sad, poor person wearing a torn brown shirt with
rubbish in the background, black and white photograph

The prompt structure described in this chapter is only an entry point to draw
images using DALL-E. You can also define the environment (indoor,
outdoor), the day hour, the angle, and more. You can find more information
in The DALLE 2 Prompt Book.

4.3.3 The Edit Image Tool

If you are not completely satisfied with a generated image, you can modify it
using the Edit image tool provided by the DALL-E interface. To access the
Editing image tool, select the image, and click Edit. You can erase a subpart
of the image (as shown in Figure 4.15), add a new generation frame or upload

an image.

Figure 4.15 An example of usage of the eraser

Then, you can write a new prompt for the selected part. Let’s add a dog to the
image of Figure 4.15 using the following prompt: a small black dog eating a
piece of bread, a black and white photograph. Figure 4.16 shows the
produced output.

Figure 4.16 The output of the modified image using the eraser

Now that you have learned the basic concepts to generate an image with
DALL-E, let’s move on to the next step, using Copilot to build the
components of an Altair Chart.

4.4 Using Copilot to Build the Components of an
Altair Chart

When writing instructions for Copilot, split them into single steps. Also,
provide the context around what you want Copilot to do and provide specific
details on the requirements of the code you are writing. Finally, remember
that Copilot is a tool designed to assist developers, not replace them. Copilot

is powerful, but it can’t replace you as a developer. Always use your
expertise to evaluate the code suggestions provided by Copilot and ensure
they are appropriate for your specific needs.

In this section, you’ll see how to write the instructions to make Copilot build
an Altair chart. We’ll focus on prerequisites, marks, encodings, conditions,
compound charts, and interactivity.

4.4.1 Prerequisites

Before drawing a chart, ask Copilot to import the required libraries and load
the dataset as a Pandas DataFrame, as shown in Listing 4.1.

Listing 4.1 Importing the required libraries and loading the dataset

Import the required libraries

Load the file '/path/to/data.csv' into a pandas DataFrame

Prerequisites

The first instruction specifies importing the required libraries. Copilot will
calculate which libraries automatically, based on the subsequent instructions.
The second instruction specifies the exact path to the dataset to load.

4.4.2 Marks

To define a mark, simply instruct Copilot to draw it in Altair, as shown in
Listing 4.2.

Listing 4.2 Defining marks

Draw a <type of mark> named chart in Altair

Draw a mark type

Use the keywords Draw and Altair to specify that you want to build a chart in
Altair. Replace <type of mark> with the type of mark you want to build. For
example, write bar chart if you want to build a bar chart.

4.4.3 Encodings

To set an encoding, add the keyword with: to the instruction defined in
Listing 3.17. In addition, add a bullet point for each encoding channel you
want to define, as specified in Listing 4.3.

Listing 4.3 Setting encodings

Draw a bar chart named bar in Altair with:

* The category column as the x-axis

* The value column as the y-axis

* The country column as the color.

Encodings

After defining the mark, use the keyword with: followed by a list of
encoding channels. For each encoding channel, specify the column of the
dataset to use and the channel.

4.4.4 Conditions

To set a condition related to a specific encoding channel, use the instructions
specified in Listing 4.4.

Listing 4.4 Defining conditions

* The country column as the color. Set the color to:

- 'red' for 'IT'

- 'green' for 'FR'

Conditions

Append the condition to the selected encoding channel. Use a list to specify
the content of the conditions. The example sets the color to red if the country
is IT and green if the county is FR.

4.4.5 Compound Charts

Build each chart separately. Then, to build a compound chart, write a specific

instruction, as shown in Listing 4.5. Ensure to give each chart a different
name.

Listing 4.5 Building compound charts

Build a compound chart named chart with the line and bar charts aligned vertically

Compound charts

Specify the type of combination you want to draw. The example aligns the
charts vertically.

4.4.6 Interactivity

To make the chart interactive, write the simple instruction in Listing 4.6.

Listing 4.6 Making the chart interactive

Make the chart interactive

Interactivity

Write simple and clear instructions to make the chart interactive.

For a complete example in Copilot, refer to the GitHub repository of the
book, section 04/copilot.

Now that you have learned how to write the basic instructions to make
Copilot build a chart in Altair let’s move to a practical case study that
combines Altair and Copilot.

4.5 Case Study: Our Training Team

Let’s imagine you work in a sports company. You are training a team of
young athletes in various disciplines. For each discipline, you have noted the
world record and have recorded the best time achieved by your team for the
sake of comparison. Unfortunately, your company has limited investment

funds available. Your boss asks you to understand which disciplines are
worth continuing to train in, to hope to achieve good results in the upcoming
competitions. You can find the code of this example in the GitHub repository
of the book, under CaseStudies/competitions. The directory contains different
Python scripts, one for each step described in the remainder of this section.

Table 4.3 shows, for each discipline, the record and the best time achieved by
your team.

Table 4.3 The dataset of the case study shows the record to beat, the record holder, the record
time, and our best time for each training type

Training
Type

Record to
Beat

Record Holder Record Time
(Seconds)

Our Best Time

Sprinting 100m Usain Bolt 9.58 15.07

Long-
distance
running

Marathon Eliud Kipchoge 7299 13261.76

Swimming 100m
freestyle

César Cielo 46.91 88.01

Cycling
Individual
time trial
(ITT)

Rohan Dennis
1963.49 2795.22

Rowing 2000m Josh Dunkley-
Smith

335.8 462.33

In our case, the objective is to display the difference between our time and
the record for each training type and then choose in which training types we
can continue investing.

We’ll use the DIKW pyramid to transform our dataset into wisdom. Let’s
start with the first step of the pyramid, turning data into information.

4.5.1 Turning Data into Information

The simplest graph to utilize for this purpose is a stacked bar chart, which
shows the two columns as stacked series. Let’s use GitHub Copilot to
generate this simple chart.

Start by writing the list of comments to generate the chart, as shown in
Listing 4.7.

Listing 4.7 Generating the stacked bar chart

Import the required libraries

Load '../data/competitions.csv' as pandas dataframe

Select only the columns Training Type, Record Time (Seconds), Our Best Time

Use melt to transform the dataframe into a long format, with the parameter id_vars set to 'Training Type'

Draw a bar chart named chart in Altair with:

* The Training Type column as the x-axis

* The value column as the y-axis

* The variable column as the color

Save the chart as 'competitions.html'

Write the text to generate the stacked bar chart

Describe the sequence of operations to load, manipulate and plot the dataset.

Copilot will generate different alternatives of codes. Select the code shown in
Listing 4.8:

Listing 4.8 The stacked bar chart generated by Copilot

import pandas as pd

import altair as alt

df = pd.read_csv('data/competitions.csv')

df = df[['Training Type', 'Record Time (Seconds)', 'Our Best Time']]

df = pd.melt(df, id_vars='Training Type')

chart = alt.Chart(df).mark_bar().encode(

 x='Training Type',

 y='value',

 color='variable'

)

chart.save('competitions.html')

Copilot generates the code to plot the stacked bar chart in Altair

First, load, and manipulate the dataset. Then, use mark_bar() to draw the
stacked bar chart.

Figure 4.17 shows the resulting bar chart. In addition to being very narrow,
the generated chart presents a fundamental problem: we are unable to
determine from the chart which disciplines we should focus on. This can be
attributed to a lack of clarity in the chart, which makes it difficult for us to
interpret the data effectively. As a result, we need to revise the chart design to
convey information easily.

Figure 4.17 The stacked bar chart generated by Copilot

In general, when we want to compare two variables across multiple
categories, it can be useful to calculate the percentage difference or the
percentage increase of one variable relative to the other for each category and
then show it. This approach allows us to compare the two variables and
identify any patterns or trends within the data. To generate this type of chart,
we can once again make use of Copilot, which can assist us in writing the
necessary code. Write the list of instructions specified in Listing 4.9.

Listing 4.9 Generating the bar chart with percentage difference

Import the required libraries

Load '../data/competitions.csv' as pandas dataframe

Select only the columns Training Type, Record Time (Seconds), Our Best Time

Calculate the percentage difference between columns Our Best Time and Record Time (Seconds) and store it into a new column called Percentage Difference

Draw a bar chart with the following encodings:

* The Percentage Difference on the y-axis with the following properties:

- The domain of the Y scale to [0,100]

* Training Type on the x-axis with the following properties:

- The values sorted in descending order (-y)

Set the following properties of the bar chart:

* width to 300 pixels

Save the chart as 'competitions.html'

Write the text to generate the bar chart

Describe the sequence of operations to load, manipulate and plot the dataset.
Also, specify to sort data in descending order and set the domain of the Y
scale to [0,100] to make the chart clearer. Since the chart is more complex
than the previous one, add the instruction with the following encodings
when you ask Copilot to draw the chart. Do the same thing for mark
properties. Also, note the nested lists to add specific property values to
encoding channels.

Copilot will generate different alternatives of codes. Select the code shown in
Listing 4.10:

Listing 4.10 The bar chart generated by Copilot

import pandas as pd

import altair as alt

df = pd.read_csv('data/competitions.csv')

df = df[['Training Type', 'Record Time (Seconds)', 'Our Best Time']]

df['Percentage Difference'] = (df['Our Best Time'] - df['Record Time (Seconds)']) / df['Record Time (Seconds)'] * 100

chart = alt.Chart(df).mark_bar().encode(

 x=alt.X('Training Type', sort='-y'),

 y=alt.Y('Percentage Difference', scale=alt.Scale(domain=[0,100]))

).properties(

 width=300

)

chart.save('competitions.html')

Copilot generates the code to plot the bar chart in Altair

First, load, and manipulate the dataset. Then, add a column to the dataset,
named ‘Percentage Difference’, containing the percentage difference. Finally,
use mark_bar() to draw the stacked bar chart.

Figure 4.18 shows the resulting chart.

Figure 4.18 The bar chart with percentage difference generated by Copilot

The chart highlights that the sports with the greatest percentage difference
between the "Our Best Time" and the "Record Time" are Swimming and
Long Distance Running. However, the chart may be misleading because it is
not intuitive because the largest bars are in fact the worst performers. To
improve the readability and intuitiveness of the chart and better convey the
actual performance of athletes in each sport, we can calculate the percentage
improvement, as shown in Listing 4.11.

Listing 4.11 Calculating the percentage improvement

df['Percentage Improvement'] = 100 -

(df['Our Best Time'] - df['Record Time (Seconds)']) / 100

Percentage improvement

Calculate the percentage similarity 100 - percentage difference.

The percentage improvement represents the proportion of improvement in the
performance of "Our Best Time" compared to the "Record Time". A higher
percent improvement indicates that the athlete's performance is closer to or
better than the record holder's, while a lower percent improvement indicates
that the athlete's performance is further from the record holder's performance.
This is more intuitive as the larger bars now indicate the best performance.
Figure 4.19 shows the percentage improvement. Rowing and cycling are the
sports with better performances thus we can choose those sports for further
investments.

Figure 4.19 The bar chart with percentage improvement

Now that we have extracted information from the data, we can move to the
next step of the DIKW pyramid, which is turning information into
knowledge.

4.5.2 Turning Information into Knowledge

This step involves adding context to the information. In our case, the context
may involve three aspects:

Highlighting the two sports where we want to invest
Adding an image that enforces the top two sports
Adding a baseline, for example, at 50% of percentage improvement,
showing why we choose those sports

Let’s start from the first point, highlighting the two sports in which we want
to invest.

Highlighting the top two sports

Within the previously generated code, add the comment shown in Listing
4.12, immediately after the y channel to generate the code using Copilot.

Listing 4.12 Highlighting the sports that perform better

Add the color encoding. Set the color to:

 # - #003049 if the Percentage Improvement is greater than 50,

 # - lightgray otherwise

Highlight sports

Describe how to highlight the sports that perform better.

Listing 4.13 shows the generated code.

Listing 4.13 The generated code to highlight the sport performing better

color=alt.condition(

 alt.datum['Percentage Improvement'] > 50,

 alt.value('#003049'),

 alt.value('lightgray')

)

Highlight sports

The code generated by Copilot uses a conditional statement to select the color
to apply to each bar.

Figure 4.20 shows the resulting chart.

Figure 4.20 The bar chart with the top two sports highlighted

Now that we have highlighted the top two sports, we can move on to add
images to the chart.

Adding enforcement images

To generate an image for each of the top two sports, provide DALL-E with
the following prompt: an enthusiastic athlete practicing [sport], in a white
background, cartoon. Figures 4.21 and 4.22 show the produced outputs for
rowing and cycling, respectively.

Figure 4.21 The bar chart with the top two sports highlighted

Figure 4.22 The bar chart with the top two sports highlighted

We choose image n.2 in Figure 4.21 and image n.1 in Figure 4.22. If you find
some imperfections in an image, you can improve it by using the editing tool.
To include an image in an Altair chart, you must save it into a remote
repository, such as GitHub and provide Altair with the remote URL.

Now, let’s ask Copilot to write the code to add the images to the chart.
Listing 4.14 describes the instructions for Copilot.

Listing 4.14 Adding images to the chart

Add a new column to df called 'url' with the following value:

* 'https://[..]/cycling.png' for Training Type = 'Cycling'

* 'https://[..]/rowing.png' for Training Type = 'Rowing'

* '' for all other Training Types

Add the following image to the chart:

* The image is a 35x35 pixel image

* The image is located at x='Training Type', y='Percentage Improvement'

How to add an image

First add a column to the DataFrame with the URL to the image. Then
specify how to add images to the chart.

Listing 4.15 shows the produced output.

Listing 4.15 The code for adding images

df['url'] = ''

df.loc[df['Training Type'] == 'Cycling', 'url'] = 'https://[..]/cycling.png'

df.loc[df['Training Type'] == 'Rowing', 'url'] = 'https://[..]/rowing.png

chart = chart + alt.Chart(df).mark_image(width=35, height=35).encode(

 x=alt.X('Training Type', sort='-y'),

 y=alt.Y('Percentage Improvement'),

 url='url'

)

Add an image

First Copilot suggests to manipulate the DataFrame by adding a new column.
Next, Copilot suggests to use the mark_image() mark.

The next step involves adding a baseline at 50% of percentage improvement.
Listing 4.15 describes the instructions for Copilot. Figure 4.23 shows the
produced output.

Figure 4.23 The bar chart after adding images

about:blank

Now that you have added the images for the top two charts, we can move on
to the next step, generating a baseline.

Adding a baseline

Adding a baseline means adding a horizontal red line to the chart for a
comparison. For example, we can set the value of the horizontal line to 50,
which corresponds to 50%. Listing 4.16 shows the instructions for Copilot.

Listing 4.16 Generating a baseline

Add a horizontal red line to the chart at y=50

Add the line to the chart

Generate the baseline

Describe how to generate the baseline at 50% of the percentage improvement.

Listing 4.17 shows the generated code.

Listing 4.17 The generated code to generate a baseline

line = alt.Chart(pd.DataFrame({'y': [50]})).mark_rule(color='red').encode(y='y')

chart = chart + line

Generate a baseline

The code generated by Copilot uses mark_rule() to generate a horizontal
line and the + operator to layer the two charts.

Figure 4.24 shows the final chart. With respect to Figure 4.19, we have added
context that helps the reader to understand immediately which sports we
should invest in.

Figure 4.24 The bar chart with the two sports performing better

We could further improve the chart in Figure 4.24 by adjusting axes titles and
applying decluttering. We’ll see how to do it in the next chapters.

Now that we have added context to our chart, we can move to the next step of
the DIKW pyramid, which is turning knowledge into wisdom.

4.5.3 Turning Knowledge into Wisdom

This step involves adding an action to the chart. Let’s add a title that invites
the audience to invest in rowing and cycling. We can use ChatGPT to
generate the title. Write the following prompt:

Act as an inviter to action
tailored to the boss of a sport company.
Generate a compelling title for the following text in angle brackets <You
should invest funds for rowing and cycling, which are the most practiced
sports>.

An example of a generated title is Unlock the Potential: Invest in Rowing and
Cycling for Maximum Returns! If you are unsatisfied with the generated title,
you can ask ChatGPT to generate another one, or a list of N titles.

Once we have defined the title, we can write the instructions for Copilot to
add it to the chart, as shown in Listing 4.18. Add the comment within the
properties() method of the chart.

Listing 4.18 Adding a title

Add the following properties to the chart:

 # * title to 'Unlock the Potential: Invest in Rowing and Cycling for Maximum Returns!'

Add the title

Add this instruction within the properties function of the chart

Listing 4.19 shows the generated code.

Listing 4.19 The generated code to add a title

title='Unlock the Potential: Invest in Rowing and Cycling for Maximum Returns!'

Add a title

The code generated by Copilot uses the title property.

Figure 4.25 shows the final chart.

Figure 4.25 The final bar chart with the call to action in the title

In this chapter, you have learned the basic concepts behind Generative AI
tools, with a specific focus on ChatGPT, DALL-E, and Copilot. In the next
chapter, you’ll see how to combine Altair and Generative AI tools to build
compelling data stories using the DIKW pyramid.

4.6 Summary

Generative AI is a subfield of Artificial Intelligence, aiming at
generating new content based on the trained data. You can use
Generative AI for different purposes, including text, image, code, video,
and speech generation.
A prompt is an input text containing the instructions for a Generative AI
tool.
ChatGPT is a text-to-text Generative AI tool. To write effective prompts
for ChatGPT structure the prompt in three parts: role, audience, and
subject.
DALL-E is a text-to-image Generative AI tool. To write effective
prompts for DALL-E, define the subject and the style.
Copilot is a text-to-code Generative AI tool. To make Copilot write code
suggestions efficiently, write specific and unambiguous instructions,

using simple language and avoiding complex terminology.
Don’t use Copilot to substitute you as a developer. Rather, use it to
assist you while programming.
Always keep in mind that Generative AI cannot substitute your
creativity and reasoning capabilities.

4.7 Additional Resources

Niyati Madhvani. Generative AI Tools in the Creative Domains: The
Power and Pressure Game Is On! March 2023.
https://www.rapidops.com/blog/generative-ai-tools/ (Last Access July
2nd, 2023)
Jonathan Kemper. ChatGPT Guide: Use these prompt strategies to
maximize your results. Jun 19, 2023 https://the-decoder.com/chatgpt-
guide-prompt-strategies/ (Last Access June 29, 2023)
Isa Fulford, Andrew Ng. ChatGPT Prompt Engineering for Developers.
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-
for-developers/ (Last Access June 29, 2023)
The DALL·E 2 Prompt Book https://dallery.gallery/wp-
content/uploads/2022/07/The-DALL%C2%B7E-2-prompt-book-
v1.02.pdf (Last Access July 1st, 2023)
Tory Barber. Dall-e Prompting Tips & Tricks.
https://torybarber.com/dall-e-prompting-tips-tricks/ (Last Access July
1st, 2023)

[1] https://www.youtube.com/watch?v=So48YMYyl58

[2] freely inspired by Simone Oliani. Ho paura di essere debole (I'm afraid of
being weak). Messaggero di sant’Antonio, 2023, n.6 p.53.

5 Crafting a data story through the
DIKW Pyramid
This chapter covers

The homelessness tale - our scenario for this chapter
What a data story is and how it relates to the DIKW pyramid
How to incorporate Generative AI in the DIKW pyramid

In this chapter, we will focus on the practice of using the DIKW pyramid by
describing two examples. The first example will analyze the problem of
homelessness in Italy, and the second the problem of fake news into a
hypothetical website. We will also describe the concept of data story and how
it relates to the DIKW pyramid already learned in the previous chapters.
Finally, we will describe some strategies to incorporate Generative AI in the
DIKW pyramid, based on how to write specific prompts for ChatGPT to
generate the context of a chart and for DALL-E to generate contextual images
to incorporate in the chart.

5.1 Breaking the Ice: The Homelessness Tale

Imagine that Angelica works for a humanitarian organization that wants to
apply for funding from a Foundation to help reduce the homeless people
problem in Italy. Humanitarian interventions can be applied to up to four
Italian regions. The call for funds involves preparing a data visualization
chart motivating the selected regions and why to fund the proposal.

Angelica’s boss asks her to do a study to figure out which regions to invest in
and motivate her choice.Angelica starts a web search for possible datasets on
homelessness in Italy. After several searches, she comes across the ISTAT
dataset on homelessness in 2021[1]. She downloads the dataset and starts
analyzing it. Table 5.1 shows a simplified version of an extract of the
homelessness dataset. The original dataset column names are in Italian. We

have translated them into English to improve readability.

Table 5.1 An extract of the ISTAT dataset on homelessness in 2021

ITTER107 Territory Sex Age Citizenship Value

ITC1 Piemonte M TOTAL ITL 4218

ITC1 Piemonte F TOTAL ITL 1496

ITC2 Valle d'Aosta M TOTAL ITL 41

ITC2 Valle d'Aosta F TOTAL ITL 17

The ISTAT dataset on homelessness

The dataset has the following columns:

ITTER107 - the region ID,
Territory - the region name,
Sex - one of Male (M), Female (F), Total (T),
Age - one of Total (TOTAL), under 17 (Y_UN17), between 18 and 34
(Y18-34), between 35 and 54 (Y35-54), and greater than 55 ('Y_GE55)
Citizenship - one of Italian (ITL), Foreign (FRGAPO), Total (TOTAL)
Value - the actual number of homeless people

At the end of her analysis, Angelica produces the chart shown in Figure 5.1
by writing the code in Listing 5.1, using Altair. You can find the full code in
the GitHub repository of the book under 05/homeless-people/raw-
chart.py.

Listing 5.1 The map in Altair

import pandas as pd

import altair as alt

df = pd.read_csv('source/homeless.csv')

Data Cleaning

df['Territory'] = df['Territory'].str.replace('Trentino Alto Adige', 'Trentino-Alto Adige/Südtirol')

Focus on total age, total sex and total citizenship

df = df[(df['Age'] == 'TOTAL') & (df['Sex'] == 'T') & (df['Citizenship'] == 'TOTAL')]

Load the TopoJSON file by URL

url = "https://raw.githubusercontent.com/openpolis/geojson-italy/master/topojson/limits_IT_regions.topo.json"

map = alt.topo_feature(url, "regions")

chart = alt.Chart(map).mark_geoshape().encode(

 tooltip='properties.reg_name:N',

 color=alt.Color('Value:Q')

).project('mercator').properties(

 width=500,

 height=500

).transform_lookup(

 lookup='properties.reg_name',

 from_=alt.LookupData(df, 'Territory', ['Territory', 'Value'])

).properties(title='Homeless in Italy in 2021')

chart.save('raw-chart.html')

Chart

The chart builds a map using an underlying topoJSON object containing the
map of Italy. To build the map, use the mark_geoshape() marker and specify
the projection through the project() method. In addition, combine the
homeless dataset (df) and the map through the transform_lookup() method.
Map the properties.reg_name variable of the topoJSON file with the
Territory variable of the df DataFrame. We’ll discuss how to build a
geographical map more deeply in the next chapter.

Figure 5.1 A map showing the homeless people in Italy in 2021

Angelica shows the chart to her boss, who asks her to answer their question:
which are the four regions for which we must apply for funding? Angelica
looks at the chart, and she answers: those with the darker color. Her answer
is very ambiguous because, from the chart she produced, it is not
immediately clear which exactly are the four regions with the darkest color.
In addition, it is not clear why to select the four regions. Angelica has to
admit that her chart has failed its mission.

5.1.1 What Was Wrong with the Chart?

The main problem with the chart is a large discrepancy between what
Angelica's boss (audience) expected to see in the chart and what the chart
actually shows. In practice, Angelica's chart does not answer the question for
which it was thought (Figure 5.2).

Figure 5.2 Angelica’s boss (audience) requested to answer a specific question (on the left). The
chart actually answered generic questions (on the right).

Here comes the first rule when building a chart: a chart must answer exactly
the question the intended audience asks. Try not to leave it up to your
audience to decipher the answer. Do the work for them!

Angelica’s boss asks her to redo the chart. Then she returns to her office with
her head down and analyzes her dataset again. Angelica understands that the
problem is not so much data analysis but rather how to represent data
effectively. She tries this reasoning: at a glance, the audience must
understand the four regions to apply for funding. What could these four
regions be? Probably the ones that have the highest value of homeless
people. What is missing in her previous chart, is the probably part. She thinks
about making a bar chart that shows the regions in descending order based on
the number of homeless people present. After a small effort, she produces the
chart in Figure 5.3, writing the code in Listing 5.2. You can also find the code
in the GitHub repository of the book, under 05/homeless-people/bar-chart.py.

Figure 5.3 A bar chart showing the homeless people in Italy in 2021

Listing 5.2 The bar chart in Altair

chart = alt.Chart(df).mark_bar(

 color='#80C11E'

).encode(

 y = alt.Y('Territory',

 sort='-x',

 axis=alt.Axis(title='')),

 x = alt.X('Value',

 axis=alt.Axis(tickCount=4,title='Number of homeless people'))

).properties(

 width=500,

 title='Homelessness in Italy in 2021'

)

).properties(title='Homeless in Italy in 2021')

chart = chart.configure_title(

 fontSize=20,

 offset=25

).configure_axis(

 grid=False

).configure_view(

 strokeWidth=0

)

chart.save('bar-chart.html')

Chart

The chart builds a bar chart using the mark_bar() method. It also sets the
bars' color through the color parameter. To order the bars in descending
order, use the sort parameter within the y channel and specify to sort in
descending order of the x encoding channel. Use configure_title() to
configure the title parameters, such as the font size (fontSize) and the offset
between the title and the chart.

The chart answers the question: the four regions are Lazio, Lombardia,
Piemonte, and Campania. Angelica notes that three of the four regions also
correspond to the most populous regions of Italy. As Angelica reflects on
this, she notices that her chart contains an underlying error. The most
populous regions also have the highest number of homeless people precisely
because the population is greater.

Therefore, the chart does not show a real situation. She needs to normalize
the data based on the population. Normalization means scaling the numbers
by a population. Without any normalization, data could be biased. Consider,
for example, the case of a population with 100 people of which 30 are
homeless. Also, consider a population with 10 people of which 8 are
homeless. If you represent absolute values, you conclude that in the first case,
there are more homeless people than in the second one. But, if you pay more
attention to the scenario, in the second case 80% of the population is
homeless, while in the first case only 30%.

Figure 5.4 shows the resulting chart after the normalization process focusing
on the top-4 regions. Listing 5.3 describes the code written to draw the chart
(script 05/homeless-people/story-chart.py).

Figure 5.4 A bar chart showing the number of homeless in a population of 1,000 in 2021

Listing 5.3 The improved bar chart in Altair

import pandas as pd

import altair as alt

df = pd.read_csv('source/homeless.csv')

Data Cleaning

df['Territory'] = df['Territory'].str.replace('Trentino Alto Adige', 'Trentino-Alto Adige/Südtirol')

Focus on total age, total sex and total citizenship

df = df[(df['Age'] == 'TOTAL') & (df['Sex'] == 'T') & (df['Citizenship'] == 'TOTAL')]

df = df[['Value', 'ITTER107']]

Normalize the values by popultation

df_pop = pd.read_csv('source/population.csv')

df_pop = df_pop[(df_pop['Age'] == 'TOTAL') & (df_pop['Sex'] == 'T')]

df_pop = df_pop[['Value', 'ITTER107','Territory']]

df_tot = df_pop.set_index('ITTER107').join(df.set_index('ITTER107'),lsuffix='_pop', rsuffix='_hom').reset_index()

df_tot['Ratio'] = df_tot['Value_hom']/df_tot['Value_pop']*1000

chart = alt.Chart(df_tot).mark_bar().encode(

 y = alt.Y('Territory',

 sort='-x',

 axis=alt.Axis(title='')),

 x = alt.X('Ratio',

 axis=alt.Axis(tickCount=4,title='')),

 color=alt.condition(alt.datum.Ratio > 2,

 alt.value('#80C11E'),

 alt.value('lightgray'))

).properties(

 width=500,

 title='Number of homeless people in a population of 1,000'

)

Chart

The code loads the population dataset, which contains the same fields as the
homeless dataset, except for the Value column, which indicates the actual
population. The code merges the two datasets, population (df_pop) and
homeless (df), and calculates the ratio between the number of homeless and
the population. Then, the chart builds a bar chart using the ratio as the X
encoding channel.

Angelica’s chart eventually answers her boss’s question: the four regions are
Lazio, Liguria, Piemonte, and Sardegna. Finally, Angelica shows her chart to
her boss, who is very satisfied with her result.

To apply for funds, Angelica must send her chart to a commission, which will
decide whether or not to finance Angelica’s organization proposal. However,
after a careful evaluation, the Foundation Commission decides not to finance
her project because the chart does not contain any motivation.

5.1.2 What Was Wrong with the Presentation?

To understand why the Foundation Commission refused to fund Angelica’s
proposal, let's trace back the path she followed. She started with raw data,

analyzed it, extracted a meaning, and represented it through a chart, then she
sent her chart to the Foundation Commission (Figure 5.5).

Figure 5.5 Angelica’s journey to chart generation. Angelica presented the results of data
exploration directly to her audience

What is missing from her chart is that it contains no context, and no
motivation to push the Foundation Commission to accept her proposal.
Angelica should have added to the exploratory phase of the data an
explanatory phase where she could have engaged the audience with her data
and motivated them to accept her proposal. Angelica could have used the
DIKW model to move from the exploratory phase of her data to the
explanatory phase (Figure 5.6).

Figure 5.6 Angelica should have transformed her data exploration into a data explanation phase

In other words, Angelica hasn't turned data into a story. In his book Effective
Data Storytelling, Brent Dykes says: “The formation of a data story begins
with using exploratory data visualizations to discover insights. Once a
meaningful insight is uncovered, explanatory data visualizations are used to
tell a story” (Dykes, 2019). The chart built by Angelica constitutes only the
main point of the data story. However, to have a complete story, Angelica
should have also included a background and next steps (Figure 5.7). The
Foundation Commission expected Angelica’s chart to answer the question:
why should we fund your project? Organizing the chart as a story would have
increased the funding chances.

Figure 5.7 The Foundation Commission expected to see a story with a background, a main point,
and next steps, inviting them to fund Angelica’s proposal

Now that we have understood the urgency to turn data into a story to
communicate a message to an audience effectively, let’s move to the next
step, what a data story is and its main components.

5.2 Uncovering the Narrative: What a Data Story is

According to the Cambridge Dictionnary, a story is “a description, either true
or imagined, of a connected series of events.. A story is a way to share
information or entertainment through a structured, cohesive narrative that
engages the audience. The goal of a story is always to engage its audience to
communicate a message.

In his book Poetics, the Greek philosopher Aristotle proposed a framework to
structure a tragedy, also known as the Three-Act Structure. The structure
consists of three main parts: the setup, the confrontation, and the resolution
(Figure 5.8).

Figure 5.8 The Three-Act Structure proposed by Aristotle to structure a tragedy

The setup introduces the audience to the characters, setting, and basic conflict
of the story. In the confrontation, the main character faces obstacles and
struggles to overcome them. Finally, in the resolution, the story reaches the
point at which conflicts are resolved. The Aristotle tragedy structure is still
widely used today in literature, film, and other forms of storytelling. Its
effectiveness lies in its ability to build tension and suspense, leading to a
satisfying resolution for the audience.

In the aforementioned book, Dykes proposes an improved version of the
Three-Act Tragedy, adapted to the data storytelling scenario (Figure 5.9).
Dykes calls it the Data Storytelling Arc.

Figure 5.9 The Data Storytelling Arc proposed by Dykes to structure a data story

A data story starts by defining the background behind data (1) and raising the
audience's interest (2). Dykes also proposes including a hook during this
initial phase. A hook is “a notable observation that acts as a turning point in
the story and begins to reveal a problem or opportunity” (Dykes, 2019).
Then, the data story culminates with the main point behind the data by
revealing the insight (3), leaving the audience the time to think (4), and
terminates by proposing the next steps (5).

The structure proposed in Figure 4.9 might seem abstract and difficult to
apply when constructing a chart. Using the DIKW pyramid learned in
Chapter 1, you can turn a simple chart into a story.

5.2.1 Using the DIKW Pyramid to Streamline a Data Story

In Chapter 1, we introduced the Data Information Knowledge Wisdom
(DIKW) pyramid and used it to transform data into wisdom in the practical
example of the event dedicated to pets. We can generalize the example
described in Chapter 2 and use the DIKW to build any data story. Figure 5.10
shows how to map the Data Storytelling Arc to the DIKW pyramid:

Extracting meaning from data corresponds to the main point of a data
story
Adding a context to the extracted information corresponds to defining
the background and raise the audience interest

Adding a call to action corresponds to inviting the audience to think and
follow the next steps.

Figure 5.10 A mapping between the Data Storytelling Arc and the DIKW pyramid

The described mapping suggests the natural flow when you build a data story
(Figure 5.11). First, identify the main point of your story, then set the
background, and, finally, set the next steps.

Figure 5.11 The flow to build a data story

5.2.2 DIKW in Action: Completing the Homelessness Tale

The Homelessness example described at the beginning of the chapter stopped
at the information level of the DIKW pyramid that, in terms of a data story,
consisted only of the main point. Adding background to the chart involves

grabbing your audience's attention and making them interested in the problem
you're describing. In Chapter 2, you learned that in Altair you can add textual
annotations to a chart to transform information into knowledge. In addition,
there are other ways to add context to a chart, including labels, titles, sources,
images, descriptions, and comparisons. We’ll describe them more in detail in
Chapter 6, From Information to Knowledge: Building Context.

In the case of the homeless problem, you can add text describing the situation
of these people and possibly a photo that gives a face to the people involved.
We will see how to add a hero to the story in Chapter 6, From Information to
Knowledge: Building Context. For now, it's enough to give a face to the
people behind the data.

In Listing 4.4, we add a text describing the context as the chart subtitle. Use
the TitleParams() function to specify the title properties, including the
subtitle. Set the subtitle to Homelessness is a heartbreaking reality that
leaves individuals and families without a stable home, leading to devastating
consequences such as poor health and social isolation.

Listing 5.4 Adding the context as the subtitle

Add context

chart = chart.properties(width=500,title=alt.TitleParams(

 text=["Together, Let's Make a Difference:","Support Our Project to Help the Homeless!"],

 subtitle=['Homelessness is a heartbreaking reality that leaves individuals and families without a stable home,','leading to devastating consequences such as poor health and social isolation.'],

 subtitleFontSize=18,

))

How to add a subtitle to a chart

Within the properties() method, use the title parameter to set the chart title.
Define the title using the TitleParams() function, which can receive many
parameters as an input. The example passes the following parameters: title
(text), subtitle (subtitle), subtitle font size (subTitleFontSize), title font
size (titleFontSize).

Listing 5.5 shows how to add two photos to the chart and combine them with
the original chart to build a dashboard. To make the code work, you must run
it on a web server. If you don’t have a web server, you can run a local and

temporary web server from command line, running the following command
in the directory containing the produced HTML file: python -m http.server.
The server should listen at port 8000 and should serve all the files contained
in the directory from which it is started. Point to
http://localhost:8000/chart.html in your browser to access the file chart.html.

Listing 5.5 Adding the context as images

Build the first image

image1 = alt.Chart(pd.DataFrame({'image_url': ['source/homeless1.png']})).mark_image(

 width=200,

 height=200,

).encode(

 url='image_url',

 x=alt.value(0), # pixels from left

 y=alt.value(50) # pixels from the top

)

Build the second image

image2 = alt.Chart(pd.DataFrame({'image_url': ['source/homeless2.png']})).mark_image(

 width=200,

 height=200,

).encode(

 url='image_url',

 x=alt.value(0), # pixels from left

 y=alt.value(300)

)

image1 + image2 | chart

How to add images to a chart

Use mark_image() to add an image to a chart. Set the path to the image file in
the DataFrame passed to the chart. Use the x and y channels to set the image
position in the chart. Use the same chart to draw image1 and image2 (+
operator) and draw the main chart on the right with respect to image1 +
image2.

To complete the homelessness story, add a call to action, which includes the
next steps. In this example, we first modify the title to: Together, Let's Make
a Difference: Support Our Project to Help the Homeless! We’ll see different
strategies to add a call to action to a chart in Chapter 7, From Knowledge to

localhost:8000.html

Wisdom: Adding Ethics. Figure 5.12 shows the resulting chart.

Figure 5.12 The homelessness chart is enriched with a context (images and subtitle)

Then, we add a part of the chart describing how we will use funds (Figure
5.13). For example, we will use 35% of the funds for shelter and housing,
25% for job training, and so on.

Figure 5.13 A possible next step explaining how we will use funds

Listing 5.6 shows how we implemented the charts in Figure 5.13. We assume
we have a DataFrame storing the percentage of funds (Allocation) for each
Category

Listing 5.6 Adding a next step

import pandas as pd

import altair as alt

donuts = None

for index, row in ns.iterrows():

 curr_ns = pd.DataFrame(

 {'Category': ['A', 'B'],

 'Value': [row['Allocation'], 100-row['Allocation']]

 } #A

)

 donut = alt.Chart(curr_ns).mark_arc(outerRadius=30, innerRadius=20).encode(

 theta=alt.Theta("Value:Q", stack=True),

 color=alt.Color("Category:N", scale=alt.Scale(range=['green', 'lightgray']), legend=None) #B

)

 title = alt.Chart(curr_ns).mark_text(text=row['Category'], y=0, size=16) #C

 text = alt.Chart(curr_ns).mark_text(text=f"{row['Allocation']}%", color=iColor, size=16) #D

 donut = donut.properties(

 height=100,

 width=100

) #E

 #F

 if index == 0:

 #G

 donuts = title + donut + text

 else:

 #H

 donuts = alt.hconcat(donuts, title + donut + text)

How to implement the charts in Figure 5.13

Implement each donut chart as a separate chart using mark_arc(). For each
donut, build an ad-hoc DataFrame (current_ns) that contains the actual
allocation value and its complementary value (100 - actual allocation value).
Then, use different colors to plot the current allocation value and its
complementary value.

Figure 5.14 shows the resulting chart. If Angelica had submitted the chart in
Figure 5.14 to the Commission Foundation, she would probably have had

more opportunities to get funded.

Figure 5.14 The final chart for the homeless tale

Now that you have completed the homelessness tale, let’s describe how you
can incorporate the power of Generative AI in the DIKW pyramid.

5.3 Incorporating Generative AI into the DIKW
Pyramid

Generative AI, as we covered in Chapter 4, can help us take things one step
further by enabling the creation of sophisticated and realistic computer-
generated content that can revolutionize various industries and domains.
Now, armed with this knowledge, we can leverage generative AI's

capabilities to augment human creativity and automate content generation
processes.

Figure 5.15 shows where we can incorporate Generative AI tools into each
step of the DIKW pyramid:

Meaning extraction: use generative algorithms to automate the creation
code that builds the chart.
Context adding: use text generation to transform basic texts into more
engaging ones for the audience. Add images, voice, and videos
generated by AI to give the audience additional context
Call to action: use text generation to suggest new ideas and engaging
text.

Figure 5.15 Where we can incorporate Generative AI tools into the DIKW pyramid

It's important to note that the examples listed are just a few of the ways that
you can incorporate Generative AI into the DIKW pyramid. There are
countless other ways in which you can leverage these tools, such as
synthesizing large amounts of data, developing personalized, predictive
models, and constructing personalized recommendations based on data.
However, in this book, we will focus specifically on the techniques for
integrating Generative AI into the DIKW pyramid, as it can assist in building
a data story. Anyway, we encourage you to think outside the box and explore
new and innovative ways to apply Generative AI in your work. With so much
potential waiting to be unlocked, the possibilities are truly endless!

Now that you have learned how to incorporate Generative AI tools into the
DIKW pyramid, let’s apply this strategy to our case study, the homelessness
tale.

5.4 Behind the Scenes: The Homelessness Tale

In the previous chapters, you saw how to use GitHub Copilot to generate the
code to build the chart. Now, it’s time to go a step further.

Consider the homelessness tale again and specifically Figure 5.12. The figure
contains a title, defining the call to action, a subtitle, setting the context, and
two photos, setting the context too. While you may have thought that we
came up with the title and created or downloaded the images, in reality, it was
ChatGPT and DALL-E that worked together to generate the content! Let’s
see how we used ChatGPT to generate the subtitle and DALL-E to generate
the photos. In the next chapters, we will see how to use more deeply
generative AI tools for data storytelling.

5.4.1 Creating a Compelling Subtitle

We started a conversation with ChatGPT to extract a possible context that
describes the situation where homeless individuals live. The context should
be a short and engaging sentence. Figure 5.16 shows the steps involved in the
conversation. Q means the user questions (which will form the basis of our
prompts), and A the ChatGPT answers. You can read the complete
conversation in 05/genAI/SubtitleConversation.txt.

Figure 5.16 The steps to generate the text used for context.

ChatGPT generated the text after four steps. We used the following strategy
to make ChatGPT generate the desired text:

1. Describe: ask ChatGPT to describe your problem in general. In this
case, ask ChatGPT to describe the homelessness condition in general.
As an answer, ChatGPT generates a long text

2. Shorten: ask ChatGPT to write a summary of the generated text
3. Transform: ask ChatGPT to make the summary more engaging for the

audience
4. Shorten: if the text is still long, ask ChatGPT to reduce it.

Without realizing it, we applied the DIKW model to the use of ChatGPT.
Starting from a long text (data), we extracted the information (summary) and
then converted it into knowledge and wisdom (engaging text). In other words,
when you talk to ChatGPT to generate context, organize the conversation as a
story (Figure 5.17).

Figure 5.17 The mapping between the data story structure and the ChatGPT conversation to
generate context.

You can generalize the described procedure to generate a variety of possible
subtitles and then choose the one that fits your needs. Additionally, you can
add specific keywords that can help appeal to your target audience and
increase the visibility of your text. We’ll see how to add keywords to the
ChatGPT conversation in Chapter 6, From Information to Knowledge:
Building Context.

5.4.2 Generating Images

Adding one or more images or photos to your chart helps give a face to the
topic of your chart. However, images are often subjected to copyright, which
means that using them without permission from the owner can lead to legal
consequences. We can use DALL-E and other AI tools for images to create
unique and original images that are free of copyright restrictions.

In the chart about homelessness, we have added two photos representing
homeless individuals. We have generated them using the following simple
prompt to DALL-E: a photo of a homeless individual. DALL-E has generated
four images, and we have chosen two (Figure 5.18). In Chapter 6, From
Information to Knowledge: Building Context, we will see more advanced
techniques to generate images.

Figure 5.18 The photos generated by DALL-E when prompting a photo of a homeless individual.

Now that you have learned how to use Generative AI tools to transform your
raw data visualization chart into a data story, let’s look at another example, to
consolidate the concepts.

5.5 Another Example: Fake News

Imagine that XX is an important website that publishes news from different
contributors. At a given point, the editor-in-chief receives some complaints
from different readers because they read a high percentage of fake news. The
editor-in-chief contacts you to analyze the number of fake news contained in
the XX website and advises the website editors to pay attention to the
categories of news having the highest probability of being fake. You already
have collected data, and you have the dataset shown in Table 5.2.

Table 5.2 An extract of the dataset of the example

Category Number of Fake Articles Number of Articles

Politics 1235 1300

Economy 1456 1678

Justice 300 570

Religion 30 100

The dataset shows the number of fake news and the total number of articles
for each news category. You start by drawing a preliminary chart, paying
attention to the percentage of fake articles for each category. Figure 5.19
shows the preliminary chart and Listing 5.7 the associated code. You can also
find the code in the GitHub repository of the book, under 05/fake-news/raw-
chart.py.

Listing 5.7 Building the raw chart

import pandas as pd

import altair as alt

Load the dataset data/fakenews.csv

df = pd.read_csv('data/fakenews.csv')

Create a column chart of the number of articles per category #A

- Use the `Category` column for x channel

- Use the `Number of Articles` for y channel

chart = alt.Chart(df).mark_bar(

 color='#81c01e'

).encode(

 x=alt.X('Category:N',

 sort='-y',

 title=None,

 axis=alt.Axis(labelFontSize=14)

),

 y=alt.Y('Percentage of Fake Articles:Q',

 axis=alt.Axis(labelFontSize=14, titleFontSize=14)

)

).properties(

 width=400,

 height=300

).configure_axis(#B

 grid=False #C

).configure_view(

 strokeWidth=0

).transform_calculate(

 'Percentage of Fake Articles', alt.datum['Number of Fake Articles']/alt.datum['Number of Articles']*100

)

chart.save('raw-chart.html')

How to draw the preliminary chart

Use transform_calculate() to dynamically add a new column to the
DataFrame. This method receives the new column name as the first parameter
(Percentage of Fake Articles, in the example), and the expression to calculate
the new column, as the second parameter.

Figure 5.19 The raw chart showing the number of fake articles by category

In the remainder of the section, we will apply the DIKW pyramid to
transform the chart into a data story. Let’s start with the first step, turning
data into information.

5.5.1 From Data into Information

Turning data into information means extracting some meaning from data, an
insight that is significant and helps your audience of editors to understand
which kind of news has the highest probability of being fake. Let’s try the
rotation strategy. This strategy, originally described by Berengueres in his
already quoted book, involves rotating the chart to obtain a pyramid and
searching for some pyramid framework, such as moral, economic, and other
similar framework. Figure 5.20 shows the rotation process.

Figure 5.20 The rotation process of the chart in Figure 5.19

Next, we can flip the chart horizontally and obtain the chart in Figure 5.21,
with corrected labels. You can also rewrite directly the Altair code to draw a
column chart instead of a bar chart (the code is in the GitHub repository,
under 05/fake-news/bar-chart.py. We have preferred to show the rotation
process instead of drawing the chart directly to show how the rotation
strategy works.

Figure 5.21 The rotation process of the chart in Figure 5.19

If you look at labels carefully, you can notice that at the bottom of the
pyramid, there are categories related to material life (from Education to
Business). In the middle of the pyramid, there are categories related to moral
life (from Human Rights to Ethics). At the top of the pyramid, there are
categories related to spiritual life (from Mysticism to Philosophy). This
means that most fake news is related to material life (more than 70%) and
moral life (more than 30% of fake news, but less than 60%). You can
highlight the model material-moral-spiritual life using different colors in the
chart, based on the different macro categories the news belongs to.

First, use Copilot to generate the list of macro categories, as shown in Listing
5.8 and in the GitHub repository of the book, under 05/fake-news/story-
chart.py. The listing shows only how to generate the material life macro
category, but you can apply the same strategy also for the other macro
categories.

Listing 5.8 Using Copilot to generate a list

Build a Python list with the following categories and name it material_life:

Technology

Environment

Health

Science

Education

Business

Lifestyle

Travel

Politics

Economy

Sport

material_life = ['Technology', 'Environment', 'Health', 'Science', 'Education', 'Business', 'Lifestyle', 'Travel', 'Politics', 'Economy', 'Sport'] #A

How to use Copilot to generate a list

Describe the elements to include in the list.

Now, ask Copilot to generate the code to add a new column to the
DataFrame, containing the macro category. Listing 5.9 shows the instructions
for Copilot.

Listing 5.9 Using Copilot to add a new column to a DataFrame

Add a new column to the dataframe df called Macro Category that contains the following values:

- if the Category is in material_life, then the value is Material Life

- if the Category is in moral_life, then the value is Moral Life

- if the Category is in spiritual_life, then the value is Spiritual Life

df['Macro Category'] = df['Category'].apply(lambda x: 'Material Life' if x in material_life else ('Moral Life' if x in moral_life else 'Spiritual Life')) #A

How to use Copilot to add a new column to a DataFrame

Describe how to build the new category of the DataFrame.

Next, use the new column Macro Category to set the color of the bars in the
chart, as shown in Listing 5.10.

Listing 5.10 Using the new column as the bars colors

chart = alt.Chart(df).mark_bar(

).encode(

 y=alt.Y('Category:N',

 sort='x',

 title=None,

 axis=alt.Axis(labelFontSize=14)

),

 x=alt.X('Percentage of Fake Articles:Q',

 title=None,

 axis=alt.Axis(labelFontSize=14,

 titleFontSize=14),

),

 color=alt.Color('Macro Category:N',

 scale=alt.Scale(

 range=['#991111', '#f38f8f','lightgray'],

 domain=['Material Life', 'Moral Life', 'Spiritual Life']

),

 legend=None

)

).properties(

 width=400,

 height=400

).transform_calculate(

 'Percentage of Fake Articles', alt.datum['Number of Fake Articles']/alt.datum['Number of Articles']*100

)

How to add color to the chart

Add the color channel to set the bars color.

Figure 5.22 shows the resulting chart. We have used two tonalities of red to
highlight the urgency of paying attention to material and moral life.

Figure 5.22 The chart of Figure 5.21 with macro categories highlighted

We could improve the chart by simplifying the chart, for example by
grouping categories. However, our audience comprises experts (editors), who
need very detailed information because they must know precisely which
categories they must analyze more deeply. For this reason, we leave the chart
with many details. We have removed the legend from the chart because we
want to replace them with some images, which also act as the context for our
story. Let’s see how to add these images, in the next step, turning information
into knowledge.

5.5.2 From Information into Knowledge

The idea is to add an image for each macro category, more specifically an
icon. We can use DALL-E to generate the three images. Use the following
prompt to generate the spiritual life icon: a black-and-white icon with praying
hands. DALL-E will generate four images, such as those shown in Figure
5.23.

Figure 5.23 The images generated by DALL-E related to the spiritual life

Similarly, you can generate icons related to the other categories. We have
used the following prompts:

A black and white icon with a balance symbol of moral life
A black and white icon with a circle representing the world.

If you don’t have any ideas on how to generate an image, you can use
ChatGPT to get some ideas. For example, you can write the following prompt
in ChatGPT: how would represent material life through an icon? Among the
other suggestions, ChatGPT suggests the following: A circle to represent the
world or universe, with various smaller icons or symbols placed within it to
represent different facets of material life.

Once you have generated the images, you can incorporate them into the chart.
Listing 5.11 describes how to add the spiritual life image. You can adopt the
same strategy also for the other images. Also, remember to load the generated
HTML chart in a web server.

Listing 5.11 Adding an icon to the chart

Add an image to the chart

spiritual_image = alt.Chart(

 pd.DataFrame({'image_url': ['media/spiritual-life.png']})

).mark_image(

 width=80,

 height=80,

).encode(

 url='image_url',

 x=alt.value(270), # pixels from left

 y=alt.value(50)

)

How to add an icon to the chart

Calibrate the x and y positions manually based on how the chart appears.

Near the icon, add a text describing the macro category, as shown in Listing
5.12.

Listing 5.12 Adding a text to the chart

spiritual_text = alt.Chart(

 pd.DataFrame({'text': ['Spiritual Life']})

).mark_text(

 fontSize=30,

 color='black',

 align='center',

 baseline='middle',

 font='Monotype',

 fontStyle='italic'

).encode(

 x=alt.value(420), # pixels from left

 y=alt.value(50),

 text='text'

)

How to add a text to the chart

Calibrate the x and y positions manually based on how the chart appears.

Finally, combine all the charts as shown in Listing 5.13.

Listing 5.13 Combining the images, the texts and the chart

chart = chart + spiritual_image + spiritual_text + moral_image + moral_text + material_image + material_text

chart = chart.configure_axis(

 grid=False

).configure_view(

 strokeWidth=0

)

chart.save('story-chart.html')

How to combine all the elements of the chart

Use the + operator to combine all the elements of the chart

Figure 5.24 shows the resulting chart.

Figure 5.24 The images generated by DALL-E related to the spiritual life

The icons and the text act as the legend. In addition, they are the characters of
our story.

The next step involves adding a textual background to our chart and setting
the context. We can add it as the subtitle of our chart. Let’s use ChatGPT to
generate some ideas. Write the following prompt:

Act as a storyteller. Describe the context of a visual chart showing that the
highest number of fake news on the xx website is related to material life,
followed by moral life and finally by spiritual life. Use max 150 characters.

We have specified three main elements:

The ChatGPT role (we’ll see this in the next chapter more in detail)
The scenario
The maximum number of characters to use.

A possible output produced by ChatGPT is the following: In the intriguing
chart, depicting fake news trends on the XX website, material life claims the
most prominent slice, trailed by moral life, and lastly, spiritual life. We can
use it as it is, we can modify it, or we can even ask for a new subtitle. In our
case, we’ll use this prompt as the context of our chart.

Let’s add this to our chart, by simply setting the subtitle in the chart
properties, as shown in Listing 5.14.

Listing 5.14 Adding a subtitle to the chart

chart = chart.properties(width=500,title=alt.TitleParams(

 subtitle=['The XX website is a popular source of news and information, but it is also a source of fake news.'],

 subtitleFontSize=18,

 fontSize=30,

 offset=40

))

How to add a subtitle to the chart

Use TitleParams() to specify the title and subtitle parameters

Now that we have turned information into knowledge, let’s proceed with the
last step, turning knowledge into wisdom.

5.5.3 From Knowledge into Wisdom

Wisdom involves adding a call to action to the story. In our case, we can
simply say to the audience to pay attention to material and moral news
because they have a high percentage of fake news. Let’s use ChatGPT to
generate an engaging title. Use the following prompt: Transform the
following text into an engaging title: pay attention to material and moral news
because they have a high percentage of fake news. Generate 5 titles. Figure
5.25 shows a possible output generated by ChatGPT.

Figure 5.25 A possible output generated by ChatGPT

The generated titles do not contain a call to action. To add it, let’s improve
the title, by writing the following new prompt for ChatGPT, in the same chat:
Transform the titles into a call to action that invites the audience to pay
attention to news related to material and moral life. Figure 5.26 shows a
possible output produced by ChatGPT.

Figure 5.26 A possible output generated by ChatGPT when asking to add a call to action

For example, select the third title Your Truth Guardian: Take a Stand Against
Fake News in Material and Moral Narratives and add it to the chart, simply
setting the text parameter, as shown in Listing 5.15.

Listing 5.15 Adding a title to the chart

chart = chart.properties(width=500,title=alt.TitleParams(

 text=['Your Truth Guardian:', 'Take a Stand Against Fake News in Material and Moral Narratives'],

 subtitle=['The XX website is a popular source of news and information, but it is also a source of fake news.'],

 subtitleFontSize=18,

 fontSize=30,

 offset=40)

)

How to add a title to the chart

Use the text parameter to add a title to the chart

Figure 5.27 shows the final chart.

Figure 5.27 The final chart

In this chapter, you have learned the main concepts of building a data story
using the DIKW pyramid and how to incorporate Generative AI tools in the
flow. We've had a high-level overview of implementing the DIWK pyramid
as part of our data story, as well as incorporating generative AI tools to
enhance things further. In the next few chapters, we will look at traversing
the DIWK pyramid in greater detail, starting with moving from "data" to
"information".

5.6 Summary

A story is a narrative that engages its audience to communicate a
message and move them to action.
The Data Storytelling Arc identifies five moments in a story:
background, rising interest, main point, audience thinking, and next
steps.
Use the DIKW pyramid to implement practically the Data Storytelling
Arc.
Use Generative AI to assist you when scaling the DIKW pyramid,
ensuring to drive it to produce what you want (text or image).

5.7 References

Dykes, B. (2019). Effective data storytelling: how to drive change with data,
narrative and visuals. John Wiley & Sons.

Wikipedia. Narrative. https://en.wikipedia.org/wiki/Narrative (Last Access
2023/05/08)

[1]
 http://dati-censimentipermanenti.istat.it/Index.aspx?

DataSetCode=DCSS_SENZA_TETTO

6 From Data to Information:
Extracting insights
This chapter covers

Introducing insights
Choosing the characters of your story
Choosing the right chart

In this chapter, first, we will focus on how to extract insights from data. An
insight is something that is significant in data and needs to be communicated
through a story. Next, we'll describe how to choose the characters of a data
story and how to choose the right chart. The story characters and the right
chart help to communicate your insight to an audience. Finally, you’ll learn
how to implement some of the most popular data visualization charts in
Altair. We'll exploit the power of Copilot to speed up the chart construction
process. We'll provide the code to implement decluttered charts, ready to be
added to a data story.

6.1 Introducing Insights

In the book Journey to the Center of the Earth by Jules Verne, Professor Otto
Lidenbrock meticulously extracts information from a medieval Icelandic
manuscript by employing his keen intellect and passion for exploration. With
a deep understanding of languages, history, and geology, he deciphers cryptic
clues, cross-references ancient texts, and applies scientific knowledge to
unravel the secrets concealed within the pages. The manuscript provides
details about the journey's route and the geological landmarks they would
have encountered along the way. In other words, Professor Otto Lidenbrock
turns the data contained in the old manuscript into information.

Similarly to the story told by Jules Verne, to tell any data story you can start
by turning data into information. In the previous chapters, you have learned

that to turn data into information you must extract insights from data. You
have also learned that an insight is something relevant you have found in
your data. In this book, we will not focus on how to extract insights from
data. Tons of books exist on the topic, so you can refer to them for a detailed
description (Guja et al. 2024, De Mauro et al. 2021). Anyway, in the
remainder of this section, we will describe some strategies that can help you
transform your data into information.

In his book Seeing what others don’t (Klein 2017), Gary Klein identifies four
main strategies to help you to identify an insight:

Connections
Coincidences
Curiosity
Contradictions.

Let’s analyze each of the four proposed strategies separately, starting with the
first: Connections. Keep in mind that you can apply multiple strategies at the
same time.

6.1.1 Connection Strategy

This strategy involves identifying the main points of your data and then
connecting them to identify a story. In his book, Klein says that sometimes
you extract an insight when you see a new way to combine different pieces of
data. Other times, you can extract an insight simply by looking at the pieces
of data you already have in a different way.To explain how the connection
strategy works, consider the following scenario. Angelica is a data analyst
working for an e-commerce website. One day, Angelica receives a report on
customer reviews and ratings for each product on the website. Each product
is rated on a scale of 1 to 5, and customers can leave textual reviews. Table
6.1 shows the sales dataset Angelica must analyze.

Table 6.1 The sales dataset analyzed by Angelica

product_id number_of_orders product_rating product_category returns

P1001 30 4.5 Electronics 0

P1002 12 3.2 Home & Kitchen 6

… … … …

P1006 24 4.2 Electronics 0

P1006 22 2.1 Electronics 18

Here is an explanation of the dataset columns:

Product_id: the unique identifiers for each product in the dataset.
Number_of_orders: the quantity of times a particular product has been
ordered.
Product_rating: the rating assigned to each product by customers or
users. Ratings could be on a scale (e.g., 1 to 5 stars) and reflect the
satisfaction or perceived quality of the product.
Product_category: This column categorizes products into different
groups or types.
Returns: the number of times a product was returned by customers. It
provides insight into the rate of customer dissatisfaction or issues with
products that lead to their return.
Number_of_reviews: the count of reviews received for each product.

Angelica starts by plotting the product ratings vs. the number of reviews, and
the product ratings vs. percentage of returns (Figure 6.1). You can find this
example in the GitHub repository of the book under 06/connections.

Figure 6.1 The charts drawn by Angelica

Angelica discovers the following main points:

Some products have high ratings but relatively fewer reviews
Others have lower ratings but a substantial number of reviews

Angelica uses her intuition to connect the points and discovers that the
negative reviews are connected to the high return rates. This may hurt the
overall customer experience and brand reputation.

The previous example demonstrates that once we have identified the dots,
extracting insights is just connecting them. However, the main problem with
this strategy is identifying the non-dots, i.e., the irrelevant messages. An
example of non-dot in the previous scenario is the product category vs. the
product rating..

6.1.2 Coincidence Strategy

A coincidence is an occurrence of events that happen at the same time, by
accident but seem to have some connection. It is the unexpected convergence
of two or more appearing significant situations, even though they may be
disconnected. Coincidences can range from everyday events, like meeting
someone you know in an unexpected place, to extraordinary events that seem
incredibly unlikely. However, while coincidences are intriguing, they do not
necessarily indicate anything beyond chance. They could be rare or unusually
timed events capturing our attention due to their curious alignment.

In his book, Gary Klein says: “Observing a coincidence means that we’ve
spotted some events that seem related to each other even though they don’t
seem to have any obvious causal link.” You should take a skeptical approach
and consider something a coincidence (and thus ignore it) when it is an
isolated incident with few data points to evidence a relationship between two
variables. On the other hand, repeated events or trends should be considered
less likely to be coincidental, and thus worth investigating further.

To identify whether a repeated event is a coincidence or not, you could
approach data with a deliberately skeptical mindset, ignoring isolated events
while looking for longer-term patterns that would suggest a relationship. The
presence of correlated factors could indicate a potential causal relationship.
For instance, by analyzing data over time, you might discover that certain
variables precede the repeated event, hinting at a cause-and-effect dynamic.
Through causality you could distinguish between mere coincidences and
meaningful connections, explaining the mechanisms governing the observed
phenomenon.

Let’s consider the following example to explain how we could apply the
coincidence strategy. Imagine that Angelica works for a store selling
accessories for electronic devices, such as headphones, USB cables,
smartphone covers, and so on. Also, imagine that Angelicawants to monitor
your orders. You have the dataset described in Table 6.2.

Table 6.2 The sales dataset of the electronic store

Date Headphones Usb-cables Smartphone-covers

2023-01-01 14 34 32

2023-01-02 17 54 45

… … … …

2023-01-30 16 34 34

2023-01-31 20 23 5

For simplicity, the dataset contains the number of orders for three products:

headphones, USB cables, and smartphone covers related to the period 1-31
January 2023. Figure 6.2 shows a visual representation of the dataset. You
can find the complete code in the GitHub repository of the book, under
06/coincidences.

Figure 6.2 The electronic store orders, with a focus on headphones

The figure highlights the headphones orders. It’s worth noting that headphone
orders peak every Friday. This could be a coincidence, but the repetitiveness
of the event should be considered. For example, Angelicamight find that
every Friday, there is an exciting radio show that causes people to rush to buy
new headphones. Or she might find out that there's a law in your town on
Fridays that doesn't allow the speakers to be turned on. In any case, this
repetitiveness of events requires further analysis.

Looking at the x-axis of Figure 6.2, you can notice a strange labeling
strategy: first the year, 2023, then the week days, and finally the month (Jan
29). This is the default Altair labeling for dates. You can read more details on
how to format dates in the Altair official documentation.

Coincidence insights differ from connection insights in the way we discover
them. In connection insights, we focus on important details, while in
coincidence insights, we focus on repeated events. In addition, connections
are helpful when you have aggregated metrics, while coincidence is best
applied to things like raw sales numbers over time.

6.1.3 Curiosity

In 1928, Sir Alexander Fleming, a Scottish bacteriologist, discovered
penicillin while studying staphylococci bacteria. One day, while he was
meticulously examining his petri dishes filled with these microorganisms, he
noticed something peculiar. A petri dish left open by mistake had become
contaminated with mold. Intrigued by this unexpected occurrence, Fleming
examined the petri dish closely. To his astonishment, he observed that the
bacteria surrounding the mold were gradually deteriorating. Something
unleashed by the mold was defeating them. Driven by curiosity, Fleming
embarked on a series of experiments to explore this phenomenon. He
carefully isolated the mold and extracted the substance it produced, which he
named penicillin. Curiosity prompted Fleming to investigate the problem
further, leading him to the discovery of penicillin,, the world's first antibiotic,
saving countless lives and transforming medicine forever.

Curiosity is a driving force that sparks wonder, propels discovery, and fuels
innovation, pushing us to question, seek answers, and expand the boundaries
of knowledge. Curiosity is one strategy we can apply to extract insights.
Curiosity in data can be triggered by a wide range of phenomena, including
outliers, missing data, data gaps across time or space, sudden shifts or trends,
unexpected patterns, and much more. When we note something curious in our
data, we dig deeper, ask questions, and explore the underlying factors
contributing to the observed patterns. This curiosity drives us to analyze the
data from different angles, uncover hidden insights, and ultimately gain a
deeper understanding of the phenomena.

Let’s consider the following example to explain how we could apply the
curiosity strategy. Consider again the example of the electronic devices of the
previous section. Imagine now, that you have a different trendline for March,
as shown in Figure 6.3.

Figure 6.3 The electronic store orders in March, with a focus on headphones

The figure shows a peak in sales on March 25th. This event may raise some
curiosity, which moves us to further investigation. Curiosity could help us
during the brainstorming process. For example, it could lead us to search for
various factors that could have contributed to this spike, such as marketing
efforts, special promotions, or external events. As we proceed in the research,
curiosity may spur us to add other factors, such as customer demographics
during this period. This investigation will not only satisfy our curiosity but
also help us to extract insights.

6.1.4 Contradictions

Contradiction is a situation when two or more beliefs or pieces of evidence
conflict, creating an inconsistency. According to Gary Klein, to extract
insight from contradictions, you must approach the data with a skeptical
mindset. Unlike a coincidence-based approach, where we look for repeating
events, in the case of a contradiction-based strategy we look for seemingly
conflicting events. An insight extracted from contradictions can disrupt
conventional thinking, challenge established notions, and provide alternative
perspectives that foster creative problem-solving. By embracing the inherent
tension within contradictions, you can gain valuable insights, leading to
breakthroughs, innovation, and growth.

Consider the chart in Figure 6.4, showing product sales and prices over time.
You can find the code of the produced chart in the GitHub repository of the
book under 06/contradictions.

Figure 6.4 A chart showing product sales and price

The chart shows that a price increase corresponds to an increase in sales. This
event is quite contradictory because the general assumption is that a price
increase should correspond to a decrease in sales. However, to understand
this phenomenon, you could wear the skepticism lens and analyze this
contradictory phenomenon more deeply. One possible motivation you could
discover is the perceived value. When prices increase, customers may
perceive your product as more exclusive, high-quality, or desirable. This
perception of increased value can make customers willing to pay more,
leading to increased sales. An alternative explanation could be the sense of
urgency among consumers who may fear missing out on the product or
believe that the higher price signifies scarcity or limited availability. Another
reason may be inflation. In the context of inflation, when prices rise people
may buy more for fear that the prices may rise even more, making the
product unattainable.

All the proposed strategies, connections, coincidences, curiosity, and
contradictions define some possible techniques to extract meaning.
Regardless of which approach you take, always rely on your experience and a
deep exploratory analysis phase to extract meaning from data.

Now that you have learned how to extract insight from data let’s move on to
how to choose the characters of your story.

6.2 Choosing the Characters of Your Story

In the movie Indiana Jones and the Raiders of the Lost Ark, Indiana Jones, a
brilliant archaeologist embarks on a thrilling adventure pursuing an ancient
artifact, the Ark of the Covenant. Set in the 1930s, Indiana races against time
to find the sacred relic before the Nazis seize it for their wicked plans. This
movie and the others of the Indiana Jones saga are examples of engaging
stories where the hero wants something.

Every story starts with a hero wanting something. Without any hero and
something to achieve, there is no story. The same should be in your data
story. It might seem that the term hero is too much to define the subject of
our story. However, in our case we really want to emphasize the similarity
between a data story and a real story. In any story there is always a hero who
corresponds to the main character. Our idea is to see the subject to be
represented just like the hero of our story, even if it is a simple product.
Using this point of view, it will also be easier for us to construct a story.

Every data story should have a hero: a product, a customer, or whatever.
The hero must be wanting something: a sales increase, an increased
satisfaction, or anything else.

Keep in mind that the hero of the story is something other than you. The hero
is the main subject of your data story. It depends on the insight you have
extracted. Examples of heroes are people, things, and places.

Once you have identified the hero of your story, the next step is asking the
audience the following question: Will the hero get what they want? In his
book Building a StoryBrand: Clarify Your Message So Customers Will
Listen, Donald Milligan says that before knowing what the hero wants, the
audience has little interest in her fate. This is why screenwriters have to
define the character’s ambition within the first nine or so minutes of a film
getting started.

In addition to having a hero, your story should have at least two other
characters: the guide and the adversary. The guide, often a wise and
experienced mentor, helps the hero achieve his goal. The adversary can be:

A competitor who seeks to hinder or oppose the hero's progress
A comparison character, which allows you to measure the hero's

progress
The same hero at a different time (e.g. comparing the hero's condition
now to a year ago) or in a different space (e.g. comparing the hero here
to another location).

Let's review all the examples we have seen in the previous chapters and
identify the hero of each story. For convenience, Figure 6.4 summarizes the
examples analyzed.

Challenge

For each example described in Figure 6.4, search for the hero, the type of
hero, what they want, and the adversary.

Figure 6.5 A summary of all the examples described in the previous chapters

Table 6.3 shows the hero and the adversary for each case study shown in
Figure 6.5. For each case study, the table also shows the type of hero and
what the hero wants. In the example of Chapter 2, Yes, you can build a new
swimming pool! There is the implicit assumption that an increase in tourist
arrivals corresponds to the possibility of building a new swimming pool. This
is, obviously, a simplistic assumption, but we simplified the example just to
get started and show how the DIKW pyramid works.

Table 6.3 The hero and adversary of the case studies analyzed in the previous chapters

Case Study Hero Type of hero What the
hero wants

Adversary

Chapter 1
Increase the
advertising
campaign on
dog-related
websites

Dog-related
websites

Thing Increase the
number of
views

Cat-related
websites

Chapter 2
Yes, you can
build a new
swimming
pool!

The flow of
tourist
arrivals to
Portugal

Process An increase
in tourist
arrivals

The flow of
tourist
arrivals to
Germany

Chapter 3
Population in
North
America over
the last 50
years

Population in
North
America

People Explain the
trend

The
population in
the rest of the
world

Chapter 5 -
Example 1
Together,
let’s make a
difference:
support our
project to
help the
homeless

Number of
homeless
people in
Lazio,
Piemonte,
Liguria, and
Sardegna

People Reduce this
number

Number of
homeless
people in the
other Italian
regions

Chapter 5 -
Example 2
Your truth
guardian:

News about
the material
and moral
life

Thing Establish
whether they
are genuine
or fake

News about
spiritual life

take a stand
against fake
news in
material and
moral
narratives

In all the examples shown in Table 6.3, the adversary is always a character
different from the hero, although it is of the same type as the hero. In some
cases, the adversary can be the same hero in a previous condition, such as a
product sales in the past or into another geographical position.

Now that you have learned how to choose the characters of your story, let’s
move on to how to choose the right chart for your data story.

6.3 Choosing the Right Chart

The best chart depends on the insights you want to represent, the message
you want to convey, and the audience you are targeting. Figure 6.6 shows
how insight, message and audience relate each other in a chart. If you only
consider the insight, the effect of your chart is to inform.

Figure 6.6 The relationship among insight, audience and message.

When telling a story, you have three levels:

Inform - in this case, you only describe the insight you have found in
your data. No contact is made with the audience.
Communicate - you involve the audience, by providing them details
about your data, but the audience is not motivated to do something after

listening to your story.
Inspire - based on your data, you propose a message, which inspires the
audience to do something. The audience is plenty involved and will
retell your story in other contexts.

In other words, if you only consider the insight, the effect of your chart is to
inform. If you calibrate your insight to your audience, you can communicate
it effectively. Finally, if you add a message to your chart, you can inspire
your audience. We will see how to represent insights in the remainder of this
chapter, how to calibrate the chart to your targeted audience in Chapter 7,
From Information to Knowledge: Building Context, and how to add a
message to a chart in Chapter 8, From Knowledge to Wisdom: Adding Next
Steps.

Let’s focus on how to represent insights in a chart. The choice of a chart is
driven by your specific goals. Different types of charts serve different
purposes based on the nature of the data and the message you want to convey.
Table 6.4 describes which chart to use based on the information you want to
convey. Consider that the list of described charts is not exhaustive, and you
can use your imagination and expertise to build new charts. In addition, you
can follow the Dr. Abela’s chart chooser[1] to select the best chart for you.

Table 6.4 Suggested charts based on the information to convey

Information to
convey

Description Suggested Charts

A single piece of
information

A single number representing
critical information

- Big Number (BAN)
- Donut Chart
- 100% Stacked Bar
Chart
- Waffle Chart

Parts of a whole The components contributing
to the entirety of a system,
object, or concept. The sum
of all components must be
100%

- Pie Chart
- 100% Stacked Bar
Chart
- Multiple Waffle Chart
- Donut Chart

Comparison
among entities

The similarities and
differences between multiple
entities to establish
relationships and distinctions

- Bar Chart
- Column Chart
- Slope Graph
- Dumbbell Chart
- Table

Trend The behavior of an entity over
the time

- Line Chart
- Small Multiple Line
Chart
- Stacked Area Chart
- Stacked Column Chart

Outcomes of a
survey or a
questionnaire

Answers to questions
contained in a survey or a
questionnaire

- Stacked Bar Chart
- Column Chart
- Multiple Bar Charts

Distribution Spread of values across a
dataset, indicating how
frequently different values
occur

- Histogram
- Pyramid
- Box Plot

Relationship Association, connection, or
correlation between different
entities to identify patterns,
trends, and dependencies

- Scatterplot
- Bubble Chart
- Heatmap

Spatial
information

The behavior of an entity over
the space

- Choropleth Map
- Dot Density Map
- Proportional Symbol
Map
- Heatmap

Flow Represent a process - Sankey*
- Chord*

* not supported by
Altair 5.0.1

As you can see from the table, you can use the same chart for different

purposes. In addition, you can use many charts for the same purpose. The
choice of a specific chart depends on the audience, as we will see in Chapter
7, From Information to Knowledge: Building Context. In the remainder of
this section, we’ll describe how to implement some of the most important
charts in Altair and Copilot, grouped by chart family. We’ll focus on the
following chart families:

Cooking charts
Bar charts
Line charts
Geographical maps
Dot charts

Let’s start with the first family, the cooking chart family. You can find the
code associated with each chart in the GitHub repository of the book, under
section 06.

6.3.1 Cooking Charts Family

The cooking charts family includes the pie chart and the donut chart. Use this
category of charts only to represent numerical values. Lately, I have seen on
social media and the web in general an unfounded opposition to these types
of charts. The main argument given is that these graphs are too generic and
do not convey the results correctly. I was a victim of it, and for a while, I
avoided this type of chart as well. Then, one fine day, on LinkedIn, I read a
post[2] by Brent Dykes re-evaluating cooking charts and especially pie
charts. In his post, Dykes pointed out that pie charts aren't great at
representing the precise dimensions of the slices, but they do represent the
parts of the whole. Dykes explicitly says: “I know everyone likes rules.
"Never use this chart type..." "Always use this chart type for...", etc.
However, it's not always so straightforward in data storytelling. It isn't just
about how to display a certain type of data but how to best communicate a
specific point to your audience.”

Following Dykes’ suggestions, you can use cooking charts in three main
cases:

You must represent the part of a whole. The total sum of the slices must
be 100%
There are at most 2-3 slices to represent (provided that they are not very
similar in size, otherwise it is very difficult to differentiate which one is
bigger than the others)
You don’t want to transmit details about your data but only a general
overview. This could be the case for a general audience, not including
technical experts.

Let's investigate each type of chart separately, starting with pie charts.

Pie Chart

A pie chart is a type of circular data visualization that displays data by
dividing a circle into slices, each representing a proportion or percentage of a
whole.

Suppose we want to represent the number 70% through a pie chart. First,
create a Pandas DataFrame containing your number and its complementary
value (30%), as shown in Listing 6.1.

Listing 6.1 The DataFrame with the number

import pandas as pd

import altair as alt

data = {

 'percentage': [0.7,0.3],

 'label' : ['70%','30%'], #A

 'color' : ['#81c01e','lightgray'] #B

}

df = pd.DataFrame(data)

Creating a DataFrame with the number

Create a Pandas DataFrame with the number to represent and its
complementary value.

Next, ask GitHub Copilot to draw the chart for you. A pie chart does not have
the classical X and Y channels to encode data. Instead, the pie chart uses the
Theta and Color channels. The Theta channel specifies the angular position
of data points in a polar plot. The Color channel refers to encoding data using
different colors.

Listing 6.2 shows the starting prompt for GitHub Copilot.

Listing 6.2 How to generate a basic pie chart in Copilot

Draw a pie chart in Altair with the following options:

- Use the `percentage` column for theta channel

- Use the `label` column for tooltip

- Use the `color` column for color

Save chart to `chart` variable

Save chart as 'pie-chart.html'

Creating a basic pie chart in Copilot

The basic instructions to draw a pie chart in Copilot.

As a result, Copilot will generate the code, shown in Listing 6.3.

Listing 6.3 The code to generate a basic pie chart

chart = alt.Chart(df).mark_arc(

).encode(

 theta=alt.Theta('percentage', stack=True), #A

 color=alt.Color('color', scale=None),

 tooltip='label'

).properties(

 width=300,

 height=300

)

chart.save('pie-chart.html')

Creating a basic pie chart

The code to generate a basic pie chart in Altair. Use the mark_arc() method
to draw a pie chart. We have added the stack=True property manually for the

next steps. This property means that the individual slices within the chart will
be stacked on each other instead of being displayed side by side.

Figure 6.7 shows the resulting chart.

Figure 6.7 A basic pie chart in Altair

We can improve the chart by adding the label value next to each slice. Ask
Copilot to draw a text containing the labels, as shown in Listing 6.4.

Listing 6.4 How to labels to the chart in Copilot

Add text near to each slice of the pie chart

- Use the `label` column for text channel

- Use the `color` column for color

Combine the pie chart and the text chart

- Use `+` operator to combine the charts

- Save the combined chart to `chart` variable

Creating labels using Copilot

The prompt for Copilot to generate labels next to the pie chart.

As a result, Copilot will generate a partial code that does not show the desired
output. Modify it as described in Listing 6.5.

Listing 6.5 The code to generate labels

text = chart.mark_text(#A

 size = 20, #B

 radius=180 #C

).encode(

 text='label',

 color=alt.Color('color', scale=None)

).properties(

 width=300,

 height=300

)

chart = (chart + text

).configure_view(

 strokeWidth=0

) #D

Creating labels for the pie chart

The code to generate the labels for the basic pie chart in Altair. Use the
mark_text() method to write the text.

Figure 6.8 shows the resulting chart.

Figure 6.8 A pie chart in Altair with labels

Now that you have learned how to draw a pie chart in Altair e Copilot, let’s
move to the next chart of the pie chart family, the donut chart.

Donut Chart

A donut chart is a type of circular data visualization that displays data in a
ring shape. It is similar to the pie chart but with a hole in the center, creating

a visual representation of proportions or percentages of different categories.

To convert a pie chart into a donut chart, simply add the innerRadius and
outerRadius properties to the mark_arc() method, as described in Listing
6.6.

Listing 6.6 The code to generate a donut chart

chart = alt.Chart(df).mark_arc(

 innerRadius=100,

 outerRadius=150

).encode(

 theta='percentage',

 color=alt.Color('color', scale=None),

 tooltip='label'

).properties(

 width=300,

 height=300

)

Creating a donut chart

The code to generate a donut chart in Altair. Use the innerRadius and
outerRadius to transform a pie chart into a donut chart.

If your donut chart compares two values and you want to focus on just one
value, add this value at the center of the donut, as shown in Figure 6.9.

Figure 6.9 A donut chart in Altair with a label in the center

Ask Copilot to generate the label within the donut, as shown in Listing 6.7.

Listing 6.7 The prompt to generate the label within the donut chart

Add text to the center of the donut chart

- Use df.head(1) to get the first row of the dataframe

- Use the `label` column for text channel

- Use the `color` column for color

Creating the label using Copilot

The sequence of instructions for Copilot to generate the label within the
donut chart.

Listing 6.8 shows the generated code.

Listing 6.8 The code generated by Copilot

text = alt.Chart(df.head(1)).mark_text(

 align='center',

 baseline='middle',

 fontSize=60,

 fontWeight='bold'

).encode(

 text='label',

 color=alt.Color('color', scale=None)

).properties(

 width=300,

 height=300

)

Creating the label for the donut chart

Change the fontSize property to increase or decrease the label size.

From the data storytelling perspective, you can concatenate multiple donut
charts, as illustrated in Figure 6.10, to show many percentage values, for
example, related to the questionnaire output related to which meals the
customers of a restaurant like. The total sum is greater than 100% because a
customer may like more than one meal.

Figure 6.10 A possible usage of multiple donut charts to show the output of a questionnaire

In this particular scenario, a cumulative total of 100% might not be essential.
However, it's worth noting that other business perspectives could potentially
warrant such a requirement. Now that you have learned how to draw the
cooking charts in Altair and Copilot, let’s move on to the next family of
charts, the bar charts.

6.3.2 Bar Charts Family

The family of bar charts includes various types of charts where each data
series is visualized as rectangular bars. These bars can be oriented either
vertically, known as column charts, or horizontally, known as bar charts. In
addition to the classical bar and column charts, this family also includes
stacked column/bar charts, pyramid charts, and histograms. Use these charts
to represent categorical data or compare different categories by displaying
their corresponding values along a horizontal or vertical axis.

In a similar way to the backlash against pie charts, lately, on the web and in
social media, I have noticed an excessive abuse of bar charts. While these
charts have the advantages of simplicity and effectiveness in conveying a
message, using them repeatedly with the same audience could bore the
audience, and is likely a reason for the consternation directed at these charts.

You have already learned how to draw a bar chart and a column chart in the
previous chapters. In this section, you’ll learn how to improve their
readability thanks to Copilot. Let’s start with the bar chart.

Bar Chart

A bar chart is a type of chart that uses rectangular bars to represent data
values, where the length of each bar corresponds to the quantity it represents.
Use this chart to represent data across different categories.

Consider the dataset shown in Table 6.5, describing the number of likes for
each type of meal.

Table 6.5 The dataset of the example

Meal Type Number of Likes

Pizza 120

Burger 95

Pasta 80

Sushi 60

Salad 50

Steak 70

Tacos 90

Ice Cream 110

Curry 40

Sandwich 75

Listing 6.9 shows the code to generate a simple bar chart representing the
previous dataset in Altair, and Figure 6.11 shows the produced chart.

Listing 6.9 The code to create a bar chart

import pandas as pd

import altair as alt

df = pd.read_csv('data/meals.csv')

chart = alt.Chart(df).mark_bar(

 color='#81c01e'

).encode(

 y=alt.Y('Meal Type', sort='-x'),

 x='Number of Likes'

).properties(

 width=300,

 height=300

)

chart.save('bar-chart.html')

Creating a bar chart in Altair

Use the color property to set the bar color and the sort property of the Y
channel to sort categories based on descending values of X.

Figure 6.11 A bar chart

The chart needs to be decluttered so we should remove unnecessary elements,
such as the y-axis title (Meal Type), the grids, and so on. For example, we
can add the value of each bar at its end and remove the x-axis labels entirely.
Use Copilot to help you build the chart. As you use Copilot, you will find that
it will suggest more and more things that fit your coding style. If you start
writing something, Copilot will suggest the next steps based on what you
have written previously. This means that you can use Copilot not only with
pre-defined prompts but also to suggest the next steps in your prompts.

To add the value of each bar at its end, start writing a prompt for Copilot,
press enter, and you’ll see Copilot suggesting how to implement it, as shown
in Figure 6.12.

Figure 6.12 If you start writing, Copilot will suggest the next steps

Simply press enter, and Copilot will continue proposing how to add the text.
Listing 6.10 shows the complete prompt proposed by Copilot.

Listing 6.10 The prompt generated by Copilot

Add text to the end of each bar

- Use the `Number of Likes` column for text channel

- Use the `Meal Type` column for y channel and sort by the number of likes

- Set the color of the text to '#81c01'

- Set the text alignment to 'left'

- Set the text baseline to 'middle'

- Set font size to 14

Using Copilot to generate the next prompts

Use Copilot to generate the prompt to build your chart, and then, press enter
to let Copilot generate the code

After the final prompt, press enter and Copilot will generate the code, as
shown in Listing 6.11.

Listing 6.11 The code to generate labels

text = chart.mark_text(

 align='left',

 baseline='middle',

 dx=3,

 color='#81c01',

 fontSize=14

).encode(

 text='Number of Likes',

 y=alt.Y('Meal Type', sort='-x', title=None)

)

Adding labels at the end of each bar

Apply the mark_text() method to the chart to generate the labels. You can
use the columns already set for the chart variable.

Now, add five vertical lines to the chart to ease the audience's comparison
process. Ask Copilot to generate the code for you. Start writing the following
prompt: # Add five vertical lines to the chart. Copilot will generate the
prompt shown in Listing 6.12.

Listing 6.12 The prompt to generate vertical lines

Add five vertical lines to the chart

- Use alt.Chart(pd.DataFrame({'x': [20, 40, 60, 80, 100]})) to create a dataframe with six rows

- Use alt.Chart().mark_rule() to draw vertical lines

- Set the color of the lines to 'white'

- Set the line width to 1

- Set opacity to 0.5

How to generate the prompt to add vertical lines to a bar chart

Copilot generates the prompt to generate the code.

Press Enter, and Copilot will generate the code shown in Listing 6.13.

Listing 6.13 The code to generate vertical lines

lines = alt.Chart(pd.DataFrame({'x': [20, 40, 60, 80, 100]})).mark_rule(

 color='white',

 strokeWidth=1,

 opacity=0.5

).encode(

 x='x:Q'

)

Adding vertical lines to a bar chart

Use the mark_rule() mark to add vertical lines to the chart.

Finally, remove the x-axis from the original chart in Listing 6.9
(x=alt.X('Number of Likes',axis=None)), remove the title from the y-axis
(y=alt.Y('Meal Type', sort='-x', title=None)), and combine the three
charts, as shown in Listing 6.14.

Listing 6.14 Combining the charts to generate the final chart

chart = (chart + text + lines

).configure_view(

 strokeWidth=0

).configure_axis(

 grid=False

)

chart.save('bar-chart.html')

How to combine the charts to generate the final chart

Use the + operator

Figure 6.13 shows the resulting chart.

Figure 6.13 A decluttered bar chart

Now that you have learned how to draw a decluttered bar chart in Atair e
Copilot, let’s move on to the following chart, the column chart.

Column Chart

A column chart is similar to a bar chart, but it inverts axes: it shows
categories on the x-axis and values on the y-axis. Since the x-axis is also used
to represent temporal data, you can use a column chart to describe periods as
categories. To draw a column chart in Altair, simply invert the X and Y
channels in the code in Listing 6.9, as shown in Listing 6.15. Also, increase
the chart width to 600 to leave more space for each column.

Listing 6.15 The code to create a column chart

import pandas as pd

import altair as alt

chart = alt.Chart(df).mark_bar(

 color='#81c01e'

).encode(

 x=alt.X('Meal Type', sort='-y'),

 y='Number of Likes'

).properties(

 width=600,

 height=300

)

chart.save('column-chart.html')

Creating a column chart in Altair

Invert the X and Y channels. Also, change the sort property value.

Figure 6.14 represents the generated column chart.

Figure 6.14 A column chart

The x-axis of the column chart shows rotated labels. Also, the x-axis title is
unnecessary. Let’s proceed with decluttering. Start by formatting the code in
the Visual Studio Code editor, then write the comment # Rotate, as shown in
Figure 6.15. Copilot will suggest to you how to complete the sentence. Press
the tab, change 45 degrees to 0 degrees, and press Enter, and Copilot will add
the desired code in the row below your comment
(axis=alt.Axis(labelAngle=0),).

Figure 6.15 How to add a comment within the code and Copilot will suggest the following steps

Next, add a comma after labelAngle=0 and start writing the word title.
Copilot will suggest you =None. Press the Tab to confirm. This Copilot
property is fantastic! You can add a comment at any point of your code and
ask Copilot to generate new code for you! Since Copilot is a generative AI
tool, it may happen that, in your case, the suggested prompts change.
Anyway, you can easily adapt the code suggested by Copilot to your needs.

Now, let’s declutter the y-axis. Remove the y-axis by changing the

y='Number of Likes' channel to y=alt.Y('Number of
Likes',axis=alt.Axis(grid=False)). Then, add the number of likes at the
top of each bar. Let’s use Copilot to do the job for us. Start writing the
following text: # Add a text mark to the chart with the following
options:. Copilot will suggest the next steps. Confirm them by pressing
Tab and then Enter. At some point, Copilot stops suggesting. Press Enter, and
Copilot will generate the code for you. Test the generated code. If it does not
satisfy you, change it manually, or use Copilot again. In our case, we had to
slightly change the Copilot comments to make it generate the desired code.
Listing 6.16 shows the Copilot instructions.

Listing 6.16 The prompts generated by Copilot and slightly modified

Add a text mark to the chart with the following options:

- Use the `Number of Likes` column for y channel

- Use the `Meal Type` column for x channel and sort by the number of likes

- Set the color of the text to '#81c01e'

- Set the text to the `Number of Likes` column

- Set the font size to 14

- Set the font weight to 600

- Set the text baseline to 'center'

- Set the text align to 'middle'

- Set the y offset to 10

The prompt to add the label value at the top of each column

Ask Copilot to generate the code to draw labels at the top of each column

Listing 6.17 describes the produced code.

Listing 6.17 The code generated by Copilot to add labels

text = alt.Chart(df).mark_text(

 color='#81c01e',

 fontSize=14,

 fontWeight=600,

 baseline='middle',

 align='center',

 dy=-10

).encode(

 x=alt.X('Meal Type',

 sort='-y',

 axis=alt.Axis(labelAngle=0,title=None),

),

 y='Number of Likes',

 text='Number of Likes'

)

How to add label value to a column chart

Use the mark_text() method to add a label at the top of each column. Set the
text properties, including color, font size, weight, etc.

Finally, combine the two charts, as shown in Listing 6.18.

Listing 6.18 Combining the charts to build a final chart

Combine the bar chart and text mark into a single chart

chart = chart + text

chart = chart.configure_view(

 strokeWidth=0

)

chart.save('column-chart.html')

Creating the final chart in Altair

Write the prompt asking Copilot to generate the code to merge charts.

Figure 6.16 shows the final chart.

Figure 6.16 A decluttered column chart

Now that you have learned how to declutter a column chart in Altair and
Copilot, let’s move on to the following chart, the column chart with multiple
series.

A Column Chart with Multiple Series

So far, we have implemented a column chart (and also a bar chart) with just
one series of data. However, in many cases, you want to compare two or
more series of data. In this case, you must add the column channel to your
chart.

Consider the dataset shown in Table 6.6, describing the number of likes for
each type of meal for 2022 and 2023.

Table 6.6 A sample dataset with two series of data, one for 2022 and the other for 2023

Meal Type Number or likes in 2022 Number of likes in 2023

Pizza 120 145

Burger 95 88

Pasta 80 97

Sushi 60 67

Salad 50 52

Steak 70 66

Tacos 90 78

Ice Cream 110 134

Curry 40 43

Sandwich 75 59

Listing 6.19 describes the code to build a multiple-series column chart.

Listing 6.19 How to create a multiple-series column chart

import pandas as pd

import altair as alt

Load data data/meals.csv as a Pandas dataframe

df = pd.read_csv('data/meals-by-year.csv')

df = df.melt(id_vars=['Meal Type'],var_name='Year',value_name='Number of Likes')

chart = alt.Chart(df).mark_bar(

).encode(

 x=alt.X('Year',

 # Rotate the labels by 0 degrees

 axis=alt.Axis(title=None, labels=False)

),

 y=alt.Y('Number of Likes',axis=alt.Axis(grid=False)),

 column=alt.Column('Meal Type',

 header=alt.Header(

 labelOrient='bottom',

 title=None

)),

 color=alt.Color('Year',scale=alt.Scale(range=['lightgray','#81c01e']))

).properties(

 width=50,

 height=300

).configure_view(

 strokeWidth=0

)

chart.save('multiple-column-chart.html')

Creating a multiple-series column chart in Altair

Use the column channel to add multiple series to your chart. By default, the
column chart adds the column labels to the top of the chart. To move them to
the bottom, set the header attribute in the alt.Column() channel.

Figure 6.17 shows the resulting chart.

Figure 6.17 A column chart with multiple series

Now that you have learned how to implement a column chart with multiple
series, let’s move on to the following chart, the pyramid chart.

Pyramid Chart

A pyramid chart consists of two back-to-back bar charts, with the two sides
representing contrasting categories, such as males and females. The
horizontal axis represents quantities, and the vertical axis shows categories to
compare, typically periods.

Consider the dataset shown in Table 6.7, describing the number of orders of
Pizza and Spaghetti from January to December 2023.

Table 6.7 A sample dataset with the number of orders of Pizza and Spaghetti from January to
December

Month Pizza Spaghetti

January 200 18

February 220 19

March 240 10

April 230 20

May 250 20

June 280 40

July 300 60

August 320 80

September 310 70

October 290 50

November 270 30

December 240 20

A pyramid chart is composed of three main elements: the left part, the middle
part and the right part. The left and right parts are bar charts, with the left part
flipped. The middle part, instead, contains the labels of both the bar charts.
We will not write prompts for Copilot to generate code. Instead, we will use
the suggestions it will propose. We will show directly the produced code,
without providing the screenshots of the Copilot suggestions. We suggest you
try writing the code to experiment with the Copilot power.

Listing 6.20 describes the code to build the left part of the pyramid chart,
focussing on pizza.

Listing 6.20 How to create the left part of the pyramid chart

import pandas as pd

import altair as alt

Load data data/orders.csv as a Pandas dataframe

df = pd.read_csv('data/orders.csv')

months = [

 "January", "February", "March", "April",

 "May", "June", "July", "August",

 "September", "October", "November", "December"

]

left_base = alt.Chart(df).encode(

 y=alt.Y('Month:N', axis=None, sort=months),

 x=alt.X('Pizza:Q', title='',sort=alt.SortOrder('descending'), axis=None),

)

left = left_base.mark_bar(

 size=20,

 color='#c01e95'

).properties(

 title='Pizza',

 width=300,

 height=300

)

left_text = left_base.encode(

 text=alt.Text('Pizza:N'),

).mark_text(

 color='#c01e95',

 baseline='middle',

 align='right',

 dx=-10,

)

Creating the left part of the pyramid chart

Build a base chart (left_chart) and then, use it to build the bar chart and the
labels. Set the sort attribute in the x channel to descending to anchor bars to
the right. Also, set the align attribute to right in the mark_text() method.

Now, let’s build the middle part of the pyramid chart. This part contains the
labels. Listing 6.21 shows the code.

Listing 6.21 How to create the middle part of the pyramid chart

middle = alt.Chart(df

).encode(

 y=alt.Y('Month:N', axis=None, sort=months),

 text=alt.Text('Month:N'),

).mark_text(

 size=20,

).properties(

 width=100,

 height=300,

 title='Number of orders in 2023'

)

Creating the middle part of the pyramid chart in Altair

Use mark_text() to set the labels. Also, set the y and text channels.

Finally, let’s draw the right part of the pyramid chart. Use the same strategy
as the left chart, without sorting the x channel. Also, combine all the charts to
build the final chart. Listing 6.22 shows the code.

Listing 6.22 How to create the right part of the pyramid chart

right_base = alt.Chart(df

).encode(

 y=alt.Y('Month:N', axis=None,sort=months),

 x=alt.X('Spaghetti:Q', title='',axis=None),

)

right = right_base.mark_bar(

 size=20,

 color='#81c01e'

).properties(

 title='Spaghetti',

 width=300,

 height=300

)

right_text = right_base.encode(

 text=alt.Text('Spaghetti:Q')

).mark_text(

 baseline='middle',

 align='left',

 dx=10,

 color='#81c01e'

)

chart = left + left_text | middle | right + right_text

chart = chart.configure_view(

 strokeWidth=0

)

save chart as 'pyramid-chart.html'

chart.save('pyramid-chart.html')

Creating the right part of the pyramid chart in Altair

Use the + operator to combine each single part and the | operator to combine
the parts together.

Figure 6.18 shows the resulting chart.

Figure 6.18 A pyramid chart

Now that you have learned how to build a pyramid chart, let’s move on to the
following chart, the stacked column chart.

Stacked Column Chart

Stacked column charts are similar to traditional column charts, but they show
the contribution of each data series to the total value. Use stacked column
charts to show how different factors contribute to a total over time or to
compare the relative importance of different data series.

Let’s use Copilot to draw a stacked column chart. Surely you've noticed that
as you write code, Copilot suggests more and more code that is close to your
programming style. Therefore, we can try a new strategy of using Copilot,
based on writing general instructions. This strategy assumes that we've

already written a lot of code using Copilot. Surely if we had used generic
instructions at the beginning of using Copilot, we would surely have gotten
disappointing results. Listing 6.23 shows the general instructions for Copilot.

Listing 6.23 The generic instructions fo Copilot

Consider the dataset in the file data/orders.csv.

The dataset contains information about orders placed by customers in a restaurant.

Each row in the dataset represents the number of orders by month.

The dataset contains the following columns:

- `Month`: The month of the year

- `Pizza`: The number of pizza orders

- `Spaghetti`: The number of spaghetti orders

Build a complete stacked column chart in Altair using the dataset.

Writing generic instructions to build a stacked column chart

First specify the dataset structure and, then, use Copilot to build a stacked
column chart using the described dataset.

Listing 6.24 shows the code produced by Copilot. It is quite similar to the
codes generated in the previous examples.

Listing 6.24 How to create a stacked column chart

import pandas as pd

import altair as alt

Load data data/orders.csv as a Pandas dataframe

df = pd.read_csv('data/orders.csv')

df = df.melt(id_vars=['Month'],var_name='Meal Type',value_name='Number of Orders')

Build a list of months #A

months = ['January','February','March','April','May','June','July','August','September','October','November','December']

chart = alt.Chart(df).mark_bar(

).encode(

 x=alt.X('Month',

 axis=alt.Axis(title=None,

 labelAngle=0,

),

 sort=months

),

 y=alt.Y('Number of Orders'),

 color=alt.Color('Meal Type',scale=alt.Scale(range=['#81c01e','gray']))

).properties(

 width=600,

 height=300

).configure_view(

 strokeWidth=0

).configure_axis(

 grid=False

)

chart.save('stacked-column-chart.html')

Creating a stacked column chart in Altair

Before drawing the chart, transform the DataFrame using the melt() method.

Figure 6.19 shows the resulting chart.

Figure 6.19 A stacked column chart

Now that you have learned how to build a stacked column chart in Altair and
Copilot, let’s see how to transform a stacked column chart into a 100%
stacked column chart.

100% Stacked Column Chart

A 100% stacked column chart is a stacked column chart with each column

stacked to a height of 100% to show the proportional composition of each
category. It is used to compare the contribution of different categories within
each column across multiple data series. To transform a stacked column chart
into a 100% stacked column chart, set normalize=True in the y channel of
Listing 6.4: y=alt.Y('Number of Orders',stack='normalize'). Figure
6.20 shows the resulting chart.

Figure 6.20 A 100% stacked column chart

Now that we have built a 100% stacked column chart, let’s move to the last
chart of the bar chart family, histograms.

Histograms

A histogram represents the distribution of numerical data, with continuous
data divided into intervals called bins and the height of each bar representing
the frequency of data points falling within that bin. Use histograms to
visualize the spread of a dataset and identify patterns or outliers.

Consider the sample dataset described in Table 6.8, showing the average
rating for different products. Rating ranges from 1 to 10. The table shows the
values only for some products. You can read the full dataset in the GitHub
repository of the book, under 06/bar-charts/data/product-ratings.csv

Table 6.8 A sample dataset with average rating from some products

ProductID Rating

Product_1 4.8

Product_2 5.7

Product_3 5.3

Product_4 4.8

Product_5 5.9

Product_6 4.0

Product_7 4.7

Product_8 5.9

Product_9 4.0

Let’s use Copilot to draw a histogram. The idea is to specify generic prompts
to build the chart framework, and then, refine the chart manually. Listing
6.25 shows the used prompts.

Listing 6.25 The generic prompts to build a histogram

Import the required libraries

Load the 'data/product-ratings.csv' into a dataframe

Create a histogram of the Rating column using Altair

Save the chart as a HTML file

Defining the basic prompts to build a histogram

Use these prompts to speed up the chart framework creation.

As an alternative, you could have specified very detailed prompts, as we did
for the other charts. Here we want to illustrate the different Copilot usage
strategies you can use to generate prompts for Copilot. In our case, the
resulting code is not totally correct. We need to improve it, to produce the
code shown in Listing 6.26.

Listing 6.26 The code to build a histogram

chart = alt.Chart(df).mark_bar(

 color='#81c01e'

).encode(

 x=alt.X('Rating:Q',

 bin=alt.Bin(maxbins=10, extent=[1, 10]), #A

 title='Rating',

 axis=alt.Axis(

 format='d',

)

),

 y=alt.Y('count()', title='Number of Products')

)

Building a histogram

Use the bin attribute to specify the number of bins (maxbins) and their
extent.

For comparison, we can add a one-dimensional kernel density estimation
over our data to the chart, by using the transform_density() method
provided by Altair, as shown in Listing 6.27.

Listing 6.27 One-dimensional kernel density estimation

line = alt.Chart(df).transform_density(

 'Rating',

 as_=['rating', 'density'],

).mark_line(

 color='red',

).encode(

 x='rating:Q',

 y=alt.Y('density:Q', axis=None)

)

combine the bar chart and the density estimator

chart = chart + line

chart = chart.resolve_scale(y='independent'

).configure_view(

 stroke=None

).configure_axis(

 grid=False

)

chart.save('histogram.html')

How to build a one-dimensional kernel density estimation

Use the transform_density() method to create a kernel density estimation.
This method takes the column of the DataFrame to use for calculation and the
names of the generated columns (as_ attribute). Also, combine the produced
line with the previous chart.

Figure 6.21 shows the resulting chart.

Figure 6.21 A histogram

We have completed the bar charts family. Let’s move on to analyze the line
charts family.

6.3.3 Line Charts Family

Line charts family include all the charts that depict data using continuous
lines to show the relationship or trends between different data points over a
given time period. Some commonly used line chart types include basic line
charts, area charts, slope charts, and Dumbbell charts. Let’s start analyzing
the line chart.

Line Chart

Line charts, also known as line plots or line graphs, visualize data over time.
They connect data points by straight lines, which makes it easy to see how
the data has changed over time. Line charts are particularly useful for
showing trends and patterns in data and comparing multiple data series.

Consider again the dataset in Table 6.7, showing the number of orders for
Pizza and Spaghetti from January to December. In her book Data Storytelling
with Data (Knaflic 2015), Cole Nussbaumer Knaflic proposes to replace the
legend from a line chart with labels near each line. To follow Knaflic’s
suggestion, we can build a line chart in Altair in three steps. First, we build a
base chart, with the basic structure. It includes the general encodings and
properties (Listing 6.28).

Listing 6.28 How to build the base chart of a line chart

base = alt.Chart(df).encode(

 x=alt.X('Month',

 axis=alt.Axis(title=None,

 labelAngle=0,

),

 sort=months

),

 y=alt.Y('Number of Orders'),

 color=alt.Color('Meal Type',scale=alt.Scale(range=['#81c01e','gray']),legend=None)

).properties(

 width=600,

 height=300

)

Drawing the base chart of a line chart

To build a base chart don’t specify the mark.

Next, we draw the line chart by applying the mark_line() method to the base
chart. Finally, we draw the labels by applying the mark_text() method to the
base chart (Listing 6.29).

Listing 6.29 How to build the line chart and the labels

chart = base.mark_line()

text = base.mark_text(

 fontSize=14,

 baseline='middle',

 align='left',

 dx=10

).encode(

 text=alt.Text('Meal Type:N'),

).transform_filter(

 alt.datum['Month'] == 'December'

)

Combine the line chart and text mark into a single chart

chart = chart + text

chart = chart.configure_view(

 strokeWidth=0

).configure_axis(

 grid=False

)

chart.save('line-chart.html')

Creating a line chart in Altair

Once defined the base chart, build the line chart by only specifying the
mark_line() method. Use the transform_filter() method to select only
some data. In our case, select only the last values (month equal to December)
of the dataset, to position the labels at the end of the lines.

Figure 6.22 shows the resulting chart.

Figure 6.22 A line chart

Now that you have learned how to draw a line chart, let’s move on to the
following chart, the area chart.

Area Chart

An area chart shows the cumulative trend over time of a variable. It is similar
to a line chart, but the area between the x-axis and the line is filled with a
color or pattern to distinguish it from a line chart. You can draw an area
chart, by modifying the code in Listing 6.29 as follows:

Change base.mark_line() to base.mark_area(line=True)
Translate the y axis to align to the x axis by using the following code:
y=alt.Y('Number of Orders',axis=alt.Axis(offset=-25)).

Figure 6.23 shows the resulting chart.

Figure 6.23 An area chart

After seeing the area chart, let’s investigate the slope chart.

Slope Chart

Slope charts consist of two sets of data points connected by a line, with the x-
axis representing the different categories or periods and the y-axis
representing the values of the data. A slope chart is a line chart with just two
points. To build a slope chart, add the transform_filter() method to
Listing 6.28 to select only the first and the last value of your series. Figure
6.24 shows an example of a slope chart.

Figure 6.24 An slope chart

The next chart is the Dumbbell chart. Let’s move on to analyze it.

Dumbbell Chart

Dumbbell charts or floating bar charts consist of two data points connected
by a line, one at the beginning and one at the end. Dumbbell charts are
similar to slope charts, but usually, we use Dumbbell charts to compare the
difference between two data points. In contrast, we use slope charts to
compare changes in data over time or between different groups.

Figure 6.25 shows an example of a Dumbbell chart. You can find the
associated codein the GitHub repository of the book.

Figure 6.25 An area chart

We have completed the review of line charts. For some of them, we used
Copilot, for others we didn’t directly specify prompts. However, in all the
cases, Copilot assisted us while writing the code, by suggesting new code
while writing it.

Did you know

that line charts were first used by William Playfair, a Scottish engineer, in the
late 18th century? In addition to inventing the line chart, Playfair also
introduced other popular data visualizations such as bar charts and pie charts.

His innovative use of graphical representations revolutionized the way we
present data today, making him a pioneer in the field of data visualization

Now that you have learned how to build the different types of line charts,
let’s move on to the next family, the geographical map family.

6.3.4 Geographical Map Family

A geographical map shows the location of different data points on the earth's
surface, such as countries, continents, oceans, and rivers. Also, a
geographical map shows the distribution of resources and data on a given
area of interest.

The most popular geographical maps include:

Choropleth maps use color to show differences in values between
different areas (Figure 6.26)
Dot density maps use dots to show the concentration of a certain value
within an area (Figure 6.27)
Proportional symbol maps use symbols that are sized according to the
value they represent (Figure 6.28).

You can find the code associated with each type of geographical map in the
GitHub repository of the book.

Figure 6.26 A choropleth map

Figure 6.27 A dot density map

Figure 6.28 A proportional symbol map

When you build a geographical map, you must set the projection to use. One
of the most popular projection maps is the Mercator projection map.
Although this map is very popular, it does not represent the world correctly.
For example, Greenland appears to be nearly the same size as Africa, when in
reality Africa is about 14 times larger! This distortion occurs because it is
difficult to accurately represent the curved surface of the Earth on a flat map.

Now that you have learned some of the most popular geographical maps, let’s
move on to the dot charts family.

6.3.5 Dot Charts Family

Dot charts family include charts that represent data points with dots along the
x and y scales to show the relationship between two variables. Some of the
most popular dot chart families include scatter plots and bubble charts. Use
the mark_point() mark to draw a dot chart.

Scatter plots visualize the relationship between two numerical variables. Use
them to identify patterns and trends in data and make predictions based on
those trends. Figure 6.29 shows an example of a scatter plot. You can find the
associated code in the GitHub repository of the book.

Figure 6.29 A scatter plot

Bubble charts are scatter plots that use the size of the data points to encode an
additional variable. In Altair, you can use the size channel to set the bubble
size: size=alt.Size('Ranking:Q',scale=alt.Scale(range=
[1,200]),legend=None). Figure 6.30 shows an example of a bubble chart.

Figure 6.30 A bubble chart

Now that you have learned the basic charts families, let’s move on to
implement a practical case study.

6.4 Case Study: Salmon Aquaculture

Imagine that you want to study the problem of safety in the salmon
aquaculture in the U.S.. You have the aquaculture dataset, provided by the
US Department of Agriculture, Economic Research Service under the CC-0

license. This dataset describes for each fish category the exported KG and the
dollars earned over the time, as shown in Table 6.9.

Table 6.9 A snapshot of the aquaculture dataset

SOURCE_ID HS_CODE COMMODITY_DESC GEOGRAPHY_CODE

63 302110000 TROUT (SALMO
TRUTTA, S. CLARKI
ETC) FRESH,
CHILLED

1

63 1604112000 SALMON,
WHOLE/PIECES, IN
OIL IN AIRTIGHT
CONTAINER

2740

The dataset contains the following columns:

SOURCE_ID: The source of the data
HS_CODE: The Harmonized System code for the commodity
COMMODITY_DESC: The description of the commodity
GEOGRAPHY_CODE: The code for the country or region of origin or
destination
GEOGRAPHY_DESC: The name of the country or region of origin or
destination
ATTRIBUTE_DESC: The type of data, either US Export, QTY or US
Export VLU
UNIT_DESC: The unit of measurement, either KG, or U.S. $
YEAR_ID: The year of the data
TIMEPERIOD_ID: The month of the data
AMOUNT: The value of the data

The objective of your study is to establish if the safety measures adopted so
far in salmon aquaculture are sufficient or should be improved. For
simplicity, you base your study on this dataset. However, in a real situation,
you should also consider other aspects, such as the costs to maintain these
measures and other similar analyses.

You decide to plot the salmon aquaculture sales trendline versus the other
types of aquaculture. You can find the code associated with this case study in
the GitHub repository of the book, under CaseStudies/aquaculture/. Ask
Copilot to generate the chart for you. Use the list of instructions described in
Listing 6.30 to build the base chart.

Listing 6.30 The instructions for Copilot

import required libraries

load the dataset '../source/Aquaculture_Exports.csv' as a pandas dataframe

apply the following filters to the dataframe:

- select only the rows where the 'GEOGRAPHY_DESC' column is 'World'

- select only the rows where the 'UNIT_DESC' column is 'U.S.$'

add a new column to the dataframe called 'DATE' which is a date object build as follows:

- the year is the 'YEAR_ID' column

- the month is the 'TIMEPERIOD_ID' column

- the day is 1

plot the dateframe using altair as follows:

- the x axis is the 'DATE' column

- the y axis is the 'AMOUNT' column

- the color is the 'COMMODITY_DESC' column

save the plot as 'chart.html'

How to instruct Copilot

After importing the required libraries, ask Copilot to import the dataset and
apply some filters to select only the world exportations, the exportations in
terms of dollars. Next calculate the date from the YEAR_ID and the
TIMEPEROID_ID column. Finally, plot the trendline in Altair.

The previous instructions help you to build the basic chart. Work on it to
produce the chart shown in Figure 6.31.

Figure 6.31 The aquaculture case study

You can find the resulting code in the GitHub repository of the book, under
CaseStudies/aquaculture/from-data-to-information/chart.py. As an insight,
you discover that since 1998 there has been an increase in sales, following a
period of decrease in sales from 1992 to 1998. Moved by curiosity on the
decreasing period, you do some search and discover that the decreasing
period was partially due to some health problems in the salmon aquaculture.

At the end of this first step, you have turned data into information. In the next
chart, we will continue implementing this case study, by turning the extracted
information into knowledge.

This chapter has described how to turn data into information. First, we have
described some techniques to extract insights. Next, we have seen how to
select the characters of a story. Finally, we have learned how to use Copilot
to implement some of the most popular charts in Altair. You can find other
charts in the GitHub repository of the book, under section 06/other-charts.

In the next chapter, you will learn how to turn information into knowledge.

6.5 Summary

Turning data into information means extracting meaning from data, an
insight that is significant for you.
Some of the techniques to extract insights include connections,
coincidences, curiosity, and contradictions.

Connections involve searching for details in your data and connecting
them.
Coincidences involve searching for repeated or related events that
apparently are not related each other
Curiosity is searching for strange events, such as missing values and
anomalies
Contradiction is searching for events that apparently conflict with each
other.
Every story should have at least three characters: the hero, the guide,
and the adversary.
The right chart to tell your story depends on the information to convey.
There are different families of charts, such as bar charts, line charts,
geographical charts, cooking charts.

6.6 References

Barr Moses, Lior Gavish, Molly Vorwerck Data Quality Fundamentals:
A Practitioner's Guide to Building Trustworthy Data Pipelines O’Reilly
Media, 2022
Andrea De Mauro, Francesco Marzoni, Andrew J. Walter Data
Analytics Made Easy, 2021, Packt Ltd.
Thomas A Dorfer. The Case Against the Pie Chart
https://towardsdatascience.com/the-case-against-the-pie-chart-
43f4c3fccc6 (Last Access 2023/07/23)
Artur Guja, Marlena Siwiak, and Marian Siwiak Generative AI for Data
Analytics Manning, 2024
Gary Klein Seeing What Others Don't: The Remarkable Ways We Gain
Insights Nicholas Brealey Publishing, 2017
Donald Miller Building a StoryBrand: Clarify Your Message So
Customers Will Listen Thomas Nelson, 2017
Cole Nussbaumer Knaflic Storytelling With Data: A Data Visualization
Guide for Business Professionals Wiley, 2015

[1] https://extremepresentation.typepad.com/files/chart-chooser-2020.pdf

[2] https://www.linkedin.com/posts/brentdykes_datavisualization-
datastorytelling-storytellingwithdata-activity-7041489036980494336-ieui

7 From Information to Knowledge:
Building textual context
This chapter covers

Introducing context
Calibrating the story to the audience
Using ChatGPT for commentaries and annotations
Using Large Language Models for textual context
Case study: from Information to Knowledge (part 1)

In this and the next chapter, we will review the basic concepts behind context
in a data story and how to adapt it based on the audience. In this chapter we
will focus on textual context and in the next one on images. We will
introduce Large Language Models (LLMs) and use ChatGPT as an example
of LLM implementation for data storytelling.. Finally, we will describe a
practical example

7.1 Introducing Context

When I was a child, I often heard my parents discussing some topic and did
not understand anything. Their words rang in my ears as meaningless until,
eager to understand what they were talking about, I entered the conversation
and asked for explanations. Then my father or mother, very patiently,
explained to me what they were talking about, adapting their adult reasoning
to my child's mind so that I, too, could understand. Years later, I was in the
same situation now that I'm a mother. My children often ask me to explain
more complex speech in words they can understand. And the satisfaction is
enormous when I see their faces clear up and understand what I’m saying.

The examples described show us the need to adapt the words we use
according to the audience we are facing. If we ignore who will read our story,
we risk talking in a way that may make perfect sense to ourselves, but our

audience will be excluded from the message we want to communicate.

In the previous chapter, we looked at how to extract and represent an insight
through a chart. The next step is to enrich the chart with context (text and
images), making reading easier for the reference audience. Context refers to
the surrounding elements making the audience understand the displayed
information, such as texts, images, and symbols. Data context should prepare
the scene of your data story and raise interest in your audience. In this
chapter, we’ll primarily be dealing with textual context, while in the next
chapter we’ll look more at visual context.

Context depends on the type of audience you are faced with. For example, if
you are talking with an adult about how much you paid for a product, you
don’t need to explain how money works. Instead, if you are talking to your
kids about the same topic, you probably need to explain the denominations of
the different banknotes and how the monetary system works.

You can use Generative AI tools, such as ChatGPT for text and DALL-E for
images to ease context-building. You have already learned the basic
techniques for building context using Generative AI tools. This chapter will
focus on more advanced techniques to write an impactful context tailored to
your audience.

We will consider the following types of context:

Commentary - the text that precedes your insight. It includes the
background that helps the audience to set the scene and understand the
insight. In the example of the product cost explained to your kids, the
commentary includes banknotes denominations, and how the monetary
system works.
Annotation - a short text that explains a detail of your chart, for example,
an anomalous point or a trendline. Consider adding annotations only if
they are necessary. Don’t overload your chart with unnecessary
annotations.
Image - a picture enforcing the commentary or the annotation. In the
example of the product cost, you could add banknote images to help
your kids understand the different denominations.
Symbols - arrows, circles, lines, and so on, combined with annotations.

They help the audience focus on particular points of your chart.

In the remainder of this chapter, we will use ChatGPT for commentaries and
annotations. In the next chapter, we will focus on DALL-E for images and
symbols. In addition, we will introduce Large Language Models and how to
use them for commentaries and annotations. But, before this, let’s describe
how to calibrate the story to your audience.

7.2 Calibrating the Story to The Audience

A few years ago, I was invited to give a seminar to master's students. The
seminar topic concerned the implementation of web applications for the
construction of data journalism projects. Unfortunately, I found myself faced
with a somewhat embarrassing situation. My seminar topic was very
technical, even commenting on some pieces of code. As I began to speak, I
realized that the audience couldn't follow me because they didn't have the
technical skills required to listen to me. My presentation was technically
correct, but having spoken too technically to a non-technical audience, the
result of my talk was that the audience learned very little. From the
experience gained from that episode, I learned to find out about the audience
I will have to deal with before communicating any message.

The audience is the person or the group of persons reading your data story.
Understanding the target audience is crucial to building data stories that
convey information effectively. In the previous chapter, we saw that you can
use multiple types of charts to convey information (Table 6.4). Once you've
chosen the set of charts that answer your question, you can refine your
choice, tailoring the chart to your audience.

In Chapter 4, you have learned that there are different types of audiences. For
simplicity, in this chapter, we group them into three common types of
audiences:

General Public
Executives
Professionals

Let’s investigate each type of audience separately. To explain how you can
calibrate the chart to the target audience, we will use the case study described
in Chapter 4: Unlock the potential: invest in Rowing and Cycling for
maximum return. For convenience, Figure 7.1 shows the complete data story
we implemented, moving from data to wisdom.

Figure 7.1 The use case described in Chapter 4

The objective of this case study was to understand which disciplines are
worth continuing to train in to achieve good results in the upcoming
competitions.

7.2.1 General Public

This audience includes individuals from various backgrounds and levels of
knowledge. They may have little to no previous knowledge of your topic.
When crafting data stories for the general public, use precise language, avoid
overwhelming them with too much information, and focus on presenting the
most relevant insights visually and engagingly. The general public could find
the chart shown in Figure 7.1 complex, with an unnecessary baseline. As an
alternative to the chart of Figure 7.1, you could draw the chart shown in
Figure 7.2, which the audience could find more appealing.

Figure 7.2 The use case adapted to the general public

This chart is called a multi-layer donut chart. We could have placed the
images close to the relevant bars, but in this specific case there wasn't enough
space, so we placed them in the center of the chart. In other scenarios, you
might consider placing images next to the bars. You can find the complete
code to generate this chart in the GitHub repository of the book, under
07/general-public.

7.2.2 Executives

Executives are typically high-level decision-makers in organizations who rely
on data-driven insights to make essential business choices. They often have
limited time and need concise and actionable information. When creating
data stories for executives, it is essential to present key findings, trends, and
recommendations upfront.

Use visualizations highlighting the most critical data points and providing a
straightforward narrative linking the data to strategic goals. It can also be
helpful to provide additional context or industry benchmarks to support your
analysis. The chart shown in Figure 7.1 could be great for executives because
it does not contain many details and describes why we chose some sports,
thanks to the baseline of 50%.

7.2.3 Professionals

This audience consists of individuals with a specific domain expertise or

professional background. They have a deeper understanding of data and
require more analytical information. When creating data stories for
professionals, explain the data analysis's methodology, assumptions, and
limitations. Consider including additional supporting data and references,
allowing professionals to explore the data further.

As an alternative to the chart of Figure 7.1, you could draw the chart shown
in Figure 7.3, which the audience could understand easily. The figure shows
only the chart, without any annotation or context. You can find the complete
code to generate this chart in the GitHub repository of the book, under
07/professionals.

Figure 7.3 The use case adapted to professionals

Table 7.1 summarizes what to represent in a chart based on the audience type.

Table 7.1 What to represent in a chart based on the audience type

Audience Type Requirements What to represent

General Public Understand data An appealing overview
of insights

Executives High-level overview of
data trends to aid
strategic decision-
making

Highlight critical
metrics and trends
influencing business
outcomes

Professionals Detailed insights to
understand the
phenomenon behind
data

Add numbers, statistics,
and useful information
to understand insights
deeply

Now that you have learned how to adapt your chart based on the audience
type, let's move on to the next step, using ChatGPT for commentaries and
annotations.

7.3 Using ChatGPT for Commentaries and
Annotations

In his novella Metamorphosis, Franz Kafka tells the story of Gregor Samsa, a
traveling salesman who wakes up one morning to be transformed into a giant
insect. Encased in this insect's guise, Samsa cannot interact with his family or
communicate his thoughts. Gregor's family struggles to accept his
transformation, so their relationship with Gregor deteriorates, and Gregor
becomes increasingly isolated. The novella unearths the fundamental
isolation that emerges when one's inner world remains inaccessible to others.
The data analysts could find themselves in a situation quite similar to that
experienced by Gregor Samsa in Kafka's novella when they have to add text
to a data visualization chart. The data analyst, by nature, is a technician and
could encounter some difficulties in writing engaging text.

ChatGPT can assist you in adding textual context to your data visualization
chart. You have already learned that a prompt's basic structure for ChatGPT
comprises three main elements: role, audience, and task.

For example, you can write: Act as an entertainer (role), writing for decision-
makers (audience). Write 5 titles about <topic> (task). The topic could be
whatever you want. The main problem is structuring the topic so that
ChatGPT produces the correct context.

To also include the topic in the ChatGPT prompt, we will generate context
following the schema described in Figure 7.4.

Figure 7.4 The schema used to generate context

In a prompt, we specify the following four main elements:

Role - the role you want ChatGPT to take. You have already learned
many role types in Chapter 4, including entertainer, educator, informer,
inspirer, invitor to action, relationship builder
Audience - the audience of your chart. There are different types of
audiences, such as the general public, executives, and professionals
Topic - the subject of your chart
Type - the text type to generate, including annotations and
commentaries.

The process of generating context is iterative, in the sense that you can
generate the context multiple times if you are not satisfied with the produced
result. For example, you can adjust one or more elements to make ChatGPT
converge on the desired output.

In the remainder of this section, we will focus on how to write the topic and
type elements of the schema while keeping the role and the audience simple.
However, you can adapt the strategies described for the topic and the
audience to the other elements.

As an example of how to build the context, we will focus on the case study
described in Chapter 4, Unlock the potential: invest in Rowing and Cycling
for maximum return and shown in Figure 7.1. The following text summarizes

the scenario for convenience:

Imagine you work in a sports company. You are training a team of
young athletes in various disciplines. For each discipline, you have
noted the world record and recorded the best time achieved by your
team for comparison. Unfortunately, your company has limited
investment funds available. Your boss asks you to understand which
disciplines are worth training in, hoping to achieve good results in the
upcoming competitions.

7.3.1 Describing the Topic

Describing the topic means writing for ChatGPT simple words that precisely
depict what you have discovered and shown in your chart. The more precise
you are, the better the produced output.

To describe the topic, focus on three aspects: scenario, data, and insight, as
shown in Figure 7.5.

Figure 7.5 The elements used to describe the topic

Let’s go through each of those three aspects in a bit more detail, next.

Scenario

Describe an overview of your scenario, including the analysis's background
and objective. For the scenario in Figure 7.1, we could write the following

text to prompt ChatGPT:

We are training a team of young athletes in various disciplines. For
each discipline, we have calculated the percentage improvement of each
discipline compared to the world record in that discipline. The objective
is to search for the best two disciplines to fund.

Data

Describe an overview of your data. This may include explaining the type of
data, its source, and any manipulations you performed.

Describe the data using your own words. Provide a more personalized
description of the data. By manually describing the data, you can highlight
important patterns, trends, or correlations that may not be apparent through
automated methods alone. Additionally, through manual descriptions, you
can incorporate domain expertise observations.

For the scenario in Figure 7.1, write the following prompt text:

There are five sports disciplines: Rowing (percentage improvement =
62.32%), Cycling (57.64%), Sprinting (42.69%), Long-distance running
(18.31%), and Swimming (12.38%).

Now that you have learned how to describe the data, let’s move on to the last
step, describing insights.

Insights

Describe the central insight you have derived from the analysis, such as key
patterns, trends, correlations, or relationships you have discovered. For the
scenario in Figure 7.2, include the following text:

Rowing and Cycling percentages are more significant than the baseline
of 50%.

Before illustrating how we can build the audience description, let’s test the

prompt built so far on ChatGPT.

Test

We write the following prompt:

Act as an inspirer. Write 5 titles for the following topic. There are five
sports disciplines: Rowing (percentage improvement = 6.2.32%),
Cycling (57.64%), Sprinting (42.69%), Long-distance running
(18.31%), and Swimming (12.38%). Rowing and Cycling percentages
are more significant than the baseline of 50%.

Figure 7.6 shows a possible output produced by ChatGPT.

Figure 7.6 The five titles generated by ChatGPT

As an alternative, you can ask ChatGPT to produce the context as follows:

Act as an inspirer. Write the context of a chart using 30 words for the
following topic. There are five sports disciplines: Rowing (percentage
improvement = 6.2.32%), Cycling (57.64%), Sprinting (42.69%), Long-
distance running (18.31%), and Swimming (12.38%). Rowing and
Cycling percentages are greater than the baseline of 50%.

Figure 7.7 shows a possible output produced by ChatGPT.

Figure 7.7 The context generated by ChatGPT

Now that you have learned how to describe the topic, try to generate the
context for the case studies described in Chapter 1, the pets scenario. For
example, you can act as an informer. For convenience, we summarize the
scenario:

The organizers of an event dedicated to pets are collecting the type of
pets that will participate. For each pet category, the organizers
advertise the event on specific websites dedicated to that category. The
organizers ask you to build a quick report about the current situation.

For more details, please refer to Chapter 1, Introducing Data Storytelling.
You can find a prompt with the generated context at this link. For further
practice, write the topic for the other scenarios described in the previous
chapters.

Now that you have learned how to describe the topic let’s move on to the
next element, describing the type.

7.3.2 Describing the Type

We consider the following types: commentary and annotations. In the
previous sections, you have seen different ways to instruct ChatGPT to
generate context types, such as writing the context of a chart using 30 words.

When describing the type, be as precise as possible, specifying the following
aspects:

The type (commentary, annotation, or in general, a text)
The maximum number of words to generate.

Our suggestion is to try different types and evaluate the results based on your
needs.

7.3.3 Setting Custom Instructions

ChatGPT enables you to configure custom instructions for all your new chats.
For example, if we build our charts for the same audience type and act with
the same role, we can use this property as a default configuration for
ChatGPT.

To enable custom instructions, access the ChatGPT web interface, click on
the three dots near your profile, and then on Custom Instructions. In the new
window, write the custom instructions. For example, you can use the first box
to configure your role and the target audience and the second box for more
details, such as the number of words to generate, the tone, and the style, as
shown in Figure 7.8.

Figure 7.8 The custom instructions dialog box

Click on the save button to enable the custom instructions for new chats. If
you want to disable this property, access the dialog box and unselect the
property Enable for new chats. Then, click on the Save button.

Let’s try the custom instructions with the previous text (we have removed the

number of words to generate since we have configured them in the custom
instructions):

Write the context of a chart for the following topic. There are five sports
disciplines: Rowing (percentage improvement = 6.2.32%), Cycling
(57.64%), Sprinting (42.69%), Long-distance running (18.31%), and
Swimming (12.38%). Rowing and Cycling percentages are greater than
the baseline of 50%.

Figure 7.9 shows a possible output. For example, you can notice the informal
tone we have set in the custom instructions.

Figure 7.9 A possible output produced when configuring custom instructions

For optimal usage of custom instructions in data storytelling, we suggest
using them to configure the role and the audience. In addition, you can
configure other specific details correlated to your job or data, as specified in
the ChatGPT documentation.

Now that you have learned how to use ChatGPT for commentaries and
annotations, let’s move on to the next step, using large language models in a
different way. So far, you have used the web interface provided by OpenAI to
write your prompt for ChatGPT. Now, we move to an advanced use of large
language models, based on APIs calls.

7.4 Using Large Language Models for Context

So far, you have used three Generative AI tools: Copilot for code generation,
ChatGPT for text generation, and DALL-E for image generation. All these
tools are examples of application usage of a Large Language Model (LLM).

An LLM is a Machine Learning model aiming at predicting plausible
language. The diffusion of LLMs has exploded since 2017, when Google
researchers introduced the concept of transformers, a revolutionary
architecture that allowed the training of large language models, such as
Generative Pre-trained Transformers (GPTs), on which ChatGPT is based,
and Bidirectional Encoder Representations from Transformers (BERT).
Transformers allowed for the training of LLMs on massive datasets, resulting
in models with incredible language generation capabilities.

In this book, we will not focus on how LLMs work. Instead, we aim to
demonstrate you can use them effectively for Data Storytelling. However, if
you're interested in delving deeper into the technical aspects, a vast
bibliography is available on the topic (Vaswani 2017, Koenigstein 2024).

Before you embark on using LLM to build your data-driven story, it's
essential to ask yourself whether the model needs to know specific
information related to your domain of work, as shown in Figure 7.10. If the
answer is no, then you can safely continue using ChatGPT. If, however, your
answer is yes, then you can apply one of the following techniques:

Fine-tuning adapts a pre-trained LLM to a specific domain by updating
its parameters on task-specific data, optimizing its performance for that
particular domain.
Retrieval Augmented Generation (RAG) combines information
retrieval and language generation, enabling LLMs to incorporate
external knowledge sources during the generation process.

Figure 7.10 A criterion to establish whether to extend an LLM or not

In the remainder of this section, we assume that your answer is yes and that
you must tailor your LLM to your specific domain. A practical case where
fine-tuning is useful could be when you must generate different data stories
for the same type of audience or even the same audience. In this case you
could build your database with the same structure of annotations, so that all
new annotations have the same structure as the previous ones. This may
generate some familiarity for your audience when they read your data stories.
In other cases, you may need to use RAG, for example, when you have a long
document and you want to build a short annotation for your data story based
on it. Using RAG could help you to build textual summaries.

Now that you have learned the potential benefits of extending the LLM, let's
start by analyzing the first strategy, fine-tuning.

7.4.1 Fine-tuning

GPT-3 was trained on 17 gigabytes of data, and GPT-4, the most recent
model of OpenAI, has 45 gigabytes of training data. This means they contain
a variety of information you can use in almost all cases. However, in some
cases, fine-tuning on your model could provide better results.

Fine-tuning is the process of further training a pre-trained language model on
a specific dataset that is more relevant to your specific domain. During fine-
tuning, you use a smaller dataset, which typically contains examples and
specific input-output pairs relevant to your task. In practice, the dataset is a
collection of samples, each containing the prompt and the suggested
completion.

When you apply fine-tuning to data storytelling, you can build a different
dataset for each audience type, thus having better results. For example, you
can build a dataset for the general public, another for professionals, and
another for professionals. You can even create a different dataset for each
scenario you work with (products, topic, and so on) and for each type of text
you want to generate (title, annotation, commentary). The more specific your
dataset is, the better your results will be.

Preparing the dataset is the most significant effort during the process of fine-

tuning. In the remainder of this section, we will describe two strategies to
prepare the dataset: manual building and building from sources. In both
cases, we will use the OpenAI API. For more details on the installation, refer
to Appendix A.

Manual building

Manual building involves defining each pair (prompt, completion) manually.
This solution enables you to obtain the best results since you specify the
exact behavior of your model, given a specific input. Consider, for example,
the following pair:

Prompt - generate a title for the general public about topic X
Completion - X revealed to you!

Now, imagine that you have fine-tuned your model with that pair and want to
use your model to generate titles for the general public. If you give the theory
of relativity topic as input to your fine-tuned model, it will probably generate
a title similar to the following one: The theory of relativity revealed to you!

The drawback of this strategy is that it is time-consuming because you must
write each pair manually.

To start, you can define a minimum number of curated samples covering all
your possible cases. The OpenAI model requires you to represent at least ten
samples. Next, train the model. After that, proceed with the model evaluation
by considering the original model (i.e., without fine-tuning) as a reference.
Provide the same prompt to the two models, original and fine-tuned, and
compare the produced outputs. Use your new model if your fine-tuned model
performs better than the original one. Instead, if it performs worse than or has
the same behavior as the original model, try to add new samples or improve
the existing ones. Repeat this procedure until you reach a good result.

To show how manual building works, we will build a dataset tailored for the
general public and generate a commentary as an output. In the previous
chapter, you saw that you should use a different chart based on the
information you want to convey. Here, we will build a different output based

on the information to convey. We will build one or more (prompt,
completion) pairs for each type of information to convey. Table 7.2 shows a
possible dataset representing the described scenario. You can find the code
described in this section in the GitHub repository of the book, under
07/manual-chatgpt-fine-tuning.

Table 7.2 The samples based on the information to convey

Information to convey Prompt Completion*

Parts of a whole Percentage of
participants in the
conference by type
(researchers 5%,
students 30%,
professors 65%)

More professors
participated in the
conference (65%).
Researchers were not
interested in the event (5%).

Comparison among
entities

Comparison between
Red (80%), Yellow
and Green
performance

Compared to Yellow and
Green, Red experienced an
improvement in
performance of 80%.

Trend Sales changed in the
last 12 months
(-12%) due to fewer
subscribers and video
views

Over the last 12 months,
sales decreased by 12%
based on various metrics,
including subscribers and
video views.

Outcomes of a survey
or a questionnaire

Questionnaire: 3
positive answers 7
negative answers

3 out of 10 people answered
the questionnaire with a
positive answer.

Distribution Sales of Product A
(+30%) and Product
B over the last 12
months

Compared to Product B,
sales of Product A have
increased by 30% over the
last 12 months.

Spatial information Sales in North Europe
(+23%) compared to

Compared to South Europe,
sales in North Europe

South Europe increased by 23%.

Relationship The sales trendline
from 1990 to 2020
increased by 120%

Between 1990 and 2020,
sales increased by 120%.

Comparison among
entities

Top ingredients for
our recipe: sugar and
salt

The chosen ingredients for
our recipe are sugar and
salt.

Comparison among
entities

Comparison between
Gold (30), Silver
(20), and Bronze (40)

Bronze beats Silver and
Gold with 40.

Distribution Distribution of
household chores
(Cooking 35%,
Cleaning 30%,
Laundry 20%, Yard
work 15%)

Cooking takes up the most
significant portion at 35%.
Cleaning follows at 30%,
while laundry and yard
work account for 20% and
15%, respectively.

* The word completion could be confusing but it is used by the OpenAI API.
Completion refers to the output produced by the model.

Once you have built the dataset, you must format it as a JSONL file. This file
contains a list of messages. Consider each message as a separate chat where
you can specify a general configuration, the user prompt, and the assistant
(model) output, as shown below:

Listing 7.1 The structure of a JSONL file

{

 "messages": [

 {

 "role": "system",

 "content": "You are a data analyst showing data to the general public."

 },

 {

 "role": "user",

 "content": “Distribution of household chores

 (Cooking 35% Cleaning 30% Laundry 20%, Yard work 15%)"

 },

 {

 "role": "assistant",

 "content": "Cooking takes up the largest portion at 35%.

 Cleaning follows at 30% while laundry

 and yard work accounts for 20% and 15% respectively."

 }

]

}

Structuring a JSONL file

Use the keyword messages to define the list of samples. Imagine each sample
as a separate chat, where you can specify the model role: system, for general
configuration, user, for user prompt, assistant, for model output.

If your dataset is saved as a CSV file, use the code shown in Listing 7.2 and
available in prepare-data.py to convert it into JSONL.

Listing 7.2 How to convert the CSV file into jSONL

import pandas as pd

import json

df = pd.read_csv('general-public.csv')

json_list = []

for index, row in df.iterrows():

 json_object = {

 "messages": [

 {

 "role": "system",

 "content": "You are a data analyst showing data to the general public."

 },

 {

 "role": "user",

 "content": row['prompt']

 },

 {

 "role": "assistant",

 "content": row['completion']

 }

]

 }

 json_list.append(json_object)

with open('general-public.jsonl', 'w') as outfile:

 for json_object in json_list:

 json.dump(json_object, outfile)

 outfile.write('\n')

Converting the dataset into JSONL

First, load the dataset as a Pandas DataFrame, next, format it in the JSONL
format, as described in Listing 7.1. Finally, save the generated JSONL file.

Now, we are ready to fine-tune our model. We need an OPEN_API_KEY, as
specified in Appendix A. If you are transitioning from a free to a paid plan,
you might need to generate a new API key because the initial key does not
work after the switch to a paid plan. Open a terminal and export your
OPEN_API_KEY as an environment variable (export OPENAY_API_KEY='my
key'). Next, upload the produced file to the OpenAI server, and when the
uploading process is complete, create a job for fine-tuning. Listing 7.3 shows
the code to perform these operations. Alternatively, read the tune-model.py
script in the GitHub repository of the book. Remember that this option is
exclusively available with the paid version.

Listing 7.3 How to fine-tune the model

import os

import openai

import time

openai.api_key = os.getenv('OPENAI_API_KEY') #A

dataset = openai.File.create(file=open('general-public.jsonl', 'rb'), purpose='fine-tune') #B

print('Uploaded file id', dataset.id)

while True: #C

 print('Waiting while file is processed...')

 file_handle = openai.File.retrieve(id=dataset.id)

 if len(file_handle) and file_handle.status == 'processed':

 print('File processed')

 break

 time.sleep(3)

Create a new fine-tuning job

job = openai.FineTuningJob.create(training_file=dataset.id, model="gpt-3.5-turbo")

while True:

 print('Waiting while fine-tuning is completed...')

 job_handle = openai.FineTuningJob.retrieve(id=job.id)

 if job_handle.status == 'succeeded':

 print('Fine-tuning complete')

 print('Fine-tuned model info', job_handle)

 print('Model id', job_handle.fine_tuned_model) #D

 break

 time.sleep(3)

Fine-tuning the model

First, use the openai.File.create() method to create a new dataset and
upload it to the OpenAI server. Next, use the
openai.FineTuningJob.create() method to create a fine-tuning job using
GPT-3.5-turbo. Wait until the job is completed. This could take a long time,
depending on the dataset size. Once the model is trained, use the
fine_tuned_model variable to print the information associated with the fine-
tuned model.

Listing 7.4 shows an example of information printed after the execution of
the fine-tune-model.py script. This fine tuning would cost around 0.05$.

Listing 7.4 An example of information associated with a fine-tuned model

Fine-tuned model info {

 "object": "fine_tuning.job",

 "id": "your model id",

 "model": "gpt-3.5-turbo-0613",

 "created_at": 1693347869,

 "finished_at": 1693348340,

 "fine_tuned_model": "ft:gpt-3.5-turbo-0613:personal::7t1Xuct5",

 "organization_id": "org-jWkYw8hPpaNwkesXezsWOwK8",

 "result_files": [

 "file-ro0BoeariIjOl7NSGRC80v8r"

],

 "status": "succeeded",

 "validation_file": null,

 "training_file": "file-InGnigMTto3YLrsiLuIUr7ty",

 "hyperparameters": {

 "n_epochs": 10

 },

 "trained_tokens": 5930

}

The fine-tuned model

You can see helpful information, including the model type, the model ID, the
hyperparameters used, and so on.

Now, we can use the fine-tuned model to generate new commentaries tailored
to the general public. Use the value corresponding to the fine_tuned_model
key of the previous listing to refer to your model ("ft:gpt-3.5-turbo-
0613:personal::7t1Xuct5" in the example).

To generate a new commentary, start a new chat session by using the
openai.ChatCompletion.create() method, as shown in Listing 7.5 and in
the generate-description.py script of the GitHub repository of the book. As a
use case, consider again the example of Figure 7.1.

Listing 7.5 How to generate a new commentary

import os

import openai

openai.api_key = os.getenv("OPENAI_API_KEY")

model_id = "ft:gpt-3.5-turbo-0613:personal::7t1Xuct5"

completion = openai.ChatCompletion.create(

 model=model_id,

 messages=[

 {

 'role': 'system',

 'content': 'You are a data analyst showing data to the general public.',

 },

 {

 'role': 'user',

 'content': 'Top sports: rowing (62%) and cycling (58%)'

 },

],

)

print(completion.choices[0].message)

Generating a new commentary

Create a new ChatCompletion instance by specifying the model ID and the
list of messages. The example defines only one message with the same
system role as the fine-tuning dataset and the user role with a short
description of our scenario.

Listing 7.6 shows an example of a possible produced output.

Listing 7.6 An example of a possible produced output

{

 "role": "assistant",

 "content": " \"The most popular sports are rowing and cycling with 62% and 58% of people practicing them respectively.\""

}

A possible output of the fine-tuned model

The output contains the role (assistant) and the content.

Incorporate the produced content into your chart as a commentary. This
example has demonstrated how you can perform model fine-tuning using a
manual dataset. In the example, the produced output is straightforward. If you
want your model to produce more complex outputs, you must complicate
your fine-tuning dataset, for example by adding new pairs (prompt,
completion) specifically designed for your audience or your topic.

Just for comparison with the fine-tuned model, Figure 7.11 shows the output
produced by ChatGPT (without fine-tuning) with a similar input.

Figure 7.11 The output produced by ChatGPT without fine tuning

Now that you have learned how to build your dataset manually, let’s move on
to the next strategy, building from sources.

Building from sources

This strategy involves building your dataset from external sources, such as
your company website, a domain-specific blog, etc. For example, if you work
in the health field, you could download the title and abstracts of scientific
papers about health. This enables you to build a dataset with a very domain-
specific language. Or, if you work in the ICT field, you can download the
titles and subtitles of blog articles from feeds to build your technical dataset.
Anyway, you must pay attention to the data license in all cases. If the right
explicitly prohibits their usage, you cannot use them, and you must search for
other data sources. In some cases, contacting the data author directly could be
sufficient, for example, if you want to download their data.

In the remainder of this section, we will build a dataset tailored to a technical
audience by extracting feeds from my Medium blog. The objective is to build
a chart title corresponding to the blog title, provided the blog subheading as
an input. You can find the example in the GitHub repository of the book
under 07/from-source-chatgpt-fine-tuning.

First, download the data. Ask Copilot to generate the code for you. Listing
7.7 shows the instructions for Copilot.

Listing 7.7 The instructions for Copilot

import required libraries

extract the title and link from the following rss/feed url: https://alod83.medium.com/feed

for each extracted link, extract the subheading from the article

create a dataframe with the following columns: 'prompt', ‘completion’

save the dataframe to a csv file called 'medium-articles.csv'

Writing the instructions for Copilot

Specify the feed URL and the information to extract for each item. Also, ask
Copilot to generate the code to save the extracted items into a CSV file.

Copilot will generate an output similar to that shown in Listing 7.8. Set the
prompt to the subheading and the completion to the title. Save the script and
run it. You can find the code generated by Copilot in the GitHub repository
of the book, in the script download-raw-data.py. You should see the
medium-articles.csv file in your working directory.

Listing 7.8 How to extract data from feeds

import feedparser

import pandas as pd

import requests

from bs4 import BeautifulSoup

url = 'https://alod83.medium.com/feed'

feed = feedparser.parse(url)

titles = []

links = []

subheadings = []

for entry in feed.entries:

 titles.append(entry.title)

 links.append(entry.link)

 print(entry.link)

 response = requests.get(entry.link)

 soup = BeautifulSoup(response.content, 'html.parser')

 subheading = soup.find('h2', attrs={'class': 'pw-subtitle-paragraph'}).text

 subheadings.append(subheading)

df = pd.DataFrame({'prompt': subheadings,'completion': titles})

df.to_csv('medium-articles.csv', index=False)

Extracting data from feeds

Use the feedparser, requests, and bs4 libraries. If you don’t have them in

your environment, install them using the pip package manager.

Once you have built the dataset, follow the procedure described in the manual
building section (Section 7.4.1) to fine-tune the dataset (Listings 7.2-7.6).
You can find the complete example in the GitHub repository of the book.

To test the fine-tuned model, provide the following prompt as input: A chart
on selecting the best sport to fund. The model generates an output similar to
the following: How to Choose the Best Sport to Fund: A Data-Driven
Approach. Try a similar prompt with ChatGPT. Figure 7.12 shows a possible
output. Since ChatGPT is not fine-tuned, you must specify more details in
your prompt, as previously seen. Instead, for your fine-tuned model,
describing the content in your prompt is sufficient.

Figure 7.12 The output produced by ChatGPT

Now that you have learned how to perform fine-tuning for data storytelling,
let’s move on to the next strategy to adapt your model to your specific
context: Retrieval Augmented Generation (RAG).

7.4.2 Retrieval Augmented Generation

So far, you have seen how to adapt an LLM to a context by building an ad-
hoc dataset. The effort, in this case, consists in preparing the dataset. Imagine
how nice it would be to pass a text directly to the LLM without converting it
to a specific format. Well, the good news is that this is possible thanks to
Retrieval Augmented Generation (RAG).

RAG is an advanced Natural Language Processing (NLP) technique that
combines elements of information retrieval and text generation. First, RAG
performs a retrieval step, which queries an external knowledge source, such

as a vast text corpus or a structured database. Next, RAG uses this knowledge
source to enhance its response generation. RAG integrates the retrieved facts
into its generated text.

In the data storytelling domain, you can use RAG to adapt your LLM to your
specific topic, such as a product, real-time data, customer reviews, and other
relevant information. For instance, by querying the knowledge base for
specific product details, you can generate ad-hoc commentaries and
annotations.

Imagine you want to build a RAG-based system that retrieves information
about a product from your website company. Figure 7.13 shows the
architecture of the RAG system we will implement.

Figure 7.13 A RAG-based system

First, we will download the text from a specified URL, split it, and represent
it as vectors we store in a vector database. We will provide the vector
database as an input to an LLM application, which can answer queries by
querying the vector database. We will implement an example that generates
commentaries for a specific smartphone, based on its description contained in
an HTML page. In practice, we will load the HTML page into the vector
database and then we will implement an LLM application to query it. We will
use LangChain to implement the LLM application, Chroma for the vector
database, and OpenAI for the LLM to make everything work. For more
details on how to install these tools, refer to Appendix A.

In the remainder of this section, you will learn how to implement the

described system. We will start by introducing LangChain. Next, we will see
how to store data in Chroma, and finally, you will learn how to query the
built system.

Introducing LangChain

LangChain is a framework that enables you to create applications that
connect an LLM to other sources. LangChain supports different providers
like OpenAI, Google, Microsoft, Hugging Face, and many more. In this
book, we will focus on the models provided by OpenAI.

The core idea behind LangChain is the concept of a chain, which consists of
several components from different modules. There are three main
components:

LLM wrappers - wrappers for LLMs provided by external providers,
such as OpenAI and Hugging Face
Prompt templates - templates for different prompts, such as chatbot,
question-answering, etc.
Indexes - external structures you can use to provide additional context to
an LLM.

In addition, the LangChain-based applications are context-aware because
they connect LLM to external sources. In addition, such applications are
useful because they can answer questions based on the provided context,
what actions to take, etc.

The most straightforward chain consists of just one LLM chained with a
prompt that enables you to query the model.

In the remainder of this section, we will implement a LangChain composed
of the components shown in Figure 7.14: the vector database (Chroma), the
prompt template, the LLM model (GPT-3.5-turbo, provided by OpenAI) and
the retrieval interface.

Figure 7.14 The implemented architecture

You can find the full code described in this example in the GitHub repository
of this book, under 07/rag.

Let's start with the first component, the indexer.

The Indexer: Using Chroma

Chroma[1] is an embedding database you can use as an indexer for your
LangChain. To install and configure Chroma, refer to Appendix A. An
embedding is a numerical representation of data that is easy to index and
retrieve, often for real-time tasks (Lane and Dyshel 2024). Before storing a
text in Chroma, we must convert it into vector embeddings. For more details
about embeddings, refer to the bibliography of this chapter.

Consider the product description available on a hypothetical website as
shown in Figure 7.15. The objective of our task is to store the product
description shown in Figure 7.15 in Chroma.

Figure 7.15 The HTML page with the product description

The first step involves loading the data from the URL, as shown in Listing
7.9. Since Chroma is fully integrated with Langchain, we will use Langchain
to accomplish our task. LangChain supports multiple formats, including
PDFs, URLs, etc.

Listing 7.9 How to load the HTML document in LangChain

from langchain.document_loaders import UnstructuredHTMLLoader

from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.vectorstores import Chroma

from langchain.embeddings import OpenAIEmbeddings

from langchain.chains import RetrievalQA

from langchain.prompts import PromptTemplate

from langchain.chat_models import ChatOpenAI

load data

loader = UnstructuredHTMLLoader('product.html')

data = loader.load()

Loading a text in LangChain

To load an HTML document in Langchain, build an UnstructuredLoader()
object.

Next, split data in chunks of 20, as shown in Listing 7.10. We could have
chosen any number smaller than the total text size for the chunk size.

Listing 7.10 How to split the text in chunks

text_splitter = RecursiveCharacterTextSplitter(

 chunk_size = 100,

 chunk_overlap = 20,

 length_function = len,

 is_separator_regex = False,

)

splitted_data = text_splitter.split_documents(data)

Splitting the text

Create a RecursiveCharacterTextSplitter() object to split the text into
chunks.

After that, convert the split text into embeddings and store them in Chroma,
as shown in Listing 7.11.

Listing 7.11 How to generate embeddings in Chroma

embeddings = OpenAIEmbeddings()

store = Chroma.from_documents(

 splitted_data,

 embeddings,

 ids = [f"{item.metadata['source']}-{index}" for index, item in enumerate(splitted_data)],

 collection_name='Product-Info',

persist_directory='db',

)

store.persist()

Generating embeddings from split text

First, create a new OpenAIEmbeddings() object. Next create a Chroma store
with the split data and the embeddings and associate it with the collection
Product-Info. Finally, store the Chroma store on the filesystem using the
persist() method.

Now our vector store is ready, so we can move on to the next step, defining a
prompt template.

Defining a Prompt Template

A prompt template is a pre-defined text used for generating prompts for
LLMs. A prompt template may include instructions, examples, context and
questions appropriate for your task. Listing 7.12 shows an example of a
prompt we can provide as an input to our system.

Listing 7.12 How structure a prompt template

template = """You are a bot that answers questions about the product New SmartX 2023, using only the context provided.

If you don't know the answer, simply state that you don't know.

{context}

Question: {question}"""

prompt = PromptTemplate(

 template=template, input_variables=['context', 'question']

)

Creating a prompt template

First, define the structure of your template. Use brackets to define input
variables. In the example, there are two variables: context and question.
Next, create a new PromptTemplate() object, and pass it the template and the
input variables are parameters.

Once we have built the prompt template, we are ready to proceed with the
last step, retrieval and query.

Retrieval Interface

A retrieval interface is an interface that enables us to combine the data stored
in the Chroma database and the OpenAI LLM. We can use a retrieval to
query our system and generate commentaries and annotations to incorporate
in our charts. Listing 7.13 shows an example of the usage of a retrieval.

Listing 7.13 How to build a retrieval

llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo')

qa = RetrievalQA.from_chain_type(

 llm=llm,

 chain_type='stuff',

 retriever=store.as_retriever(),

 chain_type_kwargs={'prompt': prompt, },

 return_source_documents=True,

)

print(

 qa('Describe the product New SmartX 2023 using 30 words')

)

Creating a retrieval object

First, create an LLM instance using ChatOpenAI(). Set the temperature to 0
for conservative output. The temperature spans from 0 (low creativity) to 1
(high creativity). Set the model to GPT-3.5-turbo. Next, create a retrieval
interface using RetrievalQA(), by specifying the LLM, the vector store
(retriever), the prompt and other parameters. Set the chain_type to stuff, a
pre-packaged document chain, that takes a list of documents, inserts them
into the prompt which is then passed to the LLM. Finally, ask the question.

Listing 7.14 shows the produced output. You can insert the produced text
(highlighted) in your chart.

Listing 7.14 The produced output

{'query': 'Describe the product New SmartX 2023 using 30 words',

 'result': 'The New SmartX 2023 is a cutting-edge smartphone with a 5.7-inch Super AMOLED display and a high-quality camera that captures breathtaking landscapes and detailed close-ups.

 'source_documents':

 [Document(page_content='© 2023 SmartX Technologies. All rights reserved.',

 metadata={'source': 'product.html'}),

 Document(page_content='Get ready to experience the future with the all-new SmartX 2023. This cutting-edge smartphone',

 metadata={'source': 'product.html'}),

 Document(page_content='Introducing the New SmartX 2023\n\nKey Features:\n\n5.7-inch Super AMOLED Display',

 metadata={'source': 'product.html'}),

 Document(page_content="you're taking breathtaking landscapes or detailed close-ups, the SmartX 2023's camera delivers",

 metadata={'source': 'product.html'})

]

}

The produced output

The output contains the text to insert in the chart (highlighted) and other
useful information, such as the original query and the source documents.

Now that you have learned how to apply LLMs to build context in data
storytelling, let’s move on to a practical example.

7.5 Case Study: From Information to Knowledge
(part 1)

In the previous chapter, we have analyzed how to turn data to information in
the aquaculture case study. Just for a quick reminder, the case study involved
building a story around the problem of safety in the salmon aquaculture in the
U.S. We decided to plot the salmon aquaculture sales trendline versus the
other types of aquaculture. As an insight, we discovered that since 1998 there
has been an increase in sales, following a period of decrease in sales from
1992 to 1998. We discovered that the decreasing period was partially due to
some health problems in the salmon aquaculture. Figure 7.16 shows the chart
produced at the end of the first step of the DIKW pyramid, from data to
information.

Figure 7.16 The chart produced at the end of the data-to-information phase

To transform the chart into a data story, the next step involves turning
information into knowledge. We will do it by:

Some design considerations to tailor the chart to the audience
Adding a commentary describing the general situation regarding safety
in aquaculture
Adding an annotation and a symbol to highlight the period of decrease
in sales.

Let’s start with the first point, tailoring the chart to the audience.

7.5.1 Tailoring the Chart to the Audience

The scenario required to present the data story to an audience of executives,
who require a chart easy to understand to make decisions quickly. In general,
executives are familiar with trend lines, so we do not need to modify the
chart. In addition, the chart is neither too detailed nor too simple. It contains
the right level of detail that allows the audience not to be overwhelmed by
information. Additionally, the chart doesn't give the impression of being
sparse. Therefore, we can conclude that the chart type is perfect for our
audience.

We also suppose that our audience is familiar with the $ symbol on the y-axis
and the years on the x-axis, so we do not need to add any further
specifications. We can leave the comparison between the salmon trendline
and the others because it is useful for our audience to understand how the
salmon sales behave compared to the other categories. It is not necessary to
add further details.

Challenge: How could you tailor the chart to the general public or to an audience of
professionals?

For the general public, you could consider simplifying the chart, for example
by reducing the number of years. You may also need to better explain the y-
axis meaning. For professionals, you could add more details, such as points
with values for each year or you could even show the other aquaculture
categories.

Now that we have discussed some design considerations to tailor the chart to
the audience, let’s move on to the next step, adding a commentary. We will
use RAG to generate the commentary.

7.5.2 Using RAG to Add a Commentary

We will add a commentary to the chart immediately under the title. Our
commentary should explain how safety works in the U.S. aquaculture. We

will build the commentary based on the Aquacultured Seafood document,
which is an official website of the United States government. This document
describes, among other aspects, the safety of aquaculture seafood.

You can implement a RAG-based system that builds required commentary
using the code implemented in Listing 7.4.2. You only need to ask this
question: Describe the Safety of Aquaculture Seafood in the U.S.. The code of
the implemented RAG system is also available in the GitHub repository of
the book, under CaseStudies/aquaculture/from-information-to-
knowledge/rag.py. Listing 7.15 shows the produced output, containing the
required commentary.

Listing 7.15 The produced output

{'query': 'Describe Safety of Aquaculture Seafood in the U.S.', 'result': 'Aquaculture seafood in the U.S. is regulated by the FDA to ensure safety. Strict standards are in place to monitor water quality, feed, and disease control. Regular inspections and testing are conducted to minimize risks and protect consumers.', 'source_documents': [Document(page_content='Safety of Aquaculture Seafood', metadata={'source': 'aquaculture.html'}), Document(page_content='Regulatory Requirements for Aquacultured Seafood', metadata={'source': 'aquaculture.html'}), Document(page_content='Domestic Aquaculture Seafood', metadata={'source': 'aquaculture.html'}), Document(page_content='for additional information on how the FDA ensures the safety of imported seafood products.', metadata={'source': 'aquaculture.html'})]}

The produced output

Use the produced output as a commentary for the chart.

Now we can add this text as a commentary for our chart. Listing 7.16 shows
only the modifications to our original chart including the commentary. You
can find the complete code in the GitHub repository of the book, under
CaseStudies/aquaculture/from-information-to-knowledge/chart.py.

Listing 7.16 The commentary

commentary = ['Aquaculture seafood in the U.S. is regulated by the FDA to ensure safety. Strict standards are in place to monitor water quality, feed, and disease control.',

'Regular inspections and testing are conducted to minimize risks and protect consumers. (Source: U.S. Food and Drug Administration)'

]

base = alt.Chart(df).encode(

 x=alt.X('YEAR_ID:O', title=''),

 y=alt.Y('AMOUNT', title='$',axis=alt.Axis(format='.2s')),

 color=alt.Color('CATEGORY',

 legend=None,

 scale=alt.Scale(range=range, domain=domain)

)

).properties(

 width=800,

 height=400,

 title=alt.TitleParams(

 text='Aquaculture Exports of Salmon in the U.S.',

 subtitle=commentary,

 fontSize=20,

 subtitleFontSize=14,

 align='left',

 anchor='start',

 offset=20,

 color=color,

 subtitleColor='black'

)

)

Adding a commentary to the chart

Use the title property to add a commentary to the chart, immediately before
the title. Also, add a provisory title to the chart.

The next step involves highlighting the period of decrease in sales. So, let’s
proceed with it.

7.5.3 Highlighting the Period of Decrease in Sales

The period of decrease in sales ranges from 1992 to 1998. We want to
highlight it to let the audience know that during this period there were health
problems in the salmon aquaculture. This will prepare the audience to
consider respecting the safety rules to avoid having the same problems in the
future. We will add two elements to highlight this decreasing period:

A light-gray rectangle covering the decreasing period
A textual annotation describing the health problems.

Listing 7.17 shows the code to build the rectangle.

Listing 7.17 The rectangle

N = 100000000 #A

y = df['AMOUNT'].max() + N

rect_df = pd.DataFrame({'x': [1992],

 'x2': [1998],

 'y' : [0],

 'y2': [y]

 })

rect = alt.Chart(rect_df).mark_rect(

 color='lightgrey',

 opacity=0.5

).encode(

 x='x:O',

 x2='x2:O',

 y= 'y:Q',

 y2= 'y2:Q'

)

Adding a rectangle to the chart

First, build a DataFrame with the rectangle coordinates. Next draw the
rectangle using mark_rect().

Challenge: Which instructions could you write for Copilot to speed-up the coding process?

You could try adding the following instruction to generate the rectangle: #
Add a rectangle starting from 1993 to 2000. Which output do you obtain?

Listing 7.18 shows the code to add the annotation The decline in sales was
partially due to fish health issues.

Listing 7.18 The annotation

ann_df = pd.DataFrame({'x': [1992, 1992, 1992],

 'y': [y, y-N/3*2, y-N/3*4],

 'text': ['The decline in sales was',

 'partially due to fish',

 'health issues']

 })

annotation = alt.Chart(ann_df

).mark_text(

 align='left',

 baseline='middle',

 fontSize=14,

 dx=5,

 dy=10

).encode(

 x='x:O',

 y='y:Q',

 text='text:N'

)

chart = (chart + text + rect + annotation

).configure_axis(

 labelFontSize=14,

 titleFontSize=16,

 grid=False

).configure_view(

 strokeWidth=0

)

chart.save('chart.html')

Adding an annotation

First, build a DataFrame with the annotation text and its position information.
Next, draw the annotation using mark_text(). Finally, plot and save the
chart.

Figure 7.17 shows the final chart, after adding context. We have turned
information into knowledge. In the next chapter, we will further enrich
context by adding some images, and in Chapter 9, we will complete the story,
by adding the next step, wisdom.

Figure 7.17 The chart produced at the end of the information-to-knowledge phase

Now that you have implemented a practical example to turn information into
knowledge, let’s further practice through a practical exercise.

7.5.4 Exercise

Modify the previous chart as follows:

1. Tailor the chart to an audience of professionals
a. Add points to the salmon line chart. Suggestion: use point=True as

a parameter of mark_line()
b. Add values for each point. Suggestion: use mark_text() to add

values for each point
2. Implement a RAG-based system to extract an annotation for the

decreasing period from the Governor’s Task Force on the Planning and
Development of Marine Aquaculture in Maine Report and
Recommendations (pp. 28-32). Suggestion: use PDFMinerLoader() to
extract data from PDF. You may need to install some additional Python
packages, including pdf2image, pdfminer, and pdfminer.six. You can
find the solution in the GitHub repository of the book, under
CaseStudies/aquaculture/from-information-to-knowledge/rag-
annotation.py

In the first part of this chapter, you have learned how to turn information into
knowledge by adding context to your data visualization chart. You have seen

that context depends on the audience reading your chart. For example, if your
chart will be read by a general public, avoid technical details, and use an
appealing visualization. Instead, if your chart will be read by technical
experts, add the many details as you can, while keeping the chart easy to
read. In the second part, you have seen how to use generative AI tools as
assistants to build your context. Finally, you have learned where to put the
textual context in your chart.

In the next chapter, you will see how to add images to your chart to enrich
context.

7.6 Summary

Adding context to your data visualization is crucial for turning
information into knowledge. Textual context includes all the relevant
facts and events useful for the audience to understand data
When you build a chart, tailor it to the audience. In general, there are
three types of audiences: the general public, professionals, and
executives.
Use generative AI tools as assistants to help create context for your data.
In particular, use ChatGPT to generate commentaries and annotations.
If ChatGPT needs to know custom data or topics, extend your LLM with
fine-tuning or RAG.
Fine-tuning enables you to optimize a pre-trained LLM based on a
dataset of prompt, completion pairs.
Retrieval Augmented Generation (RAG) uses an external database,
called vector database, to extend the LLM knowledge with domain-
specific topics.

7.7 References

Embeddings

Lane, H. Dyshel, M. (2024) Natural Language Processing in Action,
Second Edition. Manning Publications
OpenAI Embeddings

https://platform.openai.com/docs/guides/embeddings (Last Access
2023/10/10)

Fine-tuning

Bantilan, N. (2023) Fine Tuning vs. Prompt Engineering Large
Language Models https://mlops.community/fine-tuning-vs-prompt-
engineering-llms/ (Last Access 2023/09/21)
Jolley, E. (2023) Introduction To Retrieval Augmented Generation
https://arize.com/blog-course/introduction-to-retrieval-augmented-
generation/ (Last Access 2023/09/21)
Marcelo X (2023) How to fine-tune OpenAI GPT
https://medium.com/@marceloax.br/how-to-fine-tune-openai-gpt-3-
d06741f915f4 (Last Access 2023/09/21)
OpenAI API Fine-tuning https://platform.openai.com/docs/guides/fine-
tuning (Last Access 2023/09/21)

LangChain

Biswas, A. (2023) How to work with LangChain Python modules
https://www.packtpub.com/article-hub/how-to-work-with-langchain-
python-modules (Last Access 2023/09/17)
Namaldesign Introduction to Langchain
https://www.geeksforgeeks.org/introduction-to-langchain/ (Last Access
2023/09/21)
Pinecone LangChain: Introduction and Getting Started
https://www.pinecone.io/learn/series/langchain/langchain-intro/ (Last
Access 2023/09/21)

LLM

De Angelis, L., Baglivo, F., Arzilli, G., Privitera, G. P., Ferragina, P.,
Tozzi, A. E., & Rizzo, C. (2023). ChatGPT and the rise of large
language models: The new AI-driven infodemic threat in public health.
Frontiers in Public Health, 11, 1166120.
https://doi.org/10.3389/fpubh.2023.1166120

Google Developers. Introduction to Large Language Models
https://developers.google.com/machine-learning/resources/intro-llms?
hl=en (Last Access 2023/09/17)

RAG

Jolley, E. (2023) Introduction To Retrieval Augmented Generation
https://arize.com/blog-course/introduction-to-retrieval-augmented-
generation (Last Access 2023/09/17)
Needham, M. (2023) Retrieval Augmented Generation with
OpenAI/GPT and Chroma https://www.youtube.com/watch?
v=Cim1lNXvCzY (Last Access 2023/09/17)
Needham, M. (2023) Vector search LLM
https://github.com/mneedham/LearnDataWithMark/tree/main/vector-
search-llm (Last Access 2023/09/17)
Routu, V. (2023) Answering with OpenAI and LangChain: Harnessing
the Potential of Retrieval Augmented Generation (RAG)
https://www.linkedin.com/pulse/transforming-question-answering-
openai-langchain-harnessing-routu/ (Last Access 2023/09/17)
Schwaber-Cohen, R. What is a Vector Database?
https://www.pinecone.io/learn/vector-database (Last Access 2023/09/21)

Thinking for the Audience

Bettes, S. (2019) Technical and professional writing genres
https://open.library.okstate.edu/technicalandprofessionalwriting/chapter/chapter-
2/ (Last Access 2023/09/21)
Chip How to Identify Your Audience for Impactful Data Storytelling
https://www.quanthub.com/how-to-identify-your-audience-for-
impactful-data-storytelling/ (Last Access 2023/09/21)
Emery, A.K. (2021) Why “Know Your Audience” is Terrible Dataviz
Advice—and What to Do Instead https://depictdatastudio.com/why-
know-your-audience-is-terrible-dataviz-advice-what-to-do-instead/ (Last
Access 2023/09/21)
Technical Marketing How to you engage and nurture your technical
audience https://www.linkedin.com/advice/0/how-do-you-engage-

nurture-your-technical-audience (Last Access 2023/09/21)
WirelessLAN Professionals How to present to a technical audience
https://wlanprofessionals.com/how-to-present-to-a-technical-audience/
(Last Access 2023/09/21)

Transformers

Koenigstein, N. (2024) Transformers in action. Manning Publications
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in
neural information processing systems, 30.

[1] https://www.trychroma.com/

8 From Information to Knowledge:
Building the visual context
This chapter covers

Emotions: The Foundations of Visual Context
Colors, Size, and Interaction
Using DALL-E for Images
Strategic placement of textual and visual context
Implementing an example

In this chapter, we will review the basic concepts behind visual context in a
data story with a focus on emotions. We will describe how to set color, size
and interactivity in a data story. Next, we will deepen the usage of DALL-E
for building images. Afterward, we will focus on how to place the context in
your chart. Finally, we will focus on a practical case study implementing the
described concepts.

8.1 Emotions: The Foundations of Visual Context

I went to the Natural History Museum with my family some time ago. There
were many animals, reconstructions of archaeological excavations, some
primitive men, and much more. At the end of the visit, the children were so
enthusiastic that they talked about nothing else. Again, after a few days, the
youngest told me he wanted to build an archaeological excavation in his
grandmother's garden! The same should happen with our stories: our
audience should still talk about it after some time. To make our story
memorable, there is a way that directly involves our audience: emotions.
Emotions are central to perceiving, interpreting, and remembering visual
information. Emotions bridge the gap between raw data and human
comprehension. Visual stimuli trigger emotional responses, influencing our
perception and engagement with what we see.

The Collins dictionary defines an emotion as a feeling such as happiness,
love, fear, anger, or hatred, which can be caused by the situation that you are
in or the people you are with.

Emotions play a crucial role in the effectiveness of visual communication.
The visual context, including colors, shapes, and layout, can evoke specific
emotional responses in the audience. For instance, warm colors like red and
orange might evoke feelings of excitement or urgency, while cooler tones
like blue and green can convey calmness or trust. Intentionally using these
emotional cues in visual elements can significantly impact how information
is perceived and retained by the audience.

In their book, Communicate to Influence: How to Inspire Your Audience to
Action, Ben and Kelly Decker, explain that we can understand emotions
through the dual dimensions of energy and mood, which help categorize
various emotional states based on the level of positivity/negativity of the
emotion, as shown in Figure 8.1 (Decker 2015).

Figure 8.1 Macro categories for emotion classification

Emotions can vary widely along these dimensions, and individuals may
experience and express emotions in unique ways based on their personal and
cultural backgrounds.

Considering the energy axis (x-axis), we have two types of emotions:

High-energy emotions are often associated with heightened
physiological arousal. They typically involve activating the body's "fight
or flight" response. Examples of high-energy emotions include
excitement, anger, and fear. These emotions are characterized by
increased heart rate, heightened alertness, and a sense of urgency. High-
energy emotions are often expressed through animated body language,
enthusiastic gestures, and rapid speech.
Low-energy emotions involve reduced physiological arousal. A sense
of calm and relaxation characterizes them. Examples of low-energy
emotions include contentment, tranquility, and sadness. People
experiencing low-energy emotions may exhibit slower movements, a
quieter demeanor, and reduced physical tension. Low-energy emotions
often lead to contemplation and introspection.

Considering the mood axis (y-axis), we have two types of emotions:

High-mood Emotions are associated with positive valence, which
evokes happiness, joy, and positivity. These emotions create an
optimistic mood. High mood emotions often lead to smiles, laughter,
and general well-being. Examples include happiness, excitement, and
love.
Low-mood Emotions are characterized by negative valence, leading to
feelings of sadness, anger, or anxiety. These emotions create a more
somber mood. Low mood emotions may result in expressions of
sadness, frowns, and a general sense of distress. Examples include
sadness, fear, and anger.

We can combine mood and energy to generate different emotions, as shown
by the emoticons in Figure 8.1.

Incorporating emotions in data stories is not a mere aesthetic choice but a
strategic approach to conveying knowledge. By aligning emotions with the
intended message, we can transform the audience's passive reception of
information into an active quest for knowledge and understanding. For
example, high-energy emotions can capture immediate attention and incite
curiosity, driving the viewer to explore the visual content more deeply.

Conversely, low-energy emotions can encourage reflection, allowing the
audience to contemplate the content more profoundly.

The quickest and most effective way to arouse emotions is through sight. Just
as my children at the Natural History Museum were impressed by what they
saw, our audience should be impressed by what they see in our visual
representations. There are different ways to capture the audience’s attention
through sight, such as chart colors, size, interactivity, and images. There are
tons of books and resources dealing with all these types of sights thus, this
book will give only a general overview of them with a focus on how to
configure them in Altair. You can refer to the bibliography for more details.
In addition, this chapter will focus on how to use Generative AI, specifically
DALL-E, to generate images with specific emotions.

Let’s start with a general overview of colors and how to implement them in
Altair.

8.2 Colors

Color helps communicate a message by setting the scene and the tone. It
creates an emotional connection between the data and the audience. Color
comprises three main components:

Hue is the dominant color wavelength. It identifies color family or color
name (such as red, green, purple)
Saturation describes the intensity of that color. It defines how pure a
color is
Brightness measures how light or dark a color appears.

In the previous chapters, we saw that every data story has a main character
and an adversary. When drawing a chart, choose a primary color to highlight
your main character, and always use it when referring to them. Use an
alternative color for your adversary, but if you want to move the adversary to
the background, use a gray tonality for them. You can choose colors using
one of the following palettes:

Sequential color palettes organize quantitative data from high to low

using a single color in various gradients or saturations. Use this palette
to show a progression rather than a contrast (Figure 8.2).

Figure 8.2 An example of a sequential color palette

Diverging color palettes highlight the ranges of quantitative data by
using two contrasting hues on the extremes and a lighter-tinted mixture
to highlight the middle range. A diverging palette shows where data are
on a spectrum, such as cold to hot (Figure 8.3). Cold could represent
lower quantitative data values, typically depicted with a cooler hue,
while hot could refer to higher values, often represented with a warmer
hue.

Figure 8.3 An example of a diverging color palette

Qualitative color palettes highlight qualitative categories. This palette
type uses a different hue for each concept to represent (Figure 8.4).

Figure 8.4 An example of a qualitative color palette

You can use colors to focus attention and highlight important information the

chart wants to show. In addition, use color to create associations, such as
brown and green, to recall nature and shades of yellow if you talk about bees.
You can even use colors to evoke emotions, such as red for energy and blue
for peace. Do not use overlapping colors to represent different concepts or
too many colors.

Challenge

Consider the case study implemented in Chapter 5 about homeless people.
We used a tonality of green to color bars. This should evoke hope in the
audience. The objective of the color was to demonstrate that our project
would help solve the homeless problem. What happens if we use another
color, such as #6F4E37 (coffee)? Probably, the message we transmit to the
audience is that our project will not solve the homeless problem.

8.2.1 Setting Colors in Altair

In the previous chapters, we have seen how to set colors in Altair using the
color channel. In this section, we will give more details about it. The
following listing shows a quick reminder of how to use colors in Altair:

Listing 8.1 Setting color in Altair

import pandas as pd

import altair as alt

df = pd.DataFrame({

 'Category' : ['A', 'A', 'B', 'B', 'C', 'C', 'C'],

 'Cost' : [12,45,64,23,45,78,72],

 'Sales' : [34,56,45,34,44,23,23],

 'Product' : ['P1','P2','P3','P4','P5','P6','P7']

})

chart = alt.Chart(df).mark_bar().encode(

 x=alt.X('Product:N'),

 y=alt.Y('Cost:Q'),

 color=alt.Color('Category:N')

)

chart.save('chart.html')

How to set color in Altair

Use the alt.Color() channel to set the color.

The color channel may receive a specific color palette using the scheme
parameter as input. Refer to the Altair documentation for the supported
palettes. In addition, you can use the scale parameter to specify the range and
the domain of your colors.

The range parameter specifies the output range of the scale. For
example, when mapping a quantitative variable to color, use a color
scale ranging from blue to red. Specify the range as a list of colors or as
one of Altair's built-in color schemes.
The domain parameter specifies the input domain of the scale. For
example, if we have a quantitative variable with values between 0 and
100, set the domain of a color scale to [0, 100].

8.2.2 Exercise: Setting Colors

Consider the case study implemented in Chapter 3, Population in North
America over the last 50 years. You can find the complete code of this case
study in the GitHub repository of the book, under
CaseStudies/population/population.ipynb. The final data story compared the
population in North America with that in the rest of the world and showed a
gap of 367 million people. We used a tonality of green to represent the North
American trend line.

1. Change the color of the main chart (i.e., the chart showing the difference
from 1960) to #963232 (a tonality of red), while keeping the green
tonality to the next step chart (i.e., the chart entitled Strategies for
Population Growth in North America).

2. Compare the obtained results with the chart implemented in Chapter 3.
Did the use of different colors change the message in any way? You will
probably notice a negative emphasis on the fact that population growth
in North America is slower than in the rest of the world. However, the
next steps still remain optimistic.

A Possible Solution

There are different ways to obtain the same result. A possible solution is to
set the colors locally for each chart. For example, you can set the colors for
the next step charts as shown in the following listing.

Listing 8.2 Setting color in the next step chart

color='#80C11E'

df_cta = pd.DataFrame({

 'Strategy': ['Immigration Development', 'Enhance Family-Friendly Policies', 'Revitalize Rural Areas'],

 'Population Increase': [20, 30, 15] # Sample population increase percentages

})

Creating the stacked column chart

cta = alt.Chart(df_cta).mark_bar(color=color).encode(

 x='Population Increase:Q',

 y=alt.Y('Strategy:N', sort='-x', title=None),

 tooltip=['Strategy', 'Population Increase'],

).properties(

 title=alt.TitleParams(

 text='Strategies for population growth in North America',

 color=color)

)

How to set color locally to a chart

Add a local color to a chart thus, when you configure all the layered charts,
this chart is not affected by the global configuration.

This example shows a basic example of conveying emotions using colors.
For more details, refer to specific books about the topic, such as those in the
bibliography. Now that you have learned the basic concepts of conveying
emotions using colors let’s move on to the next step, using size.

8.3 Size

When creating a chart, consider the size, as it can significantly affect how the
audience perceives your data. Size impacts your visual representation's

readability and overall impact and effectiveness. Choosing an appropriate
size for your chart depends on multiple factors, such as where you will
display it, what kind of content you want to show, and who will view it. The
best way to determine the correct size is through experimentation; try
different sizes until you land on one that looks good enough.

Moreover, choosing a smaller or larger-sized chart affects how much
information can fit into one frame without cluttering or squishing text
together. It also influences how easily readers can read all data points without
straining their eyes or getting lost in too many elements.

You can configure two types of sizes in a chart: font size and chart size.

8.3.1 Font Size

Font size directly affects the readability and comprehensibility of the data.
The font size should be set to make it easy for the reader to understand and
interpret the information presented in the chart.

When setting up a chart, you can specify different font sizes for different
chart components like titles, axis labels, or tick labels. A good practice is to
keep them consistent throughout your plot so that they look visually
appealing and organized.

By default, Altair sets the font size to 12px. However, you can adjust the font
size to make your charts more legible or to match the style.

To change the font size in Altair, identify which part of your visualization
you want to modify. Once identified, use Altair's configure_*() method
along with the axis, title, text, or legend property based on what component
you want to modify. You can then pass parameters like fontSize or
labelFontSize along with their desired value.

It is essential not to go overboard with increasing font sizes, as larger fonts
might lead to cluttered plots that are hard on eyesight. On the other hand,
smaller fonts may result in difficult-to-read charts. So always pick a
reasonable font size that complements your charts well without negatively
affecting readability.

8.3.2 Chart size

The final aspect to consider when setting the size of your Altair chart is the
actual chart size. You can adjust this using the width and height arguments in
your property. Both arguments are expressed in pixels.

There is no one-size-fits-all approach when determining the appropriate chart
size. It will depend on factors such as where you plan on displaying the chart,
what type of data it represents, and how much detail you want to include.

However, you can follow the following general guidelines:

If you want to create a simple chart to include in an email or
presentation slide, then use a smaller size
If you want to create a complex chart, use a smaller size.

To set the chart size in Altair, use:

properties(width=my_width, height=my_height) for single charts
configure_view(width=my_width, height=my_height) for single or
compound charts.

8.3.3 Exercise: Setting Size

Consider the case study implemented in Chapter 1, Increase the advertising
campaign on dog-related websites!

1. Change the size of the x-axis label only for the value 9, as shown in
Figure 8.5.

2. Compare the obtained result with the original chart. Is the chart clearer?

Figure 8.5 The case study of Chapter 1 with increased font size in correspondence of value 9.

Solution

The following listing shows how to encode the x-channel to increase the font
size for just one axis label.

Listing 8.3 Setting label size

x=alt.X('x:Q',

 scale=alt.Scale(domain=[0, 10]),

 axis=alt.Axis(tickMinStep = 1,

 grid=False,

 title=None,

 orient='bottom',

 labelFontSize=alt.condition(alt.datum.value == 9,

 alt.value(25),

 alt.value(12)))

),

How to set a label size based on a condition

Use the alt.condition() method to set the label size based on a condition.

Now that you have learned how to configure size in Altair, let’s move on to
the next step, interactivity.

8.4 Interaction

So far, we have implemented static charts that present a static story to the
audience. The benefit of this chart type is that you decide the story and guide
the audience through it. In other words, you don’t allow the audience to
explore data autonomously.

Adding interactive elements to a chart, such as buttons, menus, and zoom
options, transforms a static chart into a dynamic one. With a dynamic chart,
you build dynamic data stories, where the audience builds their own story.
With a dynamic chart, you lose control over the audience and the possibility
of having a focused and precise message. The audience is free to explore data
and extract their insights, potentially leading to other calls to action. For this
reason, it’s important to design in advance what parts of the charts you want
to make browsable by the audience based on the message to communicate.

Use interactive charts when you want the audience to explore data
dynamically or when dealing with large datasets. For example, for financial
data or in an educational context, an interactive chart allows the audience to
zoom in on specific timeframes or hover over data points for details.

Conversely, you may prefer static charts for simple presentations or reports
where the data doesn't require exploration. For instance, a static chart could
be ideal for a printed annual report that presents trends or comparisons
without needing user interaction. Additionally, in situations where the
message needs to be straightforward and consistent, static charts may be
more effective.

Consider, for example, the variant of the scenario described in Chapter 3,
Population in North America over the last 50 years. The chart contains a
dropdown menu enabling you to select the reference country to show in the
chart. This chart type is okay for a data exploratory phase, but it is not to
build a data story simply because it has no focus. Instead, if you focus on
North America and leave the audience the possibility to compare it with
another country, you are still telling the story about the population in North
America while giving the audience the freedom to compare it with other
countries.

There are two main types of interactivity:

Passive interactivity refers to features that allow the audience to
interact with the chart without changing its state, such as tooltips or
hover effects.
Active interactivity involves changing the chart's state in response to
user input.

In the remainder of this section, we will see how to add a tooltip, a slider, and
a dropdown menu to an Altair chart.

8.4.1 Tooltip

A tooltip is a tiny pop-up box that appears when you hover over certain chart
elements, such as data points or bars. To add a tooltip to your Altair chart,
specify which element(s) you want it to appear for. In Altair, you can do it
through the tooltip encoding channel using square braces [], as shown in
Listing 8.4. The example uses the population dataset of Chapter 3, focusing
on a completely different insight: the population growth in 2018 by
continents.

Listing 8.4 Setting a tooltip

import pandas as pd

import altair as alt

df = pd.read_csv('data/population.csv')

[...]

df = df[df['Country Name'].isin(continents)]

color = '#80C11E'

Create visualization

chart = alt.Chart(df).mark_bar(

 color=color

).encode(

 y=alt.Y('Country Name:O', sort='-x', title=''),

 x=alt.X('Population:Q'),

 tooltip=['Country Name', 'Population']

).transform_filter(

 alt.datum.Year == 2018

)

[...]

chart.save('tooltip.html')

How to set a tooltip

Use the tooltip channel to set a tooltip in Altair.

You can find the complete code of the example in the GitHub repository of
the book under 08/tooltip.py. Figure 8.6 shows a snapshot of a tooltip
produced when hovering over a bar.

Figure 8.6 An example of a tooltip

Now that you have learned how to generate a tooltip in Altair, let’s move on
to the next interactive element, the slider.

8.4.2 Slider

A slider is a graphical element that allows users to input or adjust a value
within a specified range by moving a visual indicator along a track or bar. To
build a slider in Altair, follow the steps described below:

1. Create a binding_range(), an object that defines the range of values to
which the slider can be set

2. Create a selection using the selection_point() method. The selection
is an object that defines how the slider will interact with chart

3. Add the selection to the chart using the add_params() method
4. Optionally, apply the transform_filter() method to the chart to show

only the selection.

Listing 8.5 shows an example of the usage of sliders. The example still uses

the population dataset of Chapter 3, focusing on the population growth over
the years by continents. You can find the complete code in the GitHub
repository of the book under 08/slider.py. The listing shows only the relevant
code to implement a slider. For the other details, read the code in the GitHub
repository.

Listing 8.5 Setting a slider

import pandas as pd

import altair as alt

df = pd.read_csv('data/population.csv')

[...]

color = '#80C11E'

slider = alt.binding_range(min=1960, max=2021,step=1)

select_year = alt.selection_point(name="Select", fields=['Year'],

 bind=slider)

Create visualization

chart = alt.Chart(df).mark_bar(

 color=color

).encode(

 y=alt.Y('Country Name:O', sort='-x', title=''),

 x=alt.X('Population:Q'),

).add_params(

 select_year

).transform_filter(

 select_year

)

[...]

chart.save('slider.html')

How to set a slider

After importing the required libraries, use the binding_range() function to
define a binding range for the slider with a minimum of 1960, maximum of
2021, and step size of 1. Next, use the selection_point() function to create
a selection named "Select" and specify the field it should bind to (in this case,

'Year') using the slider. After that, use the add_params() method to add the
select_year selection to the chart and the transform_filter() method to
filter the data based on the selected year from the slider.

Figure 8.7 shows a static representation of the resulting chart.

Figure 8.7 An example of a slider

Now that you have learned how to generate a tooltip in Altair, let’s move on
to the next interactive element, the dropdown menu.

8.4.3 Dropdown Menu

A dropdown menu is a graphical element that typically appears as a small
rectangular box with an arrow or triangle icon, indicating that additional
options or choices are available. When a user clicks or hovers over the
dropdown menu, a list of selectable items or options "drops down" or
expands below or above the menu. The user can then choose from the
available options by clicking on them. To create a dropdown menu in Altair,
follow these sequential steps:

1. Begin by generating a binding_select() object. This object defines the
list of values assigned to the dropdown menu.

2. Create a selection using the selection_point() method. This selection
object governs the interaction between the dropdown menu and the

chart.
3. Integrate the selection into the chart using the add_params() method.
4. Apply the transform_filter() method to display only the selected

data.

Listing 8.6 shows an example of the usage of a dropdown menu. The
example uses the population dataset of Chapter 3, focusing on the population
growth over the years by continent. The dropdown menu enables you to
select a specific continent. You can find the complete code in the GitHub
repository of the book under 08/dropdown.py. The listing shows only the
relevant code to implement a slide. For the other details, read the code in the
GitHub repository.

Listing 8.6 Setting a dropdown menu

import pandas as pd

import altair as alt

df = pd.read_csv('data/population.csv')

[...]

color = '#80C11E'

input_dropdown = alt.binding_select(options=df['Country Name'].unique())

select_country = alt.selection_point(name='Select',fields=['Country Name'], bind=input_dropdown, value=[{'Country Name': 'Africa Eastern and Southern'}])

Create visualization

chart = alt.Chart(df).mark_line(

 color=color

).encode(

 y=alt.Y('Population:Q', title=''),

 x=alt.X('Year:O'),

).add_params(

 select_country

).transform_filter(

 select_country

)

[...]

chart.save('dropdown.html')

How to set a dropdown menu

After importing the required libraries, use the binding_select() function to
define a binding selection for the dropdown menu. Next, proceed as you do
for sliders

Figure 8.8 shows a static representation of the resulting chart.

Figure 8.8 An example of a dropdown menu

Now it’s time to practice. So let’s proceed with an exercise.

8.4.4 Exercise: Setting Interactivity

Consider the case study implemented in Chapter 3, Population in North
America over the last 50 years. You can find the complete code of this case
study in the GitHub repository of the book, under
CaseStudies/population/population.ipynb.

1. Remove the Others line and add a dynamic line showing a selectable
continent from a dropdown menu, as shown in Figure 8.9. Leave the
North America line static.

2. Compare the obtained result with the original chart. For which type of
audience is this dynamic graph most suitable?

3. Optionally, adapt all the graph elements to the animations.

Figure 8.9 The case study of Chapter 3 with a dynamic dropdown menu for the continent to
compare with North America.

You can find the solution to the exercise in the GitHub repository of the
book, under 08/population-exercise.py

Now that you have learned how to introduce interactivity in Altair through
tooltips, sliders, and dropdown menus, let’s move to the next element,
images, focusing on DALL-E.

8.5 Using DALL-E for Images

Imagine reading a text that describes the following scene: a beautiful little
girl with black hair, wearing a yellow dress, and dark eyes, running in a green
meadow full of yellow flowers. You can use your creativity to set up the
scene in your mind, but this could require a little effort from your brain. Now
look at Figure 8.10 (realized with DALL-E), showing the same scene
visually. You see exactly what we described before, but surely you depicted
the scene differently in your mind.

Figure 8.10 An image of a little girl wearing a yellow dress

The same situation occurs when you describe the subject of your data story.
If you don't give a face to your subject and give only a general description,
your audience is free to imagine the subject in various ways depending on
their background. Instead, if you add one or more images to your data story,
you help the audience have a clear representation of the story's subject. You
will bring the audience up to the intended emotional level through images,
especially photos, and they will be more open to listening to your data story.
Adding images to a data story reinforces the context and prepares the
audience to accept the data story message.

In Chapter 4, you have already learned how to draw images in DALL-E and
insert them into a chart. In this section, you'll see how to use DALL-E-
generated images to evoke emotions. We’ll also look at how to maintain
consistency in the images we’re generating in DALL-E. Let’s start with
emotions.

8.5.1 Adding Emotions

The DALL-E book of prompts suggests some keywords to add emotions to
images. Figure 8.1 shows some possible adjectives associated with each
emotion category:

High Energy, Positive Mood - Bright, Vibrant, Dynamic, Spirited
High Energy, Negative Mood - Dark, Threatening, Haunting,
Forbidding

Low Energy, Positive Mood - Light, Peaceful, Calm, Serene
Low Energy, Negative Mood - Muted, Bleak, Funereal, Somber.

You can read the complete list of keywords in the DALL-E book of
prompts[1].

Using emotional keywords enables you to obtain different results. Figure
8.11 shows a possible output produced by DALL-E, for the following input:
a calm woman, playing in a garden, photograph.

Figure 8.11 An image of a calm woman in a garden.

Figure 8.12 shows a total divergent result, if you simply change the keyword
calm with muted.

Figure 8.12 An image of a muted woman in a garden.

Incorporating this type of image into a data story helps the audience give
your main character a face. The main character of your story can
communicate directly with the audience through his emotions and
expressiveness.

Now that you have learned how to add emotion to images generated by
DALL-E, let’s move on to the next step: generating consistent images.

8.5.2 Generating Consistent Images

Consistent images are a set of images sharing common characteristics, such
as colors, style, and so on. It is important to build consistent images when
you want to add more than one image to your data story. At the time of
writing this book, DALL-E does not provide any explicit way to build
consistent strategies. However, in this section, you will see a trick proposed
by Tyler Taggart in his YouTube video (Taggart 2023) to build consistent
images in DALL-E. To do it, we will use the Editor Tool, provided by
DALL-E and already introduced in Chapter 4.

To show how the proposed strategy works, we will re-draw the images
related to rowing and cycling used in the case study of Chapter 4, Unlock the
Potential: Invest in Rowing and Cycling for Maximum Returns! The idea is to
insert real photos in the data story tailored to executives to capture their
attention better.

Start by writing the following prompt in DALL-E: A photo showing the
effort of a rowing athlete. Show off the sweat and muscles. The athlete wears
a green jacket. Figure 8.13 shows a possible output produced by DALL-E.

Figure 8.13 A possible output produced by DALL-E.

Select a photo among the four available, and click on Edit. Now click on Add
a generation frame and insert it near the image, as shown in Figure 8.14.

Figure 8.14 Where to put the generation frame

Now, edit your prompt as follows: A photo showing the effort of a cycling
athlete. Show off the sweat and muscles. The athlete wears a green jacket.
You have simply changed rowing with cycling. DALL-E will generate four
images. Select the one that best fits your requirements, or generate other
images. Figure 8.15 shows a possible output. The two parts of the photos (left
and right) are very similar. For example, they use the same green tonality.

Figure 8.15 The output produced by DALL-E

As you can see, the two photos are linked to each other. The result looks a bit
strange, but you can split them (producing two normal-looking photos) by

downloading them and using any image tool.

Now that you have obtained two photos of the most performing sports, you
can replace them to the chart of the case study in Chapter 4, as shown in
Figure 8.16. We have also added to the chart the subtitle produced with fine-
tuning. The photos in the story highlight the effort made by the athletes to
achieve their records, thus inviting the executives to accept to continue
financing them.

Figure 8.16 The final chart tailored to an audience of executives

Now it’s time to practice, so let’s move on to an exercise.

8.5.3 Exercise: Generating Images

Consider the case study in Chapter 1, Increase the advertising campaign on
dog-related websites!

Generate two consistent images for a dog and a cat and replace the
original ones in the chart with the generated images
Generate a new image for a dog (or a cat) with a specific emotion (e.g.
angry, calm, …). Is DALL-E still able to generate emotional images for
animals?

We have just completed the journey towards using DALL-E to generate
images for data stories. As a last step in this chapter, we will give tips on
positioning your chart in your data story.

8.6 Strategic Placement of Context

Context should precede the main point of your data story. For this reason, we
suggest you place your context in one of the following three main positions in
your data visualization chart: on the top, on the left, and within the chart. In
the remainder of this section, we will investigate each context position
separately. As an example of using each context position, we will focus on
the case studies described in Chapters 1-5. For convenience, Figure 8.17
summarizes the case studies analyzed.

Figure 8.17 A summary of all the examples described in the previous chapters

8.6.1 Top

Adding context at the top of a chart means adding a textual description
immediately under the title, as shown in Figure 8.18.

Figure 8.18 The context position at the top of the chart

Use the top part of the chart to describe an overview of the topic or data
sources. Don’t use this position to insert images. While images undoubtedly
engage audiences, using them in the top part of a chart can potentially distract
viewers from focusing on the essential details. Instead, rely on well-crafted
words to capture their attention and guide their interpretation.

You can also use the top part of the chart to add the data source. Adding data
sources means acknowledging the source of information used in a chart. This
gives credibility to the information presented. When the audience sees that
we have correctly credited the data source, they are more likely to trust the
information presented.

Consider the case studies in Figure 8.17. Table 8.1 shows the case studies
using the top context and the type of context used.

Table 8.1 Case studies using the top-context position

Name Type of
Top Context

Text

Chapter 3
Population in North
America over the last
50 years

Data Source Source: World Bank

Chapter 5 - Example 1
Together, let’s make a

Textual
Description

Homelessness is a
heartbreaking reality that

difference: support our
project to help the
homeless

leaves individuals and
families without a stable
home, leading to devastating
consequences such as poor
health and social isolation.

Chapter 5 - Example 2
Your truth guardian:
take a stand against
fake news in material
and moral narratives

Textual
Description

The XX website is a popular
source of news and
information, but it is also a
source of fake news.

8.6.2 Left

Adding context on the left of a chart involves adding one or more annotations
immediately before the title, as shown in Figure 8.19.

Figure 8.19 The context position on the left of the chart

Use the left part of the chart to add deep details such as textual descriptions,
images, or photos to catch audiences' emotions or preliminary charts.

Consider again the case studies in Figure 8.17. Table 8.2 shows the case
studies using the left context and the type of context used.

Table 8.2 Case studies using the left-context position

Name Type of
Top Context

Text

Chapter 1
Increase the advertising
campaign on dog-
related websites

Textual
Description

The cats participation rate is
almost 8% over 150 sites
advertised, while the dogs
participation rate is almost 5%
over 30 sites advertised.

Chapter 2
Yes, you can build a
new swimming pool!

Secondary Chart
Textual
Description

Thanks to the introduction of
low-cost flights, Portugal has
experienced an increase in
tourist arrivals of over 200%
in 25 years, even surpassing
the increase in the other
countries.

Chapter 3
Population in North
America over the last
50 years

Textual
Description

Why this gap
1. Lower Fertility Rate
2. Lower Immigration Rate
3. Higher Average Age

Chapter 5 - Example 1
Together, let’s make a
difference: support our
project to help the
homeless

Images -

Compared to that written in the top position, the text in the left position
contains additional details, sometimes extracted from other sources.

8.6.3 Within

Context within a chart highlights some interesting points or parts through
chart annotations, as shown in Figure 8.20.

Figure 8.20 The context position within the chart

Annotations help the audience to focus on some specific parts of a chart.
Examples of annotations include text, circles, baselines, images, and arrows.
When using annotations, make sure they are not excessive and do not overlap
the chart itself, preventing its reading.

Consider again the case studies in Figure 8.17. Table 8.3 shows the case
studies using the left context and the type of context used.

Table 8.3 Case studies using the within-context position

Name Type of
Top Context

Text

Chapter 1
Increase the advertising
campaign on dog-
related websites

Image -

Chapter 3
Population in North
America over the last
50 years

Text
Vertical Line

367M

Chapter 4
Unlock the potential:

Text
Baseline

Use 50% as the benchmark
for sports selection

invest in Rowing and
Cycling for maximum
return

Images

Chapter 5 - Example 2
Your truth guardian:
take a stand against
fake news in material
and moral narratives

Images
Text

Material Life
Moral Life
Spiritual Life

Compared to that written in the top and left positions, the text within the
annotation contains concise sentences, highlighting data details.

Now that you have learned how to add a visual context to your data story
let’s implement a practical case study.

8.7 Case Study: From Information to Knowledge
(part 2)

In the previous chapter, we analyzed how to turn information into knowledge
through textual context in the aquaculture case study. Just for a quick
reminder, the case study involved building a story around the safety problem
in salmon aquaculture in the U.S. We decided to plot the salmon aquaculture
sales trendline versus the other types of aquaculture. As an insight, we
discovered that since 1998 there has been an increase in sales, following a
period of decrease in sales from 1992 to 1998. We discovered that the
decreasing period was partially due to some health problems in the salmon
aquaculture. Figure 8.21 shows the chart produced when adding textual
context to turn information into knowledge.

Figure 8.21 The chart produced when adding textual context

The next step involves adding visual context to the story. We will follow two
different scenarios:

Communicating a negative mood, with a focus on the negative years
(1992-1998)
Communicating a positive mood, with a focus on the years where the

trend is increasing (from 1998).

In both cases, we will generate images, set colors and size related to the
specific mood. Let’s start with the first point, communicating a negative
mood.

8.7.1 Setting a Negative Mood

In this scenario, the focus is on the negative years. The aim is to show the
horror of this period to raise awareness among the audience of the urgency of
ensuring that it never happens again. We will generate shocking images and
use dark colors.

Images

Generate shocking images (high energy, negative mood) about salmon. Let’s
use DALL-E with the following prompt: a shocking photo of a dead salmon
for a disease. Figure 8.22 shows a possible output of images generated by
DALL-E.

Figure 8.22 The output produced by DALL-E with the following input: a shocking photo of a
dead salmon for a disease

Let’s choose photo n.2 and add it to the chart. Listing 8.7 shows the
instructions for Copilot to generate the image in Altair.

Listing 8.7 Instructions for Copilot

build a DataFrame named img_df with the following columns:

- 'url' with the values '../images/deadsalmon.png'

- 'x' with the value 1993

- 'x2' with the value 1997

- 'y' with the value 0 #A

draw a image with the img_df DataFrame:

- set x to 'x'

- set y to 'y'

- set x2 to 'x2'

How to instruct Copilot to generate images

First, instruct Copilot to generate a DataFrame containing all the relevant
channels. Next, specify how to draw the image using Altair. We have asked
Copilot to set y = 0. This is an initial value. You can adapt it manually by
looking at the image.

You can find the complete code in the GitHub repository of the book, under
CaseStudies/from-information-to-knowledge-visual/chart-negative.py.

Color and size

In addition to the photo, we can use dark colors to emphasize the negative
scenario. For example, we can use a dark red tonality (#460805), which
recalls the blood. Next, we can increase the stroke width in correspondence
of years 1992-1998. We generate another line for those years, overlapping
with the original chart. Listing 8.8 shows the code to generate the line.

Listing 8.8 Adding a focused line

base = alt.Chart(df

).encode(...)

chart = base.mark_line()

chart_line = base.mark_line(

 strokeWidth=8

).transform_filter(

 (alt.datum.CATEGORY == 'Salmon') &

 (alt.datum.YEAR_ID >= 1992) &

 (alt.datum.YEAR_ID <= 1998)

)

How to add a focused line to a chart

First, build a base chart with all the encoding options. After drawing the main
chart, draw another chart with focusing on a selection. Use the
transform_filter() method to select only some data.

Again, you can find the complete code in the GitHub repository of the book
under CaseStudies/from-information-to-knowledge-visual/chart-negative.py.
Figure 8.23 shows the resulting chart.

Figure 8.23 The chart after adding a negative visual context

Now that you have implemented the negative-mood scenario, let’s move to
the opposite one, the positive-mood.

8.7.2 Setting a Positive Mood

In this scenario the focus is on the positive trendline, started since 1998. The
objective is to encourage the audience to continue to adopt the current
strategy for the sake of the salmon population. Instead of focusing on the
negative effects, here we can focus on the positive scenario, mentioning the
negative aspects only as a possibility. We will use relaxing photos and colors.

Images

The procedure to generate the relaxing images is similar to the negative
scenario, with the difference of using words falling in the top-left clock face
of Figure 8.1 (low energy, positive mood). Use the following prompt for
DALL-E to generate the required images: a calm aquaculture of safe salmon.
Figure 8.24 shows a possible output. Let’s choose photo n.1.

Figure 8.24 The output produced by DALL-E with the following input: a calm aquaculture of
safe salmons

Color and size

Use a peaceful color (e.g., #105473) to represent the salmon line. In addition,
highlight the trendline since 1998. Figure 8.25 shows the resulting chart. You
can find the complete code in the GitHub repository of the book, under
CaseStudies/from-information-to-knowledge-visual/chart-positive.py.

Figure 8.25 The chart after adding a positive visual context

We have generated two types of chart, the negative or the positive, but not
both together (say, with both images in the same graph). This is because we
don't want conflicting emotional cues, potentially confusing the audience or
diluting the intended message we aim to convey.

Now that you have learned how to add a positive or a negative mood to a data
story, let’s move on to an additional exercise, adding interactivity.

8.7.3 Exercise

Modify the previous chart to make it interactive as follows: define a
dropdown menu with two values: positive and negative. When the user
selects negative, the chart highlights the salmon trendline between 1992 and
1998. When the user selects positive, the charts highlights the trendline since
1998. You can find the solution to the exercise in the GitHub repository of
the book, under CaseStudies/from-information-to-knowledge-visual/chart-
dropdown.py.

In the first part of this chapter, you have learned how to turn information into
knowledge by adding visual context to your data visualization chart. You
have seen how to add emotions to your charts in terms of colors, size, and
interactivity. You have also learned how to generate mood-based and
consistent images in DALL-E. Next, you have learned where to put the
context in your chart. Finally, you have implemented a practical case study.

In the next chapter, you will see how to turn knowledge into wisdom, by
adding a call to action and possible next steps to your chart.

8.8 Summary

Adding visual context to your data visualization is crucial for rising
audience emotions.
Incorporating colors, size and interactivity helps you to better focus your
story and tailor it to your audience.
When you draw your images in DALL-E, keep them consistent using
the editing tool.
Consider position the context strategically within your chart to enhance

its effectiveness.

8.9 References

Using Emotions for Communication

Decker Ben and Decker Kelly (2015). Communicate to Influence: How
to Inspire Your Audience to Action. McGraw Hill. ISBN: 978-
0071839839 Colors and Size
Abbott, Desireé (2023). Everyday Data Visualization. Manning
Publications ISBN: 978-1633438408
Christiansen, Jen (2022) Building Science Graphics: An Illustrated
Guide to Communicating Science through Diagrams and Visualizations.
A K Peters/CRC Press. ISBN: 978-1032109404
Strachnyi, Kate (2022) ColorWise: A Data Storyteller's Guide to the
Intentional Use of Color. O’Reilly Media. ISBN: 978-1492097846

8.9.1 Images

Chip Photos and illustrations in a visual narrative
https://www.quanthub.com/photos-and-illustrations-in-a-visual-
narrative/ (Last Access 2023/09/21)
The DALLE 2 Prompt Book https://dallery.gallery/wp-
content/uploads/2022/07/The-DALL%C2%B7E-2-prompt-book-
v1.02.pdf (Last Access 2023/10/20)
Gemignani, Z. (2021) Tips for Using Photos in Data Storytelling
https://www.juiceanalytics.com/writing/tips-for-using-photos-in-data-
stories (Last Access 2023/09/21)
Hang, I. (2023) How to Create Consistent Characters in Midjourney -
EASY Step by Step AI Tutorial for Amazon KDP
https://www.youtube.com/watch?v=zdSIPkbvsek (Last Access
2023/09/21)
Nussbaumer Knaflic, C. using images
https://www.storytellingwithdata.com/blog/2018/3/26/using-images
(Last Access 2023/09/21)
Taggart, T. (2023) Dalle 2 Tutorial: How To Get Image Consistency
https://www.youtube.com/watch?v=MU_yXYsfBR0 (Last Access

2023/09/21)

[1] https://dallery.gallery/wp-content/uploads/2022/07/The-
DALL%C2%B7E-2-prompt-book-v1.02.pdf

9 From Knowledge to Wisdom:
Adding Next Steps
This chapter covers

Introducing wisdom, next steps and calls to action
Types of calls to action
Types of next steps
Anchoring next steps to an ethical framework
Strategic placement of next steps

In this chapter, we will review the basic concepts behind wisdom (in the
context of data storytelling, at the top of the DIKW pyramid), next steps, and
calls to action in a data story and how to adapt it based on the story purpose.
We will also see how to adapt next steps to an ethical framework and place
them strategically in the story.

9.1 The Chart is Ready. What Now?

If you are reading this chapter, you have finally climbed almost to the top of
the DIKW pyramid and have built a fantastic chart. You are delighted with
your work and have probably already shown it to colleagues and perhaps
even friends and relatives. It pains me, however, to tell you that your work is
incomplete. The last piece is missing, the one that will transform your graph
into a real story.

To better understand the problem, let's take an example. Imagine you have
started reading a beautiful novel - my favorite is Quo Vadis? by Henryk
Sienkiewicz - in which the protagonist faces many challenges and encounters
many adversities or problems. While you are reading the protagonist's
adventures, suddenly, the novel ends without knowing how or whether or not
the protagonist has overcome the challenges or solved the problems. Well, if
you limit your chart only to the knowledge phase, it's like a novel without an

end. You shouldn’t just present your data findings; you should tell the viewer
how you think they should act upon those findings. There's a well-known
saying that 'knowledge is not power; it is potential power when used for
action. Here then, in your chart, you must add what we’d call next steps.
These are implemented as a call to action that invites your audience to do
something.

The next steps are not something dropped from the sky or, even worse,
something theoretical but is the results of your studies and analysis. It
proposes to your audience what to do after seeing your chart, for example,
regarding possible alternatives or concrete steps to move forward.

The next steps can never be just the fruit of the knowledge acquired through
data. It must be anchored to something broader, commonly called wisdom.
Wisdom is a cultural treasure trove derived from experience (from the data
analyzed) and knowledge shared with others.

Based on the context in which you live, the type of audience, and your
values, the next steps must be anchored to an ethical framework. You cannot
think of proposing a generic next step based only on your own beliefs or
experience. It is necessary to anchor the next steps to the values of the society
in which you live, if they are to have broad application. These values vary
from community to community, but fundamental principles must be
respected, and the next steps must be anchored to them.

The next step is often used as a synonym for a call to action. However, in this
book we consider the next steps and calls to action as different concepts. The
next steps indicate what to do after reading a data story. Calls to action ins

tead define how to do it practically. A call to action is a possible
implementation of the next steps. Imagine you want your audience to
collaborate with your story after reading it (next steps). You can implement
this collaborative request using different calls to action, such as sharing the
story on social media or contacting someone for more details.

In the remainder of this section, we will introduce the concepts of wisdom,
next steps, and call to action. Let’s start with the concept of wisdom.

9.1.1 What Wisdom Is

The Collins dictionary defines wisdom as the ability to use your experience
and knowledge in order to make sensible decisions or judgments[1]. Applied
to data storytelling, wisdom enables us to make better decisions based on our
data. Wisdom is not simply the result of transforming knowledge. It also
requires other aspects that depend on our baggage in life. Wisdom is the
result of of:

Knowledge provides the foundation upon which wisdom is built. We
cannot make informed decisions without a broad understanding of our
data.
Experience provides the context through which our knowledge is
applied. It deepens our understanding of the world and helps us to see
the nuances and complexities that can't be learned from books or
lectures. Experience encompasses all the moments we've lived through,
the challenges we've faced, and the lessons we've learned.
Good judgment is the ability to weigh the pros and cons of a situation,
analyze the risks and benefits, and come to a well-informed and wise
decision. It requires the ability to evaluate a situation from multiple
perspectives and understand the potential outcomes of each choice.

Figure 9.1 shows how the DIKW pyramid should be modified to include
wisdom properly.

Figure 9.1 The DIKW pyramid enriched with the components of wisdom

9.1.2 Transforming Knowledge into Wisdom: Next Steps

Every self-respecting story carries a message, something that remains in the
hearts of the audience after reading the story. And this is the addition of
wisdom to the story. Wisdom allows the audience to be engaged by the story,
to be touched, and to be ready to do something after reading the story.
However, the message alone is not enough. The audience must do something
after reading the story.

Transforming knowledge into wisdom involves adding the next steps to the
data story. Next steps are the resolution of our data story and defining what
the audience should do after reading the story.

Every story ends with an ending, which can be good or bad, but there must be
one. Even in the case of data storytelling, the addition of an ending to the
story is envisaged. Unlike a novel, where the ending concludes the story, data
storytelling should be an open story, in the sense that it should not end with
the story itself but should expect the audience to do something after reading
the story.

Next steps are implemented through practical actions or strategies suggested
to address a problem, leverage an opportunity, or make improvements based
on the insights. It outlines the actionable path forward, providing a clear plan
or actions to follow.

9.1.3 The Call to Action: A Way to Implement Next Steps

A Call to Action (CTA) is a practical implementation of a next-step strategy.
The same next step can be implemented through different calls to action. The
Cambridge Dictionary defines the CTA as something such as a speech, piece
of writing, or act that asks or encourages people to take action about a
problem[2]. The CTA term is used especially in the marketing sector, for
example, to invite the audience to buy a product. On websites, the CTA is
implemented through buttons, links, forms, and much more.

While the next steps specify what we want our audience to do after reading
our data story, the CTA specifies how to implement the next steps practically.

Suppose we have a data story about climate change, and we want our
audience to collaborate with environmental protection organizations after
reading the story (next steps). We can implement this strategy in different
ways in our story, using different calls to action, for example, through an in-
depth link, an email to write to, or a series of steps to follow to get involved
with the organization. All three calls to action implement the same next step
in different ways.

Now that you have learned the basic concepts of wisdom, next steps, and the
call to action, let’s move on to how to use them in data storytelling. We will
start with the classification of calls to action and then move on to the
description of the next steps because in the next steps section, we will
implement different scenarios using different types of calls to action.

9.2 Typesof Calls to Action

We classify the calls to action into the following popular categories:

Learning
Sharing
Acting
Visualizing roadmaps
Engaging and interacting
Supporting and assisting

This classification includes the most popular categories. However, you could
find other less popular categories of calls to action, for example by searching
the key word call to action types on your preferred web search engine

Let’s investigate each of them separately. For each of them, we will give a
short description, the purpose, and an example. In the next section, we will
apply the different calls to action to case studies we have implemented
throughout the book. Just for a quick reminder, Figure 9.2 summarizes the
case studies implemented in the previous chapters.

Figure 9.2 A summary of all the examples described in the previous chapters

Let’s look at each of the categories briefly in turn in the following
subsections.

9.2.1 Learning

Description: This call to action encourages the audience to delve deeper into
the topic or insights presented in the data story.

Purpose: Direct the audience to additional resources, articles, studies, or
references for a more comprehensive understanding of the topic.

Example: A link to an in-depth analysis report.

9.2.2 Sharing

Description: Encourage the audience to share the data story with their social
networks.

Purpose: Amplify the reach of the data story by leveraging the audience's
networks, fostering discussions, and increasing visibility.

Example: Use social media buttons to share the story.

9.2.3 Acting

Description: Ask the audience to take specific, practical actions based on the
insights revealed in the data.

Purpose: Guide users toward implementing strategies or changes to address
identified issues or capitalize on opportunities.

Example: Implement the XX strategy to improve customer satisfaction.

9.2.4 Visualizing Roadmaps:

Description: Show a flowchart, timeline, or roadmap outlining the sequence
of actions to be taken.

Purpose: Provide a clear, graphical layout of the steps, offering a visual
guide for implementing the recommended actions.

Example: An interactive roadmap to see a step-by-step plan for optimizing
your marketing strategy.

9.2.5 Engaging and Interacting

Description: Encourage the audience to actively engage with interactive
elements or simulations related to the data story.

Purpose: Foster audience participation, allowing them to experiment with
different scenarios or elements discussed in the data story.

Example: Try our interactive tool to explore the impact of various strategies
on sales growth.

9.2.6 Supporting and Assisting

Description: Offer avenues for the audience to seek help or guidance in
implementing the suggested actions.

Purpose: Provide support channels, expert consultation, FAQs, or
troubleshooting guides to aid audiences in executing the recommended steps.

Example: The email of the supporting team or a link to the FAQ page.

Now that you have learned the calls to action types let’s move on to the
classification of next steps. We will use the learned concepts about calls to
action to implement different examples.

Challenge

Can you think about other categories of calls to action? If yes, please share
them in the book forum.

You have just learned the basic calls to action. Now it’s time to see how we
can use them as a practical implementation of next steps.

9.3 Types of Next Steps

We can classify the next steps into different categories based on the specific
objectives they aim to achieve:

Awareness and campaigns
Collaborative efforts
Advocacy and policy
Training and development
Strategic actions
Engagement and communication.

In the remainder of this section, we will describe each category separately.
Let’s start with the first one, awareness and campaigns.

9.3.1 Awareness and Campaigns

This category of next steps includes:

Public Awareness Campaigns: Launching campaigns to raise
awareness among the audiences regarding insights highlighted by the
data.
Behavioral Change Initiatives: Encouraging changes in behavior or

habits based on the insights derived from data analysis.
Social Impact Initiatives: Creating initiatives that drive positive social
change in response to data findings.

Consider the case study we analyzed in Chapter 1, dogs/cat campaign. Just
for a quick reminder, the case study focused on an event dedicated to pets
(dogs and cats). For each pet category, the organizers strategically advertised
the event on specialized websites dedicated to that particular pet category. As
a result, 9 out of 10 pets participating in the event were cats. The next steps
included improving the campaign related to the dog websites to increase the
dog participants. Figure 9.3 shows the final data story related to this case
study.

Figure 9.3 The final data story related to the dog-cat case study

The case study described in Chapter 1 contained a generic next step, which
invited the audience to increase the dog-related website campaign. Some
possible improvements to the next steps may include more specific next
steps, such as:

Defining tailored online campaigns
Engaging influencers and communities
Promoting the event on social media.

Let’s implement the previous next steps using a visualized roadmap as a call
to action. We will implement the roadmap as three rectangles connected
through a line, as shown in Figure 9.4.

Figure 9.4 The dog-cat case study enriched with a visualized roadmap

The implemented code is available in the GitHub repository of the book,
under 09/awareness-and-campaigns/pets-visualized-roadmap.py. We will
focus only on the next step part (in the bottom part of the chart). Start by
defining the rectangle size. We use parametric values to make the code as
general as possible. Listing 9.1 shows the code to generate the three
rectangles at positions 0, 15, and 30.

Listing 9.1 Setting the rectangles positions

import pandas as pd

width = 10

space = 5

N = 3

x = [i*(width+space) for i in range(N)]

y = [0 for i in range(N)]

x2 = [(i+1)*width+i*space for i in range(N)]

y2 = [10 for i in range(N)]

text = ['Online Campaign', 'Influencers Engagement', 'Social Media Promotion']

df_rect = pd.DataFrame(

 { 'x': x,

 'y': y,

 'x2': x2,

 'y2': y2,

 'text' : text

 }

)

How to set the rectangles positions

We suppose that we want to generate N (3 in the example) rectangles and
each rectangle is large width (10) and the space between two rectangles is
space (5). Then, we generate the rectangle coordinates using x, x2, y, and y2
as vertices. We also include the label text for each rectangle. Finally, we
create a DataFrame with the defined variables.

Next, draw the rectangles in Altair, as shown in Listing 9.2.

Listing 9.2 Drawing the rectangles

import altair as alt

rect = alt.Chart(df_rect).mark_rect(

 color='#80C11E',

 opacity=0.2

).encode(

 x=alt.X('x:Q', axis=None),

 y=alt.Y('y:Q', axis=None),

 x2='x2:Q',

 y2='y2:Q'

).properties(

 width=700,

 height=100,

 title=alt.TitleParams(

 text=['What can we do next?'],

 fontSize=20,

 offset=10

)

)

Draw the rectangles

Use the mark_rect() mark to draw rectangles. Use the x, y, x2, and y2
channels and remove the axes (axis=None). Finally, set the chart size and the
title. Use alt.TitleParams() to specify the title font size (fontSize) and the
title offset from the chart.

Now we are ready to draw the labels in the rectangles, as shown in Listing
9.3.

Listing 9.3 Drawing the labels

text = alt.Chart(df_rect).mark_text(

 fontSize=14,

 align='left',

 dx=10,

).encode(

 text='text:N',

 x=alt.X('x:Q', axis=None),

 y=alt.Y('y_half:Q', axis=None),

).transform_calculate(

 y_half='datum.y2/2'

)

Draw the labels

Use the mark_text() mark to draw the labels. Use the
transform_calculate() method to set the y coordinate for each label.

The following step involves defining the line coordinates. We must draw N-1
lines, the first starting at position 10 and ending at position 15, and the
second starting at position 25 and ending at position 30. Use a formula to
calculate these positions, as shown in Listing 9.4.

Listing 9.4 Defining the lines coordinates

x = [width*i+space*(i-1) for i in range(1,N)]

y = [5 for i in range(N-1)]

y2 = [5 for i in range(N-1)]

x2 = [(width+space)*i for i in range(1,N)]

df_line = pd.DataFrame(

 { 'x': x,

 'y': y,

 'x2': x2,

 'y2': y2

 }

)

Define the line coordinates

Use a formula to calculate the x coordinates and set the y coordinates to a
constant value.

Draw the lines, as shown in Listing 9.5.

Listing 9.5 Drawing the lines

line = alt.Chart(df_line).mark_line(

 point=True,

 strokeWidth=2

).encode(

 x=alt.X('x:Q', axis=None),

 y=alt.Y('y:Q', axis=None),

 x2='x2:Q',

 y2='y2:Q'

)

Draw the lines coordinates

Use the mark_line() mark to draw the line. Set point=True to show points.

If we have drawn the previous elements of the dog-cat chart, we can build the
final chart, as shown in Listing 9.6.

Listing 9.6 Building the final chart

chart = ((context | (chart + annotation + img)) & (rect + line + text)

).configure_view(

 strokeWidth=0

).resolve_scale(

 color='independent',

 x='independent',

 y='independent'

).configure_axis(

 grid=False

)

chart.save('pets-visualized-roadmap.html')

Combine all the charts

The final chart includes the context (on the left), the main bar chart (chart),
the annotation (texts dog and cat) and the images (img), on the right, and the
next steps (rect, line and text) below. Set color, x, and y to independent in
the resolve_scale() method to render the chart scales independently.

Now that we have completed this example, try out an exercise on the same

topic.

Exercise 1

Consider again the dog-cats case study and the awareness and campaigns
next step. Implement this strategy using the social sharing call to action. Use
the href channel to include the link to an external website. Figure 9.5 shows
a possible result.

Figure 9.5 The dog-cat case study enriched with a social sharing call to action

You can find the solution to this exercise in the GitHub repository of the
book, under 09/awareness-and-campaigns/pets-social-sharing.py.

Now that you have learned how to implement the awareness and campaigns
next steps, let’s move on to the next category, collaborative efforts.

9.3.2 Collaborative Efforts

This category of next steps includes inviting the audience to collaborate with
other organizations and stakeholders or building a team to solve a problem
highlighted by the data story.

Consider the case study we analyzed in Chapter 2, Swimming Pool. As a
quick reminder, the case study focused on the possibility of building a new
swimming pool in a Portuguese hotel. The data story showed an increasing
number of tourists in Portugal in recent years, as shown in Figure 9.6.

Figure 9.6 The final data story related to the swimming pool case study

The case study described in Chapter 2 contained a generic next step, which
invited the audience to build a swimming pool. Some possible improvements
to the next steps may include more specific next steps, such as:

Ask other hoteliers for their experience
Invite the administrative team to calculate the costs

Let’s implement the previous next steps using actionable recommendations as
a call to action, as shown in Figure 9.7.

Figure 9.7 The dog-cat case study enriched with a social sharing call to action

Figure 9.8 A possible output produced by DALL-E using the following prompt: customer
experience, black and white icon

For the second, use the following prompt: dollar bag, black and white icon.
Figure 9.9 shows a possible result produced by DALL-E. Choose one image
and download it.

Figure 9.9 A possible output produced by DALL-E using the following prompt: dollar bag, black
and white icon

Now we are ready to write the code to generate the next step section. You can
find the code in the GitHub repository of the book under 09/collaborative-
efforts/actionable-recommendations.py. Let’s focus on the call to action part
of the code. Start by creating the DataFrame containing the texts and the
images to include in the CTA, as shown in Listing 9.7.

Listing 9.7 The CTA DataFrame

df_cta = pd.DataFrame(

 {'text' : [['Ask other hoteliers', 'for their experience'], ['Invite the administrative team', 'to calculate the costs']],

 'x' : [0,9.8],

 'img' : ['img/experience.png', 'img/costs.png']})

Creating the CTA DataFrame

Create a new DataFrame containing the CTA texts, their position on the x-
axis, and the path to the images.

Next, let’s use ChatGPT to generate the title for the CTA. Ask ChatGPT for
the following prompt:

Act as an invitator to action for executives. Generate four titles from the
following text: Next steps: Ask other hoteliers for their experience. Invite the
administrative team to calculate the costs.

Figure 9.10 shows a possible output produced by ChatGPT.

Figure 9.10 A possible output produced by ChatGPT to generate four possible titles for the CTA

Let’s choose the third title, Strategic Decision-Making: Harnessing the
Power of Collective Experience, as the title for our next step part of the story.
Visually speaking, we implement the next steps as the combination of two
charts, a text and an image chart. Since the two charts share some common
parts, let’s draw a base chart first, as shown in Listing 9.8.

Listing 9.8 Building base chart for the next steps

base_cta = alt.Chart(df_cta

).encode(

 x=alt.X('x:Q', axis=None)

).properties(

 title=alt.TitleParams(

 text=['Strategic Decision-Making:', 'Harnessing the Power of Collective Experience'],

 fontSize=18,

 anchor='start'

)

)

How to build a base chart

Build a basic structure of the chart, without specifying any mark. Only
specify the input DataFrame (df_cta), the shared encode channels (X), and
properties (title). Use TitleParams() to specify the title details.

Once we have defined the basic chart, we can define each chart detail
separately. Listing 9.9 describes how to implement the text.

Listing 9.9 Drawing the text chart

text_cta = base_cta.mark_text(

 lineBreak='\n',

 align='left',

 fontSize=20,

 y=0,

 dx = 40,

 color='#81c01e'

).encode(

 text='text:N'

)

How to draw the text

The text chart details the base_cta chart, by adding the text mark property
(mark_text) and the specific encode for the text (the text channel). Within
the mark_text() property, specify some text properties, such as the lineBreak
character (lineBreak), how to align the text (align), the font size
(fontSize), the y position (y), the x-axis shift from the x position (dx), and
the text color (color).

Next, draw the images, as shown in Listing 9.10.

Listing 9.10 Drawing the image chart

img_cta = base_cta.mark_image(

 width=50,

 height=50,

 y=10

).encode(

 url='img'

)

How to draw the images

The image chart details the base_cta chart, by adding the image mark
property (mark_image) and the specific encode for the images (the url
channel). Within the mark_image() property, specify some image properties,
such as the image width (width) and height (height), and the y position (y).

Now we can build the final chart. We assume that we have already
implemented the previous parts of the data story (chart, annotation,
commentary and airport chart). Listing 9.11 shows how to layer the charts to
render the final data story.

Listing 9.11 Building the final data story

chart = ((commentary & airports) | ((chart + annotation) & img_cta + text_cta)

).resolve_scale(

 x='independent',

).configure_view(

 strokeWidth=0

)

chart.save('actionable-recommendations.html')

Combine all the charts

The final chart includes the context (commentary and airport), the main
chart (chart and annotation), and the next steps (image_cta and text_cta).

Exercise 2

Consider again the swimming pool case study and the collaborative efforts
next step. Implement this strategy using the learn more call to action. Use the
href channel to include the link to an external website. Figure 9.11 shows a
possible result.

Figure 9.11 The final data story related to the swimming pool case study

You can find the solution to this exercise in the GitHub repository of the
book, under 09/collaborative-efforts/learn-more.py.

Now that you have learned how to implement the collaborative efforts next
steps let’s move on to the next category: advocacy and policy.

9.3.3 Advocacy and Policy

This category of next steps provides recommendations for policy changes
based on data insights. There are two ways to implement this category of next
steps:

Policy Implementation: Working towards the execution and
enforcement of policies
Policy Impact Assessment: Continuously evaluating the impact of
existing policies.

Consider the case study we analyzed in Chapter 3, Population in North
America, which aims to study the population growth in North America. The
case study discovered that there was a gap between the population growth in
North America and in the rest of the world. The story, as a next step,
proposed some strategies to increase the population growth in the US, as
shown in Figure 9.12.

Figure 9.12 The final data story related to the North America population case study

This case study contained an advocacy and policy next step implemented as
actionable recommendations.

Challenge

What can we do to improve the proposed next steps? Think about explaining
better how the population increase could benefit from each suggested policy.

Now that you have learned how to implement advocacy and policy next steps
let’s move on to the next category: training and development.

9.3.4 Training and Development

This category of next steps aims to improve skills or knowledge in areas
identified by the insights, by proposing training sessions, learning initiatives,
and so on.

Consider the case study we analyzed in Chapter 4, related to sport disciplines
to train in, to hope to achieve good results in the upcoming competitions
(Figure 9.13). As next steps for your story you proposed to invest in cycling
and rowing. This next step was too generic so we can improve it.

Figure 9.13 The case study in Chapter 4

In this example, we have embedded the next steps in the title. Let’s improve
them by detailing the investment we could make to improve rowing and
cycling. Let’s use the support and assistance as a call to action.

Let’s implement the previous next steps using actionable recommendations as
a call to action, as shown in Figure 9.14. We suppose that the performance in
each sport is given by four factors: physical, psychological, tactical, and
technical. Each factor contributes to the performance in different ways, based
on the sport discipline. Figure 9.14 shows some hypothetical values. In
addition, the data story imagines that we want to focus on technical factors to
improve the athletes' performance.

Figure 9.14 The athletes’ case study with an actionable recommendation as a next-step

Table 9.1 shows the structure of the dataset containing the contribution of
each factor to the sports performance.

Table 9.1 The factor dataset

Rowing Cycling Factor

40 25 physical

30 35 technical

20 25 tactical

10 15 psycol.

We will implement the next step as a stacked bar chart with a layered text.
You can find the code of this example in the GitHub repository of the book,
under 09/training-and-development/support-and-assistance.py. Let’s start by
defining the basic chart, with the encodings and properties shared by the bar
chart and the text, as shown in Listing 9.12.

Listing 9.12 Building the basic chart

df_cta = pd.read_csv('source/factors.csv')

df_cta = df_cta.melt('Factor', var_name='Sport', value_name='Value')

base_cta = alt.Chart(df_cta).encode(

 y=alt.Y('Sport', title=''),

 x=alt.X('Value', axis=None, title='', stack=True),

).properties(

 title=alt.TitleParams(

 text='Investing in technical skills could bring the maximum benefit',

 subtitle='What is the contribution of each factor to the sports performance?'

),

 width=600,

 height=100

)

How to build the basic chart

First read the factors dataset and use melt() to transform the DataFrame from
wide to long format. Next, create the base chart (base_cta) by defining the
input dataset (alt.Chart(df_cta)), the encodings (x and y), and the
properties (title, width, and height). For the x channel, specify stack=True
for the stacked chart.

Now we can build the stacked bar chart, as described in Listing 9.13.

Listing 9.13 Building the stacked bar chart

cta = base_cta.mark_bar(

 strokeWidth=3,

 stroke='white'

).encode(

 color=alt.Color('Factor',

 scale=alt.Scale(range=['lightgrey', '#80C11E', 'lightgrey', 'lightgrey'], domain=['physical', 'technical', 'taktical', 'psycol.']

),

 legend=None),

)

How to build the stacked bar chart

Use the base chart to build the stacked bar chart. Set the mark property
(mark_bar) and the color channel.

Finally, draw the text and combine it with the other parts of the data story, as

shown in Listing 9.14.

Listing 9.14 Drawing the text

text_cta = base_cta.mark_text(

 xOffset=-35,

 fontSize=14,

 color='black'

).encode(

 text = 'Factor:N',

)

chart = ((chart + annotation) & (cta + text_cta)

).configure_view(

 strokeWidth=0

)

Drawing the text

Use the base chart to build the text chart. Add the mark property (mark_text)
and the text channel. Next, draw the final chart, which includes the the main
chart (chart), the annotation, and the next steps (cta and text_cta) below.

Challenge

Improve the next steps in Figure 9.14 by replacing the y labels (Cycling and
Rowing) with the same icons shown in the main chart.

Now that you have learned how to implement training and development next
steps let’s move on to the next category: strategic actions.

9.3.5 Strategic Actions

This category of next steps proposes to implement changes by altering
existing strategies, processes, or systems based on the insights gathered. This
may involve:

Developing new strategies: Creating entirely new approaches
Allocating resources: Assigning specific resources (financial, human,
technological).

Consider the case study we analyzed in Chapter 5, the homeless people,
shown in Figure 9.15. The case study focused on searching for funds to
finance a project about homeless people. In the next steps section, the case
study proposed to implement some strategic actions to mitigate the homeless
problem.

Figure 9.15 The case study described in Chapter 5, the homeless people

This case study implemented the next steps as actionable recommendations.

Challenge

Among the other calls to action (learn more, social sharing, visualized
roadmaps, engagement and interaction, and support and assistance) which
ones could you use for this case study and why?

Now that you have learned how to implement strategic action next steps let’s
move on to the next category: engagement and communication.

9.3.6 Engagement and Communication

This category of next steps aims to educate and inform the audience, to
influence their behavior, or involve them in activities related to the data
findings.

Consider the case study we analyzed in Chapter 5, fake news, as shown in
Figure 9.16. This case study focused on identifying the news categories
where the probability of being fake was higher. We included the next steps in
the title.

Figure 9.16 A summary of all the examples described in the previous chapters

We can improve next steps by adding an interactive box showing a sample
article title and headline, whenever the audience clicks on a specific bar, as
shown in Figure 9.17. Specifically, we use the engagement and interaction
call to action to implement the next step of this example.

Figure 9.17 A summary of all the examples described in the previous chapters

We implement the text containing the title and the headline as a text chart
changing based on the selected bar. Initially, no text is shown. You can find
the code related to this example in the GitHub repository of the book, under
09/engagement-and-communication/engagement-and-interaction.py.

We will build a selection point and we will connect it to the Category field of
the bar chart. Next, we will use the selection point to filter the text to show in
the next step part. We will assume to have a dataset containing an article title
and a headline for each category, as shown in Table 9.2.

Table 9.2 The articles dataset

Category Title Headline

Politics The Future of Global
Diplomacy: Navigating 21st
Century Challenges

How International
Relations Are Shaping Our
World Today

Economy The Rise of Cryptocurrency:
Disrupting Traditional Financial
Systems

Exploring the Impact of
Digital Currency on Global
Markets

Justice Reforming Criminal Justice:
Toward a Fair and Equitable
System

Addressing Inequality
within Legal Systems
Across Nations

Religion Interfaith Dialogue in Modern
Society: Building Bridges
Amidst Differences

Understanding Diversity in
Religious Beliefs and
Practices

Start by creating a selection point for your chart. Add the Category field of
your dataset as a working field for your interactive element, as shown in
Listing 9.15.

Listing 9.15 Defining the selection point

click = alt.selection_point(name='Select',

 fields=['Category'], empty=False)

How to define the selection point

Define a selection point named Select that allows users to select data points
based on their Category values. The empty parameter set to False ensures
that at least one data point must be selected.

Now, use the defined selection point to set the color of a selected bar, as
shown in Listing 9.16. The code bolds the modified code with respect to the
original version implemented in Chapter 5.

Listing 9.16 Building the interactive bar chart

color=alt.Color('Macro Category:N',

 scale=alt.Scale(

 range=['#991111', '#f38f8f','gray'],

 domain=['Material Life', 'Moral Life', 'Spiritual Life']

),

 legend=None

)

chart = alt.Chart(df).mark_bar(

).encode(

 y=alt.Y('Category:N',

 sort='x',

 title=None,

 axis=alt.Axis(labelFontSize=14)

),

 x=alt.X('Percentage of Fake Articles:Q',

 title=None,

 axis=alt.Axis(labelFontSize=14,

 titleFontSize=14),

),

 color=alt.condition(click | ~click, color, alt.value('lightgray')

)

).properties(

 width=400,

 height=400

).transform_calculate(

 'Percentage of Fake Articles', alt.datum['Number of Fake Articles']/alt.datum['Number of Articles']*100

).add_params(

 click

)

How to build the interactive bar chart

First define the color channel as a variable (we will use it also for the text
chart, so we define it as a variable to avoid to write it twice). Next, build the
bar chart, by defining the Y and X channels. Also define the color channel as
dependent on the click selection point. Use the expression click | ~click
to set the color when click is True (this happens with a selected bar) and
when it is False (this happens when no bar is selected because we have set
empty to False). Also, set the properties and add the click interactivity
through the add_params method.

Now we can draw the text chart, as the combination of two charts, the title
and the headline. First, build the base chart, with the details shared between
the two charts, as shown in Listing 9.17.

Listing 9.17 Building the basic chart

df_cta = pd.read_csv('source/articles.csv')

df_cta['Macro Category'] = df_cta['Category'].apply(lambda x: 'Material Life' if x in material_life else ('Moral Life' if x in moral_life else 'Spiritual Life'))

base_cta = alt.Chart(df_cta).mark_text(

 fontSize=20,

 align='left',

).encode(

 color=color

).transform_filter(

 click

)

How to build the basic chart

Start by reading the article dataset. Then, add the macro category, used to
color the text. Finally, define the basic chart, by specifying the mark property
(mark_text), the color channel and the filter used to select the text
dynamically.

Now, let’s proceed with the article title, as shown in Listing 9.18.

Listing 9.18 Building the article title

title_cta = base_cta.encode(

 text='Label:N',

).properties(

 title=alt.TitleParams(

 text=['Click on a category bar to read a sample title', 'and headline of a fake article for that category'],

 fontSize=25,

 offset=20,

 anchor='start'

)

).transform_calculate(

 Label= 'Title: ' + alt.datum.Title

)

How to build the article title

Use the base chart to draw the title article text. Specify the text channel,
using the Label column, generated through the transform_calculate
method. Also, set the chart properties.

Finally, build the article headline, using a similar procedure as the article
title, as shown in Listing 9.19.

Listing 9.19 Building the article headline

headline_cta = base_cta.encode(

 text='Label:N'

).transform_calculate(

 Label= 'Headline: ' + alt.datum.Headline

)

chart = (chart & (title_cta & headline_cta)).configure_axis(

 grid=False

).configure_view(

 strokeWidth=0

)

chart.save('engagement-and-interaction.html')

How to build the article headline

Use the base chart to draw the headline article text. Next combine the charts
to obtain the final data story (suppose that chart contains the main chart). Use
configure_axis(grid=False) to remove the grid from the charts.

So far you have learned how to implement next steps using different calls to
action. In the following section, you’ll learn how to anchor your story to an
ethical framework.

9.4 Anchoring the Action to an Ethical Framework

An ethical framework serves as a guideline for decision-making based on
principles that guide moral behavior. It provides a framework for evaluating
the potential consequences of our actions and helps us identify the best
course of action based on what is right and just.

Actions not grounded in ethical considerations can lead to unintended
consequences and may even cause harm. Some of the most popular ethical
frameworks include (Berengueres 2019):

Utilitarianism: This framework bases ethical decisions on maximizing
utility or happiness. According to this view, an action is right if it leads
to the greatest happiness for the greatest number of people.
Deontology: This framework focuses on following moral rules or duties.

It argues that certain actions are inherently good or bad, regardless of
their consequences.
Virtue ethics: This framework emphasizes the importance of
developing virtues such as courage, honesty, and compassion. It argues
that good people are more important than following rules or maximizing
happiness.
Care ethics: This framework emphasizes the importance of
relationships and empathy. It bases ethical decisions on caring for others
and responding to their needs.

Regardless of the ethical framework chosen, the next steps must be anchored
within one if you wish to safeguard your call to action against
misinterpretation or misuse. This means considering the potential impact of
our actions on others and ensuring that they align with our values and
principles. By doing so, we can move beyond simply making decisions based
on what is expedient and towards creating positive change rooted in ethical
considerations.

To adapt next steps to a specific ethical framework, we can implement the
following two steps:

Using ChatGPT to generate a preliminary text
Revising the produced content.

Let’s apply this strategy to the salmon aquaculture case study implemented in
the previous chapters.

9.4.1 The Salmon Aquaculture Case Study

Consider the salmon aquaculture case study. Just for a quick recap, the
salmon aquaculture case study aims to study the problem of safety in the
salmon aquaculture in the U.S.. So far, we have represented the amount of
dollars earned in the U.S. from the salmon exports. We considered two types
of scenarios, a positive one, where we focused on the increase of earnings,
and the negative one, where we focused on the disease period. In this chapter,
we only focus on the positive scenario, but you can easily adapt the described
concepts also to the negative one. Figure 9.18 shows the data story produced

at the end of the previous chapter, turning information into knowledge.

Figure 9.18 The story produced after turning information into knowledge

Let’s suppose that as the next step for our data story we want to propose
some strategic actions to continue the positive increase in the amount of
dollars trendline. We propose the following next steps:

Emphasize salmon safety measures
Enhance salmon aquaculture practices
Promote sustainable salmon consumption

Let’s use ChatGPT to adapt the proposed next steps to the different ethical
framework. Use the following prompt for ChatGPT to generate the
utilitarianism-based texts:

Consider the following ethical framework: Utilitarianism

This framework bases ethical decisions on maximizing utility or happiness.
According to this view, an action is right if it leads to the greatest happiness
for the greatest number of people. Reformulate the following titles to adapt to
the Utilitarianism framework:

Emphasize salmon safety measures

Enhance salmon aquaculture practices

Promote sustainable salmon consumption

Figure 9.19 shows a possible output produced by ChatGPT.

Figure 9.19 A possible output generated by ChatGPT

Now, let’s review it by asking the following question: is this output really
anchored to an utilitarian framework? If the answer is yes, we can incorporate
the output in our story, otherwise, we must correct it before adding it to our
story. In the next chapter, we will see more of the details regarding the ethical
problems connected to ChatGPT and Generative AI in general. For now, it’s
sufficient to control the produced output.

In our case, the produced output contains words such as Welfare, Societal
well-being, and overall-happiness that are in line with the utilitarianism
framework.

Apply the same procedure to the other ethical frameworks. Table 9.3 shows
some possible outputs by ChatGPT.

Table 9.3 The outputs generated by ChatGPT for each ethical framework

Original Text
Ethical
Framework

Emphasize salmon
safety measures

Enhance salmon
aquaculture
practices

Promote
sustainable
salmon
consumption

Utilitarianism Maximizing Public
Welfare through
Salmon Safety
Measures

Improving
Societal Well-
being via
Enhanced
Salmon
Aquaculture
Practices

Fostering Greater
Overall
Happiness
through
Promoting
Sustainable
Salmon
Consumption

Deontology Uphold Salmon
Safety Measures

Adhere to
Enhanced
Salmon
Aquaculture
Practices

Advocate for
Ethical and
Sustainable
Salmon
Consumption

Virtue Ethics Cultivating Ethical
Stewardship for
Salmon Well-being

Fostering
Virtuous
Aquaculture
Practices for
Salmon Health

Advancing
Virtues through
Sustainable
Salmon
Consumption

Care Ethics Prioritizing Salmon
Well-being:
Implementing Safety
Measures

Nurturing
Salmon:
Improving
Aquaculture
Practices with
Empathy

Caring
Consumption:
Fostering
Sustainable
Salmon Choices

Once you have chosen your specific ethical framework, you can use it to
implement the next steps for your case study.

Exercise 3

Consider the output produced by ChatGPT for a utilitarian ethical framework
and implement it as actionable recommendations. For example, you can
generate the final data story described in Figure 9.20.

Figure 9.20 The final data story for the aquaculture case study

You can find the solution to this exercise in the GitHub repository of the
book, under CaseStudies/aquaculture/from-knowledge-to-wisdom/chart.py.

Now that you have learned how to anchor your next steps to an ethical
framework, let’s move on to the last part of this chapter, how to place your
next steps strategically in your data story.

9.5 Strategic Placement of Next Steps

Next steps must follow the main point of your data story. For this reason, we
suggest you place your next steps in one of the following three main positions
in your data visualization chart: in the title, on the right, or below the chart. In
the remainder of this section, we will investigate each next-step position
separately.

9.5.1 Title

Adding next steps in the title means adding it to the top part of the chart, as
shown in Figure 9.22.

Figure 9.21 The next-step position at the top of the chart

Use the title to state what the audience should do with the data story.

Challenge

Consider the case studies described in Chapters 1-5 (Figure 9.2). Which ones
added the next steps in the title?

9.5.2 Right

Adding next steps on the right of a chart involves adding it immediately after
the chart, as shown in Figure 9.22.

Figure 9.22 The next-step position on the right of the chart

Use the right part of the chart to add deep details such as textual descriptions,
and other charts to explain to the audience what to do after reading the
previous parts.

Challenge

Consider the case studies described in Chapters 1-5 (Figure 9.2). Which ones
added the next steps on the right?

9.5.3 Below

Next steps below a chart differ from the previous case only in their position,
as shown in Figure 9.23.

Figure 9.23 The next step position below the chart

Challenge

Consider the case studies described in Chapters 1-5 (Figure 9.2). Which ones
added the next steps below the chart?

In the first part of this chapter, you have learned the concept of wisdom, call
to action, and next steps. Next you have learned how to anchor your next
steps to an ethical framework. Finally, you have seen how to place the next
steps strategically in your story.

In the next chapter, you will see how to publish your data story and what
ethical implications could have the use of Generative AI in data storytelling.

9.6 Summary

Wisdom is the ability to use your experience and knowledge to make
sensible decisions or judgments. It depends on knowledge, experience,
and good judgment.
Transforming knowledge into wisdom involves adding the next steps to
the data story. Next steps are the resolution of our data story and define
what the audience should do after reading the story.
We can classify the next steps into different categories based on the
specific objectives they aim to achieve: awareness and campaigns,
collaborative efforts, advocacy and policy, training and development,

strategic actions, and engagement and communication.
A Call to Action (CTA) is a practical implementation of a next-step
strategy. The same next step can be implemented through different calls
to action.
We classify the calls to actions into the following popular categories:
learning, sharing, acting, visualizing roadmaps, engaging and
interacting, supporting and assisting.An ethical framework serves as a
guideline for decision-making based on principles that guide moral
behavior. Next steps must be anchored to an ethical framework.

9.7 References

Berengueres, Jose Berengueres and Sandell, Marybeth (2019) Introduction to
Data Visualization & Storytelling: A Guide For The Data Scientist (Visual
Thinking). Self-published.

[1] https://www.collinsdictionary.com/dictionary/english/wisdom

[2] https://dictionary.cambridge.org/dictionary/english/call-to-action

10 Publishing the Data Story
This chapter covers

Ethical considerations before disseminating the story
Using Generative AI ethically
Crediting the sources
Exporting the story
Publishing the story using streamlit
Alternative ways to publish the story: Tableau, Power BI, and Comet

This is the last chapter of this book. Throughout this book we have built our
data story. Now it is time to show it to our audience. This chapter is all about
taking your data story and getting it to your audience, and doing so in an
ethical manner. In the first part of this chapter, we’ll see some ethical points
to consider before publishing your story and how to use Generative AI
ethically. Next, we’ll see how to credit the sources correctly, including both
data sources and Generative AI. Then, we’ll focus on Streamlit, a Python
library fully integrated with Altair. Streamlit helps you build a complete
standalone website hosting your Python code. Finally, we’ll see some
alternative ways to publish your story, including techniques to integrate it
into some popular tools for data analytics and visualization: Tableau and
Power BI. We’ll also describe how to integrate your data story in Comet, an
experimentation platform for Machine Learning.

Let’s start with the first point, ethical considerations, before disseminating the
story.

10.1 Ethical Considerations Before Disseminating
the Story

We have almost reached the end of this fantastic journey, which has seen us
gradually build our data-based stories. We used the DIKW pyramid to
assemble our story, and now we are ready to disseminate it to our audience.

However, before seeing the techniques for publishing the story, I would like
to focus on the Generative AI used throughout the book. The first
consideration to keep in mind is that Generative AI is not an omniscient
oracle but is the result of human effort, and as such, reflects the
characteristics of humanity, made up of intelligence, scientific progress, and
so on, but also of discrimination, inequalities, and injustices. Generative AI,
while a product of human ingenuity and scientific advancement, inherently
carries the biases and limitations of the data it is trained on, reflecting not
only our knowledge but also our societal and historical prejudices. It's crucial
to remember that these systems are limited by their training data and
algorithms and do not possess any innate understanding or consciousness.

All this, everything that humanity is, is therefore reflected in Artificial
Intelligence, both what is good and what is less good in humanity. It is for
this reason that when Generative AI is used as a work tool, particularly in
Data Storytelling, it must always be handled with care, paying attention to
both the benefits and the possible damage that it could cause among the most
vulnerable people. Generative AI products could, in some way, offend the
sensitivity of minorities. Generative AI could even be used to build
manipulated stories, yet with a plausible appearance.

To get a practical idea of discrimination that may occur inadvertently while
using Generative AI, consider the following prompt for DALL-E: a photo of
a woman wearing a red dress. Figure 10.1 shows a possible output generated
by DALL-E.

Figure 10.1 A photo of a woman wearing a red dress

Now, consider this prompt for DALL-E: a woman wearing an orange
sweater drinking a coffee. Figure 10.2 shows a possible output generated by
DALL-E.

Figure 10.2 A woman wearing an orange sweater drinking a coffee

Finally, consider the following prompt: a man sitting on a yellow chair.
Figure 10.3 shows a possible output generated by DALL-E.

Figure 10.3 A man sitting on a yellow chair

We may continue generating images more and more, but we will probably
always obtain the same results. What do Figures 10.1, 10.2, and 10.3 have in
common? The problem is that almost all the represented persons have dark
hair (except for the woman on the right in Figure 10.2). This may be a minor
problem if we generate a small number of images. However, if we use
DALL-E to generate images at a large scale, using only dark-haired people
may generate a sort of discrimination towards blonde-haired people.

The previous example shows a simple case where Generative AI is partial.
The problem is probably in the data used to train the generative model. This
data may contain more dark-haired people than blonde-haired people. This is
a rather benign example, but it clearly illustrates the point that you may need
to be mindful about bias and partiality within your outputs.

Challenge 1

Can you find other kinds of discrimination while generating images with

people in DALL-E? For example, try to generate a woman with a red dress.
What kind of stereotype would you obtain?

Challenge 2

DALL-E associates color and mood. Can you figure out this? For example,
try the following prompts: 1) a woman wearing a yellow sweater, 2) a woman
wearing a blue dress. Do you obtain different moods, although you didn’t
specify any?

Ethical issues caused by Generative AI depend on different causes, such as
AI hallucinations, bias, and copyright. We will not delve into the technical
details related to these issues; for more information, you can read the
resources described in the references of this chapter. In the remainder of this
section, we will shortly describe the potential ethical issues Generative AI
may introduce. Let’s start with hallucinations.

10.1.1 AI Hallucinations

Hallucination happens when Generative AI generates content that does not
correspond to reality. Hallucinations within AI can lead to the creation of
misleading or entirely fabricated data, potentially causing significant ethical
concerns. Hallucination is a problem brought about by Generative AI’s very
design, in the sense that the LLM behind Gen AI is generated without any
communication of intent. It simply generates a text that is statistically more
probable given the training dataset. Additionally, for instance, if a generative
AI is primarily trained on datasets containing English language texts, it might
struggle with accurately understanding or generating content in less
represented languages, reflecting a statistical bias towards English.
Hallucinations are not directly an ethical issue but can lead to ethical
problems due to their potential misuse for generating content for user
manipulation.

Hallucination in Generative AI can manifest in various ways. For example, a
data story completely generated by AI could describe a non-existent political
scandal, potentially misleading the public and impacting decision-making
based on false information.

To mitigate the hallucination problem, we always recommend having a
human-in-the-loop validation. Before incorporating any AI-generated
content in your story, please judge and review it.

Challenge 3

Just for fun, consider the case study in Chapter 2, Swimming Pool. As a
quick reminder, the case study focused on the possibility of building a new
swimming pool in a Portuguese hotel. Use the following prompt to generate
the next steps: Consider the following scenario: the case study focused on the
possibility of building a new swimming pool in a Portuguese hotel. The data
story showed an increasing number of tourists in Portugal in recent years.
Write some hallucinated next steps. What do you obtain?

To mitigate hallucinations, you can try to set the following parameters in
your prompt:

Temperature: The temperature controls the degree of randomness
applied during the output generation process. It allows users to tailor the
level of creativity and unpredictability in the generated content. It ranges
from 0 for more structured and predictable outputs to 2 for more creative
and unexpected results. The default value rests at 1. To introduce
temperature in your prompt, simply add the text set temperature = N
(for example, use temperature = 2). We can use a lower temperature
value to reduce the probability that the model hallucinates.
Top P: Top P is also known as nucleus sampling or penalty-free
sampling. It helps to control the diversity of the generated text. Use this
technique to generate responses that don’t completely deviate from the
topic. The range is between 0 and 1. A higher Top P makes the output
more diverse, while a lower value makes the model more deterministic.
The default value is 1. To introduce Top P in your prompt, add the text
set Top P = N (for example, use Top P = 1).

Usually, you set one parameter per prompt.

Challenge 4

Set the temperature to 0 or the Top P value to 0 in the prompt of Challenge 3

and compare the result with the output of Challenge 3. Do you note some
differences?

You can find a detailed description on how to set the temperature and the Top
P parameters in my blog post, How to Improve Your ChatGPT Outputs Using
Configuration Parameters[1].

Now that we’ve covered hallucinations let’s move to the next problem: Bias.

10.1.2 Bias

Bias is a systematic and often unconscious inclination, prejudice, or tendency
that influences decision-making, actions, perceptions, or judgments in favor
of or against a particular person, group, object, or idea. Bias relies on human
beliefs, stereotypes, or discrimination. Since LLMs are trained on datasets
mostly created by humans, inevitably, these datasets contain bias. Bias is
intrinsic to humans, so we can’t remove it from our datasets.

Even in a hypothetical scenario where people are equal and free, and there is
no discrimination and war, bias may occur. In fact, bias is multifaceted. Bias
in AI is not limited to negative aspects like discrimination or war. Bias can
also be in the form of cultural preferences, idiomatic expressions, or even
what is considered "normal." An LLM trained on data from even an ideal
world might still develop biases based on what is prevalent or dominant in
that data.

In addition, even with ideal data, LLMs might still develop biases due to their
design, the algorithms they use, or the inherent limitations in understanding
and processing human language.

In other words, our LLM could still exhibit bias even in this hypothetical
scenario.

There are different perspectives to classify bias, such as those proposed
by Baer in his book (see the references at the end of this chapter for
further details).One possible approach classifies bias in the following
types:Data Bias is the presence of bias in the training set. It derives
from different causes, such as the underrepresentation of some groups in

the training set. LLMs are training with data extracted from the Web.
However, the text on the Web is written by a minority. This means that
although big data is used to train LLMs, their size does not guarantee
diversity.
Algorithm Bias derives from the assumptions and decisions made
during the design, coding, or implementation of machine learning
algorithms. This bias can arise due to feature selection, model
complexity, and other technical problems related to the algorithms.
Measurement Bias occurs when the methods or tools used to collect
data systematically misrepresent or distort the information being
gathered. This bias can originate from different factors, such as
instruments, human observers, etc.

At the time of writing this book, there was no definitive solution to remove
bias from generative AI tools. However, some possible techniques to mitigate
bias could include data cleaning and balancing, inserting a human in the
middle, model evaluation, and so on. Removing bias from Generative AI
would also mean removing it from humanity first, which could be significant
progress for the world but is unlikely to happen any time soon. Anyway, we
could mitigate bias by always paying attention to the generated output and
anchoring our data story to an ethical framework, as explained in the previous
chapter.

Having considered the problem of bias, let’s move to the following problem:
Copyright.

10.1.3 Copyright

Generative AI models have been trained on huge quantities of data, derived
especially from content shared freely in the public space. However, the
creators of the original datasets used to train the models do not allow access
to them, so we don’t know whether proprietary data have also been used to
train the models. In this case, AI-generated content might raise questions
about intellectual property rights and ownership. Copyright questions may be
connected to the fact that Generative AI models are black boxes, and the data
used to train them is unavailable.

For example, consider an AI system trained on an extensive database of
music that generates a piece similar to an existing copyrighted song.
Determining the original creator becomes complex, raising questions about
the ownership of AI-generated content and the rightful attribution of
intellectual property, potentially leading to legal disputes between creators
and AI systems.

Before using Generative AI, you should alway on understand copyright law,
use clear licensing agreements for data sources, create original datasets,
emphasize attribution and acknowledgment, implement copyright filters, and
seek regular legal consultation.

All the described ethical issues are unsolved at the time of writing this book.
For this reason, we recommend consistently controlling the output produced
by Generative AI when using it for data storytelling and, in general, for all
the application fields.

Now that we have learned the basic causes of ethical problems related to
Generative AI, let’s deepen our understanding of how to use Generative AI
ethically.

10.1.4 Using Generative AI Ethically

Incorporating Generative AI into Data Storytelling may bring further ethical
issues. For this reason, it is essential to follow the guidelines defined by
experts in using AI. Many initiatives exist to regularize the use of AI and
Generative AI in all domains, such as the European EU AI Act (European
Commission, 2021) and the White House’s Executive Order on the Safe,
Secure, and Trustworthy Development and Use of Artificial Intelligence
(White House, 2023). You can find the links to these documents at the end of
the chapter, in the references section.

Referring to the specific field of Data Storytelling, using Generative AI
ethically means respecting the guidelines for human values. For this reason,
in this book, we follow the guidelines proposed by UNESCO.

The UNESCO AI ethics guidelines emphasize four core values:

Human rights and dignity: Every data story, including the pieces
generated through Generative AI, must respect human rights and
dignity. The UNESCO guidelines say explicitly that no human being or
human community should be harmed or subordinated, whether
physically, economically, socially, politically, culturally or mentally,
during any phase of the life cycle of AI systems.
Peaceful and just societies: AI should be used to foster harmony and
equity within communities, promoting fairness, transparency, and
accountability in decision-making processes.
Diversity and inclusiveness: AI should respect the richness of human
diversity in all its forms, including but not limited to race, gender,
ethnicity, culture, and more.
Environmental flourishing: AI should prioritize sustainability and
contribute positively to environmental preservation.

We can apply the previous guidelines to check if AI-generated content is
ethically correct. For each AI-generated content, we should answer the
following questions:

1. Does the AI-generated content respect human rights?
2. Does the AI-generated content respect society?
3. Does the AI-generated content respect diversity and inclusiveness?
4. Does the AI-generated content respect the environment?

To understand how to apply these guidelines to a practical data story,
consider the case study we analyzed in Chapter 4, related to sports disciplines
to train in, to hope to achieve good results in the upcoming competitions. As
the next steps for your story, we proposed to invest in cycling and rowing.
Figure 10.4 shows the final data story.

Figure 10.4 The sports disciplines data story described in Chapter 4

Let’s look at each part generated by AI:

General Title: Unlock the Potential: Invest in Rowing and Cycling for
Maximum Returns!
Image 1: The white man practicing rowing
Image 2: The white woman is practicing cycling.

The only problem in the AI-generated content for this scenario regards
diversity and inclusiveness. The two images, in fact, describe two white-
skinned individuals. To make the data story fit the ethical guidelines, we
could replace one of the two images with an individual from another
ethnicity.

10.1.5 Exercise

Figure 10.5 The case study described in Chapter 5, the homeless people

1. Identify the AI-generated content
2. For each AI-generated content, answer the following questions:

a. Does the AI-generated content respect human rights?
b. Does the AI-generated content respect society?
c. Does the AI-generated content respect diversity and inclusiveness?
d. Does the AI-generated content respect the environment?

Now that you have learned how to use Generative AI ethically let’s move on
to the next step, crediting the sources.

10.2 Crediting the Sources

Crediting the sources means referencing the sources used in the data story.
This is particularly important because it allows you to recognize the work
done by others. It also adds credibility to the story, as the audience can
personally check the sources used in the story. What types of sources should
be credited? In general, any source used to make the story, but in particular
the following sources:

The data source
The fact that Generative AI was used
Any documents used for fine-tuning or RAG (Retrieval Augmented
Generation).

Traditionally, we can add credits to a data story in four alternative places,

although you can use your creativity to place it wherever you want:

Under the title/subtitle
Under the main chart
Under the next steps
Sideways.

Let’s investigate each of them separately.

10.2.1 Under the Title/Subtitle

Placing the credits under the title/subtitle generates a sense of trust in the
audience from the story's beginning. Figure 10.6 shows an example of credits
placed under the title/subtitle.

Figure 10.6 An example of a data story with credits under the title/subtitle

Use this placement if you want your audience to know the sources from the
story's beginning. Although this placement may generate trust, it could also
be distracting since the audience may leave your story to search for the
sources.

10.2.2 Under the Main Chart

Placing the credits under the main chart involves adding a detail to the main
point of the story. This helps reinforce the essential points of the story. Figure
10.7 shows an example of credits placed under the main chart.

Figure 10.7 An example of a data story with credits under the main chart

Use this placement if you want to reinforce the main message of your chart.

10.2.3 Under the Next Steps

In this case, credit the sources at the end of your story, as an appendix to the
next steps, as shown in Figure 10.8.

Figure 10.8 An example of a data story with credits under the next steps

Use this placement if you want to reinforce the next steps of your story.

10.2.4 Sideways

Placing credits sideways means considering them as external to the main data
story workflow. You can place credits either on the left or on the right, as
shown in Figure 10.9.

Figure 10.9 An example of a data story with credits on the left and the right

Use this placement to keep credits external to your main data story workflow

and keep the audience concentrated on the story.

Now that we’ve considered the various places you can place credits, let’s
move on to how to implement credits practically.

10.2.5 Implementing the Credits in Altair

To implement credits in Altair, use mark_text() with a smaller font than the
one you used for the main story. Optionally, you can include a hyperlink to
the original source.

Consider the case study described in Chapter 4, related to sports disciplines to
train in, and already show in Figure 10.4. Let’s credit DALL-E for images
and ChatGPT for the title. Add the following text as credits: Images: source
DALL-E, Title: source ChatGPT.

We will place credits on the left side. You can find the implemented code in
the GitHub repository of the book, under 10/crediting/left-sideways.

Listing 10.1 shows the code to implement the credits section on the left.

Listing 10.1 Adding the credits on the left

credits_df = pd.DataFrame({'text': ['Images: source DALL-E, Title: source ChatGPT']})

credits = alt.Chart(credits_df

).mark_text(

 size=10,

 align='left',

 color='black',

 angle=270,

 x=-70,

 y=200

).encode(

 text='text'

)

chart = (credits + chart + annotation)

How to add the credits on the left

Use mark_text() to add credits. Use the angle attribute to rotate the text of
270 degrees. Adapt x and y to the chart. Try different values to obtain the
best result.

As usual, you can ask Copilot to generate the code for you. Figure 10.10
shows the resulting chart.

Figure 10.10 The case study described in Chapter 4, the sports disciplines with credits on the left

Exercise

Modify the previous example by implementing credits under the title, as
shown in Figure 10.11.

Figure 10.11 The case study described in Chapter 4, the sports disciplines with credits under the
title

You can find the solution to this exercise in the GitHub repository of the
book, under 10/crediting/under-the-title.

Challenge 5

Compare Figures 10.10 and 10.11. Can you distinguish any difference in
terms of the reading flow?

So far, you have learned how to credit sources in your data story. Now it’s
time to see how to export the final story.

10.3 Exporting the Story

Altair provides different formats to export your data story. Throughout this
book, we have used chart.save('chart.html'). Anyway, Altair also
supports other formats, including:

JPEG
PNG
SVG
JSON
PDF

To save the chart into a specific format, simply add the format extension to

your file, such as chart.save('chart.png') for PNG files. For PNG files,
you can also specify the pixels per inch (ppi) through an additional
parameter: chart.save('chart.png', ppi=300)

You may wonder why throughout this book, we have used the HTML format
and not PNG or SVG. The main reason is that HTML is the only format
among the supported ones that shows interactivity. In addition, once you have
created the HTML file, Altair also provides a default action menu on the top
right part of the chart, enabling you to download the story into another
format, as shown in Figure 10.12.

Figure 10.12 The top right menu in the HTML file enables you to export the story into another
format

If you prefer not to show the action menu, you can disable it, as shown in
Listing 10.2.

Listing 10.2 Disabling the action menu

chart.save('chart.html', embed_options={'actions': False})

Your journey from transforming raw data into a data story through the DIKW

pyramid, Generative AI, and Altair is completed. Your story is finally ready
to be disseminated to your audience!

In the remaining two sections, we will see some alternative techniques to
publish your story. Feel free to skip them if you are not interested. First, we
will see how to publish the story using Streamlit, and next, we will see how
to embed our story into some popular tools.

Let’s start with Streamlit.

10.4 Publishing the Story over the Web: Streamlit

Streamlit is an open-source framework enabling you to build web
applications quickly using Python. To start with Streamlit, refer to Appendix
A. The main advantage of using Streamlit compared to other options is that it
is fully integrated with Altair.

In this section, we'll see how to publish a data story using Streamlit. Streamlit
uses specific functions to show content on a web page, such as st.Title() to
set the page title.

Consider the example shown in Listing 10.3. Start by importing the Streamlit
library. Then, build your chart as you usually do in Altair. To add the Altair
chart wherever on the web page, use st.altair_chart().

Listing 10.3 Building the app in Streamlit

import streamlit as st

import pandas as pd

import altair as alt

Read the data

df = pd.read_csv('../data/population.csv')

df = df.melt(id_vars='Country Name', var_name='Year', value_name='Population')

df['Year'] = df['Year'].astype('int')

continents = ['Africa Eastern and Southern', 'Africa Western and Central',

 'Middle East & North Africa', 'Sub-Saharan Africa',

 'Europe & Central Asia', 'Latin America & Caribbean',

 'North America', 'East Asia & Pacific']

df = df[df['Country Name'].isin(continents)]

Create Streamlit app

st.title('Population of Continents')

Add a slider for year selection

selected_year = st.slider('Select a year', min_value=1960, max_value=2021, value=2021, step=1)

Filter data based on selected year

filtered_df = df[df['Year'] == selected_year]

Create Altair chart

chart = alt.Chart(filtered_df).mark_bar(color='#80C11E').encode(

 y=alt.Y('Country Name:O', sort='-x', title=''),

 x=alt.X('Population:Q', title='Population')

).properties(

 width=600,

 height=300

).configure_view(

 strokeWidth=0

).configure_axis(

 grid=False

)

Display chart in Streamlit app

st.altair_chart(chart)

How to build a web app in Streamlit

Start by importing the required libraries. Then, load the data as a Pandas
DataFrame. Next, build the chart in Altair as you usually do. Use
st.slider() to build a slider in Streamlit. Finally, display the chart in the
Streamlit app using st.altair_chart()

To launch the app, run the following command in a terminal: streamlit
app.py, with app.py the name of the script containing the code shown in
Listing 10.3. Figure 10.13 shows the resulting app.

Figure 10.13 The resulting app in Streamlit

You can download the code described in this section from the GitHub
repository of the book, under 10/streamlit/app.py.

Now that you have learned how to publish your data story in Streamlit, let’s
move on to some alternative ways to publish the story. If you are not
interested in them, feel free to skip directly to the conclusions.

10.5 Alternative Ways to Publish the Story:
Tableau, Power BI, and Comet

There are different ways to publish your data story, including reports,
presentations, HTML pages and so on. In this section, we will see three tools:

Tableau
Power BI
Comet.

Let’s start with the first one, Tableau.

10.5.1 Tableau

Tableau is a business intelligence tool that helps users to explore and analyze

data. Different from Streamlit, Tableau does not require any programming
skills, since its interface is completely visual. Combining Tableau and Altair
may be useful if you already know Tableau and use it to implement your
dashboards. You can integrate your data story produced in Altair into
Tableau as an additional item of your dashboard.

Before using Tableau, you must download it on your local computer and pay
for a license. Tableau also offers a trial version and a completely free license
for students and teachers. In the bibliography of this chapter, you can find
some interesting resources to get started with Tableau. In this section, we
describe how to import your data story in Tableau. If you are not interested,
feel free to skip this section and move to the next one.

Consider the example in Chapter 08/slider.py and shown in Figure 10.14.

Figure 10.14 A chart with a slider

To import your chart in Tableau, execute the following operations:

1. Open a terminal and point it to the directory containing the 08/slider.py.
Run the command python3 slider.py to generate the HTML file.

2. In the terminal, launch a Python server as follows: python3 -m
http.server

3. Point to localhost:8000 in your browser and access slider.html. You
should see the chart shown in Figure 10.14. Move the slider to check if

the code is working correctly.
4. Start your Tableau Desktop application, import the

08/data/population.csv file and create a new dashboard.
5. In Tableau, double-click on Web Page from the Object menu and enter

the following URL in the dialog box: http://localhost:8000/slider.html,
as shown in Figure 10.15

Figure 10.15 The Edit URL dialog box in Tableau

Now you should see your Altair chart in your Tableau Dashboard.

Note

In some cases, the Web Page importer fails because it does not support the
Javascript wrapper generated by Altair to include the chart. In this case,
export the chart as a .png file and use the Image object to import it into
Tableau.

Now that you have learned how to include your data story in a Tableau
dashboard, let’s move on to the next alternative, including your data story in
a Power BI report.

10.5.2 Power BI

Power BI is another business intelligence tool released by Microsoft. Power
BI offers both a desktop and online version. Like Tableau, you must buy a
license to use it. However, you can test using a trial version. In the

localhost:8000.html

bibliography of this chapter, you can use some resources to start with Power
BI.

Similar to Tableau, you may need to integrate your data story produced in
Altair into a Power BI dashboard if you already know and use Power BI.
Otherwise, it is better to use other solutions like Streamlit.

In this section, we only describe how to import a chart generated in Altair to
Power BI. We will use the online version. Specifically, we will use the Deneb
plugin, which enables you to import data written in Vega. From Altair, you
can always export the Vega or Vega-lite JSON file directly from the HTML
version, as shown in Figure 10.12.

For simplicity, in the following example, we will directly use the Vega code,
available in the GitHub repository of the book, under 03/vega/json/spec.json.

Execute the following steps:

1. Login to your Power BI account and click on New Report → Paste or
manually enter your data → create a blank report (Figure 10.16)

Figure 10.16 A snapshot of the Power BI interface to create a new report

2. Click on Visualizations → (three dots) Get more visuals → Vega →
Deneb: Declarative Visualization in Power BI → Add (Figure 10.17)

Figure 10.17 The Deneb plugin

3. In the visualization menu, select Deneb,
4. In the Data menu, add X and Y to Deneb. Click on the arrow near X and

Y and click on Don’t summarize (Figure 10.18)

Figure 10.18 The selection menu for each variable

5. On the left of the app, you should see the Deneb box. Click on the three

dots in the Deneb box in the report, and edit → Vega - empty (Figure
10.19)

Figure 10.19 The selection menu for each variable

6. Copy the code in 03/vega/json/spec.json and paste it into the Deneb
editor. You need to remove data to make it work. Listing 10.4 shows the
modified version. Next click on Create.

Listing 10.4 The Vega representation of the chart

{

 "description": "A basic line chart",

 "width": 400,

 "height": 200,

 "padding": 5,

 "data": [

 {

 "name": "dataset"

 }

],

 "scales": [

 {

 "name": "xscale",

 "domain": {"data": "dataset", "field": "X"},

 "range": "width"

 },

 {

 "name": "yscale",

 "domain": {"data": "dataset", "field": "Y"},

 "range": "height"

 }

],

 "axes": [

 { "orient": "bottom", "scale": "xscale" },

 { "orient": "left", "scale": "yscale" }

],

 "marks": [

 {

 "type": "line",

 "from": {"data":"dataset"},

 "encode": {

 "enter": {

 "x": {"scale": "xscale", "field": "X"},

 "y": {"scale": "yscale", "field": "Y"},

 "stroke": { "value": "#636466"}

 }

 }

 },

 {

 "type": "symbol",

 "from": {"data":"dataset"},

 "encode": {

 "enter": {

 "x": {"scale": "xscale", "field": "X"},

 "y": {"scale": "yscale", "field": "Y"},

 "shape": {"value": "circle"},

 "size" : {"value": 100},

 "fill": { "value": "#636466"}

 }

 }

 }

]

 }

The Vega JSON file

Replace the data section with a link to the dataset imported in Power BI.

Figure 10.20 shows the resulting chart.

Figure 10.20 The resulting chart in Power BI

Now that you have learned how to import a Vega chart in Power BI, let’s
move on to the final tool, Comet.

10.5.3 Comet

Comet is an experimentation platform for machine learning model tracking
and testing. In my previous book, Comet for Data Science, I thoroughly
described how to start with Comet, and how to track machine learning, deep
learning, time series, and natural language processing tasks. So, for more
details about Comet, please refer to this book.

You may decide to integrate your data story produced in Altair with Comet if
your data storytelling story is the result of a complete data science project,
which includes model experimentations and evaluations. Since Comet
supports Python, using it to export your data story does not require any
particular effort.

In Comet, you can also create reports. A report is a collection of text and

panels showing the results of your experiments. This is a very helpful feature
because you can use just one tool for experiments and reporting. Unlike
Tableau and Power BI, Comet is free for personal use, so you don’t need to
pay to access the service. In addition, Comet supports many programming
languages, including Python, so you can continue using Python for your
reports.

In this section, we will describe how to include a simple interactive chart in
Comet. We will use the HTML code generated by 08/slider.py. We will write
the code in HTML/Javascript, but Comet also supports Python. If you don’t
have the slider.html file, open a terminal, move to the 08 directory, and run
the command python slider.py.

Execute the following commands:

1. log in to Comet and start a new project by following these steps: New
Project → Project Name, Description, Project Type: Experiment
Tracking

2. Create a new report by clicking Report → New Report → Add Panel →
New

3. The Comet SDK should open. By default, it is configured to work in
Javascript. If you want to work with Python, on the top right part, click
on Javascript and select Python.

4. Under the Resources tab, add the following three Javascript scripts
(Figure 10.21):

a. https://cdn.jsdelivr.net/npm/vega@5
b. https://cdn.jsdelivr.net/npm/vega-lite@5.8.0
c. https://cdn.jsdelivr.net/npm/vega-embed@6

Figure 10.21 The Resources tab in the Comet SDK

5. Switch to the HTML tab and change the id name to vis, as shown in
Figure 10.22

Figure 10.22 The HTML tab in the Comet SDK

6. Open the slider.html file in edit mode and copy the code between the
<script> and </scripts> tags (Listing 10.5). Don’t worry if this code is
very long, it contains all the Vega specs including the original dataset.
Paste the copied code in the Code tab of the Comet SDK.

Listing 10.5 The Javascript code generating the chart

(function(vegaEmbed) {

 var spec = {"config": {"view": ...}};

 var embedOpt = {"mode": "vega-lite"};

 function showError(el, error){

 el.innerHTML = ('<div style="color:red;">'

 + '<p>JavaScript Error: ' + error.message + '</p>'

 + "<p>This usually means there's a typo in your chart specification. "

 + "See the javascript console for the full traceback.</p>"

 + '</div>');

 throw error;

 }

 const el = document.getElementById('vis');

 vegaEmbed("#vis", spec, embedOpt)

 .catch(error => showError(el, error));

 })(vegaEmbed);

7. Click the run button (a green triangle). You should see the rendered
chart on the right (Figure 10.23)

Figure 10.23 The rendered chart in the Comet SDK

8. Click on Save & Capture Thumbnail. You should see the chart
embedded in the Comet report.

Table 10.1 summarizes the pros and the cons for each analyzed tool.

Table 10.1 Pros and Cons of the analyzed tools

Tool Name Description Pros Cons

Streamlit A Python library
to implement a
web server

· Simple to use
· Fully
integrated with
Altair
· You use

· You must
write your
dashboard from
scratch
· You must

Python to configure
the interface
· Free

have a machine to
host the web server

Tableau A software for
data exploration
and data analysis

· It does not
require any
programming skills
· Fast
dashboard building

· Not free
· You must
learn the basics to
use it

Power BI A software for
data exploration
and data analysis

· It does not
require any
programming skills
· Fast
dashboard building

· Not free
· You must
learn the basics to
use it
· It does not
support Altair
directly. You must
use Vega instead

Comet An
experimentation
platform for data
science

· Free for
personal usage
· It enables you
to track all your
data science
workflow, up to
data storytelling
· Fully
integrated with
Altair

· You must
learn the basics to
connect the data to
a data visualization
chart

In the first part of this chapter, you have learned the main issues behind
generative AI and how to use Generative AI ethically. Next, we have seen
how to credit sources properly, and how to publish the final data story using
different tools: Streamlit, Tableau, Power BI, and Comet.

10.6 Final Thoughts

Our journey together has come to an end. Dearest reader, I thank you for

sharing a stretch of the road with me, for trusting me, and for getting to the
end of the reading. I hope that through this book you have learned to love
data storytelling as an effective tool for communicating your data. I also hope
that although the book is finished, your journey into the world of data
storytelling can continue, reading other books, perhaps more interesting than
this one, updating yourself with articles, courses, and anything else good you
can find in the world. In the book, here and there I have indicated interesting
resources that you can draw on, but do not limit your personal research.

Throughout the book, I have tried to equip you with the basic tools to
undertake the difficult role of the data storyteller. The task of using them
responsibly is now up to you. Always have the courage and strength to look
for the truth behind the data, and after finding it, still have the desire to delve
deeper into it and look for it again. I recommend only one thing: never forget
to handle the data that you gradually tell with care, because always remember
that behind the data, there are people waiting for someone to tell their story.

Dear reader, I wish you all the best and hope to meet you again in the future!

10.7 Summary

Using Generative AI in any application may generate different issues,
such as bias and discrimination. Thus, it is very important to review the
content generated by Generative AI.
Using Generative AI ethically means respecting people, society, and the
environment, according to the UNESCO principles.
Before publishing your data story, make sure to credit sources. It’s a
way to recognize the work done by others and to generate a greater
sense of trust in your audience
You can embed your data story in different tools, such as Tableau,
Power BI and Comet. Alternatively, you can publish your data story as a
standalone web application using Streamlit.
Use Tableau or Power BI to integrate your data story produced in Altair,
if you already have some knowledge about these tools. This will enable
you to enrich your dashboards quickly.
Use Comet to integrate your data story produced in Altair, if the story is
the result of a complete data science project, which included some

experimentations, such as model tracking and evaluation.Use Streamlit
to export your data story produced in Altair if you need a web
application to share it with your audience.
In all cases, after completing your data story, remember to share it with
your audience. And after having told the first story, begin to work on the
second. And then on the third, and so on until you become an effective
data storytelling. Happy work! Happy data storytelling!

10.8 References

10.8.1 Generative AI Issues

Tobias Baer (2019) Understand, Manage, and Prevent Algorithmic Bias.
Apress
Jakub M. Tomczak (2022) Deep Generative Modeling. Springer

10.8.2 Ethics and AI

EU AI Act https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?
uri=CELEX:52021PC0206
White House Executive Order on the Safe, Secure, and Trustworthy
Development and Use of Artificial Intelligence
https://www.whitehouse.gov/briefing-room/presidential-
actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-
development-and-use-of-artificial-intelligence/
UNESCO Recommendation on the Ethics of Artificial Intelligence
https://unesdoc.unesco.org/ark:/48223/pf0000381137

10.8.3 Power BI, Tableau, Comet

Greg Deckler, Brett Powell (2022) Mastering Microsoft Power BI:
Expert techniques to create interactive insights for effective data
analytics and business intelligence, 2nd Edition, Packt Publishing
Joshua N. Milligan (2022) Learning Tableau 2022: Create effective data
visualizations, build interactive visual analytics, and improve your data
storytelling capabilities, 5th Edition, Packt Publishing

Angelica Lo Duca (2022) Comet for Data Science, Packt Publishing

[1] https://medium.com/towards-data-science/how-to-improve-your-chatgpt-
outputs-using-configuration-parameters-0eebd575646e

Appendix A. Technical
Requirements
This chapter covers

Cloning the GitHub Repository of the book
Installing the Python Packages
Installing GitHub Copilot
Configuring ChatGPT

This appendix describes how to install the software used in this book.

A.1 Cloning the GitHub Repository

To clone the GitHub repository of the book on your local machine, you can
adopt one of the following two strategies:

Using the terminal
Using GitHub Desktop

A.1.1 Using the terminal

To clone the GitHub repository of the book from the command line, follow
the steps described below:

1. Install the Git suite, if you do not have it yet
2. Open the terminal on your computer
3. Navigate to the directory where you want to clone the repository
4. Run the command git clone https://github.com/alod83/Data-

Storytelling-with-Python-Altair-and-Generative-AI

5. Wait for the repository to be cloned to your local machine.

A.1.2 Using GitHub Desktop

To clone the GitHub repository of the book from GitHub Desktop, follow the
steps described below:

1. Download and install GitHub Desktop from the official website
2. Launch GitHub Desktop
3. Sign in to your GitHub account or create a new account if needed
4. Click on the "File" menu and select "Clone Repository."
5. In the "Clone a repository" window, choose the "URL" tab.
6. Enter the repository URL https://github.com/alod83/Data-Storytelling-

with-Python-Altair-and-Generative-AI in the "Repository URL" field
7. Choose the local path where you want to clone the repository
8. Click on the "Clone" button
9. Wait for GitHub Desktop to clone the repository to your local machine.

A.2 Installing the Python Packages

The examples illustrated in this book use Python 3.8. You can download it
from the official website: https://www.python.org/downloads/ and choose the
3.8 version.

The examples described in this book use the following Python packages:

altair
jupyterlab 3.5.1
ydata-profiling 4.0.0
matplotlib 3.4.3
numpy 1.19.5
pandas 1.3.4

To install the above packages, run the following command in a terminal:

pip install <package_name> version==<version>.

A.3 Installing GitHub Copilot

To use GitHub Copilot, you must set up a free trial or subscription for your
personal GitHub account. If you are a teacher or a student, you can set up a

free subscription plan at the following link:
https://education.github.com/discount_requests/pack_application.

Once your account can use GitHub Copilot, configure it as an extension of
Visual Studio Code (VSC), a free, open-source code editor designed for
developers to write and debug code. Download VSC from its official website:
https://visualstudio.microsoft.com/it/downloads/.

To start with GitHub Copilot, open Visual Studio and navigate to the
Extensions tab. Download and install the GitHub Copilot extension, and
select Connect to your account from the dashboard. Enter your GitHub
credentials. Once logged in, the extension will detect existing repositories
and provide options for configuring new projects.

A.4 Configuring ChatGPT

To use ChatGPT, you must set up an account on the Open AI website. Then,
you can use two ways to interact with ChatGPT:

Web interface
Open AI API.

In this book, we prefer using the Web interface since we don’t have any
specific need to automatize the process. In addition, at the time of writing this
book, the Web interface is free, while the Open AI API requires a paid
account.

Anyway, there is a substantial difference between how the web interface and
the Open AI API manage data. OpenAI uses the inputs provided to the
ChatGPT web interface to train and improve the model while ensuring user
confidentiality and protecting sensitive information. This means that the
ChatGPT web interface uses your input data to improve the model. Thus,
don’t use it if you have sensitive information. However, as of March 1st,
2023, OpenAI no longer uses these interactions to improve its models.

On the other hand, when using the OpenAI API, data sent via the API is
subject to OpenAI's data usage policy. OpenAI retains the right to collect and

store the data sent through the API, but they do not use the data to improve
their models.

A.4.1 Web Interface

Point to https://chat.openai.com/, log in to your account, and start writing
your prompts in the input text box like a live chat.

Whenever you want to start a new topic, create a new chat session by clicking
on the top left button New Chat.

ChatGPT retains the entire history of prompts within a single chat session.
This means you can write step-by-step instructions, building on the previous
prompts and maintaining a coherent conversation.

The Web interface also provides a paid account that gives some additional
features, such as the possibility to use advanced models. In this book, we use
the free version of the web interface.

A.4.2 Open AI API

To use the Open AI API, you must upgrade your existing account to a paid
one. Next, you can configure an API Key by performing the following steps:

1. Click on the Personal button on the top right of your dashboard
2. Select View API Keys in your dropdown menu
3. Click on Create new secret key
4. Insert the key name and create secret key
5. Click on the Copy symbol to copy the key value and paste it into a

secure place
6. Click on Done.

Once created the API key, you must install the openai Python library by
running the command pip install openai. Next, you can use the Open AI API
in your Python scripts.

The following listing shows an example of usage of the Open AI API, asking
ChatGPT to produce some output given an input prompt.

Listing A.1 Calling the ChatGPT API

import openai

openai.api_key = 'MY API KEY'

prompt = 'MY PROMPT'

messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(

 model="gpt-3.5-turbo",

 messages=messages,

 temperature=0, #A

)

output = response.choices[0].message["content"]

print(output)

Define a prompt Use the ChatCompletion.create() method to call the
ChatGPT API.

A.5 Configuring DALL-E

To use DALL-E, you must set up an account on the Open AI website. Then,
you can use two ways to interact with DALL-E:

Web interface
Open AI API.

As for ChatGPT, also for DALL-E, in this book, we prefer using the Web
interface. The Open AI API requires a paid account, while the Web interface
requires buying credits to generate images. In addition, if you created your
DALL-E account before April 6, 2023, every month, you have a free pool of
credits.

To use the Web interface, point to https://labs.openai.com/, log in to your
account, and write your prompts in the input text box.

To use the Open AI API, you must upgrade your existing account to a paid
one. Next, you can configure an API as described in the section related to
ChatGPT:

Once created the API key, you must install the openai Python library by

running the command pip install openai. Next, you can use the Open AI API
in your Python scripts.

The following listing shows an example of usage of the Open AI API, asking
DALL-E to produce an image given an input prompt.

Listing A.2 Calling the DALL-E API

import openai

openai.api_key = 'MY API KEY'

prompt = 'MY PROMPT'

response = openai.Image.create(

 prompt=prompt,

 n=1, #A

 size=’1024x1024’

)

output = response['data'][0]['url']

print(output)

Define a prompt Use the Image.create() method to call the DALL-E API. The
output contains the URL to the produced image.

In addition, you can modify an existing image using the Image.create_edit()
method. Refer to the DALL-E official documentation for more details.

Appendix B. Python Pandas
DataFrame
This chapter covers

An overview of the Pandas DataFrame
The DataFrame methods used in this book

This appendix describes an overview of the Pandas DataFrame and the
methods used in this book.

B.1 An Overview of Pandas DataFrame

Python Pandas is a data manipulation, analysis, and visualization library. It
provides easy tools to load, manipulate, analyze, and visualize data. In this
book, we use the Pandas DataFrame, a two-dimensional structure composed
of rows and columns. The DataFrame stores data in a tabular form, enabling
you to manipulate, analyze, filter, and aggregate data quickly and easily.

There are different ways to create a Pandas DataFrame. In this book, we
consider two ways: from a Python dictionary and from a CSV file. You can
download the code described in this appendix from the GitHub repository of
the book, under AppendixB/Pandas DataFrame.ipynb.

B.1.1 Building from a Dictionary

Consider the following example, which creates a Pandas DataFrame from a
Python dictionary:

Listing B.1 Creating a DataFrame from a dictionary

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

} #A

df = pd.DataFrame(data) #B

df['BirthDate'] = pd.to_datetime(df['BirthDate'], format='%Y-%m-%d') #C

Pandas DataFrame

Use DataFrame() to create a new DataFrame from a dictionary.

B.1.2 Building from a CSV file

Use the read_csv() file to load a CSV file into a Pandas DataFrame, as
shown in Listing B.2.

Listing B.2 Creating a DataFrame from a CSV file

import pandas as pd

df = pd.read_csv('data.csv')

Pandas read_csv()

Use read_csv() to create a new DataFrame from a CSV file.

Now that you have seen how to create a Pandas DataFrame, let us describe
the main DataFrame functions used in this book.

B.2 dt

The dt variable within a Pandas Dataframe enables you to access the
Python’s built-in DateTime library. Use it to store and manipulate DateTime
values, such as the year, month, day, hour, minute, and second. Consider the
following example that extracts the year from a DateTime column:

Listing B.3 How to use Pandas dt

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

}

df = pd.DataFrame(data)

df['BirthDate'] = pd.to_datetime(df['BirthDate'], format='%Y-%m-%d')

year = df['BirthDate'].dt.year #A

month = df['BirthDate'].dt.month #B

day = df['BirthDate'].dt.day #C

weekOfYear = df['BirthDate'].dt.isocalendar().week #D

Pandas dt

Use Pandas dt to access the DateTime functions of Python’s DateTime
library.

B.3 groupby()

The Pandas groupby() method splits data into groups based on the values of
certain columns. This process often involves creating an aggregate statistic
for each group, such as a sum or mean. Consider the following example:

Listing B.4 How to use Pandas groupby

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

}

df = pd.DataFrame(data)

df_grouped = df.groupby(by='Grade').mean().reset_index()

Pandas dt

Use Pandas groupby to group by instrument and calculate the average score
by grad. Use the reset_index() method, to restore the indexer column
(Grade in the example).

The following table shows the result:

Table B.1 The result of groupby() in Listing B.4

Grade MathsScore PhysicsScore ChemistryScore

A 90.0 88.0 91.0

B 85.0 92.0

B.4 isnull()

The Pandas DataFrame isnull() method returns a new boolean DataFrame
indicating which values in the DataFrame are null (NaN). Use this method to
detect missing values in a DataFrame.

Consider the following example:

Listing B.5 How to use Pandas isnull()

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

}

df = pd.DataFrame(data)

df_isnull = df.isnull()

Pandas isnull()

Use Pandas isnull() to check if a DataFrame contains missing values. You
can apply the isnull() method also to a single column (e.g.,
df['ChemistryScore'].isnull())

The following table shows the result, a boolean DataFrame indicating which
values in the DataFrame are null (NaN):

Table B.2 The result of isnull() in Listing B.5

Name BirthDate MathsScore PhysicsScore ChemistryScore Grade

False False False False False False

False False False False True False

False False True False False False

B.5 melt()

We use the Pandas melt() function to reshape data by turning columns into
rows. This function unpivots a DataFrame from wide to long format,
optionally leaving identifiers set. Consider the following example:

Listing B.6 How to use Pandas melt()

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

}

df = pd.DataFrame(data)

df_melted = df.melt(id_vars='Name',

 var_name='Subject',

 value_name='Score',

 value_vars=['MathsScore', 'PhysicsScore', 'ChemistryScore']

)

Pandas melt()

Use Pandas melt() to transform the DataFrame from wide to long format.
Set the id_vars argument to specify which variables to keep as an identifier
and the var_name and value_name arguments to set the column names for the
new variables in the resulting melted DataFrame. Use value_vars to select
the columns to group.

The following table shows the result of melting the data used in Listing B.6:

Table B.3 The result of the melting operation described in Listing B.6

Name Subject Score

Alice MathsScore 90.0

Bob MathsScore 85.0

Charlie MathsScore Nan

Alice PhysicsScore 87.0

Bob PhysicsScore 92.0

Charlie PhysicsScore 89.0

Alice ChemistryScore 92.0

Bob ChemistryScore Nan

B.6 unique()

We use the Pandas unique() method to obtain distinct values from a specific
column in a DataFrame. This method returns an array-like object containing
the unique values found in the specified column.

Consider the following example

Listing B.7 How to use Pandas unique()

import pandas as pd

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'BirthDate': ['2000-01-30', '2001-02-03', '2001-04-05'],

 'MathsScore': [90, 85, None],

 'PhysicsScore': [87, 92, 89],

 'ChemistryScore': [92, None, 90],

 'Grade' : ['A', 'B', 'A']

}

df = pd.DataFrame(data)

unique_grades = df['Grade'].unique()

Pandas unique()

Use Pandas unique() to get the unique values of a column.

The following listing shows the result of calculating the unique values for the
column Grade (Listing B.7):

Listing B.8 The results of Pandas unique()

array(['A', 'B'], dtype=object)

The output of unique()

.The method returns an array containing the unique values for a column.

	welcome
	1_Introducing_Data_Storytelling
	2_Running_your_first_data_story_in_Altair_and_GitHub_Copilot
	3_Reviewing_the_basic_concepts_of_Altair
	4_Generative_AI_Tools_for_Data_Storytelling
	5_Crafting_a_data_story_through_the_DIKW_Pyramid
	6_From_Data_to_Information:_Extracting_insights
	7_From_Information_to_Knowledge:_Building_textual_context
	8_From_Information_to_Knowledge:_Building_the_visual_context
	9_From_Knowledge_to_Wisdom:_Adding_Next_Steps
	10_Publishing_the_Data_Story
	Appendix_A._Technical_Requirements
	Appendix_B._Python_Pandas_DataFrame

