
1 \
I ft

lift

Exploring FORTH

Exploring FORTH

Owen Bishop
in collaboration with

Audrey Bishop

GRANADA
London Toronto Sydney Newark

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright © Owen Bishop 1984

British Library Cataloguing in Publication Data

Bishop, O. N.
Exploring FORTH
1. FORTH (Computer program language)
I. Title 11. Bishop Audrey
001.64'24 Q.A.76

ISBN 0-246-12188-2

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Using This Book vi

1 Which FORTH? 1

2 Why FORTH? 6

3 Stacking It Up 11

4 What Is The Stack? 23

5 Numbers in Store 29

6 See How They Run 40

7 Interactive FORTH 59

8 Taking Decisions 78

9 Over and Over 101

10 Sorting Numbers 117

11 Kinds of Numbers 133

12 AND and OR 152

Appendix A: FORTH on Other Computers 167

Appendix B: ASCII Codes 171

Index of FORTH Words 172

Subject Index 175

Using This Book

This is a book for those who are starting to learn FORTH. It does

not expect any previous knowledge of the language. The

explanations are detailed so that you can follow exactly what is

going on at every stage.
The book will not teach you all there is to know about FORTH, as

there is not enough room in a book of this size to deal with every

aspect of this fascinating language. But it is hoped that, by the time

you have finished this book, you will feel confident to continue the

exploration of FORTH on your own, or with the help of one of the

more advanced books.
This is not a book for armchair reading. You will get far more out

of it and progress more rapidly if you have your computer switched

on, with FORTH in operation, as you study the book. Key in all the

short examples that are given throughout the book and watch things

happen on the screen. Try varying the examples; type in something

slightly different. See if the effect is what you expect it to be. If it is

not, try to work out why. This is the practical way of exploring

FORTH.

Chapter One

Which FORTH!

There has been an escalating interest in FORTH among micro

owners during the past few years. As a result of this, the FORTH

language is being made available on an increasing number of

popular microcomputers. There are tapes, disks, cartridges and

special ROMs, all of which provide FORTH for those micros which

normally operate in BASIC. There is even a micro which has

FORTH as its resident language. This book is intended to be used

with any of these microcomputers, whatever version of FORTH

they use.

The reason that this is possible is that FORTH is an easily

transportable language. That is to say, you can write a ‘program’ on

one micro, then key it into a different micro with a reasonable

chance that it will work first time. The word ‘program’ was put into

quotes in the previous sentence because the idea of ‘writing a

program’ does not apply to FORTH as it does to BASIC and many

other languages. As will be explained in more detail later, FORTH is

based on a set of words, each of which has a specified action. The

writer of a version of FORTH supplies you with a set of a few

hundred words. When you ‘program’ in FORTH, you use these

words to define new words of your own. You extend the language

originally supplied to you by adding whatever words you need. You

can then use the words you have defined to define even more words.

The action of some of your words may be most elaborate. Yet

everything is done in short, easily understood steps.

With BASIC and many other languages, you put together the

statements and functions that are provided by the version of the

language, building up line upon line of program. The program

consists of a series of instructions telling the computer what to do. If

the BASIC of your micro lacks certain statements which you need,

you can often write a program line to do what is wanted, though

sometimes this is difficult and it is always less satisfactory. For

2 Exploring FORTH

example, if your BASIC lacks the REPEAT.. .UNTIL statements,

you can manage with GOTO, but the program runs much more
slowly.

There is nothing in FORTH which corresponds exactly to a

program. It is true that there are the sequences of words used in

defining other words, but these are short sequences more like

subroutines or procedures than programs. On the other hand,

FORTH words differ from subroutines or procedures because there

is no ‘main program’ to jump back to after they have been executed.

(a)

Fig. 7.7. The course of action when running (a) a program in BASIC; (b) an
application in FORTH.

Which FORTH? 3

Figure 1.1 illustrates the difference between FORTH and a

program-based language, such as BASIC. You can see how the

action of a program proceeds line-by-line, perhaps with loops and

repetitions, from the start of the program to the end. It is a program
in the true sense; a list of things to be done.

FORTH has no such list. The action moves from one word to

another. It threads its way among the words of the language itself.

Exactly howthis happens is explained later. FORTH is described as a

threaded language. One word calls upon the actions of others in

(b)

performing its own actions. There is no ‘listing’ that you can read

from start to finish, to see what the program does. To follow the

action you must thread your way from word to word. But, since the

definition of each word is short and clearly related to the definitions

of other words, this is an easy matter. When working with FORTH,

we use or apply the existing words to create new words. For this

reason, it is best to speak of an application rather than a ‘program’.

4 Exploring FORTH

We will return to this topic in more detail in various parts of the

book.

Most of the words that are provided with your version of FORTH

will be the same as those provided in other versions and will have the

same action. There may be a few additional words which the

designer thinks you will find helpful. There will also be words which

relate to the special features of your computer and are not present in

other versions. For example, the Acornsoft FORTH for the BBC

Microcomputer has a word MODE which is used for changing the

display mode of the computer. This word does not apply to other

computers, such as the Jupiter Ace. But the FORTH of the Jupiter
Ace has some words of its own, including BEEP, to make a beeping

sound on its loudspeaker. The BBC FORTH does not have BEEP,

though you could write it using BBC FORTH if you wished to. As
far as possible, the words used in this book will be only those which

are likely to be found in all versions of FORTH.

What if this book uses a word which is not in your FORTH? This

does not happen often, but there are some generally useful words

which may not be in your version. Here we can rely on the ability of

FORTH to let you define the missing word yourself from the words

you have already. Some definitions based on the essential FORTH

words are given in Appendix A.

There are two main versions FORTH. One of these, FORTH-79,

is defined by a standard set out by the FORTH Standards Team.

The other main FORTH is that prepared by the FORTH Interest

Group in the United States of America. It is called fig-FORTH.

These two versions have a lot in common. As far as possible, this

book uses words which occur in both versions. Where there are any

significant differences, we shall try to point them out. Although

FORTH-79 is a standard, there are many versions of it. The point is

that the standard specifies a minimum set of words and how they are

to act. Any FORTH which has this minimum set and which has a

number of other standard features can claim to be FORTH-79. The

writers of such a version are then free to add any other words,

especially words like those mentioned above which cater for the

features of a given micro. Provided that special words are avoided,

an application can generally be transferred from one micro to

another, without any problems. On the other hand, the words which

apply to the special features of a micro are usually those which

provide the most effective displays or make best use of features such

as sound generators. Applications which do not make use of such

words are not exploiting the features of the micro to the best

Which FORTH? 5

advantage. This dilemma is not the fault of FORTH, but of lack of

standardisation in micros, especially with regard to screen format

and display routines. This is the point at which you may need to

adapt the suggestions given in this book to suit the special features of

your computer. Guidance is given wherever possible. By the time

you have covered the early chapters of this book, you will feel

confident to use the special words of your version of FORTH or to

write any other words you need to get the most out of your

computer.

To summarise

In this chapter you have learned that:

• Writing applications in FORTH consists of using FORTH words

to define new FORTH words of your own.

• FORTH is a flexible, transportable language.

• There are two main versions of the language, FORTH-79 and

fig-FORTH.

Chapter Two

Why FORTH ?

The increasing popularity of FORTH is due to several factors. One

of these, already mentioned, is its transportability. This becomes an

increasingly important factor as more varieties of microcomputer

come on the market. Another factor is its speed.

FORTH is fast in two ways. It is claimed that writing an

application in FORTH takes only half the time required to write the

equivalent program in another high-level language, such as BASIC.

A FORTH application takes only one tenth of the time required to

write its equivalent in assembler. So here is a way to get your

computer into action with the minimum of delay at the writing stage.

Once the application is written, it runs faster too. To check on

this, let us see how long it takes the micro to count up to 30000, using

BASIC. Here is the program which does it. This took 16 seconds to

run on the BBC Microcomputer.

>10 FOR J - 1. TO 30 0 00
>20 NEXT

Now run FORTH on your computer and key in the following

word definition. Type this in exactly as shown below, taking special

care to leave all the spaces. FORTH is particular about spaces!

I TEST 30000 1 DO LOOP ?

When you have finished, press RETURN. The computer responds

with the familiar and reassuring ‘OK’ on the line below. This tells

you that it is ready for whatever you want it to do next.

Before doing anything further, consider what you have just typed.

The line defines a word named TEST. It was given this name as we

want to use it to test how fast the computer counts when using

FORTH. The name of the word is followed by two numbers.

Comparing this line with the BASIC listing above, shows that these

are the values for the end and the beginning of the loop. You will

Why FORTH? 7

notice that the number for the end of the loop comes before the

number for the beginning. This ‘back-to-front’ habit of FORTH is

something we shall see a lot more of. Why it works this way is

explained later. It may seem strange at first, but you soon get used to

it, just as one soon gets used to driving a car on the opposite side of

the road when visiting a foreign country. Then it feels odd when you
come back home!

The loop which does the counting begins with the word DO and

ends with the word LOOP. In this definition there is nothing

between DO and LOOP, just as there was nothing in the BASIC

loop given earlier. All the micro is being asked to do is to loop back

to DO thirty thousand times.

Now to execute the word TEST. Key in the word TEST by itself

on the line below. Get your stop-watch ready, then press RETURN.

The ‘OK’ message appears as soon as the computer has counted to

30000. On the BBC Microcomputer, the test took only two seconds.

For this particular operation, FORTH is about eight times faster

than BASIC. Comparisons for other operations give different

results, depending on what has to be done by the micro, but it seems

that the claim that FORTH is up to ten times faster than BASIC is to

be believed.

The speed of FORTH makes it ideal for computer games. It also

has the advantage that the computer can perform a long series of

calculations in a reasonably short time. There are applications in

this book which take advantage of the speed of FORTH in both of
these ways.

High-level languages are of two main types: interpreted and

compiled. BASIC is an interpreted language. When a program in

BASIC is run, the computer goes through it, line by line, working

out what the various statements mean. The interpreter program in

the ROM of the micro interprets each BASIC statement, calling on

machine code routines to perform the necessary actions. The

program is interpreted every time it is run. Moreover, if there are

lines in a loop which are repeated, say 100 times, then those lines

have to be interpreted 100 times each. Interpreting inevitably

requires time, which means that BASIC programs run relatively

slowly. But interpreters have an advantage. When you are working

with an interpreted language, it is easy to stop the program, make

small changes in it and then run it again. Programming is relatively

quick and easy, and you can instantly see the results of any changes
you make.

A compiled language, such as Pascal, has entirely different

8 Exploring FORTH

features. After you have written the whole program, it is compiled

into a machine code version which can be stored on tape or disk.

After that you use the machine code version. The conversion of the

program from a high-level language to machine code is done once

and for all. The compiled version of your program runs exceedingly

fast, which is a big advantage. The corresponding disadvantage is

that it is not possible to make any changes in the program without

starting from the beginning and recompiling the new version. This is

annoying if there are bugs in the program, as there are almost certain

to be at first. It is much more important to get the program right

before it is compiled. Some people would say that this is a good

thing, for it forces you to work carefully and plan everything in

detail before you begin to program. Needless to say, a lot of other

people are put off by this strict approach to programming, which is

perhaps one reason why Pascal has never become popular with

micro owners. Another disadvantage of compiled languages is that

they generally require more memory than is present in the average

micro.
FORTH is neither interpreted or compiled, in the usual sense of

these words. When you define a FORTH word, the name of the

word is stored away, together with a string of numbers which link

your word to words you have used in the definition. Once a word has

been defined, it becomes a part of the language. This is roughly

equivalent to compiling, but it does not produce machine code. It

produces a word which refers to other words already compiled.

Some of these words, the primitives, perform the more fundamental

actions. The primitives have links to routines in machine code

which, in effect, will do all the real work when the word is executed.

When a word is executed, during the running of an application,

FORTH acts more like an interpreter. As each word is executed,

several other words may be called into action. Some of these call on

primitives which in turn bring various machine code routines into

operation. Since the words have already been ‘compiled’, interpreta¬

tion is very fast. This gives FORTH its speed. However, since the

words of FORTH are each individually ‘compiled’, we have an

extremely flexible and accessible system. You define words one at a

time, and can test each word thoroughly before you go on to write

the next. If, later, a definition turns out to be unsatisfactory in some

way, you can re-define it without having to re-compile the rest of the

application. In this and other ways, FORTH allows the user to

interact freely with it, one of the advantages of an interpreted

language, yet has the speed and compactness of a compiled

Why FORTH? 9

language. It combines the advantages of both.

Since the core of FORTH has a relatively limited number of tasks

to perform, it is short and requires little memory. The core routines,

and essential word definitions of a typical implementation of

FORTH require only about 8 kilobytes of memory. In any given

application you need add only those words which are required by the

application. This keeps memory requirements to a minimum.

The flexibility of FORTH has been mentioned already. The

language is a highly structured one, yet you are allowed the freedom

to alter its structure to suit your own purposes. We shall see

examples of this in later chapters. It is considered by some that a

language that can alter itself and extend itself so readily is not really

a language at all! This flexibility gives it several advantages in the

field of education. Other languages present the user with a rigid

system of statements or commands, and fixed ways of doing things.

This implies that the user has quite a lot to learn before beginning to

use the language. If there are difficult aspects of learning the

language, it is not possible to alter the language to make it easier.

With FORTH we can make things much easier for the beginner or

those with special difficulties. Words can be defined which do very

simple and easily understood things. We can give them names which

readily make sense to the learner. Words from the user’s everyday

vocabulary are more likely to convey meaning than words chosen by

someone else. The beginner can give any preferred name to the

words. One can go further. If the name of an existing FORTH word

is confusing to the user, there is no difficulty in re-defining it with an

entirely different name. For example, ‘duplicate’ is a word in English

not readily understood by young people, so the FORTH word DUP

may not be understood either. Perhaps MAKE-TWO would be

better understood in the earlier stages of learning FORTH. To add

this to the language, all that is required is:

5 MAKE-TWO DUP >
OK

From then on MAKE-TWO will have exactly the same action as

DUP. In the same way it is easy to adapt the FORTH vocabulary to
suit those whose mother tongue is not English.

It must be evident from the above that the writers have a high

opinion of FORTH and its potentialities. Turn now to Chapter

Three and begin to experience the delights of FORTH for yourself.

10 Exploring FORTH

To summarise

In this chapter you have found out how to:

• Key in and use FORTH words.
• Define a new FORTH word, using existing FORTH words.

• Use a DO... LOOP loop.

You have learned that:

• FORTH is fast.
• FORTH combines the advantages of an interpreted language

with those of a compiled language.

Chapter Three

Stacking It Up

The stack is at the heart of all operations in FORTH. It is therefore

very important to understand what the stack is and how it is used.

The stack is a part of memory specially set aside for holding

numbers. It is not a very large part of memory, usually less than 100

bytes. The word ‘stack’ implies rather more than the related word

‘heap’. In a stack, things are arranged in some kind of order. There

are several ways of thinking about the stack. One of these is to

imagine a stack of postcards in a clip-board (Fig. 3.1). Putting them

on the clip-board stops the cards from getting out of order. In other

words, it prevents the stack from turning into a heap!

Fig. 3.7. The clip-board ready to demonstrate the stack.

When we look at the stack, we see only the top card. We will refer

to this as top-of-stack. This particular card is only top-of-stack for

as long as the stack remains unaltered. We could add another card to

the stack, placing it on top of the stack. Now the original top-of-

stack card is covered and the newly added card becomes the top-of-

stack. Or we could remove the top-of-stack card and throw it away.

Then the newly exposed card which was below it becomes the new
top-of-stack.

Note that when we add a card to the stack we always place it on

12 Exploring FORTH

top. We never try to insert it further down in the stack. Also, when

we remove a card from the stack, we always remove the top card,

never a card from further down the stack. These two rules are an

essential part of the way the stack works.

Suppose we begin with an empty clip-board. This can be referred

to as an ‘empty stack’. It would help at this stage if you were to have

an empty clip-board beside the computer. You also need about ten

cards (or sheets of paper), and a pencil. If you do not have a clip¬

board it does not matter; just keep the windows and doors shut so

there is no wind to blow the stack away! When you are ready with

this equipment, turn on the computer and call up FORTH.

First write the figure 4 on one of the cards (we will refer to them as

cards, even if you are really using scraps of paper). Place it in the

clip-board. This card is top-of-stack. The value stored at top-of-

stack is 4 (Fig. 3.2).

When you first run FORTH, its stack is empty, just like the clip¬

board was. To place 4 at top-of-stack, all you have to do is type:

4

and press RETURN. You will see the ‘OK’ prompt on the next

screen line, indicating that your instructions have been obeyed and

the computer is waiting to be told what to do next.

How do we know that 4 has really been placed at top-of-stack?

FORTH has a word which tells the computer to take the top number

off the stack and display it. This word is the shortest word possible:

No, it’s not a dirty mark on the page, it is a full-stop. When we refer

to it. we call it ‘dot’. Key in ‘dot’, then press RETURN. The sequence
so far is shown in Fig. 3.3. As you can see, the computer has

displayed 4. the number stored at the top-of-stack.

Stacking It Up 13

4
OK

‘1 OK

Fig. 3.3.

Can you get the computer to display it again? Try ‘dot’ followed

by RETURN. What happens next depends on the version of

FORTH you are using. On the BBC Microcomputer, for example,
you get:

0 . ? MSG * 1

The words MSG# 1 refer you to error message no. 1. If you look this
up in the manual, you will find that it means ‘Stack empty1.

On the Jupiter Ace you will get:

-18572ERROR 2

The first number may be different, but the error message will always
be number 2, which means ‘Stack empty1.

It seems that the 4 is no longer on the stack. It is the same as if you

had taken the card from the clip-board, and pinned it up on the wall

for everyone to see (Fig. 3.4). Do this now - take the card from the

board and put it where everyone can see it (no need to pin it to the
wall!).

Fig. 3.4. Value 4 displayed, leaving the stack empty.

To sum up so far: we put 4 on the stack. Then we used ‘dot1. The

action of‘dot1 was to take the number from the top-of-stack, leaving

the stack empty, and display the number on the screen.

Now put the 4 card back on the board, so it is once more top-of-

stack. Next write 55 on another card and place this on top of the 4

card. The 55 card is now top-of-stack. The 4 card has become

second-on-stack. Finally write 666 on a third card and put this on

top of the 55 card (Fig. 3.5). Remember we always add to the top of

14 Exploring FORTH

Fig. 3.5. Three values, 4, 55 and 66, on the stack.

the stack. There is no slipping the 666 card under the 55 card! We can

do the same thing with the computer’s stack (see Fig. 3.6). Press

4
OK
55
OK
666
OK

Fig. 3.6.

RETURN after keying in each number. Which number is at the top-

of-stack now? Use ‘dot’ to find out. Then use it twice more. Figure

3.7 shows what happens. The numbers are taken off the stack and

♦
666 OK
♦

55 OK
♦
4 OK

Fig. 3. 7.

displayed in the reverse order to that in which they were put on the

stack. That this should happen is obvious if you take the cards from

the top of your clip-board stack. First comes the 666. Removing this

Fig. 3.8 The three values displayed, leaving the stack empty.

Stacking It Up 15

and propping it up on a shelf exposes the 55, the new top-of-stack.

Take this away and prop it up on the right of the 666. This leaves the

4, which you remove and place to the right of the 55. Now the stack is

empty once again (Fig. 3.8).

The stack is what is known as a last-in-first-out stack. This is often

shortened to LIFO. The 666 was the last to be put on the stack, and it

is the first to be taken off.

In the sequence above we pressed RETURN after keying in each

number and pressed RETURN after each dot. The computer can

accept and perform any reasonable number of instructions in one

go. Key in the numbers and ‘dots’ all on one screen line:

4 55 666 « * t

Recall the earlier remarks about spaces; leave one space between

each number and each ‘dot’. Then press RETURN. The result is:

666 55 4 OK

Adding on the stack

If all that FORTH could do is stack numbers and then unstack them

in reverse order, it would be a useless language. Let us give it more to

do with the numbers. But first, try this with your clip-board stack.

Begin with an empty stack. Place the 4 card on the stack, then the 55

card. Now comes the adding. Take both cards off the stack ready for

adding. Place them and a blank card as shown in Fig. 3.9. Add 4 and

55 to get the answer 59 and write this on the blank card. Put the 59

card on the stack. Having done the addition, and having placed the

answer on the stack, you have no further interest in the 4 and 55

cards. So throw them away. This is just what the micro does.

The same operation on the computer is done in three steps:

(1) key in the first number (4)

(2) key in the second number (55)

(3) tell the micro to add them together and place the result on the
stack.

On the screen this looks like:

4 55 +
OK

The ‘OK’ shows that RETU RN has been pressed and the job is done.

What about the answer? Oh yes, that is at the top of the stack. The

1 6 Exploring FORTH

WAS SECOND-ON-STACK

WAS TOP-OF-STACK

WRITE ANSWER HERE
AND PUT AT TOP-OF-STACK

Fig. 3.9. Adding, with two values taken from the stack.

computer will not show you what the answer is unless you tell it to.

Use ‘dot’ to find out the answer:

♦

59 OK

This leaves the stack empty - or should do. Use ‘dot’ again to find

out if the 4 or the 55 are still lurking on the stack. They are not there.

They have been used as requested and are now forgotten.

There is one thing you may not have noticed about what you just

did. It all happened so naturally that it did not seem strange. To

make the micro add 4 and 55, you gave it the two numbers first and

then told it to add them. This makes sense. Until the two numbers

are on the stack, how can the computer be expected to deal with

them?
Yet some people who are beginning FORTH find this a strange

way of going about things. This is because we usually write down an

addition as:

4 + 55 = 59

The + comes between the two numbers which are to be added. But

this is only a convenient way of writing down the numbers as an

equation. You do the actual addition in your head. When you were

first learning to add, you probably wrote it down (or had it written

+

Stacking It Up 17

down for you) like this:

First one number 4

Then the other number + 55

Then the ‘+’ to tell _

you to add them together

This is just the way it is done in FORTH, using the stack. Now try
this. Empty your clip-board stack. Put the 666 card on the stack, then

put the 59 card on top of it. 59 is top-of-stack and 666 is second-on-

stack. Now we are ready for a subtraction. Take the 59 off the stack,

then take off the 666, placing it on the table above the 59 card. Put a

blank card below the 59, as in Fig. 3.10. Do the subtraction, writing

666
WAS SECOND-ON-STACK

WAS TOP-OF-STACK
r

i/

WRITE ANSWER HERE
AND PUT AT TOP-OF-STACK

Fig. 3.10. Subtracting, with two values taken from the stack.

the answer (607) on the blank card. Place this card on the stack. The

59 and 666 cards are not needed any more, so throw them in the

waste-paper basket. The subtraction is done; now to let other people

see the answer. Take the 607 card from the stack and place it on a
shelf.

Here is the same thing done in FORTH:

666 59 - .
607 OK

This does three things:

(1) Put one number (666) on the stack

18 Exploring FORTH

(2) Put the other number (59) on the stack

(3) Tell the computer to subtract

We have included a fourth item, the ‘dot’, in the line, so we get the

answer straight away, and nothing is left on the stack. As with the

addition, we give the computer the two numbers first, and then tell it

what to do with them. As before, we cannot expect it to do anything

until it has the two numbers to work on. Numbers first, action

second.

There is one way in which addition is different from subtraction.

If we tell the computer to add, it does not matter in which order the

two numbers have been placed on the stack. If we tell it to subtract, it
always takes the top-of-stack from second-on-stack. To check on

this, try:

59 666 - .
-607 OK

Taking a larger number from a smaller one gives the expected

negative result.

Stack rules OK?

At first glance the heading above looks as if it is a line of FORTH,

but it is not. It indicates a breathing point for summing up the rules

by which the stack operates. The two rules about the top-of-stack

can be put together as one rule:

The TP rule Take and Put at the ToP of stack

In other words, numbers taken from the stack are always taken from

the top; new numbers put on the stack are always put on the top.

The second rule is about giving the micro the figure or figures to

work on, and then telling it what to do with them. We can call this

rule:

The FFAA rule Figures First, Actions After

Readers who are soccer fans may prefer to call this the FA rule.

The TP rule explains why the DO...LOOP line given at the

beginning of Chapter Two seemed to have the figures the wrong way

round. Now it is clear that they are the right way round. The loop is

to run from 1 to 30000. When the computer wants to know how

many LOOPs it is to DO, it will go to the stack and look at top-of-

stack. Here it will find 1, for this was the figure placed there last. It is

Stacking It Up 19

the first to come off (LIFO is a result of the TP rule). Having found

out the value which is to begin the loop, it wants to know the value

which is to finish it. The micro looks at the stack again. It has already

taken away the 1, so now the top-of-stack is 30000. It removes this,

leaving the stack empty, and performs the loops. This line also

illustrates the FFAA rule. The figures for the end and the beginning

of the loop are put on the stack, then the micro is told to DO a

LOOP. More about DO...LOOP in Chapter Nine.

Words and numbers

In FORTH, anything you type on the screen is either a word or a

number. Words and numbers are always separated from each other

by at least one space. They may even be on separate lines. When the

computer interprets a line of FORTH, it examines each group of

characters on the line, working from left to right. If a group of

characters consists entirely of numerals, it recognises the group as a

number. If any one or more of the characters are letters or symbols,

the group is a word. This means that words can consist of groups of

letters:

DUP ROT DROP OVER LOOP

or letters and symbols:

C! ?TAB (+LOOP) M*

or symbols alone:

; + ♦(>#/ —>

or letters and numerals:

2DR0P 4HEX 79-STANDARD

(The word can begin with numerals if you wish, which is something

not allowed in BASIC.) Spaces are not allowed in words, which is

obvious, since FORTH relies on spaces to separate one word from

the word next to it. If you want a ‘two-word’ word, use a hyphen as in

the example MAKE-TWO at the end of Chapter Two.

Although it was stated above that only an ‘all-numeral’ group of

characters is read as a number, there is the exception that a group of

numerals with a minus sign in front is taken as a negative number. In

some FORTHs you are allowed to key in numbers with decimal

points - what are called floating point numbers. The FORTH—79

20 Exploring FORTH

standard does not provide for such numbers. All its calculations are
done in whole numbers, or integers. Using floating-point numbers
makes calculations slower and there is not usually any real need to
work with such numbers. We shall consider this topic again in

Chapter Eleven.
The words we have used in Chapters Two and Three are:

* + •- DO LOOP : t

The action of ‘dot’, ‘plus’, ‘minus’, DO and LOOP have already been
explained, but we have not mentioned ‘colon’ and ‘semicolon’. The
word ‘colon’ tells the computer that you are defining a new FORTH
word. We used it at the beginning of the line in which we defined the
words TEST and MAKE-TWO (Chapter Two). The word
‘semicolon’ is used to tell the computer when the definition of the
word is complete.

Writing out the stack

Using clip-boards and pieces of paper is helpful in getting to know
how the stack operates, but there are quicker and neater ways of
doing things. From now on we shall use a way of indicating the
content of the stack which is used in a number of other books on
FORTH. It is a very useful way of showing what the stack holds,
both before and after a given operation.

If we were to put 4 on the stack, then 55 and then 666 we would
write out such a stack like this:

4\55\666

As you can see, top-of-stack is on the right. If we want to show what
an operation does, we set it out like this:

(4\55 ... 59)

This shows what happens when we add 55 to 4. The way the stack
begins is on the left. The way it finishes is on the right. The three full-
stops (...) separate start from finish. Some books use a dash instead.
This is what ‘dot’ does to the stack:

(32 ...)

This example shows that ‘dot’ begins with a number (e.g. 32) on the
stack and finishes with nothing.

Stacking It Up 21

Quite often we want to show what a word does without using any

numbers in particular. Then we use ‘n’, or ‘nl\ ‘n2’, ‘n3’, etc., if there

is more than one number. The action of the word ‘dot’ can be shown

by:

(n ...)

The action of the word ‘plus’ is shown by:

(nl\n2 ... nl + n2)

You begin with nl as second-on-stack and n2 as top-of-stack and

you finish with their sum (nl+n2) as top-of-stack. The action of the

word ‘subtract’ is:

(nl \n2 ... nl — n2)

Top-of-stack is subtracted from second-on-stack.

It helps us follow the more complicated operations if the

computer will write out the contents of the stack for us at various

stages in the operation. We cannot simply use ‘dot’ repeated several

times, because ‘dot’ takes every number off the stack as it displays it.

The word for displaying the whole stack at any given time is ‘dot S’.

Figure 3.11 shows it in action. We have used‘dot-S’after every stage

in the operation, to show just what has happened to the stack. Using

‘dot-S’ has not altered the stack in any way.

4 *S 55 ♦S 666 *S + ,S - .S . *S
4
4 55
4 55 666
4 721
-717 -717
EMPTY OK

Fig. 3.11.

To summarise

In this chapter you have found out how to:

• Use the stack.

• Find out what values are on the stack.

• Write out the stack contents systematically, on paper.

• Write out the stack action of FORTH words.

22 Exploring FORTH

You have used these FORTH words (stack action of words in

brackets):

• . ‘dot’displays the value at the top-of-stack (n...).

• .S ‘dot-S’displays the whole stack, without changing it.

• + ‘plus’ (nl\n2 ... nl+n2).

• — ‘minus’ (nl\n2 .. .nl—n2).

• DO and LOOP are words used to begin and end an action that

is to be repeated a given number of times (nl \n2 ...).

• : ‘colon is used to begin a colon definition of a FORTH word

(...).

• ; ‘semi-colon’is used to end a colon definition (...).

You have learned that:

• OK on the screen means that the computer is waiting for your

next instruction.

• Most FORTH operations depend on putting values on the stack

or taking them off the stack.

The two stack rules are:

TP - Take and Rut to ToP of stack

FFAA — Figures First, Action After

Explore more

(1) Key in lines to make the computer do the following additions and

subtractions and display the result:

^ , 23 + 56 146 + 72 146 - 72

4 + 43 + 5 1 + 0 + 67 1000 + 100 + 10

45 + 21—6 55 - 3 - 2 80 - 2 + 22

(2) Define a word ADD to take three numbers from the stack, add

them together and display the result.

(3) Define a word SUBTRACT to take three numbers from the

stack and subtract the number at the top-of-stack from the sum of

the other two.

' Rrt>0 + + > j

I
4

Chapter Four

What Is The Stack?

It is a good idea to think of the stack as a pile of cards on a clipboard

or as a row of numbers on the page or on the screen, but obviously it

is not really like this. It will help you to understand the way the stack

works and to learn how to use it more effectively if you find out a
little more about it.

We have already said that the stack is a small section of the

computer’s memory. To be more specific, it is part of the Random

Access Memory (RAM), and it can be written into and read from

whenever we want. In most micros each location in memory consists

of a single byte of eight bits. We can think of each location as a set of

eight registers, each of which can hold either 0 or 1. Of course there is

nothing there actually looking like a 0 or a 1, but there are electrical

circuits, called flip-flops, which can be in one of two states. When

flipped they can be said to represent a 1 and when flopped they

represent a 0. Since only Is and Os can be represented in such a

system, any number stored must be a binary number. That is to say, it is

a number made up entirely of Is and Os. The computer can show us

what binary numbers look like. Here is a word which converts

ordinary decimal numbers into binary ones and displays the result:

t BINARY 2 BASE ! * DECIMAL ?
OK

Later we will see just how this word works but for the moment it is

enough to just use it. Use it by typing any decimal number you like

(remember - Figure First) then type the word (Action After) - see
Fig. 4.1.

If you type in numbers greater than 127, the binary number has

eight digits, which is the maximum that can be stored in a single

memory location. The largest possible number that can be stored is

255, which is all ones, 11111111. The word BINARY can work with

numbers far larger than this, but these would need more that one

24 Exploring FORTH

4 BINARY
1.0 0 OK

5 BINARY
101 OK

32 BINARY
100000 OK

345 BINARY
£ 010110 01 OK

Fig. 4.1.

byte to store them. This is a point we shall return to in a moment.

The computer knows where to go to find the stack because each

location in its memory has an address. In most micros the address is

a number between 0 and 65535. The manual which goes with your

version of FORTH may tell you the address at which the stack is

kept, though you need not worry if it does not. The computer knows

and that is all that matters. Figure 4.2 shows a part of memory in

which the stack values are stored. The addresses shown in the figure

are probably quite different from those actually used in your

computer. Why the address of each location in the stack differs from

those of its neighbours by two is explained later.

LOCATION IN
STACK

THE STACK
A

[SECOND-ON-STACK TOP-OF-STACK ^

®
STACK
POINTER
POINTS TO
THIS ADDRESS
WHEN THE
STACK IS
EMPTY

©

1

®

2

CO

®
 © ®

VALUE
STORED
AT THE
LOCATION

82

NEXT VALUETO
BE PUT ON
STACK GOES HERE
(STACK POINTER WOULD
THEN HOLD‘80’)

Fig. 4.2. The stack, how numbers are stored in it and how the stack pointer
points to the top-of-stack.

What Is The Stack? 25

Figure 4.2 shows that the top-of-stack has the lowest address. This

may seem an upside-down approach, but some people may find this

quite natural. However, it is one which is convenient for the

operating system. As we add numbers to the stack, or take numbers

from it, the computer alters a variable called the stack pointer. This

variable is stored at another part of memory and ‘points at’ the top-

of-stack. In other words, the value of the stack pointer is the address

of the memory location which is currently the top-of-stack.

There is a word which lets us find out the value of the stack

pointer. This word is called ‘S-P-fetch’ (see Fig. 4.3). In Fig. 4.3 we

SPB ♦ Jr .
88 OK

1 2 3 SPB . <
82 OK

4 5 SPB .
78 OK

♦ . ♦ . SPB ♦
5 4 3 2 8.6 OK

Fig. 4.3.

began with an empty stack. The stack pointer equalled 88. The word

‘S-P-fetch’ puts the value of the stack pointer at top-of-stack. The
value it puts is the value of the stack pointer before ‘S-P-fetch’ acted.

If we follow ‘S-P-fetch’ with ‘dot’ to display this value, this removes

the value from top-of-stack, leaving the stack as it was before.

The next step in Fig. 4.3 was to add three more numbers to the

stack, then find the value of the stack pointer. This becomes 82. We

put three numbers on the stack, but the pointer moved six locations

further down in memory. It seems that it takes two locations (two

bytes) to store each number. This is the stage illustrated in Fig. 4.2.

To check on this we put two more numbers (4 and 5) on the stack.

The stack pointer changed to 78, showing that four more bytes were

used. Finally, we removedfournumbersfromthestackbyusing‘dot’.

These numbers were displayed and, after them, came the latest value

of the stack pointer, 86. Removing four numbers from the stack
shifted the pointer eight places along in memory.

It is clear from the above that the stack uses two locations in

memory for storing each number. Each ‘box’ in Fig. 4.2 represents

'T> "

-)

€ 2- ■

t

1 11

I K4tl

■f

* t/ t> »>

S9e_

/ . . ft

iSi/O-

26 Exploring FORTH

two cells of the computer’s memory. This means that it is possible to

store a 16-digit number at each position on the stack. The largest

possible 16-digit binary number is 1111111111111111, equivalent to

65535 in decimal. It is therefore possible to store numbers up to this

size in each location of the stack.
Normally, numbers are not stored this way. Instead the computer

uses only 15 of the 16 digits for storing the number itself. This allows

numbers up to 32767, which is enough for most purposes. The 16th

digit is used for giving the number a sign, to indicate whether it is

positive or negative. If the 16th digit is 0, the number is positive, if it

is 1, it is negative. The system works as in Table 4.1.

Table 4.1

Binary number Decimal equivalent

0000000000000000
0000000000000001

0000000000000010

0000000000000011

0000000000000100

0111111111111100
0111111111111101

0111111111111110

0111111111111111

32764
32765
32766
32767

1000000000000000

1000000000000001

1000000000000010

1000000000000011

-32768
-32767
-32766
-32765

1111111111111100
1111111111111101

1111111111111110

1111111111111111
0000000000000000

It is easy to understand the top half of this table. The 16th digit (the

one on the extreme left) is 0, so all the numbers are positive. They

run from 0 up to the largest possible with 15 bits, 32767. Adding 1 to

What Is The Stack? 27

this number gives the next number in the table, 1 followed by 15

zeros. Because this begins with 1 it is considered by the computer to

represent a negative number. But why is it —32768, instead of — 0?
This is better explained if we go to the end of the table and work

backwards. The lowest line of the table has all zeros. Getting to this

line from the line just above it is like clocking up the last mile on a car

mileometer which registers up to 99999 miles. The next mile takes it

to 00000 miles, as if it had never been driven since it was made! The

sixth digit carried over simply does not exist for there is no room for

it on the dial. Similarly, counting one more after 1111111111111111

gives all zeros. Conversely, counting one back from zero gives 16

ones. Sixteen Is must be equivalent to —1 (one step backwards). As

we read the table from the bottom line upward, the values are 0,-1,

—2, —3 and so on until we eventually reach—32768. Going one more

line up the table, we return to the region in which the 16th digit is a

zero and we are back in positive numbers again.

As explained above, the computer normally treats the 16-bit

numbers as signed numbers. This method of storing negative

numbers makes use of what is called the two’s complement. Here is

an easy way to find how any negative number is stored. Take as an

example, the number—56:

Write + 56 in bi nary 0000000000111000
Write all 0s as Is and all Is as 0s 1111111111000111

Finally, add 1 + 1

1111111111001000

56 is stored.

-32768:
1000000000000000
0111111111111111

+ 1

1000000000000000

This confirms what we have seen in the table above.
It is usually more convenient to have the computer dealing with

signed numbers, so that we have negative numbers when we want

them. But sometimes it is better for the computer to treat the

numbers as unsigned, with values ranging between 0 and 65535, and

with no negative numbers allowed. If this is what is required, there

are FORTH words to make the computer treat the numbers as
unsigned.

This gives the way that -

Let us try this again for -
+32768 in binary is

Invert it

Add 1

28 Exploring FORTH

To summarise

In this chapter you have found how to:

• Use the stack pointer to investigate the way the stack is used.

• Write a decimal number as a signed binary number.

You have used this FORTH word:

• SP@ ‘S-P-fetch’ (... address of stack pointer).

You have learned that:

• The stack is a special section of memory.
• Values are stored there as bytes, consisting of 8 binary digits, or

bits.
• FORTH usually stores numbers as single-precision numbers each

occupying 2 bytes on the stack.

• Single-precision numbers can have any value in the range-32768

to 32767.
• FORTH normally deals only with integer values.

Explore more

Try addition and subtraction of binary numbers. First make the

computer display the binary equivalents of the decimal numbers

given below. Write these down. Then add or subtract them, as

indicated, using the following rules of binary arithmetic:

0+0 = 0 0-0 = 0
0+1=1 0-1=1, borrow 1

1 + 0=1 1-0=1

1 + 1 = 0, carry 1 1-1 = 0

Here are the decimal numbers to work with:

4+5 4-5

255 + 1 128-1

256 + 256 10 + 21

10-2 - 32768+1

When you have worked out the answers in binary on paper, use the

computer to check your results.

Chapter Five

Numbers In Store

Suppose that you are planning your holiday in a foreign country.

You have a travel guide which gives the costs of meals, hotel rooms,

petrol and other essential costs in terms of the local currency. You

want to see what these prices are when converted to pounds. The

local currency is the franc, and your travel agent tells you that the

exchange rate is 12 francs for 1 pound. Although exchange rates can

vary, sometimes dramatically, you will want to use the same rate for

all the calculations you do. For this reason, we regard the rate as a

constant. FORTH has a special way of defining constants:

12 CONSTANT RATE
OK

The word CONSTANT has defined a constant called RATE and

given it the value 12.

We used a defining word called ‘colon’ (:), in earlier chapters. A

defining word is used to define other FORTH words. CONSTANT

is another kind of defining word. Like ‘colon’, it defines other

FORTH words but unlike ‘ colon’ the words it defines are all the

names of stored numbers. CONSTANT expects to find a value on

the stack, ready to be assigned to the named constant. After a

constant has been defined by using CONSTANT, we use the name

of the constant whenever we want the value of the constant to be put

on the stack. Try it:

RATE .
12 OK

Let’s use CONSTANT to find out how many pounds a meal costs, if

it costs 50 francs in local currency. The calculation required is to

divide the cost in francs by the rate of exchange:

50 RATE / .
4 OK

30 Exploring FORTH

This line introduces a FORTH word called ‘divide’. This uses the

same symbol as is used in BASIC. The action of the line above is to

put the value 50 on the stack, followed by the value of RATE (12).

Then ‘divide’ divides second-on-stack (50) by top-of-stack (12),

giving the answer, 4, which is displayed by ‘dot’. You may object that

50/12 gives 4.16666667. This is true, but remember that FORTH

deals only in integers. It ignores the figures after the decimal point.

You may think it most inconvenient of FORTH to drop the pence,

but it is no more inconvenient than BASIC, which insists on giving

you all the decimal places, as in the 4.16666667 quoted above. With

either language we need a little more programming to get exactly

what we want.
If you want to use FORTH in a currency conversion application,

you will need to work out ways of making it handle the pence as well

as the pounds. One way to do this is explained later in the chapter.

For the moment, we will ignore the odd pence and look further at the

uses of CONSTANT. Let us suppose that the travel guide told you

that a hotel room costs 120 francs a night. This too is a constant, so

we can define:

120 CONSTANT ROOM
OK

The two constants may now be used to calculate the cost of staying

in the hotel for different numbers of nights. If your stay is for 7

nights:

7 ROOM * RATE / ♦
7 0 OK

Let us look at the stages of this calculation. First we put 7 on the

stack, followed by ROOM (120). The next word is ‘times’ (*). As

might be expected, the action of this word is to take the top two

numbers from the stack, multiply them together, and place their

product (the result) on the stack. At this stage, top-of-stack is 840.

Then we put RATE (12) on top-of-stack. The next word, ‘divide’,

takes the top two numbers off the stack, divides them (840/12) and

leaves the answer (70) on the top-of-stack. This is displayed by ‘dot’.

If you are not clear about what happened, Fig. 5.1 illustrates the

same sequence, but with ‘dot-S’ included after each word, to make

the computer print out the contents of the stack at every stage.

Whenever you have difficulty in following how a line of FORTH
works, make use of ‘dot-S’ as in Fig. 5.1. We shall not use

it again for this purpose in this book, but will assume that you will

Numbers in Store 31

7 * S ROOM ,8 * .8 RATE .8 /
/

7 120
8 TO
8 TO 12
70 70 OK

Fig. 5.1.

use it whenever you want things made clear. If your version of

FORTH does not include ‘dot-S’ or its equivalent, you may be able
to use the word as defined on page 167.

In the example above we used the two words, ‘times’ and ‘divide’.

Compare the line above with the line below:

7 ROOM RATE *:/ * ^
70 OK

Instead of using the words ‘times’ and ‘divide’ (with the required

space between them, of course) we have used a new word, called

‘times-divide’. This has the same action as the two separate words,

but has an advantage. The two numbers that are multiplied together

are stored as a double-precision number, which is then divided by

the third number. A double-precision number is stored in four bytes

(32 bits) instead of two, which means that very large numbers can be
stored precisely. Such numbers can range between —2147483648 and

+2147483647. If we use the first method, with separate times and

divide, the result of multiplication is stored only as a single-precision

number. It might easily happen that multiplying two large numbers

gives a result bigger than the largest possible single-precision

number. This would lead to a wrong result. Using‘times-divide’with

its double-precision intermediate stage means that we always get a

precise result, unless the numbers used are very great indeed. More

about double-precision calculations in Chapter Eleven.

As another example, here is a word to convert temperatures in

degrees Celsius to temperatures in degrees Fahrenheit:

FAHR 9 5 */ 32 +

We put the Celsius temperature on the stack, then use FAHR. It

multiplies the temperature by 9, divides it by 5 and adds 32. This

gives the temperature in Fahrenheit:

, 21 FAHR
69 OK

32 Exploring FORTH

Look after the pence ...

Now to return to our currency conversions. It is all very well for the

computer to ignore the pence and tell us only about the pounds, but

pence are important. If the average cost of a meal is 57 francs the cost

in pounds is £4.75. But the computer works out the cost as £4. Every

meal costs 75p more than the computer tells us, and we might have

no money left for meals during the last few days of the holiday!

There is a word in the line below that helps us look after the pence:

57 RATE /MOD
4 9 OK

The action of ‘divide-mod’ is the same as that of ‘divide’ in that it

performs a division but, before it puts the result (the dividend) on the

stack, it puts the remainder there. The example above shows that 57

divided by 12 (=RATE) gives 4, remainder 9. The 9 indicates that

there are 9 francs remaining, which must now be converted into

pence. The way to do this is to multiply the number of francs

remaining by 100 and divide by RATE. This is another use for

‘times-divide’. The example above shows that the number of pounds

was on top-of-stack. We display this so as to get it out of the way

while the pence are calculated.

57 RATE /MOD
4 75 OK

100 RATE */

So far, so good! We have the figures we need, but it would be better if

they could be displayed in the more usual format, as ‘£4-75’. It is

better to keep both values on the stack, then use a routine to display

them with the ‘£’ and ‘-’ in the right places.
In the line above, we displayed the value for pounds, so as to get it

off the stack and out of the way while we worked out the pence.

There is another way of getting the pounds value out of the way

without taking it off the stack. This uses the word SWAP. As its

name implies, SWAP swaps the top two values on the stack. After

‘57 RATE /MOD’, the pounds are at top-of-stack and the

remainder is at second-on-stack. SWAP tucks away the pounds

safely at second-on-stack, and brings the remainder to top-of-stack,

ready to be dealt with. We define a new word which uses SWAP to

do this:

t POUNDS RATE /MOD SWAP *

Numbers in Store 33

This leaves the remainder at top-of-stack. Here is a word to convert

the remainder to pence:

t PENCE 100 RATE */

One of the good things about FORTH is that you can try out your

words as you define them, to see if they really do what you want

them to do. Try out new words, POUNDS and PENCE:

57 POUNDS PENCE SWAP * .
4 75 OK

This gives the same result as the earlier line. Note that we have used

SWAP again. After POUNDS and PENCE, the pounds were at

second-on-stack (where POUNDS put them) and pence were at top-

of-stack, as left by PENCE. We need to SWAP again to bring the

pounds back to top-of-stack ready for displaying.

The values are in the right order for displaying. Now we have to

add the ‘£’ and There is a word for displaying strings of

characters, called ‘dot-quote’ (.“). This works rather like PRINT in

BASIC. It does not make use of the stack, but displays a string on

the screen immediately. The end of the string is marked by a second

quote character. Here is ‘dot-quote’ in action:

PENCE SWAP 57 POUNDS
£4 -75 OK '/v__(£

The values are ready on the stack after SWAP. Then ‘dot-quote’

displays a ‘£’. Note the space after ‘dot-quote’. All FORTH words

must have a space after them. This space is not displayed. The string

contains only the single ‘£’ symbol. The quote which ends the string

comes immediately after the *£’ (unless you would prefer a space to

be displayed after the ‘£’). After using ‘dot-quote’ to display ‘£’ we

display the pounds, using ‘dot’. Then we use ‘dot-quote’ again to

display the and finally use ‘dot’ to display the pence.

All is well, but not quite. When FORTH displays a number it puts

a blank space after if. To get rid of the space after the 4 we use

another word, ‘dot-R’. This sets up a field (think of it as a row of

blank spaces) and prints the number at the right-hand end of the

field. In other words, the number has no space after it. Before using

‘dot-R’ we must put a number on the stack to tell it how many spaces

the field is to have. Since we have only one digit in the pounds, we

want only one space. This displays the pounds with no space before it

or after it. If the number of pounds happens to have two or more

digits, ‘dot-R’ makes the string just long enough to hold the extra
digits.

SI - / L „ (Jt fcf U-ftycf' Us Uj(Tfc)>£

■ (lv

^ 96

34 Exploring FORTH

The line of the previous example was getting rather long, so it is

time we defined a new word. Here is the word which prints out the

result in the format we require:

X FORMAT ♦* £" 1 ,R .« -» , OR i

You can see that this is similar to the last section of the previous line,

except that we have put T . R’ in place of the first ‘dot’. The 1 goes on

the stack to tell the computer that ‘dot-R’ must make its field only

one character wide. This 1 is removed from the stack when ‘dot-R’

acts. There is one further improvement. The definition ends with the

word ‘CR’ which is short for carriage return. It is the equivalent of

pressing the RETURN key at the end of the line. The effect of this is

to make the computer go on to the next line of the screen before it

prints its customary ‘OK’. This makes it easier to see the result of the

calculation. Now we are ready to combine all our previously defined

words into a single word, EXCHANGE:

t EXCHANGE POUNDS PENCE SWAP FORMAT t

This performs the whole operation of converting francs to pounds

and pence and displaying the results in the required format:

57 EXCHANGE
£4-75
OK

By keying in the number of francs and using the single word

EXCHANGE we are able to call upon all the words we have defined

and several that were defined already. .
> RATE

POUNDS calls /MOD

SWAP

EXCHANGE calls < PENCE calls RATE

*/

SWAP FORMAT calls
V

.R

Some of the words originally there, such as SWAP, may call other

words, and these in turn may call upon machine code routines to

perform the actions we required. All of this can be put into operation

by the single word EXCHANGE. This example illustrates the

threaded nature of FORTH.

Numbers in Store 35

Before going further, try using EXCHANGE with various values

and check that it always performs the calculation as it should.

If you like, you can put it into a loop, to calculate the equivalents

for whole numbers of francs over a given range:

i TABLE 20 1 DO I DUP . EXCHANGE LOOP i

There are some words in FORTH which cannot be executed

immediately. They can be used only in a word definition. DO and

LOOP are such words. The word above sets the end of the loop at 20

and the beginning at 1. The action that is to be repeated is placed

between DO and LOOP. The first action there is the word I. This

places on the stack the loop number (or index) each time through the

loop. Thus I puts 1 on the stack the first time round, 2 on the second

time round, and so on. We need to have I for two reasons. One is that

we want to display it each time round, so that the table shows the

number of francs corresponding to each value in pounds. The

second reason is that we require I so that EXCHANGE has

something to operate on. If we put I on the stack, and then display it,

using ‘dot’, we shall of course lose I from the stack. We need two Is.

These we obtain by using DUP, which is short for duplicate. Using I

puts I at top-of-stack. Following this with DUP puts another I on

TABLE
1 £0-8
2 £0-16
3 £0-25
4 £0-33
5 £0-41
6 £0-50 "
7 £0-58
8 £0-66
9 £0-75
10 £0-83
11 £0-91
12 £1-0
13 £1-8
14 £1-16
15 £1-25
16 £1-33
17 £1-41
18 £1-50
19 £1-58
OK

Fig. 5.2.

36 Exploring FORTH

top-of-stack, with the original I at second-on-stack. ‘Dot’ displays I

from top-of-stack, leaving the other I (now at top-of-stack) for

EXCHANGE to work on. All of this may now be called into

operation by simply typing TABLE (see Fig. 5.2).

You get a table of conversions of francs to pounds for every value

of francs from 1 to ...? Why not 20? This is a feature in which loops

in FORTH differ from loops in BASIC. They stop when the index

(I) reaches the upper limit (20 in this case) and are not executed for

the value of the upper limit. If you want a table from 1 to 20, you

must set the upper limit to 21. In general, set it to 1 more than you

need.

PENCE, and all the words which use it, does not give a completely

accurate answer. Like our original version of POUNDS, it ignores

fractions. This is not really of any consequence, but if you would

prefer to have the amount rounded off to the nearest whole penny,

see Chapter Eight.

Variables

Although the rate of exchange may be a constant, in that you want

to use the same figure in a series of calculations, experience tells us

that rates of exchange vary from day to day. In this respect it is a

variable. FORTH "has another defining word. VARIABLE, for

storing variable numbers:

VARIABLE RATE

Unless you have switched off the computer or restarted FORTH

since the last session, you will see ‘MSG #4’ telling you that you are

using the same name as you used for the constant. Take no notice of

this.

Note that in this definition, we do not have to give a value to

RATE. To find out what value it already has, try this:

RATE .
15759 OK

This is an odd value to have! What we see here is not the value of

RATE, but the address in memory at which the value of RATE is

stored. This is one way in which VARIABLE differs from

CONSTANT. Whereas CONSTANT puts the value of the constant

on the top-of-stack, VARIABLE puts the address at which the value

is stored.

Numbers in Store 37

There is a word which will let us find out this value.

Appropriately, it is called ‘fetch’. Its symbol is and it fetches the

value out of store:

rate: @ .

The action of ‘fetch’ is to take an address from the top-of-stack and

place on top-of-stack the value stored at that address. In the line

above, ‘fetch’ finds ‘15759’ at top-of-stack, looks at that address,

finds zero stored there and places zero at top-of-stack. This shows us

that a newly defined variable has value zero. To assign a value to

RATE or any other variable, we use a word which has the opposite

action to ‘fetch’. This word is called ‘store’ and has the symbol ‘!’:

12 RATE !
OK ^

We first place on the stack the value which is to be given to the

variable. Then the word RATE places the address of RATE on the

stack. ‘Store’ takes the address from top-of-stack, and the value

from second-on-stack, and stores the value at the address. Use the

line given earlier to check that the value of RATE has now changed

to 12.

If we want to be able to use a varying exchange rate in our

calculations, it is more convenient to use VARIABLE than

CONSTANT. It is possible to change the value of a constant, but

this is less easy to do. In any case, the point about a constant is that it

does not change!

When POUNDS and PENCE were defined above, RATE was a

constant. If you use POUNDS and PENCE now, they will still use

the old definition of RATE as a constant. To get these words to

make use of your new definition, you will have to redefine them:

t POUNDS RATE @ /MOD SWAP }

i PENCE 100 RATE | */ ?

These are the same as the previous definitions, except that we have

inserted ‘fetch’ because RATE is now a variable. A quick check

shows that they are working properly:

57 POUNDS PENCE SWAP * ,
4 75 OK

We also need to redefine EXCHANGE, so that it uses the new

definitions of POUNDS and PENCE:

38 Exploring FORTH

: EXCHANGE POUNDS PENCE SWAP FORMAT i

It is not necessary to redefine FORMAT since this does not rely on

anything that has been changed.

The daily exchange rate may be used in this application:

t DAILY RATE ! EXCHANGE f y

This expects to find the rate at top-of-stack and the amount to be

converted at second-on-stack. It first puts the address of RATE on

the stack, then stores the value of the rate at the address of RATE.

Then EXCHANGE works out the amount in francs, using the

amount which it now finds at top-of-stack. If you find this difficult

to follow, redefine DAILY with ‘dot-S’ inserted after each word.

Figure 5.3 shows it in action.

57 13 DAILY
£'t~38
OK

57 11 DAILY
£5-18
OK

Fig. 5.3.

In this chapter we have seen how CONST ANT is used for storing

numbers which are to remain unchanged during the running of an

application, while VARIABLE is used for storing numbers that are

to change. In the course of this discussion we have looked at many

other useful words in FORTH. If you are going straight on to the

next chapter, with perhaps only a short break for a cup of tea, leave

the computer switched on.

To summarise

In this chapter you have found out how to:

• Define and use constants and variables.

• Make the computer display messages on the screen.

• Format the display of numbers.

You have used these FORTH words:

• /‘divide’(nl\n2 ... nl/n2). -

Numbers in Store 39

* ‘times’ (nl\n2 ... nl*n2).

*/ ‘times-divide’ (nl\n2\n3 ... (nl*n2)/n3).

/MOD ‘divide-mod’ (nl\n2 ... remainder\quotient of nl/n2).

The remainder has the same sign as nl.

SWAP (nl\n2 ... n2\nl).

@ ‘fetch’ leaves value n found at address (address ... n).

! ‘store’ stores value n at address (n\address ...). ^

.“ ‘dot-quote’ displays text following .“ as far as the next quote

mark (...).

• .R ‘dot-R’ displays number at right-hand side of a field which is n

spaces wide (n ...).

• CR causes a carriage-return (...).

• I puts the index of DO...NEXT on the stack (...I).

• DUP (n ... n\n).

• CONSTANT defines constant of value n (n ...). When the

constant name is used its stack action is (... n).

• VARIABLE defines variable with initial value zero. When the

variable name is used, its stack action is (... address at which the

value is stored).

You have learned that:

• FORTH has ^defining words, such as CONSTANT and

VARIABLE, used to define other FORTH words.

• A double-precision number is stored in 4 bytes.

• A double-precision number can have any value in the range

-2147483648 to 2147483647.

! u ^ f **-- ~

Explore more

(1) Define a word, MM, to convert lengths in inches to lengths in

millimetres.

(2) Define a word, MPS, to convert speeds in miles per hour to

speeds in metres per second.

(3) The cost of a bail-point pen is 15p, excluding VAT. Define a

word, using DO.. .LOOP, to display a table to show the cost of any

number of pens from 1 to 10, in pence, excluding and including 15%

VAT.

2^'O' j xf

Chapter Six

See How They Run

This chapter is an exploration of animated graphics. From the

beginning, it is clear that we have several problems:

(1) No two makes of micro handle their graphics in exactly the same

way.

(2) No two makes of micro have exactly the same version of

FORTH.

(3) The FORTH standard does not include special graphics

commands.

The third point is to be expected, for a standard system cannot

provide for non-standard features of each brand of micro.

Taken together, these difficulties might seem to be insurmount¬

able. But the flexibility of FORTH comes to our aid, making

graphics designing easy on almost any micro. We shall need to plan

how to make best use of FORTH for this purpose. This involves

taking rather the opposite approach from that of Chapter Five. In

that chapter we wandered through a series of words, gradually

improving upon each until we obtained the exchange application

that we wanted. In this chapter we must be more systematic, which is

what one should be when writing in FORTH.

First we will set out our requirements. We must be able to:

(1) Define graphics characters to our own design.

(2) Make any character appear anywhere on the screen.

(3) Replace any character on the screen by a different one, or move a

character from one part of the screen to another.

To avoid undue complications, the method used for specifying

any given point on the screen is to state its column and row numbers.

The column number is represented by X. Many computers have a

40-column screen, so X ranges from 1 to 40, or from 0 to 39,

See How They Run 41

depending on the micro. If your computer has a different number of

columns, there is no difficulty in allowing for this. The row number

is represented by Y. This often ranges from 1 to 24, or 0 to 23. In

some computers, Y increases going down the screen, in others it

increases going up. This is something else that is easy to allow for

later. In short, screen location is specified by X and Y, just as it might

be in the BASIC keyword, TAB(X,Y). /

Now to define a few words to act as an ‘interface’ between

standard FORTH and the particular graphics system of your micro,

then your micro will be able to operate with the graphics words

described later. ^

Looking slightly ahead, it is clear that eventually we shall want to

be able to have several, perhaps dozens of characters on the screen,

all being moved around independently. We shall want to know

where each one is at any given time. We need a list of the characters,

in order, giving the X and Y positions of each. The list is to be held in

the computer’s RAM. We need to be able to refer to any entry by

number, and to alter any entry as often as we wish. Readers who are

familiar with BASIC will recognise that what we want is an array.

FORTH does not provide arrays but, as usual, we can readily add

them to the system.

When we defined a constant or a variable in Chapter Five, we had

ready-made defining words, CONSTANT and VARIABLE. There

is no defining word ARRAY in FORTH, so we will have to define

one ourselves. Note that we are not simply defining a word, as we

have done before, by using ‘colon’ ,CONSTANT or VARIABLE.

We are defining a defining word. In 79-FORTH, we use a pair of

words for this purpose, CREATE and ‘does-greater’. The latter is

keyed in as DOES>. Here is the definition of ARRAY (see Appendix

A for the Jupiter Ace version):

t ARRAY CREATE 2 * ALLOT
DOES> SWAP 2 * + }

The definition begins with ‘colon’ just like an ordinary word

definition. Then comes ARRAY, the name of the word we are going
to define. There are two aspects to a defining word:

(1) How is it to act when it is doing its defining?

(2) How is the word it defines to act, when it is used in an application?

The definition above is in two parts. The part beginning with

CREATE states how the defining word is to act: it says how an array

1
1

42 Exploring FORTH

is to be created. The part from DOES> to the end of the definition

says how the arrays are to act when called.

An array needs a name, so that we can call it up. It also needs some

memory so that it can store data. CREATE will set aside a block of

memory. The name we shall give to the array will be stored at the

beginning of this block. The sequence 2 * ALLOT, expects a value

on the stack to say how many numbers are to be stored in the array.

This number is multiplied by 2 to give the number of bytes required,

then ALLOT sets aside that number of bytes for the array.

Before going any further here is how we use ARRAY:

8 ARRAY CHARS

The figure 8 indicates how many numbers are to be stored. CHARS

is the name we are giving to the array. It is short for ‘characters’,

since it will be used for holding details of graphics characters. When

it is defined, the values in CHARS are the values already present on

the block of memory that happened to be used. Try reading one of

the values (see Fig. 6.1). The locations in the array are numbered

3 CHARS (.» .
14 OK

Fig. 6.1.
y

from 0 to 7, so this tells us what is in the fourth location (Fig. 6.2).

Let us see exactly what happened in the line above. We put the

number of the location on the stack. CHARS puts the address of the

first memory location of the array on the stack (just as using

VARIABLE puts on the stack the address at which the single value

is stored).
Now the DOES> part of the definition comes into action. Here is

the state of the stack (top-of-stack on right), stage by stage. We are

using the example above and assume the address of the start of the

memory block is 15504

We start with 3, 15504

SWAP 15504 3

2 15504 3 2

* 15504 6

+ 15510

This DOES> part of the definition of ARRAY calculates the

address of any given location in the array and leaves this address on

the stack. Then we use ‘fetch’ to take that address from the stack and

See How They Run 43

LOCATION WITHIN CHARS

ADDRESS IN
RAM

VALUE STORED AT LOCATION 0

15504 0

15506 1

15508 2

15510 3

15512 4

15514 5

15516 6

15518 7

STORES X POSITION
OF CHARACTER 0

STORES Y POSITION
OF CHARACTER 0

STORES X POSITION
OF CHARACTER 1

STORES Y POSITION
OF CHARACTER 1

STORES X POSITION
OF CHARACTER 2

STORES Y POSITION
OF CHARACTER 2

STORES X POSITION
OF CHARACTER 3

STORES Y POSITION
OF CHARACTER 3

“CHARS” PUTS 15504
ON STACK

TO READ LOCATION 3
ADD2x3 TO 15504

= 15504 +6
= 15510

6 STEPS ALONG IN RAM
REQUIRED FOR 3 STEPS
ALONG THE LOCATION
OF CHARS

Fig. 6.2. The region of RAM which is allotted to the array CHARS. Although
each location in CHARS requires two bytes of RAM, each location holds only
one value.

replace it with the value stored at that address.

If you would like to see the address left by CHARS before the
values are fetched, use:

3 CHARS ♦
15504 OK

Try the above for several locations, you will see that successive

locations begin 2 bytes further along in memory. This is because

44 Exploring FORTH

FORTH needs two bytes to store each number, just as it does when

storing numbers on the stack. Storing a value in an array is done like

this:

23 4 CHARS !
OK

The first value is the amount to be stored, the second is the location

in which it is to be stored. CHARS leaves the address of the location

on top-of-stack, as above, and the value to be stored is second-on-

stack. ‘Store’ then uses these two numbers to store the value in the

array.
After that flight into the higher realms of FORTH, we return to

the subject of graphics displays.

User-defined graphics

Most micros allow the user to define their own graphics characters.
The way this is done depends on the micro itself, though the principle

is generally the same for all. To define a character such as a mouse,

for example, we begin by sketching the design on an 8-by-8 grid (Fig.

6.3). Each row of the grid is coded, by considering the shaded

CODES

48 RO

72 R1

144 R2

130 R3

68 R4

230 R5

253 R6

255 R7

Fig. 6.3. Design for a mouse character.

squares to represent T and the unshaded squares to represent ‘O’.

The 8 digits of each row are taken to be an 8-bit number, in binary.

Some micros allow you to enter the binary numbers directly

(actually FORTH allows this, as explained in Chapter Eleven), but

we shall use decimal numbers here. We will refer to these numbers as

the row codes, RO to R7.

See How They Run 45

The next few paragraphs may send you off to the manual which
came with your computer, or the manual belonging to your version
of FORTH to find out exactly what to do on your computer. The
two examples below are intended to show you the way to set about
the task. First of all, we must specify exactly what is to be done. The
aim is to define a word, CHARDEF, which defines a graphics
character and which has the following stack action: ,,, „

(R7\R6\R5\R4\R3\R2\R1\R0\N ...)

The row of symbols above means that CHARDEF expects to find
the row codes, in decimal, in bottom-to-top order, with the code
number of the character (N) on top-of-stack. We shall be using
several characters, and these are to be numbered from 0 upward.
The absence of anything after the ‘’ indicates that CHARDEF is
to leave nothing on the stack when it has finished.

Here is a word in Acornsoft FORTH which acts as described
above: r __ _ r

■ J/ n /v r
t CHARDEF 23>VDU 224 +90 DO >UDU LOOP t

It uses the VDU commands of the BBC Microcomputer and
Electron. The word > VDU is special to this version of FORTH, so is
not likely to work with any other version. However, most FORTHs
have words to do similar things, that are adapted to the computer.
This line begins by putting 23 on the stack, then sending this value as
a VDU 23 statement, which tells the computer that a graphics
character is being defined. Then it sends the character code number.
On the BBC Microcomputer, characters are coded from 224 to 255.
The line adds 224 to the code number which is at the top-of-stack.
This means that we can use character codes numbered from 0 to 31.
The definition ends with a DO ... LOOP which takes the altered
character code number and then the row codes from the stack and
sends them to the VDU 23 routine. Note that the limits of the loop
-n n n +u^ i^r'u \ r> tvec

[CHm^npC 2 * h ie>i Hr o*p

oo i c f 8

46 Exploring FORTH

Displaying a character

Once again, most versions of FORTH will have some special way of

printing a character at any given location on the screen. Below we

use the Acornsoft words to define a word PLACEIT. You will need

to adapt any words given in your FORTH to perform the following

stack action:

(N\,X\,Y...)

PLACEIT expects to find the character code number and the

required X (column) and Y (row) positions. In the Acornsoft version

we use the VDU 31 statement: y-y

t PLACEIT 34 ->VDU SWAP >VDU >VDU
224 + >VDU %

J

This first puts 31 on the stack then sends this as VDU 31. X and Y are

S WAPped, so that it sends X, then Y. This leaves N on top-of-stack.

This has 224 added to it to obtain the correct character code which is

also sent as part of the VDU statement. This VDU 31 statement is

the equivalent of

‘TAB(X,Y);CHR$(N)’

Note that this does not work when the computer is in Mode 7. Mode

4 is a good one for use during this chapter. PLACEIT can be defined

rather more simply on thq Jupiter Ace, as shown in Appendix A.

PLACEIT is to be used for putting a graphics character anywhere

on the screen. See it in action:

V r 20 15 PLACEIT y

Character 0 (the mouse) appears near to the middle of the screen.

Try this with other values for X and Y. You could also define some

other characters (numbered 1, 2, up to 7) and put these in various

parts of the screen. Do not worry about the ‘OK’ which always

appears to the right of the mouse. We will eliminate this later, sy

Ready for off

You should now have a means of defining arrays on your computer,

and of defining graphics characters. You should also have a word for

placing any character at any part of your screen. Your words may

have been defined differently from those above but they do the same

See How They Run 47

things. You are now ready to go ahead making up other words. But,

from now on, whatever FORTH or micro you have, the applications

in the rest of this chapter should work. The only adjustments you

might need to make are to allow for the number of rows and columns

on your screen.

If we are intending to place a lot of characters on the screen at one

time, we want to know where each one is. Here is a word to do this:

J STORPLACE DUP 4 PICK 2 —
CHARS)r OVER 4 PICK 2 *
CHARS ! PLACEIT ?

We call it STORPLACE because it first picks up the X and Y

positions from the stack and stores them in the array CHARS,then

it uses PLACEIT to place the character on the screen. Like

PLACEIT, the stack action of this word is:

(N\X\Y...)

You will notice two new words in this definition, ‘one-plus’ and

PICK. ‘One-plus’ increments top-of-stack by 1; it has the same

action as the two words T +’. The action of PICK is illustrated in

Fig. 6.4 along with the action of several other words which shift

values around on the stack. In STORPLACE we use ‘4 PICK’ to

find the value which is fourth-on-stack and place it at top-of-stack.

STORPLACE has a rather long definition; this is what happens,

stage-by-stage. As before, we show the stack with top-of-stack to

the right: jrjt 5'

We begin with N X Y

DUP

4 PICK

2 *

1+
CHARS!

OVER

4 PICK
2*

CHARS !

The stack is unaltered and is ready for the final word, PLACEIT.

Note that before using CHARS we have to double the value of N,

since there are two values (X and Y) associated with each character
(Fig. 6.2). Before the first CHAR we have to add one to twice N so

N X Y Y

NX Y Y

N X Y Y

N X Y Y

N X Y

N X Y X

N X Y X N

N X Y X

N X Y

2N

II

48 Exploring FORTH

WORD SHORT FOR
THE STACK - BEFORE AND AFTER

TOP-1 NOTES

DROP A 1 B | C | D | E |

, 1
A | B | C | D | '

DUP
? DUP

DUPLICATE

? DUP
OPERATES
ONLY IF
TOPIS
NON-ZERO

A 1 B | C | D | E |

A | B 1 C | D | E 1 E |

OVER A 1 B | C | D | E |

A | B 1 C 1 D | E 1 D 1

SWAP A 1 B i C | D | E |

A | B | C 1 E | D |

ROT ROTATE A | B | C | D | E |

A ! B | D | E | C |

ROLL DIAGRAM
SHOWS
5 ROLL

A 1 B | C | D | E |

B 1 C | D | E | Aj

PICK DIAGRAM
SHOWS
5 PICK

A | B | C | D | E |

A | B | C | D | E A |

Fig. 6.4. Stack operators. The letters A — E represent numerical values

already on the stack.

that the value of Y is stored as the second of these two numbers. A

little confusion may arise here. We have already said that an array

uses two bytes to store each number. Now we are saying that two

numbers have to be stored (X, Y) to locate each character.

Now is the time to have some more fun making the mouse appear

in any part of the screen:

0 8 18 STORPLACE

Looking at the stack operations set out above, some readers may

despair of ever working out word definitions for themselves. Here

are a few tips on how to set about this task.

Writing definitions

Writing a definition is rather like those word puzzles in which you

are given a starting word and a finishing word and asked to fill in all

the words between, changing only one letter at a time:

FORTH

S 1 TES

The intervening words are FORTS, SORTS, SORES, and SIRES.

If you are the sort of person who loves solving these puzzles,

FORTH holds no terrors for you! Begin by writing out the initial

state of the stack, and also what you want it to be when a critical

operation is to be performed. In STORPLACE, the first operation

is to store Y in CHARS. We begin with (N\ X\ Y...) and need to get to

(N\X\Y\2N+1 ...). Here it is, set out as a puzzle:

N X Y

N X Y Y 2N+1

We do not know how many steps the puzzle is going to take. When

deciding what must be on the bottom line we remembered that

CHARS removes both Y and 2N+1 from the stack, so we must

retain the value of N, ready for storing X. The best course seems to

keep it in its original place. We also need to have a copy of Y on the

stack, ready for use by PLACEIT later on. These points decide what

must be on the stack just before CHARS. Having established the

beginning and end, we try working downward from the beginning

and upward from the end - hoping to meet in the middle!

There is a clear way back from the end:

N X Y

2*1 + N X Y Y N

N X Y Y 2N+1

50 Exploring FORTH

Where is the N to come from? We need to keep the original N on the

stack so we must use a word such as PICK, DUP or OVER (see Fig.

6.4), which copies without removing the original number. The

obvious choice is PICK:

N X Y

4 PICK N X Y Y N

2:1+ N X Y Y 2N+1

Now the rest is easy. To link the first line to the remainder all we need

is DUP:

N X Y

DUP N X Y Y

4 PICK N X Y Y N

2*1+ N X Y Y 2N+1

The link between beginning and end has been established. A similar

line of reasoning can then be used to prepare the stack for the second

occurrence of CHARS.

Moving graphics

Making a character appear to move across the screen is done by

printing it in a given place, then blanking it out and reprinting it in

an adjacent space. The character appears to move from the first

place to the second place. If we repeat this action many times, the

character can be moved across the entire screen. We already have a

word, STORPLACE which stores the position of the character

CHARS and then prints the character in that position. What we

need next is a word to find out where the character is and replace it

with a blank space. The word is called BLANKIT:

t BLANKIT -192 SWAP DUP 2 *
CHARS (? SWAP 2*1 +
CHARS (? PL ACE IT i

This requires only N on the stack. It then finds the X and Y positions

of character N from CHARS. The figure —192 requires some

explanation. In the version of PLACEIT written for the BBC

Microcomputer, 224 is added to the character code. The code

actually sent to the VDU 23 statement is 224 greater than the code

(N) that we use for numbering each character. The code for a space

(actually its ASCII code) is 32, so to make PLACEIT display a space

See How They Run 51

we must supply it with a number which is 224 less than 32, which

gives -192. Later, PLACEIT adds 224 to this, obtaining 32, and so

printing a space. As an exercise in working out stack operations try

setting out on paper what happens during the execution of BLANKIT.

If you are using a version of PLACEIT which adds some other

amount to the character code (or perhaps uses it unchanged)

substitute a suitable value for —192 in BLANKIT.

Try using STORPLACE, to display a character, then use

BLANKIT to remove it:

0 12 6 STORPLACE BLANKIT

Finally, we need a word to find out where the character was before it

was blanked, and then print it a specified number of places away.

The word we use is MO VEIT:

I MO VEIT 3 PICK 2 * 1.+ CHARS @
+ SWAP 3 PICK 2 * CHARS (?
SWAP STORPLACE t

This requires the stack to hold:

(N\ difX\ difY ...)

DifX and difY are the amounts by which X and Y are to be changed.

Here is another chance for you to see how SWAP and PICK are

used. The first part of MOVEIT calculates the new positions by

adding difX to X (got from CHARS) and difY to Y (also from

CHARS). Then STORPLACE stores these new values in CHARS

and prints the character in its new position. Now for a preliminary
run: /

./ y f

\ RUN 0 1 IS STORPLACE 39 1
DO 0 BLANKIT 0 1 0 MOVEIT
LOOP f

The values in this word are set to make the mouse run from left to

right across the 15th row of the screen. Whether it’s the 15th up or

the 15th down depends on how the display of your computer

operates. The initial ‘01 15’ places character 0 (the mouse) at column

1, row 15. Youcanalter these numbers to use a different character or
to start it in a different place. The ‘39 1’ are the end and beginning of

the loop to move the mouse across the screen. If you have a different

screen width, or want the mouse to run to a different position, you

can alter the 39. Within the loop, BLANKIT blanks out the mouse

ready for it to be displayed in its new position by MOVEIT. The

52 Exploring FORTH

sequence ‘0 1 O’ tells MOVEIT to move character 0 to the next

column to the right (difX=l) but to stay on the same row (difY=0).

The word leaves the mouse displayed at the right-hand side of the

screen. Perhaps this is just as well, for FORTH works extremely

quickly, making the mouse scamper across the screen so fast that

you can hardly see it run!
Those who are used to BASIC programs may find it goes against

the grain to make a program run more slowly, but it is obvious that

we shall need to slow things down a bit here. The easiest way is to

nest a DO ... LOOP inside the other one (see Fig. 6.5). RUNSLOW

J RUNSLOW 0 1 15 STORPLACE 39 1
DO 0 BLANKIT 010 MOVEIT 1000 0

DO
LOOP

LOOP 0 BLANKIT
OK

Fig. 6.5.

finishes with BLANKIT, to remove the last image of the mouse from

the screen. There are endless variations on RUNSLOW. Try a few of

them. Start the mouse from different parts of the screen and let it

finish at different parts. Let it run up or down the screen, instead of

across. Or let it take a diagonal path, instead.

Pause for breath

You now have all the essential words needed for producing moving

graphics. With these, the screen can be filled with hordes of aliens

from Outer Space, while you fire laser beams across the screen at

them from a spacecraft. The fact that it was necessary to use a delay

to slow the mouse down indicates that FORTH is capable of dealing

with a screenful of objects at the speed required for action games.

This is not the time to start designing such games, for there is more to

find out about how FORTH takes decisions (for example, has the

laser hit the alien?). This is explained in Chapter Eight. In the

meantime, it is worth while saving the essential words on a FORTH

screen, as has been done in Fig. 6.6.

N

n

<

r
liT

O

K

0
3

O

'
a

r
t

w

C
O

T

111

See How They Run 53

SCR * .16 10 H
0 (GRAPHICS WORDS)
1 J ARRAY CREATE 2 * ALLOT D0ES> SWAP 2 * + J

8 ARRAY CHARS
: CHARDEP 23 >VDU 224 + 9 0 DO >VDU LOOP t

J PLACEIT 31 >VDU SWAP >VDU >VDU
224 + >VDU !

t STORPL.ACE DUP 4 PICK 2*1 +
CHARS ! ODER 4 PICK 2 *
CHARS ! PLACEIT }

i BLANKIT -192 SWAP DUP 2 * CHARS 8
SWAP 2*1+ CHARS § PLACEIT i

l MOVEIT 3 PICK 2*1+ CHARS 0 +
SWAP 3 PICK 2 * CHARS 6 + SWAP
STORPLACE i

Fig. 6.6.

More mice?

When you are tired of mouse-running, why not invite all three blind

mice on to the screen? This example shows a way of moving several

characters at once. The application is designed to show the three

blind mice chasing after the farmer’s wife. First of all, define three

graphics characters (0 to 2) as mice. Use the same design (Fig. 6.3)

for them all, or work out a special design for each. Figure 6.7 shows

the farmer’s wife, who is defined as character 3.

228

134

121

60

58

28

15

3

Fig. 6.7 Design for the Farmer's Wife.

The wife is to move across the screen from left to right, followed

by the three mice, one behind the other. There must be gaps between

the mice. If a mouse is moved into the place just vacated by the

54 Exploring FORTH

mouse in front of it, the illusion of motion is spoilt. To start the

display, use STORPLACE in a loop:

t REIADY 4 0 DO X DUP 3 * 15 STORPLACE
LOOP ?

The loop operates from 0 to 3. The loop index (I) is placed on the

stack. Incidentally, if you have Acornsoft FORTH and have just

used the Editor, the meaning of I will have been redefined. To

recover the normal function of I, type FORTH. DUP makes a

second copy of I, which is then multiplied by 3. Then 15 is put on the

stack:

I 3*1 15

These values provide the N, X and Y required by STORPLACE. I

ranges from 0 to 3, so that each character is displayed in turn.

X (=3*1) ranges from 0 to 9, placing the mice and the wife at every

third space. They are all on row 15. The next word makes all 4

characters move forward one step:

STEP 4 0 DO I BLANKIT 110 MOVEIT
LOOP t

This is a loop to first blank each character, then to re-display it one

space to the right. As in READY, the loop counter I is used to

determine which character is to be operated on.

So now we are ready to 'See How They Ken’:

J SHTR READY 30 0 DO STEP
LOOP 4 0 DO I BLANKIT

LOOP t

STEP is enclosed in a loop which repeats 30 times. This takes the

wife across the screen, followed by the trio of mice. The second part

of SHTR is a loop to blank out the characters at the end of the run.

They move quickly, and you could possibly insert a delay loop in

SHTR. Or you could make the mice chase the farmer’s wife across

the screen several times:

J CHASE 20 0 DO SHTR
LOOP t

How about making up some words and new characters to show the

farmer’s wife turning round, carving knife in hand, and chasing the

mice back across the screen?
Some machines spoil this kind of graphics display by printing the

prop^1 k'

See /Vow 77?ey Sen 55

cursor after every character. It is useful to have a word to turn off the

cursor. This word is for the BBC Microcomputer: cM*

t OFF 0 0 0 0 0 0 1 23 8 0 DO >YDU
LOOP t ■"

The easiest way of turning it back on again is to change Mode.

The chase scene is the simplest way of animating objects. It works

reasonably well for mice, as the scale on which they are displayed is

too small for us to expect to see their legs actually moving. The

running wife lacks realism, because we ought to be able to see her

legs move as she runs. She appears to skate across the screen. The

next section shows how to improve the animation.

Leapfrog

Figure 6.8 shows a series of designs for a leaping frog. Design 0

shows it sitting, ready to leap. When it leaps, we need two graphics

characters side by side (1 and 2) to show its extended legs and body.

Design 3 shows it landing on its forelegs, its rear legs curling up

ready to regain the sitting position. This general approach can be

used to analyse the locomotion of any kind of animal from a walking

person to a bounding leopard. It helps to set out the designs in their

relative positions, as in Fig. 6.8, so that the flow of motion is clearly

seen.

The frog moves three squares forward at each leap. Each

of characters 0 to 2 is displayed and blanked in turn. Then

56 Exploring FORTH

picture 3 is displayed so that it lands three squares ahead

of the square from which it took off. Character 3 is not

blanked, but is replaced by character 0, ready for the next

leap.

To prepare for the leaps, the values of X and Y for each character

are stored in CHARS. We cannot use STORPLACE as we did with

the three blind mice, because this would display all four characters

immediately. We want only character 0. The solution is to set up

CHARS with the values of X and Y that each character would have,

if it was just about to leap on to the screen from the left:

Character X Y

0 -3 15

1 -2 14

2 -1 14

3 0 15

When animation begins, each value of X is to be incremented by 3 to

place each character at its required starting position. The values of Y

assume that Y increases downward on the screen. If your micro

counts rows from the bottom upward, exchange the values of Y

given above.

This word puts the required starting values into CHARS (see Fig.

6.9).

J READY -3 0 CHARS !
-2 2 CHARS !
-1 4 CHARS !

0 6 CHARS !
Fig. 6.9

Next we need a delay to give us time to see what is happening:

I DELAY 5000 0 DO LOOP *

The action of the frog is shown in Fig. 6.10. LEAP displays the

sitting frog, after having ‘moved’ it 3 squares to the right from its

‘starting position’ off screen. After a delay, BLANKIT clears the

display of the sitting frog. Immediately, MOVEIT is used twice to

I LEAP 0 3 0 MOVEIT DELAY 0 BLANKIT
1 3 0 MOVEIT 2 3 0 MOVEIT DELAY
1 BLANKIT 2 BLANKIT
3 3 0 MOVEIT DELAY 3 BLANKIT >

15 1 CHARS
14 3 CHARS
14 5 CHARS
15 7 CHARS

Fig. 6.10.

See How They Run 57

display the leaping frog characters (1 and 2). Then comes a delay.

LEAP then uses BLANKIT twice to clear away the leaping frog, and

uses MOVEIT to display the landing frog. After a delay, this is

blanked out.

The word HOPS sets the frog leaping across the screen:

J HOPS READY 12 0 DO LEAP
LOOP 0 3 0 MOVEIT CE i

READY sets up CHARS for the start. Then comes a loop to repeat

LEAP 12 times. After this the sitting frog is displayed once more in

the final landing position. The CR at the end of the word is to make

the computer display the ‘OK’ message on the next line instead of to

the right of the frog.

Happy landings!

To summarise

In this chapter you have found out how to:

• Define a defining word, using CREATE ... DOES>.

• Define an array to hold numbers.

• Define a graphics character, using a FORTH word.

• Make the computer display the character anywhere on the screen.

• Make the computer move the character across the screen, or

replace it by another character to give animation.

• Set about writing a FORTH word definition.

• Use DO ... LOOP to make an application run slowly.

You have used these FORTH words:

• CREATE and DOES> to define new defining words.

• ALLOT which we use to reserve n bytes of memory when defining

arrays, etc. (n ...)

• PICK and other stack operators (see Fig. 6.4).

• 1+ ‘one-plus’ (n ... n+1)

• FORTH to ensure that all words used are those of the standard

FORTH vocabulary.

Explore more

(1) Create an array to hold 100 values. Write a word using DO ...

LOOP to fill the array with the values 1 to 100, in order. Write a

58 Exploring FORTH

word to display the contents of the array, in order.

(2) Follow up the many suggestions made in the text for devising

animated graphics displays.

(3) Write words to produce a display of (a) a walking or running

figure, (b) a horse jumping over a fence, (c) a parachutist descending,

(d) a clown juggling balls from hand to hand, (e) a car racing around

a rectangular track (as seen from above).

Chapter Seven

Interactive FORTH

All the applications used so far were started by pressing the

RETURN key. Then the application did whatever it was supposed

to do. When it finished, the ‘OK’ message appeared on the screen.

While the application was running, there was no way in which you

could have any affect on the computer, other than by pressing

ESCAPE, or by BREAK, or switching it off. Drastic actions such as

these are not usually described as interactive! In this chapter we shall

look at ways of interacting with the computer while an application is

running without bringing it to a grinding halt.

One of the most useful words provided in FORTH is KEY. It

causes the computer to wait until a KEY is pressed. Then it places

the ASCII code of that KEY on the stack. Try it:

KEY .
5'I OK

In the example shown above, the ‘6’ KEY was pressed. The ASCII

code for 6 is 54 and this was placed on the stack. The ASCII codes

for other characters are listed in Appendix B. KEY is one of the most

useful words for making the computer wait for input from the user.

After the key has been pressed, the number at top-of-stack tells the

computer which key it was. The computer can act accordingly, as

will be explained in Chapter Eight.

In some applications it does not matter which key is pressed. We

simply want to make the computer wait until we are ready for it to

continue. The following line demonstrates how to do this:

KEY DROP . ■ HELLO" CR¬
UEL. LO
OK

The computer waits until a key (any key) is pressed, then displays the
message.

60 Exploring FORTH

Some versions of FORTH have the word ‘query-KEY’, which is

similar to KEY except that, the computer continues if a key is not

pressed within a given period of time:

?KEY
OK

The number put on the stack before ‘query-KEY’ is used tells the

micro how many hundredths of a seconds to wait. In the example

above, the ‘OK’ appears as soon as you press a key. If you do not

press a key, it appears after five seconds.

Another related word available in some versions of FORTH is

INKEY. This makes the computer test the keyboard to find out if a

KEY is being pressed, but it does not wait for a key-press. It has the

same action as ‘query-KEY’ would have if there was zero on top-of-

stack. If you have INKEY in your version of FORTH, but do not

have KEY or ‘query-KEY’, Appendix A shows how to define them

by using INKEY.

String inputs

Single key-presses are very useful but often we want to be able to

input a whole string of characters. For example, the application

might need to know the user’s name. An accounts application might

require the user to type in a string of figures. In the rest of this

chapter we shall look at a few of the simpler ways in which FORTH

can handle strings. In doing this we shall explore a few more aspects

of the way the language works.
The word which FORTH uses for string input is QUERY. This

makes the computer wait for one or more characters to be typed in.

As each character is typed, it is stored in a part of memory called the
terminal (or keyboard) input buffer. This continues until the

RETURN key is pressed, indicating the end of the string, or until the

input buffer is full. The maximum number of characters that can be

typed in at one time depends on the version of FORTH. Here is how

QUERY works:

NAME? ." TYPE YOUR NAME: “ QUERY .S

This definition has many uses in applications in which the user’s

name is required. We are taking this as an example which you can

easily modify to handle other kinds of string input, such as telephone

Interactive FORTH 61

numbers, answers to questions, or numerical data contained in a

string.
Since we are exploring the string handling of FORTH, the last

word of the definition is ‘dot-S’, to display the stack. The action of

NAME? is:

NAME?
TYPE YOUR NAME♦ GUY FAWKES
EMPTY GUY ?

First of all, the message is displayed. The computer then waits until

something is typed in. In this example the name ‘GUY FAWKES’

was typed, followed by RETURN. The response in the third row

shows the stack to be empty. It also shows that the micro started to

look at what had been put into its input buffer and did not

understand it! It searched its list of words and could not find ‘GUY’
among them.

Obviously, QUERY leaves nothing on the stack. The ‘GUY

FAWKES’ string seems to have disappeared into some inner region

of the computer. We need a word which will take the string from the

input buffer, and store it in some accessible place. The word used to

do this is WORD. WORD takes a string from the input buffer and

transfers it to some other part of memory. Exactly where it places it

depends on the version of FORTH. In Acornsoft FORTH it places

it in the word buffer. You can find the starting address of this stretch

of memory by using the word ‘word-buffer’ (WBFR) to place the

address of the first byte of the buffer on the stack:

WBFR ,
1088 OK

Here is NAME? re-defined to include WORD;

I NAME? .■ TYPE YOUR NAME t “ QUERY
13 WORD ♦3 1

And here it is in action.

NAME?
TYPE YOUR NAME? KING CANUTE
1088 OK

The figure ‘1088’ tells us where the word buffer begins. The word

WORD is capable of taking the whole input buffer and transferring

it to the word buffer. On most occasions we do not want the whole

62 Exploring FORTH

buffer to be transferred, for we may have typed in only a single short

word. To tell WORD where to stop, we have to indicate which

character is to be regarded as the last one in the string. A character

which indicates the end or limit of a string is called a delimiter.

WORD expects to find the ASCII code for the delimiter on the

stack. Since the string is finished with a carriage return (pressing

RETURN), we place the ASCII code for this (13) on the stack before

using WORD. A carriage return does not produce a visible

character on the screen, but it is interpreted by the computer as an

instruction. It is possible to use other characters as delimiters. We

have already used the word ‘dot-quote’ which has “ as its delimiter.

In the example below, we are using the space (ASCII code 32) as

delimiter:

OK
t NAME? TYPE YOUR NAME: • QUERY

32 WORD .S ?

NAME?
TYPE YOUR NAMEt KING CANUTE
1088 CANUTE ?

Now WORD reads the input string only as far as the first space. The

word ‘KING’ is transferred to the word buffer, but ‘CANUTE’ is left

behind in the input buffer to puzzle the micro! Using a space as a

delimiter is a convenient way of ensuring that only one word is taken

in at a time. It is also possible to use a letter such as an ‘A’ as
delimiter:

t NAME? *" TYPE YOUR NAME: “ QUERY
65 WORD .8 t

NAME?
TYPE YOUR NAME: KING CANUTE
1088 NUTE ?

The string is transferred as far as the first ‘A’, leaving only ‘NUTE’ to

mystify the micro.
The result of using NAME showed that WORD leaves the address

of the start of the word buffer on the stack. WORD has transferred

the string to the word buffer, and has told us where to find it.

The usual way to fetch a stored number and put it on the stack is to

use the word ‘fetch’ (@). But it has been explained that FORTH uses

two bytes to store each number. ‘Fetch’ takes the address of the first

of these two bytes, then gets the values stored in the first byte and the

Interactive FORTH 63

next one, and uses them to calculate the stored number. In the case

of the word buffer, we might expect that each character is stored in a

single byte. To fetch a single byte and put it on the stack we use the

word ‘C-fetch’ (C@). This is one of a range of FORTH words used

for single-byte operations, all of which have a C as part of the word.

Here we use ‘C-fetch’ to find out what is stored in the first byte of the

word buffer:

1088 CB .
2 OK

If your FORTH includes WBFR, you can use the line ‘WBFR C@ .’

instead.

The result of this operation is the value 2. This is the number of

characters that WORD has put into the buffer. This 2 has nothing to

do with ‘KING CANUTE’. Since using NAME? we have typed in

the direct command given in the line above. The word most recently

placed in the word buffer is C@, which is 2 characters long. This

reminds us that words such as QUERY and WORD are being used

by FORTH all the time to receive input from the keyboard. If we

type in direct commands to find out how the buffers are operated,

the commands themselves interfere with what we are trying to find

out. The way round this is to put the test routines into words, such as

NAME?. These are then executed without any further input from

the keyboard except that which we want to test. This is why we are

forced to define and redefine NAME? so many times in this chapter.

Here is yet another version of NAME?. This one uses ‘C-fetch’ to

fetch the first byte from the word buffer immediately after WORD

has dealt with the input string:

I NAME? .* TYPE YOUR NAME: “ QUERY
13 WORD CO ♦ i

NAME?
TYPE YOUR NAME! ETHELRED THE UNREADY
20 OK ^

NAME?
TYPE YOUR NAME: MERLIN
6 OK

These tests confirm that the number found in the first byte of the

word buffer is the number of characters in the string, including
spaces if any.

64 Exploring FORTH
1

OllA-'

hr %

Presumably the next bytes in the buffer contain the ASCII codes

for the characters in the string. There is a word COUNT which takes
us one step further. Given the start address of the word buffer, left at

top-of-stack by WORD, it finds out the number of characters and

the start address of the string, leaving these at second-on-stack and

top-of-stack respectively. Here we see it in action:

I NAME? *" TYPE YOUR NAME♦ " QUERY
13 WORD COUNT ♦ * i

. ' ■ A '

NAME?
TYPE YOUR NAME! MACH I AO EL.. LI
II 1089 OK

^ ' i
Count Machiavelli has 11 letters in his name, and it is stored from

address 1089 (the second byte of the buffer) onward. To find out

how the string is stored, all that needs to be done is to fetch and

display these bytes, in order. Figure 7.1 is a version of NAME?

which does this. This is the same as the previous definition, as far as

COUNT. After this, the stack is operated on as follows (top-of-stack

on right)

COUNT leaves 1089

OVER 1089

+ 1089

SWAP 1100

11 1089

1100
1089

t NAME? ." TYPE YOUR NAME: * QUERY
13 WORD COUNT OVER + SWAP
DO I C0 .
LOOP t

Fig. 7.1.

We now have the address of the start of the string at top-of-stack,

and the address of the end of the string at second-on-stack. Then

comes a DO ... LOOP to fetch and display the contents of each of

these bytes, in order:

NAME?
TYPE YOUR NAME: CASSANDRA
67 65 83 83 65 78 68 82 65 OK

Interactive FORTH 65

A table of ASCII codes (see Appendix B) shows that these values are

the codes for the letters of words typed in.

To sum up, there are three words important for string inputs:

QUERY waits for input from the keyboard.

WORD transfers this to the word buffer.

COUNT tells us how many characters are in the string and where

the stored string is to be found.

Creating strings

Some versions of NAME? displayed the name on the screen. This

may have been interesting, in that it helped us find out how FORTH

deals with strings, but it is not particularly useful. If you havejusttyped

in your name, there is not much point in having the computer

display it to you again. What is needed is a way of storing the string

away, so that it can be recalled later in the application. In a BASIC

program we do a similar thing when we say:

INPUT “TYPE YOUR NAME: ”;A$

What we need to devise is a way of creating named string variables,

similar to A$, that can be used later in an application as many times
as we want.

Since FORTH does not already possess string variables, it is

necessary to define a word for defining them. We have already used

CREATE and DOES> for defining defining words. This was in

Chapter Six when we defined the word ARRAY, which was then

used to define named arrays, such as CHARS. Here is another

chance to see how CREATE and DOES> operate. Their action is in

two parts:

(1) What is to be done by the defining word when it defines, and

(2) What is to be done by the word it defines, when it is used in an

application.

When it defines, the defining word has to allocate a piece of memory

to contain the name of the string (for example, NAMES, DATES)

and the ASCII codes of the characters in the string. It then has to

transfer the codes of the string from the word buffer to the space it

has just allocated. One small difference from BASIC is that

although it is a good idea to let the names of strings end in ‘S’, to

show that they are strings, this is not essential. In FORTH we can

66 Exploring FORTH

give strings any kind of name we like.
When a word has been defined as a string, it consists of a part

containing its name and a part containing the string itself. When the

name of the string is used in an application, its action should be to

make the computer display the string on the screen. This gives us the

equivalent of the BASIC statement ‘PRINT A$\ Before we can see

exactly how to do this, we need to look more closely at how words

are defined and at where the definitions are stored. After we have

done this we will return to the subject of defining strings.

New words

Switch off the computer, then reload FORTH. Or, if your version

provides a method of doing so (such as typing COLD), perform a

cold start. This clears the stack and, more important for this

exploration, clears away all the word definitions which you have

made. You begin with only those words provided by the writers of

your version of FORTH. Now type VLIST. You have probably

done this many times already for it is probably the first thing you

ever did. Writers of FORTH manuals for beginners are fond of

putting this first in the manual. It’s the easiest way for a beginner to

get something impressive on the screen! Just to be different, we have

left VLIST until Chapter Seven, the first chapter in which we need to

use it.
What you see on the screen is a list of all the words your FORTH

contains. You will now able to spot ‘colon’, QUERY, +, WORD,

‘dot-quote’ and all the other words you have used, apart from those

you have defined yourself. In the usual back-to-front method of

FORTH, the list is in reverse order. The first word the writers

defined is listed last, followed by the inevitable ‘OK’. The word most

recently defined is at the top of the list. The words are stored in

memory in the order shown by VLIST. Early words are low down in

memory, the more recent the word the higher in memory is its

address. These stored words constitute the dictionary that FORTH

uses when it operates. Any new words that you define are stored in

memory just above the existing dictionary. Their names are added to

the end (the top) of the list. The word HERE tells us the address of

the first byte available for receiving the definition of a new word:

HERE .
15461 OK

Interactive FORTH 67

The value obtained depends on the version of FORTH. If the value

you obtain differs, as well it may, then make the necessary

allowances in the description which follows.

We are just about to undertake an exploration of the FORTH

dictionary. The idea of this is to help you understand how FORTH

works in your computer. Knowing about this is helpful, but not

essential to programming in FORTH. If you would rather get on

with the programming, pass by the remainder of this section and

continue with the next section, Back to strings.

As an example of how words are stored, let us define a

simple word:

t DOUBLE DUP + * J

Given a number on the stack, DOUBLE displays double its value.

What effect has this definition had on the value of HERE?

HERE .
15'180 OK

HERE has moved upward in memory by 19 bytes. This shows that

the definition of DOUBLE occupies 19 locations from 15461 to

15479 in memory. To see what bytes these locations hold, we define
SHOW:

: SHOW DO I C(? ♦ LOOP t

Because SHOW contains ‘C-fetch’ it fetches the values of the bytes

held in each location. All we need to do is to put the end (plus 1) and

beginning of DOUBLE on the stack and use SHOW:

15480 15461 SHOW
134 68 79 85 66 76 197 190 59 179
32 49 31 176 30 140 47 203 29 OK

What do all these numbers mean? Let us take them a few at a time:

134 subtract 128 from this one: the result is 6 which is the number of

letters in the name of the word (DOUBLE).

68, 79, 85, 66, and 76 are the ASCII codes for the letters D, O, U, B,
and L.

197 subtract 128 from this one too, giving 69, the ASCII code for E,

the last letter of the name.

The remaining numbers do not make much sense until we realise

68 Exploring FORTH

that these are values being stored as double-bytes. To find out what

these values are we use 2SHOW:

l 2SHOW DO I (» . 2 +LOOP *

This loop uses ‘fetch’ instead of ‘C-fetch’ so it fetches numbers as

double bytes. It also uses the word +LOOP. This gives the

equivalent of STEP in a FOR.. .NEXT loop in BASIC. Here, the 2

before +LOOP makes the loop index increase in steps of 2, so that

each ‘fetch’ reads the next double-byte. The double-byte section of

DOUBLE begins at address 15468:

15480 15468 2SH0W
15294 8371 7985 7856 12172 7627 OK

The numbers are interpreted as follows:

15294 This is the address of the next word in the dictionary. This

value is called the Link Field Address.

8371 This is the first address of the machine code which has been

compiled to execute DOUBLE. This value is called the Code Field

Address.

7985 to 7627 These are values needed by the machine code routine.

This collection of values is called the Parameter Field. The address

of the first of these (15472) is called the Parameter Field Address.

Let us look more closely at the values in the parameter field. We

might guess that these are the addresses of various routines used in

executing the word. In particular they might be the addresses of the

word DUP, ‘plus’ and ‘dot’. This can be checked on if your FORTH

has the word ‘tick’. This word causes the parameter field address of

any word to be put on the stack. In Fig. 7.2 it is used to find the

PFA’s of the words used in defining DOUBLE. The last word

' DLJP .
7987 OK
' + .
7858 OK

1 CO ♦
8231 OK
I

♦ ♦

12174 OK
' EXIT .
7629 OK

Fig. 7.2.

Interactive FORTH 69

‘ticked’ is EXIT. This was not part of our definition, but is included

automatically to terminate each word defined by ‘colon’. The figures

obtained by ‘tick’ each differ by 2 from the corresponding values

displayed by 2SHOW. ‘Tick’ is giving the parameter field address of

each word, while 2SHOW is giving the code field addresses which

appear in the parameter field of DOUBLE.

To sum up, a word definition consists of the following parts:

The Head: containing:
The Name Field-one byte gives the number of letters (+128), and

the others give the ASCII codes (+128 on the last one).

The Link Field - two bytes giving the address of the next-door

word in the dictionary.

The Code Field-two bytes giving the address of the machine code

which executes the word.

The Body: holding the Parameter Field, in which are the addresses

or other values needed by the machine code routine.

When FORTH is told to execute a word, it first searches its

dictionary for that word. It begins with the most recent word and

checks its name in the Name Field. If this is not the word it wants, it

looks in the Link Field to find the address of the next word. Then it

goes to this word to see if it is the one it wants. It works its way

through the dictionary until it finds the word it wants. Then the

Code Field tells it where to find the machine code routine. This

routihe calls upon other words, the addresses of which are to be

found in the parameter field. These words themselves have their own

machine code routines and their own parameter fields, which in turn

call upon other words. In the primitive words of FORTH the

address in the parameter fields are those of further machine code

routines.

It might be thought that the time required for FORTH to search

its dictionary for a given word would make FORTH a very slow

language indeed. However, when we define a new word, this goes at

the top of the dictionary. As we build up a more complex application

from existing words the new words are all stored close to the top of

the dictionary. Quite often the whole of an application is called on

by typing a single word, which is likely to be the topmost word of all.

If this is so, FORTH finds the word it wants at the top of the

dictionary. Its search is ended immediately!

There is no need for it to go searching through its dictionary when

the application is running. All such searching was done as each new

70 Exploring FORTH

word was compiled. At run time, the parameter field of each word
contains the addresses of the machine codes routines or the code
field addresses of each word it calls upon. FORTH jumps directly
from one address to the next as it executes each word, performing
first this one piece of machine code, then the next. This is the secret
of the way FORTH combines high speed with great flexibility.

With VLIST as your chart and with SHOW and 2SHOW as your
instruments, you are ready to explore the deepest regions of the
FORTH jungle. Starting from a word such as DOUBLE, we have
been led to the words used in its definition. Next you could explore
the definitions of these other words. Gradually you could trace your
way up the tributaries, the words in defining these words, until you
come to the primitives, which use machine code directly. You are led
to the starting addresses of these routines, and, if you understand
machine code, can get right to the sources of FORTH. In following
these threaded pathways you are travelling the same routes that
FORTH uses when it executes an application. Few may wish to
venture so far, but the way is open for those of an exploring nature.

Before we return to define words to define string variables, we will
look at the definition of the word used for numeric variables,
VARIABLE. First to get our bearings:

HERE ♦
15529 OK

Next to define a variable:

VARIABLE WEATHER

How much space does WEATHER occupy?

HERE ♦
15543 OK

It extends from 15529 to 15542, so we use SHOW to take a closer
look:

15543 15529 SHOW
135 87 69 65 84 72 69 210 143 60 12 33 0 0 OK

Taking 128 from 135 gives 7, the number of letters in the name
WEATHER. The table of ASCII codes confirms that the numbers87
to 210 are the name in code (subtract 128 from 210 to get 82, the code
for R). The last six numbers are the double bytes of the link field, the
code field and the parameter field, respectively, one double byte for
each. We use 2SHOW to read them, starting from address 15537

Interactive FORTH 71

(count your way along the row of single bytes from 15529 to find the

starting address):

155*43 15537 2SHOW
15503 8460 0 OK

The link field address is 15503. The code field address is 8460. Could

the zero be the stored value of WEATHER? We have said that

VARIABLE initialises each variable to zero when it is defined, so

this seems likely. To check that this is so, we set WEATHER to a

particular value:

123 WEATHER !
OK

Now try 2SHOW again:

15543 15537 2SH0W
15503 8460 123 OK

And there it is, stored in the last two bytes of the parameter field.

Counting along the byte from 15529 tells us that the addresses at

which the variable is stored are 15541 and 15543. When we first

discussed the action of VARIABLE it was stated that it puts on the

stack the address at which the value is stored. To confirm this, try:

WEATHER .
15541 OK

Which shows that the value put on the stack by VARIABLE is

indeed the address we expected. It is the first address of its parameter

field. Using ‘fetch’ after WEATHER will bring the value of the

double byte (15541-15542) on to the top-of-stack.

Back to strings

The next task is to define the defining word STRVAR which will

define string variables. This is really a simple matter, for all that the

string variable needs to have is a head containing its name and the

usual link field and code field addresses, plus a body consisting of

enough bytes to hold the string to be stored there. Here is its
definition:

{ STRVAR CREATE ALLOT ?

72 Exploring FORTH

STRVAR expects to find a number on the stack to indicate how

many bytes are to be set aside for the string. The number is to be one

greater than the maximum length of string, to allow an extra byte in

which to store the string length. There is no DOES> section of this

definition, for there is nothing special for a string variable to do

when used. When the string variable is used, it automatically puts its

parameter field address on the stack, and this is all we need. In this

respect STRVAR acts in the same way as VARIABLE. Now we are

ready to define a string variable, for example:

16 STRVAR NAME*

The line above defines a string variable called NAMES, which can

hold a string consisting of up to 15 characters. At this point you

could check that STRVAR has worked. Use the technique described

in the previous section. First find the value of HERE. Then use

SHOW to display 26 bytes up to the one before HERE. The first

should hold 5 (the number of characters in NAMES). Next come

5 bytes holding the ASCII codes for NAMES, then there are

4 bytes for the link field and code field addresses. Then there are 16

bytes for the parameter field. These may hold any values at present,

for the definition of the word does not provide for clearing the

parameter field.

Next we need a word for storing a word in NAMES, or in any

other string. A good name for this word is STR!, the T reminding us

of the word used for storing numerical values. We intend to use

STR! after WORD, and the name of the string variable, as in

‘WORD NAMES STR!’. WORD puts the start of the word buffer

(WBFR) on the stack. The string variable puts its PFA (parameter

field address) on the stack. STR! will operate on these two values.

Here is its definition:

t STR! OVER C0 1+ CMQVE 1

Let us see how this works on the stack (top to right):

STR! finds this WBFR PFA

then does OVER WBFR PFA WBFR

C@ WBFR PFA count

1+ WBFR PFA count+1

‘C-fetch’ fetches the first value from the word buffer, which, as

explained earlier, is the number of characters in the string. This is

incremented by 1 so that the string variable will receive not only the
string but the number of characters as well.

Interactive FORTH 73

The final word used in STR! is CMOVE. This word transfers

bytes from one part of memory to another. It expects to find on the

stack:

from\to\count

‘From’ is the starting address of the block of memory the bytes are to

be transferred from. In this case this address is to be the start of the

word buffer (WBFR). ‘To’ is the starting address of the block of

memory the bytes are to be transferred to. In this case this is to be the

beginning of the parameter field (PFA) of the string variable.

‘Count’ is the number of bytes to be transferred. The list above

shows that the stack has everything ready for CMOVE to operate

on. The bytes are transferred from the word buffer to the parameter

field.

We also need a word for taking the string which is stored in a

string variable and displaying it on the screen. One of the simplest

possible of such words is .STR:

I ♦STR COUNT TYPE CR i

In use, this is to be preceded by the name of the string, as in ‘NAMES
.STR’

The name of the string puts the PFA on the stack. COUNT can

operate on this, just as it did with WORD. It leaves the address of the

beginning of the string (PFA+1) at second-on-stack and the count

at top-of-stack. These two values are those required by the word

TYPE. This transfers the given number of bytes to the screen or

other output device. The CR is optional, but is useful in a

demonstration such as this, for it makes the computer print its ‘OK’

message on the next screen line.

Now for the ultimate definition of NAME?:

: NAME? ♦* TYPE YOUR NAME: ■
QUERY 13 WORD
NAME* STR! i

This displays its customary message and waits for the user to type in

the name. When RETURN is pressed, the typed string is transferred

from the input buffer to the word buffer and from there to the

parameter field of NAMES. There it stays unless altered at some

later stage of the application by using NAMES a second time. Here it
is in action:

NAME?
TYPE YOUR NAME! TARAS BULBA
OK

74 Exploring FORTH

At some other stage in an application we may want the stored name

to be displayed. This is one way of displaying it:

NAME-* * STR
TARAS BULBA
OK

Usually the format would be more elaborate. In a game for example,

we could display the name of the person whose turn it is to play:

: TURN1 . " IT IS ■ NAME* .STR
.* 'S TURN* CR 7 EMIT f

TURN!
IT IS TARAS BULBA'S TURN
OK

A similar word, TURN2 would be used to display the other player’s

name. The word .STR was redefined, omitting the CR, for use in

TURN1. TURN1 uses yet another FORTH word, EMIT, that
causes a character to be sent to the output device. EMIT requires the

ASCII code of the character to be on the stack. In this example the

code was 7, the ASCII code for BEL. The usual action of this is to

make the micro produce a ‘beep’ from its loudspeaker. If your micro

does not recognise this character, maybe it has a BEEP word that

you can substitute for ‘7 EMIT’.
The PFA put on the stack by a string variable (created by

STRVAR) and the value (WBFR) left on the stack by WORD are

much alike. Both point to an address which contains the number of

characters in the string and in both cases the string begins at the next

address. This makes it very easy to transfer strings from one string

variable to another. Having stored ‘TARAS BULBA’ in NAMES,

as above, we can define another string variable NEXTS, using

STRVAR. We can transfer ‘TARAS BULBA’ directly to NEXTS

by:

NAME$ NEXT$ STR!
OK

And this shows that it has worked:

NEXT$.STR
TARAS BULBA
OK

If you are intending to write applications using strings, it is worth

Interactive FORTH 75

while saving the words we have devised in this chapter. Figure 7.3

shows a complete listing.

SCR * 17 11 H
0 (STRING VARIABLES)
1 J SHOW DO I C@ . LOOP i
2 i 2SH0W DO I & . 2 +LOOP }
3 t SIRVAR CREATE ALLOT *
4 : STR! OVER C@ 1+ CMOVE J
5 J ♦STR COUNT TYPE CR f
6 i NAME? . " TYPE YOUR NAMEl *
7 QUERY 13 WORD
8 NAME$ STR! f
9

10
11
12
13
14
15

Fig. 7.3.

There is only one further point to be made. The words have no error¬

checking facilities built in to them. For example, if NAMES is

defined so as to allow up to 15 characters in the string and if the user

types in a name longer than this, only the first 15 characters will be

displayed. Maybe this does not matter in a given application. Too

long a name may spoil the display, so persons with over-long names

will have to put up with a truncated version. We shall return to the

subject of error checking in Chapter Eight.

To summarise

In this chapter you have found out how to:

• Make applications more interactive.

• Deal with string inputs.

• Create and store string variables.

• Explore the FORTH dictionary.

You have used these FORTH words:

• The ‘key’ words, KEY, ?KEY and INKEY which detect key¬

presses (...ASCII code).

76 Exploring FORTH

• QUERY accepts input of 1 or more characters from the keyboard,

storing their ASCII codes in the input buffer.

• WORD transfers characters from the input buffer to the word

buffer (or to HERE in some computers), until it finds a delimiter.

Puts the total number of characters in the first byte of the word

buffer (ASCII code of delimiter ...).

• COUNT gives address of the start of word buffer, its stack action is

(address ... address of start of string\n).

• EMIT displays a single character (or sends it to some other output

device currently in use) (ASCII code ...).

• TYPE displays one or more characters (or sends them to some

other output device currently in use) (address of start of string\

count ...).
• VLIST lists the words in the FORTH vocabulary (...).

• HERE (... address of first unused byte in the dictionary).

• C@ ‘C-fetch’ puts contents of a byte on the stack (address ...

contents).
• CMOVE moves a block of bytes (containing ‘count’ bytes,

starting at address ‘from’) to another part of memory (starting at

address ‘to’) (from\to\count...). ‘From’ area and ‘to’ area should

not overlap.
• +LOOP used instead of LOOP when the loop index is to be

stepped by any value other than +1 (step ...).

• ' ‘tick’ when used as a direct command from the keyboard, as in “'

SWAP ”, it places the parameter field address of the word on the

stack (... PFA).

You have learned:

• That a FORTH word consists of:

A Head containing the Name, Link and Code Fields.

A Body containing the Parameter Field.

• The Parameter Field contains addresses and other data needed

when the word is executed. It is used for storing values when the

word is a variable, constant, array or string variable.

Explore more

(1) Define a new version of the defining word for string variables,

STRVAR, which fills each string variable with spaces when each is

defined.

Interactive FORTH 77

(2) Define a word HALF which displays half the value of any

number placed on the stack. Then follow up the definition as far as

you can, threading your way through memory, using the techniques

described in this chapter.

(3) Follow up the definition of a word such as 2/ or SWAP.

Chapter Eight

Taking Decisions

One of the most common steps in a program or application is to ask

the user a question which requires the answer ‘Yes’ or ‘No’.

Examples are:

‘Do you want to play again? (Y/N)’

‘Is the tape recorder ready? (Y/N)’

‘Do you require printout? (Y/N)’

Note that each of these questions is followed by “(Y/N)” to make it

clear to the user that the required response is either Y or N. The user

presses one key or the other. Then the computer has to decide which

key was pressed. If Y was pressed, it acts in one way, if N was

pressed, it acts in a different way. The program or application

branches at this point according to the response of the user.

The words used for taking a decision are IF and THEN. These

words are used in BASIC too, but in a rather different way, as we

shall see. In FORTH, they must always be used inside a ‘colon’

definition, so let us define a word to use them:

t YN? KEY 89 = IF ♦" YES"
THEN CR t

YN? is a word to find out if the user has pressed Y or N. It could be
preceded by a message displayed by ‘dot-quote’ to ask the question.

YN? uses KEY to wait for a single key-press, as explained at the

beginning of Chapter Seven. KEY leaves the ASCII code of the key

on the stack. Then 89 is put on the stack, so there are now two

numbers on the stack. Next comes the word ‘equals’. This is different

from the words we have met so far. It is a relational operator. It

reports on the relationship between the top two values on the stack.

In doing this, both values are removed from the stack and are

replaced by a value known as aflag. If the two values were equal, the

flag is 1. If they are unequal, the flag is 0. The action of ‘equals’ is

V

Taking Decisions 79

easy to investigate (See Fig. 8.1). Equals leaves 1, only when the
numbers are equal. In YN?, Key should leave either 89 or

78 on the stack, depending upon whether the Y or the N key

was pressed. YN? places 89 on the stack and then uses ‘equals’ to find

4 4
1 OH

5 4 =
0 OK

Fig. 8.1.

out if the number left by KEY equals 89 or not. In other words, was

the Y key pressed? If it was pressed, the top-of-stack will be 1, if the

N (or any other) key was pressed it will be zero.

Next in the definition of YN? comes IF. Like most other FORTH

words, it expects to find a value on the stack. In particular, it expects
to find a 0 or a 1. It interprets a 1 to mean ‘true’. That is to say: “It is

true that the user pressed the Y key”. It interprets a 0 to mean ‘false’,

or ‘not true’ - the user did not press the Y. IF is a decision-taking
word.

Depending on the results of the test, true or false, the computer is

sent in one of two directions. If the result is true, the words following

IF, are executed, as far as THEN. After this the computer continues

executing the words, if any, which follow THEN. If the result is not

true, the words between IF and THEN are not executed. The

computer jumps straight to THEN and continues from there.

In the operation of the word YN?, after the Y key has been

pressed, the computer displays YES, then jumps to the carriage

return after THEN and executes that:

YN?
YES
OK

If N (or some other key) is pressed, the computer jumps straight to

THEN and continues to the carriage return without printing YES :

80 Exploring FORTH

To sum up, the form of a conditional branch is:

<FLAG> IF <action if FLAG is true> THEN Ccontinue,

whether true or false>

Relational operators, such as ‘equals’ place either 0 or 1 on the stack,

but IF also interprets any non-zero value as true:

i TRUE? IF ." TRUE" THEN CR »

Use TRUE? after placing various values on the stack. It shows

whether IF takes them as being true or not (see Fig. 8.2). The

definition of YN? displays “YES” if Y is pressed but does nothing if it

7 TRUE?
TRUE
OK

0 TRUE?
OK

Fig. 8.2.

is not pressed. We may want the computer to take one action if Y is

pressed, but to take an entirely different action if it is not. This

requires an extra word, ELSE. The computer branches one of two

ways and performs an action either way. The form of such a

conditional branch is:

<FLAG> IF <Action 1 if FLAG is true> ELSE <Action 2 if

FLAG is false> THEN <continue, whether true or false>

Here is this form of branch applied to YN?:

J YN? KEY 89 = IF ." YES"
ELSE ." NO"
THEN .* THANK YOU!’ CR i

Figure 8.3 shows what happens. If Y is pressed, it displays “YES”.

This corresponds to Action 1 above. If N or some other key is

YN?
YES THANK YOU!
OK

YN?
NO THANK YOU!
OK

Fig. 8.3.

Taking Decisions 81

pressed, it displays “NO”. This corresponds to Action 2. After that,

whatever key is pressed, it displays “THANK YOU!” and executes a

carriage return.

YN? is now in a form that can be used in many applications. You

could adapt it to other pairs of keyed letters (e.g. U for up, D for

down) by replacing the 89 with an appropriate ASCII code. In using

YN?, it is assumed that the Y is the more important response. If any

letter other than Y is keyed, the computer takes this to be the

equivalent of N, by default.

It may be that it is essential that the user types Y or N and that any

other response is not to be accepted. In this case we shall have to test

the input to see if it is Y. If it is not Y, we shall have to test it again to

see if it is N. If it is not N either, we shall have to repeat the word until

either Y or N is typed. The new definition of YN? looks rather
complicated but is easy to understand if taken a bit at a time (see Fig.
8.4).

R: YN? KEY DUP 89 ~
IF .■ YES" DROP
ELSE 78 =

IF .■ NO”
ELSE YN?
THEN

THEN CR R t

Fig. 8.4.

Figure 8.5 is a flow-chart of this version of YN?. The first point

is that it uses DUP to duplicate the value placed on the stack by

KEY. Then 89 = tests to see if Y was pressed. If so, “YES” is printed

and the other value left by KEY is DROPped from the stack.

However, if the test for Y gives a false result we next have to test

for N. This comes in the ELSE section of the word. Testing is done

by 78 =. Following this is a second IF, to ascertain the result of the

test. We have a second branching routine nested inside the first one. If

the test gives a true result, showing that N was pressed, “NO” is printed.

But what if this test too gives a false result? This inner routine needs

an ELSE action to cover such an eventuality. As has been specified

above, the computer must wait until the user types in one of the

acceptable keys, Y or N. So ELSE is followed by YN?. Before

considering this interesting development, note that the definition

ends with two THENs, one for the outer branching routine and one

for the inner routine. If the key was Y, tested by the outer routine,

the computer jumps straight to the outer (last) THEN and leaves the

82 Exploring FOR TH

Fig. 8.5. Nested IF ... ELSE ... THEN routines in YN?. The inner routine is
nested in the ELSE branch of the outer routine (compare with Fig. 8.13).

word. If the key was N it jumps to the first THEN and passes straight

on to the second THEN before leaving the word.
Now to return to what happens if the key is neither Y or N. In this

event, YN? calls itself. It does this as often as is necessary, until the

user has responded acceptably. When a routine calls itself, we refer

to it as a recursive routine.
In FORTHs such as the Acornsoft FORTH used on the BBC

Microcomputer, there are checks in the system to prevent words

from being compiled if they contain words that are not already

compiled. However, to allow for those who wish to define recursive

Taking Decisions 83

words, special defining words ‘R-colon’ and ‘R-semicolon’ may be

used. These are used in the same way as ‘colon’ and ‘semicolon’, but

allow you to include the word in its own definition. With other

versions of FORTH, such as that of the Jupiter Ace, ‘colon’ and

semicolon’ may be used when defining recursive words.

Using recursion in this way may not be thought of highly by some

since, each time the word calls itself, it jumps deeper into a nest of IF

... ELSE ... THENs. Sooner or later the micro may not be able to

nest the routines to sufficient depth, and an error message will result.

On some machines, there is no practical limit. For example,

Acornsoft FORTH tolerates at least 30 wrong responses (we gave up

trying after this) and will then still accept a correct one. This gives

the user the opportunity to key in all letters of the alphabet plus

some numbers and symbols as well before arriving at Y or N. The

Jupiter Ace allows three invalid entries, accepting a valid entry on

the fourth attempt. This may not be quite enough for safety, in

which case you can adopt an alternative method, as will be explained
in Chapter Nine.

A string too long

One of the dangers of the string handling words defined in the last

chapter is that a user may key in a name which is longer than the

string variable is intended to hold. We allowed up to 15 characters,

which is enough for most people, but there are those with long

names who like to type them out in full. READ? accepts up to 80

characters, possibly more in some FORTHs, and STR! will quite

happily put these into the parameter field of NAMES (or any other

string variable), even though the parameter field is not long enough

to hold them. All seems to go according to plan - you can even use

.STR to display the long string - but there is trouble in store. When

you try to use the word which was defined immediately after

NAMES, it seems as if the computer has forgotten all about it. If you

VLIST to find out what has happened to it, you may find part of

your long string appearing in the list instead of the name of the word

you thought was there. Other odd things may appear too! What has

happened is that STR! has written the whole of the long string into

memory and the part that would not fit into the parameter field of

NAMES has been stored in the space previously taken up by the

word defined after NAMES. Its name field now contains part of

84 Exploring FORTH

your long string and, if the string is long enough, its link field and

other fields will have been over-written too.

We need a way of checking that the string is not too long to fit into

NAMES. What we do when we find that the user has typed in a

string too long is a matter of preference. Maybe the computer should

emit a loud beep and a warning message should appear. This can be

easily arranged but, to keep the discussion simpler, we will just trim
off the excess characters and store the shortened string in NAMES.

This approach often causes less confusion to the user who should, in

any case, have been warned either in the manual or on the screen that

only a limited number of characters may be typed in.

The word to trim the string to size is TRIM:

TRIM DUE C8 7 >
IF 7 OVER
THEN >

C!

This word is to be included in the definition of NAME? immediately

after WORD. In this position it is able to trim the string before it is

transferred from the word buffer to NAMES. WORD leaves the

address of the word buffer on the stack, so TRIM must do the same,

ready for use by STR!. In the meantime it must find out how long the

string is and, if it is too long, reduce it to the correct length. What we

need to do is to test the value stored in the first byte of the word

buffer. If this is greater than the maximum allowed for in READS,

then this value must be reduced to an acceptable value.

TRIM duplicates the address of the word buffer (WBFR), so that

it can work one copy, leaving the other for use by STR!. The changes

on the stack are:

WORD leaves WBFR

Then TRIM does DUP WBFR WBFR

C@ WBFR count

7 WBFR count 7

> WBFR flag

IF WBFR

7 WBFR 7

OVER WBFR 7 WBFR

C! WBFR

THEN WBFR

The word greater than (>) is another testing word, similar to ‘equals’.

It puts a flag on the stack, which indicates whether second-on-stack

Taking Decisions 85

is greater than top-of-stack or not. If second-on-stack (i.e. count, the

number of characters in the word buffer) is greater than top-of-stack

(7) then the condition is true and the flag is 1. If count is equal to or

less than 7, the flag is 0.
IF operates on the result of the test. If the flag is 0 (false), the

computer is sent straight on to THEN. WBFR is unchanged and all

is ready for the string to be transferred to NAMES: If the string was

too long, the flag is 1 (true). In this event the maximum allowed

value (7) is put on the stack, the address of WBFR is copied to top-

of-stack and C! is used to store 7 in the first byte of the word buffer.

The computer proceeds to THEN with this changed value in WBFR.

Later when STR! operates, it reads the string length as 7 and so

transfers only the first seven characters to NAMES.

Having defined TRIM (and STRVAR, STR! and .STR, if they

are no longer in the dictionary) we redefine NAMES to hold only 7

characters (plus 1 for the length). The final version of NAME? is

shown in Fig. 8.6.

8 STRVAR NAME*
OK

l NAME? ♦* TYPE YOUR NAMEJ * QUERY
13 WORD TRIM NAME* STR! »

OK

Fig. 8.6.

Figure 8.7 shows the new version of NAME? in action. TRIM

demonstrates the use of ‘greater than’ in conditional routines. There

is also the word ‘less than’ (<). This leaves a true flag on the stack if

NAME?
TYPE YOUR NAME: FRANCIS
OK
NAME* .STR
FRANCIS
OK

NAME?
TYPE YOUR NAME: ROGER BACON
OK
NAME* .STR
ROGER B
OK

Fig. 8.7.

86 Exploring FORTH

second-on-stack is less than top-of-stack. If second-on-stack is equal

to or greater than top-of-stack, it leaves a false flag.

Rounding

In Chapter Five the conversion of francs to pounds and pence

worked well enough, except that fractions of pence were ignored.

For holiday cash transactions the odd fractions of pence are nothing

to worry about. But there are other kinds of conversion in which it is

essential to round off the figures to the nearest whole integer. In

rounding off, the convention is that fractions amounting to less than

half of the unit are ignored. If the actual answer is 27.4, for example,

we call it 27. Fractions that are equal to or greater than half of the

unit are rounded up. If the actual answer is 27.5 or 25.8, for example,

it is rounded up to 28. We will now do the same thing with the

fractions of pence in the conversion application. The same method

may be applied to rounding of any other figures.

To begin with, define the variable RATE, and set it to 12. The

definitions of POUNDS and PENCE are slightly different from

those in Chapter Five (see Fig. 8.8). Both POUNDS and PENCE

VARIABLE RATE
OK
12 RATE !
OK
J POUNDS RATE 6 /MOD SWAP »
OK
{ PENCE 100 * RATE 0 /MOD SWAP
OK

Fig. 8.8.

contain RATE @ instead of just RATE because RATE is now a

VARIABLE instead of a CONSTANT. In PENCE we do the

multiplication and division in two stages instead of in one. Before,

we used ‘times-divide’; now we use ‘times’ and ‘divide-mod’. The

latter leaves the result of the division (the whole number of pence) at

top-of-stack and the remainder at second-on-stack. The SWAP

brings the remainder to top-of-stack so that we can decide whether

to round it down or up.

The remainder is what is left after dividing by RATE, which is 12

in this example. If the remainder comes to less than half of RATE

(less than 6) we ignore it. If it comes to half of RATE or more, we

Taking Decisions 87

add 1 to the number of PENCE. Rather than try to base the decision
on half of RATE, which would be awkward if RATE was an odd

number, such as 13, we double everything up before making the test.

This means that the remainder is to be ignored if twice the remainder

is less than 12, the full value of RATE. This is how we test the

remainder:

{ ROUND 2 * RATE (» - (KNOT + *

The remainder (at top-of-stack) is doubled by 2 *. Then RATE is put

on the stack by RATE @. This time we use a more direct method of

taking the decision. First of all we use ‘subtract’ to take RATE from

the doubled remainder. If the result of the subtraction is less than

zero, we are to round down. If it is equal to or greater than zero, we

are to round up. The word ‘zero-less’ leaves a true flag (1) on the

stack if the value at the top-of-stack is less than zero. Conversely, if

the value on the stack is zero or more than zero, ‘zero-less’ leaves a

false flag (0) there.

The result of the test is to be interpreted like this:

IF flag is 1 - round down

IF flag is 0 - round up

At this stage we could use IF.. .ELSE.. .THEN to take the action

required, but there is a quicker way to get the same result. To round

up we add 1 to the pence value; to round down we add nothing. We

need to add 0 or 1, and the flag is either 0 or 1. But the flag is the

‘wrong way round’; it is 1 when we want to add 0, and it is 0 when we

want to add 1! Another FORTH word comes to the rescue. This is

NOT which, being a negative, turns true into false and false into

true. In other words, it changes the flag to its opposite. After NOT

the top-of-stack is:

0 when we have to round down

1 when we have to round up.

The value for pence is already at second-on-stack, so it needs only a

‘plus’ to finish the rounding.

To complete the application we define FORMAT exactly as

before, but include ROUND in the definition of EXCHANGE:

J FORMAT ♦" £" 1 * R ,» , CR }

t EXCHANGE POUNDS PENCE ROUND SWAP FORMAT

88 Exploring FORTH

Converting 58 francs gives £4-83 with 0.33333 pence remainder. This

is to be rounded down:

58 EXCHANGE
£4-83
OK

Converting 59 francs gives £4-91 with 0.66667 pence remainder.

This is to be rounded up to £4-92:

59 exchange:
£4-92
OK

The general principle of this example can be applied to rounding of

other integers after division. You need to have a variable (or

constant) as the divisor and use the name of this (or its value) in place

of RATE in the definition of ROUND.

UFO

Computer games provide many examples of decision taking. The

rest of this chapter is devoted to describing a game called UFO,

which involves a lot of decision-taking by the micro. It is described

in detail to give you plenty of examples of the uses of relational

operators and conditional branching. The detailed descriptions will

make it easy for you to adapt and extend the game. Many of the

words used are designed to be useful in other games applications, so

a study of this game will help you begin to design other games of

your own.
Rather than break the text by printing out the words individually,

they are printed out in screens, which are numbered 18 to 22 (Figs.

8.9, 8.11, 8.12, 8.14 and 8.15). When you type in the game you can, of

course, put them on any five consecutive screens you choose.

The game is simple in outline, which means that there is plenty of

scope for additions. It begins when the word UFO is typed and

RETURN is pressed. The screen clears to blue (if available on your

computer) and an unidentified flying object (UFO) appears at the

top left corner. Its colour is flashing green and magenta (if available

on your computer). It moves diagonally across the screen, ‘bouncing

off the edges when it reaches them. Your spacecraft is near the

Taking Decisions 89

bottom left corner. Move it across the screen by pressing one of the

keys:

Z left

X right

; up
/ down

The keys used can be changed to suit your micro or your own

preferences as will be explained later. Your aim is to wait for the

UFO to pass by and then ‘jump’ on it by pressing the correct key at

exactly the right moment. If you score a jump, you hear a beep and

your score is incremented by 1. However, if by chance you happen to

be in the way of the UFO and it runs on to you, you hear a longer

beep and your score is decremented by 1. The game runs for several

minutes, at the end of which your score is displayed. Naturally, the

aim is to get as big a score as possible within the allotted time.

The words are described screen by screen:

PART 1 (Screen 18) (Fig. 8.9)

SCR # 18 12 H
0 (UFO GAME - PART 1)
1 VARIABLE SCORE
2 VARIABLE MOVEX VARIABLE MOVEY -
3 VARIABLE YOUX VARIABLE YOLJY
4 1 ARRAY CREATE 2 * ALLOT DOES> SWAP 2 # + $
5 4 ARRAY CHARS
6 t CTIARDEF 23 >VDU 224 + 90 DO >VDIJ LOOP J
7 129 102 24 2A 255 219 126 60
8 0 CHARDEE
9 153 126 90 255 255 90 126 153

10 1 CHARDEE
11 t PL ACE IT 3.1 >VDU SWAP >VD1J >VDU
12 2 2ft ± > V D U t
13 : STORPLACE Dl.JP 4 PICK 2 * 1 +
14 CHARS ! OVER 4 PICK 2 *
15 CHARS ! PLACEIT i -■•->

Fig. 8.9. Screen 18.

This begins with definitions of the variables that will be needed in the
game:

SCORE Obviously, this is where your score is to be held.

MOVEX This decides the amount by which the UFO can move

each time in a left-right direction. Values in MOVEX are

to be used in conjunction with MOVEIT, the word

90 Exploring FORTH

described in Chapter Six. In this game, MOVEX is

either -1 (move 1 space left) or 1 (move 1 space right).

MOVEY This decides the up-down motion of the UFO. It is either

1 or -1. Which of these gives up and which gives down

depends on how your micro counts the rows of its

screen. As used in this application, which is for the BBC
Microcomputer and Electron, 1 gives downward motion

and —1 gives upward motion.

YOUX and YOUY are the corresponding variables for your

spacecraft.
Next we have to define an array to hold the co-ordinates of the

UFO and your craft which we shall in future refer to as YOU. The

array is to have 4 locations:

0 X-position of UFO

1 Y-position of UFO

2 X-position of YOU

3 Y-position of YOU

This is exactly the same scheme as in the array CHARS of Chapter

Six. This array is called CHARS, too. The difference is that this

CHARS needs only four locations. Before we can have an array, we

define the word to define the array. This is the same word, ARRAY,

as used in Chapter Six. Line 4 of Screen 18 (Fig. 8.9) has the

definition of ARRAY. This is used on line 5 to define CHARS.

Next we will define the special characters of the UFO and YOU

(Fig. 8.10). You can, of course, substitute designs of your own for

these. Lines 6 to 10 are taken up with the definition of CHARDEF

and using it to define the two characters. If you had to use your own

version of CHARDEF in Chapter Six, to suit your micro or your

FORTH, use it again here. Another such word is PLACEIT (lines

11-12). Key in your own definition, if it is different from the one

Fig. 8.70. Special characters for the UFO game.

Taking Decisions 91

shown. From this point on, except for the initialising word GO, we

shall be using only words that are likely to be found in all versions of

FORTH. The only changes needed will be those which allow for the

number of rows and columns on your screen and the direction in

which the rows are numbered.

Screen 18 ends with the definition of STORPLACE, exactly as in

Chapter Six.

PART 2 (Screen 19) (Fig. 8.11)

SCR * 1.9 1.3 H
0 (UFO GAME ~ PART 2.)
1. t BLANK IT -.1.92 SWAP DUP 2 * CHARS &
2 SWAP 2 * !.+ CHARS 0 PL ACE-IT »
3 i MG VEIT 3 PICK 2 * !.+ CHARS 0 +
4 SWAP 3 PICK 2 * CHARS @ + SWAP
5 STORPLACE }
6 t LEFT 0 CHARS (» 0- IF 1. MO VEX ! THEN }
7 l RIGHT 0 CHARS @ 38 = IF -1 MOVEX ! THEN ;
8 : UP 1 CHARS (» 0= IF 1 MOVEY ! THEN i
9 t DOWN :l CHARS (;> 31. = IF -1. MOVEY I THEN *

10 : BORDER LEFT RIGHT UP DOWN }
11 J GO 4 MODE 0 0 0 4 0 19
12 0 0 0 13 1 19 0 0 0 0 0000
13 1 23 22 0 DO >VDU LOOP i
1.4

Fig. 8.11. Screen 19.

This begins with two more words from Chapter Six, BLANKIT and

MOVEIT. Next come four words to alter the direction of motion of

the UFO when it comes to the edges of the screen. In these we assume

that the rows of the screen are numbered 0 to 31 from top to bottom,

and the columns are numbered 0 to 39 from left to right. Actually we

do not use column 39. Placing a character at the bottom of this

causes a line-feed which upsets the display. LEFT changes the

direction of motion when the UFO hits the left margin of the screen.

‘0 CHARS @’ copies the X-position of UFO fromCHARS and puts

it at top-of-stack. ‘0=’ tests to see if it is equal to zero, this being the

left-most column. If your columns are numbered from 1, substitute4!

=’ for ‘0=’. This is followed by an IF.. .THEN routine. If the value is

zero (UFO is at left of screen) the value 1 is stored in MOVEX. The

effect of this will be to make UFO move toward the right when
MOVEIT is next used.

RIGHT operates in a similar way, giving MOVEX the value —1

(move left) if UFO is in column 38. If your screen has a different

92 Exploring FORTH

width, put the appropriate number in place of the 38. UP detects if

UFO is at the top of screen, by first putting the Y-position (1

CHARS) on the stack. It tests to see if this is zero. Again, you may

have to alter this value if your screen row numbering is different. If

UFO is at top of screen, MOVEY is made 1, to make UFO move

down when MOVEIT is next used. If your screen works the other

way round, use —1 here. Similarly DOWN, checks if UFO is at

bottom of screen, and alters MOVEY to make it move up.

BORDER puts all four words together to test if UFO is at the

borders of the screen and alters MOVEX or MOVEY (or possibly

both) accordingly.

The final word on Screen 19 is GO, which initialises the screen

ready for the game. This version is for the BBC Microcomputer and

Electron. It does the following:

Sets screen Mode to 4.

Sets screen colour to blue (the equivalent of VDU 19,0,4,0,0,0

in BBC BASIC).

Sets foreground colour to flashing green/magenta (the

equivalent of VDU 19,1,13,0,0,0).

Disables the cursor so that it does not spoil the display (VDU

23,1,0,0,0,0,0,0,0,0).

Some of these may not apply to your micro but, if they do, the

FORTH handbook should explain how to perform equivalent

operations. The Mode statement referred to above automatically

clears the screen. Include this action in GO if you have not used

MODE. Some FORTHs have a word CLS. An alternative is ‘12

EMIT’ which works on most machines which recognise standard

ASCII codes.

PART 3 (Screen 20) (Fig. 8.12)

PLAY sets up the array and variables ready to begin the game.

CHARS is set to hold 0 and 0 for the UFOs X- and Y-positions,

placing it at top left of screen. You may need to adapt these for your

computer’s screen. It is also set to hold 36 and 22 for YOU X- and Y-

positions, placing YOU near the bottom right corner. The MOVEX

and MOVEY are each given the value 1, to start UFO moving

diagonally down the screen and to the right. You may need to make

MOVEY —1 if the rows of your screen are numbered from the

bottom upward. The score is set to zero.

We are now ready to put UFO into motion. The word MUFO

(Move UFO) checks if UFO is at the edge of screen, using

Taking Decisions 93

SCR
0
1
'? x..

3
4
5
6
7
8
9

10
11
12
13
14
15

14 H lA'lo
,'lA~ 7°P

) /< 0^\
!

!

< UFO GAME PART 3
t PLAY 0 0 CHARS ! 0 1 CHARS

<£$(Z: CHARS ! 22 3 CHARS !
1 MOV EX ! 1 MOVE'Y ! 0 SCORE

: MUFO PORDER 0 MOVEX 6 MOVEY g MOVEIT t
i DELAY 100 0 DO LOOP J
: HALT 0 YOUX 1 0 YOUY !
J KEY/ 47 - IF 3 CHARS 8

IF ELSE 1
THEN

ELSE THEN i
: KEY > DUP 59 = IF 3 CHARS 6 0 =

IF ELSE -1 YOUY
THEN DROP

ELSE KEY/ THEN ?

i
31 =
YOUY

Fig. 8.12. Screen 20.

BORDER. In Chapter Six it was explained that MOVEIT requires
the stack to have:

Character Amount of Amount of

number motion motion

in X in Y

The 0 is the character number of UFO. MOVEX @ and MOVEY @

place the other required values on the stack. Then MOVEIT

displays UFO in its new position, and stores its new position in
CHARS.

Line 5 is a delay loop, which you may or may not need, depending

on how skilful you become at playing the game. It is possible to let

the upper limit be a variable instead of 100, so that the speed of the
game could be set by the player.

The next six words are concerned with moving YOU. The

operative word is MYOU, in Screen 21 (Fig. 8.14), but we first define

four words to be included in this. HALT is a word to set YOUX and

YOUY to zero. It is used after each move by YOU so that YOU

remains stationary until a key is pressed. The words KEY/, KEY;,
KEYX and KEYZ ; are all concerned with detecting key-presses and

acting accordingly. KEYX and KEYZ are on Screen 21. The last

character in each of their names indicates the key which the word

tests. The words are linked together so that, as soon as a key press

has been identified, the remaining keys are not tested. The sequence
is as follows:

94 Exploring FORTH

MYOU uses ?KEY to wait a short while for a key-press. The ASCII

code code of the key is placed on the stack.

KEYZ tests to see if the key pressed is Z (code 90). If not, it calls

KEYX. If the key is Z and YOU is not at the extreme left of the

screen, YOUX is given the value -1, to move YOU to the right. The

action continues without further examination of the key code. We

will look into the action of KEYZ in more detail later.

KEYX tests to see if the key pressed is X (code 88). If not, it calls

KEY;. If the key is X and YOU is not at the right of the screen,

YOUX is given the value 1, to move YOU to the right. The action

then continues.

KEY; tests to see if the key pressed is; (semicolon). If not, it calls

KEY/. If the key is ; and YOU is not at the top of screen, YOUY is
given the value -1 to make YOU move up. The action then continues.

KEY/ tests to see if the key pressed is /. If not, the action continues,

for all possible key presses have now been looked for. If the key is /

and YOU is not at the bottom of screen, YOUY is given the value 1

to make YOU move down. The action then continues.

The operation of KEYZ is illustrated by the flow-chart of Fig.

8.13. It begins with the ASCII code of the key on the stack. DUP

copies the code, so that one copy may be used in the test, and the

original value left on the stack for use by one of the other ‘KEY’

words. Then ‘90 =’ tests to see if the key was Z. We now have two

nested IF.. .ELSE.. .THEN routines. The first IF detects if the key is

Z. If so, it proceeds to find out if YOU is at the left of screen. ‘2

CHARS @ 0=’ puts the X-position of YOU on the stack, then tests

to see if it is equal to 0, the number of the left-most column. The

inner IF then comes into play. If YOU is at the left, then no motion

is possible. Nothing is done except to skip to the inner THEN. This is

followed by DROP, to get rid of the unwanted ASCII code from

top-of-stack.

If YOU is not at left of screen, motion is possible and the inner

ELSE gives YOUX the value —1, to cause motion to the left. The

action passes to the inner THEN and after this the unwanted ASCII

code is DROPped.

If the condition at the outer IF is not met because the code is not

90, the outer ELSE comes into play. This sends the computer off to

word KEYX, to find out if the X key was pressed. Whichever way

Taking Decisions 95

Fig. 8.13. Nested IF ... ELSE ... THEN routines in KEYZ. The inner routine
is nested in the IF branch of the outer routine (compare with Fig. 8.5).

the action goes, it finishes at the outer THEN, and from there the
computer passes to the next word in MYOU.

The structure of KEYX and KEY; are the same as that of KEYZ.
KEY/ is a little simpler because, being the last word to be called, it
does not need to duplicate the code, and there is no value to be
DROPped at the end. Also, there is nothing in the outer ELSE
section.

These words have illustrated several aspects of decision taking in
FORTH.

PART 4 (Screen 21) (Fig. 8.14)

Having defined the KEY words, in reverse order so that each one can

96 Exploring FORTH

SCR
0

t 1

3
q

6
7
8
9

10

21 15 H
(UFO GAME -- PART T)
: KEYX DUP 88 - IF 2 CHARS (» 38 =

IF ELSE 1 YOIJX !
THEN DROP

ELSE KEYf THEN l
: KEYZ DUP 90 = IF 2 CHARS § 0=

IF ELSE -1 YOUX !
THEN DROP

ELSE KEYX THEN }
: MYOU 10 ?KEY KEYZ. 1 BLANK IT

1 YOUX @ Y (!) U Y (» MO VEIT HALT 5
11 : SAME 0 CHARS (;? 2 CHARS 6 =
12 1 CHARS (? 3 CHARS @ ~
13 0= IF DROP 0 ELSE 1 = THEN *
ITt i HITUFO SAME IF SCORE (» 1 +
15 SCORE ! 7 EMIT THEN f .>

Fig. 8.14. Screen 21.

call the earlier ones, we come to MYOU. This uses ?KEY to detect

the key-press, the figure 10 allowing waiting period of 0.1 second. If

your FORTH has INKEY, which does not wait, use this instead of

TO ?KEY\ The essential point is that the word used should not wait

indefinitely for a key-press. This is followed by KEYZ, which calls

all the other KEY words, if necessary. YOUX and YOUY will now

contain values to produce the motion required. T BLANKIT’ clears

the previous image of YOU from the screen. Then the values

required by MOVEIT are put on the stack:

1 the code for YOU character

YOUX

YOUY

MOVEIT displays YOU in its new position and stores this position

in CHARS. HALT restores MOVEX and MOVEY to zero, so that

YOU does not move until another key-press is detected.

One vital element of game programs is coincidence detection. We

often want to know if two objects are in collision - if a bullet has hit

its target, for instance. Here we want t.o know if UFO and YOU are

at the same position on the screen. Coincidence is detected by

SAME, which is another example of decision-taking. It is also a

word that can be applied in many other games programs. The UFO

and YOU are in collision if both have the same X-position (0 and 2 in

CHARS) and both have the same Y-position (1 and 3 in CHARS.

First, SAME puts the X-positions on the stack and tests to see if they

Taking Decisions 97

are equal. If they are equal, ‘equals’ leaves true (1) on the stack. If

they are unequal, it leaves false (0). Next, SAME puts the Y-

positions on the stack and tests these to see if they are equal, leaving

a second flag on the stack. There are now four possible pairs of flags

on the stack:

X-posns • Y-posns

Different Different

Same Different

Different Same

Stack

0 0
1 0
0 1

Same Same

The top-of-stack is on the right. If YOU and UFO are in collision,

there are two Is on the stack, as in the bottom row of the table. The

final section of SAME (line 13) tests top-of-stack to find out if it is

zero using ‘zero-equals’. If this is true then the stack is as shown in

one of the top two lines of the table above. There is no collision. The

0 at top-of-stack has already been used by ‘zero-equals’ so all that is

left to be done is to DROP the other value (0 or 1) and continue to

THEN. If the result of‘zero-equals’ is false, then the situation must

be one of the bottom two lines of the table. If there is a collision, the

flag remaining on the stack is 1. The ELSE action tests to see if this is

1 by using 1 =. If it is 1, then ‘equals’ leaves 1 on the stack. If it is 0,

then equals leaves 0 on the stack. The result of SAME is to leave 1 on

the stack, if there is a collision, otherwise it leaves 0. In short, it gives

a true/false answer to the question ‘Are they in the same position?’

Same is used by two words. HITUFO decides if YOU have hit the

UFO. SAME returns a 1 if there is a hit, in which case the IF action is

to increment SCORE and make the loudspeaker beep. If your

FORTH has a BEEP command or any other special noise-making

word, use this in place of ‘7 EMIT’. Perhaps you can invent other

words to produce sound at this point.

PART5 (Screen 22) (Fig. 8.15)

This begins with HITYOU which detects if UFO collides with YOU.

It has the same general structure as HITUFO, except that your score

is decremented, and there are two beeps. In practice, the two beeps
run into one beep of double length.

FINISH is the word for ending the game. ‘12 >VDU’ clears the

screen. Your FORTH may have an alternative word for doing this.

‘5 0 DO CR LOOP’ does five carriage returns. The purpose of this is

to display the score a little way down the screen. Then comes the

message announcing the score, after which SCORE is fetched to the

98 Exploring FORTH

SCR # 22 16 1-1
0 (UFO GAME - PART 5 >
1
2 J HIT YOU SAME IF SCORE. (? 3.-
3 SCORE I 7 EMIT 7 EMIT THEN t
4
5
6 : FINISH 3.2 >VDU 5 0 DO CR
7 LOOP .* YOUR SCORE IS a
8 SCORE (? . 2 0 0 DO CR LOOP t
9

3.0
3.3. : UFO GO PLAY 20 0 0 0 DO 0 BLANK IT
3.2 MUFO HIT YOU DELAY MYQU HIT UFO
3.3 DELAY LOOP FINISH }
3.4
3.5

Fig. 8.15. Screen 22.

stack and then displayed. Twenty more carriage returns follow, so

that the ‘OK’ prompt is displayed at the bottom of the screen.

Now everything is ready for the final assembly of the UFO game.

In true FORTH fashion, the complete routine for the game is

contained in the one word UFO:

GO sets up the screen and colours.

PLAY initialises positions and other values.

Within the loop which repeats 2000 times we have:

‘0 BLANKIT’ to clear UFO.
MUFO to move UFO to its next position and display it.

DELAY to give you time to see UFO, and to slow the game

down to a reasonably playing rate.

HITYOU to find out if UFO hit YOU.
MYOU to detect your key press and move YOU accordingly.

HITUFO to find out if YOU hit UFO.

DELAY to give you time to see YOU.

After the loop is over the game terminates with: FINISH. When all

is ready, type UFO, press RETURN, and the chase commences!

Variations

There is endless scope for variations. Alter the characters or the

colours. Use other ASCII codes so that YOU is controlled by the

Taking Decisions 99

keys of your choice. On the BBC Microcomputer or Electron, for

example, the editing keys might be a better choice. Alter the speed of

the game by varying the length of DELAY. The whole game could

be put into a loop, allowing it to be replayed by pressing a key. At

each replay the delay could be shortened. This would need a variable

for length of delay, which was decremented each time the game was

played. You could also keep a record of the maximum score. Some

FORTHs have a word MAX which, given two numbers on the

stack, removes both and replaces them with the greater of the two.

Display this maximum each time along with the score of the current

game.

There is also scope for experimenting with the overall structure of

the game. You may find that UFO would benefit from rearrange¬

ment of the main words. Perhaps extra DELAYS would improve it.

Maybe it would be better to use MYOU and HITUFO twice, to give

the player more chances of moving.

One of the advantages of FORTH is that you can redefine some of

the earlier words, perhaps adding extra features to them, without

necessarily having to alter the words which call them. If you do alter

the earlier words, remember that you must repeat the definitions of

words which call them. If you do not do this these words will

continue to use the old definitions of the earlier words. Having

edited the screen and SAVEd it, reLOAD it to point the later words

on to the newly-defined earlier words.

To summarise

In this chapter you have found out how to:

• Use flags to make the computer branch to one of several different

routines.

• Write words to check that the user presses one of a specified set of

keys.

• Round numbers to the nearest integer.

• Avoid errors by the user during input routines.

• Design games applications with graphics displays controlled from

the keyboard.

You have used these FORTH words:

• IF ... THEN (flag ...) used in the form <flag> IF <action>

THEN <continue>.

100 Exploring FORTH

• IF ... ELSE ... THEN (flag ...) used in the form <flag> IF

<action 1> ELSE <action 2> THEN <continue>.

• =>< equals, greater-than and less-than, the conditional operators

for comparing two numbers (nl\n2 ... flag).

• 0= 0> 0< ‘zero-equals’, ‘zero-greater’, and ‘zero-less’, for

comparing a number with zero (n ... flag).

• C! ‘C-store’ for storing a byte at a given address (byte\address...)

• R: R; ‘R-colon’ and ‘R-semicolon’ for beginning and ending

definitions of recursive words.

• NOT (flag ... inverted flag).

You have learned that:

• That the truth or falseness of a condition can be represented by a

value on the stack, called a flag.

• The true flag is 1, though any non-zero value is recognised as true

by the computer.

• The false flag is 0.
• A word or routine which calls itself is described as recursive.

Explore more

(1) Define a word which, given two values on the stack, displays the

greater of the two.

(2) Define a word which, given two values on the stack, divides the

greater value by the smaller one and displays the result.

(3) Extend the definition of YN? so that, if the user types a letter

other than Y or N, a message such as “Please key Y or N” is

displayed. The routine then waits for one of the correct keys to be

pressed.

(4) Carry out some of the suggestions in the section called

Variations.

Chapter Nine

Over and Over

No, the title of this chapter is not a reference to the stack

manipulator, OVER, but introduces the theme of repeated actions.

Often we want the computer to perform an action many times. Like

many other languages, FORTH has looping structures which

provide the repetition. Repetition is so important that we have

already made frequent use of one such structure, the DO ... LOOP
loop. Before going on to see what other kinds of loop are possible, here

is a short summing up of the DO ... LOOP loop.

Figure 9.1 is a flow chart of the essential features of the loop. The

Fig. 9.1. Flow-chart of a DO ... LOOP.

102 Exploring FORTH

loop uses a loop index, I, which is incremented each time the loop is

repeated. Before the loop is begun, the finishing and starting values

of this index are placed on the stack. The finishing value is at second-

on-stack and the starting value is at top-of-stack. DO reads these

two values. The action which is to be repeated usually consists of one

or more words placed between DO and LOOP. Occasionally there

may be no words between DO and LOOP, when we merely want to

delay the computer, so as to slow down an application.

When the computer gets to LOOP, it increments I. Then it tests I

to find out if it is equal to or greater than the finishing value. If it is

not, the action is repeated. This continues, with I being incremented

each time round the loop until, eventually, I is equal to or greater

than the finishing value. There are no further repetitions of the

action. Note particularly that there is no Ith repetition.

One important feature of loops is that they cannot be initiated

immediately, by typing direct commands on the keyboard. They

must always be part of a definition of a word. The word

COUNTING demonstrates how the loop operates:

1 COUNTING 6 0 DO I ♦ CR
LOOP ;

The action consists of putting I on the stack and then displaying it,

followed by a carriage return (see Fig. 9.2).

COUNTING
0
1

3
4
5
OK

Fig. 9.2.

The value of I is incremented by 1 each time around the loop,

beginning with the starting value (0), and ending with the finishing

value (6). However, the loop ends as soon as LOOP detects that the

finishing value has been reached, so there is no repetition when I

equals 6. Only the numbers 0 to 5 are displayed.

LOOP increments I by 1. To increment I by other amounts, we use

+LOOP. The amount by which it is to be incremented is to be placed
on the stack immediately before using +LOOP:

Over and Over 103

i COUNTING 6 0 DO I ♦ CR
2 +LOOP t

In this version of COUNTING, the finishing and starting values are

the same as before, but I is to be incremented by 2 each time. The

loop is repeated 3 times (see Fig. 9.3). The loop terminates when I

becomes 6 and then equals the finishing value.

COUNTING
0
2
4
OK

Fig. 9.3.

A negative value may be used with +LOOP to decrement I each
time:

: COUNTING 0 6 DO I , CR
-1 LOOP ;

We have reversed the values, making I start at 6 and finish as 0:

COUNTING
6
OK

By mistake, the loop above used LOOP instead of +LOOP. The —1

was ignored by LOOP, which simply incremented the starting value

(6) to 7. This was already greater than the finishing value, so there

was no further repetition. Note that, whatever happens, whether the

values placed on the stack make sense or not, a DO.. .LOOP loop or

a DO... +LOOP loop always performs the action at least once. This

is because the test for repetition comes at the end of the loop. The

computer has to go through the action before it reaches this test for

the first time.

Here is COUNTING properly redefined, using +LOOP:

J COUNTING 0 6 DO I * CR
-1 +LOOP }

Figure 9.4 shows its action. This example shows that the action of

TLOOP differs from that of LOOP when I is being decremented. It

repeats the action if I equals the finishing value, and stops only when

I exceeds the finishing value. This gives an extra repetition that we
do not get when I is being incremented.

104 Exploring FORTH

COUNTING
6
5
4
3
X-

1
0
OK

Fig. 9.4.

The word above incremented (or decremented) I by a fixed value.

It is also possible to recalculate the amount of increment or

decrement each time around the loop. This gives added flexibility. It

is as if you could recalculate the STEP value of a FOR ... NEXT

loop in BASIC which is not allowed. In this example the value is

stored as a variable which, for reasons which will emerge in a

moment, is called FIBO (see Fig. 9.5). FIBO is given an initial value

VARIABLE FIBO
OK
1 FIBO !
OK

Fig. 9.5.

1. The word which uses FIBO is FIBONACCHI, the name of a

Tuscan mathematician of the twelfth century:

I FIBONACCHI 2000 0 DO FIBO 0 I DUP
. FIBO !

+LOOP ;

The loop starts with I equal to 0 and is to run until it equals or

exceeds 2000. The action of the loop is:

FIBO @ FIBO

I FIBO I

DUP FIBO I

FIBO I

FIBO !

+LOOP

FIBO

The value of FIBO placed on the stack at the beginning of the loop is

the value which I had during the previous loop. The current value of

I is displayed and is stored away in FIBO ready for the next loop. At

Over and Over 105

the end of the loop, +LOOP adds the current value of I to the

previous value of I (FIBO). The result of this repeated action is to

give a FIBONACCHI series, in which each term is the sum of the

two previous terms:

FIBONACCHI
0 1 1 2 3 5 8 1.3 2,1 34 55 89 144 233
377 610 987 1597 OK

The series stops at 1597 because the next value calculated for I takes

it above its finishing value. Increasing the 2000 to some higher

amount makes the calculation continue for more terms of the series.

Loops may be nested one inside the other, provided that the inner

loop is completely enclosed by the outer one. Figure 9.6 shows an

example. The outer loop is to start with its index equal to 0 and

{ LOOPS 4 0 DO 9 6
DO J * I , CR
LOOP

LOOP *

Fig. 9.6

finishes with it equal to 4. The inner loop starts with its index equal

to 6 and finishes with it equal to 9. Obviously two indexes are

involved, one for each loop. With nested loops, the index I refers to

the inner loop. Another index, J, refers to the loop surrounding the

inner loop. The values of I and J may be used within the inner loop

only, as in the example above. Figure 9.7 shows that for each stage of

LOOPS
0 6
0 7
0 8
1 6
1 7
1 8
2 6
2 7
2 8
3 6
3 7
3 8
OK
Fig. 9. 7.

106 Exploring FORTH

the outer loop (J equals 0, 1, 2 and 3) the inner loop runs through its

own stages (I equals 6, 7 and 8).

I has more uses than just counting the number of repetitions. We

can make use of it in repeated calculations, as in this word which
calculates a table of squares:

t SQUARES 10 0 DO I DUP DUP . * . OR
LOOP ;

I is duplicated twice, filling the top three positions of the stack. One

copy of I is displayed directly. The other two are multiplied together

and their product, the square of I, is then displayed as in Fig. 9.8. It

may happen that a calculation has to proceed until its result reaches

SQUARES
0 0
.1. 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 8.1.
OK

Fig. 9.8.

a given value. We might want only the squares which are less than

40, for example. This could be arranged by setting the finishing

value of the loop to 7. It is easy to work out in advance that 6 squared

is 36, while 7 squared is 49. The action is not executed for 1=7, so

squares of numbers from 0 to 6 are displayed. If the calculation is a

complicated one, especially if it includes unpredictable values that

are calculated by other actions of the application, we may not be

able to say in advance what the finishing value of I should be. In this

case we can use the word LEAVE to escape from the loop (see Fig.

9.9). I and its square are calculated as before. The value of I-squared

is left on the stack to be tested by ‘greater-than’ as described in

t SQUARES 1.0 0 DO I DUP DUP . *
DUP . 40 > IF LEAVE

THEN CR
LOOP t

Fig. 9.9.

Over and Over 107

Chapter Eight. If I-squared is greater than 40, a true flag is left on the

stack. The IF causes LEAVE to be executed and the computer leaves

the loop (see Fig. 9.10).

SQUARES
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
OK

Fig. 9.10.

The DO ... LOOP and DO ... +LOOP loops are known as

definite loops. The number of times they will repeat is decided before

the loop begins by placing two values on the stack. Only LEAVE is

able to end the loop before I reaches its prescribed finishing value.

The other loops described in this chapter are known as indefinite

loops.

BEGIN ... AGAIN

The most indefinite of all indefinite loops goes on for ever! Or at

Fig. 9.11. Flow-chart of a BEGIN ... AGAIN loop.

108 Exploring FORTH

least it would do if we did not have ESCAPE and BREAK keys and a

power switch on the computer. The loop (Fig. 9.11) repeats the

action for as long as the normal running of the computer continues.

Here we use BEGIN ... AGAIN to display a message repeatedly:

J USER-FRIENDLY BEGIN ♦ ■ HE1...L.0 ”
AGAIN i

USER-FRIENDLY leaves no doubts about its friendliness (see Fig.

9.12). A BEGIN ... AGAIN loop is most often used for an

USER-FRIENDLY
H E L L 0 H E L. L 0 H E L. L 0 H E L L 0 H E L L 0 FI E L L. 0 H E I... L 0 H E L L 0
HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLO
H E L L 0 H E L. L 0 H E L L 0 FI E L LOME L L 0 H E L L 0 H E L. L 0 H E L L 0
H E L L (3 H E L L 0 HELLOHELLOHE L L 0 H E L. L 0 H E L L 0 H E I... L. (3
Escape

application which is to run repeatedly until the computer is switched

off. For example, the UFO game might be enclosed in such a loop:

t SESSION BEGIN UFO KEY
AGAIN f

When the game is over, the computer waits for a key to be pressed.

This gives the player time to read the score. The game is repeated

when any key is pressed.

If your FORTH does not have BEGIN ... AGAIN, a practicable

alternative is to use a DO ... NEXT loop with a suitable high

finishing value. One can safely assume that most people would

become bored with UFO (or exhausted!) and switch off before

‘20000 0 DO UFO KEY LOOP’ runs to completion.

BEGUM ... UNTIL

This type of indefinite loop has many uses. It is equivalent to

REPEAT ... UNTIL in BASIC. The word UNTIL is a testing word,

similar to IF. A flag is put on the stack immediately before UNTIL is

reached (Fig. 9.13(a)). If the flag is false, the action repeats, from

BEGIN. The action of the loop is repeated UNTIL the flag is a true

one. As with DO ... LOOP, the condition for ending the loop is

Over and Over 109

Fig. 9.13. Comparing'(a) a BEGIN ... UNTIL loop with (b) a BEGIN ... WHILE
REPEAT loop.

110 Exploring FORTH

tested at the end of the loop. This means that the loop is executed at

least once, even if the condition is true to begin with. Figure 9.13(b)

illustrates the BEGIN.. .WHILE.. .REPEAT loop. This is discussed

in Chapter Ten.
We will now design a reaction-time testing word, TEST, as an

example of the use of BEGIN ... UNTIL. The variable TOTAL is to

hold the total reaction time as it accumulates. RESET is used to

reset TOTAL to zero before the test is to be performed. DELAY

uses DO ... LOOP to give a delay of several seconds and, after that,

displays the letter A on the screen (see Fig. 9.14).

VARIABLE TOTAL
OK

{ RESET 0 TOTAL ! i

OK

J DELAY 20000 0 DO LOOP 65 EMIT i

Fig. 9.14.

The word to measure reaction time is REACTION:

{ REACTION BEGIN TOTAL (? i+ TOTAL !
2 ?KEY 65 *

UNTIL CR TOTAL (? . J

The main part of it is a BEGIN ... UNTIL loop. The loop starts by

putting TOTAL on the stack, adding 1 to it and storing the result as

the new value of TOTAL. In short, TOTAL tells us how many times

the loop has been repeated. The action of REACTION depends on

?KEY. As explained in Chapter Seven, ?KEY makes the computer

wait for a definite length of time for a key to be pressed. If no key is

pressed during that time the computer continues. The value 2 is put

on the stack before ?KEY is used, making the computer wait for one

fiftieth (two hundredths) of a second each time around the loop. The

loop repeats indefinitely, until the A key is pressed. Each time round

the loop, test the value left by ?KEY. This is done by placing 65 (the

ASCII code for A) on the stack and then using ‘equals’. If a true flag

is left on the stack by ‘equals’, the loop is not repeated. The action of

REACTION, so far, is to wait again and again for a key to be

pressed until the A key is pressed. Then the computer leaves the loop

and, after a carriage return, displays the latest value of TOTAL. This

tells us how many fiftieths of a second have elapsed since the loop

was started.

Over and Over 111

The words described above may now be put together to make up

the reaction test:

i TEST RESET DELAY REACTION }

The first thing is to reset TOTAL. Then DELAY makes the

computer pause, before displaying A. The user will have been

watching the screen and, as soon as A appears there, is to press the A

key. REACTION will have started its looping meanwhile. During

the time that the user requires for noticing the A on the screen and

then finding and pressing the A key, the loop will have been repeated

several times. The number of loops is displayed as soon as A is

pressed.

TEST
A
16 OK

The example above shows the sequence of events. TEST is keyed in

and RETURN is pressed. Nothing happened for a few seconds, until

the A appeared. The A key was pressed immediately after that, but

not before the loop had repeated 16 times. The user’s reaction time is

16/50 second, or 0.32 second. You could add routines to TEST to

display the final result in seconds or hundredths of a second. Test

your own reaction times - it should be easy to beat the result shown
above.

YN? revisited

In Chapter Eight we devised a word YN? which waits until the user

has typed either Y or N. It made use of recursion to repeat the input

sequence until one or the other of these keys was pressed. There were

certain unsatisfactory aspects to this approach and it is now clear

that a BEGIN ... UNTIL loop could provide a better solution to the

problem. We need to repeat the keying in sequence until either the Y

or the N has been pressed. The new definition of YN? given in Fig.

9.15 has a snag, as will be explained later, but it makes a starting

point for exploring the possibilities.

The loop begins with KEY, which waits indefinitely for a key to be

pressed and then puts its ASCII code on the stack. We are going to

want to test the value left by KEY, to see if it corresponds to Y

(ASCII code = 89), to test it again to see if it corresponds to N

(ASCII code = 78) and finally to display the result as Y or N on the

112 Exploring FORTH

O

l YN? BEGIN KEY DUF' DLJP 89 ~
SWAP' 78 = = NOT

UNTIL. EMIT CR *

OK

YN?
Y
OK

YN?
N
OK

Fig. 9.15.

screen. Or we might use the value (78 or 89) left on the stack for some

other purpose. In all we need to have three copies of the ASCII code,

and this is provided by ‘DUP DUP’. The sequence of finding out if

the Y or the N has been pressed is as follows (X is the value left by

KEY):

The stack holds X X X

Test 1: 89 X X X 89
= X X Flag -1

SWAP X Flag -1 X

Test 2: 78 X Flag -1 X 78

= X Flag -1 Flag -2

At this stage the two flags may be:

Flag -1 Flag -2

If Y pressed 1 0

If N pressed 0 1

If any other 0 0

key pressed

If a key other than Y or N is pressed we want the loop to repeat. Note

that it is not possible for both flags to be 1. The next ‘equals’ tests if

the two flags are equal to each other, which in this case means that

they are both equal to zero. If this is true, we want the loop to repeat.

But UNTIL only repeats a loop if it finds a false flag at top-of-stack!

The solution to this is to invert the flag, using NOT, as explained in

Chapter Eight.
If neither Y nor N is pressed the false flag causes UNTIL to repeat

Over and Over 113

the loop. If Y or N is pressed, so that the flag is true, the loop ends.

The value X left at top-of-stack is then displayed, using EMIT.

This word works as expected but is faulty in one important

respect. Whenever a key other than Y or N is pressed its value (X) is

left on the stack when the loop repeats. A series of values is gradually

accumulated on the stack during the running of an application. It is

a general rule that values must not be allowed to accumulate in this

way, otherwise a ‘Stack Full’ error may be caused. Words should

leave on the stack only such values as may be required by succeeding

words. DROP seems a likely candidate for getting rid of the

unwanted X, but the problem is where to use it. It must be used

inside the loop, yet we cannot use it immediately before UNTIL. We

do not know if X is to be dropped or not until UNTIL has tested the

flag! The solution is to drop it at the beginning of the loop,

immediately after BEGIN. Each time the loop repeats, the value X

left on the stack by the previous loop is DROPped, before the next

key-press is accepted. This new version of YN? begins by placing a

dummy value (0, but it could be anything) on the stack ready for

DROPping the first time DROP is encountered:

I YN? 0 BEGIN DROP KEY DUP DIJP 89 =
SWAP 78 = = NOT

UNTIL EMIT CR ?

On the second and subsequent times round the loop the computer

returns to BEGIN, not to the 0, so it is the value X which is dropped.

This word leaves nothing behind on the stack.

Which number?

A similar technique can be used for accepting a numeric input within

a given range. For example, the user might have been presented with

a menu of choices numbered from 1 to 4. The word NO? is to accept

any number within that range, but not outside it (see Fig. 9.16). The

: NO? 0 BEGIN DROP KEY DUP DUP 48 >
SWAP 53 < =

UNTIL EMIT CR t

OK

NO?
3
OK

Fig. 9.16.

114 Exploring FORTH

ASCII codes of 1, 2, 3 and 4 are 49, 50, 51 and 52 respectively. This

word finds out if the code left at top-of-stack is greater than 48 and

less than 53. As with YN?, two flags are left on the stack:

Flag-1 Flag-2

key 0 or less 0 1

key 1 1 1

key 2 1 1

key 3 1 1

key 4 1 1

key 5 or more 1 0

‘Key 0 or less’ means pressing 0 or any punctuation key which has an

ASCII code of 46 or less. ‘Key 5 or more’ means pressing key 5, or

any greater number, or any letter or punctuation key with a higher

ASCII code. It is not possible for both flags to be 0.

The loop is to be left only if both flags are 1. As in YN?, we use

‘equals’ to test if the two flags are the same. But here we want to end

the loop if they are the same, so the NOT is not required. If they are

the same, the loop ends and the number is displayed. If they are not

the same, the loop repeats, dropping the value of the unaccepted

key-press before waiting for the next input.
BEGIN ... UNTIL loops can be nested with each other or with

other kinds of loop provided that the usual rules for nesting one loop

completely inside the other are obeyed. Figure 9.17 shows an

J NO? BEGIN DROP KEY DUP DUP 47 >
SWAP 50 < =

UNTIL i

OK
: NOS? 5 0 DO NO? DUP EMIT CR

40 - I VALUES !
LOOP ;

OK
Fig. 9.1 7.

example, NOS? which uses NO? to collect 5 numbers (each in the

range 0 to 9) and place them in an array, VALUES. VALUES is

defined, using ARRAY as explained in Chapter Six, to hold 5

values. The sequence of words within the BEGIN ... UNTIL loop of

NO? is the same as in the previous version, except for the ‘47’ and ‘58’

which allow any number in the range 0 to 9 to be keyed in. Letters

and symbols are not accepted. NOS? uses NO? in a DO.. .LOOP, so

in effect we have a BEGIN.. .UNTIL nesting inside a DO.. .LOOP.

After NO?, the value on the stack is duplicated so that it can be

Over and Over 115

NOS?
3
cr

8
1
OK
2 VALUES 0 .
2 OK
4 VALUES 6 ♦
1 OK

Fig. 9.18.

displayed. It is then reduced by 48, since the ASCII code of a number

is 48 greater than the value of the numeral, and is then stored in

VALUES. I is used to decide which location of VALUES it is stored

in.

Repeat for ever

Some FORTHs lack BEGIN ... AGAIN, but this deficiency can

easily be remedied by adapting the BEGIN ... UNTIL loop. The

word immediately preceding UNTIL is 0:

BEGIN <action> 0 UNTIL

This places a false flag on the stack every time round the loop. As a

result, UNTIL never finds true and the loop never ends.

To summarise

In this chapter you have found out how to:

• Use DO ... LOOP and the associated indexes I and J to repeat an

action a definite number of times.

• Use BEGIN ... AGAIN to repeat an action indefinitely.

• Use BEGIN ... UNTIL to repeat an action until a given condition

is true.

• To check that the user has pressed one of a given set of keys.

You have used these FORTH words:

• DO comes before the action words of a definite loop (nl\n2 ...).

116 Exploring FORTH

• LOOP ends the action sequence of a definite loop; action repeats

from DO (.. .).

• I the loop index (... 1).

• J the loop index of the outer of two nested loops (... J).

• +LOOP used instead of LOOP when I or J are to be stepped

down (decremented) or to be stepped up (incremented) by more

than 1 (step .. .).

• BEGIN comes before the action words of an indefinite loop (...).

• AGAIN ends the action section of an indefinite loop; the loop

repeats from BEGIN (...).

• UNTIL ends the action section of an indefinite loop when a given

condition is true (flag ...)■

Explore more

(1) Write a word to display a table of numbers and their cubes, for all

the number from 1 up to the largest number with a cube less than

30000.

(2) Write a word to check that a number of one or more digits, typed

in by the user, lies within a given range, for example (1-99).

(3) Devise a simple game along the following lines, and write the

words needed for it. An aeroplane flies repeatedly across the screen

from left to right. Each time it crosses the screen the player’s score is

increased by 1. The player has to shoot the aeroplane down by

pressing the space-bar at the exact moment the aeroplane reaches

the centre of the screen. If the key is pressed at the right time, the

plane explodes, the game ends and the player’s score is displayed. If

the player presses the key too early or too late to hit the aeroplane,

the player’s score is increased by 1. The object of the game is to

obtain a very small score.

Chapter Ten

Sorting Numbers

It is often useful to be able to sort a set of values into numerical

order. Sorting is an operation in which the same action has to be

repeated over and over again. As one might expect, repeating loops

play a major role in sorting routines.

The routines developed in the remainder of this chapter are to be

generally applicable. All values to be sorted will be held in an array,

called VALUES. Screen 23 (Fig. 10.1) shows the definition of the

defining word ARRAY, which is exactly the same as used in earlier

chapters.

SCE #23 17 H
0 (SORTING - PART 1)
1 J ARRAY CREATE 2 * ALLOT
2 D0ES> SWAP 2 * + f

3 5 ARRAY VALUES
4
5 VARIABLE. NEXT
6 J SET 37 0 25 1 48 2 21 3 30 4 5 0
7 DO VALUES ! LOOP }

8 : SHOWVAL 5 0 DO I VALUES @ . LOOP i

9
10 l COMP DUP VALUES 8 ROT DUP
11 VALUES 6 ROT OVER OVER
12 > IF ROT VALUES' ! SWAP VALUES !
13 ELSE 2DR0P 2DR0P THEN t
14
15 -->

Fig. 10.1. Screen 23.

Next we define the array VALUES, to hold 5 numbers. There is

no limit on how many numbers it can hold, except that set by the

amount of free memory available. Five values are enough for

showing how the sorting routines work.

118 Exploring FORTH

The variable NEXT is defined next. Its purpose will be described

later.

SET is to be used to place a set of unsorted values into VALUES

quickly, so that we can check the action of the application as we

develop it. It is not needed when the application is finished.

SHOWVAL too is not needed for sorting, but is used to display the

contents of VALUES. This is handy for following the sorting stage-

by-stage.

The essential feature of most sorting procedures is to take two

values, compare them and, if necessary, swap them round. The word

COMP does just this. It is designed to take any two values from

VALUES and then to place the lesser value in the location of lower

number and the greater value in the other location. For example, it

might take the values from location 4 and location 6. These might be

Location 4 Value held = 321

Location 6 Value held = 123

In this case the values would be swapped so that the lesser value

(123) goes into the location with smaller number (location 4). If the

values held were as follows:

Location 4 Value held = 111

Location 6 Value held = 555

Then there would be no need to swap, as location 4 already holds the

smaller value. COMP is designed for routines which sort numbers in

ascending order. You could easily adapt it to sort the other way

round.

COMP requires two values on the stack; the numbers of the

locations to be compared, with lower number at second-on-stack

and higher number at top-of-stack. Let us call these nl and n2

respectively. The values which are held in these locations will be

referred to as (nl) and (n2). Here is how COMP works (top-of-stack

to right, as usual):

COMP expects nl

DUP nl

VALUES @ nl

ROT n2

DUP n2

VALUES @ n2

ROT n2

OVER OVER n2

n2

n2 n2

n2 (n2)

(n2) nl

(n2) nl nl

(n2) nl (nl)
nl (nl) (n2)
nl (nl) (n2) (nl) (n2)

Sorting Numbers 119

>
IF

ROT

VALUES!

SWAP

VALUES!

The above shows what happens if the values are in the wrong order

and so need to be swapped. If ‘greater-than’ (>) leaves a true flag, the

IF branch of the routine comes into operation. If the flag is false,

there is no swapping.

ELSE finds 4 values on the stack. These are got rid of by using

2DROP twice. 2DROP is really intended for DROPping double¬

precision values from the stack (see Chapter Eleven), but we can use it

here for DROPping two single-precision values at once.

n2 nl (nl) (n2) flag

n2 nl (nl) (n2)

n2 (nl) (n2) nl

n2 (nl)

(nl) n2

Exchange sort

The first type of sort that we shall look at is the exchange sort. The

way this operates is shown in Fig. 10.2. The rows of the diagram

show the contents of VALUES, each time COMP has just

exchanged two values. Ignore the words at the right-hand of the

figure for the present.

The principle of this sort is as follows:

(1) Take the value in the first location and compare it with the values

in the other locations in turn, starting with the value in the second

location and proceeding to the end of the array. If the value in the

first location is greater than the one it is compared with, exchange

them. The result of this is to place the smallest value of all in the first

location. Figure 10.2 shows two such exchanges, resulting in the

smallest value (21) being placed in location 0.

(2) Repeat the above action but this time compare the value in the

second location with all others in succeeding locations. Exchange when

necessary. This puts the second smallest value (25) in the second

location (1).

(3) Continue in this way comparing the third and fourth (last-but-

one) locations with succeeding locations. Eventually the numbers

will be in ascending numerical order.

Figure 10.2 shows the stages of sorting a particular sequence of

120 Exploring FORTH

:EXSORT
BEGIN
OVER OVER

SWEEP (40)

LOCATIONS IN VALUES
0 = FROM 1 2 3 4 = END

37 25 48 21 30

X

21 25 48 37 30

1+ OVER OVER = UNTIL

OVER OVER

21 25 48 37 30 SWEEP (42)

X
21 25 37 48 30

21 25 30 48 37

1+OVER OVER = UNTIL

OVER OVER

21 25 30 48 37 SWEEP (43)

X
21 25 30 37 48

1+ OVER OVER — UNTIL

2 DROP;

Fig. 10.2. Exchange Sort: (left) values in array VALUES after each swap.
(Right) stages in the action of EXSORT. The numbers in brackets after SWEEP
indicate the range of locations over which it sweeps. Shaded locations hold
values sorted into their final places.

values. Let us put these numbers into VALUES as shown in Fig.
10.3. SHOWVAL proves that they are really there!

SET
OK
SHOWUAL
37 25 48 21 30 OK

Fig. 10.3.

Sorting Numbers 121

Now we need a word which will perform the operation described

in (1) above, beginning at any given location. The word for this

purpose is SWEEP, which sweeps along the array, comparing and

exchanging, when necessary, as it goes. This is listed in Screen 24
(Fig 10.4). The point of interest about SWEEP is that it uses a kind

SCR * 24 18 H
0 < SORTING - PART 2)
1 t SWEEP DUP 1+ NEXT !
2 BEGIN OVER 1+ NEXT (» >
3 WHILE DUP NEXT (? COMP NEXT (»
4 1+ NEXT ! REPEAT 2DR0P f
5 J EXSORT BEGIN OVER OVER
6 SWEEP 1+ OVER OVER = UNTIL 2DROP I
7
8
9

10
11
12
13
14
.1.5 — >

Fig. 10.4. Screen 24.

of indefinite loop which we have not yet described. This is the

BEGIN ... WHILE ... REPEAT loop. The action of this loop is

shown in Fig. 9.13(b), where it can be contrasted with that of the

BEGIN.. .UNTIL loop. The main difference is that whereas the

BEGIN ... UNTIL loop tests a flag at the end of the loop, the

BEGIN.. .WHILE.. .REPEAT tests it at the beginning.

The second difference is that the BEGIN.. .UNTIL loop repeats

as long as the flag is false, and stops repeating when the flag is true.

The BEGIN.. .WHILE.. .REPEAT loop repeats as long as the flag

is true and stops repeating when it is false.

We have already said that a BEGIN.. .UNTIL loop will always

perform its action at least once. A BEGIN.. .WHILE.. .REPEAT

loop need never perform its action at all. If the flag is false when the

loop begins, WHILE sends the computer straight out of the loop

and the action is by-passed. SWEEP requires two variables on the

stack. The number of the location at which the sweep is to begin will

be referred to as f (for from). The number of the last location to be

swept is called e (for end). SWEEP begins by placing a value in
NEXT:

122 Exploring FORTH

SWEEP expects

DUP

1 +
NEXT !

e f

e f f

e f f+1

e f

To begin with, f equals 0 (first location), so NEXT now holds 1. This

means that the first comparison is to be made between the values in

the first and second locations.

The part of SWEEP between BEGIN and WHILE sets up the flag

ready for testing by WHILE:

BEGIN e f

OVER e f e

1 + e f e+1

NEXT @ e f e+1 (next)

> e f flag

If the value of NEXT (listed above as (next)) is less than e+1, the

sweep is to continue. The flag is true and WHILE portion of

SWEEP will be executed. Note that e and f have been retained on the

stack throughout all the above stages, ready for use in the loop:

WHILE e f

DUP e f f

NEXT @ e f f (next)

COMP e f

NEXT @ e f (next)

1 + e f (next)+l

NEXT ! e f

REPEAT e f

The loop tells COMP (p. 118) to compare the number in the first

location with the number in the next location. Then NEXT is incre¬

mented. Note that e and f are left on the stack ready for BEGIN. In

constructing a loop it is essential that the values required for setting the

flag in the BEGIN... WHILE section are left on the stackjust before

the REPEAT.
During the loop, NEXT is incremented so that, as the sweep

proceeds, the contents of location 0 are compared in turn with the

contents of location 1, then with location 2, and so on to the end of

the array.
SWEEP ends with 2DROP to get rid of e and f when the loop no

longer repeats.
Now to see SWEEP in action. As explained earlier, the first sweep

Sorting Numbers 1 23

is to take the value in location 0 and compare it with all others in

successive locations. We need 0 (= f) and 4 (= e) on the stack (See
Fig. 10.5). SHOWVAL shows that SWEEP has done itsjob. Location

0 now holds the smallest value, 21. Compare Fig. 10.5 with the third

row of Fig. 10.2.

4 0 SWEEP
OK
SHOWVAL
21 37 48 25 30 OK

Fig. 10.5.

The next step it to take location 1 as the ‘from’ location (f = 1).

The end is still 4. The second SWEEP is shown in Fig. 10.6. Only two

more sweeps are needed to complete the sort (See Fig. 10.7).

4 1 SWEEP
OK
SHOWVAL
21 25 48 37 30 OK

Fig. 10.6.

4 2 SWEEP
OK
SHOWVAL
21 25 30 48 37 OK

4 3 SWEEP
OK
SHOWVAL
21 25 30 37 48 OK

Fig. 10.7.

Instead of using SWEEP by typing it in repeatedly, we have a

REPEAT.. .UNTIL loop. This loop is the main part of the word

EXSORT (short for Exchange Sort). The values of f and e are

expected on the stack and these are copied by ‘OVER OVER’.

SWEEP uses the copies of f and e, the original f and e being left on

the stack. When the sweep is finished, f is incremented by 1, so that

the sweep begins one location further along the array each time it is

repeated. This is just what we did above, when we used SWEEP

repeatedly from the keyboard.

124 Exploring FORTH

After using SWEEP, EXSORT adds 1 to the value off (at top-of-

stack) ready to repeat the sweep with a new starting location.

However, if f now equals e, no further sweeps are required. So e and

the new f are copied by OVER OVER and tested with ‘equals’. If

they are equal, the flag left on the stack is 1 and UNTIL does not

cause a repeat. The remaining values of e and f are disposed of by

2DROP. The stages of action of EXSORT are indicated at the right-

hand side of Fig. 10.2. Figure 10.8 shows EXSORT in action. The

SET
OK
4 0 EXSORT
OK
SHQWVAL
21 25 30 37 48 OK

Fig. 10.8.

time taken by EXSORT varies, depending on how many values are

already in numerical order. When tested on an array of 101 values,

already in order from 0 to 100, it takes just under 1 second (on the

BBC Microcomputer). On an array of 101 numbers arranged in the

reverse order (100 to 0), the time was 20 seconds. An equivalent

routine in BASIC took 40 seconds.

Bubble sort

Figure 10.9 illustrates another commonly used sorting routine. In

this one, we move (or sweep) along the array, comparing each value

with the one next door to it and swapping them if necessary.

This process is repeated along the whole length of the array as

many times as is necessary to place the values in the correct order.

We need a flag variable, SWAPPED, which is set to 1 before each

sweep. If two values are swapped, this variable is set to zero. At the

end of each sweep, the variable is tested. If it is 1, the whole array has

been swept with no swapping, indicating that sorting is complete.

SWAPPED is defined in Screen 25 (Fig. 10.10).

Since SWAPPED has to be changed whenever an exchange

occurs, we need a new version of COMP. This version, COMPS, is

shown in Screen 25 (Fig. 10.10). It is exactly the same as COMP

except for the inclusion of the extra words ‘0 SWAPPED !’ in the IF

branch of the routine.

Sorting Numbers 125

LOCATIONS IN VALUES :BUBSORT VALUE OF

2 DROP;

Fig. 10.9. Bubble Sort (left) values in array VALUES after each swap. (Right)

stages in the action of BUBSORT. Shaded locations hold values sorted into
their final places.

The Bubble Sort derives its name from the way in which the

smaller values tend to rise toward the beginning of the array, like

bubbles in a liquid. This is why we have called the sweeping word

RISE. It requires the values of e and f on the stack. It is left to the

reader to work out how it operates, by setting out the stack action as

for the Exchange Sort words described above. Use SET to place

values in the array as before and use RISE repeatedly, until

SHOWVAL indicates that the sorting is complete. Compare the

results at each stage with the rows of Fig. 10.9.

126 Exploring FORTH

SCR * 25 19 H
0 (SORTING - PART 3)
1 VARIABLE SWAPPED
2 : COMPS DUP VALUES 0 ROT DIJP
3 VALUES (? ROT OVER OVER
4 > IF ROT VALUES ! SWAP VALUES !
5 0 SWAPPED !
6 ELSE 2DR0P 2DR0P THEN J
7 t RISE BEGIN DUP DUP 1+ COMPS
8 1+ OVER OVER = UNTIL DROP DROP J
9 : BUBSORT BEGIN 1 SWAPPED !

10 OVER OVER RISE SWAPPED (?
11 UNTIL 2DR0P i
12
13
14
15 — >

Fig. 10.10. Screen 25.

BUBSORT provides the complete bubble sort routine. It begins by

setting SWAPPED to 1. After RISE, it tests to see if it has changed.

If there has been an exchange, SWAPPED is 0 (false) so the loop

repeats. If all values are completely sorted and there has been no
exchange, SWAPPED is 1 (true) so there is no repeat. 2DROP gets

rid of the values of e and f remaining on the stack.

Both of these routines can be used with any pair of values for f and

e. This makes it possible to perform sorting of several sets of values

within the same application (See Fig. 10.11).

In the example below, we first sorted the values in locations 2 to 4.

SET
OK
SHOWVAL
37 25 48 21 30 OK
4 2 EXSORT
OK
SHOWVAL
37 25 21 30 48 OK
1 0 EXSORT
OK
SHOWVAL
25 37 21 30 48 OK

Fig. 10.11.

Sorting Numbers 127

The values in location 0 and 1 are unaffected. Then we sorted

the values in 0 and 1, independently of those in 2 to 4. The

advantage of this is that you can set up a large array to hold

all the sets of values that are to be sorted in a given application.

Each set occupies its own range of locations and can be sorted

independently. This makes it unnecesary to define separate

words for sorting each of several differently named arrays.

Quicksort

Exchange Sort and Bubble Sort are useful when the number of items

to be sorted is small. Their disadvantage is that as the number of

items increases the number of comparisons to be made increases

alarmingly. Doubling the number of values to be sorted increases

the sorting time fourfold. Bubble Sort can be quick if the values are

in more-or-less the right order to start with, but takes much longer

than the Exchange Sort if the numbers are in reverse order. It has the

disadvantage that exchanges always occur between adjacent

locations so that a value can never move more than one place at a time

along the array. A low number which begins at the top end of the

array is going to take a long time to reach its destination.

Quicksort has a different approach to sorting, as illustrated in Fig.

10.12. Widely separated numbers can be exchanged, so movement is

rapid. The first step is to choose a value called the comparand. For

convenience, this may be taken as value in the ‘middle location’ of

the array. If the array has an even number of locations, it is the last

location in the first half of the array. In Fig. 10.12 the comparand

(48) has a circle drawn round it. There are two variables, called the

left pointer (LP) and the right pointer (RP). To start with, these

point at the ends of the array. Thus LP = 0 and RP = 4 in this

example. We begin by incrementing the value of LP until the value

in the location it points to is equal to or greater than the comparand.

In this example, we move LP to location 2, which contains the

comparand itself since the values in locations 0 and 1 are both less

than the comparand. Next we decrement RP until the value in the

location it points to is equal to or less than the comparand. In this

example, it already points to the value 30, which is less than the

comparand, so no change is necessary. Later we shall see that a

BEGIN.. .WHILE.. .REPEAT loop is used to move the pointers.

The example of RP given above is a case in which no change is

128 Exploring FORTH

LOCATIONS IN VALUES

0= FROM 1 2 3 4 = END

FULLY UNSORTED

ARRAY

SWAP VALUES

POINTERS

CROSSED

RP SETS END OF

NEW SUB-ARRAY

SWAP VALUES

SWAP VALUE
WITH ITSELF

POINTERS
CROSSED

LP SETS FROM OF
NEWSUB-ARRAY

LP

SWAP VALUE WITH

ITSELF

POINTERS CROSSED

LP AT END; RP

BEYOND FROM;
SORTING COMPLETE

KEY:

t t
LP RP

POSITIONS OF POINTERS AT
START OF EACH STAGE

POSITIONS TO WHICH
POINTERS ARE MOVED

POINTER SETTING THE

FROM OR END OF
NEXT SUB-ARRAY

o COMPARAND IS CIRCLED

Fig. 10.12. Quicksort. Shaded locations hold values sorted into their final
location.

Sorting Numbers 129

required from the beginning, so a BEGIN.. .WHILE.. REPEAT

loop is just what is needed.
Next we look at positions of the pointers. If LP is still to the left of

RP (LP<RP), we swap the values in these two locations of the array.

This brings us to the second line of Fig. 10.12. At the same time we

increment LP by 1, and decrement RP by 1.

The steps above are now repeated. LP moves to point to the 48,

now at location 4. RP stays where it is, since 21 is already less than

48. When we look at the positions of the pointers we now find that

they have crossed; LP is to the right of RP (LP>RP). This fact

brings this part of the routine to an end.

The routine above covered the whole array. From now on the

same routine is used, but is applied to part of the array. Which part is

involved depends on the positioning of the pointers. If RP is not at

or to the left of the left end of the array, the region extends from the

left end to the location pointed at by RP. This is the case here, so the

array is now considered to extend from 0 to 3. This can be thought of

as a subarray which is about to be sorted, using the same procedure

as described above. In short, the routine is a recursive one which

calls upon itself to sort the subarrays which it creates.

If RP is not positioned as described above, we look at LP. If this is

not at or to the right of the right end of the array (or subarray), the

new range of the array extends from the position of LP to the end of

the array. If the conditions above are not met by either pointer, the

sorting is complete.

The above may sound rather complicated, which it is, but this

method of sorting is extremely efficient and fast. You may have

noticed in Fig. 10.12 that the array has been put in the correct order

by the fourth line. The routine goes through two extra stages of

swapping the comparand with itself before finally ending. This may

seem wasteful, but with a larger array, the amount of time spent

doing this is much less in proportion. The larger the number of

values to be sorted, the more efficient Quicksort becomes.

The words for Quicksort are shown in Screens 26 and 27 (Figs

10.13 and 10.14).

The variables END and FROM are used to hold the numbers of

the locations at the ends of the array (e and fin the previous description).

As with the other sorts, we can use Quicksort on any chosen section

of the array V ALUES. The values held in FROM and END change as

the array is divided into subarrays, and then refer to the subarray

currently being sorted. Variables LP and RP are the left and right

pointers respectively.

130 Exploring FORTH

SCR * 26 1A H
0 (SORTING - PART 4)
1 UAPIABLE END VARIABLE FROM
2 VARIABLE LP VARIABLE RP
3 I LEFT BEGIN DUP LP (? VALUES 0 >
4 WHILE LP 0 1+ LP ! REPEAT DROP f
5 : RIGHT BEGIN DUP RP (? VALUES (? <
6 WHILE RP 6 1- RP ! REPEAT DROP ?
7 J READ G? VALUES B *

8 J PUT (? VALUES ! *

9 t EXCH LP READ RP READ LP PUT RP PUT
10 L.P L» i+ LP ! RP 6 1- RP ! t

11 t SORT BEGIN DUP DUP LEFT RIGHT
12 LP (? RP 0 > DUP
13 IF ELSE EXCH THEN UNTIL DROP i
14 J COMPARAND OVER OVER LP ! RP !
15 +2/ VALUES (? ; —>

OK

Fig. 10.13. Screen 26.

SCR * 27 IB H
0 (SORTING - PART 5)
1 RJ QUICK COMPARAND SORT
2 FROM (? RP @ <
3 IF RP (? DUP END ! FROM & QUICK
4 THEN
5 LP Q END Q <
6 IF END (? LP @ DUP FROM ! QUICK
7 THEN Rt

8 : QUICKSORT OVER OVER FROM ! END !
9 QUICK t

10
11
12
13
14
15

Fig. 10.14. Screen 27.

LEFT and RIGHT are routines to move the left pointer along the

array as described above. RIGHT does the same thing for the right

pointer. These routines contain WHILE, which makes it possible for

no change of the pointer to occur if it is already in an acceptable

position.

Sorting Numbers 131

READ is used to read a value from a location that is pointed at. It

needs the address of the pointer on the stack, so is used after the

pointer’s name, e.g. ‘LP READ’. The value stored in that location is

left on the stack.

PUT has the reverse action. It is used after the name of the pointer

e.g. ‘RP PUT’. It places the value which is at second-on-stack into

the location in VALUES pointed at by the pointer. READ and PUT

are used in EXCH. This requires no values from the stack. It

READs the values from the two locations pointed at by LP and RP,

then PUTs them back in the opposite locations. In other words, it

executes a swap. It follows this by incrementing LP and

decrementing RP.

SORT carries out the main sorting action as described earlier. It

requires the value of the comparand on the stack. It duplicates this

twice, for use by LEFT and RIGHT. These move the pointers to

their correct positions. If LP is not greater than RP (LP<=RP),

EXCH is called upon to perform the exchange of values. Note that

FORTH does not provide a < = operator as such, as does BASIC.

Instead, we test to see if LP>RP, and put the required action in the

ELSE branch of the IF.. .ELSE.. .THEN routine. There is no action

in the case of IF being true.

COMPARAND is used to decide on the comparand. It requires

the END and FROM values on the stack. Then it calculates the

location of the ‘middle’ of the array or subarray and places the value

held in that location on the stack.

QUICK puts most of the above words together. This routine has

to call itself to deal with the subarrays into which it divides the main

array. It is a recursive routine and must be defined within ‘R-colon’

and ‘R-semicolon’ as explained in Chapter Seven. It needs END and

FROM on the stack. Then it uses COMPARAND and SORT to

perform the sorting of the initial array. After this it has two routines

to test the positions of the pointers with respect to the two ends of the

array. If one of the two conditions described earlier is met, the value

of either END or FROM is amended, so as to define a subarray.

Then QUICK calls itself. If neither of these conditions is met, sorting

is complete and the word ends.

It needs only one more word, QUICKSORT to take the two

location values from the stack and store them in FROM and END.

Then QUICK is called upon to perform the sort.

Investigate the way in which QUICKSORT works by testing the

action of individual words. It is interesting to redefine EXCH with

‘SHOWVALS LP @ . RP @ . FROM @ . END @ .’ at the end of it.

132 Exploring FORTH

This will display the array and the key variables after each swap is

done.

QUICKSORT works extremely fast. It was tested by setting up a

special array of 101 values, 0 to 100 in reverse (descending) order.

Sorting these into ascending order took EXSORT about 20 seconds.

A BASIC version of Quicksort took 3*/2 seconds. QUICKSORT

took less than 2 seconds.

To summarise

In this chapter you have found out how to:

• Sort numbers, using Exchange Sort, Bubble Sort and Quicksort.

• Use a BEGIN...WHILE...AGAIN loop.

You have used these FORTH words:

• WHILE causes the action following it to be performed provided it

finds a true flag on the stack (flag ...).

• REPEAT used at the end of the action which follows WHILE to

make the computer repeat from BEGIN (...).

• 2DROP which drops one double-precision value or two single¬

precision values from the stack (n ...) or (nl n2 ...).

Explore more

(1) Adapt one of the sorting routines to sort numbers into reverse

(descending) order.

(2) Write a word MEDIAN which, given a set of unsorted numbers,

sorts them, and then finds the ‘middle number’ or median.

(3) Write a word to sort words into alphabetical order, using the

ASCII codes of the letters. Hints: (a) Define a word to define an array

to hold the words (each word could be up to, say, 10 letters long),

(b) Write a word to compare two words letter-by-letter. It starts by

comparing the first letter of each, then the second and so on. As soon

as it finds that the words are in the wrong order it stops comparing

them and swaps them.

Chapter Eleven

Kinds of Numbers

The main kinds of numbers that FORTH uses are:

Number Range Number of

bytes

Byte 0 to 255 1

Single-precision -32768 to 32767 2

Double-precision -2147483648 to

2147483647

4

We have used bytes quite a lot, particularly when dealing with

strings. The ASCII codes for the characters are stored as single

bytes. There are no ASCII codes greater than 127, so a byte is

adequate for this purpose.

We have also used single-precision numbers, noting that these are

always integers. The fact that no decimal places are allowed might

seem to be a disadvantage. However, we have reached almost the

end of the book without needing them, so they cannot be of very

great importance. On the other hand, the use of integers is

advantageous. It saves memory space and allows the number¬

handling words to work much more quickly. On those occasions on

which it is essential to have decimal places, we can write words to do

the job. There is more about this later in the chapter.

The range of single-precision numbers is adequate for most

purposes, though sometimes we find that the upper limit is a little too

low. For example, we might want to perform this addition:

30000 20000 + ♦
-15536 OK

The answer is obviously wrong. The reason for this is that, as explained

in Chapter Five, the computer is using 15 bits of the 2 bytes for the

value of the number, and the 16th bit for its sign. Adding these two

numbers together has carried over into the 16th bit. It becomes a T,

134 Exploring FORTH

so the total is taken to be a negative number. The other 15 bits of the

total have the value, 15536, so the computer displays - 15536.

Numbers such as those used above are more precisely described

as signed single-precision integers. The advantage of using signed

integers is that we can have negative values as well as positive ones.

The disadvantage is that the range is limited to the amount which

can be expressed in 15 bits.

If we are prepared to sacrifice the negative numbers, all 16 bits can

be used to store the value of a number. This gives what is called an

unsigned single-precision integer:

30000 20000 + U.
50000 OK

The addition has taken exactly the same course as before. The

difference comes when the computer goes to the top two bytes of the

stack and works out what number it represents. ‘U-dot’ makes the

computer take all 16-bits as part of the value. It follows that this

word should not be used following calculations which could

possibly produce a negative result.

The range of unsigned single-precision numbers is from 0 to

65535.

Double-precision numbers

Really large values are expressed as double-precision numbers. To

go with these we have a special range of double-precision words,

including:

D+ to add two double-precision words and give a double¬

precision sum.

D. displays a double-precision value from top-of-stack.

D< compares two double-precision numbers and leaves a true

flag on the stack if second-on-stack is less than top-of-stack.

2DROP, 2DUP, 20VER and 2SWAP are the stack operators

for handling double-precision numbers.

These words have just the same action as their single-precision

equivalents, so we need say any more about them.

Before a number can be operated on by any of the double¬

precision words, it must first of all be placed on the stack as a double¬

precision number, occupying 4 bytes. We may want to use small

numbers such as 3, or 22 in double-precision calculations but, if we

Kinds of Numbers 135

simply type them as we usually do, they will be stacked in single-

precision format.
The way to indicate that a number is to be stacked in double¬

precision format is to terminate it with a ‘point’:

12, 400GOO. D+ D.
400012 OK

This may lead to confusion, for there are versions of FORTH in

which the terminal ‘point’ is taken to indicate a floating point

number. Consult the reference manual of your version of FORTH if

in doubt.

As well as those words which operate entirely with double¬

precision numbers there are some which involve double-precision

numbers at certain stages. The general effect is to maintain precision

in the result, which might be lost if single-precision numbers were

used throughout. In Chapter Five we came across ‘times-divide’,

in which the product of two single-precision is stored as a double¬

precision number before being divided by a third single-precision

number.

Here are some examples to show how some of these mixed-

precision operators may be used:

6000 7000 M* D.
42000000 OK

‘M-times’ multiples two single-precision numbers together, giving

their product in double-precision format. All values are signed.

20000 25000 + 9 IJ* D.
405000 OK

‘U-times’, in contast to ‘M-times’ takes all values to be unsigned. It is

not possible to key in unsigned numbers directly from the keyboard,

so we have had to enter two signed numbers in the normal way. Then

they have been added to give a total which is beyond the range of

signed numbers. ‘U-times’ has accepted this as an unsigned number

and multiplies correctly. Note that both ‘M-times’ and ‘U-times’

accept single-precision numbers, giving a double-precision product.

These are mixed-precision operators. ‘U-times’ is the FORTH

primitive word for multiplying. It uses machine code, so it is very

fast.

There is a primitive for division too:

12000139. 3000 U/ , .
4000 139 OK

136 Exploring FORTH

This is another mixed-precision operator. It requires a double¬

precision number at second-on-stack, to be divided by a single¬

precision number at top-of-stack. All numbers are taken to be

unsigned. The results are expressed as single-precision numbers, the

quotient being at top-of-stack, with the remainder at second-on-

stack.

Floating-point numbers

Floating-point numbers are those which may have one or more

figures after the decimal point. They are not part of standard

FORTH, though many versions of FORTH incorporate words for

dealing with them. Such versions have words such as F.,F* , F+, and

F/ to perform the essential arithmetic operations on them. These

words operate in the same way as their single-precision integer

counterparts, so there is no point in discussing them further here.

If your version of FORTH has no such words and you need to use

floating-point numbers, it is easy to add words to cater for this

kind of number.
In practise it is not necessary to devise complicated routines to

handle such numbers. The fact that a number is of the floating-point

variety is only important when it is to be entered at the keyboard or

displayed on the screen. In between it may be stored or operated on

by the micro in any form which is convenient to the micro. Indeed,

something of this kind already happens. The integers we type in and

the integer results we see on the screen are normally in decimal. The

micro converts these decimal values to binary form before storing

them or operating on them, converting them back again to decimal

before it displays the results.
It follows that our main need is for some words to convert

floating-point input to integers (single-precision or double¬

precision) and to convert the integer results back to floating point

numbers. In between, the calculations can be handled in the

ordinary manner, using integers. We will now develop some words

for this purpose for use with versions- of FORTH which do not have

floating-point facilities.
The words defined in the following paragraphs are useful in a wide

variety of applications, though they have some limitations, as

mentioned later. First of all, we need a word to accept floating-point

numbers from the keyboard. Screen 28 (Fig. 11.1) shows how the

word FPIN is defined. The number is to be stored in two parts. The

Kinds of Numbers 137

SCR # 28 1C H
0 (FLOATING-POINT INPUT)
1 VARIABLE FIGS VARIABLE PLACES
2 : ACC 48 - DUP 1 ♦ R FIGS (» 10 *
3 + FIGS ! PLACES (? 1+ PLACES ! f

4 J CALC DUP 46 = IF 0 PLACES ! EMIT
5 ELSE ACC THEN f

6 t SLASH DUP 47 = IF ELSE CALC THEN f

7 t VALID DUP DUP 45 > SWAP 58 < =
8 IF SLASH THEN DROP t

9 t FPIN 0 FIGS ! 0 PLACES !
10 BEGIN KEY DUP 13
11 = NOT WHILE
12 DUP VALID REPEAT DROP !
13
14
15

Fig. 11.1. Screen 28.

variable FIGS stores an integer which has the same digits as the

floating-point number but no decimal point, while the variable

PLACES stores the number of decimal places in the floating-point

number. For example, if the number is 123.45, FIGS holds 12345,

and PLACES holds 2. FIGS and PLACES are intended to hold the

results of the conversion but not necessarily to store the results

permanently. If the application deals with several floating-point

numbers, as is likely, the values in FIGS and PLACES are to be

transferred to other variables or to arrays. Figure 11.2 shows how the

conversion works. There are two ways in which the conversion can

be tackled. The user could type all the characters of the number at

the keyboard and these would then be held as a string in the input

buffer. The conversion could then be carried out on the contents of

the buffer, perhaps after it had been transferred to the word buffer.

The other approach is to analyse each key-press as it is made. This is

the method adopted here. Each key-press is examined and is

accepted only if it is a numerical character, a decimal point or a

RETURN (indicating that the number is complete). The whole

application is included in a BEGIN ... WHILE loop which accepts

input until a carriage-return is detected. The 13 on line 10 of Screen

28 (Fig. 11.1) refers to the ASCII code for carriage return, which is
13.

If the key pressed is not the RETURN, VALID checks that one of

the other acceptable keys has been pressed. Since the ASCII code for

138 Exploring FORTH

V is 46 and the codes for the numerals run from 48 to 57, it is simpler

to accept all codes in the range 46 to 57 at this stage and reject code

47 (/) later. Code 47 is rejected by the word SLASH. This takes the

micro to CALC where the calculation begins. The first step is to

detect if the key is V. If so, PLACES is set to zero and the decimal

point is displayed on the screen. If a numeric key has been pressed,

the action passes to ACC which accumulates the figures of the

number in FIGS. The code is converted to the actual number by

substracting 48. This is displayed on the screen. The effect, as far as

the user is concerned, is that the numbers or the decimal point

appear on the screen just as they do when being entered in the

ordinary way. The figures are accumulated in FIGS by taking the

value already in FIGS (see line 2 of Screen 28 (Fig. 11.1)), multiplying

Kinds of Numbers 139

it by 10, adding the current figure to it and storing the result in FIGS.

The final step is to increment PLACES, to count the number of

figures that has been typed in. CALC resets PLACES to zero when a

decimal point is encountered. PLACES thus holds the number of

figures entered after the decimal point. One thing to be considered

is that if the user keys in an integer (for example, 456), PLACES will

hold 3. Yet 456 has no decimal places. It is essential that the user

should type a decimal point at the end of the number when working

with floating-point numbers (for example, 456.). Some FORTHS

with floating-point facilities require this terminal point, as already

mentioned. In Fig. 11.3 we see FPIN in action.

FPIN
123 *450K
FIGS (3 . PLACES (? .
12345 2 OK

FPIN
30 * 0 06OK
FIGS (? , PLACES (? *
30006 3 OK

Fig. 11.3.

The limitation of FPIN depends on the fact that the figures are

stored in FIGS, which holds a signed integer. FPIN can accept no

more than 5 digits in total and the maximum values it can accept are:

No. of decimal Maximum value

places accepted

0 32767

1 3276.7

2 327.67

3 32.767

4 3.2767

5 0.32767

Numbers converted by FPIN can be used in calculations provided
that the following rules are applied:

Addition or subtraction: If the ‘places’ are the same, ‘just add the

‘figures’. If the places are different, take the number with the smaller

‘places’, multiply the ‘figures’ by 10, and add 1 to the ‘places’. Repeat

until ‘places’ is the same for both, then add or subtract the ‘figures’.

140 Exploring FORTH

Multiplication: Multiply the ‘figures’ together. Add the ‘places’

together.

Division: Divide one ‘figures’ by the other. Subtract the ‘places’ of

the divisor from the ‘places’ of the dividend. If ‘places’ becomes

negative, multiply the resulting ‘figures’ by 10 and increment ‘places’

by 1. Repeat until ‘places’ becomes zero.

Take care that operations such as these do not make ‘figures’ or

‘places’ greater than the maximum allowed. It is easy to see that

handling floating-point numbers rapidly becomes rather complicated,

which is why they are best avoided as far as possible.

Screen 29 (Fig. 11.4) shows words for taking floating-point

numbers, stored in FIGS and PLACES, and displaying them on the

screen.

SCR #
0 <
1 i

2
3
4
5 :
6 i
7
8 :
9

10
11
12 :
13
14
15

Fig. 11.4. Screen 29.

DI VIS calculates the value of a divisor which is to be left on the stack

for use by INTEG. This divisor has to have a value 10 to the power of

the value in PLACES:

Value in Value of

PLACES divisor

0 1
1 10
2 100
3 1000

4 10000

5 100000

29 ID H
FLOATING-POINT OUTPUT)
DIVIS 1 BEGIN PLACES (» DUP 0>

WHILE SWAP 10 * SWAP 1-
PLACES !

REPEAT DROP i

INTEG DUP FIGS 0 SWAP /MOD 5 .R f

ZEROES BEGIN OVER OVER <
WHILE 10 / . * 0“ REPEAT i

DPL.S SWAP DUP 0 =
IF 2DR0P

ELSE ♦" ♦’ 10 / ZEROES
DROP . THEN ?

FPOUT DIVIS INTEG DPLS 1

Kinds of Numbers 141

DIVIS is a BEGIN.. .WHILE loop which multiplies the value on the

stack (initially 1) by 10 and decrements PLACES, until PLACES

has been reduced to zero. INTEG finds this divisor on the stack. Its

subsequent action is (top-of-stack to right):

INTEG divisor

DUP divisor divisor

FIGS @ divisor divisor FIGS

SWAP divisor FIGS divisor

/MOD divisor remainder quotient

5 .R divisor remainder

‘Dot-R’ displays quotient on the screen, so giving us the figures before

the decimal point. For example if FIGS is 12345 and PLACES is 2,

the divisor is 100. ‘Divide-mod’ gives a quotient of 123 and a

remainder of 45. The screen displays 123, and the 45 is still on the

stack, ready for the decimal places to be displayed by DPLS.

DPLS uses a word ZEROES to work out if there are any zeros to

be displayed before the non-zero figures. It might happen, for

example, that the remainder is 5, yet there have to be two decimal

places, to give .05. ZEROES repeatedly divides the divisor (left at

second-on-stack by INTEG) by 10 and displays a zero each time,

until the divisor has become less than the remainder. This produces

the right number of leading zeroes.

DPLS begins by checking the remainder; if there is none, the

action ends. If there is a remainder, it displays the decimal point.

DPLS then calls on ZEROES to display any zeroes that may be

required. Finally it displays the remainder to complete the figures

after the decimal point. The word FPOUT combines the actions of

these words into one sequence (See Fig. 11.5).

FPIN
33.440K
FPOUT

33♦44 OK

Fig. 11.5.

Some suggestions for adding to FPIN and FPOUT appear at the
end of this chapter, under EXPLORE MORE.

Other number systems

FORTH has several variables of its own which are automatically set

142 Exploring FORTH

to certain values when the computer is switched on. The one we are

interested in in this section is BASE:

BASE 0 .

10 OK

The initial value in BASE is 10. This is the base of the number system

that FORTH normally uses, the decimal system. The value in BASE

can be changed:

8 BASE !
OK

See what effect this has on a simple addition and multiplication:

6 5 + ,
13 OK

6 4 * ♦

30 OK

Obviously the micro is no longer working in the decimal system. It is

now working in octal, or base-eight, scale. The displayed answer

does not mean ‘thirteen’ as we would understand it in decimal. The

‘I’ now represents 8 instead of 10. So‘13’ is interpreted as 1X8 + 3 =

11, in. the decimal scale. This is the expected answer to the addition.

The answer to the multiplication is interpreted as 3X8+0=24, in

decimal. This too is as expected.
The binary scale (base-two) is frequently used in computing:

2 BASE !
OK

Here are a binary addition and multiplication:

1 1 + ♦
10 OK

10 11 * ,
110 OK

1 plus 1 gives 2 in decimal, but the computer is working in binary, so

it displays the result as TO’. This is not ‘ten’, but 1X2 + 0 = 2. In the

multiplication we have TO’ (2 in decimal) multiplied by ‘IT (3 in

decimal), giving ‘110’ (6 in decimal).

Try some other simple calculations in binary, and check that the

computer gives the correct binary answer. To find out the decimal

Kinds of Numbers 143

equivalent of a binary number, all you have to do is to place it on the
stack, and then instruct the computer to revert to workingin decimal.

We could put 10 back into BASE by using‘10 BASE !’, but the word

DECIMAL is more convenient:

110 DECIMAL ♦
6 OK

The value 110 placed on the stack is now displayed in decimal form.

Of course, the computer is actually working in binary all the time.

Numbers stored are stored on the stack in binary and all the

calculations are in binary. Changing the base to 8, 10 or any other

value simply tells the micro which base we want to work in. It then

knows that we want it to accept our input with reference to the

selected base. For example, if we type TOO’ when BASE is 2, it stores

it directly as ‘100’. But if BASE is 10, it knows we mean ‘a hundred’,

and stores the value as the binary equivalent of a hundred, 1100100.

Similarly, when displaying a number on the screen, it displays it in

whatever base we have selected. Here is a word to make the

computer display in decimal a value which we have entered in
binary:

t BIN DECIMAL . 2 BASE ! i

This word is very useful when you are working out the values for

user-defined graphics, as in Chapter Six. First put the computer into

binary mode by typing ‘2 BASE !’. Then use BIN, as below:

11010110 BIN
214 OK

The binary number is made up by looking along one row of squares

of the 8X8 grid of the character. For each shaded square type 1, for

each unshaded square, type 0. The computer accepts the resulting 8-

bit binary number and puts it on the stack. Then the word

DECIMAL (in BIN) restores the computer to decimal operation to

display top-of-stack in decimal. In this example, the binary number

is equivalent to 214 in decimal. This is the value to be used in

defining the graphics character. BIN ends by putting the computer

back into binary mode, ready for you to enter the details of the next
row of the grid.

HEX is another base-changing word which, as might be guessed,

makes the computer receive input and display output in hexa¬

decimal. Figure 11.6 shows it in action. In the first example, 6 plus 5

144 Exploring FORTH

HEX
6 5 + ♦
B OK
3 5 * ♦
F OK.
F 1 + ♦
10 OK

Fig. 11.6.

gives eleven (decimal) which is displayed as B, its hexadecimal

equivalent. In the second example, three fives give fifteen, displayed

as F. Hexadecimal uses the numerals 0 to 9 and letters A to F. The

third example shows what happens next. Adding 1 to F gives 10, the

hexadecimal equivalent of sixteen.

Figure 11.7 gives HD, which converts hexadecimal numbers to

decimal numbers. FORTH does not limit us to the ‘popular’ number

J HD DECIMAL U. HEX

FFEE HD
651=118 OK

Fig. 11.7.

bases. You can work in any of a wide range of bases. Figure 11.8

shows what happens in base-70. Obviously base-70 requires 70

different characters to express its numbers. It uses the numerals 0 to

9, then it will need all the letters of the alphabet. This provides only 36

70 BASE !
OK

Z 1 + ,
C OK

Z Z * ♦
HZ OK

Fig. 11.8.

characters to use so far. The first example above shows what

happens next. The base 70 equivalent of the decimal number 37 is

the left-hand square bracket. You may find that it uses a different

symbol on your micro. Z squared gives HZ. In order to check on this

Kinds of Numbers 145

we had better look at the entire range of symbols. Figure 11.9 shows

how the word BASE70 displays these.

J BASE70 11 0 DO I ♦ LOOP ?
OK

BASE?0
0 1 '? 3 4 5 6 7 8 9 ABC D E F G H I J
K L M N 0 p G R 3 T U U W X Y Z r: \ 3 t

i 3 b e d e f G h i J k 1 n o p G r
<r» t u V w v w 2 ■c 1 1.0 OK

Fig. 11.9.

Remember that the computer is in base 70 mode when it executes

the loop, so that the values 11 and 0 before DO are equivalent to 71

and 0 in decimal. Once again, the exact symbols shown in your

version of FORTH may differ from those in the printout. Now we

can see that H is equivalent to 18 in decimal, while Z is equivalent to

36. The second of the examples given above calculates Z-squared

(which is 36X36=1296). The result is interpreted as 18X70+36=1296.

So ZXZ=HZ is a correct base-70 multiplication.

Random numbers

One of the best-known ways of obtaining a random number is to

throw a dice. This is the basis of so many games in which chance is

intended to be the main element. Provided that the dice is not a

biased one and that it is fairly thrown, there is no way to tell in

advance which of its six faces will be uppermost when it comes to

rest. The result of the throw may be any number between 1 and 6,

and each of these numbers is equally likely to be thrown on any one

occasion. The result of the throw is a random number.

If you want to obtain random numbers in other ranges, you can

use special polyhedral dice. Some of these have 20 faces, giving you

random numbers in the range 1 to 20. Another way of getting

random numbers is to cut a pack of playing cards.

Random numbers play an important part in many computer

games, so we need a way to make the micro produce them. This is

not strictly possible, since a computer is a piece of machinery with

146 Exploring FORTH

exactly predictable behaviour (some programmers may not believe

this!). There is no action in a computer which has the chance element

of rolling a dice. Instead we generate pseudo-random numbers,

which, from now on, we will refer to simply as random numbers,

remembering that they are not truly random. The computer is

programmed to generate a series of numbers in such a way that

successive numbers appear to be produced at random. The way they

are calculated is not apparent to the user, so it is virtually impossible

to predict which number will appear next. The series of numbers is a

very long one, which will repeat itself eventually, but not until

hundreds of numbers have been generated.

The usual equation for generating these numbers is:

A + C

A, C and M are constants. M is very large, being perhaps the largest

number that the computer can store. ‘Modulo M’ means that every

time the calculation gives a random number exceeding M, it is

reduced by M, so keeping it within the range 0 to M. A and C can

have almost any values, the main point being that A, C, and M have

no factors in common. In the words defined below, M is 32767, the

value of the largest possible signed integer. A is 2011 and C is 5.

Since both of these are prime numbers they have no factors in

common with each other or with M.

To start off the generation of random numbers we need a ‘seed’.

This can be given any value and, in effect, represents the previous

random number in the equation above. After each random number

has been generated it is stored in SEED ready for generating the next

number. Figure 11.10 gives the words we need. RND1 performs the

calculation given in the equation above. It takes the previous

number from SEED, multiplies it by 2011 and adds 5. The result is

ANDed with 32767. The way this works is explained in Chapter

Twelve. Its effect is to remove any T which may have appeared in

VARIABLE SEED
OK
J RNDl SEED @ 2011 * 5 +

32767 AND DUP SEED !
OK
: END RNDl 32767 %/ *

OK
Fig. 11. W.

Kinds of Numbers 147

the 16th digit, so keeping the value of the number within the range of

positive signed integers (0 to 32767). The new value is stood in SEED

and a copy of it is left at top-of-stack.

RND1 has produced a random number in the range 0 to 32767.

But to simulate the throwing of a dice, for example, this range is far

too great. RND allows us to specify the range. RND requires you to

put a value on the stack to indicate the maximum value the random

should have. ‘Times-divide’ then multiplies the random number (left

by RND1) by your maximum value, and divides the product by

32767. This produces an integer in the required range. Since division

rounds down in FORTH, the maximum value that the random

number can have is one less than the value you have placed on the

stack.

Figure 11.11 shows a word to simulate the throw of a six-faced

dice. Rather than have just one throw we use a loop to ‘throw’it 100

J DICE 100 0 DO 6 RND 1+ * LOOP ?

DICE

1 5 2544345 3 446651615 2
3 5 4 6 323651 3 623666643
4 5 3 2 62 3 4621146445455
5356 1 224 1 56 3 5 2516142
5344444144643411 1 233
OK

Fig. 11.11.

I CRAPS 100 0 DO 6 RND 1 +
6 RND 1+
+ ♦

LOOP i

CRAPS

’8 6 7 8 4 5 .1.0 10 1 1.1 7 8 9 6 5 10 10 7
■ 10 5 7 5 9 6 9 9 5 5 7 7 9 4 3 10 9 9
9 3 5 3 6 5 6 4 '7

X- 8 7 7 10 9 7 8 11 6 7
7 6 9 8 4 8 9 2 5 9 6 7 8 4578 11 9

7 7 8 7 5 12 6
5 6 6 5 11 7 OK

9 7 3 3 9 2 8 12 10 4 4

Fig. 11.12.

148 Exploring FORTH

times. Then we shall be able to check that it is a ‘fair’ dice.

There is one problem. Dice are numbered from 1 to 6, but RND

produces values ranging upward from zero. The word DICE adds 1

to each random number so that the range begins from 1. This being

so, we need RND to produce numbers in the range 0 to 5. The

maximum value placed on the stack is therefore 6.

If you check through the printout, you will find that all 6 possible

numbers occur in approximately equal proportions. The dice is fair!

Figure 11.12 shows a word to simulate the throwing of two dice

together, as in the game of Craps. Each loop does two ‘throws’ and

the results are added before displaying their total. The printout

shows that the most frequent result is 7, while the lowest and highest

possible numbers, 2 and 12, occur very rarely.

Learn your tables

Even in these days of computers and pocket calculators, ability at

mental arithmetic is important. The remainder of this chapter

describes a FORTH application which gives practice at the

multiplication tablesfrom 1 to 10. PAIR selects two random numbers

in the range 1 to 10 and places them on the stack (See Fig. 11.13).

t PAIR 9 RND 1+ DUP 9 RND 1+ DUP }
OK
1 SHOW ROT . .* TIMES * . ," = ■ i
OK
t ASK * DUP QUERY 32 WORD NUMBER DROP ?
OK

t CHECK = IF .* CORRECT" DROP
ELSE ." WRONG , IT MAKES " ♦
THEN CR ;

OK
I MULTIPLY BEGIN PAIR SHOW ASK CHECK

AGAIN i
OK

Fig. 11.13.

SHOW displays these on the screen as a multiplication problem,

leaving the answer blank. ASK accepts input from the user, who is to

type in the answer to the problem, then press RETURN. ASK first

multiplies the two numbers together to obtain the correct answer on

top-of-stack. QUERY accepts the string of characters (the figures

Kinds of Numbers 149

typed by the user) into the input buffer. WORD transfers this to the

word-buffer with a space as delimiter. NUMBER converts this into

a double-precision value, placed on the stack. Since we are dealing

only in single-precision values, DROP gets rid of the top two bytes,

which each hold only zero. This leaves the users’s answer on top-of-

stack with the computer’s answer below it.

CHECK compares the two answers. If they are equal, it displays

‘CORRECT’. If not, it states that the answer is wrong and displays

the correct answer. A carriage return follows, so that the next

problem is displayed on the line below. MULTIPLY has all these

words inside a BEGIN ... AGAIN loop, so that an endless series of

problems is presented. Figure 11.14 shows how it runs. As can be

seen, the way to end the inquisition is by pressing ESCAPE

MULTIPLY
8 TIMES 7 ~ 56
CORRECT
1 TIMES 3 = 77
WRONG , IT MAKES 3
1 TIMES 8 = 8
CORRECT
7 TIMES 7 = 77
WRONG f IT MAKES 49
3 TIMES 2 =
Escape
OK

Fig. 11.14.

To summarise

In this chapter you have found out how to:

• Use numbers of different types.

• Work in different number bases.

• Generate random numbers.

You have used these FORTH words:

• U. ‘U-dot’ displays a single-precision integer in unsigned form (n
...).

• D+ ‘D-plus’ adds two double-precision numbers to give a double¬

precision sum (nl\n2 ... nl+n2).

• D. ‘D-dot’ displays a double-precision number (n...).

150 Exploring FORTH

• M* ‘M-times’ multiplies two signed single-precision numbers
giving a signed double-precision product (nl\n2 ... nl*n2).

• U*‘U-times’ as M* but uses unsigned numbers (nl\n2... nl*n2).

• U/ ‘U-divide’ divides a double-precision number (nl) by a single¬

precision number (n2), leaving a single-precision remainder and

quotient on the stack. All numbers are unsigned (nl\n2 ...

remainderX quotient).

• BASE a variable storing the current number base being used by

the computer (...).

• DECIMAL gives decimal input and output (...).

• HEX gives hexadecimal input and output (...).

• NUMBER converts a character string into a signed double¬

precision number. It requires an address at which the number of

bytes in the string is stored, and assumes the string itself is stored

in the addresses immediately after this (address ... n).

You have learned that:

• Numbers are stored as bytes, as single-precision numbers or as

double-precision numbers.

• Numbers can be signed or unsigned.
• There are single-precision, double-precision, and mixed -precision

operators.
• The computer can be programmed to generate pseudo-random

numbers.

Explore more

(1) The only double-precision conditional operator normally

provided in FORTH is ‘D-greater’. Write your own version of the

words ‘D-less’ and ‘D-equals’.

(2) Revise FPOUT so that there is no need for the user to key a

decimal point when there are no decimal places in the number.

(3) Revise FPIN and FPOUT so that FIGS can hold a double¬

precision value, so allowing the range of acceptable floating-point

numbers to be increased.

(4) Write some words for floating-point addition and other

arithmetical operations. Descriptions of how to perform these

operations were given earlier in the chapter in a form that is easy to

translate into FORTH.

Kinds of Numbers 151

(5) Write a word DH which lets the user type in a decimal number

and then displays it in hexadecimal.

(6) Write adaptations of MULTIPLY to test the user’s ability to add,

subtract, or divide.

(7) Write the words for this simple game. Use RND to place 10

aliens (user-defined characters) at randomly chosen positions on

the screen. Then steer your spacecraft (another special character)

around the screen, using four keys to direct it. When your craft ‘runs

over’ an alien, the alien disappears from the screen. The aim is to

destroy all the aliens with the least number of changes of direction

(least number of key-presses), so you need to plan your route very
carefully.

Chapter Twelve

AND and OR

This chapter deals with the way in which FORTH performs logical

operations. There are two main kinds of logical operation, one of

which we have met already and have used a lot. Flag logic, as one

might call it, requires a flag value to be left on the stack. A flag is a

value, the main purpose of which is to signal to the computer that a

condition is true or false. There are a number of words which look at

the value on top-of-stack, treating it as a flag and acting accordingly,

The flag is taken to mean ‘false’ or ‘true’ according to whether its

value is zero or not. Words which use flags in this way are:

IF

UNTIL

WHILE

?DUP

The last in the list is a version of DUP which acts only if the top-of-

stack is a true flag. In other words, if the top-of-stack is zero, then

zero is left at top-of-stack. If it is some other value, it is duplicated.

Note this word does not remove the flag from the stack, whereas the

other words do.

A flag can be placed on the stack either as the result of a

calculation or by the action of a conditional operator. The

conditional operators that we have used are:

= 0=

> 0>
< 0<

These leave 0 on the stack to indicate ‘false’ and 1 to indicate true. All

of the words mentioned above are concerned with the truth, or

otherwise, of given conditions and enable the computer to take

decisions based on logic.

Another logical word that we have used several times is NOT.

AND and OR 153

This reverses a flag. If the flag is true, it changes it to false. If it is

false, it changes it to true. Its action is exactly the same as 0=.

Whether we use NOT or 0= is mainly a matter of preference.

Sometimes it may make the logic of the program clearer to the reader

to use one rather than the other.

The other kind of logical operation uses the two words AND and

OR. It is these which are the main topic of this chapter. We have

already used AND a few times in previous chapters. It is time to

explain the way it works.

Readers who have used BASIC will probably have come across

AND and OR already. In BASIC, they can be used in two rather

different ways. Most versions of BASIC use AND and OR as logical

operators, as in the statement:

IF J = 3 AND K= 6 THEN X= X+ 1

The AND links together two conditions (J = 3, K = 6), both of which

have to be true if the action after THEN is to be performed. OR is

used similarly.

The other way of using AND and OR in BASIC is entirely

different. The simpler BASICS do not allow them to be used in this

way. This is sometimes referred to as ‘bit-by-bit’ or ‘bitwise’

operation. When used in this way, AND and OR are described as

Boolean operators. FORTH uses AND and OR as Boolean

operators, not as logical operators. From now on the discussion
refers only to this kind of operation.

Here is AND in action as a Boolean operator (we will come back to
the ‘bitwise’ aspect in a moment!):

12 10 AND .
8 OK

Obviously it is capable of operating on numbers, but the results it

produces do not conform to any ordinary arithmetical operation.

Here is OR at work:

12 10 OR .
14 OK

Once again, it is doing something with the numbers, but exactly

what it is doing is not clear. The term ‘bitwise’ gives us a clue. AND

and OR are operating on the bits (the binary digits) of the numbers,

rather than on the numbers as a whole. To follow what is happening,

we need to put the micro into binary (base-2) mode:

2 BASE !
OK

154 Exploring FORTH

Here is the same operation (10 AND 12) but keyed in and displayed

in binary:

1100 1010 AND .
10 00 OK

The result is equivalent to 8 in decimal, the same result as before.

It helps the explanation if we set out the two original values one

below the other, so that the bits of one come directly below the

corresponding bits of the other:

12 is 110 0

10 is 10 10

Result 8 is 10 0 0

AND works by placing a 1 in the result only if the corresponding bit

in one number AND the corresponding bit in the other number are

Is. Only the left-most bits of both numbers are Is, so only the left¬

most bit of the result is a 1. A pair of 0s or a 1 and a 0 produce only a

0. Try keying in a few more numbers in binary and see what AND

does to them, as in the example above.

Here is the action of OR.

11.00 1.010 OR .
1110 OK

Setting the numbers out as before:

12 is 1 10 0

10 is 1 0 1 0

Result 14 is 1 1 10

OR works by placing a 1 in the result if the corresponding bit in one

number OR the corresponding bit in the other number is a 1. It is

only when neither of the bits is a 1 that the result contains a 0. In the

example above only the right-most bit has zeros in both numbers,

giving a zero in the result. Experiment with OR, using other pairs of

binary numbers.

Shifting

Now that we are treating bits as individuals, there are several other

operations that we can perform on them. One of these is known as

AND and OR 155

shifting. The idea is that we begin with a number of bits (for

example, a byte of 8 bits) which might be like this:

0 0 0 1 0 1 0 0

A left shift moves each bit one place to the left:

0 0 1 0 1 0 0 0

Successive left shifts give:

0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
00000000

At each shift the left-most bit is lost, and the right-most bit becomes

a zero. The right-shift operation works in the opposite direction.

It might seem to be a complicated matter to perform a left-shift,

but in practice it is extremely easy. All that has to be done is to

multiply the binary number by 2! Use LS to demonstrate this:

J LB PUP IJ. 10 * i

Remember that the micro has to be in binary mode. In LS the figure

10 represents decimal 2. ‘U-dot’ is used to display the result so that

we can see all 16 bits of the number. LS leaves the shifted number on

the stack, so we can see the effect of repeated left-shifts. We start

with any binary number (See Fig. 12.1). The leading zeros are not

10100 LS
10100 OK

LS
101000 OK

L-S

1010000 OK

LS
10100000 OK

Fig. 12.1.

displayed, of course, but it is clear that the left-shift is working as

required. Try some more left-shifts to see what happens as each 1
becomes the 16th (left-most) bit.

156 Exploring FORTH

Bit maps

One important application of bitwise logic is in the storage of data.

Normally we store data in a computer as a set of numbers, which

may represent actual quantities or may be other kinds of

information in coded form. For example, the value 5 stored in a

stock-taking program may mean that you have 5 packets of WYTO

in stock, or it may mean that this item and all other items coded 5

have special storage requirements. Quite often the codes or the

values that we need to store are relatively small numbers. Yet they

may each be stored as single-precision integers, requiring 2 bytes

for each piece of data. It may easily happen that there is not enough

memory to allow us the luxury of storing data in this way. It must be

compacted.
One way is to use single bytes for storing data. These can hold

values ranging from 0 to 255 which is more than enough for many

purposes. As already explained, FORTH provides several words for

handling bytes.
If we use the bits themselves for storing individual items of data

we can save even more memory. This is what is meant by a bit map.

The most compact form of data storage is obtained when we treat

the bits as flags. Each bit indicates the truth or otherwise of a given

condition. For example, an estate agent might want to set up a data

bank about dwellings for sale in the district. The information held in

one byte might be as follows:

Bit no. =0 if

0 1-storey

1 furnished

2 built pre-war

3 completed

4 no central
heating

5 no double-

glazing

6 near shops

7 no garage

= 1 if

2 or more storeys

unfurnished

built post-war

under construction

centrally heated

double-glazing

no shops near

garage

Each house on the register would be represented by a byte in

memory, holding this data. Thus an unfurnished pre-war house with

central heating, no double-glazing, close to the shops but with no

garage is coded as:

0 0 0 10 0 1 1

AND and OR 157

Bits are numbered from right to left.

Here is a very compact way of holding such information. The

compactness is not only important from the point of view of

memory space, but also for saving disk or tape space, and (with tape)

the time required for loading and saving. Moreover, data stored in

this way can be scanned very quickly by the computer, and the

required piece of information is quickly retrieved from a very large

amount of stored data.

It is possible to combine this bit-map method with the storage of

numerical data. For example, three of the bits in a byte could be used

to hold the number of bedrooms in the dwelling. Three bits cover the

range 0 to 7, and ‘7’ can be taken to mean ‘7 or more bedrooms’. The

other bits would be used as described above. A single byte cannot

hold all the data that an estate agent might want to store, but it is

possible to pack into 3 or 4 bytes all the essential information that an

intending house-purchaser might want to know in the first instance.

One of the bytes could hold a coded reference to the office file in

which complete details, maps and photographs are available.

Identifying by logic

The example of the house agent, shows how we can use computer

logic for identification. The house buyer tells the agent which

features are most important in selecting the house. The agent then

uses the computer to search the stored information to identify which

house or houses conform to the requirements of the buyer. If the

buyer specifies only a few features, the computer may be able to find

many dwellings which will satisfy the buyer. If the buyer stipulates a

long list of essential features, the computer may find only few or

perhaps no dwellings to meet the buyer’s demands.

Here is another application of the same idea. Those who are

interested in bird life often want to identify the birds they see, but

this is not always as simple as it might be. The bird may be a long way

away or may be partly hidden by vegetation, so that all of its features

cannot be clearly seen. Or it may fly away out of sight before the

watcher has had time to notice all its features. The kind of question

the computer could answer is: ‘I saw a long-legged bird beside the

lake. It was white in parts, but the light was too poor to pick out its

other colours. What kind of bird could it be?’. The computer then

searches the stored bytes, looking for any birds that spend their time

near water, have long legs and are at least partly white. It will ignore

158 Exploring FORTH

other features and pick out all those kinds of birds which conform

to the description. It prints a list of all such birds it finds listed in its
memory.

Screen 30 (Fig. 12.2) lists nine birds. It is easy to extend the list to

cover several screens if required. The screen is being used for storing

SCR f 30 IE H
0 (NAMES OF BIRDS
1 SPARROW y USE * M. BI..K * THROAT 64
2 ROOK: BARE FACE PATCH CF CROW 94
3 blackbird: m. yell, beak; f.bwn i.o
4 MARTINy HSE: WHT RUMP CF SWALLOW 56
5 swallow: longer TAIL THAN MARTIN 54
6 REDBREAST/ROBIN 18
7 HERONy GREY: DARK FLIGHT FTHRS 152
8 GULL y COMMON: GR-YELL BEAK & LEGS 184
9 TIT y GT: BL.K STRIPE ON BELLY 36

10
11
12
13

15

Fig. 12.2. Screen 30.

text, any line of which can be picked out and displayed. Since the

whole screen is text and there are no FORTH words or definitions,

the whole screen is enclosed in brackets. The first bracket, ‘(’, at the

start of line 0 is in fact a FORTH word, called‘bracket\ This has been

used on line 0 of all the other screens shown in this book. Since it is a

FORTH word it must be followed by a space. When the computer

encounters such a bracket, it ignores what follows until it finds a

reversed bracket,')’, which acts as a delimiter. Normally we place the

delimiting bracket at the end of line 0, so that only the title of the

screen is ignored. Here we place the reversed bracket online 15. The

main point to remember when keying in the text is that it must not

include brackets. ‘Bracket’ can be used in word-definitions too, to

hold remarks about the action of the word.

Screen 30 (Fig. 12.2) lists the birds and follows their names

with brief notes on special features. The house sparrow has

a note that the male has a black throat. The rook has a

note to the effect that it has a bare face patch which the crow does

not have (CF stands for compare with). These notes help the user to

confirm the identification, by quoting features that help distinguish

the bird in question from other birds of similar appearance. The

numbers at the end of each line are references to pages in a bird book

AND and OR 159

on U'hich detailed descriptions and pictures are to be found. By

referring to these the user should be able to decide which of several

listed birds was the one seen.

Screen 31 (Fig. 12.3) is a list of eight features which could be used

for identifying birds. The contents of this screen are to be displayed

BCR # 33. IF H
0 (BIRD FEATURES
3. 3. IS LESS THAN 20 CM LONG
2 2 HAS BLACK FEATHERS
3 3 HAS WHITE FEATHERS
4 A HAS BROWN FEATHERS
5 5 HAS RED FEATHERS
6 6 SPENDS TIME ON THE GROUND
77 A WATER OR WATER-SIDE BIRD
8 8 NESTS IN TREES» NOT BUSHES
9

3. 0
3.3.
3.2
3.3
3T1
3.5) —>

Fig. 12.3. Screen 31.
so that the user can key in the numbers corresponding to the features

of the bird. These features are of several kinds. There are visual

features such as overall size (line 1), and feather colours (lines 2 to 5).

Certain birds frequent particular localities so the place the bird is

seen at can be a useful identifying clue (linpsTFan4 7). The habits of

the bird also can be very helpful (line 8). It is not intended that the

user shall be able to decide one way or the other about all of these

features. As explained earlier, the difficulty with bird identification

is that one is able to discover only a few features on a given occasion.

The user is to key in those features which are positively known.

Screen 31 (Fig. 12.3) covers only eight features, enough for storing

in a single byte. It is easy to add many more features, adapting the

application to deal with two, three or more bytes for each bird.

The stages of operation of the application are:

(1) Display a numbered list of the features.

(2) The user keys in the numbers corresponding to features seen on
the bird.

(3) The computer builds up a byte, called BYTE, in which the bits

indicate those features keyed in by the user.

160 Exploring FORTH

(4) The computer already holds in its memory a set of bytes, one for

each bird, in which the bits indicate the features possessed by each

bird. It searches these bytes to find those which have bits in common

with BYTE. For any it finds it displays the name of the

corresponding bird.

Screen 32 (Fig. 12.4) holds all the FORTH words for identifying

birds, using the word BIRDS.

SCR # 32 20 H
0 (IDENTIFYING BIRDS)
1 CREATE FEATS 175 Cr 162 C, 42 C,
2 7 Cr 23 Cv 61 Cr 198 Cr 102 Cr
3 135 C*
4 VARIABLE BYTE
5 t BITS 0 DO 2* LOOP 2/
6 BYTE (? OR BYTE ! i
7 ! FEATURES 0 BYTE ! BEGIN QUERY 32
8 WORD NUMBER DROP DUP 0> WHILE
9 1 SWAP BITS REPEAT »

10 J GET BYTE 090 DO DUP DUP I FEATS
11 + CO AND = IF I 1+ 30 * LINE CR
12 THEN LOOP DROP J
13 t BIRDS 12 >VDt.J 9 1 DO I 31 «LINE
14 CR LOOP CR .“ KEY THE NUMBERS!*
15 CR FEATURES CR .* IT COULD BE!" CR GET r

Fig. 12.4. Screen 32.

The first thing to be done is to store the data about the birds in

memory. Before writing the application we set out a table like this:

Nests in
Bird trees Wat. Grnd. Red Brn. Wht. Blk. <20 Decimal

Sparrow 1 0 1 0 1 1 1 1 175

Rook 1 0 1 0 0 0 1 0 162

Blkbird 0 0 1 0 1 0 1 0 42

H Martin 0 M> 0 0 0 1 1 1 7

Swallow 0 0 0 1 0 1 1 1 23

Redbrst 0 0 1 1 1 1 0 1 61

Heron 1 1 0 0 0 1 1 0 198

C Gull 0 1 1 0 0 1 1 0 102

Gt Tit 1 0 0 0 0 1 1 1 135

The table shows a 1 if the bird possesses the feature given at the head

of the column and a 0 if it does not. Note that the female blackbird is

brown, as allowed for in the table. The column headings are in the

reverse order to the listing of features in Screen 31 (Fig. 12.3) for

reasons which will be apparent later. Each row of the table shows the

AND and OR 161

composition of the byte which holds the features of each bird. The

right-hand column gives the equivalent decimal value of that byte.

Now we are ready to put this information into memory.

Line 1 of Screen 32 (Fig. 12.4) shows a new way of using

CREATE. This time it is not being used with DOES> to define a

defining word. Instead it is being used simply to create the head of a

word in the dictionary. The word is FEATS. Its code field contains

the address of a routine to put the address of its parameter field on

the stack every time FEATS is used. The parameter field of FEATS

is filled immediately by using 'C-comma'. This word stores a byte at the

next available address in the dictionary. In other words, it places it in

the first free byte of the parameter field of FEATS. The values, which

you will recognise as the values calculated from the table above are

stored in succession ontheparameterfield of FEATS. Thisisasimple

way of providing an array filled with data.

The variable BYTE is defined next, to hold the details of the bird
as the user keys them in.

BITS is the word which puts the bits into BYTES. It requires at

second-on-stack the feature number (1 to 8) as keyed in by the user.

It also requires 1 at top-of-stack. It goes through a loop from 0 to the

feature number, multiplying by 2 each time. We use the word ‘2-times’,

a special \gord for fast multiplication by 2. This gives a shift-left

operation, as described in the previous section. For example, if the

user keys in 4 (brown feathers), BITS shifts 1 four times:

Start 0 0 0 0 0 0 0 1
1st shift 0 0 0 0 0 0 1 0
2nd shift 0 0 0 0 0 1 0 0
3rd shift 0 0 0 0 1 0 0 0
4th shift 0 0 0 1 0 0 0 0

This has taken the 1 too far. The ‘2-divide’ after the loop shifts it one
space to the right again:

Right-shift 0 0 0 0 1 0 0 0

The reason for this is that a DO ... LOOP must always execute at

least once. So the 1 is always shifted at least once, to position 2. The

‘2-divide’ is to compensate for this. This again is a special fast-action

word. The resulting byte is then combined with the value already in

BYTE, using OR. The reason for this is that the user will probably

key in several numbers and the corresponding bits are to be stored in

BYTE one at a time. For example, if the user has already keyed in 2

and 6, BYTES will hold:

162 Exploring FORTH

0 0 1 0 0 0 1 0

(bits numbered from right to left, 1 to 8). Now the user keys in 4 as

already described. BITS has produced:

0 0 0 0 1 0 0 0
BYTES holds 0 0 1 0 0 0 1 0

OR these two 0 0 10 10 10

The new bit, positioned by BITS, has taken its place among those

already present in BYTES. The bits already there are not affected by

this operation.
FEATURES is the word which accepts the numbers typed in by

the user. It starts by putting zero into BYTES, clearing it ready for

storing the bits. Then a BEGIN ... WHILE ... REPEAT loop

accepts numbers, one at a time. The routine used was described in

Chapter Eleven. The result is to put the number on top-of-stack.

This is duplicated to keep a copy for later action. The top copy is

tested to see if it is greater than zero. If so, action continues. If the

user has keyed 0, it is taken to indicate that there are no more

features to be typed in and FEATURES ends. The action of

FEATURES in response to a non-zero number is to put 1 on the

stack and swap it with the number. It then calls BITS to position the

bit and insert it in BYTE.
GET is the word which searches FEATS comparing each byte

there with the value in BYTE. Its stack action is:

GET

BYTE @ BYTE

9 0 DO BYTE

DUP DUP BYTE BYTE BYTE

I FEATS BYTE BYTE BYTE I

+ BYTE BYTE BYTE addr

C @ BYTE BYTE BYTE byte

AND BYTE BYTE BYTE, byte

BYTE flag

11 BYTE

I 1+ BYTE 1+1

30 BYTE 1+1 30

. LINE CR BYTE

THEN BYTE

LOOP BYTE

DROP

AND and OR 163

In the table above, ‘addr’ refers to the address of a particular byte in

FEATS. Using FEATS puts its PFA on the stack, then we add I to

this to get the address of the byte. Then we fetch this byte, referred to

as ‘byte’ in the table.

The key stage of the operation is the AND. This ANDs BYTE and

byte to give ‘BYTE . byte'. Let us see how this works. Suppose we

have the following, in which the computer is testing to see if BYTE

matches the byte for blackbird:

blackbird byte is 0 0 1 0 1 0 1 0

BYTE might be 0 0 0 110 1 0

AND gives 0 0 0 0 10 1 0

This value is not the same as BYTE. The bird described by BYTE has
red feathers, so is not a blackbird. In another case the user might

have seen a brown bird on the ground. The comparison would be:

blackbird byte 0 0 10 10 10

BYTE would be 0 0 1 0 10 0 0

AND gives 0 0 10 10 0 0

Now the value obtained by ANDing is equal to the value of BYTE.

Although the user did not key in all the features of blackbird (i.e. the

bird seen did not have black feathers since it was a female) all of the

features keyed in are possessed by blackbirds. The bird might be a

blackbird! The text relating to blackbirds is displayed. Looking at the

table given earlier, it can be seen that the same result would be

obtained with sparrow and with redbreast. All three names would be
displayed.

If the ANDed value equals BYTE the IF action is executed. A line

from Screen 30 (Fig. 12.2) is printed. The word ‘dot-line’ does this. It

requires the stack to have the number of the Screen at top-of-stack

and the line required at second-on-stack. The line required is 1+1,

since the screen lines are numbered from 1, while I is being
incremented from zero.

The whole application is put together in the word BIRDS. ‘12

>VDU’ clears the screen. Use the equivalent words in your version of

FORTH. The first loop displays all eight lines of Screen 31 (Fig.

12.3), so displaying a numbered list of features. The user is then asked

to key in the numbers. FEATURE accepts and processes these. The

bits are gradually assembled in BYTE. FEATURES ends when zero

is keyed. The computer then displays ‘IT COULD BE:’ followed by a

list of birds conforming to the description, as obtained by GET.

164 Exploring FORTH

If you are running FORTH on a disk system, the computer will

automatically load the required text from disk. With a tape system,

you may need to position the tape ready for loading Screens 30 and

31 during the course of the program. If your system allows three

screens to be held in RAM at one time, then load all three screens,

before running the application.
Here are two examples of BIRDS in action (see Fig. 12.5). This

word works at very high speed making it possible for the computer to

search through a hundred or more bytes in ten seconds or less. The

BIRDS
1 IS LESS THAN 20 CM LONG
2 HAS BLACK FEATHERS
3 HAS WHITE FEATHERS
4 HAS BROWN FEATHERS
5 HAS RED FEATHERS
6 SPENDS TIME ON THE GROUND
7 A WATER OR WATER-SIDE BIRD
8 NESTS IN TREESt NOT BUSHES
KEY THE NUMBERS:
4
8
0
IT COULD be:
SPARROW» USE: M. BLK♦ THROAT 64
OK

BIRDS
1 IS LESS THAN 20 CM LONG
2 HAS BLACK FEATHER'S
3 HAS WHITE FEATHERS
4 HAS BROWN FEATHERS
5 HAS RED FEATHERS
6 SPENDS TIME ON THE GROUND
7 A WATER OR WATER-SIDE BIRD
8 NESTS IN TREES > NOT BUSHES
KEY THE NUMBERS:
1
2
0
IT COULD be:
SPARROW» HSE: M. BLK. THROAT 64
MARTIN > HSE! WHT RUMP CF SWALLOW 56
SWALLOW: LONGER TAIL THAN MARTIN 54
TIT r G r: BLK STRIPE ON BELLY 36
OK

Fig. 12.5.

AND and OR 165

time taken depends more on the number of screens to be loaded and

the number of names to be displayed, rather than on the number of
bytes to be scanned.

To summarise

In this chapter you have found out how to:

• Handle bits within bytes.

• Store data in an array.

• Store text in screens.

You have used these FORTH words:

• AND performs bitwise ANDing on a 16-bit value (nl\n2 ...
nl.n2).

• OR performs bitwise ORing on a 16-bit value (nl\n2 ... nl+n2).

(NOTE ‘.’ and ‘+’ are the logical symbols for AND and OR).

• (‘bracket’ causes computer to ignore the material which follows it,
until the delimiter,).

• CREATE used to create a word head in memory.

• C, ‘C-comma’ stores a value at the next available byte in the
dictionary space (byte ...).

• 2* ‘two-times’ for fast multiplication by 2 (n ... 2*n).

• 2/ ‘two-divide’ for fast division by 2 (n ... n/2).

• .LINE ‘dot-line’ displays a line from a screen (line screen ...).

You have learned that:

• OR and AND are used for bit mapping and other logical
operations.

• Bit-maps enable compact storage of data.

• Bit-maps are useful as the basis of identification applications.

Explore more

(1) Write a word SR to perform a right-shift on a binary number.

(2) Expand BIRDS to include more features and more birds.

(3) Write more words for BIRDS to:

(a) improve the layout of the display.

(b) check that the numbers typed in by the user are within the
allowed range.

166 Exploring FORTH

(c) display the message ‘NONE FOUND’ if no bird is found to

match the description.

(4) Adapt BIRDS for use in other fields:
(a) Personnel or employee records: the computer picks out all

male employees, for example, or those with special skills.

(b) Garden or house plants: the computer picks out plants suitable

for growing in particular locations, or with flowers of a given

colour, or which flower at a particular time of year.

(c) Cataloguing tape-recordings or records: the computer picks

out recordings of pieces by a given composer, or of a specified type

of music.

Appendix A

FORTH on Other
Computers

This book was written using a version of FORTH (Acornsoft

FORTH) which conforms to the 1979 Standard. As far as possible,

only words which are likely to be found in other versions of FORTH

have been used. Thus, there should be no difficulty in using this
book with other versions. The only major exceptions are the special

words used in Acornsoft FORTH which relate to the graphics

features of the BBC Microcomputer and Electron. A few of these are

used in Chapter Six. Your own version of FORTH should provide
equivalent words for your own micro.

There are now so many versions of FORTH in existence for the

popular microcomputers that it is not possible for us to be certain

that every word used in this book is available in every version. Below

we list some words which may not be available in your FORTH,

with suggestions of how to implement them, using words that you
are sure to have.

?DUP Duplicates the top-of-stack if it is not zero. This can be
defined as:

* ?DUP DUP IF DUP THEN J

In fig -FORTH this is called -DUP.

.S Displays the stack without altering it. This is the most difficult

one to provide for in general terms, for it depends on the exact

addresses used for the stack and for holding stack vectors in your

system. Your handbook may suggest a definition if it is not already

provided. The word in Fig. A.l should work with most FORTHs.

Before defining this version of‘dot-S’, define an array VALS to hold

as many values as you are ever likely to want displayed (see Chapter

Six). Then define dot-S’ as above. To use the word you must first

place on the stack the number of values that you want to be

displayed. The word takes the values off the stack in order, starting

168 Exploring FORTH

i .S DUP 0 DO SWAP DUP . I VALS !
LOOP 1 -1 SWAP
DO I VALS 0 -1
+LOOP ?

Fig. AT.

from top-of-stack, displaying them as it does so. It stores them in

VALS. Then the second loop takes them from VALS, putting them

back on the stack in their original order. Note that the stack is

displayed with top-of-stack to the left.

BASE Some FORTHs use only a single byte for BASE. If this is

so, tho way to change the base is to use ‘C-store’, as in this example in

which the computer is being put into binary mode:

2 BASF- C!

CHARDEF This is not a regular FORTH word but one defined in

Chapter Six for creating user-defined graphics. If your computer is

capable of producing such graphics, your version of FORTH should

include the necessary words to define CHARDEF. Consult the

manual which came with your FORTH.

CMOVE Moves a block of bytes from one part of memory to

another. As with the ‘official’ CMOVE, the version below does not

check if the source block of memory and the destination block

overlap. If they do, beware! It expects the stack to hold at:

top-of-stack the number of bytes to be moved

second-on-stack the first destination address

third-on-stack the first source address.

If (he number of bytes is 0, CMOVE takes no action except to

remove all three values from the stack. The definition is shown in

Fig. A.2.

! CMOVE DUP 0- IF DROP DROP
ELSE OVER + ROT ROT DUP

ROT - ROT ROT
DO DUP I SWAP -- C(?

I C!
LOOP

THEN DROP t

Fig. A2.

FORTH on Other Computers 169

COUNT This is described in Chapter Seven. Here is its definition:

* COUNT DUP C(? SWAP 1+ SWAP + t

CREATE This may have a slightly different action in other

versions of FORTH, or there may be another word having much the

same action. In fig-FORTH the corresponding word is <BUILDS.

The Jupiter Ace uses DEFINER. For example, the definition of the

array-defining word (Chapter Six) is like this on the Ace:

DEFINER ARRAY 2 * ALLOT DOES> SWAP 2 * + ?

HEX Puts the computer into hexadecimal mode. This word is

defined in one of the following ways, depending on whether the
computer uses one byte or two for BASE:

l HEX 16 BASE C! i

* hex 16 BASE ! f

KEY This waits for a key to be pressed, then places its ASCII Code

on the stack. ?KEY is similar but waits for a limited period of time.

The length of time it waits depends on the value of a number placed

on the stack immediately before ?KEY is used. Some FORTHs have

only INKEY, which accepts input from the keyboard, but does not
wait. INKEY can be used in a definition of KEY:

* KEY BEGIN INKEY ?DUP UNTIL *

Figure A3 is a definition of ?KEY based on INKEY. Placing 20000

on the stack makes the micro wait several tens of seconds, depending

on the type of computer. If no key is pressed during the waiting time,
?KEY leaves zero on the stack.

J ?KEY BEGIN INKEY DUP IF SWAP DROP DUP
INKEY ? ELSE DROP 1 -

THEN
UNTIL ?

Fig. A3.

NOT If this is not in your FORTH, use 0=, which has exactly the
same action.

PLACEIT This is one of the special words defined in Chapter Six.

If your FORTH has AT for displaying a character at a given row and

column, PLACEIT may be defined like this:

t PLACEIT SWAP AT EMIT ;

170 Exploring FORTH

On the Jupiter Ace, it is important to use the word INVIS to clear
the upper part of the screen, ready for the graphics display.

WORD and VARIABLE have the same overall action in fig-
FORTH, but differ in detail. Check their action in your version and
make the necessary amendments when using these words. In some
versions, WORD transfers text to a region of memory known as
PAD, instead of to a special word buffer, but its action is otherwise
the same. In some versions, VARIABLE expects an initial value
(zero or any other number) on the stack when a variable is defined,
instead of automatically setting the value to zero, as described in this
book. Amend variable definitions to include this zero, for example:

0 VARIABLE RATE

Appendix B

ASCII Codes

Code Char. Code Char. Cpde Char.

7 Bell or Beep J 63 0 7 96 £
73 Carriage return -'64 @ 97 a
/32 Space 65 A 98 b
/33 1 66 B 99 c
734 U 67 C 100 d
v/35 # 68 D 101 e

736 $ 69 E 102 f
/37 % 70 F 103 g
/38 & 71 G 104 h
719 * 72 H 105 i
v'40 (73 I 106 j
741) 74 J 107 k

742 * 75 K 108 1
743 + 76 L 109
744 » 77 M 110 n ^
/45 - 78 N 111 0

/46 79 0 112 P
Ml / 80 P 113 q
^48 0 81 Q 114 r
>9 1 82 R 115 s
750 2 83 S 116 t

7 51 3 84 T 117 u
if / 52 4 85 U 118 V

53 5 86 V 119 w
/ 54 6 87 w 120 X

55 7 88 X 121 y

z56 8 89 Y 7l22 z
J57 9 ./ 90 Z 7123 {
^58 791 [-r 124 1
J59 792 \ 7125 }

Index of FORTH Words

Including special words defined in the text

ACC, 137
AND, 153
ARRAY, 41,53
ASK, 148

BASE, 142, 145. 168
BEGIN ... AGAIN, 107
BEGIN... UNTIL, 108. 109
BEGIN... WHILE ... REPEAT,
BIN, 143
BIRDS. 160
BITS. 160
BLANK1T, 50, 53

i/BORDER, 91
bracket, 158
BUBSORT, 126
<BUILDS. 169

CALC, 137
<J C-comma, 161

C-fetch, 63
CHARDEF, 45,53, 168
CHARS, 42, 53
CHASE. 54
CHECK, 148
CMOVE, 73, 168
COLD, 66
polon, 20
COMP. 117
COMPARAND, 130
COMPS, 126

>• CONSTANT, 29
COUN T. 64, 169
COUNTING, 102
CR, 34
CRAPS, 147

-'CREATE, 41,65, 160. 169
C-store, 84

- D-dot. 134
^DECIMAL, 143

DEFINER, 169
DELAY, 56, 93
DICE, 147
divide, 30
divide-mod, 32

vyDlVIS, 140
109 D-less, 134

vDOES>,41,65
v'bO ... LOOP, 6, 7, 35, 101

dot, 12
dot-line, 163
dot-quote. 33

Vdot-R, 33
dot-S, 21,31, 167
DOUBLE, 67
DOWN, 91
DPLS, 140
D-plus, 134
DROP. 48
DUP. 35,48. 167

\/— DUP, 167

ELSE, 80
'/EMIT, 74

equals, 78
EXCH, 130
EXSORT. 121

FEATURES, 160
fetch, 37
FIBONACCHI, 104
FINISH, 98
FP1N, 137
FPOUT, 140

GET, 160

Index of FOR TH Words 173

GO, 91
greater-than, 84

HALT, 93
PD, 144

vHERE, 66
n/HEX, 143, 169

HITUFO, 96
HITYOU, 98
HOPS, 57

I, 35, 102
s. IF, 79

INKEY. 169
INTEG, 140

J. 105

VKEY, 59,60. 93. 169
KEYX. 96
KEYZ, 96

LEAP, 56
-/LEAVE. 107

LEFT, 91, 130
)ess-than, 85

v'TLOOP, 68. 103
LS, 155

minus, 17
MOVEIT, 51, 53

■^M-times, 135
MUFO,93
MULTIPLY, 148
MYOU, 96

NAME?, 73, 75, 85
NO?, 113, 114
NOS?. 114
NOT, 87, 152, 169

VNUMBER, 149

OFF, 55
one-plus, 47

'/.OR, 153
- OVER. 47, 48

■ PAIR, 148
PICK, 47, 48
PLACEIT, 46, 53, 169
PLAY, 93
plus, 93
PUT, 130

VQUERY, 60
query-DUP, 48
query-KEY. 60
QUICK. 130
QUICKSORT. 130

- R-colon, 81, 83
REACTION, 110
READ, 130
READY, 54, 56
RESET, 110
RIGHT, 91, 130
RISE, 126
RND, 146
ROLL, 48

vfeOT, 48
R-semicolon, 81, 83
RUN, 51
RUNSLOW, 52

SAME, 52
semi-colon. 20
SESSION, 108
SET. 117
SHOW, 67, 68,75. 148
SHOWVAL, 117
SHTR, 54
SLASH, 137
SORT, 130
S-P-fetch, 25
SQUARES, 106
STEP, 54
store, 37
STORPLACE, 47, 53
.STR, 73
STR!, 72, 73
STRVAR, 71, 73

J SWAP, 32, 48
SWEEP, 121

TEST, 111
n/THEN, 79

tick, 68
times, 30
times-divide, 31
TRIM, 84
TRUE?, 80
TURN1, 74
two-divide, 161
two-drop, 117, 119, 134
two-dup, 134
two-over, 134
two-swap, 134
two-times, 161

174 Index of FOR TH Words

, TYPE, 73

,/U-divide, 135
U-dot. 134
UFO, 98
UP,91
USER-FRIENDLY, 108

VU-times, 135

VALID, 137
^VARIABLE, 36, 170

>VDU, 45, 160
ALIST, 66

WBFR, 61
vWORD, 61, 170

YN?, 79, 80, 111

zero-equals, 91, 153 169
ZEROES, 140
zero-less 87

Subject Index

address, 24
animation, 55-7
application, 3
array, 41,43
ASCII code, 62, 111, 114, 133. 171

BASIC, 1
beep, 74
binary numbers, 23, 26, 142
bird identification words, 158-60
bit, 23, 153
bit maps, 156-7
bitwise operators, 153
Boolean operators, 153
bubble sort, 124 7
buffers, 61 -137
byte, 23, 63, 133

character codes, 45
code field, 68
codes, 45, 62, 111, 114, 133, 156,171
coincidence detection, 96
collisions, 96
compacting data, 157
compiled languages, 7
conditional branch. 80
conditional operators, 100, 152
constants, 29
cursor off, 55

decimal numbers, 143
decisions, 78, 80, 95, 108, 112
defining words, 29, 65, 169
definite loops. 107
definitions, 8, 29, 41,65, 161
definitions, writing, 49-50
delimiter, 62
dice, 145
dictionary, 66, 69
displays, 33-4

double-precision numbers, 31,133,
134-36

empty stack, 12
excahnge sort, 119-24
execution, 69

fetching data, 37
FFAA rule, 18
Fibonacchi series, 104
fig-FORTH, 4
flag, 78
flags, 100, I 12. 152, 156
floating-point numbers, 19
floating-point words, 137
FORTH, 1,4, 8
FORTH words, 19, 67-71

graphics, 44-5, 55-7
graphics, moving, 50-52. 55 -7, 88-98
graphics words, 53

hexadecimal numbers, 144, 169

identification, 157
indefinite loops. 107
input buffer, 61
integers, 20, 30, 133
interpreted languages, 7

last-in-first-out (LIFO), 15
link field, 68
logic, 152
logical operators, 153
loop index, 102-107
loops, 7, 35, 52, 101, 107, 161

machine code, 8
memory, 23, 24, 43, 73, 83, 156, 168

176 Subject Index

mixed-precision operators, 135
multiplication table, 148

name fields, 67-8
negative numbers, 27
nested routines, 82, 95, 105, 114, 138
number base, 142-5, 153-4, 168
number types. 19, 23, 27, 31, 133, 142

parameter field, 68, 72, 163
primitives, 8, 70
program. 2

quicksort, 127-32

random numbers, 145-8
reaction time, 110
recursion, 82
relational operator, 78, 84
repeated actions, 108
rounding, 86-8

second-on-stack, 13,24
shifting, 154 5. 161

signed numbers, 27, 134
single-precision numbers, 133
sorting words, 117, 121
stack, 11-22, 23-8, 113, 168
stack operators, 48
stack pointer, 24
stack rules, 18
storing data, 37
strings. 60. 65
strings, storing, 65, 71 5, 83-6
string variable words, 75

threaded language, 3, 70
top-of-stack, 11, 24
TP rule, 18

UFO game, 88-98
unsigned numbers, 27, 134
user-defined graphics, 44-5, 90

variables, 36, 70-71, 170

word buffer, 61, 137

FORTH IS FAST, FORTH IS BRILLIANT-GO FORTH!

FORTH is a brilliant language with remarkable potential. It
is four times as compact and up to ten times as fast as
BASIC. It is also easy to learn, interest in FORTH is
growing rapidly and versions of FORTH are now available

for an increasing range of micros.

This practical introduction to programming in FORTH has
been written especially for beginners. Many examples are
provided for you to try. Key them in and watch things
happen on the screen. Try typing in something different

and see if the effect is what you expect. This is the best,

most creative way to learn FORTH fast.

If you want to be truly versatile, you cannot afford to
ignore FORTH. This book shows you how to grasp this
exciting new language and what you can achieve.

The Author
Owen Bishop is a freelance technical writer and
programmer. He is the author of forty books including a
number on popular computing. He is a well known and
regular contributor to computing journals.

Also from Granada

COMPUTER LANGUAGES AND THEIR USES

Garry Marshall
0 246 120223

SIMPLE INTERFACING PROJECTS

Owen Bishop
0246120266

THE COMPLETE PROGRAMMER

Mike James
0 246 120150

INTRODUCING LOGO

Boris Allan
0 246 12323 0

Cover photograph (background): Space Frontiers Limited

GRANADA PUBLISHING
Printed in Great Britain 0 24612188-2 £6.95 net

