(ode Like

Rust

Brenden Matthews

/III MANNING

High level |

Rust sweet spot <

Low level

High-level languages

Domain-specific Esoteric
languages languages

Scripting languages:
Python, Ruby, and Elixir

System languages:
C, C++, C#, Java, Go, and Rust

Assembly languages

Machine languages

Code Like a Pro
mm Rust

BRENDEN MATTHEWS

MANNING
SHELTER IsLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

@ Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

/l/l Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Review editor: Aleksandar Dragosavljevi¢
PO Box 761 Production editor: Deirdre Hiam
Shelter Island, NY 11964 Copy editor: Christian Berk

Proofreader: Katie Tennant
Technical proofreader: Jonathan Reeves
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617299643
Printed in the United States of America

http://www.manning.com

brief contents

1 = Feelin’ Rusty 1

PART 1 PRO RUST.tttttieteeereereerereerescescesescescessscessessssessnssssescnnes 9
2 = Project management with Cargo 11
3 = Rusttooling 43

| N2 A 076):1 501 7.V VN 63
4 w» Data structures 65
5 = Working with memory 93

PART 3 CORRECTNESS cteeeeececeecerceceecescessecsscsscsssscssssssscsssssssssssnos 119
6 = Unittesting 121
7 = Integration testing 141

PART 4 ASYNCHRONOUS RUST uteereereecercereerereereecercecescescesescencnns 155

8 = Async Rust157
9 w» Building an HTTP REST API service 182
10 = Building an HTTP REST API CLI 204

PART B O PTIMIZATIONS . .eeeeseecescescescscescescssessescssessssessessssssssssnse 217
11 = Optimizations 219

ii

contents

preface x

acknowledgments xi

about this book xii

about the author xvi

about the cover illustration xvii

Feelin’ Rusty 1
1.1 What’s Rust? 2
1.2 What’s unique about Rust? 4

Rust is safe 4 = Rust is modern 5 = Rust is pure open source 5
Rust vs. other popular languages 6

1.3 When should you use Rust? 7

Rust use cases 7

1.4 Toolsyou’ll need 8
PART 1 PRO RUST.. 9

Project management with Cargo 11
2.1 Cargo tour 12

Basic usage 12 = Creating a new application or library 13
Building, running, and testing 14 = Switching between toolchains 15

iv

CONTENTS

2.2 Dependency management 16
Handling the Cargo.lock file 18

2.3 Feature flags 19

2.4 Patching dependencies 21

Indirect dependencies 23 = Best practices for dependency
patching 23

2.5 Publishing crates 24
CI/CD integration 24
2.6 Linking to C libraries 27

2.7 Binary distribution 29
Cross compilation 30 = Building statically linked binaries 30

2.8 Documenting Rust projects 31

Code examples in documentation 34
2.9 Modules 35
2.10 Workspaces 37
2.11 Custom building scripts 40

2.12 Rust projects in embedded environments 41
Memory allocation 42

Rust tooling 43

3.1 Overview of Rust tooling 44

3.2 Using rust-analyzer for Rust IDE integration 45
Magic completions 46

3.3 Using rustfmt to keep code tidy 49
Installing rustfmt 50 = Configuring rustfmt 50

3.4 Using Clippy to improve code quality 51

Installing Clippy 51 = Clippy’s lints 52 = Configuring
Clippy 53 = Automatically applying Clippy’s suggestions 54

Using Clippy in CI/CD 54

3.5 Reducing compile times with sccache 55
Installing sccache 55 = Configuring sccache 56

3.6 Integration with IDEs, including Visual
Studio Code 56

3.7 Using toolchains: Stable vs. nightly 57
Nightly-only features 57 = Using nightly on published crates 58

CONTENTS

3.8 Additional tools: cargo-update, cargo-expand, cargo-fuzz,
cargo-watch, cargo-tree 58

Keeping packages up to date date with cargo-update 59
Debugging macros with cargo-expand 59 = Testing libFuzzer 60
Tterating with cargo-watch 60 = Examining dependencies with
cargo-tree 61

Data structures 65
4.1 Demystifying String, str, &str, and &'static str 66
String vs str 66 = Using strings effectively 67
4.2 Understanding slices and arrays 69

4.3 Vectors 72

Diving deeper into Vec 72 = Wrapping vectors 73 = Types
related to vectors 74

44 Maps 74
Custom hashing functions 75 = Creating hashable types 76

4.5 Rust types: Primitives, structs, enums, and aliases 77

Using primitive types 77 = Using tuples 80 = Using structs 81
Using enums 84 = Using aliases 86

4.6 Error handling with Result 87

4.7 Converting types with From/Into 88

TryFrom and TryInto 90 = Best practices for type conversion using
From and Into 90

4.8 Handling FFI compatibility with Rust’s types 90

Working with memory 93

5.1 Memory management: Heap and stack 94

5.2 Understanding ownership: Copies, borrowing, references,
and moves 96

5.3 Deep copying 97

5.4 Avoiding copies 99

5.5 To box or not to box: Smart pointers 100
5.6 Reference counting 103

5.7 Clone on write 106

CONTENTS vii

5.8 Custom allocators 110

Writing a custom allocator 110 = Creating a custom allocator for
protected memory 113

5.9 Smart pointers summarized 117

Unit testing 121

6.1 How testing is different in Rust 122
6.2 Review of built-in testing features 123
6.3 Testing frameworks 125

6.4 What not to test: Why the compiler knows better
than you 128

6.5 Handling parallel test special cases and global state 129
6.6 Thinking about refactoring 134

6.7 Refactoring tools 134

Reformatting 135 = Renaming 135 = Relocating 136
Rewriting 137

6.8 Code coverage 138
6.9 Dealing with a changing ecosystem 140

Integration testing 141
7.1 Comparing integration and unit testing 142
7.2 Integration testing strategies 144

7.3 Built-in integration testing vs. external
integration testing 146

7.4 Integration testing libraries and tooling 147

Using assert_cmd to test CLI applications 147 = Using proptest
with integration tests 149 = Other integration testing tools 150

7.5 Fuzz testing 150

Async Rust 157

8.1 Runtimes 159
8.2 Thinking asynchronously 159

CONTENTS

8.3 Futures: Handling async task results 161
Defining a runtime with #[tokio::main] 164

8.4 The async and .await keywords: When and where
to use them 164

8.5 Concurrency and parallelism with async 166
8.6 Implementing an async observer 169
8.7 Mixing sync and async 174
8.8 When to avoid using async 176
8.9 Tracing and debugging async code 177
8.10 Dealing with async when testing 180

Building an HTTP REST API service 182

9.1 Choosing a web framework 183
9.2 Creating an architecture 184
9.3 APIdesign 184
9.4 Libraries and tools 185
9.5 Application scaffolding 187
main() 187 = init_tracing() 188 = init_dbpool() 189
9.6 Data modeling 190
SOL schema 190 = Interfacing with our data 191
9.7 Declaring the API routes 194
9.8 Implementing the API routes 195
9.9 Error handling 197
9.10 Running the service 198

Building an HTTP REST API CLI 204
10.1 Deciding which tools and libraries to use 205
10.2 Designing the CLI 206
10.3 Declaring the commands 207
10.4 Implementing the commands 209
10.5 Implementing requests 210
10.6 Handling errors gracefully 211
10.7 Testing our CLI 212

CONTENTS ix

Optimizations 219

11.1 Zero-cost abstractions 220
11.2 Vectors 221

Vector memory allocation 221 = Vector iterators 223 = Fast
copies with Vec and slices 225

11.3 SIMD 226

11.4 Parallelization with Rayon 227

11.5 Using Rust to accelerate other languages 229
11.6 Where to go from here 231

11.7 Installing tools for this book 233
Installing tools on macOS using Homebrew 233 = Installing tools
on Linux systems 233 = Installing rustup on Linux- or UNIX-
based systems 233 = Installing tools on Windows 234
11.8 Managing rustc and other Rust components
with rustup 234

Installing rustc and other components 234 = Switching default
toolchains with rustup 234 = Updating Rust components 234
Installing HI'TPie 235

appendix 233
index 237

preface
I'love learning new programming languages.

I've been writing code for a long time, but I still find myself occasionally banging
my head against a wall when learning new languages or tools. Rust is a unique lan-
guage in many respects, and it introduces several concepts that some people may have
never seen before, even if they have been programming for many years.

I have spent a great deal of time working with Rust both professionally and as a
contributor to community projects, and I have written this book to share what I
learned along the way. By taking the time to read this book, you will save yourself a lot
of time by avoiding the common pitfalls and problems people encounter when
they’re new to Rust.

acknowledgments

I’d like to thank my friends Javeed Shaikh and Ben Lin for providing feedback on
early drafts of the manuscript as well as Manning Publications for working patiently
with me in completing this book.

Specifically, I would like to thank the development editor Karen Miller, the review
editor Aleksandar Dragosavljevi¢, the production editor Deirdre Hiam, the copyeditor
Christian Berk, and the proofreader Katie Tennant.

I thank all the reviewers—Adam Wendell, Alessandro Campeis, Arun Bhagvan
Kommadi, Christian Witts, Clifford Thurber, David Moshal, David Paccoud, Gianluigi
Spagnuolo, Horaci Macias, Jaume Lopez, Jean-Paul Malherbe, Joao Pedro de Lacerda,
Jon Riddle, Joseph Pachod, Julien Castelain, Kevin Orr, Madhav Ayyagari, Martin
Nowack, Matt Sarmiento, Matthew Winter, Matthias Busch, PK Chetty, Rohit Goswami,
Satadru Roy, Satej Kumar Sahu, Sebastian Palma, Seth MacPherson, Simon Tschoke,
Sri Kadimisetty, Tim van Deurzen, William Wheeler, and Zach Peters—your sugges-
tions help to make this a better book.

about this book

While writing this book, I've paid special attention to noting when features or inter-
faces are subject to change. While core language features may not change substan-
tially, practical use of Rust may involve hundreds of separate libraries and projects. By
reading this book, you’ll be introduced to strategies and techniques that help you nav-
igate this evolving ecosystem.

As you continue to read, I would like to mention that the Rust ecosystem is rapidly
evolving. I have written this book with the future of Rust in mind, but I cannot guaran-
tee that the language and libraries won’t change substantially after the book has been
published.

How is this book different?

This book focuses on the practical usage of Rust, while considering the big-picture
themes, limitations of Rust and its tooling, and how developers can become produc-
tive with Rust quickly. The text is not an introduction to the Rust language, nor is it a
replacement for the official Rust documentation. This book supplements the existing
documentation and resources available for Rust and provides the most important les-
sons you won’t find in Rust documentation in one place. While Code Like a Pro in Rust
does not provide an exhaustive reference for the Rust language, I do indicate where
to go for additional information when appropriate.

ABOUT THIS BOOK xiii

Who should read this book?
Readers of this book should be familiar with Rust and consider themselves beginner
to intermediate Rust programmers. If you have never used Rust, you may find this
book difficult to read, as it contains many references to Rust-specific features, for
which I will not spend much time discussing the background. If you find yourself con-
fused about Rust syntax or technical details, I recommended starting with Rust in
Action by Tim McNamara (Manning, 2021) or the official Rust book at https://
doc.rust-lang.org/book/.

For those who are intermediate to advanced Rust programmers, some content in
this book might be familiar. In your case, I recommend you skip ahead to the chapters
most interesting to you.

How this book is organized

The chapters of this book can be read in any order, according to what interests you
most. While I would like for every reader to read every chapter from start to finish, I
also understand that readers have varied goals and experience levels. Most of the later
chapters build on top of content from earlier chapters, so while it isn’t a requirement,
you’ll get the most benefit from reading the chapters in order. Throughout the book,
I make references to other chapters or topics as needed, and you may want to make
notes to go back and read other sections accordingly.

If you are relatively new to Rust or programming in general, then I recommend
reading the whole book from cover to cover, to get the most out of it. For an excellent
introduction to the Rust programming language, I recommend you first read the offi-
cial Rust book (https://doc.rust-lang.org/book/).

Part 1 covers an introduction to Rust and its tooling:

Chapter 1 provides an overview of Rust and what makes it special.
Chapter 2 introduces Cargo, Rust’s project management tool.
Chapter 3 provides a tour of key Rust tooling.

Part 2 covers Rust’s data structures and memory management:
Chapter 4 discusses Rust data structures.
Chapter 5 goes into detail on Rust’s memory management model.
Part 3 discusses testing methods for correctness:
Chapter 6 provides a tour of Rust’s unit testing features.
Chapter 7 dives into integration and fuzz testing.
Part 4 introduces asynchronous Rust programming:
Chapter 8 provides an overview of Rust’s async features.
Chapter 9 walks through implementing an async HTTP server.
Chapter 10 walks through implementing an async HTTP client.
Part 5 discusses optimizations:

Chapter 11 dives into the details of Rust optimizations.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

xiv

ABOUT THIS BOOK

About the code

This book contains many examples of source code both in numbered listings and in line
with normal text. In both cases, source code is formatted in a fixed-width font like this
to separate it from ordinary text. Sometimes code is also in bold to highlight code that
has changed from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (=). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/code-like-a-pro-in-rust. The complete
code for the examples in the book is available for download from the Manning web-
site at https://www.manning.com/books/code-like-a-pro-in-rust, and from GitHub at
https://github.com/brndnmtthws/code-like-a-pro-in-rust-book.

You can clone a copy of the book’s code locally on your computer by running the
following command with Git:

$ git clone https://github.com/brndnmtthws/code-like-a-pro-in-rust-book

The book’s code is organized into directories by chapter and section within the repos-
itory, organized within each section by topic. The code is licensed under the MIT
license, which is a permissive license that allows you to copy the code samples and use
them as you see fit, even as the basis for your own work.

Throughout this book, there are many references to open source projects which
are used as teaching aids. The source code for most of these projects (or crates) can
be obtained from their respective project repositories—for reference, see the follow-
ing table.

List of projects referenced in this book

Name Description Home page Repository URL

dryoc Cryptography library https://crates.io/crates/dryoc https://github.com/brndnmtthws/
dryoc.git

rand Provides random https://rust-random.github.io/book | https://github.com/rust-random/

values rand.git

Rocket HTTP/web framework | https://rocket.rs https://github.com/SergioBenitez/
Rocket.git

num_cpus Returns the number https://crates.io/crates/num_cpus | https://github.com/seanmonstar/

of logical CPU cores

num_cpus.git

zlib

Compression library

https://zlib.net/

https://github.com/madler/zlib.git

https://crates.io/crates/dryoc
https://github.com/brndnmtthws/dryoc.git
https://github.com/brndnmtthws/dryoc.git
https://rust-random.github.io/book
https://github.com/rust-random/rand.git
https://github.com/rust-random/rand.git
https://rocket.rs
https://github.com/SergioBenitez/Rocket.git
https://github.com/SergioBenitez/Rocket.git
https://crates.io/crates/num_cpus
https://github.com/seanmonstar/num_cpus.git
https://github.com/seanmonstar/num_cpus.git
https://zlib.net/
https://github.com/madler/zlib.git
https://livebook.manning.com/book/code-like-a-pro-in-rust
https://www.manning.com/books/code-like-a-pro-in-rust
https://github.com/brndnmtthws/code-like-a-pro-in-rust-book

ABOUT THIS BOOK XV

List of projects referenced in this book (continued)

Name Description Home page Repository URL
lazy static | Global static variable | https://crates.io/crates/lazy_static | http://mng.bz/E9QrD
library
Tokio Async runtime https://tokio.rs https://github.com/tokio-rs/tokio
Syn Rust code parser https://crates.io/crates/syn https://github.com/dtolnay/syn
axum Async web framework| https://docs.rs/axum/latest/axum/ | https://github.com/tokio-rs/axum

liveBook discussion forum

Purchase of Code Like a Pro in Rust includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/code-like-a-pro-in-rust. You can also learn more about Manning’s forums and
the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://livebook.manning.com/discussion
https://crates.io/crates/lazy_static
http://mng.bz/E9rD
https://tokio.rs
https://github.com/tokio-rs/tokio
https://crates.io/crates/syn
https://github.com/dtolnay/syn
https://docs.rs/axum/latest/axum/
https://livebook.manning.com/book/code-like-a-pro-in-rust
https://livebook.manning.com/book/code-like-a-pro-in-rust
https://github.com/tokio-rs/axum

about the author

BRENDEN MATTHEWS is a software engineer, entrepreneur, and prolific open source con-
tributor. He has been using Rust since the early days of the language and has contrib-
uted to several Rust tools and open source projects, in addition to using Rust
professionally. He’s the author of Conky, a popular system monitor, and a member of
the Apache Software Foundation, with over 25 years of industry experience. Brenden
is also a YouTube contributor and instructor as well as an author of many articles on
Rust and other programming languages. He has given talks at several technology con-
ferences, including QCon, LinuxCon, ContainerCon, MesosCon, All Things Open,
and Rust meetups. He has been a GitHub contributor for over 13 years, has multiple
published Rust crates, has contributed to several open source Rust projects, and has
built production-grade Rust applications professionally. Brenden is also the author of
Rust Design Patterns, a follow-up to Code Like a Pro in Rust.

about the cover illustration

The figure on the cover of Code Like a Pro in Rustis “Femme de I’Argou,” or “Woman
of Aargau, Switzerland,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xvii

Feelin” Rusty

This chapter covers

Introducing Rust

Surveying the language and its purpose
Comparing Rust to other programming languages
Getting the most out of this book

This book will help beginner-to-intermediate Rust developers get up to speed on
the language, tooling, data structures, memory management, testing, asynchro-
nous programming, and best practices as quickly as possible. By the end of this
book, you should feel confident building production-grade software systems with
idiomatic—or Rustaceous—Rust. This book is not an exhaustive reference of the
Rust language or its tooling; instead, it focuses solely on the good stuff.

Rust offers compelling features for those looking to build fast, safe programs.
Some people find Rust’s learning curve a bit steep, and this book can help over-
come the challenging parts, clarify Rust’s core concepts, and provide actionable
advice.

The book is written for those already familiar with the Rust programming lan-
guage. Additionally, it will be of much benefit to the reader to have experience with
other system-level programming languages, such as C, C++, and Java. You need not

11

CHAPTER 1 Feelin’ Rusty

be an expert in Rust to get value out of this book, but I won’t spend much time review-
ing basic syntax, history, or programming concepts.

Many of the code samples in this book are partial listings, but the full working code
samples can be found on GitHub at http://mng.bz/BA70. The code is made available
under the MIT license, which permits usage, copying, and modifications without
restriction. I recommend you follow along the full code listings if you can, to get the
most out of this book. The code samples are organized by chapter within the reposi-
tory; however, some examples may span multiple sections or chapters and are, thus,
named based on their subject matter.

What’s Rust?

Rust (figure 1.1) is a modern programming language
with a focus on performance and safety. It has all the
features you would likely want or expect from a mod-
ern programming language, including closures,
generics, asynchronous 1/0, powerful tooling, IDE
integrations, linters, and style-checking tools. Along-
side Rust’s robust set of features, it boasts a vibrant,
growing community of developers and contributors.
Rust is a powerful language with several applica-
tions, including web development. While it was writ-

ten with the intention of being a systems-level

language, it also fits quite well in domains that are Figure 1.1 Rust language logo
(Source: Rust core team. Licensed

well outside system-level programming, such as web
under CC BY 4.0.)

programming with WebAssembly (Wasm), a web stan-
dard for executing bytecode. In figure 1.2, I've illustrated where Rust generally sits in
the language stack, but this is by no means definitive.

High level &
High-level languages

Domain-specific Esoteric
languages languages

Scripting languages:
Python, Ruby, and Elixir

Rust sweet spot System languages:
P C, C++, C#, Java, Go, and Rust

Assembly languages

Figure 1.2 Where
Machine languages Rust fits in language
Low level ¥ classifications

http://mng.bz/BA70

1.1 What’s Rust? 3

Rust’s creators envisioned its primary use as building system-level code and libraries
that are safety and performance critical. Rust’s safety guarantees don’t come for free;
the cost of those features comes in terms of added language and compilation-time
complexity.

Rust can compete with higher-level languages, like Python or Ruby; however, its
main drawback here is Rust’s lack of a runtime interpreter, as it is compiled to
platform-dependent binaries. Thus, one must distribute their Rust programs as bina-
ries (or somehow provide a compiler). There are a few cases in which Rust is likely a
much better choice than a scripting language, like Python or Ruby, such as embedded
or resource-constrained environments.

Rust can also be compiled for web browsers directly, through the use of Wasm,
which has grown significantly in popularity recently. Wasm is simply treated as yet
another CPU target, much like x86-64 or AArch64, except the CPU in this case is a
web browser.

Some highlights of the Rust language include the following:

Rust features a core suite of tools for working with the language, including, but
not limited to, the following:

— rustc, the official Rust compiler

— cargo, a package manager and build tool

— https://crates.io, a package registry

Rust has many modern programming language features, including the following:
— The borrow checker, which enforces Rust’s memory-management model

— Static typing

— Asynchronous I/O

— Closures

— Generics

— Macros

— Traits

Rust offers several community tools for improving code quality and productivity:
— rust-clippy, an advanced linter and style tool

— Rustfmt, an opinionated code formatter

— sccache, a compiler cache for rustc

— rust-analyzer, a full-featured IDE integration for the Rust language

The most loved language

At the time of writing, Rust has won the most loved programming language category
of Stack Overflow’s annual developer survey every year since 2016. In the 2021 sur-
vey, out of 82,914 responses, Rust was loved by 86.98% of those using it (2021
Developer Survey,” http://mng.bz/ddON). The second-place language, Clojure, came
in at 81.12% loved, and the third-place language, TypeScript, was 72.73% loved.

http://mng.bz/ddON
https://crates.io

1.2

121

CHAPTER 1 Feelin’ Rusty

What’s unique about Rust?

Rust addresses common programming mistakes with a unique set of abstractions—
some of which you may have never encountered before. In this section, I’ll provide a
quick tour of the features that make Rust different.

Rust is safe

Safety is one of Rust’s hallmarks, and its safety features are what differentiates it most
from other languages. Rust can provide strong safety guarantees thanks to a feature
called the borrow checker.

In languages like C and C++, memory management is a somewhat manual process,
and developers must be aware of the implementation details when considering mem-
ory management. Languages like Java, Go, and Python use automatic memory manage-
ment, or garbage collection, which obfuscates the details of allocating and managing
memory with the tradeoff of incurring some performance overhead.

Rust’s borrow checker works by validating references at compile time, rather than
reference counting or performing garbage collection at run time. It’s a unique fea-
ture that also introduces challenges when writing software, especially if you’ve never
encountered the borrow checker.

The borrow checker is part of Rust’s compiler rustc, which verifies that for any
given object or variable, there can be no more than one mutable reference at a time.
It’s possible to have multiple immutable references (i.e., read-only references) to
objects or variables, but you can never have more than a single active mutable refer-
ence. As shown in figure 1.3, Rust guarantees memory safety by checking that there’s
never an overlap between mutable and immutable references.

One or more
immutable references

Exactly one
mutable reference

&mut T &T

No
overlap

Figure 1.3 Rust borrow checker rules
Venn diagram

Rust uses resource acquisition is initialization (RAII) to keep track of when variables and
all their references are in and out of scope. Once they are out of scope, memory
can be released. The borrow checker will not allow references to out-of-scope vari-
ables, and it only allows one mutable reference or multiple immutable references but
never both.

The borrow checker provides safety for concurrent programming, too. Race condi-
tions may arise when sharing data, such as between separate threads. In most cases,
the root cause is the same: simultaneous shared mutable references. With Rust, it’s

1.2.2

1.2.3

1.2 What’s unique about Rust? 5

not possible to have more than one mutable reference, thereby ensuring data syn-
chronization problems are avoided, or at least not created unintentionally.

Rust’s borrow checker is tricky to master at first, but soon, you’ll find it’s the best
feature of Rust. Similar to languages like Haskell, once you manage to make your
code compile, that’s often enough (when combined with adequate testing) to guaran-
tee your code will work and never crash (testing is covered in chapters 6 and 7). There
are exceptions to this, but by and large, code written in Rust will not crash from com-
mon memory errors, like reading past the end of a buffer or mishandling memory
allocations and deallocations.

Rust is modern

The Rust language developers have paid special attention to supporting modern

programming paradigms. Coming from other languages, you may notice Rust’s out-

with-the-old, in-with-the-new approach. Rust largely eschews paradigms like object-

oriented programming in favor of traits, generics, and functional programming.
Notably, Rust emphasizes the following paradigms and features:

Functional programming—Closures, anonymous functions, and iterators
Generics

Traits—Sometimes referred to as interfaces in other languages
Lifetimes—For handling references

Metaprogramming—Through its macro system

Asynchronous programming—Via async/await

Package and dependency management—Via Cargo

Zero-cost abstractions

Traditional object-oriented features are notably absent from Rust. And while it’s true
that you can model patterns similar to classes and inheritance in Rust, the terminol-
ogy is different, and Rust lends itself to functional programming. For those coming
from an object-oriented background, such as C++, Java, or C#, it may take some time
to get used to. Once they adjust to the new patterns, many programmers find a certain
delight and freedom in being liberated from the rigidness of object-oriented ideology.

Rust is pure open source

When considering languages and platforms to build upon, community governance is
important to consider when thinking about the long-term maintenance of any proj-
ect. Some languages and platforms that are open source but mostly governed by large
companies, such as Go (Google), Swift (Apple), and .NET (Microsoft), come with cer-
tain risks, such as making technology decisions that favor their products.

Rust is a community-driven project, led primarily by the notfor-profit Mozilla
Foundation. The Rust programming language itself is dual licensed under the Apache
and MIT licenses. Individual projects within the Rust ecosystem are individually

6 CHAPTER 1 Feelin’ Rusty

licensed, but most key components and libraries exist under open source licenses,
such as MIT or Apache.

There is strong support among large technology companies for Rust. Amazon,
Facebook, Google, Apple, Microsoft, and others have made plans to use or pledge
support for Rust. By not being tied to any particular entity, Rust is a good long-term
choice with minimal potential for conflict of interest.

NOTE The Rust team maintains a list of production users on the official Rust
language website: https://www.rust-lang.org/production.

1.2.4 Rust vs. other popular languages

Table 1.1, while not exhaustive, provides a summary of the differences between Rust
and other popular programming languages.

Table 1.1 Rust compared to other languages

Language Paradigms Typing Memory model Key features
Rust Concurrent, functional, Static, strong RAII, explicit Safety, performance, async
generic, imperative
C Imperative Static, weak Explicit Efficiency, portability,
low-level memory manage-
ment, widely supported
C++ Imperative, object- Static, mixed RAIl, explicit Efficiency, portability,
oriented, generic, low-level memory manage-
functional ment, widely supported
C# Object-oriented, imperative, | Static, Garbage Supported on Microsoft
event-driven, functional, dynamic, collected platforms, large ecosys-
reflective, concurrent strong tem, advanced language
features
JavaScript | Prototypes, functional, Dynamic, duck, | Garbage Widely supported, async
imperative weak collected
Java Generic, object-oriented, Static, strong Garbage Bytecode-based, production-
imperative, reflective collected grade Java Virtual Machine,
widely supported, large
ecosystem
Python Functional, imperative, Dynamic, duck, | Garbage Interpreted, highly porta-
object-oriented, reflective strong collected ble, widely used
Ruby Functional, imperative, Dynamic, duck, | Garbage Syntax, everything’s an
object-oriented, reflective strong collected expression, simple concur-
rency model
TypeScript | Functional, generic, Static,dynamic, | Garbage Types, JavaScript compati-
imperative, object-oriented | duck, mixed collected bility, async

https://www.rust-lang.org/production

1.3

131

1.3 When should you use Rust? 7

When should you use Rust?

Rust is a systems programming language, generally meant to be used for lower-level
system programming, in situations similar to where you’d use C or C++. Rust may not
be well suited for use cases in which you want to optimize for developer productivity,
as writing Rust is often trickier than writing code with popular languages like Go,
Python, Ruby, or Elixir.

Rust is also a great candidate for web programming with the onset of Wasm. You
can build applications and libraries with Rust, compile them for Wasm, and take
advantage of the benefits of Rust’s safety model with the portability of the web.

There is no specific use case for Rust—you should use it where it makes sense. I
have personally used Rust for many small one-off projects, simply because it’s a joy to
write, and once the code compiles, you can generally count on it working. With proper
use of the Rust compiler and tooling, your code is considerably less likely to have errors
or behave in undefined ways—which are desirable properties for any project.

TIP Using the right tool for the job is important for any endeavor to succeed,
but to know which tools are the right tools, you must first gain experience
using a variety of different tools for different tasks.

Rust use cases
The following is a list of example use cases for which Rust is well suited:

Code acceleration—Rust can accelerate functions from other languages, like
Python, Ruby, or Elixir.

Concurrent systems—Rust’s safety guarantees apply to concurrent code. This
makes Rust ideal for use in high-performance concurrent systems.
Cryptography—Rust is ideally suited for implementing cryptography algorithms.
Embedded programming—Rust generates binaries that bundle all dependencies,
excluding the system C library or any third-party C libraries. This lends itself to
a relatively straightforward binary distribution, particularly on embedded sys-
tems. Additionally, Rust’s memory-management model is great for systems that
demand minimal memory overhead.

Hostile environments—In situations where safety is of utmost concern, Rust’s
guarantees are a perfect fit.

Performance critical—Rust is optimized for safety and performance. It’s easy to
write code that’s extremely fast, without compromising on safety, with Rust.
String processing—String processing is an incredibly tricky problem, and Rust is
particularly well suited for the task because it makes it easy to write code that
can’t overflow.

Replacing legacy C or C++—Rust is an excellent choice for replacing legacy C or
Ct+.

Safe web programming—Rust can target Wasm, allowing us to build web applica-
tions with Rust’s safety and strong type checking.

14

CHAPTER 1 Feelin’ Rusty

Tools you’ll need

Included as part of this book is a collection of code samples, freely available under the
MIT license. To obtain a copy of the code, you will need an internet-connected com-
puter with a supported operating system and the tools discussed in table 1.2 installed.
For details on installing these tools, refer to the appendix.

Table 1.2 Required tools

Name Description

git The source code for this book is stored in a public Git repository, hosted on GitHub at
http://mng.bz/BA70.

rustup This is Rust’s tool for managing Rust components. rustup will manage your installa-
tion of rustc and other Rust components.

gcc or clang | You must have a copy of GNU Compiler Collection (GCC) or Clang installed to build
certain code samples, but it’s not required for most. Clang is likely the best choice for
most people, and thus, it’s referred to by default. In cases where the c1ang command
is specified, you may freely substitute gcc if you prefer.

Summary

= Rust is a modern system-level programming language with advanced safety fea-
tures and zero-cost abstractions.

= Rust’s steep learning curve can be an initial deterrent, but this book helps you
move beyond these hurdles.

= Rust has many similarities to—and borrows concepts from—other languages,
but it’s unique, as explained throughout this book.

= Rust’s vibrant community and mature package repository provide a rich ecosys-
tem to build atop.

= To get the most out of this book, follow along the code samples from
http://mng.bz/BA70.

http://mng.bz/BA70
http://mng.bz/BA70

Part 1

Pro Rust

Rust offers a great deal of value: speed, safety, and a rich set of tools for
working with the language. Learning the language is important, but having com-
mand of the tools provided by both the core Rust project and the wider commu-
nity will help you achieve mastery quickly.

Tooling makes all the difference between a good and a bad programming
language—as does your effectiveness with the tooling. Merely having awareness
aboutwhat tooling is available and some of the capabilities it provides will place you
head and shoulders above developers who don’t take the time to learn the tools.

In the first part of the book, we’ll spend some time introducing (or reviewing,
depending on your level of expertise) the basics of the language and, in particu-
lar, the tools you’ll need to work with it. You don’t need to be a Rust Pro to use its
tools, but you do need to understand the tools to effectively use the language.

Project management
with Cargo

This chapter covers

Introducing Cargo and how to manage Rust
projects with Cargo

Handling dependencies in Rust projects
Linking to other (non-Rust) libraries
Publishing Rust applications and libraries
Documenting Rust code

Following the Rust community’s best practices for
managing and publishing projects

Structuring Rust projects with modules and
workspaces

Considerations for using Rust in embedded
environments

Before we can jump into the Rust language itself, we need to familiarize ourselves
with the basic tools required to work with Rust. This may seem tedious, but I can
assure you that mastering tooling is critical to success. The tools were created by the

11

12

2.1

211

CHAPTER 2 Project management with Cargo

language creators for the language users to make your life easier, so understanding
their purpose will forever pay dividends.

Rust’s package management tool is called Cargo, and it’s the interface to Rust’s
compiler rustc, the https://crates.io registry, and many other Rust tools (which we
cover in more detail in chapter 3). Strictly speaking, it’s possible to use Rust and rustc
without using Cargo, but it’s not something I’d recommend for most people.

When working with Rust, you’ll likely spend a lot of time using Cargo and tools
that work with Cargo. It’s important to familiarize yourself with its use and best prac-
tices. In chapter 3, I'll provide recommendations and details on how to further
increase the usefulness of Cargo with community crates.

Cargo tour

To demonstrate Cargo’s features, let’s take a tour of Cargo and its typical usage. I
implore you to follow along (ideally by running the commands as demonstrated in
the chapter). In doing so, you may discover new features even if you’re already famil-
iar with Cargo and its usage.

Basic usage

To start, run cargo help to list the available commands:

$ cargo help
Rust's package manager

USAGE:
cargo [+toolchain] [OPTIONS] [SUBCOMMAND]

OPTIONS:
-V, --version Print version info and exit
--list List installed commands
--explain <CODE> Run “rustc --explain CODE™
-v, --verbose Use verbose output (-vv very verbose/build.rs
output)
-q, --quiet No output printed to stdout
--color <WHEN> Coloring: auto, always, never
--frozen Require Cargo.lock and cache are up to date
--locked Require Cargo.lock is up to date
--offline Run without accessing the network
-Z <FLAG>... Unstable (nightly-only) flags to Cargo, see
'cargo -Z help' for details
-h, --help Prints help information

Some common cargo commands are (see all commands with --1list):

build, b Compile the current package

check, c Analyze the current package and report errors, but don't
build object files

clean Remove the target directory

doc Build this package's and its dependencies' documentation
new Create a new cargo package

init Create a new cargo package in an existing directory

https://crates.io

21.2

2.1 Cargo tour 13

run, r Run a binary or example of the local package

test, t Run the tests

bench Run the benchmarks

update Update dependencies listed in Cargo.lock

search Search registry for crates

publish Package and upload this package to the registry

install Install a Rust binary. Default location is $HOME/.cargo/bin

uninstall Uninstall a Rust binary

See 'cargo help <command>' for more information on a specific command.

If you run this yourself, your output may differ slightly, depending on the version of
Cargo you have installed. If you don’t see output similar to the preceding code, you
may need to verify your Cargo installation is working. Refer to the appendix for details
on installing Cargo.

Creating a new application or library

Cargo has a built-in boilerplate generator, which can create a Hello, world! application
or library, saving you time on getting started. To get started, run the following command
in your shell from a development directory (I personally like to use ~/dev):

$ cargo new dolphins-are-cool
Created binary (application) ~“dolphins-are-cool” package

This command creates a new boilerplate application called dolphins-are-cool (you
can change the name to anything you want). Let’s quickly examine the output:

$ cd dolphins-are-cool/
S tree

}— cargo.toml
L— src

L— main.rs

1 directory, 2 files

In this code, we see Cargo has created two files:
Cargo.toml, which is the Cargo configuration file for the new application, in
TOML format
main.rs inside the src directory, which represents the entry point for our new
application

TIP Tom’s obvious minimal language (TOML) is a configuration file format
used by many Rustrelated tools. For details on TOML, refer to
https://toml.io.

Next, use cargo run to compile and execute the newly created application:

https://toml.io

14

213

CHAPTER 2 Project management with Cargo

$ cargo run
Compiling dolphins-are-cool v0.1.0 (/Users/brenden/dev/dolphins-are-cool)
Finished dev [unoptimized + debuginfo] target(s) in 0.59s
Running “target/debug/dolphins-are-cool”
Hello, world! <+—— This is the Rust program output.

Running the cargo new command like this but with the --1ib argument will create a
new library:

$ cargo new narwhals-are-real --1ib

Created library “narwhals-are-real” package
$ cd narwhals-are-real/
$ tree

— cargo.toml

1 directory, 2 files

The code generated from cargo new --1ib is slightly different, as it contains a single-
unit test in src/lib.rs rather than a main function. You can run the tests with cargo
test:

$ cargo test
Finished test [unoptimized + debuginfo] target(s) in 0.00s
Running target/debug/deps/narwhals are real-3265ca33d2780ea2

running 1 test
test tests::it _works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Doc-tests narwhals-are-real
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

TIP Applications use src/main.rs as their entrypoint, and libraries use
src/lib.rs as their entrypoint.

When using cargo new, Cargo will automatically initialize the new directory as a Git
repository (except when already inside a repository), including a .gitignore file. Cargo
also supports hg, Pijul, and Fossil with the --vcs flag.

Building, running, and testing

The Cargo commands you’ll likely spend the most time working with are build, check,
test, and run. These commands are summarized in table 2.1.

2.14

2.1 Cargo tour 15

Table 2.1 Cargo build and run commands

Cargo command Summary

build Compiles and links your package, creating all final targets

check Similar to build, except does not actually generate any
targets or objects—merely checks the validity of code

test Compiles and runs all tests

run Compiles and runs the target binary

The commands you will likely spend a great deal of time working with are cargo check
and cargo test. By using check, you can save time and iterate quickly while writing code,
as it will validate syntax faster than cargo build. To illustrate this, let’s time the compi-
lation of the dryoc crate, available from https://github.com/brndnmtthws/dryoc,
which I use throughout this book for examples:

$ cargo clean
$ time cargo build

Finished dev [unoptimized + debuginfo] target(s) in 9.26s
cargo build 26.95s user 5.18s system 342% cpu 9.374 total
$ cargo clean
$ time cargo check

Finished dev [unoptimized + debuginfo] target(s) in 7.97s
cargo check 23.24s user 3.80s system 334% cpu 8.077 total

In this case, the difference is not substantial: about 9.374 seconds for the build com-
mand versus 8.077 seconds for check (according to the wall-clock time given by the
time command). However, on larger crates, the time saved can become substantial.
Additionally, there’s a multiplicative effect, as you often recompile (or recheck) the
code several times when iterating on changes.

Switching between toolchains

A toolchain is a combination of an architecture, a platform, and a channel. One exam-
ple is stable-x86_64-apple-darwin, which is the stable channel for x64-64 Darwin
(equivalent to Apple’s macOS on Intel CPUs). Rust is published as three different
channels: stable, beta, and nightly. Stable is the least frequently updated, best tested
channel. Beta contains features that are ready for stabilization but which require fur-
ther testing and are subject to change. Nightly contains unreleased language features
that are considered a work in progress.

When working with Rust, you'll often find yourself needing to switch between dif-
ferent toolchains. In particular, you may often need to switch between the stable and
nightly channels. An easy way to do this directly with Cargo is to use the +channel
option, like so:

https://github.com/brndnmtthws/dryoc

16

2.2

CHAPTER 2 Project management with Cargo

Runs tests with stable channel:
$ cargo +stable test

Runs tests with nightly channel:
$ cargo +nightly test

NOTE You may need to install the nightly toolchain with rustup toolchain
install nightly before running any cargo +nightly ..commands, if you haven’t
already done so. If you install cargo via a system-level package manager (e.g.,
Debian’s apt), this command may not work as expected.

This option works with all Cargo commands, and it’s the quickest way to switch
between toolchains. The alternative is to switch your default toolchain using rustup,
covered in the appendix.

In many cases, you’ll want to test your code with both stable and nightly before
publishing, especially with open source projects, as many people use both toolchains.
Additionally, many Rust projects are nightly only, which is discussed in greater detail in
chapter 3.

You may also use the override option with rustup, which allows you to set the tool-
chain for a specific project or directory. The rustup tool stores this configuration in its
settings.toml, which is located within $HOME/ .rustup on UNIX-like systems. For
example, you can set the current working directory to the nightly channel with the fol-
lowing code:

Only applies to the current directory and its children
$ rustup override set nightly

This is quite handy, as it allows you to keep the stable channel by default, but switch to
nightly for specific projects.

Dependency management

The crates.io package (or crate) registry is one of Rust’s force multipliers. In the Rust
community, packages are called crates, and they include both applications and librar-
ies. As of the time of writing, there are more than 92,000 different crates available.

When referring to crates in this book, we’re likely using libraries rather than appli-
cations. In chapter 3, we’ll discuss more Rust tooling that can be installed from crates,
but most of the time we’ll be using libraries.

Rust has a unique approach compared to some programming languages, in that
the core language itself does not include many features. By comparison, languages
like Java, C#, and even C++, to some degree, include significant components as part of
the core language (either in the runtime or as part of the compiler). For example,
Rust’s core data structures—compared to other languages—are quite minimal, and
many are just wrappers around the core data resizable structure, vec. Rust prefers to
provide features through crates, rather than creating a large standard library.

2.2 Dependency management 17

The Rust language itself doesn’t even include a random number generator, which
is critical for many programming tasks. For that you need to use the rand crate, which
is the most downloaded crate as of the time of writing (or write your own random
number generator).

If you’re coming from a language like JavaScript, Ruby, or Python, Rust’s crates will
be somewhat similar to their corresponding package management tools. Coming
from languages like C or C++ is like discovering fire for the first time. Gone are the
days of manually writing complicated build checks for third-party libraries or integrat-
ing third-party code and build systems into your own source repository.

Describing dependencies in Rust is done by listing them in Cargo.toml. A simple
example using the rand crate looks as shown in the following listing.

Listing 2.1 A minimal Cargo.toml

[packagel

name = "simple-project"

version = "0.1.0"

authors = ["Brenden Matthews <brendene@brndn.io>"]
edition = "2018"

[dependencies]

rand = "0.8"

In the preceding code, we’re including the rand crate, using the latest 0.8 release of
the library. When specifying dependency versions, you should follow semantic version-
ing (SemVer, https://semver.org), which uses the major.minor. patch pattern. By default,
Cargo will use carel requirements if an operator is not specified, which permits
updates to the least-specified version.

You can also add a dependency to a project with the cargo add command:

Adds the rand crate as a dependency to the current project
$ cargo add rand

Cargo supports carets (*x.y.z), tildes (~x.y.z), wildcards (*, x.*), comparison
requirements (>=x, <x.y, =x.y.z), and combinations thereof (see table 2.2). In prac-
tice, you would specify the library version as major.minor (allows compatible upgrades
under the caret rules) or =major.minor.patch (pinned to a specific version). Refer to
http://mng.bz/rjAB for more information on dependency specifications.

Table 2.2 Summary of SemVer dependency specification

Operator Example Min version Max version Updates?
Caret r2.3.4 >=2.3.4 <3.0.0 Allowed
Caret A2.3 >=2.3.0 <3.0.0 Allowed

Caret £0.2.3 >=0.2.3 <0.3.0 Allowed

http://mng.bz/rjAB
https://semver.org

18

221

CHAPTER 2 Project management with Cargo

Table 2.2 Summary of SemVer dependency specification (continued)

Operator Example Min version Max version Updates?
Caret A2 >=2.0.0 <3.0.0 Allowed
Tilde ~2.3.4 >=2.3.4 <2.4.0 Allowed
Tilde ~2.3 >=2.3.0 <2.4.0 Allowed
Tilde ~0.2 >=0.2.0 <0.3 Allowed
Wildcard 2.3.*% >=2.3.0 <2.4.0 Allowed
Wildcard 2% >=2.0.0 <3.0.0 Allowed
Wildcard * None None Allowed
Comparison =2.3.4 =2.3.4 =2.3.4 No
Comparison >=2.3.4 >=2.3.4 None Allowed
Comparison >=2.3.4,<3.0.0 >=2.3.4 <3.0.0 Allowed

Internally, Cargo uses the semver crate (https://crates.io/crates/semver) for parsing
the versions specified. When you run cargo update within your project, Cargo will
update the Cargo.lock file with the newest available crates, per your dependency
specification.

TIP I prefer to avoid pinning dependency versions when possible, especially in
libraries. It can cause headaches down the road when competing downstream
packages require different versions of common libraries. While many advo-
cate for version pinning, it’s better to permit flexibility as needed.

How exactly to specify dependencies is a topic of much debate. There are no hard-
and-fast rules, but you should generally assume other projects follow SemVer. Some
projects adhere to SemVer rules strictly, and others do not. In most cases, it needs to
be evaluated on a case-by-case basis. A reasonable default assumption is to allow
upgrades to minor and patch versions by specifying the minimum required version
with the caret operator, which is the default in Rust (if you don’t explicitly specify an
operator). For your own published crates, please follow SemVer, as it helps other
developers build on your work and preserves compatibility.

Handling the Cargo.lock file

Handling Cargo.lock requires a bit of special consideration, at least with regard to ver-
sion control systems. The file contains a list of the package dependencies (both direct
and indirect dependencies), their versions, and checksums for verifying integrity.

If you’re coming from languages with similar package management systems, you’ve
probably seen similar files before (npm uses package-lock.json, Ruby gems use Gemfile
Jock, and Python Poetry uses poetry.lock). For libraries, it’s recommended you do not

https://crates.io/crates/semver

2.3

2.3 Feature flags 19

include this file in your version control system. When using Git, you can do this by add-
ing Cargo.lock to .gitignore. Leaving out the lock file allows downstream packages to
update indirect dependencies as needed.

For applications, it’s recommended you always include Cargo.lock alongside
Cargo.toml. This helps to ensure consistent behavior in published releases, should
third-party libraries change in the future.

This is a well-established convention and not unique to Rust. Lastly, Cargo will auto-
matically create an appropriate .gitignore file for you and initialize a Git repository.

Feature flags

It’s common practice when publishing software, particularly libraries, to have optional
dependencies. This is usually for the purpose of keeping compile times low and bina-
ries small, and, perhaps, providing performance improvements, with the tradeoff of
some additional complexity at compile time.

In some cases, you may want to include optional dependencies as part of your crate.
These can be expressed as feature flags with Cargo (table 2.3). There are some limita-
tions with feature flags, notably that they only permit Boolean expressions (i.e., enabled
or disabled). Feature flags are also passed through to crates in your dependency list, so
you can enable features for underlying crates through top-level feature flags.

Table 2.3 Example feature flags from the dryoc crate

Flag Description Enabled by default?
serde Enables an optional serde dependency No
base64 Enables a base64 dependency but only activates when No

serde is also enabled

simd backend Enables the SIMD and assembly features for No
curve25519-dalek and sha2 crates

u64_ backend Enables the u64 backend for the x25519-dalek crate, | Yes
which is mutually exclusive with u32_backend

u32_ backend Enables the u32 backend for the x25519-dalek crate, | No
which is mutually exclusive with the u64_backend

I recommend not relying too heavily on feature flags. You may find yourself leaning
toward creating supercrates with lots of feature flags, but if you find yourself doing this,
you may want to instead break your crate into smaller, separate subcrates. This pattern
is quite common; some good examples include the serde, rand, and rocket crates. There
are some cases where you mustuse feature flags to express certain optional features, such
as when providing optional trait implementations in the top-level crate.

To examine how feature flags are used in practice, let’s look at the dryoc crate in
the following listing. This crate uses a few flags to express some features: serde; baseé4,
for binary encoding (with serde); and SIMD optimizations.

20

CHAPTER 2 Project management with Cargo

Listing 2.2 Cargo.toml from the dryoc crate

[dependencies]

base64 = {version = "0.13", optional = true} 4—‘ An optional base64 dependency,
’

curve25s1l-dalek = "3.0" which is not included by default

generic-array = "0.14"
polyl305 = "0.6"

rand core = {version = "0.5", features = ["getrandom"]}

salsa20 = {version = "0.7", features = ["hsalsa20"]}

serde = {Version = "1.0", optional = true, features = ["derive"]}
sha2 = "0.9"

subtle = "2.4"
x25519-dalek = "1.1"
zeroize = "1.2"

An optional serde dependency,
which is not included by default

[dev-dependencies]

base64 = "0.13"
serde_json = "1.0"
sodiumoxide = "0.2" The default and optional
features section

[features]
default = [Optional features

"u64 backend", The list of default features and the features
] h they switch on for
simd backend = ["curve25519-dalek/simd backend", "sha2/asm"] dependencies
u32 backend = ["x25519-dalek/u32 backend"]
u64_backend = ["x25519-dalek/u64_backend"]

Next, let’s examine some of the crate’s code to see how these flags are used by utiliz-
ing cfg and cfg_attr, which instruct the Rust compiler, rustc, how to use these flags.
We’ll look at src/message.rs, which demonstrates the use of feature flags, in the fol-
lowing listing.

Listing 2.3 Partial code for src/message.rs from the dryoc crate

Enables the use statement
#[cfg(feature = "serde")] only when serde is enabled

use serde::{Deserialize, Serialize};
use zeroize::Zeroize;

#[cfg_attr(Enables the derive()
feature = "serde", statement only when
derive (Serialize, Deserialize, Zeroize, Debug, PartialEqQ) serde is enabled

)1

#[cfg_attr (not (feature = "serde"), derive(Zeroize, Debug, PartialEq))]

[zeroize (drop)]

/// Message container, for use with unencrypted messages

pub struct Message (pub Box<InputBase>) ;

Enables the derive()
statement only when
serde is disabled

24

2.4 Patching dependencies 21

The preceding code listing uses several conditional compilation attributes:

cfg (predicate) —Instructs the compiler to only compile what it is attached to if
the predicate is true

cfg_attr (predicate, attribute)—Instructs the compiler to only enable the speci-
fied attribute (second argument) if the predicate (first argument) is true

not (predicate) —Returns true if the predicate is false and vice versa

Additionally, you may use all (predicate) and any (predicate) , which return true when all
or any of the predicates are true. For more examples, see src/lib.rs, src/b64.rs,
src/dryocbox.rs, and src/dryocsecretbox.rs within the dryoc crate.

TIP When you generate documentation for a project with rustdoc, it auto-
matically provides a feature flag listing for you. We’ll explore rustdoc in detail
later in this chapter.

Patching dependencies

One problem you may encounter from time to time is the need to patch an upstream
crate (i.e., a crate you depend on from outside your project). I have encountered many
instances where I needed to update another crate I was depending on, usually for some
minor problem. It’s rarely worth the trouble of replacing the functionality of upstream
crates just to fix one or two minor bugs. In some cases, you may be able to simply switch
to the prerelease version of the crate, or else you have to patch it yourself.

The process for patching an upstream crate goes something like this:

Create a fork on GitHub.
Patch the crate in your fork.
Submit a pull request to the upstream project.

Change your Cargo.toml to point to your fork while waiting for the pull request
to be merged and released.

This process is not without problems. One obstacle is keeping track of changes to the
upstream crate and integrating them as needed. Another problem is that your patch
may never be accepted upstream—in which case, you can get stuck on a fork. When
working with upstream crates, you should try to avoid forking when possible.

Cargo provides a way for you to patch crates using the preceding fork method with-
out too much fuss; however, there are some caveats. To illustrate, let’s walk through
the typical process for patching a crate. For this example, I'll make a local copy of the
source code rather than creating a forked project on GitHub.

Let’s modify the num_cpus crate, to replace it with our own patched version. I chose
this crate for its simplicity; it returns the number of logical CPU cores. Start by creat-
ing an empty project:

22

CHAPTER 2 Project management with Cargo

$ cargo new patch-num-cpus

$ cd patch-num-cpus
$ cargo run

Hello, world!
Next, add the num _cpus dependency to Cargo.toml:

[dependencies]
num_cpus'"= "".0"

Update src/main.rs to print the number of CPUs:

fn main() {
printl"! ("There are {} C"Us", num cpus::get());
}

Finally, run the new crate:

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.00s
Running “target/debug/patch-num-cpus’

There are 4 CPUs

At this point, we haven’t patched or modified anything. Let’s create a new library
within the same working directory, where we’ll reimplement the same API:

$ cargo new num_cpus --1ib

Next, we’ll patch the default src/lib.rs to implement num cpus::get(). Update
src/lib.rs from the num_cpus directory to the following:

pub fn get() -> usize {
100 <—— Return some arbitrary value, for test purposes.

Now, we have num_cpus with our own implementation, which returns a rather pointless
hardcoded value (100, in this case). Go back up a directory to the original patch-
nun-cpus project, and modify Cargo.toml to use the replacement crate:

[dependencies]
num _cpus = { path = "num cpus" }

Run the same code with the patched crate:

$ cargo run
Compiling patch-num-cpus v0.1.0
Finished dev [unoptimized + debuginfo] target(s) in 0.33s
Running “target/debug/patch-num-cpus’
There are 100 CPUs

24.1

24.2

2.4 Patching dependencies 23

This example is fairly pointless, but it effectively illustrates the process. If you want to
patch a dependency using a fork from GitHub, for example, you would point your
dependency directly to your GitHub repository, like this (in Cargo.toml):

[dependencies]
num cpus = { git = "https://github.com/brndnmtthws/num cpus",
rev = "b423db0a698b035914aelfdéb7ce5d2a4e727b46" }

If you execute cargo run now, you should again see the correct number of CPUs
reported (as I created the fork above but without any changes). rev in the preceding
example is referring to a Git hash for the latest commit at the time of writing. When
you compile the project, Cargo will fetch the source code from the GitHub repository,
check out the particular revision specified (which could be a commit, branch, or tag),
and compile that version as a dependency.

Indirect dependencies

Sometimes, you need to patch dependencies of dependencies. That is to say, you
might depend on a crate that depends on another crate that requires patching. Using
num_cpus as an example, the crate currently depends on libc = "0.2.26" (but only on
non-Windows platforms). For the sake of this example, we can patch that dependency
to a newer release by updating Cargo.toml like so:

[patch.crates-io]
libc = { git = "https://github.com/rust-lang/libc", tag = "0.2.88" }

In this example, we’re going to point to the Git repository for libc and specify the
0.2.88 tag explicitly. The patch section in Cargo.toml serves as a way to patch the
crates.io registry itself, rather than patching a package directly. You are, in effect,
replacing all upstream dependencies for 1ibc with your own version.

Use this feature carefully, and only under special circumstances. It does not affect
downstream dependencies, meaning any crates that depend on your crate won’t
inherit the patch. This is a limitation of Cargo that currently does not have a reason-
able workaround. In cases in which you need more control over second- and third-
order dependencies, you’ll need to either fork all the projects involved or include
them directly in your own project as subprojects using workspaces (discussed later in
this chapter).

Best practices for dependency patching

There are a few rules we should try to follow when it comes to patching dependencies,
as outlined here:

Patching dependencies should be a last resort, as patches are difficult to main-
tain over time.

24

2.5

25.1

CHAPTER 2 Project management with Cargo

When patching is necessary, submit patches upstream with the required
changes for open source projects, especially when required by licenses (i.e.,
GPlLlicensed code).

Avoid forking upstream crates, and in cases where it’s unavoidable, try to get
back onto the main branch as quickly as possible. Long-lived forks will diverge
and can eventually become a maintenance nightmare.

Publishing crates

For projects you wish to publish to crates.io, the process is simple. Once your crate is
ready to go, you can run cargo publish, and Cargo takes care of the details. There are
a few requirements for publishing a crate, such as specifying a license, providing cer-
tain project details like documentation and a repository URL, and ensuring all depen-
dencies are also available to crates.io.

Itis possible to publish to a private registry; however, at the time of writing, Cargo’s
support for private registries is quite limited. Thus, it’s recommended to use private
Git repositories and tags instead of relying on crates.io for private crates.

Cl/CD integration

For most crates, you’ll want to set up a system for publishing releases to crates.io auto-
matically. Continuous integration/continuous deployment (CI/CD) systems are a
common component of modern development cycles. They’re usually composed of
two distinct steps:

Continuous integration (CI)—A system that compiles, checks, and verifies each
commit to a VCS repository

Continuous deployment (CD)—A system that automatically deploys each commit
or release, provided it passes all necessary checks from the CI

To demonstrate this, I will walk through the dryoc project, which uses GitHub Actions
(https://github.com/features/actions), freely available for open source projects.

Before looking at the code, let’s describe the release process with a typical Git
workflow once you’ve decided it’s time to publish a release:

If needed, update the version attribute within Cargo.toml to the version you
want to release.

The CI system will run, verifying all the tests and checks pass.

You’ll create and push a tag for the release (use a version prefix, such as git tag
-s vX.Y.Z).

The CD system will run, build the tagged release, and publish to crates.io with
cargo publish.

Update the version attribute in Cargo.toml for the next release cycle in a new
commit.

https://github.com/features/actions

2.5 Publishing crates 25

NOTE Published crates are immutable, so any changes will require rolling for-
ward. There is no way to roll back or make changes to a crate once published
to crates.io.

Let’s examine the dryoc crate, which implements this pattern using GitHub Actions.
There are two Actions to look at:

= . github/workflows/build-and-test.ymi—Builds and runs tests for a combination of
features, platforms, and toolkits (http://mng.bz/VRmP)

= . github/workflows/publish.ymi—Builds and runs tests for a tagged release match-
ing the v* pattern, publishing the crate to crates.io (http://mng.bz/xjAW)

Listing 2.4 shows the build job parameters, including the feature, channel, and plat-
form matrix. These jobs use the brndnmtthws/rust-action all-in-one GitHub Action
(http://mng.bz/A87z) to set up the Rust environment.

Listing 2.4 Partial code for .github/workflows/build-and-test.yml

name: Build & test
on Builds will only run on Git pushes and
push: pull requests for the main branch.
branches: [main]
pull request:
branches: [main]
env:
CARGO_TERM_COLOR: always
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true

jobs:
build:
strategy:
matrix: Runs with stable, beta,

rust: QJ and nightly channels
- stable
- beta
- nightly QJ Runs tests with different

features: features enabled separately
- serde
- base64
- simd_backend
- default Runs on Linux,

os: QJ mac0§, and Windows

- ubuntu-latest
- macos-latest

- windows-latest Some build combinations don’t
exclude: work, so they’re disabled here.

- rust: stable

features: simd_backend
- rust: beta

features: simd_backend
- os: windows-latest

features: simd_backend

http://mng.bz/VRmP
http://mng.bz/xjAW
http://mng.bz/A87z

26 CHAPTER 2 Project management with Cargo

The following listing shows the individual steps to build, test, format, and run Clippy
(discussed in chapter 3).

Listing 2.5 Partial code for .github/workflows/build-and-test.yml

runs-on: ${{ matrix.os }}

env:
FEATURES: >
${{ matrix.rust != 'nightly' && matrix.features
|| format ('{0},nightly', matrix.features) }}
steps:
- uses: actions/checkout@v3
Runs - name: Setup ${{ matrix.rust }} Rust toolchain with caching
the build . _ ;
with the u?i; : brndnmtthws/rust-actionevl This step installs the
with: . .
B desired toolchain.
specified toolchain: ${{ matrix.rust }}
features - run: cargo build --features ${{ env.FEATURES }} R Il tests with th
- run: cargo test --features ${{ env.FEATURES }} uns afl tests wi €
Verifies env. specified features
code : .
formatting RUST—BACKERZECE) 11 heck Runs Clippy checks with the specified features
- run: cargo fmt --all -- --chec
if: ${{ matrix.rust == 'nightly' && matrix.os == 'ubuntu-latest' }}
- run: cargo clippy --features ${{ env.FEATURES }} -- -D warnings

The following listing shows the steps involved to publish our crate.

Listing 2.6 Code for .github/workflows/publish.yml

name: Publish to crates.io

on:
push:
tags:
- v <+—— Only runs when tag matches v*
env:
CARGO_TERM_COLOR: always
jobs:

build-test-publish:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3 . . .
- uses: brndnmtthws/rust-actionevl Log in to crates.io using the secret stored
with: in the repository’s secrets configuration.

This token is stored using GitHub’s secret
storage feature, which must be supplied
ahead of time.

toolchain: stable
- run: cargo build
- run: cargo test

Creates a - run: cargo login -- ${{ secrets.CRATES IO TOKEN }}
reha?eon - run: cargo publish
GitHub _ name: Create Release Publishes the crate to https://crates.io

id: create_release
uses: softprops/action-gh-release@vl
if: startsWith(github.ref, 'refs/tags/')
with:
draft: false

https://crates.io

2.6

2.6 Linking to C libraries 27

prerelease: false
discussion_ category name: General
generate_release notes: true

NOTE GitHub’s Actions doesn’t currently support any way to gate a release
when using separate stages (i.e., wait until the build stage succeeds before
proceeding with the deploy stage). To accomplish this, you must verify the
build stage succeeds before pushing any tags.

In the final publish step, you’ll need to provide a token for https://crates.io. This can
be done by creating a crates.io account, generating a token from the crates.io account
settings, and then adding it to GitHub’s secret storage in the settings for your GitHub
repository.

Linking to C libraries

You may occasionally find yourself needing to use external libraries from non-Rust
code. This is usually accomplished with a foreign function interface (FFI). FFI is a
fairly standard way to accomplish cross-language interoperability. We’ll revisit FFI
again in greater detail in chapter 4.

Let’s walk through a simple example of calling functions from one of the most pop-
ular C libraries: zlib. Zlib was chosen because it’s nearly ubiquitous, and this example
should work easily out of the box on any platform where zlib is available. We’ll imple-
ment two functions in Rust: compress () and uncompress (). Here are the definitions from
the zlib library (which has been simplified for the purposes of this example).

Listing 2.7 Simplified code listing from zlib.h

int compress (void *dest, unsigned long *destLen,
const void *source, unsigned long sourcelen) ;

unsigned long compressBound (unsigned long sourcelen) ;

int uncompress (void *dest, unsigned long *destLen,
const void *source, unsigned long sourcelen) ;

First, we’ll define the C interface in Rust using extern.

Listing 2.8 Code for zlib utility functions

use libc::{c_int, c ulong};

#[link (name = "z")]
extern "C" {
fn compress (
dest: *mut us8,
dest_len: *mut c_ulong,
source: *const u8,
source_len: c_ulong,
) -> c_int;

https://crates.io

28

CHAPTER 2 Project management with Cargo

fn compressBound (source len: c_ulong) -> c_ulong;
fn uncompress (

dest: *mut u8,

dest_len: *mut c_ulong,

source: *const u8,

source_len: c_ulong,
) -> c_int;

}

We’ve included 1libc as a dependency, which provides C-compatible types in Rust.
Whenever you're linking to C libraries, you’ll want to use types from libc to maintain
compatibility. Failure to do so may result in undefined behavior. We’ve defined three
utility functions from zlib: compress, compressBound, and uncompress.

The 1link attribute tells rustc that we need to link these functions to zlib. This is
equivalent to adding the -1z flag at link time. On macOS, you can verify this with
otool -L, as shown in the following code (on Linux, use 1dd, and on Windows, use
dumpbin):

$ otool -L target/debug/zlib-wrapper
target/debug/zlib-wrapper:
/usr/lib/libz.1.dylib (compatibility version 1.0.0, current version
1.2.11)
/usr/lib/libiconv.2.dylib (compatibility version 7.0.0, current version
7.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
1292.60.1)
/usr/lib/libresolv.9.dylib (compatibility version 1.0.0, current version
1.0.0)

Next, we need to write Rust functions that wrap the C functions and can be called
from Rust code. Calling C functions directly is considered unsafe in Rust, so you must
wrap the call in an unsafe {} block.

Listing 2.9 Code for z1ib compress

pub fn zlib compress (source: &[u8]) -> Vec<u8> { Returns the upper
unsafe { bound of the length
let source len = source.len() as c_ulong; of the compressed
output

let mut dest len = compressBound (source_len) ;
let mut dest = Vec::with capacity(dest_len as usize);

Allocates
compress (<—— Calls zlib C function dest_lenbytes
dest.as_mut_ptr(), on the heap
smut dest len, using a Vec

source.as_ptr(),
source_len,

)i

dest.set_len(dest_len as usize);

dest
} Returns the result as a Vec

2.7

2.7 Binary distribution 29

The z1ib_uncompress version of the preceding function is nearly identical, except we
need to provide our own length for the destination buffer. Finally, we can demon-
strate the usage as shown in the following listing.

Listing 2.10 Code for main ()

fn main() {
let hello world = "Hello, world!".as bytes();
let hello world compressed = zlib_compress (&hello world) ;
let hello_world_uncompressed =
zlib uncompress (&hello world compressed, 100) ;
assert_eq! (hello_world, hello world uncompressed) ;
println! (
(),
String::from utf8 (hello_world_uncompressed)
.expect ("Invalid characters")
)i
}

The biggest challenge when dealing with FFI is the complexity of some C APIs and
mapping the various types and functions. To work around this, you can use the rust
bindgen tool, which is discussed in greater detail in chapter 4.

Binary distribution

Rust’s binaries are composed of all Rust dependencies for a given platform included
as a single binary—excluding the C runtime—in addition to any non-Rust libraries
that may have been dynamically linked. You can build binaries that are statically
linked to the C runtime, but, by default, this is optional. Thus, when distributing Rust
binaries, you’ll need to consider whether you want to statically link the C runtime or
rely on the system’s runtime.

The binaries themselves are platform dependent. They can be cross-compiled for
different platforms, but you cannot mix different architectures or platforms with the
same Rust binary. A binary compiled for Intel-based x64-64 CPUs will not run on
ARM-based platforms, like AArch64 (also known as ARMv8) without some type of
emulation. A binary compiled for macOS won’t run on Linux.

Some OS vendors, notably Apple’s macOS, provide emulation for other CPU plat-
forms. It’s possible to run x86-64 binaries automatically on ARM using Apple’s Rosetta
tool, which should happen automatically. For more detail on macOS binary distribu-
tion, consult Apple’s developer documentation at http://mng.bz/ZRvP. In most cases,
you’ll want to stick with the defaults for the platform you’re using, but there are some
exceptions to this rule.

If you’re coming from a language such as Go, you may have become accustomed to
distributing precompiled binaries without worrying about the C runtime. Unlike Go,
Rust requires a C runtime, and it uses dynamic linking by default.

http://mng.bz/ZRvP

30

271

2.7.2

CHAPTER 2 Project management with Cargo

Cross compilation

You can use Cargo to cross-compile binaries for different targets but only where com-
piler support is available for that target. For example, you can easily compile Linux
binaries on Windows, but compiling Windows binaries on Linux is not as easy (but not
impossible).

You can list the available targets on your host platform using rustup:

$ rustup target list
rustup target list
aarché64-apple-darwin
aarché64-apple-ios
aarch64-fuchsia
aarch64-linux-android
aarché64-pc-windows-msvce

You can install different targets with rustup target add <target> and then use cargo
build --target <targets to build for a particular target. For example, on my Intel-
based macOS machine, I can run the following to compile binaries for AArch64 (used

by the M1 chip):

$ rustup target add aarché64-apple-darwin
info: downloading component 'rust-std' for 'aarché64-apple-darwin'
info: installing component 'rust-std' for 'aarché4-apple-darwin'
info: using up to 500.0 MiB of RAM to unpack components

18.3 MiB / 18.3 MiB (100 %) 14.7 MiB/s in 1s ETA: Os
$ cargo build --target aarché64-apple-darwin

Finished dev [unoptimized + debuginfo] target(s) in 3.74s
However, if I try to run the binary, it will fail:

$./target/aarché64-apple-darwin/debug/simple-project
-bash: ./target/aarché64-apple-darwin/debug/simple-project: Bad CPU type in
executable

If I had access to an AArch64 macOS device, I could copy this binary to that machine
and run it there successfully.

Building statically linked binaries
Normal Rust binaries include all the compiled dependencies, except the C runtime
library. On Windows and macOS, it’s normal to distribute precompiled binaries and
link to the OS’s C runtime libraries. On Linux, however, most packages are compiled
from source by the distributions’ maintainers, and the distributions take responsibility
for managing the C runtime.

When distributing Rust binaries on Linux, you can use either glibc or musl, depend-
ing on your preference. Glibc is the default C library runtime on most Linux distribu-
tions. However, I recommend statically linking to musl when you want to distribute

2.8

2.8 Documenting Rust projects 31

Linux binaries for maximum portability. In fact, when trying to statically link on certain
targets, Rust assumes you want to use musl.

NOTE Musl behaves slightly differently from glibc in certain cases. These dif-
ferences are documented on the musl wiki at http://mng.bz/Rm7K.

You can instruct rustc to use a static C runtime with the target-feature flag like this:

S RUSTFLAGS="-C target-feature=+crt-static" cargo build
Finished dev [unoptimized + debuginfo] target(s) in 0.01s

In this code, we’re passing -C target-feature=+crt-static to rustc via the RUSTFLAGS
environment variable, which is interpreted by Cargo and passed to rustec.
We use the following code to link statically to musl on x86-64 Linux:

$ rustup target add x86_ 64-unknown-linux-musl <—— Make sure musl target is installed.

$ RUSTFLAGS="-C target-feature=+crt-static" cargo build --target

x86_64-unknown-linux-musl
.. Compile using musl target
and force static C runtime.

To explicitly disable static linking, use RUSTFLAGS="-C target-feature=-crt-static"
instead (by flipping the plus [+] to minus [-]). This may be desirable on targets that
default to static linking—if unsure, use the default parameters.

Alternatively, you can specify rustc flags for Cargo with ~/.cargo/config:

[target.x86_ 64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

The preceding code, when added to ~/.cargo/config, will instruct rustc to link stati-
cally when using the x86_64-pc-windows-msvc target.

Documenting Rust projects

Rust’s tool for documenting code, which ships with Rust by default, is called rustdoc.
If you’ve used code documentation tools from other projects (e.g., Javadoc, docstring,
or RDoc), rustdoc will come naturally.

Using rustdoc is as simple as adding comments in your code and generating docs.
Let’s run through a quick example. Start by creating a library:

$ cargo new rustdoc-example --1lib
Created library “rustdoc-example”~ package

Now, let’s edit src/lib.rs to add a function called mult, which takes two integers (a and
b) and multiplies them. We’ll also add a test:

pub fn mult(a: i32, b: i32) -> i32 {
a *b
}

http://mng.bz/Rm7K

32

CHAPTER 2 Project management with Cargo

#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it _works () {
assert_eq! (2 * 2, mult(2, 2));
}

We haven’t added any documentation yet. Before we do, let’s generate some empty
documentation using Cargo:

$ cargo doc
Documenting rustdoc-example v0.1.0
(/Users/brenden/dev/code-1like-a-pro-in-rust/code/c2/2.8/rustdoc-example)
Finished dev [unoptimized + debuginfo] target(s) in 0.89s

Now, you should see the generated HTML docs in target/. If you want to open the
docs in a browser, you can open target/doc/src/rustdoc_example/lib.rs.html to view
them. The result should look like figure 2.1. The default docs are empty, but you can
see the public function mult listed in the docs.

® rustdoc_example - Rust X

&« C ® © DO 127.0.0.1:8080/rustdoc_examy

o Allcrates v Click or press ‘S’ to search, ‘?’ for more options... 2 ©
Crate rustdoc_example [-1lsrc]
Crate rustdoc_example| .
Functions
Version 0.1.0
mult

See all

rustdoc_example's
items

Functions

Crates

rustdoc_example

Figure 2.1 Screenshot of empty rustdoc HTML output

Next, let’s add a compiler attribute and some docs to our project. Update src/lib.rs so
that it looks like this:

2.8 Documenting Rust projects 33

This is a crate-level doc string, which appears
on the front page for the crate’s docs.

//!' # rustdoc-example

e

//! A simple project demonstrating the use of rustdoc with the function
//' [Tmult™].

This compiler attribute tells rustc to generate a warning when

. N
#t [warn (missing docs)] docs are missing for public functions, modules, or types.

/// Returns the product of ~a~ and “b~.
pub fn mult(a: i32, b: 132) -> i32 { This comment provides the
} a * b documentation for the function mult.

TIP Rust documentation is formatted using CommonMark, a subset of Mark-
down. A reference for CommonMark can be found at https://commonmark

.org/help.

If you rerun cargo doc with the newly created code documentation and open it in a
browser, you will see the output shown in figure 2.2. For crates published to crates.io,
there’s a companion rustdoc site that automatically generates and hosts documenta-
tion for crates at https://docs.rs. For example, the docs for the dryoc crate are avail-
able at https://docs.rs/dryoc.

® rustdoc_example - Rust

& C ® O D 127.0.0.1:8080/rustdoc_exam

& Allcrates v Click or press ‘S’ to search, ‘?’ for more options... ?2 ©

Crate rustdoc_example [-1lsrc]

Crate rustdoc_example [<] rustdoc-example

Version 0.1.0 .) 3 . X
A simple project demonstrating the use of rustdoc with the function mu'lt.

Seeall Functions

rustdoc_example's
items

mult Returns the product of a and b.

Functions

Crates

rustdoc_example

Figure 2.2 Screenshot of rustdoc HTML output with comments

In documented crates, you should update Cargo.toml to include the documentation
property, which links to the documentation for the project. This is helpful for those

https://commonmark.org/help
https://commonmark.org/help
https://commonmark.org/help
https://docs.rs
https://docs.rs/dryoc

34

281

CHAPTER 2 Project management with Cargo

who find their crate on sources like crates.io. For example, the dryoc crate has the fol-
lowing in Cargo.toml:

[packagel]
name = "dryoc"
documentation = "https://docs.rs/dryoc"

You don’t have to do anything else to use docs.rs. The website automatically generates
updated docs when new releases are published to crates.io. Table 2.4 serves as a refer-
ence for rustdoc syntax.

Table 2.4 Quick reference for rustdoc usage

Syntax Type Description

7z Doc string | Crate- or module-level documentation, which belongs
at the top of a crate or module. Uses CommonMark.

/// Doc string | Documents the module, function, trait, or type fol-
lowing the comment. Uses CommonMark.

[func], [“func”], [Fool (Bar) Link Links to a function, module, or other type in the
docs. The keyword must be in scope for rustdoc to
link correctly. Many options are available for linking;
consult the rustdoc documentation for details.

Code examples in documentation

One handy feature of rustdoc is that code included as examples within documenta-
tion is compiled and executed as integration tests. Thus, you can include code sam-
ples with assertions, which are tested when you run cargo test. This helps you
maintain high-quality documentation with working code samples.

One such example might look like this (appended to the crate-level docs in
src/lib.rs from the previous example):

//! # Example

a

/fy mmn-

//! use rustdoc_example::mult;

//! assert_eq! (mult (10, 10), 100);
/fy -mmn-

Running the tests with the preceding example using cargo test yields the following:

cargo test
Compiling rustdoc-example v0.1.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c2/2.8/rustdoc-example)
Finished test [unoptimized + debuginfo] target(s) in 0.42s
Running target/debug/deps/rustdoc_example-bec4912aee60500b

running 1 test

2.9

2.9 Modules 35

test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Doc-tests rustdoc-example

running 1 test
test src/lib.rs - (line 7) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.23s

For more information about rustdoc, refer to the official documentation at
https://doc.rust-lang.org/rustdoc. For more information about CommonMark, refer
to CommonMark’s help page at https://commonmark.org/help.

Modules

Rust modules provide a way to organize code hierarchically, into a set of distinct units,
which can optionally be split into separate source files. Rust’s modules combine two
features into one: the inclusion of code from other source files and namespacing of
publicly visible symbols. In Rust, all symbols are declared as private by default, but they
can be exported (or made publicly visible) with the pub keyword. If we were to export
too many symbols, we might eventually have a name collision. Thus, we can organize
our code by modules to prevent namespace pollution.

A module declaration block uses the mod keyword, with an optional pub visibility
specifier, and is followed immediately by a code block in braces:

mod private mod {
/] ... <+—— Private code goes here.
}

pub mod public mod {
/] ... <+—— Public code to be exported goes here.
1

The terms module and mod are sometimes used interchangeably when talking about
Rust code. By convention, module names typically use snake case, whereas most other
names use camel case (structs, enums, traits). Primitive types (i32, str, u64, etc.) are
usually short, single words and sometimes snake case. Constants are typically upper-
case, which is also the convention in most other languages. Following these patterns
makes it easier to determine what’s being imported just by glancing at use statements.

We can include a module with the same mod keyword, except, instead of a code
block, it simply ends with a semicolon:

mod private mod;
pub mod public_mod;

https://doc.rust-lang.org/rustdoc
https://commonmark.org/help

CHAPTER 2 Project management with Cargo

Modules can be deeply nested:

mod outer mod {
mod inner mod {
mod super inner mod {

}
}
}

Visibility specifiers

In Rust, everything is private by default with respect to visibility, except for public traits
and public enums, where associated items are public by default. Privately scoped dec-
larations are bound to a module, meaning they can be accessed from within the mod-
ule (and submodules) they’'re declared in.

Using the pub keyword changes the visibility to public, with an optional modifier: we
can use pub (modifier) With crate, self, super, Or in path with a path to another mod-
ule. In other words, pub(crate) specifies an item is public within the crate but not
accessible outside the crate.

Items declared within a module aren’t exported outside the scope of a crate unless
the module itself is also public. For example, in the following code, we have two public
functions, but in this case, only public mod fn() would be visible outside the crate:

mod private mod {
pub fn private mod fn() {}

}
pub mod public mod {
pub fn public mod fn() {}

}

Additionally, a privately scoped item within a public module is still private and can’t be
accessed outside its crate.

Rust’s visibility is quite intuitive and also helps to prevent accidentally leaky abstrac-
tions. For more detail on Rust's visibility, refer to the language reference at
http://mng.bz/2710.

When we include a symbol or module from another crate, we do so with the use state-
ment like so:

Includes the Serialize and Serializer
use serde::ser::{Serialize, Serializer}; symbols from the ser module within

the serde crate

When we include code with a use statement, the first name is usually the name of the
crate we want to include code from followed by a module, specific symbols, or a wild-
card (*) to include all symbols from that module.

Modules can be organized using the file system, too. We can create the same hier-
archy as in the previous example using paths within our crate’s source directory, but

http://mng.bz/2710

2.10

2.10 Workspaces 37

we still need to tell cargo which files to include in the crate. To do this, we use the mod
statement, rather than a block. Consider a crate with the following structure:

S tree

}— cargo.lock

j— cargo.toml
L— src

f— 1lib.rs
j— outer module
| L— inner_module

| f— mod.rs

| L— super inner module.rs
L— outer module.rs

3 directories, 6 files

In this code, we have a crate with three nested inner modules, like in the earlier exam-
ple. In our top-level lib.rs, we’ll include the outer module, which is defined in outer_
module.rs:

mod outer module;

The compiler will look for the mod declaration in either outer_module.rs or outer_
module/mod.rs. In our case, we supplied outer_module.rs at the same level as lib.rs.
Within outer_module.rs, we have the following to include the inner module:

mod inner module;

The compiler next looks for inner_module.rs or inner_module/mod.rs within the
outer module. In this case, itfinds inner_module/mod.rs, which contains the following:

mod super inner module;

This includes super_inner_module.rs within the inner_module directory. This seems
quite a bit more complex than the example from earlier in this section, but for larger
projects, it’s much better to use modules than to include all the source code for a
crate in either lib.rs or main.rs. If modules seem a bit confusing, try recreating similar
structures from scratch to understand how the pieces fit together. You can start with
the example included in this book’s source code under c02/modules. We’ll also
explore module structures again in chapter 9.

Workspaces

Cargo’s workspace feature allows you to break a large crate into multiple separate crates
and group those crates together within a workspace that shares a single Cargo.lock
lockfile. Workspaces have a few important features, which we’ll discuss in this section,
but their main feature is allowing you to share parameters from Cargo.toml and the

38

CHAPTER 2 Project management with Cargo

resolved dependency tree from a single Cargo.lock. Each project within a workspace
shares the following:

A top-level Cargo.lock file
The target/ output directory, containing project targets from all workspaces
[patch], [replace], and [profile.*] sections from the top-level Cargo.toml

To use workspaces, you'll create projects with Cargo as you normally would, within
subdirectories that don’t overlap with the top-level crate’s directories (i.e., they
shouldn’t be in src/, target/, tests/, examples/, benches/, etc.). You can then add
these dependencies as you normally would, except that rather than specifying a ver-
sion or repository, you simply specify a path or add each project to the work-
space.members list in Cargo.toml.

Let’s walk through an example project using workspaces. Start by creating a top-
level application, and change into the newly created directory:

$ cargo new workspaces-example
Created binary (application) “workspaces-example”™ package
$ cd workspaces-example

Now, create a subproject, which will be a simple library:

$ cargo new subproject --1lib

The newly created directory structure should look like this:

S tree

— cargo.toml

— src

| L main.rs
L— subproject
— Cargo.toml
L— src

L— lib.rs

3 directories, 4 files

Next, let’s update the top-level Cargo.toml to include the subproject by adding it as a
dependency (you still need to define dependencies within workspaces):

[dependencies]
subproject = { path = "./subproject" }

In the preceding example, we’re adding the subproject by specifying it as a depen-
dency and using the path property on it. To include the project in the workspace, we
also need to add it to [workspace.members], which holds a list of paths or a glob pat-
tern for the workspace members. For larger projects, using a glob may be easier than

2.10 Workspaces 39

listing each path explicitly, provided you use a consistent path hierarchy. For this
example, the workspace code in Cargo.toml would look like this:

[workspacel]
members = ["subproject"]

You can now run cargo check to make sure everything compiles without any errors.
Currently, our top-level project doesn’t use the code from the subproject, so let’s add
a function that returns "Hello, world!" and call that from our application. First,
update subproject/src/lib.rs to include our hello_world function:

pub fn hello world() -> String {
String::from("Hello, world!")
1

Now, update src/main.rs in the top-level application to call this function:

fn main() {
println! ("{}", subproject::hello world());
1

Finally, we run our new code:

$ cargo run
Compiling subproject v0.1.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c2/2.9/workspaces-examp
le/subproject)
Compiling workspaces-example v0.1.0 (/Users/brenden/dev/
code-like-a-pro-in-rust/code/c2/2.9/workspaces-example)
Finished dev [unoptimized + debuginfo] target(s) in 0.85s
Running ~target/debug/workspaces-example”
Hello, world!

You can repeat these steps with as many subprojects as desired by substituting a differ-
ent name for each occurrence of subproject in the preceding code. The full code for
this example can be found under c02/workspaces-example.

TIP Cargo also supports virtual manifests, which are top-level crates that do
not specify a [package] section in Cargo.toml and only contain subprojects.
This is useful when you want to publish a collection of packages under one
top-level crate.

Many crates use workspaces to break out projects. An additional feature of workspaces
is that each subproject may be published as its own individual crate for others to use.

A couple of notable examples of projects that make use of the workspaces feature include
the rand (https://crates.io/crates/rand) crate and the Rocket (https://rocket.rs/)
crate—the latter of which uses a virtual manifest. For a complete reference on Cargo
workspaces, see http://mng.bz/1JRj.

https://crates.io/crates/rand
https://rocket.rs/
http://mng.bz/1JRj

40

211

CHAPTER 2 Project management with Cargo

Custom building scripts

Cargo provides a build-time feature that allows one to specify build-time operations in
a Rust script. The script contains a single rust main function plus any other code you’d
like to include, including build dependencies, which are specified in a special [build-
dependencies] section of Cargo.toml. The script communicates with Cargo by print-
ing specially formatted commands to stdout, which Cargo will interpret and act upon.

NOTE It’s worth noting that although it’s called a script, it’s not a script in the
sense of being interpreted code. That is to say, the code is still compiled by
rustc and executed from a binary.

A few common uses for build scripts include the following:

Compiling C or C++ code

Running custom preprocessors on Rust code before compiling it

Generating Rust protobuf code using protoc-rust (https://crates.io/crates/
protoc-rust)

Generating Rust code from templates

Running platform checks, such as verifying the presence of and finding libraries

Cargo normally reruns the build script every time you run a build, but this can be
modified using cargo:rerun-if-changed.

Let’s walk through a simple "Hello, world!" example using a tiny C library. First,
create a new Rust application and change into the directory:

$ cargo new build-script-example
$ cd build-script-example

Next, let’s make a tiny C library with a function that returns the string "Hello,
world!". Create a file called src/hello_world.c:

const char *hello world(void) ({
return "Hello, world!";

}

Now, update Cargo.toml to include the cc crate as a build dependency and the libc
crate for C types:

[dependencies]

libc = "0.2"
[build-dependencies]
cc = "1.0"

Let’s create the actual build script by creating the file build.rs at the top-level directory
(not inside src/, where the other source files are):

https://crates.io/crates/protoc-rust
https://crates.io/crates/protoc-rust
https://crates.io/crates/protoc-rust

2.12 Rust projects in embedded environments 41

fn main() {
println! ("cargo:rerun-if-changed=src/hello_world.c"); Instructs Cargo to only
cc::Build: :new() . rerun the build script
.file("src/hello world.c") Compiles the C code when src/hello world.c
.compile("hello world"); into a library using is modified
} the cc crate

Finally, let’s update src/main.rs to call the C function from our tiny library:

use libc::c_char;
use std::ffi::CStr;

extern "Cv { QJ Defines the external
fn hello world() -> *const c_char; interface of the C library
}
fn call hello world() -> &'static str { A wrapper around the external library
unsafe { that extracts the static C string
CStr::from ptr(hello world())
.to_str()
.expect ("String conversion failure")
}
}
fn main() {
println! ("{}", call hello world());
}

Finally, compile and run the code:

$ cargo run
Compiling cc v1.0.67
Compiling libc v0.2.91
Compiling build-script-example v0.1.0 (/Users/brenden/dev/
code-like-a-pro-in-rust/code/c2/2.10/build-script-example)
Finished dev [unoptimized + debuginfo] target(s) in 2.26s

Running ~target/debug/build-script-example’
Hello, world!

The full code for this example can be found under c02/build-script-example.

2.12 Rust projects in embedded environments

As a systems-level programming language, Rust is an excellent candidate for embed-
ded programming. This is especially true in cases where memory allocation is explicit
and safety is paramount. In this book, I won’t explore embedded Rust in depth—
that’s a subject that warrants its own book entirely—but it’s worth mentioning in case
you're considering Rust for embedded projects.

Rust’s static analysis tooling is especially powerful in embedded domains, where it
can be more difficult to debug and verify code at run time. Compile-time guarantees
can make it easy to verify resource states, pin selections, and safely run concurrent
operations with shared state.

42

2.12.1

CHAPTER 2 Project management with Cargo

If you’d like to experiment with embedded Rust, there is excellent support for Cor-
tex-M device emulation using the popular QEMU project (https://www.qemu.org).
Sample code is available at https://github.com/rust-embedded/cortex-m-quickstart.

At the time of writing, embedded Rust resources for non-ARM architectures are
limited, but one notable exception is the Arduino Uno platform. The ruduino crate
(https://crates.io/crates/ruduino) provides reusable components specifically for
Arduino Uno, which is an affordable, low-power, embedded platform that can be
acquired for the cost of dinner for two. More information on the Arduino platform
can be found at https://www.arduino.cc.

Rust’s compiler (rustc) is based on the LLVM project (https://llvm.org); there-
fore, any platform for which LLVM has an appropriate backend is technically sup-
ported, although peripherals may not necessarily work. For example, there is early
support for RISC-V, which is supported by LLVM, but hardware options for RISC-V are
limited. To learn more about embedded Rust, The Embedded Rust Book is available
online at https://docs.rust-embedded.org/book.

Memory allocation

For cases where dynamic memory allocation isn’t necessary, you can use the heapless
crate to provide data structures with fixed sizes and no dynamic allocation. If dynamic
memory allocation is desired, it’s relatively easy to create your own allocator by imple-
menting the Globalalloc trait (http://mng.bz/PR7n). For some embedded platforms,
such as the popular Cortex-M processors, there already exists a heap allocator imple-
mentation with the alloc-cortex-m crate.

Summary

Cargo is the primary tool used for building, managing, and publishing Rust projects.
In Rust, packages are known as crates, and crates can be published as libraries or
applications to the https://crates.io registry.

Cargo is used to install crates from crates.io.

Cargo can be used to automate build, test, and publish steps of a continuous
integration and deployment system.

The cargo doc command will automatically generate documentation for a Rust
project using rustdoc. Documentation can be formatted using the Common-
Mark format (a specification of Markdown).

As with crates.io, https://docs.rs provides free documentation hosting automati-
cally for open source crates published to crates.io.

Rust can generate binaries for distribution that include all dependencies,
excluding the C library. On Linux systems, you should statically link to musl
rather than using the system’s C library for maximum portability when distribut-
ing precompiled binaries.

Crates can be organized into modules and workspaces, which provides a way to
separate code into its parts.

https://www.qemu.org
https://github.com/rust-embedded/cortex-m-quickstart
https://crates.io/crates/ruduino
https://www.arduino.cc
https://llvm.org
https://docs.rust-embedded.org/book
http://mng.bz/PR7n
https://crates.io
https://docs.rs

Rust tooling

This chapter covers

Introducing core Rust language tools: rust-
analyzer, rustfmt, Clippy, and sccache

Integrating Rust tools with Visual Studio Code
Using stable versus nightly toolchains
Exploring additional tools you may find useful

Mastery of any language depends on mastering its tooling. In this chapter, we’ll
explore some of the critical tools you need to be effective with Rust.

Rust offers several tools to improve productivity and reduce the amount of busy
work required to produce high-quality software. Rust’s compiler, rustc, is built
upon LLVM, so Rust inherits the rich tools included with LLVM, such as LLVM’s
debugger, LLDB. In addition to the tools you would expect to find from other lan-
guages, Rust includes a number of its own Rust-specific tools, which are discussed
in this chapter.

The main tools discussed in this chapter are rust-analyzer, rustfmt, Clippy, and
sccache. These are tools you’ll likely use every time you work with Rust. Additionally,
I have included instructions for a few other tools, which you may find yourself using

Occasionally: cargo-update, cargo-expand, cargo-fuzz, cargo-watch, and cargo-tree.

43

44 CHAPTER 3 Rust tooling

3.1 Overview of Rust tooling

In chapter 2, we focused on working with Cargo, which is Rust’s project management
tool. Additionally, there are several tools you may want to use when working with Rust.
Unlike Cargo, these tools are optional and can be used at your own discretion. How-
ever, I find them to be extremely valuable, and I use them on nearly all of my Rust
projects. Projects may require some of these tools, so it’s worthwhile to familiarize
yourself with them.

The tools discussed in this chapter are normally used via a text editor, or as
command-line tools. In table 3.1, I've listed a summary of the core Rust language tools,
and in table 3.2, I've summarized a few popular editors and their support for Rust.

Table 3.1 Summary of Rust’s core language tools

Name Description

Cargo Rust’s project management tool for compiling, testing, and managing dependencies
(covered in chapter 2)

Rust-analyzer | Provides Rust support for text editors that implement the language server protocol

Rustfmt Rust’s opinionated code style tool, which provides automatic code formatting and
checking and can be integrated into Cl/CD systems

Clippy Rust’s code quality tool, which provides a plethora of code quality checks (called lints)
and can be integrated into ClI/CD systems

Sccache General-purpose compiler cache tool to improve compilation speed for large projects

Table 3.2 Summary of Rust editors

Editor Extension Summary References
Emacs Rust-analyzer Rust support via LSP http://mng.bz/Jd7V
Emacs Rust-mode Native Emacs https://github.com/rust-lang/rust-mode

extensions for Rust

IntelliJ IDEA | IntelliJ Rust JetBrains-native https://www.jetbrains.com/rust/
integration for Rust

Sublime Rust-analyzer Rust support via LSP https://github.com/sublimelsp/LSP-rust-analyzer

Sublime Rust enhanced | Native Sublime https://github.com/rust-lang/rust-enhanced
package for Rust

Vim Rust-analyzer Rust support via LSP https://rust-analyzer.github.io/manual.html#vimneovim

Vim Rust.vim Native Vim https://github.com/rust-lang/rust.vim
configuration for Rust

VS Code Rust-analyzer Rust support via LSP https://rust-analyzer.github.io/manual.html#vs-code

https://rust-analyzer.github.io/manual.html#vs-code
https://github.com/rust-lang/rust.vim
https://rust-analyzer.github.io/manual.html#vimneovim
https://github.com/rust-lang/rust-enhanced
https://github.com/sublimelsp/LSP-rust-analyzer
https://www.jetbrains.com/rust/
https://github.com/rust-lang/rust-mode
http://mng.bz/Jd7V

3.2

3.2 Using rust-analyzer for Rust IDE integration 45

Using rust-analyzer for Rust IDE integration
The rust-analyzer tool is the most mature and full-featured editor for the Rust lan-
guage. It can be integrated with any editor that implements the Language Server Pro-
tocol (LSP, https://microsoft.github.io/language-server-protocol). The following are
some of the features provided by rust-analyzer:

Code completions

Import insertion

Jumping to definitions

Renaming symbols

Documentation generation

Refactorings

Magic completions

Inline compiler errors

Inlay hints for types and parameters

Semantic syntax highlighting

Displaying inline reference documentation

With VS (Visual Studio) Code, rust-analyzer can be installed using the CLI (see fig-
ure 3.1):

$ code --install-extension rust-lang.rust-analyzer

Once installed, VS Code will look as shown in figure 3.1 when working with Rust code.
Note the Run | Debug buttons at the top of fn main(), which allow you to run or
debug code with one click.

If you use Intelli] Rust, there is no need to install a separate extension for Rust sup-
port. However, it’s worth noting that Intelli] Rust shares some code with rust-analyzer,
specifically for its macro support (http://mng.bz/wjAP).

https://microsoft.github.io/language-server-protocol
http://mng.bz/wjAP

46

CHAPTER 3 Rust tooling

X

() main.rs — empty-project D3 mos
® X O -
src > ® main.rs >

» Run | Debug
fn (O
let a: i32 = 1;
let b: i32 = 2;

let c: i32 = a * b;

let s: String = String:: (
"an example string in VS Code, \
showing type annotations with rust-analyzer",

)i

("e={c}");
1("s={s}");
}
15
TERMINAL ~ JUPYTER ~ PROBLEMS ~ OUTPUT DEBUG CONSOLE (3] run empty-project - Task v/ + v [W ~ X

@ Bl Executing task: cargo run --package empty-project --bin empty-project L
Compiling empty-project v0.1.0 (/Users/brenden/dev/empty-project)
Finished dev [unoptimized + debuginfo] target(s) in 0.18s
Running "target/debug/empty-project”
c=2
s=an example string in VS Code, showing type annotations with rust-analyzer
Terminal will be reused by tasks, press any key to close it.

P main* O ®0AO0 rust-analyzer -- NORMAL -- Ln15,Col1 Spaces:4 UTF-8 LF Rust «/ Prettier 0

Figure 3.1 VS Code with rust-analyzer showing inferred type annotations

3.2.1

Magic completions

Rust-analyzer has a postfix text completion feature that provides quick completions
for common tasks, such as debug printing or string formatting. Becoming familiar
with magic completions can save you a lot of repetitive typing. Additionally, you only
need to remember the completion expressions rather than memorizing syntax. I rec-
ommend practicing magic completions, as you'll find yourself using them frequently
once you get the hang of the syntax.

Magic completions are similar to snippets (a feature of VS Code and other editors)
but with a few Rust-specific features that make them a bit like “snippets++.” Magic
completions also work in any editor that supports the language server protocol, not
just VS Code.

Using magic completions is as simple as typing an expression and using the edi-
tor’s completion dropdown menu. For example, to create a test module in the current
source file, you can type tmod and select the first completion result, which will create a
test module template like so:

3.2 Using rust-analyzer for Rust IDE integration 47

tmod ->
#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_name() {

}

The tmod completion creates a test module with a single test function, which can be
filled out accordingly. In addition to tmod, there’s a tfn completion, which creates a
test function.

Another useful magic completion is for string printing. Rust versions prior to
1.58.0 did not support string interpolation. To help with the lack of string interpola-
tion, rust-analyzer provides several completions for printing, logging, and formatting
strings.

NOTE While string interpolation was added in Rust 1.58.0, this section has
been left in the book because it provides a good demonstration of the fea-
tures of rust-analyzer.

Type the following into your editor:

let bananas = 5.0;
let apes = 2.0;

"bananas={bananas} apes={apes} bananas per ape={bananas / apes}"

At this point, placing the cursor at the end of the string quote and typing .print will
convert the string to the println completion option, as shown in figure 3.2.

If you select the println option by pressing the Enter key once, the option is
selected from the drop-down menu that appears, and then rust-analyzer converts the
code into the following:

let bananas = 5.0;
let apes = 2.0;

println! (
"bananas={} apes={} bananas per ape={}",
bananas,
apes,
bananas / apes

Table 3.3 contains several important magic completions to take note of. The list is not
exhaustive, and the full list of magic completions and other features of rust-analyzer is
available in the manual at https://rust-analyzer.github.io/manual.html.

https://rust-analyzer.github.io/manual.html

48

CHAPTER 3 Rust tooling

[N J
N ® ir °
src > ® main.rs > @ main
» Run | Debug
fn main() f{

let bananas: f64 = 5.0;
let apes: f64 = 2.0;

K>(1 main* <O

®0A0

rust-analyzer

-- INSERT --

main.rs — apes-love-bananas

5 "bananas={bananas} apes={apes} bananas_per_ape={bananas / apes}".pr
[1println
@ parse()
@ partial_cmp(..) (as PartialOr..

Domos)
©w o -

println!
fn(&self) — Result<F, <F as FromStr>::Er..
fn(&self, &Rhs) — Opt..

@ is_prefix_of(..) (use std::str::pattern::P.. fn(self..
@ strip_prefix(..) fn(6self, P) — Option<&str>
@ strip_prefix_of(..) (use std::str::pattern .. fn(sel.
@ as_ptr() const fn(&self) — %const u8
Q@ as_mut_ptr() fn(smut self) — *mut u8

Ln 5, Col 72

Spaces: 4 UTF-8 LF Rust @ Prettier Q/

Figure 3.2 VS Code with rust-analyzer showing println magic completion

Table 3.3 Magic completions to remember

Expression
"str {arg}".format
"str {arg}".println

m logl_

pd

ppd

expr.ref
expr.refm

expr.if

Result

format! ("str {}", arg)
println! ("str {}", arg)

log::level! ("str {}", arg)
where Ievel is one of debug,
trace, info, warn, or error

eprintln! ("arg={:?}", arg)

eprintln! ("arg =
arg)

{42},

&expr
&mut expr

if expr {}

Description

Formats a string with arguments
Prints a string with arguments

Logs a string with arguments at the
specified level

Debugs print (prints to stderr) snippet

Debugs pretty-print (prints to stderr)
snippet

Borrows expr
Mutably borrows expr

Converts an expression to an if state-
ment, which is especially useful with
Option and Result

3.3

3.3 Using rustfint to keep code tidy 49

Using rustfmt to keep code tidy

Source code formatting can be a source of frustration, especially in a Rust project with
multiple developers. For single-contributor projects, it’s not such a big deal, but once you
have more than one contributor, there can be a divergence in coding style. Rustfmtis Rust’s
answer to coding style, providing an idiomatic, automatic, and opinionated styling tool.
It’s similar in nature to gofmt if you’re coming from Golang or an equivalent formatting
tool of other languages. The idea of opinionated formatting is relatively new, and—in my
humble opinion—it is a wonderful addition to modern programming languages.

Example output from running cargo fmt—--check -v is shown in figure 3.3, which
enables verbose mode and check mode. Passing --check will cause the command to
return nonzero if the formatting is not as expected, which is useful for checking the
code format on continuous integration systems.

000 xn2 brend Book-Pro:~/dev/dryoc

->

Using rustfmt config file /Users/brenden/dev/dryoc/.rustfmt.toml for /Users/brenden/dev/dryoc/src/lib.rs
Formatting /Users/brenden/dev/dryoc/src/argon2.rs

Formatting /Users/brenden/dev/dryoc/src/auth.rs

Formatting /Users/brenden/dev/dryoc/src/blake2b/blake2b_simd.rs

Formatting /Users/brenden/dev/dryoc/src/blake2b/blake2b_soft.rs

Formatting /Users/brenden/dev/dryoc/src/blake2b/mod.rs

Formatting /Users/brenden/dev/dryoc/src/bytes_serde.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_auth.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_box.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_box_impl.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_core.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_generichash.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_hash.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_kdf.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_kx.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_onetimeauth.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_pwhash.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_secretbox.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_secretbox_impl.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_secretstream_xchacha20poly1305.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_shorthash.rs
Formatting /Users/brenden/dev/dryoc/src/classic/crypto_sign.rs

Formatting /Users/brenden/dev/dryoc/src/classic/crypto_sign_ed25519.rs
Formatting /Users/brenden/dev/dryoc/src/classic/generichash_blake2b.rs
Formatting /Users/brenden/dev/dryoc/src/constants.rs

Formatting /Users/brenden/dev/dryoc/src/dryocbox.rs

Formatting /Users/brenden/dev/dryoc/src/dryocsecretbox.rs

Formatting /Users/brenden/dev/dryoc/src/dryocstream.rs

Formatting /Users/brenden/dev/dryoc/src/error.rs

Formatting /Users/brenden/dev/dryoc/src/generichash.rs

Formatting /Users/brenden/dev/dryoc/src/kdf.rs

Formatting /Users/brenden/dev/dryoc/src/keypair.rs

Formatting /Users/brenden/dev/dryoc/src/kx.rs

Formatting /Users/brenden/dev/dryoc/src/lib.rs

Formatting /Users/brenden/dev/dryoc/src/onetimeauth.rs

Formatting /Users/brenden/dev/dryoc/src/poly1305/mod.rs

Formatting /Users/brenden/dev/dryoc/src/poly1305/poly1305_soft.rs

Formatting /Users/brenden/dev/dryoc/src/protected.rs

Formatting /Users/brenden/dev/dryoc/src/pwhash.rs

Formatting /Users/brenden/dev/dryoc/src/rng.rs

Formatting /Users/brenden/dev/dryoc/src/scalarmult_curve25519.rs

Formatting /Users/brenden/dev/dryoc/src/sha512.rs

Formatting /Users/brenden/dev/dryoc/src/sign.rs

Formatting /Users/brenden/dev/dryoc/src/siphash2s4.rs

Formatting /Users/brenden/dev/dryoc/src/types.rs

Formatting /Users/brenden/dev/dryoc/src/utils.rs

Spent 0.018 secs in the parsing phase, and 0.098 secs in the formatting phase
Using rustfmt config file /Users/brenden/dev/dryoc/.rustfmt.toml for /Users/brenden/dev/dryoc/tests/integration_tests.rs
Formatting /Users/brenden/dev/dryoc/tests/integration_tests.rs

Spent 0.001 secs in the parsing phase, and 0.008 secs in the formatting phase

git:(main) cargo fmt -- --check -v

git:(main) .

Figure 3.3 Rustfmt in action on the dryoc crate

50

3.3.1

3.3.2

CHAPTER 3 Rust tooling

I can’t count the number of hours of my life I’ve lost debating code formatting on pull
requests. This problem can be solved instantly by using rustfmt and simply mandating
code contributions follow the defined style. Rather than publishing and maintaining
lengthy style guideline documents, you can use rustfmt and save everyone a lot of time.

Installing rustfmt

Rustfmt is installed as a rustup component:

$ rustup component add rustfmt

Once installed, it can be used by running Cargo:

$ cargo fmt
Rustfmt will now have formatted your code in-place

Configuring rustfmt

While the default rustfmt configuration is adequate for most people, you may want to
tweak settings slightly to suit your preferences. This can be done by adding a .rustfmt
.toml configuration file to your project’s source tree.

Listing 3.1 Example .rustfmt.toml configuration

format code_ in doc_comments = true
group_imports = "StdExternalCrate"
imports_granularity = "Module"
unstable_ features = true

version = "Two"

wrap_comments = true

I’ve listed a few rustfmt options in table 3.4, which illustrates some of the configura-
tions permitted.

Table 3.4 Partial listing of rustfmt options

Setting Default Recommendation Description

imports_granularity Preserve | Module Defines granularity of
import statements

group_imports Preserve | StdExternalGroup | Defines the ordering of
import grouping

unstable_ features false true Enables nightly-only fea-
tures (unavailable on the
stable channel)

wrap_comments false true Automatically word wraps
comments in addition to
code

3.4

3.4.1

3.4 Using Clippy to improve code quality 51

Table 3.4 Partial listing of rustfmt options (continued)

Setting Default Recommendation Description

format code in doc comments | false true Applies rustfmt to
source code samples
in documentation

version One Two Selects the rustfmt ver-
sion to use. Some rust-
fmt features are only
available in version 2.

At the time of writing, some notable rustfmt options are nightly-only features. An
up-to-date listing of the available style options can be found on the rustfmt website at
https://rust-lang.github.io/rustfmt/.

TIP If you’re coming from the C or C++ world and want to apply the same
opinionated formatting pattern there, be sure to check out the clang-format
tool as part of LLVM.

Using Clippy to improve code quality

Clippy is Rust’s code quality tool, which provides more than 450 checks at the time of
writing. If you've ever been frustrated by a colleague who likes to chime in on your
code reviews and point out minor syntax, formatting, and other stylistic improve-
ments, then Clippy is for you. Clippy can do the same job as your colleague but with-
out any snark, and it will even give you the code change, in many cases.

Clippy can often find real problems in your code. However, the real benefit of
Clippy is that it obviates the need for arguing over code style problems because it
enforces idiomatic style and patterns for Rust. Clippy is related to, but a little more
advanced than, rustfmt, which is discussed in the previous section.

Installing Clippy

Clippy is distributed as a rustup component; thus, it’s installed as follows:

$ rustup component add clippy

Once installed, you can run Clippy on any Rust project using Cargo:

$ cargo clippy

When run, Clippy will produce output that looks similar to the rustc compiler output,
as shown in figure 3.4.

https://rust-lang.github.io/rustfmt/

52

CHAPTER 3 Rust tooling

~
00O 2 brenden@MacBook-Pro:~/dev/dryoc

<> git:(main) = cargo clippy
unreachable statement
rc/auth.rs:128:9

[y

127
------- any code following this expression is unreachable

128 let mut output = Output::new_byte_array();

note: “#{warn(unreachable_code)]” on by default

: unused variable: “key”
—> src/auth.rs:124:9
|
|
|
|

124 key: Key,

note: “#{warn(unused_variables)]” on by default

: unused variable: “input’
—> src/auth.rs:125:9

125 | input: &Input,

|
: empty “loop {} wastes CPU cycles
src/auth.rs:127:9

127 loop {}

help: you should either use “panic!()” or add “std::thread::sleep(..); to the loop body
help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#tempty_loop
note: “#{warn(clippy::empty_loop)]” on by default

e |

: “dryoc” (lib) generated 4 warnings
Finished dev [unoptimized + debuginfo] target(s) in 0.02s
-> git:(main)

Figure 3.4 Clippy in action on the dryoc crate, with an intentional error added

3.4.2 Clippy’s lints

With more than 450 code quality checks (known as lints), one could write an entire book
about Clippy. Lints are categorized by their severity level (allow, warn, deny, and dep-
recated) and grouped according to their type, which can be one of the following: cor-
rectness, restriction, style, deprecated, pedantic, complexity, perf, cargo, and nursery.

One such lint is the blacklisted name lint, which disallows the use of variable
names such as foo, bar, or quux. The lint can be configured to include a custom list of
variable names you wish to disallow.

Another example of a lint is the bool_comparison lint, which checks for unnecessary
comparisons between expressions and Booleans. For example, the following code is
considered invalid:

if function_ returning boolean() == true {} <+—— Clippy will complain here.
On the other hand, the following code is valid:

if function returning boolean() {} <+——— The == true is not necessary.

3.4.3

3.4 Using Clippy to improve code quality 53

Most of Clippy’s lints are style related, but it can also help find performance bugs. For
example, the redundant_clone lint can find situations where a variable is unnecessarily
cloned. Typically, this case looks something like this:

let my_ string = String::new("my string");
println! ("my string='{}'", my string.clone());

In the preceding code, the call to clone() is entirely unnecessary. If you run Clippy
with this code, you'll get the following warning:

$ cargo clippy
warning: redundant clone
--> src/main.rs:3:37

3 println! ("my string='{}'", my string.clone());

\
| ANAAAAAA help: remove this
\

note: “#[warn(clippy::redundant clone)]~ on by default
note: this value is dropped without further use
--> src/main.rs:3:28

3 | println! ("my string='{}'", my string.clone());
\

AAAAAAAAA

help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#redundant clone

warning: 1 warning emitted

Clippy is frequently updated, and an up-to-date list of the lints for stable Rust can be
found in the Clippy documentation at http://mng.bz/qjAr.

Configuring Clippy

Clippy can be configured either by adding a .clippy.toml file to the project source tree
or placing attributes within your Rust source files. In most cases, you’ll want to use
attributes to disable Clippy lints on an as-needed basis. There are many cases in which
Clippy may generate a warning but the code is as intended.

Notably, some complexity warnings from Clippy may need to be tweaked or dis-
abled when there’s no better alternative. For example, the too_many_arguments warn-
ing will trigger when you have a function with more than the default limit of seven
arguments. You could increase the default value or simply disable it for the specific
function:

#[allow(clippy::too_many arguments)]
fn function(

a: i32, b: i32, c¢: i32, d: i32, e: i32, f: i32, g: i32, h: 132
) |

/.. <+—— Your code goes here.
}

http://mng.bz/qjAr

54

3.4.4

3.4.5

CHAPTER 3 Rust tooling

The allow() attribute in the preceding code is specific to Clippy and instructs it to
allow an exception for the too_many_arguments lint on the next line of code.
Alternatively, to change the argument threshold for the entire project, you could

add the following into your .clippy.toml:
Sets the argument threshold

too-many-arguments-threshold = 10 4—‘ to 10, up from the default of 7

The .clippy.toml file is a normal TOML file, which should contain a list of name = value
pairs, according to your preferences. Each lint and its corresponding configuration
parameters are described in detail in the Clippy documentation at https://rustlang
.github.io/rust-clippy/stable/index.html.

Automatically applying Clippy’s suggestions

Clippy can, in some cases, automatically fix code. In particular, when Clippy is able to
provide a precise suggestion for you to fix the code, it can generally apply the fix auto-
matically as well. To fix the code automatically, run Clippy with the --fix flag:

$ cargo clippy --fix -Z unstable-options

Note that we pass the -z unstable-options option as well because at the time of writ-
ing, the --fix feature is nightly only.

Using Clippy in CI/CD

I recommend enabling Clippy as part of your CI/CD system, provided you have one.
You would typically run Clippy as a step after build, test, and format. Additionally, you
may want to instruct Clippy to fail on warnings, run for all features, as well as check
tests:
This command runs Clippy
$ cargo clippy with the default settings. This command runs Clippy, but
instructs it to fail on warnings

$ cargo clippy -- -D warnings (rather than allowing warnings).

$ cargo clippy --all-targets --all-features -- -D warnings

This command runs Clippy, fails on warnings, enables all crate
features, and also checks tests (by default, Clippy ignores tests).

If you maintain an open source project, enabling Clippy as part of the CI/CD checks
will make it easier for others to contribute high-quality code to your project, and it
also makes it easier to confidently maintain the code and accept code changes.

Listing 3.2 Brief example using Clippy with GitHub Actions

on: [push]

name: CI

https://rust-lang.github.io/rust-clippy/stable/index.html
https://rust-lang.github.io/rust-clippy/stable/index.html
https://rust-lang.github.io/rust-clippy/stable/index.html

3.5

3.5.1

3.5 Reducing compile times with sccache 55

jobs:
clippy:
name: Rust project
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Install Rust toolchain with Clippy
uses: actions-rs/toolchain@vl
with:
toolchain: stable
components: clippy
- name: Run Clippy
uses: actions-rs/cargo@vl

with:
command: clippy
args: --all-targets --all-features -- -D warnings

Chapter 2 contains a full example of using Clippy and rustfmt together with GitHub’s
Actions CI/CD system.

Reducing compile times with sccache

The sccache tool is a general-purpose compiler cache that can be used with Rust proj-
ects. Rust compile times can grow significantly for large projects, and sccache helps
reduce compile times by caching unchanged objects produced by the compiler. The
sccache project was created by the nonprofit organization Mozilla specifically to help
with Rust compilation, but it’s generic enough to be used with most compilers. It was
inspired by the ccache tool, which you may have encountered from the C or C++ world.

Even if your project is not large, installing sccache and using it locally can save you
a lot of time recompiling code. To illustrate, compiling the dryoc crate from a clean
project takes 8.891 seconds on my computer, normally. On the other hand, compiling
from a clean project with sccache enabled takes 5.839 seconds. That’s 52% more time
to compile a relatively small project without sccache versus with it! That time accumu-
lates and can become significant for larger projects.

Note that sccache only helps in cases in which code has been previously compiled.
It will not speed up fresh builds.

Installing sccache

Sccache is written in Rust and can be installed using Cargo:

$ cargo install sccache

Once installed, sccache is enabled by using it as a rustc wrapper with Cargo. Cargo
accepts the RUSTC_WRAPPER argument as an environment variable. You can compile and
build any Rust project using sccache by exporting the wrapper environment variable
as follows:

56

3.5.2

3.6

CHAPTER 3 Rust tooling

$ export RUSTC_WRAPPER="which sccache”

$ cargo build The which sccache command

returns the path of sccache,
assuming it’s available in SPATH.
Configuring sccache
If you’ve previously used ccache, then sccache will be familiar to you. Sccache has
some noteworthy features that ccache lacks: it can be used directly with a number of
networked storage backends, which makes it ideally suited for use with CI/CD sys-
tems. It supports the vendor-neutral S3 protocol, a couple of vendor storage services,
as well as the open source Redis and Memcached protocols.

To configure sccache, you can specify environment variables, but it can also be
configured through platform-dependent configuration files. By default, sccache uses
up to 10 GiB of local storage. To configure sccache to use the Redis backend, you can

set the address for Redis as an environment variable:
Assuming a Redis instance running

$ export SCCACHE REDIS=redis://10.10.10.10/sccache 44 on the default port at 10.10.10.10,
with a database named sccache.

For details on sccache configuration and usage, consult the official project documen-
tation at https://github.com/mozilla/sccache.

Integration with IDEs, including Visual Studio Code

This is a topic I won’t cover in detail, but it’s worth mentioning some features for work-
ing with Rust in text editors. These days, I prefer to use VS Code, but it is possible to use
tools like rust-analyzer, Clippy, rustfmt, and more with any editor.

For rust-analyzer, there are installation instructions provided in the rust-analyzer
manual to integrate with Vim, Sublime, Eclipse, Emacs, and others. Rust-analyzer
should work with any editor that supports the Language Server API, which includes
many popular editors in addition to those mentioned here.

In the case of VS Code, using rust-analyzer is as simple as installing the extension.
From the command line, you need to first make sure you have the rust-src compo-
nent installed, which you can do with rustup:

$ rustup component add rust-src

Next, install the VS Code extension from the command line:

S code --install-extension matklad.rust-analyzer

Using the extension in VS Code is as simple as opening any Rust project in VS Code. It
will automatically recognize the Cargo.toml file in your project directory and load the
project.

TIP You can open VS Code directly from any project directory using the com-
mand line by running code ., where . is shorthand for the current working
directory.

https://github.com/mozilla/sccache

3.7

3.7.1

3.7 Using toolchains: Stable vs. nightly 57

Using toolchains: Stable vs. nightly

You may start out using Rust on the stable toolchain and slowly find yourself
discovering features you want to use but cannot because they aren’t available in the
stable channel. Those features, however, are available in the nightly channel. This is a
common problem in Rust and something many have balked at. In fact, a number of
popular crates are nightly-only crates. That is, they can only be used with the nightly
channel.

There are, in a sense, two Rusts: stable Rust and nightly Rust. This may sound con-
fusing or cumbersome, but in practice, it’s not so bad. In most cases, you should be
fine using stable, but in some cases, you’ll want to use nightly. If you’re publishing
public crates, you may find that you have certain features behind a nightly feature
flag, which is a common pattern.

You may eventually find yourself asking this: Why not just use nightly exclusively to
get all the benefits of Rust? Practically speaking, this isn’t such a bad idea. The only
caveat is the case where you want to publish crates for others to use, and your poten-
tial customers are only able to use stable Rust. In that case, it makes sense to try and
maintain stable support, with nightly features behind a feature flag.

Nightly-only features

You may need to use nightly-only features, and to do so, you must tell rustc which fea-
tures you want to use. For example, to enable the allocator api, a feature available
only in nightly Rust at the time of writing, you need to enable the allocator_api.

Listing 3.3 Code for lib.rs from dryoc

any() returns true if any of the predicates are true, and all()
returns true if all predicates are true. The doc attribute is set

automatically whenever the code is being analyzed with rustdoc.
#![cfg attr(

any (feature = "nightly", all(feature = "nightly", doc)),

feature (allocator api, doc_cfg)
)1 If the predicate evaluates to true, the

allocator_api and doc_cfg features are enabled.

In the preceding code listing, I've enabled two nightly-only features: allocator api
and doc_cfg. One feature provides custom memory allocation in Rust, and the other
enables the doc compiler attribute, which allows one to configure rustdoc from within
the code.

TIP Rust’s built-in attributes are documented at https://doc.rust-lang.org/
reference/attributes.html. The any() and all() predicates are specific to cfg
and cfg_attr, which are the conditional compilation attributes. These are
documented at http://mng.bz/7vRv.

Also note that in listing 3.3, we’re using a feature flag, which means we need to build
this crate with the nightly feature enabled. At the moment, there isn’t a way to

https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
http://mng.bz/7vRv

58

3.7.2

3.8

CHAPTER 3 Rust tooling

detect which channel your code is being compiled with, so we have to specify feature
flags instead.

Using nightly on published crates

In the dryoc crate, I use this pattern to provide a protected memory feature. Protected
memory, in the case of the dryoc crate, is a feature whereby data structures that use a
custom allocator (which is a nightly-only API in Rust, at the time of writing) to imple-
ment memory locking and protection. The feature gating within the crate is shown in
the following listing.

Listing 3.4 Code from src/lib.rs

#[cfg(any (feature = "nightly", all(doc, not (doctest))))]

#[cfg attr(all(feature = "nightly", doc), doc(cfg(feature = "nightly")))]
[macro_use]

pub mod protected;

There are a few things going on in this code, which I’ll explain. First, you’ll notice the
doc and doctest keywords. Those are included because I want to make sure the pro-
tected module is included when building the documentation but 7ot when running
the doctests if feature = "nightly" isn’t enabled (i.e., testing the code samples within
the crate documentation). The first line translates to the following: enable the next
block of code (which is pub mod protected) only if feature = "nightly" is enabled or doc
is enabled and we’re not running the doctests. doc and doctests are special attributes
that are enabled only while running either cargo doc or cargo test.

The second line enables a rustdoc-specific attribute that tells rustdoc to mark all
the content within the module as feature = "nightly". In other words, if you look at
the docs for the dryoc crate at http://mng.bz/mjAa, you will see a note that says the
following:

Available on crate feature nightly only.

For details about the allocator API feature in Rust, refer to the GitHub tracking issue
at https://github.com/rust-lang/rust/issues/32838. For details about the doc attribute
feature, refer to the GitHub tracking issue at https://github.com/rustlang/rust/
issues/43781.

Additional tools: cargo-update, cargo-expand, cargo-fuzz,
cargo-watch, cargo-tree

There are a few more Cargo tools worth mentioning, which I will summarize in the
following subsections. Each of them is supplemental to the tools already discussed,
and they may be mentioned elsewhere in the book.

http://mng.bz/mjAa
https://github.com/rust-lang/rust/issues/32838
https://github.com/rust-lang/rust/issues/43781
https://github.com/rust-lang/rust/issues/43781
https://github.com/rust-lang/rust/issues/43781

381

3.82

3.8 Additional tools: cargo-update, cargo-expand, cargo-fuzz, cargo-watch, cargo-tree 59

Keeping packages up to date date with cargo-update

Packages installed with Cargo may need to be updated occasionally, and cargo-update
provides a way to keep them up to date. This is different from project dependencies,
which are updated with the cargo update command. The cargo-update crate is for
managing Cargo’s own dependencies, separately from a project.

Run the following to install cargo-update:

$ cargo install cargo-update
Do the following using cargo-update:

$ cargo help install-update <—— Prints help

$ cargo install-update -a <+—— Updates all installed packages.

Debugging macros with cargo-expand

Atsome point, you may encounter macros you need to debug in other crates, or you may

need to implement your own macro. rustc provides a way to generate the resulting

source code with the macro applied, and cargo-expand is a wrapper around that feature.
Run the following to install cargo-expand:

$ cargo install cargo-expand
Using cargo-expand, from a project you’re working on, do the following:

$ cargo help expand <+—— Prints help.

Shows the expanded form

$ cargo expand outermod::innermod
T of "outermod::innermod"

For a simple "Hello, world!" Rust project, the output of cargo expand would look like this:

#! [feature (prelude_ import)]

[prelude_ import]

use std::prelude::rust_2018::%*;
[macro_use]

extern crate std;

fn main() {
{
:std::io:: print(::core::fmt::Arguments::new vl (
&["Hello, world!\n"],
smatch () {

0 => I[1,
I
)) i

60

3.83

3.8.4

CHAPTER 3 Rust tooling

You can run cargo-expand for an entire project or filter by item name, as shown in the
preceding example. It’s worth experimenting with cargo-expand to see how other code
looks once its macros are expanded. For any moderately large project, the expanded
code can become very large, so I recommend filtering by specific functions or mod-
ules. I have found cargo-expand especially useful when using libraries with macros, as it
helps me understand what’s happening in other people’s code.

Testing libFuzzer
Fuzz testing is one strategy for finding unexpected bugs, and cargo-fuzz provides fuzz-

ing support based on LLVM’s libFuzzer (https://llvm.org/docs/LibFuzzer.html). Do
the following to install cargo-fuzz:

$ cargo install cargo-fuzz
Using cargo-fuzz from a project you're working on, run the following:

$ cargo help fuzz <+—— Prints help.

Using cargo-fuzz requires creating tests using the libFuzzer API. This can be accom-
plished with the cargo-fuzz tool by running the cargo fuzz add command, followed by
the name of the test. For example, run the following to create a boilerplate test (with

cargo-fuzz):

Creates a new fuzz
test called myfuzztest
$ cargo fuzz new myfuzztest

£ fuzztest
$ cargo fuzz run myfuzztes Runs the newly created test,
which may take a long time

The resulting test (created by cargo-fuzz in fuzz/fuzz_targets/myfuzztest.rs) looks like so:

#! [no_main]
use libfuzzer sys::fuzz_ target;

fuzz target! (|data: &[usl| {
/] <+ Fuzzed code goes here.

I3

Fuzz testing is covered in greater detail in chapter 7. If you're already familiar with lib-
Fuzzer or fuzz testing in general, you should have no trouble getting up to speed on
your own with cargo-fuzz.

Iterating with cargo-watch

Cargo-watch is a tool that continuously watches your project’s source tree for changes
and executes a command when the there’s a change. Common use cases for cargo-
watch are automatically running tests, generating documentation with rustdoc, or sim-
ply recompiling your project.

https://llvm.org/docs/LibFuzzer.html

3.8.5

3.8 Additional tools: cargo-update, cargo-expand, cargo-fuzz, cargo-watch, cargo-tree 61

To install cargo-watch, run the following:

$ cargo install cargo-watch

Using cargo-watch from a project you’re working on, run the following:
$ cargo help watch <—— Prints help.

$ cargo watch <+—— Runs cargo check continuously.
$ cargo watch -x doc

Continuously rebuilds documentation on changes.

Examining dependencies with cargo-tree

As projects grow in complexity, you may find yourself perplexed by dependencies,
either because there are too many, there are conflicts, or there is some other combi-
nation thereof. One tool that’s useful for figuring out where dependencies come from
IS cargo-tree.

To install cargo-tree, run the following:

$ cargo install cargo-tree

Using cargo-tree from a project you’re working on, do the following:

$ cargo help tree <—— Prints help.

As an example, if I run cargo-tree on the dryoc crate, I will see the dependency tree,
as shown in the following listing.

Listing 3.5 Partial output of cargo-tree for dryoc crate

$ cargo tree
dryoc v0.3.9 (/Users/brenden/dev/dryoc)
b— bitflags v1.2.1
— chacha20 v0.6.0
f— cipher v0.2.5
L generic-array v0.14.4
L— typenum v1.12.0
[build-dependencies]
L— version check v0.9.2
rand_core v0.5.1
L— getrandom v0.1.16
b— cfg-if v1.0.0
L— libc v0.2.88
f— curve25519-dalek v3.0.2
|
|
|
|
|

———-

b— byteorder v1.3.4
— digest v0.9.0
L generic-array v0.14.4 (*)

rand_core v0.5.1 (%)

—
— subtle v2.4.0

62

CHAPTER 3 Rust tooling

L— zeroize v1.2.0
L— zeroize derive v1.0.1 (proc-macro)
— proc-macro2 v1.0.26
| L— unicode-xid v0.2.1
F— quote v1.0.9
| L— proc-macro2 v1.0.26 (*)
— syn v1.0.68
| — proc-macro2 v1.0.26 (*)
| F— quote v1.0.9 (*)
| L— unicode-xid v0.2.1
L— synstructure v0.12.4
— proc-macro2 v1.0.26 (*)
F— quote v1.0.9 (*)
— syn v1.0.68 (*)
L— unicode-xid v0.2.1

snip

We can see the preceding hierarchy of regular and dev-only dependencies for the
crate. Packages marked with (*) are shown with duplicates removed.

Summary
Many popular editors include Rust support, either via the Language Server Pro-
tocol (LLSP) or native extensions.
Rust-analyzer is the canonical Rust language IDE tool, and it can be used with
any editor that provides support for LSP.
Using rustfmt and Clippy can boost productivity and improve code quality.
There are cases when you may want to use nightly-only features in published
crates. When doing so, you should place these features behind a feature flag to
support stable users.
cargo-update makes it easy to update your Cargo packages.
cargo-expand lets you expand macros to see the resulting code.
cargo-fuzz let’s you easily integrate with libFuzzer for fuzz testing.
cargo-watch automates rerunning Cargo commands on code changes.

cargo-tree allows you to visualize project dependency trees.

Part 2

Core data

hen we build software, we spend a lot of time working with data structures.
Sometimes, we need to write custom data structures, but more often than not, we
use the built-in structures provided by each programming language for the major-
ity of the work. Rust provides a rich set of flexible data structures that provide a
good balance of performance, convenience, features, and customizability.
Before you go about implementing your own custom data structures, it’s
worth taking the time to understand the ins and outs of the core structures
included with the Rust standard library. You may find they provide enough in
terms of features and flexibility to meet the needs of nearly any application. In
cases where Rust’s built-in structures are insufficient, foundational knowledge of
Rust’s existing data structures will be of much benefit when designing your own.
In part 2, we’ll dive into the details of Rust’s core data structures and memory
management, which will provide you with some of the essential knowledge
required for writing highly effective Rust. Once you learn to effectively utilize
Rust’s data structures and memory management features, working with Rust gets
a lot easier, too.

Data structures

This chapter covers

Using Rust’s core data structures: strings,
vectors, and maps

Understanding Rust’s types: primitives, structs,
enums, and aliases

Applying Rust’s core types effectively
Converting between data types

Demonstrating how Rust’s primitive types map
to external libraries

Up to this point in the book, we haven’t spent much time talking about the Rust
language itself. In the previous two chapters, we discussed tooling. With that out of
the way, we can start diving into the Rust language and its features, which we’ll
focus on for the rest of this book. In this chapter, we’ll cover the most important
part of Rust after its basic syntax: data structures.

When working with Rust, you’ll spend a great deal of time interacting with its
data structures, as you would any other language. Rust offers most of the features
you’d expect from data structures, as you’d expect with any modern programming
language, but it does so while offering exceptional safety and performance. Once

65

66

4.1

4.1.1

CHAPTER 4 Data structures

you get a handle on Rust’s core data types, you’ll find the rest of the language comes
into great clarity, as the patterns often repeat themselves.

In this chapter, we’ll discuss how Rust differs from other languages in its approach
to data, review the core data types and structures, and discuss how to effectively use
them. We’ll also discuss how Rust’s primitive types map to C types, which allows you to
integrate with non-Rust software.

When working with Rust, you’ll likely spend most of your time working with three
core data structures: strings, vectors, and maps. The implementations included with
Rust’s standard library are fast and full featured and will cover the majority of your
typical programming use cases. We’ll begin by discussing strings, which are commonly
used to represent a plethora of data sources and sinks.

Demystifying String, str, &str, and &'static str

In my first encounters with Rust, I was a little confused by the string types. If you find
yourself in a similar position, worry not, for I have good news: while they seem compli-
cated, largely due to Rust’s concepts of borrowing, lifetimes, and memory manage-
ment, I can assure you it’s all very straightforward once you get a handle on the
underlying memory layout.

Sometimes, you may find yourself with a str when you wanta String, or you may end
up with string but have a function that wants a &str. Getting from one to the otherisn’t
hard, but it may seem confusing at first. We’ll discuss all that and more in this section.

It’s important to separate the underlying data (a contiguous sequence of charac-
ters) from the interface you’re using to interact with them. There is only one kind of
string in Rust, but there are multiple ways to handle a string’s allocation and refer-
ences to that string.

String vs str

Let’s start by clarifying a few things: first, there are, indeed, two separate core string
types in Rust (string and str). And while they are technically different types, they
are—for the most part—the same thing. They both represent a UTF-8 sequence of
characters of arbitrary length, stored in a contiguous region of memory. The only
practical difference between string and str is how the memory is managed. Addition-
ally, to understand all core Rust types, it’s helpful to think about them in terms of how
memory is managed. Thus, the two Rust string types can be summarized as

str—A stack-allocated UTF-8 string, which can be borrowed but cannot be
moved or mutated (note that &str can point to heap-allocated data; we’ll talk
more about this later)

string—A heap-allocated UTF-8 string, which can be borrowed and mutated

In languages like C and C++, the difference between heap- and stack-allocated data
can be blurry, as C pointers don’t tell you how memory was allocated. At best, they tell
you that there’s a region of memory of a specific type, which might be valid and may

4.1.2

4.1 Demystifying String, str, &str, and &'static str 67

be anywhere from 0 to N elements in length. In Rust, memory allocation is explicit;
thus your types, themselves, usually define ~ow memory is allocated, in addition to the
number of elements.

In C, you can allocate strings on the stack and mutate them, but this is not allowed
in Rust without using the unsafe keyword. Not surprisingly, this is a major source of
programming errors in C.

Let’s illustrate some C strings:

char *stack_string "stack-allocated string";
char *heap_string = strndup("heap-allocated string");

In this code, we have two identical pointer types, pointing to different kinds of mem-
ory. The first, stack_string, is a pointer to stack-allocated memory. Memory allocated
on the stack is usually handled by the compiler, and the allocation is essentially instan-
taneous. heap_string is a pointer of the same type, to a heap-allocated string. strndup ()
is a standard C library function that allocates a region of memory on the heap using
malloc (), copies the input into that region, and returns the address of the newly allo-
cated region.

NOTE If we're being pedantic, we might say that heap-allocated string in the
preceding example is initially stack allocated but converted into a heap-
allocated string after the call to strndup (). You can prove this by examining
the binary generated by the compiler, which would contain the literal heap-
allocated string in the binary.

Now, as far as C is concerned, all strings are the same: they’re just contiguous regions
of memory of arbitrary length, terminated by a null character (hex byte value 0x00).
So if we switch back to thinking about Rust, we can think of str as equivalent to the
first line, stack_string. String is equivalent to the second line, heap_string. While this
is somewhat of an oversimplification, it’s a good model to help us understand strings
in Rust.

Using strings effectively

Most of the time, when working in Rust, you're going to be working with either a
String or &str but never a str. The Rust standard library’s immutable string functions
are implemented for the &str type, but the mutable functions are only implemented
for the string type.

It’s not possible to create a str directly; you can only borrow a reference to one.
The s&str type serves as a convenient lowest common denominator, such as when used
as a function argument because you can always borrow a String as &str.

Let’s quickly discuss static lifetimes: In Rust, 'static is a special lifetime specifier
that defines a reference (or borrowed variable) that is valid for the entire life of a pro-
cess. There are a few special cases in which you may need an explicit &'static str, but
in practice, it’s something infrequently encountered.

68 CHAPTER 4 Data structures

| need a UTF-8 string.

Yes
n?&;&i”;ﬁgg% —— | Letmy string=String::new("my string").

No

Letmy string="my string".
Figure 4.1 Deciding when to use str or a String, in a very simple flowchart

Deciding to use string or a static string comes down to mutability, as shown in figure
4.1. If you don’t require mutability, a static string is almost always the best choice.

The only real difference between &'static str and &str is that, while a string can
be borrowed as &str, String can never be borrowed as &'static str because the life of
a String is never as long as the process. When a string goes out of scope, it’s released
with the Drop trait (we’ll explore traits in greater detail in chapter 8).

Under the hood, a string is actually just a vec of UTF-8 characters. We’ll discuss
Vec in greater detail later in the chapter. Additionally, a str is just a slice of UTF-8
characters, and we’ll discuss slices more in the next section. Table 4.1 summarizes the
core string types you will encounter and how to differentiate them.

Table 4.1 String types summarized

Type Kind Components Use
str Stack-allocated A pointer to an array Immutable string, such as logging or
UTF-8 string slice | of characters plus its | debug statements or anywhere else you
length may have an immutable stack-allocated
string
String Heap-allocated A vector of characters | Mutable, resizable string, which can be
UTF-8 string allocated and deallocated as needed
&str Immutable string | A pointer to either bor-| Can be used anywhere you want to
reference rowed str or String | borrow either a str or a String
plus its length immutably
&'static str | Immutable static | A pointerto a str A reference to a str with an explicit
string reference plus its length static lifetime

4.2

4.2 Understanding slices and arrays 69

Another difference between str and String is that String can be moved, whereas str
cannot. In fact, it’s not possible to own a variable of type str—it’s only possible to hold
reference to a str. To illustrate, consider the following listing.

Listing 4.1 Movable and nonmovable strings

fn print String(s: String) {
println! ("print String: {}", s);

} Does not compile; rustc will report
fn print_str(s: &str) { “error[E0277]: the size for va!ue§ of type
printin! ("print str: (. s); str cannot be known at compilation time.”
) OK: moves a String out of
fn main() { main into print_String
// let s: str = "impossible str"; <!
print String(String::from("String")); Oklwqusaﬁsﬂ‘
print str(&String::from("String")) ; from a String in main
print_str("stxr"); <+
// print_String("str"); OK: creates a str on the stack within main
} . . and passes a reference to that str as &str
Does not compile; rustc will report to print_str

“error[E0308]: mismatched types,
expected struct String, found &str.”

The preceding code, when run, prints the following output:

print_String: String
print_str: String
print_str: str

Understanding slices and arrays

Slices and arrays are special types in Rust. They represent a sequence of arbitrary values
of the same type. You can also have multidimensional slices or arrays (i.e., slices of
slices, arrays of arrays, arrays of slices, or slices of arrays).

Slices are a somewhat new programming concept, as you generally won’t find the
term slice used when discussing sequences in the language syntax for Java, C, C++,
Python, or Ruby. Typically, sequences are referred to as either arrays (as in Java, C, C++,
and Ruby), lsts (as in Python), or simply sequences (as in Scala). Other languages may
provide equivalent behavior, but slices are not necessarily a first-class language concept
or type in the way they are in Rust or Go (although the slice abstraction has been catch-
ing on in other languages). C++ does have std: : span and std: :string_view, which pro-
vide equivalent behavior, but the term slice is not used in C++ when describing these.

NOTE The term slices appears to have originated with the Go language, as
described in this blog post from 2013 by Rob Pike: https://go.dev/blog/slices.

In Rust, specifically, slices and arrays differ subtly. An array is a fixed-length sequence
of values, and a slice is a sequence of values with an arbitrary length. That is, a slice

https://go.dev/blog/slices

70

CHAPTER 4 Data structures

can be of a variable length, determined at run time, whereas an array has a fixed
length known at compile time. Slices have another interesting property, which is that
you can destructure slices into as many nonoverlapping subslices as desired; this can
be convenient for implementing algorithms that use divide-and-conquer or recursive
strategies.

Working with arrays can, at times, be tricky in Rust because knowing the length of
a sequence at compile time requires the information to be passed to the compiler at
compile time and present in the type signature. As of Rust 1.51, it’s possible to use a
feature called const generics (discussed in greater detail in chapter 10) to define
generic arrays of arbitrary length but only at compile time.

Let’s illustrate the difference between slices and arrays with the following code.

Listing 4.2 Creating an array and a slice

let = [0u8; 64]; . .
ietazsczlcjze. &E [28] ¢ (]&arra . The type signature here is [u8; 64],
’ - Yi : an array, initialized with zeroes.

This borrows a slice of the array.

In this code, we’ve initialized a byte array containing 64 elements, all of which are
zero. ous is shorthand for an unsigned integral type, 8 bits in length, with a value of o.
0 is the value, and us is the type.

On the second line, we’re borrowing the array as a slice. Up until now, this hasn’t
been particularly interesting. You can do some slightly more interesting things with
slices, such as borrowing twice:

let (first_half, second half) = slice.split_at(32);
println! (
"first half.len()={} second half.len()={}",
first_half.len(),
second_half.len()

Splits and borrows a slice
twice, destructuring it into
two separate, nonoverlapping
subslices

)i

The preceding code is calling the split_at () function, which is part of Rust’s core
library and implemented for all slices, arrays, and vectors. split_at () destructures the
slice (which is already borrowed from array) and gives us two nonoverlapping slices
that correspond to the first and second half of the original array.

This concept of destructuring is important in Rust because you may find yourself in
situations where you need to borrow a portion of an array or slice. In fact, you can bor-
row the same slice or array multiple times using this pattern, as slices don’t overlap. One
common use case for this is parsing or decoding text or binary data. For example:

let wordlist = "one, two, three, four";

for word in wordlist.split(',') {
println! ("word={}", word) ;

1

4.2 Understanding slices and arrays 71

Looking at the preceding code, it may be immediately obvious that we’ve taken a
string, split it on ,, and then printed each word within that string. The output from
this code prints the following:

word=one
word=two
word=three
word=four

What’s worth noting about the preceding code is that there’s no heap allocation hap-
pening. All of the memory is allocated on the stack, of a fixed length known at com-
pile time, with no calls to malloc () under the hood. This is the equivalent of working
with raw C pointers, but there’s no reference counting or garbage collection involved;
therefore, there is none of the overhead. And unlike C pointers, the code is succinct,
safe, and not overly verbose.

Slices, additionally, have a number of optimizations for working with contiguous
regions of memory. One such optimization is the copy_from_slice () method, which
works on slices. A call to copy_from_slice() from the standard library uses the memcpy ()
function to copy memory, as shown in the following listing.

Listing 4.3 Snippet of slice/mod.rs, from http: //mng.bz/50R0

pub fn copy from slice(&mut self, src: &[T])

where
T: Copy,
{
<+—— Code intentionally omitted
// SAFETY: “self” is valid for “self.len()” elements by definition,

// and “src” was checked to have the same length. The slices cannot
// overlap because mutable references are exclusive.
unsafe {
ptr::copy nonoverlapping (
src.as_ptr(),
self.as _mut_ptr(),
self.len()
)i

In the preceding listing, which comes from Rust’s core library, ptr::copy_nonover-
lapping () is just a wrapper around the C library’s memcpy (). On some platforms,
memepy () has additional optimizations beyond what you might be able to accomplish
with normal code. Other optimized functions are £i11() and £ill_with(), which both
use memset () to fill memory.

http://mng.bz/5oRO

72

4.3

4.3.1

CHAPTER 4 Data structures

Let’s review the core attributes of arrays and slices:

= Anarrayis afixed-length sequence of values, with the value known at compile time.

= Slices are pointers to contiguous regions of memory, including a length, repre-
senting an arbitrary-length sequence of values.

= Both slices and arrays can be recursively destructured into nonoverlapping
subslices.

Vectors

Vectors are, arguably, Rust’s most important data type (the next most important being
String, which is based on vec). When working with data in Rust, you’ll find yourself
frequently creating vectors when you need a resizable sequence of values. If you're
coming from C++, you've likely heard the term vectors before, and in many ways Rust’s
vector type is very similar to what you’d find in C++. Vectors serve as a general-purpose
container for just about any kind of sequence.

Vectors are one of the ways to allocate memory on the heap in Rust (another being
smart pointers, like Box; smart pointers are covered in greater detail in chapter 5). Vectors
have afewinternal optimizations to limit excessive allocations, such as allocating memory
in blocks. Additionally, in nightly Rust, you can supply a custom allocator (discussed in
greater detail in chapter 5) to implement your own memory allocation behavior.

Diving deeper into Vec

vec inherits the methods of slices because we can obtain a slice reference from a vec-
tor. Rust does not have inheritance in the sense of object-oriented programming, but
rather vec is a special type that is both a Vec and a slice at the same time. For example,
let’s take a look at the standard library implementation for as_slice().

Listing 4.4 Snippet of vec/mod.rs, from http://mng.bz/6nRe

pub fn as slice(&self) -> &I[T] {
self
}

The preceding code listing is performing a special conversion that (under normal cir-
cumstances) wouldn’t work. It’s taking self, which is Vec<T> in the preceding code,
and simply returning it as &[T]. If you try to compile the same code yourself, it will fail.
How does this work? Rust provides a trait called Deref (and its mutable companion
DerefMut), which may be used by the compiler to coerce one type into another, implic-
itly. Once implemented for a given type, that type will also automatically implement
all the methods of the dereferenced type. In the case of vec, Deref and DerefMut are
implemented in the Rust standard library, as shown in the following listing.

http://mng.bz/6nRe

4.3.2

4.3 Vectors 73

Listing 4.5 Snippet of the Deref implementation for Vec, from http://mng.bz/6nRe

impl<T, A: Allocators> ops::Deref for Vec<T, A> {
type Target = [T];

fn deref (&self) -> &I[T] {
unsafe { slice::from raw parts(self.as ptr(), self.len) }
}

}

impl<T, A: Allocators> ops::DerefMut for Vec<T, A> {
fn deref mut (&mut self) -> &mut [T] {
unsafe { slice::from raw parts mut (self.as mut ptr(), self.len) }
}

}

In the preceding code listing, dereferencing the vector will coerce it into a slice from
its raw pointer and length. It should be noted that such an operation is temporary—
that is to say, a slice cannot be resized, and the length is provided to the slice at the
time of dereferencing.

If, for some reason, you took a slice of a vector and resized the vector, the slice’s
size would not change. This would only be possible in unsafe code, however, because
the borrow checker will not let you borrow a slice from a vector and change the vector
at the same time. Take the following to illustrate:

Returns &[i32] because vec is borrowed here
let mut vec = vec![1l, 2, 3];

let slice = vec.as_slice(); This is a mutable operation.
vec.resize (10, 0);

println! ("{}", slicel0]); <—— This fails to compile.

The preceding code will fail to compile, as the borrow checker returns this error:

error [E0502] : cannot borrow “vec~ as mutable because it is also borrowed as
immutable
--> src/main.rs:4:5

3 | let slice = vec.as_slice();

| --- immutable borrow occurs here
4 | vec.resize (10, 0);

| AARAARAAAAAAAAAAS mutable borrow occurs here
5 | println! ("{}", slicel[0]);

|

———————— immutable borrow later used here

Wrapping vectors
Some types in Rust merely wrap a vVec, such as string. The String type is a Vec<us> and
dereferences (using the previously mentioned Deref trait) into a str.

Listing 4.6 Snippet of string.rs, from http://mng.bz/orAZ

pub struct String {
vec: Vec<u8s>,
1

http://mng.bz/6nRe
http://mng.bz/orAZ

74

4.3.3

44

CHAPTER 4 Data structures

Wrapping vectors is a common pattern, as Vec is the preferred way to implement a
resizable sequence of any type.

Types related to vectors

In 90% of cases, you’ll want to use a vec. In the other 10% of cases, you’ll probably
want to use a HashMap (discussed in the next section). Container types other than vec
or HashMap may make sense in certain situations, or cases when you need special opti-
mization, but most likely, a vec will be sufficient, and using another type will not pro-
vide noticeable performance improvements. A quote comes to mind:

Programmers waste enormous amounts of time thinking about, or worrying aboul, the speed
of noncritical parts of their programs, and these atlempls at efficiency actually have a strong
negative impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97 % of the time: premature optimization is the root of all evil.
Yet we should not pass up our opportunities in that critical 3 %.

—Donald Knuth

In cases where you are concerned about allocating excessively large regions of contig-
uous memory or about where the memory is located, you can easily get around this
problem by simply stuffing a Box into a Vec (i.e, using Vec<Box<T>>). With that said,
there are several other collection types in Rust’s standard library, some of which wrap
a vec internally, and you may occasionally need to use them:

vecDeque—A double-ended queue that can be resized, based on vec
LinkedList—A doubly linked list

HashMap—A hash map, discussed in more detail in the next section
BTreeMap—A map based on a B-tree

Hashset—A hash set, based on HashMap

BTreeSet—A B-tree set, based on BTreeMap

BinaryHeap—A priority queue, implemented with a binary heap, using a vec
internally

Additional recommendations, including up-to-date performance details of Rust’s core
data structures, can be found in the Rust standard library collections reference at
https://doc.rust-lang.org/std/collections/index.html.

TIP It’s also reasonable to build your own data structures on top of vec,
should you need to. For an example of how to do this, the BinaryHeap from
Rust’s standard library provides a complete example, which is documented at
http://mng.bz/n1Ab.

Maps

HashMap is the other container type in Rust that you’ll find yourself using. If vec is the
preferred resizable type of the language, HashMap is the preferred type for cases where
you need a collection of items that can be retrieved in constant time, using a key.
Rust’s HashMap is not much different from hash maps you may have encountered in

http://mng.bz/n1A5
https://doc.rust-lang.org/std/collections/index.html

4.4.1

4.4 Maps 75

other languages, but Rust’s implementation is likely faster and safer than what you
might find in other libraries, thanks to some optimizations Rust provides.

HashMap uses the Siphash-1-3 function for hashing, which is also used in Python
(starting from 3.4), Ruby, Swift, and Haskell. This function provides good tradeoffs for
common cases, but it may be inappropriate for very small or very large keys, such as
integral types or very large strings.

It’s also possible to supply your own hash function for use with HashMap. You may
want to do this in cases where you want to hash very small or very large keys, but for
most cases, the default implementation is adequate.

Custom hashing functions

To use a HashMap with a custom hashing function, you need to first find an existing
implementation or write a hash function that implements the necessary traits. HashMap
requires that std::hash::BuildHasher, std::hash::Hasher, and std::default::Default
are implemented for the hash function you wish to use. Traits are discussed in greater
detail in chapter 8.

Let’s examine the implementation of HashMap from the standard library in the fol-
lowing listing.

Listing 4.7 Snippet of HashMap, from http://mng.bz/vPAp

impl<K, V, S> HashMap<K, V, S>
where

K: Eq + Hash,

S: BuildHasher,

<+—— Code intentionally omitted

In this listing, you can see BuildHasher specified as a trait requirement on the s type
parameter. Digging a little deeper, in the following listing, you can see BuildHasher is
just a wrapper around the Hasher trait.

Listing 4.8 Snippet of BuildHasher, from http://mng.bz/46RR

pub trait BuildHasher {
s .
/// Type of the hasher that will be created. Hﬂ%,ﬂwresareguwement
type Hasher: Hasher; on the Hasher trait.

<+—— Code intentionally omitted

The BuildHasher and Hasher APIs leave most of the implementation details up to the
author of the hash function. For BuildHasher, only a build_hasher () method is required,
which returns the new Hasher instance. The Hasher trait only requires two methods:
write() and finish(). write() takes a byte slice (&[u8]), and finish() returns an
unsigned 64-bit integer representing the computed hash. The Hasher trait also provides

http://mng.bz/vPAp
http://mng.bz/46RR

76

4.4.2

CHAPTER 4 Data structures

anumber of blanket implementations, which you inherit for free if you implement the
Hasher trait. It’s worth examining the documentation for the traits themselves at http://
mng.bz/QR76 and http://mng.bz/Xqo9 to get a clearer picture of how they work.

Many crates are available on https://crates.io that already implement a wide variety
of hash functions. As an example, in the following listing, let’s construct a HashMap with
MetroHash, an alternative to SipHash, designed by J. Andrew Rogers, described at
https://www.jandrewrogers.com/2015/05/27/metrohash/. The MetroHash crate
already includes the necessary implementation of the std::hash::BuildHasher and
std: :hash: :Hasher traits, which makes this very easy.

Listing 4.9 Code listing for using HashMap with MetroHash

use metrohash::MetroBuildHasher; Creates a new HashMap
use std::collections::HashMap; instance, using MetroHash
let mut map = HashMap: <Str1ng, Strlng, Inserts a key and value pair into
= MetroBuildHashers::default (the map, using the Into tral't for
map.insert ("hello?".into(), "Hello' ".into()) ; conversion from &str to String

println! ("{:?}", map.get ("hello?")); Retrieves the value from the map, which
returns an Option; the {:?} argument to the
printin! macro tells it to format this value
using the fmt::Debug trait.

Creating hashable types
HashMap can be used with arbitrary keys and values, but the keys must implement the

std::cmp: :Eq and std: :hash: :Hash traits. Many traits, such as Eq and Hash, can be auto-
matically derived using the # [derive] attribute. Consider the following example.

Listing 4.10 Code listing for a compound key type

[derive (Hash, Eq, PartialEqg, Debug)]
struct CompoundKey {

name: String,

value: 132,

The preceding code represents a compound key composed of a name and value.
We’re using the #[derive] attribute to derive four traits: Hash, Eq, PartialEqg, and Debug.
While HashMap only requires Hash and Eq, we need to also derive partialEq because Eq
depends on partialkg. I've also derived Debug, which provides automatic debug print
methods. This is extremely convenient for debugging and testing code.

We haven’tdiscussed # [derive] much in this book yet, butit’s something you’ll use fre-
quently in Rust. We’ll go into more detail on traits and # [derive] in chapters 8 and 9. For
now, you should just think of it as an automatic way to generate trait implementations.
These trait implementations have the added benefit in that they’re composable: so long
as they exist for any subset of types, they can also be derived for a superset of types.

http://mng.bz/QR76
http://mng.bz/QR76
http://mng.bz/QR76
http://mng.bz/Xqo9
https://www.jandrewrogers.com/2015/05/27/metrohash/
https://crates.io

4.5

4.5.1

4.5 Rust types: Primitives, structs, enums, and aliases 77

Rust types: Primitives, structs, enums, and aliases
Being a strongly typed language, Rust provides several ways to model data. At the bot-
tom are primitive types, which handle our most basic units of data, like numeric val-
ues, bytes, and characters. Moving up from there, we have structs and enums, which
are used to encapsulate other types. Finally, aliases let us rename and combine other
types into new types.

To summarize, in Rust, there are four categories of types:

= Primitives—These include strings, arrays, tuples, and integral types.

= Structs—A compound type composed of any arbitrary combination of other
types, similar to C structs, for example.

= Enums—A special type in Rust, which is somewhat similar to enum from C, C++,
Java, and other languages.

= Aliases—Syntax sugar for creating new type definitions based on existing types.

Using primitive types

Primitive types are provided by the Rust language and core library. These are equiva-
lent to the primitives you’d find in any other strongly typed language, with a few
exceptions, which we’ll review in this section. The core primitive types are summa-
rized in table 4.2, which includes integers, floats, tuples, and arrays.

Table 4.2 Summary of primitive types in Rust

Class Kind Description
Scalar Integers Can be either a signed or unsigned integer, anywhere from 8-128 bits
in length (bound to a byte; i.e., 8 bits)
Scalar Sizes An architecture-specific size type, which can be signed or unsigned
Scalar Floating point 32- or 64-bit floating point numbers
Compound Tuples Fixed-length collection of types or values, which can be destructured.
Sequence Arrays Fixed-length sequence of values of a type that can be sliced.

INTEGER TYPES

Integer types can be recognized by their signage designation (either i or u for signed
and unsigned, respectively), followed by the number of bits. Sizes begin with i or u,
followed by the word size. Floating-point types begin with £, followed by the number
of bits. Table 4.3 summarizes the primitive integer types.

Table 4.3 Summary of integer-type identifiers

Length Signed identifier Unsigned identifier C equivalent

8 bits is us char and uchar

16 bits ile6 ulé short and unsigned short

78

CHAPTER 4 Data structures

Table 4.3 Summary of integer-type identifiers (continued)

Length Signed identifier Unsigned identifier C equivalent
32 bits | 132 u32 int and unsigned int
64 bits | i64 u64 long, long long, unsigned long, and

unsigned long long, depending on the platform

128 bits | i128 ul2s Extended integers are nonstandard C but provided as
_int128 or _uint128 with GCC and Clang

The type for an integer literal can be specified by appending the type identifier. For
example, ous denotes an unsigned 8-bit integer with a value of 0. Integer values can be
prefixed with ob, 0o, 0x, or b for binary, octal, hexadecimal, and byte literals. Consider
the following listing, which prints each value as a decimal (base 10) integer.

Listing 4.11 Code listing with integer literals

let value = 0u8;

println! ("value={}, length={}", value, std::mem::size of val(&value));
let value = 0Oblulé;

println! ("value={}, length={}", value, std::mem::size of val(&value));
let value = 0o2u32;

println! ("value={}, length={}", value, std::mem::size of val(&value));
let value = 0x3u64;

println! ("value={}, length={}", value, std::mem::size of val(&value));
let value = 4ul2s;

println! ("value={}, length={}", value, std::mem::size of val(&value));
println! ("Binary (base 2) Ob1111 1111={}", 0bl11l 1111);
println! ("Octal (base 8) 001111 1111={}", 0ollll 1111);
println! ("Decimal (base 10) 1111 1111={}", 1111 1111);
println! ("Hexadecimal (base 16) 0x1111 1111={}", 0x1111 1111);
println! ("Byte literal b'a'={}", b'A");

When we run this code, we get the following output.

Listing 4.12 Output from listing 4.11

value=0, length=1
value=1, length=2
value=2, length=4
value=3, length=8
value=4, length=16

Binary (base 2) 0b1111_1111=255

Octal (base 8) 001111 1111=2396745
Decimal (base 10) 1111 _1111=11111111
Hexadecimal (base 16) 0x1111_1111=286331153

Byte literal b'A'=65

4.5 Rust types: Primitives, structs, enums, and aliases 79

SIZE TYPES

For size types, the identifiers are usize and isize. These are platform-dependent sizes,
which are typically 32 or 64 bits in length for 32- and 64-bit systems, respectively. usize
is equivalent to C’s size_t, and isize is provided to permit signed arithmetic with
sizes. In the Rust standard library, functions returning or expecting a length parame-
ter expect a usize.

ARITHMETIC ON PRIMITIVES

Many languages permit unchecked arithmetic on primitive types. In C and C++, in
particular, many arithmetic operations have undefined results and produce no errors.
One such example is division by zero. Consider the following C program.

Listing 4.13 Code of divide by zero.c

#include <stdio.h>

int main() {
printf ("$d\n", 1 / 0);
1

If you compile and run this code with clang divide by zero.c && ./a.out, it will print
a value that appears random. Both Clang and GCC happily compile this code, and
they both print a warning, but there is no run-time check for an undefined operation.

In Rust, all arithmetic is checked by default. Consider the following Rust program:

// println! ("{}", 1 / 0); <+—— Does not compile

let one =1

let zero = 0;

// println! ("{}", one / zero); <+—— Does not compile
let one = 1;

let zero = one - 1;

// println! ("{}", one / zero); <—— Still doesn’t compile
let one = { || 1 }0;

let zero = { || 0 }(O);

println! ("{}", one / zero); <+—— The code panics here!

In the preceding code, Rust’s compiler is pretty good at catching errors at compile
time. We need to trick the compiler to allow the code to compile and run. In the pre-
ceding code, we do this by initializing a variable from the return value of a closure.
Another way to do it would be to just create a regular function that returns the desired
value. In any case, running the problem produces the following output:

Running ~target/debug/unchecked-arithmetic”

thread 'main' panicked at 'attempt to divide by zero', src/main.rs:14:20
note: run with “RUST_BACKTRACE=1" environment variable to display a
backtrace

80

4.5.2

CHAPTER 4 Data structures

If you need more control over arithmetic in Rust, the primitive types provide several
methods for handling such operations. For example, to safely handle division by zero,
you can use the checked_div() method, which returns an option:

assert_eq! ((100i32) .checked_div(1i32), Some (100i32)); <+—— 100/1 =1

assert_eq! ((100132) .checked div(0i32), None) ; <F—w 100 /0 " ki defined
—the result is undefined.

For scalar types (integers, sizes, and floats), Rust provides a collection of methods that
provide basic arithmetic operations (e.g., division, multiplication, addition, and sub-
traction) in checked, unchecked, overflowing, and wrapping forms.

When you want to achieve compatibility with the behavior from languages like C,
C++, Java, C#, and others, the method you probably want to use is the wrapping form,
which performs modular arithmetic and is compatible with the C-equivalent opera-
tions. Keep in mind that overflow on signed integers in C is undefined. Here’s an
example of modular arithmetic in Rust:

assert_eq! (0xffu8.wrapping add (1), 0);

assert _eq! (Oxffffffffu32.wrapping add(1), 0);
assert_eq! (0u32.wrapping sub (1), Oxffffffff);
assert_eq! (0x80000000u32.wrapping mul (2), 0);

The full listing of arithmetic functions for each primitive is available in the Rust docu-
mentation. For i32,itcan be found at https://doc.rust-lang.org/std /primitive.i32.html.

Using tuples

Rust’s tuples are similar to what you’ll find in other languages. A tupleis a fixed-length
sequence of values, and the values can each have different types. Tuples in Rust are
not reflective; unlike arrays, you can’t iterate over a tuple, take a slice of a tuple, or
determine the type of its components at run time. Tuples are essentially a form of syn-
tax sugar in Rust, and while useful, they are quite limited.

Consider the following example of a tuple:

let tuple = (1, 2, 3);

This code looks somewhat similar to what you might expect for an array, except for
the limitations mentioned above (you can’t slice, iterate, or reflect tuples). To access
individual elements within the tuple, you can refer to them by their position, starting

at o:
QJ This prints "tuple
println! ("tuple = ({}, {}, {})", tuple.0, tuple.l, tuple.2); =(1,23)"

Alternatively, you can use match, which provides temporary destructuring, provided
there’s a pattern match (pattern matching is discussed in greater detail in chapter 8):

https://doc.rust-lang.org/std/primitive.i32.html

4.5.3

4.5 Rust types: Primitives, structs, enums, and aliases 81

match tuple {
(one, two, three) => println!("{}, {}, {}", one, two, three), <F4W
} 3"

This prints "1, 2,

We can also destructure a tuple into its parts with the following syntax, which moves
the values out of the tuple:

let (one, two, three) = tuple;
printlnt! ("{}, {}, {}", one, two, three); <—— This prints "1, 2, 3".

In my experience, the most common use of tuples is returning multiple values from a
function. For example, consider this succinct swap () function:

fn swap<A, B>(a: A, b: B) -> (B, A) {

(b, a)
1
fn main() {

let a = 1;

let b = 2;

println! ("{:?}", swap(a, b)); <+—— This prints "(2, 1)".
}

TIP It’s recommended that you don’t make tuples with more than 12 argu-
ments, although there is no strict upper limit to the length of a tuple. The
standard library only provides trait implementations for tuples with up to
12 elements.

Using structs

Structs are the main building block in Rust. They are composite data types, which can
contain any set types and values. They are similar in nature to C structs or classes in
object-oriented languages. They can be composed generically in a fashion similar to
templates in C++ or generics in Java, C#, or TypeScript (generics are covered in
greater detail in chapter 8).

You should use a struct any time you need to

Provide stateful functions (i.e., functions or methods that operate on internal-
only state)

Control access to internal state (i.e., private variables); or

Encapsulate state behind an API.

You are not required to use structs. You can write APIs with functions only, if you
desire, in a fashion similar to C APIs. Additionally, structs are only needed to define
implementations—they are not for specifying interfaces. This differs from object-
oriented languages, like C++, Java, and C#.

82

CHAPTER 4 Data structures

The simplest form of a struct is an empty struct:

struct EmptyStruct {}
Unit struct, which ends with

struct AnotherEmptyStruct; <)J semicolon with no braces

Empty structs (or unit structs) are something you may encounter occasionally. Another
form of struct is the tuple struct, which looks like this:

struct TupleStruct (String) ; Initializes the struct
similarly to a tuple

let tuple_struct = TupleStruct ("string value".into());

println! ("{}", tuple struct.0);
The first tuple element can be accessed with .0,

the second with .1, the third with .2, and so on.

A tuple struct is a special form of struct, which behaves like a tuple. The main differ-
ence between a tuple struct and a regular struct is that, in a tuple struct, the values
have no names, only types. Notice how a tuple struct has a semicolon (;) at the end of
the declaration, which is not required for regular structs (except for an empty declara-
tion). Tuple structs can be convenient in certain cases by allowing you to omit the
field names (thereby shaving a few characters off your source code), but they also cre-
ate ambiguity.
A typical struct has a list of elements with names and types, like this:

struct TypicalStruct ({
name: String,
value: String,
number: 132,

}

Each element within a struct has module visibility by default. That means values within
the struct are accessible anywhere within the scope of the current module. Visibility
can be set on a per-element basis: A public struct, visible
outside the crate

pub struct MixedVisibilityStruct { This element is public,
pub name: String, accessible outside of the crate.

pub (crate) value: String,
pub (super) number: i32, This element is public anywhere
e

within the crate.

}

This element is accessibl
anywhere within the parent scope.

Most of the time, you shouldn’t need to make struct elements public. An element
within a struct can be accessed and modified by any code within the public scope for
that struct element. The default visibility (which is equivalent to pub (self)) allows any
code within the same module to access and modify the elements within a struct.

4.5 Rust types: Primitives, structs, enums, and aliases 83

Visibility semantics also apply to the structs themselves, just like their member ele-
ments. For a struct to be visible outside of a crate (i.e., to be consumed from a library),
it must be declared with pub struct MyStruct { .. }. A struct that’s not explicitly
declared as public won’t be accessible outside of the crate (this also applies generally
to functions, traits, and any other declarations).

When you declare a struct, you’ll probably want to derive a few standard trait
implementations:

[derive (Debug, Clone, Default)]
struct DebuggableStruct
string: String,
number: i32,

In this code, we’re deriving the Debug, Clone, and Default traits. These traits are sum-
marized as follows:

Debug—Provides a fmt () method, which formats (for printing) the content of
the type

Clone—Provides a clone () method, which creates a copy (or clone) of the type
Default—Provides an implementation of default(), which returns a default
(usually empty) instance of the type

You can derive these traits yourself if you wish (such as in cases where you want to cus-
tomize their behavior), but so long as all elements within a struct implement each
trait, you can derive them automatically and save a lot of typing.

With these three traits derived for the preceding example, we can now do the

following:
Prints DebuggableStruct

let debuggable struct = DebuggableStruct::default() ; { string: ™, number: 0 }

println! ("{:?}", debuggable struct);

println! ("{:?}", debuggable struct.clone()); Also prints DebuggableStruct

{ string: "', number: 0 }
To define methods for a struct, you will implement them using the impl keyword:

impl DebuggableStruct {
fn increment number (&mut self) { <F41

self.number += 1; A function that takes a
}

mutable reference to self

}

This code takes a mutable reference of our struct and increments it by 1. Another way
to do this would be to consume the struct and return it from the function:

impl DebuggableStruct {

fn incremented number (mut self) -> Self QAAW A function that takes an owned

1f. b = 1; .
s€ pumber mutable instance of self

84

4.5.4

CHAPTER 4 Data structures

self

There’s a subtle difference between these two implementations, but they are function-
ally equivalent. There may be cases when you want to consume the input to a method
to swallow it, but in most cases, the first version (using smut self) is preferred.

Using enums

Enums can be thought of as a specialized type of struct that contains enumerated
mutually exclusive variants. An enum can be one of its variants at a given time. With a
struct, all elements of the struct are present. With an enum, only one of the variants is
present. An enum can contain any kind of type, not just integral types. The types may
be named or anonymous.

This is quite different from enums in languages like C, C++, Java, or G#. In those
languages, enums are effectively used as a way to define constant values. Rust’s enums
can emulate enums, as you might expect from other languages, but they are conceptu-
ally different. While C++ has enums, Rust’s enums are more similar to std::variant
than C++’s enum.

Consider the following enum:

[derive (Debug)]

enum JapaneseDogBreeds {
AkitaKen,
HokkaidoInu,
KaiKen,
KishuInu,
ShibalInu,
ShikokuKen,

For the preceding enum, JapaneseDogBreeds is the name of the enum type, and each of
the elements within the enum is a unitlike type. Since the types in the enum don’t
exist outside the enum, they are created within the enum. We can run the following

code now:

QJ This prints "Shibalnu".
println! ("{:?}", JapaneseDogBreeds::Shibalnu) ;
println! ("{:?}", JapaneseDogBreeds::Shibalnu as u32);

This prints "4", the 32-bit unsigned
integer representation of the enum value.

Casting the enum type to a u32 works because enum types are enumerated. Now, what
if we want to go from the number 4 to the enum value? For that, there is no automatic
conversion, but we can implement it ourselves using the From trait:

impl From<u32> for JapaneseDogBreeds {
fn from(other: u32) -> Self {

4.5 Rust types: Primitives, structs, enums, and aliases 85

match other {
other if JapaneseDogBreeds::AkitaKen as u32 == other => {
JapaneseDogBreeds: :AkitaKen

other if JapaneseDogBreeds::HokkaidoInu as u32 == other => ({
JapaneseDogBreeds: :HokkaidoInu

1

other if JapaneseDogBreeds::KaiKen as u32 == other => {
JapaneseDogBreeds: : KaiKen

1

other if JapaneseDogBreeds::Kishulnu as u32 == other => {
JapaneseDogBreeds: : KishuInu

1

other if JapaneseDogBreeds::ShibalInu as u32 == other => {
JapaneseDogBreeds: : ShibaInu

1

other if JapaneseDogBreeds::ShikokuKen as u32 == other => ({
JapaneseDogBreeds: : ShikokuKen

1

_ => panic! ("Unknown breed!"),

In the preceding code, we must cast the enum type to a u32 to perform the compari-
son, and then we return the enum type if there’s a match. In the case where no value
matches, we call panic! (), which causes the program to crash. The preceding syntax
uses the match guard feature, which lets us match using an if statement.

It’s possible to specify the enumeration variant types in an enum as well. This can
be used to achieve behavior similar to C enums:

enum Numbers {

One = 1,
Two = 2,
Three = 3,
} This prints "one=1". Note that
without the as cast, this does
fn main() not compile because One
println! ("one={}", Numbers::One as u32); doesn’t implement std::fmt.

}

Enums may contain tuples, structs, and anonymous (i.e., unnamed) types as variants:

A named type
enum EnumTypes ({ An unnamed String type
NamedType,
String, A named String type, specified
NamedString (String) as a tuple with one item
StructLike { name: Strlng ,
TupleLike (String, 132) A struct-like type, with a
} single element called name

A tuple-like type with two elements

86

4.5.5

CHAPTER 4 Data structures

To clarify, an unnamed enum variant is a variant that’s specified as a type, rather than
with a name. A named enum variant is equivalent to creating a new type within the
enum, which also happens to correspond to an enumerated integer value. In other
words, if you want to emulate the behavior of enums from languages like C, C++, or
Java, you’ll be using named variants, which conveniently emulate the enumeration
behavior by casting the value to an integer type, even though enum variants are also
types (i.e., not just values).

As a general rule, it’s good practice to avoid mixing named and unnamed variants
within an enum, as it can be confusing.

Using aliases

Aliases are a special type in Rust that allows you to provide an alternative and equiva-
lent name for any other type. They are equivalent to C and C++’s typedef or the C++
using keyword. Defining an alias does not create a new type.

Aliases have two common uses:

= Providing aliased type definitions for public types, as a matter of ergonomics
and convenience for the user of a library

= Providing shorthand types that correspond to more complicated type
compositions

For example, I may want to create a type alias for a hash map I frequently use within
my crate:

pub (crate) type MyMap = std::collections::HashMap<String, MyStructs;

Now, rather than having to type the full std: :collections: :HashMap<String, MyStructs,
I can use MyMap instead.

For libraries, it’s common practice to export public type aliases with sensible
defaults for type construction when generics are used. It can be difficult at times to
determine which types are required for a given interface, and aliases provide one way
for library authors to signal that information.

In the dryoc crate, I provide a number of type aliases, for convenience. The API
makes heavy use of generics. One such example is shown in the following listing.

Listing 4.14 Snippet for kdf.rs, from http://mng.bz/yZAp

/// Stack-allocated key type alias for key derivation with [KdAf~].
pub type Key = StackByteArray<CRYPTO KDF KEYBYTES>;

/// Stack-allocated context type alias for key derivation with ["Kdf™].
pub type Context = StackByteArray<CRYPTO KDF CONTEXTBYTES>;

In the preceding code, the Key and Context type aliases are provided within this mod-
ule, so the user of this library does not need to worry about implementation details.

http://mng.bz/yZAp

4.6

4.6 Error handling with Result 87

Error handling with Result

Rust provides a few features to make error handling easier. These features are based
on an enum called Result, defined in the following listing.

Listing 4.15 Snippet of std: :result: :Result, from http://mng.bz/M97Q

pub enum Result<T, E> {
Ok (T),
Err (E),

}

A Result represents an operation that can either succeed (returning a result) or fail
(returning an error). You will quickly become accustomed to seeing Result as the
return type for many functions in Rust.

You will likely want to create your own error type in your crate. That type could be
either an enum containing all the different kinds of errors you expect or simply a
struct with something actionable, such as an error message. I, being a simple person,
prefer to just provide a helpful message and move on with my life. Here’s a very sim-
ple error struct:

[derive (Debug)]
struct Error {

message: String,
1

Within your crate, you’ll need to decide what type of errors you want your functions to
return. My suggestion is to have your crate return its own error type. This is conve-
nient for anyone else using your crate because it will be clear to them where the error
originates from.

To make this pattern work, you’ll need to implement the From trait to convert your
error type into the target error type returned from the function where the ? operator
is used in cases where the types differ. Doing this is relatively easy because the compiler
will tell you when it’s necessary.

Now, within your crate, suppose you have a function that reads the contents of a
file, like this:

fn read file(name: &str) -> Result<String, Errors> {
use std::fs::File;
use std::io::prelude::*;

Using the ? operator here
let mut file = File::open (name)?; for implicit error handling
let mut contents = String::new();
file.read to string(&mut contents)?; .

- = gl) Using the ?
Ok (contents)
operator here too

}

In the preceding code, we have a function that opens a file, name; reads the contents
into a string; and returns the contents as a result. We use the ? operator twice, which

http://mng.bz/M97Q

88

4.7

CHAPTER 4 Data structures

works by returning the result of the function upon success or returning the error
inlnlediauﬂy.]30th File::open and read to string() use the std::io::Error type, so
we’ve provided the following From implementation, which permits this conversion
automatically:

impl From<std::io::Error> for Error
fn from(other: std::io::Error) -> Self {
Self {
message: other.to string(),
}

Converting types with From/Into

Rust provides two very useful traits as part of its core library: the From and Into traits. If
you browse the Rust standard library, you may notice that From and Into are imple-
mented for a great number of different types because of the usefulness of these traits.
You will frequently encounter these traits when working with Rust.

These traits provide a standard way to convert between types. They are occasionally
used by the compiler to automatically convert types on your behalf.

As a general rule, you only need to implement the From trait and almost never Into.
The Into trait is the reciprocal of From and will be derived automatically by the com-
piler. There is one exception to this rule: versions of Rust prior to 1.41 had slightly
stricter rules, which didn’t allow implementing From when the conversion destination
was an external type.

From is preferred because it doesn’t require specifying the destination type, result-
ing in slightly simpler syntax. The signature for the From trait (from the standard
library) is as follows:

pub trait From<T>: Sized
/// Performs the conversion.
fn from(: T) -> Self;

Let’s create a very simple String wrapper and implement this trait for our type:

struct StringWrapper (String) ;

impl From<&strs> for StringWrapper {
fn from(other: &str) -> Self

Self (other.into()) .
} Returns a copy of the string,
wrapped in a new StringWapper

}

fn main() {
println! ("{}", StringWrapper::from("Hello, world!").0);
1

4.7 Converting types with From/Into 89

In the preceding code, we’re allowing conversion from a &str, a borrowed string, into
a string. To convert the other string into our string, we just call into (), which comes
from the Into trait implemented for string. In this example, we use both From and Into.

In practice, you will find yourself needing to convert between types for a variety of
reasons. One such case is for handling errors when using rResult. If you call a function
that returns a result and use the ? operator within that function, you’ll need to pro-
vide a From implementation if the error type returned by the inner function differs
from the error type used by the Result.

Consider the following code:

use std::{fs::File, io::Read};
struct Error (String) ;

fn read file(name: &str) -> Result<String, Errors> {
let mut £ = File::open(name)?;
let mut output = String::new() ;

f.read to_string(&mut output)?;

Ok (output)

The preceding code attempts to read a file into a string and returns the result. We have
a custom error type, which just contains a string. The code, as is, does not compile:

error [E0277]: ~?° couldn't convert the error to “Error~
--> src/main.rs:6:33
|
5 | fn read file(name: &str) -> Result<String, Error>
[e expected “Error’
because of this
6 | let mut £ = File::open (name)?;
| * the trait “From<std::io::Error>" is
not implemented for “Error”
\
= note: the question mark operation (~?7) implicitly performs a conversion
on the error value using the “From™ trait
= note: required by “from™

error [E0277]: ~?° couldn't convert the error to “Error~
--> src/main.rs:9:34
5 | fn read file(name: &str) -> Result<String, Error> (
e e expected “Error>
because of this

9 | f.read to_string(&mut output)?;
| * the trait “From<std::io::Error>" is
not implemented for “Error”

90

4.7.1

4.7.2

4.8

CHAPTER 4 Data structures

= note: the question mark operation (°?7) implicitly performs a conversion
on the error value using the “From~ trait
= note: required by “from™

To make it compile, we need to implement the From trait for Error such that the com-
piler knows how to convert std: :io: :Error into our own custom error. The implemen-
tation looks like this:

impl From<std::io::Error> for Error {
fn from(other: std::io::Error) -> Self (
Self (other.to_string())

}

Now, if we compile and run the code, it works as expected.

TryFrom and Tryinto

In addition to the From and Into traits, there are TryFrom and TryInto. These traits are
nearly identical, except they are for cases in which the type conversion may fail. The
conversion methods in these traits return Result, whereas with From and Into, there is
no way to return an error aside from panicking, which causes the entire program to
crash.

Best practices for type conversion using From and Into

We can summarize the best practices for type conversion with the From and Into traits
as follows:

Implement the From trait for types that require conversion to and from other
types.

Avoid writing custom conversion routines, and, instead, rely on the well-known
traits where possible.

Handling FFI compatibility with Rust’s types

You may, occasionally, need to call functions from non-Rust libraries (or vice versa),
and in many cases, that requires modeling C structs in Rust. To do this, you must use
Rust’s foreign function interface features (FFI). Rust’s structs are not compatible with
C structs. To make them compatible, you should do the following:

Structs should be declared with the #[repr(C)] attribute, which tells the com-
piler to pack the struct in a C-compatible representation.

You should use C types from the libc crate, which provides mappings between
Rust and C types. Rust types are not C types, and you can’t always assume they’ll
be compatible, even when you think they’re equivalent.

To make this whole process much easier, the Rust team provides a tool called rust-
bindgen. With rust-bindgen, you can generate bindings to C libraries automatically from

4.8 Handling FFI compatibility with Rust’s types 91

C headers. Most of the time, you should use rust-bindgen to generate bindings, and you
can follow the instructions at http://mng.bz/amgj to do so.

In some cases, I have found I need to call C functions for test purposes or some
other reason, and dealing with rust-bindgen is not worth the trouble for simple cases.
In those cases, the process for mapping C structs to Rust is as follows:

Copy the C struct definition.
Convert the C types to Rust types.

Implement function interfaces.

Following up on the zlib example from chapter 2, let’s quickly implement zlib’s file
struct, which looks like this in C:

struct gzFile s {
unsigned have;
unsigned char *next;
z_offé64_t pos;

}i

The corresponding Rust struct, after conversion, would look like this:

c . R
zéiiii (G)z]E‘ileState { Instructs rustc to align the memory in this struct
) as a C compiler would, for compatibility with C
have: c_uint,

next: *mut c_uchar, AC . lib
pos: i64, struct representing a zli

} file state, as defined in zlib.h

Putting it all together, you can call C functions from zlib with the struct that zlib
expects:

type GzFile = *mut GzFileState;
Instructs rustc that these functions

#[link (name = "z")] belong to the external z library
extern "C" { External
fn gzopen (path: *const c_char, mode: *const c_char) -> GzFile; zlib
fn gzread(file: GzFile, buf: *mut c_uchar, len: c_uint) -> c_int; | functions
fn gzclose(file: GzFile) -> c_int; asdefined
fn gzeof (file: GzFile) -> c_int; in zlib.h
}
fn read gz file(name: &str) -> String {
let mut buffer = [0u8; 0x1000]; Converts a Rust UTF-8 string into an ASCII
let mut contents = String::new(); C string, raising an error if there’s a failure
unsafe {
let ¢ _name = CString::new(name) .expect ("CString failed");
let ¢ _mode = CString::new("r") .expect ("CString failed");
let file = gzopen(c_name.as_ptr(), c_mode.as_ptr());
if file.is null() {
panic! (

"Couldn't read file: {}",
std::io::Error::last_os_error()

http://mng.bz/amgj

92

CHAPTER 4 Data structures

)
1

while gzeof (file) == 0 {

let bytes read = gzread(
file,
buffer.as mut ptr(),
(buffer.len() - 1) as c_uint,

)

let s = std::str::from utf8(&buffer[.. (bytes read as usize)])
.unwrap () ;

contents.push str(s);

}

gzclose (file) ;

}

contents

The read gz_file() will open a gzipped file, read its contents, and return them as a
string.

Summary

str is Rust’s stack-allocated UTF-8 string type. A String is a heap-allocated
UTF-8 string, based on vec.

A &str is a string slice, which can be borrowed from both a string and &'static
str.

vec is a heap-allocated, resizable sequence of values, allocated in a contiguous
region of memory. In most cases, you should use a vec when modeling a
sequence of values.

HashMap is Rust’s standard hash map container type, which is suitable for most
uses requiring constant-time lookups from a key.

Rust also has vecbeque, LinkedList, BTreeMap, HashSet, BTreeSet, and BinaryHeap
within its collections library.

Structs are composable containers and Rust’s primary building block. They are
used to store state and implement methods that operate on that state.

Enums are a special variant type in Rust, and they can emulate the behavior of
enum from languages like C, C++, C#, and Java.

Implementations of many standard traits can be derived using the #[derive]
attribute. If needed, you can manually implement these traits, but most of the
time, the automatically derived implementations are sufficient.

Working with memory

This chapter covers

Learning about heap- and stack-based memory
management details in Rust

Understanding Rust’s ownership semantics
Using reference-counted pointers
Effectively utilizing smart pointers

Implementing custom allocators for specific
use cases

In chapter 4, we discussed Rust’s data structures, but to complete our understand-
ing, we also need to discuss memory management and how it works with Rust’s data
structures. The core data structures provide nice abstractions for managing memory
allocation and deallocation, but some applications may require more advanced fea-
tures that require custom allocators, reference counting, smart pointers, or system-
level features that are outside the scope of the Rust language.

It’s possible to effectively use Rust without having a deep understanding of
memory management, but there are many cases in which it’s quite beneficial to
know what’s going on under the hood, so to speak. In this chapter, we’ll get into
the details of Rust’s memory management.

93

94

5.1

CHAPTER 5 Working with memory

Memory management: Heap and stack

Rust has very powerful and fine-grained memory management semantics. You may
find when you’re new to Rust that it seems somewhat opaque at first. For example,
when you use a string or a vector, you likely aren’t thinking too much about how the
memory is allocated. In some ways, this is similar to scripting languages, such as
Python or Ruby, where memory management is largely abstracted away and rarely
something you need to think about.

Under the hood, Rust’s memory management is not too different from languages
like C or C++. In Rust, however, the language tries to keep memory management out
of your way until you need to worry about memory management. And when you do,
the language provides the tools you’ll need to dial the complexity up or down,
depending on what you’re trying to accomplish. Let’s quickly review the differences
between the heap and the stack (figure 5.1).

Program memory
Stack ‘ ‘ Heap
func 1 obj 1
func 2 A
obj 2
func 3
obj 3
func 4 .
obj 4
func 5 obj 5
func N...
| | | Figure 5.1 Example layout
of stack and heap

The heap is a section of memory for dynamic allocation. This is typically a location in
memory reserved for resizable data structures or anything where the size is only
known at run time. That is not to say you cannot store static data in the heap; however,
for static data, it’s usually better to use the stack (the compiler will typically place static
data into the program’s static memory segment as an optimization, so it’s not actually
pushed onto the stack). The heap is typically managed by the underlying OS or core
language libraries; however, programmers may—if they choose—implement their
own heap. For systems that are memory constrained, such as embedded systems, it’s
common to write code without a heap.

5.1 Memory management: Heap and stack 95

The heap is usually managed by an allocator, and in most cases, the operating sys-
tem, language runtime, or C library provides an allocator (e.g., malloc()). Data in the
heap can be thought of as allocated randomly throughout the heap and can grow and
shrink throughout the life of the process.

In Rust, allocating on the heap is accomplished by using any heap-allocated data
structure, such as Vec or Box (Box is discussed in greater detail later in this chapter), as
shown in the following listing.

Listing 5.1 Code showing heap-allocated values

let heap integer = Box::new(1l); As noted in chapter 4, String is
let heap integer vec = vec![0; 100]; based on Vec, which makes this

let heap string = String::from("heap string"); a heap-allocated string.

The stack is a thread-local memory space bound to the scope of a function. The stack
is allocated using last in, first out (LIFO) order. When a function is entered, the mem-
ory is allocated and pushed onto the stack. When a function is exited, the memory is
released and popped off the stack. For stack-allocated data, the size needs to be
known at compile time. Allocating memory on the stack is normally much quicker
than using the heap. There is one stack per thread of execution on operating systems
that support it.

The stack is managed by the program itself based on the code generated by the
compiler. When a function is entered, a new frame is pushed onto the stack
(appended to the end of the stack) and the frame is popped off the stack when leav-
ing the function. As a programmer, you don’t have to worry about managing the
stack—it’s handled for you. The stack has some nice properties in that it’s fast, and the
function call stack can be used as a data structure by making recursive calls, as shown
in the following listing; there’s no need to worry about memory management.

Listing 5.2 Code showing stack-allocated values

let stack_integer = 69420;
let stack_allocated string = "stack string";

Many languages obfuscate or abstract away the concepts of stack and heap, so you
don’t have to worry about them. In C and C++, you typically allocate memory on the
heap using malloc() or the new keyword and simply declare a variable within a func-
tion to allocate it on the stack. Java also features the new keyword for allocating mem-
ory on the heap; however, in Java, memory is garbage collected, and you don’t need to
manage cleanup of the heap.

In Rust, the stack is managed by the compiler and platform implementation
details. Allocating data on the heap, on the other hand, can be customized to suit
your needs (we’ll discuss custom allocators later in this chapter), which is similar to
what you might find in C or C++.

96

5.2

CHAPTER 5 Working with memory

The only types that can be allocated on the stack are primitive types, compound
types (e.g., tuples and structs), str, and the container types themselves (but not neces-
sarily their contents).

Understanding ownership: Copies, borrowing,
references, and moves

Rust introduces a new programming concept called ownership, which is part of what
makes it different from other languages. Ownership in Rust is where its safety guaran-
tees come from—it’s how the compiler knows when memory is in scope, being shared,
has gone outof' scope, oris being misused. The compiler’s borrow checker is responsible
for enforcing a small set of ownership rules. Every value has an owner; there can only
be one owner at a time; and when the owner goes out of scope, the value is dropped.

If you're already comfortable with Rust’s ownership, this section will serve as a
review for you, or you can skip it if you wish. On the other hand, if you’re still trying to
get a handle on ownership in Rust, this section should help clarify those concepts in
familiar terms.

Rust’s ownership semantics are similar in some ways to C, C++, and Java, except that
Rust has no concept of copy constructors (which create a copy of an object upon assign-
ment), and you rarely interact with raw pointers in Rust. When you assign the value of
one variable to another (i.e., let a = b;), it’s called a move, which is a transfer of own-
ership (and a value can only have one owner). A move doesn’t create a copy unless
you’'re assigning a base type (i.e., assigning an integer to another value creates a copy).

Rather than using pointers, in Rust, we often pass data around using references. In
Rust, a reference is created by borrowing. Data can be passed into functions by value
(which is a move) or reference. While Rust does have C-like pointers, they aren’t some-
thing you’ll see very often in Rust, except, perhaps, when interacting with C code.

Borrowed data (i.e., a reference) can either be immutable or mutable. By default,
when you borrow data, you do so immutably (i.e., you can’t modify the data pointed to
by the reference). If you borrow with the mut keyword, you can obtain a mutable refer-
ence, which allows you to modify data. You can borrow data immutably simultaneously
(i.e., have multiple references to the same data), but you cannot borrow data mutably
more than once at a time.

Borrowing is typically done using the & operator (or smut, to borrow mutably);
however, you’ll sometimes see as_ref() or as mut() methods being used instead,
which are from the Asref and AsMut traits, respectively. as_ref () and as_mut () are often
used by container types to provide access to internal data, rather than obtaining a ref-
erence to the container itself (and we’ll explore this in more detail later in this chap-
ter). To clarify these concepts, consider the following code listing.

Listing 5.3 Code listing to demonstrate ownership

fn main() { Here, we create a mutable Vec
let mut top grossing films = and populate it with some values.

5.3 Deep copying 97

vec! ["Avatar", "Avengers: Endgame", "Titanic"l; | This borrows a mutable
let top_grossing films_mutable reference = reference to the preceding Vec.

&mut top grossing films;

top grossing films_mutable reference We can use this mutable reference to modify the
.push ("Star Wars: The Force Awakens"); | datathat was borrowed in the previous line.
Hg@,we let top grossing films reference = &top grossing films;
print the println! (Now, we’ll take an immutable
contents "Printed using immutable reference: {:#?}", reference of the same data, and by
of the Vec. top_grossing films_reference doing so, the previous mutable

assignment
is a move,
which
transfers
ownership
of the Vec.

5.3

)i reference becomes invalid.

let top grossing films moved = top grossing films;

println! ("Printed after moving: {:#?}", top grossing films moved) ;
Here, we print the contents of the Vec after moving it.

// println! ("Print using original value: {:#?}", top grossing films);

// println! (

// "Print using mutable reference: {:#?}", The original variable is

// top_grossing films mutable reference no longer valid, as it has

/]) . . . been moved, so this code
} This code also won’t compile because this reference was won’t compile.

invalidated when we created the immutable reference.
Running the code in the preceding listing produces the following output:

Printed using immutable reference: [
"Avatar",
"Avengers: Endgame",
"Titanic",
"Star Wars: The Force Awakens",
]
Printed after moving: [
"Avatar",
"Avengers: Endgame",
"Titanic",
"Star Wars: The Force Awakens",

Deep copying

You may have encountered the concept of deep copying from other languages, such as
Python or Ruby. The need for deep copying arises when the language or data struc-
tures implement optimizations to prevent copying data, typically through the use of
pointers, references, and copy-on-write semantics.

Copies of data structures can either be shallow (copying a pointer or creating a ref-
erence) or deep (copying or cloning all the values within a structure, recursively). Some
languages perform shallow copies by default when you make an assignment (a = b) or
call a function. Thus, if you come from languages like Python, Ruby, or JavaScript, you
may have needed to occasionally perform an explicit deep copy. Rust doesn’t assume
anything about your intentions; thus, you always need to explicitly instruct the compiler
what to do. In other words, the concept of shallow copies does not exist in Rust, but
rather, we have borrowing and references.

98

CHAPTER 5 Working with memory

Languages that use implicit data references can create undesired side effects, and
this may occasionally catch people off guard or create hard-to-find bugs. The problem
occurs, generally speaking, when you intend to make a copy, but the language,
instead, provides a reference. Lucky for you, Rust doesn’t do any type of implicit data
referencing magic but only so long as you stick to core data structures.

In Rust, the term cloning (rather than copying) is used to describe the process of
creating a new data structure and copying (or, more correctly, cloning) all the data
from the old structure into the new one. The operation is typically handled through
the clone() method, which comes from the Clone trait and can be automatically
derived using the # [derive (Clone)] attribute (traits and deriving traits are discussed in
greater detail in chapters 8 and 9). Many data structures in Rust come with the Clone
trait implemented for you, so you can usually count on clone () being available.

Consider the following code listing.

Listing 5.4 Code to demonstrate clone ()

fn main() { o Here, we clone the original Vec.
let mut most_populous_us_cities =
vec! ["New York City", "Los Angeles", "Chicago", "Houston"];

let most populous_us_cities cloned = most populous us cities.clone() ;
most_populous_us_cities.push ("Phoenix") ;

println! ("most populous_us cities = {:#?}", most populous us cities);
println! (
"most populous us cities cloned = {:#?}", We’ll add a new city

most_populous us_cities cloned tothe]@tinthe
) ; original Vec.

} When the cloned Vec is printed, it won’t output
"Phoenix" because it’s an entirely distinct structure.

Running the code in the previous listing prints the following:

most_populous_us_cities = [
"New York City",
"Los Angeles",
"Chicago",
"Houston",
"Phoenix",

1

most_populous us_cities cloned = [
"New York City",
"Los Angeles",
"Chicago",
"Houston",

The Clone trait, when derived, operates recursively. Thus, calling clone() on any top-
level data structure, such as a vec, is sufficient to create a deep copy of the contents of
the vec, provided they all implement clone. Deeply nested structures can be easily
cloned withoutneeding to do anything beyond ensuring theyimplement the Clone trait.

5.4

5.4 Avoiding copies 99

Avoiding copies

There are certain cases where, perhaps unintentionally, data structures can end up
being cloned or copied more often than needed. This can happen in string process-
ing, for example, when many copies of a string are made repeatedly within algorithms
that scan, mutate, or otherwise handle some arbitrary set of data.

One downside to Clone is that it can be too easy to copy data structures, and you
may end up with many copies of the same data if applied too liberally. For most intents
and purposes this isn’t a problem, and you’re unlikely to have problems until you start
operating on very large sets of data.

Many core library functions in Rust return copies of objects, as opposed to modify-
ing them in place. This is, in most cases, the preferred behavior; it helps maintain
immutability of data, which makes it easier to reason about how algorithms behave, at
the cost of duplicating memory—perhaps only temporarily. To illustrate, let’s examine

a few string operations from Rust’s core library in table 5.1.

Table 5.1 Examining Rust core string functions for copies

Function

Description

Copies?

Algorithm

Identified by?

pub fn replace<'a, P>(&'a Replaces all Yes Creates a new string, self parameter
self, from: P, to: &str) -> matches of a pushes updated con- is an immutable
String where P: Pattern<'as, pattern with tents into new string, reference; func-
another string returning the new string | tion returns owned
and leaving the original | String
string untouched
pubfnto lowercase (&self) -> | Returns the low- | Yes Creates a new string, self parameter
String ercase equiva- copies each character is an immutable
lent of this string to the new string, con- reference; func-
slice, as a new verting uppercase char- | tionreturns owned
String acters to lowercase String
characters
pub fn make ascii_lowercase | Converts this No Iterates over each Function takes a
(&mut self) string to its ASCII character, applying a mutable self ref-
lowercase equiv- lowercase conversion erence, modifying
alent in place on uppercase ASCII the memory in
characters place
pub fn trim(&self) -> &str Returns a string | No Uses a double-ended Function returns
slice with lead- searcher to find the reference, not an
ing and trailing start and end of a sub- | owned string
whitespace string without
removed whitespace, returning a
slice representing the
trimmed result

You’ll notice a pattern in table 5.1, which is that you can often identify whether an
algorithm creates a copy based on whether the function modifies the source data in

100

5.5

CHAPTER 5 Working with memory

place or returns a new copy. There’s one more case to illustrate, which is what I call
the pass through. Consider the following:

A copy is created here, inside to_lowercase(),
fn lowercased(s: String) -> String { and the new string is returned.

s.to_lowercase ()

} The string is passed through directly,
with the memory modified in place.
fn lowercased ascii(mut s: String) -> String { The ownership is passed back to the
s.make ascii lowercase () ; caller by returning the same owned
s B B object, as the make_ascii_lowercase()
} function operates in place.

In the preceding code, the first function, lowercased(), takes an owned string but
returns a new copy of that string by calling to_lowercase (). The second function takes
a mutable owned string and returns a lowercased version using the in-place version
(which only works on ASCII strings).

The following is a summary of what we’ve learned about functions:

Functions that take immutable references and return a reference or slice are
unlikely to make copies (e.g., fn func(&self) -> &str).

Functions that take a reference (i.e., &) and return an owned object may be cre-
ating a copy (e.g., fn func(&self) -> String).

Functions that take a mutable reference (i.e., &mut) may be modifying data in
place (e.g., fn func (&mut self)).

Functions that take an owned object and return an owned object of the same
type are likely making a copy (e.g., fn func(String) -> String).

Functions that take a mutable owned object and return an owned object of the
same type may not be making a copy (e.g., fn func(mut String) -> String).

As a general rule, you should examine documentation and source code when you’re
unsure as to whether functions make copies, operate in place, or merely pass owner-
ship. Rust’s memory semantics do make it relatively easy to reason about how algo-
rithms operate on data merely by examining the inputs and outputs, but this only works
provided the functions being called follow these patterns. In cases when you have seri-
ous performance concerns, you should closely examine the underlying algorithms.

To box or not to box: Smart pointers

Rust’s Box is a type of smart pointer, which we briefly discussed in chapter 4. Box is a bit
different from smart pointers in languages like C++, as its main purpose is providing a
way to allocate data on the heap. In Rust, the two main ways to allocate data on the
heap are by using vec or Box. Box is quite limited in terms of its capabilities; it only han-
dles allocation and deallocation of memory for the object it holds, without providing
much else in terms of features, but that’s by design. Box is still very useful, and it
should be the first thing you reach for in cases when you need to store data on the
heap (aside from using a vec).

5.5 To box or not to box: Smart pointers 101

TIP Since a Box cannot be empty (except in certain situations best left unex-
plored), we often hold a Box within an oOption in any case when boxed data
might not be present.

If the data or object is optional, you should put your Box in an Option. Optional types
(or maybe types) aren’t unique to Rust; you may have encountered them from Ada,
Haskell, Scala, or Swift, to name a few languages. Optionals are a kind of monad—a
functional design pattern whereby you wrap values that shouldn’t have unrestricted
access in a function. Rust provides some syntax sugar to make working with optionals
more pleasant.

You will see option used frequently in Rust; if you haven’t encountered optionals
before, you can think of them as a way to safely handle null values (e.g., pointers).
Rust doesn’t have null pointers (excluding unsafe code), but it does have None, which
is functionally equivalent to a null pointer, without the safety problems.

The cool thing about Box and option is that when both are used together, it’s nearly
impossible to have run-time errors (e.g., null pointer exceptions) due to invalid,
uninitialized, or doubly freed memory. However, there is one caveat: heap allocations
may fail. Handling this situation is tricky, outside the scope of this book, and some-
what dependent on the operating system and its settings.

One common cause of allocation failures is the system running out of free mem-
ory, and handling this (if you choose to handle it at all) is largely dependent on the
application. Most of the time, the expected result for failed memory allocations is for
the program to “fail fast” and exit with an out of memory error (OOM), which is
almost always the default behavior (i.e., what will happen if you as a developer don’t
handle OOM errors). You have likely encountered such situations yourself. Some
notable applications that provide their own memory management features are web
browsers, which often have their own builtin task managers and memory manage-
ment, much like the OS itself. If you’re writing mission-critical software, such as a data-
base or online transaction-processing system, you may want to handle memory
allocation failures gracefully.

In situations when you suspect allocation might fail, Box provides the try new()
method, which returns a Result. This—Ilike an option—may be in either a success or
failure state. The default new() method of Box will create a panic in case allocation
fails, which will cause your program to crash. In most cases, crashing is the best way to
handle failed allocations. Alternatively, you can catch allocation failures within a cus-
tom allocator (which is discussed later in this chapter).

TIP To better understand Option and Result, try implementing them yourself
using an enum. In Rust, creating and using your own optionals is trivial with
enums and pattern matching.

To illustrate the use of Box, consider a basic singly linked list in Rust.

102 CHAPTER 5 Working with memory

Listing 5.5 Code for a basic, singly linked list in Rust

Data is boxed within each list item.
The data field can’t be empty or null.

struct ListItem<T> { next is optional; a None value
data: Box<T>, denotes the end of the list.
next: Option<Box<ListItem<T>>>,

The struct for the list itself only contains the head; we don’t

struct SinglyLinkedList<Ts | bother boxing the head because it must always be present.

} head: ListItem<Ts, New data is moved into the list within a

Box, allocating memory on the heap.

impl<T> ListItem<T> { The next pointer is initialized as None because new

fn new(data: T) -> Self { elements don’t know where they are in the list yet.
ListItem { Additionally, this implementation doesn’t have an
data: Box::new(data), insert operation, only append.
next: None,
} The next() method on each item returns an
} optional reference to the next item, if it exists.

This function exists to help unwrap the nested

£ t (&self) -> Opti &Self . g s
n next (&self) -> Option<aSelfs { references for the sake of simplifying the code.

We'reusinga [if let Some (next) = &self.next
code construct some (next .as_ref ()) We return the inner reference to the
H else . .
to check '.f the) { next item, equivalent to Some(&*next).
next pointer None
hi po:\tfs to } } Using if let ... won’t work here, because we
anything before , can’t borrow self.next and return a mutable
trying to | fn mut_tail (smut self) -> smut Self { reference to the inner pointer simultaneously.
dereference it. if self.next.is_some() {
self.next.as_mut () .unwrap () .mut_tail()
else e have Box within Option, so we
} else { We have Box within Opti
self If there’s no next element, this need ::I) un\;vrap the Odptlon froma
} item is the tail; just return self. mutable reference and return a
mutable reference from within.
} table ref fi th
fn data(&self) -> &T {
self.data.as_ref ()
1 This method provides a convenient reference to T.
}
impl<T> SinglyLinkedList<T> { We require a first element for a new
fn new(data: T) -> Self { list; to permit an empty list, the head
SinglyLinkedList { element would need to be optional.
head: ListItem::new(data),
1 We can assume the
} tail’s next is None when
fn append(&mut self, data: T) { appending a new item.

let mut tail = self.head.mut_tail();

tail.next = Some (Box::new(ListItem: :new(data))) ; We add our new
1

element to the tail
item’s next pointer,
and the new element
1 becomes the new tail.

fn head(&self) -> &ListItem<T>
&self .head

For convenience, we provide direct access
to the head element via a method.

5.6 Reference counting 103

There’s a lot to unpack in the linked list example. For someone new to Rust, imple-
menting a linked list is one of the best ways to learn about Rust’s unique features. The
preceding example provides some nice features, and it’s safe. The list will never be
empty or invalid or contain null pointers. This is a really powerful feature of Rust, and
it’s only possible thanks to Rust’s rules about object ownership.

We can test the linked list we just created using the following code:

fn main() { Creates a new linked list of strings,
with a head element, and then we

let mut list = SinglyLinkedList::new("head"); N "
add a middle and tail element.

list.append ("middle") ;
list.append("tail") ;

let mut item = list.head(); <—— Gets a reference to the head of the list
loop { “ o I .
Prints the println! ("item: {}", item.data()); Loops until we’ve visited every item in the list
value of if let Some(next item) = item.next() {
each item item = next_item; Fetches the next item in the list
} else { using an if let statement, which
break; We terminate the loop with a unwraps the Option
} break when we’ve reached the
} end of the list, which we know
} when the next item is None.

Running the preceding code produces the following output:

item: head
item: middle
item: tail

Before moving on to the next sections, I suggest you take some time to understand the
singly linked list in Rust. Try implementing it yourself from scratch, and refer to the
example provided as needed. In the next section, we’ll do a more advanced version of
the linked list. If you care to read on anyway, it may be worth revisiting this exercise if
you want to get a better handle on Rust’s memory management once you have a good
understanding of the overall language.

Finally, in practice, you’ll likely never need to implement your own linked list in
Rust. Rust’s core library provides std: :collections: :LinkedList in case you really want
a linked list. For most cases, however, just use a vec. Additionally, the example pro-
vided here is not optimized.

5.6 Reference counting

In the previous section, we talked about Box, which is a useful—but very limited—smart
pointer and something you’ll encounter often. Notably, a Box cannot be shared. Thatis
to say, you can’t have two separate boxes pointing to the same data in a Rust program;
Box owns its data and doesn’t allow more than one borrow at a time. This is, for
the most part, a feature (or antifeature) worth being excited about. However, there are
cases in which you do want to share data: perhaps, across threads of execution or by

104

CHAPTER 5 Working with memory

storing the same data in multiple structures to address it differently (such as a vec and
a HashMap).

In cases where Box doesn’t cut it, what you're probably looking for are reference-
counted smart pointers. Reference counting is a common technique in memory man-
agement to avoid keeping track of how many copies of a pointer exist, and when there
are no more copies, the memory is released. The implementation usually relies on
keeping a static counter of the number of copies of a given pointer and incrementing
the counter every time a new copy is made. When a copy is destroyed, the counter is
decremented. If the counter ever reaches zero, the memory can be released because
that means there are no more copies of the pointer, and thus, the memory is no lon-
ger in use or accessible.

TIP Implementing a reference-counted smart pointer is a fun exercise to do
on your own; however, it’s a bit tricky in Rust and requires the use of raw (i.e.,
unsafe) pointers. If you find the linked list exercise too easy, try making your
own reference-counted smart pointer.

Rust provides two different reference-counted pointers:

rc—A single-threaded, reference-counted smart pointer, which enables shared
ownership of an object

Arc—A multithreaded, reference-counted smart pointer, which enables shared
ownership of objects across threads

Single- vs. multithreaded objects in Rust

Many programming languages distinguish between functions or objects that can be
used across threads as thread safe versus unsafe. In Rust, this distinction doesn’t
quite map directly, as everything is safe by default. Instead, some objects can be
moved or synchronized across threads, and others can’t. This behavior comes from
whether an object implements the Send and Sync traits, which we discuss in greater
detail in chapter 6.

In the case of rRc and Arc, Rc doesn’t provide send or Sync (in fact, rc explicitly marks
these traits as not implemented), so rc can only be used in a single thread. aArc, on
the other hand, implements both send and sync; thus, it can be used in multithreaded
code.

Arc, in particular, uses atomic counters, which are platform dependent and usually
implemented at the operating system or CPU level. Atomic operations are more costly
than regular arithmetic, so only use arc when you need atomicity.

It’s important to note that so long as you aren’t using the unsafe keyword to bypass
language rules, Rust code is always safe. Getting it to compile, on the other hand, can
be quite a challenge when you don’t understand Rust’s unique patterns and jargon.

To use reference-counted pointers effectively, we also need to introduce another con-
cept in Rust called interior mutability. Interior mutability is something you may need

5.6 Reference counting 105

when Rust’s borrow checker doesn’t provide enough flexibility with mutable refer-
ences. If this sounds like an escape hatch, then pat yourself on the back for being an
astute reader because it is an escape hatch. But worry not, it doesn’t break Rust’s safety
contracts and still allows you to write safe code.

To enable interior mutability, we need to introduce two special types in Rust: cell
and Rrefcell. If you're new to Rust, you probably haven’t encountered these yet, and
it’s unlikely you would bump into them under normal circumstances. In most cases,
you’ll want to use RefCell rather than cell, as RefCell allows us to borrow references,
whereas cell moves values in and out of itself (which is probably not the behavior you
want most of the time).

Another way to think about Refcell and cell is that they allow you to provide the
Rust compiler with more information about how you want to borrow data. The com-
piler is quite good, but it’s limited in terms of flexibility, and there are some cases in
which perfectly safe code won’t compile because the compiler doesn’t understand
what you're trying to do (regardless of how correct it might be).

You shouldn’t need Refcell or Cell very often; if you find yourself trying to use
these to get around the borrow checker, you might need to rethink what you’re doing.
They are mainly needed for specific cases, such as containers and data structures that
hold data that needs to be accessed mutably.

One limitation of cell and Refcell is that they’re only for single-threaded applica-
tions. In the case where you require safety across threads of execution, you can use
Mutex or RwLock, which provide the same feature to enable interior mutability but can
be used across threads. These would typically be paired with Arc rather than rc (we’ll
explore concurrency in greater detail in chapter 10).

Let’s update the linked list example from the previous section to use Rc and RefCell
instead of Box, which gives us more flexibility. Notably, we can now make our singly
linked list a doubly linked list, as shown in the following listing. This isn’t possible using
Box because it doesn’t allow shared ownership.

Listing 5.6 Code of a doubly linked list using Rc, RefCell, and Box

use std::cell::RefCell;
use std::rc::Rc;

We’ve added a pointer to the

struct ListItem<T> { previous item in the list.

prev: Option<ItemRef<T>>,
data: Box<T>,) X 3
next: Option<ItemRef<Ts>, The data is still kept in a Box; we don’t need to use an
} Rc here because we’re not sharing ownership of the
data, only the pointers to nodes in the list.

This type alias helps

type ItemRef<T> = Rc<RefCell<ListItem<T>>>;
keep the code clean.

struct DoublyLinkedList<T> {
head: ItemRef<T>,

106

5.7

CHAPTER 5 Working with memory

impl<T> ListItem<T> {
fn new(data: T) -»> Self {
ListItem {
prev: None,
data: Box::new(data), <—— Datais moved into a Box here.
next: None,
1
1

fn data(&self) -> &T {
self.data.as_ref ()
}

}

impl<T> DoublyLinkedList<T> {
fn new(data: T) -> Self {
DoublyLinkedList {

head: Rc::new(RefCell::new(ListItem: :new(data))), Crguesa
) pointer for
} First, we need to find the pointer the new
il i i ist. item we’re
fn append (smut self, data: T) { to the tail item in the list tem e
let tail = Self::find tail(self.head.clone()); append.

let new _item = Rc::new(RefCell::new(ListItem: :new(data)));
new_item.borrow mut () .prev = Some (tail.clone()) ;
tail.borrow mut () .next = Some (new item) ; We’ll update the
prev pointer in the
new item to point

to the previous tail.

Update the next pointer of
the previous tail to point
to the new tail, which is
the newly inserted item.

fn head(&self) -> ItemRef<T> {
self.head.clone ()

fn tail (&self) -> ItemRef<T>

Self::find tail(self.head()) Checks if the next pointer
} is empty and continues
fn find_tail(item: ItemRef<T>) -> ItemRef<T> { searching recursively if not.
if let Some (next) = &item.borrow().next {
Self::find tail (next.clone())
} else { We clone the next pointer
item.clone () and return it, continuing
} . . the search.
} If the next pointer is empty, we’re at the
} end (or tail) of the list. It returns the

current item pointer after cloning it.

This version of the linked list looks quite different from the previous version. Intro-
ducing Re and Refcell adds some complexity but provides us with a lot more flexibil-
ity. We’ll revisit this example again later in the book as we explore more language
features. To summarize, Rc and Arc provide reference-counted pointers, but to access
inner data mutably, you’ll need to use an object such as RefCell or cell (and for multi-
threaded applications, Mutex or RwLock).

Clone on write

Earlier in this chapter, we discussed avoiding copies. However, there are cases in which
you prefer making copies of data, rather than ever mutating data in place. This pattern
has some very nice features, especially if you prefer functional programming patterns.

5.7 Clone on write 107

You may not have heard of clone on write before, but you're probably familiar with copy
on write.

Copy on write is a design pattern in which data is never mutated in place, but
rather, any time data needs to be changed, it’s copied to a new location and mutated,
and then a reference to the new copy of data is returned. Some programming lan-
guages enforce this pattern as a matter of principle, such as in Scala, where data struc-
tures are classified as either mutable or immutable, and all the immutable structures
implement copy on write. A very popular JavaScript library, Immutable js, is based
entirely on this pattern, with all data structure mutations resulting in a new copy of
the data. Building data structures based on this pattern makes it much easier to rea-
son about how data is handled within programs.

For example, with a copy-on-write list or array, the append operation would return
a new list with all the old elements, plus the new element appended, while leaving the
original list of items intact. The programmer assumes the compiler can handle opti-
mizations and cleanup of old data.

In Rust, this pattern is referred to as clone on write, as it depends on the Clone
trait. Clone has a cousin, the Copy trait, and they differ in that copy denotes a bitwise
copy (i.e., literally copying the bytes of an object to a new memory location), whereas
Clone is an explicit copy. In the case of Clone, we call the clone () method on an object
to clone it, but copy occurs implicitly via assignment (i.e., let x = y;). The Clone trait
is normally implemented automatically using # [derive (Clone)], but it can be imple-
mented manually for special cases.

Rust provides three smart pointers to help implement clone on write:

= Cow—An enum-based smart pointer that provides convenient semantics

= Rc and Arc—DBoth reference-counted smart pointers provide clone-on-write
semantics with the make_mut () method. rc is the single-threaded version, and Arc
is the multithreaded version.

Let’s look at the type signature for cow in the following listing.

Listing 5.7 Snippet of Cow definition from the Rust standard library

pub enum Cow<'a, B> where
B: 'a + ToOwned + ?Sized, {
Borrowed (&'a B),
Owned (<B as ToOwneds::0wned) ,

Cow is an enum that can contain either a borrowed variant or an owned variant. For the
owned variant, it behaves a lot like Box, except that with cow, the data is not necessarily
allocated on the heap. If you want heap-allocated data with cow, you’ll need to use a Box
within Cow, or use Rc or Arc instead. Rust’s clone-on-write feature is also not a language-
level feature—you need to explicitly use the Cow trait.

108

CHAPTER 5 Working with memory

To demonstrate the use of Cow, let’s update the singly linked list example so that the
data structure becomes immutable. First, let’s examine the following listing, which,
aside from adding # [derive (Clone)], isn’t too different from the previous version.

Listing 5.8 Code listing of ListItem for a singly linked list using Cow

#[derive (Clone)]
struct ListItem<T>
where

T: Clone,
{

We derive the Clone trait for
both structs. Cow depends on
the behavior of the Clone trait.

data: Box<T>,
next: Option<Box<ListItem<T>>>,

}

impl<T> ListItem<T>
where
T: Clone,
{
fn new(data: T) -> Self {
ListItem {
data: Box::new(data),
next: None,

}

fn next (&self) -> Option<&Selfs> {

if let Some (next) = &self.next
Some (&*next)

} else {
None

}

fn mut_tail (&mut self) -> &mut Self
if self.next.is_some() {
self.next.as mut () .unwrap () .mut_tail()
} else {
self
}

fn data(&self) -> &T {
self.data.as_ref ()

Next, let’s look at the following listing, which shows the usage of cow in our list.

Listing 5.9 Code listing of SinglyLinkedList for singly linked list using Cow

#[derive (Clone)]
struct SinglyLinkedList<'a, T>
where

T: Clone,

{
}

impl<T> ListItem<T>

5.7 Clone on write 109

head: Cow<'a, ListItem<T>>, . . s
ea ows @, histitemstz> The head pointer is stored within a Cow. We must

include a lifetime specifier for the struct, so the
compiler knows that the struct and the head
parameter have the same lifetime.

where

T: Clone,

fn new(data: T) -> Self {
ListItem {
data: Box::new(data),
next: None,

}
}
fn next (&self) -> Option<&Selfs> {
if let Some (next) = &self.next {
Some (&*next)
} else {
None
}

fn mut tail (&mut self) -> &mut Self
if self.next.is some() {
self.next.as mut () .unwrap () .mut_tail()
} else {
self
}

fn data(&self) -> &T {
self.data.as_ref ()

1
1
impl<'a, T> SinglyLinkedList<'a, T>
where
T: Clone,
{
fn new(data: T) -> self { Here, we initialize the list
SinglyLinkedList { QJ with the head pointer.
head: Cow::Owned (ListItem: :new(data)),
} J The append signature has changed such that it

no longer requires a mutable self, and instead,

£ d(&self, data: T) -> Self
n append (&se ata: T) -> Self { it returns an entirely new linked list.

let mut new_list = self.clone();
let mut tail = new_list.head.to mut().mut tail() ;

tail.next = Some (Box::new(ListItem: :new(data))) ;
new_list
} The call to to_mut() triggers the clone on
fn head(&self) -> &ListItem<T> { write, which happens recursively, by
&self .head obtaining a mutable reference to the head.

}

110

5.8

581

CHAPTER 5 Working with memory

Custom allocators

In some cases, you may find yourself needing to customize memory allocation behav-
ior. The following are some example cases:

= Embedded systems, which are highly memory constrained or lack an operating
system.

= Performance-critical applications that required optimized memory allocation,
including custom heap managers, such as jemalloc (http://jemalloc.net/) or
TCMalloc (https://github.com/google/tcmalloc).

= Applications with strict security or safety requirements, where you may want to
protect memory pages using the mprotect () and mlock () system calls, for example

= Some library or plugin interfaces may require special allocators when handing off
data to avoid memory leaks; this is quite common when working across language
boundaries (i.e., integrating between Rust and a garbage collected language).

= Implementing custom heap management, such as memory usage tracking from
within your application.

By default, Rust will use the standard system implementation for memory allocation,
which on most systems is the malloc() and free () functions provided by the system’s C
library. This behavior is implemented by Rust’s global allocator. The global allocator can
be overridden for an entire Rust program using the Globalalloc API, and individual
data structures can be overridden using custom allocators with the Allocator APIL

NOTE The Allocator API in Rust is a nightly-only feature, as of the time of
writing. For more details on the status of this feature, refer to https://
github.com/rust-lang/rust/issues/32838. You can still use the Globalalloc
API in stable Rust.

Even if you never need to write your own allocator (most people are unlikely to need
a custom allocator), it’s worth getting a feel for the allocator interface to have a
better understanding of Rust’s memory management. In practice, you're unlikely to
ever need to worry about allocators except in special circumstances such as those
mentioned.

Writing a custom allocator

Let’s explore writing a custom Allocator, which we’ll use with a vec. Our allocator will
simply call the malloc() and free() functions. To start, let’s examine the Allocator
trait as defined in the Rust standard library at http://mng.bz/g7ze. The trait is shown
in the following listing.

Listing 5.10 Code listing for Allocator trait, from the Rust standard library

pub unsafe trait Allocator {
fn allocate(&self, layout: Layout)
-> Result<NonNull< [u8]>, AllocErrors>; Requhed
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) ; methods

http://jemalloc.net/
https://github.com/google/tcmalloc
https://github.com/rust-lang/rust/issues/32838
https://github.com/rust-lang/rust/issues/32838
https://github.com/rust-lang/rust/issues/32838
http://mng.bz/g7ze

5.8 Custom allocators 111

fn allocate_zeroed(G
&self,
layout: Layout

) -> Result<NonNull<[u8]>, AllocError> { L }

unsafe fn grow(R
&self,

ptr: NonNull<u8s>,
old layout: Layout,
new_layout: Layout

) -> Result<NonNull<[u8]>, AllocError> { ... }

unsafe fn grow_zeroed (<+ Optional methods, with
&self, default implementations
ptr: NonNull<u8s, provided

old layout: Layout,
new_layout: Layout

) -> Result<NonNull<[u8]>, AllocError> { ... }
unsafe fn shrink(<t
&self,

ptr: NonNull<u8s>,

old layout: Layout,

new_layout: Layout
) -> Result<NonNull<[u8]>, AllocError> { ... }
fn by ref (&self) -> &Self { ... } P—

To implement an allocator, we only need to provide two methods: allocate() and
deallocate(). These are analogous to malloc() and free(). The other methods are
provided for cases when you wish to optimize allocation further. The C-equivalent call
for allocated_zeroed() would be calloc (), whereas for the grow and shrink functions,
you’d use realloc().

NOTE You may notice the unsafe keyword on some of the Allocator trait’s
methods. Allocating and deallocating memory nearly always involves unsafe
operations in Rust, which is why these methods are marked as unsafe.

Rust provides default implementations for the optional methods in the Allocator
trait. In the case of growing and shrinking, the default implementation will simply
allocate new memory, copy all the data, and then deallocate old memory. For allocat-
ing zeroed data, the default implementation calls allocate() and writes zeroes to all
the memory locations. Let’s begin by writing an allocator that passes through to the
global allocator.

Listing 5.11 Code for a pass-through allocator

#! [feature (allocator_api)]

use std::alloc::{AllocError, Allocator, Global, Layout};
use std::ptr::NonNull;

112

CHAPTER 5 Working with memory

pub struct PassThruAllocator;

unsafe impl Allocator for PassThruAllocator {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
Global.allocate (layout)
}

unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout)
Global.deallocate (ptr, layout)
}

}

NOTE The code samples for the allocator API are nightly only, and to com-
pile or run them, you need to either use cargo +nightly .. or override the
toolchain within the project directory with rustup override set nightly.

The preceding code creates a pass-through allocator, which simply calls the underly-
ing global allocator implementation, with the minimum required code. Run the fol-
lowing to test our allocator:

fn main() {
let mut custom alloc_vec: Vec<i32, _> =
Vec::with capacity in(10, BasicAllocator) ;
for i in 0..10 {
custom_alloc_vec.push(i as i32 + 1);

Creates a Vec using
our custom allocator,
initializing the vector
} with a capacity of 10

println! ("custom alloc vec={:?}", custom alloc vec); items

Running this code provides the following output, as expected:
custom alloc vec=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Now, let’s change the allocator to call the malloc() and free() functions directly from
the C library instead. The Layout struct provides us with the details needed to deter-
mine how much memory to allocate using the size () method.

Listing 5.12 Code for a basic custom allocator using malloc () and free ()

#! [feature (allocator_api)]

use std::alloc::{AllocError, Allocator, Layout};
use std::ptr::NonNull;

use libc::{free, malloc}; The allocate() method in the Allocator
trait does not include the unsafe

pub struct BasicAllocator; keyword, but we still need to make
unsafe calls. Thus, this code block is

unsafe impl Allocator for BasicAllocator { wrapped in an unsafe {} block.

fn allocate(

5.8.2

5.8 Custom allocators 113

&self,
layout: Layout,

) -> Result<NonNull<[u8]>, AllocError> { VVeWecamngtheC

unsafe { _ _) library’s malloc(),
let ptr = malloc(layout.size() as libc::size t); and we assume
let slice = std::slice::from raw parts_mut (normal standard
ptr as *mut us, The block of memory is returned alignment from
layout.size(), as a slice, so first we convert the the Layout struct.

)i raw C pointer into a Rust slice.

Ok (NonNull: :new_unchecked(slice))
Finally, create and return the final

1
pointer to the slice of bytes.

}

unsafe fn deallocate(&self, ptr: NonNull<u8>, _layout: Layout) {
free(ptr.as ptr() as *mut libc::c_void);

deallocate() is essentially the reverse of allocate(), but this
method is already marked as unsafe for us. The pointer must be
converted from its raw Rust representation to a C pointer.

NOTE The Layout struct contains size and align properties, both of which
should be handled for portability. The size property specifies the minimum
number of bytes to allocate, and the align property is the minimum byte
alignment for a block in powers of two. For details, refer to the Rust docu-
mentation on Layout at http://mng.bz/eEY9.

Pay attention to the use of the preceding unsafe keyword; the deallocate () method
includes unsafe as part of the function signature itself, and allocate () requires the use
of unsafe within the method. In both cases, unsafe is required and cannot be avoided
because we’'re handling raw pointers and memory. deallocate () is marked as unsafe
because if the method is called with invalid data (e.g., a bad pointer or incorrect lay-
out), the behavior is undefined and, therefore, considered unsafe. In the event you
need to write a custom allocator, the preceding code provides a starting point for you,
regardless of your allocation needs.

Creating a custom allocator for protected memory

Let’s quickly explore a more advanced example of a custom memory allocator to shed
light on a scenario in which you’d want to utilize Rust’s allocator API. For this exam-
ple, the allocator can be applied piecewise to individual data structures, rather than to
the program as a whole, which allows fine tuning for performance purposes.

In the dryoc crate, which I use for example purposes throughout this book, I make
use of the Allocator trait to implement the protected memory feature of dryoc. Modern
operating systems provide several memory-protection features for developers who are
writing safety- or security-critical systems, and to utilize those features in a Rust pro-
gram, you would need to write your own memory allocation code. Specifically, the dryoc
crate uses the mprotect () and mlock() system calls on UNIX-like systems and the
VirtualProtect () and VirtualLock() system calls on Windows. These system calls pro-
vide the ability to lock and control access to specific regions of memory within a

http://mng.bz/eEY9

114 CHAPTER 5 Working with memory

process, both to code inside and outside the process.
This is an important feature for code that manages
sensitive data, such as secret keys.

As part of the implementation of memory-locking
and -protection features, memory must be allocated
by special platform-dependent memory functions
(posix memalign() on UNIX and virtualalloc() on
Windows), such that it’s aligned to platform-specific
memory pages. Additionally, in the following code,
two extra memory blocks are allocated before and
after the target memory region, and those blocks are
locked, which provides additional protection against
certain types of memory attacks. These regions can be
thought of as bumpers, like those you would find on
an automobile.

Heap memory

Unused, no-access

Fore page

Active, read/write

When our custom allocator is used, memory will
be allocated on the heap, as shown in figure 5.2. The
active region is a subset of the total memory allo-
cated, and a subset that excludes the first and last
pages is returned as a slice by the allocator.

Let’s examine a partial code sample of this alloca- ~ Figure 5.2 Diagram showing
tor (the full code listing is included with the book’s z::’:::::: f:;?;:::yom’ with
code). First, we’ll examine the following listing.

Unused, no-access

Listing 5.13 Partial code listing for allocate () from page-aligned allocator

fn allocate(&self, layout: Layout,
) -> Result<ptr::NonNull<[u8]>, AllocErrors> {
let pagesize = *PAGESIZE;
let size = _page round(layout.size(), pagesize) + 2 * pagesize; <
#[cfg (unix)]
let out = {
let mut out = ptr::null mut();
let ret = unsafe {
libc::posix memalign (&mut out, pagesize as usize, size) <

Rounds the size of the memory region to the
nearest page length, adding two additional pages
before and after the memory region

i
if ret != 0 {

return Err (AllocError) ;
1

out
i Allocates page-aligned memory
#[cfg(windows)] on Windows-based systems
let out = {

use winapi::um::winnt::{MEM COMMIT, MEM RESERVE, PAGE READWRITE};

unsafe {

winapi: :um: :memoryapi::VirtualAlloc (
ptr::null mut(), size, MEM COMMIT | MEM RESERVE,

Allocates page-aligned memory
on POSIX-based systems

5.8 Custom allocators 115

PAGE_READWRITE,

) Marks the
} memory page
}; in front of the
let fore protected region = unsafe { new region as
std::slice::from raw parts mut (out as *mut u8, pagesize) | Nho-access to
i prevent
mprotect noaccess (fore protected region) scanning
.map_err(|err| {
eprintln! ("mprotect error = {:?}, in allocator", err)
)
ok ()
let aft _protected region offset =
pagesize + _page_round(layout.size(), pagesize);
let aft protected region = unsafe {
std::slice::from raw_parts_mut (
out.add(aft_protected region offset) as *mut us8,
pagesize, Marks the memory
) page after the new
}i region as no access

mprotect noaccess (aft_protected region) to prevent scanning

.map_err (|err| {
eprintln! ("mprotect error = {:?}, in allocator", err)
3

.ok () ;
let slice = unsafe ({
std::slice::from raw _parts_mut (
out.add (pagesize) as *mut u8,

layout.size(),
) Marks the new
}i region of memory

mprotect readwrite(slice) as read/write

.map_err (|err| { Returns the new

eprintln! ("mprotect error = {:?}, in allocator", err) P°h¢e(asas“ce

3] consisting of the

.ok () ; memory location
unsafe { Ok (ptr::NonNull::new unchecked (slice)) } and size

Next, let’s look at the implementation for deallocate () in the following listing.

Listing 5.14 Partial code for deallocate () from page-aligned allocator

unsafe fn deallocate(&self, ptr: ptr::NonNull<u8>, layout: Layout) {
let pagesize = *PAGESIZE;
let ptr = ptr.as_ptr().offset (- (pagesize as isize));
// unlock the fore protected region
let fore protected region =
std::slice::from raw_parts_mut (ptr as *mut u8, pagesize);

mprotect_readwrite (fore protected region) Returns the fore

~mi$7?rr(|6rr| eprintln! ("mprotect error = {:?}", err)) memory page to
.i k, he af d : read/write, the
[/ unlock the aft provected region default state

let aft protected region offset =

116

}

CHAPTER 5 Working with memory

pagesize + _page round(layout.size(), pagesize);
let aft protected region = std::slice::from raw parts mut (

ptr.add(aft protected region offset) as *mut u8, Returns the aft

pagesize, memory page to
) read/write, the
mprotect readwrite (aft protected region) default state

.map_err (|err| eprintln! ("mprotect error = {:?}", err))

.ok ();

#[cfg(unix)]

{

Releases the page-aligned
libc::free(ptr as *mut libc::c_void); memory on POSIX-based systems

[cfg(windows)]

—~—F e

use winapi::shared: :minwindef: :LPVOID;

use winapi::um::memoryapi::VirtualFree; Releases the page-aligned
use winapi::um::winnt::MEM RELEASE; J memory on Windows-based
VirtualFree (ptr as LPVOID, 0, MEM RELEASE); systems

This code listing is based on code from the dryoc crate. You can find the full code list-
ing on GitHub at http://mng.bz/p1R5, which may include future improvements. .

Using the cfg and cfg_attr attributes, and the cfg macro for conditional
compilation

We’ve talked about attributes throughout the book, but it’s a good time to take a
moment to discuss cfg in more depth, as seen in the custom allocator example.

If you're coming from a language like C or C++, you're likely familiar with using macros
to enable or disable code at compile time (e.g., #ifdef FLAG { .. } #endif). Enabling
and disabling features at compile time is a common pattern, especially for compiled
languages that need access to 0S-specific features (as in the custom allocator exam-
ple). Rust’s equivalent features look similar to, but behave differently from, what you
may have seen in C and C++.

Rust provides three built-in tools for handling conditional code compilation:

The cfg attribute, which conditionally includes the attached code (i.e., the item
on the following line of code, whether it be a block or statement)

The cfg_attr attribute, which behaves like cfg except that it allows you to set
new compiler attributes based on the existing ones

The cfg macro, which returns true or false at compile time

To illustrate its use, consider the following example:

#[cfg(target family = "unix")]

fn get platform() -> String {
"UNIX".into ()

}

http://mng.bz/p1R5

5.9

5.9 Smart pointers summarized 117

#[cfg(target family = "windows")]

fn get platform() -> String {
"Windows".into ()

}

fn main() {

println! ("This code is running on a {} family 0S", get platform()) ;

if cfg! (target feature = "avx2") {
println! ("avx2 is enabled") ;

} else {
println! ("avx2 is not enabled");

1

if cfg! (not (any (target arch = "x86", target arch = "x86 64"))) ({
println! ("This code is running on a non-Intel CPU");

1

In the preceding example, the cfg attribute applies to the entire function block for
get platform()—hence, it appears twice. We use the cfg macro to test whether the
avx2 target feature is enabled and whether we’re using a non-Intel architecture.

Shorthand configuration predicates are defined by the compiler, such as unix and
windows, as shown in the custom allocator example. In other words, rather than writing
#lcfg(target family = "unix")], you can use #[cfg(unix)]. A full list of the configu-
ration values for your target CPU can be obtained by running rustc --print=cfg -C
target-cpu=native.

Predicates may also be combined using all(), any(), and not (). all() and any()
accept a list of predicates, whereas not () accepts one predicate. For example, you
can use #[cfg(not (any (target_arch = "x86", target arch = "x86 64"). The full list-
ing of the compile-time configuration options can be found at http://mng.bz/OP7K.

Smart pointers summarized

In table 5.2, I have summarized the core smart pointer and memory container types to
guide you when you are deciding which to use. You can refer to it as you learn more
about Rust and start experimenting with more advanced memory management.

Table 5.2 Summarizing Rust’s smart pointers and containers

Single- or
multithreaded

Description When to use

Box

Cow

Pointer Heap-allocated smart pointer Any time you need to store a Single
single object on the heap (and not
in a container such as a vec)

Pointer Smart pointer with clone-on-write, Whenyou need heap-allocated data | Single
which can be used with owned or with clone-on-write functionality
borrowed data

http://mng.bz/OP7K

118

CHAPTER 5 Working with memory

Table 5.2 Summarizing Rust’s smart pointers and containers (continued)

e Single- or
Description When to use multithreaded

Rc Pointer Reference-counted, heap-allocated | When you need shared ownership | Single
smart pointer that enables shared | of heap-allocated data
ownership

Arc Pointer Atomically reference-counted, When you need shared ownership | Multi
heap-allocated smart pointer that of heap-allocated data across
enables shared ownership threads

Cell Container | Memory container that enables When you need to enable interior Single
interior mutability using move mutability of data within a smart

pointer using move

RefCell | Container | Memory container that enables When you need to enable interior Single
interior mutability using references | mutability using references

Mutex Container | Mutual exclusion primitive that When you need to synchronize Multi
also enables interior mutability data sharing across threads
with a reference

RwLock Container | Mutual exclusion primitive that When you need reader/writer Multi
provides distinction between read- | locking across threads
ers and writers, and enables inte-
rior mutability with a reference

Summary

= Box and Vec provide methods to allocate memory on the heap. vec should be

preferred when you need a list of items; otherwise, use Box for a single item.

= The Clone trait can be used to provide deep copying of data structures in Rust.

= Rc and Arc provide reference-counted smart pointers for shared ownership.

= Cell and RefCell provide an escape hatch for the interior mutability problem

when you need to mutate data inside an immutable structure but only for single-

threaded applications.

= Mutex and RwLock provide synchronization primitives, which can be used with

Arc to enable internal mutability.

= The Allocator and Globalalloc APIs provide a way to customize memory alloca-

tion behavior in Rust.

Part 3

Correctness

riting good software is hard, and it’s hard in many dimensions. We often
hear about the importance of simplicity, but we tend to hear less about simplic-
ity’s sibling: correctness. Writing simple code is an admirable goal, but without
correctness, even the world’s most beautiful and simple code can still be wrong.
We tend to hide complexity behind abstractions, but complexity is everywhere,
always, even when hidden, so we must ensure we retain correctness.

Correctness is both qualitative and quantitative. Whether code is correct
depends on how well the API is specified and whether the API’s definition and
implementations match. For example, I can write an adder function that accepts
two parameters and returns their sum, but it should also correctly handle edge
cases, such as overflows, signedness, bad inputs, and so on. For our adder to cor-
rectly handle those cases, they need to be specified. Unspecified behavior is the
enemy of correctness.

In the upcoming chapters, we’ll discuss testing strategies for guaranteeing
correctness in your code. By writing tests for your code, you can also reveal weak-
nesses in specifications by finding ambiguities, in addition to verifying the cor-
rectness of your implementations.

Unat testing

This chapter covers

Understanding how unit testing is unique in Rust

Exploring unit testing dos and don’ts, features,
and frameworks

Discussing unit testing with parallel code
Writing unit tests that consider refactoring
Exploring tools to help with refactoring
Measuring code covered by tests

Testing strategies for dealing with Rust’s
ecosystem

Unit testing is one way to improve code quality, as it can catch regressions and
ensure code meets requirements before shipping. Rust includes a built-in unit test-
ing framework to make your life easier. In this chapter, we’ll review some of the fea-
tures Rust provides and discuss some of the shortfalls of Rust’s unit testing
framework—and how to overcome them.

121

122

6.1

CHAPTER 6 Unit testing

How testing is different in Rust

Before we jump into the details of Rust’s unit testing features, we should talk about
the differences between Rust and other languages and how they relate to unit testing.
For those coming from languages like Haskell or Scala, you may find Rust has similar
properties when it comes to testing. Compared to most languages, however, Rust var-
ies greatly, in that the kinds of unit tests you might see in other languages aren’t neces-
sary in Rust.

To elaborate, there are many cases in Rust in which, so long as the code compiles,
the code must be correct. In other words, the Rust compiler can be thought of as an
automatic test suite that’s always applied to code. This only remains true for certain
types of tests, and there are a variety of ways to break this contract in Rust.

The two most commons ways to undo some of Rust’s safety guarantees are

Using the unsafe keyword

Converting compile-time errors into run-time errors

The latter can happen in a variety of ways, but the most common is by using Option or
Result without properly dealing with both result cases. In particular, this error can be
made by calling unwrap () on these types without handling the failure case. In some
cases, this is the desired behavior, but it’s also a mistake people often make simply
because they don’t want to spend time handling errors. To avoid these problems, the
simple solution is to handle all cases and avoid calling functions that panic at run time
(such as unwrap ()). Rust does not provide a way to verify that code is panic free.

In the case of Rust’s standard library, functions and methods that panic on failures
are generally noted as such in the documentation. As a general rule, for any kind of
programming, any functions that perform I/O or nondeterministic operations may
fail (or panic) at any time, and those failure cases should be handled appropriately
(unless, of course, the correct way to handle the failure is to panic).

NOTE In Rust, the term panic means to raise an error and abort the program.
If you want to force a panic yourself, the panic! () macro can be used. Addi-
tionally, you can use the compile_error! () macro to induce a compile-time
error.

Often, the Rust compiler can catch errors before code ships, without the help of unit
tests. What the Rust compiler cannot do, however, is catch logic errors. For example,
the Rust compiler can detect certain cases of divide-by-zero errors, but it can’t tell you
when you mistakenly used division instead of multiplication.

As a rule, the best way to write software that’s both easy to test and unlikely to be
wrong is accomplished by breaking down code into small units of computation (func-
tions) that generally satisfy the following properties:

Functions should be stateless when possible.
Functions should be idempotent in cases where they must be stateful.

6.2

6.2 Review of built-in testing features 123

Functions should be deterministic whenever possible; the result of a function
should always be the same for any given set of inputs.
Functions that might fail should return a result.

Functions that may return no value (i.e., null) should return an option.

Following points 4 and 5 allows you to make heavy use of the ? operator in Rust (? is
shorthand for returning early with an error result if the result is not ok), which can
save you from typing a lot of code. In chapter 4, we discussed using Result with the
From trait, which greatly simplifies error handling in your code. For any given function
you write that returns a Result, you only need to write the necessary From trait imple-
mentation for any possible errors within the function, and then you can handle those
errors appropriately with the ? operator. Keep in mind this only works in generic situ-
ations and may not be appropriate in cases where the error handling is specific to the
function in question.

TIP If you want to panic on an unexpected result, use the expect () function.
expect () takes a message as an argument explaining why the program pan-
icked. expect () is a safer alternative to unwrap() and can be thought of as
behaving similarly to assert ().

By convention, Rust unit tests are stored in the same source file as the code being
tested. That is to say, for any given struct, function, or method, its corresponding unit
test would generally be within the same source file. Tests are typically located near the
bottom of the file. This has the nice side effect of helping you keep code relatively
small and as separate concerns. If you try to pack too much logic into one file, it can
grow quite large, especially if you have complicated tests. Once you pass the 1,000-line
mark, you may need to think about refactoring.

Finally, most of this advice is not necessarily Rust specific—it applies to all pro-
gramming languages. For Rust specifically, your code should always handle return val-
ues and avoid the use of unwrap (), except when necessary.

Review of built-in testing features

Rust provides several basic testing features (table 6.1), although you may find the
built-in features lacking compared to more mature testing frameworks. One notable
difference between Rust and other languages is that the core Rust tooling and lan-
guage includes testing features without the use of additional libraries or frameworks.
In many languages, testing is an afterthought and requires additional tooling and
libraries bolted on to properly test code. Features not provided by Rust can usually be

124 CHAPTER 6 Unit testing

found in crates; however, you may also find that Rust makes testing much easier over-
all, thanks to the strict language guarantees.

Table 6.1 Summary of Rust’s testing features

Feature Description

Unit testing Rust and Cargo provide unit testing directly without the use of additional libraries,
using the tests mod within source files. The tests mod must be marked with
[cfg(test)], and test functions must be marked with the # [test] attribute.

Integration Rust and Cargo provide integration testing, which allows testing of libraries and appli-
testing cations from their public interfaces. Tests are typically constructed as their own indi-
vidual applications, separate from the main source code.

Documentation | Code samples in source code documentation using rustdoc are treated as unit
testing tests, which cleverly improve the overall quality of documentation and testing,
simultaneously.

Cargo Unit, integration, and documentation tests work with Cargo automatically and don’t

integration require additional work beyond defining the tests themselves. The cargo test
command handles filtering, displaying assertion errors, and even parallelizing tests
for you.

Assertion Rust provides assertion macros, such as assert! () and assert_eq! (), although

macros these are not exclusive to tests (they can be used anywhere because they’re normal

Rust macros). Cargo, however, will properly handle assertion failures when running
unit tests and provide helpful output messages.

Let’s examine the anatomy of a simple library with a unit test to demonstrate Rust’s
testing features. Consider the following example, which provides a generic adder.

Listing 6.1 Code for a basic unit test in Rust

This is an addition function that takes two parameters of
the same type and returns the result of the same type. The
type T needs to have the std::ops::Add trait implemented
for the same output type.

pub fn add<T: std::ops::Add<Output = T>>(a: T, b: T) -> T {

a b
} B Our mod tests contains our tests, and
the #[cfg(test)] attribute tells the
#[cfg (test)] compiler this is our unit test mod.
mod tests { This is a convenient shorthand to include
use super::*; everything from the outer scope of this mod.
You'll often see this used in tests.
#[test]
fn test_add() { The #[test] attribute tells the

assert_eq! (add (2, 2), 4); compiler this function is a unit test.

}

6.3

6.3 Testing frameworks 125

This test passes, which is great. If you run cargo test, the output looks like the code in
the following listing.

Listing 6.2 Successful test run

$ cargo test
Compiling unit-tests v0.1.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c6/6.2/unit-tests)
Finished test [unoptimized + debuginfo] target(s) in 0.95s
Running unittests (target/debug/deps/unit tests-c06c761997d04£8f)

running 1 test
test tests::test_add ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Doc-tests unit-tests
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Testing frameworks

Rust’s unit testing doesn’t include the helpers, fixtures, harnesses, or parameterized
testing features, like you may find in other unit testing frameworks. For those, you’ll
either need to code your own or try some libraries.

For basic parameterized testing, the parameterized (https://crates.io/crates/
parameterized) crate provides a nice interface to create tests. The test-case
(https://crates.io/crates/test-case) crate provides another implementation of parame-
terized testing that’s simple, concise, and easy to use. For fixtures, you can try the rstest
(https://crates.io/crates/rstest) crate. The assert2 (https://crates.io/crates/assert2)
crate provides assertions inspired by the popular C++ Catch2 library.

One library worth mentioning in detail is the proptest (https://lib.rs/crates/
proptest) crate, which provides a Rust implementation of QuickCheck (https://
github.com/nick8325/quickcheck), a Haskell library originally released in 1999, and
one which you may have already encountered. Proptestisn’t a 1:1 port of QuickCheck
to Rust, but rather, it provides equivalent functionality with some Rust-specific differ-
ences, which are documented at http://mng.bz/YRno.

Property testing can save you a lot of time by generating random test data, verify-
ing results, and reporting back with the minimum test case required to create an
error. This is a huge time saver, although it’s not necessarily a replacement for testing
well-known values (e.g., when verifying spec compliance).

https://crates.io/crates/parameterized
https://crates.io/crates/parameterized
https://crates.io/crates/parameterized
https://crates.io/crates/test-case
https://crates.io/crates/rstest
https://crates.io/crates/assert2
https://lib.rs/crates/proptest
https://lib.rs/crates/proptest
https://lib.rs/crates/proptest
https://github.com/nick8325/quickcheck
https://github.com/nick8325/quickcheck
https://github.com/nick8325/quickcheck
http://mng.bz/YRno

126

CHAPTER 6 Unit testing

NOTE There’s no free lunch with property testing; it comes with the tradeoff
of possibly having to spend more CPU cycles testing random values, as
opposed to hand-picked or well-known values. You can tune the number of
random values to test, but for data with a large set of possible values, it’s often
not practical to test every outcome.

Let’s revisit our adder example from the previous section, but this time, we’ll try it
with proptest, which will provide the test data for our test function.

Listing 6.3 Code listing of adder with proptest

pub fn add<T: std::ops::Add<Output = T>>(a: T, b: T) -> T {

a+ b
}
#[ctg(test)] Here, we include the proptest library,
mod tests { which includes the proptest! macro.
use super::*;
use proptest::prelude::*; Our test function’s parameters,
proptest! { a and b, will be provided by the
#[test] proptest! macro.
fn test _add(a: i64, b: i64)
assert_eq!(add(a, b), a + b);
} We assert that our adder does,
} indeed, return the result of a + b.

Now, let’s run this test again with proptest:

cargo test
Compiling proptest v0.1.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c6/6.2/proptest)
Finished test [unoptimized + debuginfo] target(s) in 0.59s
Running unittests (target/debug/deps/proptest-db846addc2c2£40d)

running 1 test
test tests::test_add ... FAILED

failures:

----- tests::test_add stdout -----

... snip
thread 'tests::test_add' panicked at 'Test failed: attempt to add with
overflow; minimal failing input: a = -2452998745726535882,

b = -6770373291128239927
successes: 1
local rejects: 0
global rejects: 0

', src/lib.rs:9:5

failures:
tests::test_add

6.3 Testing frameworks 127

test result: FAILED. O passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out; finished in 0.00s

error: test failed, to rerun pass '--1lib'

Uh oh! It looks like our adder wasn’t so great after all. It turns out it can “blow up”
under certain circumstances (in this case, the addition operation overflowed because
we’re adding two signed integers of finite length). We weren’t expecting this kind of
failure and probably wouldn’t have caught it unless we were manually generating ran-
dom data for a and b.

Arithmetic overflow in Rust

Arithmetic operations in Rust may trip people up at first, especially when testing.
There’s a simple reason for this: in Rust, code compiled in debug mode (e.g., tests)
uses checked arithmetic by default. When the same code is compiled in release mode,
it will use unchecked arithmetic. Thus, you can have code that fails when run in debug
mode but works fine (i.e., does not produce an error or crash the program) in production.

Rust’s approach can be a bit confusing because of how the behavior is different
depending on how code is compiled. The rationale in Rust is that test code should be
stricter to catch more bugs, but for compatibility, the code should behave the way
most other programs behave at run time.

Developers sometimes take arithmetic overflow for granted because most languages
either emulate the behavior of languages like C (which is usually referred to as
wrapped arithmetic; i.e., when the integer overflows it just wraps around). Rust
provides a number of alternative arithmetic functions for primitive types, which are
documented in the standard library for each type. For example, i32 provides
checked add(), unchecked add(), carrying add(), wrapping add(), overflowing
add (), and saturating add().

To emulate the C behavior, you can use the wWrapping struct (documented at
http://mng.bz/G97M) or call the corresponding method for each type and operation.
This behavior is document in RFC 560 (http://mng.bz/z01w).

We have a few options for fixing the previous test, but the easiest one is to just explic-
itly wrap overflows (i.e., follow the C behavior of integer overflow). Let’s update our

code to look like this:
We’re relying on the num_traits crate,
which provides the WrappingAdd trait.

extern crate num_traits;
use num_traits::ops::wrapping::WrappingAdd;

The trait bound is
switched from Add

a.wrapping_add (&b)
} to WrappingAdd.

#[cfg(test)]
mod tests {
use super::*;

pub fn add<T: WrappingAdd<Output = T>>(a: T, b: T) -> T { <11

http://mng.bz/z01w
http://mng.bz/G97M

128

6.4

CHAPTER 6 Unit testing

use proptest::prelude::*;

proptest! { The test needs to
#[test] be updated so that
fn test_add(a: i64, b: i64) { it is also using

assert_eq! (add(a, b), a.wrapping add(b)) ; wrapping_add().

}

We’ve added the num_traits crate, a small library that provides the Wrappingadd trait, to
the preceding code. The Rust standard library doesn’t have an equivalent trait, and
it’s difficult to create a generic function this way without one (we’ll explore traits in
greater depth in chapters 8 and 9).

If we run our code now, it passes as expected:

cargo test
Compiling wrapping-adder v0.1.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c6/6.2/wrapping-adder)
Finished test [unoptimized + debuginfo] target(s) in 0.65s
Running unittests (target/debug/deps/wrapping adder-5330c09£59045f6a)

running 1 test
test tests::test_add ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.01s

Running unittests (target/debug/deps/wrapping adder-al98d5a6a64245d9)
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Doc-tests wrapping-adder
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

What not to test: Why the compiler knows better than you

Rust is a statically typed language, which brings with it some major advantages, espe-
cially when it comes to testing. One way to think about statically typed languages, as
opposed to dynamically typed languages, is that the compiler does the work of limit-
ing the set of possible inputs and outputs to any given statement or block of code by
analyzing the source code before it runs. The possible set of inputs and outputs are
constrained by type specifications. That is to say, a string can’t be an integer, and vice
versa. The compiler verifies that the types match what’s expected and references are
valid. You don’t need to worry about mixing up strings and integers at run time

6.5

6.5 Handling parallel test special cases and global state 129

because the compiler doesn’t let it happen; this frees you (the developer) from having
to worry about a host of problems, provided you use types correctly.

In dynamically typed languages, type errors are one of the most common types of
problems. In interpreted languages, the combination of invalid syntax and type errors
creates a potent opportunity for run-time errors that can be difficult to catch before
code is shipped. Many dynamic languages have been retrofitted with static analyzer
tools, but they’re not always adequately strict or thorough to catch common errors.

When it comes to testing, we never need to test anything the compiler or borrow
checker tests for us. For example, we don’t need to check whether an integer is an
integer or a string is a string. We don’t need to check that references are valid or
whether data is being mutated by two different threads (a race condition).

Let’s be clear that this doesn’t mean you don’t need to test—it just means most of
what you test in Rust is logic, rather than type validation or memory use. It’s true that
you still need to perform type conversions, which might fail, but handling these is a
matter of logic. Rust’s ergonomics make it hard to handle things that might fail
improperly.

Testing properly in Rust begins with effectively using Rust’s type system. Overuse of
Option, unwrap (), or unsafe code can lead to harder-to-find bugs, especially if you use
these features as a way to avoid handling edge cases. Stateful operations and I/O need
to be checked and handled appropriately (as a good habit, functions or methods per-
forming I/O should probably return a Result).

Handling parallel test special cases and global state

When Cargo runs unit tests, it does so in parallel. Rust uses threads to execute multiple
tests simultaneously, to speed up testing. Most of the time, this works transparently, and
you don’t need to worry about it. However, we sometimes find ourselves needing to cre-
ate global state or fixtures for tests, and doing so may require shared state.

Rust provides a couple of facilities for handling this problem: one is to create your
ownmain () function for testing (by, effectively, overriding Rust’s libtest, which is the built-
in testing library in Rust and not something you typically interact with directly). That
option, however, is probably more trouble than it’s worth, so instead, I'll direct you to
an alternative: the handy lazy_static (https://crates.io/crates/lazy_static) crate.

TIP If you dowant to provide your own main () for testing, you can do so by dis-
abling Rust’s built in harness libtest with harness = false in the target settings.

Some details on how to do this can be found in the rustc (https://doc.rust-lang
.org/rustc/tests/index.html) and libtest (https://doc.rust-lang.org/test/index.html)
documentation.

If, by some chance, you haven’t already encountered lazy_static at this point, then
you’ll be pleased to learn aboutitnow. The lazy_static crate makes the creation of static
variables in Rust much easier. Creating global shared state in Rust is somewhat tricky
because you sometimes need to initialize static structures at run time. To accomplish

https://crates.io/crates/lazy_static
https://doc.rust-lang.org/rustc/tests/index.html
https://doc.rust-lang.org/rustc/tests/index.html
https://doc.rust-lang.org/rustc/tests/index.html
https://doc.rust-lang.org/test/index.html

130

CHAPTER 6 Unit testing

this, you can create a static reference and update that reference when it’s first accessed,

which is what lazy static does.
To illustrate the problem with global state, consider the following code listing.

Listing 6.4 Unit test with global count

#[cfg(test)]
mod tests { Defines a static mutable
static mut COUNT: 132 = 0; counter variable

#[test]

fn test_count () { Increments the counter
COUNT += 1; within our test
!

This code fails to compile, with the following error:

error [E0133] : use of mutable static is unsafe and requires unsafe function
or block
--> src/lib.rs:7:9

COUNT += 1;

AAAAAAAAAAAA

7
use of mutable static

|

|

= note: mutable statics can be mutated by multiple threads: aliasing
violations or data races will cause undefined behavior

The compiler is correctly catching the error here. If you wrote equivalent code in C, it
would compile and run without complaint (and it will probably work most of the time
... until it doesn’t).

We’ve got a couple of options to fix the code. In this case, we’ve just got a simple
count, so we can simply use an atomic integer instead (which is thread safe). Seems
easy enough, right? Let’s try the following:

#[cfg(test)]

mod tests
use std::sync::atomic::{AtomicI32, Ordering};
static mut COUNT: AtomicI32 = AtomicI32::new(0);

Uses an Atomic integer
provided by Rust’s
standard library

Performs a fetch and add operation,
{ which increments the atomic integer;
Ordering::SeqCst tells the compiler
} how to synchronize operations,
documented at http://mng.bz/0IRp.

#[test]
fn test_count ()
COUNT.fetch add(1l, Ordering::SeqCst) ;

If we try compiling our updated test, it prints the exact same error (use of mutable
static). So what gives? rustc is being very strict: it’s complaining about the ownership of
the cOUNT variable, which, itself, doesn’t implement the Send trait. We’ll have to intro-
duce aArc to implement Send as well.

http://mng.bz/0lRp

6.5 Handling parallel test special cases and global state 131

Rust’s Send and Sync traits

Rust provides two important traits for handling shared state across threads: send and
sync. These traits are what the compiler uses to provide Rust’s thread safety guaran-
tees, and you'll need to understand them when working with multithreaded Rust code
and shared state.

These traits are defined as such:

send marks objects that can be safely moved between threads.
sync marks objects that can be safely shared between threads.

For example, if you want to move a variable from one thread to another, it needs to
be wrapped in something that implements send. If you want to have shared refer-
ences to the same variable across threads, you’ll need to wrap it in something that
implements Sync.

These traits are automatically derived by the compiler where appropriate. You don’t
need to implement them directly, but rather, you can use combinations of aArc, Mutex,
and rRwLock (discussed in chapter 5) to achieve thread safety.

Let’s update our code again, now that we’ve realized we need to use Arc:

#[cfg(test)]

mod tests {
use std::sync::atomic::{AtomicI32, Ordering};
use std::sync::Arc;

static COUNT: Arc<AtomicI32> = Arc::new(AtomicI32::new(0)) ;

#[test] We need to clone the Arc before
fn test count () { we can use it to obtain a reference

let count = Arc::clone (&COUNT) ; in this thread context.
count.fetch add(l, Ordering::SeqCst) ;

If we try to compile this, we’re going to be disappointed again with a new error:

error [E0015] : calls in statics are limited to constant functions, tuple
structs and tuple variants
--> src/lib.rs:6:38

6 | static COUNT: Arc<AtomicI32> = Arc::new(AtomicI32::new(0));

‘ AAAAAAAAAAAAAAAAAAAAAAAAAAA

If you reached this point on your own, you may feel like giving up here. However, the
solution is pretty simple: lazy_static. The compiler doesn’t let us create globals that
aren’t constants, so we need to either write custom code to do the initialization at run
time, or we can just use lazy static. Let’s update the test one more time:

132 CHAPTER 6 Unit testing

#[cfg(test)]
mod tests
use lazy static::lazy static;
use std::sync::atomic::{AtomicI32, Ordering};
use std::sync::Arc;
lazy static! {
static ref COUNT: Arc<AtomicI32> = Arc::new(AtomicI32::new(0)) ;
}

#[test]

fn test_count ()
let count = Arc::clone (&COUNT) ;
count.fetch add(1l, Ordering::SeqCst) ;

The lazy_static! macro is
used to wrap our static
variable definitions.

When initializing with lazy_static!,

you supply a code block returning

the initialized object. In this case,

{ it all fits on one line, so the braces
({ ... }) are omitted.

Presto! Now, our code compiles and runs safely. The lazy static! macro takes care of
the details of initializing the data at run time. When the variable is first accessed, it’s
initialized automatically, and we can use it globally. To understand what lazy static
does, let’s view the code generated by the macro with cargo expand (introduced in
chapter 3):

#[allow(missing copy implementations)]
#[allow(non_camel_ case_types)]
#[allow(dead code)]
struct COUNT {

__private field: (),
}

#[doc (hidden)]
static COUNT: COUNT = COUNT ({

_ private field: (), lazy_static implements the Deref
}; trait (within its code, __Deref is
impl ::lazy static:: Deref for COUNT { aliased to the core library Deref).

type Target = Arc<AtomicI32s>;
fn deref (&self) -> &Arc<AtomicI32s> {
#[inline (always)]

fn static ref initialize() -> Arc<AtomicI32> { . .
Arc::new (At;micIBZ ::new (0)) This block will be replaced

} with t.he initializ.ation code
#[inline (always)] suppllledrby us (in our case,
fn stability() -> &'static Arc<AtomicI32s> a single line).

static LAZY: ::lazy static::lazy::Lazy<Arc<AtomicI32>> =

::lazy static::lazy::Lazy::INIT;

LAZY.get (_ static ref initialize) lazy_static uses the
} std::sync::Once primitive
_ stability() internally, from the Rust

} core library, which is
} initialized at this point.

impl ::lazy static::LazyStatic for COUNT {
fn initialize (lazy: &Self) {
let _ = &**lazy;
}

6.5 Handling parallel test special cases and global state 133

Examining lazy static’s source code, we can see it is based on the std::sync::0nce
primitive (provided by the standard library). We can drop the superfluous Arc that we
added in the previous step because lazy_static provides send. The final result when
using lazy_static looks like this:

#[cfg(test)]
mod tests {
use lazy static::lazy static;
use std::sync::atomic::{AtomicI32, Ordering};
lazy static! {
static ref COUNT: AtomicI32 = AtomicI32::new(0);
1

[test]
fn test_count () {

COUNT. fetch_add (1, Ordering::SeqCst) ;
}

And while lazy static helps us solve the problem of sharing global state, it doesn’t
help us with synchronizing the tests themselves. For example, if you want to ensure
your tests execute one at a time, you’ll have to either implement your own main() to
run your tests; instruct libtest to run the tests with only one thread; or synchronize
your tests using a mutex, as shown in the following code:

#[cfg(test)]
mod tests {
use lazy static::lazy static;
use std::sync::Mutex;
lazy static! {
static ref MUTEX: Mutex<i32> = Mutex::new(0) ;
}

#[test]

fn first test() {
let guard = MUTEX.lock().expect ("couldn't acquire lock");
println! ("first test is running");

}

#[test]

fn second test () {
let guard = MUTEX.lock () .expect ("couldn't acquire lock");
println! ("second test is running");

}

If you run this code repeatedly with cargo test --nocapture, you may notice that the
output doesn’t always print in the same order. That’s because we can’t guarantee the
order of execution (libtest is still trying to run these tests in parallel). If you need tests
to run in a particular order, you need to either use a barrier or condition variable or
implement your own main () function to run your tests.

134

6.6

6.7

CHAPTER 6 Unit testing

As a final note, let it be said that unit tests shouldn’t require synchronization or
shared state. If you find yourself doing this, you may need to consider whether your
design needs to be refactored.

Thinking about refactoring

One value proposition of unit testing is catching regressions—code changes that
break existing features or behaviors—before software ships. Indeed, if your unit tests
cover the software’s specification in its entirety, any change to that software that does
not conform to the specification will result in test failures.

Code refactoring—which I'll define here as code changes that don’t affect
the behavior of public interfaces to the software—is common practice and carries
with it advantages as well as risks. The main risk of refactoring is the introduction of
regressions. The benefits of refactoring can be some combination of improved code
quality, faster compilation, and better performance.

We can employ various strategies when writing tests to improve the quality of our
software. One strategy is to test public interfaces in addition to private or internal
interfaces. This works especially well if you can achieve near 100% coverage (and we’ll
discuss code coverage later in this chapter).

In practical software development, unit tests break frequently and can often consume
agreatdeal of development time to debug, fix, and maintain. For thatreason, only testing
what needs to be tested can, perhaps counterintuitively, save you time and provide equiv-
alent or better software quality. Determining what needs to be tested can be accom-
plished by analyzing test coverage, determining what’s required by the specifications, and
removing anything that doesn’t need to be there (provided it’s not a breaking change).

With good testing, we can refactor mercilessly with confidence. Too much testing
makes our software inflexible, and we spin our wheels managing tests. Combining
automated testing tools, such as property-based testing, fuzz testing (discussed in the
next chapter), and code coverage analysis, gives us a great deal of quality and flexibil-
ity without requiring superpowers.

Refactoring tools

So now you have some wonderful tests and a clean API, and you want to start improv-
ing the internals of your software by cleaning things up. Some refactorings are harder
than others, but there are a few tools we can use to make things smoother.

Before we discuss which tools to use, we need to break down the process of refac-
toring into types of refactorings. Some examples of common refactoring tasks include
the following:

Reformatting—Adjusting whitespace and rearranging symbols for readability
Renaming—Changing the names of variables, symbols, constants
Relocating—Moving code from one location to another within the source tree,
possibly into different crates

Rewriting—Completely rewriting sections of code or algorithms

6.7.1

6.7.2

6.7 Refactoring tools 135

Reformatting

For code formatting, the preferred tool is rustfmt (introduced in chapter 3). You will
rarely need to manually reformat Rust code; rustfmt can be configured according to
your preferences. Review the rustfmt section in chapter 3 for details on how to adjust
the rustfmt settings to your preferences. Using rustfmt is as simple as running cargo fmt
as needed, or it can be integrated directly into your editor or IDE using rust-analyzer.

Renaming

Let’s discuss renaming, which can be a tricky task in certain complex situations. Most
code editors include some type of find-and-replace tool to apply code changes (or you
can do this from the command line using sed or some other command), but that’s not
always the best way to do big refactorings. Regular expressions are very powerful, but
sometimes, we need something more contextually aware.

The rust-analyzer tool can intelligently rename symbols, and it also provides a struc-
tural search-and-replace tool (documented at http://mng.bz/K97P). You can use both
of these directly from your IDE or code editor. In VS Code, rename a symbol by selecting
it with the cursor and pressing F2 or use the context menu to select Rename Symbol.

Using the structural search-and-replace feature of rust-analyzer can be accom-
plished either through the command palette or by adding a comment with the
replacement string. The replacement is applied to the entire workspace by default,
which makes refactoring a snap. rust-analyzer will parse the syntax tree to find
matches and perform replacements on expressions, types, paths, or items, in a way
that doesn’t introduce syntax errors. A substitution is only applied if the result is valid.
For example, using the Mutex guard example from earlier in this chapter, we can use
the $m.lock() => Mutex::lock(&$m) substitution, as shown in figure 6.1.

() lib.rs — mutex-guard D B3 [o8

® lib.rs X $m.lock() ==>> Mutex::lock(&$m)| o) oo

src > ® lib.rs > {} tests Enter request, for example 'Foo($a) ==>> Foo::new($a)' (Press 'Enter' to confirm or 'Escape' to
#{cfg(test)] cancel)
» Run Tests | Debug
mod tests {
use lazy_static:: 8
use std::sync::Mutex;
{

static ref MUTEX: Mutex<i32> =
} mutex_guard :: tests |

static MUTEX: MUTEX = MUTEX {

test]
N __private_field:()
n 01 ! I
10 let _guard: MutexGuard<i32> = MUTEX. Q). (msg: "couldn't acquire lock");
("first test is running");
}
t#H test]
un Test | Debug
fn O {1
let _guard: MutexGuard<i32> = MUTEX. Q0. (msg: "couldn't acquire lock");

("second test is running");

Figure 6.1 Structural substitution with rust-analyzer, before applying

http://mng.bz/K97P

136

CHAPTER 6 Unit testing

After applying the substitution, we get the result shown in figure 6.2. In this example, call-
ing MUTEX . lock () and Mutex: : lock (&MUTEX) are equivalent, but some might prefer the latter
form. The structural search and replace is contextual, as you can see in the preceding
example, where I only specify Mutex::lock() instead of std::sync::Mutex::lock().
rust-analyzer knows I'm asking for std::sync::Mutex::lock() because of the use
std::sync: :Mutex statement on line 4.

A~

test
> Run Test | Debug
fn O {
let _guard = Mutex. (&EMUTEX) . ("couldn't acquire lock");
("second test is running");
}
}
X8 fPmain O ®O0AO0 rust-analyzer -- NORMAL -- Ln10, Col 27 Spaces:4 UTF-8 LF Rust @ Prettier [

() lib.rs — mutex-guard D3 mos
® lib.rs o [0 oo

src > @ lib.rs > {} tests > @ first_test
#cfg(test)]
> Run Tests | Debuc
mod tests {
use lazy_static:: H

use std::sync::Mutex; 1
{
static ref MUTEX: Mutex<i32> = Mutex:: (0); U
}
test
» Run Test | Debug
fn OAd B
107 let _guard = Mutex} (&MUTEX). ("couldn't acquire lock");

("first test is running");

}

Figure 6.2 Structural substitution with rust-analyzer, after applying

6.7.3

Relocating

At the time of writing, rust-analyzer doesn’t have any features for relocating or mov-
ing code. For example, if you want to move a struct and its methods to a different file
or module, you’ll need to do this process manually.

I wouldn’t normally recommend noncommunity projects, but I feel it’s worth men-
tioning that the Intelli] IDE Rust plugin does provide a move feature for relocating
code (as well as many other features comparable to rust-analyzer), documented at
http://mng.bz/9QJx. This plugin is specific to Intelli] and (to the best of my knowl-
edge) can’t be used with other editors, though it is open source.

http://mng.bz/9QJx

6.7.4

6.7 Refactoring tools 137

Rewriting

If you find yourself needing to rewrite large swaths of code or individual algorithms, a
great way to test whether the new code works just like the old code is to use the prop-
test crate, which we discussed earlier in this chapter. Consider the following imple-
mentation of the FizzBuzz algorithm and corresponding test.

Listing 6.5 FizzBuzz with unit test

fn fizzbuzz(n: i132) -> Vec<String> {
let mut result = Vec::new();

for 1 in 1..(n + 1) {

if 1 $3 ==0 &% 1 % 5 == 0 {
result.push("FizzBuzz".into()) ;
} else if 1 % 3 == 0 {
result.push("Fizz".into()) ;
} else if i ¥ 5 == 0 {
result.push("Buzz".into()) ;
} else {
result.push(i.to string());
}
}
result
}
#[cfg(test)]

mod tests {
use super::*;

#[test]
fn test_fizzbuzz () {
assert_eq! (fizzbuzz(3), vec!["1", "2", "Fizz"]);
assert_eq! (fizzbuzz(5), vec!["1", "2", "Fizz", "4", "Buzz"]);

assert_eq! (
fizzbuzz (15),

vec! [
lllll, |l2|l, IlFizzll’ l|4||’ IlBuzzll’ IlFizle’ ||’7|l, IIBII’ IlFizle’
llBuzzll’ "11", llFizzll’
"13"1 "14"1 IIFizzBuzzll

We’re pretty confident this algorithm works, but we want to write a different version of
the code. So we write our new implementation like so, using a HashMap (with the same
unit test):

fn better fizzbuzz(n: i132) -> Vec<Strings> {
use std::collections: :HashMap;
let mappings = HashMap::from([(3, "Fizz"), (5, "Buzz")]);

138

6.8

CHAPTER 6 Unit testing

let mut result = vec! [String::new(); n as usize];
let mut keys: Vec<&i32> = mappings.keys().collect();
keys.sort () ;
for 1 in 0..n f{
for key in keys.iter() {
if (4 + 1) % *key == 0 {
result[i as usize] .push_str (mappings.get (key)
.expect ("couldn't fetch mapping")) ;
1
1

if result[i as usize].is empty () {
result[i as usize] = (i + 1).to_string();
1

result

Our new implementation is a little more complicated, and while it passes all the test
cases, we aren’t as confident that it works. Here’s where proptest comes in: we can just
generate test cases using proptest and compare them to the original implementation:

use proptest::prelude::*; We limit the range
proptest! { of values from 1 to
#[test] 10,000 for this test, so

H 9.
fn test better fizzbuzz proptest(n in 1i132..10000) { it doesn’t run too long.

assert_eq! (fizzbuzz (n), better fizzbuzz(n))
Here, we just compare the
} result of our old and new
} algorithms, which we expect
to always be the same.

Code coverage

Code coverage analysis is an important tool in assessing the quality and effectiveness
of your tests and code. We can automatically generate code coverage reports using a
crate called Tarpaulin (https://crates.io/crates/cargo-tarpaulin), which is provided as
a Cargo command. Once installed with cargo install cargo-tarpaulin, you can start
generating coverage reports.

Using the code from the previous section, we can generate a local HTML coverage
report using cargo tarpaulin --out Html, the result of which is shown in figures 6.3
and 6.4. Our report shows 100% coverage for lib.rs, which means every line of code
has been tested by our unit tests.

/Users/brenden/dev/code-like-a-pro-in-rust-book/c06/rewriting-fizzbuzz/src Covered: 24 of 24 (100.00%)
Path Coverage
* librs 24 /24 (100.00%)

Figure 6.3 Summary of coverage report

https://crates.io/crates/cargo-tarpaulin

6.8 Code coverage 139

Back /Users/brenden/dev/code-like-a-pro-in-rust-book/c06/rewriting-fizzbuzz/src/lib.rs Covered: 24 of 24 (100.00%)

fn fizzbuzz(n: i32) —> Vec<String> {
let mut result = Vec::new();

for i in 1..(n + 1) {

if i%$3==06&81%5==0{
result.push("FizzBuzz".into());

} else if i %$3 ==0 {
result.push("Fizz".into());

} else if i %5 ==10 {
result.push("Buzz".into());

} else {
result.push(i.to_string());

result

fn better_fizzbuzz(n: i32) —> Vec<String> {
use std::collections::HashMap;
let mappings = HashMap::from([(3, "Fizz"), (5, "Buzz")1);
let mut result = vec![String::new(); n as usizel;
let mut keys: Vec<&i32> = mappings.keys().collect();
keys.sort();
for i in @..n {
for key in keys.iter() {
if (i + 1) % xkey == 0 {
result[i as usize].push_str(
mappings.get(key).expect("couldn't fetch mapping"),
);

}
if result[i as usizel.is_empty() {
result[i as usize] = (i + 1).to_string();

Figure 6.4 Coverage report for lib.rs detail

These reports can either be examined locally or integrated with a CI/CD system to
track code coverage over time. Services like Codecov (https://about.codecov.io/) and
Coveralls (https://coveralls.io/) offer a free tier for open source projects. The dryoc
crate, for example, uses Codecov, which can be viewed at https://app.codecov.io/
gh/brndnmtthws/dryoc/. These services track coverage changes over time, integrate
with GitHub pull requests, and make it easy to measure progress.

A final note on code coverage: achieving 100% coverage shouldn’t be your end
goal. In fact, sometimes, it can be nearly impossible to test every line of code. Cover-
age data can be used to see if you’re improving over time, or at least not getting worse,
but the number itself is an arbitrary metric that doesn’t have qualitative substance. As
Voltaire said, “Perfect is the enemy of good.”

https://about.codecov.io/
https://coveralls.io/
https://app.codecov.io/gh/brndnmtthws/dryoc/
https://app.codecov.io/gh/brndnmtthws/dryoc/
https://app.codecov.io/gh/brndnmtthws/dryoc/

140

6.9

CHAPTER 6 Unit testing

Dealing with a changing ecosystem

Rust is continuously improving and being updated, both in terms of the language
itself and its core libraries, as well as all the crates available in the Rust ecosystem.
While it’s great to be on the cutting edge, this brings with it some challenges. In par-
ticular, maintaining backward and forward compatibility can be tricky.

Unit testing plays an important role in continuous maintenance, especially when
dealing with moving targets. You may be tempted to simply pin dependency versions
and avoid updates, but this will do more harm than good in the long run, especially as
dependencies can intertwine. Even a few tests go a long way in helping detect regres-
sions, especially from third-party library updates or even language changes you
weren’t expecting.

Summary

Rust’s strong, static typing, strict compiler, and borrow checker lessen the bur-
den of unit testing, as runtime type errors don’t need to be tested, like they do
in other languages.

The builtin testing features are minimal, but several crates exist to augment
and automate unit testing.

Rust’s libtest runs unit tests in parallel, which provides a nice speedup for nor-
mal situations, but code that’s sensitive to timing or requires synchronization
needs to be handled accordingly.

Property testing can greatly limit the amount of time and effort spent maintain-
ing unit tests and provide a higher level of assurance.

Measuring and analyzing code coverage over time allows you to quantify the
effectiveness of unit tests.

Unit tests help ensure third-party libraries and crates function as expected after

upgrades.

Integration testing

This chapter covers

= Understanding the differences between unit
testing and integration testing

= Using integration testing effectively

= Comparing Rust’s built-in integration testing to
external testing

= Exploring libraries and tools for integration testing
= Fuzzing your tests

In chapter 6, we discussed unit testing in Rust. In this chapter, we’ll discuss how to
use integration testing in Rust, and how it compares to unit testing. Both unit test-
ing and integration testing are powerful strategies to improve the quality of your
software. They are often used together with slightly different goals.

Integration testing can sometimes be a little more difficult because it may
require more work to create harnesses and test cases, depending on the type of
software being tested. It’s more common to find unit tests than integration tests,
but Rust provides the basic tools you need to write effective integration tests with-
out spending too much time on boilerplate and harnesses. We’ll also explore some
libraries that can help turbocharge your integration testing without requiring
much additional work.

141

142

7.1

CHAPTER 7 Integration testing

Comparing integration and unit testing

Integration testing is the testing of individual modules or groups from their public inter-
faces. This is in contrast to unit lesting, which is the testing of the smallest testable com-
ponents within software, sometimes including private interfaces. Public interfaces are
those which are exposed to external consumers of software, such as the public library
interfaces or the CLI commands, in the case of a command line application.

In Rust, integration tests share very little with unit tests. Unlike unit tests, integra-
tion tests are located outside of the main source tree. Rust treats integration tests as a
separate crate; thus, they only have access to the publicly exported functions and
structures.

Let’s write a quick, generic implementation of the quicksort algorithm (https://
en.wikipedia.org/wiki/Quicksort), which many of us know and love from our com-
puter science studies, as shown in the following listing.

Listing 7.1 Quicksort implemented in Rust

pub fn quicksort<T: std::cmp::PartialOrd + Clones>(slice: &mut [T])

if slice.len() < 2 { o))
return; This is our public quicksort()

} function, denoted as such by

let (left, right) = partition(slice); the pub keyword.

quicksort (left) ;
quicksort (right) ;

}

fn partition<T: std::cmp::PartialOrd + Clone> (QJ Our private partition()
slice: &mut [T] function is not accessible
) -> (smut [T], &mut [T]) { outside of the local scope.
let pivot value = slicel[slice.len() - 1].clone();
let mut pivot_index = 0;
for i in 0..slice.len() {

if slice[i] <= pivot value ({
slice.swap (i, pivot_index) ;
pivot_index += 1;
}
}

if pivot_index < slice.len() - 1 {
slice.swap (pivot_ index, slice.len() - 1);
1

slice.split_at mut (pivot_ index - 1)

Integration tests are located within the tests directory, at the top level of the source
tree. These tests are automatically discovered by Cargo. An example directory struc-
ture for a small library (in src/lib.rs) and a single integration test would look like this:

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

7.1 Comparing integration and unit testing 143

S tree .
. Contains the source
— cargo.lock code for our library
b— Cargo.toml
— src Integration tests are located
| L 1ib.rs within the tests directory.
L— tests
L— guicksort. . .
quicksort.rs quicksort.rs contains
our integration tests.

2 directories, 4 files

Test functions are marked with the # [test] attribute, which will be run by Cargo auto-
matically. You can either use the automatically provided main() function from libtest
or supply your own, as with unit tests. Cargo handles these integration tests as separate
crates. You can have multiple separate sets of crates by creating directories within the
tests directory, each containing their own separate integration tests.

As with unit tests, we typically use the assertion macros (assert!() and
assert_eq! ()) to verify results. The integration is shown in practice in the following
listing.

Listing 7.2 Code sample of the integration test for quicksort implementation

use quicksort::quicksort;

#[test]

fn test_quicksort() ({
let mut values = vec![12, 1, 5, 0, 6, 2];
quicksort (&mut values) ;
assert_eq! (values, vec![0, 1, 2, 5, 6, 12]);

let mut values = vec![1, 13, 5, 10, 6, 2, 0];
quicksort (&mut values) ;
assert_eq! (values, vec![O0, 1, 2, 5, 6, 10, 13]);

This looks a lot like unit tests, yes? The difference in an example like this is almost
entirely semantics—in fact, this code sample includes unit tests, which look nearly the
same in the following listing.

Listing 7.3 Code sample of unit tests for quicksort implementation

#[cfg(test)]
mod tests {
use crate::{partition, quicksort};

#[test]
fn test partition() {
let mut values = vec! [0, 1, 2, 31;
assert_eq! (
partition (&mut values),

144

7.2

CHAPTER 7 Integration testing

(vec! [0, 1, 2].as_mut_slice(), vec![3].as_mut_slice())

)i

let mut values = vec![O0, 1, 2, 4, 3];
assert_eq! (
partition (&mut values),
(vec! [0, 1, 2].as_mut_slice(), vec![3, 4].as_mut_slice())
)i
}

#[test]

fn test quicksort () {
let mut values = vec![1, 5, 0, 6, 2];
quicksort (&mut values) ;
assert_eq! (values, vec![0, 1, 2, 5, 6]);

let mut values = vec![1, 5, 10, 6, 2, 0];
quicksort (&mut values) ;
assert_eq! (values, vec![0, 1, 2, 5, 6, 10]);

The only real difference with this code is that in the unit tests, we’re also testing the
partition() function, which is nonpublic. Is this a case where we shouldnt bother writ-
ing integration tests? No. Why? Because we’re creating a library with a public inter-
face, and we should test the library, as it’s intended to be used externally. Integration
tests live outside the library (or application) we’re testing; thus, they only have visibility
to public (and external) interfaces. This forces us to write tests the same way that
downstream users of our library or application would use the software. Integration
testing helps us make sure the public API works as intended from the perspective of
external users.

Integration testing strategies

It wasn’t too long ago that lest driven development (TDD) was all the rage. TDD is based
on the idea that you write your tests before writing software. The theory of TDD is that
writing tests first helps you build quality code faster. TDD seems to have fallen out of
favor, butit does provide us with some insights, especially regarding integration testing.

One thing we can learn from TDD is that designing APIs is just as important as the
testing itself. The ergonomics of your software matters, whether you’re building librar-
ies; command line applications; or web, desktop, or mobile apps. The end user experi-
ence (UX) is surfaced when writing integration tests; these tests force you to think
about how your software is used from the perspective of the person using it.

Integration testing and unit testing aren’t mutually exclusive; they should be used
to complement each other where appropriate. Integration tests shouldn’t be written
the same way as unit tests because we’re testing different things. When we think about
writing integration tests, we need to consider more than just the correctness of an
algorithm or the logic it implements.

7.2 Integration testing strategies 145

We should think about integration tests not only as a way of verifying our code
works but also as a way of testing the UX of our software. There are plenty of examples
of good and bad software design, and the process of writing integration tests for your
own software forces you to sample a taste of your design. It’s easy to get tunnel vision
and lose sight of the big picture when writing software, and integration tests are, by
definition, a holistic perspective of your code.

I’'ve personally experienced this tunnel vision problem many times. For example,
when writing the dryoc crate, I got a little carried away with some of the optional fea-
tures, and it wasn’t until I tried to write integration tests that I realized I'd done a poor
job of designing the interface at the time. I had to refactor my design substantially to
make the library easier to use.

Regarding TDD, should you write integration tests before writing your library or
application? This is not a practice that I follow, but I don’t believe it’s necessarily bad,
so I recommend testing and determining whether it works for you. I do think, how-
ever, that you should write integration tests to empathize with your end users. Which
order you write the tests in is up to you. In any case, you should be flexible in your
design and refactor mercilessly.

The words of a prolific architect and inventor come to mind:

When I am working on a problem, I never think about beauty but when I have finished, if

the solution is not beautiful, I know it is wrong.

—R. Buckminster Fuller

The previous quicksort example provides is an illustration of how we can improve our
interface, which becomes apparent when writing tests for this library. Currently, we
have a standalone quicksort () function, which accepts a slice as input. This is fine, but
we can make our code more Rustaceous by creating a trait (traits are discussed in
greater detail in chapter 8) and providing an implementation, as shown in the follow-
ing listing.

Listing 7.4 Code for Quicksort trait

Here, we define our public quicksort trait.

We’ll use the quicksort() method (rather than

pub trait Quicksort { sort()) so that we don’t clash with the existing
fn quicksort (smut self) {} sort() method on Vec and slices.
1
Here, we define a
impl<T: std::cmp::PartialOrd + Clone> Quicksort for [T] { generic implementation
fn quicksort (&mut self) { for our trait, which will

. work for any slice type
} Here, we just that implements the

} Fa" our qulcl'(sort. PartialOrd and Clone
implementation directly. traits

quicksort (self) ;

146

7.3

CHAPTER 7 Integration testing

Now, we can update our tests, as shown in the following listing.

Listing 7.5 Code for integration test with the quicksort trait

#[test] .)
fn test quicksort trait() M|WEFGEdt0I"?OﬂIS
use quicksort trait::Quicksort; the quicksort trait.

let mut values = vec![12, 1, 5, 0, 6, 2];
values.quicksort () ;

assert _eq! (values, vec![0, 1, 2, 5, 6, 12]); Instead of

quicksort(&mut values),
we can just write

let mut values = vec![1, 13, 5, 10, 6, 2, 0]; N
ut vatu v . ! values.quicksort().

values.quicksort () ;
assert_eq! (values, vec!([O0, 1, 2, 5, 6, 10, 13]);

}

This code doesn’t look substantially different, and for the most part, we’re just using a
bit of syntax sugar to clean things up. Calling arr.quicksort () instead of quick-
sort (smut arr) looks nicer and requires typing four fewer characters, as we don’t need
to specify the explicit mutable borrow with smut.

Built-in integration testing vs. external integration testing

Rust’s built-in integration testing will serve most people well, but it’s not a panacea.
You may benefit from external integration testing tools, from time to time. For exam-
ple, testing an HTTP service in Rust could be best served with simple (and nearly
ubiquitous) tools like curl (https://curl.se/) or HTTPie (https://github.com/httpie/
httpie). These tools aren’t related to Rust specifically; they are generic tools that oper-
ate at the system level, rather than the language level.

A quick web search will show there are many, many existing software test tools,
especially for HTTP services. Unless you're trying to create your own testing frame-
work, it’s almost always better to use existing tools than reinvent the wheel.

For command line applications written in Rust, writing the integration tests in Rust
isn’t always the best approach. Rust is designed for safety and performance—test har-
nesses don’t usually need to be safe or fast, just correct. In many cases, it’ll be much eas-
ier to write integration tests as Bash, Ruby, or Python script rather than a Rust program.

While it’s great to do everything in Rust, you’ll need to weigh the value of spending
the time required to build your integration tests in Rust, depending on the complex-
ity involved. Dynamic scripting languages offer many advantages for noncritical appli-
cations, as you can usually make things happen quickly with little effort, even if you’re
an expert in Rust.

However, there is one big advantage to only using Rust for integration tests: you’ll
be able to run your tests on any platform supported by Rust, with no need for external
tooling aside from the Rust toolchain. This can have some advantages, especially in

https://curl.se/
https://github.com/httpie/httpie
https://github.com/httpie/httpie
https://github.com/httpie/httpie

74

74.1

7.4 Integration testing libraries and tooling 147

constrained environments. Additionally, if you find Rust to be your most productive
language, then there’s no reason not to use it.

Integration testing libraries and tooling

Most of the tools and libraries used for unit testing also apply for integration tests.
There are, however, a few crates that can make life much easier for integration testing,
which we’ll explore in this section.

Using assert_cmd to test CLI applications

For testing command line applications, let’s look at the assert _cmd crate
(https://crates.io/crates/assert_cmd), which makes it easy to run commands and
check their result. To demonstrate, we’ll create a command line interface for our
quicksort implementation, which sorts integers from CLI arguments, shown in the fol-
lowing listing.

Listing 7.6 CLI application using quicksort

use std::env;

fn main() {

use quicksort_proptest::Quicksort; Reads the command line arguments,

skipping the first argument, which is

let mut values: Vec<i64> = env::args() always the program name
.skip (1)
.map (|s| s.parse::<i64>().expect (&format! ("{s}: bad input: ")))
.collect () ;
Collects the Parses each value (a
values.quicksort () ; values into a Vec string) into an i64

println! ("{values:?}");

We can test this by running cargo run 5 4 3 2 1, which will print [1, 2, 3, 4, 5].
Now, let’s write some tests using assert_cmd in the following listing.

Listing 7.7 Quicksort CLI integration tests using assert cmd

use assert_cmd::Command;

#[test] Our test functions return a Result,
fn test_no_args() -> Result<(), Box which lets us use the ? operator.
> <dyn std::error::Error>> {

let mut cmd = Command::cargo bin("quicksort-cli")?;

cmd.assert () .success () .stdout (" [1\n") ;
Ok (()) A
} t the end of the test, we just return Ok(()). () is the special unit
type, which can be used as a placeholder and has no value. It
can be thought of as equivalent to a tuple with zero elements.

#[test]

https://crates.io/crates/assert_cmd

148

CHAPTER 7 Integration testing

fn test_cli_well known() -> Result<(), Box

“» <dyn std::error::Error>> { Our test functions

= .. 1 " 1 - 1)y .
let mut cmd Command: :cargo_bin ("quicksort-cli")?; return a Result,

Cmd.args(&["l4", "52"’ "l", "_195", ll1582"]) which Iets us use
.assert () the ? operator.
.success ()

.stdout (" [-195, 1, 14, 52, 1582]\n");

ok(()) At the end of the test, we just return Ok(()). () is the special unit
) type, which can be used as a placeholder and has no value. It
can be thought of as equivalent to a tuple with zero elements.

These tests are fine, but for testing against well-known values, we can do a little better.
Rather than hardcoding into the source code, we can create some simple file-based
fixtures to test against well-known values in a programmatic way.

First, we’ll create a simple directory structure on the filesystem to store our test fix-
tures. The structure consists of numbered folders, with a file for the arguments (args)
and the expected result (expected):

$ tree tests/fixtures
tests/fixtures

— 1

args

expected

args
expected

T
[TTTEIT

args
expected

3 directories, 6 files
Next, we’ll create a test that iterates over each directory within the tree and reads the

arguments and expected result; then runs our test; and, finally, checks the result, as
shown in the following listing.

Listing 7.8 Quicksort CLI integration tests with file-based fixtures

Performs
#ltest] . a directory
fn test_cli fixtures() -> Result<(), Box<dyn std::error::Error>> { listing within
use std::fs; , , tests/fixtures
let paths = fs::read dir("tests/fixtures")?; within our
. . crate
for fixture in paths . { Pushes the args name
let mut path = fixture?.path(); into our path buffer
Iterates over ~path.push("args");
each listing let args: Vec<String> = fs::read to_string
within the = (&path)? Reads the contents of the args file into a string and parses the
directory .trim() string into a Vec— the trim() method removes the trailing
.split (' ") newline from the args file; split(" ') will split the contents on
.map (str::to_owned) spaces; map(str::to_owned) will convert a &str into an owned

.collect () ; String; and, finally, collect() will collect the results into a Vec.

7.4 Integration testing libraries and tooling 149

path.pop() ;
P;}?Zfal:f: path. push ("expected) ; Pushes expected onto the path buffer
path buffer let expected = fs::read_to_string(&path)?; <1—‘ Reads the expected values

let mut cmd = Command::cargo bin from the file into a string
("quicksort-cli")?;

cmd.args (args) .assert () .success () .stdout Runs the quicksort CLI, passes
(expected) ; the arguments, and checks the

} expected results

74.2

Ok (())

}
Using proptest with integration tests
Next, to make our tests even more robust, we can add the proptest crate (which we

discussed in the previous chapter) to our quicksort implementation within an integra-
tion test in the following listing.

Listing 7.9 Proptest-based integration test with quicksort

use proptest::prelude::*;
prop::collection::vec provides us with a Vec of

proptest! { random integers, with a length up to 1,000.

#[test]
fn test_quicksort proptest (

vec in prop::collection::vec (prop::num::1i64::ANY, 0..1000)
)

use quicksort proptest::Quicksort; .
- Here, we clone then sort (using the

let mut vec sorted = vec.clone () ; built-in sorting method) the random

vec_sorted.sort () ; values to use as our control.

let mut vec quicksorted = vec.clone();

vec_quicksorted.quicksort () ; Here. we clone and sort the
’

assert_eq! (vec_quicksorted, vec sorted); raqdonlv#uesuﬁngoyr
} quicksort implementation.

It’s worth noting that testing with tools that automatically generate test data—such as
proptest—can have unintended consequences, should your tests have external side
effects, such as making network requests or writing to an external database. You
should try to design your tests to account for this, either by setting up and tearing
down the whole environment before and after each test or providing some other way
to return to a known good state before and after the tests run. You may discover some
surprising edge cases when using random data.

NOTE The proptest crate prints the following warning when running as an
integraﬁ(nltest proptest: FileFailurePersistence::SourceParallel set, but
failed to find lib.rs or main.rs. This warning can be ignored; refer to the
GitHub issue at https://github.com/AltSysrq/proptest/issues/233 for more
information.

https://github.com/AltSysrq/proptest/issues/233

150

74.3

7.5

CHAPTER 7 Integration testing

Other integration testing tools

The following are some more crates worth mentioning to turbocharge your integra-
tion tests:

rexpect—Automates and tests interactive CLI applications (https://crates.io/
crates/rexpect).

assert_fs—Offers filesystem fixtures for applications that consume or produce
files (https://crates.io/crates/assert_fs).

Fuzz testing

Fuzz testing is similar to property testing, which we’ve already discussed in this chapter.
The difference between the two, however, is that with fuzz testing, you test your code
with randomly generated data that isn’t necessarily valid. When we do property test-
ing, we generally restrict the set of inputs to values we consider valid. With property
testing, we do this because it often doesn’t makes sense to test all possible inputs, and
we also don’t have infinite time to test all possible input combinations.

Fuzz testing, on the other hand, does away with the notion of valid and invalid and
simply feeds random bytes into your code, so you can see what happens. Fuzz testing is
especially popular in security-sensitive contexts, where you want to understand what
happens when code is misused.

A common example of this is public-facing data sources, such as web forms. Web
forms can be filled with data from any source that needs to be parsed, validated, and
processed. Since these forms are out in the wild, there’s nothing stopping someone
from filling web forms with random data. For example, imagine a login form with a
username and password, where someone (or something) could try every combination
of username and password, or a list of the most common combinations, to gain access
to the system, either by guessing the correct combination or injecting some “magic”
set of bytes that causes an internal code failure and bypasses the authentication sys-
tem. These types of vulnerabilities are surprisingly common, and fuzz testing is one
strategy to mitigate them.

The main problem with fuzz testing is that it can take an unfeasible amount of
time to test every set of possible inputs, but in practice, you don’t necessarily need to
test every combination of input bits to find bugs. You may be quite surprised how
quickly a fuzz test can find bugs in code you may have thought was bulletproof.

To fuzz test, we're going to use a library called libFuzzer (https://llvm.org/
docs/LibFuzzer.html), which is part of the LLVM project. You could use libFuzzer
directly with FFI (we explored FFI in chapter 4), but instead, we’ll use a crate called
cargo-fuzz, which takes care of providing a Rust API for libFuzzer and generates boil-
erplate for us.

Before we dive into a code sample, let’s talk about how libFuzzer works at a high level:
the library will populate a structure (which you provide) with random data that contains
function arguments, and it calls your code’s function repeatedly. If the data triggers an
error, this is detected by the library, and a test case is constructed to trigger the bug.

https://crates.io/crates/rexpect
https://crates.io/crates/rexpect
https://crates.io/crates/rexpect
https://crates.io/crates/assert_fs
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

7.5 Fuzz testing 151

Once we've installed the cargo-fuzz crate with cargo install cargo-fuzz, we can
write a test. In the following listing, I’'ve constructed a relatively simple function that
looks like it works, but in fact, it contains a subtle bug that will trigger under specific
conditions.

Listing 7.10 String-parsing function with a bug

Checks if string contains _only_
digits using a regular expression,

pub fn parse integer(s: &str) -> Option<i32s> { including negative numbers
use regex::Regex;
let re = Regex::new(r"”-2\d{1,10}$") .expect ("Parsing regex failed");

if re.is match(s) {

; : Will match a string with
S . . t("P failed"
| els:mt{e (s.parse () .expect ("Parsing failed")) 1-10 digits, prefixed by

. uwmn
None an option

}

This function will accept a string as input and parse the string into an i32 integer, pro-
vided it’s between 1 and 10 digits in length and, optionally, prefixed by a - (minus)
symbol. If the input doesn’t match the pattern, None is returned. The function
shouldn’t cause our program to crash on invalid input. This seems innocuous
enough, but there’s a major bug.

These kinds of bugs are surprisingly common and something we have all probably
written at some point. Edge case bugs like this can lead to undefined behavior,
which—in a security context—can lead to bad things happening.

Next, let’s create a small fuzz test using cargo-fuzz. First, we need to initialize the
boilerplate code by running cargo fuzz init. This will create the following structure
within our project:

S tree

}— Cargo.lock
}— cargo.toml
b— fuzz
}— Cargo.lock
— Cargo.toml
L— fuzz targets
L— fuzz target 1l.rs
rc
L— lib.rs

I
I
I
I
L

n

3 directories, 6 files

Here, we can see that cargo-fuzz created a new project in the fuzz subdirectory, and
there’s a test in fuzz_target_1. We can list the fuzz targets (or tests) with cargo fuzz
list, which will print fuzz_target_1

152

CHAPTER 7 Integration testing

Next, we need to write the fuzz test. To test our function, we’re just going to call it
with a random string, which is supplied by the fuzzing library. We’ll use the Arbitrary
(https://crates.io/crates/arbitrary) crate to derive data in the form we need. The fuzz
test is shown in the following listing.

Listing 7.11 Fuzz test

#! [no_main]
use arbitrary::Arbitrary;

use libfuzzer sys::fuzz target; We use derive to automatically generate

the Arbitrary and Debug traits.
[derive (Arbitrary, Debug)]

struct Input { Our Input struct only contains one string,

s: String, nothing else. The data in this struct will be
} populated arbitrarily by the fuzzer.

fuzz_ target! (|input: Input]| {

. Here, we use the fuzz_target! macro
use fuzzme::parse_ integer; —

provided by cargo-fuzz, which defines

.) the entrypoint for our fuzz test.
parse_integer (&input.s) ;

1 Here, we call our function with our random
string data, which is provided by the fuzzer.

Now, we’re ready to run the fuzz test and see what happens. You probably already know
at this point that there’s a bug, so we expect it to crash. When we run the fuzzer with
cargo fuzz run fuzz_target_1, we’ll see output that looks similar to the following listing
(which has been shortened because the fuzzer generates a lot of logging output).

Listing 7.12 Output of cargo fuzz run fuzz target 1

cargo fuzz run fuzz_ target 1
Compiling fuzzme-fuzz v0.0.0
(/Users/brenden/dev/code-like-a-pro-in-rust/code/c7/7.5/fuzzme/fuzz)
Finished release [optimized] target(s) in 1.07s
Finished release [optimized] target(s) in 0.01ls
Running ~fuzz/target/x86_ 64-apple-darwin/release/fuzz_ target 1
-artifact_prefix=/Users/brenden/dev/code-like-a-pro-in-rust/
= code/c7/7.5/fuzzme/fuzz/artifacts/fuzz_target 1/
/Users/brenden/dev/code-like-a-pro-in-rust/code/c7/7.5/fuzzme/
=» fuzz/corpus/fuzz target 1°
fuzz target 1(14537,0x10d0a6600) malloc: nano zone abandoned due to
inability to preallocate reserved vm space.
INFO: Running with entropic power schedule (0xFF, 100).
snip

Failing input:

fuzz/artifacts/fuzz target 1/
crash-105eb7135ad863be4e095db6ffec4dclb9alas66

Output of ~std::fmt::Debug”:

https://crates.io/crates/arbitrary

Summary 153

Input {
s: "8884844484",
}

Reproduce with:

cargo fuzz run fuzz target 1 fuzz/artifacts/fuzz target 1/
crash-105eb7135ad863bed4e095db6ffe64dclb9alad6e

Minimize test case with:

cargo fuzz tmin fuzz target 1 fuzz/artifacts/fuzz target 1/
crash-105eb7135ad863be4e095db6ffe64dclb9alades

NOTE Running the fuzzer can take quite some time, even on fast machines.
While this example should trigger fairly quickly (within 60 seconds, in most
cases), more complex tests may take much longer. For unbounded data (e.g.,
a string with no limitin length), the fuzzer can take an infinite amount of time.

Near the bottom of the output, cargo-fuzz prints information about the input that
caused the crash. Additionally, it creates a test case for us, which we can use to make
sure this bug isn’t triggered again in the future. For the preceding example, we can
simply run cargo fuzz run fuzz_target_1 fuzz/artifacts/fuzz_target_l/crash-
105eb7135ad863bed4e095db6ffe64dclblaladés to test our code again with the same input,
which will make it easy to test a fix for this bug without having to rerun the fuzzer
from scratch. It can take a long time to find test cases that trigger a crash, so this is
helpful in limiting the amount of time we need to spend running the fuzzer.

As an exercise, try modifying the function so that it no longer crashes. There are a
few different ways to solve this problem, and I’ll provide a hint: the parse () method
already returns a Result for us. For more details on using cargo-fuzz, consult the doc-
umentation at https://rust-fuzz.github.io/book/.

Summary

Integration tests complement unit tests, but they differ in one major way: inte-
gration tests apply only to public interfaces.

We can use integration tests as a way to test our API design and make sure it’s
appropriate and well designed for the end user.

Rust’s built-in integration testing framework provides minimal features, but it’s
more than adequate for most purposes.

Like unit tests, Rust’s integration tests use the libtest library, which is part of
core Rust.

Crates like proptest, assert_cmd, assert_£s, and rexpect can be used to further
enhance our integration tests.

The cargo-fuzz crate provides libFuzzer integration and Cargo commands to
set up and run fuzz tests.

https://rust-fuzz.github.io/book/

Part 4

Asynchronous Rust

ou won’t get far in programming without encountering situations in which
you need to utilize concurrency and parallelization techniques to accomplish a
task. Sometimes, we can get away with avoiding these, which is often the best
course of action because it allows us to avoid complexity, but modern computers
are highly parallelized, and any sufficiently complex system will require some
degree of concurrency.

Asynchronous programming, often combined with parallelism, is a popular
technique for handling concurrency. Async programming is, in many ways, just
syntactic sugar that allows us to write code without having to exercise as many
brain cells. We hide the complexity behind abstractions that free our thinking
capacity for high-level problems, which, in turn, provides leverage to our skills.

To use async Rust effectively in a systems programming context, you need to
understand what’s going on beneath the abstractions. But fear not, once you
learn the definitions, abstractions, and jargon used in async Rust, you’ll find it a
joy to use, warts and all.

Async Rust

This chapter covers

Thinking asynchronously: an overview of async
programming

Exploring Rust’s async runtimes

Handling async task results with futures
Mixing sync and async

Using the async and .await features

Managing concurrency and parallelism with async
Implementing an async observer
Understanding when to avoid using async
Tracing and debugging async code

Dealing with async when testing

Concurrency is an important conceptin computing, and it’s one of the greatest force

multipliers of computers. Concurrency allows us to process inputs and outputs—

such as data, network connections, or peripherals—faster than we might be able to

without concurrency. And it’s not always about speed but also latency, overhead, and

system complexity. We can run thousands or millions of tasks concurrently, as illus-
trated in figure 8.1, because concurrent tasks tend to be relatively lightweight. We can
create, destroy, and manage many concurrent tasks with very little overhead.

157

158

CHAPTER 8 Async Rust

Time Single threaded, asynchronous
Thread 1
Task 1
Task 2
TS| ey
Active - Started
Idle Waiting...

Figure 8.1 Tasks executing
concurrently within the same

Active - Finished thread

Asynchronous programming uses concurrency to take advantage of idle processing
time between tasks. Some kinds of tasks, such as I/O, are much slower than ordinary
CPU instructions, and after a slow task is started, we can set it aside to work on other
tasks while waiting for the slow task to be completed.

Concurrency shouldn’t be confused with parallelism (which I'll define here as the abil-
ity to execute multiple tasks simultaneously). Concurrency differs from parallelism in
that tasks may be executed concurrently without necessarily being executed in parallel.
With parallelism, it’s possible to execute program code while simultaneously sharing the
same region of memory on the host machine, either across multiple CPUs or using con-
text switching at the OS level (a detailed discussion of which is beyond the scope of this
book). Figure 8.2 illustrates two threads executing in

parallel, simultaneously. T Multithreaded, synchronous
To think about this analogously, consider how Thread 1 Thread 2

humans operate consciously: we can’t do most tasks

in parallel, but we can do a lot of things concur- Task 1 Task3

rently. For example, try having a conversation with

two or more people at the same time—it’s much Task 2 Task 4

harder than it sounds. It’s possible to talk to many
people at the same time, but you have to context
switch between them and pause when switching
from one person to another. Humans do concur-
rency reasonably well, but we suck at parallelism.
In this chapter, we’re going to discuss Rust’s asynchronous concurrency system,

Figure 8.2 Synchronous tasks
executing in parallel across two
threads

which provides both concurrency and parallelism, depending on what your needs are.
It’s relatively easy to implement parallelism without async (using threads), but it’s
quite difficult to implement concurrency without async. Async is a vast topic, so we’re
really only going to cover the basics in this chapter. However, if you're already familiar
with asynchronous programming, you’ll find everything you need to be effective with
async in Rust.

8.1

8.2

8.2 Thinking asynchronously 159

Runtimes

Rust’s async is similar to what you may have encountered in other languages, though it
has its own unique features in addition to borrowing much of what works well from
other languages. If you’re familiar with async from JavaScript, Python, or even C++’s
std: :async, you should have no problem adjusting to Rust’s async. Rust does have one
big difference: the language itself does not provide or prescribe an asynchronous run-
time implementation. Rust only provides the Future trait, the async keyword, and the
.await statement; implementation details are largely left to third-party libraries. At the
time of writing, there are three widely used async runtime implementations, outlined
in table 8.1.

Table 8.1 Summary of async runtimes

Downloads? Description
Tokio 144,128,598 Full-featured async runtime
async-std 18,874,366 Rust standard library implementation with async
Smol 3,604,871 A lightweight runtime, intended to compete with Tokio

2The number of downloads for each crate is accurate as of December 26, 2023.

Both async-std and smol provide compatibility with the Tokio runtime; however, it is
not practical to mix competing async runtimes within the same context in Rust. While
separate runtimes do implement the same async API, you will likely require runtime-
specific features for most use cases. As such, the recommendation is to use Tokio for
most purposes, as it is the most mature and widely used runtime. It may become easier
to swap or interchange runtimes in the future, but for the time being, this is not worth
the headache.

Crates that provide async features could, theoretically, use any runtime, but in
practice, this is uncommon, as they typically work best with one particular runtime. As
such, some bifurcation exists in the Rust async ecosystem, where most crates are
designed to work with Tokio, but some are specific to smol or async-std. For these rea-
sons, this book will focus on the Tokio async runtime as the preferred async runtime.

Thinking asynchronously

When we talk about asynchronous programming, we are usually referring to a way of han-
dling control flow for any operation that involves waiting for a task to complete, which
is often I/O. Examples of this include interacting with the filesystem or a socket, but it
could also be slow operations, such as computing a hash or waiting for a timer to finish.
Most people are familiar with synchronous I/0O, which (with the exception of certain
languages like JavaScript) is the default mode of handling I/O. The main advantages
of using asynchronous programming (as opposed to synchronous) are as follows:

160

CHAPTER 8 Async Rust

I/0 tends to be very fast with async because there is no need to perform a con-
text switch between threads to support concurrency. Context switching, which
often involves synchronization or locking with mutexes, can create a surprising
amount of overhead.

It’s often much easier to reason about software that’s written asynchronously
because we can avoid many kinds of race conditions.

Asynchronous tasks are very lightweight; thus, we can easily handle thousands
or millions of asynchronous tasks simultaneously.

When it comes to I/O operations in particular, the amount of time waiting for opera-
tions to complete is often far greater than the amount of time spent processing the
result of the I/O operation. Because of this, we can do other work while we’re waiting
for tasks to finish, rather than executing every task sequentially. In other words, with
async programming, we are effectively breaking up and interleaving our function calls
between the gaps created by time spent waiting for an I/O operation to finish.

In figure 8.3, I've illustrated the difference with respect to T (time) of blocking
versus nonblocking I/O operations. Async 1/0 is nonblocking, whereas synchronous
I/0 is blocking. If we assume the time to process the result of an I/O operation is
much less than the time spent waiting for I/O to complete, asynchronous I/0 will
often be faster. It should also be noted that you can use multi-threaded programming
with async, but often, it’s faster to simply use a single thread.

There’s no free lunch here; however, if the time to process data from I/0 opera-
tions becomes greater than the time spent waiting for I/O to complete, we’d see
worse performance (assuming single-threaded async). As such, async isn’t necessarily
ideal for every use case. The good news is that Tokio provides quite a bit of flexibility
in choosing how to execute async tasks, such as how many worker threads to use.

You can also mix parallelism with async, so comparing async directly to synchro-
nous programming is not always meaningful. Async code can run concurrently in par-
allel across several threads, which acts like a performance multiplier that synchronous
code can’t really compete with.

Once you adjust to the mental model required for thinking about async program-
ming, it’s much less complex than synchronous programming, especially compared to
multithreaded synchronous programming.

8.3

8.3 Futures: Handling async task results 161

T Synchronous /O Asynchronous 1/0
Thread 1 Thread 2 Thread n Thread 1
. . . . Processing
| Processing | | Processing | | Processing | | Processing | Processing
¥ ¥ ¥ ¥ Processing
Processing
v

Processing
Processing
Processing

= :
Processing | | Processing | | Processing | | Processing rocessing
Processing
Processing
Processing
Processing | | Processing | | Processing | | Processing | Plietessiig

Figure 8.3 Comparing synchronous to asynchronous 1/0

Futures: Handling async task results

Most async libraries and languages are based on futures, which is a design pattern for
handling tasks that return a result in the future (hence the name). When we perform
an asynchronous operation, the result of that operation is a future, as opposed to
directly returning the value of the operation itself (as we’d see in synchronous pro-
gramming or an ordinary function call). While futures are a convenient abstraction,
they do require a little more work on the part of the programmer to handle correctly.

To better understand futures, let’s consider how a timer works: we can create (or
start) an async timer, which returns a future to signal the completion of the timer.
Merely creating the timer is not enough; we also need to tell the executor (which is

162 CHAPTER 8 Async Rust
part of the async runtime) to execute the task. In synchronous code, when we want to
sleep for 1 second, we can just call the sleep () function.

NOTE It’s true that you could call sleep() within async code, but you should
never do this. An important rule of asynchronous programming is to never
block the main thread. While calling sleep() won’t cause your program to
crash, it will effectively defeat the purpose of async programming, and it is
considered an anti-pattern.

To compare an async timer to a synchronous one, let’s look at what it takes to write a
tiny Rust program that sleeps for 1 second and prints "Hello, world!". First, let’s look
at the synchronous code:

fn main() {
use std::{thread, time};

let duration = time::Duration::from secs (1) ;
thread::sleep(duration) ;

println! ("Hello, world!");

The synchronous code looks nice and simple. Next, let’s examine the async version:

fn main() {
use std::time;

let duration = time::Duration::from secs (1) ; The runtime supports time
- or 1/0, which can be enabled
tokio: :runtime: :Builder: :new current thread() individually or entirely with
.enable_time () B - enable_all().
.build()
.unwrap ()

.block _on(async {
tokio::time::sleep(duration) .await;
println! ("Hello, world!");

We create an async block, which
waits on the future returned by
tokio::time::sleep() and then
ol prints "Hello, world!".

Yikes! That’s much more complicated. Why do we need all this complexity? In short,
async programming requires special control flow, which is mostly managed by the run-
time butstill requires a different style of programming. The runtime’s scheduler decides
what to run when, but we need to yield to the scheduler to allow an opportunity for it
to switch between tasks. The runtime will manage most of the details, but we still need
to be aware of this to use async effectively. Yielding to the scheduler (in most cases) is
as simple as using .await, which we’ll discuss in greater depth in the next section.

8.3 Futures: Handling async task results 163

What does it mean to block the main thread?

As I've mentioned, the trick to writing good async code is to avoid blocking the main
thread. When we say block the main thread, we really mean that the runtime should
not be prevented from switching tasks for long periods of time. We typically consider
I/0 to be a blocking operation because the amount of time an 1/0 operation takes to
complete depends on several factors outside the context of our program and its con-
trol. However, you could also have strictly CPU-bound tasks that are considered block-
ing, provided they take long enough to complete.

We can prevent blocking the main thread for too long by introducing yield points. A yield
point is any code that passes control back to the scheduler. Joining or waiting on a
future creates a yield point by passing control up through the chain to the runtime.

The question of what constitutes a long period of time is largely context dependent, so
| can’t provide hard guidelines. We can, however, estimate what constitutes fast ver-
sus slow operations by looking at how long CPU-bound and I/0O-bound operations typ-
ically take. To gauge the difference between fast and slow, we can compare a typical
function call (which is a fast operation) to how long a simple 1/0 operation takes (a
slow operation).

Let’s estimate the time it takes for a typical function to execute. We can calculate the
time of one clock cycle by taking the inverse of the CPU frequency (assuming one
instruction per clock cycle).

For example, for a 2 GHz CPU, the time per instruction is 0.5 ns. For an operation that
requires 50 instructions (which would approximate a typical function call), we can
assume about 25 ns to execute.

By comparison, a small I/0 operation, such as reading 1,024 bytes from a file, can
take significantly longer. Running a small test on my laptop, we can demonstrate this:

$ dd if=/dev/random of=testfile bs=1k count=1
1+0 records in
1+0 records out
1024 bytes (1.0 kB, 1.0 KiB) copied, 0.000296943 s, 3.4 MB/s
$ dd if=testfile of=/dev/null QAAW

Writes 1,000 random bytes
from /dev/random to testfile.

Reads the contents of testfile

2+0 records in and writes them to /dev/null.

2+0 records out
1024 bytes (1.0 kB, 1.0 KiB) copied, 0.000261919 s, 3.9 MB/s

In the preceding test, reading from a small file takes on the order of 262 us, which is
about 5,240 times longer than 50 ns. Network operations are likely to be another
one to two orders of magnitude slower, depending on several factors.

For non-I/0 operations you think might take a relatively long time to complete, you
should either treat them as blocking using tokio: :task::spawn blocking() or break
them up by introducing .await as needed, allowing the scheduler an opportunity to
give other tasks time to run. If unsure, you should benchmark your code to decide
whether you would benefit from such optimizations.

164

83.1

84

CHAPTER 8 Async Rust

Defining a runtime with #[tokio::main]

Tokio provides a macro for wrapping our main () function, so we can simplify the pre-
ceding timer code into the following form if we want:

#[tokio: :main]
async fn main()
use std::time;

let duration = time::Duration::from secs (1) ;

tokio::time::sleep (duration) .await;
println! ("Hello, world!");

With the help of some syntax sugar, our code now looks just like the synchronous ver-
sion. We’ve turned main() into an async function with the async keyword, and the
#[tokio::main] handles the boilerplate needed to start the Tokio runtime and create
the async context we need.

Remember that the result of any async task is a future, but we need to execute that
future on the runtime before anything actually happens. In Rust, this is normally
done with the .await statement, which we will discuss in the next section.

The async and .await keywords: When and where to use them

The async and .await keywords are quite new in Rust. It’s possible to use futures
directly without these, but you're better off just using async and .await when possible
because they handle much of the boilerplate without sacrificing functionality. A func-
tion or block of code marked as async will return a future, and .await tells the runtime
we want to wait for a result. The syntax of async and .await allows us to write async
code that looks like synchronous code but without much of the complexity that comes
with working with futures. You can use async with functions, closures, and code blocks.
async blocks don’t execute until they’re polled, which you can do with .await.

Under the hood, using .await on a future uses the runtime to call the poll()
method from the Future trait and waits for the future’s result. If you never call .await
(or explicitly poll a future), the future will never execute.

To use .await, we need to be within an async context. We can create an async con-
text by creating a block of code marked with async and executing that code on the
async runtime. You don’t have to use async and .await, but it’s much easier to do
things this way, and the Tokio runtime (along with many other async crates) has been
designed to be used this way.

For example, consider the following program, which includes a fire-and-forget
async code block spawned with tokio: :task: :spawn():

#[tokio: :main]
async fn main() {
async {
println! ("This line prints first");

8.4 The async and .await keywords: When and where to use them 165

}
.await;
let future = async {
println! ("This line never prints");

}i
tokio::task: :spawn(async {
println! (
"This line prints sometimes, depending on how quick it runs"
)
P

println! ("This line always prints, but it may or may not be last");

If you run this code repeatedly, it will (confusingly) print either two or three lines.
The first println! () will always print before the others because of the .await state-
ment, which awaits the result of the first future. The second println! () never prints
because we didn’t execute the future by calling .await or spawning it on the runtime.
The third println! () is spawned onto the Tokio runtime, but we don’t wait for it to
complete, so it’s not guaranteed to run, and we don’t know if it will run before or after
the last println! (), which will always print.

Why does the third println! () not print consistently? It’s possible that the program
will exit before the Tokio runtime’s scheduler gets a chance to execute the code. If we
want to guarantee that the code runs before exiting, we need to wait for the future
returned by tokio: :task::spawn() to complete.

The tokio::task::spawn() function has another important feature: it allows us to
launch an async task on the async runtime from outside an async context. It also
returns a future (tokio: :task::JoinHandle, specifically), which we can pass around like
any other object. Tokio’s join handles also allow us to abort tasks if we want. Let’s look
at the example in the following listing.

Listing 8.1 Spawning a task with tokio: : task: : spawn ()

A normal function, returning a
use tokio::task::JoinHandle; JoinHandle (which implements
the Future trait).

fn not_an async_function() -> JoinHandle<()> {
tokio::task: :spawn(async {
println! ("Second print statement"); Our printin() task is
1 spawned on the runtime.
}

#[tokio: :main]

async fn main()
println! ("First print statement");
not_an_async_function() .await.ok() ;

{ We use .await on the future
returned from our function
to wait for it to execute.

In the preceding code listing, we’ve created a normal function that returns a JoinHandle
(which is just a type of future). tokio::task::spawn() returns a JoinHandle, which

166

8.5

CHAPTER 8 Async Rust

allows us to join the task (i.e., retrieve the result of our code block, which is just a unit
in this example).

What happens if you want to use .await outside of an async context? Well, in short,
you can’t. You can, however, block on the result of a future to await its result using the
tokio: :runtime: :Handle::block_on() method. To do so, you'll need to obtain a handle
for the runtime, and move that runtime handle into the thread where you want to
block. Handles can be cloned and shared, providing access to the async runtime from
outside an async context, as shown in the following listing.

Listing 8.2 Using a Tokio Handle to spawn tasks

use tokio::runtime::Handle; .
Spawns a blocking async

task on our runtime using

fn not_an async_function (handle: Handle) { .
Ca1a = a runtime handle

handle.block on(async {
println! ("Second print statement");
)

}

#[tokio: :main]
async fn main()
println! ("First print statement");

{ Gets the runtime handle for
the current runtime context

let handle = Handle::current () ; ‘S,ap;:lr)\lse: 3::;’1 t::::lé capturing
std::thread: :spawn (move || {
not_an_async_function (handle) ;
I3 Calls our nonasync function in
} a separate thread, passing the

async runtime handle along

That’s not pretty, but it works. There are a few cases in which you might want to do
things like this, which we’ll discuss in the next section, but for the most part, you
should try to use async and .await when possible.

In short, wrap code blocks (including functions and closures) with async when you
want to perform async tasks or return a future, and use .await when you need to wait
for an async task. Creating an async block does not execute the future; it still needs to
be executed (or spawned with tokio: :task::spawn()) on the runtime.

Concurrency and parallelism with async

At the beginning of the chapter, I discussed the differences between concurrency and
parallelism. With async, we don’t get either concurrency or parallelism for free. We
still have to think about how to structure our code to take advantage of these features.

With Tokio, there’s no explicit control over parallelism (aside from launching a
blocking task with tokio::task::spawn_blocking(), which always runs in a separate
thread). We do have explicit control over concurrency, but we can’t control the paral-
lelism of individual tasks, as those details are left up to the runtime. What Tokio does
allow us to configure is the number of worker threads, but the runtime will decide
which threads to use for each task.

8.5 Concurrency and parallelism with async 167

Introducing concurrency into our code can be accomplished in one of three ways:

= Spawning tasks with tokio: :task: :spawn()

= Joining multiple futures with tokio: :join! (..) or futures::future::join_all()

= Using the tokio::select! { .. } macro, which allows us to wait on multiple con-
current code branches (modeled after the UNIX select () system call)

To introduce parallelism, we have to use tokio: :task: :spawn (), but we don’t get explicit
parallelism this way. Instead, when we spawn a task, we’re telling Tokio that this task
can be executed on any thread, but Tokio still decides which thread to use. If we
launch our Tokio runtime with only one worker thread, for example, all tasks will exe-
cute in one thread, even when we use tokio::task::spawn(). We can demonstrate the
behavior with some sample code.

Listing 8.3 Demonstrating async concurrency and parallelism

async fn sleep 1s blocking(task: &str) Here,weintenﬁona"yqse
use std::{thread, time::Duration}; ?tdnﬂu?adndeepo,whmh
println! ("Entering sleep 1s blocking({task})"); 'Sbhch“&tOdemO““”“e
thread::Sleep(Duration::Eroa_secs(l)); parallelism.

println! ("Returning from sleep 1s blocking({task})"); We're explicitly

} configuring Tokio with
two worker threads,
#[tokio::main(flavor = "multi_ thread", worker threads = 2)] which allows us to
async fn main() { run tasks in parallel.
println! ("Test 1: Run 2 async tasks sequentially");
sleep 1s blocking("Task 1").await; Here, we call our sleep_Is()
sleep_1ls_blocking("Task 2") .await; function twice sequentially, with

no concurrency or parallelism.
println! ("Test 2: Run 2 async tasks concurrently (same thread)");
tokio::join! (
sleep 1s blocking("Task 3"), Here we call sleep_Is() twice
sleep_l s_blockj_ng ("Task 4") using tokio::join!(), WhiCh
) introduces concurrency.

println! ("Test 3: Run 2 async tasks in parallel");
tokio::join! (
tokio: :spawn(sleep_1ls blocking("Task 5")),
tokio::spawn(sleep_1s_blocking("Task 6"))

Finally, we’re spawning our
sleep_Is() and then joining on
the result, which introduces

Vi parallelism.

Running this code will generate the following output:

Test 1: Run 2 async tasks sequentially

Entering sleep 1s blocking(Task 1)

Returning from sleep_ 1ls blocking(Task 1)

Entering sleep_1ls_blocking(Task 2)

Returning from sleep 1s blocking(Task 2)

Test 2: Run 2 async tasks concurrently (same thread)
Entering sleep_1ls_blocking(Task 3)

Returning from sleep 1s blocking(Task 3)

168

Test 1

Test 2

Test 3

CHAPTER 8 Async Rust

Entering sleep_ 1ls_blocking(Task 4) In the third test, we can see our
Returning from sleep 1s blocking(Task 4) sleep_lIs() function is running in
Test 3: Run 2 async tasks in parallel paraﬂélbecausebothfuncﬁons
Entering sleep_ ls_blocking(Task 5) are entered before returning.
Entering sleep 1s blocking(Task 6)

Returning from sleep 1s blocking(Task 5)

Returning from sleep_1ls blocking(Task 6)

We can see from this output that only in the third test, where we launch each task with
tokio::spawn() (which is equivalent to tokio::task::spawn()), does the code execute
in parallel. We can tell it’s executing in parallel because we see both of the Entering ..
statements before the Returning .. statements. An illustration of the sequence of events

is shown in figure 8.4.

00:00 00:00 00:01 00:01 00:02 00:02 00:03 00:03 00:04 00:04 00:05

Figure 8.4 Diagram showing the sequence of events in blocking sleep

Note that, while the second test is, indeed, running concurrently, it is not running in
parallel; thus, the tasks execute sequentially because we used a blocking sleep in list-
ing 8.3. Let’s update the code to add nonblocking sleep as follows:

async fn sleep 1s nonblocking (task: &str) {
use tokio::time::{sleep, Duration};
println! ("Entering sleep ls nonblocking({task})");
sleep (Duration::from secs (1)) .await;
println! ("Returning from sleep 1ls nonblocking({task})");

After updating our main() to add three tests with the nonblocking sleep, we get the
following output:

Test 4: Run 2 async tasks sequentially (non-blocking)

Entering sleep 1s nonblocking(Task 7)

Returning from sleep_ 1ls nonblocking(Task 7)

Entering sleep 1ls nonblocking(Task 8)

Returning from sleep 1ls nonblocking(Task 8)

Test 5: Run 2 async tasks concurrently (same thread, non-blocking)
Entering sleep 1ls nonblocking(Task 9)
Entering sleep 1s nonblocking(Task 10)
Returning from sleep 1ls nonblocking(Task 10)
Returning from sleep_ 1ls nonblocking(Task 9)
Test 6: Run 2 async tasks in parallel (non-blocking)
Entering sleep_ 1ls nonblocking(Task 11)

We can see here that our sleep happens
concurrently now that we changed the
sleep function to nonblocking.

Test 4

Test 5

Test 6

8.6 Implementing an async observer 169

Entering sleep_ 1ls nonblocking(Task 12)
Returning from sleep 1ls nonblocking(Task 12)
Returning from sleep 1s nonblocking(Task 11)

Figure 8.5 illustrates how both tests 5 and 6 appear to execute in parallel, although
only test 6 is actually running in parallel, whereas test 5 is running concurrently. If you
again update your Tokio settings and change worker threads = 1 and then rerun the
test, you will see in the blocking sleep version all of the tasks run sequentially, but in
the concurrent nonblocking version, they still run concurrently, even with one thread.

Task 9
Task 10
Task 11
Task 12
00:00 00:00 00:01 00:01 00:02 00:02 00:03 00:03 00:04

Figure 8.5 Diagram showing the sequence of events in nonblocking sleep

8.6

It may take some time to wrap your head around concurrency and parallelism with
async Rust, so don’t worry if this seems confusing at first. I recommend trying this sam-
ple yourself and experimenting with different parameters to get a better understand-
ing of what’s going on.

Implementing an async observer

Let’s look at implementing the observer pattern in async Rust. This pattern happens
to be incredibly useful in async programming, so we’ll see what it takes to make it
work with async.

NOTE Async traits are expected to be added to Rust in an upcoming release,
though at the time of writing, they are not yet available.

At the time of writing, there is one big limitation to Rust’s async support: we can’t use
traits with async methods. For example, the following code is invalid:

trait MyAsyncTrait {
async fn do_thing() ;
1

Because of this, implementing the observer pattern with async is somewhat tricky.
There are a few ways to work around this problem, but I will present a solution that
also provides some insight into how Rust implements the async fn syntax sugar.

As mentioned earlier in this chapter, the async and .await features are just conve-
nient syntax for working with futures. When we declare an async function or code
block, the compiler is wrapping that code with a future for us. Thus, we can still create
the equivalent of an async function with traits, but we have to do it explicitly (without
the syntax sugar).

170 CHAPTER 8 Async Rust

The observer trait looks as follows:

pub trait Observer
type Subject;
fn observe (&self, subject: &Self::Subject);

To convert the observe () method into an async function, the first step is to make it
return a Future. We can try something like this as a first step:

Here, we define an associated

pub trait Observer { type with the Future trait
type Subject; bound, returning ().
type Output: Future<Output = ()>;

fn observe (&self, subject: &Self::Subject) -> Self::Output;

Now, our observe() method returns
the Output associated type.

At first glance, this seems like it should work, and the code compiles. However, as soon
as we try to implement the trait, we’ll run into a few problems. For one, because Future
is just a trait (not a concrete type), we don’t know what type to specify for output. Thus,
we can’t use an associated type this way. Instead, we need to use a trait object. To do
this, we need to return our future within a Box. We’ll update the trait like so:

pub trait Observer We kept the associated type for the
type Subject; retl..lr[l.type here, which adds some
type output; flexibility.
fn observe (
&self,
subject: &Self::Subject, <F44‘N°W,WelftUH1aBox
) -> Box<dyn Future<Output = Self::Output>>; <dyn Future> instead.

Let’s try to put it together by implementing our new async observer for MyObserver:

struct Subject;
struct MyObserver;

impl Observer for MyObserver {
type Subject = Subject;
type Output = () ;
fn observe (
&self,
_subject: &Self::Subject,
) -> Box<dyn Future<Output = Self::Outputs>> {<F44‘Notethatwehavetobox
Box: :new (async { the future we’re returning.
// do some async stuff here!
use tokio::time::{sleep, Duration};
sleep (Duration::from millis (100)) .await;

)

8.6 Implementing an async observer 171

So far, so good! The compiler is happy too. Now, what happens if we try to test it? Let’s
write a quick test:

#[tokio: :main]

async fn main() {
let subject = Subject;
let observer = MyObserver;
observer.observe (&subject) .await;

And now we hit our next snag. Trying to compile this will generate the following
error:

error [E0277] : “dyn Future<Output = ()>" cannot be unpinned
--> src/main.rs:29:31

29 \ observer.observe (&subject) .await;
| AAAAAS the trait “Unpin® is not
implemented for “dyn Future<Output = ()>"

note: consider using “Box::pin”
= note: required because of the requirements on the impl of “Future™ for

“Box<dyn Future<Output = ()>>"
= note: required because of the requirements on the impl of ~IntoFuture”
for “Box<dyn Future<Output = ()>>"

help: remove the ~.await”

29 - observer.observe (&subject) .await;
29 + observer.observe (&subject) ;
For more information about this error, try “rustc --explain E0277".

What’s happening here? To understand, we need to look at the Future trait from the
Rust standard library:

pub trait Future {
type Output;
fn poll (self: Pin<&mut Self>, cx: &mut Context<' >) -
> Poll<Self::Output>;

Notice that, the poll () method takes its self parameter as the type Pin<smut Selfs.In
other words, before we can poll a future (which is what .await does), it needs to be
pinned. A pinned pointer is a special kind of pointer in Rust that can’t be moved (until
it’s unpinned). Lucky for us, obtaining a pinned pointer is easy; we just need to
update our Observer trait again as follows:

pub trait Observer {
type Subject;
type Output;

172

CHAPTER 8 Async Rust

fn observe (

&self, Now, we wrap our Box
subject: &Self::Subject, iQPM,whkthesusa
) -> Pin<Box<dyn Future<Output = Self::Outputs>>>; pinned box.

Next, we’ll update our implementation like so:

impl Observer for MyObserver {
type Subject = Subject;
type Output = ();
fn observe (

&self, Now, we return
_subject: &Self::Subject, Pin<Box<...>>.
) -> Pin<Box<dyn Future<Output = Self::Output>>> {

Box::pin(async {
// do some async stuff here! j Box::pin() conveniently returns
use tokio::time::{sleep, Duration}; a pinned box for us.
sleep (Duration::from millis (100)) .await;

3]

At this point, our code will compile, and it works. You might think we’re out of the
woods, but unfortunately, we are not. The implementation for the oObservable trait is
even more complicated. Let’s take a look at the Observable trait:

pub trait Observable ({
type Observer;
fn update (&self) ;
fn attach(&mut self, observer: Self::0Observer) ;
fn detach (&mut self, observer: Self::0Observer) ;

We need to make the update () method from Observable async, but it’s more compli-
cated because, inside update (), we pass self to each of the observers. Passing a self ref-
erence inside an async method won’t work without specifying a lifetime for that
reference. Additionally, we need each oObserver instance to implement both send and
Sync because we want to observe updates concurrently, which requires that our observ-
ers can move across threads. The final form of our Observer trait is shown in the fol-
lowing listing.

Listing 8.4 Implementing the async Observer trait

We add the Send + Sync supertraits to make sure our

pub trait Observer: Send + Sync
observers can be used concurrently across threads.

type Subject;

type Output;

fn observe<'as (The ‘a lifetime allows us to pass
self and subject as references.

&'a self,
Here, we apply ‘a to the self reference.

8.6 Implementing an async observer 173

subject: &'a Self::Subject, <+——— Here, we apply 'a to the subject reference.
) -> Pin<Box<dyn Future<Output = Self::Output> + 'a + Send>>;

We add 'a + Send to the trait bounds to allow moving
across threads and ensure the return future doesn’t
outlive any captured references for ’a.

Our updated Observable trait is shown in the following listing.

Listing 8.5 Implementing the async Observable trait

pub trait Observable { As with Observer, we
type Observer; need to add a lifetime
fn update<'as (for our references.
&'a self,
) -> Pin<Box<dyn Future<Output = ()> + 'a + Send>>;

fn attach(&mut self, observer: Self::0Observer) ;
fn detach(&mut self, observer: Self::0Observer) ;

—

Now, we’ll implement Observable for our subject.

Listing 8.6 Implementing the async Observable trait for Subject

pub struct Subject {
observers:
Vec<Weak<dyn Observer<Subject = Self, Output = ()>>>,
state: String,

}

impl Subject {
pub fn new(state: &str) -> Self ({
Self {
observers: vec! [],
state: state.into(),

}

pub fn state(&self) -> &str {
self.state.as_ref ()
}

} We generate the list of observers to
notify outside the async context and

impl Observable for Subject { collect this into a new Vec.

type Observer =

Arc<dyn Observer<Subject = Self, Output = ()>>;
fn update<'a>(&'a self) -> Pin<Box<dyn Future<Output = ()> + 'a + Send>>
{

let observers: Vec<_ > =

Using join_all() self.observers.iter().flat map(|o| o.upgrade()).collect(); <+— !
here introduces

concurrency across | Box: :pin(async move {
our observers. futures::future::join_all(

We use a move on our async block to move the
captured observers list into the async block.

174

8.7

CHAPTER 8 Async Rust

observers.iter() .map(|o| o.observe(self)), Each observer’s

) observe function is

. it; :
b awat Finally, we .await on the join called with the same
operation within our async block. self reference.

}

fn attach(&mut self, observer: Self::Observer) {
self.observers.push (Arc: :downgrade (&observer)) ;

}

fn detach (&mut self, observer: Self::Observer) {
self.observers
.retain(|f| !f.ptr_eq(&Arc::downgrade (&observer))) ;

Now, we can finally test our async observer pattern.

Listing 8.7 Testing our async observer pattern

#[tokio: :main]
async fn main() {
let mut subject = Subject::new("some subject state");

let observerl = MyObserver: :new("observerl");
let observer2 = MyObserver::new("observer2");

subject.attach (observerl.clone()) ;
subject.attach (observer2.clone()) ;

// ... do something here

subject.update () .await;

Running the preceding code will produce the following output:

observed subject with state="some subject state" in observerl
observed subject with state="some subject state" in observer2

Mixing sync and async

The Rust async ecosystem is growing fast, and many libraries have support for async
and .await. However, in spite of this, there are cases where you may need to deal with
synchronous and asynchronous code together. We already demonstrated two such
examples in the previous section, but let’s elaborate more on that.

TIP As a general rule, you should avoid mixing sync and async. In some cases,
it may be worth the effort to add async support when it’s missing or upgrade
code that’s using older versions of Tokio that don’t work with the new async
and .await syntax.

8.7 Mixing sync and async 175

The most common scenario in which you’ll have to mix sync and async is when you’re
using a crate which doesn’t support async, such as a database driver or networking
library. For example, if you want to write an HTTP service using the Rocket crate
(https://crates.io/crates/rocket) with async, you may need to read or write to a data-
base that doesn’t yet have async support. Adding async support to sufficiently complex
libraries might not be the best use of your time, even when it’s a noble cause.

To call synchronous code from within an async context, the preferred way is to use
the tokio::task::spawn_blocking() function, which accepts a function and returns a
future. When a call to spawn_blocking () is placed, it will execute the function provided
on a thread queue managed by Tokio (which can be configured). You can then use
.await on the future returned by spawn_blocking(), like you normally would with any
async code.

Let’s look at an example of spawn_blocking() in action, by creating code that writes
a file asynchronously and then reads it back synchronously:

use tokio::io::{self, AsyncWriteExt};

async fn write file(filename: &str) -> io::Result<()> { . "
- . . .) Werites "Hello,
let mut £ = tokio::fs::File::create(filename) .await?; o "
,)) file!" to our file
f.write(b"Hello, file!").await?;

£ Flush() .await?; asynchronously

Ok (())

}

fn read file(filename: &str) -> io::Result<String> {

std::fs::read _to_string(filename) Reads the contents of

} our file into a string,
returning the string

#[tokio: :main] synchronously

async fn main() -> io::Result<()> {
let filename = "mixed-sync-async.txt";
write file(filename) .await?;

let contents =
tokio::task::spawn blocking (|| read file(filename)).await??;

Note the double ?? because
both spawn_blocking() and

tokio::fs::remove file(filename) .await?; read_file() return a Result.

println! ("File contents: {}", contents);

Ok (())

In the preceding code, we perform our synchronous I/O within the function called
by spawn_blocking (). We can await the result just like any other ordinary async block,
except that it’s actually being executed on a separate blocking thread managed by
Tokio. We don’t have to worry about the implementation details, except that there
needs to be an adequate number of threads allocated by Tokio. In the preceding
example, we just use the default values, but you can change the number of blocking

https://crates.io/crates/rocket

176

8.8

CHAPTER 8 Async Rust

threads with the Tokio runtime builder (for which the full list of parameters can be
found at http://mng.bz/jIWV).

Synchronizing async code

Sometimes, we need to synchronize async code, such as when we need to pass mes-
sages between different objects. Because our async code blocks may run across sep-
arate threads of execution, sharing data between them can be tricky, as we can
introduce race conditions if we try to access data improperly (additionally, the Rust lan-
guage won’t allow it). An easy way to share data is to use shared state behind a mutex,
but Tokio provides some better ways to share state.

Within its sync module, Tokio provides several tools for synchronizing async code.
Notably, you will likely want to learn about the multi-producer, single-consumer chan-
nel, which can be found within the tokio: :sync: :mpsc module. An mpsc channel lets
you safely pass messages from several producers to a single consumer within an
async context, without the need for explicit locking (i.e., introducing mutexes). Tokio
provides other channels types, including broadcast, oneshot, and watch.

With mpsc channels, you can build scalable, concurrent, message-passing interfaces
in async Rust without explicit locking. An mpsc channel can be unbounded or bounded
with a fixed length, providing backpressure to producers.

Tokio’s channels are similar to what you may find in other actor or event-processing
frameworks, except they’re relatively low level and fairly general purpose. They’re more
similar to socket programming than what you might find in higher-level actor libraries.
For details on Tokio’s synchronous tooling, refer to the sync module at https://docs
.rs/tokio/latest/tokio/sync/index.html.

For the opposite case—using async code within synchronous code—it’s possible to use
the runtime handle with block_on (), as shown in the previous section. This, however, is
probably not a common use case and is something to be avoided. For a more advanced
discussion on this topic, please refer to the Tokio documentation at https://tokio.rs/
tokio/topics/bridging.

When to avoid using async

Asynchronous programming is great for I/O-heavy applications, such as network ser-
vices. This could be an HTTP server, some other custom network service, or even a
program that initiates many network requests (as opposed to responding to requests).
Async does bring with it some complexity that you generally don’t need to worry about
with synchronous programming, for the reasons outlined throughout this chapter.

It’s reasonable to use async as a general rule but only in cases where concurrency is
required. Many programming tasks don’t require concurrency and are best served by
synchronous programming. Some examples of this could be a simple CLI tool that
reads or writes to a file or standard I1/O or a simple HTTP client that makes a few
sequential HTTP requests like curl. If you have a curl-like tool that needs to make
thousands of concurrent HTTP requests, then, by all means, do use async.

http://mng.bz/j1WV
https://docs.rs/tokio/latest/tokio/sync/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html
https://tokio.rs/tokio/topics/bridging
https://tokio.rs/tokio/topics/bridging
https://tokio.rs/tokio/topics/bridging

8.9

8.9 Tracing and debugging async code 177

It’s worth noting that adding async after the fact is more difficult than building
software with async support up front, so think carefully about whether your use case
requires async. In terms of raw performance, there is practically no difference
between using and not using async for simple sequential and nonconcurrent tasks;
however, Tokio introduces some slight overhead, which may be measurable but is
unlikely to be significant for most purposes.

Tracing and debugging async code

For any sufficiently complex networked application, it’s critical to instrument your
code to measure its performance and debug problems. The Tokio project provides a
tracing crate (https://crates.io/crates/tracing) for this purpose. The tracing crate
supports the OpenTelemetry (https://opentelemetry.io/) standard, which enables
integration with a number of popular third-party tracing and telemetry tools, but it
can also emit traces as logs.

Enabling tracing with Tokio also unlocks tokio-console (https://github.com/
tokio-rs/console), which is a CLI tool similar to the top program you’re likely familiar
with from most UNIX systems. tokio-console allows you to analyze Tokio-based async
Rust code in real time. Neat! While tokio-console is handy, in most environments,
you’d likely emit traces to logs or with OpenTelemetry, as tokio-console is ephemeral
and mainly useful as a debug tool. You also cannot attach tokio-console to a program
that wasn’t compiled for it ahead of time.

Enabling tracing requires configuring a subscriber to which the traces are emitted.
Additionally, to use tracing effectively, you need to instrument functions at the points
where you want to measure them. This can be done easily with the # [tracing: : instrument]
macro. Traces can be emitted at differentlevels and with a number of options, which are
well documented in the tracing docs at https://docs.rs/tracing/latest/tracing/
index.html.

Let’s write a small program to demonstrate tracing with tokio-console, which
requires some setup and boilerplate. Our program will have three different sleep
functions, each instrumented, and they will run forever, concurrently, in a loop:

the tracing crate to instrument our

#[tracing: :instrument] three sleep functions.

async fn sleep 1s() {
sleep (Duration::from secs (1)) .await;
1

#[tracing: :instrument]
async fn sleep 2s() {

sleep (Duration::from secs(2)) .await;
1

#[tracing: :instrument]
async fn sleep 3s() {

sleep (Duration::from secs(3)) .await;
1

use tokio::time::{sleep, Duration}; We’ll use the instrument macro from

https://docs.rs/tracing/latest/tracing/index.html
https://docs.rs/tracing/latest/tracing/index.html
https://docs.rs/tracing/latest/tracing/index.html
https://crates.io/crates/tracing
https://opentelemetry.io/
https://github.com/tokio-rs/console
https://github.com/tokio-rs/console
https://github.com/tokio-rs/console

178 CHAPTER 8 Async Rust

#[tokio: :main]
async fn main()
console subscriber::init () ;

We have to initialize the console subscriber
in our main function to emit the traces.

loop { We'll fire and forget sleep 1 and
tokio: :spawn (sleep 1s()) ; sleep 2 and then block on sleep 3.

tokio: :spawn (sleep 2s());

1 3 . it; .
sleep_3s() .awal Here, we block on sleep 3 until 3 seconds have
elapsed and then repeat the process forever.

We also need to add the following to our dependencies, specifically to enable the trac-

ing feature in Tokio: . .
The tracing feature in

Tokio is not enabled

[dependencies] ne e

tokio = { version = "1", features = ["full", "tracing"] } by ﬁql’n'“UStbe
. explicitly enabled.

tracing = "O0.1"

console-subscriber = "0.1"

We’ll install tokio-console with cargo install tokio-console, after which we can com-
pile and run our program. However, we need to compile with RUSTFLAGS="--cfg tokio_
unstable" to enable unstable tracing features in Tokio for tokio-console. We’ll do this
by running the program directly from Cargo with RUSTFLAGS="--cfg tokio_unstable"
cargo run. With our program running, we can now run tokio-console, which will pro-
duce the output shown in figure 8.6. In addition to monitoring tasks, we can monitor
resources, as shown in figure 8.7. We can also drill down into individual tasks and even
see a histogram of poll times, as shown in figure 8.8.

e R
@00 %2 tokio-console
connection: http://127.0.0.1:6669/ (CONNECTED)
views: t = tasks, r = resources
controls: ¢> or h, 1 = select column (sort), ™ or k, j = scroll, <= view details, i = invert sort
(highest/lowest), q = quit gg = scroll to top, G = scroll to bottom
Tasks (14) » Running (0) dle (2)
Warn ID State Name Busy Idle Polls Target Location Fields
5 2.0039s 497.2910us 2.0034s 2 tokio::task src/main.rs:24:9 kind=task
4 2.0035s 727.5410us 2.0027s 2 tokio::task src/main.rs:24:9 kind=task
7 2.0029s 557.2490us 2.0023s 2 tokio::task src/main.rs:24:9 kind=task
9 2.0024s 425.3740ps 2.0019s 2 tokio::task src/main.rs:24:9 kind=task
12 2.0023s 494.2080us 2.0018s 2 tokio::task src/main.rs:24:9 kind=task
2 2.0022s 540.9580us 2.0017s 2 tokio::task src/main.rs:24:9 kind=task
1 1.0051s 1.6637ms 1.0034s 2 tokio::task src/main.rs:23:9 kind=task
3 1.0036s 1.2935ms 1.0024s 2 tokio::task src/main.rs:23:9 kind=task
6 1.0035s 507.4160ps 1.0030s 2 tokio:: task src/main.rs:23:9 kind=task
8 1.0027s 270.2910us 1.0024s 2 tokio::task src/main.rs:23:9 kind=task
11 1.0025s 618.1660us 1.0019s 2 tokio::task src/main.rs:23:9 kind=task
10 1.0021s 281.5830us 1.0019s 2 tokio::task src/main.rs:23:9 kind=task
13 989.1582ms 213.0000us 988.9452ms 1 tokio::task src/main.rs:23:9 kind=task
14 988.9660ms 123.1250us 988.8429ms 1 tokio::task src/main.rs:24:9 kind=task
J

Figure 8.6 Running tasks, as shown in tokio-console

8.9 Tracing and debugging async code

179

-)
@00 (x2 tokio-console
connection: http://127.0.0.1:6669/ (CONNECTED)
views: t = tasks, r = resources
controls: ¢«> or h, 1 = select column (sort), ™ or k, j = scroll, <= view details, i = invert sort
(highest/lowest), q = quit gg = scroll to top, G = scroll to bottom
Resources (33)
ID~ Parent Kind Total Target Type Vis Location Attributes
33 n/a Timer 977.8489ms tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
32 n/a Timer 977.8025ms tokio::time::driver::sleep Sleep §4 src/main.rs:10:5 duration=2001ms
31 n/a Timer 977.8845ms tokio::time::driver::sleep Sleep (4 src/main.rs:5:5 duration=1001ms
30 n/a Timer 1.0024s tokio::time::driver::sleep Sleep {4 src/main.rs:5:5 duration=1001ms
29 n/a Timer 3.0027s tokio::time::driver::sleep Sleep {4 src/main.rs:15:5 duration=3001ms
28 n/a Timer 2.0013s tokio::time::driver::sleep Sleep @ src/main.rs:10:5 duration=2001ms
27 n/a Timer 2.0017s tokio::time::driver::sleep Sleep 4 src/main.rs:10:5 duration=2001ms
26 n/a Timer 3.0017s tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
25 n/a Timer 1.0022s tokio::time::driver::sleep Sleep (4 src/main.rs:5:5 duration=1001ms
24 n/a Timer 2.0007s tokio::time::driver::sleep Sleep @4 src/main.rs:10:5 duration=2001ms
23 n/a Timer 1.0015s tokio::time::driver::sleep Sleep {4 src/main.rs:5:5 duration=1001ms
22 n/a Timer 3.0022s tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
21 n/a Timer 2.0026s tokio::time::driver::sleep Sleep {4 src/main.rs:10:5 duration=2001ms
20 n/a Timer 3.0027s tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
19 n/a Timer 1.0015s tokio::time::driver::sleep Sleep {4 src/main.rs:5:5 duration=1001ms
18 n/a Timer 1.0023s tokio::time::driver::sleep Sleep {4 src/main.rs:5:5 duration=1001ms
17 n/a Timer 3.0021s tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
16 n/a Timer 2.0020s tokio::time::driver::sleep Sleep {4 src/main.rs:10:5 duration=2001ms
15 n/a Timer 3.0027s tokio::time::driver::sleep Sleep (4 src/main.rs:15:5 duration=3001ms
14 n/a Timer 2.0022s tokio::time::driver::sleep Sleep (4 src/main.rs:10:5 duration=2001ms
13 n/a Timer 1.0019s tokio::time::driver::sleep Sleep 4 src/main.rs:5:5 duration=1001ms
. _J

Figure 8.7 Resource usage, as shown in tokio-console

p
@00 x2

tokio-console

connection: http://127.0.0.1:6669/ (CONNECTED)

Target: tokio::task
Location: src/main.rs:24:9
Total Time: 2.0039s

Busy: 419.1250us (0.02%)
Idle: 2.0035s (99.98%)

views: t = tasks, r = resources
controls: ® esc = return to task list, q = quit
Task: aker
ID: 7 Current wakers: 0 (clones: 2, drops: 2)

Woken: 1 times, last woken: 31.99433275s ago

Poll
plo:
p25:
p50:
p75:
po90:
p95:
p99:

Times Percentiles
92.1590ps 1]
92.1590ps

92.1590ps

327.6790ps
327.6790pus
327.6790us
327.6790ps

091.65us

Poll Times Histogram

327.68ps

(Fields

kind=task
task.id=24

Figure 8.8

Individual task with poll time histogram

With tokio-console, we can see the state of tasks in real time, a variety of metrics asso-
ciated with each one, additional metadata we may have included, as well as source file
locations. tokio-console allows us to see both the tasks we’ve implemented and the

180

8.10

CHAPTER 8 Async Rust

Tokio resources separately. All this data will also be made available in traces emitted to
another sink, such as a log file or an OpenTelemetry collector.

Dealing with async when testing

The last thing we’ll discuss in this chapter is testing async code. When it comes to writ-
ing unit or integration tests for async code, there are two strategies:

Creating and destroying the async runtime for each separate test

Reusing one or more async runtimes across separate tests

For most cases, it’s preferable to create and destroy the runtime for each test, but
there are exceptions to this rule, where reusing a runtime is more sensible. In particu-
lar, it’s reasonable to reuse the runtime if you have many (i.e., hundreds or thou-
sands) of tests.

To reuse a runtime across tests, we can use the lazy static crate, which we dis-
cussed quite a bit in chapter 6. Rust’s testing framework runs tests in parallel across
threads, which must be handled correctly using tokio: :runtime: :Handle, as we demon-
strated earlier in this chapter.

For most cases, you can simply use the #[tokio: :test] macro, which works exactly
like # [test], except that it’s for async functions. The Tokio test macro takes care of set-
ting up the test runtime for you, so you can write your async unit or integration test
like you normally would any other test. To demonstrate, consider the following func-
tion, which sleeps for 1 second:

async fn sleep 1s() {
sleep (Duration::from secs (1)) .await;
}

We can write a test using the #[tokio::test] macro, which handles creating the run-
time for us:

#[tokio::test]

async fn sleep test() {
let start time = Instant::now();
sleep (Duration::from secs (1)) .await;
let end time = Instant::now();

let seconds = end time
.checked duration_since (start_time)
.unwrap ()
.as_secs();

assert_eq! (seconds, 1);

This test runs normally like any other test, except it’s running within an async context.
You may certainly manage the runtime yourself if you wish, but as mentioned already,
you must be mindful of the fact that Rust’s tests will run in parallel.

Summary 181

Finally, Tokio provides the tokio_test crate, which can be enabled by adding the
"test-util" feature (which is not enabled by the "full" feature flag). This includes
some helper tools for mocking async tasks as well as some convenience macros for use
with Tokio. The tokio_test crate is documented at https://docs.rs/tokio-test/latest/
tokio_test/.

Summary

Rust provides multiple async runtime implementations, but Tokio is appropri-
ate for most purposes.

Asynchronous programming requires special control flow, and our code must
yield to the runtime’s scheduler to allow it an opportunity to switch tasks.
We can yield wusing .await or by spawning futures directly with
tokio: :task::spawn().

Asynchronous code blocks (e.g., functions) are denoted with the async key-
word. Async code blocks always return futures.

We can execute a future with the .await statement but only within an async con-
text (i.e., an async code block).

Async blocks are lazy and will not execute until we call .await or when they
spawned explicitly. This differs from most other async implementations.

Using tokio::select! {} or tokio::join! () allows us to introduce explicit con-
currency.

Spawning tasks with tokio::task::spawn() allows us to introduce concurrency
and parallelism.

If we want to perform blocking operations, we spawn them with
tokio: :task::spawn blocking().

The tracing crate provides an easy way to instrument and emit telemetry to logs
or OpenTelemetry collectors.

We can use tokio-console with tracing to debug async programs.

Tokio provides testing macros for unit and integration tests, which provide the
necessary testing runtime environment. The tokio_test crate, which can be
enabled with the "test-util" feature flag on Tokio, provides mocking and
assertion tools for use with Tokio.

https://docs.rs/tokio-test/latest/tokio_test/
https://docs.rs/tokio-test/latest/tokio_test/
https://docs.rs/tokio-test/latest/tokio_test/

Bwilding an H1T'1TP
REST API service

This chapter covers

Deciding which web framework to use
Designing an API

Modeling our data

Implementing the API

Handling errors gracefully

In this chapter, we will put much of what we’ve learned in the previous chapters
into practice by building a web service with async Rust. For completeness, we’ll
write an API client in chapter 10.

I’ll focus mainly on the final code and spend less time discussing syntax, boiler-
plate, and alternative implementations. I'm confident you will get the most value
from a complete working example. Much of the “how to” content on the internet
(and elsewhere) tends to omit many of the full-picture implementation details and
gloss over many complexities, so I will do my best to point out what’s missing from
this example and where to go from here. I will not discuss the subjects of deploy-
ment, load balancing, state management, cluster management, or high availability

182

9.1

9.1 Choosing a web framework 183

in depth because they are outside the scope of this book and not directly related to
the Rust language.

At the end of this chapter, we’ll have built a web API service that uses a database
for state management to provide the critical features of nearly every web service in
existence: creating, reading, updating, deleting, and listing items in a database. We’ll
model a “todo” CRUD app because this is a commonly used example for teaching pur-
poses. Afterward, you can use this as a template or starter project for future develop-
ment. Let’s dive in!

Choosing a web framework

While writing this book, we’ve seen the async Rust landscape change quite a bit, espe-
cially with regard to the tools and libraries available for working with async Rust. The
changes have largely been positive, and, in particular, I'm quite impressed with the
progress of Tokio and its related projects.

For writing a web service, my recommendation is to use the axum framework, which
is part of the larger Tokio project. The axum framework is somewhat minimal—as far as
web frameworks go—but it packs a big punch, thanks to its flexible API and mostly
macro-free implementation. It’s relatively easy to integrate with other libraries and
tools, and the simple API makes it quick and easy to get started. axum is based on
Tower (https://github.com/tower-rs/tower), a library that provides abstractions for
building networked services, and hyper (https://hyper.rs/), which provides an HTTP
client and server implementation for both HTTP/1 and HTTP/2 (the book HTTP/2
in Action (Barry Pollard; https://www.manning.com/books/http2-in-action) provides
a deep dive into the specifics of HTTP/2).

The best thing about axumis that it doesn’t impose much on you in terms of patterns
or practices. It does require that you learn the Tower library, if you wish to get into the
nitty-gritty details, but for simple tasks, this is not necessary. A basic web service can be
stood up quickly without needing to spend a great deal of time learning the web frame-
work before writing a web service. For production services, axum includes support for
tracing and metrics, which only require a small amount of configuration to enable.

Honorable mentions

The two other frameworks worth mentioning are Rocket (https://rocket.rs/), a web
framework that aims to be a Ruby on Rails for Rust, and Actix (https://actix.rs/), one
of the earliest Rust web frameworks.

Both Rocket and Actix share the same flaw: they make significant use of macros to
hide implementation details. axum, on the other hand, does not use macros for its core
API, which (in my humble opinion) makes it much nicer to work with and easier to rea-
son about.

To their credit, both Rocket and Actix existed before Rust’s stabilization of the Future
trait and the async/await syntax—before which the use of macros was required. Addi-
tionally, both frameworks have made strides in reducing their reliance on macros in
more recent versions.

https://rocket.rs/
https://actix.rs/
https://github.com/tower-rs/tower
https://hyper.rs/
https://www.manning.com/books/http2-in-action

184

9.2

9.3

CHAPTER 9 Building an HTTP REST API service

Creating an architecture
For our web service, we’ll follow a typical web tier archi- @

tecture, which consists of at least three components: a

load balancer, the web service itself, and a stateful service

(i.e., a database). We’re not going to implement a load I
balancer (we’ll assume one already exists or is provided), LGEs
and for the database, we’ll use SQLite, but in practice, balancer
you’d likely want to use a SQL database, such as Post- %\

greSQL. The architecture is shown in figure 9.1. D
As shown in the diagram, our API service can scale é API service

horizontally by simply adding more instances of the ser-

vice. Each instance of our API service receives requests Figure 9.1 Web service
from the load balancer and talks independently to the architecture

database for storing and retrieving state.

Our application should accept its configuration from the environment, so we’ll
pass configuration parameters using environment variables. We could use command-
line parsing or a config file instead, but environment variables are very convenient,
especially when deploying in contexts such as cluster orchestration systems. In our
case, we’'re only going to use a couple of configuration parameters: one to specity the
database and another to configure logging. We’ll discuss these parameters later.

The configuration for each instance of our API service will be identical in most
cases, though there might be special circumstances in which you want to specify
parameters that are unique to each service instance, such as locality information or an
IP address to bind to. In practice, we typically bind to the 0.0.0.0 address, which binds
to all interfaces and effectively delegates the job of handling details to the OS net-
working stack (and can be configured as needed).

API design

For our service, we’ll model a basic todo app. You may have encountered the todo app
before, and for this, we’re only going to implement create, read, update, and delete
(CRUD) endpoints for the todos and a listing endpoint. We’ll also add liveness and
readiness health check endpoints. We’ll place our API routes under the /vl path, as
shown in table 9.1.

Table 9.1 API service routes

HTTP method Action Request body Response
/vl/todos GET List N/A List of all todos
/vl/todos POST Create New todo object The newly created

todo object

/v1/todos/:id GET Read N/A The newly created
todo object

9.4

9.4 Libraries and tools 185

Table 9.1 API service routes (continued)

HTTP method Action Request body Response
/vl/todos/:id PUT Update Updated todo The newly created
object todo object
/v1/todos/:id DELETE Delete New todo object The newly created

todo object

For the read, update, and delete paths, we use a path parameter for the ID of each
todo, which is denoted in the preceding paths with the :id token. We’ll add liveness
and readiness health check endpoints, as shown in table 9.2.

Table 9.2 API service health check endpoints

HTTP method Response
/alive GET Returns 200 with ok on success
/ready GET Returns 200 with ok on success

Now that we’ve described the API, let’s look at the tools and libraries we’ll use to build
it in the next section.

Libraries and tools

We’ll rely on existing crates to do much of the heavy lifting for our service. We don’t
need to write much code at all—most of what we’ll do involves gluing existing compo-
nents together to build our service. However, we have to pay close attention to how we
combine the different components, but lucky for us, Rust’s type system makes that
easy by telling us when it’s wrong, with compiler errors.

We can initialize the project with cargo new api-server, after which we can start
adding the crates we need with cargo add ... The crates we need and their features are
listed in table 9.3.

Table 9.3 API service dependencies

Name Features Description
axum Default Web framework
chrono serde Date/time library, with serde feature
serde derive Serialization/deserialization library, with

[derive (..)] feature
serde_ json| Default JSON serialization/deserialization for the serde crate

sqglx runtime-tokio-rustls, Async SQL toolkit for SQLite, MySQL, and PostgreSQL
sglite, chrono, macros

tokio macros, rt-multi-thread | Async runtime, used with axum and sglx

186

CHAPTER 9 Building an HTTP REST API service

Table 9.3 API service dependencies (continued)

Features Description

tower-http| trace,cors Provides HTTP middleware for axum, specifically,
tracing and CORS

tracing default Async tracing library
tracing- env-filter Allows us to subscribe to tracing data within crates
subscriber that use tracing

NOTE Dependency versions are not listed in table 9.3. These can be found in
Cargo.toml from the source code listings for this book.

For dependencies with features, you can use the --feature flag with cargo add. For
example, to add axum with the default features, we run cargo add axum, and for SQLXx,
we run cargo add sqglx --features runtime-tokio-rustls,sqlite,chrono,macros. You
can also simply copy the Cargo.toml from the book’s source code for this project.

You may also want to try the sqlx-cli (https://crates.io/crates/sqlx-cli) tool, which
can be installed with cargo install sqglx-cli. This tool allows you to create databases,
run migrations, and drop databases. Once installed, run sqlx --help for more infor-
mation. This tool is not required to run the code, but it’s useful if you want to do more
with SQLx.

For your convenience, you can install everything from table 9.3 in a one-shot,
“copy-pastable” command as follows:

cargo add axum

cargo add chrono --features serde

cargo add serde --features derive

cargo add serde_json

cargo add sglx --features runtime-tokio-rustls,sglite,chrono,macros
cargo add tokio --features macros,rt-multi-thread

cargo add tower-http --features trace,cors

cargo add tracing

cargo add tracing-subscriber --features env-filter

cargo install sqglx-cli

After running these commands, your Cargo.toml will look like the following listing.

Listing 9.1 API service Cargo.toml

[packagel]

name = "api-service"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

https://crates.io/crates/sqlx-cli

9.5.1

9.5 Application scaffolding 187

[dependencies]

axum = "0.6.18"

chrono = { version = "0.4.26", features = ["serde"] }

serde = { version = "1.0.164", features = ["derive"] }

serde_json = "1.0.99"

sglx = { version = "0.6.3", features = ["runtime-tokio-rustls", "sglite",
= "chrono", "macros"] }

tokio = { version = "1.28.2", features = ["macros", "rt-multi-thread"] }
tower-http = { version = "0.4.1", features = ["trace", "cors"] }

tracing = "0.1.37"

tracing-subscriber = { version = "0.3.17", features = ["env-filter"] }

With our dependencies set up, we can dive into writing the code.

NOTE In practice, you'd likely add and change the dependencies as you go,
so don’t take this as a suggestion that you need to set up all the dependencies
ahead of time. As I like to say, software is soft, so never avoid modifying it to
your taste (including the examples I provide).

Application scaffolding
Our application entry point in main.rs contains a small amount of boilerplate and the
necessary setup for our application. Within it, we’ll do the following:

= Declare our main entry point

= Initialize tracing and logging

= Create and initialize our database connection

= Run any necessary database migrations

= Define the routes for our API

= Start the service itself

main()

Let’s start by taking a look at our main () function.

Listing 9.2 API service main () function from src/main.rs

#[tokio: :main] Initializes the tracing and Initializes the DB pool
async fn main() { logging for our service and
init tracing(); its dependencies Creates the core application

service and its routes
let dbpool = init dbpool () .await

.expect ("couldn't initialize DB pool") ; Fetches the binding
address from the
let router = create_router (dbpool) .await; environment variable
BIND_ADDR or uses
let bind addr = std::env::var ("BIND ADDR") the default value of
.unw;ap_or_else(|_| “127.0.0.1:5000".to_string()); 127.0.0.1:3000
axum: :Server: :bind (&bind addr.parse () .unwrap()) Parses the binding address

into a socket address

188

9.5.2

CHAPTER 9 Building an HTTP REST API service

Creates the service and

.serve (router.into _make_ service())
starts the HTTP server

.await
.expect ("unable to start server")

}

Our main() doesn’t contain much, and we have to dig deeper to understand what’s
going on. Before we do that, it should be noted that we’re using Tokio’s tokio: :main
macro to initialize the Tokio runtime, which hides a bit of complexity for us, such as
setting the number of worker threads.

TIP Tokio will read the TOKIO WORKER THREADS environment variable, and if
provided, it will set the number of worker threads to the value defined.

For more complex scenarios, you may want to manually instantiate the Tokio runtime
and configure it accordingly using tokio: :runtime: :Builder.

init_tracing()
Moving on, let’s take a look at the tracing initialization in init_tracing().

Listing 9.3 API service init tracing () function in src/main.rs

fn init tracing() {
use tracing subscriber: :{ Fetches the RUST LOG
filter::LevelFilter, fmt, prelude::*, EnvFilter environment variable
y
b providing a default

) value if it’s not defined
let rust_log = std::env::var (EnvFilter::DEFAULT_ENV)

.unwrap_or_else(| | "sglx=info,tower http=debug, info".to string()) ;
tracing subscriber::registry () Returns the default global registry
-with (fmt::layer()) Adds a formatting layer, which provides
-with(human-readable trace formatting
EnvFilter::builder ()
.with default directive(LevelFilter::INFO.into())
.parse_lossy(rust_log),
) Constructs an environment filter, with the
Linit () ; default log level set to info or using the value
} provided by RUST_LOG otherwise

Initializing the tracing is important if we want to see useful log messages. We probably
don’t want to turn on all tracing messages, just the traces that are useful, so we explic-
itly enable the debug level messages for tower_http::*, and info-level messages for
sqlx::*. We could also add our own traces, but the ones included in the crates we’re
using are more than sufficient for our needs.

Determining which traces to enable can be a little tricky, but we can turn on all the
traces by setting RUST_LOG=trace. This can generate a lot of logging output, so don’t try
this in production environments if you don’t need to. EnvFilter is compatible with
env_logger, which is used by many other Rust crates, so we can maintain compatibility
and familiarity within the Rust ecosystem.

9.5.3

9.5 Application scaffolding 189

init_dbpool()

For our state management, we’ll use a connection pool to obtain a connection to the
database. The connection pool allows us to acquire and reuse connections to the data-
base without needing to create a new connection for each request, which provides us
a nice little optimization. The connection pool settings are database specific and can
be configured as needed, but for this example, we’ll stick with the default parameters.
Additionally, the pooling is nice but not entirely necessary because we’re using SQL.ite
(as opposed to a network-connected database, like MySQL or PostgreSQL), which
operates within the same process on background threads managed by the SQLite
library. Let’s look at init_dbpool () in the following listing.

Listing 9.4 API service init dbpool () function in src/main.rs

async fn init dbpool() -> Result<sglx::Pool<sglx::Sglite>, sqglx::Error> {
use sglx::sqglite::{SgliteConnectOptions, SglitePoolOptions};

td::str::F Str; . .
use s ShreirromsEr We'll try to read the DATABASE_URL environment variable
or default to sqlite:db.sqlite if not defined (which opens a

let db_connection str = file called db.sqlite in the current working directory).

std::env::var ("DATABASE URL")
.unwrap_or_else(| | "sqglite:db.sglite".to_string());

let dbpool = SglitePoolOptions: :new()
.connect_with(SgliteConnectOptions::from str(&db connection_str)?

.create_if missing(true)) <+
.await When we connect to the database,
.expect ("can't connect to database") ; we ask the driver to create the

database if it doesn’t already exist.

sqglx::migrate! ()

.run (&dbpool) < After we’ve connected
.await to the DB, we run any
.expect ("database migration failed"); necessary migrations.
Ok (dbpool) We can pass our newly created DB
} pool directly to SQLx, which will

obtain a connection from the pool.

Databases are a complex topic and well outside the scope of this book, but I'll summa-
rize what’s happening in the preceding code listing:

= The connection string is pulled from the DATABASE URL environment variable,
defaulting to sqglite:db.sqglite, which opens the db.sqlite file in the current
working directory. You could (theoretically) support multiple database drivers,
but you would need to carefully adjust your SQL statements, depending on
which driver is specified in DATABASE_URL. In practice, you should just pick one
database and make sure your code works with that because each database has its
quirks and differences, even if they are, technically speaking, the same lan-
guage of SQL.

190

9.6

9.6.1

CHAPTER 9 Building an HTTP REST API service

= We let the SQLite driver create the database upon connection by setting
create_if_missing(true) on SqliteConnectOptions. SQLx will generate a CREATE
DATABASE IF NOT EXISTS .. for us, so we don’t have to worry about creating the
database. This is provided for convenience and should be relatively harmless,
but you might not want to do this in all contexts.

= SQLx provides a migration API, which I won’t go into too much detail about,
but if you’ve used any other web frameworks, you’ve likely seen something simi-
lar. It’s your responsibility to write the migrations, but SQLx can apply them for
you. You need to make sure they’re correct, idempotent, and (optionally) pro-
vide both the up (create) and down (destroy) migrations if you want to enable
forward and backward migrations.

= Creating the database and running migrations are stateful and destructive oper-
ations. We’re mutating the database, and if you make a mistake or typo, there is
no magic undo button (unless you design that yourself). This is not something
to be alarmed about—just something you should be aware of—because you
never want to inadvertently apply a migration to a database you don’t intend
(like testing migrations against a production database before the code is ready
for production). In the next section, we’ll discuss the data model and how we
interact with the database.

Data modeling

We’re keeping this service simple by only modeling one kind of data: a todo item. Our
todos only need two fields: a body (i.e., the todo item), which is just a text string, and
a Boolean field to mark whether an item is completed. We could simply delete a todo
once it’s completed, but it might be nice to keep completed todos around if we want
to look back at the old (completed) todos. We’ll include a timestamp for the creation
date and the time the todo was last updated. You might also want a third timestamp,
the time at which an item is completed, but we’ll keep this example simple.

SQL schema

Let’s write the SQL schema for our todos table.

Listing 9.5 API service SQL schema from migrations/20230701202642_todos.sql

CREATE TABLE IF NOT EXISTS todos (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
body TEXT NOT NULL,
completed BOOLEAN NOT NULL DEFAULT FALSE,
created at TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP,
updated at TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP
)i

I won’t go into too much detail, as the SQL itself is fairly self-explanatory. I want to
note a couple of details, however:

9.6.2

9.6 Data modeling 191

= We rely on SQLite to provide a primary key for us and automatically increment
the ID when a new record is created, such that we don’t reuse any IDs. We could
use something like a UUID instead, which would introduce another layer of
complexity to validate that any UUID we create is actually unique. PostgreSQL
supports UUID primary keys in recent versions, and some versions of MySQL-
compatible DBs support them as well.

= We don’t allow any field to be null or unspecified.

= We provide a default value for every column except the text body of the todo.
This means we can create a new todo with only one piece of data: the text body
of the todo.

= The updated_at column will be updated by our Rust code, as opposed to using a
SQL trigger (or some other method). You may prefer to use a trigger here, and
I'll leave that as an exercise for the reader. The main advantage of using a trig-
ger is that you can always execute plain SQL queries, and the updated_at col-
umn will be updated accordingly.

Our CREATE TABLE .. statement will be added as a migration, so when the database is
first initialized and migrations are executed, the table will be created. We’ll use the
SQLx CLI to create the migration:

$ sglx migrate add todos
...

This command creates a file called migrations/20230701202642_todos.sql, which
we’ve populated with the SQL code from listing 9.5.

Interfacing with our data

We’re now ready to write the Rust code to model our todos in Rust and interact with
the database. We’ll support five operations: create, read, update, delete, and list.
These are the default table stakes CRUD operations that you generally get out of the
box and that you will encounter many times over if you spend much time working
with web frameworks.

Let’s look at our Todo struct.

Listing 9.6 API service Todo struct from src/todo.rs

We’re deriving the Serialize trait from
the serde crate and sqlx::FromRow,
which allows us to get a Todo from a
SQLx query.

#[derive (Serialize, Clone, sglx::FromRow)]
pub struct Todo {

id: ie4,

body: String,

completed: bool,

created at: NaiveDateTime,

updated at: NaiveDateTime, We use the chrono::NaiveDateTime type

to map SQL timestamps into Rust objects.

192

CHAPTER 9 Building an HTTP REST API service

There isn’t a lot to see for the Todo struct itself, so we’ll jump into the impl blocks,
which get more interesting. We’ll first look at the listing and reading code.

Listing 9.7 API service Todo struct impl read block from src/todo.rs

impl Todo {
pub async fn list (dbpool: SglitePool) -> Result<Vec<Todo>, Error> {

query as("select * from todos")
.fetch_all (&dbpool) Selects all todos
Lawait from the todos table

.map_err (Into::into)
}
pub async fn read(dbpool: SglitePool, id: i64) -> Result<Todo, Error> {
query as("select * from todos where id = ?")

.bind (id) Selects one todo from
.fetch_one (&dbpool) the tot.ios .table with a
Lawait matching id field

.map_err (Into::into)

In this code, we have two methods: 1ist () and read (). Each method applies the action
you’d expect by executing a query against the database. The only real difference
between list() and read() is the number of records returned and the fact that we
need to select by ID when reading a single record. Now, let’s look at the following list-
ing, which shows the write impl block.

Listing 9.8 API service Todo struct impl write block from src/todo.rs

We’ve added a new type here, CreateTodo, which we
haven’t defined yet. It contains the todo body, which

impl Todo { we need to create a todo.

pub async fn create(
dbpool: SglitePool,
new_todo: CreateTodo,
) -> Result<Todo, Errors> {
query as("insert into todos (body) values (?) returning *")
.bind (new_todo.body())

We use the returning * SQL clause to retrieve the
record immediately after it’s inserted.

.fetch one (&dbpool) We execute the query with fetch_one()
Lawait because we expect this to return one row.
.map_err (Into::into)
} We’ve added another new type here, UpdateTodo,
pub async fn update (which contains the two fields we allow to be updated.
dbpool: SglitePool,
id: ie4, Once again, we’re using the returning
updated_todo: UpdateTodo, * SQL clause to retrieve the updated
) -> Result<Todo, Errors> { record immediately. Notice how we set the
query_as updated_at field to the current date and time.

"update todos set body = ?, completed = ?, \
updated_at = datetime('now') where id = ? returning *",

9.6 Data modeling 193

) Each value is bound in the order they’re declared
.bind (updated_todo.body ()) within the SQL statement, using the ? token to
.bind (updated_todo.completed()) bind values. This syntax varies, depending on the
.bind (id) SQL implementation.

.fetch_one (&dbpool)

.await

We expect to fetch one row

-map_err (Into::into) when this query is executed.

}
pub async fn delete(dbpool: SglitePool, id: i64) -> Result<(), Error> {
query ("delete from todos where id = ?") X . .
.bind (id) The delete is destructive; nothing
.execute (&dbpool) is left to return if it succeeds.
. -await?; Here, we use execute() to execute the query, which
) Ok (0) is used for queries that don’t return records.
} We return unit upon success (i.e., no previous errors).

The code for each action is quite similar, so let’s discuss some of the shared behaviors:

= We assume any errors will result in the sqlx: :Error being returned by the query
execution, which we map to our own error type using the From trait—we apply
this trait by using .map_err (Into::into). The From and Into traits are reciprocal,
so we can call the Into::into trait method on the error only by using map_err ().

= Every query except the delete action returns one or more records, and because
we derived sqlx::FromRow for Todo (as previously noted), we can let SQLx map
the type for us.

= We need to pass a handle to the database pool (we could also pass a connection
directly) to execute each operation.

= When we use bind () to bind values to the SQL statement, we need to pay attention
to the order of the values because they’re bound in the order they’re specified.
Some SQL drivers let you use identifiers to bind values, but SQLite does not.

Let’s take a quick look at the CreateTodo and UpdateTodo structs, which we introduced
in listing 9.8. First, let’s examine CreateTodo.

Listing 9.9 API service CreateTodo struct from src/todo.rs

[derive (Deserialize)]

pub struct CreateTodo {
body: String,

}

impl CreateTodo {
pub fn body(&self) -> &str {
self.body.as_ref ()
}

Notice how the only method we provide is an accessor for the body field. This is
because we’re relying on Deserialize to create the struct, which we derived at the top.

194

9.7

CHAPTER 9 Building an HTTP REST API service

We don’t need to construct a CreateTodo; we just need to deserialize it when we receive
one in an API call.
Next, let’s look at UpdateTodo.

Listing 9.10 API service UpdateTodo struct from src/todo.rs

#[derive (Deserialize)]

pub struct UpdateTodo {
body: String,
completed: bool,

}

impl UpdateTodo {
pub fn body (&self) -> &str {
self.body.as_ref ()
1

pub fn completed(&self) -> bool {
self.completed
}

UptadeTodo is nearly the same as CreateTodo, except we have two fields: body and
completed. Once again, we rely on the serde library to construct the object for us.

That’s it for the data model. Now, we’ll move on to defining the API routes in the
next section.

Declaring the API routes

We’ve already designed our API, so all we need to do is declare the routes using axum’s
Router. If you've used any other web frameworks, this code will look quite familiar, as it
consists of the same components: a request path (with optional parameters), a request
method, the request handler, the state we require for our handlers, and any additional
layers for our service.

Let’s go ahead and look at the code in the following listing from router.rs, which
defines the service and its router.

Listing 9.11 API service router from src/router.rs

pub async fn create_ router(

dbpool: sglx::Pool<sqglx::Sglites>, . .
P d =54 4 g The database pool is passed into

) -> axum: :Router { the router, which takes ownership.

use crate::api::({
ping, todo create, todo delete, todo_ list, todo_read, todo_ update,

Vi

use axum::{routing::get, Router};

use tower http::cors::{Any, CorsLayer};

use tower http::trace::Tracelayer; .
kP Y Our liveness health check

merely returns a 200

Router: :new () A
status with the body ok.

.route ("/alive", get (|| async { "ok" }))

9.8 Implementing the API routes 195

-route ("/ready", get (ping)) Our readiness health check makes a
-nest (GET request with the ping() handler.
The path parameter :id | "/V1"- !
maps to the todo’s ID, | Router: :new () The API routes are nested under the /vl path.
GET, PUT, or DELETE .route ("/todos", get (todo_list).post (todo_create))
methods for /vl/todos/:id -route (.
. Here, we permit two methods for
n d : dll . ’ .
map to todo_read(, /todos/: i the /vl/todos path—either GET or
todo_update(), and get (todo_read) .put (todo_update) poep hich call the todo_list() and
todo_delete, respectively. > .delete (todo_delete), todo_create() handlers, respectively
—>), ot : .

We can change the methods together

) using a handy fluent interface.

.with state (dbpool)

.layer (CorsLayer: :new() .allow_methods (Any) We hand the database connection

= .allow_origin(Any)) pool off to the router to be passed
.layer (TraceLayer: :new_for http()) into handlers as state.
} .
We need to add the HTTP tracing layer .
from tower_http to get request traces. A CORS layer is added to demonstrate

how to apply CORS headers.

axum: :Router is the core abstraction of the axum web framework, which allows us to
declare the routes and their handlers as well as mix in layers from other services, such
as tower_http. Although this example is quite basic, you can get very far building upon
what I've demonstrated here, as it will cover a significant portion of use cases. For
practical purposes, you would need to consult the axum documentation at https://
docs.rs/axum/ to go more in depth in the framework and its features. Let’s move on
to implementing the API route handlers.

9.8 Implementing the API routes

The final puzzle piece is the API route handlers, which we’ll discuss now. Let’s start by
looking at the ping() handler for the readiness check because it’s the most basic
handler.

Listing 9.12 API service ping handler from src/api.rs

pub async fn ping(The State extractor gives us the database
State (dbpool) : State<SglitePools, connection pool from the axum state.

) -> Result<String, Error> {

use sqglx::Connection; We need to acquire a connection
from the database pool first.
let mut conn = dbpool.acquire () .await?;

conn.ping () The ping() method will check if the
.await database connection is OK. In the case
.map (|_| "ok".to string()) of SQLite, this checks that the SQLite
.map_err (Into: :into) background threads are alive.
J We use the From trait to map U . . .
sqlx::Error to our own error types. pon success, ping() returns unit, so we just

map it to the string ok, which is returned as
our response.

In ping (), I've introduced a new concept from the axum framework called extractors. In
short, an extractor is anything that implements the axum::extract::FromRequest Or

https://docs.rs/axum/
https://docs.rs/axum/
https://docs.rs/axum/

196 CHAPTER 9 Building an HTTP REST API service

axum: :extract: : FromRequestParts traits, but we can also use one of the extractors that
axum provides for use, which include the following:

" axum::extract::State—Extracts the global application state, which is supplied to
the router with .with_state (), like we saw in listing 9.11 for the database pool.

" axum::extract::Path—Extracts path parameters, such as the id parameter we
included in our routes.

" axum::extract::Json—LExtracts the body of a request as a JSON object and dese-
rializes it using the serde crate.

The axum framework provides several other extractors, and you can also create your
own by implementing the extractor traits.
Moving on, let’s get into the most import bits: the todo API route handlers.

Listing 9.13 API service todo handlers from src/api.rs

Note how we’re returning a JSON object

ub async fn todo list(R
P 7 - of Vec<Todo> or, possibly, an error.

State (dbpool) : State<SglitePools,
) -> Result<Json<Vec<Todo>>, Errors> {

Todo: :1list (dbpool) .await.map (Json: : from) The Todo:list() method returns a plain
}

Vec<Todo>, so we map that to a Json
object using Json::from, which relies on

the Serialize trait we derived for Todo.
pub async fn todo_read(

State (dbpool) : State<SglitePools,
Path(id): Path<i64s,
) -> Result<Json<Todo>, Error> {
Todo: :read (dbpool, id) .await.map (Json: :from)
}

A path parameter, which we access using
the Path extractor. axum takes care of
mapping the ID from the /vl/todos/:id
router path to the named parameter in
a type-safe manner.

pub async fn todo_create(
State (dbpool) : State<SglitePools>,
Json (new_todo) : Json<CreateTodo>, , S
) -> Result<Json<Todos, Errors { Crez!teTodo struct, which we’re
Todo: :create (dbpool, new todo) .await.map (Json: :from) ge!:tlng from the request bo.dy
- using the Json extractor, which
J uses the Deserialize
implementation we derived
using the serde crate.

Here, we introduce the

pub async fn todo_update (

State (dbpool) : State<SglitePools,

Path(id): Path<i64>,

Json (updated todo) : Json<UpdateTodo>, <
) -> Result<Json<Todo>, Errors> {

Todo: :update (dbpool, id, updated_todo).await.map (IJson::from)
}

The UpdateTodo struct, which we’re

pub async fn todo_delete(getting from the request body using
State (dbpool) : State<SglitePools, the Json extractor, which uses the
Path(id) : Path<i64>, Deserialize implementation we
) -> Result<(), Error> ({ derived using the serde crate.

Todo: :delete (dbpool, id) .await

}

9.9

9.9 Error handling 197

The code for our API handlers is quite small. Because we’ve already done most of the
hard work; at this point, it’s just about defining the inputs and outputs for each of our
handlers. axum will only match requests against handlers that have valid extractors for
their given request path and method, and it does so in a way that’s type safe, so we
don’t have to think too hard about whether our handlers will work once the code suc-
cessfully compiles. This is the beauty of Rust and type safety.

NOTE To bring ourselves back down to earth, it should be noted that this API
is designed in a way that’s quite rigid. For example, you don’t allow for
optional fields in any of the endpoints—you can only provide exactly the
fields required or else the service will return an error. In most cases, this is
fine, but as an exercise for the reader, you may want to try making the
completed field (for example) optional on PATCH or update requests. If you
only need to modify one particular field, it seems reasonable that the API
would gracefully handle only the fields that are specified—does it not?

We now have a fully functioning API service, with the main CRUD endpoints com-
pleted. We need to discuss one more topic—error handling—and then we can run
some tests to see how this baby works.

Before I jump into error handling, let’s quickly discuss how responses are handled in
axum. Out of the box, axum will handle converting basic types (unit, String, Json, and
axum: :http: :StatusCode) into HTTP responses. It does this by providing an implemen-
tation of the axum: :response: : IntoResponse trait for the most common response types.
If you need to convert your type into a response, you must either transform it into
something that implements IntoResponse or implement IntoResponse yourself, which
we’ll demonstrate in the next section.

Error handling

For error handling, I've kept things very simple. We’ll define one enum called Error
in error.rs.

Listing 9.14 API service Error enum from src/error.rs

#[derive (Debug)] We’ll convert errors from sqlx::Error

pub enum Error { into an HTTP status code and message.
Sglx (StatusCode, String),
NotFound, .
} orroun Error::NotFound is what we’ll use to
conveniently map responses to HTTP 404s.

NOTE We’'re treating 404s (not found) as errors, but 404s are also a normal
HTTP response that doesn’t necessarily indicate an error. For convenience,
we’re treating anything that’s not a 200 status code as an error.

There is not much to see with our error type. Next, we need to define the From trait for
sqlx: :Error, which converts SQLx errors to our error type.

198

9.10

CHAPTER 9 Building an HTTP REST API service

Listing 9.15 API service From implementation for sqlx: : Error from src/error.rs

impl From<sqlx::Error> for Error {
fn from(err: sglx::Error) -> Error {
match err
sglx: :Error::RowNotFound => Error::NotFound,
_ => Error::Sqglx(
StatusCode: : INTERNAL SERVER_ERROR, 4——W

For queries that can’t
find matching rows, we
return an HTTP 404.

For all other SQLx errors,
we return an HTTP 500.

err.to_string(),

) b We include the string

returned by the SQLx
) error in the response
body of our 500s.

Our From<sglx: :Error> for Error implementation is quite simple: we only handle one
case as special, which is the RowNotFound case. For that, we map it to an HTTP 404,
which is more helpful than returning a generic 500 error.

Next, we need to make it possible for axum to use our error type as a response, and
for that, we’ll implement IntoResponse for Error.

Listing 9.16 API service From implementation for sqlx: : Error from src/error.rs

Pull the status code and response body out,
and then call into_response() on a tuple of
impl IntoResponse for Error { (StatusCode, String) because axum provides
fn into_response (self) -> Response { an implementation of IntoResponse for us.
match self {
Error::Sqlx(code, body) => (code, body).into_response(),
Error::NotFound => StatusCode::NOT FOUND.into response(),

Call into_response() on StatusCode::NOT_FOUND,
} which gives us an empty HTTP 404 response.

You may notice in the preceding code that we don’t even bother constructing a
Response, as required by IntoResponse. Thanks to the implementations provided by
axum, we merely delegate the response construction to axum using an existing implemen-
tation of IntoResponse. This is a neat trick that requires minimal effort on our part. The
only case where you wouldn’t want to do this is when the default implementation
involves a costly conversion and you have enough information to optimize it better.

Running the service

Let’s run our service and make sure it behaves as expected. When it’s started with
cargo run, we’ll see output similar to what’s shown in figure 9.2. The logging output
we see in the figure shows the queries from SQLx at startup, which includes running
the migrations. We aren’t required to run the migrations automatically, but this is
convenient for testing. In a production service, you would likely not run migrations
automatically.

9.10 Running the service 199

-
[XN J

->

version
success

H

SELECT
version
FROM

WHERE
success
ORDER BY
version
LIMIT
1

SELECT

FROM

ORDER BY
version

|

Finished dev [unoptimized + debuginfo] target(s) in 0.08s

Running “target/debug/api-service”
2023-08-11T17:39:33.802819Z INFO sqlx::query: PRAGMA foreign_keys = ON; ..; rows affected: 0, rows returned: 0, elapsed: 279.042pus
PRAGMA foreign_keys = ON;
2023-08-11T17:39:33.806712Z INFO sqlx::query: CREATE TABLE IF NOT ..; rows affected: @, rows returned: 0, elapsed: 606.084us
CREATE TABLE IF NOT EXISTS _sqlx_migrations (

description TEXT NOT NULL,
installed_on TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,

checksum BLOB NOT NULL,
execution_time BIGINT NOT NULL

2023-08-11T17:39:33.807640Z INFO sqlx::query: SELECT version FROM _sqlx_migrations ..; rows affected: @, rows returned: 0, elapsed: 76.833us

_sqlx_migrations

2023-08-11T17:39:33.808293Z INFO sqlx::query: SELECT version, checksum FROM ..; rows affected: 0, rows returned: 1, elapsed: 89.458us

version,
checksum

_sqlx_migrations

\#82 cargo run

git:(main) = cargo run

BIGINT PRIMARY KEY,

BOOLEAN NOT NULL,

= false

Figure 9.2 Running the API service

We need to test our API, but first, let’s ensure the health check endpoints work as
expected. For these tests, I will use the HTTPie (https://httpie.io/) tool, but you
could just as easily use curl or another CLI HTTP client.

I’ll run http 127.0.0.1:3000/alive followed by http 127.0.0.1:3000/ready, which
will generate an HTTP GET request against each endpoint, with the result shown in fig-
ure 9.3. In the output shown in the figure, we see the logging output of our service on
the left side and the output from HTTPie on the right side. So far, everything looks
good; we can see the HTTP status code is 200 for each request, the request body is
simply ok, and the CORS headers are present as expected.

Now, it’s time to create a todo. For this, we’ll make an HTTP posT request with http
post 127.0.0.1:3000/v1/todos body='wash the dishes’, as shown in figure 9.4.

Now, let’s test the HTTP GET methods for the read and list endpoints with http
127.0.0.1:3000/v1/todos/1 (read) and http 127.0.0.1:3000/v1/todos (list), as shown
in figure 9.5. Note how the first request (for a specific resource) returns just the todo
object, and the second request (to list all resources) returns a list of objects. So far, so
good. Next, let’s test the puT method to update our todo by marking it as completed
with http put 127.0.0.1:3000/v1/todos/1 body='wash the dishes’ completed:=true, as
shown in figure 9.6.

https://httpie.io/

200

CHAPTER 9 Building an HTTP REST API service

-
000 2

X cargo (api-service)
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

H

2023-08-11T17:58:19.704713Z INFO sqlx::query: INSERT INTO _sqlx_migr
ations (..; rows affected: 1, rows returned: 0, elapsed: 169.666us

INSERT INTO
_sqlx_migrations (
version,
description,
success,
checksum,
execution_time

)
VALUES
(?1, 2?2, TRUE, ?3, -1)

2023-08-11T17:58:19.705968Z INFO sqlx::query: UPDATE _sqlx_migration
s SET execution_time ..; rows affected: 1, rows returned: 0, elapsed:
324.833ps

UPDATE
_sqlx_migrations
T

execution_time = 21

WHERE
version = 22

2023-08-11T17:58:37.773384Z DEBUG request{method=GET uri=/alive versi

on=HTTP/1.1}: tower_http::trace::on_request: started processing reque

st

2023-08-11T17:58:37.773500Z DEBUG request{method=GET uri=/alive versi

on=HTTP/1.1}: tower_http::trace::on_response: finished processing req

uest latency=0 ms status=200

2023-08-11T17:58:45.350770Z DEBUG request{method=GET uri=/ready versi

on=HTTP/1.1}: tower_http::trace::on_request: started processing reque

st

2023-08-11T17:58:45.351088Z DEBUG request{method=GET uri=/ready versi

on=HTTP/1.1}: tower_http::trace::on_response: finished processing req

uest latency=0 ms status=200

Figure 9.3 Checking service health

brenden@fruit-computer:~

X ~(-zsh)

< ~ http 127.0.0.1:3000/alive
HTTP/1.1 200 0K
access-control-allow-origin: *
content-length: 2

content-type: text/plain; charset=utf-8
Fri, 11 Aug 2023 17:58:37 GMT
origin
access-control-request-method

: access-control-request-headers

- ~ http 127.0.0.1:3000/ready
HTTP/1.1 200 0K
access-control-allow-origin: *
content-length: 2

content-type: text/plain; charset=utf-8
date: Fri, 11 Aug 2023 17:58:45 GMT
origin
access-control-request-method
vary: access-control-request-headers

ok

-

r
@00 x2

X cargo (api-service)

2023-08-11T18:03:15.309076Z 1INFO sqlx::query: INSERT INTO _sqlx_migr
ations (..; rows affected: 1, rows returned: 0, elapsed: 146.042us

INSERT INTO
_sqlx_migrations (
version,
description,
success,
checksum,
execution_time

)
VALUES
(?1, 22, TRUE, 73, -1)

2023-08-11T18:03:15.310202Z INFO sqlx::query: UPDATE _sqlx_migration
s SET execution_time ..; rows affected: 1, rows returned: 0, elapsed:
342.750us

UPDATE
_sqlx_migrations
ET

execution_time = ?1
WHERE
version = 72

2023-08-11T18:03:17.201422Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_request: started processing r
equest

2023-08-11T18:03:17.202317Z DEBUG request{method=POST uri=/v1/todos v
ersion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

2023-08-11T18:03:17.202790Z INFO sqlx::query: insert into todos (bod
y) ..; rows affected: 1, rows returned: 1, elapsed: 707.917us

insert into
todos (body)
values
(?) returning *

0
Figure 9.4 Creating a todo with POST

brenden@fruit-computer:~

X ~(-zsh)

= ~ http post 127.0.0.1:3000/v1/todos body='wash the dishes'
HTTP/1.1 200 OK

access-control-allow-origin: *

content-length: 121

content-type: application/json

date: Fri, 11 Aug 2023 18:03:17 GMT

vary: origin

vary: access-control-request-method

vary: access-control-request-headers

{
"body": "wash the dishes",
"completed": false,
"created_at": "2023-08-11T18:03:17",
"id": 1,
"updated_at": "2023-08-11T18:03:17"
}
S |

9.10 Running the service

201

e0 0 2

X cargo (api-service)
version = ?72

2023-08-11T18:03:17.2014227Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_request: started processing r
equest

2023-08-11T18:03:17.202317Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

2023-08-11T18:03:17.202790Z INFO sqlx::query: insert into todos (bod
y) ..; rows affected: 1, rows returned: 1, elapsed: 707.917us

insert into
todos (body)
values
(?) returning

2023-08-11T18:03:44.604387Z DEBUG request{method=GET uri=/vi/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T18:03:44.604961Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_htt. trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T18:03:44.605273Z INFO sqlx::query: select * from todos ..;
rows affected: 1, rows returned: 1, elapsed: 135.458us

select
*
from
todos
where
id = ?

2023-08-11T18:03:
rsion=HTTP/1.1}:
quest

2023-08-11T18:03:
ows affected: 1,

51.7771247 DEBUG request{method=GET uri=/v1/todos ve
tower_http:: trace::on_request: started processing re

51.777449Z INFO sqlx::query: select * from todos; r
rows returned: 1, elapsed: 111.833ps
2023-08-11T18:03:51.777617Z DEBUG request{method=GET uri=/vl/todos ve
rsion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

brenden@fruit-computer:~

X ~(-zsh)

< ~ http 127.0.0.1:3000/v1/todos/1
HTTP/1.1 200 OK
access-control-allow-origin: *
content-length: 121

content-type: application/json
date: Fri, 11 Aug 2023 18:03:44 GMT
vary: origin

vary: access-control-request-method
vary: access-control-request-headers

{
"body": "wash the dishes",
"completed": false,

"created_at": "2023-08-11T18:03:17",
"id": 1,
"updated_at": "2023-08-11T18:03:17"

< ~ http 127.0.0.1:3000/v1/todos
HTTP/1.1 200 OK
access-control-allow-origin: *
content-length: 123
content-type: application/json

date: Fri, 11 Aug 2023 18:03:51 GMT
vary: origin
vary: access-control-request-method
vary: access-control-request-headers
[
{
"body": "wash the dishes",
"completed": false,
"created_at": "2023-08-11T18:03:17",
"id": 1,
"updated_at": "2023-08-11T18:03:17"
}
1
R |

Figure 9.5 Reading todos with GET

@00 xn2

X cargo (api-service)

request

2023-08-11T18:03:44.604961Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T18:03:44.605273Z INFO sqlx::query: select x from todos ..;
rows affected: 1, rows returned: 1, elapsed: 135.458us

select
*
from
todos
where
id = ?

2023-08-11T18:03:
rsion=HTTP/1.1}:
quest
2023-08-11T18:03:
ows affected: 1,

51.777124Z DEBUG request{method=GET uri=/v1/todos ve
tower_http::trace::on_request: started processing re

51.777449Z INFO sqlx::query: select * from todos; r
rows returned: 1, elapsed: 111.833ps
2023-08-11T18:03:51.777617Z DEBUG request{method=GET uri=/v1/todos ve
rsion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

2023-08-11T18:04:15.756046Z DEBUG request{method=PUT uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T18:04:15.756714Z DEBUG request{method=PUT uri=/vi/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T18:04:15.757837Z INFO sqlx::query: update todos set body
.; rows affected: 1, rows returned: 1, elapsed: 687.750us

update

todos
set

body = ?,

completed = ?,

updated_at = datetime('now')
where

id = ? returning *

\a

brenden@fruit-computer:~

X~ (-zsh)

< ~ http put 127.0.0.1:3000/v1/todos/1 body='wash the dishes' comple
ted:=true

HTTP/1.1 200 OK
access-control-allow-origin: *
content-length: 120

content-type: application/json
date: Fri, 11 Aug 2023 18:04:15 GMT
vary: origin

vary: access-control-request-method
vary: access-control-request-headers

{
"body": "wash the dishes",
"completed": true,

"created_at": "2023-08-11T18:03:17",
"id": 1,

"updated_at": "2023-08-11T18:04:15"

o |

Figure 9.6 Updating todos with PUT

202 CHAPTER 9 Building an HITP REST API service

Notice how we need to specify both the body and completed fields, which is a bit annoy-
ing. It would be nice if we gracefully handled only the required fields when updating a
record, but I’ll leave that as an exercise for the reader. Finally, let’s check that we can
delete our todo with http delete 127.0.0.1:3000/v1/todos/1, as shown in figure 9.7.

—~
000 2 brenden@fruit-computer:~

X cargo (api-service) X ~(-zsh)

2023-08-11T18:03:51.777124Z DEBUG request{method=GET uri=/v1/todos ve |- ~ http delete 127.0.0.1:3000/v1/todos/1
rsion=HTTP/1.1}: tower_http::trace::on_request: started processing re |HTTP/1.1 200 OK

quest access-control-allow-origin: *
2023-08-11T18:03:51.777449Z INFO sqlx::query: select x from todos; r |content-length: 0
ows affected: 1, rows returned: 1, elapsed: 111.833ps date: Fri, 11 Aug 2023 18:05:10 GMT

2023-08-11T18:03:51.777617Z DEBUG request{method=GET uri=/v1/todos ve |vary: origin

rsion=HTTP/1.1}: tower_http::trace::on_response: finished processing |vary: access-control-request-method
request latency=0 ms status=200 vary: access-control-request-headers
2023-08-11T18:04:15.756046Z DEBUG request{method=PUT uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T18:04:15.756714Z DEBUG request{method=PUT uri=/vi/todos/1 |- ~ |
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T18:04:15.757837Z INFO sqlx::query: update todos set body
..; rows affected: 1, rows returned: 1, elapsed: 687.750us

update

todos
set

body = ?,

completed = ?,

updated_at = datetime('now')
where

id = ? returning *

2023-08-11T18:05:10.683983Z DEBUG request{method=DELETE uri=/v1/todos
/1 version=HTTP/1.1}: tower_http::trace::on_request: started processi

ng request
2023-08-11T18:05:10.685106Z INFO sqlx::query: delete from todos wher
e ..; rows affected: 1, rows returned: 0, elapsed: 625.542ps

delete from
todos
where
id = ?

2023-08-11T18:05:10.685198Z DEBUG request{method=DELETE uri=/v1/todos
/1 version=HTTP/1.1}: tower_http::trace::on_response: finished proces
sing request latency=1 ms status=200

Figure 9.7 Deleting todos with DELETE

Success! It looks like everything works. As an exercise for the reader, I suggest running
a few more tests and experimenting with some of the following options:

= Adding multiple posts

= Listing multiple posts

= Permitting optional fields (as already suggested)

= Trying a different primary key type (such as a UUID)

= Changing the response for posT to include the resource URL or a 3xx redirect,
a pattern sometimes used in RESTful APIs

Summary

= axum is a web framework that provides everything needed to build web service
APIs in Rust using the Tokio async runtime. Although there are other Rust web
frameworks, axum provides a type-safe API without the need for macros.

Summary 203

axum can be used together with a number of other crates to provide everything
you need in a web framework, but the axum crate itself is fairly small and only
provides a few key abstractions: the router, extractors, responses, error han-
dling, and integration with the tower and tower-http crates.

axum supports HIT'TP/1 and HTTP/2 via the hyper crate, can handle TLS termi-
nation with rustls, and is built on Tokio’s insanely fast async runtime with sta-
ble Rust support for the async/await syntax.

Most of the work in building an API service involves designing a data model,
deciding on state management, adding tracing and logging, deciding how to
render the clientside data (HTML, JSON, etc.), and choosing an architecture
that suits your needs.

The standard web-tier architecture will fit the needs of a considerable portion
of applications, and it’s relatively robust, highly scalable, well understood, and
backed by well-known standards, like HTTP.

Buwilding an
HTTP REST API CLI

This chapter covers

Deciding which tools and libraries to use
Designing the CLI

Declaring the commands

Implementing the commands
Implementing requests

Handling errors gracefully

Testing our CLI

Continuing the work we did in the previous chapter, we’ll write a CLI tool for the
API service we wrote. Using a CLI tool, we’ll demonstrate another way to interact
asynchronously in Rust by making HTTP requests with a separate service (which we
also wrote). Our CLI tool will provide a convenient way to interact with our todo
app backend (the API service). We’ll use Rust’s async features to showcase the
basics of writing async Rust from the client side of a client-server relationship.

204

10.1

10.1 Deciding which tools and libraries to use 205

Writing CLI tools is one way to use software to solve problems for us, and building
tools is how we avoid repetition, mistakes, and time wasted doing tasks computers are
better suited for. Most versions of the Unix philosophy (which has several variations)
include the “do one thing and do it well” tenet, which we’ll apply to our CLI tool. We’ll
also make it easy to pipe the output from our CLI into another tool (another point from
the Unix philosophy), making it possible to string commands together.

Deciding which tools and libraries to use

We’ll continue working with the Tokio runtime, and for making HTTP requests, we’ll
once again use the hyper library, which provides an implementation of HTTP (for both
servers and clients). I will also introduce a new crate, called clap (https://crates.io/
crates/clap), which provides structured and type-safe command-line parsing.

It should be noted there is a higherlevel HTTP client library called reqwest
(https://crates.io/crates/reqwest), which is similar to the Python Requests library, but
for Rust. However, we’ll stick with hyper because it’s lower level; therefore, we can
learn a bit more about how things work by using it directly, as opposed to using
reqwest, which wraps the hyper library. In practice, you’d probably be better off using
reqwest (which provides a more convenient and user-friendly API). Table 10.1 shows
the API service dependencies.

Table 10.1 API service dependencies

Name Features Description
Clap derive Command-line framework
colored json | Default Pretty-print JSON data
Hyper client, httpl, tcp, stream HTTP client/server AP
serde Default Serialization/deserialization library
serde_json Default JSON serialization/deserialization for the serde
crate
tokio macros,rt-multi-thread, Async runtime, used with hyper
io-util, io-std
yansi Default ANSI color output

For your convenience, you can install everything from table 10.1 in a one-shot, copy-
pastable command as follows:

cargo add clap --features derive

cargo add colored json

cargo add hyper --features client,httpl,tcp,stream

cargo add serde

cargo add serde_ json

cargo add tokio --features macros,rt-multi-thread, io-util,io-std
cargo add yansi

https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/reqwest

206

10.2

CHAPTER 10 Building an HTTP REST API CLI

After running these commands, your Cargo.toml will look like the following listing.

Listing 10.1 API client Cargo.toml

[package]

name = "api-client"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

[dependencies]

clap = { version = "4.3.10", features = ["derive"] }

colored json = "3.2.0"

hyper = { version = "0.14.27", features = ["client", "httpl", "tcp",
"stream"] }

serde = "1.0.166"

serde_json = "1.0.100"

tokio = { version = "1.29.1", features = ["macros", "rt-multi-thread",
"io-util", "io-std"] }

yansi = "0.5.1"

Now that we’ve specified our dependencies, we’ll discuss the design of our command-
line interface (CLI).

Designing the CLI

Our CLI will be very straightforward; we’re going to map our five CRUD plus list
commands to CLI commands, which will do exactly what you expect, as shown in
table 10.2.

Table 10.2 CLI commands

Command Action Method Path
create Creates a todo POST /vl/todos
read Reads a todo by ID GET /vl/todos/:id
update Updates a todo by ID PUT /v1/todos/:id
delete Deletes a todo by ID DELETE /v1/todos/:id
list Lists all todos GET /vl/todos

We’ll return the response directly from the API by printing to the standard output, and
for JSON responses, we’ll pretty-print them for readability. This will enable piping the
command to another tool (such as jq), while also making the output human readable.

The clap library lets us build command-based CLIs, with either positional argu-
ments or optional parameters. Clap will automatically generate help output (which we

10.3

10.3 Declaring the commands 207

can obtain with the help command), and we can have parameters that apply to either
the top-level command or one of the subcommands. Clap will take care of parsing
arguments and handling errors in the case of incorrect or invalid arguments, pro-
vided we define the types correctly. Once clap’s parsing is complete, we’re left with a
struct (which we define) that contains all the values parsed from the command-line
arguments. Let’s go ahead and dive into the code by looking at how we define the
interface using clap.

Declaring the commands

Clap’s API uses the derive macro in addition to some procedural macros to declare an
interface. We want to use the command-based interface, which we can enable with
clap using the #[command] macro, as shown in the following listing, where we define
our CLL

Listing 10.2 Top-level CLI definition for clap from src/main.rs

We derive clap::Parser for our CLI, which lets us parse the
arguments from the command line using the Cli struct.

Notice the triple slash ///, which clap will parse as a help
#[derive (Parser)] string for this argument (which is the API service URL).

struct Cli {
/// Base URL of API service For the first argument, we parse directly into the
url: hyper::Uri, hyper::Uri struct because it implements FromStr,

which clap utilizes.

[command (subcommand)]
command: Commands, Our second argument is a subcommand, which

we denote with the #[command()] macro.
This includes our subcommand

(the second argument), which
we’ll define next.

For the top-level CLI, we’ve defined two positional arguments: the base URL for our
API service and the subcommand (one of create, read, update, delete, or list). We
haven’t defined the commands yet, so we’ll do that in the following listing.

Listing 10.3 CLI subcommands definition from src/main.rs

[derive (Subcommand, Debug)]
enum Commands {
/// List all todos

We derive clap::Subcommand here
to use this as a subcommand.

List,
/// Create a new todo Note that we use an enum because we
Create { can only select one command at a time.

/// The todo body
body: String,

}

/// Read a todo

Read {

208

CHAPTER 10 Building an HTTP REST API CLI

/// The todo ID
id: ié64,

b

/// Update a todo

Update {
/// The todo ID
id: ié4,

/// The todo body

body: String,

/// Mark todo as completed
#[arg (short, long)]

N b
completed: bool, For this Boolean argument, we’ll make

it optional using an argument switch

; / / Delet tod instead of a positional argument.
elete a oao
Delete {
/// The todo ID
id: ié4,

b

Notice how we’ve introduced arguments for our commands, but the preceding List
variant does not require any arguments. After we implement main() in the next sec-
tion, we can run our CLI with cargo run --help, which will print out a help message
like this (note that the arguments need to come after the double-dash “--” when using

cargo run):

Usage: api-client <URL> <COMMAND>

Commands :
list List all todos
create Create a new todo
read Read a todo

update Update a todo
delete Delete a todo
help Print this message or the help of the given subcommand (s)

Arguments:
<URL> Base URL of API service

Options:
-h, --help Print help

Each subcommand will also print its own help, for example, with cargo run --help

create Or cargo run --create --help:
Create a new todo
Usage: api-client <URL> create <BODY>

Arguments:

10.4 Implementing the commands 209

<BODY> The todo body

Options:
-h, --help Print help

Nice! We can move on to implementing the commands now.

10.4 Implementing the commands
The type-safe API provided by clap makes it incredibly easy to handle each command
and its arguments. We can match each variant in our Commands enum and process the
command accordingly. Before we handle each command, there’s some boilerplate to
parse the CLI arguments and the base URL.

Listing 10.4 CLI argument-parsing boilerplate from src/main.rs

Call Cliz::parse() to parse the CLI

#[tokio::main] . PP .
arguments in main() into our Cli struct.

async fn main() -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let cli = Cli::parse();
Extract
the base let mut uri builder = Uri::builder(); ?angthebaseURL’
URL . n . into its parts, and we’ll
scheme if let'Somé(scheme) f cl}.url.scheme() { add them into a new
(Leqlﬁtp } uri_builder = uri_builder.scheme (scheme.clone()) ; hyper::Uri builder.
or https). if let Some(authority) = cli.url.authority() ({
uri builder = uri builder.authority (authority.clone()) ; Extract the base
} URL authority
} (i.e., localhost

or 127.0.0.1).

In the preceding code, we break the base URL into its parts, although, notably, we choose

to ignore the path of the base URL. You might want to allow specifying a prefix base and

append each request URL to the prefix, but for this example, we ignore the path.
Now, let’s look at the code to handle each command.

Listing 10.5 CLI command handling from src/main.rs

match cli.command {
Commands: :List => {
request (
uri builder.path and query("/vl/todos") .build()?,
Method: :GET,

None,
)
.await
}
Commands: :Delete { id } => {
request (

uri_builder
.path _and query (format! ("/vl/todos/{}", id))
.build()?,

Method: : DELETE,

210

10.5

CHAPTER 10 Building an HTTP REST API CLI

None,
)
.await
1
Commands::Read { id } => {
request (
uri_builder
.path_and query (format! ("/vl/todos/{}", id))

.build()?,
Method: :GET,
None,
)
.await

}

Commands: :Create { body } => {
request (
uri builder.path and query("/vl/todos") .build()?,
Method: : POST,
Some (json! ({ "body": body }).to string()),
)

.await

}

Commands: :Update {
id,
body,
completed,
b= |
request (
uri_builder
.path and query (format! ("/vl/todos/{}", id))
.build()?,
Method: : PUT,
Some (json! ({"body":body, "completed":completed}).to string()),
)

.await

For each command, we call the request () function (which we haven’t defined yet),
where we pass the request URI, the HTTP method, and an optional JSON request
body. We use the uri_builder defined in listing 10.4 to build the URI.

Because Rust is strict about always handling each variant from the enum, we can
confidently assert that we’'ve dealt with every command case and their parameters
(provided we correctly defined them all in the Commands enum). Now, we can go ahead
and implement the HTTP requests.

Implementing requests

We putalot of thought into defining the commands and arguments, so now, executing
the actual requests against the API is very easy. We have all the pieces we need (the URI,
HTTP method, and an optional request body), so all we need to do is execute the actual
request. We can do this in one single function, shown in the following listing.

10.6 Handling errors gracefully 211

Listing 10.6 CLI request execution from src/main.rs

async fn request (
url: hyper::Uri,
method: Method,
body: Option<Strings,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let client = Client::new() ;

let mut res = client
.request (

Request: :builder () If a request body

Assume the request body

-uri (url) is always JSON if present. was prowdgd,
We read one chunk of -method (method) we include it.
the response at a time, -header ("Content-Type", "application/json") Otherwise, we
appending each to our .body (body.map (|s| Body::from(s)) send an empty
buffer. .unwrap_or else(|| Body::empty()))?, request.

)

-await?; We'll use a Vec as a buffer to handle

the incoming chunked response.
let mut buf = Vec::new();
L while let Some(next) = res.data().await ({ Each time a new chunk comes in, the
let chunk = next?; chunk is appended to the buffer.

buf.extend from_ slice (&chunk) ;

} Once all of the response has been read,
let s = String::from_utfs (buf)?; 4—1 we create a UTF-8 string from the buf,
consuming it without requiring a copy.
eprintln! ("Status: {}", Paint::green
———— > = (res.status())); If we have a
if res.headers().contains key (CONTENT TYPE) Content-Type
W . let content_ type = res.headers() [CONTENT TYPE].to_str()?; | header in the
e print the) i . ; .
response status eprintln! ("Content-Type: {}", Paint::green response, we 1]
to standard > (content type)); print that to
error and use if content type.starts with("application/json") { standard output.
the yansi crate println! ("{}", &s.to_colored json_auto()?);
to print with } else { If the content type is
ANSI colors. println! ("{}", &s); If the content type is not JSON, JSON, then we use the

print the output as a plain colored_json crate to

. retty-print the JSON to
} 61:iijltln! GO se) s string to the standard output. fhet:tyarlzdard ou{put.
1 If there’s no Content-Type header in the response, print
the output as a plain string to the standard output.
ok (())
} ﬁ If we reach this point, the request succeeded, so we return unit.

Note how our request always prints the response body to standard output, but we print
the request status and content type header to standard error. Separating the response
body and metadata allows us to pipe the output of our command into another tool.

10.6 Handling errors gracefully

In listing 10.6, we return a Result and make heavy use of the ? operator. Additionally,
we’re relying on trait objects by using Box<dyn std::error::Error + Send + Syncs> as the
error return type. This is a convenient but somewhat lazy way of handling errors. For

212 CHAPTER 10 Building an HTTP REST API CLI

this particular case, it makes sense to keep it simple (i.e., the KISS principle), but if we
were to find ourselves in a situation where we want more complex error-handling
logic or want to customize our error logging or error message handling, we’d proba-
bly want to create our own error type and use the From trait to transform the errors.
Additionally, ourmain () function, shown in listing 10.4, returns the same Result<(),
Box<dyn std::error::Error + Send + Sync>> type. Therefore, we can make use of the »
operator through the whole program, and it will correctly surface the errors.

10.7 Testing our CLI

Finally, let’s test our CLI by running it against our API service from the previous chap-
ter. In the following examples, I'll open a split terminal with the API service on the
left-hand side. On the right-hand side, I’ll run the CLI we just wrote to demonstrate
each command. First, we’ll create a new todo with cargo run --http://localhost:3000
create "finish writing chapter 10", shown in figure 10.1.

@00 2 br i + like-a-pro-i t-book/c10/api-client
X cargo (api-service) X ..10/api-client (-zsh)
-> git:(main) cargo run -- http://localhost:3000 create
2023-08-11T17:54:28.704741Z INFO sqlx::query: INSERT INTO _sqlx_migr "finish writing chapter 10"
ations (..; rows affected: 1, rows returned: 0, elapsed: 199.958us Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running “target/debug/api-client 'http://localhost:3000' create
INSERT INTO 'finish writing chapter 10'"
_sqlx_migrations (Status: 200 OK
version, Content-Type: application/json
description,
success, "body": "finish writing chapter 10",
checksum, "completed”: false,
execution_time "created_at": "2023-08-11T17:54:54"
"id": 1,
VALUES "updated_at": "2023-08-11T17:54:54"
(21, ?2, TRUE, ?3, -1) }
- git:(main) I
2023-08-11T17:54:28.706076Z INFO sqlx::query: UPDATE _sqlx_migration
s SET execution_time ..; rows affected: 1, rows returned: 0, elapsed:
350.208us
UPDATE
_sqlx_migrations
SET
execution_time = ?1
WHERE

version = ?2

2023-08-11T17:54:54.279076Z DEBUG request{method=POST uri=/v1/todos v
ersion=HTTP/1.1}: tower_http::trace::on_request: started processing r
equest

2023-08-11T17:54:54.279829Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_response: finished processing

request latency=0 ms status=200

2023-08-11T17:54:54.280535Z INFO sqlx::query: insert into todos (bod
y) ..; rows affected: 1, rows returned: 1, elapsed: 649.334ps

insert into
todos (body)
values
(?) returning *

\a

Figure 10.1 Creating a todo with our CLI

Nice! Notice the nicely formatted output with colors (in the e-book). Let’s try the
other four commands, starting with cargo run --http://localhost:3000 list, shown in
figure 10.2.

Next, we’ll update the todo. We do this by changing the body and marking it as
completed with cargo run - http://localhost:3000 update 1 "finish writing chapter
10" --completed, shown in figure 10.3.

10.7 Testing our CLI

213

'a N
000 2 Jdev/code-like-a-pi + Jc10/api-client
X cargo (api-service) X ..10/api-client (-zsh)
success, -> git:(main) = cargo run -- http://localhost:3000 list
checksum, Finished dev [unoptimized + debuginfo] target(s) in 0.03s
execution_time Running “target/debug/api-client 'http://localhost:3000' list”
) Status: 200 OK
VALUES Content-Type: application/json
(71, 22, TRUE, ?3, -1) [
{
2023-08-11T17:54:28.706076Z INFO sqlx::query: UPDATE _sqlx_migration "body": "finish writing chapter 10",
s SET execution_time ..; rows affected: 1, rows returned: 0, elapsed: "completed”: false,
350.208us "created_at": "2023-08-11T17:54:54",
"id": 1,
UPDATE "updated_at": "2023-08-11T17:54:54"
_sqlx_migrations
ET 1
execution_time = ?1 > git:(main) - i
WHERE
version = ?2
2023-08-11T17:54:54.279076Z DEBUG request{method=POST uri=/v1/todos v
ersion=HTTP/1.1}: tower_http::trace::on_request: started processing r
equest
2023-08-11T17:54:54.279829Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200
2023-08-11T17:54:54.280535Z INFO sqlx::query: insert into todos (bod
y) ..; rows affected: 1, rows returned: 1, elapsed: 649.334us
insert into
todos (body)
values
(?) returning *
2023-08-11T17:55:23.219826Z DEBUG request{method=GET uri=/vi/todos ve
rsion=HTTP/1.1}: tower_http::trace::on_request: started processing re
quest
2023-08-11T17:55:23.220242Z INFO sqlx::query: select x from todos; r
ows affected: 1, rows returned: 1, elapsed: 137.709pus
2023-08-11T17:55:23.220415Z DEBUG request{method=GET uri=/v1/todos ve
rsion=HTTP/1.1}: tower_htt trace::on_response: finished processing
request latency=0 ms status=200
J
Figure 10.2 Listing todos with our CLI
®©0 0 xn2 like-a-pro-i t /c10/api-client
X cargo (api-service) X .10/api-client (-zsh)
2023-08-11T17:54:54.279076Z DEBUG request{method=POST uri=/v1/todos v = git:(main) cargo run -- http://localhost:3000 update

ersion=HTTP/1.1}: tower_http::trace::on_request: started processing r
equest

2023-08-11T17:54:54.279829Z DEBUG request{method=POST uri=/vi/todos v
ersion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

2023-08-11T17:54:54.280535Z INFO sqlx::query: insert into todos (bod
y) ..; rows affected: 1, rows returned: 1, elapsed: 649.334ps

insert into

todos (body)
values

(?) returning *

2023-08-11T17:55:23.219826Z DEBUG request{method=GET uri=/v1/todos ve
rsion=HTTP/1.1}: tower_http::trace::on_request: started processing re
quest

2023-08-11T17:55:
ows affected: 1,

23.2202427 INFO sqlx::query: select * from todos; r
rows returned: 1, elapsed: 137.709us
2023-08-11T17:55:23.220415Z DEBUG request{method=GET uri=/v1/todos ve
rsion=HTTP/1.1}: tower_http::trace::on_response: finished processing
request latency=0 ms status=200

2023-08-11T17:56:09.493295Z DEBUG request{method=PUT uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T17:56:09.493980Z DEBUG request{method=PUT uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T17:56:09.495188Z INFO sqlx::query: update todos set body
..; rows affected: 1, rows returned: 1, elapsed: 649.500us

update
todos
set
body = ?,
completed = ?
updated_at =
where
id = ? returning *

,
datetime('now")

a

1 "finish writing chapter 10" --completed
Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running “target/debug/api-client 'http://localhost:3000' update
1 'finish writing chapter 10' --completed”
Status: 200 0K
Content-Type: application/json

"body": "finish writing chapter 10",
"completed": true,

"created_at": "2023-08-11T17:54:54",
"id": 1,

"updated_at": "2023-08-11T17:56:09"

-> git:(main)

Figure 10.3 Updating a todo with our CLI

214

CHAPTER 10 Building an HTTP REST API CLI

Let’s read back our updated todo. We’ll use cargo run --http://localhost:3000 read 1,
shown in figure 10.4.

@00 %2 i g like pro-i t: /c10/api-client

X cargo (api-service) X ..10/api-client (-zsh)

quest -> git:(main) cargo run -- http://localhost:3000 read 1
2023-08-11T17:55:23.220242Z INFO sqlx::query: select % from todos; r Finished dev [unoptimized + debuginfo] target(s) in 0.03s

ows affected: 1, rows returned: 1, elapsed: 137.709us Running “target/debug/api-client 'http://localhost:3000' read 1°
2023-08-11T17:55:23.220415Z DEBUG request{method=GET uri=/v1/todos ve Status: 200 0K

rsion=HTTP/1.1}: tower_http::trace::on_response: finished processing | Content-Type: application/json

request latency=0 ms status=200

2023-08-11T17:56:09.493295Z DEBUG request{method=PUT uri=/v1/todos/1 "body": "finish writing chapter 10",
version=HTTP/1.1}: tower_http::trace::on_request: started processing "completed": true,
request "created_at": "2023-08-11T17:54:54",
2023-08-11T17:56:09.493980Z DEBUG request{method=PUT uri=/v1/todos/1 "id": 1,
version=HTTP/1.1}: tower_http::trace::on_response: finished processin "updated_at": "2023-08-11T17:56:09"
g request latency=0 ms status=200
2023-08-11T17:56:09.495188Z INFO sqlx::query: update todos set body |- git:(main) - i
..; rows affected: 1, rows returned: 1, elapsed: 649.500us
update
todos
set
body = ?,

completed = ?,

updated_at = datetime('now')
where

id = ? returning *

2023-08-11T17:56:39.360289Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T17:56:39.360831Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T17:56:39.361218Z INFO sqlx::query: select x from todos ..;
rows affected: 1, rows returned: 1, elapsed: 143.625us

select
*
from
todos
where
id = ?

\a

Figure 10.4 Reading a todo with our CLI

We can also test piping our CLI output into another command, such as jg, using the
command cargo run --http://localhost:3000 read 1 | jgq '.body'. This will select the
body field from our JSON output, shown in figure 10.5.

Note how Cargo conveniently prints its output to standard error (instead of stan-
dard output), so we can still use pipes with cargo run --... Finally, let’s delete our todo
with cargo run --http://localhost:3000 delete 1, shown in figure 10.6.

That wraps up the demonstration of the CLI for our API. You can use this code as
a template or starting point for any of your future projects, although as an exercise for
the reader, I'd recommend swapping the hyper crate for reqwest.

10.7

Testing our CLI

215

000 <xn2

X cargo (api-service)

todos
set

body = ?,

completed = ?,

updated_at = datetime('now')
where

id = ? returning *

2023-08-11T17:56:39.360289Z DEBUG request{method=GET uri=/vi/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T17:56:39.360831Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T17:56:39.361218Z INFO sqlx::query: select * from todos ..;
rows affected: 1, rows returned: 1, elapsed: 143.625us

select
*

from
todos
where
id = ?

2023-08-11T17:57:13.324809Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T17:57:13.325130Z DEBUG request{method=GET uri=/vi/todos/1
version=HTTP/1.1}: tower_http::trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T17:57:13.325577Z INFO sqlx::query: select x from todos ..;
rows affected: 1, rows returned: 1, elapsed: 47.416ps

select
*
from
todos
where
id = 2

a

P k/c10/ap
X

-

| jq '.body’
Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running “target/debug/api-client 'http://localhost:3000' read 1°

Status: 200 OK

Content-Type: application/json

"finish writing chapter 10"

- - git:(main) - i

..10/api-client (-zsh)

git:(main) = cargo run -- http://localhost:3000 read 1

Figure 10.5 Piping our CLI output to jgq

(... %2

X cargo (api-service)

2023-08-11T17:56:39.361218Z INFO sqlx::query: select * from todos ..;
rows affected: 1, rows returned: 1, elapsed: 143.625pus

select

*
from

todos
where

id = ?

2023-08-11T17:57:13.324809Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_http::trace::on_request: started processing
request

2023-08-11T17:57:13.325130Z DEBUG request{method=GET uri=/v1/todos/1
version=HTTP/1.1}: tower_htt trace::on_response: finished processin
g request latency=0 ms status=200

2023-08-11T17:57:13.325577Z INFO sqlx::query: select * from todos ..;
rows affected: 1, rows returned: 1, elapsed: 47.416ps

select

*
from

todos
where

id = ?

2023-08-11T17:57:35.262722Z DEBUG request{method=DELETE uri=/v1/todos
/1 version=HTTP/1.1}: tower_http::trace::on_request: started processi
ng request

2023-08-11T17:57:35.263913Z INFO sqlx::query: delete from todos wher
e ..; rows affected: 1, rows returned: @, elapsed: 679.042us

delete from
todos
where
id = ?

2023-08-11T17:57:35.264001Z DEBUG request{method=DELETE uri=/v1/todos
/1 version=HTTP/1.1}: tower_http::trace::on_response: finished proces
sing request latency=1 ms status=200

L

X
->
1

.10/api-client (-zsh)

git:(main) = cargo run -- http://localhost:3000 delete

Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running target/debug/api-client 'http://localhost:3000' delete
Status: 200 0K

> git:(main) I

Figure 10.6 Deleting a todo with our CLI

216

CHAPTER 10 Building an HTTP REST API CLI

Summary

Writing robust CLI tools in Rust is delightfully simple; using type-safe APIs
(such as clap) for parsing CLI arguments makes it surprisingly easy to make
great tools remarkably fast.

Thanks to Rust’s rich crate ecosystem, we don’t have to do much work to add
rich features to our CLI, such as well-formatted, human-readable output. We
get much of this for free using the yansi and colored_json crates.

The hyper HTTP library is a low-level HTTP implementation in Rust that pro-
vides both a client and server API; however, in practice, you’d want to use higher-
level APIs for HTTP: axum for HTTP servers and reqwest for HTTP clients.

If you don’t want to worry about handling errors yourself, you can utilize trait
objects with Box<dyn std::error::Error + Send + Sync> as an error type, which
works, provided all error types you encounter implement std: :error: :Error.
Several crates also provide this functionality, such as thiserror (https://
crates.io/crates/thiserror) and Anyhow (https://crates.io/crates/anyhow).

https://crates.io/crates/thiserror
https://crates.io/crates/thiserror
https://crates.io/crates/thiserror
https://crates.io/crates/anyhow

Part 5

Optimizations

rI:ere may come a time when you need to improve the performance of your
software beyond what can be accomplished simply through good design, by
using the right data structures and applying the correct algorithms. Modern
operating systems, CPUs, and compilers are remarkably good at handling most
of this job for you, but every once in a while, you’ll have to go deeper.

This topic deserves an entire book of its own, but I've distilled the key points
down to their essence to provide a good jumping-off point. Rust’s safety, concur-
rency, parallelism, asynchronicity, and SIMD features make it an exceptionally
compelling programming language, all packaged as pure, open source software.

Optimizations

This chapter covers

Understanding Rust’s zero-cost abstractions
Using vectors effectively

Programming with SIMD in Rust
Parallelization with Rayon

Using Rust to accelerate other languages

In this final chapter, we’ll discuss optimization strategies with Rust. Rust’s zero-cost
abstractions allow you to confidently write Rust code without thinking too hard
about performance. Rust delegates much of its machine code generation to LLVM,
which has mature, robust, widely deployed, and well-tested code optimization.
Code written in Rust will be fast and well optimized without you spending time
hand-tuning code.

There are, however, certain cases in which you may need to dive deeper, which
we’ll discuss, along with the tools you’ll need, in this chapter. We’ll also discuss how
you can use Rust to accelerate code from other languages, which is a fun way to
introduce Rust into codebases without needing to perform a complete rewrite.

219

220

11.1

CHAPTER 11 Optimizations

Zero-cost abstractions

An important feature of Rust is its zero-cost abstractions. In short, Rust’s abstractions
allow you to write high-level code, which produces optimized machine code with no
additional runtime overhead. Rust’s compiler takes care of figuring out how to get
from high-level Rust to low-level machine code in the optimal way, without the over-
head. You can safely use Rust’s abstractions without needing to worry about whether
they will create a performance trap.

The tradeoff to Rust’s promise of zero-cost abstractions is that some features from
high-level languages you may have come to expect don’t appear in Rust or, at the very
least, may not exist in a familiar form. Some of those features include virtual methods,
reflection, function overloading, and optional function arguments. Rust provides
alternatives to these, or ways to emulate their behavior, but they’re not baked into the
language. If you want to introduce that overhead, you have to do it yourself (which, of
course, makes it much easier to reason about), such as by using trait objects for
dynamic dispatch, as with virtual methods.

We can compare Rust’s abstractions to those of C++, for example, which does have
runtime overhead. In the case of C++, the core class abstraction may contain virtual
methods, which require runtime lookup tables (called wvtables). While this overhead is
not usually significant, it can become significant in certain cases, such as when calling
virtual methods within a tight loop over many elements.

NOTE Rust’s trait objects use vtables for method calls. Trait objects are a fea-
ture enabled by the dyn Trait syntax. For example, you can store a trait object
with Box<dyn MyTraits, where the item in the box must implement MyTrait,
and the methods from MyTrait can be called using a vtable lookup.

Reflection is another opaque abstraction used extensively in some languages to dis-
patch function calls or perform other operations at run time. Reflection is often used
in Java, for example, to handle a variety of problems, but it also tends to generate a
significant number of difficult-to-debug run-time errors. Reflection offers a bit of con-
venience for the programmer with the tradeoff of flakier code.

Rust’s zero-cost abstractions are based on compile-time optimizations. Within that
framework, Rust can optimize out unused code or values, as needed. Rust’s abstrac-
tions can also be deeply nested, and the compiler can (in most cases) perform optimi-
zations down the abstraction chain. When we talk about zero-cost abstractions in Rust,
what we really mean is zero-cost abstractions once all optimizations have been performed.

When we want to build a production binary or benchmark our code, we must
enable compiler optimizations by compiling our code in release mode. We can do this
by enabling the --release flag with cargo, as the default compilation mode is debug. If
you forget to enable release mode, you may experience unexpected performance
penalties, one of which we’ll demonstrate in the next section.

11.2

11.2.1

11.2 Vectors 221

Vectors

Vectors are the core collection abstraction in Rust. As I’'ve mentioned throughout this
book, you should use vec in most cases where you require a collection of elements.
Because you’ll be using vec so often in Rust, it’s important to understand a few details
about its implementation and how it can affect the performance of your code. Addi-
tionally, you should understand when it makes sense to use something other than vec.

The first thing to understand about vec is how memory is allocated. We have dis-
cussed this a fair bit already in chapters 4 and 5, but we’ll go into a little more detail
here. vec allocates memory in contiguous blocks, with a configurable chunk size based
on capacity. It allocates memory lazily by delaying allocation until it’s necessary and
always allocating in contiguous blocks.

Vector memory allocation

The first thing you should understand about the way vec allocates memory is how it
determines capacity size. By default, an empty vec has a capacity of 0, and thus, no
memory is allocated. It’s not until data is added that memory allocation occurs. When
the capacity limit is reached, vec will double the capacity (i.e., capacity increases
exponentially).

We can see how vec adds capacity by running a small test:

let mut empty vec = Vec::<i32>::new();
(0..10) .for _each(|v]| {
println! (
"empty vec has {} elements with capacity {}",
empty vec.len()
empty vec.capacity ()
) ;
empty vec.push (v)

I3

Note that capacity is measured in number of elements, not number of bytes. The
number of bytes required for the vector is the capacity multiplied by the size of each
element. When we run the preceding code, it generates the following output:

elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity
elements with capacity 16 <+—— Capacity is increased from 8 to 16.

empty vec has
empty_ vec has
empty_vec has
empty vec has
empty_ vec has
empty_vec has
empty vec has
empty vec has
empty_vec has
empty vec has

<+—— Capacity is increased from 0 to 4.

<+—— Capacity is increased from 4 to 8.

W oo Jo0 U WN R o
0 0 0 0 & b b B O

222 CHAPTER 11 Optimizations

We can examine the source code from the Rust standard library to see the algorithm
itself, which is part of RawvVec, the internal data structure used by vec, in the following
listing.

Listing 11.1 Vec::grow_amortized () from the Rust standard library

// This method is usually instantiated many times. So we want it to be as
// small as possible, to improve compile times. But we also want as much of
// its contents to be statically computable as possible, to make the
// generated code run faster. Therefore, this method is carefully written
// so that all of the code that depends on “T is within it, while as much
// of the code that doesn't depend on "T as possible is in functions that
// are non-generic over ~T°
fn grow amortized(&mut self, len: usize, additional: usize) ->
Result< (), TryReserveErrors>

// This is ensured by the calling contexts.

debug assert! (additional > 0);

if mem::size_of::<T>() == 0 {
// Since we return a capacity of “usize::MAX" when “elem size” is
// 0, getting to here necessarily means the “RawVec ™ is overfull.
return Err (CapacityOverflow.into());

}

// Nothing we can really do about these checks, sadly.
let required cap = len.checked add(additional) .ok or (CapacityOverflow)?;

// This guarantees exponential growth. The doubling cannot overflow
// because “cap <= isize::MAX" and the type of “cap” is “usize’.
let cap = cmp::max(self.cap * 2, required cap);

Here, the

1 = A 1f::MIN NON ZER AP, ; 7,

et cap = cmp::max(Se _NON_ZERO_C. cap) < capacity

(self.cap) is

let new layout = Layout::array::<T>(cap); doubled.

// “finish grow”~ is non-generic over “T".

let ptr = finish grow(new_layout, self.current memory(), Sd?:MIN_NONTZERO_CAP

smut self.alloc)?; varies, depending on the
self.set ptr and cap(ptr, cap); size oftl.le elements, but it
0k (()) - - can be either 8, 4, or I.

What can we do with this information? There are two main takeaways:

= The lazy allocation by vec can be inefficient if you’re adding many elements, a
few at a time.

= For large vectors, the capacity will be up to twice the number of elements in the
array.

The first takeaway (lazy allocation) can be problematic in cases when you are frequently
creating new vectors and pushing data into them. Reallocations are costly because they
can involve shuffling memory around. Reallocations with a small number of elements

11.2.2

11.2 Vectors 223

aren’t as costly because your machine likely has lots of space in memory for small con-
tiguous regions, but as the structure grows, it can become more and more difficult to
find available contiguous regions (thus, more memory shuffling is required).

The second problem with large vectors can be mitigated either by using a different
structure (e.g., a linked list) or keeping the capacity trimmed with the
Vec::shrink to_fit () method. It’s also worth noting that vectors can be large in two
different dimensions: a large number of small elements or a small number of large
elements. For the latter case (a few large elements), a linked list or storing elements
within a Box will provide relief from memory pressure.

Vector iterators

Another important thing to consider when discussing vec performance is iterating over
elements. There are two ways to loop over a vec: either using iter () or into_iter(). The
iter () iterator allows us to iterate over elements with references, whereas into_iter()
consumes self. Let’s look at the following listing to analyze Vec iterators.

Listing 11.2 Demonstrating Vec iterator performance

let big vec = vec![0; 10_000_000];
let now = Instant::now() ;
for i in big vec {
if 1 < 0 {
println! ("this never prints");
}

}

println! ("First loop took {}s", now.elapsed().as_secs £32());

let big vec = vec![0; 10_000_000];
let now = Instant::now() ;
big vec.iter() .for each(|i] {
if *1i < 0 {
println! ("this never prints");
}

)

println! ("Second loop took {}s", now.elapsed().as secs £32());

In this listing, we have some large vectors we’re going to iterate over with a no-op
block of code to prevent the compiler from optimizing it out. We’ll test the code with
cargo run --release because we want to enable all compiler optimizations. Now, if we
run this code, it will produce the following output:

First loop took 0.00761l4s
Second loop took 0.00410025s

Whoa! What happened there? Why does the for loop run nearly twice as slowly?
The answer involves a bit of sugar syntax: the for loop expression roughly trans-
lates into using the into_iter() method to obtain an iterator and looping over the

224

CHAPTER 11 Optimizations

iterator until hitting the end (the full expression is documented at http://mng.bz/
Wind). into_iter() takes self by default, meaning it consumes the original vector
and (in some cases) may even require allocating an entirely new structure.

The for_ loop() method provided by the core iterator trait in Rust, however, is
highly optimized for this purpose, which gives us a slight performance gain. Addition-
ally, iter () takes &self and iterates over references to elements in the vector, which
can be further optimized by the compiler.

To verify this, we can update our code to use into_iter () instead of iter (). Let’s try
by adding a third loop:

let big vec = vec![0; 10_000_000];
let now = Instant::now() ;
big vec.into iter().for each(|i| {
if i <0 {
println! ("this never prints");
}

I3

println! ("Third loop took {}s", now.elapsed().as_secs £32());

Then, we can run the code again in release mode to produce the following output:

First loop took 0.011229166s
Second loop took 0.005076166s
Third loop took 0.008608s

That’s much closer; however, it seems that using iterators directly instead of for loop
expressions is slightly faster. Out of curiosity, what happens if we run the same test in
debug mode? Let’s try and see what it produces:

First loop took 0.074964s
Second loop took 0.14158678s
Third loop took 0.07878621s

Wow, those results are drastically different! What’s particularly interesting is that, in
debug mode, for loops are slightly faster. This is likely because of the additional over-
head imposed by enabling debugging symbols and disabling compiler optimizations.
The lesson here is that benchmarking performance in debug mode will lead to
strange results.

Vectors include quite a few other built-in optimizations, but the ones you’ll gener-
ally need to concern yourself with are memory allocation and iterators. We can
decrease the amount of memory allocations required by pre-allocating memory with
Vec::with_capacity (), and we can avoid confusing performance problems by using
iterators directly rather than for loop expressions.

http://mng.bz/W1nd
http://mng.bz/W1nd
http://mng.bz/W1nd

11.2 Vectors 225

11.2.3 Fast copies with Vec and slices

Let’s discuss one more optimization with vectors, which has to do with copying mem-
ory. Rust has a fast-path optimization for vectors and slices where it can perform a
faster copy of everything within a vec, under certain circumstances. The optimization
lives inside the Vec: :copy_from_slice() method, for which the key parts of the imple-
mentation are shown in the following listing.

Listing 11.3 Partial listing of copy from slice () from the Rust standard library

pub fn copy from slice(&mut self, src: &I[T])

where
T: Copy,
{
// ... snip ...
unsafe {
ptr::copy nonoverlapping(src.as_ptr(), self.as mut ptr(),
W self.len());
}
}

In this partial listing lifted from the Rust standard library, you’ll notice two important
things: the trait-bound copy and the unsafe call to ptr: :copy_nonoverlapping. In other
words, if you use a vec and want to copy items between two vectors, provided those
items implement Copy, you can take the fast track. We can run a quick benchmark to
see the difference in the following listing.

Listing 11.4 Benchmarking ptr: :copy nonoverlapping ()

let big vec source = vec![0; 10_000_000];
let mut big vec_target = Vec::<i32>::
= with capacity(10_000_000) ;
let now = Instant::now() ;
big vec_source

.into_iter ()

.for each(|i| big vec target.push(i));
println! ("Naive copy took {}s", now.elapsed().as_secs £32());

We initialize the target Vec with pre-
allocated memory of the correct size.

let big vec source = vec![0; 10_000_000];

let mut big vec_target = vec![0; 10_000_000];

let now = Instant::now() ;

big vec_target.copy from slice(&big vec_source) ;

println! ("Fast copy took {}s", now.elapsed().as_secs £32());

Running the preceding code in release mode produces the following result:

Naive copy took 0.024926165s
Fast copy took 0.003599458s

226

11.3

CHAPTER 11 Optimizations

In other words, using Vec: :copy_from slice() gives us about an 8x speedup in copying
data directly from one vector to another. This optimization also exists for the slice
(smut [T]) and array (mut [T]) types.

SIMD

There may come a point in your life as a developer where you need to use single
instruction, multiple data (SIMD). SIMD is a hardware feature of many modern micro-
processors that allows performing operations on sets of data simultaneously with a sin-
gle instruction. The most common use case for this is either to optimize code for a
particular processor or guarantee consistent timing of operations (such as to avoid
timing attacks in cryptographic applications).

SIMD is platform dependent: different CPUs have different SIMD features avail-
able, but almost all modern CPUs have some SIMD features. The most commonly
used SIMD instruction sets are MMX, SSE, and AVX, on Intel devices, and Neon on
ARM devices.

In the past, if you needed to use SIMD, you’d need to write inline assembly your-
self. Thankfully, modern compilers provide an interface for using SIMD without need-
ing to write assembly directly. These functions standardize some of the shared
behavior among the different SIMD implementations in a somewhat portable way.
The advantage of using portable SIMD is that we don’t need to worry about instruc-
tion set details for any particular platform, with the tradeoff that we only have access
to the common denominator features. It’s still possible to write inline assembly if you
choose, but I'm going to focus on portable SIMD. One convenient feature of portable
SIMD is that the compiler can automatically generate substitute non-SIMD code for
cases in which features are not available at the hardware level.

The Rust standard library provides the std::simd module, which is currently a
nightly only experimental API. Documentation for the portable SIMD API can be
found at https://doc.rust-lang.org/std/simd/struct.Simd.html.

To illustrate, we can write a benchmark to compare the speed of some math opera-
tions on 64 element arrays with and without SIMD.

Listing 11.5 Multiplying vectors with SIMD versus iterators

#! [feature (portable simd, array zip)] QAAW Enables experimental
fn initialize() -» ([u64; 641, [u6a; 64]) { | (caturesfor this crate
let mut a = [0u64; 64];
let mut b = [0u64; 64];
(0..64) .for each(|n| {
aln] = u64::try from(n).unwrap() ;
b[n] = u64::try from(n + 1).unwrap();

)
(a, b)

https://doc.rust-lang.org/std/simd/struct.Simd.html

114

11.4 Parallelization with Rayon 227

fn main() {
use std::simd::Simd;
use std::time::Instant;

Initializes our 64

let (mut a, b) = initialize(); element arrays
let now = Instant::now(); Perform some calculations
for _ in 0..100 000 { using normal math.

let ¢ = a.zip(b).map(| (1,)| 1 * r);

let d = a.zip(c).map(| (1,)| 1 + r);

let e = c.zip(d).map(| (1, r)| 1 * r); Store§theresult

a =e.zip(d) .map(| (1, ©)| 1 * r); back into a
1
println! ("Without SIMD took {}s", now.elapsed().as secs £32());
let (a_vec, b vec) = initialize(); <+—— Initializes with the same values again
let mut a vec = Simd::from(a_vec); <+—— Converts our arrays into SIMD vectors

let b_vec = Simd::from(b_vec) ;

let now = Instant::now(); <+—— Perform the same calculations with SIMD.
for _in 0..100 000 {

let c_vec = a_vec * b_vec;

let d _vec = a_vec + c_vec;

let e vec = c vec * d vec; Stores the result

a_vec = e vec ~ d_vec; back into a_vec

}

println! ("With SIMD took {}s", now.elapsed().as_secs £32());

assert eq! (&a, a vec.as_array()); Finally, check that a and
a_vec have the same result

Running this code will produce the following output:

Without SIMD took 0.07886646s
With SIMD took 0.002505291s

Wow! We got a nearly 40x speedup by using SIMD. Additionally, the SIMD code pro-
vides consistent timing, which is important for applications that are timing depen-
dent, such as cryptography.

Parallelization with Rayon

For problems where performance can be improved with the use of parallelization
(i.e., parallel programming with threads), the Rayon crate is your best place to start.
While the Rust language certainly provides threading features as part of its core
library, these features are somewhat primitive, and most of the time, it’s better to write
code based on higher-level APIs.

Rayon provides two ways to interact with data in parallel: a parallel iterator imple-
mentation and some helpers for creating lightweight tasks based on threads. We’re going
to focus mainly on Rayon’s iterator because that is the most useful part of the library.

228

CHAPTER 11 Optimizations

The typical use case for Rayon is one where you have a significant number of tasks,
each of which are relatively long running or compute intense. If you have a small
number of tasks or your tasks are not very compute intensive, introducing paralleliza-
tion is likely to actually decrease performance. Generally speaking, parallelization has
diminishing returns as the number of threads increases, due to synchronization and
data starvation problems that can arise when moving data between threads (as shown
in figure 11.1).

Diminishing returns of parallelization

Processing rate

- Figure 11.1 Diminishing returns
with increased parallelization

Number of threads

One handy feature of Rayon’s iterators is that they’re mostly compatible with the core
Iterator trait, which makes it very easy to quickly benchmark code with or without
parallelization. Let’s demonstrate by creating two different tests: one that will be
slower with Rayon and one that will be faster with Rayon.

First, let’s write a test that’s faster without Rayon:

let start = Instant::now() ;
let sum = data We use reduce() instead
.iter() of sum() because sum()

performs addition without

.map (|n| n.wrapping mul (*n)) :
handling overflow.

.reduce(|a: 164, b: i64| a.wrapping add(b));
let finish = Instant::now() - start;
println! (

"Summing squares without rayon took {}s",

finish.as secs f64()
)i

let start = Instant::now();
let sum = data

Notice the slight
difference in signature
of reduce() with Rayon,
which requires an
identity value that may
be inserted to create

.par_iter()

.map (|n| n.wrapping mul (*n)) opportunities for

.reduce (|| 0, |a: i64, b: i64| a.wrapping add(b)); <— parallelization.
let finish = Instant::now() - start;

println! ("Summing squares with rayon took {}s", finish.as secs_f64());

In the preceding code, we’ve generated an array filled with random integer values.
Next, we square each value and then calculate the sum across the whole set. This is a
classic map/reduce example. If we run this code, we get the following result:

11.5

11.5 Using Rust to accelerate other languages 229

Summing squares without rayon took 0.000028875s
Summing squares with rayon took 0.000688583s

This test with Rayon takes 23x longer than without! This is clearly not a good candi-
date for parallelization.

Let’s construct another test, which will use a regular expression to scan a long
string for a word. We’ll randomly generate some very large strings before we run the

search. The code looks like this:
Regex is both Send and Sync. We can

let re = Regex::new(r"catdog") .unwrap () ; use it in a parallel filter with Rayon.

let start = Instant::now() ;

let matches: Vec< > = data.iter().filter(|s| re.is match(s)).collect();
let finish = Instant::now() - start;

println! ("Regex took {}s", finish.as secs f64());

let start = Instant::now();
let matches: Vec<_ > =
data.par iter().filter(|s| re.is match(s)).collect();
let finish = Instant::now() - start;
println! ("Regex with rayon took {}s", finish.as secs f64());

Running this code, we get the following result:

Regex took 0.043573333s
Regex with rayon took 0.006173s

In this case, parallelization with Rayon gives us a 7x speedup. Scanning strings is one
case where we might see a significant boost in performance across sufficiently large
datasets.

Another notable feature of Rayon is its parallel sorting implementation, which
allows you to sort slices in parallel. For larger datasets, this can provide a decent per-
formance boost. Rayon’s join() also provides a work-stealing implementation, which
executes tasks in parallel when idle worker threads are available, but you should use
parallel iterators instead, when possible. For more details on Rayon, consult the docu-
mentation at https://docs.rs/rayon/latest/rayon/index.html.

Using Rust to accelerate other languages

The last thing we’ll discuss in this chapter is one of the coolest application of Rust:
calling Rust code from other languages to perform operations that are either safety
critical or compute intensive. This is a common pattern with C and C++, too: many
language runtimes implement performance-critical features in C or C++. With Rust,
however, you have the added bonus of its safety features. This, in fact, was one of the
major motivating factors behind the adoption of Rust by several organizations, such as
Morzilla, with their plans to improve the security and performance of the Firefox
browser.

https://docs.rs/rayon/latest/rayon/index.html

230

CHAPTER 11 Optimizations

An example of how you might use Rust in this case would be to parse or validate

data from external sources, such as a web server receiving untrusted data from the

internet. Many security vulnerabilities are discovered by feeding random data into

public interfaces and seeing what happens, and often, code contains mistakes (such as

reading past the end of a buffer), which aren’t possible in Rust.

Most programming languages and runtimes provide some form of foreign func-
tion interface (FFI) bindings, which we demonstrated in chapter 4. However, for
many popular languages, there are higher-level bindings and tooling available, which
can make integrating Rust much easier than dealing with FFI, and some also help with
packaging native binaries. Table 11.1 provides a summary of some useful tools for

integrating Rust with other popular programming languages.

Table 11.1 Rust bindings and tooling for integrating Rust into other languages

Language

Description

GitHub stars?

Python

Python

Ruby

Ruby

Elixir and
Erlang

JavaScriptand
TypeScript on
Node.js

Java

Rust

PyO3

Milksnake

Ruru

Rutie

Rustler

Neon

jni-rs

bindgen

Rust bindings for
Python, with tools for
making native Python
packages with Rust

setuptools extension
for including binaries
in Python packages,
including Rust

Library for building
native Ruby extensions
with Rust

Bindings between Ruby
and Rust, which enable
integrating Rust with

Ruby or Ruby with Rust

Library for creating safe
bindings to Rust for
Elixir and Erlang

Rust bindings for
creating native Node.js
modules with Rust

Native Rust bindings for
Java

Generates Rust FFI
bindings from native
Rust

https://pyo3.rs

https://github.com/getsentry/milksnake

https://github.com/d-unseductable/ruru

https://github.com/danielpclark/rutie

https://github.com/rusterlium/rustler

https://neon-bindings.com

https://github.com/jni-rs/jni-rs

https://github.com/rust-lang/rust-bindgen

10,090

783

822

812

3,999

7,622

1,018

3,843

* This is the GitHub star count as of December 30, 2023.

https://pyo3.rs
https://github.com/getsentry/milksnake
https://github.com/d-unseductable/ruru
https://github.com/danielpclark/rutie
https://github.com/rusterlium/rustler
https://neon-bindings.com
https://github.com/jni-rs/jni-rs
https://github.com/rust-lang/rust-bindgen

11.6

Summary 231

Where to go from here

Congratulations on making it to the end of Code Like a Pro in Rust. Let’s take a moment
to reflect on what we’ve discussed in this book and, more importantly, where to go
from here to learn more.

In chapters 1 through 3, we focused on tooling, project structure, and the basic
skills you need to work effectively with Rust. Chapters 4 and 5 covered data structures
and Rust’s memory model. Chapters 6 and 7 focused on Rust’s testing features and
how to get the most out of them. Chapters 8, 9, and 10 introduced us to async Rust,
and this final chapter focused on optimization opportunities for Rust code.

At this point in the book, you may want to take some time to go back and revisit pre-
vious sections, especially if you found the content dense or hard to grok. It’s often good
to give your brain a rest and then return to problems once you’ve had time to digest new
information. For further reading on Rust, I recommend my follow-up book Rust Design
Patterns as well as Tim McNamara’s Rust in Action, both from Manning Publications.

Rust and its ecosystem is forward looking and always evolving. The Rust language,
while already quite mature, is actively developed and continuously moving forward. As
such, I will close out the final chapter of this book by leaving you with some resources
on where to go from here to learn about new Rust features, changes, and proposals,
and how to get more involved with the Rust community.

Most of Rust language and tool development is hosted on GitHub, under the rust-
lang project at https://github.com/rust-lang. Additionally, the following resources are
a great place to dive deeper on the Rust language:

Release notes for each Rust version—https://github.com/rust-lang/rust/blob/
master/RELEASES.md

Rust request for comments (RFCs), proposed Rust features, and these features’ current
statuses—https://rust-lang.github.io/rfcs

The official Rust language reference—https://doc.rust-lang.org/reference

The official Rust language users forum, where you can discuss Rust with other like-
minded people—https://users.rust-lang.org

Summary

Rust’s zero-cost abstractions allow you to write fast code without needing to
worry about overhead, but code must be compiled in release mode to take
advantage of these optimizations.

Vectors, Rust’s core sequence data structure, should be pre-allocated with the
capacity needed, if you know the required capacity ahead of time.

When copying data between structures, the copy_from_slice () method provides
a fast path for moving data between slices.

Rust’s experimental portable SIMD feature allows you to easily build code using
SIMD. You don’t need to deal directly with assembly code or compiler intrinsics
or worry about which instructions are available.

https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://rust-lang.github.io/rfcs
https://doc.rust-lang.org/reference
https://users.rust-lang.org
https://github.com/rust-lang

232

CHAPTER 11 Optimizations

Code can be easily parallelized using the Rayon crate, which builds on top of
Rust’s iterator pattern. Building parallelized code in Rust is as easy as using
iterators.

We can introduce Rust into other languages by swapping out individual compo-
nents for Rust equivalents, offering the benefit of Rust’s safety and perfor-
mance features without needing to completely rewrite our applications.

appendix

This appendix contains instructions for installing the command-line utilities
required to compile and run the code samples in this book. These instructions are
provided for convenience, but you aren’t required to follow these procedures if you
already have the tools required, or prefer to install them another way.

Installing tools for this book

To compile and run the code samples provided in this book, you must first install
the necessary prerequisite dependencies.

Installing tools on macOS using Homebrew
$ brew install git
On macOS, you’ll need to install the Xcode command line tools:

$ sudo xcode-select --install

Installing tools on Linux systems
On Debian-based systems:

S apt install git build-essential
On Red Hat-based systems:
$ yum install git make automake gcc gcc-c++

TIP You may want to install clang rather than CCC because it tends to have
better compile times.

Installing rustup on Linux- or UNIX-based systems
To install rustup on Linux- or UNIX-based operating systems, including macOS,
run the following:

$ curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh

233

234

APPENDIX

Once you've installed rustup, it’s recommended you make sure both the stable and
nightly toolchains are installed:

$ rustup toolchain install stable nightly

Installing tools on Windows

If you’re using a Windows-based OS, you’ll need to download the latest copy of rustup
from https://rustup.rs/. Prebuilt Windows binaries for clang can be downloaded from
https://releases.llvm.org/download.html.

Alternatively, on Windows, you may use Windows Subsystem for Linux (WSL,
https://docs.microsoft.com/en-us/windows,/wsl/) and follow the earlier instructions
for installation on Linux. For many users, this may be the easiest way to work with the
code samples.

Managing rustc and other Rust components with rustup

With rustup installed, you’ll need to install the Rust compiler and related tools. At a
minimum, it’s recommended that you install the stable and nightly channels of Rust.

Installing rustc and other components

It’s recommended you install both stable and nightly toolchains by default, but gen-
erally, you should prefer working with stable when possible. Run the following to
install both toolchains:

Installs stable Rust and makes
¢ rustup default stable it the default toolchain

$ rustup toolchain install nightly <+—— Installs nightly Rust

Additionally, throughout this book, we make use of Clippy and rustfmt. These are
both installed using rustup:

$ rustup component add clippy rustfmt

Switching default toolchains with rustup
When working with Rust, you may frequently find yourself switching between stable
and nightly toolchains. rustup makes this relatively easy:

$ rustup default stable <—— Switches default to stable toolchain

S rustup default nightly
Switches default to nightly toolchain

Updating Rust components

rustup makes it easy to keep components up to date. To update all the installed tool-
chains and components, simply run the following:

$ rustup update

https://rustup.rs/
https://releases.llvm.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/

APPENDIX 235

Under normal circumstances, you only need to run update when there are major new
releases. There may occasionally be problems in nightly that require an update, but
this tends to be infrequent. If your installation is working, it’s recommended you
avoid upgrading too frequently (i.e., daily) because you're more likely to run into
problems.

NOTE Updating all Rust components causes all toolchains and components to
be downloaded and updated, which may take some time on bandwidth-limited
systems.

Installing HTTPie

HTTPie is a CLI tool for making HTTP requests and is included in many popular
package managers, such as Homebrew, apt, yum, choco, Nixpkgs, and more. If
HTTPie is not available in your package management tool, you can fall back to using
Python pip to install HTTPie:

Install httpie
S python -m pip install httpie

Symbols

? operator 88,123,212
& operator 96

Numerics

0.0.0.0 address 184

A

Actix framework 183
align property 113
all() function 117
all() predicate 57
all(predicated) attribute 21
alloc-cortex-m crate 42
allocate () method 111,113
allocated_zeroed () method 111
Allocator API 110
Allocator trait 110-111, 114
allocator_api 57
allow() attribute 54
any() function 117
any() predicate 57
any(predicate) attribute 21
anyhow crate 216
API client

deciding which tools and libraries to use

205-206

designing CLI 206-207
API service

API design 184-185

creating architecture 184-185

mmdex

APIs (application programming interfaces)
declaring routes 194-195
implementing API routes 195-197

application scaffolding 187-190
init_dbpool() function 189-190
init_tracing() function 188
main() function 187-188

arbitrary crate 152

Arc 104-106, 131

architecture, creating 184-185

args argument 148

arrays 69-72

as_mut() method 96

as_ref() method 96

AsMut trait 96

AsRef trait 96

assert_cmd crate 147-149

assert_eq!() macro 143

assert! () macro 143

assert2 crate 125

async fn syntax sugar 169

async keyword 164

async programming, thinking

asynchronously 159-160

async Rust 157-181
concurrency and parallelism with 166-169
futures, handling async task results 161-164
implementing observers 169-174
keywords 164-166
mixing sync and async 174-176
testing async code 180-181
#[tokio::main] 164
tracing and debugging async code 177-180
when and where to use 164-166
when to avoid using 176-180

asynchronous I/O 3

237

238

avx2 target feature 117

.await feature 169

.await keyword 164-166

axum framework 183
axum::extract::FromRequest trait 196
axum::extract:FromRequestParts trait 196
axum::extract::Json 196
axum::extract::Path 196
axum::extract::State 196
axum::response::IntoResponse trait 197

binary distribution 29-31
building statically linked binaries 30-31
cross compilation 30

BinaryHeap 74

bindgen tool 29

blacklisted_name lint 52

blocking sleep 168

body field 194

bool_comparison lint 52

borrow checker 3,96-97

borrowing 96

Box 72,104
smart pointers 100-103

Box data structure 95

broadcast channel 176

BTreeMap 74

BTreeSet 74

build command 15

build time operations 40

build_hasher() method 76

BuildHasher API 76

built-in integration testing 146-150
libraries and tooling 147-150

assert_cmd 147-149
proptest 149

C

calloc() method 111

caret operator 17

Cargo 3
basic usage 12-13
binary distribution 29-31

building statically linked binaries 30-31

cross compilation 30
building, running, and testing 14-15
creating new application or library 13-14
dependency management 16-19
handling Cargo.lock file 18-19
--lib argument 14
linking to C libraries 27-29

INDEX

modules 35-37
patching dependencies 21-24
best practices for 23-24
indirect dependencies 23
project management with
custom building scripts 40-41
feature flags 19-21
publishing crates 24-27
CI/CD integration 24-27
-release flag 220
rerun-if-changed 40
switching between toolchains 15-16
tour of 12-16
workspaces 38-39
cargo add command 17
cargo doc command 42
cargo expand 132
cargo new command 14
cargo-expand 59-60
cargo-fuzz 60
cargo-fuzz crate 151
cargo-tree 61-62
cargo-update 59
cargo-watch 60-61
Cargo.lock file 18-19
carrying_add() function 127
cc crate 40
CD (continuous deployment) 24
Cell type 105
cfg attribute 20,57, 116-117
cfg macro 116-117
cfg(predicate) attribute 21
changing ecosystem 140
checked_add() function 127
checked_div() method 80
CI (continuous integration) 24
CI/CD integration 24-27
clang 233
clang-format tool 51
CLI (command-line interface)
assert_cmd 147-149
testing 212-214
client-server relationship 204
Clippy 44-55, 234
automatically applying suggestions 54
+channel option 15
--check option 49
configuring 53-54
--fix flag 54
installing 51
lints 52-53
using in CI/CD 54-55
clone on write 107-109
Clone trait 98, 107-108
clone() method 98, 107

closures 3
code coverage 139
Codecov 139
#[command] macro 207
commands
declaring 207-209
implementing 209-210
Commands enum 209-210
CommonMark 33
compile_error!() macro 122
components
installing HTTPie 235
installing rustc and other components 234
managing with rustup 234-235
switching default toolchains with rustup 234
compress() function 27-28
compressBound function 28
concurrency 157, 166-169
const generics 70
Context type alias 86
copies, avoiding 99-100
copy constructors 96
Copy trait 107
copy_from_slice () method 71
COUNT variable 130
Coveralls 139
Cow (clone on write) trait 107
crates.io 3
CreateTodo struct 193
cross compilation 30
CRUD (create, read, update, delete) 184
custom allocators 110-117
creating for protected memory 113-117
writing 110-113

D

INDEX

data modeling 190-194
interfacing with data 191-194
SQL schema 190-191
data structures 65-66
error handling with Result enum 87-88
maps 76
Result enum 87-88
slices and arrays 69-72
strings 66-69
String vs. str 66-67
using effectively 67-69
vectors 74
types related to 74
Vec 73
wrapping 73-74
DATABASE_URL environment variable 189
deallocate () method 111,113
Debug trait 76

239

debugging
async code 177-180
macros with cargo-expand 59-60
deep copying 97-98
dependency management 16-19
handling Cargo.lock file 18-19
Deref trait 72
DerefMut trait 72
#[derive] attribute 76
derive macro 207
#[derive (Clone)] attribute 98
destructures 70
doc attribute feature 58
doc compiler attribute 57
doc keyword 58
doc_cfg 57
doctest keyword 58
documentation, code examples in 34-35
doubly linked list 105
Drop trait 68
dryoc crate 19, 55, 86, 114
dyn Trait syntax 220

E

ecosystem, changing 140
embedded environments 41-42
memory allocation 42
summary 42
Embedded Rust Book, The 42
enums 86
Eq trait 76
Error enum 197
error handling 197-198
with Result enum 87-88
errors, handling gracefully 212
expect() function 123
expected result 148
external integration testing 146-150
libraries and tooling 147-150
assert_cmd 147-149
proptest 149
extractors 196

F

feature flags 19-21

FFI (foreign function interface) 27, 230
handling compatibility with Rust’s types 90-92

File:open function 88

fill_with () function 71

fill() function 71

finish () method 76

fixtures 148

240

for_loop() method 224

free() function 110-112

From implementation 88

From trait 84, 123, 193, 197, 212

“full” feature flag 181

Future trait 164, 170-171, 183

futures, handling async task results 161-164
#[tokio::main] 164

futures:future:;join_all() function 167

fuzz subdirectory 151

fuzz testing 60-153

G

generics 3
GlobalAlloc APT 110
GlobalAlloc trait 42

H

INDEX

running 198-202

web frameworks 183
HTTPie, installing 199, 235
Hyper 183

IDEs (integrated development environments)
integration with 56-58
nightly channel 57-58
nightly only features 57-58
using nightly on published crates 58
toolchains 57-58
stable vs. nightly 57-58
VS Code 56-58
impl keyword 83
init_dbpool() function 189-190
init_tracing() function 188
integration testing 141-153
external vs. builtin 146-150

Hash trait 76
Hasher API 76
HashMap 74-76, 137
creating hashable types 76
custom hashing functions 75-76
HashSet 74
heapless crate 42
heaps 94-96
help command 207
Homebrew, installing tools using 233
HTTP REST API (application programming
interface) CLI 204-205
deciding which tools and libraries to use
205-206
declaring commands 207-209
designing CLI 206-207
handling errors gracefully 212
implementing commands 209-210
requests 210-211
testing 212-214
HTTP REST API service
API design 184-185
application scaffolding 187-190
init_dbpool() function 189-190
init_tracing() function 188
main () function 187-188
building
data modeling 190-194
error handling 197-198
creating architecture 184-185
declaring API routes 194-195
implementing API routes 195-197
libraries and tools 185-187

libraries and tooling 147-150
fuzz testing 153
libraries and tooling 147-150
overview 144-146
testing strategies 144-146
interior mutability 105
Into trait 193
into_iter() method 223-224
isize identifier 79
iter() method 223
iterating
cargo-tree 61-62
cargo-watch 60-61

J

join() function 229
jq tool 206

K

Key type alias 86

L

languages, other, using Rust to accelerate 229-230
Layout struct 113

lazy_static! macro 132

libc crate 40

libc dependency 28

libFuzzer library 150

libraries and tools 185-187

libtest 129

link attribute 28

linked lists, smart pointers 100-103
LinkedList 74

linking to C libraries 27-29

lints 52-53

Linux, installing rustup on 233-234
LLDB (Low Level Debugger) 43

LLVM (Low Level Virtual Machine) 42-43
lowercased () function 100

M

macOS, installing tools using Homebrew 233
macros 3, 164, 180, 207
debugging with cargo-expand 59-60
magic completions 46-47
main() function 14, 40, 129, 143, 164, 168,
187-188, 212
make_mut() method 107
malloc() function 95, 110-112
maps 76
creating hashable types 76
custom hashing functions 75-76
McNamara, Tim 231
memcpy() function 71
memory
avoiding copies 99-100
clone on write 107-109
custom allocators 110-117
creating for protected memory 113-117
writing 110-113
deep copying 97-98
ownership 96-97
borrow checker 96-97
copy constructors 96
enforcing 96-97
memory allocation 42
memory management
heap and stack 94-96
reference counting 104-106
smart pointers 100-103
summarized 117-118
memset() function 71
mlock() function 114
mod keyword 35
mod statement 37
modules 35-37
monad 101
mprotect() function 114
mpsc channel 176
mut keyword 96
Mutex 105, 131

INDEX 241

N

new keyword 95
new() method 101
nightly channel
nightly only features 57-58
using nightly on published crates 58
not() function 117
not(predicate) attribute 21

o

Observable trait 172-173
observe() method 170
Observer trait 171-172
observers, implementing in async Rust 169-174
oneshot channel 176
optimizations 219-232
SIMD (single instruction, multiple data)
226-227
using Rust to accelerate other languages
229-230
vectors 226
fast copies with Vec and slices 225-226
iterators 223-224
memory allocation 221-223
where to go from here 231
zero-cost abstractions 220
Option 101-103
overflowing_add() function 127
override option 16
ownership 96-97

P

panic!() macro 122
parallelism 158, 166-169
parallelization, with rayon 227-229
parameterized crate 125
parse() method 153
PartialEq trait 76
partition() function 142, 144
patching dependencies 21-24
best practices for 23-24
indirect dependencies 23
ping() function 195
poll() method 164, 171
posix_memalign () function 114
primitive types 77-80
arithmetic on primitives 79-80
integer types 77-78
size types 79

242

println completion 47
println!() function 165
project management
documenting Rust projects 31-35
code examples in documentation 34-35
linking to C libraries 27-29
with Cargo
custom building scripts 4041
feature flags 19-21
proptest crate 125, 149
proptest! macro 126
protected memory 113-117
protected module 58
protoc-rust 40
ptr:copy_nonoverlapping() function 71
pub keyword 36
publishing crates 2427
CI/CD integration 24-27

Q

QEMU project 42
QuickCheck 125

quicksort algorithm 142
quicksort() function 142, 145

R

RAII (resource acquisition is initialization) 4

rayon crate, parallelization with 227-229

read_to_string() function 88

realloc() method 111

redundant_clone lint 53

RefCell type 105

reference counting 104-106

references 96

#[repr(C)] attribute 90

request() function 210

requests 210-211

reqwest library 205

REST API service
application scaffolding 187-190
building, data modeling 190-194
declaring API routes 194-195
implementing API routes 195-197

Result 129

Result enum 87-88

rewriting 137-138

Rocket framework 183

Router 194

RowNotFound case 198

rstest crate 125

ruduino crate 42

runtime, with #[tokio::main] 164

INDEX

Rust 1-8
documenting projects 31-35
overview 2-3
projects in embedded environments 4142
memory allocation 42
summary 42
rust-analyzer 45-47
magic completions 4647
tools 8
additional 58-62
unique features of 4-6
modern 5
open source 5-6
safety 4-5
vs. other popular languages 6
use cases 7—8
Rust Design Patterns (Matthews) 231
Rust in Action (McNamara) 231
Rust language website 6
rust-analyzer 3, 44-47, 135
magic completions 46-47
rust-bindgen tool 91
rust-clippy 3
rustc 3, 12
managing with rustup 234-235
installing HTTPie 235
installing rustc and other components 234
switching default toolchains with rustup 234
rustc compiler 4, 42-43, 51
rustc wrapper 55
RUSTC_WRAPPER argument 55
rustdoc attribute 58
rustdoc tool 31
RUSTFLAGS environment variable 31
rustfmt 3, 44, 49-51, 234
configuring 50-51
installing 50
rustup 56
installing on Linux- or UNIX-based
systems 233-234
managing rustc and other Rust components
with 234-235
installing HTTPie 235
installing rustc and other components 234
switching default toolchains with rustup 234
rustup toolchain install nightly command 16
RwLock 105,131

S

safety, Rust 4-5
saturating_add() function 127
sccache tool 3, 44, 55-56
configuring 56
installing 55

scripts, custom building 40-41
select() system call 167
self parameter 99, 171
semantic versioning (SemVer) 17
semver crate 18
Send trait 104, 130-131
SIMD (single instruction, multiple data)
226227
size property 113
size() method 112
sleep() function 162
slices 69-72
fast copies with Vec and 225-226
smart pointers 100-103
summarized 117-118
snippets 46
split_at() function 70
SQL schema 190-191
sqlx-cli tool 186
src directory 13
stack 95
stacks 94-96
'static lifetime specifier 67
static typing 3
std::collections::LinkedList 103
std::default::Default 75
std::hash::BuildHasher 75
std::hash::Hasher 75
std::io::Error type 88
std::simd module 226
std::span 69
std::string_view 69
std::sync::Once primitive 133
strings 66—-69
String vs. str 66-67
using effectively 67-69
strndup() function 67
structs 83
structural search and replace tool 135
swap() function 81
sync module 176
sync Rust, mixing sync and async 174-176
Sync trait 104, 131

T

TDD (test driven development) 144
#[test] attribute 143
test-case crate 125
"test-util" feature 181
testing
fuzz testing 60
review of built-in testing features 124-125

INDEX 243

unit testing
handling parallel test special cases and
global state 129-134
what not to test 129-134
testing async code 180-181
testing frameworks 125-128
tfn completion 47
thiserror crate 216
time command 15
tmod completion 47
to_lowercase() function 100
Todo struct 191
#[tokio::main] 164
#[tokio::test] macro 180
tokio_test crate 181
TOKIO_WORKER_THREADS environment
variable 188
tokio:;join!() function 167
tokio::main macro 188
tokio::runtime::Handle 180
tokio::runtime::Handle::block_on() method 166
tokio::select! () macro 167
tokio::spawn () function 168
tokio::isync::mpsc module 176
tokio::task::spawn_blocking () function 166, 175
tokio::task::spawn () function 164-168
TOML (Tom’s obvious, minimal language) 13
too_many_arguments warning 53
toolchains 15
+channel option 15
stable vs. nightly 57-58
tooling 43-62
additional tools 58—62
cargo-expand 59-60
cargo-fuzz 60
cargo-tree 61-62
cargo-update 59
cargo-watch 60-61
Clippy 55
automatically applying suggestions 54
configuring 53-54
installing 51
lints 52-53
using in CI/CD 54-55
IDEs (integrated development environments)
integration with 56-58
nightly channel 57-58
toolchains 57-58
VS Code 56-58
overview of 44
rustfmt 49-51
configuring 50-51
installing 50

244

tooling: rustfmt (continued)
sccache tool 55-56
configuring 56
installing 55
tools 8
installing for this book 233-234
on Linux- or UNIX-based systems 233-234
on macOS using Homebrew 233
on Windows 234
refactoring 134-139
Tower library 183
#[tracing::instrument] macro 177
tracing async code 177-180
traits 3
try_new() method 101
tuple struct 82
tuples 80-81
types 77
enums 86
handling FFI compatibility with 90-92
primitive types 77-80
arithmetic on primitives 79-80
integer types 77-78
size types 79
structs 83
tuples 80-81

U

unchecked_add() function 127
uncompress() function 27-28
unit struct 82
unit testing 121-140
code coverage 139
dealing with changing ecosystem 140
differences in Rust 122-123

handling parallel test special cases and
global state 129-134

refactoring 134-138
tools 134-138

review of built-in testing features 124-125

testing frameworks 125-128

what not to test 129-134
unix configuration predicate 117
UNIX-based systems, installing rustup on 233-234
unsafe keyword 67,111, 113, 122
unwrap() function 129
update () method 172
UpdateTodo struct 193

INDEX

use statements 35-36
usize identifier 79
UX (user experience) 144

'

Vec 73
Vec data structure 95
Vec::copy_from_slice() method 225
Vec::shrink_to_fit() method 223
VecDeque 74
vectors 74, 226
fast copies with Vec and slices 225-226
iterators 223-224
memory allocation 221-223
types related to 74
Vec 73
wrapping 73-74
VirtualAlloc() function 114
VirtualLock() function 114
VirtualProtect() function 114
VS Code (Visual Studio Code) 56-58
features of 56-58
integration with 56-58
vtables 220

W

Wasm (WebAssembly) 2

watch channel 176

web frameworks 183

windows configuration predicate 117
Windows Subsystem for Linux (WSL) 234
Windows, installing tools on 234
workspaces 38-39

Wrapping struct 127
wrapping_add() function 127
WrappingAdd trait 127-128

write() method 76

Y

yield points 163

Y4

-Z unstable-options option 54
zero-cost abstractions 220
zlib library 27

DEVELOPMENT

Code Like a Pro in Rust

Brenden Matthews

ust is famous for its safety, performance, and security,

but it takes pro skills to make this powerful language

shine. This book gets you up to speed fast, so you'll
feel confident with low-level systems, web applications,
asynchronous programming, concurrency, optimizations,
and much more.

will make you a more productive Rust
programmer. This example-rich book builds on your exist-
ing know-how by introducing Rust-specific design patterns,
coding shortcuts, and veteran skills like asynchronous
programming and integrating Rust with other languages.
You'll also meet amazing Rust tools for testing, code analy-
sis, and application lifecycle management. It’s all the good
stuff in one place!

e Core Rust data structures

* Memory management

e Creating effective APIs

e Rust tooling, testing, and more

Assumes you know Rust basics.

is a software engineer, entrepreneur, and
a prolific open source contributor who has been using Rust
since the early days of the language.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

¢CThere’s something for every
Rust developer in here.
Full of tips.??

—Tim McNamara

Founder of Accelerant.dev
Author of Rust in Action

¢¢CWastes no time jumping
headfirst into Rust
development. It’s a great
resource to get up to speed
in Rust quickly.??
—Patrick Walton, Meta

¢CWith this book, you will

become a Rust pro.”?

—Jaume Lépez
Fundacié Institut Guttmann

¢¢Hands-on, practical,
and understandable.??

—Satej Kumar Sahu, Boeing

¢CFor all aspiring
Rustaceans.??

—Simon Tschoeke

German Edge Cloud

See first page

ISBN-13: 978-1-61729-964-3

| || || || | il
781617 1 200643 |”|H|||H‘|||‘

9

	Code Like a Pro in Rust
	brief contents
	contents
	preface
	acknowledgments
	about this book
	How is this book different?
	Who should read this book?
	How this book is organized
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Chapter 1: Feelin’ Rusty
	1.1 What’s Rust?
	1.2 What’s unique about Rust?
	1.2.1 Rust is safe
	1.2.2 Rust is modern
	1.2.3 Rust is pure open source
	1.2.4 Rust vs. other popular languages

	1.3 When should you use Rust?
	1.3.1 Rust use cases

	1.4 Tools you’ll need

	Part 1: Pro Rust
	Chapter 2: Project management with Cargo
	2.1 Cargo tour
	2.1.1 Basic usage
	2.1.2 Creating a new application or library
	2.1.3 Building, running, and testing
	2.1.4 Switching between toolchains

	2.2 Dependency management
	2.2.1 Handling the Cargo.lock file

	2.3 Feature flags
	2.4 Patching dependencies
	2.4.1 Indirect dependencies
	2.4.2 Best practices for dependency patching

	2.5 Publishing crates
	2.5.1 CI/CD integration

	2.6 Linking to C libraries
	2.7 Binary distribution
	2.7.1 Cross compilation
	2.7.2 Building statically linked binaries

	2.8 Documenting Rust projects
	2.8.1 Code examples in documentation

	2.9 Modules
	2.10 Workspaces
	2.11 Custom building scripts
	2.12 Rust projects in embedded environments
	2.12.1 Memory allocation

	Chapter 3: Rust tooling
	3.1 Overview of Rust tooling
	3.2 Using rust-analyzer for Rust IDE integration
	3.2.1 Magic completions

	3.3 Using rustfmt to keep code tidy
	3.3.1 Installing rustfmt
	3.3.2 Configuring rustfmt

	3.4 Using Clippy to improve code quality
	3.4.1 Installing Clippy
	3.4.2 Clippy’s lints
	3.4.3 Configuring Clippy
	3.4.4 Automatically applying Clippy’s suggestions
	3.4.5 Using Clippy in CI/CD

	3.5 Reducing compile times with sccache
	3.5.1 Installing sccache
	3.5.2 Configuring sccache

	3.6 Integration with IDEs, including Visual Studio Code
	3.7 Using toolchains: Stable vs. nightly
	3.7.1 Nightly-only features
	3.7.2 Using nightly on published crates

	3.8 Additional tools: cargo-update, cargo-expand, cargo-fuzz, cargo-watch, cargo-tree
	3.8.1 Keeping packages up to date date with cargo-update
	3.8.2 Debugging macros with cargo-expand
	3.8.3 Testing libFuzzer
	3.8.4 Iterating with cargo-watch
	3.8.5 Examining dependencies with cargo-tree

	Part 2: Core data
	Chapter 4: Data structures
	4.1 Demystifying String, str, &str, and &'static str
	4.1.1 String vs str
	4.1.2 Using strings effectively

	4.2 Understanding slices and arrays
	4.3 Vectors
	4.3.1 Diving deeper into Vec
	4.3.2 Wrapping vectors
	4.3.3 Types related to vectors

	4.4 Maps
	4.4.1 Custom hashing functions
	4.4.2 Creating hashable types

	4.5 Rust types: Primitives, structs, enums, and aliases
	4.5.1 Using primitive types
	4.5.2 Using tuples
	4.5.3 Using structs
	4.5.4 Using enums
	4.5.5 Using aliases

	4.6 Error handling with Result
	4.7 Converting types with From/Into
	4.7.1 TryFrom and TryInto
	4.7.2 Best practices for type conversion using From and Into

	4.8 Handling FFI compatibility with Rust’s types

	Chapter 5: Working with memory
	5.1 Memory management: Heap and stack
	5.2 Understanding ownership: Copies, borrowing, references, and moves
	5.3 Deep copying
	5.4 Avoiding copies
	5.5 To box or not to box: Smart pointers
	5.6 Reference counting
	5.7 Clone on write
	5.8 Custom allocators
	5.8.1 Writing a custom allocator
	5.8.2 Creating a custom allocator for protected memory

	5.9 Smart pointers summarized

	Part 3: Correctness
	Chapter 6: Unit testing
	6.1 How testing is different in Rust
	6.2 Review of built-in testing features
	6.3 Testing frameworks
	6.4 What not to test: Why the compiler knows better than you
	6.5 Handling parallel test special cases and global state
	6.6 Thinking about refactoring
	6.7 Refactoring tools
	6.7.1 Reformatting
	6.7.2 Renaming
	6.7.3 Relocating
	6.7.4 Rewriting

	6.8 Code coverage
	6.9 Dealing with a changing ecosystem

	Chapter 7: Integration testing
	7.1 Comparing integration and unit testing
	7.2 Integration testing strategies
	7.3 Built-in integration testing vs. external integration testing
	7.4 Integration testing libraries and tooling
	7.4.1 Using assert_cmd to test CLI applications
	7.4.2 Using proptest with integration tests
	7.4.3 Other integration testing tools

	7.5 Fuzz testing

	Part 4: Asynchronous Rust
	Chapter 8: Async Rust
	8.1 Runtimes
	8.2 Thinking asynchronously
	8.3 Futures: Handling async task results
	8.3.1 Defining a runtime with #[tokio::main]

	8.4 The async and .await keywords: When and where to use them
	8.5 Concurrency and parallelism with async
	8.6 Implementing an async observer
	8.7 Mixing sync and async
	8.8 When to avoid using async
	8.9 Tracing and debugging async code
	8.10 Dealing with async when testing

	Chapter 9: Building an HTTP REST API service
	9.1 Choosing a web framework
	9.2 Creating an architecture
	9.3 API design
	9.4 Libraries and tools
	9.5 Application scaffolding
	9.5.1 main()
	9.5.2 init_tracing()
	9.5.3 init_dbpool()

	9.6 Data modeling
	9.6.1 SQL schema
	9.6.2 Interfacing with our data

	9.7 Declaring the API routes
	9.8 Implementing the API routes
	9.9 Error handling
	9.10 Running the service

	Chapter 10: Building an HTTP REST API CLI
	10.1 Deciding which tools and libraries to use
	10.2 Designing the CLI
	10.3 Declaring the commands
	10.4 Implementing the commands
	10.5 Implementing requests
	10.6 Handling errors gracefully
	10.7 Testing our CLI

	Part 5: Optimizations
	Chapter 11: Optimizations
	11.1 Zero-cost abstractions
	11.2 Vectors
	11.2.1 Vector memory allocation
	11.2.2 Vector iterators
	11.2.3 Fast copies with Vec and slices

	11.3 SIMD
	11.4 Parallelization with Rayon
	11.5 Using Rust to accelerate other languages
	11.6 Where to go from here

	appendix
	Installing tools for this book
	Installing tools on macOS using Homebrew
	Installing tools on Linux systems
	Installing rustup on Linux- or UNIX-based systems
	Installing tools on Windows

	Managing rustc and other Rust components with rustup
	Installing rustc and other components
	Switching default toolchains with rustup
	Updating Rust components
	Installing HTTPie

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

