Blender Game Engine Beginner's Guide
Blender Game Engine Beginner's Guide
Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2012
Production Reference: 1300812
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84951-702-7
www.packtpub.com
Cover Image by Asher Wishkerman (<a.wishkerman@mpic.de>)
Credits
Author
Victor Kuller Bacone
Reviewers
Pang Lih-Hern
Michelangelo Manrique
Acquisition Editor
Robin de Jongh
Lead Technical Editor
Hithesh Uchil
Technical Editors
Rati Pillai
Lubna Shaikh
Copy Editors
Brandt D'mello
Insiya Morbiwala
Alfida Paiva
Project Coordinator
Sai Gamare
Proofreader
Joel T. Johnson
Indexer
Rekha Nair
Production Coordinator
Melwyn D'sa
Cover Work
Melwyn D'sa
About the Author
Victor Kuller Bacone is the pen name for a Blender enthusiast of six years. By profession, he is a video editor, but the explosion of current technologies has led him to learn 3D software, and he chose Blender out of them all.
In the short span of his career within the Blender community in Catalonia (Spain), Victor has promoted Blender events, master classes, and an online magazine under the name Blendercat (http://www.blendercat.org) for anyone who wants to learn 3D using free software. His great admiration for the animation and interactive side of Blender is combined with his passion for games, and more specifically, the ease with which one can create games using Blender. He holds a Masters degree in Computer Science, and teaches both young and unemployed adults.
I would like to thank Sisizik, without whose help I couldn't have transcribed this book.
About the Reviewers
Pang Lih-Hern is a Computer Game Engine Programmer with more than five years of industry experience. He started programming when he was 12, learning the quick, basic language. After graduating with a degree in Software Engineering and Games Design from Multimedia University Malaysia, he began his freelancing endeavors, which eventually led him to be a part of the core technical team for John Galt Games (Malaysia). He was a part of the decision-making group for designing and implementing the company's proprietary game engine. Lih-Hern is also actively involved on the open source front, often submitting fixtures and features for the popular, open source Ogre3D engine. One notable contribution of his was the Parallel Split Shadow Map feature that enhances the shadow rendering of a 3D scene. He is also a strong advocate of Blender and is currently holding the position of maintaining the Blender exporter to Ogre3D's mesh format.
After leaving John Galt Games (Malaysia), Lih-Hern co-founded Liquid Rock Games Sdn. Bhd.(outsource development) and Nakama Studios Sdn. Bhd.(in-house development) with his fellow artist partner Yap Chun Fei. The goal was to create innovative, AAA-quality games, without the need for a huge budget cost, by means of using open source technology and tools, such as Blender, Gimp, and Ogre3D. As of now, Nakama Studios (their in-house development studio) is in the process of developing its first, racing title named TrackVerse (formally known as Aftershock), an online, multiplayer, racing construction kit game. The game's artwork have been modeled and textured using Blender and Gimp, showcasing the capability of such tools in the commercial market.
Lih-Hern has also reviewed another book for Blender published by Packt Publishing called Blender 2.49 Scripting by Micheal Anders.
First of all, I would like to thank Packt Publishing for giving me the opportunity to review this book. I would also like to thank my family and the co-partner of my company, for allowing me the spare time and support to review this book. This book serves as a nice introduction to the world of game development, to enthusiasts with little or no knowledge in game development. I hope this book will help pave the initial, stepping stones for using the Blender Game Engine to create their own dream games.
Michelangelo Manrique, born on May 20th, 1980, has always been interested in Fine Arts. This interest made him not only start his university studies in the History of Art, but also to work as a painter and art curator. Michelangelo also has a love of technology, and he discovered the use of Blender in 2004. Blender caught his attention and he was fascinated by this 3D suite's possibilities and workflow.
He is currently a member of bf-docboard-es, helping with the official wiki translation of the Blender software to the Latin-Spanish community.
Presently, Michelangelo is working as a programmer. He publishes tutorials and writes articles, and at the same time offers different courses for Blender learning. He is available to do freelance or collaborative work with other studios, or for discussion events about the software. Michelangelo is a Blender Foundation Certified Trainer.
For further information, visit http://www.lighthouseanimation.es.
Michelangelo has also been working on different areas of software engineering, such as developing websites, managing databases, or programming for http://www.gpvwc.com. He is currently working as a full-time programmer at gamereactor.es, and is actively involved in the Blender community through publishing articles and offering courses for Blender learning, especially regarding rigging and modeling.
www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Preface
In this book, you will find the necessary tools for the friendly Blender Game Engine. When I set out to write a book for beginners, I was preparing the text of a game called "Save the Whale." Of course, much of the introduction to this text could be applied to the first chapters of the book you have in your hand. So mostly, some of the exercises you will find are extracted from a game idea of mine, which eventually helped me explain many of the concepts of Blender Game Engine, such as how Blender's interface works, and what kind of connections must be learned to move our character within our own game.
BGE is a section of the Blender program that is a free, 3D software package. Blender is very powerful and very complex at the same time. The Beginner's Guide is a gentle introduction, not only for someone interested in learning about games made in Blender, but also for anyone who is curious to know all about what can be done with Blender.
Blender, as you know, is an open source program and has many followers. So much so that the program is complex, involving many fields of work, and you can use it in different disciplines. Parts of the program may be unknown to you if you do not apply them to your project. So a part of the BGE is for beginners, not for those who have not used Blender in their life, but for those who use Blender daily and have not played with the game engine program. This is a powerful tool whose potential you will see in the following pages of this book. Here is a list of the chapters with their brief overview.
What this book covers
Chapter 1, Things You Need to Know, starts off with a general overview of what the Blender interface looks like, how to focus in BGE mode, what the Logic Editor is and how it runs. The Logic Editor is simple to use, as determined by using the keys and the actions, which are associated with each object in the scene. A simple explanation of how they connect the bricks will open a world of possibilities.
Chapter 2, Your Characters, directly starts with BGE, but needs some models for it to work. If we start working with the BGE, then we must have a library of all of the objects we use in our game. On the Internet, we can find plenty of 3D objects that can be useful for our game. We suggest that you use some pages from the best library, and some good advice to create your game.
Chapter 3, The First Level, begins with the specific objects that we need, with a quick overview of the game level by creating an environment. We will show you how to create the beginning of a game, which marks the start and end of the level of play we created.
Chapter 4, Collisions, explains some of the most common responses of collisions. This is because collisions are the most important part of our character's interaction with its own universe. This confrontation between the character and everything around it can be very important in the game.
Chapter 5, Gameplay, explains the next level of the game. It explains how to keep score, the level of life bar, and many more essential constants in the game, regardless of the level of play you are in. In this chapter, we will discuss the most essential topics, such as life bar, counters, maps, or viewpoints.
Chapter 6, Liven Up Your World!, makes it extremely important for us to improve our game, by animating it and creating the difference.
Chapter 7, Game Menu Screens, covers the menu screens of a game, and shows how to create menus to start playing, create titles and buttons, and how to create the executable to start the game.
Chapter 8, Publishing Your Game, creates a first draft, which is playable at the first level of your game that was made in Blender. When you have finished the game or demo, it is time to publicize your game in order to get people to download it and mark their comments. In this section, we show some interesting ideas for the same.
What you need for this book
This book will not make your game the best, but will only show the fundamental principles of the game engine and how it works with the logic bricks.
For good and best use, I highly recommend the reader of this book to write down his idea of the game on a paper, decide on the character or characters that will be a part of it, the enemies of the characters, and especially how the game environment should look.
A good plan like this will get half the work done. The basic equipment that the user may need later is the Blender program which can be downloaded for free from its official website: http://www.blender.org.
Remember, idea, pen and paper, and then Blender. Do not even begin to reverse this, else you might have too many headaches.
Blender has very low hardware requirements; for more details visit http://en.wikipedia.org/wiki/Blender_(software) and http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction/Installing_Blender.
Who this book is for
If you have used Blender before, but never got a grip of the BGE, then this book is for you. If you have tried and failed with other game development environments, or if scripting is not your strong point, then this is where you should start.
Conventions
In this book, you will find several headings which appear frequently.
To give clear instructions of how to complete a procedure or task, we use:
Time for action — heading
Instructions often need some extra explanation so that they make sense, so they are followed with:
What just happened?
This heading explains the working of tasks or instructions that you have just completed.
You will also find some other learning aids in the book, including:
Pop quiz — heading
These are short multiple-choice questions intended to help you test your own understanding.
Have a go hero—heading
These practical challenges and give you ideas for experimenting with what you have learned.
You will also find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "At the bottom of the page, you will find the file.blend downloadable."
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "We can change the default view and choose the Game Logic view..".
Warnings or important notes appear in a box like this.
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title through the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots used in this book. The color images will help you better understand the changes in the output. You can download this file from http://www.packtpub.com/sites/default/files/downloads/7027OS_graphics.pdf.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website, or added to any list of existing errata, under the Errata section of that title.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Things You Need to Know
The Blender Game Engine (BGE) is one of the most interesting parts of Blender. This book will help you to get started and make games by modeling low poly objects and animated interactive characters, and use them in the Game Engine with basic controls and more. To learn the BGE, you'll need to learn a Node Editor which provides you with an easy-to-use visual interface (logic blocks) to design games without requiring any knowledge of programming.
The Node Editor has a visual way to set up Composite and show the results. Logic blocks can be connected, which together allows you to create visually complex results. There are three different types of logic blocks in the BGE: sensors, controllers, and actuators. Each of these has a different number of sub-types. Using this system, you can make a character respond to your keyboard input events or set up some basic Artificial Intelligence (AI) behavior for your enemy characters, objects, or environments of the game.
To make games with Blender, we can begin in the section called Logic Editor (sections in Blender are called editor types). Game Logic is what causes anything to happen in the game. The blocks (or "bricks") that you can see represent pre-programmed functions that can be tweaked and combined to move the player, interact with the world, change the level, and more. In short, it helps you create the game.
At the beginning, we do not need cool models, only a cube (by default, Blender shows it) to represent our player in order to move in our 3D environment. We will learn how to move it and how it collides with a wall (plane). If we do that, we can then proceed to substitute our poor model (a cube) and wall for a cool character and good environments. Are you ready?
This book assumes that you haven't had any, or very little, experience in using Blender, so we will go through these chapters step-by-step.
In this chapter we shall:
Things you need, and things you don't
The basic equipment that you need to make a Blender game is the Blender program, which you can download for free from its official page at www.blender.org. It would be better to use the latest version, but it is not necessary. You can make an executable game and then others could play your game without needing to install Blender. Blender runs in most of the common operating systems such as Windows, Linux, and Mac. If you have a standard computer, you have the basic requirements to install a copy of Blender.
If you have never used Blender before, I would recommend you to spend a bit of time reading the documentation and try to do some tutorials provided on Blender's website. You might also find it useful to spend time reading some of Blender's beginner tutorials on other websites. This will help you learn techniques of Blender that we don't show in this book. These friendly websites will answer some of the basic questions that you might have about how to use Blender in modeling, texturing, animation, and others that we do not cover completely.
Surprisingly, all of the information provided on these websites is necessary, but not at this moment, not for your first Blender experience. Creating a lot of (Blender) games will surely help improve your knowledge. Blender uses a visual click-and-drag system to create basic game interactions. This allows the BGE to be used by everybody, including those who may not be programmers. Blender also has a programming language, Python, which can be used to create more complex game interactions. For the purposes of this book, we will focus on the visual system for creating games only. When you have learned the basics of using the BGE, you can then follow more advanced tutorials which show you how to implement Python scripting to create more complex games.
As you may know, Python is a programming language. Python can be used as an extension language for existing modules and applications that need a programmable interface. It has the design of a small language with a large standard library and an easily extensible interpreter. Most Python implementations can function as a command-line interpreter, for which the user enters statements sequentially and receives the results immediately.
Python is essential to make better presentations with the characters, animations, and the rest of the game, but it is not necessary that you use it. Someone can help you in the parts where you do not know enough. The only thing you need to know is how you use logic bricks. Later, you will improve on the rest. Blender's popularity and faithful following has been growing rapidly since its first release in 1998. This has led to a large number of individually-run websites focused on Blender. Go to the official Blender site to see a selection of the websites dedicated towards helping the community.
Time for action — start using the BGE
Let us start and open the Blender program. Closing the splash screen then reveals Blender's default scene that is composed of a main view surrounded by other panels. The main area in the center of the screen is the 3D View, as shown in the following screenshot. By default, this contains a cube as I had mentioned earlier in the chapter.
We can change the default view and choose the Game Logic view. To do this, go to the top menu bar and click on the icon next to Default. The drop-down menu will show several preset views, as shown in the next screenshot. We can choose the one that interests us, which right now, is the Game Logic view.
What just happened?
Blender's flexibility with windows lets you create screen layouts for different tasks, such as Animation, Compositing, Default, Game Logic, Scripting, UV Editing and Video Editing. It is often useful to be able to quickly switch between different environments within the same file. For each task, you need to set the stage. In this example, we selected the Game Logic view for our main purpose of making games.
Use the window controls to move frame borders. When you have a layout that you like, and wish to use it as your favorite layout, click on the + button to save the layout as a new preset layout template. Obviously, if you want to delete it, click on the X button.
Exploring the interface of the Logic Editor
Alas! There are so many panels and everything seems so confusing. Do not worry, my first impression was the same. However, by the end of this chapter, you will be familiar with most of the on screen elements. When you create a game with Blender, you do not work with only one editor type. But without Logic Editor, it is not possible to make a game.
Knowing the interface of the Game Logic view offers insight into how the Logic Editor works and prepares us to make complex connections in our game truly interactive.
The Game Logic layout is divided into areas by default, each of which has a particular function or purpose, depending on what the user is doing at that time. There are Header areas in each display editor type. Using these headers (pointed out by the arrows in the next screenshot) we can swap between different editor views. We will focus on the bottom display called Logic Editor (bottom left header).
If you want to zoom in/out of the Logic Editor work area, you must press MMB (middle mouse button) and move it. If you want to pan work areas click Shift button + MMB. Choose Ctrl button if you have Mac OS
The Blender Game Engine uses logic bricks (a combination of sensors, controllers, and actuators) to control the movement and display of objects in the engine.
We will explain shortly these three parts of logic bricks and set up a very basic system within the game panel by showing how to use a sensor, controller, and actuator.
The list menu of an object's logic is only visible when the object(s) are active (shown in white in the outliner panel). Be sure the cube is selected (if not, click on it in the 3D View with the right mouse button).
Time for action — exploring the logic bricks world
All objects have two options, one of which is a label with their name (in this case Cube), and the other a button labeled Add Sensor. The Add Sensor button adds a new sensor to the object. The following steps will help you in exploring the world of logic bricks:
The cube jumps the number of blender units that we input, this can cause objects to go through and around our scene.
The L button switches whether the motion will be added to the local or global axis. Local axis is the object's own axis. This is the most common option and is the default. With the global axis, the cube movement can be aligned with the axis of the world.
In this example, the sensor is responsible for moving the cube forward if we push the Right arrow key.
The cube will not move automatically. Press the Right arrow key, and it will start to move forwards. When you stop pressing the key, the cube will stop moving. Keep the key pressed to move the cube further. Press Esc to return to Logic Editor of Blender.
If you're happy with what you've seen, click on the Start button again, you can do it as often as you like.
Change the size of the view in the desired panel by moving the cursor near the limits of the header menus, moving horizontally and then vertically.
You can also press the Ctrl + Up arrow key to get a completely maximized view (be sure you click on the 3D View panel before doing so).
What just happened?
Great! You just accomplished the three parts of logic bricks, and there is a connection among them. Let's review how to do that and we will be ready to understand the parts!
The Keyboard sensor is for detecting keyboard input. The first blank cell is for single key presses. We pressed the D Key, or the Right arrow key, to move in the x axis of our cube. Sensors are grouped by objects, with every selected object appearing in a list and under each object are its sensors. It is possible to filter them if we check/uncheck which sensors are viewed. We can select which sensors to be viewed from the following options:
But for the moment, let us leave them as they are.
The controllers are the bricks that collect data sent by the sensors.
The actuators initiate their functions when they get a positive pulse from one (or more) of their controllers. They set an object into motion, for example, rotation.
Simple Motion applies motions in our cube without frictions. If we need a character with resistance, we need to choose Servo Control, which consists of a servo controller that adjusts the force on the object in order to achieve a given speed, and hence the name Servo Control. For the moment, Simple Motion is right.
Of course, the cube has got only one interactive key, and will go ahead if we push the Right arrow key in the keyboard. However, this just introduces us to the fundamentals of the Blender Game Engine. You just need to try, test, and modify it. It is easy, isn't it?
Hey! We are finally programming video games! In some aspects, this is similar to being a computer programmer.
By adding more logic, we are ready to continue making a game. But first, let us try to finish an entire movement of our cube so that you can move freely in our private 3D scene.
Time for action — moving the cube
To add more movement to the cube, perform the following steps:
As seen in the previous screenshots, sensors have been closed by clicking on the triangle on the left-hand side of the header to get more space. But we realize that Keyboard1, Keyboard2, and so on do not mean much to us. I recommend renaming Sensors in order to make them accessible and readable in an easy way when we have more sensors in the list.
Change the value in each cell as shown in the next screenshot. In this case, the left key is assigned -0.20 in x axis and the up/down keys are used for the rotation of our cube, the value of the up key is 0.20 in the Rot Z axis and -0.20 for the down key in Rot Z.
Of course, we need to rename all our active Actuators, similar to how we had renamed our Sensors (as shown in Step 5). Spend a little time renaming them to, for example: Move Right, Move Left; Rotate Right and Rotate Left.
At the end of this exercise, our cube should move while we press the key correctly. But wait! The last step is to connect all of the bricks together.
If you wish to maximize the 3D View area, press the Ctrl + Up arrow key after having clicked on the 3D View area with the Left mouse button as shown in the following screenshot:
We can move our cube around the screen. That's fantastic!
What just happened?
We managed to easily and intuitively work with Logic Editor. We created an interaction with our character by adding the following:
As you have seen, many operations with logic bricks are repeated. But in the end, we change a numeric value of the actuator, which facilitates the learning by repetition so that it's not difficult to understand how the other bricks work.
We learned how to move our cube in the 3D scene by connecting logic bricks. It is as easy as giving orders by using the keyboard. You could increase the mobility options if you have more buttons to press.
Pop quiz — exploring the interface of the Logic Editor
Certainly, you do not need the answers. It is so easy to watch the result instantaneously that it is much better for you to prove all your answers and change if the result does not satisfy you.
Have a go hero— doing more
You know how easy it is to change the values of our cube. If the rotation is slower than you like, change it! And find the best result for you.
If the screenplay is empty and you need another object for reference, just add other cubes in the same scene. Select Add | Mesh and choose Cube, scale it by pressing S and move it around in your scene. Repeat this twice and try to move your cube characters without touching them. This is a good practice to see how you play games with the keyboard.
Point of active view
We did not discuss the view that we used in this chapter. In the games, we normally have various cameras. We will learn how to change this in Chapter 5, Gameplay. For the moment, the active camera is the active view in our 3D View. For better understanding of how to move the cube, the top view is the active view of this game exercise.
Summary
We have taken the first step in using the Blender Game Engine. It has not been so hard, has it? We have learned enough in this chapter, all of the secrets of logic bricks have been shown to you. You will find that you will use these same connections for setting up your first level of the game and again in your future projects of Blender Game Engine.
This chapter has covered a lot about the logic brick's world:
We even play in the same point of view, but later we will change and it will improve our game.
Now, we are ready to forget the cube and create the character of our video game. If you are a good 3D modeler, you can choose to create your own character. Or to make it easier, get free characters from web libraries because you know that you can add this game logic to any model in Blender (no matter what shape or size it is), and it will move around just like the cube that we have learned to move!
Chapter 2. Your Characters
You have seen that Blender's 3D game engine can be used to make and play computer games. In this chapter, I will explain how to go about designing your game and how to use Blender to get your model game characters, or 3D environments, to create casual video games.
If you're not good at making models, once you have tested how the character moves in the Blender engine, you can always download the model from the Internet and improve it later.
In this chapter we shall:
So let's get on with every single thing you want in the game; for example, storylines or levels of quests, characters, enemies, environments, interface designs, and so on.
So if you have your list of items and objects, it is time to decide how to get them.
An example—save the whale!
We've got a basic idea of what characters are. Now, it's time sketch our character. If you're not good at drawing characters, try downloading them from the Internet.
For this book, I thought of a simple example for our game. Save the whale! We have drawn an easy character, a whale. We can create a fast-paced environment with a few icebergs, varied food of fish and seals, and we can create as many different enemies as we like, such as sharks, whale hunters, and pollution.
The game can augment its levels of difficulty as we develop our world using different environments. We can always increase the capability of your character with new keyboard functions.
Obviously, this is an example. Feel free to change the game, remake it, create another completely different character, and provide a gameplay of another gaming genre. There are thousands of possibilities, and it's fine if you deviate from our idea. It is important that you clear your design before you start your game library. That's all.
How to create a library
If we start working with the Blender Game Engine (BGE), we must have a library of all of the objects we use in our game. For example, the basic character, or even the smallest details, such as the appearance of health levels of our enemies.
On the Internet, we can find plenty of 3D objects, which can be useful for our game. Let's make sure we use free models and read the instructions to run the model. Do not forget to mention the authorship of each object that you download.
Still, we know that we can open files in Blender and what needs to be imported. A few lines in the following section explain both these ways, step-by-step.
Time for action — downloading models from the Internet
Let's go to one of the repositories for Blender, which can be found at http://www.opengameart.org/, and let's try to search for what is closest to our character.
We have some interesting options. We see a shark, seaweed, and some icebergs to select from.
What just happened?
We have searched the Internet for 3D models, which will allow us to start a library for our game objects in Blender. Whether they are .blend files (original blender format) or of a 3D-model format, you can import them and work with them.
Don't download models that you will not use. The libraries on the Internet grow every day, and we don't need to save all of the models that we like. Remember that before downloading the model and using it, we need to check if it has a free license.
If you are releasing your project under some other free and/or open source license, then there could be licensing conflicts depending on what license the art is released under. It is your responsibility to verify the compatibility of the art license with the license you are using.
Importing other files into Blender
Before the imported mesh can be used, some scene and mesh prepping in Blender is usually required. It basically cleans up the model imported in Blender.
Google SketchUp is another free, 3D software option. You can build models from scratch, and you can upload or download what you need, as you have seen. People all over the world share what they've made on the Google 3D Warehouse. It's our time to do the same.
Download the program from http://sketchup.com and install it. You can uninstall it later. Open the boat file in SketchUp, click on Save as, and export the 3D model using the COLLADA format.
The *.dae Collada format is a common, cross-platform file, which can be imported directly into Blender.
Time for action — cleaning up the model in Blender
Open Blender and delete the cube using the X key and press the OK button in the pop-up menu. Go to File | Import | Collada (.dae) as seen in the following screenshot:
If you can't see the model in Blender, perform the following steps:
On the Object Tools panel, click on Origin | Origin to Geometry before scaling the object.
We will now attempt to design our main character: the whale.
If you prefer other formats, Blender can read 3Ds and obj files too. To see all formats, choose File | User Preferences, press on the Addons tab, and select the Import/Export button on the left menu.
What just happened?
Getting 3D models with other types of extensions requires us to reset them and clean them so we can use them as Blend files. For this, we will import the model as explained previously. We have reduced the model, focused its axis, and taken everything that is not relevant for our model.
Pop quiz — importing other files into Blender
Have a go hero—growing the library
When you have a good library, try to import all models to the 3D view, and move and anchor each object on the scene. You will get a first impression of what your game looks like without any moving objects.
Remember that it is not necessary to find the exact model you need. Maybe some models closely resemble the model that you need. Perhaps, with simple modifications, your character can be ready. In the next paragraph, we will learn how to create a new model, but the tools we will use will be the same, as if you used a model from your own library.
Involving enemies in the game
Let's start with our favorite game engine and put some objects on stage from our library. We can start by placing our whale, some icebergs here and there, and of course our main enemy: the fishing boat.
Time for action — appending the enemy
It is recommended that you create a folder called library, and create subfolders under it, as your library grows. For example, under the enemy folder, you might want to create folders for animals, ships, food, and so on. If you have a good library with .blend files that has really neat objects used in it, then you can, from your current .blend file, link all of the objects into your current .blend file (level 01).
What just happened?
We have placed the player, objects, and enemy in the top view, to give us a better understanding of the position of each element in the level we are preparing.
We use the Append option to import objects from the library. It allows us greater error correction if we want to modify any object at any moment.
If you use the Linked option, you cannot edit the object since all you have is a link to it. You cannot add to it or change it, because its source is in another file that is not open. However, you can modify the source, which will reflect in the linked blend files. This works very well for objects we want to share, which are not unique throughout the game.
Pop quiz — Involving enemies in the game
Have a go hero—reshaping the level
You already have a lot of information, which is required, to know what objects you need for each level of the game, and how you should apply them in your first level. In any case, we did not miss much emphasis on the measurements of each object, and as an example, our icebergs can be of many shapes and sizes. By changing its scale and rotation, you are bound to find plenty of possibilities with a single object. Remember that if you use the Link option, all of the original files in your folders libraries will be updated with iceberg-modifying sources. Learn your options and you will save a lot of time.
Try to move and reposition objects so that your player and the enemy can touch. However, you should reposition the objects again, if the battle overlaps the icebergs. With a few lines in the following section, we will see how the enemy moves, so be prepared!
Creating a meeting point
We can try to move the ship around the whale, without ever having them collide with each other (for now). It is as if the enemy is waiting for the right time, and at the moment is only hovering near our player, waiting for one false move. So, let's create a loop of motion for our boat.
Time for action — making the enemy follow a path
Use a plane to build a navigation mesh, where the boat does seem to surround the whale.
Make sure our object ship is selected, before making these connections in the logic Bricks editor. If you have problems viewing the path, display the objects as a wire edge.
What just happened?
Thanks to the logic bricks, we have an enemy encircling us in a part of the game. We must avoid this if we want to continue the game. Yet the behaviors are not complete, as we have not decided what to do if there is a collision.
As you have seen, it is very easy to give behaviors to the objects. One must know that sensors, controllers, and actuators must be used for this purpose.
We know how our enemy, the boat, moves without needing to press the keys on our keyboard. The boat stops when the navigation mesh ends.
Pop quiz — creating a meeting point
Have a go hero—more interactivity
If you have discovered how to fill the level of potential enemies, and know how they can move, try to make some changes to your player. For example, add one key for diving and passing under the boat or iceberg.
It depends on your imagination, and it will require a lot of attempts for this level of the game to be made more attractive.
Summary
This chapter has provided us with resources for our game models. We learned that:
Well, it's time to create an entire first level for the game. We need to not only have our level map very clear, but also need to know where the player begins and ends the level. In the next chapter, we will look for ways to improve the quality level of the environment, to make it look fantastic in the game.
Chapter 3. The First Level
If we continue with our example of an adventure in the Arctic, we could imagine a whale moving through a maze of icebergs. Your first level of play might be to find a way out for your whale. To do this, we put the whale at the beginning of our level, placing blocks of ice here and there. Finally, you need to know the way out of the first level that will take us to the next level.
To create a level for the player, we must know where to place the obstacles. Since this is a first level, with not much difficulty on battles and actions, we'll use it as tutorial-like level to get used to the game keys. Have you ever thought why almost all games begin the same way? It is almost a requirement, as in real life, that when you get to a new place you need to adapt yourself. You need to acclimatize, and I do not mean to just the cold made in the Arctic region.
Without realizing this, you have created a world, a quiet journey through the Arctic, but it still requires some light and other objects that recreate the atmosphere which characterizes this kind of level, with lots of little lights and textures.
For our whale, we will not put a sandy beach (for now). It will be a pack with some objects, such as the ice, a splendid sky, a solar light that illuminates everything, and water.
In this chapter we will learn how to:
So, let's get on with each theme.
Block out a level environment
We can start with something simple, such as standard platform games with a side view, so we can get an idea of the journey we must undertake to reach our goal.
If you like platform games, start by putting the player to the left, so we know where to begin. Let's put some icebergs in the middle and give an end to the level, such as a door or an arc of ice the whale must cross. That's the end of the level.
Time for action — creating the scene
Let's put our whale on the right side of the screen, and let's make sure that we are working on the right lateral view.
When pressing the numpad key, the mouse cursor must be on the Target 3D view to see a concrete view.
Select the whale object from the object folders available in the blend file library.
For better comprehension, we will use the Y-axis to represent sea level.
Don't just try the S key to scale the iceberg, also try the R key to rotate the iceberg. This displays another, different angle of the iceberg!
Select the whale with the Right Mouse Button (RMB), to operate with logic bricks. Press the right arrow key in the blank cell with no label if , for example, you want to move the whale to the right. Click on Add And as the value for Controller, click on Add as the value for Actuators, and choose Motion. Change the value of x-box to 0.20 in Loc (location). We will now connect these blocks systems together. Click-and-drag from the socket (small circle) at the end of Sensors, to the socket at the start of Controllers, and again to the Actuators brick. Repeat this operation for the rest of the arrow keys.
The values of this project to move the whale are as follows:
What just happened?
From this exercise we learned to design and redesign our level of play, so the player has a specific route. Our ideas evolved as we tried the game, and we saw that we may need to move certain objects so the player can move easily. This task of repositioning our player environment gave us our first glimpse of how each thing will inevitably be remodeled as we put it into our game. Thanks to BGE, this verification process is immediate.
We have created the start of the game, and we have placed our obstacles so our player moves as if he were inside a maze. Measuring the exact position of each object is what takes longer. Once you relocate and test everything again, you could have an accurate idea of how the level is going.
Pop quiz — blocking out a level environment
Have a go hero—doing it better
Would it not be better if the whale dives minimally rotated, as if it has bowed its head and thus improve the movement of the player?
How about trying to modify the necessary connections in the logic bricks for the whale and its tail, so it can resurface almost vertically?
So, you've seen how easy it is to build a labyrinth. In this example, we have proposed one way of doing it. Why not create two possible routes in your game to be at the same place? This will make it much more interesting! As not all players choose the same way to make the character move, if you create multiple possible solutions, the game wins in visual richness and alternatives.
Find a suitable site in your game and create two or three possibilities to trap the character and make it retrace its steps. In a maze, everyone knows what might happen if you take a chance. At this level of your game, make a maze full of possibilities.
Creating a player view
You may not realize it, but you created a map level recently when you finished the previous exercise. The only way to create a new map is to modify what we have done before. But first, we suggest you get a name to our scene. How do we do that? Let's see this and more. From here on, we will start creating new cameras, new scenes, and of course, new layers that overlay it.
Time for action — renaming the scene
The first thing to make clear is that the 3D Viewport Right view leaves us with a complete vision of our labyrinth, right? This view must be the map view, and we need to add a closer look to follow our player.
We will create a new camera, which will only show a part of our labyrinth, and move the whale. The camera too should move at the same time.
The default camera is called camera and the second one is called camera.001. Don't confuse them or change the names. Be sure that Camera.001 is now Camera1 and is selected! You can see the different names of the objects in the outliner.
What just happened?
We have made a substantial improvement, which is quite important at our level of play. By just putting a camera much closer to the player we have defined the field of view for our player, and we have created some intrigue in the maze. Where do you move if you cannot see the maze completely?
With a new camera, we have created the sensor called Always in the logic brick editor, which is constantly connected to our object that follows the whale by the actuators called Track to.
Have a go hero—creating the real map view
Hey, wait! We have the ability to have a minimap overlay on top of the game view by reusing the actual full map view. I wish to see a map, but I don't see it. I just see a simple view.
In Chapter 5, Gameplay, we will explain the overlays. The important thing is to have the map view. Do you want a hero? Make a closer map view to zoom in, and the user will have two maps to choose from.
But if you really want to improve this proposal, why don't you try a first-person camera, a camera that is above the head of your character, and maybe give him a point of view more effective than the one shown here. Why not try other camera anchors that are bound to find one that is better.
Defining the boundaries
We think we have covered a lot. We said we had the full level, but it is not quite true. We still have two dilemmas ahead: starting and finishing the game. Take a moment to see how the beginning of the game is to be created.
We have assumed that the player will begin to go forward, but we have also said it was important to cover all possibilities. What if the player decides to go back just to start? We will also cover that possibility. Are you one of those players who prefer to explore the environment before they start playing the game? Ahem! No comments about it except that we have a problem now—not you, dear reader, but the potential options. We should cover any possible way out. We must force the whale to go forward, and it should have no other choice but to go in a particular direction.
Time for action — closing the entry point
As mentioned earlier, if we decide to imitate a platform game, you should close the left side of the screen by adding a wall of ice behind the entry point. Let's do it.
We choose Duplicate Linked to create a new object with all of its data linked to the original object. If you modify one of the linked objects in Edit Mode, all linked copies are modified. Don't use the Duplicate option, please. If you rotate the original, the copy remains unchanged. This means the transform properties are copies and not links.
The most important thing is the line at the top of the sea. In our case, we put the cube in the middle and resize it so the tops of icebergs are seen, as shown in the following screenshot:
Another screenshot of our virtual sea is as follows:
What just happened?
We have doubled some icebergs close to the start of the game, providing the whale with a single point of exit ahead of it. We have scaled and rotated the objects to get a better contrast with the rest, and finally we have simulated the sea surface line to see how the objects are placed in the game.
The sea will be dynamic, so we need not worry about it for the time being. As we said before, it is just used to simulate the placement of the objects and the surface line. We can delete it once we have seen our ceiling boundary.
Have a go hero—experimenting with the start of the game
You've seen how to improve the main entrance with the same objects you have on stage.
Why not place a ship wreck, or something that is not a part of the game, which can provide a stunning visual impact for the player? Remember that the details are as important as the actions we perform. If we have a very observant player, he would appreciate that since being in your game, he can sometimes see things that enhance the view. This also tells a story through background details, without needing words. Why not use this hint as a good starting point to explore your visual creativity?
Marking the end of level
It is clear that the end should always be encouraging. Try to create something that makes the player thinks he has discovered something really wonderful. The final chapter should be memorable. It is time to create the end of our game, and since we created a great start, why should we not create a glorious end? We will refer to our objects, and perhaps our library. If we find something interesting, we will use it to create the end of this level.
Time for action — opening the end point
Imagine the end of your circuit. At the end of a tedious maze, find a way out, perhaps a hole to escape through. There are many ways out, and there are some spectacular options too. Why not pick one of them? In this case, we will create an arc of ice.
Crossing under an arc is like crossing through a door, a starting point, something we could use to go to the start point again and continue the conquest. Here, just as our player crosses the goal, we use the logic brick and almost magically arrange it, so you can load the next level.
A close-up view shows how the icebergs are located.
What just happened?
The end is much more technically developed than the beginning. As you saw, we need to create a scene to justify specific loading of the second level, as long as the player reaches the goal.
When the whale touches the plane (make it invisible by checking the Invisible button box option in the Properties panel) with the property level set to exit, stage two will be displayed.
Have a go hero—changing the end point
If you want to explore the result of different collisions, test the example game that we have created by changing the collision sensor to Near or Radar. You need a sensor to determine how close the object is to reaching the end. Change of scene is easy if you create a new scene first. Try the other options, such as restarting the scene or level, because we currently do not have a second level. This option brings us closer to the process of changing levels so the screen does not stay blank.
Summary
We have learned much in this chapter, as we had an entire level to practice. Now, we will only refine what we created, and we are not even halfway through the book, remember that!
Improving the game is what will take you more time. Be patient, and rebuild what we've learned here, if you wish to do so.
Specifically, we have covered:
Since we have learned how to use the change of level or end of a game level, we are prepared to modify the player in any of these possibilities. We know how to restart the game, how to reset the player, and how to transfer keys. Do you want to animate the sea in which the whale swims? All of this and more is explained in the next chapter. So, have a cup of tea or a coffee, and continue with the exciting next chapter!
Chapter 4. Collisions
The most exciting part when creating a game is when your brother, or perhaps a friend, is able to move the character in your game through the entire stage. However, this interactivity is not complete if the character does not respond to certain automatic responses, called collisions.
Collisions are the most important part of our character's interaction with the universe in which it moves. This collision between the character and everything around it is important in the Blender Game Engine (BGE). There are Static collisions that set up by default, but if you need a response from the object and not from the character, you must use a type of collision called Dynamic physics, in BGE. We have a virtual world where we cannot move through walls, mountains, and objects (such as blocks, doors, and in our case, the icebergs). It is logical that any wall will stop the adventure of our character, which will need to change the direction if it needs to move on. But there comes a time in the game when we need to move those blocks, slide them, or if relevant, make them vanish. Anyone who has played video games knows what I mean.
We are going to explain some of the most common responses of these types of collisions, which are listed as follows:
So, let's get on with each theme.
Respawning the character
Racing games are the best example to understand why we need to create this ability. When the car leaves the track, it automatically restores its position within the circuit. In simple terms, this is possible because the length and height of the track are invisible walls. If the car collides with the invisible walls around the road, it returns to the track. This is logical, isn't it? Then, let the logic brick create this response to the collision.
Time for action — returning to the original position
Reopen the last exercise where we made the whale cross an arc of icebergs to reach the end of the first level of the play. Remove all of the icebergs to make it easier to understand and work on this exercise. We will only allow the whale and the plane to be displayed. When the player touches the plane, the whale returns to its initial position.
Remember to choose Blender Game as the engine to use the rendered scene.
We use the Touch sensor when the object is in contact with another object without the needed properties. A Collision sensor works like a Touch sensor, but we can also filter by property as we saw in the previous chapter.
If you don't add a controller, but connect a sensor to an actuator (left brick to right brick), it will automatically add the And controller (middle brick). You'll be skipping a step.
Change the rotation value for a better comprehension and visibility of the Touch sensor. If it's ok, delete the rotation value after the test.
An observation: the applications of forces and speeds that are not dynamic objects will have no effect. They are not evaluated by the game engine and are considered fixed on the scene perfectly, as they only move the objects in new positions or specific angles. To generate a collision response, we must not only take into account the mass and friction of the object, but also that the object is marked as a dynamic type.
What just happened?
Starting from the end, we wanted the whale to interact with the world around it. For testing, we placed our character and an object to help us interpret a barrier (a big iceberg or whatever) which makes the character go back to the position where it was. To do this, we had to change the type of physical play and adjust to dynamic. Thus, we can get contacts, and our character collisions with other objects can be calculated to give the answer that we assign. In the previous exercise, the whale returned to the old position it was in before the collision.
Pop quiz — respawning the character
Have a go hero—doing it better
There are many possibilities for creating collisions. We can use distance, as we did in the example, but can we also create a change in direction (for example, when using a ball or returning the character to a specific point of the stage, perhaps a check point).
If we are in a forest, some trees may be in the path of our character and others may not. It is much easier to apply a material to certain objects that we want our character to react to, and therefore not create actions for the logic bricks of other objects. Although this material may not be seen, it is perfectly useful for collisions of the objects with the material, regardless of the type of the object that you see (including if we want this object to be invisible to our player). Try choosing a specific material in a box of a sensor brick. You can see that the character reacts to only the object that has collided with the material you specified.
The easiest feature for a response to a collision outside the game is to reload the game. Try the Game Actuator logic brick. This is really intuitive handling.
For good practice with these types of collisions, we suggest you try to "knock out" the character for a moment to return to the game in a few seconds. Maybe a couple of spins on the same axis could be a clue.
Creating trap doors
I believe there is no platform game where we will not, sooner or later, open an access door or other place, by opening what initially could not be accessed. The simple idea of this new exercise is to show how areas seemingly cannot be accessed by the character (initially), and how we can create a new access path through openings or doors that were previously closed.
Time for action — moving the blocks of ice
I do not think there are many doors in the Arctic, and fewer under water. Let's substitute the doors for blocks of ice. These will move in some way to prevent the whale access elsewhere. To do this, we must finish the previous example.
Before you begin, we need to move the trap iceberg when the whale approaches or leaves it. The icebergs that blocked the way will remain fixed in their positions.
Scale the middle iceberg down so that it is smaller than the rest. This will be used as the trap door.
You can see a list of new channels which were automatically created with the name of the selected object and the suffix Action. This is a register of the curve of the animation. When we press the I key, the Keyframe is marked by one dot in the curve graphic. Come back to the Logic Editor window, and add a new sensor called Near for the door iceberg:
What just happened?
We have seen that the Near sensor is especially useful when applied to an action of our environment which reacts to our character, and not vice versa. It is the object of the scene that reacts according to the position of the character. With this exercise, we have learned to:
Have a go hero—the more, the better
Come on, don't tell me you have not seen the number of options available to the Action actuator. They are incredible. Ping-pong and loops may seem like a wonder to you. Try it with this exercise, it may suit you best for what you need.
Finally, we stopped to comment that fortunately the sensor is near the Invert function. Why not go further and try placing another iceberg to activate the access door? Perhaps, with a limiter clock run to make it more interesting with a time limit. Good luck!
Real-time motion
An object in a ramp could be affected by physics, and it must have gravitational acceleration. Each object that is an actor has mass and size variability. In conjunction with the frame rate, Blender uses this info to calculate how fast the object should accelerate downward in the game.
Time for action — rolling objects
Let's test what would happen if we met with a detachment of ice. The pieces would roll into the water and dive deep into the ocean. Reflected in this sentence, there are too many laws of physics. We will split the iceberg and will be left with only the pieces of iceberg rolling down a slope. Let's see how the game engine calculates this movement.
The radius (marked with a circle of dots) of influence in Attributes is 0.3 in this case. You must change it to fit your version of the scaled iceberg!
What just happened?
We have seen that the simulation of gravity has its effect on the game. First, and most important, is to find the physical values determined for each object.
Remember the steps we have followed:
Most importantly, although we have not mentioned it before, there will be physical consequences of small icebergs sliding down a slope. Always keep in mind the surface and its inclination. Any modification has great effects on the physical state of objects.
Have a go hero—different actions
Now that you know that each object can have its properties and can change the value, you can test the physics involved by not to applying the same values for all of the rocks. For example, a bigger rock reacts differently from the one that is not so big.
If you dare, you could include an obstruction, which does not affect all of the objects in the middle of the fall, and reacts differently for each object. Finally, just to see the results for yourself, try rolling many icebergs to the end of the cliff and into the water. The diving simulation achieved is spectacular!
Creating looped actions
In the previous example, we talked about the fall of objects, but we did not mention anything about where they fall. So, let us turn our attention to creating water, since all of these icebergs through which our whale is floating, are in the water. Let's see how to simulate this effect.
Time for action — making waves
There are many ways to create water. The movement of fluids is not recommended to generate waves. Therefore, let's turn to texture movement, as it makes it appear as if the water moves. With the BGE, we can use several different techniques, depending on the final texture mode. In this case, it only works with GLSL.
The Cloud texture is one of a list of the available procedural textures that give an overall irregularity to the material, to look like the sea.
The Displace modifier displaces the vertices in a mesh, based on the intensity of a texture.
Normal maps simulate the impression of a detailed 3D surface by modifying the shading as if the surface had being completely flat. Normals indicate the direction from the face, along a line.
The diagonal corner position of the empty objects are needed to move simultaneously in different directions than the water could have.
What just happened?
Well, I think this last one is a high-level of learning, although it was necessary to understand how to make realistic water-rendering engine. If it does not look realistic once you have checked out the results, make sure that you have not left out any of the steps performed previously. What we have done here is we have used the normal map, or texture, of a plane to move the texture without needing to move the plane. This is useful and minimizes the number of calculations in the game engine.
To be able to move normal maps, use an empty object to animate itself. After that, the normal maps need to be anchored to the empty objects, and this will enable the normal maps to move.
To create the waves, we have two empty objects to give more realism, since the water always seems to have more than one direction, but maybe it is not necessary.
Have a go hero—making it look real
In this case, it is easy to improve the animation. Water and fluids, in general, have always been a challenge for computer calculation.
Try to make a seabed and see how it changes the look of the textures in translucent water.
You can increase the number of waves, as there are always different ways of seeing the sea, and of course, changing the color of the ocean, because in reality, it is constantly changing!
Summary
Perhaps this chapter is the most difficult one, but you've almost reached the meridian of learning about the game engine in Blender.
Virtually everything that happens in a game has to do with what we have explained in this chapter, and it is especially related to the global virtual world simulation. Remember these steps:
In this chapter, we have learned to practice how objects react to the virtual world. In the next chapter, we will see how this affects the interface of the game. This covers how we can apply a level of health to our character, which level of control we need to go to, or how much money we have, and of course, if we need to change characters. Fascinating, right? Let's try it!
Chapter 5. Gameplay
The part of a game that is less creative is controlled, at all times, to show the reactions of our character when it interacts with the surrounding world. It is often seen in games that form a simple interaction, for example, after a bullet hit, the character suffers a decline in its life indicator bar. Also, if we get food, weapons, or coins, depending on how the game is designed, there are indicators to show that these objects have been collected or achieved. In some games, a character can move to the other areas in the same level, and this form of interaction is necessary to show it! Or depending on the level of difficulty that we are in, we may want to change our character's viewpoint to understand better the labyrinth we are in.
In this chapter, we will discuss the following essentials:
So, let's go in steps.
Growing the character
We know that as the game progresses (which is your character leveling), it increases the level's capabilities, weapons, and awards. The most direct way, almost always, is to make your character grow. How do we determine at what point we should start growing our character? Let's examine this.
Time for action — counting
The counters are useful for getting some extra points, a score in the game, and certainly, it keeps a track of objects. As an example, if we get three fish, we will grow larger in size. The easiest way is to deal with the food. Let's have a look at how it will work.
We will post our whale and four icebergs. Each time you pass one of them, you add a point. When you get four points earned, you can change the look.
If you see the Append option turned off, be sure that you are not in Edit Mode. In 3D View, change to Object Mode or press the Tab button to turn on some of the items in the drop-down list.
In the Material option, enter the material of the icebergs as a filter for the Touch sensor.
We have duplicated the whale, scaled it up, and moved to the second layer. We have renamed it as BIGW (big whale).
What just happened?
Thanks to the specific property of the player that we created as icebergs, we can make a change in the size of our character once the objectives have been achieved, reaching a row of objects. With the Edit Object option, we can assure that we have linked the actuator to replace the character with the same, but modified the player. So, what is the trick? We have prepared an identical model in another layer, but at a different scale.
Have a go hero—completing possibilities
The ability to make changes in the middle of the game is infinite. If we recognize that we can choose to put different characters in one layer, and different weapons in the other, then can you imagine the possible combinations?
If you agree, there are many connections, but these can be great, right? In fact, it is the basis for all avatars to customize your own character. If you don't do these changes, the game does it for you, while you advance in the levels.
Creating a life indicator bar
Surely, a game without your life bar would not be a game. One way or another, there is always a life bar present in video games. It is a rule to be respected: no health bar, no consequences (loss of life) is possible in an interactive game. Don't you believe in it? When you test a game and you can't arrive to the final, without any possibility to repeat the action instantly, the life bar has no sense. The life bar shows you how many times you have another opportunity. With this visual bar, you can improve your game and you will arrive to the end. Is the game always a way to test you or to know if you are competent? Let's see a simple demonstration of how to create a life bar.
Time for action — decreasing life
Let's start by creating a simple life bar (two bars). Remember that the life bar is green or blue, and when you lose life the bar becomes red. Try to create a rectangle of the color you want, create another similar rectangle a bit away in the same front axis, and change its color to red.
Put the cursor on the center-left edge of the rectangle, as shown in the previous screenshot.
As a solution for not getting confused between the names of objects and it's properties, you can type P at the end of the text, for example, lifeP to the property life for whale. For your character, you can decide to make a property called whaleP or rename it to playerP.
The Actuator property has three options. Choose Add in Motion, because you want to change the value of the whale life. Select the exact property that you want to change in the drop-down menu, in this case, lifeP. At last, enter the value to decrease, for example -25.
The value of Subject in Message is -25 for the Sensors bricks. Only the messages with this value have effects in the connections. Choose Play in the Actuator panel, and select which motion was created in the Dope sheet to decrease the life bar in the drop-down list.
What just happened?
We have inserted certain properties in the game in which we can play with variables, that is, send messages, to numerically change the properties of the objects. In our game, we changed to a lower value of our character's life when a collision occurred. If you crash, you lose some life, is it true? Here are some guidelines to do it:
Have a go hero—making limits
We have explained how to decrease the health bar due to collisions. However, wouldn't it be interesting to create a health bar yourself, wherein the health increases when your character gets food or certain objects?
I think it's a bit like thinking you will find a way to increase the life bar. Just use the same logic bricks with a positive value.
But what if you already have a full life bar, or vice versa, your life bar is empty. You will find very useful information if you said the sensor to use is Property, and the property chooses Lifep and you give a value of 0. With this information, you can connect the bricks so that the actuator chosen in the game quits the game, or if you prefer another scene, it selects a new scene as the end of the game.
Creating a counter of items collected
Like the life bar, we can find a counter or some objects, such as onscreen icons, to show us what we have achieved. Imagine that the whale can get floaters and these are displayed on screen. Let's see how to get it.
Time for action — collecting
The process is always the same: we have a collision in order to prove that the player really has got the medal, trophy, or in our case, the iceberg. To do this, we must create a collision after appending the whale in our new scene by performing the following steps:
Select the whale before adding icebergP object properties. Each collision of the whale will remove an iceberg icon on the screen.
All connections that we need are not complete. Follow step 4 and then read step 5 back-to-back and finish the necessary connections of our player.
The iceberg icon lasts only until it receives a message with the exact value.
We again linked two connections with one sensor and controller brick. The Message actuator is the same one that was created in the last step, changing the values shown to you in the image before. Create a new Actuator called scene, but make a new one in the 3D view before choosing them in Logic Bricks. It is necessary to have another scene before we make the bricks.
What just happened?
Collecting objects is a common practice at all levels of play. To show how it is progressing, everything is set, to send and receive messages to the variables we created, so that each object has its properties. This is how we have done it:
We performed a simple test object reduction, although the steps are the same for more life, other weapons, and of course, the coins of Mario Bros!
Have a go hero—making the difference
Once we have understood that the message is necessary to send values and determine the calculation to show or hide icon bars, you can consistently achieve an advanced level of counters. If you get a full blue counter, for example, then you can get a green one, making you bigger, stronger, or something else. Many strategy games are based only on these icons, and should have them under control. These icons should not fill the screen. When the screen is full, it creates inconvenience by affecting the visibility for the player. The icons must match the type of game and should minimize distractions.
A very common practice is to perform a double life bar. If our character obtains an armor or shield, you could use a second life bar to extend the character's ability to fight. Try it! It is very interesting.
Maybe your type of game is not collecting items. However, you can translate the way you do it if you want to make a timer, a save point, or save stats for the player on his corner of the configuration screen.
Creating a map of the level we play
A game is not complete if we cannot show the map of the level we're playing in. In Chapter 3, The First Level, we mentioned that the map design was the most important part. Now is time to learn it.
Time for action — overlaying something like a map
This technique is applicable to maps and anything that we want to be superimposed on our screen as a Heads-up Display (HUD) . Imagine a whale hunter as a sniper: if we press an S key that implies we have superimposed crosshairs. We will see the scene with a crosshair in the middle as a hunter with his weapon. In the same way, if we press the M key, we should see an overlaid map in the scene. Let's try it first.
If you put a camera on top of your level, you can save it as an image in a PNG format of your map level of the game, and use it for this new scene.
What just happened?
We have learned to connect and overlay several scenes at the same time, from a sensor provided as a Keyboard sensor. We started out with a second scene to set the camera, as well as overlapping the object you want to view. Then, we returned to the main scene in the game to connect the logic brick for the actuator. This makes the scene appear onscreen to show the HUD.
Have a go hero—remaking things
Well, we are clear about what a HUD needs to go through in an actuator with overlay. So, to modify every scene and set the bar of life, potential counters, map, and so on, you can think of new situations or scenarios that enable them to be shown or hidden in the main scene.
If we place a red ball on top of our character, we can reflect this in the map on a smaller scale, thus changing a static map to an interactive map. Are you ready to do it yourself?
Changing the camera view
Practically, we use a single camera when you're used to playing on a level, but it is true that if it is possible to change views it can sometimes be helpful for us to do. In the case of racing or shooting, it is almost necessary to have a point of view in the first person and another in the third person. This makes the gameplay change drastically. Finally, we're used to seeing another camera (point of view) with a very open view to show more of the levels we're playing in.
Time for action — view 1, 2, 3
Once you learn how to assign a camera to a point of view, all of the other cameras are assigned the same way. Yet, it's important to know in what order to place them there, and what kind of plane we use for each of them.
If you use a descending order, the player can easily remember which number key is used for each type of view. The following example demonstrates this:
Scale the cameras to see them better. Scaling it does not affect the proportions, it only makes them visible. Use two 3D monitor views for positioning the cameras well. Check Clip end value in Properties, if you can't see the objects that are far.
What just happened?
We have finally seen one of the most interesting tricks of 3D. With a simple addition of more cameras, we can see the scene from different angles without being afraid of movement errors. Placing a minimum of three cameras provides a view large enough to see your character and the surrounding scenery.
Thanks to the easy use of logic bricks with keys 1, 2, and 3, we have connected the keyboard numbers to each of the cameras located on our stage. In order for the camera to follow the player, we have seen how the object connects and that selecting this is possible.
Have a go hero—not the only point of view
The cameras have a particular purpose, disposing them off at all times is not a good use of resources for the game. Therefore, you should not always have the same camera for all of the levels.
If your game was a race car, it would obviously need the camera for the mirror, right? Use the technique learned here to improve situations. You need to use new positions of the cameras to increase the gameplay. If your game is about a war, would you not need a camera that uses a sniper effect?
There are always interesting views. Remember, we have not touched the camera settings, and you can always change their properties so that each one has more differences, and are not only the point of view.
Moving to another layer
Imagine that our level of play has a lot of objects around, and we do not want to fill the main stage with them. A good practice would be to think that it is better to remove the objects that are not required, so as to not have any unnecessary performance in the same scene.
Time for action — throwing things
If you need to shoot or throw objects, you need to launch projectiles constantly. We don't need to place the exact number of bullets for the same number of objects to be destroyed in the scene, without knowing how many bullets our player gets to use. Here is a sample.
What just happened?
Layers allow you to store the objects that somehow are not required in the main scene, at least not all of the time, as the main character is . To do this, we have placed a child object as a harpoon into a second layer with a constant speed of action.
We have called the object of the second layer from the main layer, thanks to the Empty objects located in the scene. This resource may be used as many times as necessary. The most illustrative example of all is to understand the use of an Empty object as the ammunition.
Have a go hero—making the shooter
A good exercise would be to modify the Keyboard sensor by tightening a button, so that you can shoot as much as you want. Remember, you can modify the properties of the object and make any shot look more realistic. Adding a blur effect can be interesting, and looking through the options of the 2D Filter actuator may surprise you more than once.
Pop quiz — moving to another level
Perhaps this chapter is a bit repetitive, but each topic has a specific role with bricks that was worth exploring.
Summary
We have already reached the end of the chapter. Let's review everything we've seen.
We have learned to switch between the characters within the game. It can also be applied to modify any object within the level. We have seen that through collisions, we can create a life bar that increases or decreases according to the player's decisions. Also, we have seen that certain properties of the object can count and number certain actions before passing the level. It is a good method to test the reflexes of the player.
We picked up a lesson covered in Chapter 3, First Level, and we're done with the secret of maps, and adding more than one scene of the game at the moment. We can finally find some points of view cameras, as well as change the gameplay.
Finally, we have taken the game to another level, discovering how to automate certain actions of the player, as simple as shooting or throwing missiles.
It's now time to move on to the next chapter, where we will meet again.
Chapter 6. Liven up Your World!
We have a very clear idea of our character, but the specifics may be an area of concern. We need to be clear about the specifics from the beginning if we want to improve our game with minor changes. You will agree when I say that it is not the same as seeing your character fall or perform a roll on the floor if it collides with any object. It is the same with the process of walking, sitting, bending, and so on. All of these possibilities are small changes in our character, but it makes it extremely important to bring our game to life.
In this chapter we will see how to:
So let's get started.
Animate the character
Having a list of all of the actions we need for our character will help us later to create some animations, including connecting all of them to seem even more fluid. If your character walks, runs, stands, sits, or skips, any of these things must be in tune with the last move we have on display. We can create some small animations for them that summarize the most commonly used options.
Time for action — moving the whale's tail
There are many manuals on how to create skeletons for our characters. However, we present a basic example that you yourself must develop further, with better complexity, for each type of character you need to model. In this case, we will move our whale's tail, which is translated to the axis rotated in the y value.
Select Edit Mode to click on the last joint and press E to add another joint. Another way to do this is to go to the 3D View menu and select Armature | Extrude.
The other method to parent objects is by using the built-in option in the 3D View menu bar. For this, switch to Object Mode and first select the object and then the armature or bones with the Shift key pressed. Then go to the 3D View menu bar and select Object | Parent | Set | Armature Deform | With Automatic Weights.
If you want to see the NLA Editor (Non-Linear Animation), display it in a split screen to see the keyframes inserted.
Press N in the NLA Editor type and change the name of your armature animation in the ID name section as Movedown.
Remember, you must write the Start and End of frames in the Action brick panel.
An observation: you can see that every Motion has an Action.
What just happened?
We have seen that each character's movement with the keyboard needed a specific action. If we pressed forward, we needed the action of walking. Similarly, if you want to make the character run, we need to take an appropriate action. Each key should take some action to make the game much more fluid.
We had to start by creating a skeleton for your character, so that once related to the mesh, the bones that make the sheet of the mesh can be rotated without needing to touch the vertex of the object.
Each rotation of the bone can be engraved with a keyframe, creating poses at the beginning and at the end of each action. NLA is responsible for creating the intermediate animation keyframes. You don't need to create the entire movement.
Once we have determined the triggers that are useful to move the character, we have Logic Editor to create the connections between the key on the keyboard and the character's movement, thereby performing the animation.
Have a go hero—making poses
It is logical to tell you that you need to create many actions. No matter how small the gesture is, they make the game much more attractive. For example, opening a door, sitting, waiting with the character's head down, sitting back, and so on.
You may not need to move a character, only a certain part that greatly facilitates the work. To be fair and consistent with the beginning of this chapter, do not be distracted with trivialities, the basic options must exist. Walking, running, jumping, falling, or dying is much more necessary than the others. If they are refined, create other actions. However, do not start with the details if you do not have good main basic actions.
A character becomes a hero by creating actions that are the sum of two or more actions that will successfully create a third action. An example would be a special key that could give a super jump, bringing together the normal jump over a pirouette with a perfect fall. Do you know what I'm talking about?
Making the environment come alive
We can play a game with no sound, but it is crucial to close certain circles of action. For example, the shot of a pistol is not the same without a sound, the car races do not have the same emotion if we do not hear the roar of the engines, and if our main character does not emit any sound when you break something, when it sets aside a tree branch, or jumps from a great height, something seems amiss. Logic bricks have a rather simple enough solution, let's see it.
Time for action — creating sounds and music
If we could start our game by creating a library of objects, we must do the same for sounds and music. Once we make the connection to one, the rest is in the same way. So, let's start with something easy, the complexity of the sounds only depends on how good your library is.
You need to be logged in to download the audio tracks.
A good practice is to use the Format as Stereo with a 44100 KHz Rate.
What just happened?
We needed to collect some audio files to create our sound library. We used the Internet to demonstrate how to go about getting our audio files.
We wanted to provide certain sounds for the movements of the character, so we used the Sound actuator to be connected to any sensor.
First, we loaded a scene where we had set an upward movement of the whale and we took that same connection to add the Sound actuator, indicating that the sound file has to be played when you press the Up Arrow key.
Have a go hero—sounds like music
Perhaps the main character is relevant in almost all of the chapters, but it is true that the sound was almost left aside. It is obvious that you should dedicate some time to think about what kind of sounds flow around the character, not the other way around (which would make the character sound like God, or that he was a one-man orchestra). Let the character be quiet, with a few sounds that will fill the auditory environment and almost seem like a soundtrack.
Remember that music fills the empty spaces and increases emotion in their sore spots. Create your own sound list and use it in the game without disturbing the gameplay. Each Sound actuator has its own audio volume level. Take advantage of options offered by the Sound actuator so that each file has its well-defined properties.
Animate your enemies
There comes a time when the character needs to interact with the enemy, and as our whale cannot shoot bullets, we can make our enemy interact with our character. If the whale is near, we can get a whale ship to go hunting.
Time for action — animating the hunter
We have learned to animate our character, so we are able to encourage our enemy by creating a simple route to the left and right, like a sentinel on the lookout. If the whale is too close to be seen, we can create a random pursuit until the whale submerges.
Priority option is used if there are many actions at the same time, and it helps to decide which is the first one. With the Layer option, you can make more than one action at the same time.
To move the ship, we need a Motion actuator with a constant value. In this case, we change Linear Vel (linear velocity) in X by 4.
What just happened?
We needed to create an interaction of the enemy with the character. So we had created a constant action, which makes the boat do a patrol. Once we created the loop of the action, we had to force a proximity detector sensor with Near.
In this case, the sensor forced us to create two new actuators. First, the Edit Object of the ship with the function Track to to continue to follow the whale. Second, a small acceleration using Motion, so that it looks like the pursuit is taking speed.
Have a go hero—kill them all
The whale cannot shoot, but it can escape under water. We cannot try to eliminate the pursuit unless the whale is further away from the boat.
You'll need to create some major collisions, which is why we have placed two icebergs on the scene. You will need to decide whether the whale, like the boat, should have consequences if they collide. Do you dare to change the status of each of them? The enemy boat, for example, could sink. Umm... I've already created an animation that you should register as an action for the boat. It never ends, right?
Make your own game
Well, we now have the great opportunity to create our own game, but how do we do it if we have not learned to shoot. True, the whales do not shoot, so if you allow me, we make a parenthesis to explain how easy it is to add a gun to our player, our enemy, or whomever.
Time for action — making the hunter shoot
We could not leave the explanation of how to create a shooter game, so to learn this technique, you only need to understand that a bullet is an object that appears and disappears in our level of play every time we press the trigger button. So, we must create a way for the bullet to be fired as many times as necessary, and as often as we press the firing button. If we don't shoot, we have no bullet, if we fired, there are enough bullets.
The ship has connections with two movements: left and right in the x axis.
What just happened?
We have already seen how to create the appearance of objects and interaction with our character. The common factor in many games is to give the character weapons and bullets to shoot, so we have learned through a second layer that we can add a constant object to our main stage such as a bullet in a shooter game.
We inserted an empty object in our scene, which we have related to the character or main enemy. We switched layers to model a prototype bullet with a simple cube having a constant movement in one axis. Finally, we built the logic bricks that act every time you press the space bar.
Have a go hero—destroying things
Do not stop during this amazing exercise, continue to apply certain changes to the new objects you include in the scene. For example, it is necessary that the bullets collide with the objects. Why not try to collide these bullets with the objects in the scene? Remember, the objects may be rigid bodies, but your bullet must have dynamics for the collision to have its desired effect.
Be amazed when objects are moved by the bullet. You've built your first shooter!
Pop quiz — make your own game
It's time for a short questionnaire:
Summary
We could say that in this chapter, the key concept is how to liven up the game environment. Let's go step by step and remember the key tips:
Oops! Sorry, we lack one important thing, the credits. Let's examine them in the next chapter.
Chapter 7. Game Menu Screens
In this brief chapter, we will cover the beginning of a game, how to create menus to start playing, and how to create the executable to start the game.
Each game has a splash screen for the player to wait and decide whether to start, see different game parameters, and/or change the game settings by pressing the relevant buttons. You can do all this and much more. The changes are easy, and you just need to think about what you have not done before.
Need a guide? You will surely have one as we cover the following topics:
So let's go reading.
Making titles
You must present the title of the game with something spectacular, or rather with something that catches your eye. Often, this title serves as the same title for the cover of many things, and is the emblem that accompanies the game during its shelf life. As time goes on, you may not remember the title, but you will never forget a cool cover, right?
Time for action — creating your first game title
There are many ways to start a game, such as creating a picture, making a spectacular title, and so on. As an example, we can join the home screen and place two single texts. In this example, we will add a title for the game and assign a key from the keyboard that you will press to start playing.
Remember to have Perspective View in the left area to see the axis camera, and Top View in the right area to look inside it.
Remember, you must first create a new scene called level1.
What just happened?
Really easy, right? We wanted to make our first splash screen and we have succeeded in doing so with just a few steps. We now have an impressive title and an option to choose from, which is to start playing. We have inserted the text, and using the logic bricks, we have connected the option (pressing the S key), to start playing the game to the scene of level 1.
Have a go hero—game over
We have made the text of the introduction of the game. Why not try to make the final, which would be the end screen of the game. There is an actuator called Game that lets you exit the game, or also restart the game. Decide the best option you want for your first demo.
Creating simple buttons
You can also make a dynamic home screen button and create a selection, that is, to choose the option you want, as you need to proceed further.
Time for action — using the up or down options
If you only want to play with the up and down options to better visualize your choice, you can resort to the creation of a single button that complies with this specification. The most logical option is to create a button that has the capacity to move. Let's see it.
A plane has a short distance from all of the text.
Up or down Keyboard sensors have a different Actions actuator. Frame 1 is for the up arrow key, and frame 2 is for the down arrow key.
What just happened?
We decided to place a moving object in the Main menu to have it set in the specific frame location that we have. By performing this simple action, we have entered enough information in the logic bricks to connect the up arrow or down arrow key with the position in the timeline of frame 1 or 2, whatever we decide.
Have a go hero—creating transparent buttons
Can you create 50 percent transparent buttons? You can have this incorporated depending on where you are in the Menu options. Selecting the text should make the Menu option look lighter in shade. Or, if you dare, you can place the options that are not in use in Italics.
You can choose between these menu selection options to begin with.
Making an externally executable game
Blender has the ability to generate an executable to install the game. But, by default, it is not activated. Let's see how we can awaken the beast.
Time for action — exporting your game
It's time to export our game.
You can click on the Save As Default button at the bottom of the screen if you don't wish to repeat the operation.
To include the music and textures, you must pack them in the .blend file before exporting. Choose File | External Data | Pack into the .blend file.
What just happened?
We want to try and make a game engine executable render, so we must enable the Game Engine Addon, and export the file as Game Engine Runtime.
Have a go hero—multiplayer game
The Internet is a library of tests to see what else you can apply to add on to Blender. Trying to get multi-player mode? You will see that with a little reinforcement, you can add this option in your game. When your friends try your online game, you really know you will be the hero for them.
Pop quiz — making an external executable game
Summary
Well, this was a very important part of any game. There are people who specialize only in creating the covers of video games. We call them interface designers.
Good presentation with an understandable game menu is quite reasonable, right? There still are people who are not serious about the screens of game menus. If the first thing that you see when you play a game is not nice, will it not be disappointing? Bad impressions are difficult to overcome. Do not let go, but devote the necessary time to create the menus.
If you know that the front covers and back covers are as important as the game, then do not miss the last chapter of this book on how to promote your game. This is where you will expose your work and become famous.
Chapter 8. Publishing Your Game
Now that you have the first version of your game made in Blender, it's time to bring it out and see what answers your creations have. It is very important to capture all of the positive and negative feedback without greatly affecting your way to make games. You will lose something when you start to change your idea of the game, if you take the comments of the people seriously. Sharpen your common sense to make your own contributions to create interesting and good things for your own game, and stop to remember those who do not provide good upgrades or are simply destructive. Do not get distracted in trying to justify any comments you have received. If you want to reach the public, the public also has the right to come to you.
In this chapter, we will prepare the devices you have at hand, and exploit your initial project with simple challenges through the following topics:
So let's get started.
Playing your game on the Web
In the previous chapter, we learned to create a bootable game, but we may not have followers if the users are wary of simply clicking on an .exe file. The best way to combat this, and to avoid this risk, is to play the game directly on the Web, thanks to plug-in Burster. The Burster is an open source plug-in, which is free, and its source code is covered by the GPL license. If you need to learn about this plug-in, please http:// visit www.geta3d.com.
Time for action — using the Burster plug-in
The Burster plug-in is especially dedicated to Blender users. All that you need to start with Burster is a web page. New users will be prompted by the web browser to download the Burster plug-in. To do that, let's embed the Burster player on the website. You need to insert the <embed> and <object> tags with a specified source file, width, and height of the player area. That's all. More information on using this browser's plug-in can be found on their website.
<OBJECT classid="CLSID:8318DE8B-B213-426b-B1B6-0A2589859898"
width="800"
height="600">
<PARAM name="type" value="application/x-burster"/>
<PARAM name="src" value="yourfile.blend" />
<embed type="application/x-burster"
src = "yourfile.blend"
width = "800"
height = "600">
</embed>
</OBJECT>
Click on The Burster menu tab to see some examples.
What just happened?
We can upload the .blend file on the server using FTP, and thanks to the Burster plug-in, it can be run directly like a .flash file. All we need to do is copy the code, and change the name of yourfile.blend with what we have as the file name of our game. This code needs to go between the body tags.
Finally, we uploaded our HTML file. The HTML file (editable from a .txt file) and the .blend must be on the server, and will be ready for use.
Have a go hero—customizing it
There are possibilities of setting the custom plug-ins' window colors. Just add the following code to your HTML file:
<OBJECT classid="CLSID:8318DE8B-B213-426b-B1B6-0A2589859898"
width="400"
height="300"
codebase="http://geta3d.com/geta3d/install/setup.msi">
<PARAM name="type" value="application/x-burster"/>
<PARAM name="src" value="yourfile.blend"/>
<PARAM name="pluginbg" value="#FF2233"/>
<PARAM name="progressbg" value="#4455EF"/>
<PARAM name="progressfill" value="#FBFF00"/>
<embed type="application/x-burster"
pluginspage="http://geta3d.com/"
src="/yourfile.blend"
width="400"
height="300"
pluginbg="#FF2233"
progressbg="#4455EF"
progressfill="#FBFF00">
</embed>
</OBJECT>
The color values are in hexadecimal #BBGGRR format. Let's see the parameters:
If you don't want to use a .txt file or generate an HTML file, then you can upload to the server of the Burster web. Follow the instructions in their website, seen below:
Making some trailers
Any game has a demo, but long before that, there is a preview of what this game is really like. The trailer is what sells and what attracts. If you make a good teaser to try your game, you will be successful. Let's see a brief trailer.
Time for action — recording it
CamStudio is a utility for Windows that allows you to record everything that happens on your desktop, recording both the full screen, such as windows, and user defined areas. If you need to know more about this free program, please visit http:// www.camstudio.org or visit http://en.wikibooks.org/wiki/Using_CamStudio.
The following steps will enable us to record using CamStudio:
See the response in the post shown in the YouTube channel, video, and so on.
What just happened?
A trailer is a small excerpt from the video game to sell the game to a potential player. We recorded the minutes of starting an example, so that the users can see the style of the game. It shows an exact replica of the brief moments that your game has to offer. By recording your screen and editing the clips, you can create a fascinating trailer! Remember, a trailer of the release can increase your visits on the Web!
Have a go hero—more records
The trailers are great since you can get a clear idea of what the game will be. If you want to create expectations, then do not stand halfway, and try to climb at least two trailers of your game: one that shows the same gameplay, and one that can be seen in detail in the the options and menus that the game offers. Do you think that there are players out there who would be interested in the making of the game? Do not reject the idea of explaining how you did it. Following is an example of the Sintel game (you can see it on http://sintelgame.com/):
Creating something more
There will always be the first version and the subsequent effort, if you really put it. Therefore, it is very important not to discard the games if you have one and only one version. To modify it, fix it, or simply tweak any of the choices to represent an improvement for the game. The version number of the game must be increased. Who wants to stay with Version 1 if you can get Version 3 or Version 4?
Only by insisting on changing the version will the product or game become new, perhaps a game that wants be something serious and insistent, that is there, constantly being updated to provide a better and improved product. This says a lot about yourself and your own game.
Time for action — updating your game
A simple list of actions can make you see how updating the game enables you to finish it, and how close you are to making it.
The following image has more information than the preceding one:
What just happened?
We want the game to have more than one year, and we must therefore update it regularly. Upgrades to the higher versions should not be a mere arrangement of what did not work. We must also provide substance improvements that were not in the previous version. Our main objective must be to surprise the user, offering him an attractive game.
Adding more information on menus is welcome. Improving the look of the game worked by adding more textures, which made you see the game differently. Most remarkably, stress causes the enemy to resist the increase in difficulty in the game and eliminate the embarrassing mistakes. This will make certain that the game has a good reputation.
Have a go hero—creating a new level 2
If you are really close to the first level, then without blowouts you can try a second level. The difficulty of the first level that you served is to minimize the work of the second. Many character's actions will not need to return to build it, and practically will no longer touch the interface of the game that cost you so much to organize. Just do the map and go to work. A new level awaits you!
Pop quiz — creating something more
Summary
That's it, you may be thinking that this chapter has not been illustrative enough, but you need to reread the website again and again, since sometimes the most obvious is forgotten. If you follow these steps, your game will be talking about you and your game. Therefore, it is important to comment as many times as you have played your game.
In this chapter, we've already given enough clues. We covered how to create the content about your game through different ways of hanging it on the network, and other users to test and talk about it. As you will see, this is not the end of a book or your game. Just now, at this point, when your project is ready, is when it really starts to grow. Every action you take, has an impact in changing what you have, and this will be your routine until you decide yourself what to do with it.
I hope your project lasts long enough to feed you, and make you grow as you've built your own game. Do you remember your whole project before you started with this book? Well, now that change is not comparable with what lies ahead, the expectations are higher. You will have more difficult challenges in the project, much bigger than you could imagine.
So, happy blending!
Appendix A. Pop quiz — Answers
The answers to the pop quizzes from each chapter are provided here for your reference. How did you score?
Chapter 1, Things You Need to Know
Pop quiz — exploring the interface of the Logic Editor
1 | a |
2 | b |
3 | d |
Chapter 2, Your Characters
Pop quiz — importing other files into Blender
1 | b |
2 | c |
3 | b |
Pop quiz — involving enemies in the game
1 | b |
2 | c |
3 | c |
Pop quiz — creating a meeting point
1 | c |
2 | b |
3 | a |
Chapter 3, The First Level
Pop quiz — blocking out a level environment
1 | b |
2 | a |
3 | b |
Chapter 4, Collisions
Pop quiz — respawning the character
1 | b |
2 | a |
3 | b |
Chapter 5, Gameplay
Pop quiz — moving to another level
1 | c |
2 | a |
3 | c |
Chapter 6, Liven up Your World!
Pop quiz — make your own game
1 | b |
2 | b |
3 | a |
Chapter 7, Game Menu Screens
Pop quiz — making an external executable game
1 | b |
2 | c |
3 | b |
Chapter 8, Publishing Your Game
Pop quiz — creating something more
1 | c |
2 | c |
3 | c |
Table of Contents
Blender Game Engine Beginner's Guide
Blender Game Engine Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Time for action — heading
What just happened?
Pop quiz — heading
Have a go hero—heading
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Things You Need to Know
Things you need, and things you don't
Time for action — start using the BGE
What just happened?
Exploring the interface of the Logic Editor
Time for action — exploring the logic bricks world
What just happened?
Time for action — moving the cube
What just happened?
Pop quiz — exploring the interface of the Logic Editor
Have a go hero— doing more
Summary
2. Your Characters
An example—save the whale!
How to create a library
Time for action — downloading models from the Internet
What just happened?
Importing other files into Blender
Time for action — cleaning up the model in Blender
What just happened?
Pop quiz — importing other files into Blender
Have a go hero—growing the library
Involving enemies in the game
Time for action — appending the enemy
What just happened?
Pop quiz — Involving enemies in the game
Have a go hero—reshaping the level
Creating a meeting point
Time for action — making the enemy follow a path
What just happened?
Pop quiz — creating a meeting point
Have a go hero—more interactivity
Summary
3. The First Level
Block out a level environment
Time for action — creating the scene
What just happened?
Pop quiz — blocking out a level environment
Have a go hero—doing it better
Creating a player view
Time for action — renaming the scene
What just happened?
Have a go hero—creating the real map view
Defining the boundaries
Time for action — closing the entry point
What just happened?
Have a go hero—experimenting with the start of the game
Marking the end of level
Time for action — opening the end point
What just happened?
Have a go hero—changing the end point
Summary
4. Collisions
Respawning the character
Time for action — returning to the original position
What just happened?
Pop quiz — respawning the character
Have a go hero—doing it better
Creating trap doors
Time for action — moving the blocks of ice
What just happened?
Have a go hero—the more, the better
Real-time motion
Time for action — rolling objects
What just happened?
Have a go hero—different actions
Creating looped actions
Time for action — making waves
What just happened?
Have a go hero—making it look real
Summary
5. Gameplay
Growing the character
Time for action — counting
What just happened?
Have a go hero—completing possibilities
Creating a life indicator bar
Time for action — decreasing life
What just happened?
Have a go hero—making limits
Creating a counter of items collected
Time for action — collecting
What just happened?
Have a go hero—making the difference
Creating a map of the level we play
Time for action — overlaying something like a map
What just happened?
Have a go hero—remaking things
Changing the camera view
Time for action — view 1, 2, 3
What just happened?
Have a go hero—not the only point of view
Moving to another layer
Time for action — throwing things
What just happened?
Have a go hero—making the shooter
Pop quiz — moving to another level
Summary
6. Liven up Your World!
Animate the character
Time for action — moving the whale's tail
What just happened?
Have a go hero—making poses
Making the environment come alive
Time for action — creating sounds and music
What just happened?
Have a go hero—sounds like music
Animate your enemies
Time for action — animating the hunter
What just happened?
Have a go hero—kill them all
Make your own game
Time for action — making the hunter shoot
What just happened?
Have a go hero—destroying things
Pop quiz — make your own game
Summary
7. Game Menu Screens
Making titles
Time for action — creating your first game title
What just happened?
Have a go hero—game over
Creating simple buttons
Time for action — using the up or down options
What just happened?
Have a go hero—creating transparent buttons
Making an externally executable game
Time for action — exporting your game
What just happened?
Have a go hero—multiplayer game
Pop quiz — making an external executable game
Summary
8. Publishing Your Game
Playing your game on the Web
Time for action — using the Burster plug-in
What just happened?
Have a go hero—customizing it
Making some trailers
Time for action — recording it
What just happened?
Have a go hero—more records
Creating something more
Time for action — updating your game
What just happened?
Have a go hero—creating a new level 2
Pop quiz — creating something more
Summary
A. Pop quiz — Answers
Chapter 1, Things You Need to Know
Pop quiz — exploring the interface of the Logic Editor
Chapter 2, Your Characters
Pop quiz — importing other files into Blender
Pop quiz — involving enemies in the game
Pop quiz — creating a meeting point
Chapter 3, The First Level
Pop quiz — blocking out a level environment
Chapter 4, Collisions
Pop quiz — respawning the character
Chapter 5, Gameplay
Pop quiz — moving to another level
Chapter 6, Liven up Your World!
Pop quiz — make your own game
Chapter 7, Game Menu Screens
Pop quiz — making an external executable game
Chapter 8, Publishing Your Game
Pop quiz — creating something more