

 [image: First Edition]

 Web Performance Daybook, Volume 2

Stoyan Stefanov

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

Foreword

Steve Souders

In your hands is the largest collection of web performance articles
 ever published. It includes performance topics such as open source tools,
 caching, mobile networks and applications, automation, improving the user
 experience, HTML5, JavaScript, CSS3, metrics, ROI, and network protocols.
 The collection of authors is diverse including employees of the world’s
 largest web companies to independent consultants. At least seven web
 performance startups are represented among the contributors: Blaze,
 CloudFlare, Log Normal, Strangeloop, Torbit, Turbobytes, and Zoompf. The
 range of topics and contributors is impressive. But what really impresses me
 is that, in addition to their day jobs, every contributor also runs one or
 more open source projects, blogs, writes books, speaks at conferences,
 organizes meetups, or runs a non-profit. Some do all of these. After a full
 day of taming JavaScript across a dozen major browsers or tracking down the
 regression that made page load times spike, what compels these people to
 contribute back to the web performance community during their “spare time”?
 Here are some of the responses I’ve received when asking this question:

	Lack of Formal Training
	Many of us working on the Web learned our craft on the job. Web
 stuff either wasn’t in our college curriculum or what we did learn
 isn’t applicable to what we do now. This on the job training is a long
 process involving a lot of trial and error. Sharing best practices
 raises the group IQ and lets new people entering the field come up to
 speed more quickly.

	Avoid Repeating the Same Mistakes
	Mistakes happen during this trial and error process. Sometimes a
 lot of mistakes happen. We have all experienced banging our heads
 against a problem in the wee hours of the morning or for days on end,
 often stumbling on the solution only after a long process of
 elimination. Thankfully, our sense of community doesn’t allow us to
 stand by mutely while we watch our peers heading for the same
 pitfalls. Sharing the solutions we found lets others avoid the same
 mistakes we made.

	Obsessed with Optimization
	By their nature, developers are drawn to optimization. We all
 strive to make our code the fastest, our algorithms the most
 efficient, and our architectures the most resilient. This obsession
 doesn’t just stop with our website; we want every website to be
 optimized. The best way to do that is to share what we know.

	Like to Help
	Finally, some people just really like to help others. That look
 on someone’s face when they realize they just saved a week of work or
 made their site twice as fast makes us feel like we’ve helped the
 community grow.

As a testimony to this sense of sharing, the authors have dedicated
 all royalties of this book to the WPO Foundation, a non-profit organization
 that supports the web performance community. Thus, you can enjoy the
 chapters that lie ahead not only because they are some of the best web
 performance advice on the planet, but also because it was given to the web
 performance community selflessly. Enjoy!

From the Editor

Stoyan Stefanov

In the spirit of the true high-performance, non-blocking asynchronous
 delivery, you now have the Web Performance Daybook, Volume
 2 published before Volume 1. I hope you'll enjoy reading the book
 as much as I enjoyed working on it and rubbing (virtual) shoulders with some
 of the brightest people in our industry.
Back in December 2009, I wanted to give an overview of the web
 performance optimization (WPO) discipline. I decided on a self-imposed
 deadline of an-article-a-day from December 1 to 24: the format of an advent
 calendar similar to http://www.24ways.org. As it
 turned out, 24 articles in a row was quite a challenge and so I was happy
 and grateful to accept the offers for help from a few friends from the
 industry: Christian Heilmann (Mozilla), Eric Goldsmith (AOL), and two posts
 from Ara Pehlivanian (Yahoo!).
The articles were warmly accepted by the community and then the
 following year, in December 2010, the calendar was already something people
 were looking forward to reading. The calendar also got a new home at http://calendar.perfplanet.com as a subdomain of the “Planet
 Performance” feed aggregator. And this time around more people were willing
 to help. Developers of all around our industry were willing to contribute
 their time, to share and spread their knowledge, announce new tools, and
 this way create a much better set of 24 articles than a single person could.
 This is what soon will become Volume 1 of the series of Daybooks.
Then came December 2011, and we had so much good content and
 enthusiasm that we kept going past December 24, all the way to December 31,
 even publishing two articles on the last day. This is the content that you
 have in your hands in a book format as Web Performance Daybook,
 Volume 2.
Our WPO community is young, small, but growing, and in need of
 nourishment in the form of community building events such as the advent
 calendar. That's why it was exciting to have the opportunity to collaborate
 on this title with O'Reilly and all 32 authors. I'm really happy with the
 result and I know that both volumes will serve as a reference and
 introduction to performance tools, research, techniques, and approaches for
 years to come. There’s always the risk with outdated content in offline
 technical publications, but I see references to the calendar articles in the
 latest conferences today all the time, so I'm confident this knowledge is to
 remain fresh for quite a while and some of it is even destined to become
 timeless.
Enjoy the book, prepare to learn from the brightest in the industry
 and, most of all, be ready to make the Web a better place for all of
 us!

About the Authors

Patrick Meenan

[image: Patrick Meenan]
Patrick Meenan (http://blog.patrickmeenan.com/)
 (@patmeenan) created WebPagetest
 (http://www.webpagetest.org/)
 while working at AOL and now works at Google with the team that is working
 to make the Web faster (http://code.google.com/speed/).

Nicholas Zakas

[image: Nicholas Zakas]
Nicholas C. Zakas (http://www.nczonline.net/)
 (@slicknet) is chief architect of WellFurnished, a site dedicated to
 helping you find beautiful home decor. Prior to that, he worked at Yahoo!
 for almost five years, where he was a presentation architect, frontend
 lead for the Yahoo! homepage, and a contributor to the YUI library. He is
 the author of Maintainable JavaScript (O’Reilly,
 2012), Professional JavaScript for Web Developers
 (Wrox, 2012), Professional Ajax (Wrox, 2007), and
 High Performance JavaScript (O’Reilly, 2010).
 Nicholas is a strong advocate for development best practices including
 progressive enhancement, accessibility, performance, scalability, and
 maintainability. He blogs regularly at http://www.nczonline.net/.

Guy Podjarny

[image: Guy Podjarny]
Guy Podjarny (http://blaze.io/) (@guypod) is Web
 Performance and Security expert, specializing in Mobile Web Performance,
 CTO at Blaze. Guy spent the last decade prior to Blaze as a Software
 Architect and Web Application Security expert, driving the IBM Rational
 AppScan product line from inception to being the leading Web Application
 Security assessment tool. Guy has filed over 15 patents, presented at
 numerous conferences, and has published several professional
 papers.

Stoyan Stefanov

[image: Stoyan Stefanov]
Stoyan Stefanov (http://phpied.com/) (@stoyanstefanov) is
 a Facebook engineer, former Yahoo! writer (“JavaScript Patterns”,
 “Object-Oriented JavaScript”), speaker (JSConf, Velocity, Fronteers),
 toolmaker (Smush.it, YSlow 2.0), and a Guitar Hero wannabe (http://givepngachance.com/).

Tim Kadlec

[image: Tim Kadlec]
Tim Kadlec (http://timkadlec.com) (@tkadlec)
 is web developer living and working in northern Wisconsin. His diverse
 background working with small companies to large publishers and industrial
 corporations has allowed him to see how the careful application of web
 technologies can impact businesses of all sizes.
Tim organizes Breaking Development (http://bdconf.com), a biannual conference dedicated to web
 design and development for mobile devices.
He is currently writing a book entitled Implementing
 Responsive Design: Building Sites for an Anywhere, Everywhere
 Web (http://responsiveenhancement.com),
 due out in the fall of 2012.

Brian Pane

[image: Brian Pane]
Brian Pane (http://www.brianp.net/) (@brianpane)
 is an Internet technology and product generalist. He has worked at
 companies including Disney, CNET, F5, and Facebook; and all along the way
 he’s jumped at any opportunity to make software faster.

Josh Fraser

[image: Josh Fraser]
Josh Fraser (http://onlineaspect.com/)
 (@joshfraser) is the co-founder and CEO of Torbit, a company that
 automates front-end optimizations that are proven to increase the speed of
 your website. Josh graduated from Clemson University with a BS in computer
 science and previously founded a company called EventVue. He currently
 lives in Mountain View and is obsessed with speed.

Steve Souders

[image: Steve Souders]
Steve Souders (http://stevesouders.com/)
 (@souders) works at Google (http://www.google.com/)
 on web performance and open source initiatives. His book, High
 Performance Web Sites, explains his best practices for
 performance; it was #1 in Amazon’s Computer and Internet bestsellers. His
 follow-up book, Even Faster Web Sites, provides
 performance tips for today’s Web 2.0 applications. Steve is the creator of
 YSlow, the performance analysis extension to Firebug, with over 2 million
 downloads. He also created Cuzillion, SpriteMe, and Browserscope. He
 serves as co-chair of Velocity, the web performance and operations
 conference from O’Reilly, and is co-founder of the Firebug Working Group.
 He taught CS193H: High Performance Web Sites at Stanford, and frequently
 speaks at conferences including OSCON, The Ajax Experience, SXSW, and Web
 2.0 Expo.

Betty Tso

[image: Betty Tso]
Betty is a Software Development Manager at Amazon. Prior to that,
 she led the Exceptional Performance Engineering team at Yahoo! and drove
 the engineering execution and development for Yahoo!'s top Web Performance
 products like YSlow and Roundtrip.
Betty is also an evangelist in the Web Performance Optimization
 domain. She has spoken at Velocity Conferences, the Yahoo! Frontend
 Summit, and universities such as Georgia Tech, Duke, UIUC, University of
 Texas at Austin, and UCSD. She was also co-President of Yahoo!
 Women-in-Tech, a 600+ members organization that empowers women to succeed
 in their career, foster employee growth, and inspire young girls to pursue
 technical careers.

Israel Nir

[image: Israel Nir]
Israel Nir (@shunra) likes to create stuff, break other stuff apart,
 code, the number 0x17, and playing the ukulele. He also works as a team
 leader at Shunra, where he builds tools to make applications run
 faster.

Marcel Duran

[image: Marcel Duran]
Marcel Duran (http://javascriptrules.com/) is
 currently a Front End Engineer at Twitter, Inc. Prior to that, he was into
 web performance optimization on high traffic sites at Yahoo! Front Page
 and Search teams where he applied and researched web performance best
 practices making pages even faster. On his last role as the Front End Lead
 for Yahoo!'s Exceptional Performance Team, he was dedicated to YSlow (now
 as his personal open source project) and other performance tools
 development, researches, and evangelism.

Éric Daspet

[image: Éric Daspet]
Éric Daspet (http://eric.daspet.name/)
 (@edasfr) is a web consultant in France. He wrote about PHP, founded
 Paris-Web conferences to promote web quality, and is now pushing
 performance with a local user group and a future book.

Alois Reitbauer

[image: Alois Reitbauer]
Alois Reitbauer (http://blog.dynatrace.com/)
 (@aloisreitbauer) works as Technology Strategist for dynaTrace software
 and heads the dynaTrace Center of Excellence. As a major contributor to
 dynaTrace Labs technology he influences the companies future technological
 direction. Besides his engineering work, he supports Fortune 500 companies
 in implementing successful performance management.

Matthew Prince

[image: Matthew Prince]
Matthew Prince (http://www.cloudflare.com/)
 (@eastdakota) is the co-founder & CEO of CloudFlare. Matthew wrote his
 first computer program when he was 7, and hasn’t been able to shake the
 bug since. After attending the University of Chicago Law School, he worked
 as an attorney for one day before jumping at the opportunity to be a
 founding member of a tech startup. He hasn’t looked back. CloudFlare is
 Matthew’s third entrepreneurial venture. On the side, Matthew teaches
 Internet law as an adjunct professor, is a certified ski instructor and
 regular attendee of the Sundance Film Festival.

Buddy Brewer

[image: Buddy Brewer]
Buddy Brewer (@bbrewer) is a co-founder of Log Normal, a company
 that shows you exactly how much time real people spend waiting on your
 website. He has worked on web performance issues in various roles for
 almost ten years.

Alexander Podelko

[image: Alexander Podelko]
The last fourteen years Alex Podelko (http://alexanderpodelko.com/blog/) (@apodelko) worked as a
 performance engineer and architect for several companies. Currently he is
 Consulting Member of Technical Staff at Oracle, responsible for
 performance testing and optimization of Hyperion products. Alex currently
 serves as a director for the Computer Measurement Group (CMG). He
 maintains a collection of performance-related links and documents.

Estelle Weyl

[image: Estelle Weyl]
Estelle Weyl (http://www.standardista.com/)
 (@estellevw) started her professional life in architecture, then managed
 teen health programs. In 2000, she took the natural step of becoming a web
 standardista. She has consulted for Kodakgallery, Yahoo! and Apple, among
 others. Estelle provides tutorials and detailed grids of CSS3 and HTML5
 browser support in her blog. She is the author of Mobile HTML5
 (O’Reilly, Oct. 2011) and HTML5 and CSS3 for the Real
 World (Sitepoint, May 2011). While not coding, she works in
 construction, de-hippifying her 1960s throwback abode.

Aaron Peters

[image: Aaron Peters]
Aaron Peters (http://www.aaronpeters.nl/en/)
 (@aaronpeters) is an independent web performance consultant based in The
 Netherlands. He is a Red Hot Chili Peppers fan and will kick your butt in
 a snowboard contest anytime.

Tony Gentilcore

[image: Tony Gentilcore]
Tony Gentilcore (@tonygentilcore) is a software engineer at Google.
 He enjoys making the Web faster and has recently added support for Web
 Timing and async scripts to Google Chrome/WebKit.

Matthew Steele

[image: Matthew Steele]
Matthew Steele is a software engineer at Google, working on making
 the Web faster. Matthew has worked on Page Speed for Firefox and Chrome,
 has contributed to mod_pagespeed, and most recently, has led design and
 development of mod_spdy for Apache.

Bryan McQuade

[image: Bryan McQuade]
Bryan McQuade (@bryanmcquade) leads the Page Speed team at Google.
 He has contributed to various projects that make the Web faster, including
 Shared Dictionary Compression over HTTP and optimizing web servers to
 better utilize HTTP.

Tobie Langel

[image: Tobie Langel]
Tobie Langel (http://tobielangel.com/)
 (@tobie) is a Software engineer at Facebook. He’s also Facebook’s W3C AC
 Rep. An avid open-source contributor (https://github.com/tobie), he’s mostly known for having
 co-maintained the Prototype JavaScript Framework. Tobie recently picked up
 blogging again and rants at blog.tobie.me (http://blog.tobie.me/). In a previous life, he was a
 professional jazz drummer.

Billy Hoffman

[image: Billy Hoffman]
If there is one thing Billy Hoffman believes in, it’s transparency.
 In fact, he once got sued over it, but that is another story. Billy
 continues to push for transparency as founder and CEO of Zoompf, whose
 products provide visibility into your website’s performance by identifying
 the specific issues that are slowing your site down. You can follow Zoompf
 on Twitter (http://twitter.com/zoompf) and read
 Billy’s performance research on Zoompf’s blog Lickity Split (http://zoompf.com/blog).

Joshua Bixby

[image: Joshua Bixby]
Joshua Bixby (@JoshuaBixby) is president of Strangeloop (http://www.strangeloopnetworks.com/), which provides
 website acceleration solutions to companies like eBay/PayPal, Visa, Petco,
 Wine.com, and O’Reilly Media. Joshua also maintains the blog Web
 Performance Today (http://www.webperformancetoday.com/), which explores issues
 and ideas about site speed, user behavior, and performance
 optimization.

Sergey Chernyshev

[image: Sergey Chernyshev]
Sergey Chernyshev (http://www.sergeychernyshev.com/) (@sergeyche) organizes New York Web
 Performance Meetup and helps other performance enthusiasts around the
 world start meetups in their cities. Sergey volunteers his time to run
 @perfplanet Twitter
 companion to PerfPlanet site. He is also an open source developer and
 author of a few web performance-related tools including ShowSlow, SVN
 Assets, drop-in .htaccess, and more.

JP Castro

[image: JP Castro]
JP Castro (@jphpsf) is a frontend engineer living in San Francisco.
 He’s passionate about web development and specifically web performance. He
 blogs at http://blog.jphpsf.com and co-organizes the
 San Francisco performance meetup. When he’s not talking about performance,
 he enjoys spending time with his family, being outdoors, sipping craft
 beers, consuming a full jar of Nutella, and playing video games.

Pavel Paulau

[image: Pavel Paulau]
Pavel Paulau (@pavelpaulau) is a performance engineer from Minsk,
 Belarus. Besides his daily work at Couchbase (http://www.couchbase.com), he tries to spread importance of
 speed as co-author of the WebPerformance.ru blog (http://webperformance.ru/).

David Calhoun

[image: David Calhoun]
David Calhoun (@franksvalli) is an independent frontend developer
 who has been splitting his time between California and Japan. He’s the
 community news writer for JSMag and keeps a blog (http://davidbcalhoun.com/) with developer and general life
 thoughts (hard to put that philosophy degree to use…).
David specializes in mobile, frontend performance, and sure enough,
 mobile performance. He formerly worked for Yahoo! Mobile, CBSi/CNET,
 occasionally contracts for WebMocha, and is currently contracting at
 Skybox Imaging, working on interfaces for flying satellites from
 browsers.

Nicole Sullivan

[image: Nicole Sullivan]
Nicole Sullivan (http://stubbornella.org/)
 (@stubbornella) is an evangelist, frontend performance consultant, CSS
 Ninja, and author. She started the Object-Oriented CSS open source
 project, which answers the question: how do you scale CSS for millions of
 visitors or thousands of pages? She also consulted with the W3C for their
 beta redesign, and is the co-creator of Smush.it, an image optimization
 service in the cloud.
Nicole is passionate about CSS, web standards, and scalable frontend
 architecture for large commercial websites. She speaks about performance
 at conferences around the world, most recently at The Ajax Experience,
 ParisWeb, and Web Directions North. She co-authored Even Faster
 Websites and blogs at stubbornella.org.

James Pearce

[image: James Pearce]
James (http://tripleodeon.com/) (@jamespearce)
 is Head of Mobile Developer Relations at Facebook. He lives in California
 and in airports around the world.

Tom Hughes-Croucher

[image: Tom Hughes-Croucher]
Tom (http://tomhughescroucher.com/) (@sh1mmer)
 is the principal consultant at Jetpacks for Dinosaurs, which helps make
 websites really rather fast. Tom consults with clients like Walmart and
 MySpace to name a few. An industry veteran, Tom has worked for the likes
 of Yahoo!, Joyent, NASA, Tesco, and many more. Tom co-authored Up and
 Running with Node.js and lives in San Francisco,
 CA.

Dave Artz

[image: Dave Artz]
David Artz leads the Site Engineering team at AOL. He led AOL’s
 Optimization team in the past—a team focused on setting standards and
 developing best practices in frontend engineering, performance, and SEO
 across the teams he now leads. While managing multiple teams, he has
 continued to develop script/CSS/font loaders as part of his Boot library
 (https://github.com/artzstudio/Boot), an AMD loader
 for jQuery (https://github.com/artzstudio/jQuery-AMD), and a jQuery
 plug-in called Sonar (https://github.com/artzstudio/jQuery-Sonar) for easily
 loading content and functionality in on demand using special
 “scrollin” and “scrollout”
 events.

Preface

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Web Performance Daybook, Volume Two edited by Stoyan
 Stefanov (O’Reilly). Copyright 2012 Stoyan Stefanov,
 978-1-449-33291-4.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreil.ly/web_perf_daybook_v2

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. WebPagetest Internals

Patrick Meenan

I thought I’d take the opportunity this year to give a little bit of
 visibility into how WebPagetest gathers the
 performance data from browsers. Other tools on windows use similar
 techniques but the information here may not be representative of how other
 tools work.
First off, it helps to understand the networking stack on Windows from
 a browser’s perspective (Figure 1-1).
[image: Windows networking stack from browser’s perspective]

Figure 1-1. Windows networking stack from browser’s perspective

It doesn’t matter what the browser is, if it runs on Windows, the
 architecture pretty much has to look like the diagram
 above where all of the communications go through the Windows socket APIs
 (for that matter, just about any application that talks TCP/IP on Windows
 looks like the picture above).
Function Interception

The key to how WebPagetest works is its ability to intercept
 arbitrary function calls and inspect or alter the request or response
 before passing it on to the original implementation (or choosing not to
 pass it on at all). Luckily someone else did most of the heavy lifting and
 provided a nice open source library (http://newgre.net/ncodehook) that can take care of the
 details for you but it basically works like this:
	Find the target function in memory (trivial if it is exported
 from a dll).

	Copy the first several bytes from the function (making sure to
 keep x86 instructions intact).

	Overwrite the function entry with a jmp to the new
 function.

	Provide a replacement function that includes the bytes copied
 from the original function along with a jmp to the remaining
 code.

It’s pretty hairy stuff and things tend to go
 very wrong if you aren’t extremely careful, but with
 well-defined functions (like all of the Windows APIs), you can pretty much
 intercept anything you’d like.
One catch is that you can only redirect calls to code running in the
 same process as the original function, which is fine if you wrote the code
 but doesn’t help a lot if you are trying to spy on software that you don’t
 control which leads us to…

Code Injection

Lucky for me, Windows provides several ways to inject arbitrary code
 into processes. There is a good overview of several different techniques
 here: http://www.codeproject.com/KB/threads/winspy.aspx, and
 there are actually more ways to do it than that but it covers the basics.
 Some of the techniques insert your code into every process but I wanted to
 be a lot more targeted and just instrument the specific browser instances
 that we are interested in, so after a bunch of experimentation (and
 horrible failures), I ended up using the CreateRemoteThread/LoadLibrary
 technique which essentially lets you force any process to load an
 arbitrary dll and execute code in it (assuming you have the necessary
 rights).

Resulting Browser Architecture

Now that we can intercept arbitrary function calls, it just becomes
 a matter of identifying the “interesting” functions, preferably ones that
 are used by all the browsers so you can reuse as much code as possible. In
 WebPagetest, we intercept all the Winsock calls that have to do with
 resolving host names, connecting sockets, and reading or writing data
 (Figure 1-2).
[image: Browser architecture]

Figure 1-2. Browser architecture

This gives us access to all the network access from the browser and
 we essentially just keep track of what the browsers are doing. Other than
 having to decode the raw byte streams, it is pretty straightforward and
 gives us a consistent way to do the measurements across all browsers. SSL
 does add a bit of a wrinkle so we also intercept calls to the various SSL
 libraries that the browsers use in order that we can see the unencrypted
 version of the data. This is a little more difficult for Chrome since the
 library is compiled into the Chrome code itself, but luckily they make
 debug symbols available for every build so we can still find the code in
 memory.
The same technique is used to intercept drawing calls from the
 browser so we can tell when it paints to the screen (for the start render
 measurement).

Get the Code

Since WebPagetest is under a BSD license you are welcome to reuse
 any of the code for whatever purposes you’d like. The project lives on
 Google Code here: (http://code.google.com/p/webpagetest/) and some of the more
 interesting files are:
	Winsock API interception code (http://webpagetest.googlecode.com/svn/trunk/agent/wpthook/hook_winsock.cc)

	Code injection (http://webpagetest.googlecode.com/svn/trunk/agent/wpthook/inject.cc)

Browser Advancements

Luckily, browsers are starting to expose more interesting
 information in standard ways and as the W3C Resource Timing spec (http://w3c-test.org/webperf/specs/ResourceTiming/)
 advances, you will be able to access a lot of this information directly
 from the browser through JavaScript (even from your end users!).
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/webpagetest-internals/.
 Originally published on Dec 01, 2011.

Chapter 2. localStorage Read Performance

Nicholas Zakas

Web Storage (http://dev.w3.org/html5/webstorage/) has quickly become one
 of the most popular HTML5-related additions to the web developer toolkit.
 More specifically, localStorage has found
 a home in the hearts and minds of web developers everywhere, providing very
 quick and easy client-side data storage that persists across sessions. With
 a simple key-value interface, we’ve seen sites take advantage of localStorage in unique and interesting
 ways:
	Disqus (http://www.disqus.com/), the popular
 feedback management system, uses localStorage to save your comment as you type.
 So if something horrible happens, you can fire back up the browser and
 pick up where you left off.

	Google (http://www.google.com/) and Bing
 (http://www.bing.com/) store JavaScript and CSS in
 localStorage to improve their mobile
 site performance (more info: http://www.stevesouders.com/blog/2011/03/28/storager-case-study-bing-google/).

Of the use cases I’ve seen, the Google/Bing approach is one that seems
 to be gaining in popularity. This is partly due to the difficulties of
 working with the HTML5 application cache and partly due to the publicity
 that this technique has gained from the work of Steve Souders and others.
 Indeed, the more I talk to people about localStorage and how useful it can be for storing
 UI-related information, the more people I find who have already started to
 experiment with this technique.
What I find intriguing about this use of localStorage is that there’s a built-in, and yet
 unstated, assumption: that reading from localStorage is an inexpensive operation. I had
 heard anecdotally from other developers about strange performance issues,
 and so I set out to quantify the performance characteristics of localStorage, to determine the actual cost of
 reading data.
The Benchmark

Not too long ago, I created and shared a simple benchmark that
 measured reading a value from localStorage against reading a value from an
 object property. Several others tweaked the benchmark to arrive at a more
 reliable version (http://jsperf.com/localstorage-vs-objects/10). The end
 result: reading from localStorage is
 orders of magnitude slower in every browser than
 reading the same data from an object property. Exactly how much slower?
 Take a look at the chart on Figure 2-1 (higher numbers
 are better).
[image: Benchmark results]

Figure 2-1. Benchmark results

You may be confused after looking at this chart because it appears
 that reading from localStorage isn’t
 represented. In fact, it is represented, you just can’t see it because
 the numbers are so low as to not even be visible with this
 scale. With the exception of Safari 5, whose localStorage readings actually show up, every
 other browser has such a large difference that there’s no way to see it on
 this chart. When I adjust the Y-axis values, you can now see how the
 measurements stack up across browsers:
[image: Scaled results]

Figure 2-2. Scaled results

By changing the scale of the Y-axis, you’re now able to see a true
 comparison of localStorage versus
 object property reads (Figure 2-2). But still, the
 difference between the two is so vast that it’s almost comical.
 Why?

What’s Going On?

In order to persist across browser sessions, values in localStorage are written to disk. That means
 when you’re reading a value from localStorage, you’re actually reading some bytes
 from the hard drive. Reading from and writing to a hard drive are
 expensive operations, especially as compared to reading from and writing
 to memory. In essence, that’s exactly what my benchmark was testing: the
 speed of reading a value from memory (object property) compared to reading
 a value from disk (localStorage).
Making matters more interesting is the fact that localStorage data is stored per-origin, which
 means that it’s possible for two or more tabs in a browser to be accessing
 the same localStorage data at the same
 time. This is a big pain for browser implementors who need to figure out
 how to synchronize access across tabs. When you attempt to read from
 localStorage, the browser needs to stop
 and see if any other tab is accessing the same area first. If so, it must
 wait until the access is finished before the value can be read.
So the delay associated with reading from localStorage is variable—it depends a lot on
 what else is going on with the browser at that point in time.

Optimization Strategy

Given that there is a cost to reading from localStorage, how does that affect how you would
 use it? Before coming to a conclusion, I ran another benchmark (http://jsperf.com/localstorage-string-size) to determine
 the effect of reading different-sized pieces of data from localStorage. The benchmarks saves four
 different size strings, 100 characters, 500 characters, 1,000 characters,
 and 2,000 characters, into localStorage
 and then reads them out. The results were a little surprising: across all
 browsers, the amount of data being read did not
 affect how quickly the read happened.
I ran the test multiple times and implored my Twitter followers
 (https://twitter.com/slicknet/status/139475625793699840) to
 get more information. To be certain, there were definitely a few variances
 across browsers, but none that were large enough that it really makes a
 difference. My conclusion: it doesn’t matter how much data you read from a
 single localStorage key.
I followed up with another benchmark (http://jsperf.com/localstorage-string-size-retrieval) to
 test my new conclusion that it’s better to do as few reads as possible.
 The results correlated with the earlier benchmark in that reading 100
 characters 10 times was around 90% slower across most browsers than
 reading 10,000 characters one time.
Given that, the best strategy for reading data from localStorage is to use as few keys as possible
 to store as much data as possible. Since it takes roughly the same amount
 of time to read 10 characters as it does to read 2,000 characters, try to
 put as much data as possible into a single value. You’re getting hit each
 time you call getItem() (or read from a
 localStorage property), so make sure
 that you’re getting the most out of the expense. The faster you get data
 into memory, either a variable or an object property, the faster all
 subsequent actions.

Follow Up

In the time since I first published this article, there has been a
 lot of discussion around localStorage performance. It
 began with a blog post by Mozilla's Chris Heilmann titled, “There's
 No Simple Solution for localStorage.” In that post, Chris
 introduced the idea that localStorage as a whole has
 performance problems. After several follow up blog posts by others,
 including myself, I was finally able to get in touch with Jonas Sicking,
 one of the engineers responsible for implementing
 localStorage in Firefox. Indeed, there is a performance
 issue with localStorage, but it's not as simple as
 reads taking a bit longer than reads on the simple object. The heart of
 the problem is that localStorage is a synchronous API,
 which leaves the browser with very few choices as to implementation. All
 localStorage data is stored in a file on disk. That
 means in order for you to have access to that data in JavaScript the
 browser must first read that file into memory. When that read occurs is
 the performance issue. It could occur with the first access of
 localStorage, but then the browser would freeze while
 the read happened. That may not be a big deal when dealing with a small
 amount of data, but if you've used the whole 5 MB limit, there could be a
 noticeable effect. Another solution, the one employed by Firefox, is to
 read the localStorage data file as a page is being
 loaded. This ensures that later access to localStorage
 is as fast as possible and has predictable performance. The downside of
 that approach is that the read from file could adversely affect the
 loading time of the page. As I'm writing this, there is still no solution
 to this particular problem. Some are calling for a completely new API to
 replace localStorage while others are intent on fixing
 the existing API. Regardless of what happens, there is likely to be a lot
 more research done in the area of client-side data storage soon.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/localstorage-read-performance/.
 Originally published on Dec 02, 2011.

Chapter 3. Why Inlining Everything Is NOT the Answer

Guy Podjarny

Every so often I get asked if the best frontend optimization wouldn’t
 be to simply inline everything. Inlining everything means embedding all the
 scripts, styles, and images into the HTML, and serving them as one big
 package.
This question is a great example of taking a best practice too far.
 Yes, reducing the number of HTTP requests is a valuable best practice. Yes,
 inlining everything is the ultimate way to reduce the number of requests (in
 theory to one). But NO, it’s not the best way to make your site
 faster.
While reducing requests is a good practice, it’s not the only aspect
 that matters. If you inline everything, you fulfill the “Reduce Requests”
 goal, but you’re missing many others. Here are some of the specific reasons
 you shouldn’t inline everything.
No Browser Caching

The most obvious problem with inlining everything is the loss of
 caching. If the HTML holds all the resources, and the HTML is not
 cacheable by itself, the resources are re-downloaded every time. This
 means the first page load on a new site may be faster, but subsequent
 pages or return visitors would experience a slower page load.
For example, let’s look at the repeat visit of the New
 York Times’ home page (Table 3-1, Figure 3-1). Thanks to caching, the original site loads in 2.7
 seconds. If we inline the JavaScript files on that page, the repeat visit
 load time climbs to 3.2 seconds, and the size doubles. Visually, the
 negative impact is much greater, due to JavaScript’s impact on
 rendering.
Table 3-1. www.nyt.com IE8; DSL; Dulles, VA
	Repeat view	Load time	# Request	# Bytes
	Original Site
	2.701 seconds
	46
	101 KB

	Inlined External JS Files
	3.159 seconds
	36
	212 KB

[image: www.nyt.com]

Figure 3-1. www.nyt.com

Even if the HTML is cacheable, the cache duration has to be the
 shortest duration of all the resources on the page. If your HTML is
 cacheable for 10 minutes, and a resource in the page is cacheable for a
 day, you’re effectively reducing the cacheability of the resource to be 10
 minutes as well.

No Edge Caching

The traditional value of CDNs is called Edge Caching: caching static
 resources on the CDN edge. Cached resources are served directly from the
 edge, and thus delivered much faster than routing all the way to the
 origin server to get them.
When inlining data, the resources are bundled into the HTML, and
 from the CDN’s perspective, the whole thing is just one HTTP response. If
 the HTML is not cacheable, this entire HTTP response isn’t cacheable
 either. Therefore, the HTML and all of its resources would need to be
 fetched from the origin every time a user requests the page, while in the
 standard case many of the resources could have been served from the Edge
 Cache.
As a result, even first-time visitors to your site are likely to get
 a slower experience from a page with inlined resources than from a page
 with linked resources. This is especially true when the client is browsing
 from a location far from your server.
For example, let’s take a look at browsing the Apple home page from
 Brazil, using IE8 and a cable connection. (Table 3-2,
 Figure 3-2) Modifying the site to inline images
 increased the load time from about 2.4s to about 3.1s, likely since the
 inlined image data had to be fetched from the original servers and not the
 CDN. While the number of requests decreased by 30%, the page was in fact
 slower.
Table 3-2. www.apple.com IE8; Cable; Sao Paolo, Brazil
	First view	Load time	# Request	# Bytes
	Original Site
	2.441 seconds
	36
	363 KB

	Inlined Images
	3.157 seconds
	26
	361 KB

[image: www.apple.com]

Figure 3-2. www.apple.com

No Loading On-Demand

Loading resources on-demand is an important category of performance
 optimizations, which attempt to only load a resource when it’s actually
 required. Resources may be referenced, but not actually downloaded and
 evaluated until the conditions require it.
Browsers offer a built-in loading-on-demand mechanism for CSS
 images. If a CSS rule references a background image, the browser would
 only download it if at least one element on the page matched the rule.
 Another example is loading images on-demand (http://www.blaze.io/technical/the-impact-of-image-optimization/),
 which only downloads page images as they scroll into view. The Progressive
 Enhancement approach to Mobile Web Design uses similar concepts for
 loading JavaScript and CSS only as needed.
Since inlining resources is a decision made on the server, it
 doesn’t benefit from loading on-demand. This means all the images (CSS or
 page images) are embedded, whether they’re needed by the specific client
 context or not. More often than not, the value gained by inlining is lower
 than the value lost by not having these other optimizations.
As an example, I took The Sun’s home page and
 applied two conflicting optimizations to it (Table 3-3,
 Figure 3-3). The first loads images on demand, and the
 second inlines all images. When loading images on demand, the page size
 added up to about 1MB, and load time was around 9 seconds. When inlining
 images, the page size grew to almost 2MB, and the load time increased to
 16 seconds. Either way the page makes many requests, but the load and size
 differences between inlining images and images on-demand are very
 noticeable.
Table 3-3. www.thesun.co.uk IE8; DSL; Dulles, VA
	First view	Load time	# Request	# Bytes
	Loading Images On-Demand
	9.038 seconds
	194
	1,028 KB

	Inlined Images
	16.190 seconds
	228
	1,979 KB

[image: www.thesun.co.uk]

Figure 3-3. www.thesun.co.uk

Invalidates Browser Look-Ahead

Modern browsers use smart heuristics to try and prefetch resources
 at the bottom of the page ahead of time. For instance, if your site
 references http://www.3rdparty.com/code.js towards
 the end of the HTML, the browser is likely to resolve the DNS for
 www.3rdparty.com, and probably even start downloading
 the file, long before it can actually execute it.
In a standard website, the HTML itself is small, and so the browser
 only needs to download a few dozen KB before it sees the entire HTML. Once
 it sees (and parses) the entire HTML, it can start prefetching as it sees
 fit. If you’re making heavy use of inlining, the HTML itself becomes much
 bigger, possibly over 0.5MB in size. While downloading it, the browser
 can’t see and accelerate the resources further down the page—many of which
 are third-party tools you couldn’t inline.

Flawed Solution: Inline Everything only on First Visit

A partial solution to the caching problem works as follows:
	The first time a user visits your site, inline everything and
 set a cookie for the user

	Once the page loads, download all the resources as individual
 files.
	Or store the data into a Scriptable Cache (http://www.blaze.io/technical/browser-cache-2-0-scriptable-cache/)

	If a user visits the page and has the cookie, assume it has the
 files in the cache, and don’t inline the data.

While better than nothing, the flaw in this solution is that it
 assumes a page is either entirely cached or entirely not cached. In
 reality, websites and cache states are extremely volatile. A user’s cache
 can only hold less than a day’s worth of browsing data: An average user
 browses 88 pages/day (http://blog.newrelic.com/wp-content/uploads/infog_061611.png),
 an average page weighs 930KB (http://httparchive.org/interesting.php#bytesperpage), and
 most desktop browsers cache no more than 75MB of data (http://www.blaze.io/mobile/understanding-mobile-cache-sizes/).
 For mobile, the ratio is even worse.
Cookies, on the other hand, usually live until their defined expiry
 date. Therefore, using a cookie to predict the cache state becomes
 pointless very quickly, and then you’re just back to not inlining at
 all.
One of the biggest problems with this solution is that it demos
 better than it really is. In synthetic testing, like WebPageTest tests, a
 page is indeed either fully cached (i.e., all its resources are cached),
 or it’s not cached at all. These tests therefore make the
 inline-on-first-visit approach look like the be all and end all, which is
 just plain wrong.
Another significant problem is that not all CDNs support varying
 cache by a cookie. Therefore, if some of your pages are cacheable, or if
 you think you might make them cacheable later, it may be hard to
 impossible to get the CDN to cache two different versions of your page,
 and choose the one to serve based on a cookie.

Summary and Recommendations

Our world isn’t black and white. The fact that reducing the number
 of requests is a good way to accelerate your site doesn’t mean it’s the
 only solution. If you take it too far, you’ll end up slowing down your
 site, not speeding it up.
Despite all these limitations, inlining is still a good and
 important tool in the world of frontend Optimization. As such, you should
 use it, but be careful not to abuse it. Here are some recommendations
 about when to use inlining, but keep in mind you should verify that they
 get the right effect on your own site:
	Very small files should be inlined.
	The HTTP overhead of a request and response is often ~1KB, so
 files smaller than that should definitely be inlined. Our testing
 shows you should almost never inline files bigger than 4KB.

	Page images (i.e., images referenced from the page, not CSS)
 should rarely be inlined.
	Page images tend to be big in size, they don’t block other
 resources in the normal use, and they tend to change more frequently
 than CSS and Scripts. To optimize image file loading, load images
 on-demand instead (http://www.blaze.io/technical/the-impact-of-image-optimization/).

	Anything that isn’t critical for the above-the-fold
 page view should not be inlined.
	Instead, it should be deferred till after page load, or at
 least made async.

	Be careful with inlining CSS images.
	Many CSS files are shared across many pages, where each page
 only uses a third or less of the rules. If that’s the case for your
 site, there’s a decent chance your site will be faster if you don’t
 inline those images.

	Don’t rely only on synthetic measurements—use RUM
 (Real User Monitoring).
	Tools like WebPageTest are priceless, but they don’t show
 everything. Measure real world performance and use that information
 alongside your synthetic test results.

Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/why-inlining-everything-is-not-the-answer/.
 Originally published on Dec 03, 2011.

Chapter 4. The Art and Craft of the Async Snippet

Stoyan Stefanov

JavaScript downloads block the loading of other page components.
 That’s why it’s important (make that critical) to load
 script files in a nonblocking asynchronous fashion. If this is new to you,
 you can start with this post on the Yahoo User Interface (YUI) library blog
 (http://www.yuiblog.com/blog/2008/07/22/non-blocking-scripts/)
 or the Performance Calendar article (http://calendar.perfplanet.com/2010/the-truth-about-non-blocking-javascript/).
In this post, I’ll examine the topic from the perspective of a third
 party—when you’re the third party, providing a snippet for other developers
 to include on their pages. Be it an ad, a plug-in, widget, visits counter,
 analytics, or anything else.
Let’s see in much detail how this issue is addressed in Facebook’s
 JavaScript SDK.
The Facebook Plug-ins JS SDK

The Facebook
 JavaScript SDK is a multipurpose piece of code that lets you
 integrate Facebook services, make API calls, and load social plug-ins such
 as the Like button (https://developers.facebook.com/docs/reference/plugins/like/).
The task of the SDK when it comes to Like button and other social
 plug-ins is to parse the page’s HTML code looking for elements (such as
 <fb:like> or <div class="fb-like">) to replace with a
 plug-in. The plug-in itself is an iframe that points to something like
 facebook.com/plugins/like.php with the
 appropriate URL parameters and appropriately sized.
This is an example of one such plug-in URL:
https://www.facebook.com/plugins/like.php?href=bookofspeed.com&layout=box_count
The JavaScript SDK has a URL like
 so:
http://connect.facebook.net/en_US/all.js
The question is how do you include this code on your page.
 Traditionally it has been the simplest possible (but blocking) way:
<script src="http://connect.facebook.net/en_US/all.js"></script>

Since day one of the social plug-ins though, it has always been
 possible to load this script asynchronously and it was guaranteed to work.
 Additionally, a few months ago the async snippet became the default when
 SDK snippet code is being generated by the various wizard-type
 configurators.
Figure 4-1 shows how an example configurator
 looks like.
[image: Like button configurator]

Figure 4-1. Like button configurator

The async code looks more complicated (it’s longer) than the
 traditional one, but it’s well worth it for the overall loading speed of
 the host page.
Before we inspect this snippet, let’s see what some of the goals
 were when designing a third-party provider snippet.

Design Goals

	The snippet should be small. Not necessarily measured in number
 of bytes, but overall it shouldn’t look intimidating.

	Even though it’s small, it should be readable. So no minifying
 allowed.

	It should work in “hostile” environments. You have no control
 over the host page. It may be a valid XTHML-strict page, it may be
 missing doctype, it may even be missing (or have more than one)
 <body>, <head>, <html> or any other tag.

	The snippet should be copy-paste-friendly. In addition to being
 small that means it should just work, because people using this code
 may not even be developers. Or, if they are developers, they may not
 necessarily have the time to read documentation. That also means that
 some people will paste that snippet of code many times on the same
 page, even though the JS needs to be loaded only once per page.

	It should be unobtrusive to the host page, meaning it should
 leave no globals and other leftovers, other than, of course, the
 included JavaScript.

The Snippet

The snippet in the Facebook plug-in configurators looks like
 so:
<script>(function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/all.js#xfbml=1";
 fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));</script>

Take a look at what’s going on here.
On the first and last line you see that the whole snippet is wrapped
 in an immediate (a.k.a., self-invoking, aka self-executing) function. This
 is to assure that any temporary variables remain in the local scope and
 don’t bleed into the host page’s global namespace.
On line 1, you can also see that the immediate function accepts
 three arguments, and these are supplied on the last line when the function
 is invoked. These arguments are shorthands to the document object and two strings, all of which
 are used more than once later in the function. Passing them as arguments
 is somewhat shorter than defining them in the body of the function. It
 also saves a line (vertical space), because the other option is something
 like:
<script>(function() {
 var js, fjs = d.getElementsByTagName(s)[0],
 d = document, s = 'script', id = 'facebook-jssdk';
 // the rest...
}());</script>

This would be one line longer (remember we want readable snippet,
 not overly long lines). Also the first and the last line will have
 “unused” space as they are somewhat short.
Having things like the repeating document assigned to a shorter d makes the whole
 snippet shorter and also probably marginally faster as d is local which is
 looked up faster than the global document.
Next we have:
var js, fjs = d.getElementsByTagName(s)[0];

This line declares a variable and finds the first available <script> element on the page. I’ll get to
 that in a second.
Line 3 checks whether the script isn’t already on the page and if
 so, exits early as there’s nothing more to do:
if (d.getElementById(id)) return;

We only need the file once. This line prevents the script file from
 being included several times when people copy and paste this code multiple
 times on the same page. This is especially bad with a regular blocking
 script tag because the end result is something like (assuming a blog post
 type of page):
<script src="...all.js"></script>
<fb:like /> <!-- one like button at the top of the blog post -->

<script src="...all.js"></script>
<fb:like/> <!-- second like like button at the end of the post -->

<script src="...all.js"></script>
<fb:comments/> <!-- comments plugin after the article -->

<script src="...all.js"></script>
<fb:recommendations/> <!-- sidebar with recommendations plugin -->

This results in a duplicate JavaScript, which is all kinds of bad
 (http://developer.yahoo.com/performance/rules.html#js_dupes),
 because some browsers may end up downloading the file several
 times.
Even if the JavaScript is asynchronous and even if the browser is
 smart enough not to reparse it, it will still need to re-execute it, in
 which case the script overwrites itself, redefining its functions and
 objects again and again. Highly undesirable.
So having the script with an id like 'facebook-jssdk' which is unlikely to clash with
 something on the host page, lets us check if the file has already been
 included. If that’s not the case, we move on.
The next line creates a script
 element and assigns the ID so we can check for it later:
js = d.createElement(s); js.id = id;

The following line sets the source of the
 script:
js.src = "//connect.facebook.net/en_US/all.js#xfbml=1";

Note that the protocol of the URL is missing. This means that the
 script will be loaded using the host page’s protocol. If the host page
 uses http://, the script will load
 faster, and if the page uses https://
 there will be no mixed content security prompts.
Finally, we append the newly created js element to the DOM of the host page and we’re
 done:
fjs.parentNode.insertBefore(js, fjs);

How does that work? Well, fjs is
 the first (f) JavaScript (js) element available on the page. We grabbed it
 earlier on line #2. We insert our new js element right before the fjs. If, let’s say, the host page has a script
 element right after the body,
 then:
	fjs is the script.

	fjs.parentNode is the
 body.

	The new script is inserted between the body and the old script.

Appending Alternatives

Why the trouble with the whole parentNode.insertBefore? There are simpler ways
 to add a node to the DOM tree, like appending to the <head> or to the <body> by using appendChild(), however this is the way that is
 guaranteed to work in nearly all cases. Let’s see why the others
 fail.
Here is a common pattern:
document.getElementsByTagName('head')[0].appendChild(js);

Or a variation if document.head
 is available in newer browsers:
(document.head || document.getElementsByTagName('head')[0]).appendChild(js);

The problem is that you don’t control the markup of the host page.
 What if the page doesn’t have a head element? Will the
 browser create that node anyways? Turns out that most of the times, yes,
 but there are browsers (Opera 8, Android 1) that won’t create the head. A
 BrowserScope test by Steve Souders demonstrates this (http://stevesouders.com/tests/autohead.html).
What about the body? You gotta
 have the body. So you should be able to do:
document.body.appendChild(js);

I created a browserscope test (http://www.phpied.com/files/bscope/autobody.html) and
 couldn’t find a browser that will not create
 document.body. But there’s still the lovely “Operation
 Aborted” error which occurs in IE7 when the async snippet script element
 is nested and not a direct child of the body.
Last chance:
document.documentElement.firstChild.appendChild(js);

document.documentElement is the
 HTML element and its first child must be the head. Not necessarily, as it
 turns out. If there’s a comment following the HTML element, WebKits will
 give you the comment as the first child. There’s an investigation with a
 test case that show this (http://robert.accettura.com/blog/2009/12/12/adventures-with-document-documentelement-firstchild/).

Whew!

Despite the possible alternatives, it appears that using the first
 available script node and insertBefore is the most resilient option.
 There’s always going to be at least one script node, even if that’s the script node of the snippet itself.
(Well, “always” is a strong word in web development. As @kangax
 (http://twitter.com/kangax) pointed out once, you
 can have the snippet inside a <body
 onload="..."> and voila—magic!—a script without a script node.)

What’s Missing?

You may notice some things missing in this snippet that you may have
 seen in other code examples.
For instance there are none of:
js.async = true;
js.type = "text/javascript";
js.language = "JavaScript";

These are all defaults which don’t need to take up space, so they
 were omitted. Exception is the async in
 some earlier Firefox versions, but the script is already nonblocking and
 asynchronous enough anyway.
Same goes for the <script>
 tag itself. It’s an HTML5-valid bare-bones tag with no type or language attributes.

First Parties

This whole discussion was from the perspective of a third-party
 script provider. If you control the markup, some things might be different
 and easier. You can safely refer to the head because you know it’s there.
 You don’t have to check for duplicate insertions, because you’re only
 going to insert it once. So you may end up with something much simpler,
 such as:
<script>(function(d) {
 var js = d.createElement('script');
 js.src = "http://example.org/my.js";
 (d.head || d.getElementsByTagName('head')[0]).appendChild(js);
}(document));</script>

This is all it takes when you control the host page.
Also we assumed all the time that whenever the script arrives, it
 just runs. But you may have different needs, for example call a specific
 function once the script is ready. In which case you need to listen to
 js.onload and js.onreadystatechange (example: http://www.phpied.com/javascript-include-ready-onload/). In
 even more complex examples, you may want to load several scripts and
 guarantee their order of execution. At this point you may want to look
 into any of the available script loader projects such as LAB.js (http://labjs.com/) or head.js (http://headjs.com/) which are specially designed to solve
 these cases.

Parting Words: On the Shoulders of Giants

It’s a little disturbing that we, the web developers, need to go to
 all these lengths to assure an asynchronous script execution (in a
 third-party environment or not). One day, with a few dead browsers behind
 us, we’ll be able to simply say script
 async=true and it will just work. Meanwhile, I hope that this
 post will alleviate some of the pain as a resource to people who are yet
 to come to this problem and will hopefully save them some time.
Google AdSense folks have gone through a lot of trial and error
 while sharing their progress with the community, and Mathias Bynens also
 wrote an inspirational critique (http://mathiasbynens.be/notes/async-analytics-snippet) of
 their snippet. Steve Souders (http://stevesouders.com/) has done research and written
 about this topic, and MSN.com was probably among the first to use such a
 technique for loading JavaScript. There are writeups from Yahoo and many
 others on the topic. These are some of the giants that have helped in the
 search of the “perfect” snippet. Thank you!
(Psst, and if you see something that is less than perfect in the
 snippet, please speak up!)
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/the-art-and-craft-of-the-async-snippet/.
 Originally published on Dec 04, 2011.

Chapter 5. Carrier Networks: Down the Rabbit Hole

Tim Kadlec

There’s a point in Lewis Carroll’s Alice's Adventures in
 Wonderland where Alice believes she may never be able to leave
 the room she has found herself in after following the rabbit down its hole.
 She starts to question her decision:
I almost wish I hadn’t gone down that rabbit hole—and yet—and
 yet—it’s rather curious, you know, this kind of life.

The world of mobile performance can feel the same—particularly when
 you start to explore mobile carrier networks. If you’re looking for
 consistency and stability, you should look elsewhere. If, on the other hand,
 you enjoy the energy and excitement found in the chaos that surrounds an
 unstable environment, then you’ll find yourself right at home.
Variability

The complexity of a system may be determined by the number of its
 variables, and carrier networks have a lot of variables. Their performance
 varies dramatically depending on factors such as location, the number of
 people using a network, the weather, the carrier—there isn’t much that you
 can rely on to remain static.
One study (http://www.pcworld.com/article/167391/a_day_in_the_life_of_3g.html)
 demonstrated just how much variance there can be from location to
 location. The test involved checking bandwidth on 3G networks for three
 different mobile carriers—Sprint, Verizon, and AT&T—in various cities
 across the United States. The diversity of the results were
 stunning.
The highest recorded bandwidth was 1425 kbps in New Orleans on a
 Verizon network. The lowest was 477 kbps in New York City in AT&T—a
 difference of 948 kbps. Even within a single carrier, the variation was
 remarkable. While Verizon topped out at 1425 kbps, their lowest recorded
 bandwidth was 622 kbps in Portland, Oregon.
Another informal experiment (http://www.webperformancetoday.com/2011/10/26/interesting-findings-3g-mobile-performance-is-up-to-10x-slower-than-throttled-broadband-service/)
 was recently conducted by Joshua Bixby. Joshua randomly recorded the
 amounts of bandwidth and latency on his 3G network. Even within a single
 location, his house, the latency varied from just over 100 ms all the way
 up to 350 ms.

Latency

Remarkably little information about mobile network latency has been
 published. In 2010, Yahoo! released some information based on a small
 study (http://www.yuiblog.com/blog/2010/04/08/analyzing-bandwidth-and-latency/)
 they had done. Traffic coming into the YUI blog was monitored for both
 bandwidth and latency. These numbers were averaged by connection type and
 the results published as a graph. Their study showed that the average
 latency for a mobile connection was 430 ms, compared to only 130 ms for an
 average cable connection.
The study isn’t foolproof. The sample size was small and the type of
 audience that would be visiting the YUI blog is not exactly a
 representation of the average person. At least it was publicly released
 data. Most of the rest of the latency numbers released so far come without
 much context; there usually isn’t any mention of how it was
 measured.

Transcoding

Another concern with mobile networks are frequent issues caused by
 carrier transcoding. Many networks, for example, attempt to reduce the
 file size of images. Sometimes, this is done without being noticed. Often,
 however, the result is that images become grainy or blurry and the
 appearance of the site is affected in a negative way.
The Financial Times worked to avoid this issue
 with their mobile web app by using dataURIs instead (http://www.tomhume.org/2011/10/appftcom-and-the-cost-of-cross-platform-web-apps.html),
 but even this technique is not entirely safe. While the issue is not well
 documented or isolated yet, a few developers in the UK have reported that
 O2, one of the largest mobile providers in the UK, will sometimes strip
 out dataURIs.
Transcoding doesn’t stop at images. T-Mobile was recently found to
 be stripping out anything that looked like a Javascript comment (http://www.mysociety.org/2011/08/11/mobile-operators-breaking-content/).
 The intentions were mostly honorable, but the method leads to issues. The
 jQuery library, for example, has a string that contains */*. Later on in the library, you can again find
 the same string. Seeing these two strings, T-Mobile would then strip out
 everything that was in between—breaking many sites in the process.
This method of transcoding could also create issues for anyone who
 is trying to lazy-load their Javascript by first commenting it out (http://googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html)
 — a popular and effective technique for improving parse and page load
 time.
One carrier, Optus, not only causes blurry images by lowering the
 image resolution, but also injects an external script into the page in a
 blocking manner (http://www.zdnet.com.au/optus-3g-accelerator-spawns-blurry-pics-339303393.htm).
 Unfortunately, most of these transcoding issues and techniques are not
 very exposed or well documented. I suspect countless others are just
 waiting to be discovered.

Gold in Them There Hills

This can all sound a bit discouraging, but that’s not the goal here.
 We need to explore carrier networks further because there is an incredible
 wealth of information we can unearth if we’re willing to dig far
 enough.
One example of this is the idea of inactivity timers and state
 machines that Steve Souders was recently testing (http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/).
 Mobile networks rely on different states to determine allotted throughput,
 which in turn affects battery drain. To down-switch between states
 (thereby reducing battery drain, but also throughput) the carrier sends an
 inactivity timer. The inactivity timer signals to the device that it
 should shift to a more energy-efficient state. This can have a large
 impact on performance because it can take a second or two to ramp back up
 to the highest state. This inactivity timer, as you might suspect, varies
 from carrier to carrier. Steve has set up a test (http://stevesouders.com/ms/) that you can run in an attempt
 to identify where the inactivity timer might fire on your current
 connection. The results, while not foolproof, do strongly suggest that
 these timers can be dramatically different.
We need more of this kind of information and testing. Networks
 weren’t originally optimized for data; they were optimized for voice. When
 3G networks were rolled out, the expectation was that the major source of
 data traffic would come from things like picture messaging. The only
 accessible mobile Internet was WAP—a very simplified version of the
 Web.
As devices became more and more capable, however, it became possible
 to experience the full Internet on these devices. People started expecting
 to see not just a limited version of the Internet, but the whole thing
 (videos, cat pictures, and all) leaving the networks overwhelmed.
There are undoubtedly other techniques, similar to these transcoding
 methods and state machines, that carriers are doing to get around the
 limitations of their network in order to provide faster data services to
 more customers.

4G Won’t Save Us

Many people like to point to the upcoming roll-out of 4G networks as
 a way of alleviating many of these concerns. To some extent, they’re
 right—it will indeed help with some of the latency and bandwidth issues.
 However, it’s a pretty costly endeavor for carriers to make that switch
 meaning that we shouldn’t expect widespread roll-out overnight.
Even when the switch has been made we can expect that the quality,
 coverage and methods of optimization used by the carriers will not be
 uniform. William Gibson said, “The future is already here—it’s just not
 evenly distributed.” Something very similar could be said of mobile
 connectivity.

Where Do We Go from Here?

To move this discussion forward, we need a few things. For starters,
 some improved communication between developers, manufacturers, and
 carriers would go a long, long way. If not for AT&T’s research paper
 (http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient),
 we may still not be aware of the performance impact of carrier state
 machines and inactivity timers. More information like this not only cues
 us into the unique considerations of optimizing for mobile performance,
 but also gives us a bit of perspective. We are reminded that it’s not just
 about load time; there are other factors at play and we need to consider
 the trade-offs.
Improved communication could also go a long way toward reducing the
 issues caused by transcoding methods. Take the case of T-Mobile’s
 erroneous comment stripping. Had there been some sort of open dialogue
 with developers before implementing this method, the issues would probably
 have been caught well before the feature made it live.
We could also use a few more tools. The number—and quality—of mobile
 performance testing tools is improving. Yet we still have precious few
 tools at our disposal for testing performance on real devices, over real
 networks. As the Navigation
 Timing API gains adoption, that will help to improve the
 situation. However, there will still be ample room for the creation of
 more robust testing tools as well.

Light at the End of the Tunnel

You know, eventually Alice gets out of that little room. She goes on
 to have many adventures and meet many interesting creatures. After she
 wakes up, she thinks what a wonderful dream it had been. As our tools
 continue to improve and we explore this rabbit hole further, one day we,
 too, will be able to make some sense of all of this. When we do our
 applications and our sites will be better for it.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/carrier-networks-down-the-rabbit-hole/.
 Originally published on Dec 05, 2011.

Chapter 6. The Need for Parallelism in HTTP

Brian Pane

Introduction: Falling Down the Stairs

The image on Figure 6-1 is part of a waterfall
 diagram showing the HTTP requests that an IE8 browser performed to
 download the graphics on the home page of an e-commerce website.
Note
The site name and URLs are blurred to conceal the site’s identity.
 It would be unfair to single out one site by name as an example of poor
 performance when, as we’ll see later, so many others suffer the same
 problem.

[image: Stair-step waterfall pattern]

Figure 6-1. Stair-step waterfall pattern

The stair-step pattern seen in this waterfall sample shows several
 noteworthy things:
	The client used six concurrent, persistent connections per
 server hostname, a typical (http://www.browserscope.org/?category=network)
 configuration among modern desktop browsers.

	On each of these connections, the browser issued HTTP
 requests serially: it waited for a response to each request
 before sending the next request.

	All the requests in this sequence were independent of each
 other; the image URLs were specified in a CSS file loaded earlier in
 the waterfall. Thus, significantly, it would be valid for a
 client to download all these images in parallel.

	The round-trip time (RTT) between the client and server was
 approximately 125ms. Thus many of these requests for small objects
 took just over 1 RTT. The elapsed time the browser spent downloading
 all N of the small images on the page was very close to (N * RTT / 6),
 demonstrating that the download time was largely a function of the
 number of HTTP requests (divided by six, thanks to the browser’s use
 of multiple connections).

	The amount of response data was quite small: a total of 25KB in
 about 1 second during this part of the waterfall, for an average
 throughput of under 0.25 Mb/s. The client in this test run had several
 Mb/s of downstream network bandwidth, so the serialization
 of requests resulted in inefficient utilization of the available
 bandwidth.

Current Best Practices: Working around HTTP

There are several well-established techniques for avoiding this
 stair-step pattern and its (N * RTT / 6) elapsed time. Besides using CDNs
 to reduce the RTT and client-side caching to reduce the effective value of
 N, the website developer can apply several content
 optimizations:
	Sprite the images.

	Inline the images as data: URIs in a stylesheet.

	If some of the images happen to be gradients or rounded corners,
 use CSS3 features to eliminate the need for those images
 altogether.

	Apply domain sharding to increase the denominator of (N * RTT /
 6) by a small constant factor.

Although these content optimizations are well known, examples like
 the waterfall in Figure 6-1 show that they are not
 always applied. In the author’s experience, even performance-conscious
 organizations sometimes launch slow websites, because speed is just one of
 many priorities competing for limited development time.​
Thus an interesting question is: how well has the average website
 avoided the stair-step HTTP request serialization pattern?

Experiment: Mining the HTTP Archive

The HTTP Archive (http://httparchive.org/) is
 a database containing detailed records of the HTTP requests–including
 timing data with 1ms resolution that a real browser issued when
 downloading the home pages of tens of thousands of websites from the Alexa
 worldwide top sites list.
With this data set, we can find serialized sequences of requests in
 each web page. The first step is to download each page’s HAR (http://www.softwareishard.com/blog/har-12-spec/) file from
 the HTTP Archive. This file contains a list of the HTTP requests for the
 page, and we can find serialized sequences of requests based on a simple,
 heuristic definition:​
	All the HTTP requests in the serialized sequence must be GETs
 for the same ​scheme:host:port.

	Each HTTP transaction except the first must begin immediately
 upon the completion of some other transaction in the sequence (within
 the 1ms resolution of the available timing data).

	Each transaction except the last must have an HTTP response
 status of 2xx.

	Each transaction except the last must have a response
 content-type of image/png, image/gif, or image/jpeg.

This definition captures the concept of a set of HTTP requests that
 are run sequentially because the browser lacks a way to run them in
 parallel, rather than because of content interdependencies among the
 requested resources. The definition errs on the side of caution by
 excluding non-image requests, on the grounds that a JavaScript, CSS, or
 SWF file might be a prerequisite for any request that follows. In the
 discussion that follows, we err slightly on the side of optimism by
 assuming that the browser knew the URLs of all the images in a serialized
 sequence at the beginning of the sequence.​

Results: Serialization Abounds

The histogram on Figure 6-2 shows the
 distribution of the longest serialized request sequences per page among
 49,854 web pages from the HTTP Archive’s December 1, 2011 data set.
[image: Distribution of the longest serialized request sequences per page]

Figure 6-2. Distribution of the longest serialized request sequences per
 page

In approximately 3% of the web pages in this survey, there is no
 serialization of requests (i.e., the longest serialized request length is
 one). From a request parallelization perspective, these pages already are
 quite well optimized.
In the next 30% of the web pages, the longest serialized request
 sequence has a length of two or ​three. These pages might benefit modestly
 from increased request parallelization, and a simple approach like domain
 sharding would suffice.
The remaining two thirds of the web pages have serialized request
 sequences of length 4 or greater. While content optimizations could
 improve the request parallelization of these pages, the fact that so many
 sites have so much serialization suggests that the barriers to content
 optimization are nontrivial. ​

Recommendations: Time to Fix the Protocols

One way to speed up websites without content optimization would be
 through more widespread implementation of HTTP request pipelining.
 HTTP/1.1 has supported pipelining since RFC 2068, but most desktop
 browsers have not implemented the feature due to concerns about broken
 proxies that mishandle pipelined requests. In addition, head-of-queue blocking is a
 nontrivial problem; recent efforts have focused on ways for the server to
 give the clients hints (http://tools.ietf.org/html/draft-nottingham-http-pipeline-01)
 about what resources are safe to pipeline. Mobile browsers, however, are
 beginning to use pipelining more commonly.
Another approach is to introduce a multiplexing session layer
 beneath HTTP, so that the client can issue requests in parallel. An
 example of this strategy is SPDY (http://www.chromium.org/spdy), supported currently in
 Chrome and soon (http://bitsup.blogspot.com/2011/11/video-of-spdy-talk-at-codebitseu.html)
 in Firefox.
Whether through pipelining or multiplexing, it appears worthwhile
 for the industry to pursue protocol-level solutions to increase HTTP
 request parallelization.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/the-need-for-parallelism-in-http/.
 Originally published on Dec 06, 2011.

Chapter 7. Automating Website Performance

Josh Fraser

I believe that automation is the next phase for web performance
 optimization. There are a lot of optimizations that are tedious to implement
 by hand or can simply be done better in an automated fashion. Of course,
 this is exactly what we’re doing at Torbit (http://torbit.com/) — taking all the best practices and
 making the benefits accessible to everyone without you having to worry about
 the technical details.
Here, I present some of the challenges of automation and some of the
 lessons we have learned from optimizing hundreds of sites with our service.
 I explain why it is dangerous to go down the list of YSlow (http://developer.yahoo.com/performance/rules.html) or Page
 Speed (http://code.google.com/speed/page-speed/docs/rules_intro.html)
 optimizations and attempt to automate them without thinking through the
 broader implications.
In the early days of Torbit, we built a filter that minified and
 combined CSS files. Pretty simple, right? What could go possibly go wrong?
 To our surprise, this “safe” filter broke a surprising number of sites.
 After investigating, we discovered that many sites have invalid or broken
 CSS that had gone unnoticed by the site owners. To understand how this
 happens, you need to consider how browsers handle CSS errors. Most browsers
 will stop parsing a CSS file as soon as they run into a syntax error. When
 you blindly combine CSS, those errors that used to be at the bottom of a
 file (and therefore didn’t matter) are now in the middle of one big file.
 What may have been a small issue that didn’t affect anything, could now be
 breaking the entire layout of the site.
The obvious solution was to fix or remove the offending CSS rule and
 that was exactly what we did. We “fixed” their broken CSS files first and
 then combined them. Unfortunately, fixing their CSS had unintended
 consequences. We hadn’t considered the fact that developers had been hacking
 around their broken CSS. In fact, in some cases these bugs had become so
 baked into their websites that removing them often completely destroyed the
 visual look of the site. What are you supposed to do when fixing someones
 code totally breaks their site?
Ultimately, we built a Smart CSS
 Loader, which allows us to download all of the CSS files for a web
 page in one request, while still applying each of the files to the DOM
 individually. This method not only solves the issues from broken CSS, but
 includes other benefits like being nonblocking and taking advantage of HTML5
 localStorage whenever possible.
The lesson here is to follow the principles, but not necessarily the
 specific rules. In the CSS example, the underlying principle was to reduce
 HTTP requests, and this goal holds true whether you are doing the
 optimizations by hand or in an automated fashion. The specific rule of
 combining CSS files obviously needed some rethinking in order to be able to
 apply that optimization to any site without breaking anything.
One of the benefits of going back to the fundamentals is that it opens
 your mind to find other performance optimizations you would have missed if
 you had simply focused on the YSlow or Page Speed rules. Some of the best
 optimizations we have at Torbit aren’t mentioned by either YSlow or Page
 Speed. For example, converting images to WebP format (http://torbit.com/blog/2011/04/05/torbit-adds-support-for-webp/)
 and serving them for targeted browsers is a great optimization that can
 significantly minimize payload, but it isn’t on the list. Using localStorage
 to cut down on HTTP requests and improve caching (http://torbit.com/blog/2011/05/31/localstorage-mobile-performance/)
 is also not mentioned. To be fair, those tools are primarily for developers
 and optimizations like these don’t make sense for most businesses to
 implement by hand. The fact that these optimizations are neither easy nor
 fun to do by hand is what makes them such perfect candidates for
 automation.
If you want to automate, it’s important to focus on the basics.
 Remember the principles. Make things smaller, move them closer, cache them
 longer, and load them more intelligently. Focus on the end objective and
 don’t get too caught up in the rules.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/automating-website-performance/.
 Originally published on Dec 07, 2011.

Chapter 8. Frontend SPOF in Beijing

Steve Souders

I’m at Velocity China in Beijing as I write this article for the
 Performance Calendar. Since this is my second time to Beijing I was better
 prepared for the challenges of being behind the Great Firewall. I knew I
 couldn’t access popular U.S. websites like Google, Facebook, and Twitter,
 but as I did my typical surfing I was surprised at how many other websites
 seemed to be blocked.
Business Insider

It didn’t take me long to realize the problem was frontend SPOF
 (http://www.stevesouders.com/blog/2010/06/01/frontend-spof/)—when
 a frontend resource (script, stylesheet, or font file) causes a page to be
 unusable. Some pages were completely blank, such as Business Insider
 (http://www.businessinsider.com, Figure 8-1).
Firebug’s Net Panel shows that anywhere.js is taking a long time to download
 because it’s coming from platform.twitter.com – which is blocked by the
 firewall. Knowing that scripts block rendering of all subsequent DOM
 elements, we form the hypothesis that anywhere.js is being loaded in blocking mode in
 the HEAD. Looking at the HTML source, we see that’s exactly what is
 happening:
<head>
...
<!-- Twitter Anywhere -->
<script src="https://platform.twitter.com/anywhere.js?id=ZV0...&v=1"
 type="text/javascript"></script>
<!-- / Twitter Anywhere -->
...

</head>

<body>

[image: The dreaded “blank white screen” due to a blocking Twitter script]

Figure 8-1. The dreaded “blank white screen” due to a blocking Twitter
 script

If anywhere.js had been loaded
 asynchronously (http://www.stevesouders.com/blog/2009/04/27/loading-scripts-without-blocking/)
 this wouldn’t happen. Instead, since anywhere.js is loaded the old way with <SCRIPT SRC=..., it blocks all the DOM
 elements that follow which in this case is the entire BODY of the page. If
 we wait long enough the request for anywhere.js times out and the page begins to
 render. How long does it take for the request to timeout? Looking at the
 “after” screenshot of Business Insider we see it takes 1 minute
 and 15 seconds for the request to timeout. That’s 1 minute and
 15 seconds that the user is left staring at a blank white screen waiting
 for the Twitter script! (See Figure 8-2.)
[image: Business Insider finally renders after 1 minute 15 seconds]

Figure 8-2. Business Insider finally renders after 1 minute 15
 seconds

CNET

CNET (http://www.cnet.com/) has a slightly
 different experience; the navigation header is displayed but the rest of
 the page is blocked from rendering (Figure 8-3).
Looking in Firebug we see that wrapper.js from cdn.eyewonder.com is “pending”—this must be
 another domain that’s blocked by the firewall. Based on where the
 rendering stops, our guess is that the wrapper.js SCRIPT tag is immediately after the
 navigation header and is loaded in blocking mode thus preventing the rest
 of the page from rendering. The HTML confirms that this is indeed what’s
 happening:
<header>
...
</header>

<script src="http://cdn.eyewonder.com/100125/771933/1592365/wrapper.js"></script>

<div id="rb_wrap">

<div id="rb_content"> <div id="contentMain">

[image: CNET rendering is blocked by ads from eyewonder.com]

Figure 8-3. CNET rendering is blocked by ads from eyewonder.com

O’Reilly Radar

Everyday, I visit O’Reilly Radar to read Nat Torkington’s (http://radar.oreilly.com/nat/index.html) Four Short Links.
 Normally Nat’s is one of many stories on the Radar front page, but going
 there from Beijing shows a page with only one story (Figure 8-4).
At the bottom of this first story there’s supposed to be a Tweet
 button. This button is added by the widgets.js script fetched from platform.twitter.com which is blocked by the
 Great Firewall. This wouldn’t be an issue if widgets.js was fetched asynchronously, but sadly
 a peek at the HTML shows that’s not the case:
Comment
 |

<a href="http://twitter.com/share" class="twitter-share-button"
 data-count="horizontal"
 data-url="http://radar.oreilly.com/2011/12/four-short-links-6-december-20-1.html"
 data-text="Four short links: 6 December 2011" data-via="radar"
 data-related="oreillymedia:oreilly.com">Tweet
<script src="http://platform.twitter.com/widgets.js"
 type="text/javascript"></script>

[image: O’Reilly Radar rendering is blocked by Twitter widget.]

Figure 8-4. O’Reilly Radar rendering is blocked by Twitter widget.

The Cause of Frontend SPOF

One possible takeaway from these examples might be that frontend
 SPOF is specific to Twitter and eyewonder and a few other third-party
 widgets. Sadly, frontend SPOF can be caused by any third-party widget, and
 even from the main website’s own scripts, stylesheets, or font
 files.
Another possible takeaway from these examples might be to avoid
 third-party widgets that are blocked by the Great Firewall. But the Great
 Firewall isn’t the only cause of frontend SPOF—it just makes it easier to
 reproduce. Any script, stylesheet, or font file that takes a long time to
 return has the potential to cause frontend SPOF. This typically happens
 when there’s an outage or some other type of failure, such as an
 overloaded server where the HTTP request languishes in the server’s queue
 for so long the browser times out.
The true cause of frontend SPOF is loading a script, stylesheet, or
 font file in a blocking manner. The table in my frontend SPOF (http://www.stevesouders.com/blog/2010/06/01/frontend-spof/)
 blog post shows when this happens. It’s really the website owner who
 controls whether or not their site is vulnerable to frontend SPOF. So
 what’s a website owner to do?

Avoiding Frontend SPOF

The best way to avoid frontend SPOF is to load scripts
 asynchronously. Many popular third-party widgets do this by default, such
 as Google
 Analytics, Facebook,
 and Meebo. Twitter also
 has an async snippet (https://dev.twitter.com/docs/tweet-button) for the Tweet
 button that O’Reilly Radar should use. If the widgets you use don’t offer
 an async version you can try Stoyan’s Social button BFFs (http://www.phpied.com/social-button-bffs/) async
 pattern.
Another solution is to wrap your widgets in an iframe. This isn’t
 always possible, but in two of the examples above the widget is eventually
 served in an iframe. Putting them in an iframe from the start would have
 avoided the frontend SPOF problems.
For the sake of brevity I’ve focused on solutions for scripts.
 Solutions for font files can be found in my @font-face and performance
 (http://www.stevesouders.com/blog/2009/10/13/font-face-and-performance/)
 blog post. I’m not aware of much research on loading stylesheets
 asynchronously. Causing too many reflows and FOUC (http://bluerobot.com/web/css/fouc.asp/) are concerns that
 need to be addressed.

Call to Action

Business Insider, CNET, and O’Reilly Radar all have visitors from
 China, and yet the way their pages are constructed delivers a bad user
 experience where most if not all of the page is blocked for more than a
 minute. This isn’t a P2 frontend JavaScript issue. This is an
 outage. If the backend servers for these websites took 1 minute
 to send back a response, you can bet the DevOps teams at Business Insider,
 CNET, and O’Reilly wouldn’t sleep until the problem was fixed. So why is
 there so little concern about frontend SPOF?
Frontend SPOF doesn’t get much attention—it definitely doesn’t get
 the attention it deserves given how easily it can bring down a website.
 One reason is it’s hard to diagnose. There are a lot of monitors that will
 start going off if a server response time exceeds 60 seconds. And since
 all that activity is on the backend it’s easier to isolate the cause. Is
 it that pagers don’t go off when clientside page load times exceed 60
 seconds? That’s hard to believe, but perhaps that’s the case.
Perhaps it’s the way page load times are tracked. If you’re looking
 at worldwide medians, or even averages, and China isn’t a major audience,
 your page load time stats might not exceed alert levels when frontend SPOF
 happens. Or maybe page load times are mostly tracked using synthetic
 testing, and those user agents aren’t subjected to real world issues like
 the Great Firewall.
One thing website owners can do is ignore frontend SPOF until it’s
 triggered by some future outage. A quick calculation shows this is a scary
 choice. If a third-party widget has a 99.99% uptime and a website has five
 widgets that aren’t async, the probability of frontend SPOF is 0.05%. If
 we drop uptime to 99.9%, the probability of frontend SPOF climbs to 0.5%.
 Five widgets might be high, but remember that “third-party widget”
 includes ads and metrics. Also, the website’s own resources can cause
 frontend SPOF which brings the number even higher. The average website
 today contains 14 scripts (http://httparchive.org/trends.php#bytesJS&reqJS) any of
 which could cause frontend SPOF if they’re not loaded async.
Frontend SPOF is a real problem that needs more attention. Website
 owners should use async snippets and patterns, monitor real user page load
 times, and look beyond averages to 95th percentiles and standard
 deviations. Doing these things will mitigate the risk of subjecting users
 to the dreaded blank white page. A chain is only as strong as its weakest
 link. What’s your website’s weakest link? There’s a lot of focus on
 backend resiliency. I’ll wager your weakest link is on the
 frontend.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/frontend-spof-in-beijing/.
 Originally published on Dec 08, 2011.

Chapter 9. All about YSlow

Betty Tso

Since 2007, millions of developers have been using YSlow to help them
 find out ways to make their web pages load faster. YSlow score has been the
 standard for Performance measurement in dev, QA, and production
 stages.
YSlow first started as a bookmarklet by Steve Souders while at Yahoo!,
 and soon became a popular Firefox extension. Over the past year, Marcel
 Duran built a YSlow Chrome extension, Opera extension, and Safari extension.
 In order to also support mobile devices as well as other browsers, YSlow was
 also made available as a bookmarklet in June 2011 with fresh shiny code and
 new architecture.
While speaking at Velocity China on
 December 7, 2011, our team announced the release of YSlow for
 Command Line beta, with courtesy to our FE tech lead, Marcel. This
 version leverages Node.js and takes .har files as input
 to generate YSlow score for a URL. Several output options are
 available—JSON, XML, and plain text. Users can also pipe the result to a
 beacon server, such as
 http://www.showslow.com/beacon/yslow/ and view the result
 in a graphical UI. For complete YSlow beacon spec, refer to the users’
 guide.
In February 2012, YSlow was open sourced on Github and given a new
 home: yslow.org. Since then, YSlow has
 become a community-driven tool—within the first 24 hours of the open source
 announcement, there were 437 watchers and 37 forks.
While speaking at Amazon’s annual frontend conference in April 2012
 (http://wh.yslow.org/amazon-wdc), Marcel Duran announced
 YSlow for PhantomJS (https://github.com/marcelduran/yslow/wiki/PhantomJS), a
 command-line script that allows page performance analysis from live
 URLs.
The diagram in Figure 9-1 captures the timeline of
 YSlow development over the past few years as of December 9, 2011.
[image: YSlow timeline]

Figure 9-1. YSlow timeline

Did you know…?
	YSlow can also be used as a framework to build extensions that
 talk to browsers. Refer to Stoyan Stefanov’s article for code samples:
 Web Testing
 Framework.

	Starting from v3.0.5, YSlow has a new feature: one-click-add-cdn
 to CDN custom list, which allows user to add CDNs to a custom list when
 applicable.

	YSlow’s social feature lets users share their YSlow score with
 Facebook and Twitter friends; the link shared points to YSlow Scoremeter
 on getyslow.com. With
 the Scoremeter, the user is able to estimate the impact of a fix on the
 resulted YSlow score. Here is a sample link shared on my Facebook:
 example Scoremeter.

	Here is the full list of YSlow backlog
 features.

As always, we would love to hear your feedback. You can reach us on
 the official site, Facebook, Twitter, or via email at
 ask@yslow.org.
Special thanks to Lauren Tsung, who created the infographic in this
 post. Lauren is currently working as an interactive designer in Yahoo!
 System Tools team.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/all-aboout-yslow/.
 Originally published on Dec 09, 2011.

Chapter 10. Secrets of High Performance Native Mobile Applications

Israel Nir

Since Steve Souders published his seminal book High
 Performance Web Sites four years ago, the world has changed
 considerably. Web sites became faster, browsers significantly improved and
 users started to expect top performance. During these four years, a new
 category of client-facing applications was born, which currently receives
 little attention from the performance community—native mobile applications.
 These applications have their own set of challenges and opportunities.
 Luckily, they also have a lot in common with good old web applications. One
 thing’s for certain, users expect native apps to perform as fast, if not
 faster, than web sites. With the Christmas rush in full swing, users are
 bound to be even less tolerant of poorly performing apps, so I figured it’s
 a good time to see how the top sellers’ mobile apps perform, and at the same
 time, also make a dent in my holiday gift list.
What are the two factors that most affect app performance? I’m not
 going to discuss native code tweaks, since this is predominantly
 platform-dependent and will probably put most of you to sleep. So let’s
 focus on mobile performance tuning—improving the application’s behavior over
 the network. The importance of network utilization is even greater
 considering the kind of network conditions these apps are most likely to
 encounter, such as high latency and low bandwidth.
In order to analyze a mobile app’s network traffic, you can start by
 setting up an ad-hoc WiFi network on a computer, connect your mobile device
 to that network and run a packet capture on the computer. Then use an
 application such as Wireshark to examine the traffic generated by your
 application, or load the packet capture into a tool like PcapPerf. Another
 option is to use a proxy, such as Charles Proxy of Fiddler, but please be
 aware that it may impact your app’s network behavior, such as limiting the
 number of concurrent connections. Personally I use my company’s tools
 (Shunra vCat with Analytics, http://www.shunra.com/products/shunra-vcat) to capture and
 analyze the app’s traffic. These tools also enable me to emulate mobile
 networks, so it’s easier for me to detect problems that may only manifest on
 various mobile networks, such as 3G.
Keep an Eye on Your Waterfalls

Time to start some serious shopping, so let’s look at one of the
 major mobile retail players. Starting with Mom, the world traveller, I
 thought a new luggage set would be appreciated. Lots of choices here—now
 what’s her favorite color? I had lots of time to ponder this question,
 because this retailer’s iPhone app takes quite a while to load.
 Examination of the HTTP waterfall reveals a long daisy chain of resources
 blocking each other, lasting for 7.5 seconds. Notice that in this case,
 images are blocking parallel downloads, which is something you won’t
 typically see in a web app (Figure 10-1).
[image: Blocking downloads]

Figure 10-1. Blocking downloads

While web developers can enable parallel downloads with a few simple
 tweaks and put their trust in browser makers, it’s up to the native app
 developer to come up with the optimal concurrent download scheme. Our
 research shows that even on mobile networks you can obtain a performance
 gain by using up to four parallel downloads, and advanced users can switch
 to HTTP pipelining to acquire another speed boost.

Compress Those Resources

In the waterfall in Figure 10-1, you may notice
 that the first resource, services.xml is 81KB long
 and takes more than a second to fetch over the network (blocking any other
 resources following it). Of that second, 812ms are spent just downloading
 the file. Looking at the response headers one can see that it was sent
 uncompressed. If it were compressed, it would have weighted only 6KB,
 saving at least half a second in response time. Obviously, it’s not the
 only resource sent uncompressed using this app (Figure 10-2).
[image: Uncompressed resources]

Figure 10-2. Uncompressed resources

Don’t Download the Same Content Twice

This should be a no brainer, but we have observed this performance
 anti-pattern in so many Android and iPhone apps that it’s worth pointing
 out. When implementing a native app, it’s the developer’s responsibility
 to implement a basic caching mechanism. Just setting the caching-headers
 of http responses is usually not enough. Here’s what happened when I was
 looking for a baby gift using the iPhone app of an e-commerce site known
 for its handmade items (Figure 10-3).
[image: Duplicate images]

Figure 10-3. Duplicate images

Cute baby, but the same image was downloaded three times, and this
 was typical for many other images that were also downloaded multiple
 times. Moreover, some images downloaded more than one instance in the same
 TCP session. Creating a basic caching layer, one that caches elements in
 memory as long as the application is running, is not that complicated. It
 greatly improves performance and highlights your professionalism.

Can Too Much Adriana Lima Slow You Down?

Tired of looking for the usual Christmas presents, I launched a
 famous lingerie retailer’s app, looking for, hmmm, stockings to put in my
 girlfriend’s Christmas stocking. Though I enjoy looking at Adriana Lima as
 much as the next guy, downloading huge images of her and the other VS
 models was actually quite painful. Surprisingly, although I was using an
 iPhone, I was getting both iPhone and iPad versions of the images. The
 iPad images were obviously not optimized for my small screen, and amounted
 to half a megabyte of wasted traffic. Although this might be OK over a
 wired network, it’s exasperating on a mobile (Figure 10-4).
[image: Duplicate images with iPad versions served to iPhone]

Figure 10-4. Duplicate images with iPad versions served to iPhone

During the past year we have encountered many applications that
 exhibit similar performance faux-pas. Hipmunk, the hip flight search
 application, downloaded a big data file (http://www.shunra.com/shunrablog/index.php/2011/03/21/being-slow-is-not-hip/)
 (650KB after compression), containing the entire search results in one
 chunk. It would have been better to split that file into several smaller
 files, some of which could be downloaded asynchronously. Other
 applications download many very small files that could be easily combined
 into fewer larger files to circumvent a performance hit due to the high
 latency in mobile networks.

Epilogue

This is just a short sample of performance best-practices for native
 mobile apps, indicating that some of the principals of well-performing
 native apps and websites are not that different. Eliminate unnecessary
 downloads (with respect to both the number of bytes and the number of
 requests), and manage the rest to make good use of the network by
 leveraging parallelization and asynchronous downloads. While with web
 sites you relegate many of those tasks to the browser, with native apps
 it’s mostly up to you. The room for performance tweaks is much larger, but
 so is the room for mistakes. Thus, if there’s one important takeaway, it’s
 to always test your apps early and never leave performance to
 chance.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/secrets-of-high-performance-native-mobile-applications/.
 Originally published on Dec 10, 2011.

Chapter 11. Pure CSS3 Images? Hmm, Maybe Later

Marcel Duran

Several designers while at Yahoo! requested that the original YSlow
 logo PSD be used in promotional materials such as t-shirts, posters, flyers,
 etc. in some events that occurred along this year, I had no idea where it
 was ever since I joined the Exceptional Performance Team (http://developer.yahoo.com/performance/) to take care of
 YSlow (http://yslow.org/) amongst other performance
 tools. In order to solve this problem I decided to rebuild it from scratch
 because it didn't seem so complicated, the problem was I was a speed freak,
 not a designer so inspired by the famous pure CSS Twitter fail whale (http://www.subcide.com/articles/pure-css-twitter-fail-whale/)
 I put my CSS muscles to work out focusing obviously on performance to
 provide those designers a scalable YSlow logo (http://wh.yslow.org/css3-logo) for their delight as well as
 potentially having a smaller image payload to be used on the Web.
The Challenge

It was an interesting challenge from performance perspective since
 the less code I used, the smaller the final image would be and the faster
 it would perform (rendering time). My goal was to achieve a one-size-fits
 all solution to be used in the wild on the Web. Besides performance, as a
 front end engineer, I was also interested in how CSS3 could help solve
 this issue (cross-browser possibly) and the limitations imposed. I use
 Chrome for development, so my first goal was to make it happen for that
 browser first before making it cross-browser compatible. It was also easy
 to benchmark the rendering time, which was my main point of concern when
 talking about CSS3 background gradients, border radius, transformation,
 etc.

Getting My Hands Dirty with CSS3 Cooking

Having JSFiddle (http://jsfiddle.net/) as my
 playground was really helpful because it was a trial-and-error task, plus
 I could keep track of versions and share so easily. Chrome Developer
 Tools: Element Styles (http://code.google.com/chrome/devtools/docs/elements-styles.html#styles_edit)
 also played an important role letting me test my changes
 on-the-fly.
My JSFiddle playground is available at http://jsfiddle.net/marcelduran/g7KvW/6/, where you can see
 the code and final image result. The CSS and HTML code (no JavaScript
 here) is also listed at the end of the chapter.
The three images on the Result tab of the
 fiddle are from top-down: original (250px width) image, pure CSS3 with
 250px width, and pure CSS3 with 50% width. If you load the fiddle in
 Chrome, you’re expected to get better results. JSFiddle also allows you to
 fork the code and apply your own changes, so be my guest.
With 21 DOM elements (22 counting the <style> block) and by using uneven
 border-radius for geometries,
 background gradients to make it shiny, rounded, and more realistic, and
 some transform rotations were enough to finally get the YSlow speedometer
 logo without the red needle. My first attempt was to use DOM element
 borders to achieve a pointy triangle (http://jonrohan.me/guide/css/creating-triangles-in-css/)
 which works fine but unfortunately, it did not scale due to percentage
 values not being allowed (http://www.w3.org/TR/CSS2/box.html#value-def-border-width)
 on border-width. Also background
 gradients do not apply to borders either, making it not shiny as in the
 original image. When I hit this wall, I pinged my former co-worker Thierry
 Koblentz (http://twitter.com/thierrykoblentz), and
 he came to the rescue. He eats CSS not only for breakfast and is always up
 for CSS challenges. It was impressive, he came up with a very nice
 solution using rotated displaced DIVs hiding the undesired parts with
 overflow:hidden, which allowed me to
 make it shiny through background gradient. As a plus, he also included a
 nice transition that smoothly animates the needle to the max value when
 hovering, such feature is not available in regular PNG/JPG images.
After I reached my goal for Chrome, using basically W3C
 specification for CSS3 and a few -webkit- prefixes, it was time to attack the
 other browsers, so I started adding other vendors prefixes like -moz-, -o-,
 -ms-, and filter for Internet Explorer.

Cross-Browser Results

I got very disappointed with the cross-browser results and after
 spending some time trying to figure out a way to fix things for all
 browsers without increasing the CSS code or adding more HTML elements, I
 gave up and played John Lennon: “Imagine there's no cross-browser issue…”
 I wonder how come our honorable Performance Calendar curator (http://twitter.com/stoyanstefanov) hasn't thought about
 such a song before (http://www.youtube.com/watch?v=bPdkWJe9XH0).
The original image (PNG24) is shown in Figure 11-1.
[image: original YSlow logo in PNG24 format]

Figure 11-1. original YSlow logo in PNG24 format

The screenshots for the tested browsers with comments are shown in
 Figure 11-2 (non-IE browsers) and Figure 11-3 (different IE versions). The left column of images
 in those figures shows the result when using vendor-specific CSS and the
 right column is W3C-valid CSS3 only.
[image: Results in non-IE browsers]

Figure 11-2. Results in non-IE browsers

[image: Results in IE]

Figure 11-3. Results in IE

Interesting how the W3C-only versions fall back gracefully, that
 shows no browser is strictly following specs or that the specs are not
 fully defined yet by the time of this writing. Even not fully resembling
 the original, with some exceptions, they all look like a speedometer gauge
 somehow, except er, guess who?
With that pure CSS3 image working decently at least on Chrome, I was
 able to provide the designers what they were after and that was enough for
 me to start my performance benchmarking. I know one might argue it’s
 possible to make it work better on other browsers with more DOM elements
 and/or more CSS selectors/rules, but that was a time-consuming task and I
 was working on it during my spare time, so enough with CSS and let’s see
 what we are here for.

Benchmarking

In order to compare real image files (http://wh.yslow.org/css3-logo-images) versus CSS3-generated
 ones (http://wh.yslow.org/css3-logo-payload), I
 created a few pages containing only one image per page, either real files
 URL and data URI (http://en.wikipedia.org/wiki/Data_URI_scheme) () or CSS3 (HTML + CSS
 <style> block in the same
 page).
Payload

Hosting these pages (http://wh.yslow.org/css3-logo-payload) in a local Apache
 server, I was able to fetch them with and without compression (Accept-Encoding: gzip,deflate) via curl (http://curl.haxx.se/), getting the content length for the
 CSS3 and data URI ones and the real images URL obviously without
 compression. The minified with compression lengths were used as payload
 per page in this benchmark (Figure 11-3).

Rendering

Adding a small script at the bottom of these pages (http://wh.yslow.org/css3-logo-rendering) that reloads the
 page 100 times with 1 second interval, using
 sessionStorage (https://developer.mozilla.org/en/DOM/Storage#sessionStorage)
 for counting and with Chrome
 Developer Tools: Timeline Panel recording the page activity, I
 was able to export the logged data (http://wh.yslow.org/css3-logo-logs). Then with a NodeJS script, I
 could extract and filter only the timing related to the rendering
 activity, cleaning the top and
 bottom 5% of the sample to remove some noisy data, and then getting the
 average (http://wh.yslow.org/css3-logo-results) in
 milliseconds (Figure 11-4).
[image: Timeline panel]

Figure 11-4. Timeline panel

Analysis of the compared versions of YSlow logo image is shown in
 the table on Figure 11-5, which leads to the chart on
 Figure 11-6. The data for the chart is available at
 http://wh.yslow.org/css3-logo-data.
[image: The compared versions of YSlow logo image]

Figure 11-5. The compared versions of YSlow logo image

[image: Payload versus Rendering]

Figure 11-6. Payload versus Rendering

CSS3-generated images can achieve smaller payloads compared to
 regular images either URL or data URI ones. In this YSlow logo example,
 the W3C standard CSS3 is roughly 34 times smaller than PNG24 image
 version. Data URI versions of the same image type have around the same
 payload after being compressed. They get increased a few bytes only,
 interesting in this case that the inline version of JPG is slightly
 smaller than the regular JPG image file.
On the other hand, CSS3-generated images rendering time is worse
 than regular images, being around 6.5 times slower than the PNG24
 version. The inline versions more than double the rendering time when
 compared to their regular image file versions. The CSS3 W3C standard
 version rendering performed 2.5 times faster than -webkit- or the one with all browser vendors
 prefixes. This doesn’t necessarily mean it’s really faster because per
 the screenshots results above, none of them triggered all the CSS rules
 to render the logo properly according to the original version.
These rendering times were measured just by displaying the static
 images on the page without any hovering user interaction that animates
 the gauge needle on CSS3 versions. These numbers would likely to be
 increased in the case-scenario where users are allowed to hide-and-show
 or drag-and-drop images over the viewport triggering several repaint,
 reflow, and restyle (http://www.phpied.com/rendering-repaint-reflowrelayout-restyle/)
 on these DOM elements.
Comparing apples-to-apples quality-wise, CSS3 with all prefixes or
 -webkit- on Chrome are comparable to the PNG24
 version, both have transparent background and no pixelation. CSS3 is 34
 times smaller, 6.5 times slower (in order of milliseconds) and has the
 advantage of keeping the same payload for different sizes, while PNG
 would increase when resized from the original source (PSD when
 available) to avoid quality loss, however users are not able to save
 CSS3 as an image without taking screenshots.

Are We There Yet?

Not really, hopefully in the near future we'll get rid of browser
 vendors’ specific prefixes and have a one-size-fits-all CSS solution that
 works equally in all browsers. But even when we get there, it's a very
 time-consuming task to create images from scratch, using DOM elements and
 styles manually (SVG is designed for this). An illustrator tool to aid
 drawing is in high demand for such task where one could drag over Bézier
 curves (http://en.wikipedia.org/wiki/B%C3%A9zier_curve), adjusting
 the control points in order to get
 the correspondent directives to CSS3 border-radius shaping geometric lines
 properly.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/pure-css3-images-hmm-maybe-later/.
 Originally published on Dec 11, 2011.

Appendix: Code Listings

You can also play with the code live at http://jsfiddle.net/marcelduran/g7KvW/6/.
HTML

<div class="ys" style="width:250px">
 <div class="a">
 <div class="b">
 <div class="c">
 <div class="d">
 <div class="e">
 <div class="f"></div>
 <div class="g"></div>
 <div class="t t1"></div>
 <div class="t t2"></div>
 <div class="t t3"></div>
 <div class="t t4"></div>
 <div class="t t5"></div>
 <div class="t t6"></div>
 <div class="t t7"></div>
 <div class="p">
 <div class="pw">
 <div class="pi">
 <div class="pl"></div>
 </div>
 <div class="pi">
 <div class="pr"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

<div class="ys" style="width:50%">
 <div class="a">
 <div class="b">
 <div class="c">
 <div class="d">
 <div class="e">
 <div class="f"></div>
 <div class="g"></div>
 <div class="t t1"></div>
 <div class="t t2"></div>
 <div class="t t3"></div>
 <div class="t t4"></div>
 <div class="t t5"></div>
 <div class="t t6"></div>
 <div class="t t7"></div>
 <div class="p">
 <div class="pw">
 <div class="pi">
 <div class="pl"></div>
 </div>
 <div class="pi">
 <div class="pr"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

CSS

/* borders and background */
.ys .a {padding:1.5%;
 -moz-border-radius:100% 100% 0 0 / 166% 166% 0 0;
 -webkit-border-top-left-radius:1000em;
 -webkit-border-top-right-radius:1000em;
 border-radius:100% 100% 0 0 / 166% 166% 0 0;
 background: #b0b4b7;
 background: -moz-linear-gradient(left, #b0b4b7 8%, #3f3f40 54%);
 background: -webkit-gradient(linear, left top, right top, color-stop(8%,#b0b4b7),
 color-stop(54%,#3f3f40));
 background: -webkit-linear-gradient(left, #b0b4b7 8%,#3f3f40 54%);
 background: -o-linear-gradient(left, #b0b4b7 8%,#3f3f40 54%);
 background: -ms-linear-gradient(left, #b0b4b7 8%,#3f3f40 54%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#b0b4b7',
 endColorstr='#3f3f40',GradientType=1);
 background: linear-gradient(left, #b0b4b7 8%,#3f3f40 54%);
}

.ys .b {padding:5% 5% 0 5%;
 -moz-border-radius:100% 100% 0 0 / 166% 166% 0 0;
 -webkit-border-top-left-radius:1000em;
 -webkit-border-top-right-radius:1000em;
 border-radius:100% 100% 0 0 / 166% 166% 0 0;
 background: #dadadc;
 background: -moz-linear-gradient(left, #dadadc 8%, #3a3a3c 54%);
 background: -webkit-gradient(linear, left top, right top, color-stop(8%,#dadadc),
 color-stop(54%,#3a3a3c));
 background: -webkit-linear-gradient(left, #dadadc 8%,#3a3a3c 54%);
 background: -o-linear-gradient(left, #dadadc 8%,#3a3a3c 54%);
 background: -ms-linear-gradient(left, #dadadc 8%,#3a3a3c 54%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#dadadc',
 endColorstr='#3a3a3c',GradientType=1);
 background: linear-gradient(left, #dadadc 8%,#3a3a3c 54%);
}

.ys .c {padding:2.5% 2.5% 0 2.5%;
 -moz-border-radius:100% 100% 0 0 / 166% 166% 0 0;
 -webkit-border-top-left-radius:1000em;
 -webkit-border-top-right-radius:1000em;
 border-radius:100% 100% 0 0 / 166% 166% 0 0;
 background: #e1e4e5;
 background: -moz-linear-gradient(left, #e1e4e5 8%, #010204 54%);
 background: -webkit-gradient(linear, left top, right top, color-stop(8%,#e1e4e5),
 color-stop(54%,#010204));
 background: -webkit-linear-gradient(left, #e1e4e5 8%,#010204 54%);
 background: -o-linear-gradient(left, #e1e4e5 8%,#010204 54%);
 background: -ms-linear-gradient(left, #e1e4e5 8%,#010204 54%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#e1e4e5',
 endColorstr='#010204',GradientType=1);
 background: linear-gradient(left, #e1e4e5 8%,#010204 54%);
}

.ys .d {padding:2%; background-color:#0c1c48;
 -moz-border-radius:100% 100% 0 0 / 166% 166% 0 0;
 -webkit-border-top-left-radius:1000em;
 -webkit-border-top-right-radius:1000em;
 border-radius:100% 100% 0 0 / 166% 166% 0 0;
}

.ys .e {padding:58% 5% 0 5%; position:relative; overflow:hidden;
 -moz-border-radius:100% 100% 0 0 / 166% 166% 0 0;
 -webkit-border-top-left-radius:1000em;
 -webkit-border-top-right-radius:1000em;
 border-radius:100% 100% 0 0 / 166% 166% 0 0;
 background: #394d97;
 background: -moz-linear-gradient(left, #394d97 8%, #282963 54%);
 background: -webkit-gradient(linear, left top, right top, color-stop(8%,#394d97),
 color-stop(54%,#282963));
 background: -webkit-linear-gradient(left, #394d97 8%,#282963 54%);
 background: -o-linear-gradient(left, #394d97 8%,#282963 54%);
 background: -ms-linear-gradient(left, #394d97 8%,#282963 54%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#394d97',
 endColorstr='#282963',GradientType=1);
 background: linear-gradient(left, #394d97 8%,#282963 54%);
}

/* glare */
.ys .f {padding:50% 56%; position:absolute; top:11%; left:0;
 -moz-border-radius:166% 133% 0 0 / 166% 139% 0 0;
 -webkit-border-top-left-radius:166em 166em;
 -webkit-border-top-right-radius:133em 139em;
 border-radius:166% 133% 0 0 / 166% 139% 0 0;
 background: #2c3e90;
 background: -moz-linear-gradient(left, #2c3e90 8%, #120744 54%);
 background: -webkit-gradient(linear, left top, right top, color-stop(8%,#2c3e90),
 color-stop(54%,#120744));
 background: -webkit-linear-gradient(left, #2c3e90 8%,#120744 54%);
 background: -o-linear-gradient(left, #2c3e90 8%,#120744 54%);
 background: -ms-linear-gradient(left, #2c3e90 8%,#120744 54%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#2c3e90',
 endColorstr='#120744',GradientType=1);
 background: linear-gradient(left, #2c3e90 8%,#120744 54%);
}

/* base */
.ys .g {padding:50% 74%; position:absolute; bottom:-135%; left:-16%;
 -moz-border-radius:100%;
 -webkit-border-radius:1000em;
 border-radius:100%;
 background: #99c1e2;
 background: -moz-linear-gradient(top, #99c1e2 1%, #7aaed9 3%, #2f6bb0 12%);
 background: -webkit-gradient(linear, left top, left bottom, color-stop(1%,#99c1e2),
 color-stop(3%,#7aaed9), color-stop(12%,#2f6bb0));
 background: -webkit-linear-gradient(top, #99c1e2 1%,#7aaed9 3%,#2f6bb0 12%);
 background: -o-linear-gradient(top, #99c1e2 1%,#7aaed9 3%,#2f6bb0 12%);
 background: -ms-linear-gradient(top, #99c1e2 1%,#7aaed9 3%,#2f6bb0 12%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#99c1e2',
 endColorstr='#2f6bb0',GradientType=0);
 background: linear-gradient(top, #99c1e2 1%,#7aaed9 3%,#2f6bb0 12%);
}

/* ticks */
.ys .t {width:14%; height:6%; background-color:#e7e8e9; position:absolute;
 -moz-border-radius:30% / 100%;
 -webkit-border-radius:1000em;
 border-radius:30% / 100%;
}
.ys .t1 {left:7%; bottom:18%;}
.ys .t2 {left:11%; bottom:47%;
 -webkit-transform:rotate(30deg);
 -moz-transform:rotate(30deg);
 -o-transform:rotate(30deg);
 -ms-transform:rotate(30deg);
 transform:rotate(30deg);
}
.ys .t3 {left:24%; bottom:70%;
 -webkit-transform:rotate(60deg);
 -moz-transform:rotate(60deg);
 -o-transform:rotate(60deg);
 -ms-transform:rotate(60deg);
 transform:rotate(60deg);
}
.ys .t4 {left:44%; top:16%;
 -webkit-transform:rotate(90deg);
 -moz-transform:rotate(90deg);
 -o-transform:rotate(90deg);
 -ms-transform:rotate(90deg);
 transform:rotate(90deg);
}
.ys .t5 {right:24%; bottom:70%;
 -webkit-transform:rotate(-60deg);
 -moz-transform:rotate(-60deg);
 -o-transform:rotate(-60deg);
 -ms-transform:rotate(-60deg);
 transform:rotate(-60deg);
}
.ys .t6 {right:11%; bottom:47%;
 -webkit-transform:rotate(-30deg);
 -moz-transform:rotate(-30deg);
 -o-transform:rotate(-30deg);
 -ms-transform:rotate(-30deg);
 transform:rotate(-30deg);
}
.ys .t7 {right:7%; bottom:18%;}

/* pointer by @thierrykoblentz */
.ys .p {padding-bottom:52%; width:11%; position:absolute; left:50%; bottom:20%;
 margin-left:-5%;
 -webkit-transform:rotate(20deg);
 -moz-transform:rotate(20deg);
 -o-transform:rotate(20deg);
 -ms-transform:rotate(20deg);
 transform:rotate(20deg);
 -webkit-transform-origin:bottom;
 -webkit-transition:all 200ms cubic-bezier(0.200, 0.000, 1.000, 0.360);
}
.ys:hover .p {
 -webkit-transform:rotate(90deg);
 -moz-transform:rotate(90deg);
 -o-transform:rotate(90deg);
 -ms-transform:rotate(90deg);
 transform:rotate(90deg);
}
.ys .pw {position:absolute; top:0; right:0; bottom:0; left:0;}
.ys .pw > :first-child {border-right:1px solid transparent; margin-right:-2px;}
.ys .p::after {content:""; position:absolute; width:97%; padding-bottom:92%; top:88%;
 z-index:1;
 -moz-border-radius:100%;
 -webkit-border-radius:1000em;
 border-radius:100%;
 background: #ef4d58;
 background: -moz-linear-gradient(left, #ef4d58 10%, #ce1f2b 20%);
 background: -webkit-gradient(linear, left top, right top, color-stop(10%,#ef4d58),
 color-stop(20%,#ce1f2b));
 background: -webkit-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 background: -o-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 background: -ms-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ef4d58',
 endColorstr='#ce1f2b',GradientType=1);
 background: linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
}
.ys .pi {width:50%; height:100%; overflow:hidden; position:relative; float:left;}
.ys .pl, .ys .pr {position:absolute; width:200%; height:120%; left:50%;
 -webkit-transform:rotate(10deg);
 -moz-transform:rotate(10deg);
 -o-transform:rotate(10deg);
 -ms-transform:rotate(10deg);
 transform:rotate(10deg);
 background: #ef4d58;
 background: -moz-linear-gradient(left, #ef4d58 10%, #ce1f2b 20%);
 background: -webkit-gradient(linear, left top, right top, color-stop(10%,#ef4d58),
 color-stop(20%,#ce1f2b));
 background: -webkit-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 background: -o-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 background: -ms-linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ef4d58',
 endColorstr='#ce1f2b',GradientType=1);
 background: linear-gradient(left, #ef4d58 10%,#ce1f2b 20%);
}
.ys .pr {right:50%; left:auto;
 -webkit-transform:rotate(-10deg);
 -moz-transform:rotate(-10deg);
 -o-transform:rotate(-10deg);
 -ms-transform:rotate(-10deg);
 transform:rotate(-10deg);
}

Chapter 12. Useless Downloads of Background Images in Android

Éric Daspet

Let’s begin with a quick reminder. In CSS, the “C” stands for
 “cascading.” You may specify many conflicting rules for an element property:
 only one will be applied, based on different weights and priorities.
p { background-image: url(red.png) }
p { background-image: url(green.png) }
p.intro { background-image: url(yellow.png) }

With the previous code and a <p
 class=intro>, your paragraph should be displayed with a yellow
 background. Browsers are smart. If you don’t have any other <p> tag, they will only download the yellow
 image and even if you do, the red image will never be downloaded.
The Android Problem

Well… that’s how it should work. WebKit had an
 old bug fixed in late 2010 (https://bugs.webkit.org/show_bug.cgi?id=24223) that made it
 download all three images. In a complex website, this could be a major
 performance glitch.
Why am I digging up an old bug? Chrome, Safari, and other
 webkit-based browsers are probably up-to-date by now, but our problem
 still lives in the mobile world: Android. Almost every default browser
 shipped in Android 2.x device is still affected by this performance
 issue.
The mobile world is highly fragmented and updates are not regularly
 scheduled. Looking at Android smartphones, the majority of devices is
 still running under Android 2.2 or Android 2.3. Some devices, like the
 Nexus S, will probably be updated to Android 4.0 in the first quarter of
 2012. However, sadly, most of them won’t. You will still find Android 2.2
 and 2.3 devices for years. For example, here in France, the Samsung Galaxy
 S was a true success but it will be running Android 2.3, and will still be
 used for at least one year, maybe two.
If you target a mobile audience, you now know one of your
 performance enemies. If you don’t… well, it seems that you have bigger
 problems to deal with.

And the Lack of Solution

You probably expect a happy ending to this note with a solution, or
 at least some workaround. You are right to expect this, but I won’t be
 able to help.
As far as I know, there is no workaround, so here are two
 guidelines:
	Add background images in your CSS only to #id selectors.

	Avoid using multiple selectors with background images that may
 target the same element (which means style sheet without
 cascade).

I know, these guidelines are impossible to follow without
 exceptions. The purpose here is not to remove all useless downloads, but
 to reduce them with a “best effort” rule, in order to help your user
 experience. At the very least, try to avoid using the cascade for large
 background images that span the entire web page.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/useless-downloads-of-background-images-in-android/.
 Originally published on Dec 12, 2011.

Chapter 13. Timing the Web

Alois Reitbauer

Analyzing the loading behavior of web pages by using browser plug-ins
 like YSlow, SpeedTracer or dynaTrace Ajax Edition has become really easy. As
 soon as we leave the browser, the story however is a different one. Getting
 detailed data from real users is much harder and only possible to a certain
 level of granularity. The usual approach is to use synthetic monitoring and
 execute tests from a variety of points of presence as close to end users as
 possible. If you measure from many locations and cover most of your
 transactions, this comes pretty close to the users’ perceived performance.
 In case you are interested in more details on the pros and cons of using
 synthetic monitoring, recommend this blog post (http://blog.dynatrace.com/2011/10/06/is-synthetic-monitoring-really-going-to-die/).
The best way however to understand the performance from a user’s
 perspective is to measure in the actual browser. While this sounds very
 simple, it turns out to rather be a challenge. Creating a waterfall chart
 like the one on Figure 13-1 by just using information
 available in the browser simply is impossible.
Although there are free libraries like Boomerang (https://github.com/yahoo/boomerang) and commercial products
 that can provide some of this information, it tends to be pretty tough.
 Actually of the first question that comes up is one of the hardest to
 answer: How long does it take to load a page. Let’s be more precise here.
 How long does it take from the time a user initiates the loading of a page
 by clicking a link or typing a URL until the page is fully loaded. This—with
 some inaccuracies—is still doable for subsequent pages however impossible
 for start pages. What however is already possible is today using a small
 portion of JavaScript as shown in Example 13-1, which will
 calculate the time from the beginning of the page until it is loaded. While
 this provides a hint on loading times, we do not see DNS lookups, the
 establishment of connection or redirects. So these values might or might not
 reflect the load time perceived by the user.
Example 13-1. Simple script for measuring page load time
<html>
 <head>
 <script>
 var start = new Date().getTime();
 function onLoad() {
 var now = new Date().getTime();
 var latency = now - start;
 alert("page loading time: " + latency);
 }
 </script>
 </head>
 <body onload="onLoad()">
 ...

[image: Waterfall chart showing client activity in the browser]

Figure 13-1. Waterfall chart showing client activity in the browser

If we now go even further and also want to time resources on the page
 like images, CSS, or JavaScript files, it gets even harder. We could use a
 code snippet like the one in Example 13-2 to get resource
 timings. The impact on the page load time as well as the effort for coding
 this behavior is significant.
Example 13-2. Simple approach to time resources with significant impact on load
 behaviour
...
<script>
 downloadStart("myimg");
</script>

...

So it is really hard to get performance information from an end user
 perspective. However, browsers have all this information. Wouldn’t it be the
 most natural thing for a browser to do to expose it so that it can be easily
 accessed by JavaScript. This is what the W3C Web Performance Working Group
 (http://www.w3.org/2010/webperf/) is working on. The
 group is working on a set of standards which enable developers to get access
 to this data. Using the short piece of JavaScript in Example 13-3 we can easily find out how long it took to load a
 page.
Example 13-3. Using Navigation Timing to measure page load time
<html>
<head>
<script>
function onLoad() {
 var now = new Date().getTime();
 var page_load_time = now - performance.timing.navigationStart;
 alert("User-perceived page loading time: " + page_load_time);
}

</script>
</head>
<body onload="onLoad()">
...

We can get even more details on the loading of a page to understand
 how long each “phase” of the page-loading process took. As shown on Figure 13-2, we can find out how long it took to resolve the
 host name, establish a connection, send the request, and wait for the
 response or how long it took to execute onLoad handlers.
[image: Detailed timings provided by Navigation Timing]

Figure 13-2. Detailed timings provided by Navigation Timing

This functionality, called Navigation Timing (http://w3c-test.org/webperf/specs/NavigationTiming/), is
 already implemented in latest browser versions. On mobile, IE9 on Windows
 Mango already exposes this information as well (Figure 13-3).
[image: Using Navigation Timing in desktop and mobile browsers]

Figure 13-3. Using Navigation Timing in desktop and mobile browsers

Although this is a great step forward, we still lack a significant
 amount of details about page loading behavior. Most importantly, we miss
 details about downloaded resources. Everything that happens between the
 start of the response and the onLoad
 event stays a black box.
Therefore the Resource Timing (http://w3c-test.org/webperf/specs/ResourceTiming/)
 specification defines an interface to access detailed networking information
 about resources. Just as with the initial page, we get the same granularity
 of information as for the main document (Figure 13-4).
[image: Timings provided by resource timings]

Figure 13-4. Timings provided by resource timings

Unfortunately this spec is not yet implemented in current browsers but
 hopefully will be available with future browser versions by mid next year. I
 think this is true at least for all the browsers that already implement
 Navigation Timing.
So this gives us great insight into the networking behavior of the
 application; what we still miss however is the ability to time custom events
 on a page. Let’s look at a simple example. Assume we want to measure when
 certain content is visible on the page. This is where the User Timing
 specification (http://w3c-test.org/webperf/specs/ResourceTiming/) comes into
 play. User Timing allows us to measure discrete points in time, like how
 long it took from navigation start to the displaying of certain content on a
 page. The snippet in Example 13-4 shows how this code might
 look like.
Example 13-4. Measuring a custom point in page load using User Timing
var perf = window.performance;
perf.measure("customLoad");
var customLoadTime = perf.getMeasures("customLoad")[0];

So putting all this together, we have a good way to time all major
 events that happen on a page. Because using all these different APIs might
 end up being a bit confusing, there will also be a common interface to
 access all this data. That’s what the Performance Timeline (http://w3c-test.org/webperf/specs/UserTiming/) is about. The
 timeline provides a unified interface to access all performance-related
 information.
Conclusion

While they are not fully implemented yet, the new W3C specifications
 for timing web pages provide an easy way to access performance information
 right in the user’s browsers. In future browser versions we will be able
 to drop a lot of the magic code used today to get end user timing
 information.
A question that however stays unanswered is how this data is sent
 back to the server. Currently there are two possible approaches. We can
 use beacons (HTTP GET request that piggyback the monitoring data) or XHRs.
 Both approaches work acceptably well in most cases; there are some issues
 with sending data in the onBeforeUnload
 event. So if we put everything together and add server-side infrastructure
 this is the data we can collect about our end users.
As a final sneak peek, I can show you what level of granularity we
 will get using modern technology. The information on Figure 13-5 is collected by our own monitoring using a kind of
 “backport” of Navigation and Resource Timing into existing
 browsers.
[image: End-user-based performance data for a blog page showing slow third parties]

Figure 13-5. End-user-based performance data for a blog page showing slow
 third parties

If you want to try it the new APIs today, just follow this link
 (http://blog.dynatrace.com/samples/bookmark.html)
 and check how long it took to load this page. You can use this simple
 bookmarklet to get timing information for any page you are interested
 in.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/timing-the-web/.
 Originally published on Dec 13, 2011.

Chapter 14. I See HTTP

Stoyan Stefanov

Ladies and gentlemen, boys and girls. Say hello to icy.
icy

It’s an iOS app that lets you debug HTTP. It’s like HTTPWatch
 (http://httpwatch.com/) or WebPagetest (http://webpagetest.org/), but for mobile. Like blaze.io’s
 mobitest (http://www.blaze.io/mobile/), but in your
 pocket, it works with 3G, Edge (as these can have different
 characteristics and carrier optimizations than WiFi), and also lets you
 inspect pages behind login.

Some details

	It’s a UIWebView that loads
 the page you want and provides a NSURLCache class, which logs whatever the
 iOS networking layer throws at it.

	It’s on github (https://github.com/stoyan/icy). Note that this is my
 very first attempt at iOS and Obj-C so the code quality is probably
 atrocious. License is public domain, because I don’t really understand
 the others.

	The name is icy, because it’s
 iOS and it’s the law that app names be prefixed
 with an “i”. Also (to my Eastern European ear at least), “icy” sounds
 like “I see” (spelled “ic” in chats) and is the beginning of (said
 with spookiest of voices) “I see… HTTPeee.”

Walkthrough

A journey of a thousands miles begins with a single tap. As you can
 see in Figure 14-1, the icon is the default/missing
 icon. (Who cares about icons?) If you focus hard enough you may convince
 yourself that the white icon actually makes sense, it’s like snow, or,
 there you have it, ice.
[image: App icon]

Figure 14-1. App icon

What we have then (Figure 14-2) is a UIWebView waiting to load a page and an address
 bar. Right there you already see the first problem with the app—UIWebView is not really iOS Safari. It may act
 differently and even have a different JavaScript engine. But it’s as close
 as we can get.
[image: The “browser”]

Figure 14-2. The “browser”

Tapping, typing, tapping, typing… (See Figure 14-3.)
[image: Navigating to a page]

Figure 14-3. Navigating to a page

Oh look, a page is loaded! Now let’s remove the veil and peek to see
 what’s underneath all that fanciness (Figure 14-4).
[image: Page loaded, waiting to be inspected]

Figure 14-4. Page loaded, waiting to be inspected

Ha! Requests! (See Figure 14-5.)
[image: List of page components]

Figure 14-5. List of page components

As you can see, I stole the JS/CSS/HTML icons from the webkit
 project. And if a page component looks like an image (has Content-Type: image/*), you see a little
 thumbnail.
You see the number of requests that this page made.
Also each request line is a link to more details (Figure 14-6).
The details are split into “Meta,” “Request headers,” and “Response
 Headers.” Meta contains general information such as
 URL and duration.
[image: Component details view]

Figure 14-6. Component details view

“But is the duration accurate?” you may ask as a critical reader and
 a performance geek. To the best of my knowledge it’s pretty accurate.

Figure 14-7 shows request headers, as we know and
 love them.
[image: Request headers]

Figure 14-7. Request headers

If the text is cut off, you can tap again and get the full text of
 the header value (Figure 14-8).
[image: Full text of a header]

Figure 14-8. Full text of a header

After request/response headers, what we have is a preview of what
 the component looks like. If it’s an image, you get a little thumbnail
 that you can click to get a bigger image (Figure 14-9,
 Figure 14-10).
[image: Component preview (images)]

Figure 14-9. Component preview (images)

[image: Component full view (images)]

Figure 14-10. Component full view (images)

If the component is text, you get the first few characters and then
 tap for the real deal. (Figure 14-11, Figure 14-12)
[image: Component preview (text components, e.g. CSS, JS)]

Figure 14-11. Component preview (text components, e.g. CSS, JS)

[image: Component full view (text components)]

Figure 14-12. Component full view (text components)

And that’s all there is for now.

Todos

There are a few immediate todos (for which I’d gladly take any help)
 and some more general ideas for going forward.
First of all, is the NSURLCache (http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSURLCache_Class/Reference/Reference.html)
 the best/only way to inspect the network? At first I was a little
 disappointed that the iOS SDK doesn’t provide APIs to inspect the traffic.
 But then I saw what Patrick Meenan needs to do to make WebPagetest happen
 (http://calendar.perfplanet.com/2011/webpagetest-internals/),
 so I guess a little hacking and method swizzling (http://www.cocoadev.com/index.pl?MethodSwizzling) might be
 appropriate. Which might lower the chances of the app ever hitting the app
 store.
Anyway, NSURLCache is a way to
 implement your own caching in your native/hybrid app. Which in and of
 itself is a nice optimization to know about when building iOS apps. You
 create a class extending NSURLCache and
 announce it:
[NSURLCachesetSharedURLCache:mycache];
And then every time the web view is about to make a request, it will
 ask your class “hey, got that google.com/logo.png thing?” And also every
 time a component is downloaded, it will be passed to your class so you can
 store it.
And this is how the icy app was built, only
 instead of storing and returning files, I just log anything that comes my
 way.
And this “anything that comes my way” is where incompleteness of
 introspection comes in. Sometimes the networking layer doesn’t call my
 method to say that a new response has arrived. Responses that are thought
 of as uncacheable may never reach my NSURLCache child. In these cases, you see in the
 app that I got the request, but no response for it to match. In the
 example in Figure 14-13 it’s the PHP for Facebook’s Like
 button. The white icon means I didn’t get a Content-Type response header to inspect.
[image: Missing response information]

Figure 14-13. Missing response information

That’s why I thought a refetch might be a good idea for inspecting
 URLs that we didn’t get a response for. We can make a separate deliberate
 request and get the response, we don’t rely on the NSURLCache and UIWebView. That’s the idea and it’s a todo
 currently (Figure 14-14).
[image: Refetch]

Figure 14-14. Refetch

The other thing is clearing the log (Figure 14-15). That’s easy, but clearing the cache didn’t
 prove to be so easy. I swear I did it at some point and it was working (I
 had to destroy the UIWebView to make it work), but then I changed
 something else and it stopped working. The change I suspect is when I
 deleted the .xib/.nib file I originally had for the
 UIWebView.
[image: Clearing log and browser cache]

Figure 14-15. Clearing log and browser cache

The Road Ahead

The road ahead is around HAR.
As you can see we can look at requests/responses, but it would be
 nice also to have things like a yslow score, page speed score, potential
 wins of minification, etc.—a bunch of tools. My idea is to separate the
 tools of performance intelligence from the mechanics of collecting the raw
 data. And the glue is HAR.
We have the online HAR viewer (http://www.softwareishard.com/har/viewer/) so no need to
 build waterfall diagrams, just pass it a HAR file.
We now have a YSlow command line, which will be a question of time
 to get a Web UI going. It should accept a HAR and run all the YSlow
 intelligence on it. Same for PageSpeed. I shouldn’t have to integrate all
 tools in icy but rather have icy open Safari, point to a URL of a tool, and
 pass it a HAR. Needless to say tool URLs should be configurable so you can
 run your own, even in-house, tools.
What icy can help address is the visibility into
 the UIWebView. Just getting the best
 data possible, creating a HAR and passing it on. This is what I call the
 mechanics of gathering the raw data, the “it is what it is” data. As
 opposed to the intelligence of tools like YSlow that can answer the
 question: “I have this page here, so what next?”
And I’m hoping we, the web performance community, will have these
 little lightweight “agents” on every possible device that makes network
 requests, so we can gather the raw HTTP data and pass it to the good old
 tools for their opinions. We also need to know what possible optimizations
 carriers do. So…

All I Want for Christmas…

…is more tools. We can only improve what we know about. Therefore
 visibility into what’s going on is critical.
This little icy app is just an example, sort of
 saying to manufacturers, phone builders, browser vendors—here’s what we
 want, now gimme!
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/i-see-http/.
 Originally published on Dec 14, 2011.

Chapter 15. Using Intelligent Caching to Avoid the Bot Performance Tax

Matthew Prince

In 2004, Lee Holloway (https://twitter.com/icqheretic) and I started Project Honey
 Pot (http://www.projecthoneypot.org/). The site, which
 tracks online fraud and abuse, primarily consists of web pages that report
 the reputation of IP addresses. While we had limited resources and tried to
 get the most of them, I just checked Google which lists more than 31 million
 pages in its index that make up the www.projecthoneypot.org (http://www.projecthoneypot.org/) site.
Project Honey Pot’s pages are relatively simple and asset-light, but
 like many sites today they include significant dynamic content that is
 regularly updated at unpredictable intervals. To deliver near realtime
 updates, the pages need to be database driven.
To maximize performance of the site, from the beginning we used a
 number of different caching layers to store the most frequently accessed
 pages. Lee, whose background is high-performance database design, studied
 reports from services like Google Analytics to understand how visitors moved
 through the site and built caching to keep regularly accessed pages from
 needing to hit the database.
We thought we were pretty smart but, in spite of following the best
 practices of web application performance design, with alarming frequency the
 site would grind to a halt. The culprit turned out to be something
 unexpected and hidden from the view of many people optimizing web
 performance: automated bots.
The average website sees more than 20% of its requests coming from
 some sort of automated bot. These bots include the usual suspects like
 search engine crawlers, but also include malicious bots scanning for
 vulnerabilities or harvesting data. We’ve been tracking this data at
 CloudFlare across hundreds of thousands of sites on our network and have
 found that on average, approximately 15% of web total requests originate a
 web threat of one form or another (http://blog.cloudflare.com/do-hackers-take-the-holidays-off),
 with swings up and down depending on the day (Figure 15-1)
[image: Attack of the holidays]

Figure 15-1. Attack of the holidays

In Project Honey Pot’s case, the traffic from these bots had a
 significant performance impact. Because they did not follow the typical
 human visitation pattern, they were often triggering pages that weren’t hot
 in our cache. Moreover, since the bots typically didn’t fire Javascript
 beacons like those used in systems like Google Analytics, their traffic and
 its impact weren’t immediately obvious.
To solve the problem, we implemented two different systems to deal
 with two different types of bots. Because we had great data on web threats,
 we were able to leverage that to restrict known malicious crawlers from
 requesting dynamic pages on the site. Just taking off the threat traffic had
 an immediate impact and freed up database resources for legitimate
 visitors.
The same approach didn’t make sense for the other type of automated
 bots: search engine crawlers. We wanted Project Honey Pot’s pages to be
 found through online searches, so we didn’t want to block search engine
 crawlers entirely. However, in spite of removing the threat traffic, Google,
 Yahoo, and Microsoft’s crawlers all accessing the site at the same time
 would sometimes cause the web server and database to slow to a crawl.
The solution was a modification of our caching strategy. While we
 wanted to deliver the latest results to human visitors, we began serving
 search crawlers from a cache with a longer time to live (TTL). We
 experimented with the right TTLs for pages, but eventually settled on 1 day
 as being optimal for the Project Honey Pot site. If a page is crawled by
 Google today and then Baidu requests the same page less in the next 24
 hours, we return the cached version without regenerating the page from the
 database.
Search engines, by their nature, see a snapshot of the Internet. While
 it is important to not serve deceptively different content to their
 crawlers, modifying your caching strategy to minimize their performance
 impact on your web application is well within the bounds of good web
 practices.
Since starting CloudFlare (https://www.cloudflare.com/), we’ve taken the caching
 strategy we developed at Project Honey Pot and made it more intelligent and
 dynamic to optimize performance. We automatically tune the search crawler
 TTL to the characteristics of the site, and are very good at keeping
 malicious crawlers from ever hitting your web application. On average, we’re
 able to offload 70% of the requests from a web application — which is
 stunning given the entire CloudFlare configuration process takes about 5
 minutes. While some of this performance benefit comes from traditional
 CDN-like caching, some of the biggest cache wins actually come from handling
 bots’ deep page views that aren’t alleviated by traditional caching
 strategies.
The results can be dramatic. For example, SXSW’s website employs
 extensive traditional web application and database caching systems but was
 able to reduce the load on their web servers and database machines by more
 than 50% (http://blog.cloudflare.com/cloudflare-powers-the-sxsw-panel-picker)
 in large part because of CloudFlare’s bot-aware caching (Figure 15-2).
[image: Bot-aware caching results]

Figure 15-2. Bot-aware caching results

When you’re tuning your web application for maximum performance, if
 you’re only looking at a beacon-based analytics tool like Google Analytics
 you may be missing one of the biggest sources of web application load. This
 is why CloudFlare’s analytics reports the visits from all visitors to your
 site. Even without CloudFlare, digging through your raw server logs, being
 bot-aware, and building caching strategies that differentiate between the
 behaviors of different classes of visitors can be an important aspect of any
 site’s web performance strategy.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/using-intelligent-caching-to-avoid-the-bot-performance-tax/.
 Originally published on Dec 15, 2011.

Chapter 16. A Practical Guide to the Navigation Timing API

Buddy Brewer

Navigation Timing (http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html)
 is an API from the W3C’s Web Performance Working Group (http://www.w3.org/2010/webperf/) that exposes data about the
 performance of your web pages. Navigation Timing is a major new development
 because it enables you to collect fine-grained performance metrics from real
 users, including events that happen before Javascript-based trackers have a
 chance to load. This gives us the ability to directly measure things like
 DNS resolution, connection latency, and time to first byte from
 inside the browsers of real users.
Why You Should Care

I spent the first eight years of my career building synthetic
 monitoring products but I now believe real user monitoring should be your
 preferred source of “The Truth” when it comes to understanding the
 performance of your site. That doesn’t mean you should throw away your
 synthetic monitoring, but today I view it as a useful complement to real
 user monitoring rather than a complete performance solution in
 itself.
Real user monitoring is critical because it provides the most
 accurate portrayal of the true experience across the browsers, locations,
 and networks your users are on. It is the only way to realistically
 measure how your caching decisions impact the user experience. Measuring
 real people (with real personalities and real credit cards) also gives you
 an opportunity to collect performance and business metrics in the same
 context, so you can see what impact load times are having on key business
 metrics like conversion and bounce rates.
The biggest problem we face with Navigation Timing is that there
 isn’t a good system for collecting and analyzing the raw data. In this
 chapter, I’ll describe a solution to this problem that can be quickly
 deployed using free tools.

Collecting Navigation Timing Timestamps and Turning Them into
 Useful Measurements

The window.performance.timing
 object gives all of its metrics in the form of timestamps relative to the
 epoch. In order to turn these into useful measurements, we need to settle
 on a common vocabulary and do some arithmetic. I suggest starting with the
 following:
function getPerfStats() {
 var timing = window.performance.timing;
 return {
 dns: timing.domainLookupEnd - timing.domainLookupStart,
 connect: timing.connectEnd - timing.connectStart,
 ttfb: timing.responseStart - timing.connectEnd,
 basePage: timing.responseEnd - timing.responseStart,
 frontEnd: timing.loadEventStart - timing.responseEnd
 };
}

This gives you a starting point that is similar to the waterfall
 components you commonly see in synthetic monitoring tools. It would be
 interesting to collect this data for a while and compare it to your
 synthetic data to see how close they are.

Using Google Analytics as a Performance Data Warehouse

Next we need a place to store the data we’re collecting. You could
 write your own beacon service or simply encode the values on a query
 string, log them in your web server’s access logs, and write a program to
 parse and analyze the results. However these are time-consuming
 approaches. We’re looking for something we can get up and running quickly
 and at minimal cost. Enter Google Analytics (http://www.google.com/analytics/).
Google Analytics is the most popular free web site analytics system
 on the Internet. While GA automatically provides basic performance metrics
 in its Site Speed Analytics Report (http://analytics.blogspot.com/2011/05/measure-page-load-time-with-site-speed.html),
 it is based on a sample of data and only reports on the total page load
 time. We can improve this by using GA’s event tracking capability to store
 and analyze our fine-grained Navigation Timing metrics:
window.onload = function() {
 if (window.performance && window.performance.timing) {
 var ntStats = getPerfStats();
 _gaq.push(["_trackEvent", "Navigation Timing", "DNS", undefined, ntStats.dns, true]);
 _gaq.push(["_trackEvent", "Navigation Timing", "Connect", undefined, ntStats.connect, true]);
 _gaq.push(["_trackEvent", "Navigation Timing", "TTFB", undefined, ntStats.ttfb, true]);
 _gaq.push(["_trackEvent", "Navigation Timing", "BasePage", undefined, ntStats.basePage, true]);
 _gaq.push(["_trackEvent", "Navigation Timing", "FrontEnd", undefined, ntStats.frontEnd, true]);
 }
};

The preceding code fires five events to transmit our five
 performance measurements. We are waiting until the load event to ensure we
 get a valid measurement of the front end time. If we weren’t concerned
 with front end performance, we could fire the events at any point during
 page load. The final true parameter in
 each call is important to ensure that the events don’t get misinterpreted
 by Google Analytics as user interactions, which would skew bounce rate
 calculations.
For more information see the Google Analytics Event Tracking Guide
 (http://code.google.com/apis/analytics/docs/tracking/eventTrackerGuide.html).

Reporting on Performance in Google Analytics

Now that we’ve collected our Navigation Timing data in Google
 Analytics, it’s time to run some reports. Log into Google Analytics and
 click Content→Events→Top Events. Click on
 Navigation Timing under the Event Category list and
 GA displays a table showing the number of measurements and average value
 for each of our five performance dimensions. This view also lets you plot
 the average value of any of the five dimensions over time (Figure 16-1).
[image: Example Google Analytics Report]

Figure 16-1. Example Google Analytics Report

Limitations

This approach has the advantage of being quick to set up using
 freely available tools and techniques. But as with most things that are
 fast and cheap, it has a few shortcomings:
	Lack of browser coverage
	Navigation Timing isn’t yet available in Safari (desktop or
 mobile) and obviously won’t be available in legacy versions of
 browsers that will be around for some time to come. Testing with a
 subset of browsers is probably fine for measuring conditions before
 the page starts getting parsed, but when you begin looking at
 frontend performance the lack of data from certain browsers has a
 bigger impact.

	No object level data
	Synthetic monitoring still rules the roost here. The W3C
 Resource Timing (http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/ResourceTiming/Overview.html)
 specification promises to provide object level data from real users
 in the future, but as of this writing it isn’t available in any
 popular browsers.

	Limited to the capabilities of the Google Analytics reporting
 system
	With Google Analytics, you have to take what you’re given. You
 can generate and plot averages of measurements, but you won’t get
 percentiles, degradation alerts, or many other features you are
 accustomed to seeing from performance monitoring tools.

Final Thoughts

Now that Navigation Timing is available in the top three browsers,
 everyone should have some form of real user monitoring in their
 performance toolbox. The approach outlined above isn’t perfect but it
 gives you a basic level of coverage at no cost and minimal effort.
My company, Log Normal (http://www.lognormal.com/), is building a premium real user
 monitoring solution that aims to give you the best possible insight into
 real user performance. If you’re interested in learning more, head over to
 our website, and request a beta invitation (http://www.lognormal.com/).
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/a-practical-guide-to-the-navigation-timing-api/.
 Originally published on Dec 16, 2011.

Chapter 17. How Response Times Impact Business

Alexander Podelko

It looks like there is great interest to quantifying performance
 impact on business, linking response time to income and customer
 satisfaction. A lot of information was published, for example, the Aberdeen
 Group report, “Customers
 Are Won or Lost in One Second”, or the Gomez whitepaper “Why Web
 Performance Matters: Is Your Site Driving Customers Away?” There is
 no doubt that there is a strong correlation between response times and
 business metrics and it is very good to have such documents to justify
 performance engineering efforts—and some simplification may be good from the
 practical point of view—but we should keep in mind that the relationship is
 not so simple and linear and there may be cases when it would matter.
Response times may be considered as usability requirements and are
 based on the basic principles of human-computer interaction. As long ago as
 1968, Robert Miller’s paper “Response Time in Man-Computer Conversational
 Transactions” described three threshold levels of human attention. Jakob
 Nielsen believes that Miller’s guidelines are fundamental for human-computer
 interaction (http://www.useit.com/papers/responsetime.html), so they are
 still valid and not likely to change with whatever technology comes next.
 These three thresholds are:
	Users view response time as instantaneous (0.1-0.2 second)

	Users feel they are interacting freely with the information (1-5
 seconds)

	Users are focused on the dialog box (5-10 seconds)

Users view response time as instantaneous
 (0.1-0.2 seconds): Users feel that they directly manipulate
 objects in the user interface. For example, the time from the moment the
 user selects a column in a table until that column highlights or the time
 between typing a symbol and its appearance on the screen. Robert Miller
 reported that threshold as 0.1 seconds. According to Peter Bickford 0.2
 seconds forms the mental boundary between events that seem to happen
 together and those that appear as echoes of each other (http://web.archive.org/web/20040913083444/http://developer.netscape.com/viewsource/bickford_wait.htm).
Although it is a quite important threshold, it is often beyond the
 reach of application developers. That kind of interaction is provided by
 operating system, browser, or interface libraries, and usually happens on
 the client side, without interaction with servers (except for dumb
 terminals, that is rather an exception for business systems today). However
 new rich web interfaces may make this threshold important for consideration.
 For example, if there is logic processing user input so screen navigation or
 symbol typing becomes slow, it may cause user frustration even with
 relatively small response times.
Users feel they are interacting freely with the
 information (1-5 seconds): They notice the delay, but feel that
 the computer is “working” on the command. The user’s flow of thought stays
 uninterrupted. Robert Miller reported this threshold as one-two
 seconds.
Peter Sevcik identified two key factors impacting this threshold
 (http://www.netforecast.com/Articles/BCR%20C26%20How%20Fast%20is%20Fast%20Enough.pdf):
 the number of elements viewed and the repetitiveness of the task. The number
 of elements viewed is, for example, the number of items, fields, or
 paragraphs the user looks at. The amount of time the user is willing to wait
 appears to be a function of the perceived complexity of the request.
Back in 1960s through 1980s, the terminal interface was rather simple
 and a typical task was data entry, often one element at a time. So earlier
 researchers reported that one to two seconds was the threshold to keep
 maximal productivity. Modern complex user interfaces with many elements may
 have higher response times without adversely impacting user productivity.
 Users also interact with applications at a certain pace depending on how
 repetitive each task is. Some are highly repetitive; others require the user
 to think and make choices before proceeding to the next screen. The more
 repetitive the task is the better the response time should be.
That is the threshold that gives us response time usability goals for
 most user-interactive applications. Response times above this threshold
 degrade productivity. Exact numbers depend on many difficult-to-formalize
 factors, such as the number and types of elements viewed or repetitiveness
 of the task, but a goal of two to five seconds is reasonable for most
 typical business applications.
There are researchers who suggest that response time expectations
 increase with time. Forrester research of 2009 (http://www.akamai.com/html/about/press/releases/2009/press_091409.html)
 suggests two second response time; in 2006 similar research suggested four
 seconds (both research efforts were sponsored by Akamai, a provider of web
 accelerating solutions). While the trend probably exists (at least for the
 Internet and mobile applications, where expectations changed a lot
 recently), the approach of this research was often questioned because they
 just asked users. It is known that user perception of time may be
 misleading. Also, as mentioned earlier, response time expectations depends
 on the number of elements viewed, the repetitiveness of the task, user
 assumptions of what the system is doing, and interface interactions with the
 user. Stating a standard without specification of what page we are talking
 about may be overgeneralization.
Users are focused on the dialog box (5-10
 seconds): They keep their attention on the task. Robert Miller
 reported threshold as 10 seconds. Users will probably need to reorient
 themselves when they return to the task after a delay above this threshold,
 so productivity suffers. Or, if we are talking about Web sites, it is the
 threshold when users start abandoning the site.
Peter Bickford investigated user reactions when, after 27 almost
 instantaneous responses, there was a 2 minute wait loop for the 28th time
 for the same operation (http://web.archive.org/web/20040913083444/http://developer.netscape.com/viewsource/bickford_wait.htm).
 It took only 8.5 seconds for half the subjects to either walk out or hit the
 reboot. Switching to a watch cursor during the wait delayed the subject’s
 departure for about 20 seconds. An animated watch cursor was good for more
 than a minute, and a progress bar kept users waiting until the end.
 Bickford’s results were widely used for setting response times requirements
 for web applications.
That is the threshold that gives us response time usability
 requirements for most user-interactive applications. Response times above
 this threshold cause users to lose focus and lead to frustration. Exact
 numbers vary significantly depending on the interface used, but it looks
 like response times should not be more than 8 to 10 seconds in most cases.
 Still, the threshold shouldn’t be applied blindly; in many cases,
 significantly higher response times may be acceptable when appropriate user
 interface is implemented to alleviate the problem.
So while there is a strong correlation between response times and
 business metrics, it is definitely not a linear function. We are touching on
 the psychology of human-computer interaction and it is definitely not a
 single-dimension issue. It is very context-specific and published data
 should be used carefully with understanding what really stands behind them.
 The main practical conclusion is that you may have a point when further
 performance improvement won’t make much sense: you have increasing costs of
 performance improvement with diminishing business value. Although it looks
 like most existing systems haven’t reached this point yet.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/how-response-times-impact-business/.
 Originally published on Dec 17, 2011.

Chapter 18. Mobile UI Performance Considerations

Estelle Weyl

The mobile segment is the fastest growing segment of Internet users.
 If your site is accessible via the mobile browser, you’ll notice that your
 mobile OS stats has been increasing rapidly. Developing with mobile in mind
 will improve user experience on all devices, not just phones. Whether or not
 you design for mobile first (http://www.lukew.com/ff/entry.asp?933), you definitely need
 to consider mobile performance when developing web applications.
Mobile devices may have browsers that are similar to, or even more
 featured, than the browsers on personal computers. Even with more advanced
 browsers, the devices themselves may have similar memory and bandwidth
 constraints to the Pentium III you were using back in 1999. While your users
 may be using similar applications to access your sites, the devices
 themselves create various constraints that you need to consider during
 development.
When it comes to mobile, you need to take battery life, latency,
 memory, and UI responsiveness into consideration throughout the development
 process.
Battery Life

Mobile users are just that: mobile. Unlike desktop computers which
 are tethered to the wall at all times, and even laptop computers which are
 generally used by stationary users, mobile users do not recharge their
 devices throughout the day. Mobile users expect their devices to last at
 least 24 hours between recharging.
While most users realize that calls and GPS usage consume battery
 power, they don’t realize that different websites will drain their battery
 faster than other sites. You may have noticed that CPU usage drains the
 battery on your laptop when unplugged. CPU usage drains the battery on
 your mobile device just as effectively! Manage CPU usage. Avoid repaints.
 Minimize both size and activity of your JavaScript. Always use CSS, rather
 than JavaScript for animations. And, even when supported, never serve
 WebGL to a mobile device.
Anything that makes your laptop churn, warm up, or turn your
 computer’s fan on also drains the battery if you’re not plugged in.
 Remember, your mobile device users are not plugged in!

Latency

Download and upload speeds are NOT equal to the bandwidth marketed
 by ISPs. The quoted MBps is actually the fastest
 connection one could possibly ever hope to get. The speed by which a
 website, including the markup, stylesheets, media, application scripts,
 and third-party scripts, makes it onto our devices impacted almost as much
 by latency as by the bandwidth of the marketing terms of Edge or
 3G.
We won’t dive into latency here. If you want a better understanding
 of latency and bandwidth in general, check out An Engineer’s
 Guide to Bandwidth (http://developer.yahoo.com/blogs/ydn/posts/2009/10/a_engineers_gui/)
 by Tom Hughes-Croucher (http://twitter.com/sh1mmer).
 (It also describes some tips on reducing packets.)
“Mobile users have terrible latency, so a site optimized for mobile
 should really reduce the number of HTTP requests it makes. Note that
 mobile users that surf the Web over WiFi experience far lower latency.” —
 Phillip Tellis (http://www.yuiblog.com/blog/2010/04/08/analyzing-bandwidth-and-latency/)
What is important to know is that latency has a much larger impact
 on download speeds on mobile devices than on tethered devices or devices
 accessing the Internet via WiFi. Actual speeds have more to do with packet
 loss and latency. Air—the stuff packets go thru to get from a mobile
 device to a cell tower—is the main cause of latency. In other words, your
 mobile users using 3/4G already have low bandwidth. Latency makes their
 web surfing experience that much more painful.
Because of latency issues, reducing DNS lookups and HTTP requests is
 vital in the mobile space. This leads us to the first web performance
 optimization anti-pattern: embedding stylesheets and scripts.

Embedding CSS and JS: A Best Practice?

Best practices for speeding up your website (http://developer.yahoo.com/performance/rules.html)
 recommend making your JavaScript and CSS files external and using a
 content delivery network, or CDN. However, external files mean more http
 requests, and using CDNs for static content adds both more DNS look ups
 and more http requests. While embedding CSS and JS in your HTML goes
 against all best practices I’ve ever espoused, if done correctly,
 embedding your scripts on first load can help improve performance. Bing’s
 mobile website is a perfect example (Figure 18-1, Figure 18-2).
[image: First download is 203.7 KB, following download is 15.3]

Figure 18-1. First download is 203.7 KB, following download is 15.3

[image: Screenshot of bing’s mobile website]

Figure 18-2. Screenshot of bing’s mobile website

As pointed by Nicholas Zakas (http://www.slideshare.net/nzakas/mobile-web-speed-bumps),
 when you access m.bing.com (http://m.bing.com/) for
 the first time from your mobile device, the entire site loads as a single
 file. The CSS and JS are embedded. Images are included at data URIs. Bing
 for mobile put all their assets into a single file necessitating only a
 single http request. However, that single file is 200KB. That is huge.
 However, only the first visit to Bing returns such a large file. By taking
 advantage of localStorage and cookies, every subsequent request to
 m.bing.com returns a single file of manageable size. While the first
 request returns a huge file, every subsequent request produces a response
 of about 15KB.
Bing embeds all the files needed into the single HTML file. Using
 client-side JavaScript, Bing extracts the CSS, JS, and images from the
 original download, and saves the CSS, JS, and image data URIs in local
 storage. Bing saves the names of the stored files in a cookie. With every
 subsequent page request, the cookie informs the server which files are
 already saved locally, allowing the server to determine which assets, if
 any, need to be included in the response. In this way, subsequent
 responses only include scripts, styles, and images not saved in local
 storage, if any, along with the HTML.
The steps to reducing the negative effects of latency in a mobile
 site download by making a web app with a single HTTP request for all HTML,
 CSS, JS, and images include the following steps:
	Embedding CSS & JS for first page load

	Extract and put the above embedded files in LocalStorage

	Set cookies with the names of the extracted embedded
 files

	On subsequent requests, check the cookies server side

	Only embed new and missing scripts based on cookie values

	Load files from localStorage resources on load

Note: If you’re wondering why this method may be more efficient than
 simply downloading and caching files: not only does this method improve
 performance by avoiding the latency of multiple DNS lookups and HTTP
 requests, but mobile devices have more limited cache, with iOS having no
 persistent memory.
Pulling data out of localStorage is a performance hit (http://calendar.perfplanet.com/2011/localstorage-read-performance/).
 When it comes to mobile, however, it is less of a hit than latency,
 especially latency with limited bandwidth.

Memory

Most performance recommendation focus on improving I/O speeds. It is
 not sufficient to only focus on how long it takes for responses to
 complete in the mobile space.When it comes to mobile and the limited
 memory on most mobile devices, we have to also manage what happens
 on the device. As developers, we generally develop on
 our personal computers where memory is virtually unlimited. Mobile users,
 however, are running our sites on devices with very limited memory.
Memory on personal computers has increased almost exponentially over
 the past 2 decades. 256MB may have been more than enough to run all
 software on a Pentium II in 1997. In 2011, however, base model (i.e.,
 “slow”) computers come with at least 2GB of RAM. An iPhone 3G has 128MB of
 memory. The original iPad has 256MB. The faster HTC Inspire has 768MB. The
 norm for new, high-end smart phones is around 512MB of RAM with 1GHz
 processors. Mobile devices have software written in 2011, but run on
 devices that have the memory of a 1997 desktop.
While 512MB may seem large enough to run any web application, in
 managing memory it is important to remember that the browser (and web
 application) is not the only process consuming the limited RAM. The
 operating system, background processes, and other open applications
 (operating system and user initiated) are all sharing the memory. Mobile
 devices are generally running many native applications as well as user
 installed apps, with or without the users knowledge. Running applications
 are many, including user initiated apps like Twitter, GPS, Facebook, apps
 that came with the device but may be running unbeknownst to the user, like
 Calendar and Media, and applications downloaded by the user, like Angry
 Birds. Native OS applications and all apps with user notifications turned
 on continue to run in the background. A device with 512MB of RAM likely
 has less than 200MB of available memory. In managing memory, remember that
 your web application’s most active users are likely also the ones using
 other mobile applications. When testing, test with real world devices. Run
 apps like Twitter, Facebook, and Mail with notifications on all your
 testing devices.
The greater the number of applications running on a device, the less
 memory available for your web application. And, even if none of those
 applications are memory hogs, the sheer number of apps running in the
 background creates high memory usage conditions. High memory usage causes
 a slow UI, and when the browser is out of memory, it is out of memory. The
 mobile browser will generally close or crash to free up memory. You need
 to manage the memory requirements of your web applications to ensure they
 don’t slow or crash the mobile browser.
Optimize Images

Other than avoiding CSS expressions (YSlow) and Optimize images
 (PageSpeed), the performance optimization guidelines have to do with I/O
 and not what happens once the site is on the device. While gzipping
 files helps improve download speed it does not help with memory
 management. Once the asset is on the device, it is no longer compressed.
 Images use up memory. Images over 1024px cause greater memory issues.
 Reduce your image file sizes by serving up the image with the dimensions
 at which it will be displayed, and by compressing the image at that
 size. There are a few tools at your disposal. ImageAlpha (http://pngmini.com/) can help convert your transparent
 pngs into 8-bit pngs with full transparency. The Sencha.io (http://www.sencha.com/learn/how-to-use-src-sencha-io/)
 proxy determines what size image the user’s device requires and will
 shrink (not grow) images before sending them to the client.
While reducing image file size has always been important for web
 performance, when it comes to mobile, we can’t focus only on the I/O
 file size. You have to consider how large the image file is uncompressed
 as memory is limited. All images use up memory. Composited images use
 GPU memory instead of CPU memory. So, while that may be a neat trick to
 free up some memory, composited images use up four times the memory of
 their non-composited counterparts, so use this trick sparingly.
I recommend keeping your web application files at use at any one
 time (JS, CSS, HTML, and images currently displayed) to under
 80MB.

Weigh the Benefits of CSS

CSS can help reduce the number of HTTP requests and reduce the
 size of the requests that are made. With gradients, border-radius, box
 and text shadow, and border images, you can greatly reduce the number of
 HTTP requests. The benefits of CSS is that effects are:
	Requiring fewer HTTP requests

	Updatable

	Scalable

	Transitionable

	Animatable

However, painting these effects to the screen has associated
 costs. Sometimes pngs, gifs, and jpegs render faster and use less memory
 than CSS effects. Any CSS features that is transformable is generally
 evaluated at each reflow and repaint, using up memory. PNG, JPEG, and
 GIF images, unlike CSS-generated images, are rendered and transitioned
 as bitmaps, often using less memory (but more HTTP requests). For
 example, shadows, especially inset shadows, are kept in memory and are
 repainted even if obfuscated by another element with a higher z-index.
 And, while a radial gradient may take 140 characters of CSS, the browser
 will paint and keep in memory the entire gradient, not just the section
 of gradient that is displayed in the viewport. I recommend using linear
 gradients and native rounded corners over images, but weigh the
 performance of radial gradients and inset shadows against the cost of
 downloading image.
Weigh the benefits of CSS. While CSS images are generally the
 preferred solution over using PhotoShop and uploading exported pictures,
 some CSS features have hidden costs due to memory usage and rendering
 slowness.

GPU Benefits and Pitfalls

On some devices, by transitioning or transforming an element into
 a 3D space, the element is hardware accelerated (http://www.html5rocks.com/en/tutorials/speed/html5/#toc-hardware-accell).
 By transferring the rendering of the element from the CPU to the GPU,
 you can greatly improve performance, especially when animating. However,
 translate3D is not a panacea! Hardware-accelerated elements are
 composited. Composited elements take up four times the amount of memory.
 Using GPU instead of CPU will improve performance up to a point. While
 hardware-accelerated elements use up less RAM, they do use up video
 memory, so use the div { transform: translateZ(0); }
 trick sparingly.

Viewport: Out of Sight Does Not Mean Out of Mind

The mobile phone viewport is the viewable screen area. Unlike your
 desktop browser where you scroll content, on mobile devices unless the
 viewport height and width are set, and scaling is disabled, the viewport
 is fixed and the user moves the content underneath. The viewport is a
 “port” through which your users view your content. Why is this a
 perfermance issue? Most don’t realize that the content that is drawn to
 the page, even if it is not visible in the current viewport, is still in
 memory.

Minimize the DOM

Every time there is a reflow, every DOM node is measured. The CPU
 on your desktop can handle a virtually endless number of nodes (it will
 eventually crash). The memory on mobile devices is limited and garbage
 collection differs so is not fully reliable. To improve performance,
 minimize the number of nodes. Instead of allocating DOM nodes and
 destroying them (or forgetting to destroy them), pool and reuse your
 nodes. For example, if you’re creating a card game, create no more than
 52 nodes, reusing pooled nodes instead of creating a new node every time
 a card is added back into the game.
As you know from JavaScript best practices, touching the DOM with
 a read or write is expensive. Cache DOM lookups and store them in
 variables.
Also, batch DOM queries and DOM manipulations separately,
 minimizing DOM manipulations by updating content fully outside of the
 DOM before updating the DOM.
When it comes to managing memory, image optimization, CSS
 rendering, and DOM node count are not the only points of concern. These
 are just points that are not necessarily considered in the desktop space
 when focusing on performance.

UI Responsiveness

Mobile browsers are single threaded (http://www.nczonline.net/blog/2010/08/10/what-is-a-non-blocking-script/).
 In that respect, mobile browsers are similar to desktop browsers. Mobile
 devices are different though because of the limitations of the device. It is always important to manage
 your JavaScript. Bloated and inefficient JavaScript is even more
 problematic on mobile devices because of battery usage and memory.
There is more to UI responsiveness on mobile than just
 single-threaded-ness. Because of latency, the browser may appear to hang
 after selecting an action because it can take a while for the round trip.
 It is important to provide user feedback within 200ms after an action is
 taken. If you are showing or hiding an element, there’s no need to provide
 feedback, since the app will be responsive. However, provide feedback to
 indicate that your site is responding if your user has to wait for a round
 trip for a UI update.
In addition, because the mobile device is a touch device, and
 “double tap” is a potential user action, mobile devices actually waits for
 potential double taps before responding to user action. On iOS devices
 there is a default 300ms wait after the touchend event before any action
 is taken. Because of this, you may want to co-opt default events like the
 tap with by adding an event listener to the touchend event to make your
 application more responsive.

Summary

The preceding is not an exhaustive list of topics to consider in
 ensuring good mobile UI performance, but should be a good start. Remember
 that mobile is the fastest increasing segment of our users. Don’t ignore
 them.
As developers, we’ve tested our websites to make sure we’ve followed
 the points and goals recommended by Yahoo’s YSlow, and Google’s PageSpeed.
 We’ve tested and tested… using our desktop browsers. We’ve assumed the web
 performance optimization guidelines improves web application performance
 for all browsers, whether our users are accessing the site on their
 laptop, iPad, Android phone, or even their Wii. And, to a great extent, it
 does. But remember that the well known and heeded optimization guidelines
 aren’t our only concern when it comes to mobile.
Do continue testing your website, but make sure to test on mobile
 devices. Emulators are not simulators. The emulator does not simulate
 memory constraints and does not simulate the device with 100 apps open.
 Test on real devices in real scenarios (turn the WiFi and test with many,
 many unclosed apps hanging in the background).
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/mobile-ui-performance-considerations/.
 Originally published on Dec 18, 2011.

Chapter 19. Stop Wasting Your Time Using the Google Analytics Site Speed
 Report

Aaron Peters

Since May 2011 the Site Speed report in Google Analytics shows how
 fast your pages load for your real visitors. Google Analytics measures page
 load time by using the Navigation Timing API (http://w3c-test.org/webperf/specs/NavigationTiming/) in all
 browsers that support it (IE9+, Chrome, FF7+, Android4+ (http://caniuse.com/#search=navigation)) and falls back to
 Google Toolbar data for older versions of IE and Firefox. Having page speed
 data in GA is great, because you can easily correlate it to bounce rate and
 conversion, resulting in great, actionable insight that down the road leads
 to a faster site, happier users, and more revenues. But if a significant
 percentage of your visitors use Firefox 7 or 8, you may very well be wasting
 a lot of time interpreting the Site Speed data and even more time taking the
 wrong actions.
Problem: A Bug in Firefox Implementation of the Navigation Timing
 API

Firefox implemented the Navigation Timing API in version 7, which
 was released on September 27, 2011. From that day in that browser, there
 has been a bug in the implementation of that API. You can read all about
 it in the bug ticket (https://bugzilla.mozilla.org/show_bug.cgi?id=691547) on
 Bugzilla. The problem is that the value for window.performance.timing.navigationStart can be
 too low, which means it is too far in the past. Google Analytics uses a
 simple formula to calculate page load time: loadTime = window.performance.timing.loadEventStart -
 window.performance.timing.navigationStart. If
 navigationStart is too low, the page load time will be
 too high.
I see this bug affecting page load times in GA Site Speed report a
 lot. On one of my client’s site, 27% of visitors use Firefox 7 or 8 and
 24% use Chrome 15 or 16. The Site Speed report shows that the average page
 load time for Firefox users is 7.23 seconds and for Chrome it is 3.12
 seconds. When zooming in on individual pages and dates, I often see that
 all the big spikes (30, 50, or 100+ seconds load times) are coming from
 Firefox. Never Chrome, never IE, always Firefox.
At least one commercial web application performance monitoring
 service provider has taken action on this bug. New Relic confirmed to me
 that they don’t use the Navigation Timing API in Firefox to calculate page
 load time because it is not accurate.
So, what can you do to not have this bug mess up your data in
 GA?

Solution: Filter Out the Firefox Timings in Google
 Analytics

In Google Analytics, create a Custom Report and filter out all data
 from Firefox visitors (Figure 19-1).
[image: Custom Report in Google Analytics]

Figure 19-1. Custom Report in Google Analytics

Good News: The Bug Was Fixed in Firefox 9

Mozilla fixed the bug in Firefox 9, which was released on December
 20, 2011 (https://wiki.mozilla.org/Releases#Firefox_9). Now that most
 visitors have upgraded to Firefox 12, you can remove the filter(s) in
 Google Analytics.

Closing Remark

You may already have known about this issue. In the Google Analytics
 Online Help, on this page (http://support.google.com/analytics/bin/answer.py?hl=en&answer=1205784),
 there is a note almost at the bottom of the page mentioning the Firefox
 bug. Google implies here that the bug has been impacting load times in the
 Site Speed report since November 16. I have no idea why. As far as I know,
 the bug has been in FF 7 from day one (September 27) and exists in Firefox
 8 as well. In my opinion, the Google Analytics team should have written a
 blog post about this, and not merely mentioned it in the Online Help,
 where many GA users probably never look.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/stop-waisting-your-time-using-the-google-analytics-site-speed-report/.
 Originally published on Dec 19, 2011.

Chapter 20. Beyond Web Developer Tools: Strace

Tony Gentilcore

Rich developer tools are available for all modern web browsers. They
 are typically easy to use and can provide all the information necessary to
 optimize web pages. It is rare to need to go beyond the unified
 networking/scripting/rendering view of the Web Inspector’s Timeline panel
 (http://www.webkit.org/blog/1091/more-web-inspector-updates/#timeline_panel).
But they aren’t always perfect: a tool may be missing information, may
 disagree with another tool, or may just be incorrect. For instance, a recent
 bug (https://bugs.webkit.org/show_bug.cgi?id=58354)
 occasionally caused two Navigation Timing (https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html)
 metrics to be incorrect in Chrome (and the Inspector).
When these rare situations arise, great engineers are able to go
 beyond a browser’s developer tools to find out exactly what the browser is
 telling the operating system to do. On Linux, this source of ultimate truth
 can be found using strace. This tool can trace each
 system call made by a browser. Since every network and file access entails a
 system call, and this is where browsers spend a lot of their time, it is
 perfect for debugging many types of browser performance issues.
What About Other Platforms?

In this post, I introduce strace because the syntax is clean and no
 setup is required. But most systems have an equivalent tool for tracing
 system calls. Mobile developers will be happy to hear that strace is fully
 supported by Android. OS X users will find dtrace
 offers more powerful functionality at the expense of less intuitive syntax
 (unfortunately not ported to iOS). Finally, Event Tracing for
 Windows (ETW), while harder to set up, supports a friendly
 GUI.

Getting Started

To use it: open a terminal and invoke strace at the command prompt. This invocation
 prints all system calls while starting Google Chrome to google.com:
$ strace -f -ttt -T google-chrome
 http://www.google.com/
I’ve added -f to follow forks, -ttt to print the timestamp of each call
 and -T to print the duration of each
 call.

Zeroing In

If you run the preceding command, you’ll probably be overwhelmed by
 the amount of stuff going on in a modern web browser. To filter down to
 something interesting, try using the -e
 argument. For examining only file or network access, try -e trace=file or -e
 trace=network. The man page (http://linux.die.net/man/1/strace) has many more
 examples.

Example: Local Storage

As a concrete example, let’s trace local storage performance in
 Chrome. First I opened a local storage quota test page (http://arty.name/localstorage.html). Then I retrieved the
 Chrome browser processes’ ID from Chrome’s task manager (Wrench > Tools
 > Task Manager) and attached strace to that process using the -p switch.
$ strace -f -T -p _<process id>_ -e
 trace=open,read,write
The output shows the timestamps, arguments and return value of every
 open, read, and write system call. The man page for each call
 explains the arguments and return values. The first call of interest to us
 is this open:
open("/home/tonyg/.config/google-chrome/Default/Local
 Storage/http_arty.name_0.localstorage-journal", O_RDWR|O_CREAT, 0640) =
 114 <0.000391>
This shows us that Chrome has opened this file for reading and
 writing (and possibly created it). The name of the file is a big clue that
 this is where local storage is saved for arty’s web page. The return
 value, 114, is the file descriptor,
 which will identify it in later reads and writes. Now we can look for
 read and write calls which operate on fd 114, for
 example:
write(114,
 "\0\0\00020\0001\0002\0003\0004\0005\0006\0007\0008\0009\0000\0001\0002\0003\0"...,
 1024 <unfinished ...> <...
 write resumed>) = 1024 <0.425476>
These two lines show a 1,024 byte write of the data beginning with
 the string above to the local storage file (114). This write happened to
 take 425ms. Note that the call is split into two lines with possibly
 others in between because another thread preempted it. This is common for
 slower calls like this.

We’ve Only Scratched the Surface

There are options for dumping the full data read/written from the
 network or filesystem. Running with -c
 displays aggregate statistic about the time spent in the most common
 calls. I’ve also found that some practical python scripting can quickly
 parse these traces into a variety of useful formats.
This brief introduction hardly does this tool justice. I merely hope
 it provides the courage to explore deeper into the stack the next time you
 run into a tricky performance problem.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/beyond-web-developer-tools-strace/.
 Originally published on Dec 20, 2011.

Chapter 21. Introducing mod_spdy: A SPDY Module for the Apache HTTP
 Server

Bryan McQuade and Matthew Steele

At Google, we strive to make the whole Web fast. Our work in this area
 includes Page Speed
 Online, mod_pagespeed, Page Speed Service, Google Chrome, making
 TCP faster, and the SPDY protocol,
 among other efforts. The SPDY (pronounced “SPeeDY”) protocol allows websites
 to be transmitted more efficiently to the web browser, resulting in page
 load time improvements (http://blog.chromium.org/2009/11/2x-faster-web.html) of as
 much as 55%. To make it easier for websites to realize the benefits of SPDY,
 we’re releasing the source code for mod_spdy, an open-source
 module for the Apache HTTP server.
Getting Started with mod_spdy

mod_spdy is still in early beta, and is not yet recommended for
 deployment in production environments. If you’d like to test out mod_spdy
 and help us to make it better, please consult our Getting
 Started guide. We hoped to make it production-ready sometime in
 early 2012. Stay tuned by subscribing to our discussion
 forum.

SPDY and Apache

mod_spdy is an Apache 2.2-compatible module that provides SPDY
 support for Apache HTTP servers. Multiplexing is an important performance
 feature of SPDY which allows for multiple requests in a single SPDY
 session to be processed concurrently, and their responses interleaved down
 the wire. However, due to the serialized nature of the HTTP/1.1 protocol,
 the Apache HTTP server provides a one-request-per-connection architecture.
 Apache’s connection and request processing normally happens in a single
 thread, like shown on Figure 21-1.
[image: Apache’s connection and request processing]

Figure 21-1. Apache’s connection and request processing

This works well for HTTP, but it presents a problem for multiplexed
 protocols like SPDY because in this flow, each connection can only process
 one request at a time. Once Apache starts processing a request, control is
 transferred to the request handler and does not return to the connection
 handler until the request is complete.
To allow for SPDY multiplexing, mod_spdy separates connection
 processing and request processing into different threads. The connection
 thread is responsible for decoding SPDY frames and dispatching new SPDY
 requests to the mod_spdy request thread pool. Each request thread can
 process a different HTTP request concurrently. The diagram on Figure 21-2 shows the high-level architecture.
[image: High-level architecture]

Figure 21-2. High-level architecture

To learn more about how mod_spdy works within Apache, consult our
 wiki (http://code.google.com/p/mod-spdy/wiki/HowItWorks).

Help to Improve mod_spdy

You can help us to make mod_spdy better by doing compatibility and
 performance testing, by reviewing the code (http://code.google.com/p/mod-spdy/source/browse/trunk/src#src%2Fmod_spdy%2Fcommon)
 and sending us feedback on the mod_spdy discussion list (https://groups.google.com/group/mod-spdy-discuss). We look
 forward to your contributions and feedback!
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/introducing-mod_spdy-a-spdy-module-for-the-apache-http-server/.
 Originally published on Dec 21, 2011.

Chapter 22. Lazy Evaluation of CommonJS Modules

Tobie Langel

About two years ago, the mobile Gmail team posted an article focused
 on reducing the startup latency (http://googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html)
 of their HTML5 application. It described a technique which enabled bypassing
 parsing and evaluation of JavaScript until it was needed by placing it
 inside comments. Charles Jolley (http://www.okito.net/) of SproutCore (http://sproutcore.com/) fame was quick to jump on the idea.
 He experimented with it (http://blog.sproutcore.com/faster-loading-through-eval/) and
 found that similar performance gains could be achieved by putting the code
 inside of a string rather then commenting it. Then, despite promises (http://www.okito.net/post/8409610016/on-sproutcore-2-0) of
 building it into SproutCore, this technique pretty much fell into oblivion.
 That’s a shame because it’s an interesting alternative to lazy loading that
 suits CommonJS modules really well.
Close Encounters of the Text/JavaScript Type

To understand how this technique works, let’s look at what happens
 when the browser’s parser encounters a script element with a valid src attribute. First, a request is sent to the
 server. Hopefully the server responds and the browser proceeds to download
 (and cache) the requested file. Once these steps are completed, the file
 still needs to be parsed and evaluated (Figure 22-1).
[image: Uncached JavaScript resource fetching, parsing, and evaluation]

Figure 22-1. Uncached JavaScript resource fetching, parsing, and
 evaluation

For comparison, Figure 22-2 shows the same request
 hitting a warm HTTP cache.
[image: Cached JavaScript resource fetching, parsing, and evaluation]

Figure 22-2. Cached JavaScript resource fetching, parsing, and
 evaluation

What’s worth noticing here—other than the obvious benefits of
 caching—is that parsing and evaluation of the JavaScript file still happen
 on every page load, regardless of caching. While these steps are blazing
 fast on modern desktop computers, they aren’t on mobile. Even on recent,
 high-end devices. Consider the graph in Figure 22-3,
 which compares the cost of parsing and evaluating jQuery on the iPhone 3,
 4, 4S, iPad, iPad 2, a Nexus S, and a MacBook Pro. (Note that these
 results are indicative only. They were gathered using the test hosted at
 lazyeval.org (http://lazyeval.org/), which at this
 point is still very much alpha.)
[image: Parsing and evaluating jQuery]

Figure 22-3. Parsing and evaluating jQuery

Remember that these times come on top of whatever networking costs
 you’re already facing. Furthermore, they’ll be incurred on every
 single page load, regardless of whether or not the file was
 cached. Yes, you’re reading this right. On an iPhone 4, parsing and
 evaluating jQuery takes over 0.3 seconds, every single time the
 page is loaded. Arguably, those results have substantially
 improved with more recent devices, but you can’t count on your whole user
 base owning last generation smartphones, can you?

Lazy Loading

A commonly suggested solution to the problem of startup latency is
 to load scripts on demand (for example, following a user interaction). The
 main advantage of this technique is that it delays the cost of
 downloading, parsing, and evaluating until the script is needed. Note that
 in practice—and unless you can delay all your
 JavaScript files—you’ll end up having to pay round trip costs twice (Figure 22-4).
[image: Lazy-loading JavaScript]

Figure 22-4. Lazy-loading JavaScript

There are a number of downsides to this approach, however. First of
 all, the code isn’t guaranteed to be delivered: the network or the server
 can become unavailable in the meantime. Secondly, the speed at which the
 code is transferred is subject to the network’s quality and can thus vary
 widely. Lastly, the code is delivered asynchronously. These downsides
 force the developer to build both defensively and with asynchronicity in
 mind, irremediably tying the implementation to it’s delivery mechanism in
 the process. Unless the whole codebase is built on these premises—which is
 probably something you want to
 avoid—deferring the loading of a chunk of code becomes a non-trivial
 endeavor.

Lazy Evaluation to the Rescue

Lazy evaluation avoids these issues altogether by focusing on
 delaying the parsing and evaluation stages only. The script can be either
 bundled with the initial payload or inlined. It is prevented from being
 evaluated during initial page load by being either commented-out or
 escaped and turned into a string (“stringified”?). In both cases, the
 content is simply evaluated when required (Figure 22-5).
[image: Lazy evaluation]

Figure 22-5. Lazy evaluation

And again, for comparison, hitting a warm HTTP cache is shown on
 (Figure 22-6)
[image: Lazy evaluation of a cached script]

Figure 22-6. Lazy evaluation of a cached script

As the graph of an iPad 2 parsing and evaluating jQuery shows (Figure 22-7), both options consistently out-perform regular
 evaluation by at least a factor of ten. Similar tenfold performance
 improvements were observed on all tested devices.
[image: Parsing and evaluating jQuery in Pad 2]

Figure 22-7. Parsing and evaluating jQuery in Pad 2

Commented-out code has slightly better performance indices than
 “stringified” code does. It can however be quite complicated to extract
 when not inlined. It is also more brittle: some phone operators are known
 to strip out JavaScript comments (http://www.mysociety.org/2011/08/11/mobile-operators-breaking-content/).
 “Stringified” code, on the other hand is both more robust and a lot easier
 to access, that’s why its preferred.

Building Lazy Evaluation into CommonJS Modules

It turns out that the CommonJS module’s (http://wiki.commonjs.org/wiki/Modules/1.1)
 extra level of indirection (the require
 call) makes it an ideal candidate for lazy evaluation. Since lazy
 evaluation is synchronous, the whole process can be made completely
 transparent to the developer. Enabling lazy evaluation becomes a one-liner
 in a config file, not a large architectural change. Even better, the
 dependency graph built through static analysis can be leveraged to
 automatically lazy evaluate all the selected module’s dependencies.
Implementation-wise, enabling lazy evaluation of CommonJS modules
 requires modifying the runtime so that it correctly evaluates and wraps
 modules which are transported in their “stringified” form. In modulr
 (https://github.com/tobie/modulr-node/), my CommonJS
 module dependencies resolver, this is done like so (https://github.com/tobie/modulr-node/blob/v0.6.1/assets/modulr.sync.js#L26-29):
if (typeof fn === 'string') {
 fn = new Function('require', 'exports', 'module', fn);
}

This implies lazy evaluated modules be escaped (https://github.com/tobie/modulr-node/blob/v0.6.1/lib/collector.js#L56-61)
 and surrounded by quotes (https://github.com/tobie/modulr-node/blob/v0.6.1/lib/collector.js#L76)
 at build time on the server-side, before transport.
The initial results are promising, but at this point, it is merely
 work in progress. Future plans for modulr include enabling full
 minification of it’s output (just minifying the output won’t do as it
 would miss modules transported as strings), instrumenting the runtime to
 be able to gather perf data and experimenting with a Souders-inspired per
 module localStorage cache (http://www.stevesouders.com/blog/2011/09/26/app-cache-localstorage-survey/).
 If there’s interest, I’d also like to automate lazyeval.org (http://lazyeval.org/) to allow it to measure performance
 gain of applying this technique onto other JavaScript libraries and
 reporting those results to browserscope.org (http://www.browserscope.org/).
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/lazy-evaluation-of-commonjs-modules/.
 Originally published on Dec 22, 2011.

Chapter 23. Advice on Trusting Advice

Billy Hoffman

We all know that third-party content means you no longer control all
 the factors which affect page load time. A sleek, well-tuned, and optimized
 site can still deliver a poor user experience because of problems with
 third-party content. Steve Souders even used to publish a series of blog
 posts (http://stevesouders.com/p3pc/) where he
 analyzed and rated the performance of third-party content snippets (http://www.stevesouders.com/blog/2010/02/17/performance-of-3rd-party-content/).
 (Dear Steve, please bring this back, it was awesome).
 Mathias Bynens took this one step further, showing how to additionally
 optimize Google’s markup and JavaScript snippets (http://mathiasbynens.be/notes/async-analytics-snippet).
The surprising lesson to learn from Steve and Mathias is that if you
 want a fast site and third-party widgets, then you need
 to examine the third-party content for performance problems, even
 when a snippet comes from a trusted authority on web performance.
 So this post isn’t really going to be about third-party content. It’s going
 to be about trusting advice.
Last week a Zoompf customer, the online precious metal exchange
 GoldMoney (http://goldmoney.com/), contacted Support
 about an issue our technology flagged on their site. We had detected an
 issue with Google’s JavaScript library for their Google+ button. Zoompf WPO
 was suggesting the customer do something which was contradicting Google’s
 advice. And that was enough to give GoldMoney pause.
The specific issue that Zoompf was flagging was that Google’s plusone.js library was being referenced using SSL
 from a non-SSL page (http://zoompf.com/blog/2010/03/zoompf-check-300-or-gateways-got-a-problem).
 SSL is important because, if used properly (https://www.owasp.org/images/4/40/Ivan_Ristic_-Breaking_SSL-_OWASP.pdf),
 it provides communications privacy and integrity. However, a CSS file, or
 JavaScript library, or even a Favicon that is referenced using a SSL-enabled
 hyperlink from an HTML page which is not served over SSL most likely does
 not contain information that needs protecting. Since SSL provides these
 security features with a cost of a decrease in web performance (as discussed
 later), it is important to only use SSL when you have to.
In this case, the Google plusone.js
 button library does not contain personal or private information. Zoompf’s
 suggestion was to instead retrieve the Google+ library using http:// instead of https://. Here is what Google’s documentation has
 to say (emphasis added):
The +1 button code requires a script from Google’s servers. You may
 get this error by including the script via http:// on a page that’s loaded via https://. We recommend using
 https:// to include the script: <script type="text/javascript"
 src="https://apis.google.com/js/plusone.js"></script>.
 If your web page uses https://, some
 browsers and verification tools will show an error when any assets on the
 page are called via http://. If your site serves pages via https://, make
 sure that the +1 button code on those pages also uses https://. (In fact,
 it’s fine to use https:// in the button code for all
 pages, even if they are only served via
 http://.)

The “error” that Google is trying to avoid is a mixed content warning.
 It looks like the one shown in Figure 23-1:
[image: Mixed content warning]

Figure 23-1. Mixed content warning

A mixed content warning happens when an HTML page is served with HTTPS
 references using HTTP. Due to some serious design flaws (http://code.google.com/p/browsersec/wiki/Part2) in modern
 browsers, mixed content can allow privileged information like the DOM,
 cookies, referrer URLs, session IDs, and more to be access by untrusted
 parties. Browsers usually display a confusing dialog box or just fail to
 render the page, depending on its security settings. Google’s solution to
 avoid all is to just always request the plusjone.js file using SSL, even when SSL is not
 needed.
But using SSL, just for the fun of it, is not a good idea. SSL impacts
 web performance negatively in several ways:
	HTTPS connections take longer to create than regular HTTP
 connections (http://www.semicomplete.com/blog/geekery/ssl-latency.html).
 Additional requests may need to be sent to different servers to validate
 the X.509 certificate chain (http://www.belshe.com/2011/04/20/certificate-validation-example-facebook/)
 before the SSL connection can begin, causing all pending HTTPS
 connections to that server to block.

	Establishing an HTTPS connection is computationally expensive. The
 browser and server must do a large amount of work during the SSL
 handshake (http://www.bsc.es/media/389.pdf) and
 more work encrypting and decrypting data (http://www.eecs.umich.edu/~taustin/papers/ASPLOS00-crypto.pdf)
 as it is sent. While computers are always getting faster SSL overhead is
 still sufficiently large that an entire market for SSL acceleration
 (http://en.wikipedia.org/wiki/SSL_acceleration)
 products exists.

	Because HTTPS runs on a separate TCP/IP port than HTTP, your
 browser cannot use an existing HTTP connection as an HTTPS connection,
 even if you are talking to the same hostname.

	Using SSL means inline devices like shared caching servers will
 not see the traffic and cannot be used to improve performance.

	Browser caching of content served over SSL is more complicated
 than content over HTTP (http://blogs.msdn.com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-cross-domain-https-content.aspx).
 Depending on the browser and configuration, content may only be cached
 in RAM and discarded quickly, or require conditional requests not
 usually needed.

In short, SSL is great but it’s not free. Don’t use it if you don’t
 have to.
The solution here is to actually use a protocol-relative URL (http://blog.httpwatch.com/2010/02/10/using-protocol-relative-urls-to-switch-between-http-and-https/).
 A protocol-relative URL is a way of referencing a resource on a different
 host name without specifying what protocol to use to retrieve. So instead of
 src="https://apis.google.com/js/plusone.js" you
 can use src="//apis.google.com/js/plusone.js". Consider an
 HTML page which uses a protocol-relative URL to reference plusone.js. If the page was served using https://, then plusone.js is requested using https://. Security is maintained and no mixed
 content security warning will appear. If the page was served using http://, then the library will be served using
 HTTP. No performance hit happens and no caching issues come up
 either.
Now, I know what you might be thinking: “Did Stoyan seriously allow
 some guy a spot on the Performance Calendar to talk about protocol relative
 URLs for eleven paragraphs?” Well yes, I did talk about something cool that
 many people are not familiar with and that provides an elegant solution to a
 surprising common problem. (In fact, there tons of other stuff to talk about
 with protocol relative URLs, like a non-standard IE6 configuration which
 causes a weird certificate error, or the double downloading bug in IE7 and
 IE8. So count yourself lucky!) But as I said earlier, the magic of
 protocol-relative URLs is not the point of this chapter.
The point of chapter is that you need to be careful about performance
 advice. Not just where you get it, but what it says to do. Google is
 awesome. They are one of the strongest supporters of web performance in the
 industry today. But no one is perfect. Mathias improved upon their Google
 Analytics snippet. Their Google Doodles are always ludicrously high quality
 JPEGs that needlessly waste bandwidth (https://twitter.com/zoompf/status/144920292446306305). And
 sometimes, like in this case, their advice is not just right. As the Buddha
 once said:
Believe nothing, no matter where you read it, or who has said it,
 not even if I have said it, unless it agrees with your own reason and your
 own common sense.

You should always examine a code snippet from a third-party before
 including it in your site, regardless of who wrote it, even if Steve Souders
 or Douglas Crockford or John Resig wrote it, to make sure it does not
 violate any best practices that you already know.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/advice-on-trusting-advice/.
 Originally published on Dec 23, 2011.

Chapter 24. Why You’re Probably Reading Your Performance Measurement Results
 Wrong (At Least You’re in Good Company)

Joshua Bixby

One of my favorite books of 2011 was Thinking,
 Fast and Slow by the Nobel Prize-winning psychologist
 Daniel Kahneman. In his book, Kahneman identifies the two systems of thought
 that are constantly warring inside our heads:
	System 1, which is fast and intuitive

	System 2, which is slow and logical

Almost invariably, System 1 is flawed, yet we helplessly rely on it.
 We also have a painful tendency to think we’re applying System 2 to our
 thinking, when in fact it’s just an intellectually tarted up version of
 System 1.
Kahneman offers a nifty little test of this thinking:
A certain town is served by two hospitals. In the larger hospital
 about 45 babies are born each day, and in the smaller hospital about 15
 babies are born each day. As you know, about 50% of all babies are boys.
 However the exact percentage varies from day to day. Sometimes it may be
 higher than 50%, sometimes lower. For a period of 1 year, each hospital
 recorded the days on which more than 60% of the babies born were boys.
 Which hospital do you think recorded more such days?

	The larger hospital

	The smaller hospital

	About the same (that is, within 5% of each other)

The correct answer is B, the smaller hospital. But as Kahneman notes,
 “When this question was posed to a number of undergraduate students, 22%
 said A; 22% said B; and 56% said C. Sampling theory entails that the
 expected number of days on which more than 60% of the babies are boys is
 much greater in the small hospital than in the large hospital, because the
 large sample is less likely to stray from 50%. This fundamental notion of
 statistics is evidently not part of people’s repertoire of
 intuition.”
But these are just a bunch of cheese-eating undergrads, right? This
 doesn’t apply to our community, because we’re all great intuitive
 statisticians? What was the point of that computer science degree if it
 didn’t allow you a powerful and immediate grasp of stats?
Thinking about Kahneman’s findings, I decided to conduct a little test
 of my own to see how well your average friendly neighborhood web performance
 expert is able to analyze statistics. (Identities have been hidden to
 protect the innocent.) Of course, you’re allowed to call into question the
 validity of my test, given its small sample size. I’d be disappointed if you
 didn’t.
The Methodology

I asked 10 very senior and well-respected members of our community
 to answer the hospital question, above. I also asked them to comment on
 the results of this little test.
The RUM results shown on Figure 24-1 capture one
 day of activity on a specific product page for a large e-commerce site for
 IE9 and Chrome 16. What conclusions would you draw from this table?
[image: RUM results]

Figure 24-1. RUM results

The Results

If you had to summarize this table, you would probably conclude
 “Chrome is faster than IE9.” That’s the story you take away from looking
 at the table, and you intuitively are drawn to it because that’s the part
 that’s interesting to you. The fact the study was done using a specific
 product page, captures one day of data, or contains 45 timing samples for
 Chrome is good background information, but isn’t relevant to the overall
 story. Your summary would be the same regardless of the size of the
 sample, though an absurd sample size (i.e., results captures from two data
 points or 6 million data points) would probably grab your
 attention.
Hospital question results: On the
 hospital question, we were better than the undergrads… but not by much. 5
 out of 10 people I surveyed got the question wrong.
RUM results: I was amazed at the
 lack of focus on the source of the data. Only two people pointed out that
 the sample size was so low that no meaningful conclusions could be drawn
 from the results, and that averages were useless for this type of
 analysis. The other eight all focused on the (assumed) fact that Chrome is
 faster than IE9, and they told me stories about the improvements in Chrome
 and how the results are representative of these improvements.

Conclusions

The table and description contain information of two kinds: the
 story and the source of the story. Our natural tendency is to focus on the
 story rather than on the reliability of the source, and ultimately we
 trust our inner statistical gut feel. I am continually amazed at our
 general failure to appreciate the role of sample size. As a species, we
 are terrible intuitive statisticians. We are not adequately sensitive to
 sample size or how we should look at measurement.

Why Does This Matter?

RUM is being adopted in the enterprise at an unprecedented speed. It
 is becoming our measurement baseline and the ultimate source of truth. For
 those of us who care about making sites faster in the real world, this is
 an incredible victory in a long protracted battle against traditional
 synthetic tests (http://www.webperformancetoday.com/2011/07/05/web-performance-measurement-island-is-sinking/).
I now routinely go into enterprises that use RUM. Although I take
 great satisfaction in winning the war, an important battle now confronts
 us.

Takeaways

1. We need tools that warn us when our
 sample sizes are too small. We all learned sampling techniques
 in high school or university. The risk of error can be calculated for any
 given sample size by a fairly simple procedure. Don’t use your judgement
 because it is flawed. Not only do we need to be vigilant but we need to
 lobby for the tool vendors to help us. Google, Gomez, Keynote, and others
 should notify us when sample sizes are too small—especially given how
 prone we are to error.
2. Averages are a bad measure for RUM
 results. RUM results can suffer from significant outliers,
 which make averages a bad measure in most instances. Unfortunately,
 averages are used in almost all of the off-the-shelf products I know. If
 you need to look at one number, look at medians or 95th percentile
 numbers.
3. Histograms are the best way to graph
 data. With histograms you can see the distribution of
 performance measurements and, unlike averages, you can spot outliers that
 would otherwise skew your results. For example, I took a dataset of
 500,000 page load time measurements for the same page. If I went with the
 average load time across all those samples, I’d get a page load time of
 ~6600msec. Now look at the histogram (Figure 24-2) for
 all the measurements for the page. Visualizing the measurements in a
 histogram like this is much much more insightful and tells us a lot more
 about the performance profile of that page.
[image: Histogram visualization]

Figure 24-2. Histogram visualization

(If you’re wondering, the median page load time across the data set
 is ~5350msec. This is probably a more accurate indicator of the page
 performance and much better than the average, but is not as telling as the
 histogram that lets us properly visualize the performance profile. As a
 matter of fact, here at Strangeloop, we usually look at both median and
 the performance histogram to get the full picture.)
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/good-company/.
 Originally published on Dec 24, 2011.

Chapter 25. Lossy Image Compression

Sergey Chernyshev

Images are the one of the oldest items on the Web (right after HTML)
 and still so little has changed since we started to use them. Yes, we now
 got JPEG and PNG in addition to original GIF, but other then that, there
 were not many improvements to make them better.
That is, if you don’t count lots of creative talent that went into
 creating them, so much in fact that it created the Web as we know it now,
 shiny and full of marketing potential! Without images we wouldn’t have the
 job of building the Web, and without images we wouldn’t worry about web
 performance because there would be no users to care about experience and no
 business people to pay for improvements.
That being said, images on our websites are the largest payload sent
 back and forth across the wires of the Net taking a big part in slowing down
 user experience.
According to HTTPArchive (Figure 25-1, http://httparchive.org/interesting.php#bytesperpage), JPEGs,
 GIFs and PNGs account for 63% of overall page size and
 overall image size has 0.64 correlation with overall page load time (Figure 25-2, http://httparchive.org/interesting.php#onLoad).
[image: Average bytes by content type]

Figure 25-1. Average bytes by content type

[image: Correlation to load times]

Figure 25-2. Correlation to load times

Still we can safely assume that we are going to have only
 more images and they will only grow bigger, along with the screen
 resolutions on desktop computers.
Lossy Compression

There are a few different ways to optimize images including
 compression, spriting, picking appropriate format, resizing and so on.
 There are many other aspects of handling images that include postloading,
 caching, URL versioning, CDNs and etc.
In this article I wanted to concentrate on lossy
 compression where quality characteristics of the
 images are changed without significant visual differences for
 the user, but with significant changes to
 performance.
By now most of us are familiar with loss-less compression, thanks to
 Stoyan (http://www.phpied.com/) and Nicole (http://www.stubbornella.org/) who first introduced us to
 image optimization for web performance with an awesome on-line tool called
 Smush.it (http://www.smushit.com/ysmush.it/) (now
 run by Yahoo!). There are a few other tools now that have similar
 functionality for PNG, for example.
With smush.it, image quality is preserved as is with only
 unnecessary meta-data removed, it often saves up to 30-40% of file size.
 It is a safe choice and images will be intact when you do that. This seems
 the only way to go, especially for your design department who believe that
 once an image comes out of their computers it is sacred and must be
 preserved absolutely the same.
In reality, quality of the image is not set in stone—JPEG was
 invented as a format that allowed for size reduction at a price of
 quality. Web got popular because of images, it wouldn’t be here if they
 were in BMP, TIFF, or PCX formats that were dominating prior to
 JPEG.
[image: JPEG quality settings]

Figure 25-3. JPEG quality settings

This is why we need to actually start using this feature of JPEG
 where quality is adjustable. You probably even saw it in settings if you
 used export functionality of photo editors—Figure 25-3
 is a screenshot of quality adjusting section of “export for web and
 devices” screen in Adobe Photoshop.
Quality setting ranges from 1 to 100 with 75 usually being enough
 for all photos with some of them looking good enough even with the value
 of 30. In Photoshop and other tools, you can usually see the differences
 using your own eyes and adjust appropriately, making sure quality never
 degrades below certain point, which mainly depends on the image.
Resulting image size heavily depends on the original source of the
 image and visual features of the picture, sometimes saving up to 80% of
 the size without significant degradation.
I know these numbers sound pretty vague, but that is exactly the
 problem that all of us faced when we needed to automate image
 optimization. All images are different and without having a
 person looking at them, it’s impossible to predict if
 fixed quality settings will damage the images or simply not save them
 often enough. Unfortunately having a human editor in the middle of the
 process is costly, time-consuming, and sometimes simply impossible, for
 example when UGC (user-generated content) is used on the site.
I was bothered by this problem since I saw smush.it doing great job
 for lossless compression. Luckily, this year, two tools emerged that allow
 for automation of lossy image compression: one open source tool was
 developed specifically for WPO purposes by my former co-worker, Ryan
 Flynn, called ImgMin (https://github.com/rflynn/imgmin), and another is a
 commercial tool called JPEGmini (http://www.jpegmini.com/) which came out of consumer photo
 size reduction.
I can’t speak for JPEGmini, their technology (http://www.jpegmini.com/main/technology) is private with
 patents pending, but ImgMin uses a simple approach of trying different
 quality settings and then picking the result that has the picture
 difference within a certain threshold. There are a few other simple
 heuristics, so for more details you can read ImgMin’s documentation on
 Github (https://github.com/rflynn/imgmin#readme).
Both of the tools work pretty well, providing different results with
 ImgMin in its simplicity being less precise. JPEGmini offers dedicated
 server solution with cloud service coming soon.
In Figure 25-4, you can see my Twitter user pic
 and how it was automatically optimized using
 loss-less (smush.it) and loss-y (JPEGmini) compression. Notice no
 perceivable quality degradation between original and optimized images.
 Results are astonishingly similar on larger photos as well.
[image: Original (10028 bytes), lossless (9834 bytes, 2% savings), lossy (4238 bytes, 58% savings)]

Figure 25-4. Original (10028 bytes), lossless (9834 bytes, 2% savings), lossy
 (4238 bytes, 58% savings)

This is great news as it will finally allow us to automate
 lossy compression, which was always a manual process—now you
 can rely on a tool and reliably build it into your image processing
 pipeline!
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/lossy-image-compression/.
 Originally published on Dec 25, 2011.

Chapter 26. Performance Testing with Selenium and JavaScript

JP Castro

Nowadays many websites employ real user monitoring tools such as New
 Relic (http://newrelic.com/features/real-user-monitoring) or Gomez
 (http://www.compuware.com/application-performance-management/real-user-monitoring.html)
 to measure performance of production applications. Those tools provide a
 great value by giving real time metrics and allow engineers to identify and
 address eventual performance bottlenecks.
This works well for live deployed applications, but what about a
 staged setup? Engineers might want to look at the performance before
 deploying to production, perhaps while going through a QA process. They may
 want to find possible performance regressions or make sure a new feature is
 fast. The staged setup could reside on a corporate network however,
 restricting the use of RUM tools mentioned earlier.
And what about an application hosted in a firewalled environment? Not
 all web applications are publicly hosted on the Internet. Some are installed
 in private data centers for internal use only (think about an intranet type
 of setup).
How can you watch application performance in these types of scenarios?
 In this chapter, I’ll explain how we leveraged open source software to build
 our performance test suite.
Recording Data

The initial step is to record data. For that purpose we use a bit of
 custom code that records time spent on multiple layers: front end, web
 tier, backend web services, and database.
Our web tier is a traditional server-side MVC application that
 generates an HTML page for the browser (we use PHP and the Zend Framework,
 but this could apply to any other technology stack).
First, we store the time at which the
 server side script started, right before we invoke the MVC
 framework:
<?php
// store script start time in microseconds
define('START_TIME', microtime(TRUE));
?>

Secondly when the MVC framework is ready to buffer the page back to
 the browser, we insert some inline javascript code which includes:
	The captured start time (“request time”)

	The current time (“response time”)

	The total time spent doing backend calls (How do we know this
 information? Our web service client keeps track of the time spent
 doing webservice calls; and with each webservice response, the backend
 include the time spent doing database calls).

In addition to those metrics, we include some jquery code to
 capture:
	The document ready event time

	The window onload event time

	The time of the last click (which we store in a cookie for the
 next page load)

In other words, in in our HTML document (somewhere toward the end),
 we have a few lines of javascript that look like this:
<script>
Perf = Perf || {};
Perf.requestTime = <?= START_TIME ?>;
Perf.responseTime = <?= microtime(TRUE) ?>;
Perf.wsTime = <?= $wsTime ?>;
Perf.dbTime = <?= $soapTime ?>;
$(document).ready(function(){
 Perf.readyTime = new Date().getTime()/1000;
});
$(window).bind("load", function(){
 Perf.renderTime = new Date().getTime()/1000;
 Perf.clickTime = getLastClickTime();
});
$(window).bind("unload", function(){
 storeLastClickTime(new Date().getTime()/1000);
});
</script>

Finally, we insert a couple more javascript lines in the head tag,
 so that we can record an approximate time at which the page was received
 by the browser. As Alois Reitbauer pointed out in Timing the Web (http://calendar.perfplanet.com/2011/timing-the-web/), this
 is an approximation as it does not account for things like DNS
 lookups.
<head>
<script>
Perf = Perf || {};
Perf.receivedTime = new Date().getTime()/1000;
</script>
[...] more code [...]
</head>

Now that we have some metrics for a given request in the browser,
 how do we retrieve them so that we can examine them?

Collecting and Analyzing the Data

This is where Selenium comes into play. We use Selenium to simulate
 a person using our web application. Again this is technology agnostic as
 you can control Selenium from various languages (we use PHP and PHPUnit,
 but you could do the same with python or ruby).
Selenium has an API that you can call to invoke some javascript
 snippet and get back the output of the executed code. This API is called
 getEval.
Within our test code, we first open a page we want to analyze, then
 use the getEval API to retrieve the
 metrics we recorded and finish with storing the metrics for later
 consumption.
class ExampleSeleniumTest extends PHPUnit_Extensions_SeleniumTestCase
{
 public function testLoadSomePage()
 {
 // Open our web application
 $this->open('/');
 // Click a link to load the page we want to analyze
 $this->clickAndWait('Some Page')
 // Use getEval API to retrieve the metrics we recorded
 $metrics = $this->getEval('window.Perf');
 // Call our internal method that will store the metrics for later use
 // Note: we include a reference to the page or to what use case we are testing
 $this->saveMetrics('some-page', $metrics);
 }
}

We use this pattern for multiple use cases in our application. Also
 note that while I used the example of a full page load, our framework also
 supports collecting metrics for AJAX interactions, which we do quite a lot
 (for instance remotely loading content triggered by a user click).
One of the great things about using Selenium is multiple browser
 support. We have a set of virtual machines running various versions of
 Internet Explorer and Firefox. This enables our performance test suite to
 run across multiple platforms.
The last piece of the puzzle is analyzing the data we collected. For
 this purpose, we built a small database-driven application that reads the
 metrics we collected and plots them. We can apply filters such as specific
 browser vendor or version, specific use case, specific version of our
 software, etc. We can then look at the complete data over time.
Figure 26-1 shows the logic we use to plot the
 data we collected.
[image: Web request times]

Figure 26-1. Web request times

Sample Results

Figure 26-2 is an example of chart generated after
 collecting data.
[image: Web timings sample]

Figure 26-2. Web timings sample

In the above sample, we can observe a client-side performance issue
 in Sample 1, some inefficient code in the backend web services in Sample 2
 and a slow database query in Sample 3.

Benefits

When we built this framework in 2009, we had multiple goals in
 mind:
	Monitor performance between our software release and catch
 eventual regressions

	Monitor performance of upcoming features

	Monitor the scalability of the software as we add more
 users/more data

Looking back, this tool yielded some great results and here are a
 few examples:
	Discovery of bugs in our javascript code that would result in
 much higher load times in IE

	Found issues in the way we were manipulating HTML with
 javascript and were able to improve the responsiveness of the impacted
 user interactions

	Eliminated bottlenecks in our backend web services as we raised
 the amount of data: we were able to pinpoint exactly where the problem
 was (inefficient backend code, slow database queries, etc.)

Closing Words

In conclusion, I’d like to look into some ideas we have in mind to
 improve our setup.
I’d like to use the tool more often. We currently run the test suite
 several times during our development process and before each releases, but
 this is a manual process. It would be great to tie in the test suite with
 our Jenkins CI builds. A different idea would be to ship the tool as part
 of our product and run it in production, providing us with some analytics
 on real world usage of our platform.
As I mentioned, we are using virtual machines to test on multiple
 platforms. This adds a bit of overhead in terms of maintenance. Maybe we
 should look at the hosted Selenium solution from Sauce labs?
When we built the product, the performance landscape was a bit
 different and there are tools today that were not available back then.
 Would we see any benefits if we were to leverage WebPageTest, boomerang, etc.?

Credits

I’d like to acknowledge Bill Scott for his presentation on RUM
 at Netflix, which inspired us to build our framework.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/performance-testing-with-selenium-and-javascript/.
 Originally published on Dec 26, 2011.

Chapter 27. A Simple Way to Measure Website Performance

Pavel Paulau

Not so long ago, folks from Neustar demonstrated at Velocity
 Conference the possibility of effective client-side performance
 testing using only free, open-source solutions. They introduced bundle of
 tools, such as Selenium and BrowserMob
 Proxy. The first one is intended to automate emulation of user
 interactions, the second one is a good for metric capturing. That was really
 inspiring presentation.
The greatest feature of their approach was the fact that all
 performance data are consolidated into a single container—HTTP Archive
 (HAR).
 It makes further processing of test results more controlled and predictable
 due to strict format standardization.
However, there were no advanced tools for dealing with HAR files at
 that moment. HAR Viewer is wonderful but not suitable for common testing
 workflow. ShowSlow is instead a perfect example of a repository for
 automated performance measurement. Unfortunately, handling of HAR files is
 not the strongest trait of it. So a new project HAR Storage (http://code.google.com/p/harstorage/) appeared.
Concept

The testing process is rather straightforward. All you need is to
 create a Selenium script that describes common user actions. Then you arm
 your script with methods to control a proxy server via its API. It not
 only means capturing and storing streams of HTTP requests, but also
 customization of network characteristics (e.g., bandwidth and latency) and
 traffic filtering. The last point is extremely important for analysis of
 the impact of third-party components on overall site performance.
Finally you can send HAR of each page or asynchronous event to local
 repository—HAR Storage. Actually, HAR Storage (http://harstorage.com/) is a simple web application built
 on Pylons and MongoDB. It allows extracting detailed metrics from HAR
 files, storing test results, and visualizing all gathered data.

Advantages

The key advantage is high flexibility. With BrowserMob Proxy, you
 can test a website in any modern browser that supports custom proxy
 settings. You can even deal with mobile browsers.
Selenium in turn makes it possible to simulate any sophisticated
 user scenario. Therefore you can analyze both the speed of single page and
 the performance of complex business transactions.
HAR Storage has cool features too. For instance, you can compare
 results of different tests. This is a great help for analyzing third-party
 party content or for investigating the relationship between site speed and
 network quality (Figure 27-1).
[image: Performance Trends]

Figure 27-1. Performance Trends

At least with HAR Storage you can continuously track the performance
 of your website or application at any development phase.

Limitation

Nothing is perfect in this world. BrowserMob proxy runs outside the
 browser and on the one hand has minimal impact on its performance; on the
 other hand, internal browser events are inaccessible. Thus you can’t
 estimate performance of rendering or JavaScript parsing. Tools like dynaTrace AJAX Edition
 are more suitable for such tasks.
This approach may seem too complicated to some people. In fact it
 isn’t. WebPagetest.org
 lets you simply put in the URL and enjoy the result. But if you need real
 cross-browser testing, measurements over time, and implementation of
 complex use cases—this method will work for you.

Conclusion

Web performance is still critical aspect, and performance testing is
 still a challenge. Frameworks based on Selenium, BrowserMob Proxy, and HAR
 Storage may become an ultimate solution for many growing projects.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/a-simple-way-to-measure-website-performance/.
 Originally published on Dec 27, 2011.

Chapter 28. Beyond Bandwidth: UI Performance

David Calhoun

Introduction

Traditionally, older performance studies were concerned with
 speeding up things on the server side, but a few years back, Steve Souders
 famously started research on the idea that the main performance bottleneck
 happened on the client side. In particular, in the way bytes were pushed
 to the client from the server. “Reduce HTTP requests” has become a general
 maxim for speeding up frontend performance, and that is a concern that’s
 even more relevant in today’s world of mobile browsers (often running on
 networks that are an order of magnitude slower than broadband
 connections).
These studies have been concerned with latency and bandwidth, and
 this still continues to be the focus of performance research today. You
 are probably already familiar with the standard HTTP waterfall chart
 (Figure 28-1).
[image: HTTP waterfall chart]

Figure 28-1. HTTP waterfall chart

However, we’re slowly starting to see a shift to other frontend
 concerns for each component of the frontend stack (HTML/CSS/JS). In
 particular, there’s been a great focus on JavaScript performance, a fact
 attested to by the popularity of jsPerf (http://jsperf.com/) and the rise of JavaScript
 profilers.

After the Page Loads: The UI Layer

This is all well and good, but we're missing something equally
 important: the presentation (UI) layer. Although some UI performance tips
 have been disseminated throughout the community for years, they are often
 as an aside, with bandwidth and latency concerns much more at the
 forefront of research. For instance, where CSS is even a concern, the
 focus is on reducing CSS filesize (http://www.stevesouders.com/blog/2010/07/03/velocity-top-5-mistakes-of-massive-css/).
 But what about expensive CSS selectors? Or CSS that may cause the page to
 lag horribly as the user scrolls?
One of the reasons UI performance has been downplayed is perhaps
 because of its inability to be quantified. As engineers, it's a bit
 disconcerting to say that as a result of many hours of improvements, a
 website “feels” more responsive, or scrolls more smoothly. Without some
 sort of metrics, it's difficult to determine where the rendering
 bottlenecks are, or even if we're making progress when trying to smooth
 them out.

UI Profilers

Luckily we're just now beginning to get access to tools that let us
 measure these UI bottlenecks. “Reflows” and “repaints” are now more than
 abstract mysterious happenings—they are now something we can point to on a
 chart.
At the time of writing, CSS profilers are available in Chrome's
 Developer Tools, as well as Opera's debugger (Dragonfly). Figure 28-2 shows the new face of performance
 profiling.
[image: Opera profiler]

Figure 28-2. Opera profiler

Other than targeting expensive CSS selectors with these new
 profilers, we also have access to a few more useful tools for UI
 performance debugging. The following is just a few of these.
CSS Stress Test

CSS
 Stress Test (by Andy Edinborough) is a bookmarklet that figures
 out which CSS declarations are
 slowing down the page by selectively removing each one, then
 subsequently timing the scroll speed performance. The result is a
 bookmarklet that's a bit jarring to watch, but seems quite useful in
 tracking down rogue CSS bottlenecks. Note to self: apparently applying
 border-radius to a ton of elements isn't a very good idea,
 performance-wise.

CSS Profilers

A CSS
 profiler is coming to a browser near you, which will give us
 much more insight into the actual speed of the CSS we write, moving us
 forward from vague and mysterious rules. Is the universal selector (*)
 really that expensive? Are border-radius, box shadow, and rgba values
 really performance drains? Now we have ways to measure those
 concerns!

CSS Lint

CSS Lint (by Nicole
 Sullivan and Nicholas Zakas) is a set of best practices (https://github.com/stubbornella/csslint/wiki/Rules) (you
 may not agree with them all, but that's OK), including a few helpful
 rules that target UI performance specifically. Run your stylesheets
 through and it'll give you some helpful tips on what exactly to
 improve.

DOM Monster

DOM Monster
 (by Amy Hoy and Thomas Fuchs) is intended as a JavaScript profiler
 companion, but remember that the complexity of the DOM (Document Object
 Model) will also affect UI repaints and reflows. Reducing that bloat is
 better for data down the wire, as well as for both UI rendering and
 JavaScript DOM access.

Perception of Speed

If you think about it, all of performance is concerned with how
 performance is perceived by the user. While we're mostly concerned with
 real performance improvements, we have to recognize the limitations and
 realize that we don't always have control over bandwidth, latency, or the
 speed of a user's browser. Where we've already done our best elsewhere,
 here we sometimes have to fake it. “Fake it 'till you make it!”
What do I mean by faking it? In one circumstance this might mean
 preloading content where possible, which is what Gmail mobile does before
 the user clicks on the “Show more messages…” button. After the user
 clicks, the content has actually already been loaded. It's just a UI
 sleight-of-hand to show the updated new content, and this happens
 extremely fast. It doesn't really matter how long it took to make the
 original HTTP request, because either way the experience is the same for
 the user, and their perception is that the interface
 is extremely fast. This is just one example of a great marriage of good
 user experience design with good engineering.
“Faking it” might also mean simply being responsive and quickly
 showing the user a visual indicator after they take an action. It doesn't
 matter how well you optimize HTTP requests or how fast the connection
 is—if you don't give an indication after the user performs an action, they
 will likely repeat their action (a click or another tap on the
 touchscreen) and come away with just a bitter memory of a sluggish
 interface.
Another example of a clever technique here is Flickr, after they
 moved their architecture over from YUI 2 to YUI 3 (see Ross Harmes talk
 about it here: http://www.youtube.com/watch?v=05C0GQPKA4g). Though the
 Flickr team took advantage of combining HTTP requests, the delay of the
 initial load meant that a user might start taking actions before the
 JavaScript was fully loaded, parsed, and executed. Because Flickr
 progressively enhances their webpages, this means that without JavaScript
 available, the user gets taken to fallback pages intended for users with
 JavaScript disabled. And this is precisely where these quick users ended
 up, because they had taken actions before JavaScript had a chance to
 override these URLs intended for fallbacks.
Their solution was to load a mini-library in the page to capture all
 events on the page and queue them back to be replayed later. Most
 importantly, this small library also provides a UI (a loading spinner) to
 give the user feedback after taking actions, even if it means nothing had
 happened, short of the event being queued up to be replayed later when the
 JavaScript is ready. Again, we see that sometimes it's just important to
 fake it ’til you make it!

Tidbits

As I mentioned before, UI performance tips have been circulating for
 quite a while, but they have been somewhat downplayed compared to latency
 and bandwidth issues.
Here’s a collection of tidbits to give you an idea of some of the
 concerns that are out there:
	Sprites
 save HTTP requests, but large sprites hog up memory.

	Pure CSS3 images? Hmm, maybe later (Chapter 11, by Marcel Duran)
 discusses how pure CSS3 images are awesome but perhaps impractical, as
 they trade less bandwidth for decreased rendering speed (it turns out
 that images render faster).

	Microsoft’s
 FishIE Tank is a nice benchmark to test Canvas rendering
 speed, measured in frames-per-second. You may even find that tweaking
 the viewport tag on mobile devices may speed up rendering times
 (http://29a.ch/2011/5/27/fast-html5-canvas-on-iphone-mobile-safari-performance).

	CSS
 gradients are faster than SVG backgrounds.

	Older WebKit browsers had scrolling/rendering lag with large box
 shadows (https://bugs.webkit.org/show_bug.cgi?id=22102). Not all
 CSS3 stuff is ready for prime time, and sometimes images might be the
 way to go—better UI performance at the expense of more data down the
 wire.

	CSS radial gradients may be awesome and save the request of an
 image, but they might have rendering problems in some browsers,
 particularly Android (http://code.google.com/p/android/issues/detail?id=767).
 We save bandwidth by not requesting an image, but the user experience
 suffers.

	Avoid IE CSS filters, as they have a performance hit.

	Use hardware-accelerated CSS animations over JavaScript
 animations where possible, but be aware of limitations (maximum sizes
 of 1024x1024px in WebKit). If you do end up needing to animate from
 JavaScript, try using requestAnimationFrame
 as opposed to setTimeout/setInterval.

Call for a Focus on UI Performance

Performance is more than pushing bytes over a fence into a browser!
 Much of the user’s experience happens after a page loads, so we should
 still be concerned about the performance of a “loaded page” experience.
 This applies to our JavaScript, but equally as important is our CSS and
 its impact on scroll speed and overall UI responsiveness.
This might mean that we are sometimes better off performance-wise
 using images instead of new CSS fanciness that’s not yet ready for
 primetime, and it’s up to us to weigh the cost and understand the
 tradeoff! It also helps us appreciate new CSS features or fancy demos
 while remaining skeptical of their practical use.
More than anything, if you struggled with a UI performance issue and
 overcame it, the world could learn from your experience! When you blog
 about it, you save other folks some time—time that could be spending with
 their families, which is definitely more important. What we need now is
 more articles from folks like Marcel
 and Estelle
 who understand that performance goes beyond simply saving bytes.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/beyond-bandwidth-ui-performance/.
 Originally published on Dec 28, 2011.

Chapter 29. CSS Selector Performance Has Changed! (For the Better)

Nicole Sullivan

Great articles, like Dave Hyatt’s “Writing Efficient CSS”, helped
 developers adapt to a rudimentary selector matching landscape. We learned
 from Steve Souders (and others) that selectors match from right to left, and
 that certain selectors were particularly arduous to match and should best be
 avoided. For example, we were told that descendant selectors were slow,
 especially when the right-most selector matched many elements on the page.
 All this was fantastic information when we had none, but as it turns out,
 times have changed. Thanks to some amazing work by Antti Koivisto there are
 many selectors we don’t need to worry about anymore.
Antti Koivisto contributes code to WebKit core and recently spent some
 time optimizing CSS selector matching. In fact, after finishing his work, he
 said:
My view is that authors should not need to worry about optimizing
 selectors (and from what I see, they generally don’t), that should be the
 job of the engine.

Wow! That sounds fantastic to me. I’d love to be able to use selectors
 in a way that makes sense for my architecture and let the rendering engine
 handle selector optimization. So, what did he do? Not just one thing, rather
 he created multiple levels of optimization—we’ll take a look at four
 optimizations in particular:
	Style sharing

	Rule hashes

	Ancestor filters

	Fast path

Style Sharing

Style sharing allows the browser to figure out that one element in
 the style tree has the same styles as something it has already figured
 out. Why do the same calculation twice?
For example:
<div>
 <p>foo</p>
 <p>bar</p>
</div>

If the browser engine has already calculated the styles for the
 first paragraph, it doesn’t need to do so again for the second paragraph.
 A simple but clever change that saves the browser a lot of work.

Rule Hashes

By now, we all know that the browser matches styles from right to
 left, so the rightmost selector is really important. Rule hashes break a
 stylesheet into groups based on the rightmost selector. For example the
 following stylesheet would be broken into three groups (Table 29-1).
a {}
div p {}
div p.legal {}
#sidebar a {}
#sidebar p {}

Table 29-1. Selector groups
	a	p	p.legal
	 a {}

	 div p {}

	 div p.legal {}

	 #sidebar a {}

	 #sidebar p {}

	

When the browser uses rule hashes, it doesn’t have to look through
 every single selector in the entire stylesheet, but through a much smaller
 group of selectors that actually have a chance of matching. Another simple
 but very clever change that eliminates unnecessary work for every single
 HTML element on the page!

Ancestor Filters

The ancestor filters are a bit more complex. They are
 Probability filters which calculate the likelihood
 that a selector will match. For that reason, the ancestor filter can
 quickly eliminate rules when the element in question doesn’t have required
 matching ancestors. In this case, it tests for descendant and child
 selectors and matches based on class, id, and tag. Descendant selectors in
 particular were previously considered to be quite slow because the
 rendering engine needed to loop through each ancestor node to test for a
 match. The bloom filter to the rescue.
A bloom filter is a data structure which lets you test if a
 particular selector is a member of a set. Sounds a lot like selector
 matching, right? The bloom filter tests whether a CSS rule is a member of
 the set of rules that match the element you are currently testing. The
 cool thing about the bloom filter is that false positives are possible,
 but false negatives are not. That means that if the bloom filter says a
 selector doesn’t match the current element, the browser can stop looking
 and move on the the next selector. A huge time saver! On the other hand,
 if the bloom filter says the current selector matches, the browser can
 continue with normal matching methods to be 100% certain it is a match.
 Larger stylesheets will have more false positives, so keeping your
 stylesheets reasonably lean is a good idea.
The ancestor filter makes matching descendant and child selectors
 very fast. It can also be used to scope otherwise slow selectors to a
 minimal subtree so the browser only rarely needs to handle less efficient
 selectors.

Fast Path

Fast path re-implements more general matching logic using a
 non-recursive, fully inlined loop. It is used to match selectors that have
 any combination of:
	Descendant, child, and sub-selector combinators

	Tag, ID, class, and attribute component selectors

Fast Path improved performance across such a large subset of
 combinators and selectors. In fact, they saw a 25% improvement overall
 with a two times improvement for descendant and child selectors. As a
 plus, this has been implemented for querySelectorAll in addition to style
 matching.
If so many things have improved, what’s still slow?

What Is It Still Slow?

According to Antti, direct and indirect adjacent combinators can
 still be slow, however, ancestor filters and rule hashes can lower the
 impact as those selectors will only rarely be matched. He also says that
 there is still a lot of room for webkit to optimize pseudo classes and
 elements, but regardless they are much faster than trying to do the same
 thing with JavaScript and DOM manipulations. In fact, though there is
 still room for improvement, Antti says:
Used in moderation pretty much everything will perform just fine
 from the style matching perspective.

I like the sound of that. The take-away is that if we can
 keep stylesheet size sane, and be
 reasonable with our selectors, we don’t need to contort
 ourselves to match yesterday’s browser landscape. Bravo, Antti!
Want to learn more? Check out Paul Irish’s presentation on CSS
 performance (http://dl.dropbox.com/u/39519/talks/cssperf/index.html).
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/css-selector-performance-has-changed-for-the-better/.
 Originally published on Dec 29, 2011.

Chapter 30. Losing Your Head with PhantomJS and confess.js

James Pearce

We yearn for powerful and reliable ways to judge the performance and
 user experience of web applications. But for many years, we’ve had to rely
 on a variety of approximate techniques to do so: protocol-level synthesis
 and measurement, cranky browser automation, fragile event scripting—all
 accompanied with a hunch that we’re still not quite
 capturing the behavior of real users using real browsers.
Enter one of this year’s most interesting open source projects:
 PhantomJS (http://phantomjs.org/). Thanks to Ariya
 Hidayat (http://ariya.ofilabs.com/), there’s a
 valuable new tool for every web developer’s toolbox, providing a headless,
 yet fully-featured, WebKit browser that can easily be launched off the
 command line, and then scripted and manipulated with JavaScript.
I’ve used PhantomJS to underpin confess.js (https://github.com/jamesgpearce/confess), a small library
 that makes it easy to analyze web pages and apps for various purposes. It
 currently has two main functions: to provide simple page performance
 profiles, and to generate app cache manifests. Let’s take them for a quick
 spin.
Performance Summaries

Once installed, the simplest thing to do with confess.js is generate
 a simple performance profile of a given page. Using the PhantomJS browser,
 the URL is loaded, its timings taken, and a summary output emitted—all
 with one single command:
$> phantomjs confess.js http://calendar.perfplanet.com/2011/ performance
Here, the confess.js script is launched with the PhantomJS binary,
 directed to go to the PerfPlanet blog page, and then expected to generate
 something like the following:
Elapsed load time: 6199ms
 # of resources: 30

 Fastest resource: 408ms; http://calendar.perfplanet.com/wp-content/themes/wpc/style.css
 Slowest resource: 3399ms; http://calendar.perfplanet.com/photos/joshua-70tr.jpg
 Total resources: 69080ms

Smallest resource: 2061b; http://calendar.perfplanet.com/wp-content/themes/wpc/style.css
 Largest resource: 8744b; http://calendar.perfplanet.com/photos/joshua-70tr.jpg
 Total resources: 112661b; (at least)
Nothing revolutionary about this simple output—apart from the fact
 that of course, under the cover, this is coming from a real WebKit
 browser. We’re getting solid scriptable access to every request and
 response that the browser is making and receiving, without having to make
 any changes to the page under test.
So already you might be able to imagine there’s a lot more that can
 be done with this instrumentation. I had some lighthearted fun getting
 confess.js (with a verbose flag) to emit waterfall charts of a page and
 its resources, for example—all in technicolor ASCII-art:
 1|------- |
 2| ------------ |
 3| ----------- |
 4| --------------------- |
 5| ----------- |
 6| ------- |
 7| ------- |
 8| ------- |
 9| ------- |
 10| ---------- |
 11| ---------------------- |
 12| ---- |
 ...

 1: 1679ms; -b; http://cnn.com/
 2: 3115ms; -b; http://www.cnn.com/
 3: 2716ms; -b; http://z.cdn.turner.com/...css/hplib-min.css
 4: 5465ms; -b; http://z.cdn.turner.com/...5/js/hplib-min.js
 5: 2952ms; -b; http://z.cdn.turner.com/.../globallib-min.js
 6: 1681ms; 21b; http://content.dl-rms.co...r/5721/nodetag.js
 7: 1698ms; -b; http://icompass.insightexpressai.com/97.js
 8: 1743ms; -b; http://ad.insightexpress...px?publisherID=97
 9: 1706ms; -b; http://js.revsci.net/gat...gw.js?csid=A09801
 10: 2494ms; 7732b; http://i.cdn.turner.com/...ader/hdr-main.gif
 11: 5694ms; 44091b; http://i2.cdn.turner.com...quare-t1-main.jpg
 12: 1023ms; 858b; http://i.cdn.turner.com/...earch_hp_text.gif
 ...
While this might seem a poor alternative to the rich diagnostics
 that can be gained from, say, the WebKit Web Inspector tools, it does
 provide a nice way to get a quick overview of the performance profile—and
 potential bottlenecks—of a page. And, of course, and more importantly, it
 can be easily extended, run from the command line, automated, and
 integrated as you wish.

App Cache Manifest

Similarly, we can also use a headless browser to analyze the
 application’s actual content in order to perform a useful task. Although
 there’s a run-time “Chinese wall” in PhantomJS between the JavaScript of
 the harness and the JavaScript of the page, it’s permable enough to allow
 us to evaluate script functions against the DOM and have simple results
 structures returned to confess.js.
Why might we want to analyze a page’s DOM in an automated way? Well,
 take the app cache manifest mechanism, for example: it provides a way to
 mandate to a browser which resources should be explicitly cached for a
 given application, but, despite a deceptively simple syntax, it can be
 frustrating to keep track of all the assets you’ve used. To maximize the
 benefits of using app cache, you want to ensure that every resource is
 considered: whether it’s an image, a script, a stylesheet—or even
 resources further referred to from inside those.
This is the perfect job for a headless browser: once a document is
 loaded, we can examine it to identify the resources it actually uses.
 Doing this against the real DOM in a real browser makes it far more likely
 to identify dependencies required by the app at run-time than would be
 possible through statically analyzing web markup.
And again, something like this could easily become part of an
 automated build-and-deploy process. For example:
$> phantomjs confess.js http://calendar.perfplanet.com/2011/ appcache
…will result in the following manifest being generated:
CACHE MANIFEST

This manifest was created by confess.js, http://github.com/jamesgpearce/confess
#
Time: Fri Dec 23 2011 13:46:42 GMT-0800 (PST)
Retrieved URL: http://calendar.perfplanet.com/2011/
User-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X) AppleWebKit/534.34 (KHTML, like Gecko) PhantomJS/1.4.0 Safari/534.34

CACHE:
/photos/aaron-70tr.jpg
/photos/alex-70tr.jpg
/photos/alois-70tr.jpg
[...]

http://calendar.perfplanet.com/wp-content/themes/wpc/globe.png

http://calendar.perfplanet.com/wp-content/themes/wpc/style.css

NETWORK:
*
Depending on your app, there might be a lot of output here. But the
 key parts, as far as the eventual user’s browser will be concerned, are
 the CACHE and NETWORK blocks. The latter is always set to the * wildcard,
 but the former list of explicit resources is built up automatically from
 the URL you ran the tool against.
For app cache nirvana, you’d simply need to pipe this output to a
 file, link to it from the <html> element of your
 target document, and of course ensure that the file, when deployed, is
 generated with a content type of text/cache-manifest.
As an aside, the list of dependant resources itself is harvested by
 confess.js in four ways. First, once the document is loaded in PhantomJS,
 the DOM is traversed, and URLs sought in src and
 href attributes on script,
 img, and link elements. Second, the
 CSSOM of the document’s stylesheets is traversed, and property values of
 the CSS_URI type are sought. Third, the entire DOM is
 traversed, and the getComputedStyle method picks up any
 remaining resources. And last, the tool can be configured to watch for
 additional network requests—just in case, say, some additional content
 request has been made by a script in the page that would not have been
 predicted by the contents of the DOM or CSSOM.
(Naturally, there are many useful ways to configure the manifest
 generation as whole. You can filter in or out URLs in order to, say,
 exclude certain file types or resources from remote domains. You can also
 wait for a certain period after the document loads before performing the
 extraction, in case you know that a deferred script might be adding in
 references to other resources. There’s information about all this in the
 docs (https://github.com/jamesgpearce/confess/blob/master/README.md).)

Onward and Upward

We’ve just touched on the two simple examples of what can be done
 with a headless browser approach in general. The technique provides a
 powerful way to analyze web applications, and get closer to being able to
 understand real users’ experience and real apps’ behavior.
I’d certainly urge you to check out PhantomJS, try scripting some simple
 activities, and think about how you can use it to understand and automate
 website and application behavior. (I’m not even sure I mentioned yet that
 it has the capability to take screenshots, too.) And of course, feel free
 to give confess.js a try,
 too—with its humble goal of making it easier to help automate some of
 those common tasks. I’m always accepting pull requests!
But whatever your tools of choice, do have fun on your performance
 adventures, push the envelope, make the Web a wonderful place.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/losing-your-head-with-phantomjs-and-confess-js/.
 Originally published on Dec 30, 2011.

Chapter 31. Measure Twice, Cut Once

Tom Hughes-Croucher

There is a famous saying in English, “Measure twice, cut once” which
 is especially important if you do anything with your hands. Once you’ve cut
 a piece of wood with a saw and you find you are 5mm too short, it’s pretty
 hard to fix it. While software is hard to waste in the same way you can
 waste a raw material like wood, you can certainly waste your time.
A resource like this book is a really great tool for finding ideas to
 apply to your own work. Many of the authors of this book are lucky in that
 they spend a significant amount of their time optimizing large sites for
 companies like Facebook, Yahoo!, and Google (and yours truly, Walmart and
 others). However most developers have lots of other responsibilities other
 than just performance.
When you have lots of things on your plate, measuring more than pays
 its way. While it is easy to grab a technique that someone has laid out for
 you and apply it (and you should), it is also important to make sure you
 target the issues that affect your site the most. I was at a conference a
 few years ago about JavaScript and an extremely prominent, talented, and
 altogether smart JavaScript expert gave a talk about performance
 optimization. He gave a number of in-depth tips including unrolling loops
 and other micro-optimizations.
Here is the thing: when you are the author of a framework used by many
 thousands of sites every hour you spend optimizing the code pays off on
 every one of those sites. If you make helper functions to use over and over,
 your work repays itself many fold through each small usage. However, when
 you only care about the one site you maintain, unrolling loops probably
 won't make a significant or obvious a difference to your users. Optimization
 is all about picking the correct targets.
This is where we come back to measuring again. When you don’t have a
 clear understanding of where your bottlenecks are, you need to measure
 before you cut. Measuring performance can be done in many ways and this is
 also important to consider. Unrolling loops in JavaScript is a very atomic
 micro-optimization. It improves one specific function. However, unrolling a loop that loops
 only twice and is only used by 1% of users is clearly not an important use
 of time.
The key to measurement is instrumentation. Start at a macro level.
 What are the most important parts of your site? These might be the ones used
 the most, or the ones that have the most impact on your business (such as
 the checkout process). You might find yourself surprised, perhaps you
 receive a lot of search engine traffic to a page deep in your site that is
 poorly optimized. Improving that page by 50% might make a much bigger impact
 than spending the same time getting another 1% improvement on your already
 optimized homepage. The only way to really know which pages on your site are
 important is to look at the stats or to discuss priorities with whoever is
 in charge of the site.
Once you know what’s important, the next task is to figure out what
 users do with those pages, or again what you want them to do. It’s important
 to note in this process that what customers do now may be an attribute of
 the current site and not actually what you want them to do. Identify which
 parts of your site are used the most by finding the most common tasks on the
 page. Which page level items (menus, search results) do users interact with
 most?
Here is our formula for optimizing:
	Step 1. Use instrumentation to pick which pages/sections to
 optimize

	Step 2. Use instrumentation to pick which features to
 optimize

	Step 3. Optimize

Measure twice, cut once.
Identifying Pages/Sections

How do you go about picking which pages or sections of your site to
 optimize? This probably one of the easiest tasks because most conventional
 metrics give you everything you need to know. Start by seeing which pages
 get the most views. This will give you a short list of obvious targets.
 Your homepage is almost certainly one them, and then other popular pages
 on your site. These should be your short list.
The next thing to do is talk to your business owner. That might be
 your project manager, CEO, whoever. The most popular pages are not always
 the most important to the business. Checkout and shopping cart are very
 obvious examples here. If you run an e-commerce site many many people will
 browse many items, but only a small percentage of people will check out.
 This doesn’t mean check-out isn’t important. On the contrary. Checkout is
 really important, it’s just something that metrics may not help you
 prioritize.
Now you should have a list of the pages or sections of your site
 that are a mix of the most popular or important ones to the business. This
 is your hit list. Keep it up-to-date periodically. Until you’ve exhausted
 your hit list don’t bother with other performance issues.

Identifying Features

On modern websites many pages share the same code on many pages.
 Looking at the code to find these features or use a packet sniffer like
 Wireshark, Charles Proxy, or the Chrome
 Inspector on your hit list pages. This will help you get a list of the
 external resources (CSS, scripts, images, etc.) that were used by the most
 pages. You can also examine your HTTP logs to look at what data resources
 (web services) are being requested for those popular pages. Those
 resources could also be a blocking factor in page rendering.
You should also try to identify what your users are doing on each
 page. This can be difficult. Unless you have a very rich metrics system
 you probably don't know where the users’ cursors are, or how much they
 scroll. What you can probably do, however is look at what where they
 commonly click to from your history list pages. This will give you an idea
 of what is being used the most. For example, on an product description
 page it might be the “Add to Cart” button. You should also look at timing,
 things like navigation menu items are going to get clicked a lot sooner
 after rendering than an “Add to Cart” button in general. This is because
 when people buy things, they normally read the product description first.
 When they are navigating, they aren’t reading page content yet. You can
 instrument your pages with JavaScript or you can compute the time between
 page loads per user if you want to be a clever-clogs using a project like
 Boomerang.
In general the goal is to figure out which things the user will need
 most readily. As an informal rule of thumb consider prioritizing items to
 load in this order:
	Items above the fold

	Navigation item (Menus, search bar)

	Items that provide information (Product description, News
 stories)

	Items to take an action (Add to cart, etc)

	Items below the fold

You can check how fast various things load on your site by using
 WebPageTest's film strip
 feature.

Optimizing

The final step is, of course, optimizing. Remember even within
 optimizing a feature, don’t spend all your time optimizing something that
 is already optimized when there is something used 90% as much that isn’t.
 That's the point of metrics, to make good decisions. This goes both for
 your list of pages and features, and within the code. The goal of
 optimizing should be to take your measurements and then make the best use
 of your time to affect the users’ experience. Check out page rendering and
 JavaScript profilers and techniques. There are lots of resources out
 there, once you know what you need to optimize, go and find something to
 solve your problem, and then measure, measure again.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/measure-twice-cut-once/.
 Originally published on Dec 31, 2011.

Chapter 32. When Good Backends Go Bad

Patrick Meenan

There has been a fair amount of research (http://www.yuiblog.com/blog/2006/11/28/performance-research-part-1/)
 that tells us that 80% to 90% of the time spent loading web pages is spent
 on the frontend (browser pulling in external resources like CSS, JavaScript,
 and images) and only 10% to 20% of the time for a typical page is spent on
 the backend. While that is true in general, and there are a lot of tools
 that focus on giving you suggestions on improving your frontend code WebPagetest, Page Speed, Y-Slow, it is not uncommon
 to see backend performance issues, particularly as you move away from the
 top Internet sites into the long tail of the Internet.
This is not entirely unexpected because the top sites tend to have
 dedicated developers who custom-built the backend code for serving pages,
 have dedicated operations teams that watch the performance of the systems
 and databases, and spend a lot of time focused on the performance and
 scalability of the backends.
As you move out of the top tier of Internet publishers, you start
 running into sites that are running on off-the-shelf content systems
 (Drupal, WordPress, Joomla, etc.), and with owners who either contracted for
 the site development at one point in time or used and tweaked an available
 template and then used a collection of plug-ins to put together their site
 (often not knowing how the plug-ins themselves work). The hosting for these
 sites also varies wildly from dedicated servers to VPS systems to running on
 shared hosting (by far the most common) where they have little to no insight
 on the performance of the actual systems their site is running on.
As a result, it’s not uncommon to see something like shown on Figure 32-1.
[image: 30-second TTFB]

Figure 32-1. 30-second TTFB

Yes, that is a 30+ second time to first byte (TTFB) with all of the
 time being spent somewhere on the backend to assemble and produce the page.
 This wasn’t an outlier either. For this page, every
 page load takes 30+ seconds before the browser even gets the first bit of
 HTML to work on.
This isn’t unique to this site or the Content Management System (CMS)
 it runs on (though it is an extreme example). It is not uncommon to see and
 8-to-20 second backend times from virtually all the different CMS systems
 (Figure 32-2).
[image: 12-second TTFB]

Figure 32-2. 12-second TTFB

This is really painful for users (assuming any of them actually wait
 that long for the site), but it also causes scaling problems for the backend
 because the application is tied up for a long time processing each request,
 making fewer resources available for other users.
What Is a Good Backend Time?

A good target for just the processing time for backend requests is
 on the order of 100ms (0.1 seconds). That doesn’t mean you should expect a
 TTFB of 100ms, just that the backend processing time shouldn’t take longer
 than that. It is important to remember that the user can’t see
 anything at all before the TTFB, so any improvements
 there go directly to the user experience.
When figuring out the backend time from a frontend tool like
 WebPagetest, you need to remember to include the network latency. For
 that, I usually use the socket connect time to the server (orange bar) as
 the RTT and then use that as a baseline for everything else (Figure 32-3).
[image: 1.5-second TTFB]

Figure 32-3. 1.5-second TTFB

In this case, the DNS lookup time (teal bar) is taking longer than I
 would expect but you want to compare the size of the orange bar to the
 size of the light green bar. The length of the orange bar is the fastest
 the server would be able to reply and assumes 0 backend processing time,
 so if they are reasonably close in size then you’re in pretty good
 shape.
Eyeballing waterfalls is good for a general feeling but if you want
 to see the specifics, you can get the individual component times in a data
 table below the waterfalls on WebPagetest (Figure 32-4).
[image: Request timing details]

Figure 32-4. Request timing details

In this case, you just subtract the initial connection time from the
 TTFB and you have the amount of time that was spent on the backend (436ms
 here).

Figuring Out What Is Going On

So, you know you have a backend issue, how do you figure out what is
 causing the problem?
The problem is almost certainly caused by one of these
 issues:
	Web server configuration that is out of available clients to
 process requests

	Slow database queries

	Backend calls to external services

Unfortunately, most of the performance tools you are used to using
 don’t have any visibility into those components and they become a black
 box. At this point, you need a developer and a sysadmin (or someone with
 the skillset to do both) because fixing it is going to involve code or
 site configuration changes. Even just finding the source of the problem
 requires a pretty decent skillset.
There are commercial solutions that will identify the issue for you
 really quickly with minimal work. Actually, there is a whole sector
 focused on it (called Application Performance Management or APM). I’ll use
 New Relic (http://newrelic.com/) as an example here
 because it is what I use on webpagetest.org but Dynatrace (http://www.dynatrace.com/) is another common solution. All
 of them require that you install binary code on the server though, so if
 you are on shared hosting these may not be available options (and once you
 get through the free trial phase most cost more than shared hosting plans
 anyway).
Once configured, the APM tools will monitor your production systems
 and tell you how much time your server is spending in the various
 different tiers (Figure 32-5).
[image: New Relic summary]

Figure 32-5. New Relic summary

I’ve done a fair bit of tuning to WebPagetest, so there’s not a
 whole lot to see here. Average response times are ~10ms and the database
 is only used for the forums so the bulk of the time is spent in the actual
 application code.
From there you can drill into each band to see exactly where that
 time is going (Figure 32-6).
[image: New Relic transactions]

Figure 32-6. New Relic transactions

In my case, most of the CPU time is spent generating thumbnail
 images (which includes waterfall thumbnails) for the results pages. Not
 completely unexpected since they are all generated dynamically by
 code.
The thumbnail generation is something I spent a fair amount of time
 optimizing because it used to be a lot more resource
 intensive and took close to 80% of the time. The tools let you keep
 drilling in to see what specific functions contribute to the time (Figure 32-7).
[image: New Relic thumbnail details]

Figure 32-7. New Relic thumbnail details

They let you do the same for database calls, and for particularly
 slow requests, they will provide diagnostics for individual requests
 instead of just aggregate results so you can also drill into slow outliers
 easily.
If you aren’t fortunate enough to be able to use the tools, then you
 have to look into what is available for your platform to see if there are
 free diagnostic tools or you have to start instrumenting the code
 yourself. In WordPress, for example, there are several plug-ins that will
 debug the database queries and tell you how long they are taking.
W3 Total Cache is a useful plug-in for improving WordPress
 performance but it also provides debugging information that will help you
 identify any slow database calls (Figure 32-8).
[image: W3 Total Cache debug settings]

Figure 32-8. W3 Total Cache debug settings

When you enable the debug information, details about every database
 query (and cache operation) will be logged into the page HTML as a comment
 that you can view by visiting the page and viewing the page source (Figure 32-9).
[image: W3 Total Cache debug data]

Figure 32-9. W3 Total Cache debug data

You’ll get the overall time spent in database queries as well as
 timings and details for each and every query.

Fixing It

Great, so now that you’ve identified the issues the real hard work
 starts. The most common “solution” people use is to add caching to hide
 the problem. This can be in the form of a plug-in like W3 Total Cache that
 will let you cache all sorts of different operations to custom query
 caches by using memcache. Caches are absolutely necessary but you should
 improve the underlying issue as much as possible before enabling caching,
 that way 100% of the requests will get improved performance.

Finally

As they say in carpentry, measure twice, cut once. Don’t go
 optimizing your site until you have measured the user experience and then
 use the measurements to guide your work, not grades or scores from various
 tools—they may not be relevant to your particular situation. Just because
 sites normally spend most of their time on the
 frontend doesn’t mean that is necessarily the case for yours.
Note
To comment on this chapter, please visit http://calendar.perfplanet.com/2011/when-good-back-ends-go-bad/.
 Originally published on Dec 31, 2011.

Chapter 33. Web Font Performance: Weighing @font-face Options and
 Alternatives

Dave Artz

Web fonts are a key ingredient in today’s website designs; at my
 employer (AOL) it is a given that redesigns will feature downloadable fonts.
 The days of maintaining a sprite full of graphic text headlines are behind
 us. We’ve moved on—but what approach yields the best performance?
The goal of this chapter is to look at the various web font
 implementation options available, benchmark their performance, and arm you
 with some useful tips in squeezing the most bang for your font byte. I will
 even throw in a new font loader as a special bonus!
Font Hosting Services Versus Rolling Your Own

There are two approaches you can take to get licensed, downloadable
 fonts on to your web pages: font hosting services and do-it-yourself
 (DIY).
	Font hosting services
	Typekit, Fonts.com, Fontdeck, etc., provide an easy interface
 for designers to manage fonts purchased, and generate a link to a
 dynamic CSS or JavaScript file that serves up the font. Google even
 provides this service for free. Typekit is the
 only service to provide additional font hinting to ensure fonts
 occupy the same pixels across browsers.

	The DIY approach
	This involves purchasing a font licensed for web use, and
 (optionally) using a tool like FontSquirrel’s generator to optimize
 its file size. Then, a cross-browser implementation (http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax/)
 of the standard @font-face CSS is used to enable the font(s). This
 approach ultimately provides the best performance.

Both approaches make use of the standard @font-face CSS3
 declaration, even when injected via JavaScript. JS font loaders like the
 one used by Google and Typekit (i.e., WebFont loader (https://developers.google.com/webfonts/docs/webfont_loader))
 provide CSS classes and callbacks to help manage the “FOUT” that may
 occur, or response timeouts when downloading the font.

What the FOUT?

FOUT, or “Flash of Unstyled Text,” was coined by Paul Irish (http://paulirish.com/2009/fighting-the-font-face-fout/) and
 is the brief display of the fallback font before the web font is
 downloaded and rendered. This can be a jarring user experience, especially
 if the font style is significantly different.
FOUT of some form exists in all versions of Internet Explorer and
 Firefox 3.6 and lower. You can check out the video of my demo (http://www.artzstudio.com/files/font-performance/fout-demo.html),
 preferably in full screen mode, at the 1.6 second mark to see it in
 action. Figure 33-1 shows a screenshot of the video at
 1.6s.
[image: FOUT]

Figure 33-1. FOUT

You’ll notice in Internet Explorer 9, the content is
 blocked until the image has downloaded (http://www.webpagetest.org/video/compare.php?tests=120108_PQ_2SH9D-r:1-c:0).
 Your guess is as good as mine.
Here are my recommendations for avoiding
 the FOUT:
	Host the fonts on a CDN (http://en.wikipedia.org/wiki/Content_delivery_network).

	GZIP all font files (http://www.phpied.com/gzip-your-font-face-files/)
 except .woff (already compressed).

	Cache all font files for 30+ days by adding a future expires
 cache header (http://www.askapache.com/htaccess/apache-speed-cache-control.html).

	Remove excess glyphs (characters) from the font files.

	Ensure @font-face is the first rule of the first stylesheet on
 the page (IE).

Still have a FOUT? Read on, a JavaScript font loader may be in
 order.

Removing Excess Font Glyphs

Font Squirrel has an awesome tool (http://www.fontsquirrel.com/fontface/generator) that lets
 you take a desktop font file and generate its web counterparts. It also
 allows you to take a subset of the font, significantly reducing file
 size.
To show just how significant, I added Open Sans and tried all three
 settings (Figure 33-2).
[image: Excess glyphs elimination]

Figure 33-2. Excess glyphs elimination

From the table on Figure 33-2, it should be
 obvious that the byte size is directly correlated to the number of glyphs
 (characters) in the font file.
I suggest you follow along with me at Fontsquirrel!
The Basic setting leaves the characters untouched. Optimal reduces
 the characters to around 256, the Mac Roman character set. We are able to
 see the greatest savings by selecting Expert mode and only including the
 Basic Latin set, then manually adding in the
 characters we need.
Here are my recommended Expert FontSquirrel settings (screenshot:
 http://www.artzstudio.com/files/font-performance/fontsquirrel-generator-settings.png):
	Under Rendering, uncheck Fix Vertical Metrics.

	Under Subsetting, check Custom Subsetting.

	Under Unicode Tables, check only Basic
 Latin.
Note
This assumes the fonts will use only English characters; for
 other languages, add the characters you need.

	If you are typography nerd, copy and paste ' ' " " into the
 Single Characters field.

	Verify your Subset Preview; adjust if needed (Figure 33-3).

	Under Advanced Options, give your font a suffix based on the
 subset (i.e., latin).

[image: Subset preview]

Figure 33-3. Subset preview

JavaScript Font Loaders

Typekit and Google joined forces to create an open source WebFont
 Loader (https://developers.google.com/webfonts/docs/webfont_loader)
 that provides CSS and JavaScript hooks indicating a font’s status as it
 downloads. This can be useful in normalizing the FOUT across browsers
 (http://24ways.org/2010/using-the-webfont-loader-to-make-browsers-behave-the-same)
 by hiding the text and adjusting CSS properties so that both fonts occupy
 the same width.
The three states it tracks are loading, active, and inactive
 (timeout). Corresponding CSS classes (wf-loading, wf-active, and wf-inactive) can be used to control the FOUT by
 first hiding headings and then showing them once they’re
 downloaded:
h1 {
 visibility: hidden;
}
.wf-active h1 {
 visibility: visible;
}

JavaScript hooks for these same events are also available via
 callbacks in the configuration object:
WebFontConfig = {
 google: {
 families: ['Tangerine', 'Cantarell'] // Google example
 },
 typekit: {
 id: 'myKitId' // Typekit example
 },
 loading: function() {
 // JavaScript to execute when fonts start loading
 },
 active: function() {
 // JavaScript to execute when fonts become active
 },
 inactive: function() {
 // JavaScript to execute when fonts become inactive (time out)
 }
};

The WebFont loader also includes callbacks for fontactive, fontloading, and fontinactive that is fired each time a font
 updates, giving you control at a font level. For more information, check
 out the WebFont Loader documentation (https://developers.google.com/webfonts/docs/webfont_loader).
Introducing Boot.getFont: A Fast and Tiny Web Font Loader

I haven’t seen one out there, so I wrote a little font loader that
 provides the same hooks for loading fonts called getFont as part of my Boot library (https://github.com/artzstudio/Boot).
It weighs in at 1.4 K after GZIP (versus 6.4 KB Google, 8.3 KB
 Typekit) and easily fits into your existing library. Simply change the
 "Boot" string at the end of the file
 to update the namespace (i.e., jQuery).
Fonts are loaded via a JavaScript function, and a callback can be
 supplied that executes after the font has finished rendering.
Boot.getFont("opensans", function(){
 // JavaScript to execute when font is active.
});

Boot.getFont provides similar
 CSS classes to the WebFont Loader but at a font level, affording precise
 control:
.wf-opensans-loading {
 /* Styles to apply while font is loading. */
}
.wf-opensans-active {
 /* Styles to apply when font is active. */
}
.wf-opensans-inactive {
 /* Styles to apply if font times out. */
}

You can easily configure it to grab fonts based on your directory
 structure by loading a configuration object:
// Global
Boot.getFont.option({
 path: "/fonts/{f}/{f}-webfont" // {f} is replaced with the font name
});

// Font-specific
Boot.getFont({ path: "http://mycdn.com/fonts/{f}/{f}-wf" }, "futura");

I haven’t had time to document all the goods, but the library is
 available here if you are interested.
	Development: boot.getfont.js (https://raw.github.com/artzstudio/Boot/master/src/standalone/boot.getfont.js)

	Production: boot.getfont.min.js (https://raw.github.com/artzstudio/Boot/master/src/standalone/boot.getfont.min.js)

Gentlefonts, Start Your Engines!

Now that you’re armed with the knowledge needed to ensure
 fast-loading fonts, take a look at the performance of the implementation
 options.
I set up the following test pages, loading the same web font (Open
 Sans), spanning DIY and various hosting options at Typekit and
 Google:
	System:
 Our control test; this page does not load any fonts and uses
 Arial.

	FontSquirrel
 Optimal: FontSquirrel generator’s recommended
 Optimal setting and FontSpring’s cross-browser
 @fontface declaration (http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax/).
 Fonts hosted on the same server as the web page like most small
 websites.

	FontSquirrel
 Expert: Used recommended tips above (http://www.artzstudio.com/2012/02/web-font-performance-weighing-fontface-options-and-alternatives/#recommended-expert-settings)
 to trim font file size using the FontSquirrel Generator, I replaced
 the Optimal font kit in the above test with a
 minimal Basic Latin character set.

	FontSquirrel
 Expert (CDN): Same as the above test, however fonts are hosted
 from a CDN on a different domain.

	Boot.getFont:
 This test updated the “FontSquirrel Expert” test to use my Boot.getFont JavaScript library.

	Boot.getFont
 (CDN): Same as Boot.getFont test, except font files are hosted
 from a CDN on a different domain.

	Google
 Web Fonts Standard: I chose Google to represent a free font
 hosting service, and since this is a speed test,
 and Google is all about speed, I figured they should be in the race.
 Google provides three implementation options, this being the default—a
 <link> element pointing to a
 dynamic stylesheet that loads the font(s). Note: I left out
 the Import option as results were nearly
 identical to Standard option.

	Google
 Web Fonts JavaScript: This option includes the WebFont loader
 discussed earlier to load the fonts, hosted from Google’s
 servers.

	Typekit:
 Here, I created a kit at Typekit and used the options that provided
 the smallest font file.

I used http://webpagetest.org/ and loaded each
 test page 10 times in Chrome, Firefox 7, IE7, IE8, and IE9 over a 1.5 mbps
 DSL connection. We are comparing implementation, so I took the fastest
 test to weed out network latency issues and other causes of variance in
 the data.
Figure 33-4 shows how they stack up, ranked by the
 fastest time (ms) across browsers.
[image: Fastest Load Times (ms) by Implementation and Browser]

Figure 33-4. Fastest Load Times (ms) by Implementation and Browser

Take some time to digest the data. To better compare implementations
 across browsers, check out the charts on Figure 33-5
 (IE9), Figure 33-6 (IE8), Figure 33-7
 (IE7), Figure 33-8 (Firefox), and Figure 33-9 (Chrome).
[image: Font Implementation Benchmarks: Internet Explorer 9]

Figure 33-5. Font Implementation Benchmarks: Internet Explorer 9

[image: Font Implementation Benchmarks: Internet Explorer 8]

Figure 33-6. Font Implementation Benchmarks: Internet Explorer 8

[image: Font Implementation Benchmarks: Internet Explorer 7]

Figure 33-7. Font Implementation Benchmarks: Internet Explorer 7

[image: Font Implementation Benchmarks: Firefox]

Figure 33-8. Font Implementation Benchmarks: Firefox

[image: Font Implementation Benchmarks: Chrome]

Figure 33-9. Font Implementation Benchmarks: Chrome

My Observations

The Do-It-Yourself implementations were consistently the fastest,
 especially when combined with a CDN. This is due to physics—less bytes,
 requests, and CPU overhead are required to serve the font.
It is interesting to compare Google Web Fonts (GWF) to Typekit
 since they use the same core loader, but that is where the similarities
 end (Figure 33-10, Figure 33-11).
[image: Google Web Fonts in Firefox (1254ms): JS→CSS→Font]

Figure 33-10. Google Web Fonts in Firefox (1254ms): JS→CSS→Font

[image: Typekit in Firefox (795ms): JS » CSS Data URIs]

Figure 33-11. Typekit in Firefox (795ms): JS » CSS Data URIs

In browsers that support them, Typekit uses Data URIs in the CSS
 (http://www.webpagetest.org/result/111231_2K_2PNEM/10/details/)
 to load the font, whereas GWF first loads the JS, then the CSS, and
 finally the font (http://www.webpagetest.org/result/111231_13_2PNDW/9/details/).
 Typekit uses this approach in IE 8 and lower (http://www.webpagetest.org/result/111231_QZ_2PNEG/4/details/)
 where Data URIs are not supported, ending up with slower load times in
 those browsers. Google is also slower because of their multiple DNS
 lookups; Typekit rightly uses one domain for all assets.
I was impressed by the performance of Boot.getFont, which ended up
 being faster (sometimes by a hair, sometimes more) than the standard
 @font-face CSS in all cases. My hypothesis is that somehow the JS
 triggers a reflow/repaint that forces the fonts to download sooner in
 all browsers.

Final Thoughts

While this article could probably be split into several, I wanted a
 single place to document implementation choices, tips for optimizing them,
 and have some reference benchmarks. If other font providers want to hook
 me up with a free account (and host Open Sans, for consistency), I’d be
 happy to include them in another study at another time.
I was again dissappointed to see Google turn out another (http://www.artzstudio.com/2011/06/googles-button-is-slow-and-so-is-facebooks/)
 slow service. Google friends, take some notes from Typekit!
I am looking forward to hearing your thoughts and observations on
 this experiment, and to your recommendations for speeding up web fonts.
 Thanks for reading!
Note
To comment on this chapter, please visit http://www.artzstudio.com/2012/02/web-font-performance-weighing-fontface-options-and-alternatives/.
 Originally published on Feb 27, 2012.

About the Author
Stoyan Stefanov (http://phpied.com, @stoyanstefanov) is a Facebook engineer. Previously at Yahoo! he was the creator of the smush.it online image optimization tool and architect of YSlow 2.0. performance tool. Book author (JavaScript Patterns, Object-Oriented JavaScript), contributor (Even Faster Web Sites, High-Performance JavaScript) and speaker (Velocity, JSConf, Fronteers, Ajax Experience).

Colophon
The animal on the cover of Web Performance Daybook Volume
 2 is a Sugar Squirrel Biak Glider. The squirrel glider
 (Petaurus norfolcensis) is a nocturnal gliding possum,
 not to be confused with the flying squirrel. The flying squirrel of North
 America is a placental mammal, while the squirrel glider is a
 marsupial.
Squirrel gliders are native to the range from the South Australian and
 Victorian Border through southeast Australia, where they inhabit dry forest
 and woodlands, to northern Queensland, where they inhabit a wetter eucalypt
 forest. These wrist-winged gliders make their home in hollowed out trees,
 lining their dens with leaves. Typically, they live in groups of one male,
 two females, and offspring.
The squirrel glider’s diet consists predominantly of insects and
 fruit, followed up by tree sap of the Eucalypt and Red Bloodwood variety,
 pollen, nectar, leaves, and bark. Squirrel gliders have bushy tails
 comparable to the ring tail possum, and use it as an extra limb to wrap
 around branches to hold on.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka;
 the heading font is Adobe Myriad Condensed; and the code font is LucasFont’s
 TheSansMonoCondensed.

Web Performance Daybook, Volume 2

Stoyan Stefanov

Editor
Mary Treseler

	Revision History
	2012-06-15	First release

Copyright © 2012 Stoyan Stefanov

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Web
 Performance Daybook Volume 2, the cover image of a sugar
 squirrel biak glider, and related trade dress are trademarks of O’Reilly
 Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-06-18T08:05:49-07:00

OEBPS/httpatomoreillycomsourceoreillyimages1231188.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231348.png
Latency Download

OEBPS/httpatomoreillycomsourceoreillyimages1231372.png.jpg
[progressive
Optinized
[CJEmbed Color Profile.

OEBPS/httpatomoreillycomsourceoreillyimages1231216.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231276.png
B &~ 70x135.287458410.jpg| X
Status Type Resource Host Session Instances Time Size Timeline SearchResults <¢ < 173 >
> % ©200 @9 /i170035287618548jpg | imgoc 9 1 777ms | 11010bytes
e e O A el
Request Headers
Response Headers
Response Content
Details
v % ©200 Wy L170dB27esA0Ipg img2e 22 23 |1251ms | 10812bytes
Request Headers
Response Headers
Response Content
Details
> % @20 m 33 999ms | 10812 bytes
> % ©200 (m /i_170x135287431396pg img0e 9 1 826ms | 12942bytes
> % @20 @@ /i170a35286971566jpg |img2¢ 23 1 804ms | 8070bytes
> % ©20 (m /i_170x135286804106pg img2e| 22 1 131ms | 12743 bytes
> % ©200 @8 /i_170x135.194225608pg imgo. |9 1 781ms | 9124bytes
> % ©200 @ /i_170x135285894269pg imgl.e| 20 1 2018ms | 10827 bytes
> % ©200 (m /i_170x135.285875377pg imgle 19 1 816ms | 8361 bytes
>\ & @500 fma il 170x135.285523569.in0 imate 7 1 1251 ms_| 17015 hutes . ; . ; | |
8 ONS resolution B Connecttime [Request 1ms s ok s ado gl
Wait 316 ms Response 321 ms

@ aa

Wl J‘i

OEBPS/httpatomoreillycomsourceoreillyimages1231204.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231394.png
Average response time, broken down by tier (ms)

E

i

0

B

o
12/16 12/16 12116 12116 12116
0000 0200 0400 0600 0800

PP Database D vieb Extemal
O ewheiic

OEBPS/httpatomoreillycomsourceoreillyimages1231388.png
S
2419 ve

Rz e
ot e
Hoes ne

OEBPS/httpatomoreillycomsourceoreillyimages1231420.png
Web Font Implementation Benchmarks

Fastest of 10 runs at webpagetest.org (ms) in Chrome
200 400 600 800 1000 1200

o

FontSquirrel Optimal

Google Web Fonts Standard
Typekit

Google Web Fonts JavaScript
FontSquirrel Expert
Boot.getFont

FontSquirrel Expert (CDN)

Boot.getFont (CDN)

System

OEBPS/httpatomoreillycomsourceoreillyimages1231300.png
Method Elapsed Time.. Exec Total [.. Timeline

+ Bl Loading of page /2009/11/30/101-on-prototype-css-selectors/" 000 537400
4+ B Slow third party content 639.00 9706.00
« B connectfacebooknet (1 resource. 1 resource violating threshold) 63900 1357.00
Script /en_US/alljs 63900 1357.00

S widgets.dzone.com (2 resources. No resource violating threshold) 64000 000

S twitter.com (2 resources. No resource violating threshold) 77500 47800

= Lgravatar.com (7 resources. 3 resources violating threshold) 1299.00 9046.00

% 0.gravatar.com (1 resource. No resource violating threshold) 1379.00 000

+ B2 www.google-analytics.com (1 resource. 1 resource violating threshold) 141400 661.00
Script /gagjs 1414.00 661.00

S platformlinkedin.com (2 resources. No resource violating threshold) 3039.00 000

+ B2 wwwilinkedin.com (3 resources. 2 resources violating threshold) 3039.00 517.00
Script /countserv/count/share 3039.00 517.00

Script /countserv/count/share 3039.00 51600

% munchkinmarketo.net (1 resource. No resource violating threshold) 3039.00 000

S platformtwitter.com (1 resource. No resource violating threshold) 3040.00 000

OEBPS/httpatomoreillycomsourceoreillyimages1231354.png
On startup

On user interaction

Latency Download

OEBPS/httpatomoreillycomsourceoreillyimages1231280.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231236.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231284.png
m

‘Cropped European Union flag-like

.

Micronesia flag-like

Cropped European Union flag-like

‘Atari 2600-lke

Vo

9 N L

‘Somewhat rounded, broken needle

OEBPS/httpatomoreillycomsourceoreillyimages1231178.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231180.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231274.png
@ Gompress Comporents ~spoms
+ Serversentan uncompressed response

hitpy/ com/iOS/confiquration/services.xmi

hitp e comeverest services/BrowseServicexml
rtps /S configurstion/campaignsaaml
http /e comyi0S/configuration/sppimi

/e m/site/services/temSearchServiceZkeywords=chri lights&itemP: (Term: ol

(Checks that textual elements are transferred in a compressed format. Compression usually reduces the response size by about 70%. Approximately 90% of current

Description: |tornet raffic ravels through browsers that claim to support gzip.

OEBPS/httpatomoreillycomsourceoreillyimages1231310.png.jpg
phpied.com

wwiviphoied.com
L P

licons]
style.css [Stolen]fromwebkit
00js.jpg

pear.jpg

phpbb.jpg
phpbb-ug.jpg
subscribe.php

like.php &

ctE39BOKGb3.is

OEBPS/httpatomoreillycomsourceoreillyimages1231202.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231248.png
£000000

s000000

4000000

2000000

200000

100000

[———

Es

s

Phone 31

Phone 4

Operatz

Sataint

= Resdirom atiect
= ResdiromlocaStorsge

OEBPS/httpatomoreillycomsourceoreillyimages1231324.png.jpg
Carrier

body{font-size:62.5% font-family: Lucida
Grande' Verdana,Arial,Sans-
Serif:color:#333;text-
align:center:background:white}#page{backgroun
d-color:#fefefe;text-alignleft:border-right:1px
solid #93bb3a;border-left:1px solid
#93bb3aj#content{font-size:1.4em.widecolumn
entry p,.narrowcolumn .entry p(font-
size:1.05em).narrowcolumn .entry, widecolumn
entry{iine-

height:1.6em}.widecolumn, narrowcolumn{line-
height:1.8em}.narrowcolumn postmetadatatext-
align:center).alifbackground-
color:#18188:border-top:1px solid #ddd;border-
bottom:1px solid #ddd)smalKfont-

family:Arial Helvetica, Sans-Seriffont-
size:.9emline-height:1.5em}h1,h2,h3{font-
family:Consolas, Courier New:font-
‘weight:boldjn1{font-size:4em:padding-
left:50px}#headerimg .descriptionffont-
size:1.2em:padding-left:50px;font-family:Lucida
Grande' Verdana,Arial,Sans-Serifjn2(font-

OEBPS/httpatomoreillycomsourceoreillyimages1231336.png
Viewing: Event Action Event Label Other

‘Secondary dimensior: | Select...

Event Action
1. BasePage
2. Comect
3 ons

FrontEnd
s T

Sort Type: | Default +

[Q] advanced view: | 8 ~

Total Events

v
6
0

Unique Events

EventValue

1osats | <] >
Aug.Value

087

2500

783

7617

3133

OEBPS/httpatomoreillycomsourceoreillyimages1231304.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231392.png
Request Details

Time to
ons mial | ssL

First
Lookup Connetion Negotation Download

Ems| 125ms . setms assms

OEBPS/httpatomoreillycomsourceoreillyimages1231400.png
Debug

Detailed information about each cache will be appended in (publicly available) HTML comments in the page's
‘source code. Performance in this mode will not be optimal, use sparingly and disable when not n use.

Debug Mode:

age Cache.

) inity

] Content Delivery Network
[Vamish

I selected, detailed caching information will be appear at the end of
‘each page in a HTML comment View a page's source code fo review.

OEBPS/orm_front_cover.jpg
R RRRY
Techniques & Tips for Optimizing Web Site Performance

Performance
Daybook

Volume Two

O'REILLY® Stoyan Stefanov

OEBPS/httpatomoreillycomsourceoreillyimages1231380.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231192.png.jpg
[y o
\m_o%ﬁ

OEBPS/httpatomoreillycomsourceoreillyimages1231200.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231256.png
Your Like Button plugin cod:
XFSML IFRAME
L Include the JavaScript SDK on your page once, deally right after the opening <body> tag.

<div id="fb-root"></div>
<script>(function(d, s, id) {

. Place the code for your plugin wherever you want the plugin to appear on your page.

<div class="fb-like" data-href="phpied.com’ data-send="true’ data-width="450"
data-show-faces="true"></div>

OEBPS/httpatomoreillycomsourceoreillyimages1231262.png
(402 () (@) s bsessnseraom v (x)(@r-varee) (B3] (@) () (]

Connecting to platform.twitter.com.

RE G Y 7Hﬂ-—l- HIML S Script | DOM [Net~ | Page Speed F > ee
Clear Persist | Export * ® (Al WTML CS5 JS XHR Images Flash Media
> GET min-allcssTL: 200 0K statics businessinsidercom 30.1K8 LWl 354
» cer i 2000¢ sat nsider.com 303 K8 Ll 556
b GET mings713222¢ 200 0K starics businessinsider.com 75.2 KB | 13235

GET anywherejs7ic platform.twiter.com o 3 | <

» GeTjstag 2000 ox-dbusimessinsidercom 186K8 [195 i
b GET openxis 2000 Statics businessinsidercom LIKB L 964me y

OEBPS/httpatomoreillycomsourceoreillyimages1231298.png
domainLookupEnd

connectStart
redirectStart
fedirectEnd (secureConnectstart)
fetchStart connectEnd
domainLookupStart requestStart responseStart
; App
Redirect Cache DNS TCP Request Response

responseEnd

OEBPS/httpatomoreillycomsourceoreillyimages1231288.png
Type Pros Cons Payload Rendering

(bytes) (ms)
oo .
S8 ungatomall NotworowseryoLoxamatan 807 4438
GU sonop Vendorsweofcoamatan 811 -
SR oo Vendorsweofc oamatan 815 -
SR eone Vendrseofcotamaian 85 -
coss-
SSS2° ronChromorSatan Vendorspoicottamaran 7711200
css3 Covers all” browsars, Unused rules, extra markup 1400 11.238
o “maarimaion
WebP ‘Smallestimage file Notsupported by all major 4066 1769
Sowant no ranperacy
WP T Nnwbre s, qs a7
iine s
»o
FC et oouser NotansparneyenE<s Tost 9310
Sl magofio
»o ormage [H— s 1
Sl mago .
Pus Sratnegetiex: Upto250 alors e tst
s
P Gt sarspaoney UploZSBlom onlE<s 6358 4267
PNG24 Highquality, alpha g image fle, buggyon IE<7 27391 1736

channel

PNG24 High qualit, alpha

i piseiadh Large file, non IE <8 27704 5968

OEBPS/httpatomoreillycomsourceoreillyimages1231272.png
Bl & [«
Status Type Resource Session

> % ©200 mB /servicesxmi 1
> % ©200 i | /BrowseServicexml 1
> % © 200 i | /BrowseServicexml 2
> % © 200 il | /campaignsxmi 3
> % ©200) i@ | /appal 4
> % @200 @ /554227168 s
> % ©200 G| /banner_cardhtmi 7
> % ©200 @9 | /weekiyadjpg 7
> % ©200 G| /banner_cardhtmi 7
» % ©200 @ /giftingpng 7
> % ©200 (@ | /banner_cardhtmi 7
> % ©200) @9 | /dealspng 7
> % ©200 G| /banner_cardhtmi 7
> % ©200) @9 | /reeshippingjpg 7
> % ©200 G| /banner_cardhtmi 7
> % © 200 (I | /decoratingentertainingjpg 7
> % ©200 G| /banner_cardhtmi 7
> % ©200 @ | /spolight_dvmjpg 7
> % ©200 G| /banner_cardhtmi 7
> % © 200 @9 | /dailydealspg 7
> % ©200 G| /banner_cardhtmi 7
> % ©200) @9 | /clubweddpng 7

(B DNS resolution [l Connecttime 216ms
Wait 105ms [l Response 812ms.

8 Request 1ms

Instances | Time

1
12
22
1

134ms

106 ms

227 ms

332ms

230ms

682ms

303ms

1011 ms

109ms

a43ms

108 ms

120ms

105 ms

216ms

104ms

12ms

103ms

271ms

104ms

127 ms

108ms

281ms

Size
81072 bytes
4300 bytes
4300 bytes
10840 bytes
1708 bytes
1368 bytes
1588 bytes
43807 bytes
1588 bytes
80862 bytes
1586 bytes
33269 bytes
1597 bytes
40298 bytes
1616 bytes
24572 bytes
1597 bytes
42885 bytes
1594 bytes
33854 bytes
1580 bytes
70750 bytes

Timeline

< Big Uncompressed File

Blocking Downloads

5 m i abs W

TR R

OEBPS/httpatomoreillycomsourceoreillyimages1231194.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231406.png
Glyphs Size

Basic 940 66.9 kB [
Optimal 239 20.9KB |
Expert 119 13 KB [

OEBPS/httpatomoreillycomsourceoreillyimages1231386.png

OEBPS/httpatomoreillycomsourceoreillyimages1231286.png
reeucs @ 0 s | Qe » @i

@ Paint (1440 x 366)
@ Layout
pam 1440x356)

© [OLoading Oscripting @ Rendering

612 of 1620 captured records are visible | £

OEBPS/httpatomoreillycomsourceoreillyimages1231398.png
\Web transaction breakdown
by component
s0ms

20ms

12116 12116 12/16 12/16

00:00 0200 0400 06:00

B torDrawivatertal W GenerateThumonal W Anumbnailpnp W getRequests
0 sendimage W Other
O ewetc

OEBPS/httpatomoreillycomsourceoreillyimages1231424.png
https/ /i artzstudio.con/ i 1es/Font-. ..

1. w.artzstudio. .. hnark-tupekit htal

2. use.tupekit.con - pjbBuna.js

3. use.tupekit.con - pjbSumg-d.css

OEBPS/httpatomoreillycomsourceoreillyimages1231302.png.jpg
Carrier =

Photos Contacts ‘Game Center

=8

Newsstand ey

OEBPS/httpatomoreillycomsourceoreillyimages1231212.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231342.png
A Home Standard Reporting Custom Reporting

Create Custom Report

General Information

Report Name | Site Speed no Firefox

Report Content

—

Name | Performance

Tyee (SRR Fiat Table |
Metric Groups -
Wetric Group

OEBPS/httpatomoreillycomsourceoreillyimages1231340.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231222.png.jpg

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231252.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231246.png
450,000,000

song00a0

o0

g0

o000

000000

w0000

o0

00000

= R rom atiect
= ResdiromlocaStorsge

Andtoid Chiome . Fietor7
25

s

s

Phone 31

Phone 4

Operatz

Sataist

OEBPS/httpatomoreillycomsourceoreillyimages1231390.png
0.2

0.6

71 e I —
|

555 e I—
P
E——

10 12 14 16 1.8

OEBPS/httpatomoreillycomsourceoreillyimages1231234.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231220.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231254.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231318.png.jpg
Last-Modified
Server

Content-Type

Content-Length

Connection
Date

Accept-Ranges

Response body

ks

OEBPS/httpatomoreillycomsourceoreillyimages1231382.png
hitps:/ [wwwg

b_8dsafc09.pr
ssl.gstatic.com,

blankchtml

(] hotaenivine
Ilogos/2011
mU-H_Fs-Dik,
Jextern js/f/C¢
holiday11-sr.
Jlogos/2011

918a46106fd
Jextern_chrom:

get
ligiep

| plspritepng
Jimages/exper

20 ey
oK e
304

Not Mo, ™24
00 |
o 7.
o8 e
Not Mo,
00 |
o 7.
304

Not Mo, ™3
00 |
o 7.
w0
oK e
04

Not Mo, ™39

Other

" Parser
Other
Seript
hittos:/ fw,
Seript
Parser
hittos:/ fw,
Seript

" Script
mU-H Fs-DI}

Seript

9538

(o

1858
65.82€

(o

1858
2.63K8

(o

o8
asB

1858
321K8

Documents ~ Stylesheets

=

Scripts XHR Fonts WebSockets Other

P s

OEBPS/httpatomoreillycomsourceoreillyimages1231190.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231376.png
| Networktime | Servertime | Networktime | Clientside time
: T T T T T >
Gick Request Response Received Onload
Web servicesand
database times

Server ime = response - request
Gl ide time = onload - receved
Approximate network time = (received-click-server time) / 2

OEBPS/httpatomoreillycomsourceoreillyimages1231356.png
On startup

Evaluation of the
Parsing of the escaped script
escaped script

On user interaction

OEBPS/httpatomoreillycomsourceoreillyimages1231364.png.jpg
Prowser Version

020

16081263

Ao PogeLosd
Tme sec)

an

ar

Pagedens.

oz

se0s

PageLess
Sample

n

.

OEBPS/httpatomoreillycomsourceoreillyimages1231412.png
Web Font Implementation Benchmarks

Fastest of 10 runs at webpagetest.org (ms) in IE9
200 400 600 800 1000 1200

o

Google Web Fonts JavaScript
FontSquirrel Optimal

Google Web Fonts Standard
FontSquirrel Expert
Boot.getFont

Typekit

FontSquirrel Expert (CDN)

Boot.getFont (CDN)

System

OEBPS/httpatomoreillycomsourceoreillyimages1231358.png
On startup

Evaluation of the
escaped script

Parsing of the

HTTP cache escaped script

hit

On user interaction

OEBPS/httpatomoreillycomsourceoreillyimages1231196.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231312.png.jpg
URL

Method

Status code

Status descril

Duration

Request headers

Referer

Accept-Encoding

OEBPS/httpatomoreillycomsourceoreillyimages1231346.png
connection thread
SPDY
socket Mod_ss! connection
handler

(7o
'
! request thread 1
! Py
*_Lp// SPDY-to- input filter HTTP output flter HITP-to-
' HTTP filter chain handler chain SPDY flter
'
I
1
'
! request thread 2
H P m—
L/ SPDY-to- input filter HTTP output filter HTTP-to-
! HTTPflter chain handler chain SPDY flter
'
I
'
H .
' .
E .
! request thread n
'
I SPDY-to- input ilter HTTP output filter HTTP-to-

’< HTTP filter chain handler chain SPDY flter

OEBPS/httpatomoreillycomsourceoreillyimages1231208.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231258.png.jpg
G
wa
@ a
sa
sa
® a

200
200
200

200

200

200

1 126ms.

OEBPS/httpatomoreillycomsourceoreillyimages1231320.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231266.png.jpg
8006 Product reviews and prices, software downloads, and tech news - CNET

~ 2011 Haliday

ey Fastestn the Strtosphere
Gifr Guide

clnet

Reviews News Download CNETTV HowTo Marketplace

#HTIC D Console WTML CssScript DO [Net~ | Page speed F_——————ee
4 Clear persist | Export v ® (Al HTML CSS JS XHR Images Flash Med
b GET B6030945.11; 302 Moved Temporarly ad.doubleclick.net o [l 33ms o
b GET dotcleargif 302 found adiog com.com o B s24ms
GET wrapperjs cdn.eyewonder.com o 1
> GET dotcleargif 302 Found adlog.com.com 0 I s22ms e
b GET Tabletorreac 200 0K 89.7K8 — 3.+ v
P GET LuxurytechTV 200 OK 135.8KB N 2.065 4

OEBPS/httpatomoreillycomsourceoreillyimages1231282.png.jpg
5
B

Chrome 15
Bestone Faded, bad needle
- & &
Misplaced needle Too faded, bad needle
- & ﬁ
Misplaced needle, broken glass. “Too faded, broken glass
Safari 5
including 0S5
Faded, Atari 2600-like
o &

'Salvador Dalf's dlock Too faded, Atari 2600-like

OEBPS/httpatomoreillycomsourceoreillyimages1231244.png
User Mode |

Web Browser

SSL Library

WebPagetest

Winsock

TCe/P

WinPCap (tpdump)

Ethenetadapter
diivers

‘The Internet

Kernel Mode

OEBPS/httpatomoreillycomsourceoreillyimages1231184.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231292.png
Page

cPy

JavaScript

Rendering

Network
www.amazon.com
g-ecximages-amazon.com
Z-ecximages-amazon.com
addoubleclicknet
ecximages-amazon.com
aan.amazon.com
s0.2mdn.net
fls-na.amazon.com
d313Ikinz3fS6t.cloudfrontnet
bsserving-sys.com
riturn.com
s.amazon-adsystem.com
dsserving-sys.com

Events

http://www.amazon.com/

| {0 TN 1 | 00
I NIEm I mn Il
= (]
OO0 Omm_ 1
|
Om
m
= (]
—
]
[}
| I—
" | [0 [

OEBPS/httpatomoreillycomsourceoreillyimages1231238.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231402.png
— W3 Total Cache: Db cache debug info:

apc
53

Cached queries: 0
Total query time: 0.0451
SQL info:

1 Time (s) | Caching (Reject reason) | Status | Data size (b) | Query

11 0.0005 | disabled (User is logged in) | not cached | o | seLect
option_value FROM wp_options WAERE option name = 'rewrite rules’ LIMIT 1

27 0.0025 | Gisabled (guery is rejected) | not cached | o | sezEct
SQL_CALC_FOUND_ROWS wp_posts.* FROM wp_posts WHERE 1=1 AND wp_posts.post_type = 'post’ AND
(wp_posts.post_status = 'publish' OR wp_posts.post_status = 'privave') ORDER BY wp_posts.post_date

DESC LIMIT 0, 10

OEBPS/httpatomoreillycomsourceoreillyimages1231410.png
Fastest Load Times (ms) by Implementation and Browser
IE9 IE8 IE7 Firefox Chrome Fastest

System 373 - 370 - 398 358
Boot.getFont (CDN) 692 - 696 - 680 652
FontSquirrel E(?:;; . 697 681 - 681 667

Boot.getFont - 698 798 - 704 693
FontSquirrel Expert -- 784 802 792 704
Typekit 798 - 959 - 815 795

FontSquirrel Optimal -- 803 933 925
Google Web Fonts
oo 0% 1057 1126 801
Google Web Fonts
s 5% 870 899 850

OEBPS/httpatomoreillycomsourceoreillyimages1231278.png
B[L 5

Status Type Resource Session Instances Time Size Timeline s

» % ©200 i@ /06_Enhanced_Productsxml vs 1 218ms 1174bytes | |

» % ©200 fm | /Connectxml 26 1 212ms 174sbytes | |

» % ©200 @ /launchimagesxml s 1 218ms | s39byes | |

» % ©200 {3 | /iphone-home_rosie-662x640jpg v6 1 883ms 45032bytes | |

» % ©200 @8 fiphone-home_erin-6621640jpg V7 1 570ms | 45551bytes | |

» % ©200 {8 fiphone-home_chanel-662x640jpg '8 1 1084ms | 42018 bytes | |

» % ©200 @ /iphone-home_adriana-662x640jpg 1S 1 a62ms | 49402bytes | |

» % ©200 @8 |/120111-homepage-700x394jpg 1|7 1 2323ms | 68223bytes | |

» % ©200 @ /113011-directors-extended-cutvideo-630G55)pc t 5 1 77ms | 793nbytes | |

» % ©200 @ |/113011-making-of-holiday-opera-house-video-63t + 6 1 996ms | 91485bytes | |

> % ©200 @8 /13011-tellme-youlove-me-video-630x355jpg 1 5 1 466ms | 70099bytes | |

> % ©200 @ /120111-giftspress-day-07-230x230jpg v8 1 1453ms | 42910bytes | |

> ¥ ©200 (@8 /120111-gifts-press-day-01-230x230jpg vs 1 seoms 43558bytes | |

> % ©200 @8 /120111-gifts-press-day-10-230230jpg 16 1 s40ms 37522bytes | |

> % ©200 @@ /120111 jingle-bells-video-630x355jpg v6 1 2917ms | 98747 bytes

» % ©200 @ |/113011-fashion-show-extended-video-630x355,p * 5 1 2311ms | 109547 bytes | ||

» % ©200 @8 /ipad-connect-1024x1024jpg ve 1 1750ms | 108837 bytes | |

» % ©200 @@ /privacy_and_securityhtmi V7 1 asims 8237bytes | |

> % @200 G | /california_privacyhtmi v7 1 219ms | 1677 bytes I

» % ©200 @@ | /terms_and_norticeshtmi 1|7 1 218ms | 5000 bytes I

» ¥ ©200 (3 ipadintro-adriana-01-960x640jpg V7 1 1966ms 83025bytes | |

» % ©200 @8 | fipadintro-adriana-02-960x640,jpg T8 1 1690ms | 64742bytes | |

» % ©200 @8 fipadintro-doutzen-960x640 pg v|s 1 1524ms | 115506 bytes | |

» ¥ ©200 {3 fipad-intro-rosie-960x640jpg v6 1 1366ms | 70454 bytes I

> % ©200 [/eluminate qn 1 4902ms | 903 bytes (]

» % ©200 @3 /eluminate (12 1 550ms 903 bytes [] -

{8 DN resolution M Connect time 268ms(wait115m{ll Request 1 ms I ES&GZ—:‘S A
Wait 165 ms B Response 2ms

EQQQ

OEBPS/httpatomoreillycomsourceoreillyimages1231332.png
Percentage of web traffic that constitutes attacks

20% m

21%

25%

23%
2% [T T

19%

1%

May June July August ‘September October November

OEBPS/httpatomoreillycomsourceoreillyimages1231352.png
900

800

700

600

500

400

300

200

100

I.II“
-

iPhone 3

iPhone 4

iPhone 45 Nexus S iPad iPad 2 Mac Book Pro

OEBPS/httpatomoreillycomsourceoreillyimages1231328.png.jpg
Method

Request headers
Referer
Accept-Encoding
User-Agent

Accept-Language

Accept

OEBPS/httpatomoreillycomsourceoreillyimages1231224.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231306.png.jpg
owle[n[]v[ul Jole)
{2|s|o]Fle]nfu]k]L]
Ll z[x]c|v]s|nmi]
fe HEAED

OEBPS/httpatomoreillycomsourceoreillyimages1231260.png.jpg
Fraction of all pages

20%

15%

H

$

Distribution of serialized sequence lengths

1 2 3 a s 6 7 B 9 10+

Length of longest serialized request sequence in page

OEBPS/httpatomoreillycomsourceoreillyimages1231408.png
[

23

1

0

>?@ABCDEFG

abcdefgh

tuvwxyz{

JKLMNOPQRSTUVWXY2Z

paqrs

OEBPS/httpatomoreillycomsourceoreillyimages1231214.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231418.png
Web Font Implementation Benchmarks

Fastest of 10 runs at webpagetest.org (ms) in Firefox
200 400 600 800 1000 1200

o

Google Web Fonts JavaScript
Google Web Fonts Standard
FontSquirrel Optimal
FontSquirrel Expert

Typekit

Boot.getFont

FontSquirrel Expert (CDN)

Boot.getFont (CDN)

System

OEBPS/httpatomoreillycomsourceoreillyimages1231384.png
D erofter | |D-] (o) (&) (5]
[e]

oms 399 ms 11975 1596 s

Document parsing & %

€SS parsing 1% [}

Script compilation 3 %

Thread evaluation 27 % [[[[} [[
Reflow. 3% ELL B0 1om LRI I TR |
Style recalculation & % ' ' ' o]]
Layout 8% [[[[[[
paint 37% [[[' [[[
Selector Time v Hits A
#ooter a 0.3ms 189
fb_connect_bar_container a 0.3ms 102
#page p.download.blue a 0.3ms 190
div.third > a +* 0.2ms 705
B 01ms 410
div.light_square _pp_arrow_next disabled 01ms 668
div.light_square .pp_arrow_previous.disabled 01ms 668
div.light_rounded pp_arrow_previous.disabled 01ms 668
i 01ms

Total time: 10 ms

OEBPS/httpatomoreillycomsourceoreillyimages1231182.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231268.png
OReilly Radar - Insight, analysis, and research about emerging technologies

&
(4)-] & racarorelly.com (%] (©! vahoo

“The problem for ‘Smart use data for your bad r
s that customers don'tknow | 1o ask the right questions habits
what a book is anymore, and take swiftacton, Clay Johnson on nfo

overioad vs. nfo

overconsumption.

Four short links: 6 December 2011 four
Dispel Your lllusions, Simple Mac OS X Apps, Assisted short
Translation, and AutoTagging links
by Nat Torkington | @gnat | 6 December 2011

. How to Dispel Your llusions (NY Review of Books) — Freeman Dyson wring about Daniel
Kahneman's latest book. Only by understanding our cognitive llsions can we hope to transcend
them.

. Appify-Ul (github) - Create the simplest possible Mac OS X apps. Uses HTMLS for the UL
Supports scripting with anything and everything. (via Hacker News)

~

3. Transiation Memory (Etsy) ~ using Lucene/SOLR to help automate the translaton of their Ul.
(via Twiter)
4. Automatically Tagging Entites with Descriptive Phrases (PDF) — Microsoft Research paper on

‘automated tagging. Under the hood it uses Map/Reduce and the Microsoft Dryad framework. (via
Ben Lorica)

Commont] Tger

Comnecting o widgets.twimg.com PPV————————————————J
2RI Console WML €SS Script_ DO [Net v | Page speed T ee

40 Clear Persist | Export v @ | Al HTML CSS JS XHR Images Flash Media

» GET fourshortinks. 200 0K can.oreily.com 4sks B saums F

> GETphoto matsim 200K cmoreiveom 38K [~ [
GET widgetsis platform.twitter.com o 3 1

> GET 1211-spotify~ 200 0K radar.oreilly.com 76K8 B s25ms I

» GET photo_mikels, 200 0K can.oreily.com 28k B 17oms v

o eFT 1911 dAmrb e orn o e acwm — R P

OEBPS/httpatomoreillycomsourceoreillyimages1231308.png.jpg
[phpied.com

.com
g G, fax. Bookmarklts, s, 5 1,
Jovascri. son ma, mysal pear, parformance,pnp, prpsh, 100

OEBPS/httpatomoreillycomsourceoreillyimages1231378.png
Sample 1

OClient side
Oserver side
atabase
Oweb services

B nNework latency

Sample 2

Sample 3

) 2000 4000 6000 8000 10000 12000
Time (ms)

OEBPS/httpatomoreillycomsourceoreillyimages1231198.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231270.png.jpg
The YSlow Biography T

YSlow analyzes web pages and suggests ways to
improve their performance based on a set of ules for
high performance web pages.

CYRF I 1
i®

Faeis

2011 /3.«

Top 25 most downloaded
&) Firefox Add-on

Almost 3,000,000

total downloads across browsers

350,000 users

OEBPS/httpatomoreillycomsourceoreillyimages1231240.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231228.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231242.png
; User Mode
. ,
| WebBowser L tibary | |
: :
. ,
. .
. .
. Vinsock | —————
. .
: :
. ,
. .
. T .
. ,
. .
. .
. ,
[Ehemetadapter i
: ivers ;
. $ Kemel Hode

‘The Internet

OEBPS/httpatomoreillycomsourceoreillyimages1231326.png.jpg
phobb.jpg
phpbb-ug.jpg

subscrlbe php

ike.php EDK(

ctEagBoKGba |s

qI9vukDCc4R png

bEVavJWaGcK css

9DryxthUJ.|s

] 6023cctms1R png
i

OEBPS/httpatomoreillycomsourceoreillyimages1231334.png
Fj"hu“;zH}]/CloudFlare Enabled

OEBPS/httpatomoreillycomsourceoreillyimages1231370.png
Highest Correlation to Load Time

073
o8 0.64 062

Total Xfer Size Total Regs Image Xfer Size Image Reqs JS Regs

OEBPS/httpatomoreillycomsourceoreillyimages1231414.png
Web Font Implementation Benchmarks

Fastest of 10 runs at webpagetest.org (ms) in IE8
200 400 600 800 1000 1200

o

Google Web Fonts JavaScript
Typekit

Google Web Fonts Standard
FontSquirrel Optimal
FontSquirrel Expert
Boot.getFont

FontSquirrel Expert (CDN)

Boot.getFont (CDN)

System

OEBPS/httpatomoreillycomsourceoreillyimages1231226.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231232.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231264.png.jpg
8006 Business Insider
(<)] (#) (€] B wwo businessisicer.com v][] (&1 vanoo D xBIE

‘Business Insider

[—— [Pt—

BUSINESS

INSIDER

Home = Tech Enterainment WallStreet Markets Strategy Sports ~Lifestyle Poiiics Euope Data Misc. YourMor

Hive | Tape | Blackboard | Contributors | Charts | Authors | Documents | Jobs E

The Only Four Paragraphs You REPORT: US. Agents Are 2 SEND US ATIP!
Laundering Money For

Need To Read From Obama's Mexican Drug Cartels
Big Class Warfare Speech

Get BUSINESS INS

Your Email Address

Learn More »

Grace Wyler

ttp:/ www. businessinsider. com|eric...dering-drug-cartels-mexico-2011-12 —

® KD | Console HTML Css script DOM [Netv | Page Speed

4 | Clear Persist | Export * ® (Al HTML CSS JS XHR Images Flash Media
b GET min-alless?1 200 0K statics businessinsider.com 30.1K8 | 3.845 0
b GET min-printes: 200 0K staticS businessinsider.com 30.3K8 | 5865 ‘
b GET minjs?13222 200 0K static8 businessinsider.com 75.2K8 | 13.235

GET anywherejs? Aborted platform.twitter.com o B g 1m 15 Y

b GET jstag 2000k ox-d.businessinsider.com 18.6K8 | 1955 v
> GET openxs 200 0K staticé.businessinsider.com L1KB | 964ms v

OEBPS/httpatomoreillycomsourceoreillyimages1231374.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231396.png
Top 5 web transactions

by percent of wallclock time
0%
0%
0%
12116 12/16 12116 12/16 12/16
00:00 0200 0400 06:00 0500
B /workigetworkphp [humbnailphp [/workiworkdone.php I /workiresutimage.php

B foreakdownPie.php.

O ewetc

OEBPS/httpatomoreillycomsourceoreillyimages1231416.png
Web Font Implementation Benchmarks

Fastest of 10 runs at webpagetest.org (ms) in IE7
200 400 600 800 1000 1200

o

Google Web Fonts JavaScript
Typekit

Google Web Fonts Standard
FontSquirrel Optimal
Boot.getFont

FontSquirrel Expert
Boot.getFont (CDN)

FontSquirrel Expert (CDN)

System

OEBPS/httpatomoreillycomsourceoreillyimages1231362.png
Security Information

@ This page contains both secure and nonsecure
tems.

Do you wart o display the nonsectre tems?

OEBPS/httpatomoreillycomsourceoreillyimages1231330.png.jpg
Carrier =

[phpied.com

phpied.com
- oot (i . Bokmardes, s, s, s,
Jovasero. o s, iyl pear performance.php,phpBh. ot

OEBPS/httpatomoreillycomsourceoreillyimages1231210.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231186.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231314.png.jpg
Headerz

Request headers

Referer
Accept-Encoding
User-Agent
Accept-Language
Accept

Response headers
Keep-Alive

Etag

OEBPS/httpatomoreillycomsourceoreillyimages1231296.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231206.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231290.png
Payload vs Rendering

css3 css3
w3c webkit

css3all

webp

webp
inline

M payload (kb)

ipginiine

ig

M rendering (ms)

png8

png8

inline.

png24

png24

inline.

OEBPS/httpatomoreillycomsourceoreillyimages1231294.png.jpg
window.performance.timing.

navigationstart
redirectstart
redirecténd
fetchstart
domainLookupStart
domaintookupEnd
connectstart
(secureConnectionstart)
connecténd
requeststart
responsestart
responseEnd

L 7 —
loadEventstart
domComplete
domContentloaded
dominteractive
domLoading
unloadEnd

unloadstart

OEBPS/httpatomoreillycomsourceoreillyimages1231250.png.jpg
Original Site

OEBPS/httpatomoreillycomsourceoreillyimages1231316.png.jpg
Carrier

Mozilla/5.0 (iPhone Simulator; CPU iPhone OS
5_0 like Mac OS X) AppleWebKit/534.46
(KHTML, like Gecko) Mobile/9A334

OEBPS/httpatomoreillycomsourceoreillyimages1231368.png.jpg
Average Bytes per Page by Content Type

Scipts - 1728
Stylesheets - 33 B

\— Fiash- 5048

— —Oter-30kB

W total 965 kB

OEBPS/httpatomoreillycomsourceoreillyimages1231404.png.jpg
I, heading, proudly use @fontface.

I, heading, proudly use @fontface.

1.6 1.6
Firefox 3.6 SSI08 Chrome

|, heading, proudly use @fontface. I, heading, proudly use @fontface

1. heading. proudly use @fontface i

OEBPS/httpatomoreillycomsourceoreillyimages1231422.png
It s/ /i artzstudio.con/¥ i Les Font-

1

+ . artzstudio. .. le-javascript htnl
. ajax.gongleapis.con - uebfont .js

. fonts.googleapis.con - css
. themes..googleus. . .-EPrUaSHZUTK.UoFF

OEBPS/httpatomoreillycomsourceoreillyimages1231366.png.jpg
PSP P00 B PPP PP P

i

OEBPS/httpatomoreillycomsourceoreillyimages1231322.png.jpg
Last-Modified
Server

Content-Type

Content-Length

Connection
Date

Accept-Ranges

Response body \

body{font-size:62.5%;font-famil...

OEBPS/httpatomoreillycomsourceoreillyimages1231360.png
200

180

160

140

120

100

80

20

Stringified

* Calibrated parse time (ms)

Commented

Calibrated execution time (ms)

Original

OEBPS/httpatomoreillycomsourceoreillyimages1231230.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231218.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1231338.png
203.7KB

153KB 153KB

OEBPS/httpatomoreillycomsourceoreillyimages1231344.png
connection thread

Output filter

[chain
socket Mod_ss
L[mput iter

chain

OEBPS/httpatomoreillycomsourceoreillyimages1231350.png
HTTP cache hit

