

 [image: First Edition]

 Developing with Google+

Jennifer Murphy

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

Preface

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Developing with Google+ by Jennifer Murphy
 (O’Reilly). Copyright 2012 Jennifer Murphy, 978-1-449-31226-8.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/dev_w_google_plus.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Writing a book is a huge undertaking. I had lots of help along the
 way. There is no way that I can cover everyone who helped me, but here's a
 list of a few individuals who I would like to thank.
Thanks to all of my coworkers at Google for their technical reviews
 including Will Norris, Eric Li, Brett Morgan, Gus Class, and the rest of
 the Google+ platform team. Thanks to my friends at O'Reilly, especially
 Mike Loukides and Meghan Blanchette, who guided me through the process.
 Thanks to everyone who offered support in ways other than code, including
 my teammates from the Peninsula Roller Girls, who were always by my side,
 Jordan Robinson, for her wonderful and potentially disastrous recipes, and
 my partner in crime, Winona Tong, for creating the Baking Disasters logo
 and so much more.

Chapter 1. Introduction

Hello there! Since you’re reading these words, the Google+ platform
 has probably sparked your interest. Maybe you have a killer app in mind, or
 perhaps you’re just interested in learning what’s available. Either way, by
 the time you’re finished with this book, you will be comfortable digging
 into Google+.
The Google+ platform has three categories of features. Each of these
 categories is capable of standing alone, but things become more interesting
 when you combine them. These categories form a natural division, so we’ll be
 going through them one at a time.
This means you can skip around from chapter to chapter if you wish.
 Once you become familiar with the components that you’re most interested in,
 you will be able to combine them into the application that you’re dreaming
 about. So, feel free to invoke a random access approach to reading this
 book. If you’re more interested in REST APIs than publisher plugins, skip
 ahead. I promise I won’t be offended.
The three categories of the Google+ platform are social plugins, like
 the +1 button, RESTful web services, which provide read access to Google+
 data, and hangout applications, for writing your own real time collaboration
 apps. Additionally, the RESTful web services can be used in a couple of
 ways. You can either access public data directly when you know what you’re
 looking for, or you can use OAuth 2.0 to access your user’s data on
 Google+.
Since this architecture is a bit different from other platforms that
 you may have used, here are a few things that you may recognize and a few
 things that may be new to you.
Things You May Recognize

If you’ve developed on other social platforms you’re in luck. Many
 of the technologies and techniques used in the Google+ platform are very
 similar. This is all thanks to a combination of open standards and best
 practices that have developed over the past several years.
Social Plugins: If you are a
 content publisher, or have an existing web application, Google+ plugins
 provide a simple way to integrate with Google+. They consist of JavaScript
 and small snippets of HTML markup. Google provides several social plugins
 including the +1 button, badge, share button, and sign-in button.
The JSON/REST/HTTP Stack: More
 sophisticated integrations with the Google+ platform rely heavily on JSON
 messages communicated with RESTful web services over the HTTP protocol.
 This is how you can programmatically communicate with Google+.
OAuth 2.0: The OAuth 2.0
 specification is still in a draft state, but the need for secure access to
 user data is so acute that it is already being adopted by platforms across
 the Internet. Google+ has made a commitment to use OAuth 2.0 for APIs
 going forward.

Things That May Be New to You

As much as developing on Google+ is similar to developing on other
 modern social platforms, there are a couple of things that may be new to
 you.
Activity writes require user
 interaction: This is more of a philosophical difference than a
 technical one, but it will impact your designs.
A user’s activity is a portal into the lives of people they know. A
 high-quality stream is very important to Google+. As a result, directly
 posting to a user’s stream is not supported by the API. Instead, all
 writes must be triggered directly by the user. This is intended to keep
 the stream as high quality as possible. In practical terms this means that
 all writes must be made using the +1 button or the developer preview
 history API.
Preferred client libraries: RESTful
 APIs are great in that they provide a language-agnostic way to access data
 that resides on a remote system. Unfortunately, the specifications can be
 broadly interpreted, and nuance differences between implementations can
 make your code complicated.
To ease development in the language of your choice, Google is
 actively developing preferred client libraries for many popular
 languages.
If at all possible, use one of these libraries. Everything from the
 reference documentation to starter projects provided by Google is written
 using these libraries. In the same vein, all of the sample code is in this
 book is written using these client libraries.
The recommended client libraries are open source and provided under
 the favorable terms of the Apache 2.0 license.

Explore the API

Without further ado, it’s time to dive into the API. The easiest way
 to see the Google+ platform in
 action is to use the API Explorer. This tool is accessible at https://developers.google.com/apis-explorer/#s/plus/v1/. It
 provides point-and-click access to most of the APIs that Google offers,
 including the REST APIs for Google+.
Follow these steps to fetch your public Google+ profile with the
 REST API.
	Navigate to the API Explorer as shown in Figure 1-1. The hash fragment in the URL above should have
 automatically selected the Google+ API. Near the top of the content
 pane, you should see the selected API and version: Google+ API v1.
 Below this is a list of the available methods.

	Scanning through the available methods, as shown in Figure 1-2, the plus.people.get method looks like a match.
 Click it to reveal input fields.

	Unfortunately, it requires a userId, which you probably don’t know. The
 shortcut value me can be used in
 its place, but since your identity on Google+ is private information,
 it is protected by OAuth 2.0. You must authorize the API explorer to
 use it. Click the toggle switch entitled Authorize requests
 using OAuth 2.0 to initiate this authorization.

	An OAuth scope dialog will appear, as shown in Figure 1-3. Check the checkbox for the https://www.googleapis.com/auth/plus.me scope, and
 click the Authorize button. If this is your first time using the API
 Explorer with Google+ you must also grant the API Explorer access to
 your identity on Google+.

	The API Explorer now has permission to determine your userId. Specify me for userId and to execute the query, as shown in
 Figure 1-4.

	Upon execution, the request history pane at the bottom of the
 window displays the API Explorer’s request and the API server’s
 response, as shown in Figure 1-5. Assuming it was
 successful, you should see the HTTP headers from request and the full
 response. This includes a JSON representation of your public Google+
 profile.

Congratulations! With a just few clicks you’re already using the
 Google+ platform.
Over the course of these steps you witnessed many important features
 of the REST APIs provided by the Google+ platform. You danced the OAuth
 2.0 dance to grant the API Explorer access to your identity on Google+,
 and you observed it fetching your Google+ profile.
[image: The API Explorer listing the methods of Google+ API v1]

Figure 1-1. The API Explorer listing the methods of Google+ API v1

[image: The API Explorer panel for crafting a people.get request]

Figure 1-2. The API Explorer panel for crafting a people.get request

[image: The API Explorer’s OAuth 2.0 scope selection dialog for the Google+ API]

Figure 1-3. The API Explorer’s OAuth 2.0 scope selection dialog for the
 Google+ API

[image: A completed people.get request form on the API Explorer]

Figure 1-4. A completed people.get request form on the API Explorer

[image: A typical response to a successful people.get request]

Figure 1-5. A typical response to a successful people.get request

Chapter 2. Social Plugins

In the introduction you used the API Explorer to fetch your public
 profile. If the REST API is the core of the platform, the plugins are
 portals into Google+ from your web presence. This chapter explores these
 social plugins.
Social plugins are snippets of JavaScript code and HTML markup. They
 can be easily added to existing web pages and applications with only a few
 lines of code. They are also highly configurable.
A great way to learn the social plugins is to use them. You will add
 them to a blog called Baking Disasters. Baking Disasters consists of a
 static HTML index page and two entry pages that describe a couple of
 particularly disastrous baking attempts. You can see the initial version of
 the blog here: http://bakingdisasters.com/social-blog/initial/. The entry
 pages are a great place to experiment with the +1 button, and the index is
 an ideal candidate for the Google+ badge.
The +1 Button

Before there was Google+ there was the +1 button. Announced at
 Google I/O in 2011, this feature predates every other component of the
 Google+ platform. It provides a one-click interface for your users to
 publicly identify their favorite content. Once users have +1’d a page,
 they have the option to share it on Google+.
From your user’s perspective the +1 button is quite simple. They see
 your page, and since your content makes their eyes light up in excitement,
 they click the +1 button.
Figure 2-1 shows what happens next. The button turns
 red and their icon is added to the inline annotation. After this, the page
 is listed in the +1’s tab on their Google+ profile, and their endorsement
 appears in annotations for this page. These annotations appear on your
 page as well in Google search result listings. Annotations are customized
 to the viewing user using their circles on Google+.
After your user has +1’d your webpage, they will see the share
 dialog. It allows them to share your content on Google+. You can use
 structured markup to specify the title, description, and thumbnail image
 that are used.
Finally, the +1 triggers a custom JavaScript callback. This allows
 you to leverage their interest in creative and interesting ways.
[image: Some effects of a +1]

Figure 2-1. Some effects of a +1

Behind the scenes, a bit more happens. Many systems organize to
 provide this functionality. When the +1 button renders, information is
 loaded to provide your user a personalized annotation. When they click, a
 page fetcher visits your site in real time to extract your page’s snippet:
 a short summary of your page. This summary is sent back to the +1 button,
 allowing the user to preview what they are about to share on Google+. Finally, when they share, an
 activity is posted to their stream.
Figure 2-2 illustrates this in detail.
	The web page sources plusone.js from Google.

	The web page renders the +1 button.

	The +1 button fetches current +1 count.

	Your user clicks the +1 button.

	The +1 button communicates the click to Google.

	Google fetches the target page.

	Google generates a snippet for the target page.

	The snippet is provided in the response to the +1 button click
 to preview the content that can be shared.

	Your user shares the snippet for the target page on
 Google+.

[image: A communication diagram describing a typical +1 button render, click, and share]

Figure 2-2. A communication diagram describing a typical +1 button render,
 click, and share

Adding the +1 Button

Now that you understand how the +1 button works, it is time to use
 it.
The +1 button is very easy to add to a web page. In its most basic
 form it requires only two lines of code. From this starting point you
 can further configure the button to match your needs.
The Google+ platform social plugins feature configuration tools.
 This is the best place to start. The +1 button configuration tool can be
 found at https://developers.google.com/+/plugins/+1button/. The
 configuration tool, pictured in Figure 2-3, consists of a
 form, a preview, and a text area containing code. Play with the form.
 Notice that the +1 button and code automatically update.
[image: The +1 button configuration tool]

Figure 2-3. The +1 button configuration tool

Add the default +1 button to one of the entries on Baking
 Disasters. Copy the +1 button element into the place that you would like
 it to render. Based on the layout of the entry, a spot to the right of
 the header will work perfectly. Wrap the button in a div to float it right, as shown in Example 2-1.
Example 2-1. The +1 button markup
<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="inline"></div>
 </div>
 <h2>Doom Bread</h2>
</header>

The +1 button markup is only half of the story, though. Paste the
 JavaScript into the page too. It can be placed anywhere on the page,
 including just before the </body> tag, as shown
 in Example 2-2. When it loads, it transforms all elements
 with class="g-plusone" into a +1
 button.
Example 2-2. The asynchronous version of the +1 button JavaScript
</footer>
<script type="text/javascript">
 (function() {
 var po = document.createElement('script'); po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s);
 })();
</script>
</body>
</html>

Reload the page to see the +1 button, as shown in Figure 2-4.
[image: Doom bread with a default +1 button]

Figure 2-4. Doom bread with a default +1 button

The default width of 450 pixels has mangled the entry title.
 Sensible defaults are not always perfect for every layout. Return to the
 configuration tool and specify a width. Change the width to 250 pixels
 to leave room for longer titles, as shown in Example 2-3
 and pictured in Figure 2-5.
[image: The +1 button configuration tool with the width explicitly specified]

Figure 2-5. The +1 button configuration tool with the width explicitly
 specified

Copy the updated code, and paste it into the entry.
Example 2-3. +1 button markup configured to 250 pixels wide
<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="inline" data-width="250"></div>
 </div>
 <h2>Doom Bread</h2>
</header>

Reload the page to observe the change. It should look like Figure 2-6.
[image: Doom Bread with a +1 button configured to a width of 250 pixels]

Figure 2-6. Doom Bread with a +1 button configured to a width of 250
 pixels

You can return to the configuration tool to explore the other
 options that it provides.

Customizing the +1 Button

The configuration tool provides a quick way to grab some code and
 run with the +1 button, but digging deeper unlocks more options.
The rest of the +1 button documentation can be found below the
 configuration tool. It documents all of the configuration options for
 the +1 button, including many that are not covered by the configuration
 tool.
For example, the documentation describes all of the tag attributes
 in detail. The annotation is pretty cool, but sometimes there isn’t
 enough space. Scanning the documentation it appears that the annotation
 is configurable. The options include inline, the default, a smaller bubble, and none. Changing the annotation to none, as shown in Example 2-4,
 the +1 button shrinks to a much smaller footprint.
Example 2-4. +1 button markup with no annotation
<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="none"></div>
 </div>
 <h2>Macaron</h2>
</header>

The floating div layout slides
 the smaller +1 button to the right as pictured in Figure 2-7.
[image: Macaron with a +1 button configured to display no annotation]

Figure 2-7. Macaron with a +1 button configured to display no
 annotation

There are many more parameters that you may find useful. Explore
 the documentation to learn about them.

Customizing Your Snippet

+1’ing a page creates content on Google+. It inserts a brief
 summary on the +1’s tab of the user’s profile, and an activity in their
 stream, if they share. The title, description and thumbnail image make
 up the snippet. You can customize your snippet to ensure that all of
 your pages look great on Google+.
By default the +1 button creates a best guess snippet. This is
 usually pretty good, but you know your content best. You can specify a
 much better snippet. The snippet can be specified using either
 schema.org markup or Open Graph tags.
Google recommends that you use schema.org markup to specify your
 snippet. Adding schema.org markup involves adding attributes to your
 existing content, so you do not need to add any new tags. It also allows
 top search engines, like Google and Bing, to parse your pages more
 easily.
Now that you understand why schema.org markup is a great solution,
 add it to a page. The first step is to select the correct schema.
 There’s a handy list published at http://schema.org/docs/full.html. It includes all of the
 schemas in one long page. In general, use the most specific schema that
 is appropriate to your content. It allows you to describe your content
 as richly as possible.
Scanning the list, it appears that there’s a recipe schema: http://schema.org/Recipe. This is perfect for Baking
 Disasters. Add it to the macaron entry.
The recipe does not have content to match every single field in
 the schema, but it’s wise to match as many as you can. The social
 plugins only understand the fields that are inherited from the thing
 schema, but complete markup provides the greatest benefits from search
 engines and future features of the Google+ platform. For example, the
 history API, which is currently in developer preview, makes use of many
 other schemas.
Add the itemscope and itemtype attributes to the parent element of
 the recipe, as shown in Example 2-5. On the macaron entry,
 the section element with class content is appropriate.
Example 2-5. Schema.org itemscope and itemtype
.Schema.org itemscope and itemtype
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
<section class="content" itemscope itemtype="http://schema.org/Recipe">
 <section class="post-body">
 <header>

Next, mark individual elements by adding itemprop attributes. Start with the properties
 inherited from the thing schema—description, image, name, and url—and follow by marking up the recipe
 specific fields such as ingredients
 and recipeInstructions. The resulting
 code is shown in Example 2-6.
Example 2-6. Schema.org recipe markup on the macaron page
<header>
 <div style="float: right;"><div class="g-plusone" data-annotation="none"></div></div>
 <h2 itemprop="name">Macaron</h2>
</header>

<p itemprop="description">Few baked goods are as prone to explosions as the delicious
 and delicate French macaron. There's something about a hard outer shell attempting
 to hold back the pressure of expanding almond-flour-goo that's reminiscent of a poorly
 designed steam locomotive.</p>
<h3>The Recipe</h3>

 <li itemprop="ingredients">1 cup powdered sugar
 <li itemprop="ingredients">1/4 cup baker's superfine sugar
 <li itemprop="ingredients">3/4 cup almond flour
 <li itemprop="ingredients">3 egg whites

<ol itemprop="recipeInstructions">
 Mix powdered sugar and almond flour

Reload and +1 the page. Something slightly different happens:
 rather than using a best guess snippet, the +1 button reads the
 schema.org markup. See the improvement in Figure 2-8.
[image: Top: The best guess snippet; Bottom: The schema.org snippet]

Figure 2-8. Top: The best guess snippet; Bottom: The schema.org
 snippet

Schema.org markup is the preferred option for specifying your
 snippet, but other options are available. When schema.org markup is not
 present, the +1 button looks for Open Graph markup. Open Graph markup
 consists of meta elements within your
 HTML head. These meta elements specify details about your page. Using
 Open Graph may make more sense if you already have social sharing
 buttons from other services on your site that use Open Graph.
Open Graph is less expressive, but it is also simpler. Add
 elements to the HTML header of the doom bread page: meta tags with property og:title, og:image and og:description, as shown in Example 2-7.
Example 2-7. Open Graph markup on doom bread
<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css"/>
 <link rel="shortcut icon" href="images/logo_favicon.png"/>
 <link rel="canonical" href="http://bakingdisasters.com/blog/doom-bread.html"/>

 <meta property="og:title" content="Doom Bread on Baking Disasters"/>
 <meta property="og:image"
 content="http://bakingdisasters.com/blog/images/doom-bread.png"/>
 <meta property="og:description"
 content="Is it a bread or is it a roll? Within this layery monstrosity is the
 essence of fatty deliciousness."/>
</head>
<body>

As you can see, both of these methods provide a way to specify
 your snippet. Which method is best depends on the implementation details
 of your application.

Leveraging the Callback

You have learned a lot about the what the +1 button can do, but
 you haven’t written very much code yet. This is about to change. The
 callback is a software hook provided by the +1 button.
The callback allows you to trigger your own JavaScript code when
 the +1 button is clicked. It can call any function in the global
 namespace. Just supply it as a parameter to the +1 button, as shown in
 Example 2-8.
Example 2-8. A simple callback and +1 button markup configured to call
 it
<script>function onPlusone(){ alert("Hello, world!"); }</script>
<div class="g-plusone" data-callback="onPlusone"></div>

This unlocks a lot of potential. When a user clicks the +1 button
 they have just indicated their interest in your content. This is a great
 opportunity to engage them further.
On Baking Disasters you can leverage the callback to recommend
 other content that the user might enjoy. When a user +1’s the page you
 can reveal this recommendation. The recipe page seems like a great place
 to perform this integration.
On a more complex site the task of determining recommended would
 likely involve an AJAX call, but Baking Disasters is simple. It hosts
 only two recipes. The only option is to recommend the other recipe when
 the user clicks on the +1 button.
Include the recommendation in the page and hide it with CSS. When
 the callback executes, inspect the button state and reveal or hide the
 recommendation appropriately, as shown in Example 2-9.
Example 2-9. A JavaScript callback that reveals content when your user +1’s
 your page
function onPlusone(jsonParam) {
 var recommendedContent = document.getElementById("recommended-content");
 if(jsonParam.state == "on") {
 recommendedContent.className = "active";
 } else {
 recommendedContent.className = "";
 }
}

When the +1 button is toggled on, the recommendation is revealed.
 When the button is toggled off, it is hidden as pictured in Figure 2-9.
[image: Clicking on the +1 button triggers the callback and reveals the recommendation in the bottom screen shot.]

Figure 2-9. Clicking on the +1 button triggers the callback and reveals the
 recommendation in the bottom screen shot.

The main callback is the best place to add interesting
 functionality, but there are a couple other callbacks. These callbacks,
 onstartinteraction and onendinteraction, trigger when a user begins
 and ends their interaction. They are very useful if you have a Flash
 advertisement or video that appears on top of your +1 button bubble. You
 can use them to hide the flash content while the user interacts with the
 +1 button and reveal it again when their interaction ends.
The callback is where developing with the +1 button really comes
 to life. This is your opportunity to integrate the +1 button into your
 core features and connect with your most active users. Be creative and
 have fun.

Special Considerations for AJAX Applications

AJAX applications throw a bit of a wrench into the system
 described above. In general AJAX applications track state using hash
 fragments. Hash fragments are the part of the URL after the # symbol.
 For example, a user may enter an AJAX application at http://example.com/ and navigate to a view of
 their profile at http://example.com/!profile/123. During this
 navigation the domain name and path do not change. To clients that do
 not execute JavaScript, like web crawlers and the +1 button’s snippet
 fetcher, these URLs appear the same even though they contain very
 different content for the user.
Luckily, this problem has already been solved. Several years ago
 Google published a technique to make AJAX applications crawlable. It is
 described here: https://developers.google.com/webmasters/ajax-crawling/docs/getting-started.
 Because the +1 button fetcher is similar to web search crawlers, you can
 leverage this existing solution.
When you specify the target page for your +1 button, target a URL
 that specifies the state in a GET parameter instead of a hash fragment.
 For example, when you render a +1 button on http://example.com/#!profile/123 specify the
 URL target to be http://example.com/?_escaped_fragment_=profile/123.
 Your web server, of course, must be able to understand the GET parameter
 and respond with the correct HTML.
There are many ways to implement this functionality on your web
 server. One approach is be to replicate all client side JavaScript
 behavior server side. In doing so, the crawlable version of every URL
 will always render the exact same HTML as if it were navigated to via
 AJAX. This solution will provide the best user experience.
If replicating this functionality server-side is prohibitively
 expensive, you may want to consider HTML snapshots. Create HTML
 snapshots by using headless browser programs, like those used for
 testing web applications, to regularly generate crawlable versions of
 your pages. When a client requests the _escaped_fragment_ version of a page, your web
 server would then respond with the snapshot version. This technique is
 described in more detail on the
 previously linked guide
 to making crawlable AJAX applications.

Troubleshooting the +1 Button

Sometimes things don’t work as expected. Sometimes the +1 turns
 pink and shows an exclamation point, as shown in Figure 2-10. This icon does not help very much on its own, but
 just behind the covers there are more details. Modern web browsers
 provide powerful JavaScript debugging tools such as Firebug for Mozilla
 Firefox and the Chrome developer tools.
[image: The +1 button indicating an error after an unsuccessful +1 click.]

Figure 2-10. The +1 button indicating an error after an unsuccessful +1
 click.

If you see a pink +1 button, open up Chrome’s developer tools and
 switch to the network panel. Inspect the request for rpc as shown in
 Figure 2-11. This is the back-end API request made by the
 +1 button. You should see more details in the response body.
[image: The +1 button’s HTTP response inspected with Chrome Debugging Tools]

Figure 2-11. The +1 button’s HTTP response inspected with Chrome Debugging
 Tools

You may see “Backend Error” in the response. This means that the
 Google servers, which generate the snippet, were unable to reach or
 parse your page. Since the error message does not contain details, this
 can be a challenging issue to troubleshoot. Here’s a checklist of common
 causes.
Reachable webpage: Is your web
 page reachable from the Internet? If you’re developing on http://localhost, or within a corporate
 intranet, the snippet fetcher cannot reach your page. Be sure to publish
 it somewhere that Google can access it.
Page response time: Since the
 snippet is generated in real time, your web server must be reasonably
 responsive. If page loads take more than a few seconds, you may
 encounter issues.
User agent filtering: The user
 agent of the snippet page fetcher is not part of the documented API. Do
 not filter, redirect or block traffic based on user agent.
Valid snippet markup: Paste the
 URL for your webpage into the Webmaster Central Rich Snippet Testing
 Tool found at http://www.google.com/webmasters/tools/richsnippets. This
 will fetch your page and validate your rich snippet markup.
Valid HTML: Does your website use
 valid HTML markup? Check it with a tool such as W3C’s validation
 service: http://validator.w3.org. A few warnings
 and errors are probably fine, but the more errors your page contains,
 the more challenging it is to parse.
If you’ve gone through this checklist and you’re still seeing an
 error when +1’ing your webpage, you can always reach out to the Google+
 team for help. Flip ahead to the last chapter of this book to learn more
 about support. Do not forget to link to a place where the issue is
 happening.

The Badge

The Google+ badge makes it easy for you to advertise your presence
 on Google+ to visitors of your website. The badge comes in two flavors:
 one for user profiles and another for pages. Both of these badges link to
 you on Google+ and provide a way for visitors to add you to their circles
 from the badge itself, as pictured in Figure 2-12. The
 version of the badge for pages also includes a +1 button, consolidates the
 count of +1’s from your Google+ page and homepage, and opens the door for
 Direct Connect.
[image: Left: User profile badge; right: Google+ Page badge]

Figure 2-12. Left: User profile badge; right: Google+ Page badge

Direct Connect allows visitors to navigate to your Google+ page
 directly from Google Web Search. Searches for the title of your page
 prefixed with a plus sign, such as +android for Android, will
 automatically forward to your page instead of listing search results.
 Additionally, since the leading plus sign demonstrates interest on the
 part of your visitor, they are automatically prompted to add your page to
 one of their circles, as pictured in Figure 2-13.
[image: Entering a direct connect query into Google Web Search automatically takes you to a Google+ page and prompts you to add the page to a circle.]

Figure 2-13. Entering a direct connect query into Google Web Search
 automatically takes you to a Google+ page and prompts you to add the
 page to a circle.

Adding the Badge

Baking Disasters is not a person, so you must use the badge for
 Google+ pages. Baking Disasters already has a Google+ page, shown in
 Figure 2-14, that you can use for the badge. If you don’t
 have a page already, you can create one now. Follow the step-by-step
 tutorial to create one here: https://plus.google.com/pages/create.
[image: The Baking Disasters Google+ page in all its glory]

Figure 2-14. The Baking Disasters Google+ page in all its glory

Now that you have both pieces, a homepage and a Google+ page, you
 can set up the badge. Just like the +1 button, the badge provides a
 configuration tool that is accessible at https://developers.google.com/+/plugins/badge/ and shown
 in Figure 2-15. Several more advanced configuration
 options are documented below. Use the configuration tool to add a page
 badge to the index page.
[image: The badge configuration tool]

Figure 2-15. The badge configuration tool

Unlike the +1 button, the badge needs to know the page or profile
 that it links to. The configuration tool has a drop-down that lists your
 Google+ profile and the pages you manage.
Alternatively, if you are creating a badge for a page that you do
 not manage, or for a profile that is not yours, use the
 other option to specify the badge target by copying
 and pasting the URL as shown in Figure 2-16 and Figure 2-17.
[image: Copy and paste the numeric ID from your page URL into the badge configuration tool]

Figure 2-16. Copy and paste the numeric ID from your page URL into the badge
 configuration tool

[image: Copying the page URL into the badge configuration tool]

Figure 2-17. Copying the page URL into the badge configuration tool

Just like the +1 button configuration tool, the badge
 configuration tool automatically produces a preview and source code. The
 default badge is a bit large for Baking Disasters, but with a few clicks
 you can make it smaller. A small badge with a width of 170 pixels should
 fit nicely into the header. This configuration is shown in Figure 2-18.
[image: The badge code configured for placement in the Baking Disasters index page header]

Figure 2-18. The badge code configured for placement in the Baking Disasters
 index page header

The code for the badge has a two parts: JavaScript and HTML
 markup. The JavaScript portion probably looks familiar; it’s the exact
 same code that renders the +1 button. You only need to include it once,
 so if you have any other Google+ plugin already on your page, you can
 ignore it. Next, the HTML markup must be placed where you would like the
 badge to render.
Here’s the updated index page with the badge source in Example 2-10 and a screenshot of the rendered badge in Figure 2-19.
[image: The badge rendered on Baking Disasters]

Figure 2-19. The badge rendered on Baking Disasters

Example 2-10. The Baking Disasters blog index page: now with a Google+ badge
 in the header
<header class="blog-header">
 <div class="header-badge">
 <div class="g-plus" data-width="171"
 data-href="//plus.google.com/116852994107721644038?rel=publisher"></div>
 </div>

 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
...
<!-- Asynchronously load the +1 button JavaScript -->
<script type="text/javascript">
 (function() {
 var po = document.createElement('script');
 po.type = 'text/javascript'; po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(po, s);
 })();
</script>
</body>
</html>

With the badge installed, visitors can now discover Baking
 Disasters on Google+ and add its Google+ page to one of their
 circles.

Performance Tuning Social Plugins

Social plugins add a lot of value, but this value comes at a small
 cost. They load and execute JavaScript code. This additional code can slow
 down page loads and reduce the quality of your user’s experience. Luckily,
 there is a bag of tricks to pull from to mitigate this. These tricks work
 for any social plugin.
Asynchronous Loading

You may already be using asynchronous loading. The configuration
 tools supply you with asynchronous code by default. Asynchronous loading
 delays the rendering of all plugins until later in the page load, which
 makes pages feel more responsive.
If you are using this JavaScript to load your plugins, as shown in
 Example 2-11:
Example 2-11. Synchronous +1 button JavaScript code
<script src="https://apis.google.com/js/plusone.js"></script>

change it to this code, as shown in Example 2-12:
Example 2-12. Asynchronous +1 button JavaScript code
<script>
 (function() {
 var po = document.createElement('script'); po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s);
 })();
</script>

To take this philosophy one step further, you can even delay the
 execution of the asynchronous loader until after most of your page has
 been downloaded and parsed. Move the asynchronous JavaScript to the
 bottom of your page just before the closing </body> tag.

Explicit Rendering

By default the social plugins search the entire page for
 placeholder elements, such as <g:plusone>, <g:plus> and <div class="g-plus"></div>, and
 replace them with the plugins. If your page is very large, this may be
 inefficient.
You can reduce the size of this search with explicit rendering.
 When you source the JavaScript use a special piece of JSON to prevent
 the initial page scan. The responsibility of rendering now falls on you,
 but along with this responsibility comes the power to specify exactly
 where to render the plugins. Code illustrating both the special JSON and
 the explicit rendering is shown in Example 2-13.
Example 2-13. Explicit +1 button rendering
<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css" />
 <script type="text/javascript"
 src="https://apis.google.com/js/plusone.js">
 {parsetags: 'explicit'}
 </script>
</head>
<body>
...
<section class="content">
 <section class="post-summary" id="macaron">
 <div class="g-plusone"
 data-href="http://bakingdisasters.com/social-blog/final/macaron.html">
</div>
 <header><h2>Macaron</h2></header>
...
</footer>
<script type="text/javascript">
 gapi.plusone.go("macaron");
 gapi.plusone.go("doom-bread");
</script>
</body>
</html>

Using your own code to render the
 plugin has one caveat. You must load the plusone.js file
 synchronously.

Delayed Rendering

If you have an extremely large number of social plugins on one
 page, you may want to delay their rendering until the user interacts
 with elements near the plugin.
Specify a placeholder image for the social plugin and add a
 mouseover event handler to content
 that the user is likely to mouse over, before they can reach the social
 plugin. To keep this from being too jarring, use an image of the
 rendered plugin as a placeholder. Example 2-14 shows this
 trick being used on the Baking Disasters index page.
Example 2-14. Delayed +1 button rendering
<script>
 function renderPlusone(placeholderId, targetUrl, origin) {
 origin.onmouseover = null;
 gapi.plusone.render(placeholderId, {"annotation":"none", "href":targetUrl}); [image: 1]
 }
</script>
<section class="content">
 <section class="post-summary" id="macaron" [image: 2]
 onmouseover="renderPlusone('plusone-macaron',
 'http://bakingdisasters.com/blog/macaron.html', this)">
 <div id="plusone-macaron" [image: 3]
 style="width:38px;height:24px;display:inline-block;
 background-image:url(images/plusone_button_placeholder.png);">
</div>
 <header><h2>Macaron</h2></header>
 <p>Few baked goods are as prone to explosions as the delicious and delicate

	[image: 1]
	The JavaScript function, which replaces the placeholder
 div with a +1 button.

	[image: 2]
	Mousing over this section triggers the +1 button
 rendering.

	[image: 3]
	The placeholder for the +1 button.

When visitors reach the page they will see the placeholder image
 of the +1 button until they mouse over the recipe summary.
Can you see a difference between the left and right versions in
 Figure 2-20? If the answer is no, you’re doing it
 correctly. The left browser window contains the placeholder while the
 one on the right contains the rendered button.
[image: A placeholder image being replaced by a real +1 button]

Figure 2-20. A placeholder image being replaced by a real +1 button

Use this technique only where necessary. Any image placeholder you
 use must be kept up to date as the plugins change. Also, no matter how
 perfect the placeholder image is, it will not be able to display
 annotations or existing +1 button state. If they have already +1’d your
 page, they will not be able to see it until they trigger the plugin to
 render.

Keeping Up to Date

There are always enhancements to the existing plugins and entirely
 new features being explored by the Google+ team. Before launching new
 features to everyone, they’re tested with a preview group. If you’d like
 to stay on the bleeding edge you can join this preview group to gain
 early access to new features.
To join the platform preview group complete the form at http://www.google.com/+/learnmore/platform-preview
 with an email address for a Google+ profile. When new features enter
 publisher preview you will be notified via email at that address. You
 will only see publisher preview features while you’re logged in to this
 account.
Platform preview is a great opportunity to experiment with
 features before full release. You can configure the new features, such
 as new display options, so only you can see them. Once the features
 enter graduate to full release they will automatically appear to all
 visitors.

Chapter 3. Public Data APIs

The RESTful data APIs are the core of the Google+ platform. These APIs
 provide read access to public fields on profiles, activities, and comments.
 Access to private data, specifically a user’s identity on Google+, is
 controlled by OAuth 2.0, and API quotas are controlled by API keys.
The easiest way to gain an understanding of the public data APIs is to
 see them in action.
Integrating Google+ Comments

Baking Disasters is pretty cool, but do you know what would make it
 cooler? Comments would. Discussion can bring a blog to life, but sadly,
 they come at a cost. Not only do you need to worry about spam comments,
 but you also have to expose potentially sensitive software to the outside
 world.
Fortunately, the Google+ public data APIs expose the comments on
 your public activities. Since you’re already sharing your blog posts to
 Google+, you can use JavaScript to render the comments from the activity
 right in the blog entry. Not only does this prequalify users to reduce
 spam, but it also allows you to keep Baking Disasters static HTML.
Experiment with the APIs

Before you start coding, spend some time to become comfortable
 with how the APIs behave. The API Explorer from the introduction chapter
 is perfect for this. You can find it here: https://developers.google.com/apis-explorer/#s/plus/v1/.
Use the API Explorer to trace the same steps that the comments
 plugin will follow.
	Scan through the available methods in the API Explorer. The
 comments.list method, pictured in
 Figure 3-1, looks perfect. Unfortunately, it requires
 an activity ID.

	Just above the comments.list method there is an activities.list method, pictured in Figure 3-2. This lists recent activities and provides their
 IDs.

	Listing activities requires one more piece of information:
 your userId. The easiest way to
 determine your userId is to copy
 it from your Google+ profile URL, as shown in Figure 3-3. This technique works for both Google+ pages and
 user profiles.

	Paste your userId into the
 activities.list form and select
 the public collection. Click
 execute to trigger the API call. The JSON response body renders in
 the history pane at the bottom of the page, as shown in Figure 3-4.

	The response consists of some top-level attributes and a
 collection of activities within the items array. Each entry in the
 items array has an activity ID, as shown in Figure 3-5. Copy the ID for your most recent entry.

	Switch to the comments.list
 method and supply the activity ID that you just copied, as shown in
 Figure 3-6.

	Execute this request. The history pane now contains the
 comments associated with that activity, as shown in Figure 3-7.

[image: The API Explorer’s form for creating a comments.list request]

Figure 3-1. The API Explorer’s form for creating a comments.list
 request

[image: The API Explorer’s form for creating an activities.list request]

Figure 3-2. The API Explorer’s form for creating an activities.list
 request

[image: The location of the Google+ Page ID in the profile URL]

Figure 3-3. The location of the Google+ Page ID in the profile URL

[image: The response from an activity.list request for the Baking Disasters public activity]

Figure 3-4. The response from an activity.list request for the Baking
 Disasters public activity

[image: An activity ID from the activity.list response]

Figure 3-5. An activity ID from the activity.list response

[image: A comments.list request prepared with an explicit activity ID]

Figure 3-6. A comments.list request prepared with an explicit activity
 ID

[image: The comments.list response for a Baking Disasters public activity]

Figure 3-7. The comments.list response for a Baking Disasters public
 activity

This flow that you just traced in the API Explorer is a reasonable
 flow for a comments plugin. Manually discover the activity ID for your
 activity on Google+, and use JavaScript to fetch and render the comments
 associated with it.

Client Libraries

Google probably provides an official client library for your
 favorite language. These client libraries make development against APIs
 faster by taking care of low-level tasks and providing you with an
 interface that embraces the development style of your language. You’ll
 save yourself a lot of time by using the official client libraries.
The current library offering is shown in Table 3-1.
Table 3-1. Links to the Google API Client Libraries
	Language	Project
	.NET
	 http://code.google.com/p/google-api-dotnet-client/

	Go
	 http://code.google.com/p/google-api-go-client/

	Google Web Toolkit
	 http://code.google.com/p/gwt-google-apis/

	Java
	 http://code.google.com/p/google-api-java-client/

	JavaScript
	 https://code.google.com/p/google-api-javascript-client/

	Objective C
	 http://code.google.com/p/google-api-objectivec-client/

	PHP
	 http://code.google.com/p/google-api-php-client/

	Python
	 http://code.google.com/p/google-api-python-client/

	Ruby
	 http://code.google.com/p/google-api-ruby-client/

The comments plugin will use the JavaScript client library.
Registering Your Application

Before you can use the APIs to access public data you must
 register your application on the API console. This is how Google
 identifies the source of API calls and provision quota.
[image: Creating a new API project in the API Console]

Figure 3-8. Creating a new API project in the API Console

[image: Enabling the Google+ API]

Figure 3-9. Enabling the Google+ API

[image: The API key as displayed on the API console]

Figure 3-10. The API key as displayed on the API console

	Navigate to the API Console on Google Developers: https://developers.google.com/console. Create a new
 project using the project drop down menu as shown in Figure 3-8.

	Click “Services” in the API Console menu and toggle the
 Google+ API to “on,” as shown in Figure 3-9.

	Click “API Access” in the API Console menu to access the API
 key for your application, as shown in Figure 3-10.

Time to Code

Just like the official Google+ plugins, the comments plugin
 renders comments within a div
 identified by a special class. It uses JavaScript to replace this
 placeholder div with the comments for
 that entry. Example 3-1 shows an example of a div element that the comments plugin will look
 for:
Example 3-1. The div element that will be replaced by a list of
 comments
<div class="g-comments-for z13zevjymuuge1zvl23lyv3a2n3owdxxd04"></div>

Create a new JavaScript file named pluscomments.js and include it into each blog
 entry. Edit the JavaScript file and create a namespace for your
 functions, and create a variable for your API key, as shown in Example 3-2.
Example 3-2. The comment plugin namespaced and configured with an API
 key
var commentr = commentr || {};
var apiKey = "AIzaSyA-H-eBvhWOyzjIJ2bWeaf1XAn855s8IRN";

To make calls you need an instance of the JavaScript API client.
 Load the client library with the name and version of the API and tell it
 your API key, as shown in Example 3-3. This function is
 automatically called by the JavaScript client library when it has
 finished loading and hence must reside in the global namespace.
Example 3-3. Bootstrapping the JavaScript API client library
function commentrLoad() {
 gapi.client.load('plus', 'v1', commentr.go);
 gapi.client.setApiKey(apiKey);
}

Next, find all of the g-comment-for divs and extract the activity
 ID, as shown in Example 3-4.
Example 3-4. Search the DOM for all of the g-comments-for elements
// search for g-comments-for classes
commentr.go = function() {
 var fetchElements =
 document.getElementsByClassName('g-comments-for');
 for(var i=0; i<fetchElements.length; i++) {
 var activityId = fetchElements[i].classList[1];
 commentr.fetchComments(activityId);
 }
}

Take the resulting collection of activity IDs and list the
 comments for each one. Each API response triggers the same callback
 function. Example 3-5 shows how to do this.
Example 3-5. Extract the appropriate activity ID, fetch its comments and
 insert them into the appropriate g-comments-for element
commentr.fetchComments = function(activityId) { [image: 1]
 var request = gapi.client.plus.comments.list({
 'activityId': activityId,
 'maxResults': '100'
 });
 request.execute(commentr.parseComments); [image: 2]
}

commentr.parseComments = function(responseJson) {
 var activity = responseJson.items[0].inReplyTo[0];
 var comments = responseJson.items;

 var insertionElements = document.getElementsByClassName('g-comments-for ' + [image: 3]
 activity.id);
 var insertionElement = insertionElements[0];

 var newContents = "";
 for(i=0; i<comments.length; i++) {
 var actor = comments[i].actor;

 var commentBody = comments[i].object.content;

 newContents += "<dt><img src='" +
 actor.image.url + [image: 4]
 "' /></dt>" + "<dd>" + actor.displayName +
 ": " + commentBody + "</dd>";

 }
 insertionElement.innerHTML = "<dl>" + newContents +
 "</dl> <p class='g-commentlink'>Please comment on the <a href='" + activity.url +
 "'>Google+ activity</p>";
}

	[image: 1]
	fetchComments is run for
 each discovered activity ID.

	[image: 2]
	Each response calls back to the parseComments function.

	[image: 3]
	Rediscover the place to insert the comment, since this
 information was lost in the chain of callbacks.

	[image: 4]
	Construct HTML for all of the comments and insert it into the
 document.

Finally, source the JavaScript client library and configure it to
 load the comments plugin. Source
 it in the entry pages and specify the init function to the onload parameter. Example 3-6
 shows the macaron entry header with the client library added:
Example 3-6. Load the JavaScript API client library and execute the comment
 plugin’s load function
<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css" />
 <link rel="shortcut icon" href="images/logo_favicon.png" />
 <script src="pluscomments.js"></script>
 <script src="https://apis.google.com/js/client.js?onload=commentrLoad">
 </script>
</head>

Comments Integration in Action

That was pretty easy, wasn’t it? Now let’s see the comments plugin
 in action.
Use the API Explorer to discover the activity ID of your most
 recently public entry. For example, z133jnaofxb5wzfnx23lyv3a2z3owdxxd04. Return to
 that entry and add the placeholder div, such as the one in Example 3-7, that becomes the list of comments.
Example 3-7. A div element configured with an activity ID
<div class="g-comments-for z133jnaofxb5wzfnx23lyv3a2n3owdxxd04"></div>

Reload the page to see the rendered comments. It should look
 similar to Figure 3-11.
[image: A Google+ comment rendered in the Baking Disasters web interface]

Figure 3-11. A Google+ comment rendered in the Baking Disasters web
 interface

What’s Next?

The comments plugin is simple, but this simplicity comes at a
 cost. It’s brittle and requires a hard-coded activity ID. A good
 companion to this plugin would be a tool that fetches your most recent
 activities and provides a placeholder div to paste into your entries.

Chapter 4. OAuth-Enabled APIs

JavaScript plugins, like the comment plugin from Chapter 3, allow you to move beyond the official social
 plugins, but the depth of integration that they provide is limited. As you
 move on to deeper integration, some processing must be done server-side. To
 accommodate this, further examples are written in PHP. You will need to an
 environment capable of running PHP and a SQLite database.
The Google+ platform is not limited to PHP. You can find client
 libraries and starter projects for many popular languages including Java,
 Python, .NET, and Ruby. If Google does not supply an official client library
 for your language of choice, you may still use the REST APIs
 directly.
New Application: Baking Disasters 2.0

Baking Disasters is fun to publish as a static HTML blog, but as
 time passes visitors have started to express a desire to contribute their
 baking experiences. Being a social baker with a streak of PHP ability,
 this seems like the perfect opportunity to transform Baking Disasters into
 a social web application where everyone can contribute.
After one night of frenzied PHP hacking, Baking Disasters 2.0, as
 pictured in Figure 4-1, was born. It consists of an
 administration page for managing recipes and a public page for each recipe
 where visitors can publish their hilarious baking disasters.
[image: The screens of Baking Disasters 2.0. Upper left, index page for recipes; lower left, an administrative console to add new recipes; right, detail pages for each recipe that include user contributed attempts and a form to submit a new attempt.]

Figure 4-1. The screens of Baking Disasters 2.0. Upper left, index page for
 recipes; lower left, an administrative console to add new recipes;
 right, detail pages for each recipe that include user contributed
 attempts and a form to submit a new attempt.

Consisting of a couple hundred lines of PHP and a SQLite database,
 Baking Disasters 2.0 may not scale to millions of users, but it is a great
 starting point for further exploration of the Google+ Platform. Its simple
 architecture is described by Figure 4-2.
[image: The Baking Disasters web application baseline architecture]

Figure 4-2. The Baking Disasters web application baseline
 architecture

You can see the initial state of this application in action at
 http://bakingdisasters.com/app-initial. It’s read
 only, for reasons that will become apparent shortly.

Authentication Using Google+

Within hours of launch the site has been overrun with spam. Since
 visitors can post content without identifying themselves, the application
 is being abused. You must find a way to lock down Baking Disasters and
 protect it.
Fortunately, the Google+ platform provides APIs for identifying
 users. The REST API exposes public profile fields. It also allows visitors
 to share their identity with us via OAuth 2.0. This provides everything
 that you need to address the spam problem, without having to build your
 own user management infrastructure.
OAuth 2.0

The Google+ platform uses OAuth 2.0 to authenticate users, and to
 authorize your access to their private data. Scopes control which data
 is accessible. When the user grants access, Google will provide your
 application with tokens that can be used to access your user’s private
 data hosted by Google. Baking Disasters can use this to identify users
 as shown in Figure 4-3.
[image: A sequence diagram, which illustrates the OAuth 2.0 flow for Baking Disasters.]

Figure 4-3. A sequence diagram, which illustrates the OAuth 2.0 flow for
 Baking Disasters.

Once a user’s identity is known, you can use the REST APIs to
 fetch their public data. This includes their profile photo and their
 public activity on Google+. Additionally, their user ID makes a great
 user identifier in your application.

Accounts and API Keys

Your application must be configured on the API Console to use
 OAuth 2.0. Return to the Google API console to generate a client ID and
 secret. Use the client ID and secret to initiate the OAuth dance. They
 guarantee to the user that they are authorizing the correct
 application.
The client ID is publicly exposed during several steps of the
 authentication dance, but you should keep your client secret secure. If
 at any time your client secret is compromised you can return to this
 page to reset it.
Follow these steps to create your OAuth 2.0 credentials:
	Navigate to the API console on Google Developers: https://developers.google.com/console.

	Select your application from the drop down and click
 API Access in the menu.

	Click on the large blue button shown in Figure 4-4 to create an OAuth 2.0 client ID.

	Next, specify branding information for your application as
 shown in Figure 4-5. The product name and logo that
 you specify here are presented to your user on the OAuth grant
 screen.

	Now for the tricky part. The OAuth dance requires you to
 specify the destination page, as shown in Figure 4-6.
 Google will redirect users there, once they have granted you
 privileges.

	You should now see your client ID and secret, as shown in
 Figure 4-7.

[image: The big blue button that you must click to create an OAuth 2.0 client ID]

Figure 4-4. The big blue button that you must click to create an OAuth 2.0
 client ID

[image: Creating an API client ID for Baking Disasters]

Figure 4-5. Creating an API client ID for Baking Disasters

[image: Configuring the redirect URI]

Figure 4-6. Configuring the redirect URI

[image: The resulting client ID and secret]

Figure 4-7. The resulting client ID and secret

A Little More About OAuth 2.0

OAuth 2.0 is designed to solve the general problem of accessing
 user data that exists on a third-party system. This is a big problem to
 solve. Baking Disasters uses the basic flow for web applications that
 are running on a server. This flow is only a tiny sliver of the much
 larger OAuth 2.0 specification.
Not every application runs in a web browser. Applications that run
 as native code on a mobile device, or as a command line script, are also
 valid clients. To accommodate these applications OAuth 2.0 provides a
 variety of flows, each with their own nuances.
OAuth 2.0 is big enough that any discussion here can’t do it
 justice. You can learn more about OAuth at Google here: http://code.google.com/apis/accounts/docs/OAuth2.html.

Starter Projects

Client libraries make development much faster in the long run.
 However, just like any other tool, they have a learning curve. It will
 take you some time to make the most of their time-saving features. To
 smooth out this potentially sharp learning curve, the Google+ platform
 provides starter projects for the most popular client libraries. They
 are listed in Table 4-1.
Table 4-1. Google+ REST API starter projects
	Language	Project
	Go
	 https://code.google.com/p/google-plus-go-starter/

	Java
	 http://code.google.com/p/google-plus-java-starter/

	PHP
	 http://code.google.com/p/google-plus-php-starter/

	Python
	 http://code.google.com/p/google-plus-python-starter/

	Ruby
	 http://code.google.com/p/google-plus-ruby-starter/

These aptly named starter projects provide you with a turnkey
 foundation for whatever you would like to write. All you need to do is
 download the starter project and add your application identifiers.
 Starting from working code makes further development much easier.
Baking Disasters is written in PHP, so the PHP starter project is
 a great place to start. Once it’s working you can merge them together to
 start your Google+ integration.
	Download the starter project from the downloads tab on http://code.google.com/p/google-plus-php-starter/.
 Unzip the archive to reveal that the project contains three files,
 including a readme with usage instructions, as shown in Figure 4-8.

	The readme opens with a description of the starter project
 prerequisites. Most PHP installations will include the cURL and JSON
 extensions. The only thing that you need is the PHP client
 library.

	Download the PHP client library from http://code.google.com/p/google-api-php-client/ and
 extract it in the starter project’s folder. You should end up with a
 directory structure that looks like Figure 4-9.

	The readme instructs you to set up an application on the API
 Console to create a Client ID, Client Secret, and API key. Use the
 values that you set up for your API project in the previous section,
 as shown in Figure 4-10.

	Use your favorite text editor to edit index.php. Scroll to about line 30 and
 paste these identifiers in the appropriate places, as shown in Example 4-1.

	Next, update the redirectURI field to match the value in
 the API console and the place you’ll be hosting this file. If you
 plan to run the starter project from a your workstation, this may be
 localhost.

[image: The Google+ API PHP starter project’s archive contents and readme file]

Figure 4-8. The Google+ API PHP starter project’s archive contents and
 readme file

[image: The PHP starter project with the PHP API client library]

Figure 4-9. The PHP starter project with the PHP API client library

[image: The client ID, client secret and API key on the API console]

Figure 4-10. The client ID, client secret and API key on the API
 console

Example 4-1. The fully configured PHP Google+ API starter project
$client = new apiClient();
$client->setApplicationName("Google+ PHP Starter Application");
// Visit https://code.google.com/apis/console to generate your
// oauth2_client_id, oauth2_client_secret, and to register your oauth2_redirect_uri.
$client->setClientId('116363269786.apps.googleusercontent.com');
$client->setClientSecret('EJlqDrWkEYmmYznlken2JW-B');
$client->
 setRedirectUri('http://bakingdisasters.com/web-app/php-starter');
$client->setDeveloperKey('AIzaSyDrH_5j2-cPK7EZRANWjA6_g0xCZRrxH-U');
$client->setScopes(array('https://www.googleapis.com/auth/plus.me'));
$plus = new apiPlusService($client);

if (isset($_REQUEST['logout'])) {
 unset($_SESSION['access_token']);
}

It’s ready to go. Deploy the starter project to your web server,
 and view it in a web browser. Figure 4-11 shows what
 happens next. You’ll be greeted by a page that asks you to log in.
 Clicking the big blue link redirects you to Google’s authentication
 service where you’ll be asked to grant the starter project permissions
 to know who you are on Google. Click the Allow
 access button.
[image: Top: The starter project landing page; Bottom: The permission grant page]

Figure 4-11. Top: The starter project landing page; Bottom: The permission
 grant page

Having been granted access, the starter project now completes the
 OAuth dance. It exchanges a code for an access token. This token is used
 to make API calls, which are shown in Figure 4-12.
[image: The completed flow of the starter project displaying your name, profile icon, and recent activity]

Figure 4-12. The completed flow of the starter project displaying your name,
 profile icon, and recent activity

With only a few minutes invested you now have a self contained web
 application capable of making API calls to the Google+ REST APIs. If you
 run into issues as you progress you can always return to this code as a
 sanity check.

Bringing it Together

You now have two functioning applications: Baking Disasters, and
 the PHP starter project. Combine them to add sign-in functionality to
 Baking Disasters. This consists mostly of strategic copy-and-paste from
 the starter project into the appropriate places in Baking
 Disasters.
Create new PHP files for the sign-in and sign-out operations and
 store the currently signed in state within PHP’s session. Add code
 that’s shared across multiple files, such as code to create or manage
 API clients, to util.php.
All of the pages in Baking Disasters require the use of an API
 client. Take the code from the top of the starter project and copy it
 into util.php, as shown in Example 4-2. Create a new function that returns a Google+ API
 client.
Example 4-2. A PHP function that creates a configured API client
require_once 'google-api-php-client/src/apiClient.php'; [image: 1]
require_once 'google-api-php-client/src/contrib/apiPlusService.php'; [image: 2]

session_start(); [image: 3]

date_default_timezone_set('America/Los_Angeles');

function init_api_client() [image: 4]
{
 global $app_base_path;

 $client = new apiClient();
 $client->setApplicationName("Baking Disasters");
 $client->setClientId('116363269786.apps.googleusercontent.com');
 $client->setClientSecret('EJlqDrWkEYmmYznlken2JW-B');
 $client->setRedirectUri($app_base_path . '/login.php');
 $client->setDeveloperKey('AIzaSyDrH_5j2-cPK7EZRANWjA6_g0xCZRrx');
 $client->setScopes(array('https://www.googleapis.com/auth/plus.me'));
 return $client;
}

	[image: 1]
	Load the core PHP API client library.

	[image: 2]
	Load the generated Google+ API client library
 extension.

	[image: 3]
	Start the session so that you have a place to store access
 tokens for your users.

	[image: 4]
	Create a new client library instance configured for your API
 project and server.

Next, copy the rest of the authentication logic into two PHP
 files: login.php and logout.php. With a bit of shuffling login.php looks Example 4-3.
Example 4-3. Initiate an OAuth 2.0 flow from login.php
<?php
include_once("util.php");
$client = init_api_client();
$auth_url = $client->createAuthUrl();
if(!isset($_GET['code'])) { [image: 1]
 header("location: " . $auth_url);
}
else { //if (isset($_GET['code'])) { [image: 2]
 $client->authenticate();
 $_SESSION['access_token'] = $client->getAccessToken();
 header('Location: '.$app_base_path);
}

	[image: 1]
	If the code GET parameter
 is not set, initiate a new OAuth 2.0 flow.

	[image: 2]
	If code is set, use it to
 complete the OAuth flow.

And logout.php looks like Example 4-4.
Example 4-4. Sign users out by deleting their access and refresh tokens from
 the session
<?php
include_once("util.php");
unset($_SESSION['access_token']);
header('Location: '.$app_base_path);

With these files created add sign-in and sign-out links to the
 header of every page with the code in Example 4-5.
Example 4-5. Sign-in and sign-out links for the header of each page
<body>
<header class="blog-header">

 <?php if(isset($_SESSION['access_token'])) { ?>
 Logout
 <?php } else { ?>
 Sign in with Google+
 <?php } ?>

 <h1>Baking Disasters</h1>

This implementation allows users to sign in and out, but it can
 already benefit from some refactoring. Currently, signing in and out
 redirects users back to the index page. Use the session and referrer
 header to return them to the page where they started. Example 4-6 is an updated login.php.
Example 4-6. Redirecting the user to the page from which they initiated the
 sign in improves their experience
// If there's a code we need to swap it for an access token
else { //if (isset($_GET['code'])) {
 $client->authenticate();
 $_SESSION['access_token'] = $client->getAccessToken();

 if(isset($_SESSION['original_referrer'])) {
 header('Location: ' . $_SESSION['original_referrer']);
 unset($_SESSION['original_referrer']);
 } else {
 header('Location: '.$app_base_path);
 }
}

Example 4-7 shows the updated logout.php.
Example 4-7. Also redirect the user to the page from which they initiated
 the sign out
<?php
include_once("util.php");
unset($_SESSION['access_token']);
if(isset($_SERVER['HTTP_REFERER'])) {
 header('Location: '.$_SERVER['HTTP_REFERER']);
} else {
 header('Location: '.$app_base_path);
}

The page header determines if a user is currently signed in by
 checking the existence of an access token in the session. Checking the
 signed-in state is something that many parts of the Baking Disasters
 needs, so refactor this into a utility function. Add this function to
 util.php, as shown in Example 4-8.
Example 4-8. A function that checks the current user’s sign-in state
function is_logged_in()
{
 if (isset($_SESSION['access_token'])) {
 return true;
 } else {
 return false;
 }
}

And update the header of each page to use it, as shown in Example 4-9.
Example 4-9. Using the is_logged_in() function abstracts the session
 implementation out of your PHP pages
<body>
<header class="blog-header">

 <?php if(is_logged_in()) { ?>
 Logout
 <?php } else { ?>
 Sign in with Google+
 <?php } ?>

 <h1>Baking Disasters</h1>

Locking Stuff Down

Now that users can sign in, you can restrict access to sensitive
 features such as the disaster submission form and the administration
 console.
Restricting the disaster submission form to currently signed in
 users is quite easy. Just add an is_logged_in check when you render the form in
 recipe.php, as shown in Example 4-10.
Example 4-10. Only display the report attempt form to signed in users
<section class="content attempt-form">
<?php if(is_logged_in()) { ?>
 <h2>Report Your Attempt</h2>

 <p>Have you attempted this recipe with disastrous results?
 Tell us about it!</p>

 <form method="post">
 <input type="hidden" name="recipe_id" value="<?= $_GET['id'] ?>"/>
 <label>Your Name: <input name="author_name"></label>
 <label>Description: <textarea name="description"></textarea></label>
 <label>Photo URL: <input type="text" name="photo_url"/></label>
 <input type="submit"/>
 </form>
<?php } else { ?>
 <p>Log in to tell us about your attempt!</p>
<?php } ?>
</section>

And when you insert into the database, as shown in Example 4-11.
Example 4-11. Only allow signed-in users to write to the database
<?php
include_once("util.php");
if ($_POST && is_logged_in()) {
 insert_attempt($_POST['recipe_id'], $_POST['author_name'],
 $_POST['description'], $_POST['photo_url']);
 echo "<p class='notice'>Attempt inserted!</p>";
}
?>

Unauthenticated users are now asked to log in to share their
 attempts, as shown in Figure 4-13.
[image: The logged-out view of the recipe page]

Figure 4-13. The logged-out view of the recipe page

This plugs up the biggest opening for spam, but what if someone
 discovers admin.php? They could
 insert new recipes. To ensure that only the site administrator, Jenny
 Murphy, can add new recipes, check to see if the signed in user has the
 correct user ID. To make this comparison fetch the signed in user’s
 profile from the API.
The starter project shows us how to make this call. It fetches the
 current user’s profile just after it validates that the current user has
 an access token. This call is shown in Example 4-12.
Example 4-12. Fetch the signed-in user from the API
$me = $plus->people->get('me');

Wrap this behavior into a get_plus_profile function, as shown in Example 4-13.
Example 4-13. A function that fetches the signed-in user
function get_plus_profile()
{
 if (!is_logged_in()) {
 die("Expected to be logged in here");
 }

 $client = init_api_client();
 $client->setAccessToken($_SESSION['access_token']);
 $plus = new apiPlusService($client);
 $me = $plus->people->get('me');
 return $me;
}

And then use the code in Example 4-14 to verify that
 Jenny is the user viewing admin.php.
Example 4-14. Check the signed-in user’s profile ID to restrict access to
 admin.php
</header>
<?php
if(is_logged_in()) {
 $me = get_plus_profile();
 if($me['id'] == "102817283354809142195") {
 if ($_POST) {
 insert_recipe($_POST['name'], $_POST['description'],
 $_POST['ingredients'], $_POST['directions'],
 $_POST['photo_url']);
 echo "<p class='notice'>Recipe inserted.</p>";
 }
?>
<section class="content">
...
</section>
 <?php } else { echo "Only Jenny Murphy can access this page."; }}?>
<footer>

This prevents interlopers from adding recipes. Instead, they see
 the error message shown in Figure 4-14.
[image: The logged-out view of the Baking Disasters administration console.]

Figure 4-14. The logged-out view of the Baking Disasters administration
 console.

All writes to Baking Disasters are now protected, but there’s so
 much more that you can do with Google+.

A Preview of the Sign-in Button

OAuth 2.0 is an amazing standard. It gives your users a way to
 share their Google data and identity with your application.
 Unfortunately, to support OAuth, you had to add quite a bit of code to
 your application. OAuth is complex, but implementing it does not have to
 be.
The Google+ sign-in button, shown in Figure 4-15,
 aims to make implementing OAuth easier. It accomplishes this by
 providing you with a plugin just like the +1 button. When the user
 clicks the Sign In button they are taken through an OAuth flow and the
 code is returned to your application. This replaces the first half of
 your OAuth code with a single line of markup, shown in Example 4-15.
[image: Baking Disasters refactored to use the sign-in button]

Figure 4-15. Baking Disasters refactored to use the sign-in button

Example 4-15. Sign-in button markup
<g:plus action="connect"
 clientid="1234567890.apps.googleusercontent.com"
 callback="onSignInCallback"></g:plus>

The sign-in button is currently in developer preview. During this
 time, preview only works for developers who are enrolled in the preview.
 You can start experimenting with it, but you can’t release software that
 uses it until the developer preview has finished. You should also be
 prepared for breaking changes at any point during this developer
 preview.
The developer preview is tied to a Google account. When you are
 logged in to Google with a developer preview account, the sign-in button
 will render. Use this form to sign up: https://developers.google.com/+/history/preview/.
Google Developers provides theoretical explanation, API reference
 material, and starter projects that use the Sign In button: https://developers.google.com/+/history/.

Making Baking Disasters Social

Baking Disasters now requires authentication for the creation of
 data. Authentication is useful, but it’s neither very exciting nor does it
 add any new features to your site. Let’s knock it up a notch and use the
 APIs to leverage even more features of Google+.
Import Disasters from Google+

Baking Disasters would benefit a lot from importing content from
 Google+. If users could import attempts from their recent activity on
 Google+ they can leverage the Google+ mobile application. They can
 live-share their baking attempt on the Google+ mobile application. Once
 the smoke has cleared and they return to their laptops, they can import
 content at their convenience. This flow is described in Figure 4-16.
[image: During the baking party the user takes photos and records activity on their cell phone; after the party ends, the user can import that activity from Google+ into Baking Disasters]

Figure 4-16. During the baking party the user takes photos and records
 activity on their cell phone; after the party ends, the user can
 import that activity from Google+ into Baking Disasters

Importing activity is a bit more involved than the previous
 enhancements. It will require you to add a new page to provide an import
 interface and update the recipe page to render imported attempts.
To comply with the developer policies, which restrict the storage
 of Google+ user data, you must store references to the activities on
 Google+ instead of the whole activity. This requires refactoring of your
 database. It also means that you must handle activities that have been
 deleted. However, it pays off in the form of automatically handling
 updates and edits. The resulting flow is shown in Figure 4-17.
[image: A sequence diagram describing what happens during the baking party, when the user imports activity into Baking Disasters, and when Baking Disasters renders the activity on the recipe page]

Figure 4-17. A sequence diagram describing what happens during the baking
 party, when the user imports activity into Baking Disasters, and when
 Baking Disasters renders the activity on the recipe page

The database schema changes are simple, but they do require a
 breaking change. Example 4-16 shows the new table creation
 statement. You can either run this by hand using the SQLite command line
 interface or delete the database and start from scratch.
Example 4-16. A new table schema for baking attempts
sqlite_exec($db, 'create table attempts (recipe_id int,
 google_plus_activity_id text);');

Just as in the previous enhancements most of the heavy lifting
 will be done by functions in util.php. Add a
 function that fetches a page of public activities for the currently
 logged in user. You can model this code from the activity list in the
 starter project. The resulting code is shown in Example 4-17.
Example 4-17. Fetch the signed in user’s recent public activities from the
 API
function get_recent_activities()
{
 if (!is_logged_in()) {
 die("Expected to be logged in here");
 }

 $client = init_api_client();
 $client->setAccessToken($_SESSION['access_token']);
 $plus = new apiPlusService($client);

 $optional_parameters = array('maxResults' => 20);
 $activities =
 $plus->activities->listActivities('me', 'public', $optional_parameters);
 return $activities;
}

Having changed the way activities are stored, you also need to
 update the way that you recall them, as shown in Example 4-18. The database only stores the activity ID. The rest
 of the fields must come from an API call to fetch each activity.
The fetch is a great time to clean up any activities that were
 deleted from Google+. If the API returns a 404, you know that the
 activity is gone and you should clean up the reference to it.
Example 4-18. This code fetches the activities associated with each recorded
 attempt for a specific recipe ID. If an activity no longer exists, it
 removes it from the database
function list_attempts($recipe_id)
{
 $db = init_db();
 $recipe_id = sqlite_escape_string(strip_tags($recipe_id));

 $query = sqlite_query($db, "select * from attempts where recipe_id = '$recipe_id'"); [image: 1]
 $attempt_stubs = sqlite_fetch_all($query, SQLITE_ASSOC);

 $client = init_api_client();
 $plus = new apiPlusService($client);

 $attempts = Array();
 foreach ($attempt_stubs as $attempt_stub) {
 $google_plus_activity_id = $attempt_stub['google_plus_activity_id'];
 try {
 $activity = $plus->activities->get($google_plus_activity_id); [image: 2]

 $attempt = Array();
 $attempt['url'] = $activity['url'];
 $attempt['author'] = $activity['actor'];
 $attempt['description'] = $activity['object']['content'];
 if (count($activity['object']['attachments']) > 0) { [image: 3]
 $attempt['photo_url'] =
 $activity['object']['attachments'][0]['image']['url'];
 }
 array_push($attempts, $attempt);
 } catch (Exception $e) {
 if ($e->getCode() == 404) { [image: 4]
 // If it's a 404, it has been deleted by the user. Clean it up.
 sqlite_exec($db, "delete from attempts where
 google_plus_activity_id='$google_plus_activity_id';");
 }
 }
 }
 return $attempts;
}

	[image: 1]
	Fetch the list of activity IDs for this recipe from the
 database.

	[image: 2]
	Fetch the full activity for each one using the Google+
 API.

	[image: 3]
	Assuming that the first attachment is an image, extract it
 from the API response.

	[image: 4]
	Deleted activities return a 404. If you see one, remove the
 activity ID from your database.

This method returns a list of activities that is far more rich
 than the previous representation. All you need to do is to update the
 code that renders it in recipes.php,
 as shown in Example 4-19. You also can also take advantage
 of the profile icon that is returned with the attached user
 object.
Example 4-19. Display attempts from Google+ on the recipe page
<section class="content attempts">
 <?php foreach ($attempts as $attempt) { ?>
 <div class="attempt">
 <?php if(isset($attempt['photo_url'])) { ?>
 <img class="attempt-photo" src="<?= $attempt['photo_url'] ?>" />
 <?php } ?>

 <h3>
 <a href="<?= $attempt['author']['url']?>">
 <img src="<?= $attempt['author']['image']['url']?>"/>
 <?= $attempt['author']['displayName'] ?>'s Attempt
 <a class="import-link" href="<?= $attempt['url'] ?>">imported from Google+
 </h3>

 <p>
 <?= str_replace("\n", "
\n", stripslashes($attempt['description'])) ?>
 </p>
 <div style="clear:both;"></div>
 </div>
 <?php } ?>
</section>

Reload Baking Disasters and use the new import feature to pull in
 some of your recent baking attempts. The resulting import should look
 like Figure 4-18.
[image: Two baking attempts imported from Google+]

Figure 4-18. Two baking attempts imported from Google+

Your modest PHP web application is better than ever. You have used
 the Google+ APIs for a simple sign-in solution. Knowing who is signed in
 has provided the tools that you need to restrict administrative features
 to the correct users. You’ve also used the activity APIs to enable users
 import their recent adventures and associate them with a recipe. The way
 this integration was implemented has the added benefit of automatically
 updating the imported view when the canonical copy on Google+ is updated
 or deleted.
Additional endpoints exist for searching activities, listing
 people who took action on a specific activity and viewing comments. You
 can use these same techniques to add functionality that pulls data from
 these endpoints.

A Preview of the History API

The same developer preview for the sign-in button also includes a
 write API for Google+ called the
 history API. This API allows your application to write moments that
 represent your user’s activity to a private place on Google+. Later your
 user can share the moments that are important to them with the right
 people on Google+.
Signing up for this developer preview follows the same process as
 for the sign-in button. Complete the sign-up form and your
 account will be able to create API projects that use the history API and
 write moments to your Google history. You can also see these moments in
 a beta version of the Google+ history user interface at https://plus.google.com/history.
Each write to the history API has two parts: an HTTP POST and a
 publicly accessible target page with schema.org structured markup. The
 POST body, shown in Example 4-20, describes the type of
 activity that has occurred. It includes the URL of the entity that was
 the target of the activity and a JSON representation of any content
 created as the result of the activity.
Example 4-20. A CommentActivity
{
 "type": "http://schemas.google.com/CommentActivity", [image: 1]
 "target": { [image: 2]
 "url": "https://developers.google.com/+/plugins/snippet/examples/blog-entry"
 },
 "result": { [image: 3]
 "type": "http://schema.org/Comment",
 "url": "https://developers.google.com/+/plugins/snippet/examples/blog-entry#comment-1",
 "name": "This is amazing!",
 "text": "I can't wait to use it on my site :)"
 }
}

	[image: 1]
	The type of activity that has been performed. This must be one
 of the types predefined by Google.

	[image: 2]
	The publicly accessible URL of the entity upon which the
 activity occurred.

	[image: 3]
	If the activity created content, a JSON representation of that
 data.

The target page, specified in the POST by target.url, is the
 second part of the moment write. It is fetched when the moment is
 written. This fetch extracts schema.org markup and includes it into the
 moment.
If you have already added schema.org markup to your pages for
 other social plugins like the +1 button, you will not need to make any
 additional changes to them.
Warning
The history API is currently in developer preview. Expect rapid
 changes. Expect these changes to break your code.
Please see the documentation to
 see the latest starter projects, reference docs, and implementation
 advice.

The developer preview of the history API provides a rare
 opportunity. Google is very interested in feedback from developers as
 they experiment with the APIs. For example, there is a pre-populated
 form for requesting new moment types: https://developers.google.com/+/history/api/moments#request_a_new_type.
 If you request a moment type or change to the API during the developer
 preview it is much more likely to be incorporated into the released
 API.

Best Practices

For the sake of simplicity and ease of understanding the example
 code presented so far has cut some corners. For example, code has been
 copied and pasted in many places and it is not as efficient as it could
 be. Here are some tips to help guide you through efficient usage of the
 API.
	Cache
	The code presented above creates client libraries and often
 uses them only once. Cache client libraries. They can be reused.
 Leverage caches for API requests too. Most of the client libraries
 take care of this for you, but you should still make sure that the
 client library is configured to cached data appropriately for your
 project. For example, the PHP client library provides four different
 cache implementations, one of which may work better for you.

	Be paranoid
	Don’t trust anyone when it comes to cross site scripting. Be
 very cautious when rendering input that comes from a user, even if
 it’s coming via a Google API. Escape everything. The implementation
 of these practices will differ a bit on your language and
 platform.

Chapter 5. Collaborative Baking with Hangout
 Apps

Google+ Hangouts provide an easy way to create 10-way video
 conferences. This is a pretty cool feature on its own, but with the Hangout
 API you can extend them.
You can author your own JavaScript applications that have access to a
 data structure that is automatically synchronized between all participants
 in the hangout. You can also programmatically manipulate many aspects of the
 running hangout environment, including adding image overlays to the video
 streams of hangout participants.
Potluck Party Planner

As fun as it is to experiment alone, inviting friends takes baking
 disasters to the next level. You can distribute the cost of your baking
 party by making it an ingredient potluck. Your baking friends can each
 volunteer to bring some of the ingredients for the recipe that you’re
 going to attempt together.
The process of deciding who will bring what is highly collaborative.
 It’s a perfect case for a Hangout App. This is a great opportunity to
 extend your baking disasters web application into a hangout with a Potluck
 Party Planner app.
Potluck Party Planner allows the hangout participants to select a
 recipe that they wish to attempt. Next, a list of ingredients is
 displayed. Participants can then volunteer to bring an ingredient to the
 party by clicking it. The participant who has agreed to bring the most
 ingredients is rewarded with a virtual chef’s hat made possible by a media
 overlay. Finally, participants share a reminder to Google+ with a list of
 the ingredients that they have volunteered to bring. The flow is shown in
 Figure 5-1.
[image: Users select a recipe to bake → users volunteer to bring ingredients and the top volunteer is provided a chef’s hat → users share their shopping list to Google+]

Figure 5-1. Users select a recipe to bake →
 users volunteer to bring ingredients and the top volunteer is provided a
 chef’s hat → users share their shopping
 list to Google+

Architecture of a Hangout App

A Hangout Application consists of three parts, as shown in Figure 5-2: a gadget.xml
 specification file, JavaScript for the real-time interaction, and optional
 server-side APIs. These APIs allow your hangout application to access data
 that resides outside the hangout.
[image: A typical Hangout App architecture featuring XML configuration, JavaScript that runs within the hangout, and REST APIs on a remote system]

Figure 5-2. A typical Hangout App architecture featuring XML configuration,
 JavaScript that runs within the hangout, and REST APIs on a remote
 system

Hosting a Hangout App

You’re probably eager to dive into the code, but to save headaches
 later you need to take care of a few things first. There are special
 considerations you must take into account when hosting them.
The sample applications provided by Google all run on Google App
 Engine. App Engine provides a great place to host Hangout Apps, but it
 does not support PHP and hence can’t run Baking Disasters. To achieve
 tight integration between your web application and Hangout App you will
 need to make some changes. You’ll need to serve files over SSL and
 configure cache control headers.
SSL is a must both during development and later when your
 application is in production. Hangouts themselves run in SSL. You’re free
 to create hangout apps that include content served over unencrypted HTTP,
 but web browsers do not like it when you do this. Even in web browsers
 configured with the default security settings you’ll see mixed content
 warnings and even errors resulting from files failing to load.
You must serve your static files and API requests over SSL. There
 are a few ways to do this. If you’re running on a subdomain of a shared
 domain from your provider, as is the case with Google App Engine’s
 appspot.com, you can leverage their existing wildcard SSL certificate. If
 that’s not available or you are running on your own domain, you’ll need to
 purchase and install an SSL certificate.
If this is a lengthy process, there is an alternative that you can
 use during development. You can use a self-signed SSL certificate and
 force your web browser or operating system to trust it.
In addition to being able to serve content over SSL, you should have
 control over the HTTP cache headers. While you develop your hangout
 application you’re going to be going through the familiar code, deploy,
 and test loop. In fact, you’re going to be doing it quite rapidly. The
 hangout APIs will respect cache directives in serving these files. This
 means that the default cache directives set by your web server will
 probably make development quite cumbersome. While you are developing your
 application you should disable caching, but don’t forget to then it back
 on when you’re ready to release your application to the world!
With these two issues taken care of, you’re ready to build.

Starting with a Starter Project

Now that you know what you’re going to build and where you’re going
 to host the code, it’s time to start hacking. Starter apps are a great
 place to start, and the Hangouts API is no different. As mentioned above,
 the Google-provided sample applications are all intended to be hosted on
 Google App Engine, but with a few tweaks you can convert them to your PHP
 environment.
Convert the Starter Project to PHP

Download a copy of the starter app from the hangouts sample apps
 page: https://developers.google.com/+/hangouts/sample-apps.
 This archive contains several files, as shown in Figure 5-3.
[image: The contents of the Hangout API starter project]

Figure 5-3. The contents of the Hangout API starter project

Two YAML files contain App Engine configuration. Because we’re not
 running on App Engine, you can ignore them. The app.js and app.xml files in the static folder contain
 most of the Hangout App code. Following the instructions in the included
 readme, update the URLs inside of them to refer to your web host.
The initial contents of app.js
 in Example 5-1 become Example 5-2, and so on
 elsewhere in the starter project files.
Example 5-1. The initial contents of app.js
var serverPath = '//YOUR_APP_ID.appspot.com/';

function countButtonClick() {

Example 5-2. app.js with a server path specified
var serverPath = '//bakingdisasters.com/potluck-party-planner/hangoutstarter/';

function countButtonClick() {

Next, open main.py. As shown in
 Example 5-3, this file contains a simple AJAX
 handler.
Example 5-3. A simple AJAX handler in Python for App Engine
class MainHandler(webapp.RequestHandler):
 def get(self):
 # Set the cross origin resource sharing header to allow AJAX
 self.response.headers.add_header("Access-Control-Allow-Origin", "*")
 # Print some JSON
 self.response.out.write('{"message":"Hello World!"}\n')

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

Reproducing it in PHP is easy. Create a file named index.php in the root of your project with the
 code in Example 5-4.
Example 5-4. The same AJAX handler written in PHP
<?php
header("Access-Control-Allow-Origin: *"); [image: 1]
header("Content-type: application/json"); [image: 2]
?>
{"message":"Hello World!"}

	[image: 1]
	A simple cross-origin resource sharing header to make cross
 domain requests easier. If you host your app.js file on the same domain as index.php, this is not strictly
 necessary.

	[image: 2]
	By default PHP sets a text/html content type. Override it
 because this file responds with JSON.

Finally, deploy the updated starter project to your web
 host.

Run the Starter Project

There is one last step that you must complete to run the Hangout
 App starter project. You must enable the Hangouts API on the Baking
 Disasters API console project. Follow these steps to configure your API
 console project and start the hangout in development mode.
	Return to the service panel for Baking Disasters on the API
 console: https://developers.google.com/console#:services.

	Enable the hangouts API on the services panel by toggling the
 switch to ON as shown in Figure 5-4.

	Switch to the newly revealed Hangouts panel shown in Figure 5-5. Paste the URL for your deployed app.xml into the Application URL
 field.

	Scroll to the bottom of the page, as shown in Figure 5-6. Click Save and then the Enter a
 hangout link to initiate a development mode hangout
 running your starter project.

	If you’re asked about permissions, grant them to allow the
 hangout app to start.

[image: Enabling the Google+ Hangouts API on the API console]

Figure 5-4. Enabling the Google+ Hangouts API on the API console

[image: Associating the deployed app.xml file in the API console]

Figure 5-5. Associating the deployed app.xml file in the API
 console

[image: Saving the Hangout App configuration and starting a developer hangout]

Figure 5-6. Saving the Hangout App configuration and starting a developer
 hangout

The application, shown in Figure 5-7, is quite
 simple. It consists of a count that is synchronized across all users,
 and a Get Message button, which uses AJAX to fetch
 the response from index.php.
[image: Running the Hangout API starter app]

Figure 5-7. Running the Hangout API starter app

Alongside the features contained in your starter project there are
 a some development tools. The Reset app state
 button deletes the contents of the shared state, and the
 Reload app button reloads the app’s html and
 JavaScript, but it does not clear the shared state. If you are not
 careful with your code, using these buttons independently may result in
 some unusual behavior.
To fully experience the starter application, now is a good time to
 recruit a friend to join your hangout. Since your application is still
 in development mode, you must add your collaborators to your development
 team on the API console. You can use the team panel, shown in Figure 5-8 of the API console to add your collaborators: https://developers.google.com/console#:team
[image: Adding project team members on the API console]

Figure 5-8. Adding project team members on the API console

Once you have added them to your project, restart your hangout and
 invite them to join you.
As simple as the starter app is, it contains basic usage of all of
 the APIs that you will need to write the potluck planner app. It uses
 the shared state and callbacks to maintain the synchronized count and
 makes AJAX calls to APIs hosted server side.

Collaborative Planning

The starter project provides a solid foundation. It’s time to mold
 it into the potluck party planner. Taking a bottom-up approach this
 involves enhancing the AJAX handler to communicate recipes and
 ingredients, modifying the HTML in app.xml, and then adding JavaScript to
 synchronize participant state and manipulate the HTML. This design is
 shown in Figure 5-9.
Once the core interaction features are implemented, you can loop
 back and add enhancements like the ingredient reminder sharing and the
 chef’s hat overlay for the top contributor.
[image: The architecture of the Potluck Party Planner Hangout App.]

Figure 5-9. The architecture of the Potluck Party Planner Hangout
 App.

Recipe and Ingredient REST APIs

The hangout app needs data from Baking Disasters to function.
 Specifically, it needs access to a list of all available recipes and a
 way to list the ingredients required for each of those recipes.
REST APIs are a great way to communicate data to AJAX
 applications. Implementing simple REST APIs is quite easy in PHP. Create
 a new file, api.php. Start by adding
 some headers to turn this php file into a REST API, as shown in Example 5-5.
Example 5-5. HTTP headers that allow a PHP file to be used as an AJAX
 handler
<?php
header("Access-Control-Allow-Origin: *");
header("Content-type: application/json");

include_once("util.php");

Use GET parameters to control which data you will return. If
 recipes is set, you know that the hangout is asking for a list of all
 available recipes, so fetch them from the database, convert, and print
 them into the response, as shown in Example 5-6.
Example 5-6. Print a list of all recipes as JSON
 if ($_GET['recipes']) {
 $recipes = list_recipes();
 $response = array();

 foreach ($recipes as $recipe) {
 array_push($response, array(
 'id'=>$recipe['rowid'],
 'name'=>$recipe['name'],
 'imageUrl'=>$recipe['photo_url']
));
 }
}

If ingredients is set, use the id parameter to look up the
 ingredients for that recipe and respond with them in the same way, as
 shown in Example 5-7.
Example 5-7. Print a list of ingredients for a recipe as JSON
} else if ($_GET['ingredients']) {
 $recipe = get_recipe($_GET['id']);
 if($recipe) {
 $response = array(
 'name'=>$recipe['name'],
 'ingredients'=>explode("\r\n", $recipe['ingredients']));
 echo str_replace('\/', '/', json_encode($response));
 }
}

And finally, fall through to a simple error if neither are set, as
 shown in Example 5-8.
Example 5-8. Respond to all other requests with a 404 status code
} else {
 header("HTTP/1.0 404 Not Found");
 echo '{"error":"not found"}';
}

This single file API provides all of the data access that the
 hangout application needs.
In practice on your application, the implementation of any APIs
 you provide will be different. If you’re using an MVC framework, it
 probably provides an easy way to expose entities in your application as
 simple APIs.

Hangout App Interface

Hangout apps, at their core, are HTML web applications that run
 inside of an iframe. All user interaction is made through HTML. The
 initial state of this HTML is specified inside the app.xml file and manipulated as the app runs
 by JavaScript.
The potluck party planner has two screens: one for recipe
 selection and another for ingredient selection. An easy way to model
 this is to create both screens within the initial HTML. Use CSS to hide
 them at startup and then use JavaScript to display at the right
 time.
Merge the header from Baking Disasters into app.xml to provide a foundation for further
 features. Example 5-9 shows the result of this
 merger.
Example 5-9. The result of merging the Baking Disasters layout with the
 app.xml file from the Hangout Apps starter project
<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters 2.0</title>
 <script src="//hangoutsapi.talkgadget.google.com/hangouts/api/hangout.js?v=1.0">
 </script>
 <script src="//bakingdisasters.com/potluck-party-planner/final/app.js?foo=bar">
 </script>
 <script src="//apis.google.com/js/plusone.js"></script>
 <link rel="stylesheet"
 href="//bakingdisasters.com/potluck-party-planner/final/style.css"/>
 <link rel="shortcut icon"
 href="//bakingdisasters.com/potluck-party-planner/final/images/logo_favicon.png" />
</head>
<body>
<header class="blog-header">
 <img id="blog-logo"
 src="//bakingdisasters.com/potluck-party-planner/final/images/logo.png"/>
 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
 <section class="content">
 </section>
<footer>
 By Baking Disasters
</footer>
</body>
</html>

With this foundation created add some content panes. The design
 calls to start with a list of recipes, but calling the recipe list API
 may take some time so start with a content panel that displays a loading
 message, as shown in Example 5-10.
Example 5-10. A loading message that is displayed while the Hangout App
 starts up
<section class="content" id="loading">
 <p>Hang in there! Stuff is still loading.</p>
</section>

Once the app has finished loading it should display a list of
 recipes. Create a section for this but make it hidden by default, as
 shown in Example 5-11.
Example 5-11. HTML for an empty recipe list
<section class="content" id="recipe-list-content" style="display: none;"> [image: 1]
 <h2>Potluck Planner</h2>
 <p>Select a recipe for your potluck:</p>
 <ul id="recipe-list"> [image: 2]
 <div style="clear: both;"></div>
</section>

	[image: 1]
	The display: none; CSS
 prevents this section from being visible.

	[image: 2]
	Recipes render within the recipe-list list.

And finally, once the recipe has been selected, users need a way
 to volunteer to bring ingredients. The HTML for the ingredients panel is
 shown in Example 5-12.
Example 5-12. HTML for an empty ingredients list
<section class="content" id="ingredient-list-content" style="display: none;">
 <h2>
 ←
 Recipe selected:
 </h2>
 <p>Select stuff to bring:</p>
 <table class="who-bring-what">
 <thead>
 <tr><th>Who</th><th>What</th></tr>
 </thead>
 <tbody id="claim-list"> [image: 1]
 </tbody>
 </table>
 </section>

	[image: 1]
	Ingredients render within the claim-list element of the who-bring-what table.

JavaScript is the glue that puts this interface and the Baking
 Disasters REST APIs together, in a hangout.
You can put JavaScript in app.xml too, but it quickly becomes
 cumbersome. It’s easier to break it out into a separate file. Create a
 new file, app.js, and include it into
 the head element, as shown in Example 5-13.
Example 5-13. Including app.js into app.xml
<script src="//bakingdisasters.com/potluck-party-planner/final/app.js"></script>

Hangout App Startup

When the hangout starts up, Potluck Party Planner must be
 initialized to render the list of recipes that available for selection.
 The Hangout API can be configured to call a function once loading is
 complete using the function shown in Example 5-14.
Example 5-14. Registering an init function
gadgets.util.registerOnLoadHandler(init);

Within the init function you
 register a callback that executes when the Hangout API has finished its
 own initialization. Within this function you can register other
 callbacks, as shown in Example 5-15. In an application as
 simple as this one, you can funnel the initialization and other
 callbacks into a single updateUi
 function, as shown in Example 5-16.
Example 5-15. Registering more specific callbacks within the init
 function
function init() {
 var apiReady = function(eventObj) {
 if (eventObj.isApiReady) { [image: 1]

 // set up the handlers for callback from the hangout
 gapi.hangout.data.onStateChanged.add(function(eventObj) { [image: 2]
 updateUi();
 });
 gapi.hangout.onParticipantsChanged.add(function(eventObj) { [image: 3]
 updateUi();
 });

 // Render the initial interface
 updateUi(); [image: 4]

 gapi.hangout.onApiReady.remove(apiReady); [image: 5]
 }
 };
 gapi.hangout.onApiReady.add(apiReady); [image: 6]
}

	[image: 6]
	Register the apiReady
 function to execute when the Hangouts API is ready for
 instructions.

	[image: 1]
	Wait for the API to become fully ready.

	[image: 2]
	Update the user interface whenever the shared state
 changes.

	[image: 3]
	Update the user interface when participants join or leave the
 hangout.

	[image: 4]
	Render the initial user interface.

	[image: 5]
	Remove the apiReady
 callback to ensure that it does not run again.

Initially, the function shown in Example 5-17 renders
 the recipe list.
Example 5-16. One function to handle all interface updates
function updateUi() {
 renderRecipes();
}

Example 5-17. Render the list of recipes fetched from app.php into the empty
 recipes list and make it visible
function renderRecipes() {
 // Toggle the recipe list to on
 document.getElementById("loading").style.display = "none"; [image: 1]
 document.getElementById("ingredient-list-content").style.display = "none";
 document.getElementById("recipe-list-content").style.display = "block";

 var recipes = getRecipes(); [image: 2]

 var recipeList = document.getElementById("recipe-list");
 recipeList.innerHTML = ""; [image: 3]
 for (var i in recipes) { [image: 4]
 var recipeElement = document.createElement("li");
 var recipeImage = document.createElement("img");
 recipeImage.src = recipes[i].imageUrl;
 recipeElement.appendChild(recipeImage);
 recipeElement.appendChild(document.createTextNode(recipes[i].name));
 recipeElement.id = "recipe_" + recipes[i].id;
 recipeElement.addEventListener("click", recipeSelect, false);
 recipeList.appendChild(recipeElement);
 }
}

	[image: 1]
	Toggle the interface to display the recipe list section and
 hide everything else.

	[image: 2]
	Fetch the list of recipes from the simple API on Baking
 Disasters.

	[image: 3]
	Clear the current recipe list if any. It may have since the
 last invocation.

	[image: 4]
	Create HTML elements for the recipes and insert them into the
 recipe list.

Shared State and HTML Manipulations

The most important function of app.js is to respond to participant actions
 and to update everyone’s user interface. The Hangout API’s shared state
 API takes care of the heavy lifting. All you need to do is update the
 state in response to user actions and it will automatically trigger
 callbacks in every participant’s app. This includes the participant who
 triggered took the original action. The recommended sequence is shown in
 Figure 5-10.
[image: The update flow for shared state]

Figure 5-10. The update flow for shared state

Warning
It is important that you never update the shared state from a
 function that is directly or indirectly executed as the result of a
 state change. This results in an infinite loop.

Participants can take three possible actions when using potluck
 party planner. They can select or unselect a recipe and they can
 volunteer to bring an ingredient. The interface HTML already has
 JavaScript methods specified for these actions, so all you need to do is
 fill in the implementations.
Recipe selection, shown in Example 5-18, happens
 first. When a participant clicks on a recipe, the hangout app determines
 the recipe that they selected. Next, it makes an API call to Baking
 Disasters to fetch the ingredients for that recipe.
Once all of the important details about the selected recipe are
 known, you can update the shared state by calling gapi.hangout.data.submitDelta(). The shared
 state can only store strings, though, so all complex data, like the
 ingredients list, must be converted into a string to be stored.
Example 5-18. Respond to user clicks on a recipe in the list
function recipeSelect() {
 var recipeId = this.id.split("_")[1];
 var ingredientResponse = getIngredients(recipeId); [image: 1]

 var delta = {'recipeName':ingredientResponse.name}; [image: 2]
 var ingredients = new Array();
 for(var i in ingredientResponse.ingredients) {
 ingredients.push({"claimedBy":null, "ingredient":ingredientResponse.ingredients[i]});
 }
 delta['ingredients'] = JSON.stringify(ingredients); [image: 3]

 gapi.hangout.data.submitDelta(delta); [image: 4]
}

	[image: 1]
	Fetch the ingredients list for this recipe from the simple
 API.

	[image: 2]
	Gather up all changes to the shared state into a single local
 variable.

	[image: 3]
	Convert arrays and objects into strings to store them in the
 shared state.

	[image: 4]
	Submit the updates using submitDelta.

Note
Use submitDelta() whenever
 multiple keys are updated rather than many calls to setValue(). Shared state updates are limited
 to several updates per second, but submitDelta() only counts as one
 call.

Unselecting recipes is much simpler. No data needs to be fetched
 from any API. Simply clear the ingredients list from the shared state
 using the gapi.hangout.data.clearValue() function, as
 shown in Example 5-19.
Example 5-19. Return to the recipes list by clearing the ingredients
 list
function recipeUnselect() {
 gapi.hangout.data.clearValue('ingredients');
}

When the shared state has been updated, the Hangouts API will
 trigger the callback function you registered earlier. Update this
 function to render the correct panel based on the new value in the
 shared state, as shown in Example 5-20.
Example 5-20. An expanded UI updated function that decides which list to
 display
function updateUi() {
 if (gapi.hangout.data.getValue('ingredients') == null) { [image: 1]
 renderRecipes();
 } else {
 renderIngredients();
 }
}

	[image: 1]
	If there is no ingredient set in the shared state, display the
 recipe list.

Volunteering for ingredients follows a very similar flow, except
 since only one value is updated in the shared state, gapi.hangout.data.setValue() is
 sufficient.
Example 5-21. Respond to user clicks on ingredients
function ingredientSelect() {
 var claimId = this.id.split("_")[1];

 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients')); [image: 1]
 ingredients[claimId].claimedBy = gapi.hangout.getParticipantId(); [image: 2]

 gapi.hangout.data.setValue('ingredients', JSON.stringify(ingredients)); [image: 3]
}

	[image: 1]
	Recall the ingredients list from the shared state.

	[image: 2]
	Update the claimant for the target ingredient.

	[image: 3]
	Store the updated ingredient list back into the shared
 state.

The basic flow is ready for testing. Deploy the code and start a
 hangout. It will look something like Figure 5-11. You and
 your friends can select a recipe and volunteer for ingredients
 together.
[image: Potluck party planner running in a hangout: Left: The recipe selection panel; Right: The ingredient selection panel]

Figure 5-11. Potluck party planner running in a hangout: Left: The recipe
 selection panel; Right: The ingredient selection panel

Add Reminder Sharing

As it’s implemented, the final list of ingredients that each person
 selected is lost at the end of the hangout. The share link can help close
 this loop by allowing participants to post a reminder to Google+.
Content that is posted to Google+ must have a publicly accessible
 URL. A simple way to implement this is to create a reminder.php file, as shown in Example 5-22. It accepts reminder text as a GET parameter and
 formats it for sharing on Google+ with schema.org markup.
Example 5-22. A PHP page that displays reminders, which are passed in via a GET
 parameter
<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters 2.0</title>
 <link rel="stylesheet" href="style.css"/>
 <link rel="shortcut icon" href="images/logo_favicon.png" />
</head>
<body>
<header class="blog-header">

 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
<section class="content" itemscope itemtype="http://schema.org/Thing"> [image: 1]
 <h2 itemprop="name">Potluck Reminder</h2>
 <p>Remember to bring:</p>
 <pre itemprop="description">
<?= htmlspecialchars(urldecode($_GET["reminder"]), ENT_QUOTES, 'UTF-8'); ?> [image: 2]
 </pre>
 <div style="clear: both;"></div>
</section>
<footer>
 By Baking Disasters
</footer>
</body>
</html>

	[image: 1]
	Schema.org does not specify a schema for a reminder, so fall
 back to thing.

	[image: 2]
	Use htmlspecialchars to
 prevent cross-site scripting issues.

Note
For large ingredient lists, this implementation will produce very
 large URLs. A more robust implementation might involve POSTing a
 reminder and creating a shareable URL that refers to that reminder by
 ID.

Wiring reminder.php into the
 hangout app involves adding a place for the share link to render and
 rendering a share link with the GET parameter populated by the current
 ingredient list.
Add a placeholder reminder button to app.xml in the head element of the interface
 HTML, as shown in Example 5-23.
Example 5-23. A placeholder share link
<a style="display: none;" id="reminder-share-link"
href="https://plus.google.com/share?url=http://bakingdisasters.com">
 Share a shopping reminder on <img
 src="https://www.gstatic.com/images/icons/gplus-16.png"
 alt="Share a shopping reminder on Google+"/>

Next, add a function to app.js
 that updates the placeholder reminder link to share the list of
 ingredients that the current user has committed to bring, as shown in
 Example 5-24.
Example 5-24. JavaScript that updates the share link to the participants
 ingredient list
function renderReminderButton() {
 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients')); [image: 1]
 var participantId = gapi.hangout.getParticipantId();
 var reminderText = gapi.hangout.getParticipantById(participantId).person.displayName;
 reminderText += " will bring: ";

 for (var i in ingredients) {
 if(ingredients[i].claimedBy == participantId) {
 reminderText += ingredients[i].ingredient + "%0A"; [image: 2]
 }
 }
 if(reminderText.length > 0) {
 var reminderShareLink = document.getElementById("reminder-share-link");

 var reminderUrl = "https://plus.google.com/share?url=" + [image: 3]
 encodeURIComponent(BACKEND_BASE_URI + "/reminder.php?reminder=" +
 encodeURIComponent(reminderText));

 reminderShareLink.href = reminderUrl; [image: 4]

 reminderShareLink.onclick = function() { [image: 5]
 window.open(reminderUrl, '',
 'menubar=no,toolbar=no,resizable=yes,scrollbars=yes,height=600,width=600');
 };

 reminderShareLink.style.display = "inline"; [image: 6]
 }
}

	[image: 1]
	Recall the ingredients list from the shared state.

	[image: 2]
	Crudely URL-encode the list of ingredients claimed by the
 current participant.

	[image: 3]
	Construct the share link URL.

	[image: 4]
	Update the href attribute of
 the reminder link to point to the share link URL.

	[image: 5]
	Add a JavaScript callback to open the share link in a new
 window.

	[image: 6]
	Display the share link if it is still hidden.

This share link must be updated in response to ingredient selection.
 Add it to the updateUi() function, as
 shown in Example 5-25.
Example 5-25. The updateUi function enhanced to add the reminder share
 link.
function updateUi() {
 // If there's no ingredient state, display the recipes list
 if (gapi.hangout.data.getValue('ingredients') == null) {
 renderRecipes();
 } else {
 renderIngredients();
 renderReminderButton();
 }
}

The next time you run the hangout, a reminder link will appear.
 Clicking on the reminder link will bring up a share window. Share it with
 yourself, or whoever does your grocery shopping. An example reminder is
 shown in Figure 5-12.
[image: Left, a share window rendered from a share link in the Potluck Party Planner; right, the resulting activity on Google+]

Figure 5-12. Left, a share window rendered from a share link in the Potluck
 Party Planner; right, the resulting activity on Google+

Media APIs

The shared state APIs provide you everything you need to get the job
 done, but hangouts are supposed to be fun. You can use the media APIs to
 make the application a little more fun and provide an incentive for users
 to volunteer to bring ingredients: during ingredient selection, the user
 who has volunteered to bring the greatest number of ingredients to the
 party will be rewarded with a chef’s hat that appears in their thumbnail
 to everyone in the hangout.
Media overlays are created from images and later attached to a
 user’s face with a different API call. You can create media overlays
 dynamically with any URI, even a data URI, but this use case can be
 satisfied by reusing a single overlay. Create the overlay at startup from
 a static image and store it into a global variable for use later, as shown
 in Example 5-26.
Example 5-26. Create a chef’s hat overlay during initialization and store it
 into a global variable
var chefHatOverlay; [image: 1]
...
function createHatOverlay() { [image: 2]
 var chefHat = gapi.hangout.av.effects.createImageResource(
 BACKEND_BASE_URI + '/images/chef_hat.png');
 chefHatOverlay = chefHat.createFaceTrackingOverlay(
 {'trackingFeature':
 gapi.hangout.av.effects.FaceTrackingFeature.NOSE_ROOT,
 'scaleWithFace': true,
 'rotateWithFace': true,
 'scale': 4,
 'offset': {x: 0, y: -0.3}});
}

	[image: 1]
	Use a global variable to store the overlay.

	[image: 2]
	Create the overlay by calling createHatOverlay from init.

This code specifies some seemingly arbitrary values for the
 attachment point, scale, and offset. These parameters behave consistently,
 but it’s usually easiest to guess some reasonable values for your image
 and make adjustments to the working application.
Now that you have an overlay to apply, you must tell the app when to
 render it. The app already has an updateUI() function that updates the interface
 after a user selects an ingredient. Use the same logic to trigger the
 assignment of the chef’s hat, as shown in Example 5-27.
Example 5-27. Recalculate the chef’s hat assignment within the updateUi+
 function
function updateUi() {
 // If there's no ingredient state, display the recipes list
 if (gapi.hangout.data.getValue('ingredients') == null) {
 renderRecipes();
 } else {
 renderIngredients();
 assignChefHat();
 renderReminderButton();
 }
}

Each time an ingredient is selected you can inspect the shared state
 to determine the participant who has volunteered to bring the greatest
 number of ingredients. Next, loop through the participants, assign the hat
 to the top contributor and clear out the hats worn by everyone else. Example 5-28 shows how to do this.
Example 5-28. Determine the leading participant and assign them the chef’s
 hat
function assignChefHat() {
 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients')); [image: 1]
 var totals = new Array();

 for(var i in ingredients) { [image: 2]
 var ingredient = ingredients[i];
 var person = ingredient.claimedBy;
 if(person != null) {
 if(totals[person]) {
 totals[person]++;
 } else {
 totals[person] = 1;
 }
 }
 }

 var hatOwner = null;
 var currentMax = 0;
 for(person in totals) {
 if(totals[person] > currentMax) {
 currentMax = totals[person];
 hatOwner = person;
 }
 }
 console.log(hatOwner + " gets the hat with total of " + currentMax);

 if(hatOwner == gapi.hangout.getParticipantId()) { [image: 3]
 chefHatOverlay.setVisible(true);
 } else {
 chefHatOverlay.setVisible(false);
 }
}

	[image: 1]
	Recall the ingredients list from the shared state.

	[image: 2]
	Determine the participant who has claimed the greatest number of
 ingredients.

	[image: 3]
	Display the chef’s hat if the current participant claimed the
 most ingredients.

Deploy the code, start a hangout, and select a few ingredients to
 see a chef’s hat render above your head, as shown in Figure 5-13.
[image: Potluck Party Planner rendering a chef’s hat on Jenny’s head]

Figure 5-13. Potluck Party Planner rendering a chef’s hat on Jenny’s
 head

In this exercise you applied a media overlay. The media APIs provide
 other features that may be useful in your application. You can play sounds
 in the hangout. The sound APIs leverage the noise-canceling features of
 the hangout to ensure they are only heard by the correct participants. You
 can also affix images to the thumbnail view itself instead of the
 participants’ faces. You can even access the coordinates of the
 participants’ facial features programmatically. You can learn more about
 the available media API methods in the Hangout API reference
 documentation: https://developers.google.com/+/hangouts/api/gapi.hangout.av.effects

Other Hangout APIs

The Hangouts API is quite broad. It has many other methods and
 callbacks related to other hangout features. You can change the state of
 cameras and microphones, make your app react to changes in the On Air
 broadcast state of the hangout, and even embed video feeds into your main
 application pane. The best way to explore these features is to pursue the
 API reference documentation: https://developers.google.com/+/hangouts/api/gapi.hangout

Publishing

Now that you have a working hangout application, it’s time to allow
 people outside of your development team to use it. Follow these steps to
 make your hangout app public.
	Return to the API console, https://developers.google.com/console.

	Open the Hangouts panel for your application.

	Provide URLs for the Privacy Policy, Terms of Service, and
 Contact fields.

	Create a Chrome Web Store account and verify it by paying a
 one-time $5 fee, as shown in Figure 5-14.

	Check the published checkbox on the API console, shown in Figure 5-15, and click Save.

	Create and add the hangout button to your website. Start by
 copying your application ID from the URL in the address bar on the API
 console, as shown in Figure 5-16.

	Create a button with that ID. The resulting markup is shown in
 Example 5-29.

[image: Registering your developer account in the Chrome web store]

Figure 5-14. Registering your developer account in the Chrome web
 store

[image: Publishing your hangout app]

Figure 5-15. Publishing your hangout app

[image: Copying the project ID from the URL on the API console]

Figure 5-16. Copying the project ID from the URL on the API console

Example 5-29. HTML markup for a hangout button
<a href="https://plus.google.com/hangouts/_?gid=1234567890"
 style="text-decoration:none;">
 <img
src="https://ssl.gstatic.com/s2/oz/images/stars/hangout/1/gplus-hangout-20x86-normal.png"
 alt="Start a Hangout"
 style="border:0;width:86px;height:20px;"/>

Add it to a webpage, such as the Baking Disasters main index as
 shown in Figure 5-17, and click the button to start a
 hangout.
[image: Using the Hangout button to initiate a hangout running the potluck party planner]

Figure 5-17. Using the Hangout button to initiate a hangout running the
 potluck party planner

Use the built in hangout invitation features to invite your friends.
 You can now plan your potluck disaster.

Chapter 6. Wrapping Up the Baked Goods

Over the course of this book you have enhanced a blog with social
 plugins, written a web application that uses Google+ for authentication and
 as a data source, created a hangout app to make potluck planning easier, and
 taken a sneak peak at the upcoming history API. You can find the latest
 source code for all of these projects at http://code.google.com/p/baking-disasters/ and running
 examples at https://bakingdisasters.com/.
As you’ve completed these projects you’ve carved a path through the
 Google+ platform, but there are many other features to explore. As you
 explore you can find help in many places. As you start your project you can
 find configuration tools, starter projects, reference documentation and
 samples at https://developers.google.com/+.
 As your project evolves, you can find help overcoming the roadblocks that
 you encounter through many support channels such as hangout office hours,
 IRC chat, StackOverflow and a discussion forum. Links to these support
 resources can be found at https://developers.google.com/+/support.

About the Author
Jennifer works in Developer Relations on social products at Google. Previously she has worked in a wide variety of software engineering roles from robotics at NASA to the architect of a social media startup. She is passionate about writing and education, especially on the subjects of technology and science.

Developing with Google+

Jennifer Murphy

Editor
Meghan Blanchette

Editor
Mike Loukides

	Revision History
	2012-09-07	First release

Copyright © 2012 Jennifer Murphy

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Developing
 with Google+, the image of a pardalote, and related trade dress
 are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-09-10T07:01:36-07:00

OEBPS/httpatomoreillycomsourceoreillyimages1310244.png.jpg
Adds an inline annotation to your site
ﬂ- +3including You, Emily
Adick on the +1 button

5{ +1 - +2 including Emily —Adds an annotation to search results

skingeliaster.comsoeiakblog/inal doom Eread himl

Doom Bread. f you lfac Doom Bread, you may also b irerstac In Macaron. Is 12
bread ors 1.2 ol Wi i ayery morsosiy s the esssnce o at ...

Vou and Evly Soda +1Hthe

Triggers custom JavaScript on your site

it ool bogifldoom-srsd = A

An opportunity toshare on Google-+ —

ymulied Doom Bread, you may aisobe kresed i Macaror ‘

~ st braad orie a7 Wit i ayory

OEBPS/httpatomoreillycomsourceoreillyimages1310254.png.jpg
A Baking Disasters

€ € | ® bakingdisasters.com/blog/doom-bread.html

=P

Baking Disasters

Because sometimes molecular gastronomy explodes.

!
Doom Bread i+ I +2 moong wemio

Is it a bread or is it a roll? Within this

By - layery monstrosity is the essence of

OEBPS/httpatomoreillycomsourceoreillyimages1310368.png
Developer Dashboard - Chr:

€ © C | @ hups://chrome.google.com/webstore/developer/dashboard IR N
Mmail [calendar @3 snippets * app password [console [site () GroupMan [quota (7) Share on Twitter (f} issues % (3] Other Bookmarks

S —
&) chrome web store e =T N
~ Charge for digital and virtual goods right in your Chrome Web Store app with Googlo InApp Paymorts.

Developer Dashboard

Your Listings

Welcome! To publish a new app, extension or theme, click Add new item
Leam more about witing apps and extensions and publishing them i the Chrome Web Store.

Add new item

New! The Chrome Web Store launched
‘The Chrome Web Store is an open marketplace for web apps. Start uploading your apps now!

Language: Engiish (United States) - Location: United States
©2012 Google - Home - About Google - Privacy Policy - Developer Terms of Service - Program Policies - Your Apps - Developer Dashboard - Help

OEBPS/httpatomoreillycomsourceoreillyimages1310352.png
[BGoogle APIs Console x

€ | ® htps://code.google.com/apis/console/ b/ 2 #project: 1234567890:hangout

Make Public Learn more,

If you want to make your app available to the pubiic, you need to be a Chrome Web
Store verified developer. Your app wil also need a Terms of Service, a Privacy Policy
) Make your application available to all users.

"save

Enter a hangout in developer sandbox

Code Home - Privacy Policy

OEBPS/httpatomoreillycomsourceoreillyimages1310332.png.jpg
€«

A Baking Disasters 2.0

C | ® bakingdisasters.com/web-app/final fadmin.php

Baking Disasters

Because sometimes molecular gastronomy explodes.

) Only Jenny Murphy can access this page.
By Baking Disasters

OEBPS/httpatomoreillycomsourceoreillyimages1310336.png
Baking Party

Bake Stuff Google+
Toke Photos nstant Upload
Photos

o

Baking Disasters

User s<uses>

OEBPS/httpatomoreillycomsourceoreillyimages1310294.png
0o

€3 Google APis Explorer x

€ G | hups://developers.google.com/apis-explorer/#p/plus/v1/plus.comments Jistactivityld=2133jnaofxbSwzinx23lyv3a2n3owdxxd04salt=jsons... 7% | A

Google

APls Explorer

15 All Versions

O Request History

Search for services, methods, and recent requests.

«

Leam more about using the Google+ AP by reading the documentation.

Services > Google+ API v1 > plus.comments list

activityld z133jnaofxbswafnx23iyviaznlone

pageToken

s

Authorize requests using OAuth 2.0: [T0FF) @

‘The ID of the activity to get comments for. (string)

‘Specifies an altemative representation type. (string)

“The maximum number of comments to include in the response, used for paging. For
‘any response, the actual number rotumed may be less than the specified
maxResult. (nteger, 0-100)

‘The continuation token, used to page through large result sefs. To get the next page
of results, set this parameter to the value of *nextPageToken from the previous.
response! (string)

The order in which to sort the lst of comments. (string)

‘Selector specifying which fields to include in a partial response.
Use felds editor

OEBPS/httpatomoreillycomsourceoreillyimages1310296.png
ooo —
€ Google APIs Expl x

€ = C | @ hups://developers.google.com/apis-explorer/#p/plus/v1 /plus.comments.list2activityld=2133jnaofxbSwzfnx23lyv3azn3owdxxd04gal

Google
APIs Explorer

Sorvices

15 All Versions

O Request History

‘Search for services, methods, and rocent requests... K

“

Response

200 ok
~Srownstes -

kind": "plusfcommentFeed”,

tag": *\"UQS2Kiz-aOZN-P2aFZrIR-PUORO/MRSQISGACAzsbGRMNVQOKE T\ " ,
“Plus Comments Faed for Here's a fun one

© "2012-04-09T03:01:56.7622" ,

‘tag:google.con, 2010+ /plus/activities/z133jnaofxbSwz £nx231yv3aznIondxxd0d/conments”.

—ritems®s [

“kind": "plus#comment” ,

‘otag": "\"UQS2Kiz-aOZN-P2aFZrIR-PUORO/NVhXKKCiMRS SKEEPLTCITER2AU\"" ,

“verb": “post’,

"id": "AEZzEBEV2geYVATF6TOrmOMPEeDZNKXCK]IWAL2h21 1UIXS00d3UGHrEi0zi PRixq8IYEQLF20T" ,
“published”: "2012-04-09703:00:51.618:
“updated”: "2012-04-09703:00:51.
+ractor”s {

o
RIS /
“objectType": "comment'

“content”: "What do you mean by risk? 0_0"
i
Lenink s
"https://ww. google: lus/v1/conments/AB72EREV2qeYVATE! ADZHKXCK] 3AF2h23 10X arziesipki;
—*inReplyTo: [

1idr: "2153naosabSsnxa3lyvsazndoudeadot”,
“url": "hetps://plus. com/116852994107721644 ks /MyC2vDZRUCA"

OEBPS/callouts/7.png

OEBPS/callouts/8.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages1310324.png
o
(o]
o

ioogle APIs Console x

€« c
Google apis
overview
Toam
AP Accass.
Roports
Quotss
ES

| ® https://code.google.com/apis/console/b/0 /#project: 116363269776 access

Y

API Access

To provent abuse, Google places s on API requast. Using a vald OAuth token or API key alows you to
excand o imits by back o your projct

Authorized API Access

‘OAuth alows users o sharo speciic data with you (for sxample, contact sts) whie kesping thir usemams,
passwords, and other information private. Leam more

Branding nformation.
he. s shown to users you raquest aceass to thai private data.
Productname: Baking Disasters

Googl account:
Productogo:

adningbakingdisasters.con
hecp: //baxingdisasters. con/ nages/10g0.prg

a

Edit branding information.

‘,«nn-m#—
o 136362268776 2pps. qoogieusercancens. com

ctont
\z.... adaress:

it secrst:

Edt satings.
11636226977 6edeveloper gserviceaccount. con
P

Raset cent sscrt.

Radisct URle: http://bakingaissaters. con/ Jogin.php
/paxingdisasters.con/1ogin.php
Javascrpt orgins: paxingdisasters.con

/paxingdisasters. con

‘Simple API Accoss
Use AP keys to antéy your prject whan you do ot noed to acooss user data. Leam more.

Koy for browser apps (with referers) ‘Ganerats new kay.

APliay. ABacrasyD_512-coREZRANRIAS_GUXCIREE-T e
Referers: Any roforor alowed Deeto koy.
Actvatedon: Doc 14,2011 1105 PM

Actvated by: admin@bakingdisastors com - you

(Create new Server key...| Create new Browser key.

OEBPS/callouts/3.png

OEBPS/callouts/4.png

OEBPS/callouts/5.png

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages1310252.png
© OO/ ¢+1 sunon - Google+ Plarfor x |

& C | @ hups://developers.google.com/+/plugins /+ Lbutton/ | A
+1 Button J

Let visitors recommend your content on Google Lok good? Copy the code.
Search and share it on Google+.

o 21 PR oo
g

<div class="g-plusone" data-annotation="inline" data-widt}

<1-- Place this tag after the last +1 button tag. —->
with 250 <script type="text/javascript'>
(fanction() {

vax o'~ document.createBlenent ‘scrint) potype =

po-szc = 'https://apis-google.con/js/plusone.
Language | English (United States) are = docunent.geclonencenyTaghanel’ scrint’) (01 5
noi
</seript>

» Advanced options Want #0 ~iietamiza o eninnat

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages1310320.png
able
Name Date Modified
ws index.php Dec 5, 2011 2:17 PM
[} README Dec s, 2011 2:17 PM
B style.css Dec 5, 2011 2:17 PM

HU=QQ« PEARe®

Google+ PHP Starter Application

Description

www. php . net/
ww.php . net/manual/en/intro. curl

.net/manual/en/book. json.php
0ogle. con/p/google-api

OEBPS/callouts/2.png

OEBPS/httpatomoreillycomsourceoreillyimages1310372.png
ioogle APIs Console

000 [/

€ C | ® htps://code.google.com/apis/console/b/ 0/ #project 1234SATRAM: hanaour Q__L'

Cut

Paste and Search

Edit Search Engines...

New MacVim Buffer With Selection
Add to iTunes as a Spoken Track

OEBPS/httpatomoreillycomsourceoreillyimages1310338.png
A N

‘ Baking Disasters I ‘ Baking Disasters I
- 1
Atbaking. Instant upload photos ; E
party on their Publish activity i !
mobile device T f
i i

| — s !

r— T—

Ontheirlaptop | . Google+
after the party "'Sml'f;gfv’ﬁ;“ REST APIs
ifover Iz :

Select activity toimport | activitypage !
Store G+ activity H
H ID as and attempt '
| for this recpe |
-)
1 H 1
t + t
!]
' View Recipe !
:) Google+
:)) Hecizraog REST APl
i Rendrrcpepgevit
|
J
b
|

up-to-date contents T
'

- '

'

I

OEBPS/httpatomoreillycomsourceoreillyimages1310286.png
—_——]
O 00/ Ocoogle arts xplorer ’ -
€ C | B hups://developers.google.com/apis-explorer/#p/plus/v1 plus.activities.list 3RS
Google ‘Search fo sanoss, methods, and recen rquests... [o]
APIs Explorer “« o
= Services Leam more about using the Google+ AP by reading the documentation.
£ Al Versions
‘Services > Google+ API v1 > plus.activitieslist Authorize requests using OAuth 2.0: (" T0FF)@
O Request History
u The ID of the user to get activiies for. The special value "me" can be used
sserld toindicate the authenticated user. (sting)
collection “The collection of actviies tolist. (string)
at ‘Specifies an altemative representation type. (string)
‘The maximum number of activites to include in the responss, used for
maxResults paging. For any response, the actual number retumed may ba less than the
spocified maxResults. (ntoger, 1-100)
The confinuation token, used to page through large result sets. To get the
pageToken next page of results, sat this parameter o the value of "nextPageToken"
from the previous response. (sting)
feids Selector specifying which fields to include in a partial response.

bold red = required

Execut

Use fields editor

OEBPS/httpatomoreillycomsourceoreillyimages1310290.png
- 2
000 / Ocoogesmspmpioer @

«

C' | B htps://developers.google.com/apis-explorer/#p/plus/v1/plus activities.list?userld=116852994107721644038&collection=public... 7% | A

Google

APIs Explorer

= Services

1 Al Versions

O Request History

Soxhor s, e, e s, ["a]

tyFoed”,

reages “rDgpeRis-aORP1eFSriR-Plomo/KataguixHAgmHIYgBaN] youds\®
“nextPageToken" : *CAIQSCLXRLUCTWIGAW" ,

“selfLink":

“nextLink": " N 2994107721644 ivits ice
N . U

“title": "Plus Public Activity Feed for Baking Disasters”,

“updated”: "2012-07-08T20:00:22.7762",

“id": "tag:google.com,2010:/plus/people/116852994107721644038/activities/public”,

~"items®s [

+

“plus#activity”,

“\"0Q5 2Kiz-a0EM-P2aF ZrZR-PUOmO/ o4chBSPEE4Fh63qECTOVEBXSYMON" "

+ "Here's a fun ome to try. Recipes that call for careful temperature control often
entail a lot of ..

£2012-04-09702:57:29.0002" ,
012-04-09702:57:30.1692",

"id": *2133jnaofxbSwzénx231yvia2niowdxxd0d®

OEBPS/orm_front_cover.jpg
R RRRRRRRERRRRERRRRSSSEEERERRERREDEREERRRA Y
Practical Guide to Google+ APIs

O'REILLY® Jennifer Murphy

OEBPS/httpatomoreillycomsourceoreillyimages1310236.png
" > Google APis Explorer

«

x

€ | £ https://developers.google.com/apis-explorer/#s/plus/v1/plus.people.get RS
Google o for sonvics, mths,and rcent st (o |
APIs Explorer “« o
= Services Learn more about using the Google+ API by reading the documentation.
£ All Versions
Al Versions > Google+ API v1 > plus.people.get
© Request History
Authorize requests using OAuth 2.0: ("1 0FF) @)

userld

fields

Sl -

The ID of the person to get the
profile for. The special value "me"
can be used to indicate the
authenticated user. (string)

Selector specifying which fields to
include in a partial response.
Use flelds editor

OEBPS/httpatomoreillycomsourceoreillyimages1310326.png
(%) bakingdisasters.com/web-=

G

€ 3 C | © bakingdisasters.com/web-app/php-starter/

Google+ Sample App

Connect Me!

EIES
r‘

S Request for Permission

€ € | @ htps://accounts.google.com/o/oauth2/auth?response_type=code&redirect uri.

nny Murph

Google

Baking Disasters is requesting permission to:

» Know who you are on Google
© Perform these operations when I'm not using the application

e

Baking Disasters

s

By proceeding, you agree to the appicaton's Terms of Service and Privacy Polcy.

OEBPS/httpatomoreillycomsourceoreillyimages1310304.png
SR MR ARy T

Comments

Jenny Murphy: As disastrous as this recipe went, the results were still
delicious!

Please comment on the Google+ activity

e e AR

OEBPS/httpatomoreillycomsourceoreillyimages1310250.png.jpg
4 Baking Disasters

=P

€ € | ® bakingdisasters.com/blog/doom-bread.html

Baking Disasters

Because sometimes molecular gastronomy explodes.

-
Doom Q1) R vz meuang wine
Bread

Is it a bread or is it a roll? Within this

@R, layery monstrosiy s the essence of

OEBPS/httpatomoreillycomsourceoreillyimages1310258.png.jpg
z

€ © C | ©® bakingdisasters.com/social-blog/final /macaron-without-schema-.. ¥ | %
‘ A You publicly +1d this as Jenny Murphy.
+0) @ Baking Disasters
Macaron. Few baked goods are as prone to
Macaron losions o he delcious anddlclo Frnch
macaron. There's something about a hard outer
- shell attempting to hold back the pressure of Bs the
expanding almon s
ito
7
+ Add nar Sl
€ C | © bakingdisasters.com/social-blogfinal /macaron.html PR S
) You pubiicly +11d tis as Jenny Murphy.
+) ® Macaron

Few baked goods are as prone to explosions as the
Macaron ‘ delicious and delicate French macaron. There's

something about hard outer shell attempting to

hold back the pressure of expanding almond-flour- Bs the
goot ¥s
to
flour-
+ Add names, circles, or email addresses M

+ 1 cun nowdered suaar

OEBPS/httpatomoreillycomsourceoreillyimages1310374.png.jpg
| 8 8aking Disasters - Code S

| € € | © bakingdisasters.com

Baking Disasters
Code Sample Demos

Baking Disasters is afcdonal websiecresed 1 demons(at some of e ool APIS svailblefor developing on
Googlr. This s demonsrte thesecode semples. lesefel fe 0 poke around.

1 youd ik ol more, lsse drop me aln on Gl orcheck ut the Baking Disasters Googls Page.
‘Socia Bog - it version,fml vesion

Comments negraon - i version
« Sockl Web Applicaton - PHP Sturer, il verion, inal
o Potick Pany Plamer (Hangout App) - hpized sorer, il

| Google+ Hangouts x - ’ F,

— |
‘ € [@ nupsi//plus.google.comhangouts/_I4f3bbclad1102c8cedsesdeaz30asd31oz.. gy | A, |
B Googles Hangouts oo mon ||

Ow iwie Scrwwres | A saingoust. | | (L Hargok Lows.. | Bl ontume il [e ot [it .

Baking Disasters

Becauso sometimes molecular gastronomy explodes.

e~
Potluck Planner
‘Selecta recipe for your potuck:

6.
9........

By Baking Disasters

OEBPS/httpatomoreillycomsourceoreillyimages1310322.png
(& php_starter
4 tems, 29,13 GB available

Name +_Date Modified T
> google-api-php-client Apr 4, 2012 556 PM
lmi index.php Apr 4,2012 5:14 PM
) README Today 3:27 PM
b# style.css Apr 3, 2012 5:37 PM

OEBPS/httpatomoreillycomsourceoreillyimages1310268.png
Hooosie

€ - C | @ hups://www.google.com

Google

+android

&

And

ihncrod - Googer

| @ hups://plus.google.com/ 1046294124156570

+611987

-

‘Sendeedback p cirles (576350)

G}

® ® n = I)
Android ~ =]

A place for Android fans everywhere to meet, share -+~ S

You found this page via Google Direct Connact
from Google Search. Add ths page to your cicies?

RESS i

Posts About Photos Videos

s Anarola - 318 P - Pub
I08" e started roling out Ancrid 4.0, 1o Cream Sandich o Nexus 4G devices. Enoy

OEBPS/httpatomoreillycomsourceoreillyimages1310340.png
€

4 Baking Disasters 2.0

C' | ® bakingdisasters.com/web-app/final /recipe.phprecipe_id=1

ﬂ Jenny Murphy's Attempt impoed rom coogie

Last night | noticed that Gatorade Prime and Cadbury Creme
Eggs have a similar sugar content. Taking the related XKCD
(hitp/xked.com/4035)) to the next logical step, does this mean
that | can down an egg before a roller derby boutto keep my
energy up?

Id love to do an experiment (on myself), but I'm at a loss for how to make it
double blinded.

6 Jennifer Murphy's Attempt imeortes trom cooge:

There was fire everywhere. Luckily no one was hurt. The oven, though, did not
fare as well. It had to be replaced. This is one of those times I'm glad to be a
renter instead of a home owner.

Report Your Attempt
Have you attempted this recipe with disastrous results? Tell us about it! Import

from your recent public Google+ activity

OEBPS/httpatomoreillycomsourceoreillyimages1310282.png.jpg
€ € © bakingdisasters.com/blog/index-d... ¥¢| X

e '
Dot 4 Baking Disasters Q

Rat G | ® bakingdisasters.com/blog/index-d... 7| &
Macaron

Few baked goods are a 3 1
macaron. There's sof o
pressure of expanding ¢ Macaron
'steam locomotive... rea

Few baked goods are as prone to explosions as the deli

™ macaron. There's something about a hard outer shell attc
pressure of expanding almond-flour-goo that's reminisce
steam locomotive... read more

OEBPS/httpatomoreillycomsourceoreillyimages1310308.png
PHP Views util.php

v

Recipe

Admin
Console

OEBPS/httpatomoreillycomsourceoreillyimages1310350.png
€ C | ©® hups://code.google.comapis/console/b/2 /#project:1234567890: hangout
Google apis
Baking Disasters
Hangouts API
Overview Use the Google+ Hangouts AP! to develop rich, real-time apps built around Google+
Services Hangouts. Leam more at the Google+ Hangouts AP docs.
Team Private Developer Sandbox
R Until your account i verified with Chrome Web Store and the app is made public, your app
‘may be started only from the developer sandbox via the Enter a Hangout link below. To add
Reports testers, add them with the Team pane and share with them the Enter a Hangout link below.
Quotas Publishing an App
% Hangouts To enable your app, enter its information below and click Save. A URL to your gadget XML

and an OAuth Client ID are both required before your application is allowed to run inside a
Hangout. You will need to become a registered Chrome Web Store developer before you can
‘make your application available to all users. Leam more at Publishing Hangout Apps.

Application URL (Required)

‘Specify the location of your Hangout gadget XML.
http://bakingdisasters. com/potiuck-party-plann

OEBPS/httpatomoreillycomsourceoreillyimages1310356.png
ioogle APIs Console

&

€ € | © hups://code.google.com/apis/console/b/0/#project:1234567890:team RS
Gmail Calendar Documents Photos Sites Groups Search More ¥baconatedgeek@gmail.com ¥ | Settings 1
Google apis
Baking Disasters
Team
Overview You can collaborate on this project with as many or as few people as you like.
Services Permissions
Team ‘baconatedgeek@gmail.com - you Is owner ¢ Active
Antacoses jennys-teammate@gmal.com Active %
Reports
Quotas Add a teammate:
2 Hangouts I T T

OEBPS/httpatomoreillycomsourceoreillyimages1310346.png
O O O [l appenginehangout-a06b3b78c844

8 items, 19.4 B available

Name I Date Modifie

[app.yaml Mar 28, 201
i index.yaml Mar 28, 201
[main.py Mar 28, 201
[README.txt Mar 28, 201
v [static Mar 28, 201
B appis Mar 28, 201

[=1 app.xml Mar 28, 201

IZ1 hangouts-logo.png Mar 28, 201

OEBPS/httpatomoreillycomsourceoreillyimages1310342.png.jpg
[——— 2
€5 ©[o iobsomgcomrsous stz imcss)y &
Baking Disasters
Becaus somasmes oo
Potiuck Planner
Soect e or youpi

(200 /S = 2

619 0. & o s o5 [

‘Baklng Disasters
Bocausesomesies el gstonomyexiodes.
-

 Recipe selected: Doom Bread
Rt
- -
n_w 1 bote meadperbaser
e
e BRI
= n_ A
.
i e

Wi o Cooger ~ &
© 8 hues iplus google com sharerur-hupsiinz 77 gy N |

Google+

Dot forgt o g hase!

p—

© Posuck Reminder »

Joney Mophy b 1 ot s e
ok 1 packe of actve yost.

- |8
vy =
Don forget 10 teg hese. -
L ————
i —
i
-l

OEBPS/httpatomoreillycomsourceoreillyimages1310330.png
&
A Baking Disasters 2.0 x ’ -
&

«

" oven door cracked open.

Log in to tell us about your attempt!

By Baking Disasters

OEBPS/httpatomoreillycomsourceoreillyimages1310260.png.jpg
A 5aking Disasters x .
w

& € | ® bakingdisasters.com/social-blog/final/doom-bread.html

Baking Disasters

Because sometimes molecular gastronomy explodes.

!
Doom Bread i +1] Rocommen i on Googs
A 5aking Disasters x .
& = C | © bakingdisasters.com/social-blog/final/doom-bread.html w|

Baking Disasters

Because sometimes molecular gastronomy explodes.

)
Doom Bread

B v o

If you liked Doom Bread, you may also be interested in Macaron.

Is ita bread or is it a roll? Within this layery

‘ monstrosity is the essence of fatty deliciousness.

OEBPS/httpatomoreillycomsourceoreillyimages1310316.png
Create Client ID X

Client ID Settings
Application type
@ Wb application
Accessed by web browsers over a network.

O Installed application
Runs on a desktop computer or handheld device (iike Android or iPhone).

Your site or hostname (more options)
For example: wiw . exanple. con of Localhost

htps://_+) bakinadisasters.com/app/iogin.php

Redirect URI
https://bakingdisasters.com/appiogin. php

Create client ID | Back || Cancel Leam more

OEBPS/httpatomoreillycomsourceoreillyimages1310276.png
«

© @ hupsi/plus gooole.com/116852994107721644038103 (.

+donny

Risaing Disasters - Googles %

Google+

__ LEmmmm
e it Yo

Baki

«

©Goosles Badge -Googler

Copy.
Paste
Paste and Go

Add to iTunes as a Spoken Track,

© | @ hitps://developers.google.con Open URL

~ Piogins
+1Button
~ Bsdge
Branding Guideines
Share
srippet
Butons Pocy
» Hangouts API
» Moblo Plaforn.
» istoy AP
» REST API
Oourioads

Relase Notes

» Support
Biog

Add to Reading List

Google+ Badge

Link your Googles page to you sit. Get more Look good? Copy the cods.
rocommendatons foryour 316 i Googl search and
row your audince on Googler

—c " 4

hutps:plus.google.cc.

leon () Smallbadgo
© Standard badge

Langusge Englh (Ut Sates)

, <1 Place this tag ateer the last badge tas.
Hrion Sypae taxesavaneripes

Want to customize your srppet?

OEBPS/httpatomoreillycomsourceoreillyimages1310248.png
| €0 +1 Buton - Googlex Pt * ’ <

€« C | @ hups://developers.google.com/ + /plugins/ + 1button/ 23RS

—
. e —
O Developers s [o | ==
Google+ Platform =
~ Plugns +1 Button

1 Butten Lot visitors recommend your content on Google Search Look good? Copy the code.

s oo e et

s

= O

St —_ B 2 PR e

Buttons Policy .
S e PR A ATy
+ ol Platom

v 300
» Heky A1 Ty
0L s erstasiemtc
+ ResT APt o
— E
Ooudoutle </script>
elaseNots)
T ——

—

- '

0 Documentation

et ———————————

OEBPS/httpatomoreillycomsourceoreillyimages1310240.png
" > Google APis Explorer x

«

€ | £ https://developers.google.com/apis-explorer/#s/plus/v1/plus.people.get

GOOgle ‘Search for services, methods, and recent requests... “

APIs Explorer “
= Services Learn more about using the Google+ API by reading the documentation.
£ All Versions
Al Versions > Google+ API v1 > plus.people.get
© Request History
Authorize requests using OAuth 2.0:

The ID of the person to get the
profile for. The special value "me"
can be used to indicate the
authenticated user. (string)

Selector specifying which fields to
fields. include in a partial response.
Use flelds editor

bold red = required

OEBPS/httpatomoreillycomsourceoreillyimages1310264.png
2 OO/ M Baking Disasters

x

o

€ C | ® bakingdisasters.com/social-blog/final /macaron-with-broken-+1-butt... ¥ | &

Macaron

Ao

Documents _Stylesheets Images Scripts XHR _Fonts

]
Developer Tools - http:/ /bakingdisasters.com/social-blog/final /macaron-with-broken-+1... %
= - PR CUREEEEE—
= @5 & i Co—
Elements Resources ' Network Scripts Timeline Profiles Audits Console Search Netwark
Name
Path © Headers_preview [Response | Timing
D sprited-a67f741843ffca2 1
ssl.gstatic.com/s2/oz/ima¢ 2
L gstatc.com/ 2 2 .
rs=AIRSTMmhi3jals6ejst | 4 32099, .
apisgoogle.com/_japps-st | 5| .Be3s20€) “Backend Errort,
confirm 7
2 Cegomaints mgronart,
plusone.google.comy_/+1 | 5| .comadnl: taloball, o
— 10 eetiane’: ackend Error.
sslgstaticcom/s2/oz/imac | 13| 1
. 13k
] st T3 i “pos.plusones. insertt
sl gsatc.com/s2/oz/imac_ | 15

Websockelf

OEBPS/httpatomoreillycomsourceoreillyimages1310300.png.jpg
T ORI SO NS N e Courseey
81 Googls API o ENTH” coe
| PO) OFF

OEBPS/httpatomoreillycomsourceoreillyimages1310344.png
Another Host
REST API

AJAX

JavaScript
requests

»
»

OEBPS/httpatomoreillycomsourceoreillyimages1310348.png
ioogle APIs Console

€ C | ® hups://code.google.com/apis/console/b/ 2 /#project:1234567890:services | A

/¥ Google Play Android Developer APl @ [TOFF] Gourtesy limit: 15,000

requests/day
R Google+ API © @I] coutesy limit: 10,000
requests/day
11 Google+ Hangouts API 0 W @— '
1 Groups Settings API @ [TOFF) courtesy limit: 100,000

requests/day

OEBPS/callouts/15.png

OEBPS/callouts/14.png

OEBPS/callouts/13.png

OEBPS/callouts/12.png

OEBPS/callouts/11.png

OEBPS/httpatomoreillycomsourceoreillyimages1310306.png
«

A Baking Disasters 2.0 x

’Eﬂ

C | ® bakingdisasters.com/web-app/i... 75 | &

A Baking Disasters 2.0 x

C | © bakingdisasters.com /web-app/i

&

WA

‘hklng Disasters
Secnuso somsims s
-

resamore
Doom Bread

A Baking Disasters 2.0 x

€' | @ bakingdisasters.com/web-app/init 7 | &,

‘hklng Disasters
Secnuso somsims s
-

[

A Baking Disasters 2.0
-
gred

C | © bakingdisasters.com /web-app/i

‘Because sometines mosculr

m
n

SE2IRRBFFLER

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages1310242.png
€3 Goagle APIs Explorer x L
€« C' | @ https://developers.google.com/apis-explorer /#s/plus /v1/plus.people.get?userid=me& h= Wi
Goog[e Searoh for senvicss, methods, and recent requesss.. [o |
APIs Explorer “ o~

plus.people.get executed moments ago tne to sxecus: 776 me

IR All Versions Request
© RequestHistory

GET https: //ww.googleapis. con/plus/v1/people/me?key=(YOUR_APT_KEY}

tion: Bearer yas. 3IEVAMIEI2 1

X-JavaScript-User-Agent: Google APIs Explorer

Response

*\"UQS2K{2-a07H-P28F 2 rER-PUORO/QI9 EVEGTRREYRPIFIQTUTITHAION ",

"Bttp://1ittled1s.con”

1-8N-54Q

OEBPS/httpatomoreillycomsourceoreillyimages1310246.png.jpg
AWebpage containing
the +1 button

7

q+

Il T e—
[P y———
(© Doom Bread on Baking

Disasters »

Is it a bread ors it a oll? Within
this layery monstrosity is the

o essence of fatty deliciousness.

OEBPS/httpatomoreillycomsourceoreillyimages1310280.png
4 Baking Disasters

C | @ bakingdisasters.com/social-blog/final/

G

v

Baking Disasters g

Because sometimes molecular gastronomy
explodes.

!
Macaron

Few baked goods are as prone to explosions as the delicious and delicate French
macaron. There's something about a hard outer shell attempting to hold back the
pressure of expanding almond-flour-goo that's reminiscent of a poorly designed
steam locomotive... read more

OEBPS/httpatomoreillycomsourceoreillyimages1310234.png
) Google APIs Explorer

& € @ nhups//developers.google.com/apis-explorer/#s/plus /v1/

x

Google

APlIs Explorer

Services

All Versions

© Request History

Search for services, methods, and recent requests... [o]

“

Learn more about using the Google+ API by reading the documentation.

Al Versions > Google+ APl v1 Authorize requests using OAuth 2.0:

plus.activties.get
plus.activities.list
plus.activities.search

plus.comments.get

plus.comments.list
plus.people.get
plus. people listByActivity

plus.people.search

[orE)@
Get an activity.

List all of the activities in the specified collection for a particular user.
Search public activities.

Get a comment.

List all of the comments for an activity.

Get a person's profile.

List all of the people in the specified collection for a particular activity.

Search all public profiles.

OEBPS/httpatomoreillycomsourceoreillyimages1310354.png.jpg
Google APis Console. /@ Googles Hangouts x

C | @ hups://hangoutsapi.talkgadget. google.com/hangouts _/576180b4a15886ea331207317c09604ac6 898 7authuser=0

lﬁ Google+ XTI] Hangouts

Chat | Scroonshars | [Costume iobal | A Baking Disasto.

Manage Developed Apps: [Loadapp () Reload app.

[ﬁ Starter App

Collaborate with your friends to count o a big number!

Current count:
2
Player count:
1

(Click Me1 | [Reset |

People

Report an issue Help
—_— O @

+Addapp

= Rosot app state

Fetch some JSON from main py

Message:
Hello World!

(Cmesiage)

on

mon & Ea

OEBPS/httpatomoreillycomsourceoreillyimages1310328.png
- 2
() bakingdisasters.com/web-: ’

€ € | © bakingdisasters.com/web-app/php-starter/index.php ¥¢ | &

Google+ Sample App

Jenny Murphy

Your Activities:

Reshared post from CosmoQuest Clouds
seem to be breaking up. This week's virtual
start party w...

Clouds seem to be breaking up. This week's
virtual start party will be starting in 15-30 min
(need to focus)

Reshared post from le+ Developers The
Siret fow faaturad b rs

OEBPS/httpatomoreillycomsourceoreillyimages1310362.png.jpg
Googles Hangouts Googles Hangouts

® Pups /s oogte.comhangouts_/3914059be30176852:207723b8566164d50008CATTauhuser 0. b s gogle.com/ hngouts /391405 be3F 1763478077 a5 61eA0SbO0RCATasthus -0
Hangouts s o wf Hangouts P
st | oo B e nstrs. | spuones. | B commecion | & buvoiue | ooing Ot Errmstors.. & Smpsoben. | oo | &

Baking Disasters Baking Disasters

Because sometimes molecular gastronomy explodes. Because somelimes molecular gastronomy explodes.
- -
Potluck Planner — Recipe selected: Macaron
Selecta ecio foryour pofuck: Select st bing:

Who Wnat
‘Macamn Nobody { cup powdered sugar
.Dmma-em Nobody 118 cup baker'ssuperfine sugar
By Baking Disasters
Nobody 1 4 cup aimand four

Nobody 3egg whites

OEBPS/httpatomoreillycomsourceoreillyimages1310274.png
€ Googie. Badge - Googles - _

(_- 5 © | @ hups://developers.google.com + plugins bade/
Google+ Badge

Link your Googlr page to your site. Get more

rocommendations

o your audoncs S Parinsula Rolle Gifs
A Baking Disasters

Googierpage Y Jenny Murphy (Mimming)

» Advanced optens. <1 Place this tag after the last badge tag.
Socript typer”text/Savaseript”>
unetiont {
ez po = document.createblement (script!); po.type + ‘text/da

OEBPS/httpatomoreillycomsourceoreillyimages1310262.png.jpg
€« C' | ® bakingdisasters.com/ social-blog/final /macaron-with-broken-+1-butt_.. 7% | &

Baking Disasters

Because sometimes molecular gastronomy explodes.

!
Macaron Al o

Few baked goods are as prone to explosions as the
delicious and delicate French macaron. There's
something about a hard outer shell attempting to
hold back the pressure of expanding almond-flour-
goo that's reminiscent of a poorly designed steam
locomotive.

OEBPS/httpatomoreillycomsourceoreillyimages1310292.png
o000

€« C | https://developers.google.com/apis-explorer/#p/plus/v1/plus.activities.list?userld=116852994107721644038... 7% | X

Goog[e ‘Search for services, methods, and recent requests... “

APIs Explorer “ -

ipdated”: "2012-07-08720:00:22.7762
"tagigoogle.com, 2010 /plus/people/116852994107721644038 /act ivities/public,

% Al Versions

D Request History
iPlkctivier,

2aPZrE £4Fh63qt Fo
uEunnn.tnf_r’R ipes that call for £ul
control often entail a lot of .
"published": "2012-04-09T02:57:39.0002" ,
“updated”: "2012-04-09T02:57:30.169Z",
*id": "2133jnaotxbSwafnx231yviaznioudxxd0d” /
url! \ttps://plus . google.con/116852094107721644038, 2vpzpUCA",
—vactor®:
id": "116852994107721644038",
“displayName": "Baking Disasters”,
name”: {

“£amilyNane'
“givenName" :

e

"url®: "htt;

~"image": {
"url®:

1lus.google.con/116852094107721644038"

OEBPS/httpatomoreillycomsourceoreillyimages1310278.png
OO0/ ¢3coogles adge - Googler © %

€ C | @ hups://developers.google.com) + /plugins/badge/

~ Plugins Google+ Badge [

+1 Button

Link your Googlor page o your st Ge oo Look good? Copy the code.
ot commandatins o you o 1 Gt searchand grow
your audience on Google+.
Branding Guidsines
Staro [P —
Soi
feest) leon @ Small badge [+)
) o
Buttons Policy Standard badge
+ Hangents AP1
Langunge Engen Untadssten) &
» Mobie lafom
» Hitoy AP1 « Advanced options
Advanced op <l Pluce this tas atter the lust badse tas.
» REST API prosttegeliuciey ety
e N p—
Downdoads bl “httpe://apis.google.con/3s/plusone.
PRI R et it

Colortheme (@) Light () Dark
‘Want to customize your snippel?

» Support

OEBPS/httpatomoreillycomsourceoreillyimages1310318.png
Client ID for web applications

Ciient ID:
Client secret:
Redirect URls:

JavaScript origins:

Create another

116363269786 apps . googleusercontent .con
EJlgDrWYaWev¥znlken2JW-B

http://bakingdisasters.con/app/login.php
http://localhost

http://bakingdisasters.con

Edit settings...
Reset client secret...

OEBPS/httpatomoreillycomsourceoreillyimages1310364.png.jpg
Bl oy o\ R 5

€ > © [@ mups//plusgoogle.com 102817283354809142195/posts kS

Share on Google
8 hitps://plus google.com/sharelurl=hitps¥3AX2FX2Fbakingdisasters com¥2Fpotuck-p.

@
Google+ p— e e — |

Dot foret!

© Pottuck Romindor »
Jney Murphy wil bing: 1 cup powcerod sugar 114
cup bakers superinesugar Y4 cup almond four 3
g9 whites

© Ptk Ramindor

Jonny Msphy il bring. 1 cup poucered sugr 14 cup
bakes supefine sugar 34 cup aimond flour 3 eg9 wites

B -l
s ra——
Ads 2 commont

cow 7|

OEBPS/httpatomoreillycomsourceoreillyimages1310334.png.jpg
w

€ 5 C | @ htips://bakin

isasters.com /web-app/experimental/

-l
Macaron

VN

Baking Disasters

Because sometimes molecular gastronomy explodes.

Few baked goods are as prone to explosions as the delicious

OEBPS/httpatomoreillycomsourceoreillyimages1310270.png.jpg
Wsaking Disasters - Googler+ Q
€ C | A hups:

plus.google.com/116852994107721644038 posts

+Jenny h

Google+ 2/mle ® n BER o o | + snare)Y -

Manage this page

Baking Disasters

When baked goods go terrible wrong

Posts About Photos Videos

Baking Disasters - Yesterday 534 PM - Publc
@ s
o © Baking Disasters

Baking Disasters. Because sometimes molecular gastronomy explodes. Doom
Bread. Is it a bread oris it a roll7 Within this layery monstrosity s the essence
+22 of faty deliciousness. Doom Bread combines

+

People in common (1)

. %) - Comment - Hang out - Share

Jenny Murphy - A bread recipe with bacon as a major ingredient? | must attempt this one.
View all» 5:06 PM - Edit

In Baking Disasters's circles (7) Add a c
‘Send feedback

diag

OEBPS/httpatomoreillycomsourceoreillyimages1310314.png
Create Client ID X

Branding Information
‘The following information will be shown to users whenever you request access to their
private data using your new client ID.

Google account: admin@bakingdisasters.com - you
Link your project to this account's profile and reputation.

Product logo: | ttpoakingisasters.com/appimages/iogo.png |

Update]

Max size: 120x60 pixels

-

[Next] Cancel| Leam more

OEBPS/httpatomoreillycomsourceoreillyimages1310370.png
B Google APis Console N\

€ € | ® hups://code.google.com/apis /console/b/0 /#project:1234567890:hangout

Make Public Loarn more.
1f you want to make your app available to the public, you need to be a Chrome Web
Store verified developer. Your app will also need a Ters of Service, a Privacy Policy
@ Make your application available to all users.

save

Enter a hangout in developer sandbox l

OEBPS/httpatomoreillycomsourceoreillyimages1310256.png.jpg
4 Baking Disasters

=P

v

€ € | ® bakingdisasters.com/blog/macaron.html

Baking Disasters

Because sometimes molecular gastronomy explodes.

!
Macaron Rl

Few baked goods are as prone to explosions as the

delicious and delicate French macaron. There's
something about a hard outer shell attempting to

OEBPS/httpatomoreillycomsourceoreillyimages1310310.png
O

-

Baking Disasters I | Google+
———— Userdicks sign-inlink ————
Signinwith | ———— OAuth20
Googlec+link | Redirectsuser’s grant dialog
- webbroswer -

|
Sends code for exchange (")
Ohuthredirect
handler Validales(odec Ohuth token
provider
Responds ith tokens
—— :
Components that >
Tequire user's ggg}lﬁ
Google-+ data > s
(e) e

OEBPS/httpatomoreillycomsourceoreillyimages1310298.png
[iiesii— =

Google apis
Hangout GApps
Rename... Dashboarc
Delete...
Project Sumn
Recent projects
Name
API Project
Google+ AP Project Project Domai
Other projects.

OEBPS/httpatomoreillycomsourceoreillyimages1310284.png
€ Google APIs Explorer x\

2~
&

€ C | { hups://developers.google.com/apis-explorer/#p/plus/v1/plus.comments.list £

Google

APIs Explorer

I Al Versions

© Request History

‘Search for services, methods, and recent requests...

“«

Leam more about using the Google+ AP by reading the documentation.

Services > Google+ API v1 > plus.comments.list

activityld

maxResults.

pageToken

fields.

e

Authorize requests using OAuth 2.0: (T07F)@

‘The ID of the activity to get comments for. (string)

‘Specifies an altemative representaion type. (string)

“The maximum number of comments to include in the response, used for
paging. For any response, the actual number retumed may be less than the
‘specified maxResulfs. (integer, 0-100)

‘The continuation token, used to page through large resu sefs. To get the
next page of results, set this parameter to the value of *nextPageToken"
from the previous response. (string)

‘The order in which to sort the list of comments. (string)

‘Selector specifying which fields to include in a partial response.
Use felds editor

OEBPS/httpatomoreillycomsourceoreillyimages1310358.png
rHangout App) Baking Disasters

app.xml api.php
Ppjs e Ly
requests
Share
R
Google+
Reminder
activity

OEBPS/httpatomoreillycomsourceoreillyimages1310238.png
ey Ty — -
explorer/#s/plus/v1/plus.people.get 5{}] Q

€ C @ hups;/developers.google.com/api

Scopes are used to grant an application different levels of access o data on
behalf of the end user. Each API may declare one or more scopes. Learn
more about OAuth 2.0

Google+ AP declares the following scopes. Select which ones you want to
grant to APIs Explorer.

@ https://www.googleapis.com/auth/plus.me
Know who you are on Google

O htps:/iwww.googleapis.com/auth/userinfo.email
View your email address

Add additional scopes (optional):

OEBPS/httpatomoreillycomsourceoreillyimages1310366.png.jpg
@ Google+ Hangouts

C | @ hups://hangoutsapi.talkgadget.google.com/hangouts /_/a9f18eabasfca75fb2523b1d1e

fﬁ Coogle+ Developer Sandbox: For Testing Purposes Only! [FEUFTIReY $ on

Chat Scroenshare | @ BakingDisastor...| [CostumoGiobal | +Add spp.

Manage Developed Apps: [Loadapp () Reloadapp - Resetapp state

Baking Disasters

Because sometimes molecular gastronomy explodes.
Share a shopping reminder on

S
« Recipe selected: Macaron
Select stuff to bring:
Who What
H.u 1 cup powdered sugar
lenny Murphy
ﬂ' 1/4 cup baker's superfine sugar
lenny Murphy
Nobody (3/4 cup almond flour
Nobody (3 egg whites

People

OEBPS/httpatomoreillycomsourceoreillyimages1310288.png.jpg
€« C' | @ https://plus.google.com/116852994107721644038/posts I3RS

+denny Search Images Maps Play YouTube News Gmaill Documents Calendar Mol

oogle+ =

Baking Disasters

OEBPS/httpatomoreillycomsourceoreillyimages1310302.png
Simple APl Access
Use API keys to identify your project when you do not need to access user data. Leam more

Key for browser apps (with referers)
APl key: ATzaSyA-E-eBvhHOyy3TJ2bWeaf1XAn8S5SEIRN
Referers: Any referer allowed

Activated on: Dec 14, 2011 11:05 PM
Activated by: bakingdisasters@example.com ~ you

OEBPS/httpatomoreillycomsourceoreillyimages1310272.png
© 0O/ Googles Badge - Google:+ ¢ %

€ C| @ hups//developers.google.com; + plugins badge/

~ Plugins Google+ Badge

SR Link your Google+ page to your site. Get more.
. rocommendatons fr you 3o in Googlo seach and
Badge Grou your audence on Google.
Branding Guideines
Share Google+ Page Jenny Murphy (Mimming) 3
Srippot
Policy Foatures. Icon (@) Small badge
, el
Hangauts Langusge Englsh (Uned State) &
» Mobie Plaforn
» History API » Advanced options
» RESTAPI
Dourioads
Raloase Notes
» Support
Blog

Lok good? Copy the code.

Jenny Murphy on S Aaato crces

<i-- Place this tag where you vant the badge to render. -->
Kiv Clama-g-plus’ Gata-heishist6o" datachref-"//pius.geosle.con

<i- Place this tag atter the last badge tas.
“ocript typesrtext/savascript'>
Ceanetion() (
= po = docusent.createElement (‘script'); po.type = ‘text/Sa
Po.src - 'hetpa://apis.googie.cons3s/plusone. ' s
Vai's = docusant.gotElenenceByTaghare script)(0); 8.parenti
no.

Want to customize your snippet?

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1310266.png.jpg
wenen 8§
as

Jenny Murphy on ﬁ Add to circles

OEBPS/httpatomoreillycomsourceoreillyimages1310312.png
Authorized APl Access

OAuth 2.0 allows users to share specific data with you (for example,
contact lists) while keeping their usemames, passwords, and other
information private. Leam more

) Create an OAuth 2.0 client ID.

OEBPS/httpatomoreillycomsourceoreillyimages1310360.png
App Ap| Hangout API
HTML Interface Javas: Shared Site
] [}

! User triggers event '
r\ Code updates shared site

Hangout AP triggers

- f
callback on all clients

(allbacks update
interface on all clients

