R in a Nutshell
Joseph Adler
Published by O’Reilly Media
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo
Preface
It’s been over 10 years since I was first introduced to R. Back then, I was a young product development manager at DoubleClick, a company that sold advertising software for managing online ad sales. I was working on inventory prediction: estimating the number of ad impressions that could be sold for a given search term, web page, or demographic characteristic. I wanted to play with the data myself, but we couldn’t afford a piece of expensive software like SAS or MATLAB. I looked around for a little while, trying to find an open-source statistics package, and stumbled on R. Back then, R was a bit rough around the edges and was missing a lot of the features it has today (like fancy graphics and statistics functions). But R was intuitive and easy to use; I was hooked. Since that time, I’ve used R to do many different things: estimate credit risk, analyze baseball statistics, and look for Internet security threats. I’ve learned a lot about data and matured a lot as a data analyst.
R, too, has matured a great deal over the past decade. R is used at the world’s largest technology companies (including Google, Microsoft, and Facebook), the largest pharmaceutical companies (including Johnson & Johnson, Merck, and Pfizer), and at hundreds of other companies. It’s used in statistics classes at universities around the world and by statistics researchers to try new techniques and algorithms.
Why I Wrote This Book
This book is designed to be a concise guide to R. It’s not intended to be a book about statistics or an exhaustive guide to R. In this book, I tried to show all the things that R can do and to give examples showing how to do them. This book is designed to be a good desktop reference.
I wrote this book because I like R. R is fun and intuitive in ways that other solutions are not. You can do things in a few lines of R that could take hours of struggling in a spreadsheet. Similarly, you can do things in a few lines of R that could take pages of Java code (and hours of Java coding). There are some excellent books on R, but I couldn’t find an inexpensive book that gave an overview of everything you could do in R. I hope this book helps you use R.
When Should You Use R?
I think R is a great piece of software, but it isn’t the right tool for every problem. Clearly, it would be ridiculous to write a video game in R, but it’s not even the best tool for all data problems.
R is very good at plotting graphics, analyzing data, and fitting statistical models using data that fits in the computer’s memory. It’s not as good at storing data in complicated structures, efficiently querying data, or working with data that doesn’t fit in the computer’s memory.
Typically, I use a scripting language like Perl, Python, or Ruby to preprocess files before using them in R. (If the files are really big, I’ll use Pig.) It’s technically possible to use R for these problems (by reading files one line at a time and using R’s regular expression support), but it’s pretty awkward. To hold large data files, I usually use Hadoop. Sometimes I use a database like MySQL, PostgreSQL, SQLite, or Oracle (when someone else is paying the license fee).
What’s New in the Second Edition?
This edition isn’t a total rewrite of the first book. But I have tried to improve the book in a few significant ways:
There are new chapters on ggplot2 and using R with Hadoop.
Formatting changes should make code examples easier to read.
I’ve changed the order of the book slightly, grouping the plotting chapters together.
I’ve made some minor updates to reflect changes in R 2.14 and R 2.15.
There are some new sections on useful tools for manipulating data in R, such as plyr and reshape.
I’ve corrected dozens of errors.
R License Terms
R is an open-source software package, licensed under the GNU General Public License (GPL).[1] This means that you can install R for free on most desktop and server machines. (Comparable commercial software packages sell for hundreds or thousands of dollars. If R were a poor substitute for the commercial software packages, they might have limited appeal. However, I think R is better than its commercial counterparts in many respects.)
Capability
You can find implementations for hundreds (maybe thousands) of statistical and data analysis algorithms in R. No commercial package offers anywhere near the scope of functionality available through the Comprehensive R Archive Network (CRAN).
Community
There are now hundreds of thousands (if not millions) of R users worldwide. By using R, you can be sure that you’re using the same software your colleagues are using.
Performance
R’s performance is comparable, or superior, to most commercial analysis packages. R requires you to load data sets into memory before processing. If you have enough memory to hold the data, R can run very quickly. Luckily, memory is cheap. You can buy 32 GB of server RAM for less than the cost of a single desktop license of a comparable piece of commercial statistical software.
[1] There is some controversy about GPL licensed software and what it means to you as a corporate user. Some users are afraid that any code they write in R will be bound by the GPL. If you are not writing extensions to R, you do not need to worry about this issue. R is an interpreter, and the GPL does not apply to a program just because it is executed on a GPL-licensed interpreter.
If you are writing extensions to R, they might be bound by the GPL. For more information, see the GNU foundation’s FAQ on the GPL: http://www.gnu.org/licenses/gplfaq. However, for a definite answer, see an attorney. If you are worried about a specific application, see an attorney.
Examples
In this book, I have tried to provide many working examples of R code. I deliberately decided to use new and original examples, instead of relying on the data sets included with R. I am not implying that the included examples are not good; they are good. I just wanted to give readers a second set of examples. In most cases, the examples are short and simple and I have not provided them in a downloadable form. However, I have included example data and a few of the longer examples in the nutshell R package, available through CRAN. To install the nutshell package, type the following command on the R console:
> install.packages("nutshell")
How This Book Is Organized
I’ve broken this book into parts:
Part I, covers the basics of getting and running R. It’s designed to help get you up and running if you’re a new user, including a short tour of the many things you can do with R.
Part II, picks up where the first section leaves off, describing the R language in detail.
Part III, covers data processing in R: loading data into R, transforming data, and summarizing data.
Part IV, describes how to plot data with R.
Part V, covers statistical tests and models in R.
Part VI, contains chapters that don’t belong elsewhere: tuning R programs, writing parallel R programs, and Bioconductor.
Finally, I included an Appendix A describing functions and data sets included with the base distribution of R.
If you are new to R, install R and start with Chapter 3. Next, take a look at Chapter 5 to learn some of the rules of the R language. If you plan to use R for plotting, statistical tests, or statistical models, take a look at the appropriate chapter. Make sure you look at the first few sections of the chapter, because these provide an overview of how all the related functions work. (For example, don’t skip straight to Random forests for regression without reading Example: A Simple Linear Model.)
Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords. (When showing input and output on the R console, I use constant width text to show prompts and other information produced by the R interpreter.)
Constant width bold
Shows commands or other text that should be typed literally by the user. (When showing input and output on the R console, I use constant width bold text to show you what I typed, including comments.)
Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.
NOTE
This icon indicates a tip, suggestion, or general note.
CAUTION
This icon indicates a warning or a caution.
In this book, I will sometimes show commands that I entered on my operating system prompt (i.e., in a Bash shell on Linux), and sometimes show commands that I entered in the R console. For commands that I entered in the operating system shell, I use a $ character to show the prompt; for commands entered in the R console, I will use > or + to show the prompt. (In either case, don’t type the prompt character.)
Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “R in a Nutshell by Joseph Adler. Copyright 2012 Joseph Adler, 978-1-449-31208-4.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.
Safari® Books Online
NOTE
Safari Books Online (www.safaribooksonline.com) is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.
Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.
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O’Reilly Media, Inc. |
1005 Gravenstein Highway North |
Sebastopol, CA 95472 |
800-998-9938 (in the United States or Canada) |
707-829-0515 (international or local) |
707-829-0104 (fax) |
We have a web page for this book where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/r_in_a_nutshell_2e.
To comment or to ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
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Part I. R Basics
This part of the book covers the basics of R: how to get R, how to install it, and how to use packages in R. It also includes a quick tutorial on R and an overview of the features of R.
Chapter 1. Getting and Installing R
This chapter explains how to get R and how to install it on your computer.
R Versions
Today, R is maintained by a team of developers around the world. Usually, there is an official release of R twice a year, in April and in October. I’ve checked the code in this book against 2.15.1, but if you have an earlier or later version of R installed, don’t worry.
R hasn’t changed that much in the past few years: usually there are some bug fixes, some optimizations, and a few new functions in each release. There have been some changes to the language, but most of these are related to somewhat obscure features that won’t affect most users. (For example, the type of NA values in incompletely initialized arrays was changed in R 2.5.) Don’t worry about using the exact version of R that I used in this book; any results you get should be very similar to the results shown in this book. If there are any changes to R that affect the examples in this book, I’ll try to add them to the official errata online.
Additionally, I’ve given some example filenames below for the current release. The filenames usually have the release number in them. So don’t worry if you’re reading this book and don’t see a link for R-2.15.1-win32.exe but see a link for R-2.73.5-win32.exe instead; just use the latest version and you should be fine.
Getting and Installing Interactive R Binaries
R has been ported to every major desktop computing platform. Because R is open source, developers have ported R to many different platforms. Additionally, R is available with no license fee.
If you’re using a Mac or a Windows machine, you’ll probably want to download the files yourself and then run the installers. (If you’re using Linux, I recommend using a port management system like Yum to simplify the installation and updating process; see Linux and Unix Systems.) Here’s how to find the binaries.
Visit the official R website. On the site, you should see a link to “Download.”
The download link actually takes you to a list of mirror sites. The list is organized by country. You’ll probably want to pick a site that is geographically close, because it’s likely to also be close on the Internet, and thus fast. I usually use the link for the University of California, Los Angeles, because I live in California.
Find the right binary for your platform and run the installer.
There are a few things to keep in mind, depending on what system you’re using.
BUILDING R FROM SOURCE
It’s standard practice to build R from source on Linux and Unix systems, but not on Mac OS X or Windows platforms. It’s pretty tricky to build your own binaries on Mac OS X or Windows, and it doesn’t yield a lot of benefits for most users. Building R from source won’t save you space (you’ll probably have to download a lot of other stuff, like LaTeX), and it won’t save you time (unless you already have all the tools you need and have a really, really slow Internet connection). The best reason to build your own binaries is to get better performance out of R, but I’ve never found R’s performance to be a problem, even on very large data sets. If you’re interested in how to build your own R, see Building your own.
Windows
Installing R on Windows is just like installing any other piece of software on Windows, which means that it’s easy if you have the right permissions, difficult if you don’t. If you’re installing R on your personal computer, this shouldn’t be a problem. However, if you’re working in a corporate environment, you might run into some trouble.
If you’re an “Administrator” or “Power User” on Windows XP, installation is straightforward: double-click the installer and follow the on-screen instructions.
There are some known issues with installing R on Microsoft Windows Vista. In particular, some users have problems with file permissions. Here are two approaches for avoiding these issues:
Install R as a standard user in your own file space. This is the simplest approach.
Install R as the default Administrator account (if it is enabled and you have access to it). Note that you will also need to install packages as the Administrator user.
For a full explanation, see http://cran.r-project.org/bin/windows/base/rw-FAQ.html#Does-R-run-under-Windows-Vista_003f.
Currently, CRAN releases only 32-bit builds of R for Microsoft Windows. These are tested on 64-bit versions of Windows and should run correctly.
Mac OS X
The current version of R runs on both PowerPC- and Intel-based Mac systems running Mac OS X 10.5 (Leopard) and higher. If you’re using an older operating system, or an older computer, you can find older versions on the website that may work better with your system.
You’ll find three different R installers for Mac OS X: a three-way universal binary for Mac OS X 10.5 (Leopard) and higher, a legacy universal binary for Mac OS X 10.4 and higher with supplemental tools, and a legacy universal binary for Mac OS X 10.4 and higher without supplemental tools. See the CRAN download site for more details on the differences among these versions.
As with most applications, you’ll need to have the appropriate permissions on your computer to install R. If you’re using your personal computer, you’re probably OK: you just need to remember your password. If you’re using a computer managed by someone else, you may need that person’s help to install R.
The universal binary of R is made available as an installer package; simply download the file and double-click the package to install the application. The legacy R installers are packaged on a disk image file (like most Mac OS X applications). After you download the disk image, double-click it to open it in the finder (if it does not automatically open). Open the volume and double-click the R.mpkg icon to launch the installer. Follow the directions in the installer, and you should have a working copy of R on your computer.
Linux and Unix Systems
Before you start, make sure that you know the system’s root password or have sudo privileges on the system you’re using. If you don’t, you’ll need to get help from the system administrator to install R.
Installation using package management systems
On a Linux system, the easiest way to install R is to use a package management system. These systems automate the installation process: they fetch the R binaries (or sources), get any other software that’s needed to run R, and even make upgrading to the latest version easy.
For example, on Red Hat (or Fedora), you can use Yum (which stands for “Yellowdog Updater, Modified”) to automate the installation. For example, on a 64-bit x86 Linux platform running Linux, open a terminal window and type:
$ sudo yum install R.x86_64
You’ll be prompted for your password, and if you have sudo privileges, R should be installed on your system. Later, you can update R by typing:
$ sudo yum update R.x86_64
And, if there is a new version available, your R installation will be upgraded to the latest version.
If you’re using another Unix system, you may also be able to install R. (For example, R is available through the FreeBSD Ports system at http://www.freebsd.org/cgi/cvsweb.cgi/ports/math/R/.) I haven’t tried these versions but have no reason to think they don’t work correctly. See the documentation for your system for more information about how to install software.
Installing R from downloaded files
If you’d like, you can manually download R and install it later. Currently, there are precompiled R packages for several flavors of Linux, including Red Hat, Debian, Ubuntu, and SUSE. Precompiled binaries are also available for Solaris.
On Red Hat–style systems, you can install these packages through the Red Hat Package Manager (RPM). For example, suppose that you downloaded the file R-2.15.1.fc10.i386.rpm to the directory ~/Downloads. Then you could install it with a command like:
$ rpm -i ~/Downloads/R-2.15.1.fc10.i386.rpm
For more information on using RPM, or other package management systems, see your user documentation.
Chapter 2. The R User Interface
If you’re reading this book, you probably have a problem that you would like to solve in R. You might want to:
Check the statistical significance of experimental results
Plot some data to help understand it better
Analyze some genome data
The R system is a software environment for statistical computing and graphics. It includes many different components. In this book, I’ll use the term “R” to refer to a few different things:
A computer language
The interpreter that executes code written in R
A system for plotting computer graphics described using the R language
The Windows, Mac OS, or Linux application that includes the interpreter, graphics system, standard packages, and user interface
This chapter contains a short description of the R user interface and the R console and describes how R varies on different platforms. If you’ve never used an interactive language, this chapter will explain some basic things you will need to know in order to work with R. We’ll take a quick look at the R graphical user interface (GUI) on each platform and then talk about the most important part: the R console.
The R Graphical User Interface
Let’s get started by launching R and taking a look at R’s graphical user interface on different platforms. When you open the R application on Windows or Max OS X, you’ll see a command window and some menu bars. On most Linux systems, R will simply start on the command line.
Windows
By default, R is installed into %ProgramFiles%R (which is usually C:\Program Files\R) and installed into the Start menu under the group R. When you launch R in Windows, you’ll see something like the user interface shown in Figure 2-1.[3] Inside the R GUI window, there is a menu bar, a toolbar, and the R console.
Figure 2-1. R user interface on Windows XP
Mac OS X
The default R installer will add an application called R to your Applications folder that you can run like any other application on your Mac. When you launch the R application on Mac OS X systems, you’ll see something like the screen shown in Figure 2-2. Like the Windows system, there is a menu bar, a toolbar with common functions, and an R console window.
Figure 2-2. R user interface on Mac OS X
On a Mac OS system, you can also run R from the terminal without using the GUI. To do this, first open a terminal window. (The terminal program is located in the Utilities folder inside the Applications folder.) Then enter the command “R” on the command line to start R.
Linux and Unix
On Linux systems, you can start R from the command line by typing:
$ R
Notice that it’s a capital “R”; filenames on Linux are case sensitive. (And don’t type the “$” character; that’s just the Unix prompt.)
Unlike the default applications for Mac OS and Windows, this will start an interactive R session on the command line itself. If you prefer, you can launch R in an application window similar to the user interface on other platforms. To do this, use the following command:
$ R -g Tk &
This will launch R in the background running in its own window, as shown in Figure 2-3. Like the other platforms, there is a menu bar with some common functions, but unlike the other platforms, there is no toolbar. The main window acts as the R console.
Figure 2-3. The interface for R on Fedora
ADDITIONAL R GUIS
If you’re a typical desktop computer user, you might find it surprising to discover how little functionality is implemented in the standard R GUI. The standard R GUI implements only very rudimentary functionality through menus: reading help, managing multiple graphics windows, editing some source and data files, and some other basic functionality. There are no menu items, buttons, or palettes for loading data, transforming data, plotting data, building models, or doing any interesting work with data. Commercial applications like SAS, SPSS, and S-PLUS include UIs with much more functionality.
Several projects are aiming to build an easier-to-use GUI for R:
Rcmdr
The Rcmdr project is an R package that provides an alternative GUI for R. You can install it as an R package. It provides some buttons for loading data and menu items for many common R functions.
Rkward
Rkward is a slick GUI front end for R. It provides a palette and menu-driven UI for analysis, data-editing tools, and an IDE for R code development. It’s still a young project and currently works best on Linux platforms (though Windows builds are available). It is available from http://sourceforge.net/apps/mediawiki/rkward/.
R Productivity Environment
Revolution Computing recently introduced a new IDE called the R Productivity Environment. This IDE provides many features for analyzing data: a script editor, object browser, visual debugger, and more. The R Productivity Environment is currently available only for Windows, as part of Revolution R Enterprise.
RStudio
RStudio is a popular, open source IDE for working with R. To learn more, see RStudio.
You can find a list of additional projects at http://www.sciviews.org/_rgui/. This book does not cover any of these projects in detail. However, you should still be able to use this book as a reference for all of these packages because they all use (and expose) R functions.
[3] Yes, these are old screen shots. R has not changed very much, so we kept these the same in the second edition.
The R Console
The R console is the most important tool for using R. The R console is a tool that allows you to type commands into R and see how the R system responds. The commands that you type into the console are called expressions. A part of the R system called the interpreter will read the expressions and respond with a result or an error message. Sometimes, you can also enter an expression into R through the menus.
If you’ve used a command line before (for example, the cmd.exe program on Windows) or a language with an interactive interpreter such as LISP, this should look familiar.[4] If not, don’t worry. Command-line interfaces aren’t as scary as they look. R provides a few tools to save you extra typing, to help you find the tools you’re looking for, and to spot common mistakes. Besides, you have a whole reference book on R that will help you figure out how to do what you want.
Personally, I think a command-line interface is the best way to analyze data. After I finish working on a problem, I want a record of every step that I took. (I want to know how I loaded the data, if I took a random sample, how I took the sample, whether I created any new variables, what parameters I used in my models, etc.) A command-line interface makes it very easy to keep a record of everything I do and then re-create it later if I need to.
When you launch R, you will see a window with the R console. Inside the console, you will see a message like this:
R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.52 (6188) x86_64-apple-darwin9.8.0]
[History restored from /Users/jadler/.Rapp.history]
This window displays some basic information about R: the version of R you’re running, some license information, quick reminders about how to get help, and a command prompt.
By default, R will display a greater-than sign (“>”) in the console (at the beginning of a line, when nothing else is shown) when R is waiting for you to enter a command into the console. R is prompting you to type something, so this is called a prompt.
For example, suppose that you typed 17 + 3 on the console. You would see something similar to this:
> 17 + 3
[1] 20
This means:
I entered “17 + 3” into the R command prompt.
The computer responded by writing “[1] 20” (I’ll explain what that means in Chapter 3).
If you would like to try this yourself, then type “17 + 3” at the command prompt and press the Enter key. You should see a response like the one shown above. In this book, I will show text that I have typed in boldface. So, when you see an entry like this in the book:
> 17 + 3
[1] 20
that means that I typed “17 + 3” into the console but that all the other text was generated by R. (Your terminal probably won’t display text you have entered in bold.)
Sometimes, an R command doesn’t fit on a single line. If you enter an incomplete command on one line, the R prompt will change to a plus sign (“+”). Here’s a simple example:
> 1 * 2 * 3 * 4 * 5 *
+ 6 * 7 * 8 * 9 * 10
[1] 3628800
This could cause confusion in some cases (such as in long expressions that contain sums or inequalities). On most platforms, command prompts, user-entered text, and R responses are displayed in different colors to help clarify the differences. Table 2-1 presents a summary of the default colors.
Table 2-1. Text colors in R interactive mode
Platform | Command prompt | User input | R output |
---|---|---|---|
Mac OS X | Purple | Blue | Black |
Microsoft Windows | Red | Red | Blue |
Linux | Black | Black | Black |
Command-Line Editing
On most platforms, R provides tools for looking through previous commands.[5] You will probably find the most important line edit commands are the up and down arrow keys. By placing the cursor at the end of the line, you can scroll through commands by pressing the up arrow or the down arrow. The up arrow lets you look at earlier commands, and the down arrow lets you look at later commands. If you would like to repeat a previous command with a minor change (such as a different parameter), or if you need to correct a mistake (such as a missing parenthesis), you can do this easily.
You can also type history() to get a list of previously typed commands.[6]
R also includes automatic completions for function names and filenames. Type the Tab key to see a list of possible completions for a function or a filename.
[4] Incidentally, R has quite a bit in common with LISP: both languages allow you to compute expressions on the language itself, both languages use similar internal structures to hold data, and both languages use lots of parentheses.
[5] On Linux and Mac OS X systems, the command line uses the GNU readline library and includes a large set of editing commands. On Windows platforms, a smaller number of editing commands is available.
[6] As of this writing, the history command does not work completely correctly on Mac OS X. The history command will display the last saved history, not the history for the current session.
Batch Mode
R’s interactive mode is convenient for most ad hoc analyses, but typing in every command can be inconvenient for some tasks. Suppose that you wanted to do the same thing with R multiple times. (For example, you may want to load data from an experiment, transform it, generate three plots as Portable Document Format [PDF] files, and then quit.) R provides a way to run a large set of commands in sequence and save the results to a file. This is called batch mode.
One way to run R in batch mode is from the system command line (not the R console). By running R from the system command line, it’s possible to run a set of commands without starting R. This makes it easier to automate analyses, as you can change a couple of variables and rerun an analysis. For example, to load a set of commands from the file generate_graphs.R, you would use a command like this:
$ R CMD BATCH generate_graphs.R
R would run the commands in the input file generate_graphs.R, generating an output file called generate_graphs.Rout with the results. You can also specify the name of the output file. For example, to put the output in a file labeled with today’s date (on a Mac or Unix system), you could use a command like this:
$ R CMD BATCH generate_graphs.R generate_graphs_`date "+%y%m%d"`.log
If you’re generating graphics in batch mode, remember to specify the output device and filenames. For more information about running R from the command line, including a list of the available options, run R from the command line with the --help option:
$ R --help
One key disadvantage of running R using the command R CMD BATCH is that your scripts cannot access the system’s standard input. Luckily, there is a second command for running R in batch mode: the RScript command. You can execute a script with a command like this:
$ RScript generate_graphs.R
Additionally, you can write executable scripts using RScript. Here’s an example of how to do this (on Linux, Mac OS, or other Unix-like systems). First, create a file called hello_world.R with the following contents:
#! /usr/bin/env RScript
print("Hello world!");
Next, type the following command to make the script executable:
$ chmod +x hello_world.R
Now you can execute this command like any other command:
$ ./hello_world.R
[1] "Hello world!"
We will use this ability in Hadoop Streaming.
Finally, you can also run commands in batch mode from inside R. To do this, you can use the source command; see the help file for source for more information.
Using R Inside Microsoft Excel
If you’re familiar with Microsoft Excel, or if you work with a lot of data files in Excel format, you might want to run R directly from inside Excel. The RExcel software lets you do just that (on Microsoft Windows systems). You can find information about this software at http://rcom.univie.ac.at/. This site also includes a single installer that will install R plus all the other software you need to use RExcel.
If you already have R installed, you can install RExcel as a package from CRAN. The following set of commands will download RExcel, configure the RCOM server, install RDCOM, and launch the RExcel installer:
> install.packages("RExcelInstaller", "rcom", "rsproxy")
> # configure rcom
> library(rcom)
> comRegisterRegistry()
> library(RExcelInstaller)
> # execute the following command in R to start the installer for RDCOM
> installstatconnDCOM()
> # execute the following command in R to start the installer for REXCEL
> installRExcel()
Follow the prompts within the installer to install RExcel.
After you have installed RExcel, you will be able to access RExcel from a menu item. If you are using Excel 2007, you will need to select the “Add-Ins” ribbon to find this menu, as shown in Figure 2-4. To use RExcel, first select the R Start menu item. As a simple test, try doing the following:
Enter a set of numeric values into a column in Excel (for example, B1:B5).
Select the values you entered.
On the RExcel menu, go to the item Put R Var → Array.
A dialog box will open, asking you to name the object you are creating in Excel. Enter v and press the Enter key. This will create an array (in this case, just a vector) in R with the values that you entered with the name v.
Now, select a blank cell in Excel.
On the RExcel menu, go to the item Get R Value → Array.
A dialog box will open, prompting you to enter an R expression. As an example, try entering (v - mean(v)) / sd(v). This will rescale the contents of v, changing the mean to 0 and the standard deviation to 1.
Inspect the results that have been returned within Excel.
For some more interesting examples of how to use RExcel, take a look at the Demo Worksheets under this menu. You can use Excel functions to evaluate R expressions, use R expressions in macros, and even plot R graphics within Excel.
RStudio
One of the most popular ways to run R has become RStudio. RStudio is a free, open-source integrated development environment (IDE) for R. A screen shot of R Studio is shown in Figure 2-5.
Unlike the standard R GUI, RStudio tiles windows on the screen and puts different windows in different tabs. Additionally, you can install RStudio on a Linux server and access R from a web browser! To learn more about RStudio and download a copy, see http://www.rstudio.org.
Figure 2-4. Accessing RExcel in Microsoft Excel 2007
Figure 2-5. R Studio
Other Ways to Run R
There are several open-source projects that allow you to combine R with other applications:
As a web application
The rApache software allows you to incorporate analyses from R into a web application. (For example, you might want to build a server that shows sophisticated reports using R lattice graphics.) For information about this project, see http://biostat.mc.vanderbilt.edu/rapache/.
As a server
The Rserve software allows you to access R from within other applications. For example, you can produce a Java program that uses R to perform some calculations. As the name implies, Rserve is implemented as a network server, so a single Rserve instance can handle calculations from multiple users on different machines. One way to use Rserve is to install it on a heavy-duty server with lots of CPU power and memory, so that users can perform calculations that they couldn’t easily perform on their own desktops. For more about this project, see http://www.rforge.net/Rserve/index.html.
As we described above, you can also use R Studio to run R on a server and access if from a web browser.
Inside Emacs
The ESS (Emacs Speaks Statistics) package is an add-on for Emacs that allows you to run R directly within Emacs. For more on this project, see http://ess.r-project.org/.
Chapter 3. A Short R Tutorial
This chapter contains a short tutorial of R with a lot of examples.
If you’ve never used R before, this is a great time to start it up and try playing with it. There’s no better way to learn something than by trying it yourself. You can follow along by typing in the same text that’s shown in the book. Or, try changing it a little bit to see what happens. (For example, if the sample code says “3 + 4,” try typing 3 - 4 instead.)
WARNING
If you’ve never used an interactive language before, take a look at Chapter 2 before you start. That chapter contains an overview of the R environment, including the console. Otherwise, you might find the presentation of the examples—and the terminology—confusing.
Basic Operations in R
Let’s get started using R. When you enter an expression into the R console and press the Enter key, R will evaluate that expression and display the results (if there are any). If the statement results in a value, R will print that value. For example, you can use R to do simple math:
> 1 + 2 + 3
[1] 6
> 1 + 2 * 3
[1] 7
> (1 + 2) * 3
[1] 9
The interactive R interpreter will automatically print an object returned by an expression entered into the R console. Notice the funny “[1]” that accompanies each returned value. In R, any number that you enter in the console is interpreted as a vector. A vector is an ordered collection of numbers. The “[1]” means that the index of the first item displayed in the row is 1. In each of these cases, there is also only one element in the vector.
You can construct longer vectors using the c(...) function. (c stands for “combine.”) For example:
> c(0, 1, 1, 2, 3, 5, 8)
[1] 0 1 1 2 3 5 8
is a vector that contains the first seven elements of the Fibonacci sequence. As an example of a vector that spans multiple lines, let’s use the sequence operator to produce a vector with every integer between 1 and 50:
> 1:50
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50
Notice the numbers in the brackets on the left-hand side of the results. These indicate the index of the first element shown in each row.
When you perform an operation on two vectors, R will match the elements of the two vectors pairwise and return a vector. For example:
> c(1, 2, 3, 4) + c(10, 20, 30, 40)
[1] 11 22 33 44
> c(1, 2, 3, 4) * c(10, 20, 30, 40)
[1] 10 40 90 160
> c(1, 2, 3, 4) - c(1, 1, 1, 1)
[1] 0 1 2 3
If the two vectors aren’t the same size, R will repeat the smaller sequence multiple times:
> c(1, 2, 3, 4) + 1
[1] 2 3 4 5
> 1 / c(1, 2, 3, 4, 5)
[1] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000
> c(1, 2, 3, 4) + c(10, 100)
[1] 11 102 13 104
> c(1, 2, 3, 4, 5) + c(10, 100)
[1] 11 102 13 104 15
Warning message:
In c(1, 2, 3, 4, 5) + c(10, 100) :
longer object length is not a multiple of shorter object length
Note the warning if the second sequence isn’t a multiple of the first.
In R, you can also enter expressions with characters:
> "Hello world."
[1] "Hello world."
This is called a character vector in R. This example is actually a character vector of length 1. Here is an example of a character vector of length 2:
> c("Hello world", "Hello R interpreter")
[1] "Hello world" "Hello R interpreter"
(In other languages, like C, “character” refers to a single character, and an ordered set of characters is called a string. A string in C is equivalent to a character value in R.)
You can add comments to R code. Anything after a pound sign (“#”) on a line is ignored:
> # Here is an example of a comment at the beginning of a line
> 1 + 2 + # and here is an example in the middle
+ 3
[1] 6
Functions
In R, the operations that do all the work are called functions. We’ve already used a few functions above (you can’t do anything interesting in R without them). Functions are just like what you remember from math class. Most functions are in the following form:
f(argument1, argument2, ...)
Where f is the name of the function, and argument1, argument2, . . . are the arguments to the function. Here are a few more examples:
> exp(1)
[1] 2.718282
> cos(3.141593)
[1] -1
> log2(1)
[1] 0
In each of these examples, the functions took only one argument. Many functions require more than one argument. You can specify the arguments by name:
> log(x=64, base=4)
[1] 3
Or, if you give the arguments in the default order, you can omit the names:
> log(64,4)
[1] 3
Not all functions are of the form f(...). Some of them are in the form of operators.[7] For example, we used the addition operator (“+”) above. Here are a few examples of operators:
> 17 + 2
[1] 19
> 2 ^ 10
[1] 1024
> 3 == 4
[1] FALSE
We’ve seen the first one already: it’s just addition. The second operator is the exponentiation operator, which is interesting because it’s not a commutative operator. The third operator is the equality operator. (Notice that the result returned is FALSE; R has a Boolean data type.)
[7] When you enter a binary or unary operator into R, the R interpreter will actually translate the operator into a function; there is a function equivalent for each operator. We’ll talk about this more in Chapter 5.
Variables
Like most other languages, R lets you assign values to variables and refer to them by name. In R, the assignment operator is <-. Usually, this is pronounced as “gets.” For example, the statement:
x <- 1
is usually read as “x gets 1.” (If you’ve ever done any work with theoretical computer science, you’ll probably like this notation: it looks just like algorithm pseudocode.)
After you assign a value to a variable, the R interpreter will substitute that value in place of the variable name when it evaluates an expression. Here’s a simple example:
> x <- 1
> y <- 2
> z <- c(x,y)
> # evaluate z to see what's stored as z
> z
[1] 1 2
Notice that the substitution is done at the time that the value is assigned to z, not at the time that z is evaluated. Suppose that you were to type in the preceding three expressions and then change the value of y. The value of z would not change:
> y <- 4
> z
[1] 1 2
I’ll talk more about the subtleties of variables and how they’re evaluated in Chapter 8.
R provides several different ways to refer to a member (or set of members) of a vector. You can refer to elements by location in a vector:
> b <- c(1,2,3,4,5,6,7,8,9,10,11,12)
> b
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> # let's fetch the 7th item in vector b
> b[7]
[1] 7
> # fetch items 1 through 6
> b[1:6]
[1] 1 2 3 4 5 6
> # fetch only members of b that are congruent to zero (mod 3)
> # (in non-math speak, members that are multiples of 3)
> b[b %% 3 == 0]
[1] 3 6 9 12
You can fetch multiple items in a vector by specifying the indices of each item as an integer vector:
> # fetch items 1 through 6
> b[1:6]
[1] 1 2 3 4 5 6
> # fetch 1, 6, 11
> b[c(1,6,11)]
[1] 1 6 11
You can fetch items out of order. Items are returned in the order they are referenced:
> b[c(8,4,9)]
[1] 8 4 9
You can also specify which items to fetch through a logical vector. As an example, let’s fetch only multiples of 3 (by selecting items that are congruent to 0 mod 3):
> b %% 3 == 0
[1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[12] TRUE
> b[b %% 3 == 0]
[1] 3 6 9 12
In R, there are two additional operators that can be used for assigning values to symbols. First, you can use a single equals sign (“=”) for assignment.[8] This operator assigns the symbol on the left to the object on the right. In many other languages, all assignment statements use equals signs. If you are more comfortable with this notation, you are free to use it. However, I will be using only the <- assignment operator in this book because I think it is easier to read. Whichever notation you prefer, be careful because the = operator does not mean “equals.” For that, you need to use the == operator:
> one <- 1
> two <- 2
> # This means: assign the value of "two" to the variable "one"
> one = two
> one
[1] 2
> two
[1] 2
> # let's start again
> one <- 1
> two <- 2
> # This means: does the value of "one" equal the value of "two"
> one == two
[1] FALSE
In R, you can also assign an object on the left to a symbol on the right:
> 3 -> three
> three
[1] 3
In some programming contexts, this notation might help you write clearer code. (It may also be convenient if you type in a long expression and then realize that you have forgotten to assign the result to a symbol.)
A function in R is just another object that is assigned to a symbol. You can define your own functions in R, assign them a name, and then call them just like the built-in functions:
> f <- function(x,y) {c(x+1, y+1)}
> f(1,2)
[1] 2 3
This leads to a very useful trick. You can often type the name of a function to see the code for it. Here’s an example:
> f
function(x,y) {c(x+1, y+1)}
[8] Note that you cannot use the <- operator when passing arguments to a function; you need to map values to argument names using the “=” symbol. Using the <- operator in a function will assign the value to the variable in the current environment and then pass the value returned to the function. This might be what you want, but it probably isn’t.
Introduction to Data Structures
In R, you can construct more complicated data structures than just vectors. An array is a multidimensional vector. Vectors and arrays are stored the same way internally, but an array may be displayed differently and accessed differently. An array object is just a vector that’s associated with a dimension attribute. Here’s a simple example.
First, let’s define an array explicitly:
> a <- array(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), dim=c(3, 4))
Here is what the array looks like:
> a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
And here is how you reference one cell:
> a[2,2]
[1] 5
Now, let’s define a vector with the same contents:
> v <- c(1,2,3,4,5,6,7,8,9,10,11,12)
> v
[1] 1 2 3 4 5 6 7 8 9 10 11 12
A matrix is just a two-dimensional array:
> m <- matrix(data=c(1,2,3,4,5,6,7,8,9,10,11,12),nrow=3,ncol=4)
> m
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
Arrays can have more than two dimensions. For example:
> w <- array(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),dim=c(3,3,2))
> w
, , 1
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
, , 2
[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18
> w[1,1,1]
[1] 1
R uses very clean syntax for referring to part of an array. You specify separate indices for each dimension, separated by commas:
> a[1,2]
[1] 4
> a[1:2,1:2]
[,1] [,2]
[1,] 1 4
[2,] 2 5
To get all rows (or columns) from a dimension, simply omit the indices:
> # first row only
> a[1,]
[1] 1 4 7 10
> # first column only
> a[,1]
[1] 1 2 3
> # you can also refer to a range of rows
> a[1:2,]
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
> # you can even refer to a noncontiguous set of rows
> a[c(1,3),]
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 3 6 9 12
In all the examples above, we’ve just looked at data structures based on a single underlying data type. In R, it’s possible to construct more complicated structures with multiple data types. R has a built-in data type for mixing objects of different types, called lists. Lists in R are subtly different from lists in many other languages. Lists in R may contain a heterogeneous selection of objects. You can name each component in a list. Items in a list may be referred to by either location or name.
Here is an example of a list with two named components:
> # a list containing two strings
> e <- list(thing="hat", size="8.25")
> e
$thing
[1] "hat"
$size
[1] "8.25"
You may access an item in the list in multiple ways:
> e$thing
[1] "hat"
> e[1]
$thing
[1] "hat"
> e[[1]]
[1] "hat"
A list can even contain other lists:
> g <- list("this list references another list", e)
> g
[[1]]
[1] "this list references another list"
[[2]]
[[2]]$thing
[1] "hat"
[[2]]$size
[1] "8.25"
A data frame is a list that contains multiple named vectors that are the same length. A data frame is a lot like a spreadsheet or a database table. Data frames are particularly good for representing experimental data. As an example, I’m going to use some baseball data. Let’s construct a data frame with the win/loss results in the National League (NL) East in 2008:
> teams <- c("PHI","NYM","FLA","ATL","WSN")
> w <- c(92, 89, 94, 72, 59)
> l <- c(70, 73, 77, 90, 102)
> nleast <- data.frame(teams,w,l)
> nleast
teams w l
1 PHI 92 70
2 NYM 89 73
3 FLA 94 77
4 ATL 72 90
5 WSN 59 102
You can refer to the components of a data frame (or items in a list) by name using the $ operator:
> nleast$w
[1] 92 89 94 72 59
Here’s one way to find a specific value in a data frame. Suppose that you wanted to find the number of losses by the Florida Marlins (FLA). One way to select a member of an array is by using a vector of Boolean values to specify which item to return from a list. You can calculate an appropriate vector like this:
> nleast$teams=="FLA"
[1] FALSE FALSE TRUE FALSE FALSE
Then you can use this vector to refer to the right element in the losses vector:
> nleast$l[nleast$teams=="FLA"]
[1] 77
You can import data into R from another file or from a database. See Chapter 11 for more information on how to do this.
In addition to lists, R has other types of data structures for holding a heterogeneous collection of objects, including formal class definitions through S4 objects.
Objects and Classes
R is an object-oriented language. Every object in R has a type. Additionally, every object in R is a member of a class. We have already encountered several different classes: character vectors, numeric vectors, data frames, lists, and arrays.
You can use the class function to determine the class of an object. For example:
> class(teams)
[1] "character"
> class(w)
[1] "numeric"
> class(nleast)
[1] "data.frame"
> class(class)
[1] "function"
Notice the last example: a function is an object in R with the class function.
Some functions are associated with a specific class. These are called methods. (Not all functions are tied closely to a particular class; the class system in R is much less formal than that in a language like Java.)
In R, methods for different classes can share the same name. These are called generic functions. Generic functions serve two purposes. First, they make it easy to guess the right function name for an unfamiliar class. Second, generic functions make it possible to use the same code for objects of different types.
For example, + is a generic function for adding objects. You can add numbers together with the + operator:
> 17 + 6
[1] 23
You might guess that the addition operator would work similarly with other types of objects. For example, you can also use the + operator with a date object and a number:
> as.Date("2009-09-08") + 7
[1] "2009-09-15"
By the way, the R interpreter calls the generic function print on any object returned on the R console. Suppose that you define x as:
> x <- 1 + 2 + 3 + 4
When you type:
> x
[1] 10
the interpreter actually calls the function print(x) to print the results. This means that if you define a new class, you can define a print method to specify how objects from that new class are printed on the console. Some functions take advantage of this functionality to do other things when you enter an expression on the console.[9]
I’ll talk about objects in more depth in Chapter 7 and classes in Chapter 10.
[9] A very important example of this is lattice graphics. Plotting functions in the lattice library return lattice objects but don’t plot results. If you call a lattice function on the R console, the console will print the object, thus plotting the results. However, if you call a lattice function within another function, or in a script, R will not plot the results unless you explicitly print the lattice object.
Models and Formulas
To statisticians, a model is a concise way to describe a set of data, usually with a mathematical formula. Sometimes, the goal is to build a predictive model with training data to predict values based on other data. Other times, the goal is to build a descriptive model that helps you understand the data better.
R has a special notation for describing relationships between variables. Suppose that you are assuming a linear model for a variable y, predicted from the variables x1, x2, ..., xn. (Statisticians usually refer to y as the dependent variable, and x1, x2, ..., xn as the independent variables.) In equation form, this implies a relationship like:
In R, you would write the relationship as y ~ x1 + x2 + ... + xn, which is a formula object.
As an example, let’s use the cars data set (which is included in the base package). This data set was created during the 1920s and shows the speed and stopping distance for a set of different cars. We’ll look at the relationship between speed and stopping distance. We’ll assume that the stopping distance is a linear function of speed. So let’s try to use a linear regression to estimate the relationship. The formula is dist~speed. We’ll use the lm function to estimate the parameters of a linear model. The lm function returns an object of class lm, which we will assign to a variable called cars.lm:
> cars.lm <- lm(formula=dist~speed,data=cars)
Now, let’s take a quick look at the results returned:
> cars.lm
Call:
lm(formula = dist ~ speed, data = cars)
Coefficients:
(Intercept) speed
-17.579 3.932
As you can see, printing an lm object shows you the original function call (and thus the data set and formula) and the estimated coefficients. For some more information, we can use the summary function:
> summary(cars.lm)
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12
As you can see, the summary option shows you the function call, the distribution of the residuals from the fit, the coefficients, and information about the fit. By the way, it is possible to simply call the lm function or to call summary(lm(...)) and not assign a name to the model object:
> lm(dist~speed,data=cars)
Call:
lm(formula = dist ~ speed, data = cars)
Coefficients:
(Intercept) speed
-17.579 3.932
> summary(lm(dist~speed,data=cars))
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12
In some cases, this can be more convenient. However, you often want to perform additional analyses, such as plotting residuals, calculating additional statistics, or updating a model to add or subtract variables. By assigning a name to the model, you can make your code easier to understand and modify. Additionally, refitting a model can be very time consuming for complex models and large data sets. By assigning the model to a variable name, you can avoid these problems.
Charts and Graphics
R includes several packages for visualizing data: graphics, grid, and lattice. Usually, you’ll find that functions within the graphics and lattice packages are the most useful.[10] If you’re familiar with Microsoft Excel, you’ll find that R can generate all of the charts that you’re familiar with: column charts, bar charts, line plots, pie charts, and scatter plots. Even if that’s all you need, R makes it much easier than Excel to automate the creation of charts and to customize them. However, there are many, many more types of charts available in R, many of them quite intuitive and elegant.
To make this a little more interesting, let’s work with some real data. We’re going to look at all field goal attempts in the National Football League (NFL) in 2005.[11] For those of you who aren’t familiar with American football, here’s a quick explanation. A team can attempt to kick a football between a set of goalposts to receive 3 points. If it misses the field goal, possession of the ball reverts to the other team (at the spot on the field where the kick was attempted). We’re going to take a look at kick attempts in the NFL in 2005.
First, let’s take a quick look at the distribution of distances. R provides a function, hist, that can do this quickly for us. Let’s start by loading the appropriate data set. (The data set is included in the nutshell package; see the Preface for information on how to obtain this package.)
> library(nutshell)
> data(field.goals)
Let’s take a quick look at the names of the columns in the field.goals data frame:
> names(field.goals)
[1] "home.team" "week" "qtr" "away.team"
[5] "offense" "defense" "play.type" "player"
[9] "yards" "stadium.type"
Now, let’s just try the hist command:
> hist(field.goals$yards)
This produces a chart like the one shown in Figure 3-1. (Depending on your system, if you try this yourself, you may see a differently colored and formatted chart. I tweaked a few graphical parameters so the charts would look good in print.) I wanted to see more detail about the number of field goals at different distances, so I modified the breaks argument to add more bins to the histogram:
> hist(field.goals$yards, breaks=35)
Figure 3-1. Histogram of field goal attempts with default settings
You can see the results of this command in Figure 3-2. R also features many other ways to visualize data. A great example is a strip chart. This chart just plots one point on the x-axis for every point in a vector. As an example, let’s look at the distance of blocked field goals. We can distinguish blocked field goals with the play.type variable in the field.goals data frame. Let’s take a quick look at how many blocked field goals there were in 2005. We’ll use the table function to tabulate the results:
> table(field.goals$play.type)
FG aborted FG blocked FG good FG no
8 24 787 163
Figure 3-2. Histogram of field goal distances, showing more bins
Now we’ll select only observations with blocked field goals. We’ll add a little jitter so we can see individual points. Finally, we will also change the appearance of the points using the pch argument:
> stripchart(field.goals[field.goals$play.type=="FG blocked",]$yards,
+ pch=19, method="jitter")
The results are shown in Figure 3-3.
Figure 3-3. Strip chart showing field goal attempt distances
As a second example, let’s use the cars data set, which is included in the base package. The cars data set consists of a set of 50 observations:
> data(cars)
> dim(cars)
[1] 50 2
> names(cars)
[1] "speed" "dist"
Each observation contains the speed of the car and the distance required to stop. Let’s take a quick look at the contents of this data set:
> summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00
Let’s plot the relationship between vehicle speed and stopping distance:
> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
+ las = 1, xlim = c(0, 25))
The plot is shown in Figure 3-4. At a quick glance, we see that stopping distance is roughly proportional to speed.
Figure 3-4. Plot of data in the cars data set
Let’s try one more example, this time using lattice graphics. Lattice graphics provide some great tools for drawing pretty charts, particularly charts that compare different groups of points. By default, the lattice package is not loaded; you will get an error if you try calling a lattice function without loading the library. To load the library, use the following command:
> library(lattice)
We will talk more about R packages in Chapter 4.
For example data, we’ll look at how American eating habits changed between 1980 and 2005.[12]
The consumption data set is available in the nutshell package. It contains 48 observations, each showing the amount of a commodity consumed (or produced) in a specific year. Data is available only for years that are multiples of 5 (so there are six unique years between 1980 and 2005). The amount of food consumed is given by Amount, the type of food is given by Food, and the year is given by Year.
Two of the variables are numeric vectors: Amount and Year. However, two of them are an important data type that we haven’t seen yet: factors. A factor is an R object type that is used to compactly represent a vector of categorical values. Factors are used in many modeling functions. You can create a factor from another vector (typically a character vector) using the factor function. In this data frame, the values Food and Units are factors. (We’ll discuss vectors in more detail in Vectors.)
To help reveal trends in the data, I decided to use the dotplot function. (This function resembles line charts in Excel.) Specifically, we’d like to look at how the Amount varies by Year. We’d like to separately plot the trend for each value of the Food variable. For lattice graphics, we specify the data that we want to plot through a formula, in this case, Amount ~ Year | Food. A formula is an R object that is used to express a relationship between a set of variables.
If you’d like, you can try plotting the relationship using the default settings:
> library(nutshell)
> library(lattice)
> data(consumption)
> dotplot(Amount~Year|Food, consumption)
I found the default plot hard to read: the axis labels were too big, the scale for each plot was the same, and the stacking didn’t look right to me. So I tuned the presentation a little bit. Here is the version that produced Figure 3-5:
> dotplot(Amount ~ Year | Food,data=consumption,
+ aspect="xy",scales=list(relation="sliced", cex=.4))
Figure 3-5. Lattice plot showing American changes in American eating habits, 1980–2005
The aspect option changes the aspect ratios of each plot to try to show changes from 45° angles (making changes easier to see). The scales option changes how the axes are drawn. I’ll discuss lattice plots in more detail in Chapter 14, explaining how to use different options to tune the look of your charts.
[10] Other packages are available for visualizing data. For example, the RGobi package provides tools for creating interactive graphics.
[11] The data was provided by Aaron Schatz of Pro Football Prospectus. For more information, see the Football Outsiders website at http://www.footballoutsiders.com/, or you can find its annual books at most bookstores—both online and “brick and mortar.”
[12] I obtained the data from the 2009 Statistical Abstract of the United States, a terrific book of data about the United States that is published by the Census Bureau. I took a subset of the data, keeping consumption for only the largest categories. You can find this data at http://www.census.gov/compendia/statab/cats/health_nutrition/food_consumption_and_nutrition.html.
Getting Help
R includes a help system to help you get information about installed packages. To get help on a function, for example glm, you would type:
> help(glm)
or, equivalently:
> ?glm
To search for help on an operator, you need to place the operator in backquotes:
> ?`+`
If you’d like to try the examples in a help file, you can use the example function to automatically try them. For example, to see the example for glm, type:
> example(glm)
You can search for help on a topic, for example “regression,” using the help.search function:
> help.search("regression")
This can be very helpful if you can’t remember the name of a function; R will return a list of relevant topics. There is a shorthand for this command as well:
> ??regression
To get the help file for a package, you can sometimes use one of the commands above. However, you can also use the help option for the library command to get more complete information. For example, to get help on the grDevices library, you would use the following function:
> library(help="grDevices")
Some packages (especially packages from Bioconductor) include at least one vignette. A vignette is a short document that describes how to use the package, complete with examples. You can view a vignette using the vignette command. For example, to view the vignette for the affy package (assuming that you have installed this package), you would use the following command:
> vignette("affy")
To view available vignettes for all attached packages, you can use the following command:
> vignette(all=FALSE)
To view vignettes for all installed packages, try this command:
> vignette(all=TRUE)
Chapter 4. R Packages
A package is a related set of functions, help files, and data files that have been bundled together. Packages in R are similar to modules in Perl, libraries in C/C++, and classes in Java.
Typically, all the functions in the package are related: for example, the stats package contains functions for doing statistical analysis. To use a package, you need to load it into R (see Loading Packages for directions on loading packages).
R offers an enormous number of packages: packages that display graphics, packages for performing statistical tests, and packages for trying the latest machine learning techniques. There are also packages designed for a wide variety of industries and applications: packages for analyzing microarray data, packages for modeling credit risks, and packages for social sciences.
Some of these packages are included with R: you just have to tell R that you want to use them. Other packages are available from public package repositories. You can even make your own packages. This chapter explains how to use packages.
An Overview of Packages
To use a package in R, you first need to make sure that it has been installed into a local library.[13] By default, packages are read from one system-level library, but you can add additional libraries.
Next, you need to load the packages into your current session. You might be wondering why you need to load packages into R in order to use them. First, R’s help system slows down significantly when you add more packages to search. (I know this from personal experience: I loaded dozens of packages into R while writing this book, and the help system slowed to a crawl.) Second, it’s possible that two packages have objects with the same name. If every package were loaded into R by default, you might think you were using one function but really be using another. Even worse, it’s possible for there to be internal conflicts: two packages may both use functions with names like “fit” that work very differently, resulting in strange and unexpected results. By loading only packages that you need, you can minimize the chance of these conflicts.
[13] If you’re a C/C++ programmer, don’t get confused; “library” means something different in R.
Listing Packages in Local Libraries
To get the list of packages loaded by default, you can use the getOption command to check the value of the defaultPackages value:
> getOption("defaultPackages")
[1] "datasets" "utils" "grDevices" "graphics" "stats"
[6] "methods"
This command omits the base package; the base package implements many key features of the R language and is always loaded.
If you would like to see the list of currently loaded packages, you can use the .packages command (note the parentheses around the outside):
> (.packages())
[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"
To show all packages available, you can use the all.available option with the packages command:
> (.packages(all.available=TRUE))
[1] "KernSmooth" "MASS" "base" "bitops" "boot"
[6] "class" "cluster" "codetools" "datasets" "foreign"
[11] "grDevices" "graphics" "grid" "hexbin" "lattice"
[16] "maps" "methods" "mgcv" "nlme" "nnet"
[21] "rpart" "spatial" "splines" "stats" "stats4"
[26] "survival" "tcltk" "tools" "utils"
You can also enter the library() command with no arguments, and a new window will pop up showing you the set of available packages.
INCLUDED PACKAGES
R comes with a number of different packages (see Table 4-1 for a list). Some of these packages (like base, graphics, grDevices, methods, and utils) implement basic features of the R language or R environment. Other packages provide commonly used statistical modeling tools (like cluster, nnet, and stats). Other packages implement sophisticated graphics (grid and lattice), contain examples (datasets), or contain other frequently used functions. In many cases, you won’t need to get any other packages.
TABLE 4-1. PACKAGES INCLUDED WITH R
Loading Packages
By default, not all packages are loaded into R. If you try to use a function from a package that hasn’t been loaded, you’ll get an error:
> # try to use rpart before loading it
> fit <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis)
Error: could not find function "rpart"
To load a package in R, you can use the library() command. For example, to load the package rpart (which contains functions for building recursive partition trees), you would use the following command:
> library(rpart)
(There is a similar command, require(), that takes slightly different arguments. For more about require, see the R help files.)
If you’re more comfortable using a GUI, you can browse for packages and load them using the GUI. If you choose to use this interface to find packages, make sure that you include the appropriate library command with your scripts to prevent errors later.
Loading Packages on Windows and Linux
On Microsoft Windows, you can use the library function to load packages. Alternatively, you can select “Load package” from the Packages menu in the GUI. This will bring up a window showing a list of packages that you can choose to load.
Loading Packages on Mac OS X
The Mac OS X R environment is a little fancier than the other versions. Like the other versions, you can use the library() function. Otherwise, you can select Package Manager from the “Packages & Data” menu. The Package Manager UI, as shown in Figure 4-1, lets you see which packages are loaded, load packages, and even browse the help file for a package.
Figure 4-1. Mac OS X Package Manager
Exploring Package Repositories
You can find thousands of R packages online. The two biggest sources of packages are CRAN (Comprehensive R Archive Network) and Bioconductor, but some packages are available elsewhere. (If you know Perl, you’ll notice that CRAN is very similar to CPAN, the Comprehensive Perl Archive Network.) CRAN is hosted by the R Foundation (the same nonprofit organization that oversees R development). The archive contains a very large number of packages (there were 1,698 packages on February 24, 2009), covering a wide number of different applications. CRAN is hosted on a set of mirror sites around the world. Try to pick an archive site near you: you’ll minimize download times and help reduce the server load on the R Foundation.
Bioconductor is an open-source project for building tools to analyze genomic data. Bioconductor tools are built using R and are distributed as R packages. The Bioconductor packages are distributed separately from R, and most are not available on CRAN. There are dozens of different packages available directly through the Bioconductor project.
R-Forge is another interesting place to look for packages. The R-Forge site contains projects that are in progress, and it provides tools for developers to collaborate. You may find some interesting packages on this site, but please be sure to read the disclaimers and documentation, because many of these packages are works in progress.
R includes the ability to download and install packages from other repositories. However, I don’t know of other public repositories for R packages. Most R projects simply use CRAN to host their packages. (I’ve even seen some books that use CRAN to distribute sample code and sample data.)
Exploring R Package Repositories on the Web
R provides good tools for installing packages within the GUI but doesn’t provide a good way to find a specific package. Luckily, it’s pretty easy to find a package on the Web.
You can browse through the set of available packages with your web browser. Here are some places to look for packages.
Repository | URL |
---|---|
CRAN | See http://cran.r-project.org/web/packages/ for an authoritative list, but you should try to find your local mirror and use that site instead |
Bioconductor | http://www.bioconductor.org/packages/release/Software.html |
R-Forge | http://r-forge.r-project.org/ |
However, you can also try to find packages with a search engine. I’ve had good luck finding packages by using Google to search for “R package” plus the name of the application. For example, searching for “R package multivariate additive regression splines” can help you find the mda package, which contains the mars function. (Of course, I discovered later that the earth package is a better choice for this algorithm, but we’ll get to that later.)
Finding and Installing Packages Inside R
Once you figure out what package you want to install, the easiest way to do it is inside R.
Windows and Linux GUIs
Installing packages through the Windows GUI is pretty straightforward.
(Optional) By default, R is set to fetch packages from the “CRAN” and “CRAN (extra)” categories. To pick additional sets of packages, choose “Select repositories” from the Packages menu. You can choose multiple repositories.
From the Packages menu, select “Install package(s)”.
If this is the first time you are installing a package during this session, R will ask you to pick a mirror. (You’ll probably want to pick a site that is geographically close, because it’s likely to also be close on the Internet, and thus fast.)
Click the name of the package that you want to install and press OK.
R will download and install the packages that you have selected.
Note that you may run into issues installing packages, depending on the permissions assigned to your user account. If you are using Windows XP, and your account is a member of the Administrators group, you should have no problems. If you are using Windows Vista, and you installed R in your own directory, you should have no issues. Otherwise, you may need to run R as an Administrator in order to install supplementary packages.
Mac OS X GUI
On Mac OS X, there is a slightly different user interface for package installation. It shows a little more information than the Windows version, but it’s a little more confusing to use.
From the Package and Data menu, select Package Installer. (See Figure 4-1 for a picture of the installer window.)
(Optional) In the top-left corner of the window is a menu that allows you to select the category of packages you would like to download. Initially, this is set to “CRAN (binaries).”
Click the Get List button to display the available set of packages.
You can use the search box to filter the list to show only packages that match the name you are looking for. (Note: you have to click the Get List button before the search will return results.)
Select the set of packages that you want to install and press the Install Selected button.
By default, R will install packages at the system level, making them available to all users. If you do not have the appropriate permissions to install packages globally, or if you would like to install them elsewhere, then select an alternative location. Additionally, R will not install the additional packages on which your packages depend. You will get an error if you try to load a package and have not installed other packages on which it is dependent.
R console
You can also install R packages directly from the R console. Table 4-2 shows the set of commands for installing packages from the console. As a simple example, suppose that you wanted to install the packages tree and maptree. You could accomplish this with the following command:
> install.packages(c("tree","maptree"))
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/
2.9/tree_1.0-26.tgz'
Content type 'application/x-gzip' length 103712 bytes (101 Kb)
opened URL
==================================================
downloaded 101 Kb
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/
2.9/maptree_1.4-5.tgz'
Content type 'application/x-gzip' length 101577 bytes (99 Kb)
opened URL
==================================================
downloaded 99 Kb
The downloaded packages are in
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpIXUWDu/
downloaded_packages
This will install the packages to the default library specified by the variable .Library. If you’d like to remove these packages after you’re done, you can use remove.packages. You need to specify the library where the packages were installed:
> remove.packages(c("tree", "maptree"),.Library)
Table 4-2. Common package installation commands
Installing from the command line
You can also install downloaded packages from the command line. (There is actually a set of different commands that you can issue to R directly from the command line, without launching the full R shell.) To do this, you run R with the CMD INSTALL option. For example, suppose that you had downloaded the package aplpack (“Another Plotting PACKage”). For Mac OS X, the binary file is called aplpack_1.1.1.tgz. To install this package, change to the directory where the package is located and issue the following command:
$ R CMD INSTALL aplpack_1.1.1.tgz
If successful, you’ll see a message like the following:
* Installing to library '/Library/Frameworks/R.framework/Resources/library'
* Installing *binary* package 'aplpack' ...
* DONE (aplpack)
Installing Packages From Other Repositories
Not all packages are hosted on public R repositories. Luckily, you can get a package that makes it easy to install packages from other places. The devtools library includes tools for installing packages from popular git repositories and other URLs. (We’ll use devtools later in the book to install R/Hadoop from GitHub.)
For example, Hadley Wickham uses GitHub to host the development version of ggplot2. To install the latest development version of ggplot2, you can use the following command:
> # if you haven't installed devtools, start with this command:
> install.packages("devtools")
> # otherwise just type this
> library(devtools)
> install_github("ggplot2")
For more information, see the help file for devtools.
Custom Packages
Building your own packages is a good idea if you want to share code or data with other people, or if you just want to pack it up in a form that’s easy to reuse. This section explains the easy way to create your own packages.
Creating a Package Directory
To build a package, you need to place all the package files (code, data, documentation, etc.) inside a single directory. You can create an appropriate directory structure using the R function package.skeleton:
package.skeleton(name = "anRpackage", list,
environment = .GlobalEnv,
path = ".", force = FALSE, namespace = FALSE,
code_files = character())
This function can also copy a set of R objects into that directory. Here’s a description of the arguments to package.skeleton.
Argument | Description | Default |
---|---|---|
name | A character value specifying a name for the new package | “anRpackage” (as a side note, this may be the least-useful default value for any R function) |
list | A character vector containing names of R objects to add to the package | |
environment | The environment in which to evaluate list | .GlobalEnv |
path | A character vector specifying the path in the file system | “.” |
force | A Boolean value specifying whether to overwrite files, if a directory name already exists at path | FALSE |
namespace | A Boolean value specifying whether to add a namespace to the package | FALSE |
code_files | A character vector specifying the paths of files containing R code | character() |
For this book, I created a package called nutshell containing most of the data sets used in this book:
> package.skeleton(name="nutshell",path="~/Documents/book/current/")
Creating directories ...
Creating DESCRIPTION ...
Creating Read-and-delete-me ...
Saving functions and data ...
Making help files ...
Done.
Further steps are described in
'~/Documents/book/current//nutshell/Read-and-delete-me'.
The package.skeleton function creates a number of files. There are directories named “man” (for help files), “R” (for R source files), and “data” (for data files). One of the most important is the DESCRIPTION file, at the root of the created directory. Here is the file that was generated by the package.skeleton function:
Package: nutshell
Type: Package
Title: What the package does (short line)
Version: 1.0
Date: 2012-03-13
Author: Who wrote it
Maintainer: Whom to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?
Many of these items are self-explanatory, although a couple of items require more explanation. Additionally, there are a few useful optional items:
LazyLoad
LazyLoad controls how objects (including data) are loaded into R. If you set LazyLoad to yes (the default), then data files in the packages are not loaded into memory. Instead, promise objects are loaded for each data package. You can still access the objects, but they take up (almost) no space.
LazyData
LazyData works like LazyLoad but specifies what to do (specifically) with data files.
Depends
If your package depends on other packages to be installed (or on certain versions of R), you can specify them with this line. For example, to specify that your package requires R 2.8 or later and the nnet package, you would add the line:
Depends: R(>= 2.8), nnet
R includes a set of functions that help automate the creation of help files for packages: prompt (for generic documentation), promptData (for documenting data files), promptMethods (for documenting methods of a generic function), and promptClass (for documenting a class). See the help files for these functions for additional information.
You can add data files to the data directory in several different forms: as R data files (created by the save function and named with either a .rda or a .Rdata suffix), as comma-separated value files (with a .csv suffix), or as an R source file containing R code (with a .R suffix).
Building the Package
After you’ve added all the materials to the package, you can build it from the command line on your computer (not the R shell). To make sure that the package complies with CRAN rules and builds correctly, use the check command. For the previous example, we would use the following command:
$ R CMD check nutshell
You can get more information about the CMD check command by entering R CMD CHECK --help on the command line. To build the package, you would use the following command:
$ R CMD build nutshell
As above, help is available through the --help option. If you’re really interested in how to build R packages, see the manual Writing R Extensions, available at http://cran.r-project.org/doc/manuals/R-exts.pdf.
Part II. The R Language
This part gives an overview of the R programming language.
In keeping with the “Nutshell” theme, this isn’t an exhaustive explanation of the inner workings of R. It is a more organized and thorough overview of R than that given in the tutorial chapter with some useful reference tables.
Chapter 5. An Overview of the R Language
Learning a computer language is a lot like learning a spoken language (only much simpler). If you’re just visiting a foreign country, you might learn enough phrases to get by without really understanding how the language is structured. Similarly, if you’re just trying to do a couple of simple things with R (like drawing some charts), you can probably learn enough from examples to get by.
However, if you want to learn a new spoken language really well, you have to learn about syntax and grammar: verb conjugation, proper articles, sentence structure, and so on. The same is true with R: if you want to learn how to program effectively in R, you’ll have to learn more about the syntax and grammar.
This chapter gives an overview of the R language, designed to help you understand R code and write your own. I’ll assume that you’ve spent a little time looking at R syntax (maybe from reading Chapter 3). Here’s a quick overview of how R works.
Expressions
R code is composed of a series of expressions. Examples of expressions in R include assignment statements, conditional statements, and arithmetic expressions. Here are a few examples of expressions:
> x <- 1
> if (1 > 2) "yes" else "no"
[1] "no"
> 127 %% 10
[1] 7
Expressions are composed of objects and functions. You may separate expressions with new lines or with semicolons. For example, here is a series of expressions separated by semicolons:
> "this expression will be printed"; 7 + 13; exp(0+1i*pi)
[1] "this expression will be printed"
[1] 20
[1] -1+0i
Objects
All R code manipulates objects. The simplest way to think about an object is as a “thing” that is represented by the computer. Examples of objects in R include numeric vectors, character vectors, lists, and functions. Here are some examples of objects:
> # a numerical vector (with five elements)
> c(1,2,3,4,5)
[1] 1 2 3 4 5
> # a character vector (with one element)
> "This is an object too"
[1] "This is an object too"
> # a list
> list(c(1,2,3,4,5),"This is an object too", " this whole thing is a list")
[[1]]
[1] 1 2 3 4 5
[[2]]
[1] "This is an object too"
[[3]]
[1] " this whole thing is a list"
> # a function
> function(x,y) {x + y}
function(x,y) {x + y}
Symbols
Formally, variable names in R are called symbols. When you assign an object to a variable name, you are actually assigning the object to a symbol in the current environment. (Somewhat tautologically, an environment is defined as the set of symbols that are defined in a certain context.) For example, the statement:
> x <- 1
assigns the symbol “x” to the object “1” in the current environment. For a more complete discussion of symbols and environments, see Chapter 8.
Functions
A function is an object in R that takes some input objects (called the arguments of the function) and returns an output object. All work in R is done by functions. Every statement in R—setting variables, doing arithmetic, repeating code in a loop—can be written as a function. For example, suppose that you had defined a variable animals pointing to a character vector with four elements: “cow,” “chicken,” “pig,” and “tuba.” Here is a statement that assigns this variable:
> animals <- c("cow", "chicken", "pig", "tuba")
Suppose that you wanted to change the fourth element to the word “duck.” Normally, you would use a statement like this:
> animals[4] <- "duck"
This statement is parsed into a call to the [<- function. So you could actually use this equivalent expression:[14]
> `[<-`(animals,4,"duck")
In practice, you would probably never write this statement as a function call; the bracket notation is much more intuitive and much easier to read. However, it is helpful to know that every operation in R is a function. Because you know that this assignment is really a function call, it means that you can inspect the code of the underlying function, search for help on this function, or create methods with the same name for your own object classes.[15]
Here are a few more examples of R syntax and the corresponding function calls:
> # pretty assignment
> apples <- 3
> # functional form of assignment
> `<-`(apples,3)
> apples
[1] 3
> # another assignment statement, so that we can compare apples and oranges
> `<-`(oranges,4)
> oranges
[1] 4
> # pretty arithmetic expression
> apples + oranges
[1] 7
> # functional form of arithmetic expression
> `+`(apples,oranges)
[1] 7
> # pretty form of if-then statement
> if (apples > oranges) "apples are better" else "oranges are better"
[1] "oranges are better"
> # functional form of if-then statement
> `if`(apples > oranges,"apples are better","oranges are better")
[1] "oranges are better"
> x <- c("apple","orange","banana","pear")
> # pretty form of vector reference
> x[2]
[1] "orange"
> # functional form or vector reference
> `[`(x,2)
[1] "orange"
[14] This expression acts slightly differently, because the result is not printed on the R console. However, the result is the same:
> animals
[1] "cow" "chicken" "pig" "duck"
[15] See Chapter 10 for more information on object-oriented programming using R.
Objects Are Copied in Assignment Statements
In assignment statements, most objects are immutable. Immutable objects are a good thing: for multithreaded programs, immutable objects help prevent errors. R will copy the object, not just the reference to the object. For example:
> u <- list(1)
> v <- u
> u[[1]] <- "hat"
> u
[[1]]
[1] "hat"
> v
[[1]]
[1] 1
This applies to vectors, lists, and most other primitive objects in R.
This is also true in function calls. Consider the following function, which takes two arguments: a vector x and an index i. The function sets the ith element of x to 4 and does nothing else:
> f <- function(x,i) {x[i] = 4}
Suppose that we define a vector w and call f with x = w and i = 1:
> w <- c(10, 11, 12, 13)
> f(w,1)
The vector w is copied when it is passed to the function, so it is not modified by the function:
> w
[1] 10 11 12 13
The value x is modified inside the context of the function. Technically, the R interpreter copies the object assigned to w and then assigns the symbol x to point at the copy. We will talk about how you can actually create mutable objects, or pass references to objects, when we talk about environments.
NOTE
Although R will behave as if every assignment makes a new copy of an object, in many cases R will actually modify the object in place. For example, consider the following code fragment:
> v <- 1:100
> v[50] <- 27
R does not actually copy the vector when the 50th element is altered; instead, R modifies the vector in place. Semantically, this is identical, but the performance is much better. See the R Internals Guide for more information about how this works.
Everything in R Is an Object
In the last few sections, most examples of objects were objects that stored data: vectors, lists, and other data structures. However, everything in R is an object: functions, symbols, and even R expressions.
For example, function names in R are really symbol objects that point to function objects. (That relationship is, in turn, stored in an environment object.) You can assign a symbol to refer to a numeric object and then change the symbol to refer to a function:
> x <- 1
> x
[1] 1
> x(2)
Error: could not find function "x"
> x <- function(i) i^2
> x
function(i) i^2
> x(2)
[1] 4
You can even use R code to construct new functions. If you really wanted to, you could write a function that modifies its own definition.
Special Values
There are a few special values that are used in R.
NA
In R, the NA values are used to represent missing values. (NA stands for “not available.”) You may encounter NA values in text loaded into R (to represent missing values) or in data loaded from databases (to replace NULL values).
If you expand the size of a vector (or matrix or array) beyond the size where values were defined, the new spaces will have the value NA:
> v <- c(1,2,3)
> v
[1] 1 2 3
> length(v) <- 4
> v
[1] 1 2 3 NA
Inf and -Inf
If a computation results in a number that is too big, R will return Inf for a positive number and -Inf for a negative number (meaning positive and negative infinity, respectively):
> 2 ^ 1024
[1] Inf
> - 2 ^ 1024
[1] -Inf
This is also the value returned when you divide by 0:
> 1 / 0
[1] Inf
NaN
Sometimes, a computation will produce a result that makes little sense. In these cases, R will often return NaN (meaning “not a number”):
> Inf - Inf
[1] NaN
> 0 / 0
[1] NaN
NULL
Additionally, there is a null object in R, represented by the symbol NULL. (The symbol NULL always points to the same object.) NULL is often used as an argument in functions to mean that no value was assigned to the argument. Additionally, some functions may return NULL. Note that NULL is not the same as NA, Inf, -Inf, or NaN.
Coercion
When you call a function with an argument of the wrong type, R will try to coerce values to a different type so that the function will work. There are two types of coercion that occur automatically in R: coercion with formal objects and coercion with built-in types.
With generic functions, R will look for a suitable method. If no exact match exists, then R will search for a coercion method that converts the object to a type for which a suitable method does exist. (The method for creating coercion functions is described in Creating Coercion Methods.)
Additionally, R will automatically convert between built-in object types when appropriate. R will convert from more specific types to more general types. For example, suppose that you define a vector x as follows:
> x <- c(1, 2, 3, 4, 5)
> x
[1] 1 2 3 4 5
> typeof(x)
[1] "double"
> class(x)
[1] "numeric"
Let’s change the second element of the vector to the word “hat.” R will change the object class to character and change all the elements in the vector to char:
> x[2] <- "hat"
> x
[1] "1" "hat" "3" "4" "5"
> typeof(x)
[1] "character"
> class(x)
[1] "character"
Here is an overview of the coercion rules:
Logical values are converted to numbers: TRUE is converted to 1 and FALSE to 0.
Values are converted to the simplest type required to represent all information.
The ordering is roughly logical < integer < numeric < complex < character < list.
Objects of type raw are not converted to other types.
Object attributes are dropped when an object is coerced from one type to another.
You can inhibit coercion when passing arguments to functions by using the AsIs function (or, equivalently, the I function). For more information, see the help file for AsIs.
Many newcomers to R find coercion nonintuitive. Strongly typed languages (like Java) will raise exceptions when the object passed to a function is the wrong type but will not try to convert the object to a compatible type. As John Chambers (who developed the S language) describes:
In the early coding, there was a tendency to make as many cases “work” as possible. In the later, more formal, stages the conclusion was that converting richer types to simpler automatically in all situations would lead to confusing, and therefore untrustworthy, results.[16]
In practice, I rarely encounter situations where values are coerced in undesirable ways. Usually, I use R with numeric vectors that are all the same type, so coercion simply doesn’t apply.
[16] From [Chambers2008], p. 154.
The R Interpreter
R is an interpreted language. When you enter expressions into the R console (or run an R script in batch mode), a program within the R system, called the interpreter, executes the actual code that you wrote. Unlike C, C++, and Java, there is no need to compile your programs into an object language. Other examples of interpreted languages are Common Lisp, Perl, and JavaScript.
All R programs are composed of a series of expressions. These expressions often take the form of function calls. The R interpreter begins by parsing each expression, translating syntactic sugar into functional form. Next, R substitutes objects for symbols (where appropriate). Finally, R evaluates each expression, returning an object. For complex expressions, this process may be recursive. In some special cases (such as conditional statements), R does not evaluate all arguments to a function. As an example, let’s consider the following R expression:
> x <- 1
On an R console, you would typically type x <- 1 and then press the Enter key. The R interpreter will first translate this expression into the following function call:
`<-`(x, 1)
Next, the interpreter evaluates this function. It assigns the constant value 1 to the symbol x in the current environment and then returns the value 1.
Let’s consider another example. (We’ll assume it’s from the same session, so that the symbol x is mapped to the value 1.)
> if (x > 1) "orange" else "apple"
[1] "apple"
Here is how the R interpreter would evaluate this expression. I typed if (x > 1) "orange" else "apple" into the R console and pressed the Enter key. The entire line is the expression that was evaluated by the R interpreter. The R interpreter parsed this expression and identified it as a set of R expressions in an if-then-else control structure. To evaluate that expression, the R interpreter begins by evaluating the condition (x > 1). If the condition is true, then R would evaluate the next statement (in this example, "orange"). Otherwise, R would evaluate the statement after the else keyword (in this example, "apple"). We know that x is equal to 1. When R evaluates the condition statement, the result is false. So R does not evaluate the statement after the condition. Instead, R will evaluate the expression after the else keyword. The result of this expression is the character vector "apple". As you can see, this is the value that is returned on the R console.
If you are entering R expressions into the R console, then the interpreter will pass objects returned to the console to the print function.
Some functionality is implemented internally within the R system. These calls are made using the .Internal function. Many functions use .Internal to call internal R system code. For example, the graphics function plot.xy is implemented using .Internal:
> plot.xy
function (xy, type, pch = par("pch"), lty = par("lty"), col = par("col"),
bg = NA, cex = 1, lwd = par("lwd"), ...)
.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))
<bytecode: 0x11949f828>
<environment: namespace:graphics>
In a few cases, the overhead for calling .Internal within an R function is too high. R includes a mechanism to define functions that are implemented completely internally.
You can identify these functions because the body of the function contains a call to the function .Primitive. For example, the assignment operator is implemented through a primitive function:
> `<-`
.Primitive("<-")
This mechanism is used for only a few basic functions where performance is critical. You can find a current list of these functions in [RInternals2009].
Seeing How R Works
To end this overview of the R language, I wanted to share a few functions that are convenient for seeing how R works. As you may recall, R expressions are R objects. This means that it is possible to parse expressions in R, or partially evaluate expressions in R, and see how R interprets them. This can be very useful for learning how R works or for debugging R code.
As noted above, the R interpreter goes through several steps when evaluating statements. The first step is to parse a statement, changing it into proper functional form. It is possible to view the R interpreter to see how a given expression is evaluated. As an example, let’s use the same R code fragment that we used in The R Interpreter:
> if (x > 1) "orange" else "apple"
[1] "apple"
To show how this expression is parsed, we can use the quote() function. This function will parse its argument but not evaluate it. By calling quote, an R expression returns a “language” object:
> typeof(quote(if (x > 1) "orange" else "apple"))
[1] "language"
Unfortunately, the print function for language objects is not very informative:
> quote(if (x > 1) "orange" else "apple")
if (x > 1) "orange" else "apple"
However, it is possible to convert a language object into a list. By displaying the language object as a list, it is possible to see how R evaluates an expression. This is the parse tree for the expression:
> as(quote(if (x > 1) "orange" else "apple"),"list")
[[1]]
`if`
[[2]]
x > 1
[[3]]
[1] "orange"
[[4]]
[1] "apple"
We can also apply the typeof function to every element in the list to see the type of each object in the parse tree:[17]
> lapply(as(quote(if (x > 1) "orange" else "apple"), "list"),typeof)
[[1]]
[1] "symbol"
[[2]]
[1] "language"
[[3]]
[1] "character"
[[4]]
[1] "character"
In this case, we can see how this expression is interpreted. Notice that some parts of the if-then statement are not included in the parsed expression (in particular, the else keyword). Also, notice that the first item in the list is a symbol. In this case, the symbol refers to the if function. So, although the syntax for the if-then statement is different from a function call, the R parser translates the expression into a function call before evaluating the expression. The function name is the first item, and the arguments are the remaining items in the list.
For constants, there is only one item in the returned list:
> as.list(quote(1))
[[1]]
[1] 1
By using the quote function, you can see that many constructions in the R language are just syntactic sugar for function calls. For example, let’s consider looking up the second item in a vector x. The standard way to do this is through R’s bracket notation, so the expression would be x[2]. An alternative way to represent this expression is as a function: `[`(x,2). (Function names that contain special characters need to be encapsulated in backquotes.) Both of these expressions are interpreted the same way by R:
> as.list(quote(x[2]))
[[1]]
`[`
[[2]]
x
[[3]]
[1] 2
> as.list(quote(`[`(x,2)))
[[1]]
`[`
[[2]]
x
[[3]]
[1] 2
As you can see, R interprets both of these expressions identically. Clearly, the operation is not reversible (because both expressions are translated into the same parse tree). The deparse function can take the parse tree and turn it back into properly formatted R code. (The deparse function will use proper R syntax when translating a language object back into the original code.) Here’s how it acts on these two bits of code:
> deparse(quote(x[2]))
[1] "x[2]"
> deparse(quote(`[`(x,2)))
[1] "x[2]"
As you read through this book, you might want to try using quote, substitute, typeof, class, and methods to see how the R interpreter parses expressions.
[17] As a convenient shorthand, you can omit the as function because R will automatically coerce the language object to a list. This means you can just use a command like:
> lapply(quote(if (x > 1) "orange" else "apple"),typeof)
Coercion is explained in Coercion.
Chapter 6. R Syntax
Every expression in R can be rewritten as a function call. However, R has some special syntax to write common operations like assignments, lookups, and numerical expressions more naturally. This chapter gives an overview of how to write valid R expressions. It’s not intended to be a formal or complete description of all valid syntax in R, but just a readable description of how to write valid R expressions.[18]
[18] You could write R code as a series of function calls with lots of function calls. This would look a lot like LISP code, with all the parentheses. Incidentally, the S language was inspired by LISP and uses many of the same data structures and evaluation techniques that are used by LISP interpreters.
Constants
Let’s start by looking at constants. Constants are the basic building blocks for data objects in R: numbers, character values, and symbols.
Numeric Vectors
Numbers are interpreted literally in R:
> 1.1
[1] 1.1
> 2
[1] 2
> 2^1023
[1] 8.988466e+307
You may specify values in hexadecimal notation by prefixing them with 0x:
> 0x1
[1] 1
> 0xFFFF
[1] 65535
By default, numbers in R expressions are interpreted as double-precision floating-point numbers, even when you enter simple integers:
> typeof(1)
[1] "double"
If you want an integer, you can use the sequence notation or the as function to obtain an integer:
> typeof(1:1)
[1] "integer"
> typeof(as(1, "integer"))
[1] "integer"
The sequence operator a:b will return a vector of integers between a and b. To combine an arbitrary set of numbers into a vector, use the c function:
> v <- c(173, 12, 1.12312, -93)
R allows a lot of flexibility when entering numbers. However, there is a limit to the size and precision of numbers that R can represent:
> # limits of precision
> (2^1023 + 1) == 2^1023
[1] TRUE
> # limits of size
> 2^1024
[1] Inf
In practice, this is rarely a problem. Most R users will load data from other sources on a computer (like a database) that also can’t represent very large numbers.
R also supports complex numbers. Complex values are written as real_part+imaginary_parti. For example:
> 0+1i ^ 2
[1] -1+0i
> sqrt(-1+0i)
[1] 0+1i
> exp(0+1i * pi)
[1] -1+0i
Note that the sqrt function returns a value of the same type as its input; it will return the value 0+1i when passed -1+0i but will return an NaN value when just passed the numeric value -1:
> sqrt(-1)
[1] NaN
Warning message:
In sqrt(-1) : NaNs produced
Character Vectors
A character object contains all the text between a pair of quotes. Most commonly, character objects are denoted by double quotes:
> "hello"
[1] "hello"
A character string may also be enclosed by single quotes:
> 'hello'
[1] "hello"
This can be convenient if the enclosed text contains double quotes (or vice versa). Equivalently, you may also escape the quotes by placing a backslash in front of each quote:
> identical("\"hello\"", '"hello"')
[1] TRUE
> identical('\'hello\'', "'hello'")
[1] TRUE
These examples are all vectors with only one element. To stitch together longer vectors, use the c function:
> numbers <- c("one", "two", "three", "four", "five")
> numbers
[1] "one" "two" "three" "four" "five"
Symbols
An important class of constants is symbols. A symbol is an object in R that refers to another object; a symbol is the name of a variable in R. For example, let’s assign the numeric value 1 to the symbol x:
> x <- 1
In this expression, x is a symbol. The statement x <- 1 means “map the symbol x to the numeric value 1 in the current environment.” (We’ll discuss environments in Chapter 8.)
A symbol that begins with a character and contains other characters, numbers, periods, and underscores may be used directly in R statements. Here are a few examples of symbol names that can be typed without escape characters:
> x <- 1
> # case matters
> x1 <- 1
> X1 <- 2
> x1
[1] 1
> X1
[1] 2
> x1.1 <- 1
> x1.1_1 <- 1
Some symbols contain special syntax. In order to refer to these objects, you enclose them in backquotes. For example, to get help on the assignment operator (<-), you would use a command like this:
?`<-`
If you really wanted to, you could use backquotes to define a symbol that contains special characters or starts with a number:
> `1+2=3` <- "hello"
> `1+2=3`
[1] "hello"
Not all words are valid as symbols; some words are reserved in R. Specifically, you can’t use if, else, repeat, while, function, for, in, next, break, TRUE, FALSE, NULL, Inf, NaN, NA, NA_integer_, NA_real_, NA_complex_, NA_character_, ..., ..1, ..2, ..3, ..4, ..5, ..6, ..7, ..8, or ..9.
You can redefine primitive functions that are not on this list. For example, when you start R, the symbol c normally refers to the primitive function c, which combines elements into vectors:
> c
function (..., recursive = FALSE) .Primitive("c")
However, you can redefine the symbol c to point to something else:
> c <- 1
> c
[1] 1
Even after you redefine the symbol c, you can continue to use the “combine” function as before:
> v <- c(1, 2, 3)
> v
[1] 1 2 3
See Chapter 2 for more information on the combine function.
Operators
Many functions in R can be written as operators. An operator is a function that takes one or two arguments and can be written without parentheses.
One familiar set of operators is binary operators for arithmetic. R supports arithmetic operations:
> # addition
> 1 + 19
[1] 20
> # multiplication
> 5 * 4
[1] 20
R also includes notation for other mathematical operations, including moduli, exponents, and integer division:
> # modulus
> 41 %% 21
[1] 20?
> # exponents
> 20 ^ 1
[1] 20
> # integer division
> 21 %/% 2
[1] 10
You can define your own binary operators. User-defined binary operators consist of a string of characters between two % characters. To do this, create a function of two variables and assign it to an appropriate symbol. For example, let’s define an operator %myop% that doubles each operand and then adds them together:
> `%myop%` <- function(a, b) {2*a + 2*b}
> 1 %myop% 1
[1] 4
> 1 %myop% 2
[1] 6
Some language constructs are also binary operators. For example, assignment, indexing, and function calls are binary operators:[19]
> # assignment is a binary operator
> # the left side is a symbol, the right is a value
> x <- c(1, 2, 3, 4, 5)
> # indexing is a binary operator too
> # the left side is a symbol, the right is an index
> x[3]
[1] 3
> # a function call is also a binary operator
> # the left side is a symbol pointing to the function argument
> # the right side are the arguments
> max(1, 2)
[1] 2
There are also unary operators that take only one variable. Here are two familiar examples:
> # negation is a unary operator
> -7
[1] -7
> # ? (for help) is also a unary operator
> ?`?`
Order of Operations
You may remember from high school math that you always evaluate mathematical expressions in a certain order. For example, when you evaluate the expression 1 + 2 • 5, you first multiply 2 and 5 and then add 1. The same thing is true in computer languages like R. When you enter an expression in R, the R interpreter will always evaluate some expressions first.
In order to resolve ambiguity, operators in R are always interpreted in the same order. Here is a summary of the precedence rules:
Function calls and grouping expressions
Index and lookup operators
Arithmetic
Comparison
Formulas
Assignment
Help
Table 6-1 shows a complete list of operators in R and their precedence.
Table 6-1. Operator precedence, from the help(syntax) file
Operators (in order of priority) | Description |
---|---|
( { | Function calls and grouping expressions (respectively) |
[ [[ | Indexing |
:: ::: | Access variables in a namespace |
$ @ | Component / slot extraction |
^ | Exponentiation (right to left) |
- + | Unary operators for minus and plus |
: | Sequence operator |
%any% | Special operators |
* / | Multiply, divide |
+ - | Binary operators for add, subtract |
< > <= >= == != | Ordering and comparison |
! | Negation |
& && | And |
| || | Or |
~ | As in formulas |
-> ->> | Rightward assignment |
= | Assignment (right to left) |
<- <<- | Assignment (right to left) |
? | Help (unary and binary) |
For a current list of built-in operators and their precedence, see the help file for syntax.
Assignments
Most assignments that we’ve seen so far simply assign an object to a symbol. For example:
> x <- 1
> y <- list(shoes="loafers", hat="Yankees cap", shirt="white")
> z <- function(a, b, c) {a ^ b / c}
> v <- c(1, 2, 3, 4, 5, 6, 7, 8)
There is an alternative type of assignment statement in R that acts differently: assignments with a function on the left-hand side of the assignment operator. These statements replace an object with a new object that has slightly different properties. Here are a few examples:
> dim(v) <- c(2, 4)
> v[2, 2] <- 10
> formals(z) <- alist(a=1, b=2, c=3)
There is a little bit of magic going on behind the scenes. An assignment statement of the form:
fun(sym) <- val
is really syntactic sugar for a function of the form:
`fun<-`(sym,val)
Each of these functions replaces the object associated with sym in the current environment. By convention, fun refers to a property of the object represented by sym. If you write a method with the name method_name<-, then R will allow you to place method_name on the left-hand side of an assignment statement.
[19] Don’t be confused by the closing bracket in an indexing operation or the closing parenthesis in a function call; although this syntax uses two symbols, both operations are still technically binary operators. For example, a function call has the form f(arguments), where f is a function and arguments are the arguments for the function.
Expressions
R provides different constructs for grouping together expressions: semicolons, parentheses, and curly braces.
Separating Expressions
You can write a series of expressions on separate lines:
> x <- 1
> y <- 2
> z <- 3
Alternatively, you can place them on the same line, separated by semicolons:
> x <- 1; y <- 2; z <- 3
Parentheses
The parentheses notation returns the result of evaluating the expression inside the parentheses:
(expression)
The operator has the same precedence as a function call. In fact, grouping a set of expressions inside parentheses is equivalent to evaluating a function of one argument that just returns its argument:
> 2 * (5 + 1)
[1] 12
> # equivalent expression
> f <- function (x) x
> 2 * f(5 + 1)
[1] 12
Grouping expressions with parentheses can be used to override the default order of operations. For example:
> 2 * 5 + 1
[1] 11
> 2 * (5 + 1)
[1] 12
Curly Braces
Curly braces are used to evaluate a series of expressions (separated by new lines or semicolons) and return only the last expression:
{expression_1; expression_2; ... expression_n}
Often, curly braces are used to group a set of operations in the body of a function:
> f <- function() {x <- 1; y <- 2; x + y}
> f()
[1] 3
However, curly braces can also be used as expressions in other contexts:
> {x <- 1; y <- 2; x + y}
[1] 3
The contents of the curly braces are evaluated inside the current environment; a new environment is created by a function call but not by the use of curly braces:
> # when evaluated in a function, u and v are assigned
> # only inside the function environment
> f <- function() {u <- 1; v <- 2; u + v}
> u
Error: object "u" not found
> v
Error: object "v" not found
> # when evaluated outside the function, u and v are
> # assigned in the current environment
> {u <- 1; v <- 2; u + v}
[1] 3
> u
[1] 1
> v
[1] 2
For more information about variable scope and environments, see Chapter 8.
The curly brace notation is translated internally as a call to the `{` function. (Note, however, that the arguments are not evaluated the same way as in a standard function.)
Control Structures
Nearly every operation in R can be written as a function, but it isn’t always convenient to do so. Therefore, R provides special syntax that you can use in common program structures. We’ve already described two important sets of constructions: operators and grouping brackets. This section describes a few other key language structures and explains what they do.
Conditional Statements
Conditional statements take the form:
if (condition) true_expression else false_expression
or, alternatively:
if (condition) expression
Because the expressions expression, true_expression, and false_expression are not always evaluated, the function if has the type special:
> typeof(`if`)
[1] "special"
Here are a few examples of conditional statements:
> if (FALSE) "this will not be printed"
> if (FALSE) "this will not be printed" else "this will be printed"
[1] "this will be printed"
> if (is(x, "numeric")) x/2 else print("x is not numeric")
[1] 5
In R, conditional statements are not vector operations. If the condition statement is a vector of more than one logical value, then only the first item will be used. For example:
> x <- 10
> y <- c(8, 10, 12, 3, 17)
> if (x < y) x else y
[1] 8 10 12 3 17
Warning message:
In if (x < y) x else y :
the condition has length > 1 and only the first element will be used
If you would like a vector operation, use the ifelse function instead:
> a <- c("a", "a", "a", "a", "a")
> b <- c("b", "b", "b", "b", "b")
> ifelse(c(TRUE, FALSE, TRUE, FALSE, TRUE), a, b)
[1] "a" "b" "a" "b" "a"
Often, it’s convenient to return different values (or call different functions) depending on a single input value. You can code these as
> switcheroo.if.then <- function(x) {
+ if (x == "a")
+ "camel"
+ else if (x == "b")
+ "bear"
+ else if (x == "c")
+ "camel"
+ else
+ "moose"
+ }
but that is verbose. A better alternative is to use the switch function:
> switcheroo.switch <- function(x) {
+ switch(x,
+ a="alligator",
+ b="bear",
+ c="camel",
+ "moose")
+ }
The first argument is a character value to switch on, the named arguments specify what to do for each value of the argument, and an unnamed argument specifies the default value. As you can see, these two expressions are equivalent:
> switcheroo.if.then("a")
[1] "camel"
> switcheroo.if.then("f")
[1] "moose"
> switcheroo.switch("a")
[1] "camel"
> switcheroo.switch("f")
[1] "moose"
Loops
There are three different looping constructs in R. Simplest is repeat, which just repeats the same expression:
repeat expression
To stop repeating the expression, you can use the keyword break. To skip to the next iteration in a loop, you can use the command next.
As an example, the following R code prints out multiples of 5 up to 25:
> i <- 5
> repeat {if (i > 25) break else {print(i); i <- i + 5;}}
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25
If you do not include a break command, the R code will be an infinite loop. (This can be useful for creating an interactive application.)
Another useful construction is while loops, which repeat an expression while a condition is true:
while (condition) expression
As a simple example, let’s rewrite the example above using a while loop:
> i <- 5
> while (i <= 25) {print(i); i <- i + 5}
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25
You can also use break and next inside while loops. The break statement is used to stop iterating through a loop. The next statement skips to the next loop iteration without evaluating the remaining expressions in the loop body.
Finally, R provides for loops, which iterate through each item in a vector (or a list):
for (var in list) expression
Let’s use the same example for a for loop:
> for (i in seq(from=5, to=25, by=5)) print(i)
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25
You can also use break and next inside for loops.
There are two important properties of looping statements to remember. First, results are not printed inside a loop unless you explicitly call the print function. For example:
> for (i in seq(from=5, to=25, by=5)) i
Second, the variable var that is set in a for loop is changed in the calling environment:
> i <- 1
> for (i in seq(from=5, to=25, by=5)) i
> i
[1] 25
Like conditional statements, the looping functions `repeat`, `while`, and `for` have type special, because expression is not necessarily evaluated.
LOOPING EXTENSIONS
If you’ve used modern programming languages like Java, you might be disappointed that R doesn’t provide iterators or foreach loops. Luckily, these mechanisms are available through add-on packages. (These packages were written by Revolution Computing and are available through CRAN.)
Iterators are abstract objects that return elements from another object. Using iterators can help make code easier to understand. Additionally, iterators can make code easier to parallelize. To use iterators, you’ll need to install the iterators package. Iterators can return elements of a vector, array, data frame, or other object. You can even use an iterator to return values returned by a function (such as a function that returns random values). To create an iterator in R, you would use the iter function:
iter(obj, checkFunc=function(...) TRUE, recycle=FALSE,...)
The argument obj specifies the object, recycle specifies whether the iterator should reset when it runs out of elements, and checkFunc specifies a function that filters values returned by the iterator.
You fetch the next item with the function nextElem. This function will implicitly call checkFunc. If the next value matches checkFunc, it will be returned. If it doesn’t match, then the function will try another value. nextElem will continue checking values until it finds one that matches checkFunc, or it runs out of values. When there are no elements left, the iterator calls stop with the message “StopIteration.”
For example, let’s create an iterator that returns values between 1 and 5:
> library(iterators)
> onetofive <- iter(1:5)
> nextElem(onetofive)
[1] 1
> nextElem(onetofive)
[1] 2
> nextElem(onetofive)
[1] 3
> nextElem(onetofive)
[1] 4
> nextElem(onetofive)
[1] 5
> nextElem(onetofive)
Error: StopIteration
A second extension is the foreach loop, available through the foreach package. Foreach provides an elegant way to loop through multiple elements of another object (such as a vector, matrix, data frame, or iterator), evaluate an expression for each element, and return the results. Within the foreach function, you assign elements to a temporary value, just like in a for loop.
Here is the prototype for the foreach function:
foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,
.multicombine=FALSE,
.maxcombine=if (.multicombine) 100 else 2,
.errorhandling=c('stop', 'remove', 'pass'),
.packages=NULL, .export=NULL, .noexport=NULL,
.verbose=FALSE)
Technically, the foreach function returns a foreach object. To actually evaluate the loop, you need to apply the foreach loop to an R expression using the %do% or %dopar% operators. That sounds weird, but it’s actually pretty easy to use in practice. For example, you can use a foreach loop to calculate the square roots of numbers between 1 and 5:
> sqrts.1to5 <- foreach(i=1:5) %do% sqrt(i)
> sqrts.1to5
[[1]]
[1] 1
[[2]]
[1] 1.414214
[[3]]
[1] 1.732051
[[4]]
[1] 2
[[5]]
[1] 2.236068
The %do% operator evaluates the expression in serial, while the %dopar% can be used to evaluate expressions in parallel. For more about parallel computing with R, see Chapter 26.
Accessing Data Structures
R has some specialized syntax for accessing data structures. You can fetch a single item from a structure, or multiple items (possibly as a multidimensional array) using R’s index notation. You can fetch items by location within a data structure or by name.
Data Structure Operators
Table 6-2 shows the operators in R used for accessing objects in a data structure.
Table 6-2. Data structure access notation
Syntax | Objects | Description |
---|---|---|
x[i] | Vectors, lists | Returns objects from object x, described by i. i may be an integer vector, character vector (of object names), or logical vector. Does not allow partial matches. When used with lists, returns a list. When used with vectors, returns a vector. |
x[[i]] | Vectors, lists | Returns a single element of x, matching i. i may be an integer or character vector of length 1. Allows partial matches (with exact=FALSE option). |
x$n | Lists | Returns object with name n from object x. |
x@n | S4 objects | Returns element stored in object x in slot named n. |
Although the single-bracket notation and double-bracket notation look very similar, there are three important differences. First, double brackets always return a single element, while single brackets may return multiple elements. Second, when elements are referred to by name (as opposed to by index), single brackets match only named objects exactly, while double brackets allow partial matches. Finally, when used with lists, the single-bracket notation returns a list, but the double-bracket notation returns a vector.
I’ll explain how to use this notation below.
Indexing by Integer Vector
The most familiar way to look up an element in R is by numeric vector. As an example, let’s create a very simple vector of 20 integers:
> v <- 100:119
You can look up individual elements by position in the vector using the bracket notation x[s], where x is the vector from which you want to return elements and s is a second vector representing the set of element indices you would like to query. You can use an integer vector to look up a single element or multiple elements:
> v[5]
[1] 104
> v[1:5]
[1] 100 101 102 103 104
> v[c(1, 6, 11, 16)]
[1] 100 105 110 115
As a special case, you can use the double-bracket notation to reference a single element:
> v[[3]]
[1] 102
The double-bracket notation works the same as the single-bracket notation in this case; see Indexing by Name for an explanation of references that do not work with the single-bracket notation.
You can also use negative integers to return a vector consisting of all elements except the specified elements:
> # exclude elements 1:15 (by specifying indexes -1 to -15)
> v[-15:-1]
[1] 115 116 117 118 119
The same notation applies to lists:
> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l[1:3]
$a
[1] 1
$b
[1] 2
$c
[1] 3
> l[-7:-1]
$h
[1] 8
$i
[1] 9
$j
[1] 10
You can also use this notation to extract parts of multidimensional data structures:
> m <- matrix(data=c(101:112), nrow=3, ncol=4)
> m
[,1] [,2] [,3] [,4]
[1,] 101 104 107 110
[2,] 102 105 108 111
[3,] 103 106 109 112
> m[3]
[1] 103
> m[3,4]
[1] 112
> m[1:2,1:2]
[,1] [,2]
[1,] 101 104
[2,] 102 105
If you omit a vector specifying a set of indices for a dimension, then elements for all indices are returned:
> m[1:2, ]
[,1] [,2] [,3] [,4]
[1,] 101 104 107 110
[2,] 102 105 108 111
> m[3:4]
[1] 103 104
> m[, 3:4]
[,1] [,2]
[1,] 107 110
[2,] 108 111
[3,] 109 112
When selecting a subset, R will automatically coerce the result to the most appropriate number of dimensions. If you select a subset of elements that corresponds to a matrix, R will return a matrix object; if you select a subset that corresponds to only a vector, R will return a vector object. To disable this behavior, you can use the drop=FALSE option:
> a <- array(data=c(101:124), dim=c(2, 3, 4))
> class(a[1, 1, ])
[1] "integer"
> class(a[1, , ])
[1] "matrix"
> class(a[1:2, 1:2, 1:2])
[1] "array"
> class(a[1, 1, 1, drop=FALSE])
[1] "array"
It is possible to create an array object with dimensions of length 1. However, when selecting subsets, R simplifies the returned objects.
It is also possible to replace elements in a vector, matrix, or array using the same notation:
> m[1] <- 1000
> m
[,1] [,2] [,3] [,4]
[1,] 1000 104 107 110
[2,] 102 105 108 111
[3,] 103 106 109 112
> m[1:2, 1:2] <- matrix(c(1001:1004), nrow=2, ncol=2)
> m
[,1] [,2] [,3] [,4]
[1,] 1001 1003 107 110
[2,] 1002 1004 108 111
[3,] 103 106 109 112
It is even possible to extend a data structure using this notation. A special NA element is used to represent values that are not defined:
> v <- 1:12
> v[15] <- 15
> v
[1] 1 2 3 4 5 6 7 8 9 10 11 12 NA NA 15
You can also index a data structure by a factor; the factor is interpreted as an integer vector.
Indexing by Logical Vector
As an alternative to indexing by an integer vector, you can also index through a logical vector. As a simple example, let’s construct a vector of alternating true and false elements to apply to v:
> rep(c(TRUE, FALSE), 10)
[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[12] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
> v[rep(c(TRUE, FALSE), 10)]
[1] 100 102 104 106 108 110 112 114 116 118
Often, it is useful to calculate a logical vector from the vector itself:
> # trivial example: return element that is equal to 103
> v[(v==103)]
> # more interesting example: multiples of three
> v[(v %% 3 == 0)]
[1] 102 105 108 111 114 117
The index vector does not need to be the same length as the vector itself. R will repeat the shorter vector, returning matching values:
> v[c(TRUE, FALSE, FALSE)]
[1] 100 103 106 109 112 115 118
As above, the same notation applies to lists:
> l[(l > 7)]
$h
[1] 8
$i
[1] 9
$j
[1] 10
Indexing by Name
With lists, each element may be assigned a name. You can index an element by name using the $ notation:
> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l$j
[1] 10
You can also use the single-bracket notation to index a set of elements by name:
> l[c("a", "b", "c")]
$a
[1] 1
$b
[1] 2
$c
[1] 3
You can also index by name using the double-bracket notation when selecting a single element. It is even possible to index by partial name using the exact=FALSE option:
> dairy <- list(milk="1 gallon", butter="1 pound", eggs=12)
> dairy$milk
[1] "1 gallon"
> dairy[["milk"]]
[1] "1 gallon"
> dairy[["mil"]]
NULL
> dairy[["mil",exact=FALSE]]
[1] "1 gallon"
Sometimes, an object is a list of lists. You can also use the double-bracket notation to reference an element in this type of data structure. To do this, use a vector as an argument. R will iterate through the elements in the vector, referencing sublists:
> fruit <- list(apples=6, oranges=3, bananas=10)
> shopping.list <- list (dairy=dairy, fruit=fruit)
> shopping.list
$dairy
$dairy$milk
[1] "1 gallon"
$dairy$butter
[1] "1 pound"
$dairy$eggs
[1] 12
$fruit
$fruit$apples
[1] 6
$fruit$oranges
[1] 3
$fruit$bananas
[1] 10
> shopping.list[[c("dairy", "milk")]]
[1] "1 gallon"
> shopping.list[[c(1,2)]]
[1] "1 pound"
R Code Style Standards
Standards for code style aren’t the same as syntax, although they are sort of related. It is usually wise to be careful about code style to maximize the readability of your code, making it easier for you and others to maintain.
In this book, I’ve tried to stick to Google’s R Style Guide, which is available at http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html. Here is a summary of its suggestions:
Indentation
Indent lines with two spaces, not tabs. If code is inside parentheses, indent to the innermost parentheses.
Spacing
Use only single spaces. Add spaces between binary operators and operands. Do not add spaces between a function name and the argument list. Add a single space between items in a list, after each comma.
Blocks
Don’t place an opening brace (“{”) on its own line. Do place a closing brace (“}”) on its own line. Indent inner blocks (by two spaces).
Semicolons
Omit semicolons at the end of lines when they are optional.
Naming
Name objects with lowercase words, separated by periods. For function names, capitalize the name of each word that is joined together, with no periods. Try to make function names verbs.
Assignment
Use <-, not = for assignment statements.
Don’t be confused by the object names. You don’t have to name objects things like “field.goals” or “sanfrancisco.home.prices” or “top.bacon.searching.cities.” It’s just convention.
Chapter 7. R Objects
All objects in R are built on top of a basic set of built-in objects. The type of an object defines how it is stored in R. Objects in R are also members of a class. Classes define what information objects contain, and how those objects may be used.
R provides some mechanisms for object-oriented programming (which doesn’t just mean “programming with objects”). This chapter focuses on built-in objects and how to use them and not on the object-oriented programming system. We’ll discuss object-oriented programming features like class definitions, inheritance, and methods in Chapter 10.
Primitive Object Types
Table 7-1 shows all the built-in object types. I introduced these objects in Chapter 3, so they should seem familiar. I classified the object types into a few categories to make them easier to understand.
Basic vectors
These are vectors containing a single type of value: integers, floating-point numbers, complex numbers, text, logical values, or raw data.
Compound objects
These objects are containers for the basic vectors: lists, pairlists, S4 objects, and environments. Each of these objects has unique properties (described below), but each of them contains a number of named objects.
Special objects
These objects serve a special purpose in R programming: any, NULL, and .... Each of these means something important in a specific context, but you would never create an object of these types.
R language
These are objects that represent R code; they can be evaluated to return other objects.
Functions
Functions are the workhorses of R; they take arguments as inputs and return objects as outputs. Sometimes, they may modify objects in the environment or cause side effects outside the R environment like plotting graphics, saving files, or sending data over the network.
Internal
These are object types that are formally defined by R but which aren’t normally accessible within the R language. In normal R programming, you will probably never encounter any of the objects.
Bytecode Objects
If you use the bytecode compiler, R will generate bytecode objects that run on the R virtual machine.
We’ll explore what each of these objects is used for in this chapter.
Table 7-1. Primitive object types in R
Category | Object type | Description | Example |
---|---|---|---|
Vectors | integer | Naturally produced from sequences. Can be coerced with the integer() function. | 5:5 integer(5) |
double | Used to represent floating-point numbers (numbers with decimals and large numbers). On most modern platforms, this will be 8 bytes, or 64 bits. By default, most numerical values are represented as doubles. Can be coerced with the double() function. | 1 -1 2 ** 50 double(5) | |
complex | Complex numbers. To use, you must include both the real and the imaginary parts (even if the real part is 0). | 2+3i 0+1i exp(0+1i * pi) | |
character | A string of characters (just called a string in many other languages). | "Hello world." | |
logical | Represents Boolean values. | TRUE FALSE | |
raw | A vector containing raw bytes. Useful for encoding objects from outside the R environment. | raw(8) charToRaw("Hello") | |
Compound | list | A (possibly heterogeneous) collection of other objects. Elements of a list may be named. Many other object types in R (such as data frames) are implemented as lists. | list(1, 2, "hat") |
pairlist | A data structure used to represent a set of name-value pairs. Pairlists are primarily used internally but can be created at the user level. Their use is deprecated in user-level programs, because standard list objects are just as efficient and more flexible. | .Options pairlist(apple=1, pear=2, banana=3) | |
S4 | An R object supporting modern object-oriented paradigms (inheritance, methods, etc.). See Chapter 10 for a full explanation. | ||
environment | An R environment describes the set of symbols available in a specific context. An environment contains a set of symbol-value pairs and a pointer to an enclosing environment. (For example, you could use any in the signature of a default generic function.) | .GlobalEnv new.env(parent = baseenv()) | |
Special | any | An object used to mean that “any” type is OK. Used to prevent coercion from one type to another. Useful in defining slots in S4 objects or signatures for generic functions. | setClass("Something", representation( data="ANY" ) ) |
NULL | An object that means “there is no object.” Returned by functions and expressions whose value is not defined. The NULL object can have no attributes. | NULL | |
... | Used in functions to implement variable-length argument lists, particularly arguments passed to other functions. | N/A | |
R language | symbol | A symbol is a language object that refers to other objects. Usually encountered when parsing R statements. | as.name(x) as.symbol(x) quote(x) |
promise | Promises are objects that are not evaluated when they are created but are instead evaluated when they are first used. They are used to implement delayed loading of objects in packages. | > x <- 1; > y <- 2; > z <- 3 > delayedAssign("v", c(x, y, z)) > # v is a promise | |
language | R language objects are used when processing the R language itself. | quote(function(x) { x + 1}) | |
expression | An unevaluated R expression. Expression objects can be created with the expression function and later evaluated with the eval function. | expression(1 + 2) | |
Functions | closure | An R function not implemented inside the R system. Most functions fall into this category. Includes user-defined functions, most functions included with R, and most functions in R packages. | f <- function(x) { x + 1} print |
special | An internal function whose arguments are not necessarily evaluated on call. | if [ | |
builtin | An internal function that evaluates its arguments. | + ^ | |
bytecode | Compiled R functions generated by the compiler package | cmpfun(function(x) {x^2} | |
Internal | char | A scalar “string” object. A character vector is composed of char objects. (Users can’t easily generate a char object but don’t ever need to.) | N/A |
bytecode | A data type reserved for a future byte-code compiler. | N/A | |
externalptr | External pointer. Used in C code. | N/A | |
weakref | Weak reference (internal only). | N/A |
Vectors
When using R, you will frequently encounter the six basic vector types. R includes several different ways to create a new vector. The simplest one is the c function, which combines its arguments into a vector:
> # a vector of five numbers
> v <- c(.295, .300, .250, .287, .215)
> v
[1] 0.295 0.300 0.250 0.287 0.215
The c function also coerces all of its arguments into a single type:
> # creating a vector from four numbers and a char
> v <- c(.295, .300, .250, .287, "zilch")
> v
[1] "0.295" "0.3" "0.25" "0.287" "zilch"
You can use the c function to recursively assemble a vector from other data structures using the recursive=TRUE option:
> # creating a vector from four numbers and a list of
> # three more
> v <- c(.295, .300, .250, .287, list(.102, .200, .303), recursive=TRUE)
> v
[1] 0.295 0.300 0.250 0.287 0.102 0.200 0.303
But beware of using a list as an argument, as you will get back a list:
> v <- c(.295, .300, .250, .287, list(.102, .200, .303), recursive=TRUE)
> v
[1] 0.295 0.300 0.250 0.287 0.102 0.200 0.303
> typeof(v)
[1] "double"
> v <- c(.295, .300, .250, .287, list(1, 2, 3))
> typeof(v)
[1] "list"
> class(v)
[1] "list"
> v
[[1]]
[1] 0.295
[[2]]
[1] 0.3
[[3]]
[1] 0.25
[[4]]
[1] 0.287
[[5]]
[1] 1
[[6]]
[1] 2
[[7]]
[1] 3
Another useful tool for assembling a vector is the “:” operator. This operator creates a sequence of values from the first operand to the second operand:
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
A more flexible function is the seq function:
> seq(from=5, to=25, by=5)
[1] 5 10 15 20 25
You can explicitly manipulate the length of a vector through the length attribute:
> w <- 1:10
> w
[1] 1 2 3 4 5 6 7 8 9 10
> length(w) <- 5
> w
[1] 1 2 3 4 5
Note that when you expand the length of a vector, uninitialized values are given the NA value:
> length(w) <- 10
> w
[1] 1 2 3 4 5 NA NA NA NA NA
Lists
An R list is an ordered collection of objects. Like vectors, you can refer to elements in a list by position:
> l <- list(1, 2, 3, 4, 5)
> l[1]
[[1]]
[1] 1
> l[[1]]
[1] 1
Additionally, each element in a list may be given a name and then be referred to by that name. For example, suppose we wanted to represent a few properties of a parcel (a real, physical parcel, to be sent through the mail). Suppose the parcel is destined for New York, has dimensions of 2 inches deep by 6 inches wide by 9 inches long, and costs $12.95 to mail. The three properties are all different data types in R: a character, a numeric vector of length 3, and a vector of length 1. We could combine the information into an object like this:
> parcel <- list(destination="New York", dimensions=c(2, 6, 9), price=12.95)
It is then possible to refer to each component individually using the $ notation. For example, if we wanted to get the price, we would use the following expression:
> parcel$price
[1] 12.95
Lists are a very important building block in R, because they allow the construction of heterogeneous structures. For example, data frames are built on lists.
Other Objects
There are some other objects that you should know about if you’re using R. Although most of these objects are not formally part of the R language, they are used in so many R packages, or get such special treatment in R, that they’re worth a closer look.
Matrices
A matrix is an extension of a vector to two dimensions. A matrix is used to represent two-dimensional data of a single type. A clean way to generate a new matrix is with the matrix function. As an example, let’s create a matrix object with three columns and four rows. We’ll give the rows the names “r1,” “r2,” “r3,” and “r4,” and the columns the names “c1,” “c2,” and “c3.”
> m <- matrix(data=1:12, nrow=4, ncol=3,
+ dimnames=list(c("r1", "r2", "r3", "r4"),
+ c("c1", "c2", "c3")))
> m
c1 c2 c3
r1 1 5 9
r2 2 6 10
r3 3 7 11
r4 4 8 12
It is also possible to transform another data structure into a matrix using the as.matrix function.
An important note: matrices are implemented as vectors, not as a vector of vectors (or as a list of vectors). Array subscripts are used for referencing elements and don’t reflect the way the data is stored. (Unlike other classes, matrices don’t have an explicit class attribute. We’ll talk about attributes in Attributes.)
Arrays
An array is an extension of a vector to more than two dimensions. Arrays are used to represent multidimensional data of a single type. As above, you can generate an array with the array function:
> a <- array(data=1:24, dim=c(3, 4, 2))
> a
, , 1
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
, , 2
[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24
Like matrices, the underlying storage mechanism for an array is a vector. (Like matrices, and unlike most other classes, arrays don’t have an explicit class attribute.)
Factors
When analyzing data, it’s quite common to encounter categorical values. For example, suppose you have a set of observations about people that includes eye color. You could represent the eye colors as a character array:
> eye.colors <- c("brown", "blue", "blue", "green",
+ "brown", "brown", "brown")
This is a perfectly valid way to represent the information, but it can become inefficient if you are working with large names or a large number of observations. R provides a better way to represent categorical values, by using factors. A factor is an ordered collection of items. The different values that the factor can take are called levels.
Let’s recode the eye colors as a factor:
> eye.colors <- factor(c("brown", "blue", "blue", "green",
+ "brown", "brown", "brown"))
The levels function shows all the levels from a factor:
> levels(eye.colors)
[1] "blue" "brown" "green"
Printing a factor shows slightly different information than printing a character vector. In particular, notice that the quotes are not shown and that the levels are explicitly printed:
> eye.colors
[1] brown blue blue green brown brown brown
Levels: blue brown green
In the eye color example, order did not matter. However, sometimes the order of the factors matters for a specific problem. For example, suppose you had conducted a survey and asked respondents how they felt about the statement “melon is delicious with an omelet.” Furthermore, suppose that you allowed respondents to give the following responses: Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree.
There are multiple ways to represent this information in R. You could code these as integers (for example, on a scale of 1 to 5), although this approach has some drawbacks. This approach implies a specific quantitative relationship between values, which may or may not make sense. For example, is the difference between Strongly Disagree and Disagree the same as the difference between Disagree and Neutral? A numeric response also implies that you can calculate meaningful statistics based on the responses. Can you be sure that a Disagree response and an Agree response average out to Neutral?
To get around these problems, you can use an ordered factor to represent the response of this survey. Here is an example:
> survey.results <- factor(
+ c("Disagree", "Neutral", "Strongly Disagree",
+ "Neutral", "Agree", "Strongly Agree",
+ "Disagree", "Strongly Agree", "Neutral",
+ "Strongly Disagree", "Neutral", "Agree"),
+ levels=c("Strongly Disagree", "Disagree",
+ "Neutral", "Agree", "Strongly Agree"),
+ ordered=TRUE)
> survey.results
[1] Disagree Neutral Strongly Disagree
[4] Neutral Agree Strongly Agree
[7] Disagree Strongly Agree Neutral
[10] Strongly Disagree Neutral Agree
5 Levels: Strongly Disagree < Disagree < Neutral < ... < Strongly Agree
As you can see, R will display the order of the levels when you display an ordered factor.
Factors are implemented internally using integers. The levels attribute maps each integer to a factor level. Integers take up a small, fixed amount of storage space, so they can be more space efficient than character vectors. It’s possible to take a factor and turn it into an integer array:
> # use the eye colors vector we used above
> eye.colors
[1] brown blue blue green brown brown brown
Levels: blue brown green
> class(eye.colors)
[1] "factor"
> # now create a vector by removing the class:
> eye.colors.integer.vector <- unclass(eye.colors)
> eye.colors.integer.vector
[1] 2 1 1 3 2 2 2
attr(,"levels")
[1] "blue" "brown" "green"
> class(eye.colors.integer.vector)
[1] "integer"
It’s possible to change this back to a factor by setting the class attribute:
> class(eye.colors.integer.vector) <- "factor"
> eye.colors.integer.vector
[1] brown blue blue green brown brown brown
Levels: blue brown green
> class(eye.colors.integer.vector)
[1] "factor"
Data Frames
Data frames are a useful way to represent tabular data. In scientific contexts, many experiments consist of individual observations, each of which involves several different measurements. Often, the measurements have different dimensions, and sometimes they are qualitative and not quantitative. In business contexts, data is often kept in database tables. Each table has many rows, which may consist of multiple “columns” representing different quantities and which may be kept in multiple formats. A data frame is a natural way to represent these data sets in R.
A data frame represents a table of data. Each column may be a different type, but each row in the data frame must have the same length:
> data.frame(a=c(1, 2, 3, 4, 5), b=c(1, 2, 3, 4))
Error in data.frame(a = c(1, 2, 3, 4, 5), b = c(1, 2, 3, 4)) :
arguments imply differing number of rows: 5, 4
Usually, each column is named, and sometimes rows are named as well. The columns in a data frame are often referred to as “variables.”
Here is a simple example of a data frame, showing how frequently users search for the word “bacon” in different cities around the world.[20]
This data set is included in the nutshell package. Alternatively, you can create it manually with the following statement:
> top.bacon.searching.cities <- data.frame(
+ city = c("Seattle", "Washington", "Chicago",
+ "New York", "Portland", "St Louis",
+ "Denver", "Boston","Minneapolis", "Austin",
+ "Philadelphia", "San Francisco", "Atlanta",
+ "Los Angeles", "Richardson"),
+ rank = c(100, 96, 94, 93, 93, 92, 90, 90, 89, 87,
+ 85, 84, 82, 80, 80)
+ )
Here is what this data frame contains:
> top.bacon.searching.cities
city rank
1 Seattle 100
2 Washington 96
3 Chicago 94
4 New York 93
5 Portland 93
6 St Louis 92
7 Denver 90
8 Boston 90
9 Minneapolis 89
10 Austin 87
11 Philadelphia 85
12 San Francisco 84
13 Atlanta 82
14 Los Angeles 80
15 Richardson 80
Data frames are implemented as lists with class data.frame:
> typeof(top.bacon.searching.cities)
[1] "list"
> class(top.bacon.searching.cities)
[1] "data.frame"
This means that the same methods can be used to refer to items in lists and data frames. For example, to extract the rank column from this data frame, you could use the expression top.bacon.searching.cities$rank.
Formulas
Very often, you need to express a relationship between variables. Sometimes, you want to plot a chart showing the relationship between the two variables. Other times, you want to develop a mathematical model. R provides a formula class that lets you describe the relationship for both purposes.
Let’s create a formula as an example:
> sample.formula <- as.formula(y~x1+x2+x3)
> class(sample.formula)
[1] "formula"
> typeof(sample.formula)
[1] "language"
This formula means “y is a function of x1, x2, and x3.” Some R functions use more complicated formulas. For example, in Charts and Graphics, we plotted a formula of the form Amount~Year|Food, which means “Amount is a function of Year, conditioned on Food.” Here is an explanation of the meaning of different items in formulas:
Variable names
Represent variable names.
Tilde (~)
Used to show the relationship between the response variables (to the left) and the stimulus variables (to the right).
Plus sign (+)
Used to express a linear relationship between variables.
Zero (0)
When added to a formula, indicates that no intercept term should be included. For example:
y~u+w+v+0
Vertical bar (|)
Used to specify conditioning variables (in lattice formulas; see Customizing Lattice Graphics).
Identity function (I())
Used to indicate that the enclosed expression should be interpreted by its arithmetic meaning. For example:
a+b
means that both a and b should be included in the formula. The formula:
I(a+b)
means that “a plus b” should be included in the formula.
Asterisk (*)
Used to indicate interactions between variables. For example:
y~(u+v)*w
is equivalent to:
y~u+v+w+I(u*w)+I(v*w)
Caret (^)
Used to indicate crossing to a specific degree. For example:
y~(u+w)^2
is equivalent to:
y~(u+w)*(u+w)
Function of variables
Indicates that the function of the specified variables should be interpreted as a variable. For example:
y~log(u)+sin(v)+w
Some additional items have special meaning in formulas, for example s() for smoothing splines in formulas passed to gam. We’ll revisit formulas in Chapter 14 and Chapter 20.
Time Series
Many important problems look at how a variable changes over time, and R includes a class to represent this data: time series objects. Regression functions for time series (like ar or arima) use time series objects. Additionally, many plotting functions in R have special methods for time series.
To create a time series object (of class "ts"), use the ts function:
ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = , names = )
The data argument specifies the series of observations; the other arguments specify when the observations were taken. Here is a description of the arguments to ts.
Argument | Description | Default |
---|---|---|
data | A vector or matrix representing a set of observations over time (usually numeric). | NA |
start | A numeric vector with one or two elements representing the start of the time series. If one element is used, then it represents a “natural time unit.” If two elements are used, then it represents a “natural time unit” and an offset. | 1 |
end | A numeric vector with one or two elements representing the end of the time series. (Represented the same way as start .) | numeric(0) |
frequency | The number of observations per unit of time. | 1 |
deltat | The fraction of the sampling period between observations; frequency=1/deltat . | 1 |
ts.eps | Time series comparison tolerance. The frequency of two time series objects is considered equal if the difference is less than this amount. | getOption("ts.eps") |
class | The class to be assigned to the result. | "ts" for a single series, c("mts", "ts") for multiple series |
names | A character vector specifying the name of each series in a multiple series object. | colnames(data) when not null, otherwise "Series1", "Series2" , ... |
The print method for time series objects can print pretty results when used with units of months or quarters (this is enabled by default and is controlled with the calendar argument to print.ts; see the help file for more details). As an example, let’s create a time series representing eight consecutive quarters between Q2 2008 and Q1 2010:
> ts(1:8, start=c(2008, 2), frequency=4)
Qtr1 Qtr2 Qtr3 Qtr4
2008 1 2 3
2009 4 5 6 7
2010 8
As another example of a time series, we will look at the price of turkey. The U.S. Department of Agriculture has a program that collects data on the retail price of various meats. The data is taken from supermarkets representing approximately 20% of the U.S. market and then averaged by month and region. The turkey price data is included in the nutshell package as turkey.price.ts:
> library(nutshell)
> data(turkey.price.ts)
> turkey.price.ts
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2001 1.58 1.75 1.63 1.45 1.56 2.07 1.81 1.74 1.54 1.45 0.57 1.15
2002 1.50 1.66 1.34 1.67 1.81 1.60 1.70 1.87 1.47 1.59 0.74 0.82
2003 1.43 1.77 1.47 1.38 1.66 1.66 1.61 1.74 1.62 1.39 0.70 1.07
2004 1.48 1.48 1.50 1.27 1.56 1.61 1.55 1.69 1.49 1.32 0.53 1.03
2005 1.62 1.63 1.40 1.73 1.73 1.80 1.92 1.77 1.71 1.53 0.67 1.09
2006 1.71 1.90 1.68 1.46 1.86 1.85 1.88 1.86 1.62 1.45 0.67 1.18
2007 1.68 1.74 1.70 1.49 1.81 1.96 1.97 1.91 1.89 1.65 0.70 1.17
2008 1.76 1.78 1.53 1.90
R includes a variety of utility functions for looking at time series objects:
> start(turkey.price.ts)
[1] 2001 1
> end(turkey.price.ts)
[1] 2008 4
> frequency(turkey.price.ts)
[1] 12
> deltat(turkey.price.ts)
[1] 0.08333333
We’ll revisit this time series later in the book.
Shingles
A shingle is a generalization of a factor to a continuous variable. A shingle consists of a numeric vector and a set of intervals. The intervals are allowed to overlap (much like roof shingles; hence the name “shingles”). Shingles are used extensively in the lattice package. Specifically, they allow you to easily use a continuous variable as a conditioning or grouping variable. See Chapter 14 for more information about the lattice package.
Dates and Times
R includes a set of classes for representing dates and times:
Date
Represents dates but not times.
POSIXct
Stores dates and times as seconds since January 1, 1970, 12:00 A.M.
POSIXlt
Stores dates and times in separate vectors. The list includes sec (0–61)[21], min (0–59), hour (0–23), mday (day of month, 1–31), mon (month, 0–11), year (years since 1900), wday (day of week, 0–6), yday (day of year, 0–365), and isdst (flag for “is daylight savings time”).
When possible, it’s a good idea to store date and time values as date objects, not as strings or numbers. There are many good reasons for this. First, manipulating dates as strings is difficult. The date and time classes include functions for addition and subtraction. For example:
> date.I.started.writing <- as.Date("2/13/2009","%m/%d/%Y")
> date.I.started.writing
[1] "2009-02-13"
> today <- Sys.Date()
> today
[1] "2009-08-03"
> today - date.I.started.writing
Time difference of 171 days
Additionally, R includes a number of other functions for manipulating time and date objects. Many plotting functions require dates and times.
Connections
R includes a special object type for receiving data from (or sending data to) applications or files outside the R environment. (Connections are like file pointers in C or filehandles in Perl.) You can create connections to files, URLs, zip-compressed files, gzip-compressed files, bzip-compressed files, Unix pipes, network sockets, and FIFO (first in, first out) objects. You can even read from the system Clipboard (to paste data into R).
To use connections, you create the connection, open the connection, use the connection, and close the connection. For example, suppose you had saved some data objects into a file called consumption.RData and wanted to load the data. R saves files in a compressed format, so you would create a connection with the gzfile command. Here is how to load the file using a connection:
> consumption.connection <- gzfile(description="consumption.RData",open="r")
> load(consumption.connection)
> close(consumption.connection)
Most of the time, you don’t have to explicitly open connections. Many functions for reading or writing files (such as save, load, or read.table) will implicitly open connections when you provide a filename or URL as argument. Connections can be useful for reading data from nonstandard file types (such as bz-compressed files or network connections).
See the help file for connection for more information.
[20] The data was taken from Google Insights, http://www.google.com/insights/search/#q=bacon&cmpt=q. The query was run on September 5, 2009, for data from 2004 through 2009.
The fact that I could find this information is a sign that there is too much data in the world. It is probably good that you are learning to use R, or you would never be able to make sense of it all.
[21] This makes it possible to represent leap seconds.
Attributes
Objects in R can have many properties associated with them, called attributes. These properties explain what an object represents and how it should be interpreted by R. Quite often, the only difference between two similar objects is that they have different attributes.[22] Some important attributes are shown in Table 7-2. Many objects in R are used to represent numerical data—in particular, arrays, matrices, and data frames. So many common attributes refer to properties of these objects.
Table 7-2. Common attributes
There is a standard way to query object attributes in R. For an object x and attribute a, you refer to the attribute through a(x). In most cases, there is a method to get the current value of the attribute and a method to set a new value of the attribute. (Changing attributes with these methods will alter the attributes in the current environment but will not affect the attributes in an enclosing environment.)
You can get a list of all attributes of an object using the attributes function. As an example, let’s consider the matrix that we created in Matrices:
> m <- matrix(data=1:12, nrow=4, ncol=3,
+ dimnames=list(c("r1", "r2", "r3", "r4"),
+ c("c1", "c2", "c3")))
Now, let’s take a look at the attributes of this object:
> attributes(m)
$dim
[1] 4 3
$dimnames
$dimnames[[1]]
[1] "r1" "r2" "r3" "r4"
$dimnames[[2]]
[1] "c1" "c2" "c3"
The dim attribute shows the dimensions of the object, in this case four rows by three columns. The dimnames attribute is a two-element list, consisting of the names for each respective dimension of the object (rows then columns). It is possible to access each of these attributes directly, using the dim and dimnames functions, respectively:
> dim(m)
[1] 4 3
> dimnames(m)
[[1]]
[1] "r1" "r2" "r3" "r4"
[[2]]
[1] "c1" "c2" "c3"
There are convenience functions for accessing the row and column names:
> colnames(m)
[1] "c1" "c2" "c3"
> rownames(m)
[1] "r1" "r2" "r3" "r4"
It is possible to transform this matrix into another object class simply by changing the attributes. Specifically, we can remove the dimension attribute (by setting it to NULL), and the object will be transformed into a vector:
> dim(m) <- NULL
> m
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> class(m)
[1] "integer"
> typeof(m)
[1] "integer"
Let’s go back to an example that we used in Introduction to Data Structures. We’ll construct an array a:
> a <- array(1:12,dim=c(3,4))
> a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
Now let’s define a vector with the same contents:
> b <- 1:12
> b
[1] 1 2 3 4 5 6 7 8 9 10 11 12
You can use R’s bracket notation to refer to elements in a as a two-dimensional array, but you can’t refer to elements in b as a two-dimensional array, because b doesn’t have any dimensions assigned:
> a[2,2]
[1] 5
> b[2,2]
Error in b[2, 2] : incorrect number of dimensions
At this point, you might wonder if R considers the two objects to be the same. Here’s what happens when you compare them with the == operator:
> a == b
[,1] [,2] [,3] [,4]
[1,] TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE
Notice what is returned: an array with the dimensions of a, where each cell shows the results of the comparison. There is a function in R called all.equal that compares the data and attributes of two objects to show if they’re “nearly” equal, and if they are not explains why:
> all.equal(a,b)
[1] "Attributes: < Modes: list, NULL >"
[2] "Attributes: < names for target but not for current >"
[3] "Attributes: < Length mismatch: comparison on first 0 components >"
[4] "target is matrix, current is numeric"
If you just want to check whether two objects are exactly the same, but don’t care why, use the function identical:
> identical(a,b)
[1] FALSE
By assigning a dimension attribute to b, b is transformed into an array and the two-dimensional data access tools will work. The all.equal function will also show that the two objects are equivalent:
> dim(b) <- c(3,4)
> b[2,2]
[1] 5
> all.equal(a,b)
[1] TRUE
> identical(a,b)
[1] TRUE
Class
An object’s class is implemented as an attribute. For simple objects, the class and type are often closely related. For compound objects, however, the two can be different.
Sometimes, the class of an object is listed with attributes. However, for certain classes (such as matrices and arrays), the class is implicit. To determine the class of an object, you can use the class function. You can determine the underlying type of object using the typeof function.
For example, here is the type and class for a simple numeric vector:
> x <- c(1, 2, 3)
> typeof(x)
[1] "double"
> class(x)
[1] "numeric"
It is possible to change the class of an object in R, just like changing any other attribute. For example, factors are implemented internally using integers and a map of the integers to the factor levels. (Integers take up a small, fixed amount of storage space, so they can be much more efficient than character vectors.) It’s possible to take a factor and turn it into an integer array:
> eye.colors.integer.vector
[1] 2 1 1 3 2 2 2
attr(,"levels")
[1] "blue" "brown" "green"
It is possible to create an integer array and turn it into a factor:
> v <- as.integer(c(1, 1, 1, 2, 1, 2, 2, 3, 1))
> levels(v) <- c("what", "who", "why")
> class(v) <- "factor"
> v
[1] what what what who what who who why what
Levels: what who why
Note that there is no guarantee that the implementation of factors won’t change, so be careful using this trick in practice.
For some objects, you need to quote them to prevent them from being evaluated when the class or type function is called. For example, suppose that you wanted to determine the type of the symbol x and not the object to which it refers. You could do that like this:
> class(quote(x))
[1] "name"
> typeof(quote(x))
[1] "symbol"
Unfortunately, you can’t actually use these functions on every type of object. Specifically, there is no way to isolate an any, ..., char, or promise object in R. (Checking the type of a promise object requires evaluating the promise object, converting it to an ordinary object.)
[22] You might wonder why attributes exist; the same functionality could be implemented with lists or S4 objects. The reason is historical: Attributes predate most of R’s modern object mechanisms. See Chapter 10 for a full discussion of formal objects in R.
Chapter 8. Symbols and Environments
So far, we’ve danced around the concept of environments without explicitly defining them. Every symbol in R is defined within a specific environment. An environment is an R object that contains the set of symbols available in a given context, the objects associated with those symbols, and a pointer to a parent environment. The symbols and associated objects are called a frame.
Every evaluation context in R is associated with an environment. When R attempts to resolve a symbol, it begins by looking through the current environment. If there is no match in the local environment, then R will recursively search through parent environments looking for a match.
Symbols
When you define a variable in R, you are actually assigning a symbol to a value in an environment. For example, when you enter the statement:
> x <- 1
on the R console, it assigns the symbol x to a vector object of length 1 with the constant (double) value 1 in the global environment. When the R interpreter evaluates an expression, it evaluates all symbols. If you compose an object from a set of symbols, R will resolve the symbols at the time the object is constructed:
> x <- 1
> y <- 2
> z <- 3
> v <- c(x, y, z)
> v
[1] 1 2 3
> # v has already been defined, so changing x does not change v
> x <- 10
> v
[1] 1 2 3
It is possible to delay evaluation of an expression so that symbols are not evaluated immediately:
> x <- 1
> y <- 2
> z <- 3
> v <- quote(c(x, y, z))
> eval(v)
[1] 1 2 3
> x <- 5
> eval(v)
[1] 5 2 3
It is also possible to create a promise object in R to delay evaluation of a variable until it is (first) needed. You can create a promise object through the delayedAssign function:
> x <- 1
> y <- 2
> z <- 3
> delayedAssign("v", c(x, y, z))
> x <- 5
> v
[1] 5 2 3
Promise objects are used within packages to make objects available to users without loading them into memory. Unfortunately, it is not possible to determine if an object is a promise object, nor is it possible to figure out the environment in which it was created.
Working with Environments
Like everything else in R, environments are objects. Internally, R stores symbol mappings in hash tables. In Chapter 24, I’ll show how some tricks for using environment objects to write efficient R code.
Table 8-1 shows the functions in R for manipulating environment objects.
Table 8-1. Manipulating environment objects
To show the set of objects available in the current environment (or, more precisely, the set of symbols in the current environment associated with objects), use the objects function:
> x <- 1
> y <- 2
> z <- 3
> objects()
[1] "x" "y" "z"
You can remove an object from the current environment with the rm function:
> rm(x)
> objects()
[1] "y" "z"
The Global Environment
When a user starts a new session in R, the R system creates a new environment for objects created during that session. This environment is called the global environment. The global environment is not actually the root of the tree of environments. It’s actually the last environment in the chain of environments in the search path. Here’s the list of parent environments for the global environment in my R installation:
> x <- .GlobalEnv
> while (environmentName(x) != environmentName(emptyenv())) {
+ print(environmentName(parent.env(x))); x <- parent.env(x)}
[1] "tools:RGUI"
[1] "package:stats"
[1] "package:graphics"
[1] "package:grDevices"
[1] "package:utils"
[1] "package:datasets"
[1] "package:methods"
[1] "Autoloads"
[1] "base"
[1] "R_EmptyEnv"
Every environment has a parent environment except for one: the empty environment. All environments chain back to the empty environment.
Environments and Functions
When a function is called in R, a new environment is created within the body of the function, and the arguments of the function are assigned to symbols in the local environment.[23]
As an example, let’s create a function that takes four arguments and does nothing except print out the objects in the current environment:
> env.demo <- function(a, b, c, d) {print(objects())}
> env.demo(1, "truck", c(1,2,3,4,5), pi)
[1] "a" "b" "c" "d"
Notice that the objects function returns only the objects from the current environment, so the function env.demo only prints the arguments defined in that environment. All other objects exist in the parent environment, not in the local environment.
The parent environment of a function is the environment in which the function was created. If a function was created in the execution environment (for example, in the global environment), then the environment in which the function was called will be the same as the environment in which the function was created. However, if the function was created in another environment (such as a package), then the parent environment will not be the same as the calling environment.
Working with the Call Stack
Although the parent environment for a function is not always the environment in which the function was called, it is possible to access the environment in which a function was called.[24] Like many other languages, R maintains a stack of calling environments. (A stack is a data structure in which objects can be added or subtracted from only one end. Think about a stack of trays in a cafeteria; you can only add a tray to the top or take a tray off the top. Adding an object to a stack is called “pushing” the object onto the stack. Taking an object off of the stack is called “popping” the object off the stack.) Each time a new function is called, a new environment is pushed onto the call stack. When R is done evaluating a function, the environment is popped off the call stack.
Table 8-2 shows the functions for manipulating the call stack.
Table 8-2. Manipulating the call stack
If you are writing a package in which a function needs to know the meaning of a symbol in the calling context (and not in the context within the package), you can do so with these functions. Some common R functions, like modeling functions, use this trick to determine the meaning of symbols in the calling context. In specifying a model, you pass a formula object to a modeling function. The formula object is a language object; the symbol names are included in the formula but not in the data. You can specify a data object like a data frame, but you don’t have to. When you don’t specify the objects containing the variables, the model function will try to search through the calling environment to find the data.
Evaluating Functions in Different Environments
You can evaluate an expression within an arbitrary environment using the eval function:
eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())
The argument expr is the expression to be evaluated, and envir is an environment, data frame, or pairlist in which to evaluate expr. When envir is a data frame or pairlist, enclos is the enclosure in which to look for object definitions. As an example of how to use eval, let’s create a function to time the execution of another expression. We’d like the function to record the starting time, evaluate its arguments (an arbitrary expression) in the parent environment, record the end time, and print the difference:
timethis <- function(...) {
start.time <- Sys.time();
eval(..., sys.frame(sys.parent(sys.parent())));
end.time <- Sys.time();
print(end.time - start.time);
}
As an example of how this works, we’ll time an inefficient function that sets 10,000 elements in a vector to the value 1:
> create.vector.of.ones <- function(n) {
+ return.vector <- NA;
+ for (i in 1:n) {
+ return.vector[i] <- 1;
+ }
+ return.vector;
+ }
> # note that returned.vector is not defined
> returned.vector
Error: object 'returned.vector' not found
> # measure time to run function above with n=10000
> timethis(returned.vector <- create.vector.of.ones(10000))
Time difference of 1.485959 secs
> # notice that the function took about 1.5 seconds to run
> # also notice that returned.vector is now defined
> length(returned.vector)
[1] 10000
The timing part is neat, but the point of this function is to show that it is evaluating the expression in the calling environment. Most important, notice that the symbol returned.vector is now defined in that environment:
> length(returned.vector)
[1] 10000
This is a little off the subject, but here is a more efficient version of the same function:
> create.vector.of.ones.b <- function(n) {
+ return.vector <- NA;
+ length(return.vector) <- n;
+ for (i in 1:n) {
+ return.vector[i] <- 1;
+ }
+ return.vector;
+ }
> timethis(returned.vector <- create.vector.of.ones.b(10000))
Time difference of 0.04076099 secs
Three useful shorthands are the functions evalq, eval.parent, and local. When you want to quote the expression, use evalq, which is equivalent to eval(quote(expr), ...). When you want to evaluate an expression within the parent environment, you can use the function eval.parent, which is equivalent to eval(expr, parent.frame(n)). When you want to evaluate an expression in a new environment, you can use the function local, which is equivalent to eval(quote(expr), envir=new.env()).
As an example of how to use eval.parent, we can shorten the timing function from the example above:
timethis.b <- function(...) {
start.time <- Sys.time();
eval.parent(...);
end.time <- Sys.time();
print(end.time - start.time);
}
Sometimes, it is convenient to treat a data frame or a list as an environment. This lets you refer to each item in the data frame or list by name as if you were using symbols. You can do this in R with the functions with and within:
with(data, expr, ...)
within(data, expr, ...)
The argument data is the data frame or list to treat as an environment, expr is the expression, and additional arguments in ... are passed to other methods. The function with evaluates the expression and then returns the result, while the function within makes changes in the object data and then returns data.
Here are some examples of using with and within:
> example.list <- list(a=1, b=2, c=3)
> a+b+c
Error: object 'b' not found
> with(example.list, a+b+c)
[1] 6
> within(example.list, d<-a+b+c)
$a
[1] 1
$b
[1] 2
$c
[1] 3
$d
[1] 6
Adding Objects to an Environment
R provides a shorthand for adding objects to the current environment: attach. If you have saved a set of objects to a data file with save, you can load the objects into the current environment with attach.
Additionally, you can use attach to load all the elements specified within a data frame or list into the current environment. Often, operators like $ are convenient for accessing objects within a list or data frame, but sometimes it can be cumbersome to do so:
attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)
The argument what is the object to attach (called a database), pos specifies the position in the search path in which to attach the element within what, name is the name to use for the attached database (more on what this is used for below), and warn.conflicts specifies whether to warn the user if there are conflicts. The database can be a data frame, a list, or an R data file created with the save function.
When you’re done, you can remove all the objects in a data frame from the current environment with the function detach:
detach(name, pos = 2, unload = FALSE)
In this function, the argument name specifies the name of the database to detach (which corresponds to the argument name from attach), pos is the position in the search path at which the database was attached, and unload specifies whether or not to unload the namespace and S4 methods when a database is detached.
Be careful using attach. Often, I find myself working with multiple data frames with identically named columns. Using attach can be confusing, because it is difficult to keep track of the data frame from which each object came. It is often better to use functions like transform to change values within a data frame or with to evaluate expressions using values in a data frame.
[23] If you’re familiar with other languages and language lingo, you could say that R is a lexically scoped language.
[24] This allows symbols to be accessed as though R were dynamically scoped.
Exceptions
You may have noticed that R sometimes gives you an error when you enter an invalid expression. For example:
> 12 / "hat"
Error in 12/"hat" : non-numeric argument to binary operator
Other times, R may just give you a warning:
> if (c(TRUE,FALSE)) TRUE else FALSE
[1] TRUE
Warning message:
In if (c(TRUE, FALSE)) TRUE else FALSE :
the condition has length > 1 and only the first element will be used
Like other modern programming languages, R includes the ability to signal exceptions when unusual events occur and catch to exceptions when they occur. If you are writing your own R programs, it is usually a good idea to stop execution when an error occurs and alert the user (or calling function). Likewise, it is usually a good idea to catch exceptions from functions that are called within your programs.
It might seem strange to talk about exception handling in the context of environments, but exception handling and environments are closely linked. When an exception occurs, the R interpreter may need to abandon the current function and signal the exception in the calling environment.
This section explains how the error-handling system in R works.
Signaling Errors
If something occurs in your code that requires you to stop execution, you can use the stop function. For example, suppose that you had written a function called dowork(filename) to automatically generate some charts and save them to a file specified by the argument filename. Suppose that R couldn’t write to the file, possibly because the directory didn’t exist. To stop execution and print a helpful error message, you could structure your code like this:
> doWork <- function(filename) {
+ if(file.exists(filename)) {
+ read.delim(filename)
+ } else {
+ stop("Could not open the file: ", filename)
+ }
+ }
> doWork("file that doesn't exist")
Error in doWork("file that doesn't exist") :
Could not open the file: file that doesn't exist
If something occurs in your code that you want to tell the user about, but which isn’t severe enough to normally stop execution, you can use the warning function. Reusing the example above, if the file “filename” already exists, then the function will simply return the string "la la la". If the file does not exist, then the function will warn the user that the file does not exist.
> doNoWork <- function(filename) {
+ if(file.exists(filename)) {
+ "la la la"
+ } else {
+ warning("File does not exist: ", filename)
+ }
+ }
> doNoWork("another file that doesn't exist")
Warning message:
In doNoWork("another file that doesn't exist") :
File does not exist: another file that doesn't exist
If you just want to tell the user something, then you can use the message function:
> doNothing <- function(x) {
+ message("This function does nothing.")
+ }
> doNothing("another input value")
This function does nothing.
Catching Errors
Suppose that you are writing a function in R called foo that calls another function called bar. Furthermore, suppose that bar sometimes generates an error, but you don’t want foo to stop if the error is generated. For example, maybe bar tries to open a file but signals an error when it can’t open the file. If bar can’t open the file, maybe you want foo to try doing something else instead.
A simple way to do this is to use the try function. This function hides some of the complexity of R’s exception handling. Here’s an example of how to use try:
> res <- try({x <- 1}, silent=TRUE)
> res
[1] 1
> res <- try({open("file that doesn't exist")}, silent=TRUE)
> res
[1] "Error in UseMethod(\"open\") : \n no applicable method for 'open'
applied to an object of class \"character\"\n"
attr(,"class")
[1] "try-error"
The try function takes two arguments, expr and silent. The first argument, expr, is the R expression to be tried (often a function call). The second argument specifies whether the error message should be printed to the R console (or stderr); the default is to print errors. If the expression results in an error, then try returns an object of class "try-error".
A more capable function is tryCatch. The tryCatch function takes three sets of arguments: an expression to try, a set of handlers for different conditions, and a final expression to evaluate. For example, suppose that the following call was made to tryCatch:
tryCatch(expression, handler1, handler2, ..., finally=finalexpr)
The R interpreter would first evaluate expression. If a condition occurs (an error or warning), R will pick the appropriate handler for the condition (matching the class of the condition to the arguments for the handler). After the expression has been evaluated, finalexpr will be evaluated. (The handlers will not be active when this expression is evaluated.)
Chapter 9. Functions
Functions are the R objects that evaluate a set of input arguments and return an output value. This chapter explains how to create and use functions in R.
The Function Keyword
In R, function objects are defined with this syntax:
function(arguments) body
where arguments is a set of symbol names (and, optionally, default values) that will be defined within the body of the function, and body is an R expression. Typically, the body is enclosed in curly braces, but it does not have to be if the body is a single expression. For example, the following two definitions are equivalent:
f <- function(x,y) x + y
f <- function(x,y) {x + y}
Arguments
A function definition in R includes the names of arguments. Optionally, it may include default values. If you specify a default value for an argument, then the argument is considered optional:
> f <- function(x, y) {x + y}
> f(1,2)
[1] 3
> g <- function(x, y=10) {x + y}
> g(1)
[1] 11
If you do not specify a default value for an argument, and you do not specify a value when calling the function, you will get an error if the function attempts to use the argument:[25]
> f(1)
Error in f(1) :
element 2 is empty;
the part of the args list of '+' being evaluated was:
(x, y)
In a function call, you may override the default value:
> g(1, 2)
[1] 3
In R, it is often convenient to specify a variable-length argument list. You might want to pass extra arguments to another function, or you may want to write a function that accepts a variable number of arguments. To do this in R, you specify an ellipsis (...) in the arguments to the function.[26]
As an example, let’s create a function that prints the first argument and then passes all the other arguments to the summary function. To do this, we will create a function that takes one argument: x. The arguments specification also includes an ellipsis to indicate that the function takes other arguments. We can then call the summary function with the ellipsis as its argument:
> v <- c(sqrt(1:100))
> f <- function(x,...) {print(x); summary(...)}
> f("Here is the summary for v.", v, digits=2)
[1] "Here is the summary for v."
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 5.1 7.1 6.7 8.7 10.0
Notice that all of the arguments after x were passed to summary.
It is also possible to read the arguments from the variable-length argument list. To do this, you can convert the object ... to a list within the body of the function. As an example, let’s create a function that simply sums all its arguments:
> addemup <- function(x,...) {
+ args <- list(...)
+ for (a in args) x <- x + a
+ x
+ }
> addemup(1, 1)
[1] 2
> addemup(1, 2, 3, 4, 5)
[1] 15
You can also directly refer to items within the list ... through the variables ..1, ..2, to ..9. Use ..1 for the first item, ..2 for the second, and so on. Named arguments are valid symbols within the body of the function. For more information about the scope within which variables are defined, see Chapter 8.
[25] Note that you will get an error only if you try to use the uninitialized argument within the function; you could easily write a function that simply doesn’t reference the argument, and it will work fine. Additionally, there are other ways to check whether an argument has been initialized from inside the body of a function. For example, the following function works identically to the function g shown above (which included a default value for y in its definition):
> h <- function(x,y) {
+ args <- as.list(match.call())
+ if (is.null(args$y)) {
+ y <- 10
+ }
+ x + y
+ }
In practice, you should specify default values in the function signature to make your functions as clear and easy to read as possible.
[26] You might remember from Chapter 7 that “...” is a special type of object in R. The only place you can manipulate this object is inside the body of a function. In this context, it means “all the other arguments for the function.”
Return Values
In an R function, you may use the return function to specify the value returned by the function. For example:
> f <- function(x) {return(x^2 + 3)}
> f(3)
[1] 12
However, R will simply return the last evaluated expression as the result of a function. So it is common to omit the return statement:
> f <- function(x) {x^2 + 3}
> f(3)
[1] 12
In some cases, an explicit return value may lead to cleaner code.
Functions as Arguments
Many functions in R can take other functions as arguments. For example, many modeling functions accept an optional argument that specifies how to handle missing values; this argument is usually a function for processing the input data.
As an example of a function that takes another function as an argument, let’s look at sapply. The sapply function iterates through each element in a vector, applying another function to each element in the vector and returning the results. Here is a simple example:
> a <- 1:7
> sapply(a, sqrt)
[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
This is a toy example; you could have calculated the same quantity with the expression sqrt(1:7). However, there are many useful functions that don’t work properly on a vector with more than one element; sapply provides a simple way to extend such a function to work on a vector. Related functions allow you to summarize every element in a data structure or to perform more complicated calculations. See Summarizing Functions for information on related functions.
Anonymous Functions
So far, we’ve mostly seen named functions in R. However, because functions are just objects in R, it is possible to create functions that do not have names. These are called anonymous functions. Anonymous functions are usually passed as arguments to other functions. If you’re new to functional languages, this concept might seem strange, so let’s start with a very simple example.
We will define a function that takes another function as its argument and then applies that function to the number 3. Let’s call the function apply.to.three, and we will call the argument f:
> apply.to.three <- function(f) {f(3)}
Now let’s call apply.to.three with an anonymous function assigned to argument f. As an example, let’s create a simple function that takes one argument and multiplies that argument by 7:
> apply.to.three(function(x) {x * 7})
[1] 21
Here’s how this works. When the R interpreter evaluates the expression apply.to.three(function(x) {x * 7}), it assigns the argument f to the anonymous function function(x) {x * 7}. The interpreter then begins evaluating the expression f(3). The interpreter assigns 3 to the argument x for the anonymous function. Finally, the interpreter evaluates the expression 3 * 7 and returns the result.
Anonymous functions are a very powerful tool used in many places in R. Above, we used the sapply function to apply a named function to every element in an array. You can also pass an anonymous function as an argument to sapply:
> a <- c(1, 2, 3, 4, 5)
> sapply(a, function(x) {x + 1})
[1] 2 3 4 5 6
This family of functions is a good alternative to control structures. Control structures are language features like if-then statements, loops, and go-to statements. For example, suppose that you had a vector of numerical values and wanted to calculate the square of each element. You could do this using a loop:
> v <- 1:20
> w <- NULL
> for (i in 1:length(v)) {w[i] <- v[i]^2}
> w
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
However, you can do the same thing using an “apply” statement like this:
> v <- 1:20
> w <- sapply(v, function(i) {i^2})
> w
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
I think it’s more clear what the second code snippet does: it applies the function to each element in v. (Additionally, the apply function will be faster. See Lookup Performance in R for more information.
By the way, it is possible to define an anonymous function and apply it directly to an argument. Here’s an example:
> (function(x) {x+1})(1)
[1] 2
Notice that the function object needs to be enclosed in parentheses. This is because function calls, expressions of the form f(arguments), have very high precedence in R.[27]
Properties of Functions
R includes a set of functions for getting more information about function objects. To see the set of arguments accepted by a function, use the args function. The args function returns a function object with NULL as the body. Here are a few examples:
> args(sin)
function (x)
NULL
> args(`?`)
function (e1, e2)
NULL
> args(args)
function (name)
NULL
> args(lm)
function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)
NULL
If you would like to manipulate the list of arguments with R code, then you may find the formals function more useful. The formals function will return a pairlist object, with a pair for every argument. The name of each pair will correspond to each argument name in the function. When a default value is defined, the corresponding value in the pairlist will be set to that value. When no default is defined, the value will be NULL. The formals function is available only for functions written in R (objects of type closure) and not for built-in functions.
Here is a simple example of using formals to extract information about the arguments to a function:
> f <- function(x, y=1, z=2) {x + y + z}
> f.formals <- formals(f)
> f.formals
$x
$y
[1] 1
$z
[1] 2
> f.formals$x
> f.formals$y
[1] 1
> f.formals$z
[1] 2
You may also use formals on the left-hand side of an assignment statement to change the formal argument for a function. For example:
> f.formals$y <- 3
> formals(f) <- f.formals
> args(f)
function (x, y = 3, z = 2)
NULL
R provides a convenience function called alist to construct an argument list. You simply specify the argument list as if you were defining a function. (Note that for an argument with no default, you do not need to include a value but still need to include the equals sign.)
> f <- function(x, y=1, z=2) {x + y + z}
> formals(f) <- alist(x=, y=100, z=200)
> f
function (x, y = 100, z = 200)
{
x + y + z
}
R provides a similar function called body that can be used to return the body of a function:
> body(f)
{
x + y + z
}
Like the formals function, the body function may be used on the left-hand side of an assignment statement:
> f
function (x, y = 3, z = 2)
{
x + y + z
}
> body(f) <- expression({x * y * z})
> f
function (x, y = 3, z = 2)
{
x * y * z
}
Note that the body of a function has type expression, so when you assign a new value it must have the type expression.
[27] If you omit the parentheses in this example, you will not initially get an error:
> function(x) {x+1}(1)
function(x) {x+1}(1)
This is because you will have created an object that is a function taking one argument (x) with the body {x+1}(1). There is no error generated because the body is not evaluated. If you were to assign this object to a symbol (so that you can easily apply it to an argument and see what it does), you will find that this function attempts to call a function returned by evaluating the expression {x + 1}. In order not to get an error or an input of class c, you would need to register a generic function that took as input an object of class c (x in this expression) and a numerical value (1 in this expression) and returned a function object. So omitting the parentheses is not wrong; it is a valid R expression. However, this is almost certainly not what you meant to write.
Argument Order and Named Arguments
When you specify a function in R, you assign a name to each argument in the function. Inside the body of the function, you can access the arguments by name. For example, consider the following function definition:
> addTheLog <- function(first, second) {first + log(second)}
This function takes two arguments, called first and second. Inside the body of the function, you can refer to the arguments by these names.
When you call a function in R, you can specify the arguments in three different ways (in order of priority):
Exact names. The arguments will be assigned to full names explicitly given in the argument list. Full argument names are matched first:
> addTheLog(second=exp(4), first=1)
[1] 5
Partially matching names. The arguments will be assigned to partial names explicitly given in the arguments list:
> addTheLog(s=exp(4), f=1)
[1] 5
Argument order. The arguments will be assigned to names in the order in which they were given:
> addTheLog(1, exp(4))
[1] 5
When you are using generic functions, you cannot specify the argument name of the object on which the generic function is being called. You can still specify names for other arguments.
When possible, it’s a good practice to use exact argument names. Specifying full argument names does require extra typing, but it makes your code easier to read and removes ambiguity.
Partial names are a deprecated feature because they can lead to confusion. As an example, consider the following function:
> f <- function(arg1=10, arg2=20) {
+ print(paste("arg1:", arg1))
+ print(paste("arg2:", arg2))
+ }
When you call this function with one ambiguous argument, it will cause an error:
> f(arg=1)
Error in f(arg = 1) : argument 1 matches multiple formal arguments
However, when you specify two arguments, the ambiguous argument could refer to either of the other arguments:
> f(arg=1, arg2=2)
[1] "arg1: 1"
[1] "arg2: 2"
> f(arg=1, arg1=2)
[1] "arg1: 2"
[1] "arg2: 1"
Side Effects
All functions in R return a value. Some functions also do other things: change variables in the current environment (or in other environments), plot graphics, load or save files, or access the network. These operations are called side effects.
Changes to Other Environments
We have already seen some examples of functions with side effects. In Chapter 8, we showed how to directly access symbols and objects in an environment (or in parent environments). We also showed how to access objects on the call stack.
An important function that causes side effects is the <<- operator. This operator takes the following form: var <<- value. This operator will cause the interpreter to first search through the current environment to find the symbol var. If the interpreter does not find the symbol var in the current environment, then the interpreter will next search through the parent environment. The interpreter will recursively search through environments until it either finds the symbol var or reaches the global environment. If it reaches the global environment before the symbol var is found, then R will assign value to var in the global environment.
Here is an example that compares the behavior of the <- assignment operator and the <<- operator:
> x
Error: object "x" not found
> doesnt.assign.x <- function(i) {x <- i}
> doesnt.assign.x(4)
> x
Error: object "x" not found
> assigns.x <- function(i) {x <<- i}
> assigns.x(4)
> x
[1] 4
Input/Output
R does a lot of stuff, but it’s not completely self-contained. If you’re using R, you’ll probably want to load data from external files (or from the Internet) and save data to files. These input/output (I/O) actions are side effects, because they do things other than just return an object. We’ll talk about these functions extensively in Chapter 11.
Graphics
Graphics functions are another example of side effects in R. Graphics functions may return objects, but they also plot graphics (either on screen or to files). We’ll talk about these functions in Chapters 13 and 14.
Chapter 10. Object-Oriented Programming
At its heart, R is a functional programming language. But the R system includes some support for object-oriented programming (OOP). OOP has become the most popular paradigm for organizing computer software; it’s used in most modern programming languages (Java, C#, Ruby, and Objective C, among others) and in quite a few old ones (Smalltalk, C++). Many R packages are written using R Objects, including the core statistics package, lattice, and ggplot2.
You don’t need to use object-oriented programming techniques to work with R. Writing functional programs is a fine practice. Many people believe that it is easier to write programs using functional techniques, particularly when multiple parts of a program run concurrently; this has led to a resurgence of new functional languages like Scala and Clojure. I like functional programs but find object-oriented techniques convenient for representing complicated objects (such as statistical models or charts).
R includes two different mechanisms for object-oriented programming. As you may recall, the R language is derived from the S language. S’s object-oriented programming system evolved over time. Around 1990, S version 3 (S3) introduced class attributes that allowed single-argument methods. Many R functions (such as the statistical modeling software) were implemented using S3 methods, so S3 methods are still around today. In S version 4 (S4), formal classes and methods were introduced that allowed multiple arguments, more abstract types, and more sophisticated inheritance. Many new packages were implemented using S4 methods (and you can find S4 implementations of many key statistical procedures as well). In particular, formal classes are used extensively in Bioconductor.
In this chapter, we’ll begin with the newer mechanism, because it is more robust and flexible. I think it is wise to use S4 classes and methods for new software that needs to represent abstract concepts and that it is not a good idea to implement new S3 classes. However, you may want to change code that uses S3 classes and methods or use S3 classes and methods in new software. In Old-School OOP in R: S3, we’ll talk about how the S3 system works and how to mix S3 and S4 classes.
Overview of Object-Oriented Programming in R
Object-oriented programming is not the same thing as programming with objects. R is a very object-centric language; everything in R is an object. However, there is more to OOP than just objects. Here’s a short description of what object-oriented programming means.
Key Ideas
As an example of how object-oriented programming is used in R, we’ll consider time series.[28] A time series is a sequence of measurements of a quantity over time. Measurements are taken at equally spaced intervals. Time series have some properties associated with them: a start time, an end time, a number of measurements, a frequency, and so forth.
In OOP, we would create a “time series” class to capture information about time series. A class is a formal definition for an object. Each individual time series object is called an instance of the class. A function that operates on a specific class of objects is called a method.
As a user of time series, you probably don’t care too much about how time series are implemented. All you care about is that you know how to create a time series object and manipulate the object through methods. The time series could be stored as a data frame, a vector, or even a long text field. The process of separating the interface from the implementation is called encapsulation.
Suppose that we wanted to track the weight history of people over time. For this application, we’d like to keep all the same information as a time series, plus some additional information on individual people. It would be nice to be able to reuse the code for our time series class for objects in the weight history class. In OOP, it is possible to base one class on another and just specify what is different about the new class. This is called inheritance. We would say that the weight history class inherits from the time series class. We might also say that the time series class is a superclass of the weight history class and that the weight history class is a subclass of the time series class.
Suppose that you wanted to ask a question like “What is the period of the measurements in the class?” Ideally, it would be nice to have a single function name for finding this information, maybe called “period.” In OOP, allowing the same method name to be used for different objects is called polymorphism.
Finally, suppose that we implemented the weight history class by creating classes for each of its pieces: time series, personal attributes, and so on. The process of creating a new class from a set of other classes is called composition. In some languages (like R), a class can inherit methods from more than one other class. This is called multiple inheritance.
Implementation Example
If you’re familiar with object-oriented programming in other languages (like Java), you’ll find that most of the familiar concepts are included in R. However, the syntax and structure in R are different. In particular, you define a class with a call to a function (setClass) and define a method with a call to another function (setMethod). Before we describe R’s implementation of object-oriented programming in depth, let’s look at a quick example.
Let’s implement a class representing a time series. We’ll want to define a new object that contains the following information:
A set of data values, sampled at periodic intervals over time
A start time
An end time
The period of the time series
Clearly, some of this information is redundant; given many of the attributes of a time series, we can calculate the remaining attributes. Let’s start by defining a new class called “TimeSeries.” We’ll represent a time series by a numeric vector containing the data, a start time, and an end time. We can calculate units, frequency, and period from the start time, end time, and the length of the data vector. As a user of the class, it shouldn’t matter how we represent this information, but it does matter to the implementer.
In R, the places where information is stored in an object are called slots. We’ll name the slots data, start, and end. To create a class, we’ll use the setClass function:
> setClass("TimeSeries",
+ representation(
+ data="numeric",
+ start="POSIXct",
+ end="POSIXct"
+ )
+ )
The representation explains the class of the object contained in each slot. To create a new TimeSeries object, we will use the new function. (The new function is a generic constructor method for S4 objects.) The first argument specifies the class name; other arguments specify values for slots:
> my.TimeSeries <- new("TimeSeries",
+ data=c(1, 2, 3, 4, 5, 6),
+ start=as.POSIXct("07/01/2009 0:00:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ end=as.POSIXct("07/01/2009 0:05:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S")
+ )
There is a generic print method for new S4 classes in R that displays the slot names and the contents of each slot:
> my.TimeSeries
An object of class "TimeSeries"
Slot "data":
[1] 1 2 3 4 5 6
Slot "start":
[1] "2009-07-01 GMT"
Slot "end":
[1] "2009-07-01 00:05:00 GMT"
Not all possible slot values are valid. We want to make sure that end occurs after start and that the lengths of start and end are both exactly 1. We can write a function to check the validity of a TimeSeries object. R allows you to specify a function that will be used to validate a specific class. We can specify this with the setValidity function:
> setValidity("TimeSeries",
+ function(object) {
+ object@start <= object@end &&
+ length(object@start) == 1 &&
+ length(object@end) == 1
+ }
+ )
Class "TimeSeries" [in ".GlobalEnv"]
Slots:
Name: data start end
Class: numeric POSIXct POSIXct
You can now check that a TimeSeries object is valid with the validObject function:
> validObject(my.TimeSeries)
[1] TRUE
When we try to create a new TimeSeries object, R will check the validity of the new object and reject bad objects:
> good.TimeSeries <- new("TimeSeries",
+ data=c(7, 8, 9, 10 ,11, 12),
+ start=as.POSIXct("07/01/2009 0:06:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ end=as.POSIXct("07/01/2009 0:11:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S")
+ )
> bad.TimeSeries <- new("TimeSeries",
+ data=c(7, 8, 9, 10, 11, 12),
+ start=as.POSIXct("07/01/2009 0:06:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ end=as.POSIXct("07/01/1999 0:11:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S")
+ )
Error in validObject(.Object) : invalid class "TimeSeries" object: FALSE
(You can also specify the validity method at the time you are creating a class; see the full definition of setClass for more information.)
Now that we have defined the class, let’s create some methods that use the class. One property of a time series is its period. We can create a method for extracting the period from the time series. This method will calculate the duration between observations based on the length of the vector in the data slot, the start time, and the end time:
> period.TimeSeries <- function(object) {
+ if (length(object@data) > 1) {
+ (object@end - object@start) / (length(object@data) - 1)
+ } else {
+ Inf
+ }
+ }
Suppose that you wanted to create a set of functions to derive the data series from other objects (when appropriate), regardless of the type of object (i.e., polymorphism). R provides a mechanism called generic functions for doing this.[29] You can define a generic name for a set of functions (like “series”). When you call “series” on an object, R will find the correct method to execute based on the class of the object. Let’s create a function for extracting the data series from a generic object:
> series <- function(object) {object@data}
> setGeneric("series")
[1] "series"
> series(my.TimeSeries)
[1] 1 2 3 4 5 6
The call to setGeneric redefined series as a generic function whose default method is the old body for series:
> series
standardGeneric for "series" defined from package ".GlobalEnv"
function (object)
standardGeneric("series")
<environment: 0x19ac4f4>
Methods may be defined for arguments: object
Use showMethods("series") for currently available ones.
> showMethods("series")
Function: series (package .GlobalEnv)
object="ANY"
object="TimeSeries"
(inherited from: object="ANY")
As a further example, suppose we wanted to create a new generic function called “period” for extracting a period from an object and wanted to specify that the function period.TimeSeries should be used for TimeSeries objects, but the generic method should be used for other objects. We could do this with the following commands:
> period <- function(object) {object@period}
> setGeneric("period")
[1] "period"
> setMethod(period, signature=c("TimeSeries"), definition=period.TimeSeries)
[1] "period"
attr(period,"package")
[1] ".GlobalEnv"
> showMethods("period")
Function: period (package .GlobalEnv)
object="ANY"
object="TimeSeries"
Now we can calculate the period of a TimeSeries object by just calling the generic function period:
> period(my.TimeSeries)
Time difference of 1 mins
It is also possible to define your own methods for existing generic functions, such as summary. Let’s define a summary method for our new class:
> setMethod("summary",
+ signature="TimeSeries",
+ definition=function(object) {
+ print(paste(object@start,
+ " to ",
+ object@end,
+ sep="", collapse=""))
+ print(paste(object@data, sep="", collapse=","))
+ }
+ )
Creating a new generic function for "summary" in ".GlobalEnv"
[1] "summary"
> summary(my.TimeSeries)
[1] "2009-07-01 to 2009-07-01 00:05:00"
[1] "1,2,3,4,5,6"
You can even define a new method for an existing operator:
> setMethod("[",
+ signature=c("TimeSeries"),
+ definition=function(x, i, j, ...,drop) {
+ x@data[i]
+ }
+ )
[1] "["
> my.TimeSeries[3]
[1] 3
(As a quick side note, this works for only some built-in functions. For example, you can’t define a new print method this way. See the help file for S4groupGeneric for a list of generic functions that you can redefine this way, and Old-School OOP in R: S3 for an explanation on why this doesn’t always work.)
Now let’s show how to implement a WeightHistory class based on the TimeSeries class. One way to do this is to create a WeightHistory class that inherits from the TimeSeries class but adds extra fields to represent a person’s name and height. We can do this with the setClass command by stating that the new class inherits from the TimeSeries class and specifying the extra slots in the WeightHistory class:
> setClass(
+ "WeightHistory",
+ representation(
+ height = "numeric",
+ name = "character"
+ ),
+ contains = "TimeSeries"
+ )
Now we can create a WeightHistory object, populating slots named in TimeSeries and the new slots for WeightHistory:
> john.doe <- new("WeightHistory",
+ data=c(170, 169, 171, 168, 170, 169),
+ start=as.POSIXct("02/14/2009 0:00:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ end=as.POSIXct("03/28/2009 0:00:00",tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ height=72,
+ name="John Doe")
> john.doe
An object of class “WeightHistory”
Slot "height":
[1] 72
Slot "name":
[1] "John Doe"
Slot "data":
numeric(0)
Slot "start":
[1] "2009-02-14 GMT"
Slot "end":
[1] "2009-03-28 GMT"
R will validate that the new TimeSeries object contained within WeightHistory is valid. (You can test this yourself.)
Let’s consider an alternative way to construct a weight history. Suppose that we had created a Person class containing a person’s name and height:
> setClass(
+ "Person",
+ representation(
+ height = "numeric",
+ name = "character"
+ )
+ )
Now we can create an alternative weight history that inherits from both a TimeSeries object and a Person object:
> setClass(
+ "AltWeightHistory",
+ contains = c("TimeSeries", "Person")
+ )
This alternative implementation works identically to the original implementation, but the new implementation is slightly cleaner. This implementation inherits methods from both the TimeSeries and the Person classes.
Suppose that we also had created a class to represent cats:
> setClass(
+ "Cat",
+ representation(
+ breed = "character",
+ name = "character"
+ )
+ )
Notice that both Person and Cat objects contain a name attribute. Suppose that we wanted to create a method for both classes that checked if the name was “Fluffy.” An efficient way to do this in R is to create a virtual class that is a superclass of both the Person and the Cat classes and then write an is.fluffy method for the superclass. (You can write methods for a virtual class but can’t create objects from that class because the representation of those objects is ambiguous.)
> setClassUnion(
+ "NamedThing",
+ c("Person", "Cat")
+ )
We could then create an is.fluffy method for the NamedThing class that would apply to both Person and Cat objects. (Note that if we were to define a method of is.fluffy for the Person class, this would override the method from the parent class.) An added benefit is that we could now check to see if an object was a NamedThing:
> jane.doe <- new("AltWeightHistory",
+ data=c(130, 129, 131, 128, 130, 129),
+ start=as.POSIXct("02/14/2009 0:00:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ end=as.POSIXct("03/28/2009 0:00:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+ height=67,
+ name="Jane Doe")
> is(jane.doe,"NamedThing")
[1] TRUE
> is(john.doe,"TimeSeries")
[1] TRUE
[28] You may have noticed that I picked an example of a class that is already implemented in R. Time series objects are implemented by the ts class in the stats package. (I introduced ts objects in Time Series.) The implementation in the stats package is an example of an S3 class. We’ll talk more about what that means, and how to use S3 and S4 classes together, next.
[29] In object-oriented programming terms, this is called overloading a function.
Object-Oriented Programming in R: S4 Classes
Now that we’ve seen a quick introduction to object-oriented programming in R, let’s talk about the functions for building classes in more depth.
Defining Classes
To create a new class in R, you use the setClass function:
setClass(Class, representation, prototype, contains=character(),
validity, access, where, version, sealed, package,
S3methods = FALSE)
Here is a description of the arguments to setClass.
Argument | Description | Default |
---|---|---|
Class | A character value specifying the name for the new class. (This is the only required argument.) | |
representation | A named list of the different slots in the class and the object name associated with each one. (You can specify “ANY” if you want to allow arbitrary objects to be stored in the slot.) | |
prototype | An object containing the default object for slots in the class. | |
contains | A character vector containing the names of the classes that this class extends (usually called superclasses). | character() |
validity | A function that checks the validity of an object of this class. (Default is no validity check.) May be changed later with setValidity . | |
access | Not used; included for compatibility with S-PLUS. | |
where | The environment in which to store the object definition. | Default is the environment in which setClass was called. |
version | Not used; included for compatibility with S-PLUS. | |
sealed | A logical value to indicate if this class can be redefined by calling setClass again with the same class name. | |
package | A character value specifying the package name for this class. | Default is the name of the package in which setClass was called. |
S3methods | A logical value specifying whether S3 methods may be written for this class. | FALSE |
To simplify the creation of new classes, the methods package includes two functions for creating the representation and prototype arguments, called representation and prototype. These functions are very helpful when defining classes that extend other classes as a data part, have multiple superclasses, or combine extending a class and slots.
Some slot names are prohibited in R because they are reserved for attributes. (By the way, objects can have both slots and attributes.) Forbidden names include "class", "comment", "dim", "dimnames", "names", "row.names" and "tsp".
If a class extends one of the basic R types (as described in Table 10-1), there will be a slot called .Data containing the data from the basic object type. R code that works on the built-in class will work with objects of the new class; they will just act on the .Data part of the object.
You can explicitly define an inheritance relationship with the setIs function. (This is an alternative to using the contains argument for setClass.)
setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = character(), where = topenv(parent.frame()), classDef =,
extensionObject = NULL, doComplete = TRUE)
To explicitly set a validation function for a class, you use the setValidity function:
setValidity(Class, method, where = topenv(parent.frame()) )
Whenever you create a new object, R will execute the initialize method of the class (if the method is available). Programmers usually use the initialize method to calculate values or create additional objects and assign them to slots. See Methods for information on how to add a method for the generic function initialize.
R also allows you to define a virtual class that is a superclass of several other classes. This can be useful if the virtual class does not contain any data by itself but you want to create a set of methods that can be used by a set of other classes. To do this, you would use the setClassUnion function:
setClassUnion(name, members, where)
This function takes the following arguments.
Argument | Description |
---|---|
name | A character value specifying the name of the new superclass |
members | A character vector specifying the names of the subclasses |
where | The environment in which to create the new superclass |
New Objects
You can create a new object in R through a call to the class’s new method. (In object-oriented programming lingo, this is called a constructor.) Calling:
new(c,...)
returns a new object of class c. It is possible to fill data into the slots of the new object by specifying named arguments in the call to new; each slot will be set to the value specified by the corresponding named argument. If a method named initialize exists for class c, then the function initialize will be called after the new object is created (and the slots are filled in with the optional arguments).
Accessing Slots
You can fetch the value stored in slot slot_name of object object_name through a call to the function slot(slot_name, object_name). R includes a special operator for accessing the objects stored inside another object that is a shorthand for the slot function: the @ operator. This operator takes the form object_name@slot_name.
It is also possible to set the object stored in a slot with the familiar assignment operator. For example, to set the “month” slot of a “birthdate” object to the value “June,” you would call:
> birthdate@month <- "June"
or, alternatively:
> slot(birthdate, month) <- "June"
By default, when changing a value in an object, R will check the validity of the new object. However, it is possible to override this check by using the check=FALSE option when calling slot:
> slot(birthdate, month, check=FALSE) <- "June"
Doing so is usually unwise and unnecessary.
Working with Objects
To test whether an object o is a member of a class c, you can use the function is(o, c). To test whether a class c1 extends a second class c2, you can use the function extends(c1, c2).
To get a list of the slots associated with an object o, you can use the function slotNames(o). To get the classes associated with those slots, use getSlots(o). To determine the names of the slots in a class c, you can use the function slotNames(c). Somewhat nonintuitively, getSlots(c) returns the set of classes associated with each slot.
Creating Coercion Methods
It is possible to convert an object o to class c by calling as(o, c).
To enable coercion for a class that you define, make sure to register coercion methods with the setAs function:
setAs(from, to, def, replace, where = topenv(parent.frame()))
This function takes the following arguments.
Argument | Description | Default |
---|---|---|
from | A character value specifying the class name of the input object. | |
to | A character value specifying the class name of the output object. | |
def | A function that takes an argument of type from and returns a value of type to . In other words, a function that performs the conversion. | |
replace | A second function that may be used in a replacement method (that is, the method to use if the as function is used as the destination in an assignment statement). This is a function of two arguments: from and value . | |
where | The environment in which to store the definition. | topenv(parent.frame()) |
Methods
In Chapter 9, we showed how to use functions in R. An important part of a function definition in R is the set of arguments for a function. As you may recall, a function accepts only one set of arguments. When you assign a function directly to a symbol, you can only call that function with a single set of arguments.
Generic functions are a system for allowing the same name to be used for many different functions, with many different sets of arguments, from many different classes.
Suppose that you define a class called meat and a class called dairy and a method called serve. In R, you could assign one function to serve a meat object and another function to serve a dairy object. You could even assign a third function that took both a meat object and a dairy object as arguments and allowed you to serve both of them together. This would not be kosher in some other languages, but it’s OK in R.[30]
The first step in assigning methods is to create an appropriate generic function (if the function doesn’t already exist). To do this, you use the setGeneric function to create a generic method:
setGeneric(name, def= , group=list(), valueClass=character(),
where= , package= , signature= , useAsDefault= ,
genericFunction= , simpleInheritanceOnly = )
This function takes the following arguments.
Argument | Description |
---|---|
name | A character value specifying the name of the generic function. |
def | An optional function defining the generic function. |
group | An optional character value specifying the group generic to which this function belongs. See the help file for S4groupGeneric for more information. |
valueClass | An optional character value specifying the name of the class (or classes) to which objects returned by this function must belong. |
where | The environment in which to store the new generic function. |
package | A character value specifying the package name with which the generic function is associated. |
signature | An optional character vector specifying the names of the formal arguments (as labels) and classes for the arguments to the function (as values). The class name “ANY” can be used to mean that arguments of any type are allowed. |
useAsDefault | A logical value or function specifying the function to use as the default method. See the help file for more information. |
genericFunction | Not currently used. |
simpleInheritanceOnly | A logical value specifying whether to require that methods be inherited through simple inheritance only. |
To associate a method with a class (or, more specifically, a signature with a generic function), you use the setMethod function:
setMethod(f, signature=character(), definition,
where = topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)
Here is a description of the arguments for setMethod.
Argument | Description | Default |
---|---|---|
f | A generic function or the name of a generic function. | |
signature | A vector containing the names of the formal arguments (as labels) and classes for the arguments to the function (as values). The class name “ANY” can be used to mean that arguments of any type are allowed. | character() |
definition | The function to be called when the method is evaluated. | |
where | The environment in which the method was defined. | topenv(parent.frame()) |
valueClass | Not used; included for backward compatibility. | NULL |
sealed | Used to indicate if this class can be redefined by calling setClass again with the same class name. | FALSE |
Managing Methods
The methods package includes a number of functions for managing generic methods.
The methods package also includes functions for managing methods.
For more information on these functions, see the corresponding help files.
Basic Classes
Classes for built-in types are shown in Table 10-1; these are often called basic classes. All classes are built on top of these classes. Additionally, it is possible to write new methods for these classes that override the defaults.
Table 10-1. Classes of built-in types
The vector classes (integer, numeric, complex, character, logical, and raw) all extend the vector class. The vector class is a virtual class.
More Help
Many tools for working with classes are included in the methods package, so you can find additional help on classes with the command library(help="methods").
[30] In technical terms, R’s implementation is called parametric polymorphism.
Old-School OOP in R: S3
If you want to implement a complex project in R, you should use S4 objects and classes. As we saw above, S4 classes implement many features of modern object-oriented programming languages: formal class definitions, simple and multiple inheritance, parameteric polymorphism, and encapsulation. Unfortunately, S3 classes are implemented and used differently from S4 objects and don’t implement many features that enable good software engineering practices.
Unfortunately, it’s very hard to avoid S3 objects in R because many important and commonly used R functions were written before S4 objects were implemented. For example, most of the modeling tools in the statistics package were written with S3 objects. In order to understand, modify, or extend this software, you have to know how S3 classes are implemented.
S3 Classes
S3 classes are implemented through object attributes. An S3 object is simply a primitive R object with additional attributes, including a class name. There is no formal definition for an S3 object; you can manually change the attributes, including the class. (S3 objects are very similar to objects in prototype-based languages such as JavaScript.)
Above, we used time series as an example of an S4 class. There is an existing S3 class for representing time series, called “ts” objects. Let’s create a sample time series object and look at how it is implemented. Specifically, we’ll look at the attributes of the object and then use typeof and unclass to examine the underlying object:
> my.ts <- ts(data=c(1, 2, 3, 4, 5), start=c(2009, 2), frequency=12)
> my.ts
Feb Mar Apr May Jun
2009 1 2 3 4 5
> attributes(my.ts)
$tsp
[1] 2009.083 2009.417 12.000
$class
[1] "ts"
> typeof(my.ts)
[1] "double"
> unclass(my.ts)
[1] 1 2 3 4 5
attr(,"tsp")
[1] 2009.083 2009.417 12.000
As you can see, a ts object is just a numeric vector (of doubles), with two attributes: class and tsp. The class attribute is just the name “ts,” and the tsp attribute is just a vector with a start time, end time, and frequency. You can’t access attributes in an S3 object using the same operator that you use to access slots in an S4 object:
> my.ts@tsp
Error: trying to get slot "tsp" from an object (class "ts")
that is not an S4 object
S3 classes lack the structure of S3 objects. Inheritance is implemented informally, and encapsulation is not enforced by the language.[31] S3 classes also don’t allow parametric polymorphism. S3 classes do, however, allow simple polymorphism. It is possible to define S3 generic functions and to dispatch by object type.
S3 Methods
S3 generic functions work by naming convention, not by explicitly registering methods for different classes. Here is how to create a generic function using S3 classes:
Pick a name for the generic function. We’ll call this gname.
Create a function named gname. In the body for gname, call UseMethod("gname").
For each class that you want to use with gname, create a function called gname.classname whose first argument is an object of class classname.
Rather than fabricating an example, let’s look at an S3 generic function in R: plot:
> plot
function (x, y, ...)
UseMethod("plot")
<bytecode: 0x106c21140>
<environment: namespace:graphics>
When you call plot on a function, plot calls UseMethod("plot"). UseMethod looks at the class of the object x. It then looks for a function named plot.class and calls plot.class(x, y, ...).
For example, we defined a new TimeSeries class above. To add a plot method for TimeSeries objects, we simply create a function named plot.TimeSeries:
> plot.TimeSeries <- function(object, ...) {
+ plot(object@data, ...)
+ }
So we could now call:
> plot(my.TimeSeries)
and R would, in turn, call plot.TimeSeries(my.TimeSeries).
The function UseMethod dispatches to the appropriate method, depending on the class of the first argument’s calling function. UseMethod iterates through each class in the object’s class vector, until it finds a suitable method. If it finds no suitable method, UseMethod looks for a function for the class “default.” (A closely related function, NextMethod, is used in a method called by UseMethod; it calls the next available method for an object. See the help file for more information.)
Using S3 Classes in S4 Classes
You can’t specify an S3 class for a slot in an S4 class. To use an S3 class as a slot in an S4 class, you need to create an S4 class based on the S3 class. A simple way to do this is through the function setOldClass:
setOldClass(Classes, prototype, where, test = FALSE, S4Class)
This function takes the following arguments.
Argument | Description | Default |
---|---|---|
Classes | A character vector specifying the names of the old-style classes. | |
prototype | An object to use as a prototype; this will be used as the default object for the S4 class. | |
where | An environment specifying where to store the class definition. | The top-level environment |
test | A logical value specifying whether to explicitly test inheritance for the object. Specify test=TRUE if there can be multiple inheritance. | FALSE |
S4Class | A class definition for an S4 class or a class name for an S4 class. This will be used to define the new class. |
Finding Hidden S3 Methods
Sometimes, you may encounter cases where individual methods are hidden. The author of a package may choose to hide individual methods in order to encapsulate details of the implementation within the package; hiding methods encourages you to use the generic functions. For example, individual methods for the generic method histogram (in the lattice package) are hidden:
> library(lattice)
> methods(histogram)
[1] histogram.factor* histogram.formula* histogram.numeric*
Nonvisible functions are asterisked > histogram.factor()
Error: could not find function "histogram.factor"
Sometimes, you might want to retrieve the hidden methods (for example, to view the R code). To retrieve the hidden method, use the function getS3method. For example, to fetch the code for histogram.formula, try the following command:
> getS3method(f="histogram", class="formula")
Alternatively, you can use the function getAnywhere:
> getAnywhere(histogram.formula)
[31] If the attribute class is a vector with more than one element, then the first element is interpreted as the class of the object, and other elements name classes that the object “inherits” from. That makes inheritance a property of objects, not classes.
Part III. Working with Data
This part of the book explains how to accomplish some common tasks with R: loading data, transforming data, and saving data. These techniques are useful for any type of data that you want to work with in R.
Chapter 11. Saving, Loading, and Editing Data
This chapter explains how to load data into R, save data objects from R, and edit data using R.
Entering Data Within R
If you are entering a small number of observations, entering the data directly into R might be a good approach. There are a couple of different ways to enter data into R.
Entering Data Using R Commands
Many of the examples in Parts I and II show how to create new objects directly on the R console. If you are entering a small amount of data, this might be a good approach.
As we have seen before, to create a vector, use the c function:
> salary <- c(18700000, 14626720, 14137500, 13980000, 12916666)
> position <- c("QB", "QB", "DE", "QB", "QB")
> team <- c("Colts", "Patriots", "Panthers", "Bengals", "Giants")
> name.last <- c("Manning", "Brady", "Pepper", "Palmer", "Manning")
> name.first <- c("Peyton", "Tom", "Julius", "Carson", "Eli")
It’s often convenient to put these vectors together into a data frame. To create a data frame, use the data.frame function to combine the vectors:
> top.5.salaries <- data.frame(name.last, name.first, team, position, salary)
> top.5.salaries
name.last name.first team position salary
1 Manning Peyton Colts QB 18700000
2 Brady Tom Patriots QB 14626720
3 Pepper Julius Panthers DE 14137500
4 Palmer Carson Bengals QB 13980000
5 Manning Eli Giants QB 12916666
Using the Edit GUI
Entering data using individual statements can be awkward for more than a handful of observations. (That’s why my example above included only five observations.) Luckily, R provides a nice GUI for editing tabular data: the data editor.
To edit an object with the data editor, use the edit function. The edit function will open the data editor and return the edited object. For example, to edit the top.5.salaries data frame, you would use the following command:
> top.5.salaries <- edit(top.5.salaries)
Notice that you need to assign the output of the edit function to a symbol; otherwise, the edits will be lost. The data editor is designed to edit tabular data objects, specifically data frames and matrices. The edit function can be used with other types of objects, such as vectors, functions, and lists, but it will open a text editor.
Alternatively, you can use the fix function. The fix function calls edit on its argument and then assigns the result to the same symbol in the calling environment. For the example above, here is how you would use fix:
> fix(top.5.salaries)
On Microsoft Windows, there is a menu item “Data Editor...” under the Edit menu that allows you to enter the name of an object into a dialog box and then calls fix on the object.
Windows Data Editor
The data editor on Microsoft Windows is very intuitive. To edit a value, simply click in the cell. To change the name of a column (or to change it from numeric to character), click on the column name and a window will pop up allowing you to make those changes. You may add additional rows and columns simply by entering values into empty cells (see Figure 11-1).
Mac OS X Data Editor
On Mac OS X, the edit window looks (and works) a bit differently. You may use the data editor with data frames or matrices (see Figure 11-2).
Figure 11-1. Editor window on Windows
Figure 11-2. Editor window on Mac OS X
You can click on a data cell to edit the value. The buttons on the top have the following effects (from left to right): add a column, delete a column, add a row and delete a row. You can change a column’s width by clicking on the lines separating that column from its neighbor and dragging it. You cannot change variable types or names from this editor.
X Windows (Linux) Data Editor
A data editor GUI is also available on X Windows systems. Like the Microsoft Windows version, you can edit the column names. For convenience, this editor includes Copy, Paste, and Quit buttons (see Figure 11-3).
Figure 11-3. Data editor on X Windows
R DATA EDITOR VERSUS SPREADSHEETS
The R data editor can be convenient for inspecting a data frame or a matrix or maybe for editing a couple of values, but I don’t recommend using it for doing serious work. If you have a lot of data to enter, I recommend using a real spreadsheet or desktop database program. There are a few reasons for this.
First, the R data editor doesn’t provide an Undo or Redo function.
Second, the R data editor doesn’t make it very easy to save your work. There is no Save button. To save, you need to periodically close the editor, save your work, and then reopen the editor. Doing that is awkward and error prone; I would worry about losing my work if I used this editor.
Finally, spreadsheet programs often include data entry forms. (Desktop database programs also often have data entry forms.) If you’re entering a complicated set of data, filling out a form for each observation can be much easier than typing the results into a form.
Saving and Loading R Objects
R allows you to save and load R data objects to external files.
Saving Objects with save
The simplest way to save an object is with the save function. For example, we could use the following command to save the object top.5.salaries to the file ~/top.5.salaries.RData:
> save(top.5.salaries,file="~/top.5.salaries.RData")
In R, file paths are always specified with forward slashes (“/”), even on Microsoft Windows. So, to save this file to the directory C:\Documents and Settings\me\My Documents\top.5.salaries.rda, you would use the following command:
> save(top.5.salaries,
+ file="C:/Documents and Settings/me/My Documents/top.5.salaries.RData")
Note that the file argument must be explicitly named. (Nine out of 10 times, I forget to do so.) Now you can easily load this object back into R with the load function:
> load("~/top.5.salaries.RData")
Incidentally, files saved in R will work across platforms. (For example, the data files for this book were produced on Mac OS X but work on Windows and Linux.) You can save multiple objects to the same file by simply listing them in the same save command. If you want to save every object in the workspace, you can use the save.image function. (When you quit R, you will be asked if you want to save your current workspace. If you say yes, the workspace will be saved the same way as this function.)
The save function is very flexible and can be used in many different ways. You can save multiple objects, save to files or connections, and save in a variety of formats:
save(..., list =, file =, ascii =, version =, envir =,
compress =, eval.promises =, precheck = )
You can omit any argument except the filename. The defaults for save are very sensible: objects will be saved in a compressed binary format, and existing files won’t be overwritten.
Here is a detailed description of the arguments to save.
Argument | Description |
---|---|
... | A set of symbols that name the objects to be saved. (This is a variable-length argument.) |
list | Alternatively, you may specify the objects to be saved in a character vector. |
file | Specifies where to save the file. Both connections and filenames can be used. |
ascii | A logical value that indicates whether to write a human-readable representation of the data (ascii=TRUE) or a binary representation (ascii=FALSE). Default is ascii=FALSE . |
version | A numeric value that indicates the file version. For R 0.99.0 through 1.3.1, use version=1. For R 1.4.0 through (at least) 2.8.1, use version=2. Default is version=2 . |
envir | Specifies the environment in which to find the objects to be saved. Default is the environment in which save was called (to be precise, parent.frame() ). |
compress | A logical value that indicates whether to compress the file when saving it. (The effect is the same as running gzip on an uncompressed file.) Default is compress=TRUE for binary files (ascii=FALSE) and compress=FALSE for human-readable files (ascii=TRUE ). |
eval.promises | A logical value that indicates whether promise objects should be forced before saving. Default is eval.promises=TRUE . |
precheck | A logical value that indicates whether the save function should check if the object exists before saving (and raise an error if it is). Default is precheck=TRUE . |
Importing Data from External Files
One of the nicest things about R is how easy it is to pull in data from other programs. R can import data from text files, other statistics software, and even spreadsheets. You don’t even need a local copy of the file: you can specify a file at a URL, and R will fetch the file for you over the Internet.
Text Files
Most text files containing data are formatted similarly: each line of a text file represents an observation (or record). Each line contains a set of different variables associated with that observation. Sometimes, different variables are separated by a special character called the delimiter. Other times, variables are differentiated by their location on each line.
Delimited files
R includes a family of functions for importing delimited text files into R, based on the read.table function:
read.table(file, header, sep = , quote = , dec = , row.names, col.names,
as.is = , na.strings , colClasses , nrows =, skip = ,
check.names = , fill = , strip.white = , blank.lines.skip = ,
comment.char = , allowEscapes = , flush = , stringsAsFactors = ,
encoding = )
The read.table function reads a text file into R and returns a data.frame object. Each row in the input file is interpreted as an observation. Each column in the input file represents a variable. The read.table function expects each field to be separated by a delimiter.
For example, suppose that you had a file called top.5.salaries.csv that contained the following text (and only this text):
name.last,name.first,team,position,salary
"Manning","Peyton","Colts","QB",18700000
"Brady","Tom","Patriots","QB",14626720
"Pepper","Julius","Panthers","DE",14137500
"Palmer","Carson","Bengals","QB",13980000
"Manning","Eli","Giants","QB",12916666
This file contains the same data frame that we entered in Entering Data Using R Commands. Notice how this data is encoded:
The first row contains the column names.
Each text field is encapsulated in quotes.
Each field is separated by commas.
To load this file into R, you would specify that the first row contained column names (header=TRUE), that the delimiter was a comma (sep=","), and that quotes were used to encapsulate text (quote="\""). Here is an R statement that loads in this file:
> top.5.salaries <- read.table("top.5.salaries.csv",
+ header=TRUE, sep=",", quote="\"")
The read.table function is very flexible and allows you to load files with many different properties. Here is a brief description of the options for read.table.
Argument | Description | Default |
---|---|---|
file | The name of the file to open or, alternatively, the name of a connection containing the data. You can even use a URL. (This is the one required argument for read.table .) | |
header | A logical value indicating whether the first row of the file contains variable names. | FALSE |
sep | The character (or characters) separating fields. When “” is specified, any white space is used as a separator. | "" |
quote | If character values are enclosed in quotes, this argument should specify the type of quotes. | “” |
dec | The character used for decimal points. | . |
row.names | A character vector containing row names for the returned data frame. | |
col.names | A character vector containing column names for the returned data frame. | |
as.is | A logical vector (the same length as the number of columns) that specifies whether or not to convert character values to factors. | !stringsAsFactors |
na.strings | A character vector specifying values that should be interpreted as NA. | NA |
colClasses | A character vector of class names to be assigned to each column. | NA |
nrows | An integer value specifying the number of rows to read. (Invalid values, such as negatives, are ignored.) | -1 |
skip | An integer value specifying the number of rows in the text file to skip before beginning to read data. | 0 |
check.names | A logical value that specifies whether read.table should check if the column names are valid symbol names in R. | TRUE |
fill | Sometimes, a file might contain rows of unequal length. This argument is a logical value that specifies whether read.table should implicitly add blank fields at the end of rows where some values were missing. | !blank.lines.skip |
strip.white | When sep !="", this logical value specifies whether read.table should remove extra leading and trailing white space from character fields. | FALSE |
blank.lines.skip | A logical value that specifies whether read.table should ignore blank lines. | TRUE |
comment.char | read.table can ignore comment lines in input files if the comment lines begin with a single special character. This argument specifies the character used to delineate these lines. | "#" |
allowEscapes | A logical value that indicates whether escapes (such as “\n” for a new line) should be interpreted or if character strings should be read literally. | FALSE |
flush | A logical value that indicates whether read.table should skip to the next line when all requested fields have been read in from a line. | FALSE |
stringsAsFactors | A logical value indicating whether text fields should be converted to factors. | default.stringsAsFactors() |
encoding | The encoding scheme used for the source file. | "unknown" |
The most important options are sep and header. You almost always have to know the field separator and know if there is a header field. R includes a set of convenience functions that call read.table with different default options for these values (and a couple of others). Here is a description of these functions.
Function | header | sep | quote | dec | fill | comment.char |
---|---|---|---|---|---|---|
read.table | FALSE | \" or \' | . | !blank.lines.skip | # | |
read.csv | TRUE | , | \" | . | TRUE | |
read.csv2 | TRUE | ; | \" | , | TRUE | |
read.delim | TRUE | \t | \" | . | TRUE | |
read.delim2 | TRUE | \t | \" | , | TRUE |
In most cases, you will find that you can use read.csv for comma-separated files or read.delim for tab-delimited files without specifying any other options. (Except, I suppose, if you are in Europe, and you use commas to indicate the decimal point in numbers. Then you can use read.csv2 and read.delim2.)
As another example, suppose that you wanted to analyze some historical stock quote data. Yahoo! Finance provides this information in an easily downloadable form on its website; you can fetch a CSV file from a single URL. For example, to fetch the closing price of the S&P 500 index for every month between April 1, 1999, and April 1, 2009, you could use the following URL: http://ichart.finance.yahoo.com/table.csv?s=%5EGSPC&a=03&b=1&c=1999&d=03&e=1&f=2009&g=m&ignore=.csv.
Conveniently, you can use a URL in place of a filename in R. This means that you could load this data into R with the following expression:
> sp500 <- read.csv(paste("http://ichart.finance.yahoo.com/table.csv?",
+ "s=%5EGSPC&a=03&b=1&c=1999&d=03&e=1&f=2009&g=m&ignore=.csv", sep=""))
> # show the first 5 rows
> sp500[1:5,]
Date Open High Low Close Volume Adj.Close
1 2009-04-01 793.59 813.62 783.32 811.08 12068280000 811.08
2 2009-03-02 729.57 832.98 666.79 797.87 7633306300 797.87
3 2009-02-02 823.09 875.01 734.52 735.09 7022036200 735.09
4 2009-01-02 902.99 943.85 804.30 825.88 5844561500 825.88
5 2008-12-01 888.61 918.85 815.69 903.25 5320791300 903.25
We will revisit this example in the next section.
If you’re trying to load a really big file, you might find that loading the file takes a long time. It can be very frustrating to wait 15 minutes for a file to load, only to discover that you have specified the wrong separator. A useful technique for testing is to load only a small number of rows into R. For example, to load 20 rows, you would add nrows=20 as an argument to read.table.
Many programs can export data as text files. Here are a few tips for creating text files that you can easily read into R:
For Microsoft Excel spreadsheets, you can export them as either comma-delimited files (CSV files) or tab-delimited files (TXT files). When possible, you should specify Unix-style line delimiters, not MS-DOS line delimiters. (MS-DOS files end each line with “\n\r,” while Unix-style systems end lines with “\n.”) There are two things to think about when choosing between CSV and TXT files.
CSV files can be more convenient because (by default) opening these files in Windows Explorer will open these files in Microsoft Excel. However, if you are using CSV files, then you must be careful to enclose text in quotes if the data contains commas (and, additionally, you must escape any quotation marks within text fields). Tab characters occur less often in text, so tab-delimited files are less likely to cause problems.
If you are exporting data from a database, consider using a GUI tool to query the database and export the results. It is possible to use command-line scripts to export data using tools like SQL Plus, pgsSQL, or MySQL, but doing so is often tricky.
Here are a few options I have tried. If you are using Microsoft Windows, a good choice is Toad for Data Analysts (available from http://www.toadsoft.com/tda/tdaindex.html); this will work with many different databases. If you are exporting from MySQL, MySQL Query Browser is also a good choice; versions are available for Microsoft Windows, Mac OS X, and Linux (you can download it from http://dev.mysql.com/downloads/gui-tools/5.0.html). Oracle now produces a free multi-platform query tool called SQL Developer. (You can find it at http://www.oracle.com/technology/products/database/sql_developer/index.html.)
Fixed-width files
To read a fixed-width format text file into a data frame, you can use the read.fwf function:
read.fwf(file, widths, header = , sep = ,
skip = , row.names, col.names, n = ,
buffersize = , ...)
Here is a description of the arguments to read.fwf.
Argument | Description | Default |
---|---|---|
file | The name of the file to open or, alternatively, the name of a connection containing the data. (This is a required argument.) | |
widths | An integer vector or a list of integer vectors. If the input file has one record per line, then use an integer vector where each value represents the width of each variable. If each record spans multiple lines, then use a list of integer vectors where each integer vector corresponds to the widths of the variables on that line. (This is a required argument.) | |
header | A logical value indicating whether the first line of the file contains variable names. (If it does, the names must be delimited by sep .) | FALSE |
sep | The character used to delimit variable names in the header. | \t |
skip | An integer specifying the number of lines to skip at the beginning of the file. | 0 |
row.names | A character vector used to specify row names in the data frame. | |
col.names | A character vector used to specify column names in the data frame. | |
n | An integer value specifying the number of rows of records to read into R. (Invalid values, such as negatives, are ignored.) | -1 |
buffersize | An integer specifying the maximum number of lines to be read at one time. (This value may be tuned to optimize performance.) | 2000 |
Note that read.fwf can also take many arguments used by read.table, including as.is, na.strings, colClasses, and strip.white.
USING OTHER LANGUAGES TO PREPROCESS TEXT FILES
R is a very good system for numerical calculations and data visualization, but it’s not the most efficient choice for processing large text files. For example, the U.S. Centers for Disease Control and Prevention publishes data files containing information on every death in the United States (see http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm). These data files are provided in a fixed-width format. They are very large; the data file for 2006 was 1.1 GB uncompressed. In theory, you could load a subset of data from this file into R using a statement like this:
> # data from ftp://ftp.cdc.gov/pub/Health_Statistics/
NCHS/Datasets/DVS/mortality/mort2006us.zip
> mort06 <- read.fwf(file="MORT06.DUSMCPUB",
+ widths= c(19,1,40,2,1,1,2,2,1,4,1,2,2,2,2,1,1,1,16,4,1,1,1,1,
+ 34,1,1,4,3,1,3,3,2,283,2,1,1,1,1,33,3,1,1),
+ col.names= c("X0","ResidentStatus","X1","Education1989",
+ "Education2003","EducationFlag","MonthOfDeath",
+ "X5","Sex","AgeDetail","AgeSubstitution",
+ "AgeRecode52","AgeRecode27","AgeRecode12",
+ "AgeRecodeInfant22","PlaceOfDeath","MaritalStatus",
+ "DayOfWeekofDeath","X15","CurrentDataYear",
+ "InjuryAtWork","MannerOfDeath","MethodOfDisposition",
+ "Autopsy","X20","ActivityCode","PlaceOfInjury",
+ "ICDCode","CauseRecode358","X24","CauseRecode113",
+ "CauseRecode130","CauseRecord39","X27","Race",
+ "BridgeRaceFlag","RaceImputationFlag","RaceRecode3",
+ "RaceRecord5","X32","HispanicOrigin","X33",
+ "HispanicOriginRecode","X34")
+ )
Unfortunately, this probably won’t work very well. First, R processes files less quickly than some other languages. Second, R will try to load the entire table into memory. The file takes up 1.1 GB as a raw text file. Many fields in this file are used to encode categorical values that have a small number of choices (such as race) but show the value as numbers. R will convert these character values from single characters (which take up 1 byte) to integers (which take up 4 bytes). This means that it will take a lot of memory to load this file into your computer.
As an alternative, I’d suggest using a scripting language like Perl, Python, or Ruby to preprocess large, complex text files and turn them into a digestible form. (As a side note, I usually write out lists of field names and lengths in Excel and then use Excel formulas to create the R or Perl code to load them. That’s how I generated all the code shown in this example.) Here’s the Perl script I used to preprocess the raw mortality data file, filtering out fields I didn’t need and writing the results to a CSV file:
#!/usr/bin/perl
# file to preprocess (and filter) mortality data
print "ResidentStatus,Education1989,Education2003,EducationFlag," .
"MonthOfDeath,Sex,AgeDetail,AgeSubstitution,AgeRecode52," .
"AgeRecode27,AgeRecode12,AgeRecodeInfant22,PlaceOfDeath," .
"MaritalStatus,DayOfWeekofDeath,CurrentDataYear,InjuryAtWork," .
"MannerOfDeath,MethodOfDisposition,Autopsy,ActivityCode," .
"PlaceOfInjury,ICDCode,CauseRecode358,CauseRecode113," .
"CauseRecode130,CauseRecord39,Race,BridgeRaceFlag," .
"RaceImputationFlag,RaceRecode3,RaceRecord5,HispanicOrigin," .
"HispanicOriginRecode\n";
while(<>) {
my ($X0,$ResidentStatus,$X1,$Education1989,$Education2003,
$EducationFlag,$MonthOfDeath,$X5,$Sex,$AgeDetail,
$AgeSubstitution,$AgeRecode52,$AgeRecode27,$AgeRecode12,
$AgeRecodeInfant22,$PlaceOfDeath,$MaritalStatus,
$DayOfWeekofDeath,$X15,$CurrentDataYear,$InjuryAtWork,
$MannerOfDeath,$MethodOfDisposition,$Autopsy,$X20,$ActivityCode,
$PlaceOfInjury,$ICDCode,$CauseRecode358,$X24,$CauseRecode113,
$CauseRecode130,$CauseRecord39,$X27,$Race,$BridgeRaceFlag,
$RaceImputationFlag,$RaceRecode3,$RaceRecord5,$X32,
$HispanicOrigin,$X33,$HispanicOriginRecode,$X34)
= unpack("a19a1a40a2a1a1a2a2a1a4a1a2a2a2a2a1a1a1a16a4a1" .
"a1a1a1a34a1a1a4a3a1a3a3a2a283a2a1a1a1a1a33a3a1a1",
$_);
print "$ResidentStatus,$Education1989,$Education2003,".
"$EducationFlag,$MonthOfDeath,$Sex,$AgeDetail,".
"$AgeSubstitution,$AgeRecode52,$AgeRecode27,".
"$AgeRecode12,$AgeRecodeInfant22,$PlaceOfDeath," .
"$MaritalStatus,$DayOfWeekofDeath,$CurrentDataYear,".
"$InjuryAtWork,$MannerOfDeath,$MethodOfDisposition,".
"$Autopsy,$ActivityCode,$PlaceOfInjury,$ICDCode,".
"$CauseRecode358,$CauseRecode113,$CauseRecode130,".
"$CauseRecord39,$Race,$BridgeRaceFlag,$RaceImputationFlag,".
"$RaceRecode3,$RaceRecord5,$HispanicOrigin," .
"$HispanicOriginRecode\n";
}
I executed this script with the following command (in an OS shell):
$ perl mortalities.pl < MORT06.DUSMCPUB > MORT06.csv
You can now load the data into R with a line like this:
> mort06 <- read.csv(file="~/Documents/book/data/MORT06.csv")
We’ll come back to this data set in the chapters on statistical tests and statistical models.
Other functions to parse data
Most of the time, you should be able to load text files into R with the read.table function. Sometimes, however, you might be provided with a file that cannot be read correctly with this function. For example, observations in the file might span multiple lines. To read data into R one line at a time, use the function readLines:
readLines(con = stdin(), n = -1L, ok = TRUE, warn = TRUE,
encoding = "unknown")
The readLines function will return a character vector, with one value corresponding to each row in the file. Here is a description of the arguments to readLines.
Argument | Description | Default |
---|---|---|
con | A character string (specifying a file or URL) or a connection containing the data to read. | stdin() |
n | An integer value specifying the number of lines to read. (Negative values mean “read until the end of the file.”) | -1L |
ok | A logical value specifying whether to trigger an error if the number of lines in the file is less than n. | TRUE |
warn | A logical value specifying whether to warn the user if the file does not end with an EOL. | TRUE |
encoding | A character value specifying the encoding of the input file. | "unknown" |
Note that you can use readLines interactively to enter data.
Another useful function for reading more complex file formats is scan:
scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,
encoding = "unknown")
The scan function allows you to read the contents of a file into R. Unlike readLines, scan allows you to read data into a specifically defined data structure using the argument what.
Here is a description of the arguments to scan.
Argument | Description | Default |
---|---|---|
file | A character string (specifying a file or URL) or a connection containing the data to read. | "" |
what | The type of data to be read. If all fields are the same type, you can specify logical, integer, numeric, complex, character, or raw. Otherwise, specify a list of types to read values into a list. (You can specify the type of each element in the list individually.) | double(0) |
nmax | An integer value specifying the number of values to read or the number of records to read (if what is a list). (Negative values mean “read until the end of the file.”) | -1 |
n | An integer value specifying the number of values to read. (Negative values mean “read until the end of the file.”) | -1 |
sep | Character value specifying the separator between values. sep="" means that any white space character is interpreted as a separator. | “” |
quote | Character value used to quote strings. | if(identical(sep, "\n")) "" else "'\"" |
dec | Character value used for decimal place in numbers. | "." |
skip | Number of lines to skip at the top of the file. | 0 |
nlines | Number of lines of data to read. Nonpositive values mean that there is no limit. | 0 |
na.strings | Character values specifying how NA values are encoded. | "NA" |
flush | A logical value specifying whether to “flush” any remaining text on a line after the last requested item on a line is read into what . (Commonly used to allow comments at the end of lines or to ignore unneeded fields.) | FALSE |
fill | Specifies whether to add empty fields to lines with fewer fields than specified by what . | FALSE |
strip.white | Specifies whether to strip leading and trailing white space from character fields. Applies only when sep is specified. | FALSE |
quiet | If quiet=FALSE, scan will print a message showing how many lines were read. If quiet=TRUE , then this message is suppressed. | FALSE |
blank.lines.skip | Specifies whether to ignore blank lines. | TRUE |
multi.line | If what is a list, allows records to span multiple lines. | TRUE |
comment.char | Notes a character to be used to specify comment lines. | "" |
allowEscapes | Specifies whether C-style escapes (such as \t for Tab character or \n for newlines) should be interpreted by scan or read verbatim. If allowEscapes=FALSE, then they are interpreted as special characters; if allowEscapes=TRUE , then they are read literally. | FALSE |
encoding | A character value specifying the encoding of the input file. | "unknown" |
Like readLines, you can also use scan to enter data directly into R.
Other Software
Although many software packages can export data as text files, you might find it more convenient to read their data files directly. R can read files in many other formats. Table 11-1 shows a list of functions for reading (and writing) files in other formats. You can find more information about these functions in the help files.
Table 11-1. Functions to read and write data
Exporting Data
R can also export R data objects (usually data frames and matrices) as text files. To export data to a text file, use the write.table function:
write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))
There are wrapper functions for write.table that call write.table with different defaults. These are useful if you want to create a file of comma-separated values, for example, to import into Microsoft Excel:
write.csv(...)
write.csv2(...)
Here is a description of the arguments to write.table.
Argument | Description | Default |
---|---|---|
x | Object to export. | |
file | Character value specifying a filename or a connection object to which you would like to write the output. | "" |
append | A logical value indicating whether to append the output to the end of an existing file (append=TRUE) or replace the file (append=FALSE ). | FALSE |
quote | A logical value specifying whether to surround any character or factor values with quotes, or a numeric vector specifying which columns to surround with quotes. | TRUE |
sep | A character value specifying the value that separates values within a row. | "" |
eol | A character value specifying the value to append on the end of each line. | "\n" |
na | A character value specifying how to represent NA values. | "NA" |
dec | A character value specifying the decimal separator in numeric values. | "." |
row.names | A logical value indicating whether to include row names in the output or a numeric vector specifying the rows from which row names should be included. | TRUE |
col.names | A logical value specifying whether to include column names or a character vector specifying alternate names to include. | TRUE |
qmethod | Specifies how to deal with quotes inside quoted character and factor fields. Specify qmethod="escape" to escape quotes with a backslash (as in C) or qmethod="double" to escape quotes as double quotes (i.e., “ is transformed to “”). | "escape" |
Importing Data From Databases
It is very common for large companies, healthcare providers, and academic institutions to keep data in relational databases. This section explains how to move data from databases into R.
Export Then Import
One of the best approaches for working with data from a database is to export the data to a text file and then import the text file into R. In my experience dealing with very large data sets (1 GB or more), I’ve found that you can import data into R at a much faster rate from text files than you can from database connections.
For directions on how to import these files into R, see Text Files.
If you plan to extract a large amount of data once and then analyze the data, this is often the best approach. However, if you are using R to produce regular reports or to repeat an analysis many times, then it might be better to import data into R directly through a database connection.
Database Connection Packages
In order to connect directly to a database from R, you will need to install some optional packages. The packages you need depend on the database(s) to which you want to connect and the connection method you want to use.
There are two sets of database interfaces available in R:
RODBC. The RODBC package allows R to fetch data from ODBC (Open DataBase Connectivity) connections. ODBC provides a standard interface for different programs to connect to databases.
DBI. The DBI package allows R to connect to databases using native database drivers or JDBC drivers. This package provides a common database abstraction for R software. You must install additional packages to use the native drivers for each database.
Often, you can choose from either option. You might wonder which package is the better choice: RODBC or DBI? Here are a few features to consider.
Driver availability. On Windows and Linux, you can easily find free ODBC drivers for most common databases. On Mac OS X, it can be difficult to find free ODBC drivers for a database. However, JDBC drivers are readily available for each platform.
Special features and performance. A native database interface might take advantage of unique product features and be faster than a generic driver.
Package availability. Not all packages will work on all platforms.
Code quality. The DBI package is written using S4 objects and methods. Using the DBI package can help you write better code.
In this section, I’ll show how to configure an ODBC connection to an SQLite database on Microsoft Windows and Mac OS X. SQLite is a tool for storing databases in files. It’s completely contained in a C library. This means that you can try the examples in this section without installing a full database system.
For this example, we will use an SQLite database containing the Baseball Databank database. You do not need to install any additional software to use this database. This file is included in the nutshell package. To access it within R, use the following expression as a filename: system.file("extdata", "bb.db", package = "nutshell").
RODBC
The R package for accessing databases through ODBC is the RODBC package. Microsoft and Simba Technologies jointly developed ODBC in the late 1990s based on a design from the SQL Access Group. In ODBC, different data sources are labeled by database source names (DSNs).
Getting RODBC working
Before you can use RODBC, you need to configure the ODBC connection. You only need to do this once; after you have configured R to communicate with your database, you are ready to use RODBC inside R.
Install the RODBC package in R.
If needed, install the ODBC drivers for your platform.
Configure an ODBC connection to your database.
Here are directions for completing each step.
Installing the RODBC package
A quick way to install the RODBC package (if it is not already installed) is with the install.packages function:
> install.packages("RODBC")
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/2.8/
RODBC_1.2-5.tgz'
Content type 'application/x-gzip' length 120902 bytes (118 Kb)
opened URL
==================================================
downloaded 118 Kb
The downloaded packages are in
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//Rtmp2UFF7o/
downloaded_packages
You will get slightly different output when you run this command. Don’t worry about the output unless you see an error message. If you want to make sure that the package was installed correctly, try loading it in R:
> library(RODBC)
If there is no error message, then the package is now locally installed (and available). For information about other methods for installing RODBC, see Chapter 4.
Installing ODBC drivers
If you already have the correct ODBC drivers installed (for example, to access a database from Microsoft Excel), then you can skip this step. Table 11-2 shows some sources for ODBC drivers. (I haven’t used most of these products and am not endorsing any of them.)
Table 11-2. Where to find ODBC drivers
Provider | Database | Platforms | Website |
---|---|---|---|
MySQL | MySQL | Microsoft Windows, Linux, Mac OS X, Solaris, AIX, FreeBSD, others | http://dev.mysql.com/downloads/connector/odbc/ |
Oracle | Oracle | Microsoft Windows, Linux, Solaris | http://www.oracle.com/technology/tech/windows/odbc/index.html |
PostgreSQL | PostgreSQL | Microsoft Windows, Linux, other Unix-like platforms | http://www.postgresql.org/ftp/odbc/versions/ |
Microsoft | SQL Server | Microsoft Windows | http://msdn.microsoft.com/en-us/data/aa937730.aspx |
Data Direct | Oracle, SQL Server, DB2, Sybase, Teradata, MySQL, PostgreSQL, others | Microsoft Windows, Linux, other Unix platforms | http://www.datadirect.com/products/odbc/index.ssp |
Easysoft | Oracle, SQL Server, others | Microsoft Windows, Linux | http://www.easysoft.com/products/data_access/index.html |
Actual Technologies | Oracle, SQL Server, Sybase, MySQL, PostgreSQL, SQLite | Mac OS X | http://www.actualtechnologies.com/ |
OpenLink Software | Oracle, SQL Server, DB2, Sybase, MySQL, PostgreSQL, others | Microsoft Windows, Mac OS X, Linux, others | http://uda.openlinksw.com/odbc/ |
Christian Werner Software | SQLite | Microsoft Windows, Mac OS X, Linux | http://www.ch-werner.de/sqliteodbc/ |
Follow the directions for the driver you are using. For the example in this section, I used the SQLite ODBC driver.
Example: SQLite ODBC on Mac OS X
To use this free driver, you’ll need to compile and install the driver yourself. Luckily, this process works flawlessly on Mac OS X 10.5.6.[32] Here is how to install the drivers on Mac OS X:
Download the latest sources from http://www.ch-werner.de/sqliteodbc/. (Do not download the precompiled version.) I used sqliteodbc-0.80.tar.gz. You can do this with this command:
% wget http://www.ch-werner.de/sqliteodbc/sqliteodbc-0.80.tar.gz
Unpack and unzip the archive. You can do this with this command:
% tar xvfz sqliteodbc-0.80.tar.gz
Change to the directory of sources files:
% cd sqliteodbc-0.80
Configure the driver for your platform, compile the driver, and then install it. You can do this with these commands:
% ./configure
% make
% sudo make install
Now you need to configure your Mac to use this driver.
Open the ODBC Administrator program (usually in /Applications/Utilities).
Select the Drivers tab and click Add.
Enter a name for the driver (like “SQLite ODBC Driver”) in the Description field. Enter “/usr/local/lib/libsqlite3odbc.dylib” in the Driver File and Setup File fields, as shown in Figure 11-4. Click the OK button.
Now select the User DSN tab or System DSN tab (if you want this database to be available for all users). Click the Add button to specify the new database.
Figure 11-4. Mac OS X ODBC Administrator: driver settings
You will be prompted to choose a driver. Choose SQLite ODBC Driver (or whatever name you entered above) and click the OK button.
Enter a name for the data source, such as “bbdb.” You need to add a keyword that specifies the database location. Click the Add button at the bottom of the window. Select the Keyword field in the table and enter Database. Select the Value field and enter the path to the database. (I entered “/Library/Frameworks/R.framework/Resources/library/nutshell/extdata/bb.db” to use the example in the nutshell package.) Figure 11-5 shows how this looks. Click OK when you are done.
Figure 11-5. Mac OS X ODBC Administrator: adding a data source
The ODBC connection is now configured. You can test this with a couple of simple commands in R (we’ll explain what these mean below):
> bbdb <- odbcConnect("bbdb")
> odbcGetInfo(bbdb)
DBMS_Name
"SQLite"
DBMS_Ver
"3.4.0"
Driver_ODBC_Ver
"03.00"
Data_Source_Name
"bbdb"
Driver_Name
"sqlite3odbc.so"
Driver_Ver
"0.80"
ODBC_Ver
"03.52.0000"
Server_Name
"/Library/Frameworks/R.framework/Resources/library/nutshell/bb.db"
Example: SQLite ODBC on Windows
On Windows, you don’t have to build the drivers from source. Here is how to get it working:
Download the SQLite ODBC installer package from http://www.ch-werner.de/sqliteodbc/sqliteodbc.exe.
Run the installer, using the default options in the wizard.
Open the ODBC Data Source Administrator application. On Microsoft Windows XP, you can find this in Administrative Tools (under Control Panels). You can click the Drivers tab to make sure that the SQLite ODBC drivers are installed, as shown in Figure 11-6.
Next, you need to configure a DSN for your database. Go to the User DSN tab (or System DSN if you want to share the database among multiple users) and click the Add button. Select SQLite3 ODBC Driver and click Finish.
You will be prompted for configuration information as shown in Figure 11-7. Enter a data source name of your choice (I used “bbdb”). Enter the path of the database file or use the Browse button to browse for the file. (You can find the path for the file in R using the expression system.file("extdata", "bb.db", package="nutshell").) Enter 200 ms for the Lock Timeout, select NORMAL as the Sync Mode, and click Don’t Create Database. When you are done, click OK.
You should now be able to access the bbdb file through ODBC. You can check that everything worked correctly by entering a couple of commands in R:
> bbdb <- odbcConnect("bbdb")
> odbcGetInfo(bbdb)
DBMS_Name
"SQLite"
DBMS_Ver
"3.6.10"
Driver_ODBC_Ver
"03.00"
Data_Source_Name
"bbdb"
Driver_Name
"C:\\WINDOWS\\system32\\sqlite3odbc.dll"
Driver_Ver
"0.80"
ODBC_Ver
"03.52.0000"
Server_Name
"C:\\Program Files\\R\\R-2.10.0\\library\\nutshell\\data\\bb.db"
Figure 11-6. ODBC Data Source Administrator: Drivers tab
Figure 11-7. SQLite3 ODBC configuration
Using RODBC
Connecting to a database in R is like connecting to a file. First, you need to connect to a database. Next, you can execute any database queries. Finally, you should close the connection.
Opening a channel
To establish a connection, use the odbcConnect function:
odbcConnect(dsn, uid = "", pwd = "", ...)
You need to specify the DSN for the database to which you want to connect. If you did not specify a username and password in the DSN, you may specify a username with the uid argument and a password with the pwd argument. Other arguments are passed to the underlying odbcDriverConnect function. The odbcConnect function returns an object of class RODBC that identifies the connection. This object is usually called a channel.
Here is how you would use this function for the example DSN, “bbdb”:
> library(RODBC)
> bbdb <- odbcConnect("bbdb")
Getting information about the database
You can get information about an ODBC connection using the odbcGetInfo function. This function takes a channel (the object returned by odbcConnect) as its only argument. It returns a character vector with information about the driver and connection; each value in the vector is named. Example output from this function is shown in Example: SQLite ODBC on Mac OS X and Example: SQLite ODBC on Windows.
To get a list of the tables in the underlying database that the connected user can read, use the sqlTables function. This function returns a data frame with information about the available tables:
> sqlTables(bbdb)
TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS
1 <NA> <NA> Allstar TABLE <NA>
2 <NA> <NA> AllstarFull TABLE <NA>
3 <NA> <NA> Appearances TABLE <NA>
4 <NA> <NA> AwardsManagers TABLE <NA>
5 <NA> <NA> AwardsPlayers TABLE <NA>
6 <NA> <NA> AwardsShareManagers TABLE <NA>
7 <NA> <NA> AwardsSharePlayers TABLE <NA>
8 <NA> <NA> Batting TABLE <NA>
9 <NA> <NA> BattingPost TABLE <NA>
10 <NA> <NA> Fielding TABLE <NA>
11 <NA> <NA> FieldingOF TABLE <NA>
12 <NA> <NA> FieldingPost TABLE <NA>
13 <NA> <NA> HOFold TABLE <NA>
14 <NA> <NA> HallOfFame TABLE <NA>
15 <NA> <NA> Managers TABLE <NA>
16 <NA> <NA> ManagersHalf TABLE <NA>
17 <NA> <NA> Master TABLE <NA>
18 <NA> <NA> Pitching TABLE <NA>
19 <NA> <NA> PitchingPost TABLE <NA>
20 <NA> <NA> Salaries TABLE <NA>
21 <NA> <NA> Schools TABLE <NA>
22 <NA> <NA> SchoolsPlayers TABLE <NA>
23 <NA> <NA> SeriesPost TABLE <NA>
24 <NA> <NA> Teams TABLE <NA>
25 <NA> <NA> TeamsFranchises TABLE <NA>
26 <NA> <NA> TeamsHalf TABLE <NA>
27 <NA> <NA> xref_stats TABLE <NA>
To get detailed information about the columns in a specific table, use the sqlColumns function:
> sqlColumns(bbdb,"Allstar")
TABLE_CAT TABLE_SCHEM TABLE_NAME COLUMN_NAME DATA_TYPE TYPE_NAME
1 Allstar playerID 12 varchar(9)
2 Allstar yearID 5 smallint(4)
3 Allstar lgID 12 char(2)
COLUMN_SIZE BUFFER_LENGTH DECIMAL_DIGITS NUM_PREC_RADIX NULLABLE
1 9 9 10 0 0
2 4 4 10 0 0
3 2 2 10 0 0
REMARKS COLUMN_DEF SQL_DATA_TYPE SQL_DATETIME_SUB CHAR_OCTET_LENGTH
1 <NA> 12 NA 16384
2 <NA> 0 5 NA 16384
3 <NA> 12 NA 16384
ORDINAL_POSITION IS_NULLABLE
1 1 NO
2 2 NO
3 3 NO
You can also discover the primary keys for a table using the sqlPrimaryKeys function.
Getting data
Finally, we’ve gotten to the interesting part: executing queries in the database and returning results. RODBC provides some functions that let you query a database even if you don’t know SQL.
To fetch a table (or view) from the underlying database, you can use the sqlFetch function. This function returns a data frame containing the contents of the table:
sqlFetch(channel, sqtable, ..., colnames = , rownames = )
You need to specify the ODBC channel with the channel argument and the table name with the sqtable argument. You can specify whether the column names and row names from the underlying table should be used in the data frame with the colnames and rownames arguments. The column names from the table will be used in the returned data frame (this is enabled by default). If you choose to use row names, the first column in the returned data is used for column names in the data frame (this is disabled by default). You may pass additional arguments to this function, which are, in turn, passed to sqlQuery and sqlGetResults (described below).
As an example, let’s load the content of the Teams table into a data frame called “t”:
> teams <- sqlFetch(bbdb,"Teams")
> names(teams)
[1] "yearID" "lgID" "teamID" "franchID"
[5] "divID" "Rank" "G" "Ghome"
[9] "W" "L" "DivWin" "WCWin"
[13] "LgWin" "WSWin" "R" "AB"
[17] "H" "2B" "3B" "HR"
[21] "BB" "SO" "SB" "CS"
[25] "HBP" "SF" "RA" "ER"
[29] "ERA" "CG" "SHO" "SV"
[33] "IPouts" "HA" "HRA" "BBA"
[37] "SOA" "E" "DP" "FP"
[41] "name" "park" "attendance" "BPF"
[45] "PPF" "teamIDBR" "teamIDlahman45" "teamIDretro"
> dim(teams)
[1] 2595 48
After loading the table into R, you can easily manipulate the data using R commands:
> # show wins and losses for American League teams in 2008
> subset(teams,
+ subset=(teams$yearID==2008 & teams$lgID=="AL"),
+ select=c("teamID", "W", "L"))
teamID W L
2567 LAA 100 62
2568 KCA 75 87
2571 DET 74 88
2573 CLE 81 81
2576 CHA 89 74
2577 BOS 95 67
2578 BAL 68 93
2582 MIN 88 75
2583 NYA 89 73
2585 OAK 75 86
2589 SEA 61 101
2592 TBA 97 65
2593 TEX 79 83
2594 TOR 86 76
There are related functions for writing a data frame to a database (sqlSave) or for updating a table in a database (sqlUpdate); see the help files for these functions for more information.
You can also execute an arbitrary SQL query in the underlying database. SQL is a very powerful language; you can use SQL to fetch data from multiple tables, to fetch a summary of the data in one (or more) tables, or to fetch specific rows or columns from the database. You can do this with the sqlQuery function:
sqlQuery(channel, query, errors = , max =, ..., rows_at_time = )
This function returns a data frame containing the rows returned by the query. As an example, we could use an SQL query to select only the data shown above (wins and losses by team in the American League in 2008):
> sqlQuery(bbdb,
+ "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")
teamID W L
1 BAL 68 93
2 BOS 95 67
3 CHA 89 74
4 CLE 81 81
5 DET 74 88
6 KCA 75 87
7 LAA 100 62
8 MIN 88 75
9 NYA 89 73
10 OAK 75 86
11 SEA 61 101
12 TBA 97 65
13 TEX 79 83
14 TOR 86 76
If you want to fetch data from a very large table, or from a very complicated query, you might not want to fetch all the data at one time. The RODBC library provides a mechanism for fetching results piecewise. To do this, you begin by calling sqlQuery (or sqlFetch), but specify a value for max, telling the function the maximum number of rows that you want to retrieve at one time. You can fetch the remaining rows with the sqlGetResults function:
sqlGetResults(channel, as.is = , errors = , max = , buffsize = ,
nullstring = , na.strings = , believeNRows = , dec = ,
stringsAsFactors = )
The sqlQuery function actually calls the sqlGetResults function to fetch the results of the query. Here is a list of the arguments for these two functions. (If you are using sqlFetch, the corresponding function to fetch additional rows is sqlFetchMore.)
Argument | Description | Default |
---|---|---|
channel | Specifies the channel for the underlying database. | |
query | A character value specifying the SQL query to execute. | |
errors | A logical value specifying what to do when an error is encountered. When errors=TRUE, the function will stop and display the error if an error is encountered. When errors=FALSE , a value of -1 is returned. | TRUE |
max | An integer specifying the maximum number of rows to return. Specify 0 for no maximum. | 0 (meaning no maximum) |
rows_at_time | An integer specifying the number of rows to fetch from the ODBC connection on each call to the underlying driver; not all drivers allow values greater than 1. (Note that this is a performance optimization; it doesn’t mean the same thing as the max argument. For modern drivers, the package documentation suggests a value of 1,024.) | 1 |
as.is | A logical vector specifying which columns should be converted to factors. | FALSE |
buffsize | An integer used to specify the buffer size for the driver. (If you know the approximate number of rows that a query will return, you can specify that value to optimize performance.) | 1000 |
nullstring | Character values to be used for null values. | NA |
na.strings | Character values to be mapped to NA values. | "NA" |
believeNRows | A logical value that tells this function whether the row counts returned by the ODBC driver are correct. (This is a performance optimization.) | TRUE |
dec | The character used as the decimal point in decimal values. | getOption("dec") |
stringsAsFactors | A logical value that specifies whether character value columns not explicitly included in as.is should be converted to factors. | default.stringsAsFactors() |
By the way, notice that the sqlQuery function can be used to execute any valid query in the underlying database. It is most commonly used to just query results (using SELECT queries), but you can enter any valid data manipulation language query (including SELECT, INSERT, DELETE, and UPDATE queries) and data definition language query (including CREATE, DROP, and ALTER queries).
UNDERLYING FUNCTIONS
There is a second set of functions in the RODBC package. The functions odbcQuery, odbcTables, odbcColumns, and odbcPrimaryKeys are used to execute queries in the database but not to fetch results. A second function, odbcFetchResults, is used to get the results. The first four functions return status codes as integers, which is not very R-like. (It’s more like C.) The odbcFetchResults function returns its results in list form, which can also be somewhat cumbersome. If there is an error, you can retrieve the message by calling odbcGetErrMsg.
Sometimes, it might be convenient to use these functions because they give you greater control over how data is fetched from the database. However, the higher-level functions described in this section are usually much more convenient.
Closing a channel
When you are done using an RODBC channel, you can close it with the odbcClose function. This function takes the connection name as its only argument:
> odbcClose(bbdb)
Conveniently, you can also close all open channels using the odbcCloseAll function. It is generally a good practice to close connections when you are done, because this frees resources locally and in the underlying database.
DBI
As described above, there is a second set of packages for accessing databases in R: DBI. DBI is not a single package, but instead is a framework and set of packages for accessing databases. Table 11-3 shows the set of database drivers available through this interface. One important difference between the DBI packages and the RODBC package is in the objects they use: DBI uses S4 objects to represent drivers, connections, and other objects.
Table 11-3. DBI packages
Database | Package |
---|---|
MySQL | RMySQL |
SQLite | RSQLite |
Oracle | ROracle |
PostgreSQL | RPostgreSQL |
Any database with a JDBC driver | RJDBC |
As an example, let’s use the RSQLite package. You can install this package with the following command:
> install.packages("RSQLite")
When you load this package, it will automatically load the DBI package as well:
> library(RSQLite)
Loading required package: DBI
If you are familiar with SQL but new to SQLite, you may want to review what SQL commands are supported by SQLite. You can find this list at http://www.sqlite.org/lang.html.
Opening a connection
To open a connection with DBI, use the dbConnect function:
dbConnect(drv, ...)
The argument drv can be a DBIDriver object or a character value describing the driver to use. You can generate a DBIDriver object with a call to the DBI driver. The dbConnect function can take additional options, depending on the type of database you are using. For SQLite databases, the most important argument is dbname (which specifies the database file). Check the help files for the database you are using for more options. Even arguments for parameters like usernames are not the same between databases.
For example, to create a driver for SQLite, you can use a command like this:
> drv <- dbDriver("SQLite")
To open a connection to the example database, we could use the following command:
> con <- dbConnect(drv,
+ dbname=system.file("extdata", "bb.db", package="nutshell"))
Alternatively, we could skip creating the driver object and simply create the connection:
> con <- dbConnect("SQLite,
+ dbname=system.file("extdata", "bb.db", package="nutshell"))
There are several reasons why it can be better to explicitly create a driver object. First, you can get information about open connections if you can identify the driver. Additionally, if you are concerned with resource consumption, it may be wise to explicitly create a driver object, because you can free the object later. (See Cleaning up for more details.)
Getting DB information
There are several ways to get information about an open database connection object. As noted above, DBI objects are S4 objects, so they have meaningful classes:
> class(drv)
[1] "SQLiteDriver"
attr(,"package")
[1] "RSQLite"
> class(con)
[1] "SQLiteConnection"
attr(,"package")
[1] "RSQLite"
To get the list of connection objects associated with a driver object, use the dbListConnections function:
> dbListConnections(drv)
[[1]]
<SQLiteConnection:(4580,0)>
You can get some basic information about a connection object, such as the database name and username, through the dbGetInfo function:
> dbGetInfo(con)
$host
[1] "localhost"
$user
[1] "NA"
$dbname
[1] "/Library/Frameworks/R.framework/Resources/library/nutshell/data/bb.db"
$conType
[1] "direct"
$serverVersion
[1] "3.6.4"
$threadId
[1] -1
$rsId
integer(0)
$loadableExtensions
[1] "off"
To find the set of tables that you can access from a database connection, use the dbListTables function. This function returns a character vector of table names:
> dbListTables(con)
[1] "Allstar" "AllstarFull" "Appearances"
[4] "AwardsManagers" "AwardsPlayers" "AwardsShareManagers"
[7] "AwardsSharePlayers" "Batting" "BattingPost"
[10] "Fielding" "FieldingOF" "FieldingPost"
[13] "HOFold" "HallOfFame" "Managers"
[16] "ManagersHalf" "Master" "Pitching"
[19] "PitchingPost" "Salaries" "Schools"
[22] "SchoolsPlayers" "SeriesPost" "Teams"
[25] "TeamsFranchises" "TeamsHalf" "xref_stats"
To find the list of columns, use the List dbListFields function. This function takes a connection object and a table name as arguments and returns a character vector of column names:
> dbListFields(con,"Allstar")
[1] "playerID" "yearID" "lgID"
Querying the database
To query a database using DBI and return a data frame with the results, use the dbGetQuery function. This function requires a connection object and SQL statement as arguments. Check the help files for your database for additional arguments.
For example, to fetch a list of the wins and losses for teams in the American League in 2008, you could use the following query:
> wlrecords.2008 <- dbGetQuery(con,
+ "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")
To get information on all batters in 2008, you might use a query like this:
> batting.2008 <- dbGetQuery(con,
+ paste("SELECT m.nameLast, m.nameFirst, m.weight, m.height, ",
+ "m.bats, m.throws, m.debut, m.birthYear, b.* ",
+ "from Master m inner join Batting b ",
+ "on m.playerID=b.playerID where b.yearID=2008"))
> names(batting.2008)
[1] "nameLast" "nameFirst" "weight" "height" "bats"
[6] "throws" "debut" "birthYear" "playerID" "yearID"
[11] "stint" "teamID" "lgID" "G" "G_batting"
[16] "AB" "R" "H" "2B" "3B"
[21] "HR" "RBI" "SB" "CS" "BB"
[26] "SO" "IBB" "HBP" "SH" "SF"
[31] "GIDP" "G_old"
> dim(batting.2008)
[1] 1384 31
This data set is used in other sections of this book as an example. For convenience, it is included in the nutshell package.
You might find it more convenient to separately submit an SQL query and fetch the results. To do this, you would use the dbSendQuery function to send a query and then use fetch to get the results. The dbSendQuery function returns a DBIResult object (actually, it returns an object from a class that inherits from DBIResult). You then use the fetch function to extract data from the results object.
The dbSendQuery function takes the same arguments as dbGetQuery. The fetch function takes a result object res as an argument, an integer value n representing the maximum number of rows to return, and additional arguments passed to the methods for a specific database driver. To fetch all records, you can omit n, or use n=-1.
For example, the following R statements are equivalent to the dbGetQuery statements shown above:
> res <- dbSendQuery(con,
+ "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")
> wlrecords.2008 <- fetch(res)
You can clear pending results using the dbClearResult function:
> # query to fetch a lot of results
> res <- dbSendQuery(con,"SELECT * from Master")
> # function to clear the results
> dbClearResult(res)
[1] TRUE
If an error occurred, you can get information about the error with the dbGetException function:
> # SQL statement that will generate an error.
> # Notice that an error message is printed.
> res <- dbSendQuery(con,"SELECT * from non_existent_table")
Error in sqliteExecStatement(conn, statement, ...) :
RS-DBI driver: (error in statement: no such table: non_existent_table)
> # now, manually get the error message
> dbGetException(con)
$errorNum
[1] 1
$errorMsg
[1] "error in statement: no such table: non_existent_table"
Finally, DBI provides some functions for reading whole tables from a database or writing whole data frames to a database. To read a whole table, use the dbReadTable function:
> batters <- dbReadTable(con, "Batting")
> dim(batters)
[1] 91457 24
To write a data frame to a table, you can use the dbWriteTable function. You can check if a table exists with the dbExistsTable function, and you can delete a table with the dbRemoveTable function.
Cleaning up
To close a database connection, use the dbDisconnect function:
> dbDisconnect(con)
[1] TRUE
You can also explicitly unload the database driver, freeing system resources, by using the dbUnloadDriver function. With some databases, you can pass additional arguments to this driver; see the help files for the database you are using for more information.
> dbUnloadDriver(drv)
TSDBI
There is one last database interface in R that you might find useful: TSDBI. TSDBI is an interface specifically designed for time series data. There are TSDBI packages for many popular databases, as shown in Table 11-4.
Table 11-4. TSDBI packages
Database | Package |
---|---|
MySQL | TSMySQL |
SQLite | TSSQLite |
Fame | TSFame |
PostgreSQL | TSPostgreSQL |
Any database with an ODBC driver | TSODBC |
[32] You may have to install Apple’s development tools to build this driver. (It’s a good idea to install Apple’s developer tools anyway so that you can build R packages from source.) You can download these from http://developer.apple.com/Tools/.
Getting Data from Hadoop
Today, one of the most important sources for data is Hadoop. To learn more about Hadoop, including instructions on how to install R packages for working with Hadoop data on HDFS or in HBase, see R and Hadoop.
Chapter 12. Preparing Data
Back in my freshman year of college, I was planning to be a biochemist. I spent hours and hours in the lab: mixing chemicals in test tubes, putting samples in different machines, and analyzing the results. Over time, I grew frustrated because I found myself spending weeks in the lab doing manual work and just a few minutes planning experiments or analyzing results. After a year, I gave up on chemistry and became a computer scientist, thinking that I would spend less time on preparation and testing and more time on analysis.
Unfortunately for me, I chose to do data mining work professionally. Everyone loves building models, drawing charts, and playing with cool algorithms. Unfortunately, most of the time you spend on data analysis projects is spent on preparing data for analysis. I’d estimate that 80% of the effort on a typical project is spent on finding, cleaning, and preparing data for analysis. Less than 5% of the effort is devoted to analysis. (The rest of the time is spent on writing up what you did.)
If you’re new to data analysis, you’re probably wondering what the big deal is about preparing data. Suppose that you are getting some data off of your company’s web servers, or out of a financial database, or from electronic patient records. It all came from computers, so it’s perfect, right?
In practice, data is almost never stored in the right form for analysis. Even when data is in the right form, there are often surprises in the data. It takes a lot of work to pull together a usable data set. This chapter explains how to prepare data for analysis with R.
Combining Data Sets
Let’s start with one of the most common obstacles to data analysis: working with data that’s stored in two different places. For example, suppose that you wanted to look at batting statistics for baseball players by age. In most baseball data sources (like the Baseball Databank data), player information (like ages) is kept in different files from performance data (like batting statistics). So you would need to combine two files to do this analysis. This section discusses several tools in R used for combining data sets.
Pasting Together Data Structures
R provides several functions that allow you to paste together multiple data structures into a single structure.
Paste
The simplest of these functions is paste. The paste function allows you to concatenate multiple character vectors into a single vector. (If you concatenate a vector of another type, it will be coerced to a character vector first.)
> x <- c("a", "b", "c", "d", "e")
> y <- c("A", "B", "C", "D", "E")
> paste(x,y)
[1] "a A" "b B" "c C" "d D" "e E"
By default, values are separated by a space; you can specify another separator (or none at all) with the sep argument:
> paste(x, y, sep="-")
[1] "a-A" "b-B" "c-C" "d-D" "e-E"
If you would like all of values in the returned vector to be concatenated with one another (to return just a single value), then specify a value for the collapse argument. The value of collapse will be used as the separator in this value:
> paste(x, y, sep="-", collapse="#")
[1] "a-A#b-B#c-C#d-D#e-E"
rbind and cbind
Sometimes, you would like to bind together multiple data frames or matrices. You can do this with the rbind and cbind functions. The cbind function will combine objects by adding columns. You can picture this as combining two tables horizontally. As an example, let’s start with the data frame for the top five salaries in the NFL in 2008:[33]
> top.5.salaries
name.last name.first team position salary
1 Manning Peyton Colts QB 18700000
2 Brady Tom Patriots QB 14626720
3 Pepper Julius Panthers DE 14137500
4 Palmer Carson Bengals QB 13980000
5 Manning Eli Giants QB 12916666
Now let’s create a new data frame with two more columns (a year and a rank):
> year <- c(2008, 2008, 2008, 2008, 2008)
> rank <- c(1, 2, 3, 4, 5)
> more.cols <- data.frame(year, rank)
> more.cols
year rank
1 2008 1
2 2008 2
3 2008 3
4 2008 4
5 2008 5
Finally, let’s put together these two data frames:
> cbind(top.5.salaries, more.cols)
name.last name.first team position salary year rank
1 Manning Peyton Colts QB 18700000 2008 1
2 Brady Tom Patriots QB 14626720 2008 2
3 Pepper Julius Panthers DE 14137500 2008 3
4 Palmer Carson Bengals QB 13980000 2008 4
5 Manning Eli Giants QB 12916666 2008 5
The rbind function will combine objects by adding rows. You can picture this as combining two tables vertically.
As an example, suppose that you had a data frame with the top five salaries (as shown above) and a second data frame with the next three salaries:
> top.5.salaries
name.last name.first team position salary
1 Manning Peyton Colts QB 18700000
2 Brady Tom Patriots QB 14626720
3 Pepper Julius Panthers DE 14137500
4 Palmer Carson Bengals QB 13980000
5 Manning Eli Giants QB 12916666
> next.three
name.last name.first team position salary
6 Favre Brett Packers QB 12800000
7 Bailey Champ Broncos CB 12690050
8 Harrison Marvin Colts WR 12000000
You could combine these into a single data frame using the rbind function:
> rbind(top.5.salaries, next.three)
name.last name.first team position salary
1 Manning Peyton Colts QB 18700000
2 Brady Tom Patriots QB 14626720
3 Pepper Julius Panthers DE 14137500
4 Palmer Carson Bengals QB 13980000
5 Manning Eli Giants QB 12916666
6 Favre Brett Packers QB 12800000
7 Bailey Champ Broncos CB 12690050
8 Harrison Marvin Colts WR 12000000
An extended example
To show how to fetch and combine together data and build a data frame for analysis, we’ll use an example from the previous chapter: stock quotes. Yahoo! Finance allows you to download CSV files with stock quotes for a single ticker.
Suppose that you wanted a single data set with stock quotes for multiple securities (say, the 30 stocks in the Dow Jones Industrial Average). You would need a way to bind together the data returned by the query into a single data set. Let’s write a function that can return historical stock quotes for multiple securities in a single data frame. First, let’s write a function that assembles the URL for the CSV file and then fetches a data frame with the contents.
Here is what this function will do. First, it will define the URL. (I determined the format of the URL by trial and error: I tried fetching CSV files from Yahoo! Finance with different ticker symbols and different date ranges until I knew how to construct the queries.) We will use the paste function to put together all these different character values. Next, we will fetch the URL with the read.csv function, assigning the data frame to the symbol tmp. The data frame has most of the information we want but doesn’t include the ticker symbol. So we will use the cbind function to attach a vector of ticker symbols to the data frame. (By the way, the function uses Date objects to represent the date. I also used the current date as the default value for to, and the date one year ago as the default value for from.)
Here is the function:
get.quotes <- function(ticker,
from=(Sys.Date()-365),
to=(Sys.Date()),
interval="d") {
# define parts of the URL
base <- "http://ichart.finance.yahoo.com/table.csv?";
symbol <- paste("s=", ticker, sep="");
# months are numbered from 00 to 11, so format the month correctly
from.month <- paste("&a=",
formatC(as.integer(format(from,"%m"))-1,width=2,flag="0"),
sep="");
from.day <- paste("&b=", format(from,"%d"), sep="");
from.year <- paste("&c=", format(from,"%Y"), sep="");
to.month <- paste("&d=",
formatC(as.integer(format(to,"%m"))-1,width=2,flag="0"),
sep="");
to.day <- paste("&e=", format(to,"%d"), sep="");
to.year <- paste("&f=", format(to,"%Y"), sep="");
inter <- paste("&g=", interval, sep="");
last <- "&ignore=.csv";
# put together the url
url <- paste(base, symbol, from.month, from.day, from.year,
to.month, to.day, to.year, inter, last, sep="");
# get the file
tmp <- read.csv(url);
# add a new column with ticker symbol labels
cbind(symbol=ticker,tmp);
}
Now let’s write a function that returns a data frame with quotes from multiple securities. This function will simply call get.quotes once for every ticker in a vector of tickers and bind together the results using rbind:
get.multiple.quotes <- function(tkrs,
from=(Sys.Date()-365),
to=(Sys.Date()),
interval="d") {
tmp <- NULL;
for (tkr in tkrs) {
if (is.null(tmp))
tmp <- get.quotes(tkr,from,to,interval)
else tmp <- rbind(tmp,get.quotes(tkr,from,to,interval))
}
tmp
}
Finally, let’s define a vector with the set of ticker symbols in the Dow Jones Industrial Average and then build a data frame with data from all 30 tickers:
> dow.tickers <- c("MMM", "AA", "AXP", "T", "BAC", "BA", "CAT", "CVX",
+ "CSCO", "KO", "DD", "XOM", "GE", "HPQ", "HD", "INTC",
+ "IBM", "JNJ", "JPM", "KFT", "MCD", "MRK", "MSFT", "PFE",
+ "PG", "TRV", "UTX", "VZ", "WMT", "DIS")
> # date on which I ran this code
> Sys.Date()
[1] "2012-01-08"
> dow30 <- get.multiple.quotes(dow30.tickers)
We’ll return to this data set below.data
Merging Data by Common Fields
As an example, let’s return to the Baseball Databank database that we used in Importing Data From Databases. In this database, player information is stored in the Master table. Players are uniquely identified by the column playerID:
> dbListFields(con,"Master")
[1] "lahmanID" "playerID" "managerID" "hofID"
[5] "birthYear" "birthMonth" "birthDay" "birthCountry"
[9] "birthState" "birthCity" "deathYear" "deathMonth"
[13] "deathDay" "deathCountry" "deathState" "deathCity"
[17] "nameFirst" "nameLast" "nameNote" "nameGiven"
[21] "nameNick" "weight" "height" "bats"
[25] "throws" "debut" "finalGame" "college"
[29] "lahman40ID" "lahman45ID" "retroID" "holtzID"
[33] "bbrefID"
Batting information is stored in the Batting table. Players are uniquely identified by playerID in this table as well:
> dbListFields(con, "Batting")
[1] "playerID" "yearID" "stint" "teamID" "lgID"
[6] "G" "G_batting" "AB" "R" "H"
[11] "2B" "3B" "HR" "RBI" "SB"
[16] "CS" "BB" "SO" "IBB" "HBP"
[21] "SH" "SF" "GIDP" "G_old"
Suppose that you wanted to show batting statistics for each player along with his name and age. To do this, you would need to merge data from the two tables. In R, you can do this with the merge function:
> batting <- dbGetQuery(con, "SELECT * FROM Batting")
> master <- dbGetQuery(con, "SELECT * FROM Master")
> batting.w.names <- merge(batting, master)
In this case, there was only one common variable between the two tables: playerID:
> intersect(names(batting), names(master))
[1] "playerID"
By default, merge uses common variables between the two data frames as the merge keys. So, in this case, we did not have to specify any more arguments to merge. Let’s take a closer look at the arguments to merge (for data frames):
merge(x, y, by = , by.x = , by.y = , all = , all.x = , all.y = ,
sort = , suffixes = , incomparables = , ...)
Here is a description of the arguments to merge.
Argument | Description | Default |
---|---|---|
x | One of the two data frames to combine. | |
y | One of the two data frames to combine. | |
by | A vector of character values corresponding to column names. | intersect(names(x), names(y)) |
by.x | A vector of character values corresponding to column names in x. Overrides the list given in by . | by |
by.y | A vector of character values corresponding to column names in y. Overrides the list given in by . | by |
all | A logical value specifying whether rows from each data frame should be included even if there is no match in the other data frame. This is equivalent to an OUTER JOIN in a database. (Equivalent to all.x=TRUE and all.y=TRUE .) | FALSE |
all.x | A logical value specifying whether rows from data frame x should be included even if there is no match in the other data frame. This is equivalent to x LEFT OUTER JOIN y in a database. | all |
all.y | A logical value specifying whether rows from data frame x should be included even if there is no match in the other data frame. This is equivalent to x RIGHT OUTER JOIN y in a database. | all |
sort | A logical value that specifies whether the results should be sorted by the by columns. | TRUE |
suffixes | A character vector with two values. If there are columns in x and y with the same name that are not used in the by list, they will be renamed with the suffixes given by this argument. | suffixes = c(“.x”, “.y”) |
incomparables | A list of variables that cannot be matched. | NULL |
By default, merge is equivalent to a NATURAL JOIN in SQL. You can specify other columns to make it use merge like an INNER JOIN. You can specify values of ALL to get the same results as OUTER or FULL joins. If there are no matching field names, or if by is of length 0 (or by.x and by.y are of length 0), then merge will return the full Cartesian product of x and y.
[33] Salary data is from http://sportsillustrated.cnn.com/football/nfl/salaries/2008/all.html. The salary numbers are cap numbers, not cash salaries.
Transformations
Sometimes, there will be some variables in your source data that aren’t quite right. This section explains how to change a variable in a data frame.
Reassigning Variables
One of the most convenient ways to redefine a variable in a data frame is to use the assignment operator. For example, suppose that you wanted to change the type of a variable in the dow30 data frame that we created above. When read.csv imported this data, it interpreted the “Date” field as a character string and converted it to a factor:
> class(dow30$Date)
[1] "factor"
Factors are fine for some things, but we could better represent the date field as a Date object. (That would create a proper ordering on dates and allow us to extract information from them.) Luckily, Yahoo! Finance prints dates in the default date format for R, so we can just transform these values into Date objects using as.Date (see the help file for as.Date for more information). So let’s change this variable within the data frame to use Date objects:
> dow30$Date <- as.Date(dow30$Date)
> class(dow30$Date)
[1] "Date"
It’s also possible to make other changes to data frames. For example, suppose that we wanted to define a new midpoint variable that is the mean of the high and low price. We can add this variable with the same notation:
> dow30$mid <- (dow30$High + dow30$Low) / 2
> names(dow30)
[1] "symbol" "Date" "Open" "High" "Low"
[6] "Close" "Volume" "Adj.Close" "mid"
The Transform Function
A convenient function for changing variables in a data frame is the transform function. Formally, transform is defined as:
transform(`_data`, ...)
Notice that there aren’t any named arguments for this function. To use transform, you specify a data frame (as the first argument) and a set of expressions that use variables within the data frame. The transform function applies each expression to the data frame and then returns the final data frame.
For example, suppose that we wanted to perform the two transformations listed above: changing the Date column to a Date format, and adding a new midpoint variable. We could do this with transform using the following expression:
> dow30.transformed <- transform(dow30, Date=as.Date(Date),
+ mid = (High + Low) / 2)
> names(dow30.transformed)
[1] "symbol" "Date" "Open" "High" "Low"
[6] "Close" "Volume" "Adj.Close" "mid"
> class(dow30.transformed$Date)
[1] "Date"
Applying a Function to Each Element of an Object
When transforming data, one common operation is to apply a function to a set of objects (or each part of a composite object) and return a new set of objects (or a new composite object). The base R library includes a set of different functions for doing this.
Applying a function to an array
To apply a function to parts of an array (or matrix), use the apply function:
apply(X, MARGIN, FUN, ...)
Apply accepts three arguments: X is the array to which a function is applied, FUN is the function, and MARGIN specifies the dimensions to which you would like to apply a function. Optionally, you can specify arguments to FUN as addition arguments to apply arguments to FUN.) To show how this works, here’s a simple example. Let’s create a matrix with five rows of four elements, corresponding to the numbers between 1 and 20:
> x <- 1:20
> dim(x) <- c(5, 4)
> x
[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
Now let’s show how apply works. We’ll use the function max because it’s easy to look at the matrix above and see where the results came from.
First, let’s select the maximum element of each row. (These are the values in the rightmost column: 16, 17, 18, 19, and 20.) To do this, we will specify X=x, MARGIN=1 (rows are the first dimension), and FUN=max:
> apply(X=x, MARGIN=1, FUN=max)
[1] 16 17 18 19 20
To do the same thing for columns, we simply have to change the value of MARGIN:
> apply(X=x, MARGIN=2, FUN=max)
[1] 5 10 15 20
As a slightly more complex example, we can also use MARGIN to apply a function over multiple dimensions. (We’ll switch to the function paste to show which elements were included.) Consider the following three-dimensional array:
> x <- 1:27
> dim(x) <- c(3, 3, 3)
> x
, , 1
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
, , 2
[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18
, , 3
[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27
Let’s start by looking at which values are grouped for each value of MARGIN:
> apply(X=x, MARGIN=1, FUN=paste, collapse=",")
[1] "1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"
[3] "3,6,9,12,15,18,21,24,27"
> apply(X=x, MARGIN=2, FUN=paste, collapse=",")
[1] "1,2,3,10,11,12,19,20,21" "4,5,6,13,14,15,22,23,24"
[3] "7,8,9,16,17,18,25,26,27"
> apply(X=x, MARGIN=3, FUN=paste, collapse=",")
[1] "1,2,3,4,5,6,7,8,9" "10,11,12,13,14,15,16,17,18"
[3] "19,20,21,22,23,24,25,26,27"
Let’s do something more complicated. Let’s select MARGIN=c(1, 2) to see which elements are selected:
> apply(X=x, MARGIN=c(1,2), FUN=paste, collapse=",")
[,1] [,2] [,3]
[1,] "1,10,19" "4,13,22" "7,16,25"
[2,] "2,11,20" "5,14,23" "8,17,26"
[3,] "3,12,21" "6,15,24" "9,18,27"
This is the equivalent of doing the following: for each value of i between 1 and 3 and each value of j between 1 and 3, calculate FUN of x[i][j][1], x[i][j][2], x[i][j][3].
Applying a function to a list or vector
To apply a function to each element in a vector or a list and return a list, you can use the function lapply. The function lapply requires two arguments: an object X and a function FUNC. (You may specify additional arguments that will be passed to FUNC.) Let’s look at a simple example of how to use lapply:
> x <- as.list(1:5)
> lapply(x,function(x) 2^x)
[[1]]
[1] 2
[[2]]
[1] 4
[[3]]
[1] 8
[[4]]
[1] 16
[[5]]
[1] 32
You can apply a function to a data frame, and the function will be applied to each vector in the data frame. For example:
> d <- data.frame(x=1:5, y=6:10)
> d
x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10
> lapply(d,function(x) 2^x)
$x
[1] 2 4 8 16 32
$y
[1] 64 128 256 512 1024
> lapply(d,FUN=max)
$x
[1] 5
$y
[1] 10
Sometimes, you might prefer to get a vector, matrix, or array instead of a list. To do this, use the sapply function. This function works exactly the same way as apply, except that it returns a vector or matrix (when appropriate):
> sapply(d, FUN=function(x) 2^x)
x y
[1,] 2 64
[2,] 4 128
[3,] 8 256
[4,] 16 512
[5,] 32 1024
Another related function is mapply, the “multivariate” version of sapply:
mapply(FUN, ..., MoreArgs = , SIMPLIFY = , USE.NAMES = )
Here is a description of the arguments to mapply.
Argument | Description | Default |
---|---|---|
FUN | The function to apply. | |
... | A set of vectors over which FUN should be applied. | |
MoreArgs | A list of additional arguments to pass to FUN . | |
SIMPLIFY | A logical value indicating whether to simplify the returned array. | TRUE |
USE.NAMES | A logical value indicating whether to use names for returned values. Names are taken from the values in the first vector (if it is a character vector) or from the names of elements in that vector. | TRUE |
This function will apply FUN to the first element of each vector, then to the second, and so on, until it reaches the last element.
Here is a simple example of mapply:
> mapply(paste,
+ c(1, 2, 3, 4, 5),
+ c("a", "b", "c", "d", "e"),
+ c("A", "B", "C", "D", "E"),
+ MoreArgs=list(sep="-"))
[1] "1-a-A" "2-b-B" "3-c-C" "4-d-D" "5-e-E"
the plyr library
At this point, you’re probably confused by all the different apply functions. They all accept different arguments, they’re named inconsistently, and they work differently. Luckily, you don’t have to remember any of the details of these function if you use the plyr package.
The plyr package contains a set of 12 logically named functions for applying another function to an R data object and returning the results. Each of these functions takes an array, data frame, or list as input and returns an array, data frame, list, or nothing as output. (You can choose to discard the results.) Here’s a table of the most useful functions:
Input | Array Output | Data Frame Output | List Output | Discard Output |
---|---|---|---|---|
Array | aaply | adply | alply | a_ply |
Data Frame | daply | ddply | dlply | d_ply |
List | laply | ldply | llply | l_ply |
All of these functions accept the following arguments:
Argument | Description | Default |
---|---|---|
.data | The input data object | |
.fun | The function to apply to the data | NULL |
.progress | The type of progress bar (created with create_progress); choices include "none", "text", "tk", and "win" | "none" |
.expand | If .data is a dataframe, controls how output is expanded; choose .expand=TRUE for 1d output, .expand=FALSE for nd. | TRUE |
.parallel | Specifies whether to apply the function in parallel (through foreach) | FALSE |
... | Other arguments passed to .fun |
Other arguments depend on the input and output. If the input is an array, then these arguments are available:
Argument | Description | Default |
---|---|---|
.margins | A vector describing the subscripts to split up data by |
If the input is a data frame, then these arguments are available:
Argument | Description | Default |
---|---|---|
.drop (or .drop_i for daply) | Specifies whether to drop combinations of variables that do not appear in the data input | TRUE |
.variables | Specifies a set of variables by which to split the data frame | |
.drop_o (for daply only) | Specifies whether to drop extra dimensions in the output for dimensions of length 1 | TRUE |
If the output is dropped, then this argument is available:
Argument | Description | Default |
---|---|---|
Specifies whether to print each output value | FALSE |
Let’s try to re-create some of our examples from above using plyr:
> # (1) input list, output list
> lapply(d, function(x) 2^x)
$x
[1] 2 4 8 16 32
$y
[1] 64 128 256 512 1024
> # equivalent is llply
> llply(.data=d, .fun=function(x) 2^x)
$x
[1] 2 4 8 16 32
$y
[1] 64 128 256 512 1024
> # (2) input is an array, output is a vector
> apply(X=x,MARGIN=1, FUN=paste, collapse=",")
[1] "1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"
[3] "3,6,9,12,15,18,21,24,27"
> # equivalent (but note labels)
> aaply(.data=x,.margins=1, .fun=paste, collapse=",")
1 2
"1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"
3
"3,6,9,12,15,18,21,24,27"
> # (3) Data frame in, matrix out
> t(sapply(d, FUN=function(x) 2^x))
[,1] [,2] [,3] [,4] [,5]
x 2 4 8 16 32
y 64 128 256 512 1024
> # equivalent (but note the additional labels)
> aaply(.data=d, .fun=function(x) 2^x, .margins=2)
X1 1 2 3 4 5
x 2 4 8 16 32
y 64 128 256 512 1024
Binning Data
Another common data transformation is to group a set of observations into bins based on the value of a specific variable. For example, suppose you had some time series data where time was measured in days, but you wanted to summarize the data by month. There are several functions available for binning numeric data in R.
Shingles
We briefly mentioned shingles in Shingles. Shingles are a way to represent intervals in R. They can be overlapping, like roof shingles (hence the name). They are used extensively in the lattice package, when you want to use a numeric value as a conditioning value.
To create shingles in R, use the shingle function:
shingle(x, intervals=sort(unique(x)))
To specify where to separate the bins, use the intervals argument. You can use a numeric vector to indicate the breaks or a two-column matrix, where each row represents a specific interval.
To create shingles where the number of observations is the same in each bin, you can use the equal.count function:
equal.count(x, ...)
Cut
The function cut is useful for taking a continuous variable and splitting it into discrete pieces. Here is the default form of cut for use with numeric vectors:
# numeric form
cut(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)
There is also a version of cut for manipulating Date objects:
# Date form
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)
The cut function takes a numeric vector as input and returns a factor. Each level in the factor corresponds to an interval of values in the input vector. Here is a description of the arguments to cut.
Argument | Description | Default |
---|---|---|
x | A numeric vector (to convert to a factor). | |
breaks | Either a single integer value specifying the number of break points or a numeric vector specifying the set of break points. | |
labels | Labels for the levels in the output factor. | NULL |
include.lowest | A logical value indicating if a value equal to the lowest point in the range (if right=TRUE) in a range should be included in a given bucket. If right=FALSE indicates whether a value equal to the highest point in the range should be included. | FALSE |
right | A logical value that specifies whether intervals should be closed on the right and open on the left. (For right=FALSE , intervals will be open on the right and closed on the left.) | TRUE |
dig.lab | Number of digits used when generating labels (if labels are not explicitly specified). | 3 |
ordered_results | A logical value indicating whether the result should be an ordered factor. | FALSE |
For example, suppose that you wanted to count the number of players with batting averages in certain ranges. To do this, you could use the cut function and the table function:
> # load in the example data
> library(nutshell)
> data(batting.2008)
> # first, add batting average to the data frame:
> batting.2008.AB <- transform(batting.2008, AVG = H/AB)
> # now, select a subset of players with over 100 AB (for some
> # statistical significance):
> batting.2008.over100AB <- subset(batting.2008.AB, subset=(AB > 100))
> # finally, split the results into 10 bins:
> battingavg.2008.bins <- cut(batting.2008.over100AB$AVG,breaks=10)
> table(battingavg.2008.bins)
battingavg.2008.bins
(0.137,0.163] (0.163,0.189] (0.189,0.215] (0.215,0.24] (0.24,0.266]
4 6 24 67 121
(0.266,0.292] (0.292,0.318] (0.318,0.344] (0.344,0.37] (0.37,0.396]
132 70 11 5 2
Combining Objects with a Grouping Variable
Sometimes you would like to combine a set of similar objects (either vectors or data frames) into a single data frame, with a column labeling the source. You can do this with the make.groups function in the lattice package:
library(lattice)
make.groups(...)
For example, let’s combine three different vectors into a data frame:
> hat.sizes <- seq(from=6.25, to=7.75, by=.25)
> pants.sizes <- c(30, 31, 32, 33, 34, 36, 38, 40)
> shoe.sizes <- seq(from=7, to=12)
> make.groups(hat.sizes, pants.sizes, shoe.sizes)
data which
hat.sizes1 6.25 hat.sizes
hat.sizes2 6.50 hat.sizes
hat.sizes3 6.75 hat.sizes
hat.sizes4 7.00 hat.sizes
hat.sizes5 7.25 hat.sizes
hat.sizes6 7.50 hat.sizes
hat.sizes7 7.75 hat.sizes
pants.sizes1 30.00 pants.sizes
pants.sizes2 31.00 pants.sizes
pants.sizes3 32.00 pants.sizes
pants.sizes4 33.00 pants.sizes
pants.sizes5 34.00 pants.sizes
pants.sizes6 36.00 pants.sizes
pants.sizes7 38.00 pants.sizes
pants.sizes8 40.00 pants.sizes
shoe.sizes1 7.00 shoe.sizes
shoe.sizes2 8.00 shoe.sizes
shoe.sizes3 9.00 shoe.sizes
shoe.sizes4 10.00 shoe.sizes
shoe.sizes5 11.00 shoe.sizes
shoe.sizes6 12.00 shoe.sizes
Subsets
Often, you’ll be provided with too much data. For example, suppose that you were working with patient records at a hospital. You might want to analyze healthcare records for patients between 5 and 13 years of age who were treated for asthma during the past 3 years. To do this, you need to take a subset of the data and not examine the whole database.
Other times, you might have too much relevant data. For example, suppose that you were looking at a logistics operation that fills billions of orders every year. R can hold only a certain number of records in memory and might not be able to hold the entire database. In most cases, you can get statistically significant results with a tiny fraction of the data; even millions of orders might be too many.
Bracket Notation
One way to take a subset of a data set is to use the bracket notation. As you may recall, you can select rows in a data frame by providing a vector of logical values. If you can write a simple expression describing the set of rows to select from a data frame, you can provide this as an index.
For example, suppose that we wanted to select only batting data from 2008. The column batting.w.names$yearID contains the year associated with each row, so we could calculate a vector of logical values describing which rows to keep with the expression batting.w.names$yearID==2008. Now we just have to index the data frame batting.w.names with this vector to select only rows for the year 2008:
> batting.w.names.2008 <- batting.w.names[batting.w.names$yearID==2008,]
> summary(batting.w.names.2008$yearID)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2008 2008 2008 2008 2008 2008
Similarly, we can use the same notation to select only certain columns. Suppose that we wanted to keep only the variables nameFirst, nameLast, AB, H, and BB. We could provide these in the brackets as well:
> batting.w.names.2008.short <-
+ batting.w.names[batting.w.names$yearID==2008,
+ c("nameFirst", "nameLast", "AB", "H", "BB")]
subset Function
As an alternative, you can use the subset function to select a subset of rows and columns from a data frame (or matrix):
subset(x, subset, select, drop = FALSE, ...)
There isn’t anything you can do with subset that you can’t do with the bracket notation, but using subset can lead to more readable code. Subset allows you to use variable names from the data frame when selecting subsets, saving some typing. Here is a description of the arguments to subset.
Argument | Description | Default |
---|---|---|
x | The object from which to calculate a subset. | |
subset | A logical expression that describes the set of rows to return. | |
select | An expression indicating which columns to return. | |
drop | Passed to `[` . | FALSE |
As an example, let’s recreate the same data sets we created above using subset:
> batting.w.names.2008 <- subset(batting.w.names, yearID==2008)
> batting.w.names.2008.short <- subset(batting.w.names, yearID==2008,
+ c("nameFirst","nameLast","AB","H","BB"))
Random Sampling
Often, it is desirable to take a random sample of a data set. Sometimes, you might have too much data (for statistical reasons or for performance reasons). Other times, you simply want to split your data into different parts for modeling (usually into training, testing, and validation subsets).
One of the simplest ways to extract a random sample is with the sample function. The sample function returns a random sample of the elements of a vector:
sample(x, size, replace = FALSE, prob = NULL)
Argument | Description | Default |
---|---|---|
x | The object from which the sample is taken | |
size | An integer value specifying the sample size | |
replace | A logical value indicating whether to sample with, or without, replacement | FALSE |
prob | A vector of probabilities for selecting each item | NULL |
Somewhat nonintuitively, when applied to a data frame, sample will return a random sample of the columns. (Remember that a data frame is implemented as a list of vectors, so sample is just taking a random sample of the elements of the list.) So you need to be a little more clever when you use sample with a data frame.
To take a random sample of the observations in a data set, you can use sample to create a random sample of row numbers and then select these row numbers using an index operator. For example, let’s take a random sample of five elements from the batting.2008 data set:
> batting.2008[sample(1:nrow(batting.2008), 5), ]
playerID yearID stint teamID lgID G G_batting AB R H 2B 3B
90648 izturma01 2008 1 LAA AL 79 79 290 44 78 14 2
90280 benoijo01 2008 1 TEX AL 44 3 0 0 0 0 0
90055 percitr01 2008 1 TBA AL 50 4 0 0 0 0 0
91085 getzch01 2008 1 CHA AL 10 10 7 2 2 0 0
90503 willijo03 2008 1 FLO NL 102 102 351 54 89 21 5
HR RBI SB CS BB SO IBB HBP SH SF GIDP G_old
90648 3 37 11 2 26 27 0 1 2 2 9 79
90280 0 0 0 0 0 0 0 0 0 0 0 3
90055 0 0 0 0 0 0 0 0 0 0 0 4
91085 0 1 1 1 0 1 0 0 0 0 0 10
90503 15 51 3 2 48 82 2 14 1 2 7 102
You can also use this technique to select a more complicated random subset. For example, suppose that you wanted to randomly select statistics for three teams. You could do this as follows:
> batting.2008$teamID <- as.factor(batting.2008$teamID)
> levels(batting.2008$teamID)
[1] "ARI" "ATL" "BAL" "BOS" "CHA" "CHN" "CIN" "CLE" "COL" "DET" "FLO"
[12] "HOU" "KCA" "LAA" "LAN" "MIL" "MIN" "NYA" "NYN" "OAK" "PHI" "PIT"
[23] "SDN" "SEA" "SFN" "SLN" "TBA" "TEX" "TOR" "WAS"
> # example of sample
> sample(levels(batting.2008$teamID), 3)
[1] "ATL" "TEX" "DET"
> # usage example (note that it's a different random sample of teams)
> batting.2008.3teams <- batting.2008[is.element(batting.2008$teamID,
+ sample(levels(batting.2008$teamID), 3)), ]
> # check to see that sample only has three teams
> summary(batting.2008.3teams$teamID)
ARI ATL BAL BOS CHA CHN CIN CLE COL DET FLO HOU KCA LAA LAN MIL MIN
0 0 0 0 0 0 48 0 0 0 0 0 0 41 0 44 0
NYA NYN OAK PHI PIT SDN SEA SFN SLN TBA TEX TOR WAS
0 0 0 0 0 0 0 0 0 0 0 0 0
This function is good for data sources where you simply want to take a random sample of all the observations, but often you might want to do something more complicated, like stratified sampling, cluster sampling, maximum entropy sampling, or other more sophisticated methods. You can find many of these methods in the sampling package. For an example using this package to do stratified sampling, see Machine Learning Algorithms for Classification.
Summarizing Functions
Often, you are provided with data that is too fine grained for your analysis. For example, you might be analyzing data about a website. Suppose that you wanted to know the average number of pages delivered to each user. To find the answer, you might need to look at every HTTP transaction (every request for content), grouping together requests into sessions and counting the number of requests. R provides a number of different functions for summarizing data, aggregating records together to build a smaller data set.
tapply, aggregate
The tapply function is a very flexible function for summarizing a vector X. You can specify which subsets of X to summarize, as well as the function used for summarization:
tapply(X, INDEX, FUN = , ..., simplify = )
Here are the arguments to tapply.
Argument | Description | Default |
---|---|---|
X | The object on which to apply the function (usually a vector). | |
INDEX | A list of factors that specify different sets of values of X over which to calculate FUN, each the same length as X . | |
FUN | The function applied to elements of X . | NULL |
... | Optional arguments are passed to FUN . | |
simplify | If simplify=TRUE, then if FUN returns a scalar, then tapply returns an array with the mode of the scalar. If simplify=FALSE, then tapply returns a list. | TRUE |
For example, we can use tapply to sum the number of home runs by team:
> tapply(X=batting.2008$HR, INDEX=list(batting.2008$teamID), FUN=sum)
ARI ATL BAL BOS CHA CHN CIN CLE COL DET FLO HOU KCA LAA LAN MIL MIN
159 130 172 173 235 184 187 171 160 200 208 167 120 159 137 198 111
NYA NYN OAK PHI PIT SDN SEA SFN SLN TBA TEX TOR WAS
180 172 125 214 153 154 124 94 174 180 194 126 117
You can also apply a function that returns multiple items, such as fivenum (which returns a vector containing the minimum, lower-hinge, median, upper-hinge, and maximum values) to the data. For example, here is the result of applying fivenum to the batting averages of each player, aggregated by league:
> tapply(X=(batting.2008$H/batting.2008$AB),
+ INDEX=list(batting.2008$lgID),FUN=fivenum)
$AL
[1] 0.0000000 0.1758242 0.2487923 0.2825485 1.0000000
$NL
[1] 0.0000000 0.0952381 0.2172524 0.2679739 1.0000000
You can also use tapply to calculate summaries over multiple dimensions. For example, we can calculate the mean number of home runs per player by league and batting hand:
> tapply(X=(batting.2008$HR),
+ INDEX=list(batting.w.names.2008$lgID,
+ batting.w.names.2008$bats),
+ FUN=mean)
B L R
AL 3.058824 3.478495 3.910891
NL 3.313433 3.400000 3.344902
(As a side note, there is no equivalent to tapply in the plyr package.)
A function closely related to tapply is by. The by function works the same way as tapply, except that it works on data frames. The INDEX argument is replaced by an INDICES argument. Here is an example:
> by(batting.2008[, c("H", "2B", "3B", "HR")],
+ INDICES=list(batting.w.names.2008$lgID,
+ batting.w.names.2008$bats), FUN=mean)
: AL
: B
H 2B 3B HR
29.0980392 5.4901961 0.8431373 3.0588235
-----------------------------------------------------
: NL
: B
H 2B 3B HR
29.2238806 6.4776119 0.6865672 3.3134328
-----------------------------------------------------
: AL
: L
H 2B 3B HR
32.4301075 6.7258065 0.5967742 3.4784946
-----------------------------------------------------
: NL
: L
H 2B 3B HR
31.888372 6.283721 0.627907 3.400000
-----------------------------------------------------
: AL
: R
H 2B 3B HR
34.2549505 7.0495050 0.6460396 3.9108911
-----------------------------------------------------
: NL
: R
H 2B 3B HR
29.9414317 6.1822126 0.6290672 3.3449024
Another option for summarization is the function aggregate. Here is the form of aggregate when applied to data frames:
aggregate(x, by, FUN, ...)
Aggregate can also be applied to time series and takes slightly different arguments:
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,
ts.eps = getOption("ts.eps"), ...)
Here is a description of the arguments to aggregate.
Argument | Description | Default |
---|---|---|
x | The object to aggregate | |
by | A list of grouping elements, each as long as x | |
FUN | A scalar function used to compute the summary statistic | no default for data frames; for time series, FUN=SUM |
nfrequency | Number of observations per unit of time | 1 |
ndeltat | Fraction of the sampling period between successive observations | 1 |
ts.eps | Tolerance used to decide if nfrequency is a submultiple of the original frequency | getOption("ts.eps") |
... | Further arguments passed to FUN |
For example, we can use aggregate to summarize batting statistics by team:
> aggregate(x=batting.2008[, c("AB", "H", "BB", "2B", "3B", "HR")],
+ by=list(batting.2008$teamID), FUN=sum)
Group.1 AB H BB 2B 3B HR
1 ARI 5409 1355 587 318 47 159
2 ATL 5604 1514 618 316 33 130
3 BAL 5559 1486 533 322 30 172
4 BOS 5596 1565 646 353 33 173
5 CHA 5553 1458 540 296 13 235
6 CHN 5588 1552 636 329 21 184
7 CIN 5465 1351 560 269 24 187
8 CLE 5543 1455 560 339 22 171
9 COL 5557 1462 570 310 28 160
10 DET 5641 1529 572 293 41 200
11 FLO 5499 1397 543 302 28 208
12 HOU 5451 1432 449 284 22 167
13 KCA 5608 1507 392 303 28 120
14 LAA 5540 1486 481 274 25 159
15 LAN 5506 1455 543 271 29 137
16 MIL 5535 1398 550 324 35 198
17 MIN 5641 1572 529 298 49 111
18 NYA 5572 1512 535 289 20 180
19 NYN 5606 1491 619 274 38 172
20 OAK 5451 1318 574 270 23 125
21 PHI 5509 1407 586 291 36 214
22 PIT 5628 1454 474 314 21 153
23 SDN 5568 1390 518 264 27 154
24 SEA 5643 1498 417 285 20 124
25 SFN 5543 1452 452 311 37 94
26 SLN 5636 1585 577 283 26 174
27 TBA 5541 1443 626 284 37 180
28 TEX 5728 1619 595 376 35 194
29 TOR 5503 1453 521 303 32 126
30 WAS 5491 1376 534 269 26 117
Aggregating Tables with rowsum
Sometimes, you would simply like to calculate the sum of certain variables in an object, grouped together by a grouping variable. To do this in R, use the rowsum function:
rowsum(x, group, reorder = TRUE, ...)
For example, we can use rowsum to summarize batting statistics by team:
> rowsum(batting.2008[,c("AB", "H", "BB", "2B", "3B", "HR")],
+ group=batting.2008$teamID)
AB H BB X2B X3B HR
ARI 5409 1355 587 318 47 159
ATL 5604 1514 618 316 33 130
BAL 5559 1486 533 322 30 172
BOS 5596 1565 646 353 33 173
CHA 5553 1458 540 296 13 235
CHN 5588 1552 636 329 21 184
CIN 5465 1351 560 269 24 187
CLE 5543 1455 560 339 22 171
COL 5557 1462 570 310 28 160
DET 5641 1529 572 293 41 200
FLO 5499 1397 543 302 28 208
HOU 5451 1432 449 284 22 167
KCA 5608 1507 392 303 28 120
LAA 5540 1486 481 274 25 159
LAN 5506 1455 543 271 29 137
MIL 5535 1398 550 324 35 198
MIN 5641 1572 529 298 49 111
NYA 5572 1512 535 289 20 180
NYN 5606 1491 619 274 38 172
OAK 5451 1318 574 270 23 125
PHI 5509 1407 586 291 36 214
PIT 5628 1454 474 314 21 153
SDN 5568 1390 518 264 27 154
SEA 5643 1498 417 285 20 124
SFN 5543 1452 452 311 37 94
SLN 5636 1585 577 283 26 174
TBA 5541 1443 626 284 37 180
TEX 5728 1619 595 376 35 194
TOR 5503 1453 521 303 32 126
WAS 5491 1376 534 269 26 117
Counting Values
Often, it can be useful to count the number of observations that take on each possible value of a variable. R provides several functions for doing this.
The simplest function for counting the number of observations that take on a value is the tabulate function. This function counts the number of elements in a vector that take on each integer value and returns a vector with the counts.
As an example, suppose that you wanted to count the number of players who hit 0 HR, 1 HR, 2 HR, 3 HR, and so on. You could do this with the tabulate function:
> HR.cnts <- tabulate(batting.w.names.2008$HR)
> # tabulate doesn't label results, so let's add names:
> names(HR.cnts) <- 0:(length(HR.cnts) - 1)
> HR.cnts
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
92 63 45 20 15 26 23 21 22 15 15 18 12 10 12 4 9 3 3 13 9 7 10
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
4 8 2 5 2 4 0 1 6 6 3 1 2 4 1 0 0 0 0 0 0 0 0
46 47
0 1
A related function (for categorical values) is table. Suppose that you are presented with some data that includes a few categorical values (encoded as factors in R) and wanted to count how many observations in the data had each categorical value. To do this, you can use the table function:
table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
"ifany", "always"), dnn = list.names(...), deparse.level = 1)
The table function returns a table object showing the number of observations that have each possible categorical value.[34] Here are the arguments to table.
Argument | Description | Default |
---|---|---|
... | A set of factors (or objects that can be coerced into factors). | |
exclude | Levels to remove from factors. | if (useNA == "no") c(NA, NaN) |
useNA | Indicates whether to include NA values in the table. | c("no", "ifany", "always") |
dnn | Names to be given to dimensions in the result. | list.names(...) |
deparse.level | As noted in the help file: “If the argument dnn is not supplied, the internal function list.names is called to compute the ‘dimname names’. If the arguments in ... are named, those names are used. For the remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.” | 1 |
For example, suppose that we wanted to count the number of left-handed batters, right-handed batters, and switch hitters in 2008. We could use the data frame batting.w.names.2008 defined above to provide the data and table to tabulate the results:
> table(batting.w.names.2008$bats)
B L R
118 401 865
To make this a little more interesting, we could make this a two-dimensional table showing the number of players who batted and threw with each hand:
> table(batting.2008[,c("bats", "throws")])
throws
bats L R
B 10 108
L 240 161
R 25 840
We could extend the results to another dimension, adding league ID:
, , lgID = AL
throws
bats L R
B 4 47
L 109 77
R 11 393
, , lgID = NL
throws
bats L R
B 6 61
L 131 84
R 14 447
Another useful function is xtabs, which creates contingency tables from factors using formulas:
xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)
The xtabs function works the same as table, but it allows you to specify the groupings by specifying a formula and a data frame. In many cases, this can save you some typing. For example, here is how to use xtabs to tabulate batting statistics by batting arm and league:
> xtabs(~bats+lgID, batting.2008)
lgID
bats AL NL
B 51 67
L 186 215
R 404 461
The table function only works on factors, but sometimes you might like to calculate tables with numeric values as well. For example, suppose you wanted to count the number of players with batting averages in certain ranges. To do this, you could use the cut function and the table function:
> # first, add batting average to the data frame:
> batting.w.names.2008 <- transform(batting.w.names.2008, AVG = H/AB)
> # now, select a subset of players with over 100 AB (for some
> # statistical significance):
> batting.2008.over100AB <- subset(batting.2008, subset=(AB > 100))
> # finally, split the results into 10 bins:
> battingavg.2008.bins <- cut(batting.2008.over100AB$AVG,breaks=10)
> table(battingavg.2008.bins)
battingavg.2008.bins
(0.137,0.163] (0.163,0.189] (0.189,0.215] (0.215,0.24] (0.24,0.266]
4 6 24 67 121
(0.266,0.292] (0.292,0.318] (0.318,0.344] (0.344,0.37] (0.37,0.396]
132 70 11 5 2
Reshaping Data
Very often, you are presented with data that is in the wrong “shape.” Sometimes, you might find that a single observation is stored across multiple lines in a data frame. This happens very often in data warehouses. In these systems, a single table might be used to represent many different “facts.” Each fact might be associated with a unique identifier, a timestamp, a concept, and an observed value. To build a statistical model or to plot results, you might need to create a version of the data in which each line contains a unique identifier, a timestamp, and a column for each concept. So you might want to transform this “narrow” data set to a “wide” format.
Other times, you might be presented with a sparsely populated data frame that has a large number of columns. Although this format might make analysis straightforward, the data set might also be large and difficult to store. So you might want to transform this wide data set into a narrow one.
Transposing matrices and data frames
A very useful function is t, which transposes objects. The t function takes one argument: an object to transpose. The object can be a matrix, vector, or data frame. Here is an example with a matrix:
> m <- matrix(1:10, nrow=5)
> m
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> t(m)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
When you call t on a vector, the vector is treated as a single column of a matrix. So the value returned by t will be a matrix with a single row:
> v <- 1:10
> v
[1] 1 2 3 4 5 6 7 8 9 10
> t(v)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10
Reshaping data frames and matrices
R includes several functions that let you change data between narrow and wide formats. Let’s use a small table of stock data to show how these functions work. First, we’ll define a small portfolio of stocks. Then we’ll get monthly observation for the first three months of 2009:
> my.tickers <- c("GE", "GOOG", "AAPL", "AXP", "GS")
> my.quotes <- get.multiple.quotes(my.tickers, from=as.Date("2009-01-01"),
+ to=as.Date("2009-03-31"), interval="m")
> my.quotes
symbol Date Open High Low Close Volume Adj.Close
1 GE 2009-03-02 8.29 11.35 5.87 10.11 277426300 10.11
2 GE 2009-02-02 12.03 12.90 8.40 8.51 1949288ls00 8.51
3 GE 2009-01-02 16.51 17.24 11.87 12.13 117846700 11.78
4 GOOG 2009-03-02 333.33 359.16 289.45 348.06 5346800 348.06
5 GOOG 2009-02-02 334.29 381.00 329.55 337.99 6158100 337.99
6 GOOG 2009-01-02 308.60 352.33 282.75 338.53 5727600 338.53
7 AAPL 2009-03-02 88.12 109.98 82.33 105.12 25963400 105.12
8 AAPL 2009-02-02 89.10 103.00 86.51 89.31 27394900 89.31
9 AAPL 2009-01-02 85.88 97.17 78.20 90.13 33487900 90.13
10 AXP 2009-03-02 11.68 15.24 9.71 13.63 31136400 13.45
11 AXP 2009-02-02 16.35 18.27 11.44 12.06 24297100 11.90
12 AXP 2009-01-02 18.57 21.38 14.72 16.73 19110000 16.51
13 GS 2009-03-02 87.86 115.65 72.78 106.02 30196400 106.02
14 GS 2009-02-02 78.78 98.66 78.57 91.08 28301500 91.08
15 GS 2009-01-02 84.02 92.20 59.13 80.73 22764300 80.29
Now let’s keep only the Date, Symbol, and Close columns:
> my.quotes.narrow <- my.quotes[,c("symbol", "Date", "Close")]
> my.quotes.narrow
symbol Date Close
1 GE 2009-03-02 10.11
2 GE 2009-02-02 8.51
3 GE 2009-01-02 12.13
4 GOOG 2009-03-02 348.06
5 GOOG 2009-02-02 337.99
6 GOOG 2009-01-02 338.53
7 AAPL 2009-03-02 105.12
8 AAPL 2009-02-02 89.31
9 AAPL 2009-01-02 90.13
10 AXP 2009-03-02 13.63
11 AXP 2009-02-02 12.06
12 AXP 2009-01-02 16.73
13 GS 2009-03-02 106.02
14 GS 2009-02-02 91.08
15 GS 2009-01-02 80.73
We can use the unstack function to change the format of this data from a stacked form to an unstacked form:
> unstack(my.quotes.narrow, form=Close~symbol)
GE GOOG AAPL AXP GS
1 10.11 348.06 105.12 13.63 106.02
2 8.51 337.99 89.31 12.06 91.08
3 12.13 338.53 90.13 16.73 80.73
The first argument to unstack specifies the data frame. The second argument, form, uses a formula to specify how to unstack the data frame. The right side of the formula represents the vector to be unstacked (in this case, symbol). The left side indicates the groups to create (in this case Close).
Notice that the unstack operation retains the order of observations but loses the Date column. (It’s probably best to use unstack with data in which there are only two variables that matter.) You can also transform data the other way, stacking observations to create a long list:
> unstacked <- unstack(my.quotes.narrow, form=Close~symbol)
> stack(unstacked)
values ind
1 10.11 GE
2 8.51 GE
3 12.13 GE
4 348.06 GOOG
5 337.99 GOOG
6 338.53 GOOG
7 105.12 AAPL
8 89.31 AAPL
9 90.13 AAPL
10 13.63 AXP
11 12.06 AXP
12 16.73 AXP
13 106.02 GS
14 91.08 GS
15 80.73 GS
R includes a more powerful function for changing the shape of a data frame: the reshape function. Before explaining how to use this function (it’s a bit complicated), let’s use a couple of examples to show what it does.
First, suppose that we wanted each row to represent a unique date and each column to represent a different stock. We can do this with the reshape function:
> my.quotes.wide <- reshape(my.quotes.narrow, idvar="Date",
+ timevar="symbol", direction="wide")
> my.quotes.wide
Date Close.GE Close.GOOG Close.AAPL Close.AXP Close.GS
1 2009-03-02 10.11 348.06 105.12 13.63 106.02
2 2009-02-02 8.51 337.99 89.31 12.06 91.08
3 2009-01-02 12.13 338.53 90.13 16.73 80.73
Parameters for reshape are stored as attributes of the created data frame:
> attributes(my.quotes.wide)
$row.names
[1] 1 2 3
$names
[1] "Date" "Close.GE" "Close.GOOG" "Close.AAPL" "Close.AXP"
[6] "Close.GS"
$class
[1] "data.frame"
$reshapeWide
$reshapeWide$v.names
NULL
$reshapeWide$timevar
[1] "symbol"
$reshapeWide$idvar
[1] "Date"
$reshapeWide$times
[1] GE GOOG AAPL AXP GS
Levels: GE GOOG AAPL AXP GS
$reshapeWide$varying
[,1] [,2] [,3] [,4] [,5]
[1,] "Close.GE" "Close.GOOG" "Close.AAPL" "Close.AXP" "Close.GS"
Alternatively, we could have each row represent a stock and each column represent a different date:
> reshape(my.quotes.narrow, idvar="symbol", timevar="Date", direction="wide")
symbol Close.2009-03-02 Close.2009-02-02 Close.2009-01-02
1 GE 10.11 8.51 12.13
4 GOOG 348.06 337.99 338.53
7 AAPL 105.12 89.31 90.13
10 AXP 13.63 12.06 16.73
13 GS 106.02 91.08 80.73
We could even go in the opposite direction:
> reshape(my.quotes.wide)
Date symbol Close.GE
2009-03-02.GE 2009-03-02 GE 10.11
2009-02-02.GE 2009-02-02 GE 8.51
2009-01-02.GE 2009-01-02 GE 12.13
2009-03-02.GOOG 2009-03-02 GOOG 348.06
2009-02-02.GOOG 2009-02-02 GOOG 337.99
2009-01-02.GOOG 2009-01-02 GOOG 338.53
2009-03-02.AAPL 2009-03-02 AAPL 105.12
2009-02-02.AAPL 2009-02-02 AAPL 89.31
2009-01-02.AAPL 2009-01-02 AAPL 90.13
2009-03-02.AXP 2009-03-02 AXP 13.63
2009-02-02.AXP 2009-02-02 AXP 12.06
2009-01-02.AXP 2009-01-02 AXP 16.73
2009-03-02.GS 2009-03-02 GS 106.02
2009-02-02.GS 2009-02-02 GS 91.08
2009-01-02.GS 2009-01-02 GS 80.73
By the way, you can also use reshape to create columns for multiple data values at once:
> my.quotes.oc <- my.quotes[,c("symbol", "Date", "Close", "Open")]
> my.quotes.oc
symbol Date Close Open
1 GE 2009-03-02 10.11 8.29
2 GE 2009-02-02 8.51 12.03
3 GE 2009-01-02 12.13 16.51
4 GOOG 2009-03-02 348.06 333.33
5 GOOG 2009-02-02 337.99 334.29
6 GOOG 2009-01-02 338.53 308.60
7 AAPL 2009-03-02 105.12 88.12
8 AAPL 2009-02-02 89.31 89.10
9 AAPL 2009-01-02 90.13 85.88
10 AXP 2009-03-02 13.63 11.68
11 AXP 2009-02-02 12.06 16.35
12 AXP 2009-01-02 16.73 18.57
13 GS 2009-03-02 106.02 87.86
14 GS 2009-02-02 91.08 78.78
15 GS 2009-01-02 80.73 84.02
> # now, let's change the shape of this data frame:
> reshape(my.quotes.oc, timevar="Date", idvar="symbol", direction="wide")
symbol Close.2009-03-02 Open.2009-03-02 Close.2009-02-02
1 GE 10.11 8.29 8.51
4 GOOG 348.06 333.33 337.99
7 AAPL 105.12 88.12 89.31
10 AXP 13.63 11.68 12.06
13 GS 106.02 87.86 91.08
Open.2009-02-02 Close.2009-01-02 Open.2009-01-02
1 12.03 12.13 16.51
4 334.29 338.53 308.60
7 89.10 90.13 85.88
10 16.35 16.73 18.57
13 78.78 80.73 84.02
The tricky thing about reshape is that it is actually two functions in one: a function that transforms long data to wide data and a function that transforms wide data to long data. The direction argument specifies whether you want a data frame that is “long” or “wide.”
When transforming to wide data, you need to specify the idvar and timevar arguments. When transforming to long data, you need to specify the varying argument.
By the way, calls to reshape are reversible. If you have an object d that was created by a call to reshape, you can call reshape(d) to get back the original data frame:
reshape(data, varying = , v.names = , timevar = , idvar = , ids = , times = ,
drop = , direction, new.row.names = , sep = , split = )
Here are the arguments to reshape.
Using the Reshape Library
Many R users (like me) find the built-in functions for reshaping data (like stack, unstack, and reshape) confusing. Luckily, there’s an alternative. Hadley Wickham (the author of ggplot2) has developed a library called reshape with a much more intuitive model for getting data into the right form. (Don’t confuse the reshape library with the reshape function.)
Melting and Casting
Reshape uses an intuitive model to describe how to manipulate data tables. Hadley observed that if you had detailed transactional data, then you could easily manipulate that data into many different forms. Quite often, you could take an existing table of data, turn it into a list of transactions, and then shape it into a different form. He called the process of turning a table of data into a set of transactions melting, and the process of turning the list of transactions into a table casting.
Examples of reshape
Let’s see how melting and casting work, using the same data that we used above to show how much easier the reshape library is. First, let’s melt the quote data.
> # call melt using the default settings
> my.molten.quotes <- melt(my.quotes)
Using symbol, Date as id variables
> # just show the first few lines
> head(my.molten.quotes)
symbol Date variable value
1 GE 2009-03-02 Open 8.29
2 GE 2009-02-02 Open 12.03
3 GE 2009-01-02 Open 16.51
4 GOOG 2009-03-02 Open 333.33
5 GOOG 2009-02-02 Open 334.29
6 GOOG 2009-01-02 Open 308.60
Now that we have the data into a molten form, it’s very straightforward to transform it with cast. Here are a few examples:
> # prices by date for just GE
> cast(data=my.molten.quotes, variable~Date, subset=(symbol=='GE'))
variable 2009-01-02 2009-02-02 2009-03-02
1 Open 16.51 12.03 8.29
2 High 17.24 12.90 11.35
3 Low 11.87 8.40 5.87
4 Close 12.13 8.51 10.11
5 Volume 117846700.00 194928800.00 277426300.00
6 Adj.Close 10.75 7.77 9.23
> # Closing prices for each stock by date
> cast(data=my.molten.quotes, symbol~Date, subset=(variable=='Adj.Close'))
symbol 2009-01-02 2009-02-02 2009-03-02
1 GE 10.75 7.77 9.23
2 GOOG 338.53 337.99 348.06
3 AAPL 90.13 89.31 105.12
4 AXP 15.70 11.32 12.79
5 GS 77.85 88.31 102.79
> # Return a list of quotes by symbol and date
> cast(data=my.molten.quotes, Date~variable|symbol)
$GE
Date Open High Low Close Volume Adj.Close
1 2009-01-02 16.51 17.24 11.87 12.13 117846700 10.75
2 2009-02-02 12.03 12.90 8.40 8.51 194928800 7.77
3 2009-03-02 8.29 11.35 5.87 10.11 277426300 9.23
$GOOG
Date Open High Low Close Volume Adj.Close
1 2009-01-02 308.60 352.33 282.75 338.53 5727600 338.53
2 2009-02-02 334.29 381.00 329.55 337.99 6158100 337.99
3 2009-03-02 333.33 359.16 289.45 348.06 5346800 348.06
$AAPL
Date Open High Low Close Volume Adj.Close
1 2009-01-02 85.88 97.17 78.20 90.13 33487900 90.13
2 2009-02-02 89.10 103.00 86.51 89.31 27394900 89.31
3 2009-03-02 88.12 109.98 82.33 105.12 25963400 105.12
$AXP
Date Open High Low Close Volume Adj.Close
1 2009-01-02 18.57 21.38 14.72 16.73 19110000 15.70
2 2009-02-02 16.35 18.27 11.44 12.06 24297100 11.32
3 2009-03-02 11.68 15.24 9.71 13.63 31136400 12.79
$GS
Date Open High Low Close Volume Adj.Close
1 2009-01-02 84.02 92.20 59.13 80.73 22764300 77.85
2 2009-02-02 78.78 98.66 78.57 91.08 28301500 88.31
3 2009-03-02 87.86 115.65 72.78 106.02 30196400 102.79
Cool, huh? I find reshape much easier to use than other functions for reshaping data. Now that we’ve seen how melt and cast work, let’s dive into the two functions in more detail.
melt
melt is a generic function; the reshape package includes methods for data frames, arrays, and lists. Here’s an overview of the arguments for each form.
melt.data.frame(data, id.vars, measure.vars, variable_name, na.rm,
preserve.na, ...)
Here is a description of the arguments to melt.data.frame:
Argument | Description | Default |
---|---|---|
data | The data frame to melt. | |
id.vars | ID variables (variables used to identify each unique observation). | All non-measure variables. If neither id.vars nor measure.vars is specified, assumes all factor and character variables are measured. |
measure.vars | Measured variables (variables that describe the thing being measured). | All non-ID variables. If neither id.vars nor measure.vars is specified, assumes all variables that are neither factor nor character variables are measured. |
variable_name | The name of the variable that stores the names of the original variables. | "variable" |
na.rm | Tells melt what to do with NA values. | !preserve.na |
preserve.na | Deprecated; opposite of na.rm . | TRUE |
... | Other arguments are ignored. |
For multi-dimensional arrays, melt is conceptually more simple. You simply need to specify the dimensions to keep, and melt will melt the array.
melt.array(data, varnames, ...)
Here is a description of the arguments to the array form:
Argument | Description | Default |
---|---|---|
data | The array to melt | |
varnames | A vector | All dimensions (dimnames(data) ) |
... | Other arguments are ignored |
Finally, the list form of melt will recursively melt each element in the list, join the results, and return the joined form:
melt.list(data, ..., level)
Argument | Description | Default |
---|---|---|
data | The list of items to melt | |
level | 1 | |
... | Other arguments are passed to recursive calls to melt |
Cast
After you have melted your data, you use cast to reshape the results. Here is a description of the arguments to cast:
cast(data, formula, fun.aggregate=NULL, ..., margins, subset, df, fill,
add.missing, value = guess_value(data))
[34] If you are familiar with SAS, you can think of table as the equivalent to PROC FREQ.
Data Cleaning
Even when data is in the right form, there are often surprises in the data. For example, I used to work with credit data in a financial services company. Valid credit scores (specifically, FICO credit scores) always fall between 340 and 840. However, our data often contained values like 997, 998, and 999. These values did not mean that the customer had really super credit; instead, they had special meanings like “insufficient data” or there might be duplicate records in the data. Again, suppose that you were analyzing data on patients at a hospital. Often, the same doctor might see multiple patients with the same first and last names, so multiple patients may be rolled up into a single record incorrectly. However, sometimes the same patient might see multiple doctors, creating multiple records in the database for the same patient.
Data cleaning doesn’t mean changing the meaning of data. It means identifying problems caused by data collection, processing, and storage processes and modifying the data so that these problems don’t interfere with analysis.
Finding and Removing Duplicates
Data sources often contain duplicate values. Depending on how you plan to use the data, the duplicates might cause problems. It’s a good idea to check for duplicates in your data (if they aren’t supposed to be there).
R provides some useful functions for detecting duplicate values.
Suppose that you accidentally included one stock ticker twice (say, GE) when you fetched stock quotes:
> my.tickers.2 <- c("GE", "GOOG", "AAPL", "AXP", "GS", "GE")
> my.quotes.2 <- get.multiple.quotes(my.tickers.2, from=as.Date("2009-01-01"),
+ to=as.Date("2009-03-31"), interval="m")
R provides some useful functions for detecting duplicate values such as the duplicated function. This function returns a logical vector showing which elements are duplicates of values with lower indices. Let’s apply duplicated to the data frame my.quotes.2:
> duplicated(my.quotes.2)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE TRUE TRUE TRUE
As expected, duplicated shows that the last three rows are duplicates of earlier rows. You can use the resulting vector to remove duplicates:
> my.quotes.unique <- my.quotes.2[!duplicated(my.quotes.2),]
Alternatively, you could use the unique function to remove the duplicate values:
> my.quotes.unique <- unique(my.quotes.2)
Sorting
Two final operations that you might find useful for analysis are sorting and ranking functions.
To sort the elements of an object, use the sort function:
> w <- c(5, 4, 7, 2, 7, 1)
> sort(w)
[1] 1 2 4 5 7 7
Add the decreasing=TRUE option to sort in reverse order:
> sort(w, decreasing=TRUE)
[1] 7 7 5 4 2 1
You can control the treatment of NA values by setting the na.last argument:
> length(w)
[1] 6
> length(w) <- 7
> # note that by default, NA.last=NA and NA values are not shown
> sort(w)
[1] 1 2 4 5 7 7
> # set NA.last=TRUE to put NA values last
> sort(w, na.last=TRUE)
[1] 1 2 4 5 7 7 NA
> # set NA.last=FALSE to put NA values first
> sort(w, na.last=FALSE)
[1] NA 1 2 4 5 7 7
Sorting data frames is somewhat nonintuitive. To sort a data frame, you need to create a permutation of the indices from the data frame and use these to fetch the rows of the data frame in the correct order. You can generate an appropriate permutation of the indices using the order function:
order(..., na.last = , decreasing = )
The order function takes a set of vectors as arguments. It sorts recursively by each vector, breaking ties by looking at successive vectors in the argument list. At the end, it returns a permutation of the indices of the vector corresponding to the sorted order. (The arguments na.last and decreasing work the same way as they do for sort.) To see what this means, let’s use a simple example. First, we’ll define a vector with two elements out of order:
> v <- c(11, 12, 13, 15, 14)
You can see that the first three elements (11, 12, 13) are in order, and the last two (15, 14) are reversed. Let’s call order to see what it does:
> order(v)
[1] 1 2 3 5 4
This means “move row 1 to row 1, move row 2 to row 2, move row 3 to row 3, move row 4 to row 5, move row 5 to row 4.” We can return a sorted version of v using an indexing operator:
> v[order(v)]
[1] 11 12 13 14 15
Suppose that we created the following data frame from the vector v and a second vector u:
> u <- c("pig", "cow", "duck", "horse", "rat")
> w <- data.frame(v, u)
> w
v u
1 11 pig
2 12 cow
3 13 duck
4 15 horse
5 14 rat
We could sort the data frame w by v using the following expression:
> w[order(w$v),]
v u
1 11 pig
2 12 cow
3 13 duck
5 14 rat
4 15 horse
As another example, let’s sort the my.quotes data frame (that we created earlier) by closing price:
> my.quotes[order(my.quotes$Close),]
symbol Date Open High Low Close Volume Adj.Close
2 GE 2009-02-02 12.03 12.90 8.40 8.51 194928800 8.51
1 GE 2009-03-02 8.29 11.35 5.87 10.11 277426300 10.11
11 AXP 2009-02-02 16.35 18.27 11.44 12.06 24297100 11.90
3 GE 2009-01-02 16.51 17.24 11.87 12.13 117846700 11.78
10 AXP 2009-03-02 11.68 15.24 9.71 13.63 31136400 13.45
12 AXP 2009-01-02 18.57 21.38 14.72 16.73 19110000 16.51
15 GS 2009-01-02 84.02 92.20 59.13 80.73 22764300 80.29
8 AAPL 2009-02-02 89.10 103.00 86.51 89.31 27394900 89.31
9 AAPL 2009-01-02 85.88 97.17 78.20 90.13 33487900 90.13
14 GS 2009-02-02 78.78 98.66 78.57 91.08 28301500 91.08
7 AAPL 2009-03-02 88.12 109.98 82.33 105.12 25963400 105.12
13 GS 2009-03-02 87.86 115.65 72.78 106.02 30196400 106.02
5 GOOG 2009-02-02 334.29 381.00 329.55 337.99 6158100 337.99
6 GOOG 2009-01-02 308.60 352.33 282.75 338.53 5727600 338.53
4 GOOG 2009-03-02 333.33 359.16 289.45 348.06 5346800 348.06
You could sort by symbol and then by closing price using the following expression:
> my.quotes[order(my.quotes$symbol, my.quotes$Close),]
symbol Date Open High Low Close Volume Adj.Close
2 GE 2009-02-02 12.03 12.90 8.40 8.51 194928800 8.51
1 GE 2009-03-02 8.29 11.35 5.87 10.11 277426300 10.11
3 GE 2009-01-02 16.51 17.24 11.87 12.13 117846700 11.78
5 GOOG 2009-02-02 334.29 381.00 329.55 337.99 6158100 337.99
6 GOOG 2009-01-02 308.60 352.33 282.75 338.53 5727600 338.53
4 GOOG 2009-03-02 333.33 359.16 289.45 348.06 5346800 348.06
8 AAPL 2009-02-02 89.10 103.00 86.51 89.31 27394900 89.31
9 AAPL 2009-01-02 85.88 97.17 78.20 90.13 33487900 90.13
7 AAPL 2009-03-02 88.12 109.98 82.33 105.12 25963400 105.12
11 AXP 2009-02-02 16.35 18.27 11.44 12.06 24297100 11.90
10 AXP 2009-03-02 11.68 15.24 9.71 13.63 31136400 13.45
12 AXP 2009-01-02 18.57 21.38 14.72 16.73 19110000 16.51
15 GS 2009-01-02 84.02 92.20 59.13 80.73 22764300 80.29
14 GS 2009-02-02 78.78 98.66 78.57 91.08 28301500 91.08
13 GS 2009-03-02 87.86 115.65 72.78 106.02 30196400 106.02
Sorting a whole data frame is a little strange. You can create a suitable permutation using the order function, but you need to call order using do.call for it to work properly. (The reason for this is that order expects a list of vectors and interprets the data frame as a single vector, not as a list of vectors.) Let’s try sorting the my.quotes table we just created:
> # what happens when you call order on my.quotes directly: the data
> # frame is interpreted as a vector
> order(my.quotes)
[1] 61 94 96 95 31 62 77 107 70 76 106 46 71 40 108 63
[17] 116 32 86 78 47 115 85 72 55 41 33 117 87 48 56 42
[33] 102 57 105 101 97 98 104 103 100 99 75 73 69 74 44 120
[49] 90 67 45 39 68 43 37 38 83 113 84 114 89 119 60 54
[65] 59 53 82 112 88 118 52 58 93 92 18 21 24 27 30 17
[81] 20 23 26 29 16 19 22 25 28 91 66 64 36 65 34 35
[97] 80 110 81 111 79 109 51 49 50 7 8 9 10 11 12 1
[113] 2 3 4 5 6 13 14 15
> # what you get when you use do.call:
> do.call(order,my.quotes)
[1] 3 2 1 6 5 4 9 8 7 12 11 10 15 14 13
> # now, return the sorted data frame using the permutation:
> my.quotes[do.call(order, my.quotes),]
symbol Date Open High Low Close Volume Adj.Close
3 GE 2009-01-02 16.51 17.24 11.87 12.13 117846700 11.78
2 GE 2009-02-02 12.03 12.90 8.40 8.51 194928800 8.51
1 GE 2009-03-02 8.29 11.35 5.87 10.11 277426300 10.11
6 GOOG 2009-01-02 308.60 352.33 282.75 338.53 5727600 338.53
5 GOOG 2009-02-02 334.29 381.00 329.55 337.99 6158100 337.99
4 GOOG 2009-03-02 333.33 359.16 289.45 348.06 5346800 348.06
9 AAPL 2009-01-02 85.88 97.17 78.20 90.13 33487900 90.13
8 AAPL 2009-02-02 89.10 103.00 86.51 89.31 27394900 89.31
7 AAPL 2009-03-02 88.12 109.98 82.33 105.12 25963400 105.12
12 AXP 2009-01-02 18.57 21.38 14.72 16.73 19110000 16.51
11 AXP 2009-02-02 16.35 18.27 11.44 12.06 24297100 11.90
10 AXP 2009-03-02 11.68 15.24 9.71 13.63 31136400 13.45
15 GS 2009-01-02 84.02 92.20 59.13 80.73 22764300 80.29
14 GS 2009-02-02 78.78 98.66 78.57 91.08 28301500 91.08
13 GS 2009-03-02 87.86 115.65 72.78 106.02 30196400 106.02
Part IV. Data Visualization
This part of the book explains how to plot data with R.
Chapter 13. Graphics
There are many different ways to plot graphics in R. In this book, we’ll focus on the three most popular packages: graphics, lattice, and ggplot2.
The graphics package contains a wide variety of functions for plotting data. It is easy to customize or modify charts with the graphics package, or to interact with plots on the screen. The lattice package contains an alternative set of functions for plotting data. Lattice graphics are well suited for splitting data by a conditioning variable. Finally, ggplot2 uses a different metaphor for graphics, allowing you to easily and quickly create stunning charts. This chapter gives an overview of the graphics package. We’ll explain how to use lattice graphics in Chapter 14, and ggplot2 in Chapter 15.
An Overview of R Graphics
R includes tools for drawing most common types of charts, including bar charts, pie charts, line charts, and scatter plots. Additionally, R can also draw some less-familiar charts like quantile-quantile (Q-Q) plots, mosaic plots, and contour plots. The following table shows many of the charts included in the graphics package.
Graphics package function | Description |
---|---|
barplot | Bar and column charts |
dotchart | Cleveland dot plots |
hist | Histograms |
density | Kernel density plots |
stripchart | Strip charts |
qqnorm (in stats package) | Quantile-quantile plots |
xplot | Scatter plots |
smoothScatter | Smooth scatter plots |
qqplot (in stats package) | Quantile-quantile plots |
pairs | Scatter plot matrices |
image | Image plots |
contour | Contour plots |
persp | Perspective charts of three-dimensional data |
interaction.plot | Summary of the response for two-way combinations of factors |
sunflowerplot | Sunflower plots |
You can show R graphics on the screen or save them in many different formats. Graphics Devices explains how to choose output methods. R gives you an enormous amount of control over graphics. You can control almost every aspect of a chart. Customizing Charts explains how to tweak the output of R to look the way you want. This section shows how to use many common types of R charts.
Scatter Plots
To show how to use scatter plots, we will look at cases of cancer in 2008 and toxic waste releases by state in 2006. Data on new cancer cases (and deaths from cancer) are tabulated by the American Cancer Society; information on toxic chemicals released into the environment is tabulated by the U.S. Environmental Protection Agency (EPA).[35]
The sample data is included in the nutshell package:
> library(nutshell)
> data(toxins.and.cancer)
To show a scatter plot, use the plot function. plot is a generic function (you can “plot” many different types of objects); plot also can draw many types of objects, including vectors, tables, and time series. For simple scatter plots with two vectors, the function that is called is plot.default:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)
Here is a description of the arguments to plot.
Argument | Description | Default |
---|---|---|
x, y | The data to be plotted. You may specify two separate vectors, x and y. Otherwise, you may specify a time series, formula, list, or matrix with two or more columns; see the help file for xy.coords for more details. | |
type | A character value that specifies the type of plot: type="p" for points, type="l" for lines, type="o" for overplotted points and lines, type="b" for points joined by lines, type="s" for stair steps, type="h" for histogram-style vertical lines, or type="n" for no points or lines. | "p" |
xlim | A numeric vector with two values specifying the x limits of the plot. | NULL |
log | A character value that specifies which axes should be plotted with a logarithmic scale. Use log="" for neither, log="x" for the x-axis, log="y" for the y-axis, and log="xy" for both. | "" |
main | The main title for the plot. | NULL |
sub | The subtitle for the plot. | NULL |
xlab | The label for the x-axis. | NULL |
ylab | The label for the y-axis. | NULL |
ann | If ann=TRUE, then axis titles and overall titles are included with plots. If ann=FALSE , then these annotations are not included. | par("ann") |
axes | A logical value that specifies whether axes should be drawn. | TRUE |
frame.plot | A logical value that specifies whether a box should be drawn around the plot. | axes |
panel.first | An expression that is evaluated after the axes are drawn but before points are plotted. | NULL |
panel.last | An expression that is evaluated after the points are plotted. | NULL |
asp | A numeric value that specifies the aspect ratio of the plot (as y/ x). | NA |
... | Additional graphical parameters. (See Graphical Parameters for more information.) |
Now let’s try our first plot. Let’s compare the overall cancer rate (number of cancer deaths divided by state population) to the presence of toxins (total toxic chemicals release divided by state area):
> # use with so that we don't have to keep typing the
> # data frame name
> attach(toxins.and.cancer)
> plot(total_toxic_chemicals/Surface_Area, deaths_total/Population)
The chart is shown in Figure 13-1. Perhaps there is a stronger correlation between airborne toxins and lung cancer:
> plot(air_on_site/Surface_Area, deaths_lung/Population)
This chart is shown in Figure 13-2. Suppose that you wanted to know which states were associated with which points. R provides some interactive tools for identifying points on plots. You can use the locator function to tell you the coordinates of a specific point (or set of points). To do this, first plot the data. Next, type locator(1). Then click on a point in the open graphics window. As an example, suppose that you plotted the data above, typed locator(1), and then clicked on the point in the upper-right corner. You would see output like this in the R console:
> locator(1)
$x
[1] 0.002499427
$y
[1] 0.0008182696
Figure 13-1. Total toxins and new cancer cases
Another useful function for identifying points is identify. This function can be used to interactively label points on a plot. To use identify with the data above, you would enter:
> identify(air_on_site/Surface_Area, deaths_lung/Population,
+ State_Abbrev)
While this command is running, you can click on individual points on the chart, and R will label those points with state names.
Figure 13-2. Toxins released by air and lung cancer deaths per capita
If you wanted to label all the points at once, you could use the text function to add labels to the plot. Here is how I drew the plot shown in Figure 13-3:
> plot(air_on_site/Surface_Area, deaths_lung/Population,
+ xlab="Air Release Rate of Toxic Chemicals",
+ ylab="Lung Cancer Death Rate")
> text(air_on_site/Surface_Area, deaths_lung/Population,
+ labels=State_Abbrev,
+ cex=0.5,
+ adj=c(0,-1))
Notice that I have added some extra arguments to refine the appearance of the plot. The xlab and ylab arguments are used to add labels to the x- and y-axes. The text function draws a label next to each point. I tweaked the size placement of the labels using the cex and adj arguments; see Graphical Parameters for more information.
Is this relationship significant? It is actually statistically significant (see Correlation tests), but we don’t have enough information to make a good argument that there is a causal relationship.
Figure 13-3. Toxins released by air and lung cancer deaths per capita, cleaned up
The plot function is a good choice if you want to plot two columns of data on one chart. However, suppose that you have more columns of data to plot, perhaps split into different categories. Or, suppose that you want to plot all the columns of one matrix against all the columns of another matrix. To plot multiple sets of columns against one another, you can use the matplot function:
matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, cex = NULL, bg = NA,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))
Matplot accepts the following arguments.
Argument | Description | Default |
---|---|---|
x, y | Vectors or matrices containing the data to be plotted. The number of rows and columns should match. | If x is not specified, then x=1:ncol(y). If y is not specified, then y=x; x=1:ncol(y) . |
type | A character vector specifying the types of plots to generate. Use type="p" for points, type="l" for lines, type="b" for both, type="c" for the lines part alone of "b", type="o" for both overplotted points and lines, type="h" for histogram-like (or high-density) vertical lines, type="s" for stair steps, type="S" for other steps, or type="n" for no plotting. | "p" |
lty | A vector of line types. See Graphical parameters by name for more details. | 1:5 |
lwd | A vector of line widths. See Graphical parameters by name for more details. | 1 |
pch | A vector of plotting characters. See Graphical parameters by name for more details. | NULL |
col | A vector of colors. See Graphical parameters by name for more details. | 1:6 |
cex | A vector of character expansion sizes. See Graphical parameters by name for more details. | NULL |
bg | A vector of background colors for plot symbols. See Graphical parameters by name for more details. | NA |
xlab, ylab | Character values specifying x- and y-axis labels. | NULL |
xlim, ylim | Numeric values specifying ranges for the x- and y-axes. | NULL |
... | Additional graphical parameters that are passed to par . | NULL |
add | A logical value indicating whether to add to the current plot or to generate a new plot. | FALSE |
verbose | A logical value indicating whether to write information to the console describing what matplot did. | getOption("verbose") |
Many arguments to matplot have the same names as standard arguments to par. However, because matplot generates multiple plots at the same time, these arguments can be specified as vectors of multiple values when called by matplot. For more details on standard arguments, see Graphical Parameters.
If you are plotting a very large number of points, then you may prefer the function smoothScatter, which plots the density of points by shading different regions of the plot different shades, depending on the density of points in each region:
smoothScatter(x, y = NULL, nbin = 128, bandwidth,
colramp = colorRampPalette(c("white", blues9)),
nrpoints = 100, pch = ".", cex = 1, col = "black",
transformation = function(x) x^.25,
postPlotHook = box,
xlab = NULL, ylab = NULL, xlim, ylim,
xaxs = par("xaxs"), yaxs = par("yaxs"), ...)
For an example of smoothScatter, see Correlation and Covariance.
If you have a data frame with n different variables and you would like to generate a scatter plot for each pair of values in the data frame, try the pairs function. As an example, let’s plot the hits, runs, strikeouts, walks, and home runs for each Major League Baseball (MLB) player who had more than 100 at bats in 2008. To do this, we would use the following R statement:
> library(nutshell)
> data(batting.2008)
> pairs(batting.2008[batting.2008$AB>100, c("H", "R", "SO", "BB", "HR")])
The result is shown in Figure 13-4.
Figure 13-4. Pairs example
Plotting Time Series
R includes tools for plotting time series data. The plot function has a method for time series:
plot(x, y = NULL, plot.type = c("multiple", "single"),
xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
oma.multi = c(6, 0, 5, 0), axes = TRUE, ...)
The arguments x and y specify ts objects, panel specifies how to plot the time series (by default, lines), and other arguments specify how to break time series into different plots (as in lattice). As an example, we’ll plot the turkey price data:
> library(nutshell)
> data(turkey.price.ts)
> plot(turkey.price.ts)
The results are shown in Figure 13-5. As you can see, turkey prices are very seasonal. There are huge sales in November and December (for Thanksgiving and Christmas) and minor sales in spring (probably for Easter).
Figure 13-5. Time series plot
Another way to look at seasonal effects is with an autocorrelation plot (which is also called a correlogram; see Figure 13-6). This plot shows how correlated points are with each other, by difference in time. You can also plot the autocorrelation function for a time series (which can be helpful for looking at cyclical effects). The plot is generated by default when you call acf, which computes the autocorrelation function. (Alternatively, you can generate the autocorrelation function with acf and then plot it separately.) Here is how to generate the plot for the turkey price data:
> acf(turkey.price.ts)
Figure 13-6. Autocorrelation function plot
As you can see, points are correlated over 12-month cycles (and inversely correlated over 6-month cycles). Time series analysis is discussed further in Chapter 23.
Bar Charts
To draw bar (or column) charts in R, use the barplot function.
As an example, let’s look at doctoral degrees awarded in the United States between 2001 and 2006:[36]
> doctorates <- data.frame (
+ year=c(2001, 2002, 2003, 2004, 2005, 2006),
+ engineering=c(5323, 5511, 5079, 5280, 5777, 6425),
+ science=c(20643, 20017, 19529, 20001, 20498, 21564),
+ education=c(6436, 6349, 6503, 6643, 6635, 6226),
+ health=c(1591, 1541, 1654, 1633, 1720, 1785),
+ humanities=c(5213, 5178, 5051, 5020, 5013, 4949),
+ other=c(2159, 2141, 2209, 2180, 2480, 2436)
+ )
Or, if you prefer, you can just load the data from the nutshell package:
> library(nutshell)
> data(doctorates)
Now let’s transform this into a matrix for plotting:
> # make this into a matrix:
> doctorates.m <- as.matrix(doctorates[2:7])
> rownames(doctorates.m) <- doctorates[, 1]
> doctorates.m
engineering science education health humanities other
2001 5323 20643 6436 1591 5213 2159
2002 5511 20017 6349 1541 5178 2141
2003 5079 19529 6503 1654 5051 2209
2004 5280 20001 6643 1633 5020 2180
2005 5777 20498 6635 1720 5013 2480
2006 6425 21564 6226 1785 4949 2436
The barplot function can’t work with a data frame, so we’ve created a matrix object for this problem with the data.
Let’s start by just showing a bar plot of doctorates in 2001 by type:
> barplot(doctorates.m[1, ])
As you can see from Figure 13-7, by default R shows the y-axis along with the size of each bar, but it does not show the x-axis. R also automatically uses column names to name the bars. Suppose that we wanted to show all the different years as bars stacked next to one another. Suppose that we also wanted the bars plotted horizontally and wanted to show a legend for the different years. To do this, we could use the following expression to generate the chart shown in Figure 13-8:
> barplot(doctorates.m, beside=TRUE, horiz=TRUE, legend=TRUE, cex.names=.75)
Figure 13-7. Simple bar plot example
Figure 13-8. Horizontal juxtaposed bar plot example
Finally, suppose that we wanted to show doctorates by year as stacked bars. To do this, we need to transform the matrix so that each column is a year and each row is a discipline. We also need to make sure that there is enough room to see the legend, so we’ll extend the limits on the y-axis:
> barplot(t(doctorates.m), legend=TRUE, ylim=c(0, 66000))
The chart generated by this expression is shown in Figure 13-9.
Figure 13-9. Stacked bar plot example
Here is a detailed description of barplot:
barplot(height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
add = FALSE, args.legend = NULL, ...)
The barplot function is very flexible; here is a description of the arguments to barplot.
Pie Charts
One of the most popular ways to plot data is the pie chart. Pie charts can be an effective way to compare different parts of a quantity, though there are lots of good reasons not to use pie charts.[37] You can draw pie charts in R using the pie function:
pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)
Here is a description of the arguments to pie.
Argument | Description | Default |
---|---|---|
x | A vector of nonnegative numeric values that will be plotted. | |
labels | An expression to generate labels, a vector of character strings, or another object that can be coerced to a graphicsAnnot object and used as labels. | names(x) |
edges | A numeric value indicating the number of segments used to draw the outside of the pie. | 200 |
radius | A numeric value that specifies how big the pie should be. (Parts of the pie are cut off for values over 1.) | 0.8 |
clockwise | A logical value indicating whether slices are drawn clockwise or counterclockwise. | FALSE |
init.angle | A numeric value specifying the starting angle for the slices (in degrees). | if (clockwise) 90 else 0 |
density | A numeric value that specifies the density of shading lines in lines per inch. density=NULL means that no lines are drawn. | NULL |
angle | A numeric value that specifies the slope of the shading lines (in degrees). | 45 |
col | A numeric vector that specifies the colors to be used for slices. If col=NULL , then a set of six pastel colors is used. | NULL |
border | Arguments passed to the polygon function to draw each slice. | NULL |
lty | The line type used to draw each slice. | NULL |
main | A character string that represents the title. | NULL |
As a simple example, let’s use pie charts to show what happened to fish caught in the United States in 2006:
> # 2006 fishery data from
> # http://www.census.gov/compendia/statab/tables/09s0852.xls
> # units are millions of pounds of live fish
> domestic.catch.2006 <- c(7752, 1166, 463, 108)
> names(domestic.catch.2006) <- c("Fresh and frozen",
+ "Reduced to meal, oil, etc.", "Canned", "Cured")
> # note: cex.6 setting shrinks text size by 40% so you can see the labels
> pie(domestic.catch.2006, init.angle=100, cex=.6)
As shown in Figure 13-10, most of the fish (by weight) was sold fresh or frozen.
Figure 13-10. Pie chart
Plotting Categorical Data
The graphics package includes some very useful, and possibly unfamiliar, tools for looking at categorical data.
Suppose that you want to look at the conditional density of a set of categories dependent on a numeric value. You can do this with a conditional density plot, generated by the cdplot function:
cdplot(x, y,
plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...)
Here is the form of cdplot when called with a formula:
cdplot(formula, data = list(),
plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)
The cdplot function uses the density function to compute kernel density estimates across the range of numeric values and then plots these estimates. Here is the list of arguments to cdplot.
Argument | Description | Default |
---|---|---|
x, y, formula, data | Arguments used to specify the data to plot. You may specify either a numeric vector x containing data to plot and a factor vector y containing grouping information or a formula and a data frame (data ) in which to evaluate the formula. | |
subset | A vector specifying the subset of values to be used when plotting. (Applies only when using a formula and a data frame.) | NULL |
plot | Logical value specifying whether the conditional densities should be plotted. | TRUE |
tol.ylab | A numeric vector that specifies a “tolerance parameter” for y-axis labels. If the difference between two labels is less than this parameter, then they are plotted equidistantly. | 0.05 |
ylevels | A character or numeric vector that specifies the order in which levels should be plotted. | NULL |
bw | The “smoothing bandwidth” to use when plotting. See the help file for density for more details. | "nrd0" |
n | A numeric value specifying the number of points at which the density is estimated. | 512 |
from | A numeric value specifying the lowest point at which the density is estimated. | NULL |
to | A numeric value specifying the highest point at which the density is estimated. | NULL |
col | A vector of fill colors for the different conditional values. | NULL |
border | Border color for shaded polygons. | 1 |
main | Main title. | "" |
xlab | x-axis label. | NULL |
ylab | y-axis label. | NULL |
yaxlabels | Character vector for labeling different conditional variables. | NULL |
xlim | Range of x variables to plot. | NULL |
ylim | Range of y variables to plot. | c(0, 1) |
... | Other arguments passed to density . |
As an example, let’s look at how the distribution of batting hand varies by batting average among MLB players in 2008:
> batting.w.names.2008 <- transform(batting.2008,
+ AVG=H/AB, bats=as.factor(bats), throws=as.factor(throws))
> cdplot(bats~AVG,data=batting.w.names.2008,
+ subset=(batting.w.names.2008$AB>100))
The results are shown in Figure 13-11. As you can see, the proportion of switch hitters (bats=="B") increases with higher batting average.
Figure 13-11. Conditional density plot
Suppose, instead, that you simply wanted to plot the proportion of observations for two different categorical variables. R also provides tools for visualizing this type of data. One of the most interesting charts available in R for showing the number of observations with certain properties is the mosaic plot. A mosaic plot shows a set of boxes corresponding to different factor values. The x-axis corresponds to one factor and the y-axis to another factor. To create a mosaic plot, use the mosaicplot function. Here is the form of the mosaicplot function for a contingency table:
mosaicplot(x, main = deparse(substitute(x)),
sub = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = NULL, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),
type = c("pearson", "deviance", "FT"), ...)
There is also a method for mosaicplot that allows you to specify the data as a formula and data frame:
mosaicplot(formula, data = NULL, ...,
main = deparse(substitute(data)), subset,
na.action = stats::na.omit)
Here is a description of the arguments to mosaicplot.
Argument | Description | Default |
---|---|---|
x, formula, data | Specifies the data to be plotted. You may specify either a contingency table x or a formula and a data frame (data). (If the variables in formula are defined in the current environment, then you may omit data .) | |
subset | A vector that specifies which values in data to plot. | |
main | A character value specifying the main title for the plot. | deparse(substitute(x)) |
sub | A character value specifying the subtitle for the plot. | NULL |
xlab | A character value specifying the label for the x-axis. | NULL |
ylab | A character value specifying the label for the y-axis. | NULL |
sort | An integer vector that describes how to sort the variables in x. Specified as a permutation of 1:length(dim(x) ). | NULL |
off | A numeric vector that specifies the spacing between each level of the mosaic as a percentage. | NULL |
dir | A character vector that specifies which direction to plot each vector in x. Use "v" for vertical and "h" for horizontal. | NULL |
color | A logical value or character vector specifying colors to use for color shading. You may use color=TRUE for a gamma-corrected color palette, color=NULL for grayscale, or color=FALSE for unfilled boxes. | NULL |
shade | A logical value (or numeric vector) specifying whether to produce “extended mosaic plots” to visualize standardized residuals of a log-linear model for the table by color and outline of the mosaic’s tiles. You may specify shade=FALSE for standard plots, shade=TRUE for extended plots, or a numeric vector with up to five elements specifying cut points of the residuals. | FALSE |
margin | A list of vectors containing marginal totals to fit in a log-linear model. See the help file for loglin for more information. | NULL |
cex.axis | A numeric value specifying the magnification factor to use for axis annotation text. | 0.66 |
las | Specifies the style of the axis labels. | par("las") |
type | A character string indicating the type of residuals to plot. Use type="pearson" for components of Pearson’s chi-squared, type="deviance" for components of the likelihood ratio chi-squared, or type="FT" for the Freeman-Tukey residuals. | c("pearson", "deviance", "FT") |
na.action | A function that specifies what mosaicplot should do if the data contains variables to be cross-tabulated that contain NA values. | A function that omits NA values (specifically, stats::na.omit ) |
... | Additional graphical parameters passed to other methods. |
As an example, let’s create a mosaic plot showing the number of batters in the MLB in 2008. On the x-axis, we’ll show batting hand (left, right, or both), and on the y-axis we’ll show throwing hand (left or right). This function can accept either a matrix of values or a formula and a data frame. In this example, we’ll use a formula and a data frame. The plot is shown in Figure 13-12:
> mosaicplot(formula=bats~throws, data=batting.w.names.2008, color=TRUE)
> dev.off()
Figure 13-12. Mosaic plot
Another chart that is very similar to a mosaic plot is a spine plot. A spine plot shows different boxes corresponding to the number of observations associated with two factors. Figure 13-13 shows an example of a spine plot using the same batting data we used in the mosaic example:
> spineplot(formula=bats~throws, data=batting.w.names.2008)
Another function for looking at tables of data is assocplot. This function plots a set of bar charts, showing the deviation of each combination of factors from independence. (These are also called Cohen-Friendly association plots.) As an example, let’s look at the same data for batting and throwing hands:
> assocplot(table(batting.w.names.2008$bats, batting.w.names.2008$throws),
+ xlab="Throws", ylab="Bats")
Figure 13-13. Spine plot
The resulting plot is shown in Figure 13-14. Other useful plotting functions include stars and fourfoldplot. See the help files for more information.
Three-Dimensional Data
R includes a few functions for visualizing three-dimensional data. All of these functions can be used to plot a matrix of values. (Row indices correspond to x values, column indices to y values, and values in the matrix to z values.)
As an example of multidimensional data, I used elevation data for Yosemite Valley in Yosemite National Park (you can find a map at http://www.nps.gov/yose/planyourvisit/upload/yosevalley2008.pdf). The sample data I used for my examples is included in the nutshell library.
Figure 13-14. Association plot example
GETTING ELEVATION DATA
I downloaded the Yosemite data from the U.S. Geological Survey. Specifically, I used the National Map Seamless Server (available at http://seamless.usgs.gov/website/seamless/viewer.htm). This service allows you to search for a specific location and select a region from which to obtain elevation data. After you select the area that you want to export, a window will pop up called the “Request Summary Page.” There will be a link on this page to “Modify Data Request.” Click this link to modify the defaults, choose to export the data in GridFloat format, save the options, and download the file. The name of the file I downloaded was NED_09216343.zip, though the name of your file will be different.
Unzip the downloaded file. There are many different files inside the archive, including a lot of information about the request. The most important files are the .hdr file (which contains information you need to load the data) and the .flt file (which contains the data). Here is what was contained in the ned_09216343.hdr file that I downloaded:
ncols 562
nrows 253
xllcorner -119.68111111082
yllcorner 37.699166665986
cellsize 0.00027777777779647
NODATA_value -9999
byteorder LSBFIRST
The GridFloat format saves the topological data as a stream of 4-byte floating-point values. You can load this into R using the readBin function. As noted in this file, there were 562 × 253 four-byte values encoded in little-endian format. So I loaded the data with the following statement:
> yosemite <- readBin(
+ "~/Documents/book/data/NED_09216343/ned_09216343.flt",
+ what="numeric", n=562*253, size=4, endian="little")
I then assigned dimensions with this statement:
> dim(yosemite) <- c(562,253)
Feel free to grab your own data samples for experimentation.
To view a three-dimensional surface, use the persp function. This function draws a plot of a three-dimensional surface for a specific perspective. (It does, of course, draw in only two dimensions.) If you want to show your nonstatistician friends that you are doing really cool math stuff with R, this is the function that draws the coolest plots:
persp(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z, xlim = range(x), ylim = range(y),
zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
main = NULL, sub = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1,
scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0,
shade = NA, box = TRUE, axes = TRUE, nticks = 5,
ticktype = "simple", ...)
Here is a description of the values to persp.
Argument | Description | Default |
---|---|---|
x, y | Numeric vectors that explain what each dimension of z represents. (Specifically, x is a numeric vector representing the x values for each row in z, and y is a numeric vector representing the y values for each column in z .) | x = seq(0, 1, length.out = nrow(z)) sy = seq(0, 1, length.out = ncol(z)) |
z | A matrix of values to plot. | |
xlim, ylim, zlim | Numeric vectors with two values, representing the range of values to plot for x, y, and z , respectively. | xlim = range(x) ylim = range(y), zlim = range(z, na.rm = TRUE) |
xlab, ylab, zlab | Character values specifying titles to plot for the x-, y-, and z-axes. | NULL |
main | A character value specifying the main title for the plot. | NULL |
sub | A character value specifying the subtitle for the plot. | NULL |
theta | A numeric value that specifies the azimuthal direction of the viewing angle. | 0 |
phi | A numeric value that specifies the colatitude of the viewing angle. | 15 |
r | The distance of the viewing point from the center of the plotting box. | sqrt(3) |
d | A numeric value that can be used to increase or decrease the perspective effect. | 1 |
scale | A logical value specifying whether to maintain aspect ratios when plotting. | TRUE |
expand | A numeric factor used to expand (when z > 1) or shrink (when z < 1) the z coordinates. | 1 |
col | The color of the surface facets. | "white" |
border | The color of the lines drawn around the surface facets. | NULL |
ltheta | If specified, the surface is drawn as if illuminated from the direction specified by azimuth ltheta and colatitude lphi . | -135 |
lphi | See the explanation for ltheta . | 0 |
shade | An exponent used to calculate the shade of the surface facets. See the help file for more information. | NA |
box | A logical value indicating whether a bounding box for the surface should be drawn. | TRUE |
axes | A logical value indicating whether axes should be drawn. | TRUE |
nticks | A numeric value specifying the number of ticks to draw on each axis. | 5 |
ticktype | A character value specifying the types of ticks drawn here. Use ticktype="simple" for arrows pointing in the direction of increase and ticktype="detailed" to show simple tick marks. | "simple" |
... | Additional graphical parameters. See Graphical Parameters . |
As an example of three-dimensional data, let’s take a look at Yosemite Valley. Specifically, let’s look toward Half Dome. To plot this elevation data, I needed to make two transformations. First, I needed to flip the data horizontally. In the data file, values move east to west (or left to right) as x indices increase and from north to south (or top to bottom) as y indices increase. Unfortunately, persp plots y coordinates slightly differently. Persp plots increasing y coordinates from bottom to top. So I selected y indices in reverse order. Here is an R expression to do this:
> # load the data:
> library(nutshell)
> data(yosemite)
> # check dimensions of data
> dim(yosemite)
[1] 562 253
> # select all 253 columns in reverse order
> yosemite.flipped <- yosemite[,seq(from=253, to=1)]
Next, I wanted to select only a square subset of the elevation points. To do this, I selected only the rightmost 253 columns of the yosemite matrix using an expression like this:
> yosemite.rightmost <- yosemite[nrow(yosemite) - ncol(yosemite) + 1,]
Note the “+ 1” in this statement; that’s to make sure that we take exactly 253 columns. (This is to avoid a fencepost error.)
To plot the figure, I rotated the image by 225° (through theta=225) and changed the viewing angle to 20° (phi=20). I adjusted the light source to be from a 45° angle (ltheta=45) and set the shading factor to 0.75 (shade=.75) to exaggerate topological features. Putting it all together, here is the code I used to plot Yosemite Valley looking toward Half Dome:
> # create halfdome subset in one expression:
> halfdome <- yosemite[(nrow(yosemite) - ncol(yosemite) + 1):562,
+ seq(from=253,to=1)]
> persp(halfdome,col=grey(.25), border=NA, expand=.15,
+ theta=225, phi=20, ltheta=45, lphi=20, shade=.75)
The resulting image is shown in Figure 13-15.
Figure 13-15. Perspective view of Yosemite Valley
Another useful function for plotting three-dimensional data is image. This function plots a matrix of data points as a grid of boxes, color coding the boxes based on the intensity at each location:
image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),
add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)
Here is a description of the arguments to image.
Argument | Description | Default |
---|---|---|
x, y | (Alternatively, you may pass x an argument that is a list containing elements named x, y, and z .) | |
z | A matrix of values to plot. | |
xlim, ylim | Two-element numeric vectors that specify the range of values in x and y that should be plotted. | |
zlim | The range of values for z for which colors should be plotted. | |
col | A vector of colors to plot. Typically generated by functions like rainbow, heat.colors, topo.colors, or terrain.colors . | heat.colors(12) |
add | A logical value that specifies whether the plot should be added to the existing plot. | FALSE |
xaxs, yaxs | Style for the x- and y-axes; see Graphical parameters by name . | xlab="i", ylab="i" |
xlab, ylab | Labels for the x and y values. | |
breaks | An integer value specifying the number of break points for colors. (There must be at least one more color than break point.) | |
oldstyle | If oldstyle=TRUE, then the midpoints of the color intervals are equally spaced between the limits. If oldstyle=FALSE , then the range is split into color intervals of equal size. | FALSE |
... | Additional arguments to par. |
To plot the Yosemite Valley data using image, I needed to make several tweaks. First, I needed to specify an aspect ratio that matched the dimensions of the data by setting asp=253/562 (note that this is a standard graphics parameter passed to par). Then I specified a range of points on the y dimension to make sure that data was plotted from top to bottom (y=c(1,0)). Finally, I specified a set of 32 grayscale colors for this plot (col=sapply((0:32)/32,gray)). Here is an expression that generates an image plot from the Yosemite Valley data:
> image(yosemite, asp=253/562, ylim=c(1,0), col=sapply((0:32)/32, gray))
The results are shown in Figure 13-16.
A closely related tool for looking at multidimensional data, particularly in biology, is the heat map. A heat map plots a single variable on two axes, each representing a different factor. The heatmap function plots a grid, where each box is encoded with a different color depending on the size of the dependent variable. It may also plot a tree structure (called a dendrogram) to the side of each plot showing the hierarchy of values. As you might have guessed, the function for plotting heat maps in R is heatmap:
heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,
reorderfun = function(d,w) reorder(d,w),
add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale=c("row", "column", "none"), na.rm = TRUE,
margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
labRow = NULL, labCol = NULL, main = NULL,
xlab = NULL, ylab = NULL,
keep.dendro = FALSE, verbose = getOption("verbose"), ...)
Figure 13-16. Image example: Yosemite Valley
Another useful function for plotting three-dimensional data is contour. The contour function plots contour lines, connecting equal values in the data:
contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels),
labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont, axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)
Here is a table showing the arguments to contour.
Argument | Description | Default |
---|---|---|
x, y | Numeric vectors specifying the location of grid lines at which values in the matrix z are measured. (Alternatively, you may specify a single matrix for x and omit y and z .) | x=seq(0, 1, length.out=nrow(z)) y=seq(0, 1, length.out=ncol(z)) |
z | A numeric vector containing values to be plotted. | |
nlevels | Number of contour levels. (Used only if levels is not specified.) | 10 |
levels | A numeric vector of levels at which to draw lines. | pretty(zlim, nlevels) |
labels | A vector of labels for the contour lines. | NULL |
xlim, ylim, zlim | Numeric vectors of two elements specifying the range of x, y, and z values to include in the plot. | xlim = range(x, finite = TRUE) ylim = range(y, finite = TRUE) zlim = range(z, finite = TRUE) |
labcex | Text scaling factor for contour labels. | 0.6 |
drawlabels | A logical value specifying whether to draw contour labels. | TRUE |
method | Character value specifying where to draw contour labels. Options include method="simple", method="edge", and method="flattest" . | "flattest" |
vfont | A character vector with two elements specifying the font to use for contour labels. vfont[1] specifies a Hershey font family; vfont[2] specifies a typeface within the family. | |
axes | A logical value indicating whether to print axes. | TRUE |
frame.plot | A logical value indicating whether to draw a box around the plot. | axes |
col | A color for the contour lines. | par("fg") |
lty | A type of lines to draw. | par("lty") |
lwd | A width for the lines. | par("lwd") |
add | A logical value specifying whether to add the contour lines to an existing plot (add=TRUE) or to create a new plot (add=FALSE ). | FALSE |
... | Additional arguments passed to plot.window, title, Axis, and box . |
The following expression generates a contour plot using the Yosemite Valley data:
> contour(yosemite, asp=253/562, ylim=c(1, 0))
As with image, we needed to flip the y-axis and to specify an aspect ratio. The results are shown in Figure 13-17.
Contours are commonly added to existing image plots.
Figure 13-17. Contour example: Yosemite Valley
Plotting Distributions
When performing data analysis, it’s often very important to understand the shape of a data distribution. Looking at a distribution can tell you whether there are outliers in the data, or whether a certain modeling technique will work on your data, or simply how many observations are within a certain range of values.
The best-known technique for visualizing a distribution is the histogram. In R, you can plot a histogram with the hist function. As an example, let’s look at the number of plate appearances (PAs) for batters during the 2008 MLB season. Plate appearances count the number of times a player had the opportunity to bat; plate appearances include all times a player had a hit, made an out, reached on error, walked, was hit by pitch, hit a sacrifice fly, or hit a sacrifice bunt.
You can load this data set from the nutshell package:
> library(nutshell)
> data(batting.2008)
Let’s calculate the plate appearances for each player and then plot a histogram. The resulting histogram is shown in Figure 13-18:
> # PA (plate appearances) =
> # AB (at bats) + BB (base on balls) + HBP (hit by pitch) +
> # SF (sacrifice flies) + SH (sacrifice bunts)
> batting.2008 <- transform(batting.2008,
+ PA=AB+BB+HBP+SF+SH)
> hist(batting.2008$PA)
The histogram shows that there were a large number of players with fewer than 50 plate appearances. If you were to perform further analysis on this data (for example, looking at the average on-base percentage [OBP]), you might want to exclude these players from your analysis. As we will show in Proportion Test Design, you will need much larger sample sizes than 50 plate appearances to draw conclusions with the data.
Figure 13-18. Histogram showing the distribution of plate appearances in 2008
Let’s try generating a second histogram, this time excluding players with fewer than 25 at bats. We’ll also increase the number of bars, using the breaks argument to specify that we want 50 bins:
> hist(batting.2008[batting.2008$PA>25, "PA"], breaks=50, cex.main=.8)
The second histogram is shown in Figure 13-19.
A closely related type of chart is the density plot. Many statisticians recommend using density plots instead of histograms because they are more robust and easier to read. To plot a density plot from the plate appearance data (for batters with more than 25 plate appearances), we use two functions.
Figure 13-19. Histogram showing the number of plate appearances for players with over 25 plate appearances in 2008
First, we use density to calculate the kernel density estimates. Next, we use plot to plot the estimates. We could plot the diagram with an expression like this:
> plot(density(batting.2008[batting.2008$PA>25, "PA"]))
A common addition to a kernel density plot is a rug. A rug is essentially a strip plot shown along the axis, with each point represented by a short line segment. You can add a rug to the kernel density plot with an expression like:
> rug(batting.2008[batting.2008$PA>25, "PA"])
The final version of the density plot is shown in Figure 13-20.
Figure 13-20. Density plot of plate appearances with rug
Another way to view a distribution is the quantile-quantile (Q-Q) plot. Quantile-quantile plots compare the distribution of the sample data to the distribution of a theoretical distribution (often a normal distribution). As the name implies, they plot the quantiles from the sample data set against the quantiles from a theoretical distribution. If the sample data is distributed the same way as the theoretical distribution, all points will be plotted on a 45° line from the lower-left corner to the upper-right corner. Quantile-quantile plots provide a very efficient way to tell how a distribution deviates from an expected distribution.
You can generate these plots in R with the qqnorm function. Without arguments, this function will plot the distribution of points in each quantile, assuming a theoretical normal distribution. The plot is shown in Figure 13-21:
> qqnorm(batting.2008$AB)
If you would like to compare two actual distributions, or compare the data distribution to a different theoretical distribution, then try the function qqplot.
Figure 13-21. Quantile-quantile plot
Box Plots
Another very useful way to visualize a distribution is a box plot. A box plot is a compact way to show the distribution of a variable. The box shows the interquartile range. The interquartile range contains values between the 25th and 75th percentile; the line inside the box shows the median. The two “whiskers” on either side of the box show the adjacent values. A box plot is shown in Figure 13-22.
The adjacent values are intended to show extreme values, but they don’t always extend to the absolute maximum or minimum value. When there are values far outside the range we would expect for normally distributed data, those outlying values are plotted separately. Specifically, here is how the adjacent values are calculated: the upper adjacent value is the value of the largest observation that is less than or equal to the upper quartile plus 1.5 times the length of the interquartile range; the lower adjacent value is the value of the smallest observation that is greater than or equal to the lower quartile less 1.5 times the length of the interquartile range. Values outside the range of the whiskers are called outside values and are plotted individually.
Figure 13-22. Box plot components
To plot a box plot, use the boxplot function. Here is the default method of boxplot for vectors:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)
And here is the form of boxplot when a formula is specified:
boxplot(formula, data = NULL, ..., subset, na.action = NULL)
Here is a description of the arguments to boxplot.
Argument | Description | Default |
---|---|---|
formula | A formula of the form y ~ grp, where y is a variable to be plotted and grp is a variable describing a set of different plotting groups. | |
data | A data frame (or list) in which the variables used in formula are defined. | |
subset | A vector specifying a subset of observations to use in plotting. | |
x | A vector specifying values to plot. | |
... | Additional vectors to plot (or graphical parameters to pass to bxp ). Each additional vector is plotted as an additional box. | |
range | A numeric value that determines the maximum amount that the whiskers extend from the boxes. | 1.5 |
width | A numeric vector specifying the widths of the boxes being plotted. | NULL |
varwidth | If varwidth=TRUE, then each box is drawn with a width proportional to the square root of the number of observations represented by the box. If varwidth=FALSE , boxes are plotted with the same width. | FALSE |
notch | If notch=TRUE, then a “notch” is drawn in the boxes. Notches are drawn at +/-1.58 IQR/sqrt(n); see the help file for boxplot.stats for an explanation of what they mean. | FALSE |
outline | A logical value specifying whether outliers should be drawn. | TRUE |
names | A character vector specifying the group names used to label each box plot. | |
plot | If plot=TRUE, then the box plots are plotted. If plot=FALSE, then boxplot returns a list of statistics that could be used to draw a box plot; see the help file for boxplot for more details. | TRUE |
border | A character vector specifying the color to use for the outline of each box plot. | par("fg") |
col | A character vector specifying the color to use for the background of each box plot. | NULL |
log | A character value indicating whether the x-axis (log="x"), y-axis (log="y"), both axes (log="xy"), or neither axis (log="") should be plotted with a logarithmic scale. | "" |
pars | A list of additional graphical parameters passed to bxp . | list(boxweb = 0.8, stapleweb = 0.5, outwex = 0.5) |
horizontal | A logical value indicating whether the boxes should be drawn horizontally (horizontal=TRUE) or vertically (horizontal=FALSE) . | FALSE |
add | A logical value specifying whether the box plot should be added to an existing chart (add=TRUE) or if a new chart should be drawn (add=FALSE) . | FALSE |
at | A numeric vector specifying the locations at which each box plot should be drawn. | 1:n, where n is the number of boxes |
As an example, let’s look at the team batting data from 2008. We’ll restrict the data to include only American League teams (it’s too hard to read a plot with 30 boxes, so this cuts it to 16) and include only players with over 100 plate appearances (to cut out marginal players with a small number of plate appearances). Finally, let’s adjust the text size on the axis so that all the labels fit. Here is the expression:
> batting.2008 <- transform(batting.2008,
+ OBP=(H+BB+HBP)/(AB+BB+HBP+SF))
> boxplot(OBP~teamID,
+ data=batting.2008[batting.2008$PA>100 & batting.2008$lgID=="AL",],
+ cex.axis=.7)
The results are shown in Figure 13-23.
Figure 13-23. Box plot showing on-base percentage for players in the AL in 2008
[35] Data from both can be found in the Statistical Abstract of the United States, available online at http://www.census.gov/compendia/statab/.
[36] As with many other examples in this book, this data was taken from the Statistical Abstract of the United States, 2009. This data comes from http://www.census.gov/compendia/statab/tables/09s0785.xls.
[37] A lot of people dislike pie charts. I think they are good for saying, “Look how much bigger this number is than this number,” and they are very good at taking up lots of space on a page. Pie charts are not good at showing subtle differences between the size of different slices; search for “why pie charts are bad” on Google, and you’ll come up with dozens of sites explaining what’s wrong with them. Or just check the help file for pie, which says, “Pie charts are a very bad way of displaying information. The eye is good at judging linear measures and bad at judging relative areas. A bar chart or dot chart is a preferable way of displaying this type of data.”
Graphics Devices
Graphics in R are plotted on a graphics device. You can manually specify a graphics device or let R use the default device. In an interactive R environment, the default is to use the device that plots graphics on the screen. On Microsoft Windows, the windows device is used. On most Unix systems, the X11 device is used. On Mac OS X, the quartz device is used. You can generate graphics in common formats using the bmp, jpeg, png, and tiff devices. Other devices include postscript, pdf, pictex (to generate LaTeX/PicTeX), xfig, and bitmap.
Most devices allow you to specify the width, height, and point size of the output (with the width, height, and pointsize arguments, of course). For devices that generate files, you can usually use the argument name file.[38] When you are done writing a graphic to a file, call the dev.off function to close and save the file.
In writing this book, I used the png function to generate the graphics printed in this book. For example, I used the following code to produce the first plot in Scatter Plots:
> png("scatter.1.pdf", width=4.3, height=4.3, units="in", res=72)
> attach(toxins.and.cancer)
> plot(total_toxic_chemicals/Surface_Area, deaths_total/Population)
> dev.off()
[38] For postscript, pdf, pictex, xfig, and bitmap, the name of the argument is file. For bmp, jpeg, png, and tiff, the name of the argument is filename. However, you can safely use the argument name file because of the way R’s argument matching rules work. In general, this isn’t a good practice, but it’s easier than trying to remember the difference between the different devices.
Customizing Charts
There are many ways to change how R plots charts. The most intuitive is through arguments to a charting function. Another way to customize charts is by setting session parameters. An additional way to change a chart is through a function that modifies a chart (for example, adding titles, trend lines, or more points). Finally, it is possible to write your own charting functions from scratch.
This section describes common arguments and parameters for controlling how charts are plotted.
Common Arguments to Chart Functions
Conveniently, most charting functions in R share some arguments. Here is a table of common arguments for charting functions.
Argument | Description |
---|---|
add | Should this plot be added to the existing plots on the device, or should the device be cleaned first? |
axes | Controls whether axes will be plotted on the chart. |
log | Controls whether points are plotted on a logarithmic scale. |
type | Controls the type of graph being plotted. |
xlab, ylab | Labels for x- and y-axes. |
main | Main title for the plot. |
sub | Subtitle for the plot. |
Graphical Parameters
This section describes the graphical parameters available in the graphics package. In most cases, you can specify these parameters as arguments to graphics functions. However, you can also use the par function to set graphics parameters. The par function sets the graphics functions for a specific graphics device. These new settings will be the defaults for any new plot until you close the device.
The par function can be useful if you want to set parameters once and then plot multiple charts. It can also be useful if you want to use the same set of parameters many times. You could write a function to set the right parameters and then call it each time you want to plot some charts:
> my_graphics_params <- function () {
+ par(some graphics parameters)
+ }
You can check or set the values of these parameters for the active device through the par function. If there is no active device, then par will open the default device.
To check the value of a parameter with par, use a character string to specify the value name. To set a parameter’s value, use the parameter name as an argument name. To get a vector showing all graphical parameters, simply call par with no arguments. Almost all parameters can be read or written. (The only exceptions are cin, cra, csi, cxy, and din, which can only be read.)
For example, the parameter bg specifies the background color for plots. By default, this parameter is set to “transparent”:
> par("bg")
[1] "transparent"
You could use the par function to change the bg parameter to “white”:
> par(bg="white")
> par("bg")
[1] "white"
Graphical parameters by name gives details about each graphical parameter by name. However, check the help file for each function to make sure that the parameter means what you think it means. Sometimes, plotting functions have arguments with the same name as graphics parameters to par that do different things. For example, the function points has an argument named bg that means “the background color used in points drawn with this function.”
Annotation
Titles and axis labels are called chart annotation. You can control chart annotation with the ann parameter. (If you set ann=FALSE, then titles and axis labels are not printed.)
Margins
R allows you to control the size of the margin around a plot. Figure 13-24 shows how this works. The whole graphics device is called the device region. The area where data is plotted is called the plot region.
Use the mai argument to specify the margin size in inches and use mar to specify the margin in lines of text. If you are using mar, you can use mex to control how big a line of text is in the margin (compared with the rest of the plot). To control the margins around titles and labels, use the mgp parameter. To check the overall dimensions of a device (in inches), you can use the read-only parameter din.
By default, R maximizes the use of available space out to the margins (pty="m"), but you can easily ask R to use a square region by setting pty="s".
Figure 13-24. Margins around graphics area
Multiple plots
In R, you can plot multiple charts within the same chart area. You can do this with the standard graphics functions by setting the mfcol parameter for a device. For example, to plot six figures within the plot area in three rows of two columns, you would set mfcol as follows:
> par(mfcol=c(3, 2))
Each time a new figure is plotted, it will be plotted in a different row or column within the device, starting with the top-left corner. Plots are then added one at a time, first filling each column from top to bottom, and moving to the next column to the right when each column is filled. For example, let’s plot six different figures:
> png("~/Documents/book/current/figs/multiplefigs.1.pdf",
+ width=4.3, height=6.5, units="in", res=72)
> par(mfcol=c(3, 2))
> pie(c(5, 4, 3))
> plot(x=c(1, 2, 3, 4, 5), y=c(1.1, 1.9, 3, 3.9, 6))
> barplot(c(1, 2, 3, 4, 5))
> barplot(c(1, 2, 3, 4, 5), horiz=TRUE)
> pie(c(5, 4, 3, 2, 1))
> plot(c(1, 2, 3, 4, 5, 6), c(4, 3, 6, 2, 1, 1))
> dev.off()
The result of these commands is shown in Figure 13-25.
Figure 13-25. Multiple-figure example
If a matrix of subplots is being drawn on a graphics device, you can specify the next plot location using the argument mfg=c(row, column, nrows, ncolumns).
Figure 13-26 shows an example of how margins and plotting areas are defined when using multiple figures. Within the device region are a set of figure regions corresponding to each individual figure. Within each figure region, there is a plot region. There is an outer margin that surrounds the figure area; you may control these with the parameters omi, oma, and omd. Within each figure, as with all plots, there is a second margin area, controlled by mai, mar, and mex. (If you are writing your own graphics functions, you may find it useful to use the xpd parameter to control where graphics are clipped.)
To find the size of the current plot area (within the grid), check the parameter pin. To get the coordinates of the plot region, check the parameter plt. To find the dimensions of the current plot area using normalized device coordinates, use the parameter fig.[39]
Figure 13-26. Multiple figure layout
You may find it easier to use the functions layout or split.screen. Better still, use the packages grid or lattice.
Text properties
Many parameters control the way text is shown within a plot.
Text size
The parameter ps specifies the default point size of text. A second parameter, cex, specifies a default scaling factor for text. You may specify additional scaling factors for different types of text: cex.axis for axis annotation, cex.lab for x and y labels, cex.main for main titles, and cex.sub for subtitles. In many cases, all three parameters are used to find the size of a line of text. Here is an example of how this works. To determine the point size for a chart title, multiply ps * cex * cex.main.
You may use the read-only parameters cin, cra, csi, and cxy to check the size of characters.
Typeface
The font is specified through the family argument. Somewhat confusingly, the text style is specified through the font argument. You can specify the style for the axis with font.axis, for labels with font.lab, for main titles with font.main, and for subtitles with font.sub.
Alignment and spacing
To control how text is aligned, use the adj parameter. To change the spacing between lines of text, use the lheight parameter.
Rotation
To rotate each character, use the crt parameter. To rotate whole strings, use the srt parameter.
Line properties
You can also change the way lines are drawn. To change the line end style, use lend. To change the line join style, use ljoin and lmiter. Line type is specified by lty and line width by lwd. To change the way boxes are drawn around plots, use the bty parameter.
Colors
You can change the default background color with bg and the default foreground color with fg. The default plotting color is specified by col. Use col.axis to change the color of axes, col.lab to change the color of labels, col.main to change the color of the main title, and col.sub to change the color of the subtitle.
You can specify colors in many different ways: as a string, using RGB (red/green/blue) components, or referencing a palette by integer index. To get a list of valid color names, use the colors function. To specify a color using RGB components, use a string of the form "#RRGGBB", where RR, GG, and BB are hexadecimal values specifying the amount of red, green, and blue, respectively. To view or change a color palette, use the palette function. Other functions are available for specifying colors, including rgb, hsv, hcl, gray, and rainbow.
Axes
The argument lab controls how axes are annotated. To change the style of axis labels, use las. To change the margin for the axis title, labels, and lines, use mgp.
You can specify the size of tick marks in lines of text with tcl, or as a fraction of the plot area with tck. To change the minimum and maximum tick mark locations, use xaxp and yaxp. To change the way intervals are calculated, use xaxs and yaxs. To remove the x-axis or y-axis, use xaxt="n" or yaxt="n".
You can also change the orientation of axis labels with the las parameter.
Points
You can change the symbol used for points with the pch argument. To get a list of point types, use the points function.
Graphical parameters by name
Here is a table showing all the graphical parameters available in R that can be set with par.[40]
Basic Graphics Functions
It is possible to use these functions to either modify an existing chart or to draw a chart yourself from scratch. Many of these functions are called from higher-level graphics functions. These higher-level functions pass extra arguments to these lower-level functions. So even if you do not plan to use these functions directly, you may find it useful to pass arguments to them to customize charts.
Here is a table of low-level graphics functions called by the higher-level graphics functions listed above. (You can often look at arguments for the low-level graphics functions to determine how to customize the look of plots generated with the high-level functions.)
High-level function | Low-level functions |
---|---|
plot | title, plot.new, plot.xy, plot.window, points, lines, axis, box, xy.coords |
matplot | plot |
pairs | plot, points |
barplot | title, plot.window, title, axis |
pie | plot.window, polygon, lines, text, title |
dotchart | plot.window, mtext, abline, points, axis, box, title |
coplot | axis, plot.new, plot.window, points, grid |
cdplot | plot, axis, box |
mosaicplot | polygon, text, segments, title |
spineplot | axis, plot, rect, axis |
persp | title, persp (internal) |
image | plot, image (internal) |
contour | plot.window, title, Axis, box, contour (internal) |
heatmap | image, axis, plot, title |
hist | plot |
qqnorm | plot |
qqplot | plot |
boxplot | bxp |
bxp | points, polygon, segments, axis, Axis, title, box, plot.new, plot.window |
points | plot.xy |
lines | plot.xy |
points
You can plot points on a chart using the points function:
points(x, y = NULL, type = "p", ...)
This can be very useful for adding an additional set of points to an existing plot (typically a scatter plot), usually with a different color or plot symbol. Most of the same arguments for the plot function apply to points. The most useful arguments are col (to specify the foreground color for plotted points), bg (to specify the background color of plotted points), pch (to specify the plotting character), cex (to specify the size of plotted points), and lwd (to specify the line width for plotted symbols).
You can also add points to an existing matrix plot with matpoints:
matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)
lines
A similarly useful function is lines:
lines(x, y = NULL, type = "l", ...)
Like points, this is often used to add to an existing plot. The lines function plots a set of line segments on an existing plot. (The values in x and y specify the intersections between the line segments.) As with points, many arguments for plot also apply to lines. Some especially useful arguments are lty (line type), lwd (line width), col (line color), lend (line end style), ljoin (line join style), and lmitre (line mitre style).
You can also add lines to an existing plot with matlines:
matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ..
curve
To plot a curve on the current graphical device, you can use the curve function:
curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,
type = "l", ylab = NULL, log = NULL, xlim = NULL, ...)
Here is a description of the arguments to the curve function.
Argument | Description | Default |
---|---|---|
expr | The expression to plot (written as a function of x) or the name of a function to plot. | |
from | The lowest x value at which expr is evaluated. | NULL |
to | The highest x value at which expr is evaluated. | NULL |
n | A positive integer value specifying the number of values at which to evaluate expr between the x limits (specified by xlim ). | 101 |
add | A logical value indicating whether to add the curve to the current plot. | FALSE |
type | Specifies the plot type. Use type="p" for points, type="l" for lines, type="o" for overplotted points and lines, type="b" for points joined by lines, type="c" for empty points joined by lines, stype="s" or type="S" for stair steps, type="h" for histogram-like vertical lines, or type="n" to plot nothing. | "l" |
ylab | A character value specifying the label for the y-axis. | ylab |
log | A logical value specifying whether to plot on a logarithmic scale. | log |
xlim | A numeric vector with two values specifying the lowest and highest x values to plot. | NULL |
... | Additional arguments passed to plot. |
text
You can use the text function to add text to an existing plot. (We used the text function to label points on a scatter plot in Scatter Plots.)
text (x, y = NULL, labels = seq_along(x), adj = NULL,
pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, ...)
Here are the arguments to text.
Argument | Description | Default |
---|---|---|
x, y | These arguments specify the coordinates at which the text labels will be drawn. | y=NULL |
labels | A vector of character values specifying the text values that should be drawn on the chart. | seq_along(x) |
adj | A numeric vector with one or two values (each between 0 and 1). If one value is used, it represents the horizontal adjustment. If two values are used, the first represents the horizontal adjustment, and the second represents the vertical adjustment. | NULL |
pos | A numeric value that specifies where the text should be positioned. Use pos=1 for below, pos=2 for left, pos=3 for above, and pos=4 for right. Overrides values specified in adj . | NULL |
offset | A numeric value that specifies the offset of the labels in terms of character widths. (Valid only when pos is specified.) | 0.5 |
vfont | A character vector with two elements specifying the font to use for labels. vfont[1] specifies a Hershey font family; vfont[2] specifies a typeface within the family. | NULL |
cex | Numeric value specifying the character expansion factor. | 1 |
col | Specifies the color of plotted text. | NULL |
font | Specifies the font to be used for the plotted text. | NULL |
... | Additional graphical parameters. |
For an example of how to use the text function, see Scatter Plots.
abline
To plot a single line across the plot area, you can use the abline function:
abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
coef = NULL, untf = FALSE, ...)
Here is a description of the arguments to abline.
Argument | Description | Default |
---|---|---|
a | The intercept for the line. | NULL |
b | The slope for the line. | NULL |
h | A numeric vector of y values for horizontal lines. | NULL |
v | A numeric vector of x values for vertical lines. | NULL |
reg | Specifies an object with a coef method. | NULL |
coef | A numeric vector with two elements specifying the intercept and slope. | NULL |
untf | A logical value specifying whether to “untransform” the line; if one or both axes are in logarithmic coordinates and untf=true , then the line is shown in original coordinates. Otherwise, the line is plotted in transformed coordinates. | NULL |
... | Additional graphical parameters. See Graphical Parameters for more details. |
Typically, you would use one call to abline to draw a single line. For example:
> # draw a simple plot as a background
> plot(x=c(0, 10), y=c(0, 10))
> # plot a horizontal line at y=4
> abline(h=4)
> # plot a vertical line at x=3
> abline(v=3)
> # plot a line with a y-intercept of 1 and slope of 1
> abline(a=1, b=1)
> # plot a line with a y-intercept of 10 and slope of -1,
> # but this time, use the coef argument:
> abline(coef=c(10, -1))
However, you can also specify multiple arguments, and abline will plot all of the specified lines. For example:
> # plot a grid of lines between 1 and 10:
> abline(h=1:10, v=1:10)
If you just want to plot a grid on a plot, you might want to use the grid function instead:
grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
lwd = par("lwd"), equilogs = TRUE)
polygon
To draw a polygon, you can use the polygon function:
polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = par("lty"), ..
The x and y arguments specify the vertices of the polygon. For example, the following expression draws a 2 × 2 square on a graph centered at (3, 3):
> polygon(x=c(2, 2, 4, 4), y=c(2, 4, 4, 2))
For the special case where you just need to draw a rectangle, you can use the rect function:
rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),
...)
segments
To draw a set of line segments connecting pairs of points, you can use the segments function:
segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)
This function draws a set of line segments from each pair of vertices specified by (x0[i],y0[i]) to (x1[i], y1[i]).
legend
The legend function adds a legend to a chart:
legend(x, y = NULL, legend, fill = NULL, col = par("col"),
lty, lwd, pch,
angle = 45, density = NULL, bty = "o", bg = par("bg"),
box.lwd = par("lwd"), box.lty = par("lty"), box.col = par("fg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
adj = c(0, 0.5), text.width = NULL, text.col = par("col"),
merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0, xpd, title.col = text.col)
Here is a list of arguments to legend. (Many of these also can be passed along as arguments to functions that draw legends.)
Argument | Description | Default |
---|---|---|
x, y | The coordinates at which the legend will be positioned. | y=NULL |
legend | A character vector to appear in the legend. | |
fill | A character vector specifying a color associated with each legend label. If specified, boxes filled with these colors are shown next to the labels. | NULL |
col | The color of lines appearing in the legend. | par("col") |
lty | The line type for lines appearing in the legend. | |
lwd | The line width for lines appearing in the legend. | |
pch | A vector of values specifying point characters appearing in the legend. | |
angle | Angle of shading lines. | 45 |
density | Density of shading lines. | NULL |
bty | Box type for box drawn around the legend. | "o" |
bg | Background color for the legend box. | par("bg") |
box.lwd | Line width for the legend box. | par("lwd") |
box.lty | Line type for the legend box. | par("lty") |
box.col | Line color for the legend box. | par("fg") |
pt.bg | Background color for points shown in the legend box (if pch is specified). | NA |
cex | Character expansion value for legend relative to par("cex") . | 1 |
pt.cex | Expansion factor for points in the legend. | cex |
pt.lwd | Line width for points in the legend. | lwd |
xjust | Specifies how the legend should be justified relative to the x location. Use xjust=0 for left justification, xjust=0.5 to center, and xjust=1 for right justification. | 0 |
yjust | Specifies how the legend should be justified relative to the y location. | 1 |
x.intersp | Character “interspacing factor” for horizontal spacing. | 1 |
y.intersp | Character “interspacing factor” for vertical spacing. | 1 |
adj | String adjustment for legend text. | c(0, 0.5) |
text.width | Width of legend text in user coordinates. | NULL |
text.col | Color used for legend text. | par("col") |
merge | If merge=TRUE , merge points and lines but not filled boxes. | do.lines && has.pch |
trace | Logical value. If trace=TRUE , shows how legend calculates stuff. | FALSE |
plot | Logical value. If plot=FALSE , calculations are returned but no legend is drawn. | TRUE |
ncol | Specifies the number of columns to draw in the legend. | 1 |
horiz | Specifies whether the legend should be laid out vertically (horiz=FALSE) or horizontally (horiz=TRUE ). | FALSE |
title | A character value to be placed at the top of the legend box. | NULL |
inset | Inset distance from the margins. Specified as a fraction of the plot region. | 0 |
xpd | Controls clipping while the legend is being drawn. See Graphical parameters by name for more details. | |
title.col | Color for title . | text.col |
title
To annotate a plot, use the title function:
title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)
This function adds a main title (main), a subtitle (sub), an x-axis label (xlab), and a y-axis label (ylab). Specify a value of line to move the labels outward from the edge of the plot. Specify outer=TRUE if you would like to place labels in the outer margin.
axis
To add axes to a plot, use the axis function:
axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, lty = "solid",
lwd = 1, lwd.ticks = lwd, col = NULL, col.ticks = NULL,
hadj = NA, padj = NA, ...)
Here is a table of arguments to axis. (Many of these arguments can be passed to functions that draw axes.)
Argument | Description | Default |
---|---|---|
side | An integer value specifying where to draw the axis. Use side=1 for below, side=2 for left, side=3 for above, and side=4 for right. | |
at | A numeric vector specifying points at which tick marks are drawn. (If not specified, uses the same method as axTicks to compute “pretty” tick mark locations.) | NULL |
labels | Either a logical value or a vector. If logical, specifies whether numeric annotations are added at tick marks. If a vector is specified, each value specifies the label to place at each tick mark. | TRUE |
tick | A logical value specifying if tick values and an axis will be drawn. | TRUE |
line | The number of lines into the margin at which the axis will be drawn. (Can be used to add space between plotted values and the axis.) Use line=NA for no space. | NA |
pos | The coordinate at which the axis will be drawn. (If not NA , overrides line.) | NA |
outer | A logical value specifying whether the axis should be drawn in the outer margin. Use outer=FALSE to draw the axis in the standard margin. | FALSE |
font | Font for axis text. | NA |
lty | Line type for axis line and tick marks. | "solid" |
lwd | Line width for axis line. | 1 |
twd.ticks | Line width for tick marks. | lwd.ticks |
col | Color for axis line. | col |
col.ticks | Color for tick marks. | col.ticks |
hadj | Adjustment for all labels parallel to the reading direction. See Graphical Parameters for more information on the parameter adj . | NA |
padj | Adjustment for all labels perpendicular to the reading direction. See Graphical Parameters for more information on the parameter adj . | NA |
... | Other graphical parameters. See Graphical Parameters for more information. |
box
The box function can be used to draw a box around the current figure region. This can be useful when plotting multiple figures within a graphics device:
box(which = "plot", lty = "solid", ...)
The which argument specifies where to draw the box. Values for which include “plot,” “figure,” “inner,” and “outer”). You might find the box argument useful for showing these different regions.
mtext
The mtext function can be used to add text to a margin of a plot:
mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)
Use the side parameter to specify where to plot the text (side = 1 for bottom, side = 2 for left, side = 3 for top, and side = 4 for right). The line argument specifies where to write the text, in terms of “margin lines” (starting at 0 for closest to the plot area).
trans3d
To add lines or points to a perspective plot (from persp), you might find the function trans3d convenient:
trans3d(x,y,z, pmat)
This function takes vectors of points x, y, and z and translates them into the correct screen position. The argument pmat is a perspective matrix that is used for translation. The persp function will return an appropriate perspective matrix object for use by trans3d.
[39] Normalized device coordinates map the overall chart space onto a 1 × 1 area. (So, x coordinates vary between 0 and 1 and y coordinates between 0 and 1.)
[40] Incidentally, I generated this table with R code like this:
print_pars <- function() {
for (n in names(par())) {
p <- par(n);
if (length(p) == 1) {
print(paste(n,p,sep="="));
} else {
print(paste(n,"=c(",paste(p,collapse=","),sep="",")"));
}
}
}
Chapter 14. Lattice Graphics
The lattice package provides a different way to plot graphics in R. Lattice graphics look different from standard R graphics, are created with different functions, and have different options. Lattice functions make it easy to do some things that are hard to do with standard graphics, such as plotting multiple plots on the same page or superimposing plots. Additionally, most lattice functions produce clean, readable output by default. This chapter shows what lattice graphics can do and explains how to use them.
The real strength of the lattice package is in splitting a chart into different panels (shown in a grid), or groups (shown with different colors or symbols) using a conditioning or grouping variable. This chapter includes many examples that start with a simple chart and then split it into multiple pieces to answer a question raised by the original plot.
History
In the early 1990s, Richard Becker and William Cleveland (two researchers at Bell Labs) built a revolutionary new system for displaying data called Trellis graphics. (You can find more information about the Trellis software at http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/.) Cleveland devised a number of novel plots for visualizing data based on research into how users visualize information.[41]
The lattice package is an implementation of Trellis graphics in R.[42] You may notice that some functions still contain the Trellis name. The lattice package includes many types of charts that will be familiar to most readers, such as scatter plots, bar charts, and histograms. But it also includes some plots that you may not have seen before, such as dot plots, strip plots, and quantile-quantile plots. This chapter will show you how to use different types of charts, familiar and unfamiliar, in the lattice package.
[41] See [Cleveland1993] for more information.
[42] It’s not exactly the same as the S version, but unless you want to use old S/S+ code, the differences probably will not matter to you.
An Overview of the Lattice Package
Lattice graphics consist of one or more rectangular drawing areas called panels. The data assigned to each panel is referred to as a packet. Lattice functions work by calling one or more panel functions, which actually plot the packets within panels. To change the appearance of a plot, you can specify arguments to the plotting function or change the panel function.
How Lattice Works
Here is what typically happens in a lattice session:
The end user calls a high-level lattice plotting function.
The lattice function examines the calling arguments and default parameters, assembles a lattice object, and returns the object. (Note that the class of the object is actually “trellis.” This means that many of the methods that act on an object, like print or plot, are named plot.trellis or print.trellis.)
The user calls print.lattice or plot.lattice with the lattice object as an argument. (This typically happens automatically on the R console.)
The function plot.lattice sets up the matrix of panels, assigns packets to different panels (specified by the argument packet.panel) and then calls the panel function specified in the lattice object to draw the individual panels.
Lattice graphics are extremely modular; they share many high-level functions (like plot.lattice) and low-level functions (like panel.axis, which draws axes). This means that they share many common arguments. It also means that you can customize the appearance of lattice graphics by creating substitute components.
A Simple Example
There are many arguments to lattice functions, but in this section we’ll focus on a handful of key arguments for specifying what data to plot.
As you may have noticed, functions in the graphics package don’t have completely consistent arguments. Many of them share some common parameters (see Customizing Charts), but many of them have different names for arguments with the same purpose. (For example, data for barplot is specified with the height argument, while data for plot is specified with x and y.) Arguments within the lattice package are much more consistent.
You can always specify the data to plot using a formula and a data frame. Let’s create a simple data set and plot a scatter plot with xyplot:
> d <- data.frame(x=c(0:9), y=c(1:10), z=c(rep(c("a", "b"), times=5)))
> d
x y z
1 0 1 a
2 1 2 b
3 2 3 a
4 3 4 b
5 4 5 a
6 5 6 b
7 6 7 a
8 7 8 b
9 8 9 a
10 9 10 b
To plot this data frame, we’ll use the formula y~x and specify the data frame d. The first argument given is the formula. (The argument used to be called “formula” and is currently named x. The help files for lattice warn not to pass this as a named argument, possibly because the name may change again.) To specify the data frame containing the plotting data, we use the argument data:
> xyplot(y~x, data=d)
The resulting plot is shown in Figure 14-1. Formulas in the lattice package can also specify a conditioning variable. The conditioning variable is used to assign data points to different panels. For example, we can plot the same data shown above in two panels, split by the conditioning variable z. To do this, we will change the formula to y~x|z:
> library(lattice)
> xyplot(y~x|z, data=d)
Figure 14-1. Simple scatter plot example
The scatter plot with the conditioning variable is shown in Figure 14-2. As you can see, the data is now split into two panels. If you would prefer to see the two data series superimposed on the same plot, you can specify a grouping variable. To do this, use the argument groups to specify the grouping variable(s):
> xyplot(y~x, groups=z, data=d)
Figure 14-2. Simple scatter plot with conditioning variable
As shown in Figure 14-3, the two data series are represented by different symbols. (If you try this example yourself using the R console, the different groups will be plotted in different colors. To make the charts readable in black and white, I generated the charts using special settings.)
Figure 14-3. Scatter plot with grouping variable
Using Lattice Functions
The easiest way to use lattice graphics is by calling a high-level plotting function. Most of these functions are the equivalent of a similar function in the graphics package. Here’s a table showing how standard graphics functions map to lattice functions.
When you call a high-level lattice function, it does not actually plot the data. Instead, each of these functions returns a lattice object. To actually show the graphic, you need to use a print or plot command. If you simply execute a lattice function on the R command line, R runs print automatically, so the graphic is shown. However, if you call a lattice function inside another function or inside a script and you want to show the results, make sure that you actually call print.
For some (but not all) lattice functions, it is possible to specify the source data in multiple forms. For example, the function histogram can also accept data arguments as factors or numeric vectors. These methods are provided for convenience where appropriate. For example, I frequently plot contingency tables as bar charts, so I often use the table method of barchart. Here is a table of data types accepted by different lattice functions.
For more details on arguments to lattice functions, see Customizing Lattice Graphics.
Custom Panel Functions
With standard graphics, you could easily superimpose points, lines, text, and other objects on existing charts. It’s possible to do the same thing with lattice graphics, but it’s a little trickier.
In order to add extra graphical elements to a lattice plot, you need to use a custom panel function. As we described above, low-level panel functions actually plot graphics. The high-level functions simply specify how data is divided between panels, and how different elements (legends, strips, axes, etc.) need to be added. To add extra elements to a lattice chart, you need to change the panel function.
As a simple example, let’s add a diagonal line to Figure 14-2. To do this, we’ll create a new custom panel function that calls both panel.xyplot and panel.abline. The new panel function will pass along its arguments to panel.xyplot. We’ll specify a line that crosses the y-axis at 1 (through the a=1 argument to panel.abline) and has slope 1 (through the b=1 argument to panel.abline). Here’s the code to generate this chart:
xyplot(y~x|z, data=d,
panel=function(...){
panel.abline(a=1,b=1)
panel.xyplot(...)
}
)
Figure 14-4. Scatter plot showing custom panel function
As you can see, the chart with the custom panel function (Figure 14-4) is identical to the chart we showed above for multiple panels (Figure 14-2, shown previously), except with the addition of the diagonal lines.
High-Level Lattice Plotting Functions
This section describes high-level lattice functions. (We’ll cover panel functions in the next section.) We’ll start with functions for plotting a single vector of values, then functions for plotting two variables, then functions for plotting three variables, and some other functions that build on these functions.
Univariate Trellis Plots
In this section, I’m going to use the same data set for most of the examples: births in the United States during 2006.[43] The original data file contains a record for every birth in the United States during 2006, but the version included in the nutshell package contains only a 10% sample. Each record includes the following variables:
DOB_MM
Month of birth
DOB_WK
Day of week of birth
MAGER
Mother’s age
TBO_REC
Total birth order
WTGAIN
Weight gain (by mother)
SEX
Sex of the child (M or F)
APGAR5
Apgar score
DMEDUC
Mother’s education
UPREVIS
Number of prenatal visits
ESTGEST
Estimated weeks of gestation
DMETH_REC
Delivery method
DPLURAL
“Plural” births (i.e., single, twins, triplets, etc.)
DBWT
Birth weight (in grams)
It takes a little while to process the raw data, so I’ve included a 10% sample of this data set within the nutshell package as births2006.smpl.
PROCESSING THE BIRTH DATA
The natality files are gigantic; they’re approximately 3.1 GB uncompressed. That’s a little larger than R can easily process, so I used Perl to translate these files to a form easily readable by R. (It’s possible to read and parse individual lines in R using the function scan, but I found that a little bit cumbersome. Perl is a lot cleaner and easier.) First, I used the following Perl script to process the raw file:
#! /usr/bin/perl
print "DOB_MM,DOB_WK,MAGER,TBO_REC,WTGAIN,SEX,APGAR5," .
"DMEDUC,UPREVIS,ESTGEST,DMETH_REC,DPLURAL,DBWT\n";
while(<>) {
my ($trash1,$DOB_MM,$trash2,$DOB_WK,$trash3,$MAGER,$trash4,
$DMEDUC,$trash5,$TBO_REC,$trash6,$UPREVIS,$trash7,
$WTGAIN,$trash8,$DMETH_REC,$trash9,$APGAR5,$trash10,
$DPLURAL,$trash11,$SEX,$trash12,$ESTGEST,$trash13,$DBWT)
= unpack("a18a2a8a1a59a2a65a2a59a1a52a2a4a2a125" .
"a1a11a2a6a1a12a1a9a2a15a4", $_);
print "$DOB_MM,$DOB_WK,$MAGER,$TBO_REC,$WTGAIN,$SEX,$APGAR5," .
"$DMEDUC,$UPREVIS,$ESTGEST,$DMETH_REC,$DPLURAL,$DBWT\n";
}
Next, I used the following R code to construct the data set:
births2006.raw <- read.csv("~/Documents/book/data/births2006.csv")
dmeth_rec <- function(X) {
f <- function(tst) {
switch(tst,'Vaginal', 'C-section', '', '', '',
'', '', '', 'Unknown');
}
as.factor(as.character(sapply(X,f)));
}
udmeth_rec <- function(X) {
f <- function(tst) {
switch(tst,
'Vaginal (not VBAC)', # 1
'VBAC', # 2
'Primary C-section', # 3
'Repeat C-section', # 4
'', # 5
'', # 6
'', # 7
'', # 8
'Unstated' # 9
);
}
as.factor(as.character(sapply(X,f)));
}
dmeduc <- function(X) {
f <- function(tst) {
switch(tst,
'Not on certificate',
'0'='No formal education',
'1'='1 Years of elementary school',
'2'='2 Years of elementary school',
'3'='3 Years of elementary school',
'4'='4 Years of elementary school',
'5'='5 Years of elementary school',
'6'='6 Years of elementary school',
'7'='7 Years of elementary school',
'8'='8 Years of elementary school',
'9'='1 year of high school',
'10'='2 years of high school',
'11'='3 years of high school',
'12'='4 years of high school',
'13'='1 year of college',
'14'='2 years of college',
'15'='3 years of college',
'16'='4 years of college',
'17'='5 or more years of college',
'99'='Not stated'
);
}
as.factor(as.character(sapply(X,f)));
}
tbo_rec <- function(x) { ifelse(x==9,NA,x) }
wtgain <- function(x) { ifelse(x==99,NA,x) }
apgar5 <- function(x) { ifelse(x==99,NA,x) }
estgest <- function(x) { ifelse(x==99,NA,x) }
dbwt <- function(x) { ifelse(x==9999,NA,x) }
dplural <- function(X) {
f <- function(tst) {
switch(tst,'1 Single','2 Twin','3 Triplet',
'4 Quadruplet', '5 Quintuplet or higher')
}
as.factor(as.character(sapply(X,f)));
}
births2006 <- transform(births2006.raw,
TBO_REC=tbo_rec(TBO_REC),
WTGAIN=wtgain(WTGAIN),
APGAR5=apgar5(APGAR5),
DMETH_REC=dmeth_rec(DMETH_REC),
DMEDUC=dmeduc(DMEDUC),
DPLURAL=dplural(DPLURAL),
DBWT=dbwt(DBWT)
);
Finally, I took a 10% sample of the original data set so that it would fit in the nutshell package:
> births2006.idx <- sample(1:nrow(births2006),427323)
> births2006.smpl <- births2006[births2006.idx,]
> dim(births2006.smpl)
[1] 427323 13
Bar charts
To draw bar charts with Trellis graphics, use the function barchart. The default method for barchart accepts a formula and a data frame as arguments:
barchart(x,
data,
panel = lattice.getOption("panel.barchart"),
box.ratio = 2,
...)
You specify the formula with the argument x and the data frame with the argument data. (I’ll explain the rest of the arguments below.) However, you can also call barchart on an object of class table:
barchart(x, data, groups = TRUE,
origin = 0, stack = TRUE, ..., horizontal = TRUE)
To call barchart with an object of class table, simply call barchart with the argument x set to a table. (You shouldn’t specify an argument for data; if you do, barchart will print a warning and ignore the argument.)
By default, the charts are actually drawn by the panel function panel.barchart:
panel.barchart(x, y, box.ratio = 1, box.width,
horizontal = TRUE,
origin = NULL, reference = TRUE,
stack = FALSE,
groups = NULL,
col = if (is.null(groups)) plot.polygon$col
else superpose.polygon$col,
border = if (is.null(groups)) plot.polygon$border
else superpose.polygon$border,
lty = if (is.null(groups)) plot.polygon$lty
else superpose.polygon$lty,
lwd = if (is.null(groups)) plot.polygon$lwd
else superpose.polygon$lwd,
...)
Let’s start by calculating a table of the number of births by day of week and then printing a bar chart to show the number of births by day of week. It’s the first time that we’re using lattice graphics, so let’s start by loading the lattice package:
> library(lattice)
> births.dow <- table(births2006.smpl$DOB_WK)
> barchart(births.dow)
The results are shown in Figure 14-5. This is the default format for the barchart function: horizontal bars, a frame along the outside, tick marks, and turquoise-colored bars (on screen).
Figure 14-5. Births by day of week
Notice that many more babies are born on weekdays than on weekends. That’s a little surprising: you might think that the number of births would be nearly the same, regardless of the day of the week. We’ll use lattice graphics to explore this data set further, to see if we can better understand this phenomenon.
You might wonder if there is a difference in the number of births because of the delivery method; maybe doctors just schedule a lot of cesarean sections on weekdays, and natural births occur all the time. This is the type of question that the lattice package is great for answering. Let’s start by eliminating records where the delivery method was unknown and then tabulate the number of births by day of week and method:
> births2006.dm <- transform(
+ births2006.smpl[births2006.smpl$DMETH_REC != "Unknown",],
+ DMETH_REC=as.factor(as.character(DMETH_REC)))
> dob.dm.tbl <- table(WK=births2006.dm$DOB_WK, MM=births2006.dm$DMETH_REC)
Now let’s plot the results:
> barchart(dob.dm.tbl)
The chart is shown in Figure 14-6. By default, barchart prints stacked bars with no legend. In Trellis terminology, the different colors show different groups. It does look like both types of births are less common on weekends, but it’s tough to compare the number of each type of birth in this chart. Also, notice that the different shades aren’t labeled, so it’s not immediately obvious what each shade represents. Let’s try to change the way the chart is displayed.
Figure 14-6. Births by day of week and method
As an alternative, let’s try unstacking the bars (by specifying stack=FALSE) and adding a legend (by specifying auto.key=TRUE):
> trellis.device(device.pdf, color=FALSE,
+ filename="~/Documents/book/current/figs/incoming/rian_1507.pdf",
+ width=4.3, height=4.3, units="in", res=72)
> barchart(dob.dm.tbl, stack=FALSE, auto.key=TRUE)
Figure 14-7. Births by day of week and method: unstacked bars
The results are shown in Figure 14-7. It’s a little easier to see that both types of births decrease on weekends, but it’s still a little difficult to compare values within each group. (When I try to focus on each group, I get distracted by the other group.) Different colored groups aren’t the best choice for this data, so let’s try a different approach.
First, let’s try changing this chart in two ways. We’ll split it into two different panels by telling barchart not to group by color, using the groups=FALSE argument. Second, we’ll change to columns (using the horizontal=FALSE argument), so we can easily compare the different values:
> barchart(dob.dm.tbl, horizontal=FALSE, groups=FALSE)
The new chart is shown in Figure 14-8. The two different charts are in different panels. Now, we can more clearly see what’s going on. The number of vaginal births decreases on weekends, by maybe 25% to 30%. However, C-sections drop by 50% to 60%. As you can see, lattice graphics let you quickly try different ways to present information, helping you zero in on the method that best illustrates what is happening in the data.
Figure 14-8. Births by day of week and method: two panels of columns
Dot plots
A good alternative to bar charts are Cleveland dot plots. Like bar charts, dot plots are useful for showing data where there is a single point for each category. Visually, they seem a lot less “busy” to me than bar charts, so I like using them to summarize larger data tables. To show dot plots in R, use the function dotplot:
dotplot(x,
data,
panel = lattice.getOption("panel.dotplot"),
...)
Much like barchart, the default method expects you to specify the data in a formula and a data frame, but there is a method for plotting tables as well:
## S3 method for class 'table':
dotplot(x, data, groups = TRUE, ..., horizontal = TRUE)
As an example of dotplot, let’s look at a chart of data on births by day of week. Is the pattern we saw above a seasonal pattern? First, we’ll create a new table counting births by month, week, and delivery method:
> dob.dm.tbl.alt <- table(WEEK=births2006.dm$DOB_WK,
+ MONTH=births2006.dm$DOB_MM,
+ METHOD=births2006.dm$DMETH_REC)
Next, we’ll plot the results using a dot plot. In this plot, we’ll keep on grouping, so that different delivery methods are shown in different colors (groups=TRUE). To help highlight differences, we’ll disable stacking values (stack=FALSE). Finally, we’ll print a key so that it’s obvious what each symbol represents (auto.key=TRUE):
> dotplot(dob.dm.tbl.alt, stack=FALSE, auto.key=TRUE, groups=TRUE)
Figure 14-9. Number of births by day of week by month
The results are shown in Figure 14-9. (To make the results print nicely, I generated these charts with the default black-and-white color scheme. If you try this yourself, the table may look slightly different. Depending on your platform, you’ll probably see hollow blue circles for C-section births and hollow purple sections for vaginal births.) As you can see, there are slight seasonal differences, but the overall pattern remains the same.
As another example of dot plots, let’s look at the tire failure data. In 2003, the National Highway Traffic Safety Administration (NHTSA) began a study into the durability of radial tires on light trucks. (This was three years after the Firestone recall of tires for Ford Explorers.) The NHTSA performed the tests in Phoenix, because it felt that the hot and dry conditions would be unusually stressful for tires (and because it had noted that many tire failures occur in the American Southwest). Over the next few years, it conducted hundreds of different tests on tires and released the data to the public. (See http://www.nhtsa.gov/portal/site/nhtsa/menuitem.8027fe7cfb6e727568d07a30343c44cc for links to this study.)
Tests were carried out on six different types of tires. Following is a table of the characteristics of the tires.
Tire | Size | Load Index | Speed Rating | Brand | Model | OE Vehicle | OE Model |
---|---|---|---|---|---|---|---|
B | P195/65R15 | 89 | S | BF Goodrich | Touring T/A | Chevy | Cavalier |
C | P205/65R15 | 92 | V | Goodyear | Eagle GA | Lexus | ES300 |
D | P235/75R15 | 108 | S | Michelin | LTX M/S | Ford, Dodge | E 150 Van, Ram Van 1500 |
E | P265/75R16 | 114 | S | Firestone | Wilderness AT | Chevy/GMC | Silverado, Tahoe, Yukon |
H | LT245/75R16/E | 120/116 | Q | Pathfinder | ATR A/S OWL | NA | NA |
L | 255/65R16 | 109 | H | General | Grabber ST A/S | Mercedes | ML320 |
As an example, we’re going to look at one particular batch of tests from this study. The test was called a “Stepped-Up Speed to Failure” test. In this test, tires were mounted on testing devices. The testing facility then conducted a number of basic tests on the tires to check that they were intact. The test facility then proceeded to test the tires at increasing speeds until the tires failed. Specifically, the testing facility tested each tire at a specific speed for 1 hour, and then it proceeded to increase the speed in 10-km/h increments until either (a) the tire failed or (b) a prescribed limit was reached for each tire. (The limit was dependent on the speed rating for the tire.) After the limit was reached, the test was run continuously until the tire failed. The test data set is in the package nutshell, under the name tires.sus.
The data set contains a lot of information, but we’re going to focus on only three variables. Time_To_Failure is the time before each tire failed (in hours), Speed_At_Failure_km_h is the testing speed at which the tire failed, and Tire_Type is the type of tire tested. We know that tests were run at only certain stepped speeds; despite the fact that speed is a numeric variable, we can treat it as a factor. So we can use dot plots to show the one continuous variable (time to failure) by the speed at failure for each different type of tire:
> library(nutshell)
> data(tires.sus)
> dotplot(as.factor(Speed_At_Failure_km_h)~Time_To_Failure|Tire_Type,
+ data=tires.sus)
The result is shown in Figure 14-10. This diagram lets us clearly see how quickly tires failed in each of the tests. For example, all type D tires failed quickly at the testing speed of 180 km/h, but some type H tires lasted a long time before failure. We’ll revisit this example in Comparing means.
Histograms
A very popular chart for showing the distribution of a variable is the histogram. You can plot histograms in the trellis package with the function histogram:
histogram(x,
data,
allow.multiple, outer = TRUE,
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.histogram"),
prepanel, scales, strip, groups,
xlab, xlim, ylab, ylim,
type = c("percent", "count", "density"),
nint = if (is.factor(x)) nlevels(x)
else round(log2(length(x)) + 1),
endpoints = extend.limits(range(as.numeric(x), finite = TRUE),
prop = 0.04),
breaks,
equal.widths = TRUE,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
subscripts,
subset)
Figure 14-10. Time to failure and speed at failure for different types of tires
By default, histograms are drawn by panel.histogram:
panel.histogram(x,
breaks,
equal.widths = TRUE,
type = "density",
nint = round(log2(length(x)) + 1),
alpha, col, border, lty, lwd,
...)
As an example of histograms, let’s look at average birth weights, grouped by number of births:
> histogram(~DBWT|DPLURAL, data=births2006.smpl)
The results are shown in Figure 14-11. Notice that the panels are ordered alphabetically by the conditioning variable. (That’s why the group names have the numbers at the front.) Also notice that the histogram function tries to fill in all the available space with squarish panels. This helps make each chart readable by itself but makes it difficult to compare the different groups.
Figure 14-11. Histogram of birth weights by number of births
To make it easier to compare groups, we can explicitly stack the charts on top of each other using the layout variable:
> histogram(~DBWT|DPLURAL, data=births2006.smpl, layout=c(1, 5))
Figure 14-12. Histogram of birth weights by number of births: vertically stacked
The resulting chart is shown in Figure 14-12. As you can see, birth weights are roughly normally distributed within each group, but the mean weight drops as the number of births increases.
Density plots
If you’d like to see a single line showing the distribution, instead of a set of columns representing bins, you can use kernel density plots. To draw them in R, use the function densityplot:
densityplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.densityplot"),
prepanel, scales, strip, groups, weights,
xlab, xlim, ylab, ylim,
bw, adjust, kernel, window, width, give.Rkern,
n = 50, from, to, cut, na.rm,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
subscripts,
subset)
By default, panels are drawn by panel.densityplot:
panel.densityplot(x, darg, plot.points = "jitter", ref = FALSE,
groups = NULL, weights = NULL,
jitter.amount, type, ...
Let’s redraw the example above, replacing the histogram with a density plot. By default, densityplot will draw a strip chart under each chart, showing every data point. However, because the data set is so big (there are 427,432 observations), we’ll tell densityplot not to do this by specifying plot.points=FALSE:
> densityplot(~DBWT|DPLURAL,data=births2006.smpl,
+ layout=c(1,5), plot.points=FALSE)
Figure 14-13. Density plots showing birth weight by number of babies
The results are shown in Figure 14-13. One advantage of density plots over histograms is that you can stack them on top of one another and still read the results. By changing the conditioning variable (DPLURAL) to a grouping variable, we can stack these charts on top of one another:
> densityplot(~DBWT, groups=DPLURAL, data=births2006.smpl,
+ plot.points=FALSE, auto.key=TRUE)
Figure 14-14. Superimposed density plots showing birth weight by number of babies
The superimposed density plots are shown in Figure 14-14. As you can see, it’s easier to compare distribution shapes (and centers) by superimposing the charts.
Strip plots
A good alternative to histograms are strip plots, especially when there isn’t much data to plot. Strip plots look similar to dot plots, but they show different information. Dot plots are designed to show one value per category (often a mean or a sum), while strip plots show many values. You can think of strip plots as one-dimensional scatter plots. To draw strip plots in R, use the stripplot function:
stripplot(x,
data,
panel = lattice.getOption("panel.stripplot"),
...)
By default, panels are drawn by panel.stripplot:
panel.stripplot(x, y, jitter.data = FALSE,
factor = 0.5, amount = NULL,
horizontal = TRUE, groups = NULL,
...)
As an example of a strip plot, let’s look at the weights of babies born in sets of four or more. There were only 44 observations in our data set that match this description, so a strip plot is a reasonable way to show density. In this case, we’ll use the subset argument to specify the set of observations we want to plot and add some random vertical noise to make the points easier to read by specifying jitter.data=TRUE:
> stripplot(~DBWT, data=births2006.smpl,
+ subset=(DPLURAL=="5 Quintuplet or higher" |
+ DPLURAL=="4 Quadruplet"),
+ jitter.data=TRUE)
The resulting chart is shown in Figure 14-15.
Univariate quantile-quantile plots
Another useful plot that you can generate within the lattice package is the quantile-quantile plot. A quantile-quantile plot compares the distribution of actual data values to a theoretical distribution. Specifically, it plots quantiles of the observed data against quantiles of a theoretical distribution. If the plotted points form a straight diagonal line (from top right to bottom left), then it is likely that the observed data comes from the theoretical distribution. Quantile-quantile plots are a very powerful technique for seeing how closely a data set matches a theoretical distribution (or how much it deviates from it).
To plot quantile-quantile plots using lattice graphics, use the function qqmath:
qqmath(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),
distribution = qnorm,
f.value = NULL,
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.qqmath"),
prepanel = NULL,
scales, strip, groups,
xlab, xlim, ylab, ylim,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
subscripts,
subset)
Figure 14-15. Weight of babies born in sets of four or more
By default, panels are drawn by panel.qqmath:
panel.qqmath(x, f.value = NULL,
distribution = qnorm,
qtype = 7,
groups = NULL, ...
By default, the function qqmath compares the sample data to a normal distribution. If the sample data is really normally distributed, you’ll see a vertical line. As an example, let’s plot 100,000 random values from a normal distribution to show what qqmath does:
> qqmath(rnorm(100000))
The results are shown in Figure 14-16.
Figure 14-16. Quantile-quantile plot for random values from normal distribution
Let’s plot a set of quantile-quantile plots for the birth weight data. Because the data set is rather large, we’ll plot only a random sample of 50,000 points:
qqmath(~DBWT|DPLURAL,
data=births2006.smpl[sample(1:nrow(births2006.smpl), 50000), ],
pch=19,
cex=0.25,
subset=(DPLURAL != "5 Quintuplet or higher"))
Figure 14-17. Quantile-quantile plots for birth weights
As you can see from Figure 14-17, the distribution of birth weights is not quite normal.
As another example, let’s look at real estate prices in San Francisco in 2008 and 2009. This data set is included in the nutshell package as sanfrancisco.home.sales. (See More About the San Francisco Real Estate Prices Data Set for more information on this data set.) Here is how to load the data:
> library(nutshell)
> data(sanfrancisco.home.sales)
Intuitively, it doesn’t make sense for real estate prices to be normally distributed. There are far more people with below-average incomes than above-average incomes. The lowest recorded price in the data set is $100,000; the highest is $9,500,000. Let’s take a look at this distribution with qqmath:
> qqmath(~price, data=sanfrancisco.home.sales)
The distribution is shown in Figure 14-18. As expected, the distribution is not normal. It looks exponential, so let’s try a log transform:
> qqmath(~log(price), data=sanfrancisco.home.sales)
A log transform yields a distribution that looks pretty close to normally distributed (see Figure 14-19). Let’s take a look at how the distribution changes based on the number of bedrooms. To do this, we’ll split the distribution into groups and change the way the points are plotted. Specifically, we’ll plot smooth lines instead of individual points. (Point type is actually an argument for panel.xyplot, which is used to draw the chart.) We’ll add a key to the plot (using auto.key=TRUE). We’ll pass an explicit subset as an argument to the function instead of using the subset argument. (This helps clean up the key, which would show unused factor levels otherwise.)
> qqmath(~log(price), groups=bedrooms,
+ data=subset(sanfrancisco.home.sales,
+ !is.na(bedrooms) & bedrooms > 0 & bedrooms < 7),
+ auto.key=TRUE, drop.unused.levels=TRUE, type="smooth")
> dev.off()
Figure 14-18. Quantile-quantile plot of San Francisco real estate prices
Figure 14-19. Quantile-quantile plot of log-scaled property prices
Notice that the lines are separate, with higher values for higher numbers of bedrooms (see Figure 14-20). We can do the same thing for square footage (see Figure 14-21). (I used the function cut2 from the package HMisc to divide square footages into six even quantiles.)
> library(Hmisc)
> qqmath(~log(price), groups=cut2(squarefeet, g=6),
+ data=subset(sanfrancisco.home.sales, !is.na(squarefeet)),
+ auto.key=TRUE, drop.unused.levels=TRUE, type="smooth")
Figure 14-20. Quantile-quantile plots of logs of property prices for different numbers of bedrooms
Here the separation is even more clear. We can see the same separation by neighborhood. (We’ll come back to this analysis in Chapter 20.)
Figure 14-21. Quantile-quantile plots of logs of property prices for different numbers of square feet
MORE ABOUT THE SAN FRANCISCO REAL ESTATE PRICES DATA SET
In a few places in this chapter (and again in Chapters 20 and 21), we’ll use a data set consisting of real estate sale prices in San Francisco between February 13, 2008, and July 14, 2009:
> names(sanfrancisco.home.sales)
[1] "street" "city" "zip" "saledate" "price"
[6] "bedrooms" "squarefeet" "lotsize" "yearbuilt" "condolike"
In the San Francisco Bay area, real estate sales are published in the newspapers once a week. I put together this data set by compiling information from multiple papers. The reason I’m including 17 months of data is because that was what was available when I wrote this chapter. The data set contains 3,281 observations and 10 variables:
street
Street address for the property.
city
City in which the property was located. (In this data set, it’s 'San Francisco' for every observation.)
zip
Zip code for the property.
saledate
Approximate date on which the sale was recorded. (Different papers sometimes disagree by a day or two.)
price
Sales price for the property.
bedrooms
A count of the number of bedrooms.
squarefeet
Interior space in square feet.
lotsize
Lot size in square feet.
yearbuilt
Year in which the property was built.
condolike
Variable derived from street, to indicate if the address was qualified by a unit number. (Indicates the presence of a '#' in the variable street.)
latitude, longitude
Geographic coordinates for the property.
This is a real data set, so it’s not completely clean.[44] It contains data compiled from many sources: real estate listings, self-reported data, government records. So there may be errors and inconsistencies in the data. Moreover, there are some missing values.
I picked this data set as an example because I had some questions about the way that real estate data is reported in the media. Writers often talk about the number of sales, or the median price, or the price per square foot. I wanted to know a little more about real estate prices. Is there a premium for bedrooms (above square footage)? When the market slowed down in the housing bust, did it slow down across all price points? How sensitive are median prices to one-time events (like a large new condominium building)?
In case you’re wondering where this data came from, here’s a detailed explanation:
First, I downloaded real estate sales listings from San Francisco Bay area newspaper websites. (I wrote a spider to grab and parse the data.) This is how I got sale dates, street addresses, sales prices, bedroom counts, home sizes, lot sizes, and years built.
Next, I got latitude and longitude information for each address from different web services. I merged these files together outside R (using SQLite).
I downloaded neighborhood information from Zillow.com. You can download neighborhood data from http://www.zillow.com/howto/api/neighborhood-boundaries.htm. (By the way, it’s hard to do what Zillow.com does. See Machine Learning Algorithms for Regression for some examples of price prediction.)
Finally, I loaded the data into R, merged in neighborhood information, and finished creating the data set.
Here is the code that I used to put the data set together. I used some special packages for reading spatial data in order to load the neighborhood data and determine in which neighborhood each home was located:
# load in the shapefile
library(sp)
library(maptools)
# ca.neighborhood.shapes <- read.shape("ZillowNeighborhoods-CA.shp")
ca.neighborhood.shapes <- readShapePoly("ZillowNeighborhoods-CA.shp")
# extract san francisco coordinates
sf.neighborhood.shapes <-
ca.neighborhood.shapes[ca.neighborhood.shapes$CITY=="San Francisco",]
# function to look up shapes
neighborhood <- function(s, lon, lat) {
names <- s$NAME;
for (name in names) {
lons <- s[s$NAME==name,]@polygons[[1]]@Polygons[[1]]@coords[,1];
lats <- s[s$NAME==name,]@polygons[[1]]@Polygons[[1]]@coords[,2];
res <- point.in.polygon(lon,lat,lons,lats);
if (res==1) {
return(name);
}
}
return(NA);
}
map_neighborhoods <- function(s, lons, lats) {
neighborhoods <- rep(NA,length(lons));
for (i in 1:length(lons)) {
neighborhoods[i] <- neighborhood(s, lons[i], lats[i]);
}
return(neighborhoods);
}
# loading sf data with coordinates
sanfrancisco.home.sales.raw <- read.csv("san_fran_re_sales_wcoors.csv")
# exclude bad coordinates (outside SF)
sanfrancisco.home.sales.clean <- transform(sanfrancisco.home.sales.raw,
latitude=ifelse(latitude>37.7&latitude<37.85,latitude,NA),
longitude=ifelse(latitude>37.7&latitude<37.85,longitude,NA),
date=as.Date(date,format="%m/%d/%Y"),
lotsize=ifelse(lotsize<10000,lotsize,NA),
month=cut(as.Date(date,format="%m/%d/%Y"),"month"),
lotsize=ifelse(lotsize<15000,lotsize,NA)
)
# transform date fields
# finally, build the data set with properly named neighborhoods
sanfrancisco.home.sales <- transform(sanfrancisco.home.sales.clean,
neighborhood=map_neighborhoods(
sf.neighborhood.shapes, longitude, latitude))
save(sanfrancisco.home.sales,file="sanfrancisco.home.sales.RData")
Bivariate Trellis Plots
This section describes Trellis plots for plotting two variables. Many real data sets (for example, financial data) record relationships between multiple numeric variables. The tools in this section can help you examine those relationships.
Scatter plots
To generate scatter plots with the trellis package, use the function xyplot:
xyplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.xyplot"),
prepanel = NULL,
scales = list(),
strip = TRUE,
groups = NULL,
xlab,
xlim,
ylab,
ylim,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales,
subscripts = !is.null(groups),
subset = TRUE)
Most of the work is done by the panel function panel.xyplot:
panel.xyplot(x, y, type = "p",
groups = NULL,
pch, col, col.line, col.symbol,
font, fontfamily, fontface,
lty, cex, fill, lwd,
horizontal = FALSE, ...,
jitter.x = FALSE, jitter.y = FALSE,
factor = 0.5, amount = NULL)
As an example of a scatter plot, let’s take a look at the relationship between house size and price. Let’s start with a simple scatter plot, showing size and price:
> xyplot(price~squarefeet, data=sanfrancisco.home.sales)
The results of this command are shown in Figure 14-22. It looks like there is a rough correspondence between size and price (the plot looks vaguely cone shaped). This chart is hard to read, so let’s try modifying it. Let’s trim outliers (sales prices over 4,000,000 and properties over 6,000 square feet) using the subset argument. Additionally, let’s take a look at how this relationship varies by zip code. San Francisco is a pretty big place, and not all neighborhoods are equally in demand. (You probably know the cliché about the first three rules of real estate: location, location, location.)
Figure 14-22. Scatter plot comparing house size and price
Before plotting the price data, let’s pick a subset of zip codes to plot. A few parts of the city are sparsely populated (like the financial district, 94104) and don’t have enough data to make plotting interesting. Also, let’s exclude zip codes where square footage isn’t available:
> table(subset(sanfrancisco.home.sales, !is.na(squarefeet), select=zip))
94100 94102 94103 94104 94105 94107 94108 94109 94110 94111 94112
2 52 62 4 44 147 21 115 161 12 192
94114 94115 94116 94117 94118 94121 94122 94123 94124 94127 94131
143 101 124 114 92 92 131 71 85 108 136
94132 94133 94134 94158
82 47 105 13
So we’ll exclude 94100, 94104, 94108, 94111, 94133, and 94158 because there are too few sales to be interesting. (Note the strip argument. This simply prints the zip codes with the plots.)
> trellis.par.set(fontsize=list(text=7))
> xyplot(price~squarefeet|zip, data=sanfrancisco.home.sales,
+ subset=(zip!=94100 & zip!=94104 & zip!=94108 &
+ zip!=94111 & zip!=94133 & zip!=94158 &
+ price < 4000000 &
+ ifelse(is.na(squarefeet), FALSE, squarefeet < 6000)),
+ strip=strip.custom(strip.levels=TRUE))
The resulting plot is shown in Figure 14-23. Now the linear relationship is much more pronounced. Note the different slopes in different neighborhoods. As you might expect, some up-and-coming neighborhoods (like zip code 94110, which includes the Mission and Bernal Heights) are more shallowly sloped, while ritzy neighborhoods (like zip code 94123, which includes the Marina and Cow Hollow) are more steeply sloped.
Figure 14-23. Scatter plot comparing house size and price by zip code
We can make this slightly more readable by using neighborhood names. Let’s rerun the code, conditioning by neighborhood. We’ll also add a diagonal line to each plot (through a custom panel function) to make the charts even easier to read. We’ll also change the default points plotted to be solid (through the pch=19 argument) and shrink them to a smaller size (through the cex=.2 argument):
> trellis.par.set(fontsize=list(text=7))
> dollars.per.squarefoot <- mean(
+ sanfrancisco.home.sales$price / sanfrancisco.home.sales$squarefeet,
+ na.rm=TRUE);
> xyplot(price~squarefeet|neighborhood,
+ data=sanfrancisco.home.sales,
+ pch=19,
+ cex=.2,
+ subset=(zip != 94100 & zip != 94104 & zip != 94108 &
+ zip != 94111 & zip != 94133 & zip != 94158 &
+ price < 4000000 &
+ ifelse(is.na(squarefeet), FALSE, squarefeet < 6000)),
+ strip=strip.custom(strip.levels=TRUE,
+ horizontal=TRUE,
+ par.strip.text=list(cex=.8)),
+ panel=function(...) {
+ panel.abline(a=0,b=dollars.per.squarefoot);
+ panel.xyplot(...);
+ }
+ )
This plot is shown in Figure 14-24.
Box plots in lattice
The San Francisco home sales data set was taken from a particularly interesting time: the housing market crash. (The market fell a little late in San Francisco compared with other cities.) Let’s take a look at how prices changed over time during this period. We could plot just the median price or mean price, or the number of sales. However, the lattice package gives us tools that will let us watch how the whole distribution changed over time. Specifically, we can use box plots.
Box plots in the lattice package are just like box plots drawn with the graphics package, as described in Box Plots. The boxes represent prices from the 25th through the 75th percentiles (the interquartile range), the dots represent median prices, and the whiskers represent the minimum or maximum values. (When there are values that stretch beyond 1.5 times the length of the interquartile range, the whiskers are truncated at those extremes.)
Figure 14-24. Scatter plot comparing house size and price by neighborhood
To show box plots with Trellis graphics, use the function bwplot:
bwplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = FALSE,
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.bwplot"),
prepanel = NULL,
scales = list(),
strip = TRUE,
groups = NULL,
xlab,
xlim,
ylab,
ylim,
box.ratio = 1,
horizontal = NULL,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales,
subscripts = !is.null(groups),
subset = TRUE)
This function will, in turn, call panel.bwplot:
panel.bwplot(x, y, box.ratio = 1,
box.width = box.ratio / (1 + box.ratio),
horizontal = TRUE,
pch, col, alpha, cex,
font, fontfamily, fontface,
fill, varwidth = FALSE,
notch = FALSE, notch.frac = 0.5,
...,
levels.fos,
stats = boxplot.stats,
coef = 1.5,
do.out = TRUE)
Let’s show a set of box plots, with one plot per month. We’ll need to round the date ranges to the nearest month. A convenient way to do this in R is with the cut function. Here’s the number of sales by month in this data set:
> table(cut(sanfrancisco.home.sales$saledate, "month"))
2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01 2008-07-01
139 230 267 253 237 198
2008-08-01 2008-09-01 2008-10-01 2008-11-01 2008-12-01 2009-01-01
253 223 272 118 181 114
2009-02-01 2009-03-01 2009-04-01 2009-05-01 2009-06-01 2009-07-01
123 142 116 180 150 85
As you may remember from above, the cutoff dates don’t fall neatly on the beginning and ending of each month:
> min(sanfrancisco.home.sales$saledate)
[1] "2008-02-13"
> max(sanfrancisco.home.sales$saledate)
[1] "2009-07-14"
So don’t focus too much on the volumes in February 2008 or July 2009. (Volume was much lower in the spring.) Let’s take a look at the distribution of sales prices by month. Here’s the code to present this data using the default representation:
> bwplot(price~cut(saledate, "month"), data=sanfrancisco.home.sales)
Unfortunately, this doesn’t produce an easily readable plot, as you can see in Figure 14-25. It’s clear that there are a large number of outliers that are making the plot hard to see. Box plots assume a normal distribution, but this doesn’t make intuitive sense for real estate prices (as we saw in Univariate quantile-quantile plots). Let’s try plotting the box plots again, this time with the log-transformed values. To make it more readable, we’ll change to vertical box plots and rotate the text at the bottom:
> bwplot(log(price)~cut(saledate, "month"),
+ data=sanfrancisco.home.sales,
+ scales=list(x=list(rot=90)))
Figure 14-25. Box plot of real estate prices by month: first attempt
Taking a look at the plot (shown in Figure 14-26), we can more clearly see some trends. Median prices moved around a lot during this period, though the interquartile range moved less. Moreover, it looks like sales at the high end of the market slowed down quite a bit (looking at the outliers on the top and the top whiskers). But, interestingly, the basic distribution appears pretty stable from month to month.
Figure 14-26. Box plot of real estate prices by month (log transformed)
Scatter plots matrices
If you would like to generate a matrix of scatter plots for many different pairs of variables, use the splom function:
splom(x,
data,
auto.key = FALSE,
aspect = 1,
between = list(x = 0.5, y = 0.5),
panel = lattice.getOption("panel.splom"),
prepanel,
scales,
strip,
groups,
xlab,
xlim,
ylab = NULL,
ylim,
superpanel = lattice.getOption("panel.pairs"),
pscales = 5,
varnames,
drop.unused.levels,
...,
lattice.options = NULL,
default.scales,
subset = TRUE)
Most of the work is done by panel.splom:
panel.splom(...)
Bivariate quantile-quantile plots
If you would like to generate quantile-quantile plots for comparing two distributions, use the function qq:
qq(x, data, aspect = "fill",
panel = lattice.getOption("panel.qq"),
prepanel, scales, strip,
groups, xlab, xlim, ylab, ylim, f.value = NULL,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
qtype = 7,
default.scales = list(),
subscripts,
subset)
Trivariate Plots
If you would like to plot three-dimensional data with Trellis graphics, there are several functions available.
Level plots
To plot three-dimensional data in flat grids, with colors showing different values for the third dimension, use the levelplot function:
levelplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = TRUE,
aspect = "fill",
panel = lattice.getOption("panel.levelplot"),
prepanel = NULL,
scales = list(),
strip = TRUE,
groups = NULL,
xlab,
xlim,
ylab,
ylim,
at,
cuts = 15,
pretty = FALSE,
region = TRUE,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
colorkey = region,
col.regions,
alpha.regions,
subset = TRUE)
Most of the work is done by panel.levelplot:
panel.levelplot(x, y, z,
subscripts,
at = pretty(z),
shrink,
labels,
label.style = c("mixed", "flat", "align"),
contour = FALSE,
region = TRUE,
col = add.line$col,
lty = add.line$lty,
lwd = add.line$lwd,
...,
col.regions = regions$col,
alpha.regions = regions$alpha)
As an example of level plots, we will look at the San Francisco home sales data set. Let’s start by looking at the number of home sales in different parts of the city. To do this, we’ll need to use that coordinate data in the San Francisco home sales data set. Unfortunately, we can’t use the coordinates directly; the coordinates are too precise, so the levelplot function simply plots a large number of points. (Try executing levelplot(price~latitude+longitude) to see what I mean.)
We’ll need to break the data into bins and count the number of homes within each bin. To do this, we’ll use the table and cut functions:
> attach(sanfrancisco.home.sales)
> levelplot(table(cut(longitude, breaks=40),
+ cut(latitude, breaks=40)),
+ scales=list(y=list(cex=.5),
+ x=list(rot=90, cex=.5)))
Figure 14-27. Level plot showing number of sales by location
This plot is shown in Figure 14-27. If we were interested in looking at the average sales price by area, we could use a similar strategy. Instead of table, we’ll use the tapply function to aggregate observations. And while we’re at it, we’ll cut out the axis labels:
> levelplot(tapply(price,
+ INDEX=list(cut(longitude, breaks=40),
+ cut(latitude, breaks=40)),
+ FUN=mean),
+ scales=list(draw=FALSE))
This plot is shown in Figure 14-28. And, of course, you can use conditioning values with level plots. Let’s look at the number of home sales by numbers of bedrooms. We’ll simplify the data slightly by looking at houses with zero to four bedrooms and then houses with five bedrooms or more. We’ll also cut the number of breaks to keep the charts legible:
> bedrooms.capped <- ifelse(bedrooms < 5, bedrooms, 5);
> levelplot(table(cut(longitude, breaks=25),
+ cut(latitude, breaks=25),
+ bedrooms.capped),
+ scales=list(draw=FALSE))
This figure is shown in Figure 14-29.
Contour plots
If you would like to show contour plots with lattice (which resemble topographic maps), then use the contourplot function:
contourplot(x,
data,
panel = lattice.getOption("panel.contourplot"),
cuts = 7,
labels = TRUE,
contour = TRUE,
pretty = TRUE,
region = FALSE,
...)
Figure 14-28. Level plot showing mean price by location
Cloud plots
To plot points in three dimensions (technically, projections into two dimensions of the points in three dimensions), use the function cloud:
cloud(x,
data,
allow.multiple = is.null(groups) || outer,
outer = FALSE,
auto.key = FALSE,
aspect = c(1,1),
panel.aspect = 1,
panel = lattice.getOption("panel.cloud"),
prepanel = NULL,
scales = list(),
strip = TRUE,
groups = NULL,
xlab,
ylab,
zlab,
xlim = if (is.factor(x)) levels(x) else range(x, finite = TRUE),
ylim = if (is.factor(y)) levels(y) else range(y, finite = TRUE),
zlim = if (is.factor(z)) levels(z) else range(z, finite = TRUE),
at,
drape = FALSE,
pretty = FALSE,
drop.unused.levels,
...,
lattice.options = NULL,
default.scales =
list(distance = c(1, 1, 1),
arrows = TRUE,
axs = axs.default),
colorkey,
col.regions,
alpha.regions,
cuts = 70,
subset = TRUE,
axs.default = "r")
Figure 14-29. Level plot showing number of sales by location for different numbers of bedrooms
By default, plots are drawn with panel.cloud:
panel.cloud(x, y, subscripts, z,
groups = NULL,
perspective = TRUE,
distance = if (perspective) 0.2 else 0,
xlim, ylim, zlim,
panel.3d.cloud = "panel.3dscatter",
panel.3d.wireframe = "panel.3dwire",
screen = list(z = 40, x = -60),
R.mat = diag(4), aspect = c(1, 1),
par.box = NULL,
xlab, ylab, zlab,
xlab.default, ylab.default, zlab.default,
scales.3d,
proportion = 0.6,
wireframe = FALSE,
scpos,
...,
at)
Wire-frame plots
Finally, if you would like to show a three-dimensional surface, use the function wireframe:
wireframe(x,
data,
panel = lattice.getOption("panel.wireframe"),
...)
Other Plots
If you have fitted a model to a data set, the rfs function can help you visualize how well the model fits the data:
rfs(model, layout=c(2, 1), xlab="f-value", ylab=NULL,
distribution = qunif,
panel, prepanel, strip, ...)
The rfs function plots residual and fit-spread (RFS) plots. As an example, we’ll use the model described in Example: A Simple Linear Model. The example is a linear model for runs scored in baseball games as a function of team offensive statistics. For a full explanation, see Chapter 20; here we just want to show what charts are plotted for linear models with the rfs function:
> rfs(runs.mdl)
Figure 14-30. RFS plot for runs model (uniformly distributed residuals)
The plot generated by this command is shown in Figure 14-30. Notice that the two curves are S shaped. The residual plot is a quantile-quantile plot of the residuals; we’d expect the plot to be linear if the data fit the assumed distribution. The default distribution choice for rfs is a uniform distribution, which clearly isn’t right. Let’s try generating a second set of plots, assuming a normal distribution for the residuals:
> rfs(runs.mdl, distribution=qnorm)
The results are shown in Figure 14-31. Notice that the plots are roughly linear. We expect a normally distributed error function for a linear regression model, so this is a good thing.
Figure 14-31. RFS plot for runs model (normally distributed residuals)
[43] This data set is available from http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm. I used the 2006 Birth Data File in this book. The data file is 3.1 GB uncompressed, which is way too big to load easily into R on a machine with only 4 GB. I used a Perl script to parse this file and return a limited number of records in CSV format.
[44] It’s not completely dirty, either. I spent some time cleaning up and correcting the data: removing blatant duplicates, adding years to some recent condo listings, and a few other fixes.
Customizing Lattice Graphics
Most lattice functions share common arguments; the same argument has a similar effect in multiple functions. This section describes what each of those arguments does. Additionally, this section explains how to fine-tune the output of lattice functions.
Common Arguments to Lattice Functions
Lattice functions share many common arguments. Instead of explaining what each function does separately I’ll explain them in a single table. (Note that the default values for many of these arguments, in particular the panel functions, aren’t the same among functions.)
Argument | Description |
---|---|
x | The object to plot. May be a formula, array, numeric vector, or table. |
data | When x is a formula, data is a data frame in which the function is evaluated. |
allow.multiple | Specifies how to interpret formulas of the form y1 + y2 ~ X | Z (where X is a function of multiple variables and Z may also be a function of multiple variables). By default, if allow.multiple=TRUE, then the lattice function will plot both y1 ~ X | Z and y2 ~ X | Z superimposed on the same panel. However, if you set allow.multiple=FALSE, then the lattice function will plot I(y1 + y2) ~ X | Z (summing y1 + y2 ). |
outer | Specifies whether to superimpose plots or not when allow.multiple=TRUE and multiple dependent variables are specified. When outer=FALSE, the plots are superimposed; when outer=TRUE , plots are shown in different panels. |
box.ratio | For plots that show data in rectangles (bwplot, barchart, and stripplot ), a numeric value that specifies the ratio of the width of the rectangles to the inner rectangle space. |
horizontal | For plots that can be laid out vertically or horizontally (bwplot, dotplot, barchart and stripplot ), a logical value that specifies the direction to plot. |
panel | The panel function used to actually draw the plots. |
aspect | Specifies the aspect ratio to use for different panels. Allowable values are aspect="fill" to fill the available space (the default), aspect="xy" to compute aspect ratios based on Cleveland’s 45° banking rule, and aspect="iso" for isometric scales. |
groups | Specifies a variable (or expression of variables) describing groups of data to pass to the panel function. In most cases, groups specifies the sets of values to show in different colors or with different symbols. |
auto.key | A logical value specifying whether to automatically draw a key showing the names of groups corresponding to different colors or symbols. (The variables key and legend override auto.key .) |
prepanel | A function that takes the same arguments as panel and returns a list containing values xlim, ylim, dx, and dy (and, less frequently, xat and yat). The prepanel function is used to determine how much space is required to plot a panel. See the help files or [ Sarkar2008] for more information. |
strip | A logical value specifying whether strips (that label panels) should be drawn. |
xlab | A character value specifying the label for the x-axis. |
ylab | A character value specifying the label for the y-axis. |
scales | A list that specifies how the x- and y-axes should be drawn. |
subscripts | A logical value specifying whether a vector named subscripts should be passed to the panel function. See the help files or [ Sarkar2008] for more information. |
subset | Specifies the subset of values from data to plot. (By default, includes all values.) You can specify a logical vector or an expression that can be evaluated within data. (Note: be careful of NA values in subset vectors. Additionally, note that subset does not remove unused levels from plotted factors, so keys may contain these values.) |
xlim | Specifies the minimum and maximum values for the x-axis. |
ylim | Specifies the minimum and maximum values for the y-axis. |
drop.unused.levels | A logical value (or a list outlining what to do for different components of x) specifying whether to drop unused levels of factors. |
default.scales | A list giving the default value of scales. See the help files or [ Sarkar2008] for more information. |
lattice.options | A list of plotting parameters, similar to par values for standard R graphics. See the help file for lattice.options for more information. |
... | Arguments passed to the internal function trellis.skeleton . |
trellis.skeleton
The following table shows arguments to trellis.skeleton, which are effectively arguments to all high-level Trellis functions even when not listed.
Argument | Description |
---|---|
as.table | Specifies the order in which panels are drawn. Use as.table=FALSE to draw from left to right, bottom to top or as.table=TRUE to draw from left to right, top to bottom. |
between | A list with components x and y specifying the space between panels. |
key | A list of arguments that define a legend of the components in the plot. |
legend | A list specifying a set of grid objects to be used as legends. See the help file for xyplot or [ Sarkar2008] for more details. |
page | A single-argument function to be called after drawing each page. (The argument is the page number.) |
main | A character value or expression specifying the main title for the plot. |
sub | A character value or expression specifying the subtitle for the plot. |
par.strip.text | A list of parameters that control the strip text. (Includes col, cex, lines, abbreviate, minlength, dot .) |
layout | A numeric vector specifying the number of rows, columns, and pages. You may specify a value of 0 for a dimension to mean “fit in as many as needed for this dimension to meet my request for the other dimensions.” For example, c(1, 5) means “one column, five rows,” while c(0, 5) means “as many columns as are needed with exactly five rows.” |
skip | A logical vector specifying which panels to skip printing. |
strip.left | A function to draw strips on the left side of each panel. |
xlab.default | Default label for x-axis when xlab is not specified. |
ylab.default | Default label for y-axis when ylab is not specified. |
xscale.components | A function to determine axis notation for the x-axis. See the help file for xscale.components.default for more information. |
yscale.components | A function to determine axis notation for the y-axis. See the help file for xscale.components.default for more information. |
axis | A function that draws axis notation. See the help file for axis.default for more information. |
perm.cond | A numeric vector specifying a permutation of the conditioning variables. By default, the lattice functions draw panels in the order in which the conditioning variables are specified; this variable allows you to change that behavior. See the help file for more information. |
index.cond | A list of functions that can be used to subset or reorder the array of conditioning variables. See the help file for xyplot for more information. |
par.settings | A list of parameters, such as those set with trellis.par.set . See below for a list of available parameters. |
plot.args | A list of arguments to plot.trellis . (See below for a table of arguments.) |
Controlling How Axes Are Drawn
You can control how axes are drawn in the lattice package by named values in the argument scales. You may specify a single list for x- and y-axes or specify a list of lists with separate x- and y-axes. (For example, to shrink all text by 50% and just plot the x-axis as a base 2 logarithm, use the argument scales=list(cex=.5, x = list(log = 2)).) Here is a table of the available arguments.
Parameters
In Graphical Parameters, we talked about the set of graphical parameters available with conventional graphics in R. As you may recall, you could use the function par to get or set default parameters. For example, to check the value of the parameter cex:
> par("cex")
[1] 1
The namespace is not hierarchical; every parameter has a single name. Currently, there are 70 different parameters available in the standard graphics package:
> length(par())
[1] 70
There is a similar mechanism for lattice graphics. It’s a little more complicated, but it’s also a lot easier to understand than a single list of named items, and it’s a lot more flexible.
To check the value of a setting, use the function trellis.par.get. As an example, let’s check the values of the "axis.text" parameter, which controls the look of text printed on axes:
> trellis.par.get("axis.text")
$alpha
[1] 1
$cex
[1] 0.8
$col
[1] "#000000"
$font
[1] 1
To change a setting, use trellis.par.set. To make the text even smaller, we could change the parameter axis.text$cex to 0.5 with the following command:
> trellis.par.set(list(axis.text = list(cex = 0.5)))
If you’d like a list of all settings, simply call trellis.par.get with no arguments. Or, even better, try the function show.settings, which shows all the settings graphically:
> show.settings()
An example of the output of show.settings is shown in Figure 14-32. Lattice graphics parameters are hierarchical; you can think of them as lists of lists. There are 34 high-level groups of parameters describing how different components are drawn:
> names(trellis.par.get())
[1] "grid.pars" "fontsize" "background"
[4] "clip" "add.line" "add.text"
[7] "plot.polygon" "box.dot" "box.rectangle"
[10] "box.umbrella" "dot.line" "dot.symbol"
[13] "plot.line" "plot.symbol" "reference.line"
[16] "strip.background" "strip.shingle" "strip.border"
[19] "superpose.line" "superpose.symbol" "superpose.polygon"
[22] "regions" "shade.colors" "axis.line"
[25] "axis.text" "axis.components" "layout.heights"
[28] "layout.widths" "box.3d" "par.xlab.text"
[31] "par.ylab.text" "par.zlab.text" "par.main.text"
[34] "par.sub.text"
Figure 14-32. Example of show.settings
Here’s an explanation of what each of these groups of parameters controls:
grid.pars
A list of global parameters that can’t be set elsewhere, such as lex and lineend.
fontsize
Base font size for all text on the Trellis device.
background
Color of plot background.
clip
Controls clipping for panels and strips.
Specifies the appearance of lines or text plotted by helper functions like panel.grid and panel.text.
plot.polygon
Specifies the appearance of bars in panels generated by panel.barchart and panel.histogram.
box.dot, box.rectangle, box.umbrella
Specifies the appearance of points, rectangles, and umbrellas in panels plotted by panel.bwplot.
dot.line
Specifies the appearance of lines in panels plotted by panel.dotplot.
dot.symbol
Specifies the appearance of lines in symbols plotted by panel.dotplot.
plot.line
Specifies the appearance of lines plotted by panel.xyplot, panel.densityplot, and panel.cloud.
plot.symbol
Specifies the appearance of points plotted by panel.xyplot, panel.densityplot, and panel.cloud.
reference.line
Specifies the appearance of reference lines plotted by panel.grid and panel.text.
strip.background, strip.shingle, strip.border
Specifies the default appearance of strips.
superpose.line, superpose.symbol, superpose.polygon
Specifies the appearance of lines, symbols, and polygons on superimposed plots.
regions
Specifies how regions are plotted by panel.levelplot and panel.wireframe.
shade.colors
Specifies colors for plots by panel.levelplot and panel.wireframe.
Specifies how lines and text are plotted in axes.
axis.components
Controls the appearance of axes.
Controls the height and width of panels in a lattice.
box.3d
Specifies the way boxes are drawn by panel.cloud and panel.wireframe.
par.xlab.text, par.ylab.text, par.zlab.text
Controls how text labels are plotted.
Specifies defaults for main and subtitles.
Within these groups, there are more parameters. There are a total of 378 parameters. However, there are only 46 unique parameters within these groups.[45] Here is an explanation of the most common subparameters (many of which are similar to standard graphical parameters):
alpha
Controls transparency.
border
Border color.
cex
Character expansion factor; size of this type relative to fontsize.
col
Color for lines and points.
fill
Color for fills.
font
Font face.
lineheight
Height of a line, as a multiple of text size.
lty
Line type.
lwd
Line width.
pch
Plotting character.
Here is an explanation of some of the nonstandard subparameters:
palette
Function generating color palette through parameter shade.colors.
text, points
Specifies text format through parameter fontsize.
panel, strip
Controls clipping for panels and strips in parameter clip.
top.padding, main, main.key.padding, key.top, key.axis.padding, axis.top, strip, panel, axis.panel, between, axis.bottom, axis.xlab.padding, xlab, xlab.key.padding, key.bottom, key.sub.padding, sub, bottom.padding
Parameters for layout.heights.
left.padding, key.left, key.ylab.padding, ylab, ylab.axis.padding, axis.left, axis.panel, strip.left, panel, between, axis.right, axis.key.padding, key.right, right.padding
Parameters for layout.widths.
For more information, see the help files for par (in the graphics package), gpar (in the grid package), or the help files for different panel functions.
plot.trellis
As we noted above, lattice functions do not plot results; they return lattice objects. To plot a lattice object, you need to call print or plot on the lattice object.
The function that actually does the work is the plot.trellis function (which the help file claims is an alias for the print.trellis function). It’s possible to control how lattice objects are printed through arguments to plot.trellis. As shown above, you can also pass these arguments to lattice functions through the plot.args argument. Here’s a list of arguments for plot.trellis.
Argument | Description | Default |
---|---|---|
x | The Trellis object to plot. | |
position | A vector of four numbers, c(xmin, ymin, xmax, ymax) , specifying where to plot the object. Coordinates are between 0 and 1 for both dimensions. | |
split | A vector of four integers, c(x, y, nx, ny) , that says to position the current plot at the x, y position in a regular array of nx by ny plots. | |
more | A logical value specifying whether more plots will follow on the current page. | FALSE |
newpage | A logical value specifying whether the plot should be on a new page. | FALSE |
packet.panel | A function that determines which packet is plotted in which panel. | packet.panel.default |
draw.in | A grid viewport in which to draw the plot. | NULL |
panel.height | A list of two components (x and units ) specifying the height of each panel in the lattice plot. | lattice.getOption("layout.heights")$panel |
panel.width | A list of two components (x and units ) specifying the width of each panel in the lattice plot. | lattice.getOption("layout.widths")$panel |
save.object | A logical value indicating whether to “save” the last object printed. See the help file for more information. | lattice.getOption("save.object") |
panel.error | A function that is executed if an error occurs while plotting the panel. | lattice.getOption("panel.error") |
prefix | A character string to use as a prefix in viewport names, to distinguish similar plots. See the help file for more information. | |
... | Extra arguments: these are ignored. |
strip.default
To change the way strips are drawn, you can specify your own strip function as an argument to a lattice function. Strip functions are a little complicated to write from scratch, so it is usually best to modify the strips by writing a new function that creates a wrapper around the function strip.default:
strip.default(which.given,
which.panel,
var.name,
factor.levels,
shingle.intervals,
strip.names = c(FALSE, TRUE),
strip.levels = c(TRUE, FALSE),
sep = " : ",
style = 1,
horizontal = TRUE,
bg = trellis.par.get("strip.background")$col[which.given],
fg = trellis.par.get("strip.shingle")$col[which.given],
par.strip.text = trellis.par.get("add.text"))
The simplest way to modify the appearance of the strips is by using the function strip.custom. This function accepts the same arguments as strip.default and returns a new function that can be specified as an argument to a lattice function.
Here’s a description of the arguments to strip.default (and, in turn, to strip.custom).
Argument | Description | Default |
---|---|---|
which.given, which.panel, var.name, factor.levels, shingle.intervals | These arguments contain the data for actually drawing the strip. (Probably not needed for strip.custom .) | |
strip.names | A logical vector with two elements that specifies whether to draw variable names in strips. strip.names[0] is used for factors and strip.names[1] for shingles. | c(FALSE, TRUE) |
strip.levels | A logical vector with two elements that specifies whether to draw variable values in strips. strip.names[0] is used for factors and strip.names[1] for shingles. | c(TRUE, FALSE) |
sep | A character value specifying the separator if both name and level are shown. | |
style | An integer value specifying how the current level of a factor is encoded. See the help file for more information. | |
horizontal | A logical value specifying whether the labels should be horizontal. | |
bg | Specifies the background color. | trellis.par.get("strip.background") $col[which.given] |
fg | Specifies the foreground color. | trellis.par.get("strip.shingle") $col[which.given] |
par.strip.text | A list of parameters controlling the way text is drawn in the script (such as col, cex, font ). | trellis.par.get("add.text") |
simpleKey
To customize the way that keys (or legends) are drawn for plots with multiple groups of variables, you may specify a custom function to the key argument, or you may use the auto.key argument to automatically draw a key using the simpleKey function. If you specify autoKey=TRUE, then simpleKey is called with the default arguments to generate the key. Alternatively, you can specify a list of arguments that are, in turn, passed as arguments to simpleKey to draw the legend:
simpleKey(text, points = TRUE,
rectangles = FALSE,
lines = FALSE,
col, cex, alpha, font,
fontface, fontfamily,
lineheight, ...)
draw.key(key, draw=FALSE, vp=NULL, ...)
Here is a description of the arguments to simpleKey.
[45] In case you’re curious, here’s the code I used to count them:
> # count the total number of parameters
> length(names(unlist(trellis.par.get())))
[1] 378
> # count the number of unique parameters
> n <- names(trellis.par.get())
> p <- NA
> for (i in 1:34) {p <- c(p,names(trellis.par.get(n[i])));}
> length(table(p))
Low-Level Functions
In Custom Panel Functions, we showed how to modify the appearance of a chart through custom panel functions. The lattice package includes a variety of different panel functions that you can use to customize your charts. You can start with one of the included panel functions, use another panel function, or even write your own.
Low-Level Graphics Functions
Here is a list of some primitive panel plotting functions available within the lattice package. These are functions that are useful for writing your own panel functions from scratch, though they can also be used in conjunction with higher-level functions. (For example, you can use panel.text along with panel.barchart to plot a bar chart with added text.)
Function(s) | Description |
---|---|
llines, panel.line | Plots lines |
lpoints, panel.points | Plots points |
ltext, panel.text | Plots text |
lsegments, panel.segments | Plots line segments |
lpolygon, panel.polygons | Plots polygons |
larrows, panel.arrows | Plots arrows |
lrect, panel.rect | Plots rectangles |
panel.axis | Plots axes |
panel.superpose | Superimposes panel functions on top of the same plot (by grouping value) |
For more information on how to use these functions, see the help file for any of these functions (such as llines).
Panel Functions
Here is a list of some functions for adding to, or customizing the appearance of, other panels. You can use these functions to add lines, text, and other graphical elements to lattice graphics. For an example of using panel functions to modify the appearance of a plot, see Custom Panel Functions.
Function | Description |
---|---|
panel.abline | Adds a line to the chart area of a panel. |
panel.curve | Adds a curve (defined by a mathematical expression) to the chart area of a panel. |
panel.rug | Adds a “rug” to a panel. (Rugs look a lot like strip plots; you can superimpose a rug to show both exact points and groups in charts like density plots.) |
panel.mathdensity | Plots a probability distribution given by a distribution function. |
panel.average | Plots average values (grouped by a factor). |
panel.fill | Fills the panel with a specified color. |
panel.grid | Plots a reference grid. |
panel.loess | Adds a smooth curve (fitted by loess ). |
panel.lmline | Plots a line fitted to the underlying data by a linear regression. |
panel.refline | Adds a line to the chart area of a panel; just like panel.abline , except with different default settings (appropriate for, as you probably guessed, reference lines). |
panel.qqmathline | Adds a line through the points at the 25th and 75th percentile points of the sample and theoretical distribution. (Mostly useful for Q-Q plots.) |
panel.violin | Draws violin plots. Usually used in place of box-and-whisker plots in box plots. |
For more details on these functions, see the corresponding help files.
Chapter 15. ggplot2
Hadley Wickham’s ggplot2[46] has become one of the most popular R packages. ggplot2 is a great tool for producing readable charts. But more importantly, ggplot2 uses a language for describing how to plot data called the grammar of graphics. In this chapter, I’ll explain how to use the grammar of graphics to produce plots with ggplot2.
[46] There is also a ggplot package; it was superseded by ggplot2. We won’t cover ggplot in this book.
A Short Introduction
To explain ggplot2, we’ll start by looking at a very simple data set:[47]
> d <- data.frame(a=c(0:9), b=c(1:10), c=c(rep(c("Odd", "Even"), times=5)))
> d
a b c
1 0 1 Odd
2 1 2 Even
3 2 3 Odd
4 3 4 Even
5 4 5 Odd
6 5 6 Even
7 6 7 Odd
8 7 8 Even
9 8 9 Odd
10 9 10 Even
Let’s think about what we want to show. We want to show how variable y varies with variable x. (To start with, we’ll forget about showing which points belong in a or b, and just plot points.) We’ll use the qplot (for “quick plot”) function to show this relationship. Plotting points is the default for qplot, so we’ll call qplot with the arguments x=a, y=b, and data=d:
> library(ggplot2)
> qplot(x=a, y=b, data=d)
The result is shown in Figure 15-1. Notice what we specified: a value to plot on an x-axis, a value to plot on a y-axis, and a data set. We focused on describing the relationship we wanted to show, not on the type of plot. That’s the key idea of ggplot: you describe what you want to present, not how to present it.
Figure 15-1. Simplest qplot example
When you create a new plot with ggplot2, you are not actually plotting the data to the screen. Instead, you are creating a new plot object. (This is very similar to how the lattice package works.) When you type a plot command on the console, R will create the object, and then the print method will be called on the object; the print method actually draws the object on the screen. (It’s good to remember this because calling ggplot2 functions within other functions will not plot the results unless you call print within the function or return an object that can be printed later.) Suppose that we assign the output of the first example to a variable like this:
> first.ggplot2.example <- qplot(x=a, y=b, data=d)
The plot object is assigned to the variable first.ggplot2.example, but the result isn’t printed. You can print the object with the statement:
> print(first.ggplot2.example)
or
> first.ggplot2.example
But you can also examine and manipulate the plot object. For example, ggplot2 objects have a summary method:
> summary(first.ggplot2.example)
data: a, b, c [10x3]
mapping: x = a, y = b
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)
This describes the content of the object very concisely. As we noted above, this describes the underlying data frame, the mapping of variables in the data frame to entities that are plotted, and the object we are plotting: points. (For now, we’ll ignore the other statements; I’ll explain what it means in The Grammar of Graphics.) But notice how clearly we can describe the content of the plot using ggplot2.
Let’s customize the output of this plot to better understand the data. Just like in the lattice package, we can pick facets and see the results in different panels:
> qplot(x=a, y=b, data=d, facets=~c)[48]
The results are shown in Figure 15-2. Notice that we use a formula to specify the facets; you can specify as many faceting variables as you need. Unlike lattice graphics, you can easily change the direction of the facets:
Figure 15-2. Faceting on the x-axis
> qplot(x=a, y=b, data=d, facets=c~.)
Figure 15-3. Faceting on the y-axis
The second faceting example is shown in Figure 15-3. Alternately, you can change the color of the points to show which group they belong to, rather than presenting it in another panel. Here is how to produce the plot shown in Figure 15-4:
> qplot(x=a, y=b, data=d, color=c)
Figure 15-4. Marking different sets of points with different colors
The qplot function can also plot one-dimensional data. As an example, let’s pick 1,000 pseudo-random, normally distributed values:
> set.seed(123456789)
> e <- data.frame(f=rnorm(1000))
> str(e)
'data.frame': 1000 obs. of 1 variable:
$ x: num 0.505 0.396 1.416 -0.722 -0.618 ...
Now, let’s plot these with qplot:
> qplot(x=f, data=e)
Figure 15-5. Single variable plotted with ggplot2 (as a histogram)
The result is shown in Figure 15-5. Notice that qplot picks a histogram as the default value. We could just as easily have plotted the density function:
> qplot(x=f, data=e, geom="density")
The density plot is shown in Figure 15-6.
Figure 15-6. Single variable plotted with ggplot2 (as a density plot)
To explain how these plots were generated, we’ll explore the grammar of graphics.
[47] This is almost the same as the data set I used to demonstrate lattice graphics, but I changed the variable names slightly to make it clearer how variables were mapped in ggplot.
[48] Hadley Wickam, author of ggplot2, suggested rewriting this as:
> qplot(x=a, y=b, data=d) + facet_wrap(~ c)
He prefers to use the face_wrap function to add facets to a ggplot2 object.
The Grammar of Graphics
Every time you draw a chart, you are actually doing many different things. You are:
Defining the data that will be shown to the user
Determining how to summarize or transform the data
Determining the graphical objects that will be used to represent the data
Determining how to divide the data, and how to show different partitions
Determining how the chart looks
When you draw a chart with most conventional tools (such as spreadsheets and presentation programs), you begin by picking a style of chart like a scatter plot, a pie chart, or a bar chart for your data. You may then refine the chart slightly by tweaking the size, color, and other visual parameters. These tools don’t reflect the thought process in drawing a chart. If you have to summarize your data before plotting (for example, when plotting a histogram), it can be awkward to do so. It is often hard to tweak how the results are displayed. Worst of all, it can be difficult to pick a different object to represent the data.
The grammar of graphics is designed to help separate each step of the charting process. This can help you decide the best way to visualize data, and is especially helpful for defining new types of plots. Each of these different aspects of the charting process is given a name in ggplot2; the tool reflects the language. The ggplot2 package includes a variety of functions for altering each component of a plot. (The qplot function above simplifies this process by allowing you to use arguments to specify many of these different components, and choose reasonable default values.)
Here is the name for each different component of a chart in the grammar of graphics:
Data
The data that is being visualized.
Mappings
Mappings between variables in the data and components of the chart.
Geometric Objects (geom)
The geometric objects that are used to display the data. For example, scatter plots use geom_point, bar plots use geom_bar, and line plots use geom_abline.
Aesthetic Properties (aes)
The aesthetic properties determine how the plot looks. For example, typeface sizes, label locations, and tick marks are all aesthetic properties.
Scales
Scales control how variables are mapped to aesthetics.
Coordinates
Coordinates describe how data is mapped to the plot. For example, you can use simple Cartesian coordinates with coord_cartesian, polar coordinates with coord_polar, or geographic projections with coord_map.
Statistical Transformations (stat)
Statistical transformations applied to the data to summarize the data. For example, boxplots use stat_boxplot, lines use stat_abline, and histograms use stat_bin.
Facets
Describes how the data is partitioned into subsets and how these different subsets are plotted.
Positional adjustments
Provides fine-grained control of where data is plotted.
You can use the summary method on a ggplot2 object to show each of these attributes for a plot. As an example, let’s look at the density plot that we created previously:
> thehistogram <- qplot(x=f, data=e, geom="density")
> summary(thehistogram)
data: x [1000x1]
mapping: x = f
faceting: facet_null()
-----------------------------------
geom_density:
stat_density:
position_identity: (width = NULL, height = NULL)
The output shows us exactly how this plot maps to the grammar of graphics:
Data
A data set containing the variable x (with 1,000 values).
Mappings
The “x” value in the plot is assigned to the variable x in the data frame.
Geometric Objects (geom)
The geometric object is geom_density, a smooth density plot.
Aesthetic Properties (aes)
We have not overridden any aesthetic properties.
Scales
We have not customized the scale.
Coordinates
We have not overridden the default coordinates.
Statistical Transformations (stat)
For the density plot, we have used a density function to summarize the data.
Facets
We did not facet the data.
Positional adjustments
We did not make any positional adjustments; we used the identity function.
This can be useful when trying to figure out what a chart is showing and tuning the output to look the way you want. We’ll use this technique throughout this chapter.
A More Complex Example: Medicare Data
To help show how to use ggplot2 to solve problems, and to better understand the grammar of graphics, I’ll use a real, complicated data example: U.S. Medicare cost and outcome data. See Medicare Data for more information.
MEDICARE DATA
To demonstrate ggplot2, I tried to find a rich and complicated real-world data set. You can download the data from the website Medicare; it’s straightforward to load the raw data into R.
I have included several R data frames based on this data in the nutshell package:
outcome.of.care.measures.national
A small data set that shows the national average mortality and readmission rates for heart attacks, heart failure, and pneumonia.
medicare.payments
A data set that shows the average payment to each hospital for 70 common conditions. Average payments are available only for hospitals that treated a sufficient number of patients with each condition; otherwise, HIPAA makes it illegal to disclose this information.
medicare.payments.by.state
Similar to medicare.payments, but summarized at a state level.
For more details on these data sets, use the online help.
Let’s start with a simple example: average mortality and readmission rates for three common medical conditions. We’d like to compare national treatment effectiveness statistics for three common diseases. This is a fairly simple data set: there is one dimension (the readmission rate), three conditions (Heart Attack, Heart Failure, and Pneumonia), and one factor variable (Measure) with two values (Mortality and Readmission). Here is the data:
> library(nutshell)
> data(outcome.of.care.measures.national)
> outcome.of.care.measures.national
Condition Measure Rate
1 Heart Attack Mortality 15.9
2 Heart Failure Mortality 11.3
3 Pneumonia Mortality 11.9
4 Heart Attack Readmission 19.8
5 Heart Failure Readmission 24.8
6 Pneumonia Readmission 18.4
We’d like to show how the rates differ for each condition. We need to set x=Condition, and we will set weight=Rate. (Notice that we didn’t set the y variable; x is not a numerical value, so we need to treat x as a univariate plot. By default, ggplot2 tabulates data for you, so ggplot2 would attempt to plot the value 2 for each value of x.)
A bar chart is a good choice for this data, so we will tell qplot to use geom="bar" as the geometric object. We’ll also tell ggplot2 to set the height of the bars to Rate by specifying weight=Rate. Then, we will tell ggplot2 that we want to show each measure in a separate panel by setting facets=Measure~. And finally, we will set the fill color of each bar to a different color, depending on the Measure variable by setting fill=Measure. Putting it all together, we have the following plot object:
> bar.chart.example <- qplot(x=Condition,
+ data=outcome.of.care.measures.national,
+ geom="bar", weight=Rate, facets=Measure~., fill=Measure)
> summary(bar.chart.example)
data: Condition, Measure, Rate [6x3]
mapping: fill = Measure, weight = Rate, x = Condition
faceting: facet_grid(Measure ~ )
-----------------------------------
geom_bar:
stat_bin:
position_stack: (width = NULL, height = NULL)
This corresponding plot is shown in Figure 15-7.
Figure 15-7. Outcome of care measures using facets
As an alternative, we might want to plot the bars adjacent to one another, grouped together by condition, in a single panel. We can do this by dropping the facet variable and setting position="dodge" to plot the different geometric objects adjacent to one another. The result of this statement is shown in Figure 15-8.
> qplot(x=Condition, data=outcome.of.care.measures.national,
+ geom="bar", weight=Rate, fill=Measure, position="dodge")
Figure 15-8. Outcome of care measures using dodging
Both charts are effective ways of showing the data, but they can be used to make different statements. The faceted version encourages the reader to compare the rates for different conditions within each group of measures, while the dodged version encourages the reader to compare rates for different measures within each group of conditions.
So far, we’ve looked at a lot of really simple examples. But I think the place where ggplot2 really shines is when you start looking at larger, more complicated data. Let’s take a look at the Medicare payment information as an example. This data set contains 140,722 records. Each record shows the average Medicare payment to, and number of cases seen by, almost 3,300 different hospitals for 70 different conditions.
There are many different things to look at in this data, but I started with a simple question: how does the number of patients treated by a hospital relate to the fees charged to Medicare? Would large hospitals charge less money because patients experienced fewer complications, or would large hospitals charge more because they were better at gaming the system?
Clearly, the average cost should vary greatly depending on the diagnosis; it would make no sense to compare the cost of treating a heart attack in one hospital with the cost of treating pneumonia in another hospital. We need to compare costs within each diagnosis group, so we will group the data by diagnosis. To make the chart legible, I cut down the results from 70 conditions to the three diagnosis groups for heart failure: heart failure without complications or comorbidities, heart failure with complications or comorbidities, and heart failure with major complications or comorbidities:
> heart.failure <- c("Heart failure and shock w/o CC/MCC",
+ "Heart failure and shock w MCC",
+ "Heart failure and shock w CC")
Let’s start simply. We’ll plot the average payment as a function of the number of cases, setting the color of each point by the diagnosis. I’ll include only rows where the diagnosis is a type of heart failure. We’ll set data=subset(medicare.payments, Diagnosis.Related.Group %in% heart.failure) to define the data set. We want to show the average payment as a function of the number of cases treated at the hospital, so we’ll set x=Number.Of.Cases and y=Medicare.Average.Payment. Finally, we’d like to be able to tell apart the different diagnoses. We’ll set each diagnosis to a different color by setting color=Diagnosis.Related.Group. We’d like to just plot each point on the axes, so we’ll take advantage of the default geometric object (geom_point):
> payment.plot <- qplot(x=Number.Of.Cases, y=Medicare.Average.Payment,
+ data=subset(medicare.payments, Diagnosis.Related.Group %in%
+ heart.failure), color=Diagnosis.Related.Group)
> summary(payment.plot)
data: Provider.Number, Hospital.Name, Address.1, Address.2,
Address.3, City, State, ZIP.Code, County.Name, Phone.Number,
Diagnosis.Related.Group, Medicare.Average.Payment,
Number.Of.Cases, Footnote [9722x14]
mapping: colour = Diagnosis.Related.Group, x = Number.Of.Cases,
y = Medicare.Average.Payment
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)
The plot is shown in Figure 15-9. As you can see, this plot isn’t very easy to read. (Note that the number of patients is not shown when the number is small. This is due to HIPPA regulations.) All the points clump together on the left, and it is difficult to tell where most points lie.
Figure 15-9. Number of heart failure cases and average payment (first attempt)
Let’s make a few tweaks to improve the legibility of this plot. First, let’s transform the x variable to a log scale, to remove the clumping in low numbers by setting x=log(Number.Of.Cases). Next, we’ll make the points semi-opaque. This way, we can see what regions have more points and which have fewer points. We do this by specifying alpha=I(1/10). To help see the trend, we’ll add a smoothing line in addition to the points (geom=c("point","smooth")). And finally, we’ll change the y limits to hide outliers. Here’s the statement to create the plot from scratch:
> heart.failure.cost.plot <-
+ qplot(x=log(Number.Of.Cases), y=Medicare.Average.Payment,
+ data=subset(medicare.payments,
+ Diagnosis.Related.Group %in% heart.failure),
+ color=Diagnosis.Related.Group, ylim=c(0, 20000),
+ alpha=I(1/10), geom=c("point", "smooth"))
But there is a more elegant way to do this. We will start by recreating the plot with the alpha value and different y limits:
> payment.plot.alpha <- qplot(x=Number.Of.Cases,
+ y=Medicare.Average.Payment,data=subset(medicare.payments,
+ Diagnosis.Related.Group %in% heart.failure),
+ color=Diagnosis.Related.Group,alpha=I(1/10), ylim=c(0,20000))
Next, we'll add the smoothing lines and change the scale:
> payment.plot.scaled <- payment.plot.alpha
+ scale_x_log10() + geom_smooth()
> heart.failure.cost.plot.scaled <- payment.plot + scale_x_log10()
+ geom_point() + geom_smooth() + aes(alpha=I(1/10))
This form gives more informative values on the x axis (and it saves some typing).
Here is the description of the plot:
> summary(payment.plot.scaled)
data: Provider.Number, Hospital.Name, Address.1, Address.2, Address.3,
City, State, ZIP.Code, County.Name, Phone.Number,
Diagnosis.Related.Group, Medicare.Average.Payment,
Number.Of.Cases, Footnote [9722x14]
mapping: colour = Diagnosis.Related.Group, x = Number.Of.Cases,
y = Medicare.Average.Payment
scales: y, ymin, ymax, yend, yintercept, ymin_final, ymax_final,
x, xmin, xmax, xend, xintercept
faceting: facet_null()
-----------------------------------
geom_point: alpha = 0.1
stat_identity: alpha = 0.1
position_identity: (width = NULL, height = NULL)
geom_smooth:
stat_smooth:
position_identity: (width = NULL, height = NULL)
There are a few features that we haven’t seen before. First, notice that there are two sets of geom/stat/position parameters, corresponding to the points and lines. Additionally, notice that the alpha property is passed along to each geometric object function and statistic function, even though it does not have any meaning for all of these.
The revised plot is shown in Figure 15-10.
Figure 15-10. Number of heart failure cases and average payment
Why did costs increase as the number of patients seen increased? I wondered if there was a geographic trend; costs of living are very different in different states, and perhaps Medicare charges adjust for these differences. To help understand these differences, I wanted to see how costs varied by region, specifically by state.
To begin, I picked a data set that summarized Medicare payments by state:
> data(medicare.payments.by.state)
> medicare.payments.by.state.hf <- subset(medicare.payments.by.state,
+ Diagnosis.Related.Group %in% heart.failure)
By default, R will order the output by the values of the factor values. The default order is driven by the order that values appear in the source data; in the case of the Medicare data, the values were ordered by state name. It is easy to find results for a given state when the results are alphabetically sorted, but hard to spot trends. (You can try plotting this data without reordering to see what I mean.)
To help us learn from the data, I wanted to sort the results from lowest to highest payment. I didn’t want to sort the data; I just needed to reorder the levels in the State factor. To do this, I used the reorder function to calculate a new factor, with levels arranged by average payment:
> medicare.payments.by.state.hf$State <- with(medicare.payments.by.state.hf,
+ reorder(State, Medicare.Average.Payment.Maximum, mean))
Finally, I drew the dot plot shown in Figure 15-11.
> payment.dotplot <- qplot(x=Medicare.Average.Payment.Maximum, y=State,
+ data=medicare.payments.by.state.hf,
+ color=Diagnosis.Related.Group)
> summary(payment.dotplot)
data: State, Diagnosis.Related.Group,
Medicare.Average.Payment.Minimum,
Medicare.Average.Payment.Maximum, Number.Of.Cases, Footnote
[168x6]
mapping: colour = Diagnosis.Related.Group,
x = Medicare.Average.Payment.Maximum, y = State
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)
Figure 15-11. Dotplot showing payments by state
At the top of the list are the Northern Mariana Islands, Alaska, and the Virgin Islands—all isolated, expensive locations, and locations unlikely to have very large hospitals. But next on the list are New York, Maryland, and California—all states with high costs of living and large hospitals. Remember that Washington, D.C., is right next to Maryland, and there are large VA hospitals in Maryland. Actually, there are also large VA hospitals in Hawaii as well, which is next on the list. This was starting to make sense; it’s not that costs are increasing with volume, it’s that both costs and volume are correlated with geography! Also, note that the cheapest states are actually territories: Puerto Rico and American Samoa.
Finally, I wanted to see if states that were adjacent to each other had similar costs. To help visualize this, I wanted to show the average costs on a map, or as a choropleth plot:
> library(maps)
> states <- map_data("state")
> library(datasets)
> state.name.map <- data.frame(abb=state.abb, region=tolower(state.name),
+ stringsAsFactors=FALSE)
> states <- merge(states, state.name.map, by="region")
> # merge the geography data with the numerical data
> toplot <- merge(states, medicare.payments.by.state,
+ by.x="abb", by.y="State")
> # make sure it's sorted correctly
> toplot <- toplot[order(toplot$order), ]
> # draw the plot
> qplot(long, lat,
+ data=subset(toplot,
+ Diagnosis.Related.Group=="Heart failure and shock w/o CC/MCC"),
+ group=group,
+ fill=Medicare.Average.Payment.Maximum, geom="polygon") +
+ opts(legend.position="bottom", legend.direction="vertical")
The resulting plot is shown in Figure 15-12.
Figure 15-12. Choropleth plot, showing costs by region
Quick Plot
As we saw above, the simplest way to use ggplot2 is with the qplot command:
qplot(x, y, ..., data, facets, margins, geom, stat,
position, xlim, ylim, log, main, xlab, ylab
qplot is designed to pick default values that produce a readable plot (and uses helper functions to help make those choices based on the inputs data), but you can control how qplot works. Here is a description of the arguments to qplot:
Argument | Description | Default |
---|---|---|
x | X values. | |
y | Y values. | NULL |
data | (Optional) Data frame in which x and y are defined. | |
facets | Describes facets to use as a formula. Uses facet_wrap for one-sided formula or facet_grid for a two sided formula. | NULL |
margins | Enables displaying margins. | FALSE |
geom | Specifies the geom to use as a vector of character values. | "auto" If x and y are specified, defaults to "point" If only x is specified, defaults to "histogram" |
stat | Specifies statistics to use as a vector of character values. | list(NULL) |
position | Specifies position adjustments. | list(NULL) |
xlim | Limits for x-axis, as a vector of two values. | c(NA,NA) |
ylim | Limits for y-axis, as a vector of two values. | c(NA,NA) |
log | Specifies whether to display x-axis, y-axis, or both in log scale. Use "" for neither, "x" for just the x-axis, "y" for just the y-axis, and "xy" for both. | "" |
main | The title for the plot as a character values. | NULL |
xlab | The label for the x-axis. | deparse(substitute(x)) |
ylab | The label for the y-axis. | deparse(substitute(y)) |
asp | The y/x aspect ratio. | NA |
... | Other aesthetic attributes passed to lower layers. |
Creating Graphics with ggplot2
Above, we used the qplot function to build ggplot2 objects in one function call. Sometimes, you may need more flexibility than qplot provides. Alternately, you may want to write a more verbose description of your plot to make your code easier to read. To do this, you create your plot in several parts:
You call the ggplot function to create a new ggplot object, define the input data, and define aesthetic mappings
You add layers to the ggplot object
Note that you add layers (and options) to a ggplot object by using the + operator.
As an example, we could create a plot identical to the one we started with using these statements:
> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + geom_point()
> summary(plt)
data: a, b, c [10x3]
mapping: x = a, y = b
faceting: facet_null()
-----------------------------------
geom_point: na.rm = FALSE
stat_identity:
position_identity: (width = NULL, height = NULL)
To create ggplot objects without qplot, you begin by using the ggplot function.
ggplot(data, mapping = aes(), ..., environment = globalenv())
Here is a description of the arguments to ggplot2:
Argument | Description | Default |
---|---|---|
data | The default data frame for the plot | |
mapping | Default list of aesthetic mappings for the plot | aes() |
environment | Environment in which the aesthetics should occur | globalenv() |
... |
The ggplot function returns a new ggplot object with no layers. You can’t actually print a chart from this object because no layers are defined:
> ggplot(data=d, mapping=aes(x=a, y=b))
Error: No layers in plot
Typically, you specify aesthetic mappings with the aes function:
aes(x, y, ...)
The x argument specifies the x value, the y argument specifies the y value, and other arguments specify aesthetics to map as name/value pairs. See the documentation for ggplot2 for alternate ways to map aesthetics including aes_string and aes_auto. As an example, to finish specifying a plot, you need to add layers. You can create a new layer with the layer function:
layer(...)
You specify the geometric objects using short names like "point". Using our earlier example, we could define our plot object with:
> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + layer("point")
The layer function allows you to specify geometric objects as name value pairs. You do not need to specify the full function name, but simply need to part after geom_.
For reference, here is a description of the available geometric functions:
Geometric Function | Description |
---|---|
geom_abline | A line, specified by a slope and intercept |
geom_area | Area plot (a continuous analog to a bar plot) |
geom_bar | Bar plot |
geom_bin2d | Heatmap of two-dimensional bins |
geom_blank | Blank geometric object; doesn’t draw anything |
geom_boxplot | Box plot |
geom_contour | Contour plot |
geom_crossbar | Crossbar plot (like a box plot, but without the whiskers and extreme values) |
geom_density | Density plot |
geom_density2d | Two-dimensional density plot |
geom_errorbar | Error bars (typically added to other plots like bar plots, point plots, and line plots) |
geom_errorbarh | Horizontal error bars |
geom_freqpoly | Frequency polygon (similar to a histogram) |
geom_hex | Hexagonal objects (typically used with hexagonal binning) |
geom_histogram | Histogram |
geom_hline | A horizontal line |
geom_jitter | Points, automatically jittered |
geom_line | A line |
geom_linerange | An interval represented by a vertical line |
geom_path | A geometric path, connecting a set of points in order |
geom_point | Points |
geom_pointrange | A vertical line with a point in the middle (related to crossbars, boxplots, and line-ranges) |
geom_polygon | A polygon |
geom_quantile | A set of quantile lines from a quantile regression |
geom_rect | Two-dimensional rectangles |
geom_ribbon | A ribbon (a y range with continuous x values, like Tufte’s famous Napoleon’s march plot) |
geom_rug | A rug |
geom_segment | Line segments |
geom_smooth | A smoothed condition mean |
geom_step | A stepped plot connecting points |
geom_text | Text |
geom_tile | Tiles |
geom_vline | Vertical line |
ggplot2 includes some convenience functions for applying a statistical transformation and adding a layer to a plot. Some of these functions are listed below.
Statistic Function | Description |
---|---|
stat_abline | Adds a line with a slope and intercept. |
stat_bin | Splits data into bins then plots as a histogram. |
stat_bin2d | Shows density across two dimensions using rectangles. |
stat_binhex | Shows density across two dimensions using hexagons. |
stat_boxplot | Creates a box-and-whiskers plot. |
stat_contour | Shows contours of three-dimensional data. |
stat_density | Plots density. |
stat_density2d | Plots density in two dimensions. |
stat_function | Superimposes a function. |
stat_hline | Adds a horizontal line. |
stat_identity | Plots data without a statistical transformation. |
stat_qq | Calculations for a quantile-quantile plot. |
stat_quantile | Continuous quantiles. |
stat_smooth | Adds a smoother. |
stat_spoke | Plots directional data at points (specifying location with x and y, and angle separately). |
stat_sum | Plots sums of unique values (typically on a scatter plot). |
stat_summary | Plots summarized data. |
stat_unique | Plots only unique values (removes duplicates). |
stat_vline | Plots a vertical line. |
You can manually specify different scales with ggplot2; mapping data to different scales lets you control how ggplot2 shows different densities, quantities, or other values. Scales can specify ranges of colors, objects, or labels. The following table shows some of these scale functions :
Scale function | Description |
---|---|
scale_alpha | Alpha channel values (grayscale). |
scale_brewer | Colors derived from scales shown on colorbrewer.org. |
scale_continuous | Continuous scales. |
scale_date | Dates. |
scale_datetime | Dates and times. |
scale_discrete | Discrete values. |
scale_gradient | Smooth gradients between two colors. |
scale_gradient2 | Smooth gradients among three colors. |
scale_gradientn | Smooth gradients among n colors. |
scale_grey | Grayscale colors. |
scale_hue | Evenly spaced hues. |
scale_identity | Uses values without scaling. |
scale_linetype | Shows differences as line patterns. |
scale_manual | Manually created discrete scales. |
scale_shape | Different shapes (“glyphs”) for different values. |
scale_size | Shows different values as different size objects. |
With ggplot2, you can plot data using several different coordinate systems:
Coordinate function | Description |
---|---|
coord_cartesian | Cartesian coordinates |
coord_equal | Equal scale coordinates |
coord_flip | Flipped Cartesian coordinates |
coord_map | Map projections |
coord_polar | Polar projections |
coord_trans | Transformed Cartesian coordinates |
There are two options for faceting data bundled with the ggplot2 package:
Faceting function | Description |
---|---|
facet_grid | Lay out panels in a grid |
facet_wrap | Wraps a one-dimensional list of facets into two dimensions |
When you are plotting multiple geometric objects (such as multiple bars), you can specify where different objects should be plotted.
Learning More
Hadley Wickham wrote an excellent book about ggplot2, [Wickham2009] You can also find more information about ggplot2 at the official website, including a chapter from Hadley’s book on qplot and a reference manual for ggplot. Also see R Graphics Cookbook.
Part V. Statistics with R
This part of the book contains information about statistics in R: statistical tests, statistical modeling, and other analysis tools.
Chapter 16. Analyzing Data
This chapter describes a number of techniques for analyzing data in R. Many of the functions described in this chapter are useful for preparing data for other analysis, or are the building blocks for other analyses.
Summary Statistics
R includes a variety of functions for calculating summary statistics.
To calculate the mean of a vector, use the mean function. You can calculate minima with the min function, or maxima with the max function. As an example, let’s use the dow30 data set that we created in An extended example. This data set is also available in the nutshell package:
> library(nutshell)
> data(dow30)
> mean(dow30$Open)
[1] 36.24574
> min(dow30$Open)
[1] 0.99
> max(dow30$Open)
[1] 122.45
For each of these functions, the argument na.rm specifies how NA values are treated. By default, if any value in the vector is NA, then the value NA is returned. Specify na.rm=TRUE to ignore missing values:
> mean(c(1, 2, 3, 4, 5, NA))
[1] NA
> mean(c(1, 2, 3, 4, 5, NA), na.rm=TRUE)
[1] 3
Optionally, you can also remove outliers when using the mean function. To do this, use the trim argument to specify the fraction of observations to filter:
> mean(c(-1, 0:100, 2000))
[1] 68.4369
> mean(c(-1, 0:100, 2000), trim=0.1)
[1] 50
To calculate the minimum and maximum at the same time, use the range function. This returns a vector with the minimum and maximum value:
> range(dow30$Open)
[1] 0.99 122.45
Another useful function is quantile. This function can be used to return the values at different percentiles (specified by the probs argument):
> quantile(dow30$Open, probs=c(0, 0.25, 0.5, 0.75, 1.0))
0% 25% 50% 75% 100%
0.990 19.655 30.155 51.680 122.450
You can return this specific set of values (minimum, 25th percentile, median, 75th percentile, and maximum) with the fivenum function:
> fivenum(dow30$Open)
[1] 0.990 19.650 30.155 51.680 122.450
To return the interquartile range (the difference between the 25th and 75th percentile values), use the function IQR:
> IQR(dow30$Open)
[1] 32.025
Each of the functions above can be useful on its own but can also be used with apply, tapply, or another aggregation function to calculate statistics for a data frame or subsets of a data frame.
The most convenient function for looking at summary information is summary. It is a generic function that works on data frames, matrices, tables, factors, and other objects. As an example, let’s take a look at the output of summary for the dow30 data set that we used above:
> summary(dow30)
symbol Date Open High
MMM : 252 2008-09-22: 30 Min. : 0.99 Min. : 1.01
AA : 252 2008-09-23: 30 1st Qu.: 19.66 1st Qu.: 20.19
AXP : 252 2008-09-24: 30 Median : 30.16 Median : 30.75
T : 252 2008-09-25: 30 Mean : 36.25 Mean : 36.93
BAC : 252 2008-09-26: 30 3rd Qu.: 51.68 3rd Qu.: 52.45
BA : 252 2008-09-29: 30 Max. :122.45 Max. :122.88
(Other):5970 (Other) :7302
Low Close Volume Adj.Close
Min. : 0.27 Min. : 0.75 Min. :1.336e+06 Min. : 0.75
1st Qu.: 19.15 1st Qu.: 19.65 1st Qu.:1.111e+07 1st Qu.: 19.38
Median : 29.55 Median : 30.10 Median :1.822e+07 Median : 29.41
Mean : 35.53 Mean : 36.24 Mean :5.226e+07 Mean : 35.64
3rd Qu.: 50.84 3rd Qu.: 51.58 3rd Qu.:4.255e+07 3rd Qu.: 50.97
Max. :121.62 Max. :122.11 Max. :2.672e+09 Max. :122.11
As you can see, summary presents information about each variable in the data frame. For numeric values, it shows the minimum, first quartile, median, mean, third quartile, and maximum values. For factors, summary shows the count of the most frequent values. (Less frequent values are grouped into an “Other” category.) Summary doesn’t show meaningful information for character values.
A popular alternative to summary is the str function. The str function displays the structure of an object:
> str(dow30)
'data.frame': 7482 obs. of 8 variables:
$ symbol : Factor w/ 30 levels "MMM","AA","AXP",..: 1 1 1 1 1 1 1 1 1 1
...
$ Date : Factor w/ 252 levels "2008-09-22","2008-09-23",..: 252 251 250
249 248 247 246 245 244 243 ...
$ Open : num 73.9 75.1 75.3 74.8 74.6 ...
$ High : num 74.7 75.2 75.5 75.5 74.9 ...
$ Low : num 73.9 74.5 74.5 74.5 74 ...
$ Close : num 74.5 74.6 74.9 75.4 74.7 ...
$ Volume : num 2560400 4387900 3371500 2722500 3566900 ...
$ Adj.Close: num 74.5 74.6 74.9 75.4 74.7 ...
A useful (text-based) tool for looking at the distribution of a numeric vector is the stem function:
stem(x, scale = 1, width = 80, atom = 1e-08)
The argument x is a numeric vector, scale controls the length of the plot, width controls the width, and atom is a tolerance factor.
As an example of a stem plot, we’ll look at field goal attempts in the NFL during 2005. Specifically, we’ll look at the attempted distances for missed field goals. To do this, we’ll use the subset function to select only missed field goals and then plot the yards for each attempt:
> stem(subset(field.goals, play.type=="FG no")$yards)
The decimal point is at the |
20 | 0
22 |
24 |
26 | 00
28 | 0000000
30 | 0000000
32 | 00000000
34 | 000
36 | 0000
38 | 00000000000000
40 | 0000000000
42 | 0000000000000000
44 | 000000000000
46 | 000000000000000000
48 | 000000000000000000
50 | 000000000000
52 | 0000000000000000000
54 | 0000
56 | 000
58 | 00
60 | 00
62 | 0
Correlation and Covariance
Very often, when analyzing data, you want to know if two variables are correlated. Informally, correlation answers the question, “When we increase (or decrease) x, does y increase (or decrease), and by how much?” Formally, correlation measures the linear dependence between two random variables. Correlation measures range between −1 and 1; 1 means that one variable is a (positive) linear function of the other, 0 means the two variables aren’t correlated at all, and −1 means that one variable is a negative linear function of the other (the two move in completely opposite directions; see Figure 16-1).
Figure 16-1. Correlation (Source: http://xkcd.com/552/)
The most commonly used correlation measurement is the Pearson correlation statistic (it’s the formula behind the CORREL function in Excel):
where x̄ is the mean of variable x, and ȳ is the mean of variable y. The Pearson correlation statistic is rooted in properties of the normal distribution and works best with normally distributed data. An alternative correlation function is the Spearman correlation statistic. Spearman correlation is a nonparametric statistic and doesn’t make any assumptions about the underlying distribution:
Another measurement of how well two random variables are related is Kendall’s tau. Kendall’s tau formula works by comparing rankings of values in the two random variables, not by comparing the values themselves:
In this formula, n is the length of the two random variables, nc counts the number of concordant pairs, and nd counts the number of discordant pairs.
To compute correlations in R, you can use the function cor. This function can be used to compute each of the correlation measures shown above:
cor(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))
You can compute correlations on two vectors (assigned to arguments x and y), a data frame (assigned to x with y=NULL), or a matrix (assigned to x with y=NULL). If you specify a matrix or a data frame, then cor will compute the correlation between each pair of variables and return a matrix of results.
The method argument specifies the correlation calculation. The use argument specifies how the function should treat NA values. If you want an error raised when values are NA, choose use="all.obs". If you would like the result to be NA when an element is NA, choose use="everything". To omit cases where values are NA, choose use="complete.obs". To omit cases where values are NA, but return NA if all values are NA, specify use="na.or.complete". Finally, to omit pairs where at least one value is NA, choose use="pairwise.complete.obs".
As an example, let’s look at the 2006 birth data that we used above. Specifically, let’s ask whether the mother’s weight gain correlates with the baby’s weight. Let’s start by selecting only valid birth weights and weight gain values. We’ll also exclude premature births. (I picked gestation age > 35 weeks, though this might not technically be premature.) Finally, we’ll include only single births:
> births2006.cln <- births2006[
+ !is.na(births2006$WTGAIN) &
+ !is.na(births2006$DBWT) &
+ births2006$DPLURAL == "1 Single" &
+ births2006$ESTGEST>35,]
First, we’ll take a look at how these two variables are related. Because there are 3,232,884 observations, a normal scatter plot would be hard to read, so we’ll use smoothScatter instead:
> smoothScatter(births2006.cln$WTGAIN, births2006.cln$DBWT)
The plot is shown in Figure 16-2. From this diagram, we’d expect to see a slight correlation. (We wouldn’t expect a very strong correlation because of the big blob, but the blob is angled a little bit.) Let’s compute the Pearson correlation:
> cor(births2006.cln$WTGAIN, births2006.cln$DBWT)
[1] 0.1750655
Let’s also calculate the Spearman correlation:
> cor(births2006.cln$WTGAIN, births2006.cln$DBWT, method="spearman")
[1] 0.1783328
As you can see, both measures indicate that there is a modest correlation between the two variables.
Figure 16-2. Plot of birth weight as a function of mother’s weight gain
A closely related idea is covariance. Covariance is defined as:
which is the numerator of the Pearson correlation formula. You can compute covariance in R using the cov function, which accepts the same arguments as cor:
cov(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))
If you have computed a covariance matrix, you can use the R function cov2cor to compute the correlation matrix.
You can also compute weighted covariance measurements using the cov.wt formula:
cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE,
method = c("unbiased", "ML"))
Principal Components Analysis
Another technique for analyzing data is principal components analysis. Principal components analysis breaks a set of (possibly correlated) variables into a set of uncorrelated variables.
In R, principal components analysis is available through the function prcomp in the stats package:
## S3 method for class 'formula':
prcomp(formula, data = NULL, subset, na.action, ...)
## Default S3 method:
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, ...)
Here is a description of the arguments to prcomp.
Argument | Description | Default |
---|---|---|
formula | In the formula method, specifies formula with no response variable, indicating columns of a data frame to use in the analysis. | |
data | An optional data frame containing the data specified in formula . | |
subset | An optional vector specifying observations to include in the analysis. | |
na.action | A function specifying how to deal with NA values. | |
x | In the default method, specifies a numeric or complex matrix of data for the analysis. | |
retx | A logical value specifying whether rotated variables should be returned. | TRUE |
center | A logical value specifying whether values should be zero centered. | TRUE |
scale | A logical value specifying whether values should be scaled to have unit variance. | TRUE |
tol | A numeric value specifying a tolerance value below which components should be omitted. | NULL |
... | Additional arguments passed to other methods. |
As an example, let’s try principal components analysis on a matrix of team batting statistics. Let’s start by loading the data for every team between 2000 and 2008. We’ll use the SQLite database that we used in Chapter 13 and extract the fields we want using an SQL query. (Because this is a book on R and not a book on baseball, I renamed the common abbreviations to more intuitive names for plays.)
> library(RSQLite)
> drv <- dbDriver("SQLite")
> con <- dbConnect(drv,
+ dbname=system.file("extdata","bb.db", package="nutshell")
> team.batting.00to08 <- dbGetQuery(con,
+ paste(
+ 'SELECT teamID, yearID, R as runs, ',
+ ' H-"2B"-"3B"-HR as singles, ',
+ ' "2B" as doubles, "3B" as triples, HR as homeruns, ',
+ ' BB as walks, SB as stolenbases, CS as caughtstealing, ',
+ ' HBP as hitbypitch, SF as sacrificeflies, ',
+ ' AB as atbats ',
+ ' FROM Teams ',
+ ' WHERE yearID between 2000 and 2008'
+ )
+ )
You can also find this data already loaded in the team.batting.00to08 data set in the nutshell package. Eventually, we’ll do some analysis on runs scored. For now, we’ll use principal components analysis on the remaining variables in the matrix:
> batting.pca <- princomp(~singles+doubles+triples+homeruns+
+ walks+hitbypitch+sacrificeflies+
+ stolenbases+caughtstealing,
+ data=team.batting.00to08)
> batting.pca
Call:
princomp(formula = ~singles + doubles + triples + homeruns +
walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
74.900981 61.871086 31.811398 27.988190 23.788859 12.884291 9.150840
Comp.8 Comp.9
8.283972 7.060503
9 variables and 270 observations.
The princomp function returns a princomp object. You can get information on the importance of each component with the summary function:
> summary(batting.pca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 74.9009809 61.8710858 31.8113983 27.98819003
Proportion of Variance 0.4610727 0.3146081 0.0831687 0.06437897
Cumulative Proportion 0.4610727 0.7756807 0.8588494 0.92322841
Comp.5 Comp.6 Comp.7
Standard deviation 23.78885885 12.88429066 9.150840397
Proportion of Variance 0.04650949 0.01364317 0.006882026
Cumulative Proportion 0.96973790 0.98338107 0.990263099
Comp.8 Comp.9
Standard deviation 8.283972499 7.060503344
Proportion of Variance 0.005639904 0.004096998
Cumulative Proportion 0.995903002 1.000000000
To show the contribution of each variable to the components, you can use the loadings method:
> loadings(batting.pca)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
singles 0.313 0.929 -0.136 0.136
doubles -0.437 0.121 -0.877
triples 0.424
homeruns -0.235 -0.383 0.825 0.324
walks -0.914 0.328 0.150 -0.182
hitbypitch -0.989
sacrificeflies 0.321
stolenbases 0.131 0.758 0.502 -0.307 -0.232
caughtstealing 0.208 0.104 0.813
Comp.8 Comp.9
singles
doubles -0.100
triples 0.775 0.449
homeruns
walks
hitbypitch
sacrificeflies 0.330 -0.882
stolenbases
caughtstealing -0.521 0.105
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.111 0.111 0.111 0.111 0.111 0.111 0.111
Cumulative Var 0.111 0.222 0.333 0.444 0.556 0.667 0.778
Comp.8 Comp.9
SS loadings 1.000 1.000
Proportion Var 0.111 0.111
Cumulative Var 0.889 1.000
There is a plot method for princomp objects that displays a “scree” plot of the variance against each principal component:
> plot(batting.pca)
The results are shown in Figure 16-3. A second useful method for visualizing principal components is the biplot (see Figure 16-4):
> biplot(batting.pca, cex=0.5, col=c("gray50", "black"))
Figure 16-3. Scree plot of batting.pca
Figure 16-4. Biplot of batting.pca
A biplot graphically displays the contributions of each of the variables to a pair of principal components and also shows individual observations on the same scale. This example shows the contribution of each variable to components 1 and 2. Individual observations are also plotted on the chart. (I showed these in gray so that you could more clearly see the plot of the projections.) As you can see, singles and walks are the primary contributors to the first two components.
We’ll revisit this data example in more depth in Example: A Simple Linear Model.
Note that there is a princomp function that does the same thing but works differently. It calculates the principal components by using the eigen function on the correlation or covariance matrix generated by the cor function. This function is included for compatibility with S-PLUS (it produces the same results as the equivalent method in S-PLUS). For more information on princomp, see the help file.
Factor Analysis
In most data analysis problems, there are some quantities that we can observe and some that we cannot. The classic examples come from the social sciences. Suppose that you wanted to measure intelligence. It’s not possible to directly measure an abstract concept like intelligence, but it is possible to measure performance on different tests. You could use factor analysis to analyze a set of test scores (the observed values) to try to determine intelligence (the hidden value).
Factor analysis is available in R through the function factanal in the stats package:
factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)
Here is a description of the arguments to factanal.
Argument | Description | Default |
---|---|---|
x | A formula or a numeric matrix to be used for analysis. | |
factors | A numeric value indicating the number of factors to be fitted. | |
data | A data frame in which to evaluate x (if x is a formula). | NULL |
covmat | A covariance matrix (or a list returned by cov.wt ). | NULL |
n.obs | The number of observations (if covmat is specified). | NA |
subset | Specifies which observations to include in the analysis. | |
na.action | A function that specifies how to handle missing observations (if x is a formula). | |
start | A matrix of starting values for the algorithm. | NULL |
scores | A character value specifying the type of scores to produce. Use scores="none" for no scores, scores="regression" for Thompson’s scores, or "scores="Bartlett" for Bartlett’s weighted least squares scores. | "none" |
rotation | A character value naming the function for rotating the factors. | "varimax" |
control | A list of control values for the fit. |
Bootstrap Resampling
When analyzing statistics, analysts often wonder if the statistics are sensitive to a few outlying values. Would we get a similar result if we were to omit a few points? What is the range of values for the statistic? It is possible to answer these questions for an arbitrary statistic using a technique called bootstrapping.
Formally, bootstrap resampling is a technique for estimating the bias of an estimator. An estimator is a statistic calculated from a data sample that provides an estimate of a true underlying value, often a mean, a standard deviation, or a hidden parameter.
Bootstrapping works by repeatedly selecting random observations from a data sample (with replacement) and recalculating the statistic. In R, you can use bootstrap resampling through the boot function in the boot package:
library(boot)
boot(data, statistic, R, sim="ordinary", stype="i",
strata=rep(1,n), L=NULL, m=0, weights=NULL,
ran.gen=function(d, p) d, mle=NULL, simple=FALSE, ...)
Arguments to boot include the following.
Argument | Description | Default |
---|---|---|
data | A vector, matrix, or data frame containing the input data. | |
statistic | A function that, when applied to the data, returns a vector containing the statistic of interest. The function takes two arguments: the source data and a vector that specifies which values to select for each bootstrap replicate. The meaning of the second argument is defined by stype. | |
R | A numeric value specifying the number of bootstrap replicates. | |
sim | A character value specifying the type of simulation. Possible values include "ordinary", "parametric", "balanced", "permutation", and "antithetic" . | "ordinary" |
stype | A character value that specifies what the second argument to the statistic function represents. Possible values of stype are "i" (indices), "f" (frequencies), and "w" (weights). | "i" |
strata | An integer vector or factor specifying the strata for multisample problems. | rep(1, n) |
l | A vector of influence values evaluated at the observations (when sim="antithetic" ). | NULL |
m | Specifies the number of predictions at each bootstrap replicate. | 0 |
weights | A numeric vector of weights for data . | NULL |
ran.gen | A function that describes how random values are generated (when sim="parametric" ). | function(d, p) d |
mle | The second argument passed to ran.gen ; typically, a maximum likelihood estimate (hence the name). | NULL |
simple | Specifies the method for generating random values. Specifying simple=TRUE causes values to be selected on each iteration, saving storage space but costing time. | FALSE |
... | Additional arguments passed to statistic . |
As an example of boot, let’s look at real estate sale prices. Usually, the media reports median sale prices in a region. We can use the bootstrap to look at how biased median is as an estimator:
> b <- boot(data=home.sale.prices.june2008,
+ statistic = function(d,i) {median(d[i])},
+ R=1000)
> b
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = home.sale.prices.june2008, statistic = function(d,
i) {
median(d[i])
}, R = 1000)
Bootstrap Statistics :
original bias std. error
t1* 845000 -3334 23287.27
The boot function tells us that the median is a very slightly biased estimator.
Chapter 17. Probability Distributions
Many statistical tests work by calculating a test statistic and then comparing the test statistic to a value from a theoretical distribution. R provides a set of functions to calculate densities, distributions, and quantiles for common statistical distributions. You can also generate random values from these distributions. This section describes how to use these functions (using the normal distribution as an example) and then lists most functions included with the R stats library.
Normal Distribution
As an example, we’ll start with the normal distribution. As you may remember from statistics classes, the probability density function for the normal distribution is:
To find the probability density at a given value, use the dnorm function:
dnorm(x, mean = 0, sd = 1, log = FALSE)
The arguments to this function are fairly intuitive: x specifies the value at which to evaluate the density, mean specifies the mean of the distribution, sd specifies the standard deviation, and log specifies whether to return the raw density (log=FALSE) or the logarithm of the density (log=TRUE). As an example, you can plot the normal distribution with the following command:
> plot(dnorm, -3, 3, main = "Normal Distribution")
The plot is shown in Figure 17-1.
Figure 17-1. Normal distribution
The distribution function for the normal distribution is pnorm:
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
You can use the distribution function to tell you the probability that a randomly selected value from the distribution is less than or equal to q. Specifically, it returns p = Pr(x ≤ q). The value q is specified by the argument q, the mean by mean, and the standard deviation by sd. If you would like the raw value p, then specify log.p=FALSE; if you would like log(p), then specify log.p=TRUE. By default, lower.tail=TRUE, so this function returns Pr(x ≤ q); if you would prefer Pr(x > q), then specify lower.tail=FALSE. Here are a few examples of pnorm:
> # mean is zero, normal distribution is symmetrical, so
> # probability(q <= 0) is .5
> pnorm(0)
[1] 0.5
> # what is the probability that the value is less than
> # 1 standard deviation below the mean?
> pnorm(-1)
[1] 0.1586553
> # what is the probability that the value is within
> # 1.96 standard deviations of the mean?
> pnorm(1.96, lower.tail=TRUE) - pnorm(-1.96, lower.tail=TRUE)
[1] 0.9500042
You can plot the cumulative normal distribution with a command like this:
> plot(pnorm, -3, 3, main = "Cumulative Normal Distribution")
The plot is shown in Figure 17-2.
Figure 17-2. Cumulative normal distribution
The quantile function is the reverse of the distribution function. Specifically, this function returns q where p = Pr(x ≤ q). In R, you can calculate the quantile function for the normal distribution with the function qnorm:
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
As above, p specifies p where p = Pr(x ≤ q), mean specifies the mean of the distribution, sd specifies the standard deviation, and lower.tail specifies whether p = Pr(x ≤ q) (lower.tail=TRUE) or p = Pr(x > q) (lower.tail=FALSE). The argument log.p specifies whether the input value is the logarithm of p (log.p=TRUE) or just p (log.p=FALSE). Here are a few examples:
> # find the median of the normal distribution
> qnorm(0.5)
[1] 0
> qnorm(log(0.5), log.p=TRUE)
[1] 0
> # qnorm is the inverse of pnorm
> qnorm(pnorm(-1))
[1] -1
> # finding the left and right sides of a 95% confidence interval
> c(qnorm(.025), qnorm(.975))
[1] -1.959964 1.959964
Finally, it is possible to generate random numbers taken from the normal distribution. Selecting random numbers from a specific distribution can be useful in testing statistical functions, in running simulations, in sampling methods, and in many other contexts. To do this in R, use the function rnorm:
rnorm(n, mean = 0, sd = 1)
For example, you could generate 10,000 randomly selected values from a normal distribution with a command like rnorm(10000). You could plot these with an expression like this:
> hist(rnorm(10000), breaks=50)
The plot is shown in Figure 17-3.
Figure 17-3. Histogram of 10,000 random values from a uniform distribution
Common Distribution-Type Arguments
Almost all the R functions that generate values of probability distributions work the same way. They follow a similar naming convention:
Probability density functions (PDFs) begin with “d.”[49]
Distribution functions begin with “p.”
Quantile functions begin with “q.”
Random number generators begin with “r.”
Similarly, most types of functions share certain common arguments:
For density functions: x, log
For distribution functions: q, lower.tail, log.p
For quantile functions: p, lower.tail, log.p
For random numbers: n (except for hypergeometric distributions, where n is renamed to nn)
This might make it easier to remember which function to use for which application and which arguments you need to specify. Of course, you can always just look up the right function to use in R’s help system. Or in this book.
[49] For discrete distributions, these are technically probability mass functions (PMFs), though the function names still begin with “d.”
Distribution Function Families
Here is a table showing the probability distribution functions available in R. In addition to the arguments listed above that are common to each type of function, there are also some arguments that are common to each family.
Chapter 18. Statistical Tests
Many data problems boil down to statistical tests. For example, you might want to answer a question like:
Does this new drug work better than a placebo?
Does the new website design lead to significantly more sales than the old design?
Can this new investment strategy yield higher returns than an index fund?
To answer questions like these, you would formulate a hypothesis, design an experiment, collect data, and use a tool like R to analyze the data. This chapter focuses on the tools available in R for answering these questions.
WARNING
To be helpful, I’ve tried to include enough description of different statistical methods to help remind you when to use each method (in addition to how to find them in R). However, because this is a Nutshell book, I can’t describe where these formulas come from, or when they’re safe to use. R is a good substitute for expensive, proprietary statistics software packages. However, R in a Nutshell isn’t a good substitute for a good statistics course or a good statistics book.
I’ve broken this chapter into two sections: tools for continuous random variables and tools for categorical random variables (or counts).
Continuous Data
This section describes tests that apply to continuous random variables. Many important measurements fall into this category, such as times, dollar amounts, and chemical concentrations.
Normal Distribution-Based Tests
We’ll start off by showing how to use some common statistical tests that assume the underlying data is normally distributed. Normal distributions occur frequently in nature, so this is often a good assumption.[50]
Comparing means
Suppose that you designed an experiment to show that some effect is true. You have collected some data and now want to know if the data proves your hypothesis. One common question is to ask if the mean of the experimental data is close to what the experimenter expected; this is called the null hypothesis. Alternately, the experimenter may calculate the probability that an alternative hypothesis was true. Specifically, suppose that you have a set of observations x1, x2, ..., xn with experimental mean μ and want to know if the experimental mean is different from the null hypothesis mean μ0. Furthermore, assume that the observations are normally distributed. To test the validity of the hypothesis, you can use a t-test. In R, you would use the function t.test:
## Default S3 method:
t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)
Here is a description of the arguments to the t.test function.
Argument | Description | Default |
---|---|---|
x | A numeric vector of data values. | |
y | A numeric vector of data values (use y=NULL for comparing a single vector of values to a null hypothesis mean, mu, or a vector to compare vector x to vector y ). | NULL |
alternative | A character value specifying the alternative hypothesis. Use alternative="two.sided" for a two-sided distribution, alternative="less" for lower, and alternative="greater" for higher. | c("two.sided", "less", "greater") |
mu | A numeric value specifying the value of the mean under the null hypothesis (if testing a single vector of values) or the difference between the means (if comparing the means of two vectors). | 0 |
paired | A logical value indicating if the vectors are paired. See the next section for a description of how to use paired. | FALSE |
var.equal | A logical value indicating whether the variance of the two vectors is assumed to be the same. If var.equal=TRUE, then the pooled variance is used. If var.equal=FALSE , then the Welch method is used. | FALSE |
conf.level | The confidence interval. | 0.95 |
... | Optional values passed to other methods. |
Let’s take a look at an example of how you would use the t.test function. We’ll use the same example data that we used in Dot plots. Suppose that we thought, a priori, that tires of type H should last for approximately nine hours until failure.[51] We’d like to compare the true mean of this data to the hypothetical mean and determine if the difference was statistically significant using a t-test.
To load the sample data, use the following command:
> library(nutshell)
> data(tires.sus)
To begin, let’s extract a vector with the set of values in which we are interested and calculate the true mean:
> times.to.failure.h <- subset(tires.sus,
+ Tire_Type=="H" &
+ Speed_At_Failure_km_h==160
+ )$Time_To_Failure
> times.to.failure.h
[1] 10.00 16.67 13.58 13.53 16.83 7.62 4.25 10.67 4.42 4.25
> mean(times.to.failure.h)
[1] 10.182
As you can see, the true mean for these 10 tests was slightly longer than expected (10.182). We can use the function t.test to check if this difference is statistically significant:
> t.test(times.to.failure.h, mu=9)
One Sample t-test
data: times.to.failure.h
t = 0.7569, df = 9, p-value = 0.4684
alternative hypothesis: true mean is not equal to 9
95 percent confidence interval:
6.649536 13.714464
sample estimates:
mean of x
10.182
Here’s an explanation of the output from the t.test function. First, the function shows us the test statistic (t = 0.7569), the degrees of freedom (df = 9), and the calculated p-value for the test (p-value = 0.4684). The p-value means that the probability that the mean value from an actual sample was higher than 10.182 (or lower than 7.818) was 0.4684.
The next line states the alternative hypothesis: the true mean is not equal to 9, which we would reject based on the result of this test. Next, the t.test function shows the 95% confidence interval for this test, and, finally, it gives the actual mean. As a statistician would say, this evidence does not imply that the true mean was not equal to 9.
Another common situation is when you have two groups of observations, and you want to know if there is a significant difference between the means of the two groups of observations. You can also use a t-test to compare the means of the two groups.
Let’s pick another example from the tire data. Looking at the characteristics of the different tires that were tested, notice that three of the six tires had the same speed rating: S. Based on this speed rating, we would expect all three tires to last the same amount of time in the test:
> times.to.failure.e <- subset(tires.sus,
+ Tire_Type=="E" & Speed_At_Failure_km_h==180)$Time_To_Failure
> times.to.failure.d <- subset(tires.sus,
+ Tire_Type=="D" & Speed_At_Failure_km_h==180)$Time_To_Failure
> times.to.failure.b <- subset(tires.sus,
+ Tire_Type=="B" & Speed_At_Failure_km_h==180)$Time_To_Failure
Let’s start by comparing the mean times until failure for tires of types D and E:
> t.test(times.to.failure.e, times.to.failure.d)
Welch Two Sample t-test
data: times.to.failure.e and times.to.failure.d
t = -2.5042, df = 8.961, p-value = 0.03373
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.82222528 -0.04148901
sample estimates:
mean of x mean of y
4.321000 4.752857
The results here are similar to the results from the single-sample t-test. In this case, notice that the results were statistically significant at the 95% confidence interval; tires of type E lasted longer than tires of type D.
As an another example, let’s compare tires of types E and B:
> t.test(times.to.failure.e, times.to.failure.b)
Welch Two Sample t-test
data: times.to.failure.e and times.to.failure.b
t = -1.4549, df = 16.956, p-value = 0.1640
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5591177 0.1027844
sample estimates:
mean of x mean of y
4.321000 4.549167
In this case, the difference in means was not significant between the two groups (because the calculated p-value was 0.1640). Notice that the output in R is otherwise identical; the t.test function doesn’t explicitly say if the results were significant or not.
For two-sample t-tests, you can also use a formula to specify a t-test if the data is included in a data frame, and the two groups of observations are differentiated by a factor:
## S3 method for class 'formula':
t.test(formula, data, subset, na.action, ...)
The formula specifies the variables to use in the test.
As an example, let’s look at data on field goals kicked in the NFL during 2005. Specifically, let’s look at the distance of successful field goals kicked in indoor and outdoor stadiums. Many TV commentators talk about the difficulty of kicking field goals outdoors, due to snow, wind, and so on. But does it make a significant difference in the distance of successful field goals? (Or, for that matter, in bad field goals?) We can use a t-test to find out.
First, let’s put together the data set:
> library(nutshell)
> data(field.goals)
> good <- transform(
+ field.goals[field.goals$play.type=="FG good",
+ c("yards","stadium.type")],
+ outside=(stadium.type=="Out"))
> bad <- transform(
+ field.goals[field.goals$play.type=="FG no",
+ c("yards","stadium.type")],
+ outside=(stadium.type=="Out"))
Now, let’s use the t.test function to compare the distance of field goals in indoor and outdoor stadiums:
> t.test(yards~outside, data=good)
Welch Two Sample t-test
data: yards by outside
t = 1.1259, df = 319.428, p-value = 0.2610
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.685112 2.518571
sample estimates:
mean in group FALSE mean in group TRUE
35.31707 34.40034
Although the average successful field goal length was about a yard longer, the difference is not significant at a 95% confidence level. The same is true for field goals that missed:
> t.test(yards~outside, data=bad)
Welch Two Sample t-test
data: yards by outside
t = 1.2016, df = 70.726, p-value = 0.2335
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.097564 4.425985
sample estimates:
mean in group FALSE mean in group TRUE
45.18421 43.52000
Was there a statistically significant difference in the distances that coaches attempted to kick field goals? Let’s take a look:
> field.goals.inout <-
+ transform(field.goals,
+ outside=(stadium.type=="Out"))
> t.test(yards~outside, data=field.goals.inout)
Welch Two Sample t-test
data: yards by outside
t = 1.5473, df = 401.509, p-value = 0.1226
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3152552 2.6461541
sample estimates:
mean in group FALSE mean in group TRUE
37.14625 35.98080
Again, the difference does not appear to be statistically significant at a 95% level.
Comparing paired data
Sometimes you are provided with paired data. For example, you might have two observations per subject: one before an experiment and one after the experiment. In this case, you would use a paired t-test. You can use the t.test function, specifying paired=TRUE, to perform this test.
As an example of paired data, we can look at the SPECint2006 results. SPEC is an organization that provides computer performance data using standardized tests. The organization defines a number of different tests for different applications: database performance, web server performance, graphics performance, and so on. For our example, we’ll use a simple metric: the integer performance of different computers on typical desktop computing tasks.
SPEC provides two different types of tests: tests with standard settings and tests that are optimized for specific computers. As an example of paired data, we will compare the unoptimized results (called “baseline”) with the optimized results, to see if there is a statistically significant difference between the results. This data set is a good example of paired data: we have two different test results for each computer system. As an example, we will look only at single-chip, dual-core systems:
> library(nutshell)
> data(SPECint2006)
> t.test(subset(SPECint2006,Num.Chips==1&Num.Cores==2)$Baseline,
+ subset(SPECint2006,Num.Chips==1&Num.Cores==2)$Result,
+ paired=TRUE)
Paired t-test
data: subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Baseline
and subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Result
t = -21.8043, df = 111, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.957837 -1.631627
sample estimates:
mean of the differences
-1.794732
In this case, we can clearly see that the results were significant at the 95% confidence interval. (This isn’t a very big surprise. It’s well known that optimizing compiler settings and system parameters can make a big difference on system performance. Additionally, submitting optimized results is optional: organizations that could not tune their systems very well probably would not voluntarily share that fact.)
Comparing variances of two populations
To compare the variances of two samples from normal populations, R includes the var.test function, which performs an F-test:
## Default S3 method:
var.test(x, y, ratio = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)
## S3 method for class 'formula':
var.test(formula, data, subset, na.action, ...)
Let’s continue with the example from above. Is there a difference in the variance of field goal lengths between indoor and outdoor stadiums? Let’s take a look:
> var.test(yards~outside, data=field.goals.inout)
F test to compare two variances
data: yards by outside
F = 1.2432, num df = 252, denom df = 728, p-value = 0.03098
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.019968 1.530612
sample estimates:
ratio of variances
1.243157
As you can see from the output above, the p-value is less than 0.05, indicating that the difference in variance between the two populations is statistically significant. To test that the variances in each of the groups (samples) are the same, you can use Bartlett’s test. In R, this is available through the bartlett.test function:
bartlett.test(x, ...)
## Default S3 method:
bartlett.test(x, g, ...)
## S3 method for class 'formula':
bartlett.test(formula, data, subset, na.action, ...)
Using the same example as above, let’s compare variances of the two groups using the Bartlett test:
> bartlett.test(yards~outside, data=field.goals.inout)
Bartlett test of homogeneity of variances
data: yards by outside
Bartlett's K-squared = 4.5808, df = 1, p-value = 0.03233
Comparing means across more than two groups
To compare the means across more than two groups, you can use a method called analysis of variance (ANOVA).[52] ANOVA methods are very important for statistics. A full explanation of ANOVA requires an explanation of statistical models in R, which are covered in Chapter 20.
A simple way to perform these tests is through aov:
aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)
As an example, let’s consider the 2006 U.S. mortality data set. (I showed how to load this data set in Using Other Languages to Preprocess Text Files.) Specifically, we’ll look at differences in age at death by cause of death. This is a pretty silly example; clearly, the average age at which people die of natural causes is going to be higher than the age at which they die for other reasons. However, this should help illustrate how the statistic works.
I mapped the disease codes in the original file into readable values and then summarized causes into a small number of reasons. To do this, I created a function to translate the numeric codes into character values. (I grouped together some common causes of death.) The mort06.smpl data set is included in the nutshell package.
Let’s take a look at the summary statistics for age by cause:
> library(nutshell)
> data(mort06.smpl)
> tapply(mort06.smpl$age, INDEX=list(mort06.smpl$Cause), FUN=summary)
$Accidents
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 31.00 48.00 50.88 73.00 108.00 8.00
$`Alzheimer's Disease`
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.00 82.00 87.00 86.07 91.00 109.00
$Cancer
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 61.00 72.00 70.24 81.00 107.00
$`Chronic respiratory diseases`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 70.00 78.00 76.37 84.00 106.00 1.00
$Diabetes
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 63.00 75.00 72.43 83.00 104.00 1.00
$`Heart Disease`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 70.00 81.00 77.66 88.00 112.00 4.00
$Homicide
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 22.00 28.00 32.19 42.00 92.00 2.00
$`Influenza and pneumonia`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 76.00 84.00 80.16 90.00 108.00 1.00
$Other
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 60.00 78.00 70.44 87.00 110.00 10.00
$Suicide
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
8.00 32.00 45.00 46.14 57.00 97.00 2.00
Now let’s fit an ANOVA model to the data and show a summary of the model. To do this in R, we simply need to use the aov function:
> aov(age~Cause, data=mort06.smpl)
Call:
aov(formula = age ~ Cause, data = mort06.smpl)
Terms:
Cause Residuals
Sum of Squares 15727886 72067515
Deg. of Freedom 9 243034
Residual standard error: 17.22012
Estimated effects may be unbalanced
29 observations deleted due to missingness
To get more information on ANOVA results, you can use the model.tables to print information on aov objects:
## S3 method for class 'aov':
model.tables(x, type = "effects", se = FALSE, cterms, ...)
The argument x specifies the model object, type specifies the type of results to print, se specifies whether to compute standard errors, and cterms specifies which tables should be compared. As an example, here is the output of model.tables for the cause of death example above:
> model.tables(aov(age~Cause, data=mort06.smpl))
Tables of effects
Cause
Accidents Alzheimer's Disease Cancer
-21.41 13.77 -2.056
rep 12363.00 7336.00 57162.000
Chronic respiratory diseases Diabetes Heart Disease Homicide
4.077 0.1343 5.371 -40.1
rep 12386.000 7271.0000 82593.000 1917.0
Influenza and pneumonia Other Suicide
7.863 -1.855 -26.15
rep 5826.000 52956.000 3234.00
As another example of aov, let’s consider weight gain by women during pregnancy:
> library(nutshell)
> data(births2006.smpl)
> births2006.cln <- births2006.smpl[births2006.smpl$WTGAIN<99 &
+ !is.na(births2006.smpl$WTGAIN),]
> tapply(X=births2006.cln$WTGAIN,
+ INDEX=births2006.cln$DOB_MM,
+ FUN=mean)
1 2 3 4 5 6
30.94405 31.08356 31.29317 31.33610 31.07242 30.92589
7 8 9 10 11 12
30.57734 30.54855 30.25546 30.43985 30.79077 30.85564
It appears that weight gain increases slightly during winter months, but is this difference statistically significant? Let’s take a look:
> aov(WTGAIN~DOB_MM, births2006.cln)
Call:
aov(formula = WTGAIN ~ DOB_MM, data = births2006.cln)
Terms:
DOB_MM Residuals
Sum of Squares 14777 73385301
Deg. of Freedom 1 351465
Residual standard error: 14.44986
Estimated effects may be unbalanced
Often, it’s better to use lm to fit a linear model and then use the anova function to extract information about analysis of variance. For large models, it is often more efficient to use the update function to change an existing model than to create a new model from scratch. See Example: A Simple Linear Model for more information on the lm function, model objects, and the update function. The anova function presents results slightly differently than the aov function, as you can see in this example:
> mort06.smpl.lm <- lm(age~Cause, data=mort06.smpl)
> anova(mort06.smpl.lm)
Analysis of Variance Table
Response: age
Df Sum Sq Mean Sq F value Pr(>F)
Cause 9 15727886 1747543 5893.3 < 2.2e-16 ***
Residuals 243034 72067515 297
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA calculations assume that the variance is equal across groups. When you know this is not true (or suspect this is not true), you can use the oneway.test function to calculate whether two or more samples have the same mean:
oneway.test(formula, data, subset, na.action, var.equal = FALSE)
This is similar to calling t.test with var.equal=FALSE (and the calculation method was also developed by Welch).
There are other functions for printing information about aov objects: proj returns a list of matrices giving the projections of data onto the linear model, TukeyHSD returns confidence intervals on the differences between the means of the levels of a factor with the specified family-wise probability of coverage, and se.contrast returns the standard errors for one or more contrasts in an aov object.
Pairwise t-tests between multiple groups
Sometimes, you’re not interested in just whether there is a difference across groups, but would like to know more details about the differences. One way to do this is by performing a t-test between every pair of groups. To do this in R, you can use the pairwise.t.test function:
pairwise.t.test(x, g, p.adjust.method = p.adjust.methods,
pool.sd = !paired, paired = FALSE,
alternative = c("two.sided", "less", "greater"), ...)
This function calculates pairwise comparisons among group levels with corrections for multiple testing. The argument x specifies a vector of numeric values, and g specifies a factor that is used to group values. The argument pool.sd specifies whether to calculate a single standard deviation value across all groups and use this for the test.
As an example, let’s return to the tire data that we used in the example above. When we looked at the t.test function, we created three different vectors for the different types of tires. Here we’ll just use the pairwise t-test to compare all the tires by type:
> pairwise.t.test(tires.sus$Time_To_Failure, tires.sus$Tire_Type)
Pairwise comparisons using t tests with pooled SD
data: tires.sus$Time_To_Failure and tires.sus$Tire_Type
B C D E H
C 0.2219 - - - -
D 1.0000 0.5650 - - -
E 1.0000 0.0769 1.0000 - -
H 2.4e-07 0.0029 2.6e-05 1.9e-08 -
L 0.1147 1.0000 0.4408 0.0291 0.0019
P value adjustment method: holm
As you can see, there is no statistically significant difference between the means of a few pairs of groups (such as C and L, D and L, or D and E), but there is a significant difference between some others (such as B and H, C and H, or E and L).
Testing for normality
To test if a distribution is normally distributed in R, you can use the Shapiro-Wilk test for normality through the shapiro.test function:
shapiro.test(x)
Using the example above, let’s look at field goal lengths in the NFL in 2005. Was the distribution of field goal lengths normally distributed? My first instinct is to take a look at the distribution using a histogram or a quantile-quantile plot. Here is some R code to plot both, side by side:
> par(mfcol=c(1, 2), ps=6.5)
> hist(fg_attempts$yards, breaks=25)
> qqnorm(fg_attempts$yards, pch=".")
The plot is shown in Figure 18-1. It seems plausible that the distribution was normal: the distribution is roughly bell-curve shaped, and the quantile-quantile plot is roughly linear. To get a more rigorous answer, we can use the Shapiro-Wilk test. Here’s what the Shapiro-Wilk test tells us:
> shapiro.test(field.goals$yards)
Shapiro-Wilk normality test
data: field.goals$YARDS
W = 0.9728, p-value = 1.307e-12
Figure 18-1. Distribution of field goal attempt distances in the NFL in 2005
As you can tell from the p-value, it is quite likely that this data is not normally distributed.
Testing if a data vector came from an arbitrary distribution
You can use the Kolmogorov-Smirnov test to see if a vector came from an arbitrary probability distribution (not just a normal distribution):
ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)
The argument x specifies the test data. The argument y specifies the arbitrary distribution; it can be a vector of data values, a character name for a probability distribution function, or a distribution function. (You can pass along additional arguments to the distribution function.) The alternative argument allows you to specify the alternative hypothesis, and the exact value specifies whether to calculate exact values (for large x and y) or approximations.
Using the example above, we can use the ks.test function. We’ll specify the normal distribution (using the pnorm function):
> ks.test(field.goals$yards, pnorm)
One-sample Kolmogorov-Smirnov test
data: field.goals$yards
D = 1, p-value < 2.2e-16
alternative hypothesis: two-sided
Warning message:
In ks.test(field.goals$yards, pnorm) :
cannot compute correct p-values with ties
Notice the warning message; ties are extremely unlikely for values from a true normal distribution. If there are ties in the data, that is a good sign that the test data is not actually normally distributed, so the function prints a warning.
Testing if two data vectors came from the same distribution
The Kolmogorov-Smirnov test can also be used to test the probability that two data vectors came from the same distribution. As an example, let’s look at the SPECint2006 data that we saw in Comparing paired data. What is the probability that the benchmark data and the optimized data come from the same distribution? We’ll compare the benchmark and optimized data using the ks.test function, adding some jitter to the values to suppress the warning about ties:
> ks.test(jitter(subset(SPECint2006, Num.Chips==1&Num.Cores==2)$Baseline),
+ jitter(subset(SPECint2006, Num.Chips==1&Num.Cores==2)$Result))
Two-sample Kolmogorov-Smirnov test
data: jitter(subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Baseline)
and jitter(subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Result)
D = 0.2143, p-value = 0.01168
alternative hypothesis: two-sided
The p-value of this test was 0.0168, which is much less than 0.05. So this test implies that it was not likely that these two samples came from the same distribution.
Correlation tests
The functions in Correlation and Covariance simply compute the degree of correlation between pairs of vectors, but they don’t tell you if the correlation is significant. If you’d like to check whether there is a statistically significant correlation between two vectors, you can use the cor.test function:
## Default S3 method:
cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)
## S3 method for class 'formula':
cor.test(formula, data, subset, na.action, ...)
For example, let’s look at how this function works on two obviously correlated vectors:
> cor.test(c(1, 2, 3, 4, 5, 6, 7, 8),
+ c(0, 2, 4, 6, 8, 10, 11, 14))
Pearson's product-moment correlation
data: c(1, 2, 3, 4, 5, 6, 7, 8) and c(0, 2, 4, 6, 8, 10, 11, 14)
t = 36.1479, df = 6, p-value = 2.989e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9868648 0.9996032
sample estimates:
cor
0.997712
And two less correlated vectors:
> cor.test(c(1, 2, 3, 4, 5, 6, 7, 8),
+ c(5, 3, 8, 1, 7, 0, 0, 3))
Pearson's product-moment correlation
data: c(1, 2, 3, 4, 5, 6, 7, 8) and c(5, 3, 8, 1, 7, 0, 0, 3)
t = -1.2232, df = 6, p-value = 0.2671
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8757371 0.3764066
sample estimates:
cor
-0.4467689
Let’s revisit the data on environmental toxins and lung cancer that we examined in Scatter Plots. This data compared the amount of airborne toxins released in each state with the deaths by lung cancer in each state:
> cor.test(air_on_site/Surface_Area, deaths_lung/Population)
Pearson's product-moment correlation
data: air_on_site/Surface_Area and deaths_lung/Population
t = 3.4108, df = 39, p-value = 0.001520
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2013723 0.6858402
sample estimates:
cor
0.4793273
The test shows that there appears to be a positive correlation between these two quantities that is statistically significant. However, don’t infer that there is a causal relationship between the rates of toxins released and the rates of lung cancer deaths. There are many alternate explanations for this phenomenon. For example, states with lots of dirty industrial activity may also be states with lower levels of income, which, in turn, correlates with lower-quality medical care. Or, perhaps, states with lots of industrial activity may be states with higher rates of smoking. Or maybe states with lower levels of industrial activity are less likely to identify cancer as a cause of death. Whatever the explanation, I thought this was a neat result.
Non-Parametric Tests
Although many real data sources can be approximated well by a normal distribution, there are many cases where you know that the data is not normally distributed, or you do not know the shape of the distribution. A good alternative to the tests described in Normal Distribution-Based Tests are non-parametric tests. These tests can be more computationally intensive than tests based on a normal distribution, but they may help you make better choices when the distribution is not normally distributed.
Comparing two means
The Wilcoxon test is the non-parametric equivalent to the t-test:
## Default S3 method:
wilcox.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)
## S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)
The Wilcoxon test works by looking at the ranks of different elements in x and y; the exact values don’t matter. To get the test statistic for x and y, you can calculate:
That is, look at all pairs of values (x[i], y[j]), counting the number of cases where y[j] < x[i]. If the two vectors were both from the same distribution, you’d expect this to be true for roughly half the pairs. The Wilcoxon distribution can be used to estimate the probability of different values for W; the p-value for the Wilcoxon test comes from this distribution. Notice that there is no version of the Wilcoxon test that compares a data sample with a hypothesized mean.
Let’s take a look at the same examples we used for t-tests. Let’s start by looking at the times to failure for tires. As above, let’s start by comparing tires of type E to tires of type D:
> wilcox.test(times.to.failure.e, times.to.failure.d)
Wilcoxon rank sum test with continuity correction
data: times.to.failure.e and times.to.failure.d
W = 14.5, p-value = 0.05054
alternative hypothesis: true location shift is not equal to 0
Warning message:
In wilcox.test.default(times.to.failure.e, times.to.failure.d) :
cannot compute exact p-value with ties
Here’s an explanation of the output. The test function first shows the test statistic (W = 14.5) and the p-value for the statistic (0.05054). Notice that this is different from the result for the t-test. With the t-test, there was a significant difference between the means of the two groups, but with the Wilcoxon rank-sum test, the difference between the two groups is not significant at a 95% confidence level (though it barely misses).
Also note the warning. The Wilcoxon test statistic is based on the rank order of the observations, not their specific values. In our test data, there are a few ties:
> times.to.failure.d
[1] 5.22 4.47 4.25 5.22 4.68 5.05 4.3
> times.to.failure.e
[1] 4.48 4.70 4.52 4.63 4.07 4.28 4.25 4.10 4.08 4.10
Because there was a tie, the function above actually used a normal approximation; see the help file for more information.
As with the standard t-test function, there is also a formula method for wilcox.test. As above, let’s compare the distance of field goals made in indoor stadiums versus outdoor stadiums:
> wilcox.test(yards~outside, data=good)
Wilcoxon rank sum test with continuity correction
data: YARDS by outside
W = 62045, p-value = 0.3930
alternative hypothesis: true location shift is not equal to 0
Comparing more than two means
The Kruskal-Wallis rank-sum test is a non-parametric equivalent to ANOVA analysis:
kruskal.test(x, ...)
## Default S3 method:
kruskal.test(x, g, ...)
## S3 method for class 'formula':
kruskal.test(formula, data, subset, na.action, ...
As an example, here is the output for the mortality data that we used as an example for ANOVA statistics:
> kruskal.test(age~Cause, data=mort06.smpl)
Kruskal-Wallis rank sum test
data: age by Cause
Kruskal-Wallis chi-squared = 34868.1, df = 9, p-value
< 2.2e-16
Comparing variances
To compare the variance among different groups using a nonparametric test, R includes an implementation of the Fligner-Killeen (median) test through the fligner.test function:
## Default S3 method:
fligner.test(x, g, ...)
## S3 method for class 'formula':
fligner.test(formula, data, subset, na.action, ...)
Here is the output of fligner.test for the mortality data above:
> fligner.test(age~Cause, data=mort06.smpl)
Fligner-Killeen test of homogeneity of variances
data: age by Cause
Fligner-Killeen:med chi-squared = 15788, df = 9,
p-value < 2.2e-16
Difference in scale parameters
There are some tests in R for testing for differences in scale parameters. To use the Ansari-Bradley two-sample test for a difference in scale parameters, use the function ansari.test:
## Default S3 method:
ansari.test(x, y,
alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,
...)
## S3 method for class 'formula':
ansari.test(formula, data, subset, na.action, ...)
To use Mood’s two-sample test for a difference in scale parameters in R, try the function mood.test:
## Default S3 method:
mood.test(x, y,
alternative = c("two.sided", "less", "greater"), ...)
## S3 method for class 'formula':
mood.test(formula, data, subset, na.action, ...)
[50] One of the most famous results in probability theory is something called the central limit theorem. The central limit theorem states, in a nutshell, that if x is the sum of a set of random variables x1, x2, ..., xn, then the distribution of x approaches the normal distribution as n → ∞.
[51] This is a slightly contrived example, because I just made up the hypothetical mean value. In reality, the mean value might come from another experiment (perhaps a published experiment, where the raw data was not available). Or the mean value might have been derived from theory.
[52] This process is named for the analysis process, not for the results. It doesn’t compare variances; it compares means by analyzing variances.
Discrete Data
There is a different set of tests for looking at the statistical significance of discrete random variables (like counts of proportions), and so there is a different set of functions in R for performing those tests.
Proportion Tests
If you have a data set with several different groups of observations and are measuring the probability of success in each group (or the fraction of some other characteristic), you can use the function prop.test to measure whether the difference between groups is statistically significant. Specifically, prop.test can be used for testing the null hypothesis that the proportions (probabilities of success) in several groups are the same or that they equal certain given values:
prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)
As an example, let’s revisit the field goal data. Above, we considered the question, “Is there a difference in the length of attempts indoors and outdoors?” Now we’ll ask the question, “Is the probability of success the same indoors as it is outdoors?”
First, let’s create a new data set containing only good and bad field goals. (We’ll eliminate blocked and aborted attempts; there were only 8 aborted attempts and 24 blocked attempts in 2005, but 787 good attempts and 163 bad [no good] attempts.)
> field.goals.goodbad <- field.goals[field.goals$play.type=="FG good" |
+ field.goals$play.type=="FG no", ]
Now let’s create a table of successes and failures by stadium type:
> field.goals.table <- table(field.goals.goodbad$play.type,
+ field.goals.goodbad$stadium.type)
> field.goals.table
Both In Out
FG aborted 0 0 0
FG blocked 0 0 0
FG good 53 152 582
FG no 14 24 125
The table isn’t quite right for prop.test; we need a table with two columns (one with a count of successes and one with a count of failures), and we don’t want to show empty factor levels. Let’s remove the two rows we don’t need and transpose the table:
> field.goals.table.t <- t(field.goals.table[3:4,])
> field.goals.table.t
FG good FG no
Both 53 14
In 152 24
Out 582 125
Now we’re ready to see if there is a statistically significant difference in success among the three groups. We can simply call prop.test on the field.goals.table.t object to check:
> prop.test(field.goals.table.t)
3-sample test for equality of proportions without
continuity correction
data: field.goals.table
X-squared = 2.3298, df = 2, p-value = 0.3120
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 3
0.7910448 0.8636364 0.8231966
As you can see, the results are not significant.
Binomial Tests
Often, an experiment consists of a series of identical trials, each of which has only two outcomes. For example, suppose that you wanted to test the hypothesis that the probability that a coin would land on heads was 0.5. You might design an experiment where you flipped the coin 50 times and counted the number of heads. Each coin flip is an example of a Bernoulli trial. The distribution of the number of heads is given by the binomial distribution.
R includes a function for evaluating such a trial to determine whether to accept or reject the hypothesis:
binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)
The argument x gives the number of successes, n gives the total number of trials, p gives the probability of each success, alternative gives the alternative hypothesis, and conf.level gives the returned confidence level.
As an example, let’s look at David Ortiz’s performance during the 2008 season. In 2008, he had a batting average of .264 (110 hits in 416 at bats). Suppose that he was actually a .300 hitter—that the actual probability that he would get a hit in a given at bat was 0.3. What were the odds that he hit .264 or less in this number of at bats? We can use the function binom.test to estimate this probability:
> binom.test(x=110, n=416, p=0.3, alternative="less")
Exact binomial test
data: 110 and 416
number of successes = 110, number of trials = 416, p-value =
0.06174
alternative hypothesis: true probability of success is less than 0.3
95 percent confidence interval:
0.0000000 0.3023771
sample estimates:
probability of success
0.2644231
Unlike some other test functions, the p-value represents the probability that the fraction of successes (0.26443431) was at least as far from the hypothesized value (.300) after the experiment. We specified that the alternative hypothesis was “less,” meaning that the p-value represents the probability that the fraction of successes was less than 0.26443431, which in this case was 0.06174.
In plain English, this means that if David Ortiz was a “true” .300 hitter, the probability that he actually hit .264 or worse in a season was 0.06174.
Tabular Data Tests
A common problem is to look at a table of data and determine if there is a relationship between two categorical variables. If there were no relationship, the two variables would be statistically independent. In these tests, the hypothesis is that the two variables are independent. The alternative hypothesis is that the two variables are not independent.
Tables of data often come up in experimental contexts: there is one column of data from a test population and one from a control population. In this context, the analyst often wants to calculate the probability that the two sets of data could have come from the same population (which would imply the same proportions in each). This is an equivalent problem, so the same test functions can be used.
For small contingency tables (and small values), you can obtain the best results using Fisher’s exact test. Fisher’s exact test calculates the probability that the deviation from the independence was greater than or equal to the sample quantities. So a high p-value means that the sample data implies that the two variables are likely to be independent. A low p-value means that the sample data implies that the two variables are not independent.
In R, you can use the function fisher.test to perform Fisher’s exact test:
fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)
Here is a description of the arguments to fisher.test.
Argument | Description | Default |
---|---|---|
x | Specifies the sample data to use for the test. Either a matrix (representing a two-dimensional contingency table) or a factor. | |
y | Specifies the sample data to use for the test. If x is a factor, then y should be a factor. If x is a matrix, then y is ignored. | NULL |
workspace | An integer value specifying the size of the workspace to use in the network algorithm (in units of 4 bytes). | 200000 |
hybrid | For tables larger than 2 × 2, specifies whether exact probabilities should be calculated (hybrid=FALSE) or an approximation should be used (hybrid=TRUE ). | FALSE |
control | A list of named components for low-level control of fisher.test ; see the help file for more information. | list() |
or | The hypothesized odds ratio for the 2 × 2 case. | 1 |
alternative | The alternative hypothesis. Must be one of "two.sided", "greater", or "less" . | "two.sided" |
conf.int | A logical value specifying whether to compute and return confidence intervals in the results. | TRUE |
conf.level | Specifies the confidence level to use in computing the confidence interval. | 0.95 |
simulate.p.value | A logical value indicating whether to use Monte Carlo simulation to compute p-values in tables larger than 2 × 2. | FALSE |
B | An integer indicating the number of replicates to use in Monte Carlo simulations. | 2000 |
If you specify x and y as factors, then R will compute a contingency table from these factors. Alternatively, you can specify a matrix for x containing the contingency table.
Fisher’s exact test can be very computationally intensive for large tables, so statisticians usually use an alternative test: chi-squared tests. Chi-squared tests are not exactly the same as Fisher’s tests. With a chi-squared test, you explicitly state a hypothesis about the probability of each event and then compare the sample distribution to the hypothesis. The p-value is the probability that a distribution at least as different from the hypothesized distribution arose by chance.
In R, you can use the function chisq.test to calculate a chi-squared contingency table and goodness-of-fit tests:
chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 200
Here is a description of the arguments to chisq.test.
Argument | Description | Default |
---|---|---|
x | Specifies the sample data to use for the test. Either a matrix or a vector. | |
y | Specifies the sample data to use for the test. If x is a factor, then y should be a vector. If x is a matrix, then y is ignored. | NULL |
correct | A logical value specifying whether to apply continuity correction when computing the test statistic for 2 × 2 tables. | TRUE |
p | A vector of probabilities that represent the hypothesis to test. (Note that the default is to assume equal probability for each item.) | rep(1/length(x), length(x)) |
rescale.p | A logical value indicating whether p needs to be rescaled to sum to 1. | FALSE |
simulate.p.value | A logical value indicating whether to compute p-values using Monte Carlo simulation. | FALSE |
B | An integer indicating the number of replicates to use in Monte Carlo simulations. | 200 |
If you specify x and y as vectors, then R will compute a contingency table from these vectors (after coercing them to factors). Alternatively, you can specify a matrix for x containing the contingency table.
As an example, let’s use the 2006 births data set. (For a detailed description of this data set, see Univariate Trellis Plots.) We will take a look at the number of male and female babies delivered during July 2006, by delivery method. We’ll take a subset of births during July where the delivery method was known and then tabulate the results:
> births.july.2006 <- births2006.smpl[births2006.smpl$DMETH_REC!="Unknown" &
+ births2006.smpl$DOB_MM==7, ]
> nrow(births2006.smpl)
[1] 427323
> nrow(births.july.2006)
[1] 37060
> method.and.sex <- table(
+ births.july.2006$SEX,
+ as.factor(as.character(births.july.2006$DMETH_REC)))
> method.and.sex
C-section Vaginal
F 5326 12622
M 6067 13045
Note that the delivery methods were actually slightly unbalanced by gender during July 2006:
> 5326 / (5326 + 6067)
[1] 0.46748
> 12622 / (12622 + 13045)
[1] 0.4917598
However, there isn’t an intuitive reason why this should be true. So let’s check whether this difference is statistically significant: is the difference due to chance or is it likely that these two variables (delivery method and sex) are independent? We can use Fisher’s exact test to answer this question:
> fisher.test(method.and.sex)
Fisher's Exact Test for Count Data
data: method.and.sex
p-value = 1.604e-05
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.8678345 0.9485129
sample estimates:
odds ratio
0.9072866
The p-value is the probability of obtaining results that were at least as far removed from independence as these results. In this case, the p-value is very low, indicating that the results were very far from what we would expect if the variables were truly independent. This implies that we should reject the hypothesis that the two variables are independent.
As a second example, let’s look only at twin births. (Note that each record represents a single birth, not a single pregnancy.)
> twins.2006 <- births2006.smpl[births2006.smpl$DPLURAL=="2 Twin" &
+ births2006.smpl$DMETH_REC != "Unknown",]
> method.and.sex.twins <-
+ table(twins.2006$SEX,
+ as.factor(as.character(twins.2006$DMETH_REC)))
> method.and.sex.twins
C-section Vaginal
F 4924 1774
M 5076 1860
Now let’s see if there is a statistically significant difference in delivery methods between the two sexes:
> fisher.test(method.and.sex.twins)
Fisher's Exact Test for Count Data
data: method.and.sex.twins
p-value = 0.67
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9420023 1.0981529
sample estimates:
odds ratio
1.017083
In this case, the p-value (0.67) is very high, so it is very likely that the two variables are independent.
We can look at the same table using a chi-squared test:
> chisq.test(method.and.sex.twins)
Pearson's Chi-squared test with Yates' continuity
correction
data: method.and.sex.twins
X-squared = 0.1745, df = 1, p-value = 0.6761
By the way, we could also have just passed the two factors to chisq.test, and chisq.test would have calculated the contingency table for us:
> chisq.test(twins.2006$DMETH_REC, twins.2006$SEX)
Pearson's Chi-squared test with Yates' continuity
correction
data: twins.2006$DMETH_REC and twins.2006$SEX
X-squared = 0.1745, df = 1, p-value = 0.6761
As above, the p-value is very high, so it is likely that the two variables are independent for twin births.
Let’s ask another interesting question: how many babies are born on weekdays versus weekends? Let’s start by tabulating the number of births, by day of week, during 2006:
> births2006.byday <- table(births2006.smpl$DOB_WK)
> births2006.byday
1 2 3 4 5 6 7
40274 62757 69775 70290 70164 68380 45683
Curiously, the number of births on days 1 and 7 (Sunday and Saturday, respectively) are sharply lower than the number of births on other days. We can use a chi-squared test to determine what the probability is that this distribution arose by chance. As noted above, by default, we perform a chi-squared test under the assumption that the actual probability of a baby being born on each day is given by the vector p=rep(1/length(x), length(x)), which in this case is 1/7 for every day. So we’re asking what the probability is that a distribution at least as unbalanced as the one above arose by chance:
> chisq.test(births2006.byday)
Chi-squared test for given probabilities
data: births2006.byday
X-squared = 15873.20, df = 6, p-value < 2.2e-16
As you might have guessed, this effect was statistically significant. The p-value is very, very small, indicating that it is very unlikely that this effect arose due to chance. (Of course, with a sample this big, it’s not hard to find significant effects.)
The chisq.test function can also perform tests on multidimensional tables. As an example, let’s build a table showing the number of births by day and month:
> births2006.bydayandmonth <- table(births2006.smpl$DOB_WK,
+ births2006.smpl$DOB_MM)
> births2006.bydayandmonth
1 2 3 4 5 6 7
1 3645 2930 2965 3616 2969 3036 3976
2 5649 4737 4779 4853 5712 5033 6263
3 6265 5293 5251 5297 6472 5178 5149
4 5131 5280 6486 5173 6496 5540 5499
5 5127 5271 6574 5162 5347 6863 5780
6 4830 5305 6330 5042 4975 6622 5760
7 3295 3392 3408 4185 3364 3464 4751
8 9 10 11 12
1 3160 3270 3964 2999 3744
2 5127 4850 6167 5043 4544
3 7225 5805 6887 5619 5334
4 7011 5725 5445 6838 5666
5 6945 5822 5538 6165 5570
6 5530 7027 5256 5079 6624
7 3686 4669 3564 3509 4396
As above, let’s check the probability that this distribution arose by chance under the assumption that the probability of each combination was equal:
> chisq.test(births2006.bydayandmonth)
Pearson's Chi-squared test
data: births2006.bydayandmonth
X-squared = 4729.620, df = 66,
p-value < 2.2e-16
Much like the one-dimensional table, we see that the effects are statistically significant; it is very unlikely that this unbalanced distribution arose due to chance.
For three-way interactions, you can try a Cochran-Mantel-Haenszel test. This is implemented in R through the mantelhaen.test function:
mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)
To test for symmetry in a two-dimensional contingency table, you can use McNemar’s chi-squared test. This is implemented in R as mcnemar.test:
mcnemar.test(x, y = NULL, correct = TRUE)
Non-Parametric Tabular Data Tests
The Friedman rank-sum test is a non-parametric counterpart to two-way ANOVA tests. In R, this is implemented through the friedman.test function:
friedman.test(y, ...)
## Default S3 method:
friedman.test(y, groups, blocks, ...)
## S3 method for class 'formula':
friedman.test(formula, data, subset, na.action, ...)
As examples, let’s look at some of the same tables we looked at above:
> friedman.test(method.and.sex.twins)
Friedman rank sum test
data: method.and.sex.twins
Friedman chi-squared = 2, df = 1,
p-value = 0.1573
Just like the chi-squared test, the Friedman rank-sum test shows that it is very likely that the two distributions are independent.
Chapter 19. Power Tests
When designing an experiment, it’s often helpful to know how much data you need to collect to get a statistically significant sample (or, alternatively, the maximum significance of results that can be calculated from a given amount of data). R provides a set of functions to help you calculate these amounts.
Experimental Design Example
Suppose that you want to test the efficacy of a new drug for treating depression. A common score used to measure depression is the Hamilton Rating Scale for Depression (HAMD). This measure varies from 0 to 48, where higher values indicate increased depression. Let’s consider two different experimental design questions. First, suppose that you had collected 50 subjects for the study and split them into two groups of 25 people each. What difference in HAMD scores would you need to observe in order for the results to be considered statistically significant?
We assume a standard deviation of 8.9 for this experiment.[53] We’ll also assume that we want a power of 0.95 for the experiment (meaning that the probability of a Type II error is less than 0.05). To calculate the minimum statistically significant difference in R, we could use the following expression:
> power.t.test(power=.95, sig.level=.05, sd=8.9, n=25)
Two-sample t test power calculation
n = 25
delta = 9.26214
sd = 8.9
sig.level = 0.05
power = 0.95
alternative = two.sided
NOTE: n is number in *each* group
According to the output, the difference in means between the two groups would need to be at least 9.26214 to be significant at this level. Suppose that we doubled the number of subjects. What difference would be considered significant?
> power.t.test(power=.95, sig.level=.05, sd=8.9, n=50)
Two-sample t test power calculation
n = 50
delta = 6.480487
sd = 8.9
sig.level = 0.05
power = 0.95
alternative = two.sided
NOTE: n is number in *each* group
As you can see, the power functions can be very useful for designing an experiment. They can help you to estimate, in advance, how large a difference you need to see between groups to get statistically significant results.
[53] Number from http://www.fda.gov/OHRMS/DOCKETS/ac/07/slides/2007-4273s1_05.pdf.
t-Test Design
If you are designing an experiment in which you will use a t-test to check the significance of the results (typically, an experiment in which you calculate the mean value of a random variable for a “test” population and a “control” population), then you can use the power.t.test function to help design the experiment:
power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)
For this function, n specifies the number of observations (per group); delta is the true difference in means between the groups; sd is the true standard deviation of the underlying distribution; sig.level is the significance level (Type I error probability); power is the power of the test (1 − Type II error probability); type specifies whether the test is one sample, two sample, or paired; alternative specifies whether the test is one or two sided; and strict specifies whether to use a strict interpretation in the two-sided case. This function will calculate either n, delta, sig.level, sd, or power, depending on the input. You must specify at least four of these parameters: n, delta, sd, sig.level, power. The remaining argument must be null; this is the value that the function calculates.
Proportion Test Design
If you are designing an experiment where you will be measuring a proportion (using prop.test), you can use the power.prop.test function:
power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided"),
strict = FALSE)
For this function, n specifies the number of observations (per group), p1 is the probability of success in one group, p2 is the probability of success in the other group, sig.level is the significance level (Type I error probability), power is the power of the test (1 − Type II error probability), alternative specifies whether the test is one or two sided, and strict specifies whether to use a strict interpretation in the two-sided case. This function will calculate either n, p1, p2, sig.level, or power, depending on the input. You must specify at least four of these parameters: n, p1, p2, sig.level, power. The remaining argument must be null; this is the value that the function calculates.
As an example of power.prop.test, let’s consider situational statistics in baseball. Starting in the 2009 season, when ESPN broadcast baseball games, it displayed statistics showing how the batter performed in similar situations. More often than not, the statistics were derived from a very small number of situations. For example, ESPN might show that the hitter had 3 hits in 10 tries when hitting with 2 men on base and 2 outs. These statistics sound really interesting, but do they have any meaning? We can use prop.test to help find out.
Suppose that a hitter is batting with two men on base and two outs. The TV broadcaster tells us that the batter’s average is .300 in these situations but only .260 in other situations. Furthermore, let’s assume that the true probability that he gets a hit in an at bat in other situations is .260. How many at bats would he need to have in situations with two men on base and two outs in order for the .300 estimate to be statistically significant at a 95% confidence level, with a power of 0.95?
> power.prop.test(p1=.260, p2=.300, sig.level=0.05,
+ power=.95, alternative="one.sided")
Two-sample comparison of proportions power calculation
n = 2724.482
p1 = 0.26
p2 = 0.3
sig.level = 0.05
power = 0.95
alternative = one.sided
NOTE: n is number in *each* group
That’s right, the estimate is over 2,724 at bats. So let’s ask the opposite question: what is the confidence we can have in the results? Let’s fix sig.level=0.05 and power=0.95:
> power.prop.test(n=10, p1=.260, p2=.300, power=.95,
+ sig.level=NULL, alternative="one.sided")
Two-sample comparison of proportions power calculation
n = 10
p1 = 0.26
p2 = 0.3
sig.level = 0.9256439
power = 0.95
alternative = one.sided
NOTE: n is number in *each* group
> power.prop.test(n=10, p1=.260, p2=.300, power=NULL,
+ sig.level=.05,alternative="one.sided")
Two-sample comparison of proportions power calculation
n = 10
p1 = 0.26
p2 = 0.3
sig.level = 0.05
power = 0.07393654
alternative = one.sided
NOTE: n is number in *each* group
With significance levels that low, I think it’s safe to say that most of these situational statistics are nonsense.
ANOVA Test Design
If you are designing an experiment where you will be using ANOVA, you can use the power.anova.test function:
power.anova.test(groups = NULL, n = NULL,
between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL
For this function, groups specifies the number of groups, n specifies the number of observations (per group), between.var is the variance between groups, within.var is the variance within groups, sig.level is the significance level (Type I error probability), and power is the power of the test (1 − Type II error probability). This function will calculate either groups, n, sig.level, between.var, power, within.var, or sig.level, depending on the input. You must specify exactly six of these parameters, and the remaining argument must be null; this is the value that the function calculates.
Chapter 20. Regression Models
A regression model shows how a continuous value (called the response variable, or the dependent variable) is related to a set of other values (called the predictors, stimulus variables, or independent variables). Often, a regression model is used to predict values where they are unknown. For example, warfarin is a drug commonly used as a blood thinner or anticoagulant. A doctor might use a regression model to predict the correct dose of warfarin to give a patient based on several known variables about the patient (such as the patient’s weight). Another example of a regression model might be for marketing financial products. An analyst might estimate the average balance of a credit card customer (which, in turn, affects the expected revenue from that customer).
Sometimes, a regression model is simply used to explain a phenomenon, but not to actually predict values. For example, a scientist might suspect that weight is correlated to consumption of certain types of foods but wants to adjust for a variety of factors, including age, exercise, genetics (and, hopefully, other factors). The scientist could use a regression model to help show the relationship between weight and food consumed by including other variables in the regression. Models can be used for many other purposes, including visualizing trends, analysis of variance tests, and testing variable significance.
This chapter looks at regression models in R; classification models are covered in Chapter 21. To show how to use statistical models in R, I will start with the simplest type of model: linear regression models. (Specifically, I’ll use the least squares method to estimate coefficients.) I’ll show how to build, evaluate, and refine a model in R. Then I’ll describe functions in R for building more sophisticated types of models.
Example: A Simple Linear Model
A linear regression assumes that there is a linear relationship between the response variable and the predictors. Specifically, a linear regression assumes that a response variable y is a linear function of a set of predictor variables x1, x2, ..., xn.
As an example, we’re going to look at how different metrics predict the runs scored by a baseball team.[54] Let’s start by loading the data for every team between 2000 and 2008. We’ll use the SQLite database that we used in Chapter 13 and extract the fields we want using an SQL query:
> library(RSQLite)
> drv <- dbDriver("SQLite")
> con <- dbConnect(drv,
+ dbname=system.file("extdata","bb.db", package="nutshell"))
> team.batting.00to08 <- dbGetQuery(con,
+ paste(
+ 'SELECT teamID, yearID, R as runs, ',
+ ' H-"2B"-"3B"-HR as singles, ',
+ ' "2B" as doubles, "3B" as triples, HR as homeruns, ',
+ ' BB as walks, SB as stolenbases, CS as caughtstealing, ',
+ ' HBP as hitbypitch, SF as sacrificeflies, ',
+ ' AB as atbats ',
+ ' FROM Teams ',
+ ' WHERE yearID between 2000 and 2008'
+ )
+ )
Or, if you’d like, you can just load the file from the nutshell package:
> library(nutshell)
> data(team.batting.00to08)
Because this is a book about R and not a book about baseball, I renamed the common abbreviations to more intuitive names for plays. Let’s look at scatter plots of runs versus each other variable so that we can see which variables are likely to be most important.
We’ll create a data frame for plotting, using the make.groups function:
> attach(team.batting.00to08);
> forplot <- make.groups(
+ singles = data.frame(value=singles, teamID,yearID,runs),
+ doubles = data.frame(value=doubles, teamID,yearID,runs),
+ triples = data.frame(value=triples, teamID,yearID,runs),
+ homeruns = data.frame(value=homeruns, teamID,yearID,runs),
+ walks = data.frame(value=walks, teamID,yearID,runs),
+ stolenbases = data.frame(value=stolenbases, teamID,yearID,runs),
+ caughtstealing = data.frame(value=caughtstealing,teamID,yearID,runs),
+ hitbypitch = data.frame(value=hitbypitch, teamID,yearID,runs),
+ sacrificeflies = data.frame(value=sacrificeflies,teamID,yearID,runs)
+ );
> detach(team.batting.00to08);
Now, we’ll generate the scatter plots using the xyplot function:
> xyplot(runs~value|which, data=forplot,
+ scales=list(relation="free"),
+ pch=19, cex=.2,
+ strip=strip.custom(strip.levels=TRUE,
+ horizontal=TRUE,
+ par.strip.text=list(cex=.8))
+ )
The results are shown in Figure 20-1. Intuitively, teams that hit a lot of home runs score a lot of runs. Interestingly, teams that walk a lot score a lot of runs as well (maybe even more than teams that score a lot of singles).
Figure 20-1. Scatter plots: runs as a function of different batter statistics
Fitting a Model
Let’s fit a linear model to the data and assign it to the variable runs.mdl. We’ll use the lm function, which fits a linear model using ordinary least squares:
> runs.mdl <- lm(
+ formula=runs~singles+doubles+triples+homeruns+
+ walks+hitbypitch+sacrificeflies+
+ stolenbases+caughtstealing,
+ data=team.batting.00to08)
R doesn’t show much information when you fit a model. (If you don’t print the returned object, most modeling functions will not show any information, unless there is an error.) To get information about a model, you have to use helper functions.
Helper Functions for Specifying the Model
In a formula object, some symbols have special interpretations. Specifically, “+”, “*”, “-”, and “^” are interpreted specially by R. This means that you need to use some helper functions to represent simple addition, multiplication, subtraction, and exponentiation in a model formula. To interpret an expression literally, and not as a formula, use the identity function I(). For example, suppose that you want to include only the product of variables a and b in a formula specification, but not just a or b. If you specify a*b, this is interpreted as a, b, or a*b. To include only a*b, use the identity function I() to protect the expression a*b:
lm(y~I(a*b))
Sometimes, you would like to fit a polynomial function. Writing out all the terms individually can be tedious, but R provides a short way to specify all the terms at once. To do this, you use the poly function to add all terms up to a specified degree:
poly(x, ..., degree = 1, coefs = NULL, raw = FALSE
As arguments, the poly function takes a vector x (or a set of vectors), degree to specify a maximum degree to generate, coefs to specify coefficients from a previous fit (when using poly to generate predicted values), and raw to specify whether to use raw and not orthogonal polynomials. For more information on how to specify formulas, see Formulas.
Getting Information About a Model
In R, statistical models are represented by objects; statistical modeling functions return statistical model objects. When you fit a statistical model with most statistical software packages (such as SAS or SPSS) they print a lot of diagnostic information. In R, most statistical modeling functions do not print any information.
If you simply call a model function in R but don’t assign the model to a variable, the R console will print the object. (Specifically, it will call the generic method print with the object generated by the modeling function.) R doesn’t clutter your screen with lots of information you might not want. Instead, R includes a large set of functions for printing information about model objects. This section describes the functions for getting information about lm objects. Many of these functions may also be used with other types of models; see the help files for more information.
Viewing the model
For most model functions (including lm), the best place to start is with the print method. If you are using the R console, you can simply enter the name of the returned object on the console to see the results of print:
> runs.mdl
Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)
Coefficients:
(Intercept) singles doubles triples
-507.16020 0.56705 0.69110 1.15836
homeruns walks hitbypitch sacrificeflies
1.47439 0.30118 0.37750 0.87218
stolenbases caughtstealing
0.04369 -0.01533
To show the formula used to fit the model, use the formula function:
formula(x, ...)
Here is the formula on which the model function was called:
> formula(runs.mdl)
runs ~ singles + doubles + triples + homeruns + walks + hitbypitch +
sacrificeflies + stolenbases + caughtstealing
To get the list of coefficients for a model object, use the coef function:
coef(object, ...)
Here are the coefficients for the model fitted above:
> coef(runs.mdl)
(Intercept) singles doubles triples
-507.16019759 0.56704867 0.69110420 1.15836091
homeruns walks hitbypitch sacrificeflies
1.47438916 0.30117665 0.37749717 0.87218094
stolenbases caughtstealing
0.04369407 -0.01533245
Alternatively, you can use the alias coefficients to access the coef function.
To get a summary of a linear model object, you can use the summary function. The method used for linear model objects is:
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
For the example above, here is the output of the summary function:
> summary(runs.mdl)
Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)
Residuals:
Min 1Q Median 3Q Max
-71.9019 -11.8282 -0.4193 14.6576 61.8743
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -507.16020 32.34834 -15.678 < 2e-16 ***
singles 0.56705 0.02601 21.801 < 2e-16 ***
doubles 0.69110 0.05922 11.670 < 2e-16 ***
triples 1.15836 0.17309 6.692 1.34e-10 ***
homeruns 1.47439 0.05081 29.015 < 2e-16 ***
walks 0.30118 0.02309 13.041 < 2e-16 ***
hitbypitch 0.37750 0.11006 3.430 0.000702 ***
sacrificeflies 0.87218 0.19179 4.548 8.33e-06 ***
stolenbases 0.04369 0.05951 0.734 0.463487
caughtstealing -0.01533 0.15550 -0.099 0.921530
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 23.21 on 260 degrees of freedom
Multiple R-squared: 0.9144, Adjusted R-squared: 0.9114
F-statistic: 308.6 on 9 and 260 DF, p-value: < 2.2e-16
When you print a summary object, the following method is used:
print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...
Predicting values using a model
To get the vector of residuals from a linear model fit, use the residuals function:
residuals(object, ...)
To get a vector of fitted values, use the fitted function:
fitted(object, ...)
Suppose that you wanted to use the model object to predict values in another data set. You can use the predict function to calculate predicted values using the model object and another data frame:
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass,
pred.var = res.var/weights, weights = 1, ...)
The argument object specifies the model returned by the fitting function, newdata specifies a new data source for predictions, and na.action specifies how to deal with missing values in newdata. (By default, predict ignores missing values. You can choose na.omit to simply return NA for observations in newdata with missing values.) The predict function can also return confidence intervals for predictions, in addition to exact values; see the help file for more information.
Analyzing the fit
To compute confidence intervals for the coefficients in the fitted model, use the confint function:
confint(object, parm, level = 0.95, ...)
The argument object specifies the model returned by the fitting function, parm specifies the variables for which to show confidence levels, and level specifies the confidence level. Here are the confidence intervals for the coefficients of the model fitted above:
> confint(runs.mdl)
2.5 % 97.5 %
(Intercept) -570.85828008 -443.4621151
singles 0.51583022 0.6182671
doubles 0.57449582 0.8077126
triples 0.81752968 1.4991921
homeruns 1.37432941 1.5744489
walks 0.25570041 0.3466529
hitbypitch 0.16077399 0.5942203
sacrificeflies 0.49451857 1.2498433
stolenbases -0.07349342 0.1608816
caughtstealing -0.32152716 0.2908623
To compute the influence of different parameters, you can use the influence function:
influence(model, do.coef = TRUE, ...)
For more friendly output, try influence.measures:
influence.measures(model)
To get analysis of variance statistics, use the anova function. For linear models, the method used is anova.lmlist, which has the following form:
anova.lmlist(object, ..., scale = 0, test = "F")
By default, F-test statistics are included in the results table. You can specify test="F" for F-test statistics, test="Chisq" for chi-squared test statistics, test="Cp" for Mallows’ Cp statistic, or test=NULL for no test statistics. You can also specify an estimate of the noise variance σ2 through the scale argument. If you set scale=0 (the default), then the anova function will calculate an estimate from the test data. The test statistic and p-values compare the mean square for each row to the residual mean square.
Here are the ANOVA statistics for the model fitted above:
> anova(runs.mdl)
Analysis of Variance Table
Response: runs
Df Sum Sq Mean Sq F value Pr(>F)
singles 1 215755 215755 400.4655 < 2.2e-16 ***
doubles 1 356588 356588 661.8680 < 2.2e-16 ***
triples 1 237 237 0.4403 0.5075647
homeruns 1 790051 790051 1466.4256 < 2.2e-16 ***
walks 1 114377 114377 212.2971 < 2.2e-16 ***
hitbypitch 1 7396 7396 13.7286 0.0002580 ***
sacrificeflies 1 11726 11726 21.7643 4.938e-06 ***
stolenbases 1 357 357 0.6632 0.4161654
caughtstealing 1 5 5 0.0097 0.9215298
Residuals 260 140078 539
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Interestingly, it appears that triples, stolen bases, and times caught stealing are not statistically significant.
You can also view the effects from a fitted model. The effects are the uncorrelated single degree of freedom values obtained by projecting the data onto the successive orthogonal subspaces generated by the QR-decomposition during the fitting process. To obtain a vector of orthogonal effects from the model, use the effects function:
effects(object, set.sign = FALSE, ...)
To calculate the variance-covariance matrix from the linear model object, use the vcov function:
vcov(object, ...)
Here is the variance-covariance matrix for the model fitted above:
> vcov(runs.mdl)
(Intercept) singles doubles triples
(Intercept) 1046.4149572 -6.275356e-01 -6.908905e-01 -0.8115627984
singles -0.6275356 6.765565e-04 -1.475026e-04 0.0001538296
doubles -0.6908905 -1.475026e-04 3.506798e-03 -0.0013459187
triples -0.8115628 1.538296e-04 -1.345919e-03 0.0299591843
homeruns -0.3190194 2.314669e-04 -3.940172e-04 0.0011510663
walks -0.2515630 7.950878e-05 -9.902388e-05 0.0004174548
hitbypitch -0.9002974 3.385518e-04 -4.090707e-04 0.0018360831
sacrificeflies 1.6870020 -1.723732e-03 -2.253712e-03 -0.0051709718
stolenbases 0.2153275 -3.041450e-04 2.871078e-04 -0.0009794480
caughtstealing -1.4370890 3.126387e-04 1.466032e-03 -0.0016038175
homeruns walks hitbypitch sacrificeflies
(Intercept) -3.190194e-01 -2.515630e-01 -0.9002974059 1.6870019518
singles 2.314669e-04 7.950878e-05 0.0003385518 -0.0017237324
doubles -3.940172e-04 -9.902388e-05 -0.0004090707 -0.0022537124
triples 1.151066e-03 4.174548e-04 0.0018360831 -0.0051709718
homeruns 2.582082e-03 -4.007590e-04 -0.0008183475 -0.0005078943
walks -4.007590e-04 5.333599e-04 0.0002219440 -0.0010962381
hitbypitch -8.183475e-04 2.219440e-04 0.0121132852 -0.0011315622
sacrificeflies -5.078943e-04 -1.096238e-03 -0.0011315622 0.0367839752
stolenbases -2.041656e-06 -1.400052e-04 -0.0001197102 -0.0004636454
caughtstealing 3.469784e-04 6.008766e-04 0.0001742039 -0.0024880710
stolenbases caughtstealing
(Intercept) 2.153275e-01 -1.4370889812
singles -3.041450e-04 0.0003126387
doubles 2.871078e-04 0.0014660316
triples -9.794480e-04 -0.0016038175
homeruns -2.041656e-06 0.0003469784
walks -1.400052e-04 0.0006008766
hitbypitch -1.197102e-04 0.0001742039
sacrificeflies -4.636454e-04 -0.0024880710
stolenbases 3.541716e-03 -0.0050935339
caughtstealing -5.093534e-03 0.0241794596
To return the deviance of the fitted model, use the deviance function:
deviance(object, ...)
Here is the deviance for the model fitted above (though this value is just the residual sum of squares in this case because runs.mdl is a linear model):
> deviance(runs.mdl)
[1] 140077.6
Finally, to plot a set of useful diagnostic diagrams, use the plot function:
plot(x, which = c(1:3,5),
caption = list("Residuals vs Fitted", "Normal Q-Q",
"Scale-Location", "Cook's distance",
"Residuals vs Leverage",
expression("Cook's dist vs Leverage " * h[ii] / (1 - h[ii]))),
panel = if(add.smooth) panel.smooth else points,
sub.caption = NULL, main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
qqline = TRUE, cook.levels = c(0.5, 1.0),
add.smooth = getOption("add.smooth"), label.pos = c(4,2),
cex.caption = 1)
This function shows the following plots:
Residuals against fitted values
A normal Q-Q plot
A scale-location plot of sqrt{| residuals |} against fitted values
(Not plotted by default) A plot of Cook’s distances versus row labels
A plot of residuals against leverages
(Not plotted by default) A plot of Cook’s distances against leverage/(1 − leverage)
There are many more functions available in R for regression diagnostics; see the help file for influence.measures for more information on many of these.
Refining the Model
Often, it is better to use the update function to refit a model. This can save you some typing if you are using R interactively. Additionally, this can save on computation time (for large data sets). You can run update after changing the formula (perhaps adding or subtracting a term) or even after changing the data frame.
For example, let’s fit a slightly different model to the data above. We’ll omit the variable sacrificeflies and add 0 as a variable (which means to fit the model with no intercept):
> runs.mdl2 <- update(runs.mdl,formula=runs ~ singles + doubles +
+ triples + homeruns + walks + hitbypitch +
+ stolenbases + caughtstealing + 0)
> runs.mdl2
Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + stolenbases + caughtstealing - 1,
data = team.batting.00to08)
Coefficients:
singles doubles triples homeruns
0.29823 0.41280 0.95664 1.31945
walks hitbypitch stolenbases caughtstealing
0.21352 -0.07471 0.18828 -0.70334
[54] This example is closely related to the Batter Runs formula, which was popularized by Pete Palmer and John Thorn in the 1984 book The Hidden Game of Baseball. The original Batter Runs formula worked slightly differently: it predicted the number of runs above or below the mean, and it had no intercept. For more about this problem, see [Adler2006].
Details About the lm Function
Now that we’ve seen a simple example of how models work in R, let’s describe in detail what lm does and how you can control it. A linear regression model is appropriate when the response variable (the thing that you want to predict) can be estimated from a linear function of the predictor variables (the information that you know). Technically, we assume that:
where y is the response variable, x1, x2, ..., xn are the predictor variables (or predictors), c1, c2, ..., cn are the coefficients for the predictor variables, c0 is the intercept, and ε is the error term. (For more details on the assumptions of the least squares model, see Assumptions of Least Squares Regression.) The predictors can be simple variables or even nonlinear functions of variables.
Suppose that you have a matrix of observed predictor variables X and a vector of response variables Y. (In this sentence, I’m using the terms “matrix” and “vector” in the mathematical sense.) We have assumed a linear model, so given a set of coefficients c, we can calculate a set of estimates ŷ for the input data X by calculating ŷ = cX. The differences between the estimates ŷ and the actual values Y are called the residuals. You can think of the residuals as a measure of the prediction error; small residuals mean that the predicted values are close to the actual values. We assume that the expected difference between the actual response values and the residual values (the error term in the model) is 0. This is important to remember: at best, a model is probabilistic.[55]
Our goal is to find the set of coefficients c that does the best job of estimating Y given X; we’d like the estimates ŷ to be as close as possible to Y. In a classical linear regression model, we find coefficients c that minimize the sum of squared differences between the estimates ŷ and the observed values Y. Specifically, we want to find values for c that minimize:
This is called the least squares method for regression. You can use the lm function in R to estimate the coefficients in a linear model:[56]
lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)
Arguments to lm include the following.
Argument | Description | Default |
---|---|---|
formula | A formula object that specifies the form of the model to fit. | |
data | A data frame, list, or environment (or an object that can be coerced to a data frame) in which the variables in formula can be evaluated. | |
subset | A vector specifying the observations in data to include in the model. | |
weights | A numeric vector containing weights for each observation in data . | NULL |
na.action | A function that specifies what lm should do if there are NA values in the data. If NULL, lm uses na.omit . | getOption("na.action"), which defaults to na.fail |
method | The method to use for fitting. Only method="qr" fits a model, though you can specify method="model.frame" to return a model frame. | "qr" |
model | A logical value specifying whether the “model frame” should be returned. | TRUE |
x | Logical values specifying whether the “model matrix” should be returned. | FALSE |
y | A logical value specifying whether the response vector should be returned. | FALSE |
qr | A logical value specifying whether the QR-decomposition should be returned. | TRUE |
singular.ok | A logical value that specifies whether a singular fit results in an error. | TRUE |
contrasts | A list of contrasts for factors in the model, specifying one contrast for each factor in the model. For example, for formula y~a+b, to specify a Helmert contrast for a and a treatment contrast for b, you would use the argument contrasts=(a="contr.helmert", b="contr.treatment"). Some options in R are "contr.helmert" for Helmert contrasts, "contr.sum" for sum-to-zero contrasts, "contr.treatment" to contrast each level with the baseline level, and "contr.poly" for contrasts based on orthogonal polynomials. See [ Venables2002] for an explanation of why contrasts are important and how they are used. | When contrasts=NULL (the default), lm uses the value from options("contrasts") |
offset | A vector of offsets to use when building the model. (An offset is a linear term that is included in the model without fitting.) | |
... | Additional arguments passed to lower-level functions such as lm.fit (for unweighted models) or lm.wfit (for weighted models). |
Model-fitting functions in R return model objects. A model object contains a lot of information about the fitted model (and the fitting operation). Different model objects contain slightly different information.
You may notice that most modeling functions share a few common variables: formula, data, na.action, subset, weights. These arguments mean the same thing for most modeling functions.
If you are working with a very large data set, you may want to consider using the biglm function instead of lm. This function uses only p2 memory for p variables, which is much less than the memory required for lm.
Assumptions of Least Squares Regression
Linear models fit with the least squares method are one of the oldest statistical methods, dating back to the age of slide rules. Even today, when computers are ubiquitous, high-quality statistical software is free, and statisticians have developed thousands of new estimation methods, they are still popular. One reason why linear regression is still popular is because linear models are easy to understand. Another reason is that the least squares method has the smallest variance among all unbiased linear estimates (proven by the Gauss-Markov theorem).
Technically, linear regression is not always appropriate. Ordinary least squares (OLS) regression (implemented through lm) is guaranteed to work only when certain properties of the training data are true. Here are the key assumptions:
Linearity. We assume that the response variable y is a linear function of the predictor variables x1, x2, ..., cn.
Full rank. There is no linear relationship between any pair of predictor variables. (Equivalently, the predictor matrix is not singular.) Technically, ∀ xi, xj, ∄ c such that xi = cxj.
Exogenicity of the predictor variables. The expected value of the error term ε is 0 for all possible values of the predictor variables.
Homoscedasticity. The variance of the error term ε is constant and is not correlated with the predictor variables.
Nonautocorrelation. In a sequence of observations, the values of y are not correlated with one another.
Exogenously generated data. The predictor variables x1, x2, ..., xn are generated independently of the process that generates the error term ε.
The error term ε is normally distributed with standard deviation σ and mean 0.
In practice, OLS models often make accurate predictions even when one (or more) of these assumptions are violated.
By the way, it’s perfectly OK for there to be a nonlinear relationship between some of the predictor variables. Suppose that one of the variables is age. You could add age^2, log(age), or other nonlinear mathematical expressions using age to the model and not violate the assumptions above. You are effectively defining a set of new predictor variables: w1 = age, w2 = age2, w3 = log(age). This doesn’t violate the linearity assumption (because the model is still a linear function of the predictor variables) or the full rank assumption (as long as the relationship between the new variables is not linear).
If you want to be careful, you can use test functions to check if the OLS assumptions apply:
You can test for heteroscedasticity using the function ncvTest in the car (Companion to Applied Regression) package, which implements the Breusch-Pagan test. (Alternatively, you could use the bptest function in the lmtest library, which implements the same test. The lmtest library includes a number of other functions for testing for heteroscedasticity; see the documentation for more details.)
You can test for autocorrelation in a model using the function durbin.watson in the car package, which implements the Durbin-Watson test. You can also use the function dwtest in the library lmtest by specifying a formula and a data set. (Alternatively, you could use the function bgtest in the lmtest package, which implements the Breusch-Godfrey test. This functions also tests for higher-order disturbances.)
You can check that the predictor matrix is not singular by using the singular.ok=FALSE argument in lm.
Incidentally, the example used in Example: A Simple Linear Model is not heteroscedastic:
> ncv.test(runs.mdl)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.411893 Df = 1 p = 0.2347424
Nor is there a problem with autocorrelation:
> durbin.watson(runs.mdl)
lag Autocorrelation D-W Statistic p-value
1 0.003318923 1.983938 0.884
Alternative hypothesis: rho != 0
Or with singularity:
> runs.mdl <- lm(
+ formula=runs~singles+doubles+triples+homeruns+
+ walks+hitbypitch+sacrificeflies+
+ stolenbases+caughtstealing,
+ data=team.batting.00to08,singular.ok=FALSE)
If a model has problems with heteroscedasticity or outliers, consider using a resistant or robust regression function, as described in Robust and Resistant Regression. If the data is homoscedastic and not autocorrelated, but the error form is not normal, then a good choice is ridge regression, which is described in Ridge Regression. If the predictors are closely correlated (and nearly collinear), then a good choice is principal components regression, as described in Principal Components Regression and Partial Least Squares Regression.
Robust and Resistant Regression
Often, ordinary least squares regression works well even with imperfect data. However, it’s better in many situations to use regression techniques that are less sensitive to outliers and heteroscedasticity. With R, there are alternative options for fitting linear models.
Resistant regression
If you would like to fit a linear regression model to data with outliers, consider using resistant regression. Using the least median squares (LMS) and least trimmed squares (LTS) estimators:
library(MASS)
## S3 method for class 'formula':
lqs(formula, data, ...,
method = c("lts", "lqs", "lms", "S", "model.frame"),
subset, na.action, model = TRUE,
x.ret = FALSE, y.ret = FALSE, contrasts = NULL)
## Default S3 method:
lqs(x, y, intercept = TRUE, method = c("lts", "lqs", "lms", "S"),
quantile, control = lqs.control(...), k0 = 1.548, seed, ...)
Robust regression
Robust regression methods can be useful when there are problems with heteroscedasticity and outliers in the data. The function rlm in the MASS package fits a model using MM-estimation:
## S3 method for class 'formula':
rlm(formula, data, weights, ..., subset, na.action,
method = c("M", "MM", "model.frame"),
wt.method = c("inv.var", "case"),
model = TRUE, x.ret = TRUE, y.ret = FALSE, contrasts = NULL)
## Default S3 method:
rlm(x, y, weights, ..., w = rep(1, nrow(x)),
init = "ls", psi = psi.huber,
scale.est = c("MAD", "Huber", "proposal 2"), k2 = 1.345,
method = c("M", "MM"), wt.method = c("inv.var", "case"),
maxit = 20, acc = 1e-4, test.vec = "resid", lqs.control = NULL)
You may also want to try the function lmRob in the robust package, which fits a model using MS- and S-estimation:
library(robust)
lmRob(formula, data, weights, subset, na.action, model = TRUE, x = FALSE,
y = FALSE, contrasts = NULL, nrep = NULL,
control = lmRob.control(...), genetic.control = NULL, ...)
Comparing lm, lqs, and rlm
As a quick exercise, we’ll look at how lm, lqs, and rlm perform on some particularly ugly data: U.S. housing prices. We’ll use Robert Shiller’s home price index as an example, looking at home prices between 1890 and 2009.[57] First, we’ll load the data and fit the data using an ordinary linear regression model, a robust regression model, and a resistant regression model:
> library(nutshell)
> data(shiller.index)
> hpi.lm <- lm(Index~Year, data=shiller.index)
> hpi.rlm <- rlm(Index~Year, data=shiller.index)
> hpi.lqs <- lqs(Index~Year, data=shiller.index)
Now we’ll plot the data to compare how each method worked. We’ll plot the models using the abline function because it allows you to specify a model as an argument (as long as the model function has a coefficient function):
> plot(hpi, pch=19, cex=0.3)
> abline(reg=hpi.lm, lty=1)
> abline(reg=hpi.rlm, lty=2)
> abline(reg=hpi.lqs, lty=3)
> legend(x=1900, y=200, legend=c("lm", "rlm", "lqs"), lty=c(1, 2, 3))
Figure 20-2. Home prices and lm, rlm, and lqs models
As you can see from Figure 20-2, the standard linear model is influenced by big peaks (such as the growth between 2001 and 2006) and big valleys (such as the dip between 1920 and 1940). The robust regression method is less sensitive to peaks and valleys in this data, and the resistant regression method is the least sensitive.
[55] By the way, the estimate returned by a model is not an exact prediction. It is, instead, the expected value of the response variable given the predictor variables. To be precise, the estimate ŷ means:
This observation is important when we talk about generalized linear models later.
[56] To efficiently calculate the coefficients, R uses several matrix calculations. R uses a method called QR-decomposition to transform X into an orthogonal matrix Q and an upper triangular matrix R, where X = QR, and then calculates the coefficients as c = R−1QTY.
[57] The data is available from http://www.irrationalexuberance.com/.
Subset Selection and Shrinkage Methods
Modeling functions like lm will include every variable specified in the formula, calculating a coefficient for each one. Unfortunately, this means that lm may calculate coefficients for variables that aren’t needed. You can manually tune a model using diagnostics like summary and lm.influence. However, you can also use some other statistical techniques to reduce the effect of insignificant variables or remove them from a model altogether.
Stepwise Variable Selection
A simple technique for selecting the most important variables is stepwise variable selection. The stepwise algorithm works by repeatedly adding or removing variables from the model, trying to “improve” the model at each step. When the algorithm can no longer improve the model by adding or subtracting variables, it stops and returns the new (and usually smaller) model.
Note that “improvement” does not just mean reducing the residual sum of squares (RSS) for the fitted model. Adding an additional variable to a model will not increase the RSS (see a statistics book for an explanation of why), but it does increase model complexity. Typically, AIC (Akaike’s information criterion) is used to measure the value of each additional variable. The AIC is defined as AIC = − 2 ∗ log(L) + k ∗ edf, where L is the likelihood and edf is the equivalent degrees of freedom.
In R, you perform stepwise selection through the step function:
step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)
Here is a description of the arguments to step.
Argument | Description | Default |
---|---|---|
object | An object representing a model, such as the objects returned by lm, glm, or aov . | |
scope | An argument specifying a set of variables that you want in the final model and a list of all variables that you want to consider including in the model. The first set is called the lower bound, and the second is called the upper bound. If a single formula is specified, then it is interpreted as the upper bound. To specify both an upper and a lower bound, pass a list with two formulas labeled as upper and lower. | |
scale | A value used in the definition of AIC for lm and aov models. See the help file for extractAIC for more information. | 0 |
direction | Specifies whether variables should be only added to the model (direction="forward"), removed from the model (direction="backward"), or both (direction="both") . | "both" |
trace | A numeric value that specifies whether to print out details of the fitting process. Specify trace=0 (or a negative number) to suppress printing, trace=1 for normal detail, and higher numbers for even more detail. | 1 |
keep | A function used to select a subset of arguments to keep from an object. The function accepts a fitted model object and an AIC statistic. | NULL |
steps | A numeric value that specifies the maximum number of steps to take before the function halts. | 1000 |
k | The multiple of the number of degrees of freedom to be used in the penalty calculation (extractAIC) . | 2 |
... | Additional arguments for extractAIC . |
There is an alternative implementation of stepwise selection in the MASS library: the stepAIC function. This function works similarly to step but operates on a wider range of model objects.
Ridge Regression
Stepwise variable selection simply fits a model using lm, but limits the number of variables in the model. In contrast, ridge regression places constraints on the size of the coefficients and fits a model using different computations.
Ridge regression can be used to mitigate problems when there are several highly correlated variables in the underlying data. This condition (called multicollinearity) causes high variance in the results. Reducing the number, or impact, of regressors in the data can help reduce these problems.[58]
In Details About the lm Function, we described how ordinary linear regression finds the coefficients that minimize the residual sum of squares. Ridge regression does something similar. Ridge regression attempts to minimize the sum of squared residuals plus a penalty for the coefficient sizes. The penalty is a constant λ times the sum of squared coefficients. Specifically, ridge regression tries to minimize the following quantity:
To estimate a model using ridge regression, you can use the lm.ridge function from the MASS package:
library(MASS)
lm.ridge(formula, data, subset, na.action, lambda = 0, model = FALSE,
x = FALSE, y = FALSE, contrasts = NULL, ...)
Arguments to lm.ridge are the following.
Argument | Description | Default |
---|---|---|
formula | A formula object that specifies the form of the model to fit. | |
data | A data frame, list, or environment (or an object that can be coerced to a data frame) in which the variables in formula can be evaluated. | |
subset | A vector specifying the observations in data to include in the model. | |
na.action | A function that specifies what lm should do if there are NA values in the data. If NULL, lm uses na.omit . | |
lambda | A scalar or vector of ridge constants. | 0 |
model | A logical value specifying whether the “model frame” should be returned. | FALSE |
x | Logical values specifying whether the “model matrix” should be returned. | FALSE |
y | A logical value specifying whether the response vector should be returned. | FALSE |
contrasts | A list of contrasts for factors in the model. | NULL |
... | Additional arguments to lm.fit . |
Lasso and Least Angle Regression
Another technique for reducing the size of the coefficients (and thus reducing their impact on the final model) is the lasso. Like ridge regression, lasso regression puts a penalty on the size of the coefficients. However, the lasso algorithm uses a different penalty: instead of a sum of squared coefficients, the lasso sums the absolute value of the coefficients. (In math terms, ridge uses L2-norms, while lasso uses L1-norms.) Specifically, the lasso algorithm tries to minimize the following value:
The best way to compute lasso regression in R is through the lars function:
library(lars)
lars(x, y, type = c("lasso", "lar", "forward.stagewise", "stepwise"),
trace = FALSE, normalize = TRUE, intercept = TRUE, Gram,
eps = .Machine$double.eps, max.steps, use.Gram = TRUE)
The lars function computes the entire lasso path at once. Specifically, it begins with a model with no variables. It then computes the lambda values for which each variable enters the model and shows the resulting coefficients. Finally, the lars algorithm computes a model with all the coefficients present, which is the same as an ordinary linear regression fit.
This function actually implements a more general algorithm called least angle regression; you have the option to choose least angle regression, forward stagewise regression, or stepwise regression instead of lasso. Here are the arguments to the lars function.
Argument | Description | Default |
---|---|---|
x | A matrix of predictor variables. | |
y | A numeric vector containing the response variable. | |
type | The type of model to fit. Use type="lasso" for lasso, type="lar" for least angle regression, type="forward.stagewise" for infinitesimal forward stagewise, and type="stepwise" for stepwise. | c("lasso", "lar", "forward.stagewise", "stepwise") |
trace | A logical value specifying whether to print details as the function is running. | FALSE |
normalize | A logical value specifying whether each variable will be standardized to have an L2 -norm of 1. | TRUE |
intercept | A logical value indicating whether an intercept should be included in the model. | TRUE |
Gram | The X’X matrix used in the calculations. To rerun lars with slightly different parameters, but the same underlying data, you may reuse the Gram matrix from a prior run to increase efficiency. | |
eps | An effective 0. | .Machine$double.eps |
max.steps | A limit on the number of steps taken by the lars function. | |
use.Gram | A logical value specifying whether lars should precompute the Gram matrix. (For large N, this can be time consuming.) | TRUE |
elasticnet
Both ridge regression and lasso regression are subsets of a family of models called elastic net. Elastic nets are available in R through the function enet in the package elasticnet. (Both the algorithm and code were developed by Hui Zou and Trevor Hastie.)
enet(x, y, lambda, max.steps, normalize, intercept, trace, eps)
Unfortunately, the enet function requires its input as a matrix and not as a data frame and a formula. Here is a description of the parameters for enet:
Argument | Description | Default |
---|---|---|
x | A matrix of predictor variables. | |
y | A numeric vector containing the response variable. | |
lambda | The quadratic penalty. Use lambda=0 for a lasso fit. | |
max.steps | The maximum number of steps | 50 * min(ncol(x), nrow(x)-1) |
trace | Specifies whether to print progress. | FALSE |
normalize | A logical value indicating whether to normalize the input before computing the fit. | TRUE |
intercept | A logical value indicating whether to center the predictors | TRUE |
eps | An effective 0. | .Machine$double.eps |
Principal Components Regression and Partial Least Squares Regression
Ordinary least squares regression doesn’t always work well with closely correlated variables. A useful technique for modeling effects in this form of data is principal components regression. Principal components regression works by first transforming the predictor variables using principal components analysis. Next, a linear regression is performed on the transformed variables.
A closely related technique is partial least squares regression. In partial least squares regression, both the predictor and the response variables are transformed before fitting a linear regression. In R, principal components regression is available through the function pcr in the pls package:
library(pls)
pcr(..., method = pls.options()$pcralg)
Partial least squares is available through the function plsr in the same package:
plsr(..., method = pls.options()$plsralg)
Both functions are actually aliases to the function mvr:
mvr(formula, ncomp, data, subset, na.action,
method = pls.options()$mvralg,
scale = FALSE, validation = c("none", "CV", "LOO"),
model = TRUE, x = FALSE, y = FALSE, ...)
[58] For example, see [Greene2007].
Nonlinear Models
The regression models shown above all produced linear models. In this section, we’ll look at some algorithms for fitting nonlinear models when you know the general form of the model.
Generalized Linear Models
Generalized linear modeling is a technique developed by John Nelder and Robert Wedderburn to compute many common types of models using a single framework. You can use generalized linear models (GLMs) to fit linear regression models, logistic regression models, Poisson regression models, and other types of models.
As the name implies, GLMs are a generalization of linear models. Like linear models, there is a response variable y and a set of predictor variables x1, x2, ..., xn. GLMs introduce a new quantity called the linear predictor. The linear predictor takes the following form:
In a general linear model, the predicted value is a function of the linear predictor. The relationship between the response and predictor variables does not have to be linear. However, the relationship between the predictor variables and the linear predictor must be linear. Additionally, the only way that the predictor variables influence the predicted value is through the linear predictor.
In Example: A Simple Linear Model, we noted that a good way to interpret the predicted value of a model is as the expected value (or mean) of the response variable, given a set of predictor variables. This is also true in GLMs, and the relationships between that mean and the linear predictor are what make GLMs so flexible. To be precise, there must be a smooth, invertible function m such that:
The inverse of m (denoted by l above) is called the link function. You can use many different function families with a GLM, each of which lets you predict a different form of model. For GLMs, the underlying probability distribution needs to be part of the exponential family of probability distributions. More precisely, distributions that can be modeled by GLMs have the following form:
As a simple example, if you use the identity function for m and assume a normal distribution for the error term, then η = μ and we just have an ordinary linear regression model. However, you can specify some much more interesting forms of models with GLMs. You can model functions with Gaussian, binomial, Poisson, gamma, and other distributions, and use a variety of link functions, including identity, logit, probit, inverse, log, and other functions.
In R, you can model all of these different types of models using the glm function:
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset, control = list(...),
model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,
...)
Here are the arguments to glm.
Argument | Description | Default |
---|---|---|
formula | A formula object that specifies the form of the model to fit. | |
family | Describes the probability distribution of the disturbance term and the link function for the model. (See below for information on different families.) | gaussian |
data | A data frame, list, or environment (or an object that can be coerced to a data frame) in which the variables in formula can be evaluated. | |
weights | A numeric vector containing weights for each observation in data . | |
subset | A vector specifying the observations in data to include in the model. | |
na.action | A function that specifies what lm should do if there are NA values in the data. If NULL, lm uses na.omit . | getOption(“na.action”) , which defaults to na.fail |
start | A numeric vector containing starting values for parameters in the linear predictor. | NULL |
etastart | A numeric vector containing starting values for the linear predictor. | |
mustart | A numeric vector containing starting values for the vector of means. | |
offset | A set of terms that are added to the linear term with a constant coefficient of 1. (You can use an offset to force a variable, or a set of variables, into the model.) | |
control | A list of parameters for controlling the fitting process. Parameters include epsilon (which specifies the convergence tolerance), maxit (which specifies the maximum number of iterations), and trace (which specifies whether to output information on each iteration). See glm.control for more information. | glm.control(...), which, in turn, has defaults epsilon=1e-8, maxit=25, trace=FALSE |
model | A logical value specifying whether the “model frame” should be returned. | TRUE |
method | The method to use for fitting. Only method="glm.fit" fits a model, though you can specify method="model.frame" to return a model frame. | "glm.fit" |
x | Logical values specifying whether the “model matrix” should be returned. | FALSE |
y | A logical value specifying whether the “response vector” should be returned. | TRUE |
contrasts | A list of contrasts for factors in the model. | NULL |
... | Additional arguments passed to glm.control. |
GLM fits a model using iteratively reweighted least squares (IRLS).
As noted above, you can model many different types of functions using GLM. The following function families are available in R:
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
You may specify an alternative link function for most of these function families. Here is a list of the possible link functions for each family.
Family function | Allowed link functions | Default link function |
---|---|---|
binomial | “logit”, “probit”, “cauchit”, “log”, and “cloglog” | “logit” |
gaussian | “identity”, “log”, and “inverse” | “identity” |
Gamma | “inverse”, “identity”, and “log” | “inverse” |
inverse.gaussian | “1/mu^2”, “inverse”, “identity”, and “log” | “1/mu^2” |
poisson | “log”, “identity”, and “sqrt” | “log” |
quasi | “logit”, “probit”, “cloglog”, “identity”, “inverse”, “log”, “1/mu^2”, and “sqrt”, or use the power function to create a power link function | “identity” |
quasibinomial | “logit” | |
quasipoisson | “log” |
The quasi function also takes a variance argument (with default constant); see the help file for quasi for more information.
If you are working with a large data set and have limited memory, you may want to consider using the bigglm function in the biglm package.
As an example, let’s use the glm function to fit the same model that we used for lm. By default, glm assumes a Gaussian error distribution, so we expect the fitted model to be identical to the one fitted above:
> runs.glm <- glm(
+ formula=runs~singles+doubles+triples+homeruns+
+ walks+hitbypitch+sacrificeflies+
+ stolenbases+caughtstealing,
+ data=team.batting.00to08)
> runs.glm
Call: glm(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)
Coefficients:
(Intercept) singles doubles triples
-507.16020 0.56705 0.69110 1.15836
homeruns walks hitbypitch sacrificeflies
1.47439 0.30118 0.37750 0.87218
stolenbases caughtstealing
0.04369 -0.01533
Degrees of Freedom: 269 Total (i.e. Null); 260 Residual
Null Deviance: 1637000
Residual Deviance: 140100 AIC: 2476
As expected, the fitted model is identical to the model from lm. (Typically, it’s better to use lm rather than glm when fitting an ordinary linear regression model because lm is more efficient.) Notice that glm provides slightly different information through the print statement, such as the degrees of freedom, null deviance, residual deviance, and AIC. We’ll revisit glm when talking about logistic regression models for classification; see Logistic Regression.
glmnet
The glmnet package fits a generalized linear model with penalized maximum likelihood. In other words, this package combines GLM models with elastic net models, using elastic net. (You can use this function to fit a model using ridge regression or lasso with the correct set of parameters.) In practice, this can be useful if you need to fit a time series model, a logistic regression model, or another type of linear model with constraints on the coefficients. This is particularly useful for very large or wide data sets.[59] You fit a model using the glmnet function:
glmnet(x, y, family, weights, offset, alpha, nlambda, lambda.min.ratio,
lambda, standardize, thresh, dfmax, pmax, exclude, penalty.factor,
maxit, type.gaussian)
Here is a description of the arguments to glmnet:
Argument | Description | Default |
---|---|---|
x | A matrix of predictor variables. | |
y | A numeric vector containing the response variable. | |
family | Specifies the family to use for fitting the glm model. Choices include “gaussian”, “binomial”, “poisson”, “multinomial”, and “cox” | "gaussian" |
weights | A vector of observation weights. | 1 for each observation |
offset | A vector that is included in the linear predictor. Typically used with a Poisson family to represent log of exposure time, or to refine an existing fit. | NULL |
alpha | The elastic net mixing parameter; use alpha=0 for the ridge penalty, alpha=1 for the lasso penalty. See the documentation for a more concise explanation. | 1 |
nlambda | The number of lambda values. | 100 |
lambda.min.ratio | Smallest value for lambda as a fraction of the highest lambda value. (The highest value is derived from the data; see the help file for more details.) | ifelse(nobs<nvars,0.01,0.0001) |
lambda | A user-supplied lambda sequence. | |
standardize | A logical flag indicating whether to standardize the data. | TRUE |
max.steps | The maximum number of steps. | 50 * min(ncol(x), nrow(x)-1) |
thresh | Convergence threshold for coordinate descent. | 1e-07 |
dfmax | Specifies a cap on the maximum number of variables in the model. | nvars + 1 |
pmax | Specifies a cap on the maximum number of variables to be nonzero. | min(dfmax * 2, nvars) |
exclude | Indices of variables to be excluded from the model. | |
penalty.factor | Separate penalties to be applied for each coefficient. | Default is identical penalties: rep(1, nvars) |
maxit | Maximum number of passes over the data. | 100000 |
type.gaussian | Choice of algorithm for Gaussian. The covariance algorithm saves all inner products ever computed; the naive algorithm recomputes these values. The default choices are based on performance. | ifelse(nvars<500,"covariance","naive") |
As a quick example, let’s fit a glmnet model to the 2008 team batting data:
> names(team.batting.00to08)
[1] "teamID" "yearID" "runs" "singles"
[5] "doubles" "triples" "homeruns" "walks"
[9] "stolenbases" "caughtstealing" "hitbypitch" "sacrificeflies"
[13] "atbats"
> # for y, use columns 4 through 12, for x use runs
> # also, translate predictors to matrix
> br.glmnet <- glmnet(x=as.matrix(team.batting.00to08[, 4:12]),
+ y=team.batting.00to08$runs, standardize=FALSE)
> summary(br.glmnet)
Length Class Mode
a0 76 -none- numeric
beta 684 dgCMatrix S4
df 76 -none- numeric
dim 2 -none- numeric
lambda 76 -none- numeric
dev.ratio 76 -none- numeric
nulldev 1 -none- numeric
npasses 1 -none- numeric
jerr 1 -none- numeric
offset 1 -none- logical
call 4 -none- call
nobs 1 -none- numeric
Printing the model object will show the number of non-zero coefficients (labeled df, even though degrees of freedom only makes sense for lasso fits), percent deviation, and lambda. Here’s a few lines of what print shows for the br.glmnet object (truncated for brevity):
> br.glmnet
Call: glmnet(x = as.matrix(team.batting.00to08[, 4:12]),
y = team.batting.00to08$runs, standardize = FALSE)
Df %Dev Lambda
[1,] 0 0.00000 3065.000
[2,] 1 0.05115 2793.000
[3,] 1 0.09362 2545.000
...
[27,] 4 0.85480 272.900
[75,] 8 0.91440 3.138
[76,] 8 0.91440 2.859
You can show the coefficients of the model at different values of the penalty parameter using the coef.glmnet function:
> coef(br.glmnet, s=1)
10 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) -505.10648378
singles 0.56812235
doubles 0.69273383
triples 1.12066388
homeruns 1.47182140
walks 0.30203653
stolenbases 0.03976671
caughtstealing .
hitbypitch 0.36031017
sacrificeflies 0.83649361
Note how the coefficients are similar to the standard linear models, but how the penalty causes the caught-stealing coefficient to vanish. (Also note the intercept value.)
More interestingly, you can plot how the coefficients change with the L1 norm of the coefficents (or lambda or the explained deviance) using the plot.glmnet function:
> plot(br.glmnet)
The resulting plot is shown in Figure 20-3.
Figure 20-3. Coefficient profile for br.glmnet model
Nonlinear Least Squares
Sometimes you know the form of a model, even if the model is extremely nonlinear.
To fit nonlinear models (minimizing least squares error), you can use the nls function:
nls(formula, data = parent.frame(), start, control = nls.control(),
algorithm = c("default", "plinear", "port"), trace = FALSE,
subset, weights, na.action, model = FALSE, lower = -Inf,
upper = Inf, ...)
Here is a description of the arguments to the nls function.
Argument | Description |
---|---|
formula | A formula object that specifies the form of the model to fit. |
data | A data frame in which formula can be evaluated. |
start | A named list or named vector with starting estimates for the fit. |
control | A list of arguments to pass to control the fitting process (see the help file for nls.control for more information). |
algorithm | The algorithm to use for fitting the model. Use algorithm="plinear" for the Golub-Pereyra algorithm for partially linear least squares models and algorithm="port" for the ‘nl2sol’ algorithm from the PORT library. |
trace | A logical value specifying whether to print the progress of the algorithm while nls is running. |
subset | An optional vector specifying the set of rows to include. |
weights | An optional vector specifying weights for observations. |
na.action | A function that specifies how to treat NA values in the data. |
model | A logical value specifying whether to include the model frame as part of the model object. |
lower | An optional vector specifying lower bounds for the parameters of the model. |
upper | An optional vector specifying upper bounds for the parameters of the model. |
... | Additional arguments (not currently used). |
The nls function is actually a wrapper for the nlm function. The nlm function is similar to nls but takes an R function (not a formula) and a list of starting parameters as arguments. It’s usually easier to use nls because nls allows you to specify models using formulas and data frames, like other R modeling functions. For more information about nlm, see the help file.
By the way, you can actually use nlm to fit a linear model. It will work, but it will be slow and inefficient.
[59] The algorithm, and R package, were written by Friedman, Hastie, and Tibshirani, the authors of [Hastie2009], the bible of machine learning. Jeremy Howard, the chief scientist of Kaggle, thinks this is one of the two most useful algorithms for machine learning. To learn more about this algorithm, see [Friedman2008].
Survival Models
Survival analysis is concerned with looking at the amount of time that elapses before an event occurs. An obvious application is to look at mortality statistics (predicting how long people live), but it can also be applied to mechanical systems (the time before a failure occurs), marketing (the amount of time before a consumer cancels an account), or other areas.
In R, there are a variety of functions in the survival library for modeling survival data.
To estimate a survival curve for censored data, you can use the survfit function:
library(survival)
survfit(formula, data, weights, subset, na.action, etype, id, ...)
This function accepts the following arguments.
Argument | Description |
---|---|
formula | Describes the relationship between the response value and the predictors. The response value should be a Surv object. |
data | The data frame in which to evaluate formula. |
weights | Weights for observations. |
subset | Subset of observation to use in fitting the model. |
na.action | Function to deal with missing values. |
etype | The variable giving the type of event. |
id | The variable that identifies individual subjects. |
type | Specifies the type of survival curve. Options include "kaplan-meier", "fleming-harrington", and "fh2" . |
error | Specifies the type of error. Possible values are "greenwood" for the Greenwood formula or "tsiatis" for the Tsiatis formula. |
conf.type | Confidence interval type. One of "none", "plain", "log" (the default), or "log-log" . |
conf.lower | A character string to specify modified lower limits to the curve; the upper limit remains unchanged. Possible values are "usual" (unmodified), "peto", and "modified" . |
start.time | Numeric value specifying a time to start calculating survival information. |
conf.int | The level for a two-sided confidence interval on the survival curve(s). |
se.fit | A logical value indicating whether standard errors should be computed. |
... | Additional variables passed to internal functions. |
As an example, let’s fit a survival curve for the GSE2034 data set. This data comes from the Gene Expression Omnibus of the National Center for Biotechnology Information (NCBI), which is accessible from http://www.ncbi.nlm.nih.gov/geo/. The experiment examined how the expression of certain genes affected breast cancer relapse-free survival time. In particular, it tested estrogen receptor binding sites. (We’ll revisit this example in Chapter 25.)
First, we need to create a Surv object within the data frame. A Surv object is an R object for representing survival information, in particular, censored data. Censored data occurs when the outcome of the experiment is not known for all observations. In this case, the data is censored. There are three possible outcomes for each observation: the subject had a recurrence of the disease, the subject died without having a recurrence of the disease, or the subject was still alive without a recurrence at the time the data was reported. The last outcome—the subject was still alive without a recurrence—results in the censored values:
> library(survival)
> GSE2034.Surv <- transform(GSE2034,
+ surv=Surv(
+ time=GSE2034$months.to.relapse.or.last.followup,
+ event=GSE2034$relapse,
+ type="right"
+ )
+ )
> # show the first 26 observations:
> GSE2034.Surv$surv[1:26,]
[1] 101+ 118+ 9 106+ 37 125+ 109+ 14 99+ 137+ 34 32 128+
[14] 14 130+ 30 155+ 25 30 84+ 7 100+ 30 7 133+ 43
Now let’s calculate the survival model. We’ll just make it a function of the ER.status flag (which stands for “estrogen receptor”):
> GSE2034.survfit <- survfit(
+ formula=surv~ER.Status,
+ data=GSE2034.Surv,
+ )
The easiest way to view a survfit object is graphically. Let’s plot the model:
> plot(GSE2034.survfit, lty=1:2, log=T)
> legend(135, 1, c("ER+","ER-"), lty=1:2, cex=0.5)
The plot is shown in Figure 20-4. Note the different curve shape for each cohort.
Figure 20-4. Survival curves for the GSE2034 data
To fit a parametric survival model, you can use the survreg function in the survival package:
survreg(formula, data, weights, subset,
na.action, dist="weibull", init=NULL, scale=0,
control,parms=NULL,model=FALSE, x=FALSE,
y=TRUE, robust=FALSE, score=FALSE, ...)
Here is a description of the arguments to survreg.
Argument | Description | Default |
---|---|---|
formula | A formula that describes the form of the model; the response is usually a Surv object (created by the Surv function). | |
data | A data frame containing the training data for the model. | |
weights | A vector of weights for observations in data . | |
subset | An expression describing a subset of observations in data to use for fitting the model. | |
na.action | A function that describes how to treat NA values. | options()$na.action |
dist | A character value describing the form of the y variable (either "weibull", "exponential", "gaussian", "logistic", "lognormal", or "loglogistic") or a distribution like the ones in survreg.distributions . | "weibull" |
init | Optional vector of initial parameters. | NULL |
scale | Value specifying the scale of the estimates. Estimated if scale <= 0 . | 0 |
control | A list of control values, usually produced by survreg.control . | |
parms | A list of fixed parameters for the distribution function. | NULL |
model, x, y | Logical values indicating whether to return the model frame, X matrix, or Y vector (respectively) with the results. | FALSE |
robust | A logical value indicating whether to use “robust sandwich standard methods.” | FALSE |
score | A logical value indicating whether to return the score vector. | FALSE |
... | Other arguments passed to survreg.control . |
You can compute the expected survival for a set of subjects (or individual expectations for each subject) with the function survexp:
library(survival)
survexp(formula, data, weights, subset, na.action, rmap, times,
cohort = TRUE, conditional = FALSE, ratetable = survexp.us,
scale = 1, npoints, se.fit, model = FALSE, x = FALSE, y = FALSE)
Here is a description of the arguments to survexp.
Argument | Description | Default |
---|---|---|
formula | A formula object describing the form of the model. The (optional) response should contain a vector of follow-up times, and the predictors should contain grouping variables separated by + operators. | |
data | A data frame containing source data on which to predict values. | |
weights | A vector of weights for the cases. | |
subset | An expression indicating which observations in data should be included in the prediction. | |
na.action | A function specifying how to deal with missing (NA ) values in the data. | options()$na.action |
times | A vector of follow-up times at which the resulting survival curve is evaluated. (This may also be included in the formula; see above.) | |
cohort | A logical value indicating whether to calculate the survival of the whole cohort (cohort=TRUE) or individual observations (cohort=FALSE ). | TRUE |
conditional | A logical value indicating whether to calculate conditional expected survival. Specify conditional=TRUE if the follow-up times are times of death, and conditional=FALSE if the follow-up times are potential censoring times. | FALSE |
ratetable | A fitted Cox model (from coxph ) or a table of survival times. | survexp.us |
scale | A numeric value specifying how to scale the results. | 1 |
npoints | A numeric value indicating the number of points at which to calculate individual results. | |
se.fit | A logical value indicating whether to include the standard error of the predicted survival. | |
model, x, y | Specifies whether to return the model frame, the X matrix, or the Y vector in the results. | FALSE for all three |
The Cox proportional hazard model is a nonparametric method for fitting survival models. It is available in R through the coxph function in the survival library:
coxph(formula, data, weights, subset, na.action, init, control,
ties = c("efron", "breslow", "exact"), singular.ok = TRUE,
robust = FALSE, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,
...)
Here is a description of the arguments to coxph.
Argument | Description | Default |
---|---|---|
formula | A formula that describes the form of the model; the response must be a Surv object (created by the Surv function). | |
data | A data frame containing source data on which to predict values. | |
weights | A vector of weights for the cases. | |
subset | An expression indicating which observations in data should be fit. | |
na.action | A function specifying how to deal with missing (NA ) values in the data. | |
init | A vector of initial parameter values for the fitting process. | 0 for all variables |
control | Object of class coxph.control specifying the iteration limit and other control options. | coxph.control(...) |
method | A character value specifying the method for handling ties. Choices include "efron", "breslow", and "exact" . | "efron" |
singular.ok | A logical value indicating whether to stop with an error if the X matrix is singular or to simply skip variables that are linear combinations of other variables. | TRUE |
robust | A logical value indicating whether to return a robust variance estimate. | FALSE |
model | A logical value specifying whether to return the model frame. | FALSE |
x | A logical value specifying whether to return the X matrix. | FALSE |
y | A logical value specifying whether to return the Y vector. | TRUE |
... | Additional arguments passed to coxph.control . |
As an example, let’s fit a Cox proportional hazard model to the GSE2034 data:
> GSE2034.coxph <- coxph(
+ formula=surv~ER.Status,
+ data=GSE2034.Surv,
+ )
> GSE2034.coxph
Call:
coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)
coef exp(coef) se(coef) z p
ER.StatusER+ -0.00378 0.996 0.223 -0.0170 0.99
Likelihood ratio test=0 on 1 df, p=0.986 n= 286
The summary method for coxph objects provides additional information about the fit:
> summary(GSE2034.coxph)
Call:
coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)
n= 286
coef exp(coef) se(coef) z Pr(>|z|)
ER.StatusER+ -0.00378 0.99623 0.22260 -0.017 0.986
exp(coef) exp(-coef) lower .95 upper .95
ER.StatusER+ 0.9962 1.004 0.644 1.541
Rsquare= 0 (max possible= 0.983 )
Likelihood ratio test= 0 on 1 df, p=0.9865
Wald test = 0 on 1 df, p=0.9865
Score (logrank) test = 0 on 1 df, p=0.9865
Another useful function is cox.zph, which tests the proportional hazards assumption for a Cox regression model fit:
> cox.zph(GSE2034.coxph)
rho chisq p
ER.StatusER+ 0.33 11.6 0.000655
There are additional methods available for viewing information about coxph fits, including residuals, predict, and survfit; see the help file for coxph.object for more information.
There are other functions in the survival package for fitting survival models, such as cch, which fits proportional hazard models to case-cohort data. See the help files for more information.
Smoothing
This section describes a number of functions for fitting piecewise smooth curves to data. Functions in this section are particularly useful for plotting charts; there are even convenience functions for using these functions to show fitted values in some graphics packages.
Splines
One method for fitting a function to source data is with splines. With a linear model, a single line is fitted to all the data. With spline methods, a set of different polynomials is fitted to different sections of the data.
You can compute simple cubic splines with the spline function in the stats package:
spline(x, y = NULL, n = 3 * length(x), method = "fmm", xmin = min(x),
xmax = max(x), xout, ties = mean)
Here is a description of the arguments to smooth.spline.
Argument | Description | Default |
---|---|---|
x | A vector specifying the predictor variable, or a two-column matrix specifying both the predictor and the response variables. | |
y | If x is a vector, then y is a vector containing the response variable. | NULL |
n | If xout is not specified, then interpolation is done at n equally spaced points between xmin and xmax . | 3*length(x) |
method | Specifies the type of spline. Allowed values include "fmm", "natural", "periodic", and "monoH.FC" . | "fmm" |
xmin | Lowest x value for interpolations. | min(x) |
xmax | Highest x value for interpolations. | max(x) |
xout | An optional vector of values specifying where interpolation should be done. | |
ties | A method for handling ties. Either the string "ordered" or a function that returns a single numeric value. | mean |
To return a function instead of a list of parameters, use the function splinefun:
splinefun(x, y = NULL, method = c("fmm", "periodic", "natural", "monoH.FC"),
ties = mean)
To fit a cubic smoothing spline model to supplied data, use the smooth.spline function:
smooth.spline(x, y, w, df, spar,
cv, all.knots, nknots, keep.data, df.offset,
penalty, control.spar)
Here is a description of the arguments to smooth.spline.
Argument | Description | Default |
---|---|---|
x | A vector specifying the predictor variable, or a two-column matrix specifying both the predictor and the response variables. | |
y | If x is a vector, then y is a vector containing the response variable. | NULL |
w | An optional numeric vector containing weights for the input data. | NULL |
df | Degrees of freedom. | |
spar | Numeric value specifying the smoothing parameter. | NULL |
cv | A logical value specifying whether to use ordinary cross-validation (cv=TRUE) or generalized cross-validation (cv=FALSE ). | FALSE |
all.knots | A logical value specifying whether to use all values in x as knots. | FALSE |
nknots | An integer value specifying the number of knots to use when all.knots=FALSE . | NULL |
keep.data | A logical value indicating whether the input data should be kept in the result. | TRUE |
df.offset | A numeric value specifying how much to allow the df to be increased in cross-validation. | 0 |
penalty | The penalty for degrees of freedom during cross-validation. | 1 |
control.spar | A list of parameters describing how to compute spar (when not explicitly specified). See the help file for more information. | list() |
For example, we can calculate a smoothing spline on the Shiller home price index. This data set contains one annual measurement through 2006 but then has fractional measurements after 2006, making it slightly difficult to align with other data:
> shiller.index[shiller.index$Year>2006,]
Year Real.Home.Price.Index
118 2007.125 194.6713
119 2007.375 188.9270
120 2007.625 184.1683
121 2007.875 173.8622
122 2008.125 160.7639
123 2008.375 154.4993
124 2008.625 145.6642
125 2008.875 137.0083
126 2009.125 130.0611
We can use smoothing splines to find values for 2007 and 2008:
> library(nutshell)
> data(shiller.index)
> shiller.index.spl <- smooth.spline(shiller.index$Year,
+ shiller.index$Real.Home.Price.Index)
> predict(shiller.index.spl,x=c(2007,2008))
$x
[1] 2007 2008
$y
[1] 195.6682 168.8219
Fitting Polynomial Surfaces
You can fit a polynomial surface to data (by local fitting) using the loess function. (This function is used in many graphics functions; for example, panel.loess uses loess to fit a curve to data and plot the curve.)
loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)
Here is a description of the arguments to loess.
Argument | Description | Default |
---|---|---|
formula | A formula specifying the relationship between the response and the predictor variables. | |
data | A data frame, list, or environment specifying the training data for the model fit. (If none is specified, then formula is evaluated in the calling environment.) | |
weights | A vector of weights for the cases in the training data. | |
subset | An optional expression specifying a subset of cases to include in the model. | |
na.action | A function specifying how to treat missing values. | getOption("na.action") |
model | A logical value indicating whether to return the model frame. | FALSE |
span | A numeric value specifying the parameter α, which controls the degree of smoothing. | 0.75 |
enp.target | A numeric value specifying the equivalent number of parameters to be used (replaced span ). | |
degree | The degree of polynomials used. | 2 |
parametric | A vector specifying any terms that should be fit globally rather than locally. (May be specified by name, number, or as a logical vector.) | FALSE |
drop.square | Specifies whether to drop the quadratic term for some predictors. | FALSE |
normalize | A logical value specifying whether to normalize predictors to a common scale. | TRUE |
family | Specifies how fitting is done. Specify family="gaussian" to fit by least squares, and family="symmetric" to fit with Tukey’s biweight function. | "gaussian" |
method | Specifies whether to fit the model or just return the model frame. | "loess" |
control | Control parameters for loess, typically generated by a call to loess.control . | loess.control(...) |
... | Additional arguments are passed to loess.control . |
Using the same example as above:
> shiller.index.loess <- loess(Real.Home.Price.Index~Year, data=shiller.index)
> predict(shiller.index.loess, newdata=data.frame(Year=c(2007,2008)))
[1] 156.5490 158.8857
Kernel Smoothing
To estimate a probability density function, regression function, or their derivatives using polynomials, try the function locpoly in the library KernSmooth:
library(KernSmooth)
locpoly(x, y, drv = 0L, degree, kernel = "normal",
bandwidth, gridsize = 401L, bwdisc = 25,
range.x, binned = FALSE, truncate = TRUE)
Here is a description of the arguments to locpoly.
Argument | Description | Default |
---|---|---|
x | A vector of x values (with no missing values). | |
y | A vector of y values (with no missing values). | |
drv | Order of derivative to estimate. | 0L |
degree | Degree of local polynomials. | drv + 1 |
kernel | Kernel function to use. Currently ignored (“normal” is used). | "normal" |
bandwidth | A single value or an array of length gridsize that specifies the kernel bandwidth smoothing parameter. | |
gridsize | Specifies the number of equally spaced points over which the function is estimated. | 401L |
bwdisc | Number of (logarithmically equally spaced) values on which bandwidth is discretized. | 25 |
range.x | A vector containing the minimum and maximum values of x on which to compute the estimate. | |
binned | A logical value specifying whether to interpret x and y as grid counts (as opposed to raw data). | FALSE |
truncate | A logical value specifying whether to ignore x values outside range.x . | TRUE |
R also includes an implementation of local regression through the locfit function in the locfit library:
library(locfit)
locfit(formula, data=sys.frame(sys.parent()), weights=1, cens=0, base=0,
subset, geth=FALSE, ..., lfproc=locfit.raw)
Machine Learning Algorithms for Regression
Most of the models above assumed that you knew the basic form of the model equation and error function. In each of these cases, our goal was to find the coefficients of variables in a known function. However, sometimes you are presented with data where there are many predictive variables, and the relationships between the predictors and responses are very complicated.
Statisticians have developed a variety of techniques to help model more complex relationships in data sets and to predict values for large, complicated data sets. This section describes a variety of techniques for finding not only the coefficients of a model function but also the function itself.
In this section, I use the San Francisco home sales data set described in More About the San Francisco Real Estate Prices Data Set. This is a pretty ugly data set, with lots of nonlinear relationships. Real estate is all about location, and we have several different variables in the data set that represent location. (The relationships between these variables is not linear, in case you were worried.)
Before modeling, we’ll split the data set into training and testing data sets. Splitting data into training and testing data sets (and, often, validation data sets as well) is a standard practice when fitting models. Statistical models have a tendency to “overfit” the training data; they do a better job predicting trends in the training data than in other data.
I chose this approach because it works with all the modeling functions in this section. There are other statistical techniques available for making sure that a model doesn’t overfit the data, including cross-validation and bootstrapping. Functions for cross-validation are available for some models (for example, xpred.rpart for rpart trees); look at the detailed help files for a package (in this case, with the command help(package="rpart")) to see if these functions are available for a specific modeling tool. Bootstrap resampling is available through the boot library.
Because this section presents many different types of models, I decided to use a simple, standard approach for evaluating model fits. For each model, I estimated the root mean square (RMS) error for the training and validation data sets. Don’t interpret the results as authoritative: I didn’t try too hard to tune each model’s parameters and know that the models that worked best for this data set do not work best for all data sets. However, I thought I’d include the results because I was interested in them (in good fun) and thought readers would be as well.
Anyway, I wrote the following function to evaluate the performance of each function:
calculate_rms_error <- function(mdl, train, test, yval) {
train.yhat <- predict(object=mdl,newdata=train)
test.yhat <- predict(object=mdl,newdata=test)
train.y <- with(train,get(yval))
test.y <- with(test,get(yval))
train.err <- sqrt(mean((train.yhat - train.y)^2))
test.err <- sqrt(mean((test.yhat - test.y)^2))
c(train.err=train.err,test.err=test.err)
}
To create a random sample, I used the sample function to pick 70% of values for the training data. I saved the sample indices to a vector for later reuse (so that I could derive the same sample later and allow you to use the same sample as well). I also saved the sample indices to make it easy to define the testing data set.
> nrow(sanfrancisco.home.sales) * .7
[1] 2296.7
> sanfrancisco.home.sales.training.indices <-
+ sample(1:nrow(sanfrancisco.home.sales),2296)
> sanfrancisco.home.sales.testing.indices <-
+ setdiff(rownames(sanfrancisco.home.sales),
+ sanfrancisco.home.sales.training.indices)
> sanfrancisco.home.sales.training <-
sanfrancisco.home.sales[sanfrancisco.home.sales.training.indices,]
> sanfrancisco.home.sales.testing <-
sanfrancisco.home.sales[sanfrancisco.home.sales.testing.indices,]
> save(sanfrancisco.home.sales.training.indices,
+ sanfrancisco.home.sales.testing.indices,
+ sanfrancisco.home.sales,
+ file="~/Documents/book/current/data/sanfrancisco.home.sales.RData")
Note that the sampling is random, so you will get a different subset each time you run this code. The vectors sanfrancisco.home.sales.training.indices and sanfrancisco.home.sales.testing.indices that I used in this section are included in the nutshell package. (Use the command data(sanfrancisco.home.sales) to access them. The data sets sanfrancisco.home.sales.training and sanfrancisco.home.sales.testing are not included.) You can use the same training and testing sets to re-create the results in this section, or you can pick your own subsets.
Regression Tree Models
Most of the models we have seen in this chapter are in the form of a single equation. You can use the model to predict values by plugging new data values into a single equation.
Tree models have a slightly different form. Instead of a single, compact equation, tree models represent data by a set of binary decision rules. Instead of plugging numbers into an equation, you follow the rules in a tree to determine the predicted value. Tree models are very easy to interpret, but they don’t usually predict values as accurately as other types of models. Tree models are particularly popular in medicine and biology, perhaps because they resemble the process that doctors use to make decisions. In this section, we’ll show how to use some popular tree methods for regression in R.
Recursive partitioning trees
One of the most popular algorithms for building tree models is classification and regression trees, or CART. CART uses a greedy algorithm to build a tree from the training data. Here’s an explanation of how CART works:
Grow the tree using the following (recursive) method:
Start with a single set containing all the training data.
If the number of observations is less than the minimum required for a split, stop splitting the tree. Output the average of all the y-values in the training data as the predicted value for the terminal node.
Find a variable xj and value s that minimizes the RMS error when you split the data into two sets.
Repeat the splitting process (starting at step B) on each of the two sets.
Prune the tree using the following (iterative) method:
Stop if there is only one node in the tree.
Measure the cost/complexity of the overall tree. (The cost/complexity measurement is a measurement that takes into account the number of observations in each node, the RMS prediction error, and the number of nodes in the tree.)
Try collapsing each internal node on the tree and measure which subtree has the best cost/complexity.
Repeat the process (starting at step A) on the subtree with the best cost/complexity.
Output the tree with the lowest cost/complexity.
R includes an implementation of classification and regression trees in the rpart package. To fit a model, use the rpart function:
library(rpart)
rpart(formula, data, weights, subset, na.action = na.rpart, method,
model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ...)
Here are the arguments to rpart.
Argument | Description | Default |
---|---|---|
formula | A formula describing the relationship between the response and the predictor variables. | |
data | A data frame to use for fitting the model. | |
weights | An optional vector of weights to use for the training data. | |
subset | An optional expression specifying which observations to use in fitting the model. | |
na.action | The function to call for missing values. | na.rpart |
method | A character value that specifies the fitting method. Must be one of "exp", "poisson", "class", or "anova" . | If y is a survival object, then method="exp"; if y has two columns then method="poisson"; or y if a factor then method="class"; otherwise method="anova" |
model | A logical value specifying whether to keep the model frame in the results. | FALSE |
x | A logical value specifying whether to return the x matrix in the results. | FALSE |
y | A logical value specifying whether to return the y matrix in the results. | TRUE |
parms | A list of parameters passed to the fitting function. | |
control | Options that control details of the rpart algorithm; see rpart.control for more information. | |
cost | A numeric vector of costs, one for each variable in the model. | 1 for all variables |
... | Additional argument passed to rpart.control . |
The CART algorithm handles missing values differently from many other modeling algorithms. With an algorithm like linear regression, missing values need to be filtered out in order for the math to work. However, CART takes advantage of the rule-based model structure to handle missing values differently. When a value is missing for an observation at a split, CART can instead split values using a surrogate variable. See the help files for rpart for more information on how to control the process of finding and using surrogates.
As an example, let’s build a regression tree on the San Francisco home sales data set. We’ll start off naively, adding some redundant information and fields that could lead to a model that overfits the data:
> library(rpart)
> sf.price.model.rpart <- rpart(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training)
Let’s take a look at the model returned by this call to rpart. The simplest way to examine the object is to use print.rpart to print it on the console. The output below has been modified slightly to fit in this book:
> sf.price.model.rpart
n= 2296
node), split, n, deviance, yval
* denotes terminal node
1) root 2296 8.058726e+14 902088.0
2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,
Diamond Heights,Downtown,Excelsior,Inner Sunset,Lakeshore,
Mission,Nob Hill,Ocean View,Outer Mission,Outer Richmond,
Outer Sunset,Parkside,Potrero Hill,South Of Market,
Visitacion Valley,Western Addition 1524 1.850806e+14 723301.8
4) squarefeet< 1772 1282 1.124418e+14 675471.1
8) neighborhood=Bayview,Chinatown,Crocker Amazon,
Diamond Heights,Downtown,Excelsior,Lakeshore,Ocean View,
Outer Mission,Visitacion Valley 444 1.408221e+13 539813.1 *
9) neighborhood=Bernal Heights,Inner Sunset,Mission,Nob Hill,
Outer Richmond,Outer Sunset,Parkside,Potrero Hill,
South Of Market,Western Addition 838 8.585934e+13 747347.3 *
5) squarefeet>=1772 242 5.416861e+13 976686.0 *
3) neighborhood=Castro-Upper Market,Financial District,Glen Park,
Haight-Ashbury,Inner Richmond,Marina,Noe Valley,North Beach,
Pacific Heights,Presidio Heights,Russian Hill,Seacliff,
Twin Peaks,West Of Twin Peaks 772 4.759124e+14 1255028.0
6) squarefeet< 2119 591 1.962903e+14 1103036.0
12) neighborhood=Castro-Upper Market,Glen Park,Haight-Ashbury,
Inner Richmond,Noe Valley,North Beach,Pacific Heights,
Russian Hill,Twin Peaks,
West Of Twin Peaks 479 1.185669e+14 1032675.0
24) month=2008-02-01,2008-03-01,2008-06-01,2008-07-01,
2008-08-01,2008-09-01,2008-10-01,2008-11-01,2008-12-01,
2009-01-01,2009-02-01,2009-03-01,2009-04-01,2009-05-01,
2009-06-01,2009-07-01 389 5.941085e+13 980348.3 *
25) month=2008-04-01,2008-05-01 90 5.348720e+13 1258844.0
50) longitude< -122.4142 81 1.550328e+13 1136562.0 *
51) longitude>=-122.4142 9 2.587193e+13 2359389.0 *
13) neighborhood=Financial District,Marina,Presidio Heights,
Seacliff 112 6.521045e+13 1403951.0 *
7) squarefeet>=2119 181 2.213886e+14 1751315.0
14) neighborhood=Castro-Upper Market,Glen Park,Haight-Ashbury,
Inner Richmond,Marina,Noe Valley,North Beach,Russian Hill,
Twin Peaks,West Of Twin Peaks 159 1.032114e+14 1574642.0
28) month=2008-04-01,2008-06-01,2008-07-01,2008-10-01,
2009-02-01,2009-03-01,2009-04-01,2009-05-01,
2009-06-01,2009-07-01 77 2.070744e+13 1310922.0 *
29) month=2008-02-01,2008-03-01,2008-05-01,2008-08-01,
2008-09-01,2008-11-01,2008-12-01,
2009-01-01 82 7.212013e+13 1822280.0
58) lotsize< 3305.5 62 3.077240e+13 1598774.0 *
59) lotsize>=3305.5 20 2.864915e+13 2515150.0
118) neighborhood=Glen Park,Inner Richmond,Twin Peaks,
West Of Twin Peaks 13 1.254738e+13 1962769.0 *
119) neighborhood=Castro-Upper Market,Marina,
Russian Hill 7 4.768574e+12 3541000.0 *
15) neighborhood=Financial District,Pacific Heights,
Presidio Heights,Seacliff 22 7.734568e+13 3028182.0
30) lotsize< 3473 12 7.263123e+12 2299500.0 *
31) lotsize>=3473 10 5.606476e+13 3902600.0 *
Notice the key on the second line of the output. (Each line contains the node number, description of the split, number of observations under that node in the tree, deviance, and predicted value.) This tree model tells us some obvious things, like that location and size are good predictors of price. Reading a textual description of an rpart object is somewhat confusing. The method plot.rpart will draw the tree structure in an rpart object:
plot(x, uniform=FALSE, branch=1, compress=FALSE, nspace,
margin=0, minbranch=.3, ...)
You can label the tree using text.rpart:
text(x, splits=TRUE, label, FUN=text, all=FALSE,
pretty=NULL, digits=getOption("digits") - 3, use.n=FALSE,
fancy=FALSE, fwidth=0.8, fheight=0.8, ...)
For both functions, the argument x specifies the rpart object; the other options control the way the output looks. See the help file for more information about these parameters. As an example, let’s plot the tree we just created above:
> plot(sf.price.model.rpart, uniform=TRUE, compress=TRUE, lty=3, branch=0.7)
> text(sf.price.model.rpart, all=TRUE,digits=7, use.n=TRUE, cex=0.4, xpd=TRUE)
As you can see from Figure 20-5, it’s difficult to read a small picture of a big tree. To keep the tree somewhat readable, we have abbreviated neighborhood names to single letters (corresponding to their order in the factor). Sometimes, the function draw.tree in the package maptree can produce prettier diagrams. See Classification Tree Models for more details.
Figure 20-5. rpart tree for the San Francisco home sales model
To predict a value with a tree model, you would start at the top of the tree and follow the tree down, depending on the rules for a specific observation. For example, suppose that we had a property in Pacific Heights with 2,500 square feet of living space and a lot size of 5,000 square feet. We would traverse the tree starting at node 1, then go to node 3, then node 7, then node 15, and, finally, land on node 31. The estimated price of this property would be $3,902,600.
There are a number of other functions available in the rpart package for viewing (or manipulating) tree objects. To view the approximate r-square and relative error at each split, use the function rsq.rpart. The graphical output is shown in Figure 20-6; here is the output on the R console:
> rsq.rpart(sf.price.model.rpart)
Regression tree:
rpart(formula = price ~ bedrooms + squarefeet + lotsize + latitude +
longitude + neighborhood + month, data = sanfrancisco.home.sales.training)
Variables actually used in tree construction:
[1] longitude lotsize month neighborhood squarefeet
Root node error: 8.0587e+14/2296 = 3.5099e+11
n= 2296
CP nsplit rel error xerror xstd
1 0.179780 0 1.00000 1.00038 0.117779
2 0.072261 1 0.82022 0.83652 0.105103
3 0.050667 2 0.74796 0.83211 0.096150
4 0.022919 3 0.69729 0.80729 0.094461
5 0.017395 4 0.67437 0.80907 0.096560
6 0.015527 5 0.65698 0.82365 0.097687
7 0.015511 6 0.64145 0.81720 0.097579
8 0.014321 7 0.62594 0.81461 0.097575
9 0.014063 9 0.59730 0.81204 0.097598
10 0.011032 10 0.58323 0.81559 0.097691
11 0.010000 12 0.56117 0.80271 0.096216
As you can probably tell, the initial tree was a bit complicated. You can remove nodes where the cost/complexity trade-off isn’t great by using the prune function:
prune(tree, cp, ...)
The argument cp is a complexity parameter that controls how much to trim the tree. To help choose a complexity parameter, try the function plotcp:
plotcp(x, minline = TRUE, lty = 3, col = 1,
upper = c("size", "splits", "none"), ...)
Figure 20-6. Plot from rsq.rpart(sf.price.model.rpart)
The plotcp function plots tree sizes and relative errors for different parameters of the complexity parameter. For the example above, it looks like a value of 0.011 is a good balance between complexity and performance. Here is the pruned model (see also Figure 20-7):
> prune(sf.price.model.rpart, cp=0.11)
n= 2296
node), split, n, deviance, yval
* denotes terminal node
1) root 2296 8.058726e+14 902088.0
2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,
Diamond Heights,Downtown,Excelsior,Inner Sunset,Lakeshore,Mission,
Nob Hill,Ocean View,Outer Mission,Outer Richmond,Outer Sunset,
Parkside,Potrero Hill,South Of Market,Visitacion Valley,
Western Addition 1524 1.850806e+14 723301.8 *
3) neighborhood=Castro-Upper Market,Financial District,Glen Park,
Haight-Ashbury, Inner Richmond,Marina,Noe Valley,North Beach,
Pacific Heights,Presidio Heights,Russian Hill,Seacliff,Twin Peaks,
West Of Twin Peaks 772 4.759124e+14 1255028.0 *
Figure 20-7. Output of plotcp for the sf.prices.rpart model
And if you’re curious, here is the error of this model on the training and test populations:
> calculate_rms_error(sf.price.model.rpart,
+ sanfrancisco.home.sales.training,
+ sanfrancisco.home.sales.testing,
+ "price")
train.err test.err
443806.8 564986.8
The units, incidentally, are dollars.
There is an alternative implementation of CART trees available with R through the tree package. It was written by W. N. Venables, one of the authors of [Venables2002]. He notes that tree can give more explicit output while running but recommends rpart for most users.
Patient rule induction method
Another technique for building rule-based models is the patient rule induction method (PRIM) algorithm. PRIM doesn’t actually build trees. Instead, it partitions the data into a set of “boxes” (in p dimensions). The algorithm starts with a box containing all the data and then shrinks the box one side at a time, trying to maximize the average value in the box. After reaching a minimum number of observations in the box, the algorithm tries expanding the box again, as long as it can increase the average value in the box. When the algorithm finds the best initial box, it then repeats the process on the remaining observations, until there are no observations left. The algorithm leads to a set of rules that can be used to predict values.
To try out PRIM in R, there are functions in the library prim:
prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01,
mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE,
threshold.type=0)
prim.hdr(prim, threshold, threshold.type)
prim.combine(prim1, prim2)
Bagging for regression
Bagging (or bootstrap aggregation) is a technique for building predictive models based on other models (most commonly trees). The idea of bagging is to use bootstrapping to build a number of different models and then average the results. The weaker models essentially form a committee to vote for a result, which leads to more accurate predictions.
To build regression bagging models in R, you can use the function bagging in the ipred library:
library(ipred)
bagging(formula, data, subset, na.action=na.rpart, ...)
The formula, data, subset, and na.action arguments work the same way as in most modeling functions. The additional arguments are passed on to the function ipredbagg, which does all the work (but doesn’t have a method for formulas):
ipredbagg(y, X=NULL, nbagg=25, control=rpart.control(xval=0),
comb=NULL, coob=FALSE, ns=length(y), keepX = TRUE, ...)
You can specify the number of trees to build by nbagg, control parameters for rpart through control, a list of models to use for double-bagging through comb, coob to indicate if an out-of-bag error rate should be computed, and ns to specify the number of observations to draw from the learning sample.
Let’s try building a model on the pricing data using bagging. We’ll pick 100 rpart trees (for fun):
> sf.price.model.bagging <- bagging(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training, nbagg=100)
> summary(sf.price.model.bagging)
Length Class Mode
y 1034 -none- numeric
X 7 data.frame list
mtrees 100 -none- list
OOB 1 -none- logical
comb 1 -none- logical
call 4 -none- call
Let’s take a quick look at how bagging worked on this data set:
> calculate_rms_error(sf.price.model.bagging,
+ sanfrancisco.home.sales.training,
+ sanfrancisco.home.sales.testing,
+ "price")
train.err test.err
491003.8 582056.5
Boosting for regression
Boosting is a technique that’s closely related to bagging. Unlike bagging, the individual models don’t all have equal votes. Better models are given stronger votes.
You can find a variety of tools for computing boosting models in R in the package mboost. The function blackboost builds boosting models from regression trees, glmboost from general linear models, and gamboost for boosting based on additive models. Here we’ll just build a model using regression trees:
> library(mboost)
Loading required package: modeltools
Loading required package: stats4
Loading required package: party
Loading required package: grid
Loading required package: coin
Loading required package: mvtnorm
Loading required package: zoo
> sf.price.model.blackboost <- blackboost(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training)
Here is a summary of the model object:
> summary(sf.price.model.blackboost)
Length Class Mode
ensemble 100 -none- list
fit 2296 -none- numeric
offset 1 -none- numeric
ustart 2296 -none- numeric
risk 100 -none- numeric
control 8 boost_control list
family 1 boost_family S4
response 2296 -none- numeric
weights 2296 -none- numeric
update 1 -none- function
tree_controls 1 TreeControl S4
data 1 LearningSampleFormula S4
predict 1 -none- function
call 3 -none- call
And here is a quick evaluation of the performance of this model:
> calculate_rms_error(sf.price.model.blackboost,
+ sanfrancisco.home.sales.training,
+ sanfrancisco.home.sales.testing,
+ "price")
train.err test.err
1080520 1075810
Random forests for regression
Random forests are another technique for building predictive models using trees. Like boosting and bagging, random forests work by combining a set of other tree models. Unlike boosting and bagging, which use an existing algorithm like CART to build a series of trees from a random sample of the observations in the test data, random forests build trees from a random sample of the columns in the test data.
Here’s a description of how the random forest algorithm creates the underlying trees (using variable names from the R implementation):
Take a sample of size sampsize from the training data.
Begin with a single node.
Run the following algorithm, starting with the starting node:
Stop if the number of observations is less than nodesize.
Select mtry variables (at random).
Find the variable and value that does the “best” job splitting the observations. (Specifically, the algorithm uses MSE [mean square error] to measure regression error, and Gini to measure classification error.)
Split the observations into two nodes.
Call step A on each of these nodes.
Unlike trees generated by CART, trees generated by random forest aren’t pruned; they’re just grown to a very deep level.
For regression problems, the estimated value is calculated by averaging the prediction of all the trees in the forest. For classification problems, the prediction is made by predicting the class using each tree in the forest and then outputting the choice that received the most votes.
To build random forest models in R, use the randomForest function in the randomForest package:
library(randomForest)
## S3 method for class 'formula':
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)
Unlike some other functions we’ve seen so far, randomForest will fail if called on data with missing observations. So we’ll set na.action=na.omit to omit NA values. Additionally, randomForest cannot handle categorical predictors with more than 32 levels, so we will cut out the neighborhood variable:
> sf.price.model.randomforest <- randomForest(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+month,
+ data=sanfrancisco.home.sales.training,
+ na.action=na.omit)
The print method for randomForest objects returns some useful information about the fit:
> sf.price.model.randomforest
Call:
randomForest(formula = price ~ bedrooms + squarefeet + lotsize +
latitude + longitude + month,
data = sanfrancisco.home.sales.training,
na.action = na.omit)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2
Mean of squared residuals: 258521431697
% Var explained: 39.78
Here is how the model performed:
> calculate_rms_error(sf.price.model.randomforest,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
241885.2 559461.0
As a point of comparison, here are the results of the rpart model, also with NA values omitted:
> calculate_rms_error(sf.price.model.rpart,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
442839.6 589583.1
MARS
Another popular algorithm for machine learning is multivariate adaptive regression splines, or MARS. MARS works by splitting input variables into multiple basis functions and then fitting a linear regression model to those basis functions. The basis functions used by MARS come in pairs: f(x) = {x − t if x > t, 0 otherwise} and g(x) = {t − x if x < t, 0 otherwise}. These functions are piecewise linear functions. The value t is called a knot.
MARS is closely related to CART. Like CART, it begins by building a large model and then prunes back unneeded terms until the best model is found. The MARS algorithm works by gradually building up a model out of basis functions (or products of basis functions) until it reaches a predetermined depth. This results in an over-fitted, overly complex model. Then the algorithm deletes terms from the model, one by one, until it has pared back everything but a constant term. At each stage, the algorithm uses generalized cross-validation (GCV) to measure how well each model fits. Finally, the algorithm returns the model with the best cost/benefit ratio.
To fit a model using MARS in R, use the function earth in the package earth:
library(earth)
earth(formula = stop("no 'formula' arg"),
data, weights = NULL, wp = NULL, scale.y = (NCOL(y)==1), subset = NULL,
na.action = na.fail, glm = NULL, trace = 0,
keepxy = FALSE, nfold=0, stratify=TRUE, ...)
Arguments to earth include the following.
Argument | Description | Default |
---|---|---|
formula | A formula describing the relationship between the response and the predictor variables. | stop("no 'formula' arg") |
data | A data frame containing the training data. | |
weights | An optional vector of weights to use for the fitting data. (It is especially optional, because it is not supported as of earth version 2.3-2.) | NULL |
wp | A numeric vector of response weights. Must include a value for each column of y . | NULL |
scale.y | A numeric value specifying whether to scale y in the forward pass. (See the help file for more information.) | (NCOL(y)==1) |
subset | A logical vector specifying which observations from data to include. | NULL |
na.action | A function specifying how to treat missing values. Only na.fail is currently supported. | na.fail |
glm | A list of arguments to glm . | NULL |
trace | A numeric value specifying whether to print a “trace” of the algorithm execution. | 0 |
keepxy | A logical value specifying whether to keep x and y (or data), subset, and weights in the model object. (Useful if you plan to use update to modify the model at a later time.) | FALSE |
nfold | A numeric value specifying the number of cross-validation folds. | 0 |
stratify | A logical value specifying whether to stratify the cross-validation folds. | TRUE |
... | Additional options are passed to earth.fit. There are many, many options available to tune the fitting process. See the help file for earth for more information. |
The earth function is very flexible. By default, lm is used to fit models. Note that glm can be used instead to allow finer control of the model. The function earth can’t cope directly with missing values in the data set. To deal with NA values, you need to explicitly deal with them in the input data. You could, for example, impute median values or model imputed values. In the example below, I picked the easy solution and just used the na.omit function to filter them out.
Let’s build an earth model on the San Francisco home sales data set. We’ll add the trace=1 option to show some details of the computation:
> sf.price.model.earth <- earth(
+ price~bedrooms+squarefeet+latitude+
+ longitude+neighborhood+month,
+ data=na.omit(sanfrancisco.home.sales.training), trace=1)
x is a 957 by 54 matrix: 1=bedrooms, 2=squarefeet, 3=latitude,
4=longitude, 5=neighborhoodBernalHeights, 6=neighborhoodCastro-UpperMarket,
7=neighborhoodChinatown, 8=neighborhoodCrockerAmazon,
9=neighborhoodDiamondHeights, 10=neighborhoodDowntown,
11=neighborhoodExcelsior, 12=neighborhoodFinancialDistrict,
13=neighborhoodGlenPark, 14=neighborhoodHaight-Ashbury,
15=neighborhoodInnerRichmond, 16=neighborhoodInnerSunset,
17=neighborhoodLakeshore, 18=neighborhoodMarina,
19=neighborhoodMission, 20=neighborhoodNobHill,
21=neighborhoodNoeValley, 22=neighborhoodNorthBeach,
23=neighborhoodOceanView, 24=neighborhoodOuterMission,
25=neighborhoodOuterRichmond, 26=neighborhoodOuterSunset,
27=neighborhoodPacificHeights, 28=neighborhoodParkside,
29=neighborhoodPotreroHill, 30=neighborhoodPresidioHeights,
31=neighborhoodRussianHill, 32=neighborhoodSeacliff,
33=neighborhoodSouthOfMarket, 34=neighborhoodTwinPeaks,
35=neighborhoodVisitacionValley, 36=neighborhoodWestOfTwinPeaks,
37=neighborhoodWesternAddition, 38=month2008-03-01, 39=month2008-04-01,
40=month2008-05-01, 41=month2008-06-01, 42=month2008-07-01,
43=month2008-08-01, 44=month2008-09-01, 45=month2008-10-01,
46=month2008-11-01, 47=month2008-12-01, 48=month2009-01-01,
49=month2009-02-01, 50=month2009-03-01, 51=month2009-04-01,
52=month2009-05-01, 53=month2009-06-01, 54=month2009-07-01
y is a 957 by 1 matrix: 1=price
Forward pass term 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80
Reached delta RSq threshold (DeltaRSq 0.000861741 < 0.001)
After forward pass GRSq 0.4918 RSq 0.581
Prune method "backward" penalty 2 nprune 44: selected 36 of 44 terms, and 26
of 54 predictors
After backward pass GRSq 0.5021 RSq 0.5724
The earth object has an informative print method, showing the function call and statistics about the model fit:
> sf.price.model.earth
Selected 31 of 41 terms, and 22 of 55 predictors
Importance: squarefeet, neighborhoodPresidioHeights,
latitude, neighborhoodSeacliff, neighborhoodNoeValley,
neighborhoodCastro-UpperMarket, neighborhoodNobHill,
lotsize, month2008-07-01, neighborhoodWesternAddition, ...
Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449 RSS 1.817434e+14 GRSq 0.5162424 RSq 0.5750596
The summary method will show the basis functions for the fitted model in addition to information about the fit:
> summary(sf.price.model.earth)
Call: earth(formula=price~bedrooms+squarefeet+lotsize+latitude+
longitude+neighborhood+month,
data=na.omit(sanfrancisco.home.sales.training))
coefficients
(Intercept) 1452882
h(bedrooms-3) 130018
h(bedrooms-5) -186130
h(squarefeet-2690) 81
h(2690-squarefeet) -178
h(lotsize-2495) 183
h(lotsize-3672) -141
h(latitude-37.7775) -112301793
h(37.7775-latitude) -7931270
h(latitude-37.7827) 420380414
h(latitude-37.7888) -188726623
h(latitude-37.8015) -356738902
h(longitude- -122.464) -6056771
h(-122.438-longitude) -6536227
neighborhoodCastro-UpperMarket 338549
neighborhoodChinatown -1121365
neighborhoodInnerSunset -188192
neighborhoodMarina -2000574
neighborhoodNobHill -2176350
neighborhoodNoeValley 368772
neighborhoodNorthBeach -2395955
neighborhoodPacificHeights -1108284
neighborhoodPresidioHeights 1146964
neighborhoodRussianHill -1857710
neighborhoodSeacliff 2422127
neighborhoodWesternAddition -442262
month2008-03-01 181640
month2008-04-01 297754
month2008-05-01 187684
month2008-07-01 -322801
month2008-10-01 115435
Selected 31 of 41 terms, and 22 of 55 predictors
Importance: squarefeet, neighborhoodPresidioHeights, latitude,
neighborhoodSeacliff, neighborhoodNoeValley,
neighborhoodCastro-UpperMarket, neighborhoodNobHill,
lotsize, month2008-07-01, neighborhoodWesternAddition, ...
Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449 RSS 1.817434e+14 GRSq 0.5162424 RSq 0.5750596
The output of summary includes a short synopsis of variable importance in the model. You can use the function evimp to return a matrix showing the relative importance of variables in the model:
evimp(obj, trim=TRUE, sqrt.=FALSE)
The argument obj specifies an earth object, trim specifies whether to delete rows in the matrix for variables that don’t appear in the fitted model, and sqrt specifies whether to take the square root of the GCV and RSS importances before normalizing them. For the example above, here is the output:
> evimp(sf.price.model.earth)
col used nsubsets gcv
squarefeet 2 1 30 100.00000000 1
neighborhoodPresidioHeights 31 1 29 62.71464260 1
latitude 4 1 28 45.85760472 1
neighborhoodSeacliff 33 1 27 33.94468291 1
neighborhoodNoeValley 22 1 25 22.55538880 1
neighborhoodCastro-UpperMarket 7 1 24 18.84206296 1
neighborhoodNobHill 21 1 23 14.79044745 1
lotsize 3 1 21 10.94876414 1
month2008-07-01 43 1 20 9.54292889 1
neighborhoodWesternAddition 38 1 19 7.47060804 1
longitude 5 1 18 6.37068263 1
neighborhoodNorthBeach 23 1 16 4.64098864 1
neighborhoodPacificHeights 28 1 14 3.21207679 1
neighborhoodMarina 19 1 13 3.25260354 0
neighborhoodRussianHill 32 1 12 3.02881439 1
month2008-04-01 40 1 10 2.22407575 1
bedrooms 1 1 8 1.20894174 1
neighborhoodInnerSunset 17 1 5 0.54773450 1
month2008-03-01 39 1 4 0.38402626 1
neighborhoodChinatown 8 1 3 0.24940165 1
month2008-10-01 46 1 2 0.15317304 1
month2008-05-01 41 1 1 0.09138073 1
rss
squarefeet 100.0000000 1
neighborhoodPresidioHeights 65.9412651 1
latitude 50.3490370 1
neighborhoodSeacliff 39.2669043 1
neighborhoodNoeValley 28.3043535 1
neighborhoodCastro-UpperMarket 24.6223129 1
neighborhoodNobHill 20.6738425 1
lotsize 16.5523065 1
month2008-07-01 14.9572215 1
neighborhoodWesternAddition 12.8021914 1
longitude 11.4928253 1
neighborhoodNorthBeach 9.2983004 1
neighborhoodPacificHeights 7.3843377 1
neighborhoodMarina 7.0666997 1
neighborhoodRussianHill 6.5297824 1
month2008-04-01 5.1687163 1
bedrooms 3.6503604 1
neighborhoodInnerSunset 2.1002700 1
month2008-03-01 1.6337090 1
neighborhoodChinatown 1.1922930 1
month2008-10-01 0.7831185 1
month2008-05-01 0.4026390 1
The function plot.earth will plot model selection, cumulative distribution of residuals, residuals versus fitted values, and the residual Q-Q plot for an earth object:
> plot(sf.price.model.earth)
The output of this call is shown in Figure 20-8. There are many options for this function that control the output; see the help file for more information. Another useful function for looking at earth objects is plotmo:
> plotmo(sf.price.model.earth)
Figure 20-8. Output of plot.earth
The plotmo function plots the predicted model response when varying one or two predictors while holding other predictors constant. The output of plotmo for the San Francisco home sales data set is shown in Figure 20-9.
Figure 20-9. Output of plotmo
For the fun of it, let’s look at the predictions from earth:
> calculate_rms_error(sf.price.model.earth,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
435786.1 535941.5
Neural Networks
Neural networks are a very popular type of statistical model. Neural networks were originally designed to approximate how neurons work in the human brain; much of the original research on neural networks came from artificial intelligence researchers. Neural networks are very flexible and can be used to model a large number of different problems. By changing the structure of neural networks, it’s possible to model some very complicated nonlinear relationships. Neural networks are so popular that there are entire academic journals devoted to them (such as Neural Networks, published by Elsevier).
The base distribution of R includes an implementation of one of the simplest types of neural networks: single-hidden-layer neural networks. Even this simple form of neural network can be used to model some very complicated relationships in data sets. Figure 20-10 is a graphical representation of what these neural networks look like. As you can see, each input value feeds into each “hidden layer” node. The output of each hidden-layer node feeds into each output node. What the modeling function actually does is to estimate the weights for each input into each hidden node and output node.
Figure 20-10. Single-hidden-layer, feed-forward neural network
The diagram omits two things: bias units and skip layer connectors. A bias unit is just a constant input term; it lets a constant term be mixed into each unit. Skip layer connections allow values from the inputs to be mixed into the outputs, skipping over the hidden layer. Both of these additions are included in the R implementation.
In equation form, here is the formula for neural network models:
The function gi used for the hidden nodes is the sigmoid function: σ(x) = ex/(1 + ex). The function used for the output nodes is usually the identity function for regression, and the softmax function for classification. (We’ll discuss the softmax function in Neural Networks.) For classification models, there are k outputs corresponding to the different levels. For regression models, there is only one output node.
To fit neural network models, use the function nnet in the package nnet:
library(nnet)
## S3 method for class 'formula':
nnet(formula, data, weights, ...,
subset, na.action, contrasts = NULL)
## Default S3 method:
nnet(x, y, weights, size, Wts, mask,
linout = FALSE, entropy = FALSE, softmax = FALSE,
censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)
Arguments to nnet include the following.
Argument | Description | Default |
---|---|---|
formula | A formula describing the relationship between the response and the predictor variables. | |
data | A data frame containing the training data. | |
weights | An optional vector of weights to use for the training data. | |
... | Additional arguments passed to other functions (such as the nnet.default if using the nnet method, or optim ). | |
subset | An optional vector specifying the subset of observations to use in fitting the model. | |
na.action | A function specifying how to treat missing values. | |
contrasts | A list of factors to use for factors that appear in the model. | NULL |
size | Number of units in the hidden layer. | |
Wts | Initial parameter vector. | Randomly chosen, if not specified |
mask | A logical vector indicating which parameters should be optimized. | All parameters |
linout | Use linout=FALSE for logistic output units, linout=TRUE for linear units. | FALSE |
entropy | A logical value specifying whether to use entropy/maximum conditional likelihood fitting. | FALSE |
softmax | A logical value specifying whether to use a softmax/log-linear model and maximum conditional likelihood fitting. | FALSE |
censored | A logical value specifying whether to treat the input data as censored data. (By default, a response variable value of c(1, 0, 1) means “both classes 1 and 3.” If we treat the data as censored, then c(1, 0, 1) is interpreted to mean “not 2, but possibly 1 or 3.” | FALSE |
skip | A logical value specifying whether to add skip-layer connections from input to output. | FALSE |
rang | A numeric value specifying the range for initial random weights. Weights are chosen between -rang and rang . | 0.7 |
decay | A numeric parameter for weight decay. | 0 |
maxit | Maximum number of iterations. | 100 |
Hess | A logical value specifying whether to return the Hessian of fit. | FALSE |
trace | A logical value specifying whether to print out a “trace” as nnet is running. | TRUE |
maxNWts | A numeric value specifying the maximum number of weights. | 1000 |
abstol | A numeric value specifying absolute tolerance. (Fitting process halts if the fit criterion falls below abstol .) | 1.0e-4 |
reltol | A numeric value specifying relative tolerance. (Fitting process halts if the algorithm can’t reduce the error by reltol in each step.) | 1.0e-8 |
There is no simple, closed-form solution for finding the optimal weights for a neural network model. So the nnet function uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method of the optim function to fit the model.
Let’s try nnet on the San Francisco home sales data set. I had to play with the parameters a little bit to get a decent fit. I settled on 12 hidden units, linear outputs (which is appropriate for regression), skip connections, and a decay of 0.025:
> sf.price.model.nnet <- nnet(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training, size=12,
+ skip=TRUE, linout=TRUE, decay=0.025, na.action=na.omit)
# weights: 740
initial value 1387941951981143.500000
iter 10 value 292963198488371.437500
iter 20 value 235738652534232.968750
iter 30 value 215547308140618.656250
iter 40 value 212019186628667.375000
iter 50 value 210632523063203.562500
iter 60 value 208381505485842.656250
iter 70 value 207265136422489.750000
iter 80 value 207023188781434.906250
iter 90 value 206897724524820.937500
iter 100 value 206849625163830.156250
final value 206849625163830.156250
stopped after 100 iterations
To view the model, you can use the print or summary methods. Neither is particularly informative, though the summary method will show weights for all the units. Here is a small portion of the output for summary (the omitted portion is replaced with an ellipsis):
> summary(sf.price.model.nnet)
a 55-12-1 network with 740 weights
options were - skip-layer connections linear output units decay=0.025
b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1
12.59 9.83 21398.35 29597.88 478.93 -1553.28
i6->h1 i7->h1 i8->h1 i9->h1 i10->h1 i11->h1
-0.15 -0.27 0.34 -0.05 -0.31 0.16
...
Here’s how this model performed:
> calculate_rms_error(sf.price.model.nnet,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
447567.2 566056.4
For more complex neural networks (such as networks with multiple hidden layers), see the packages AMORE, neural, and neuralnet.
Project Pursuit Regression
Projection pursuit regression is another very general model for representing non-linear relationships. Projection pursuit models have the form:
The functions gm are called ridge functions. The project pursuit algorithm tries to optimize parameters for the parameters ωm by trying to minimize the sum of the residuals. In equation form:
Project pursuit regression is closely related to the neural network models that we saw above. (Note the similar form of the equations.) If we were to use the sigmoid function for the ridge functions gm, projection pursuit would be identical to a neural network. In practice, projection pursuit regression is usually used with some type of smoothing method for the ridge functions. The default in R is to use Friedman’s supersmoother function. (This function is actually pretty complicated and chooses the best of three relationships to pick the best smoothing function. See the help file for supsmu for more details. Note that this function finds the best smoother for the input data, not the smoother that leads to the best model.)
To use projection pursuit regression in R, use the function ppr:
## S3 method for class 'formula':
ppr(formula, data, weights, subset, na.action,
contrasts = NULL, ..., model = FALSE)
## Default S3 method:
ppr(x, y, weights = rep(1,n),
ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1, ...)
Arguments to ppr include the following.
Argument | Description | Default |
---|---|---|
formula/data/subset/na.action, x/y | Specifies the data to use for modeling, depending on the form of the function. | |
weights | A vector of weights for each case. | |
contrasts | A list specifying the contrasts to use for factors. | NULL |
model | A logical value indicating whether to return the model frame. | FALSE |
ww | A vector of weights for each response. | rep(1, q) |
nterms | Number of terms to include in the final model. | |
max.terms | Maximum number of terms to choose from when building the model. | nterms |
optlevel | An integer value between 0 and 3, which determines how optimization is done. See the help file for more information. | 2 |
sm.method | A character value specifying the method used for smoothing the ridge functions. Specify sm.method="supsmu" for Friedman’s supersmoother, sm.method="spline" to use the code from smooth.spline, or sm.method="gcvspline" to choose the smoothing method with gcv . | "supsmu" |
bass | When sm.method="supsmu" , a numeric value specifying the “bass” tone control for the supersmoother algorithm. | 0 |
span | When sm.method="supsmu" , a numeric value specifying the “span” control for the supersmoother. | 0 |
df | When sm.method="spline" , specifies the degrees of freedom for the spline function. | 5 |
gcvpen | When sm.method="gcvspline" , a numeric value specifying the penalty for each degree of freedom. | 1 |
... |
Let’s try projection pursuit regression on the home sales data:
> sf.price.model.ppr <- ppr(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training, nterms=20)
> sf.price.model.ppr
Call:
ppr(formula = price ~ bedrooms + squarefeet + lotsize + latitude +
longitude + neighborhood + month,
data = sanfrancisco.home.sales.training,
nterms = 20)
Goodness of fit:
20 terms
1.532615e+13
The summary function for ppr models prints out an enormous amount of information, including the function call, goodness-of-fit measurement, projection pursuit vectors, and coefficients of ridge terms; I have omitted the output from the book to save space.
You can plot the ridge functions from a ppr model using the plot function. To plot them all at the same time, I used the graphical parameter mfcol=c(4, 4) to plot them on a 4 × 4 grid. (I also narrowed the margins to make them easier to read.)
par(mfcol=c(4,4), mar=c(2.5,2.5,1.5,1.5))
plot(sf.price.model.ppr)
The ridge functions are shown in Figure 20-11. I picked 12 explanatory variables, which seemed to do best on the validation data (though not on the training data):
> calculate_rms_error(sf.price.model.ppr,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
194884.8 585613.9
Figure 20-11. Ridge functions from the projection pursuit model
Generalized Additive Models
Generalized additive models are another regression model technique for modeling complicated relationships in high-dimensionality data sets. Generalized additive models have the following form:
Notice that each predictor variable xj is first processed by a function fj and is then used in a linear model. The generalized additive model algorithm finds the form of the functions f. These functions are often called basis functions.
The simplest way to fit generalized additive models in R is through the function gam in the library gam:
gam(formula, family = gaussian, data, weights, subset, na.action,
start, etastart, mustart, control = gam.control(...),
model=FALSE, method, x=FALSE, y=TRUE, ...)
This implementation is similar to the version from S and includes support for both local linear regression and smoothing spline basis functions. The gam package currently includes two different types of basis functions: smoothing splines and local regression. The gam function uses a back-fitting method to estimate parameters for the basis functions and also estimates weights for the different terms in the model using penalized residual sum of squares.
When using the gam function to specify a model, you need to specify which type of basis function to use for which term. For example, suppose that you wanted to fit a model where the response variable was y and the predictors were u, v, w, and x. To specify a model with smoothing functions for u and v, a local regression term for w, and an identity basis function for x, you would specify the formula as y~s(u)+s(v)+lo(w)+x.
Here is a detailed description of the arguments to gam.
Argument | Description | Default |
---|---|---|
formula | A gam formula specifying the form of the model. (See the help files for s and lo for more information on how to specify options for the basis functions.) | |
family | A family object specifying the distribution and link function. See Generalized Linear Models for a list of families. | gaussian() |
data | A data frame containing the data to use for fitting. | list |
weights | An optional numeric vector of weights for the input data. | NULL |
subset | An optional vector specifying the subset of observations to use in fitting the model. | NULL |
na.action | A function that indicates how to deal with missing values. | options("na.action"), which is na.omit by default |
offset (through gam.fit) | A numeric value specifying an a priori known component to include in the additive predictor during fitting. | NULL |
start | Starting values for the parameters in the additive predictors. | |
etastart | Starting values for the additive predictors. | |
mustart | Starting values for the vector of means. | |
control | A list of parameters for controlling the fitting process. Use the function gam.control to generate a suitable list (and see the help file for that function to get the tuning parameters). | gam.control() |
model | A logical value indicating whether the model frame should be included in the returned object. | FALSE |
method | A character value specifying the method that should be used to fit the parametric part of the model. The only allowed values are method="glm.fit" (which uses iteratively reweighted least squares) or method="model.frame" (which does nothing except return the model frame). | NULL |
x | A logical value specifying whether to return the X matrix (the predictors) with the model frame. | FALSE |
y | A logical value specifying whether to return the Y vector (the response) with the model frame. | TRUE |
... | Additional parameters passed to other methods (particularly, gam.fit ). |
In R, there is an alternative implementation of generalized additive models available through the function gam in the package mgcv:
library(mgcv)
gam(formula,family=gaussian(),data=list(),weights=NULL,subset=NULL,
na.action,offset=NULL,method="GCV.Cp",
optimizer=c("outer","newton"),control=gam.control(),scale=0,
select=FALSE,knots=NULL,sp=NULL,min.sp=NULL,H=NULL,gamma=1,
fit=TRUE,paraPen=NULL,G=NULL,in.out,...)
This function allows a variety of different basis functions to be used: thin-plate regression splines (the default), cubic regression splines, and p-splines. The alternative gam function will estimate parameters for the basis functions as part of the fitting process using penalized likelihood maximization. The gam function in the mgcv package has many more options than the gam function in the gam package, but it is also a lot more complicated. See the help files in the mgcv package for more on the technical differences between the two packages.
Support Vector Machines
Support vector machines (SVMs) are a fairly recent algorithm for nonlinear models. They are a lot more difficult to explain to nonmathematicians than most statistical modeling algorithms. Explaining how SVMs work in detail is beyond the scope of this book, but here’s a quick synopsis:
SVMs don’t rely on all the underlying data to train the model. Only some observations (called the support vectors) are used. This makes SVMs somewhat resistant to outliers (like robust regression techniques) when used for regression. (It’s also possible to use SVMs in the opposite way: to detect anomalies in the data.) You can control the range of values considered through the insensitive-loss function parameter epsilon.
SVMs use a nonlinear transformation of the input data (like the basis functions in additive models or kernels in kernel methods). You can control the type of kernel used in SVMs through the parameter kernel.
The final SVM model is fitted using a standard regression, with maximum likelihood estimates.
SVMs are black-box models; it’s difficult to learn anything about a problem by looking at the parameters from a fitted SVM model. However, SVMs have become very popular, and many people have found that SVMs perform well in real-world situations. (An interesting side note is that SVMs are included as part of the Oracle Data Mining software, while many other algorithms are not.)
In R, SVMs are available in the library e1071,[60] through the function svm:
library(e1071)
## S3 method for class 'formula':
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
## Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)
Other implementations are available through the ksvm and lssvm functions in the kernlab library, svmlight in the klaR library, and svmpath in the svmpath library.
Let’s try building an svm model for the home sales data:
> sf.price.model.svm <- svm(
+ price~bedrooms+squarefeet+lotsize+latitude+
+ longitude+neighborhood+month,
+ data=sanfrancisco.home.sales.training)
Here is how the model performed:
> calculate_rms_error(sf.price.model.svm,
+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")
train.err test.err
518647.9 641039.5
[60] Incidentally, this is, by far, the worst-named package available on CRAN. It’s named for a class given by the Department of Statistics, TU Wien. The package contains a number of very useful functions: SVM classifiers, algorithms for tuning other modeling functions, naive Bayes classifiers, and some other useful functions. It really should be called something like “veryusefulstatisticalfunctions.”
Chapter 21. Classification Models
In Chapter 20, I provided an overview of R’s statistical modeling software for regression problems. However, not all problems can be solved by predicting a continuous numerical quantity like a drug dose, or a person’s wage, or the value of a customer. Often, an analyst’s goal is to classify an item into a category or maybe to estimate the probability that an item belongs to a certain category. Models that describe this relationship are called classification models.
This chapter gives an overview of R’s statistical modeling software for linear classification models.
Linear Classification Models
In this section, we’ll look at a few popular linear classification models.
Logistic Regression
Suppose that you were trying to estimate the probability of a certain outcome (which we’ll call A) for a categorical variable with two values. You could try to predict the probability of A as a linear function of the predictor variables, assuming y = c0 + c1x1 + x2x2 + ... + cnxn= Pr(A). The problem with this approach is that the value of y is unconstrained; probabilities are valid only for values between 0 and 1. A good approach for dealing with this problem is to pick a function for y that varies between 0 and 1 for all possible predictor values. If we were to use that function as a link function in a general linear model, then we could build a model that estimates the probability of different outcomes. That is the idea behind logistic regression.
In a logistic regression, the relationship between the predictor variables and the probability that an observation is a member of a given class is given by the logistic function:
The logit function (which is used as the link function) is:
Let’s take a look at a specific example of logistic regression. In particular, let’s look at the field goal data set. Each time a kicker attempts a field goal, there is a chance that the goal will be successful and a chance that it will fail. The probability varies according to distance; attempts closer to the end zone are more likely to be successful. To model this relationship, we’ll try to use a logistic regression. To begin, let’s load the data and create a new binary variable for field goals that are either good or bad:
> library(nutshell)
> data(field.goals)
> field.goals.forlr <- transform(field.goals,
+ good=as.factor(ifelse(play.type=="FG good","good","bad")))
Let’s take a quick look at the percentage of good field goals by distance. We’ll start by tabulating the results with the table function:
> field.goals.table <- table(field.goals.forlr$good,
+ field.goals.forlr$yards)
> field.goals.table
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
bad 0 0 1 1 1 1 0 0 0 3 5 5 2 6 7 5 3 0 4 3 11
good 1 12 24 28 24 29 30 18 27 22 26 32 22 21 30 31 21 25 20 23 29
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
bad 6 7 5 6 11 5 9 12 11 10 9 5 8 11 10 3 1 2 1 1 1
good 35 27 32 21 15 24 16 15 26 18 14 11 9 12 10 2 1 3 0 1 0
60 61 62
bad 1 1 1
good 0 0 0
We’ll also plot the results (as percentages):
> plot(colnames(field.goals.table),
+ field.goals.table["good",]/
+ (field.goals.table["bad",] +
+ field.goals.table["good",]),
+ xlab="Distance (Yards)", ylab="Percent Good")
The resulting plot is shown in Figure 21-1. As you can see, field goal percentage tapers off linearly between about 25 and 55 yards (with a few outliers at the end).
Each individual field goal attempt corresponds to a Bernoulli trial; the number of successful field goals at each position on the field will be given by a binomial distribution. So we specify family="binomial" when calling glm. To model the probability of a successful field goal using a logistic regression, we would make the following call to glm:
> field.goals.mdl <- glm(formula=good~yards,
+ data=field.goals.forlr,
+ family="binomial")
Figure 21-1. Field goal percentage by distance during the 2005 NFL season
Just like lm, the glm function returns no results by default. The print method will show some details about the model fit:
> field.goals.mdl
Call: glm(formula = good ~ yards, family = "binomial",
data = field.goals.forlr)
Coefficients:
(Intercept) yards
5.17886 -0.09726
Degrees of Freedom: 981 Total (i.e. Null); 980 Residual
Null Deviance: 978.9
Residual Deviance: 861.2 AIC: 865.2
And, as with lm, you can get more detailed results about the model object with the summary method:
> summary(field.goals.mdl)
Call:
glm(formula = good ~ yards, family = "binomial", data = field.goals.forlr)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5582 0.2916 0.4664 0.6979 1.3790
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.178856 0.416201 12.443 <2e-16 ***
yards -0.097261 0.009892 -9.832 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 978.90 on 981 degrees of freedom
Residual deviance: 861.22 on 980 degrees of freedom
AIC: 865.22
Number of Fisher Scoring iterations: 5
Let’s take a quick look at how well this model fits the data. First, let’s start by plotting the field goals from 2005 as above:
> plot(colnames(field.goals.table),
+ field.goals.table["good",]/
+ (field.goals.table["bad",] +
+ field.goals.table["good",]),
+ xlab="Distance (Yards)", ylab="Percent Good")
Next, we’ll add a line to this chart showing the estimated probability of success at each point. We’ll create a function to calculate the probability and then use that function to plot the curve:
> fg.prob <- function(y) {
+ eta <- 5.178856 + -0.097261 * y;
+ 1 / (1 + exp(-eta))
+ }
> lines(15:65,fg.prob(15:65),new=TRUE)
The chart is shown in Figure 21-2. As expected from the statistics above, the model look like it fits the data reasonably well.
Figure 21-2. Comparing predicted field goal success to actual success
For more than two (unordered) categories, you need to use a different method to predict probabilities. One method is to use the multinom function:
multinom(formula, data, weights, subset, na.action,
contrasts = NULL, Hess = FALSE, summ = 0, censored = FALSE,
model = FALSE, ...)
This actually fits multinomial log-linear models using neural networks.
Here is a description of the arguments to the multinom function.
Argument | Description | Default |
---|---|---|
formula | A formula specifying the form of the model to fit. | |
data | A data frame to use for the training data for the model. | |
weights | An optional vector of weights for the training data. | |
subset | An optional expression describing the set of observations to use for fitting the model. | |
na.action | A function specifying how to treat missing values. | |
contrast | A list of contrasts to use for factors appearing as variables in formula . | NULL |
Hess | A logical value specifying whether the Hessian (observed observation matrix) should be returned. | FALSE |
summ | An integer value describing the method used to summarize data. Use summ=0 not to summarize, summ=1 or summ=2 to replace duplicate observations with a single observation (and appropriately adjusting the weights), and summ=3 to also combine rows with the same predictor variables but different response variables. | 0 |
censored | If the response variable is a matrix with more than two columns, changes how the values are interpreted. If censored=FALSE, then values are interpreted as counts; if censored=TRUE , then values of 1 are interpreted as possible values, and values of 0 as impossible. | FALSE |
model | A logical value specifying whether the model matrix should be returned. | FALSE |
... | Additional arguments passed to nnet . |
For more than two ordered categories, you can also use proportional odds linear regression. To do this in R, you can use the polr function in the MASS package:
polr(formula, data, weights, start, ..., subset, na.action,
contrasts = NULL, Hess = FALSE, model = TRUE,
method = c("logistic", "probit", "cloglog", "cauchit"))
Here is a description of the arguments to the polr function.
Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a statistical technique for finding the linear combination of features that best separate observations into different classes. LDA assumes that the data in each class is normally distributed and that there is a unique covariance matrix for each class. To use linear discriminant analysis in R, use the function lda:
library(MASS)
## S3 method for class 'formula':
lda(formula, data, ..., subset, na.action)
## Default S3 method:
lda(x, grouping, prior = proportions, tol = 1.0e-4,
method, CV = FALSE, nu, ...)
## S3 method for class 'data.frame':
lda(x, ...)
## S3 method for class 'matrix':
lda(x, grouping, ..., subset, na.action)
Here is a description of the arguments to the lda function.
Argument | Description | Default |
---|---|---|
formula | A formula specifying the form of the model to fit. | |
data | If a formula is given, specifies a data frame for the training. | |
x | Specifies a matrix or data frame for the fitting data (when no formula is provided). | |
grouping | A factor specifying the response variable (when no formula is provided). | |
prior | A vector of prior probabilities for class membership (in the same order as the levels of grouping ). | proportions |
tol | A numeric value specifying a tolerance for testing if the input data is a singular matrix; if the variance of any variable is less than tol^2 , it will be rejected. | 1.0e-4 |
subset | A vector specifying the set of observations in data to include. | |
na.action | A function specifying how to deal with missing values. | |
method | The method for fitting. Use method="moment" for standard estimators, method="mle" for MLEs, method="mve" to use cov.mve, or method="t" for estimates based on the t-distribution. | |
CV | A logical value specifying whether to use “leave-one-out” cross-validation. (See the help file for more information.) | FALSE |
nu | A numeric value specifying degrees of freedom when method="t" . | |
... | Arguments passed to other methods. |
A closely related function for classification is quadratic discriminant analysis (QDA), available through the function qda. QDA looks for a quadratic combination of features that best separate observations into different classes:
library(MASS)
qda(x, ...)
## S3 method for class 'formula':
qda(formula, data, ..., subset, na.action)
## Default S3 method:
qda(x, grouping, prior = proportions,
method, CV = FALSE, nu, ...)
## S3 method for class 'data.frame':
qda(x, ...)
## S3 method for class 'matrix':
qda(x, grouping, ..., subset, na.action)
The arguments to qda are the same as the arguments to lda.
For the remainder of this chapter, I’ll rely on a single data set for examples: the Spambase data set. The Spambase data set was created by Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt at Hewlett-Packard Labs. It includes 4,601 observations corresponding to email messages, 1,813 of which are spam. From the original email messages, 58 different attributes were computed. This data set is really nice to use in examples because it’s already been cleaned and preprocessed.
Here is how I loaded the raw data into R:
> spambase <- read.csv(
+ file="~/Documents/book/data/spam/spambase.data.txt", header=FALSE)
> names(spambase) <-
+ c("word_freq_make", "word_freq_address", "word_freq_all", "word_freq_3d",
+ "word_freq_our", "word_freq_over", "word_freq_remove",
+ "word_freq_internet", "word_freq_order", "word_freq_mail",
+ "word_freq_receive", "word_freq_will", "word_freq_people",
+ "word_freq_report", "word_freq_addresses", "word_freq_free",
+ "word_freq_business", "word_freq_email", "word_freq_you",
+ "word_freq_credit", "word_freq_your", "word_freq_font",
+ "word_freq_000", "word_freq_money", "word_freq_hp", "word_freq_hpl",
+ "word_freq_george", "word_freq_650", "word_freq_lab", "word_freq_labs",
+ "word_freq_telnet", "word_freq_857", "word_freq_data", "word_freq_415",
+ "word_freq_85", "word_freq_technology", "word_freq_1999",
+ "word_freq_parts", "word_freq_pm", "word_freq_direct", "word_freq_cs",
+ "word_freq_meeting", "word_freq_original", "word_freq_project",
+ "word_freq_re", "word_freq_edu", "word_freq_table",
+ "word_freq_conference", "char_freq_semicolon", "char_freq_left_paren",
+ "char_freq_left_bracket", "char_freq_exclamation", "char_freq_dollar",
+ "char_freq_pound", "capital_run_length_average",
+ "capital_run_length_longest", "capital_run_length_total", "is_spam")
> spambase <- transform(spambase, is_spam=as.factor(is_spam))
I’ve included a copy with the nutshell package, so you can load this data set with the commands:
> library(nutshell)
> data(spambase)
To use this data set for our examples, we’ll split it into training and validation data sets. We’ll split the data set into 70% and 30% samples, stratified by the is_spam factor. To do this, we’ll use the function strata in the sampling library to do the sampling:
> library(sampling)
> table(spambase$is_spam)
0 1
2788 1813
> spambase.strata <- strata(spambase,
+ stratanames=c("is_spam"), size=c(1269, 1951), method="srswor")
This function returns a data frame that describes the set of values in the sample:
> names(spambase.strata)
[1] "is_spam" "ID_unit" "Prob" "Stratum"
The variable ID_unit tells us the row numbers in the sample. To create training (and validation) data sets, we’ll extract observations that match (or don’t match) ID_unit values in the stratified sample:
> spambase.training <- spambase[
+ rownames(spambase) %in% spambase.strata$ID_unit,]
> spambase.validation <- spambase[
+ !(rownames(spambase) %in% spambase.strata$ID_unit),]
> nrow(spambase.training)
[1] 3220
> nrow(spambase.validation)
[1] 1381
Let’s try quadratic discriminant analysis with the Spambase data set:
> spam.qda <- qda(formula=is_spam~., data=spambase.training)
> summary(spam.qda)
Length Class Mode
prior 2 -none- numeric
counts 2 -none- numeric
means 114 -none- numeric
scaling 6498 -none- numeric
ldet 2 -none- numeric
lev 2 -none- character
N 1 -none- numeric
call 3 -none- call
terms 3 terms call
xlevels 0 -none- list
> # check with training
> table(actual=spambase.training$is_spam,
+ predicted=predict(spam.qda,newdata=spambase.training)$class)
predicted
actual 0 1
0 1481 470
1 56 1213
> # check with validation
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.qda,newdata=spambase.validation)$class)
predicted
actual 0 1
0 625 212
1 28 516
Flexible discriminant analysis (FDA) is another technique related to LDA. This algorithm is based on the observation that LDA essentially fits a model by linear regression, so FDA substitutes a nonparametric regression for the linear regression. To compute flexible discriminant analysis:
libary(mda)
fda(formula, data, weights, theta, dimension, eps, method,
keep.fitted, ...)
Repeating the example from above:
> spam.fda <- fda(formula=is_spam~., data=spambase.training)
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.fda ,newdata=spambase.validation, type="class"))
predicted
actual 0 1
0 800 37
1 120 424
Another related technique is mixture discriminant analysis (MDA). MDA represents each class with a Gaussian mixture. This is available in R from the mda function in the mda library:
library(mda)
mda(formula, data, subclasses, sub.df, tot.df, dimension, eps,
iter, weights, method, keep.fitted, trace, ...)
Here is an example using the Spambase data set:
> spam.mda <- mda(formula=is_spam~., data=spambase.training)
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.mda, newdata=spambase.validation))
predicted
actual 0 1
0 800 37
1 109 435
Log-Linear Models
There are several ways to fit log-linear models in R. One of the simplest is to use the function loglin:
loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)
The loglin function fits models using iterative proportional fitting (IPF). Here is a description of the arguments to the loglin function.
Argument | Description | Default |
---|---|---|
table | A contingency table to be fit | |
margin | A list of vectors with the marginal totals to be fit | |
start | A starting estimate for the fitted table | rep(1, length(table)) |
fit | A logical value specifying whether to return the fitted values | FALSE |
eps | A numeric value specifying the maximum deviation allowed between observed and fitted margins | 0.1 |
iter | A numeric value specifying the maximum number of iterations | 20 |
param | A logical value specifying whether to return the parameter values | FALSE |
A logical value specifying whether to print the number of iterations and the final deviation | TRUE |
A more user friendly version is loglm:
library(MASS)
loglm(formula, data, subset, na.action, ...)
By using loglm, you can specify a data frame, a model formula, a subset of observations, and an action for NA variables, just like the lm function. (Other arguments are passed to loglin.)
An alternative method for fitting log-linear models is to use generalized linear models. See Generalized Linear Models for more details.
Machine Learning Algorithms for Classification
Much like regression, there are problems where linear methods don’t work well for classification. This section describes some machine learning algorithms for classification problems.
k Nearest Neighbors
One of the simplest techniques for classification problems is k nearest neighbors. Here’s how the algorithm works:
The analyst specifies a “training” data set.
To predict the class of a new value, the algorithm looks for the k observations in the training set that are closest to the new value.
The prediction for the new value is the class of the “majority” of the k nearest neighbors.
To use k nearest neighbors in R, use the function knn in the class package:
libary(class)
knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)
Here is the description of the arguments to the knn function.
Argument | Description | Default |
---|---|---|
train | A matrix or data frame containing the training data. | |
test | A matrix or data frame containing the test data. | |
cl | A factor specifying the classification of observations in the training set. | |
k | A numeric value specifying the number of neighbors to consider. | 1 |
l | When k > 0, specifies the minimum vote for a decision. (If there aren’t enough votes, the value doubt is returned.) | 0 |
prob | If prob=TRUE, then the proportion of votes for the winning class is returned as attribute prob . | FALSE |
use.all | Controls the handling of ties when selecting nearest neighbors. If use.all=TRUE, then all distances equal to the kth largest are included. If use.all=FALSE, then a random selection of observations is used to select k neighbors. | TRUE |
Let’s use knn to classify email messages as spam (or not spam) within the Spambase data set. Unlike some other model types in R, k nearest neighbors doesn’t create a model object. Instead, you provide both the training and the test data as arguments to knn:
> spambase.knn <- knn(train=spambase.training,
+ test=spambase.validation,
+ cl=spambase.training$is_spam)
> summary(spambase.knn)
0 1
861 520
The knn function returns an index of classes for each row in the test data. Let’s compare the results returned by knn to the correct classification results in the original data:
> table(predicted=spambase.knn, actual=spambase.validation$is_spam)
actual
predicted 0 1
0 740 121
1 97 423
As you can see, using k nearest neighbors with the default parameters correctly classifies 423 out of 544 messages as spam, but incorrectly classifies 97 out of 837 legitimate messages as spam.
As an alternative, suppose that we examined the five nearest neighbors, instead of just the nearest neighbor. To do this, we would set the argument k=5:
> spambase.knn5 <- knn(train=spambase.training,
+ test=spambase.validation,
+ cl=spambase.training$is_spam, k=5)
> summary(spambase.knn5)
0 1
865 516
> table(predicted=spambase.knn5, actual=spambase.validation$is_spam)
actual
predicted 0 1
0 724 141
1 113 403
Classification Tree Models
We introduced regression trees in Regression Tree Models. Classification trees work almost the same way. There are two key differences. First, CART uses a different error function to measure how well different splits divide the training data (or to measure cost/complexity trade-offs). Typically, Gini is used to measure cost/complexity. Second, CART uses a different method to choose predicted values. The predicted value at each terminal node is chosen by taking the most common value among the response values in the test data.
As an example of how to use recursive partitioning trees for classification, let’s build a quick tree model on the Spambase data set (output modified slightly to fit on the page):
> spam.tree <- rpart(is_spam~., data=spambase.training)
> spam.tree
n= 3220
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 3220 1269 0 (0.60590062 0.39409938)
2) char_freq_dollar< 0.0395 2361 529 0 (0.77594240 0.22405760)
4) word_freq_remove< 0.065 2148 333 0 (0.84497207 0.15502793)
8) char_freq_exclamation< 0.3905 1874 178 0 (0.905016 0.094984) *
9) char_freq_exclamation>=0.3905 274 119 1 (0.43430657 0.56569343)
18) capital_run_length_total< 65.5 141 42 0 (0.7021277 0.2978723)
36) word_freq_free< 0.77 126 28 0 (0.77777778 0.22222222) *
37) word_freq_free>=0.77 15 1 1 (0.06666667 0.93333333) *
19) capital_run_length_total>=65.5 133 20 1 (0.150376 0.849624) *
5) word_freq_remove>=0.065 213 17 1 (0.07981221 0.92018779) *
3) char_freq_dollar>=0.0395 859 119 1 (0.13853318 0.86146682)
6) word_freq_hp>=0.385 69 7 0 (0.89855072 0.10144928) *
7) word_freq_hp< 0.385 790 57 1 (0.07215190 0.92784810) *
You can get much more detail about the tree object (and the process used to build it) by calling the summary method. I’ve omitted the results because they are quite lengthy.
You can use the printcp function to show the cp table for the fitted object:
> printcp(spam.tree)
Classification tree:
rpart(formula = is_spam ~ ., data = spambase.training)
Variables actually used in tree construction:
[1] capital_run_length_total char_freq_dollar
[3] char_freq_exclamation word_freq_free
[5] word_freq_hp word_freq_remove
Root node error: 1269/3220 = 0.3941
n= 3220
CP nsplit rel error xerror xstd
1 0.489362 0 1.00000 1.00000 0.021851
2 0.141056 1 0.51064 0.51931 0.018041
3 0.043341 2 0.36958 0.37431 0.015857
4 0.036643 3 0.32624 0.34358 0.015300
5 0.010244 5 0.25296 0.28526 0.014125
6 0.010000 6 0.24271 0.27344 0.013866
Let’s take a look at the generated tree:
> plot(spam.tree, uniform=TRUE)
> text(spam.tree, all=TRUE,cex=0.75, splits=TRUE, use.n=TRUE, xpd=TRUE)
The results are shown in Figure 21-3. The library maptree contains an alternative function for plotting classification trees. In many contexts, this function is more readable and easier to use. Here is an example for this tree (see Figure 21-4):
> library(maptree)
> draw.tree(spam.tree, cex=0.5, nodeinfo=TRUE, col=gray(0:8 / 8))
Figure 21-3. rpart tree for Spambase data, from plot.tree
Figure 21-4. rpart tree for Spambase data, plotted by draw.tree
Let’s take a look at how well the rpart model works:
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.tree, newdata=spambase.validation, type="class"))
predicted
actual 0 1
0 795 42
1 96 448
Bagging
To use bagging models in R for classification problems, you can use the function bagging in the package adabag (this function works only for classification, not regression):
library(adabag)
bagging(formula, data, mfinal = 100, minsplit = 5, cp = 0.01,
maxdepth = nlevels(vardep))
Here are the results for the Spambase data set:
> spam.bag <- bagging(formula=is_spam~., data=spambase.training)
> summary(spam.bag)
Length Class Mode
formula 3 formula call
trees 100 -none- list
votes 6440 -none- numeric
class 3220 -none- character
samples 322000 -none- numeric
importance 57 -none- numeric
> table(actual=spambase.training$is_spam,
+ predicted=predict(spam.bag, newdata=spambase.training)$class)
predicted
actual 0 1
0 1878 73
1 344 925
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.bag, newdata=spambase.validation)$class)
predicted
actual 0 1
0 804 33
1 162 382
You can also try the function bagging in the ipred library, which we used in Bagging for regression.
Boosting
You can build boosting models for classification with the function ada in the package ada (this function does not work for regression problems):
## Default S3 method:
ada(x, y,test.x, test.y=NULL, loss=c("exponential","logistic"),
type=c("discrete","real","gentle"), iter=50, nu=0.1, bag.frac=0.5,
model.coef=TRUE, bag.shift=FALSE, max.iter=20, delta=10^(-10),
verbose=FALSE, na.action=na.rpart,...)
## S3 method for class 'formula':
ada(formula, data, ..., subset, na.action=na.rpart)
Let’s use ada to build a boosting model for the Spambase data set:
> spam.ada <- ada(formula=is_spam~., data=spambase.training, loss="logistic")
> spam.ada
Call:
ada(is_spam ~ ., data = spambase.training, loss = "logistic")
Loss: logistic Method: discrete Iteration: 50
Final Confusion Matrix for Data:
Final Prediction
True value 0 1
0 1922 29
1 48 1221
Train Error: 0.024
Out-Of-Bag Error: 0.038 iteration= 50
Additional Estimates of number of iterations:
train.err1 train.kap1
48 48
Here is how ada performed on this problem:
> table(actual=spambase.training$is_spam,
+ predicted=predict(spam.ada, newdata=spambase.training))
predicted
actual 0 1
0 1922 29
1 48 1221
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.ada, newdata=spambase.validation))
predicted
actual 0 1
0 803 34
1 36 508
As you can see, we achieved a very low error rate with boosting (4% false positive and 6.6% false negative), comparable with the results in the original study.
Additional implementations of boosting are available in the library mboost, which we introduced in Boosting for regression.
Neural Networks
We introduced neural network models in Neural Networks; see that section for a description of the arguments to nnet. As an example of how neural network models can be used for classification problems, we’ll build a neural network model to classify messages as “spam” or “not spam” in the Spambase data set:
> spam.nnet <- nnet(is_spam~., data=spambase.training, size=10, decay=0.1)
# weights: 591
initial value 2840.007029
iter 10 value 1902.105150
iter 20 value 1086.933253
iter 30 value 724.134231
iter 40 value 682.122500
iter 50 value 607.033261
iter 60 value 550.845571
iter 70 value 520.489178
iter 80 value 483.315802
iter 90 value 449.411087
iter 100 value 438.685285
final value 438.685285
stopped after 100 iterations
Let’s take a look at how the neural network model performed:
> table(actual=spambase.training$is_spam,
+ predicted=predict(spam.nnet, type="class"))
predicted
actual 0 1
0 1889 62
1 82 1187
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.nnet,
+ newdata=spambase.validation,
+ type="class"))
predicted
actual 0 1
0 796 41
1 39 505
Note that neural network algorithms are nondeterministic (they use some random values), so you might get different results even if you use the same code.
SVMs
Like neural networks, support vector machine models can also be used for either regression or classification. As an example of how to use SVMs for classification, we’ll also use the Spambase data set:
> library(e1071)
> spam.svm <- svm(is_spam~., data=spambase.training)
> spam.svm
Call:
svm(formula = is_spam ~ ., data = spambase.training)
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.01754386
Number of Support Vectors: 975
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.svm,
+ newdata=spambase.validation,
+ type="class"))
predicted
actual 0 1
0 807 30
1 65 479
Random Forests
Random forests are another algorithm that can be used for either regression or classification problems. Here is how random forests can be used with the Spambase data set:
> library(randomForest)
randomForest 4.5-30
> spam.rf <- randomForest(is_spam~., data=spambase.training)
> spam.rf
Call:
randomForest(formula = is_spam ~ ., data = spambase.training)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 7
OOB estimate of error rate: 5.16%
Confusion matrix:
0 1 class.error
0 1890 61 0.03126602
1 105 1164 0.08274232
Notice the confusion matrix, showing how well the random forest performed on the training data. Let’s take a look at how it did on the validation data:
> table(actual=spambase.validation$is_spam,
+ predicted=predict(spam.rf,
+ newdata=spambase.validation,
+ type="class"))
predicted
actual 0 1
0 812 25
1 40 504
Chapter 22. Machine Learning
This chapter covers machine learning algorithms that were not included in Chapter 20. In 20 and 21, we showed techniques for predicting values when you were interested in a specific value. This chapter shows methods for finding patterns in data when you aren’t quite sure what you’re looking for.
The techniques in this chapter are often called data mining. Data mining means something very simple: looking for patterns in data. Unfortunately, the term “data mining” now has negative connotations, much like the term “hacking” has negative connotations. When properly used, data mining algorithms can be a good technique when you are looking for patterns in large, unstructured data sources. R provides implementations of several popular data mining algorithms.
Market Basket Analysis
Association rules are a popular technique for data mining. The association rule algorithm was developed initially by Rakesh Agrawal, Tomasz Imielinski, and Arun Swami at the IBM Almaden Research Center.[61] It was originally designed as an efficient algorithm for finding interesting relationships in large databases of customer transactions. The algorithm finds sets of associations, items that are frequently associated with each other. For example, when analyzing supermarket data, you might find that consumers often purchase eggs and milk together. The algorithm was designed to run efficiently on large databases, especially databases that don’t fit into a computer’s memory.
R includes several algorithms implementing association rules. One of the most popular is the a priori algorithm. To try it in R, use the apriori function in the arules package:
library(arules)
apriori(data, parameter = NULL, appearance = NULL, control = NULL)
Here is a description of the arguments to apriori.
Argument | Description | Default |
---|---|---|
data | An object of class transactions (or a matrix or data frame that can be coerced into that form) in which associations are to be found. | |
parameter | An object of class ASParameter (or a list with named components) that is used to specify mining parameters. Parameters include support level, minimum rule length, maximum rule length, and types of rules (see the help file for ASParameter for more information). | NULL |
appearance | An object of class APappearance (or a list with named components) that is used to specify restrictions on the associations found by the algorithm. | NULL |
control | An object of class APcontrol (or a list with named components) that is used to control the performance of the algorithm. | NULL |
The apriori implementation is well engineered and thought out: it makes ample use of S4 classes to define data types (including a transactions class for data and classes to control parameters), and prints useful information when it is run. However, it currently requires data sets to be loaded completely into memory.
As an example, we will look at a set of transactions from Audioscrobbler. Audioscrobbler was an online service that tracked the listening habits of users. The company is now part of Last.fm and still provides application programming interfaces (APIs) for looking at music preferences. However, in 2005, the company released a database of information on music preferences under a Creative Commons license. The database consists of a set of records showing how many times each user listened to different artists. For our purposes, we’ll ignore the count and just look at users and artists. For this example, I used a random sample of 20,000 user IDs from the database. Specifically, we will try to look for patterns in the artists that users listen to.
I loaded the data into R using the read.transactions function (in the arules package):
> library(arules)
> audioscrobbler <- read.transactions(
+ file="~/Documents/book/data/profiledata_06-May-2005/transactions.csv",
+ format="single",
+ sep=",",
+ cols=c(1,2))
You can find the data in the nutshell package:
> library(nutshell)
> data(audioscrobbler)
To find some results, I needed to change the default settings. I looked for associations at a 6.45% support level, which I specified through the parameter argument. (Why 6.45%? Because that returned exactly 10 rules on the test data, and 10 rules seemed like the right length for an example.)
> audioscrobbler.apriori <- apriori(
+ data=audioscrobbler,
+ parameter=new("APparameter",support=0.0645))
parameter specification:
confidence minval smax arem aval originalSupport support minlen
0.8 0.1 1 none FALSE TRUE 0.0645 1
maxlen target ext
5 rules FALSE
algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[429033 item(s), 20001 transaction(s)] done [2.36s].
sorting and recoding items ... [287 item(s)] done [0.16s].
creating transaction tree ... done [0.03s].
checking subsets of size 1 2 3 4 done [0.25s].
writing ... [10 rule(s)] done [0.00s].
creating S4 object ... done [0.17s].
As you can see, the apriori function includes some information on what it is doing while running. After it finishes, you can inspect the returned object to learn more. The returned object consists of association rules (and is an object of class arules). Like most modeling algorithms, the object has an informative summary function that tells you about the rules:
> summary(audioscrobbler.apriori)
set of 10 rules
rule length distribution (lhs + rhs):sizes
3
10
Min. 1st Qu. Median Mean 3rd Qu. Max.
3 3 3 3 3 3
summary of quality measures:
support confidence lift
Min. :0.06475 Min. :0.8008 Min. :2.613
1st Qu.:0.06536 1st Qu.:0.8027 1st Qu.:2.619
Median :0.06642 Median :0.8076 Median :2.651
Mean :0.06640 Mean :0.8128 Mean :2.696
3rd Qu.:0.06707 3rd Qu.:0.8178 3rd Qu.:2.761
Max. :0.06870 Max. :0.8399 Max. :2.888
mining info:
data ntransactions support confidence
audioscrobbler 20001 0.0645 0.8
You can view the returned rules with the inspect function:
> inspect(audioscrobbler.apriori)
lhs rhs support confidence lift
1 {Jimmy Eat World,
blink-182} => {Green Day} 0.06524674 0.8085502 2.780095
2 {The Strokes,
Coldplay} => {Radiohead} 0.06619669 0.8019382 2.616996
3 {Interpol,
Beck} => {Radiohead} 0.06474676 0.8180670 2.669629
4 {Interpol,
Coldplay} => {Radiohead} 0.06774661 0.8008274 2.613371
5 {The Beatles,
Interpol} => {Radiohead} 0.06719664 0.8047904 2.626303
6 {The Offspring,
blink-182} => {Green Day} 0.06664667 0.8399496 2.888058
7 {Foo Fighters,
blink-182} => {Green Day} 0.06669667 0.8169014 2.808810
8 {Pixies,
Beck} => {Radiohead} 0.06569672 0.8066298 2.632306
9 {The Smashing Pumpkins,
Beck} => {Radiohead} 0.06869657 0.8287093 2.704359
10 {The Smashing Pumpkins,
Pink Floyd} => {Radiohead} 0.06514674 0.8018462 2.616695
The left-hand side of the rules (lhs) forms the predicate of the rule; the right-hand side (rhs) forms the conclusion. For example, consider rule 1. This rule means, “If the user has listened to Jimmy Eat World and Blink-182, then for 6.524675% of the time, he or she also listened to Green Day.” You can draw your own conclusions about whether these results mean anything, other than that Audioscrobbler’s users were fans of alternative and classic rock.
The arules package also includes an implementation of the Eclat algorithm, which finds frequent item sets. To find item sets using the Eclat algorithm, try the function eclat:
eclat(data, parameter = NULL, control = NULL
The eclat function accepts similar arguments as apriori (some of the parameters within the arguments are slightly different). I tightened up the support level for the eclat function in order to keep the number of results low. If you keep the default parameters, then the algorithm will return item sets with only one item, which is not very interesting. So I set the minimum length to 2 and the support level to 12.9%. Here is an example of running eclat on the Audioscrobbler data:
> audioscrobbler.eclat <- eclat(
+ data=audioscrobbler,
+ parameter=new("ECparameter", support=0.129, minlen=2))
parameter specification:
tidLists support minlen maxlen target ext
FALSE 0.129 2 5 frequent itemsets FALSE
algorithmic control:
sparse sort verbose
7 -2 TRUE
eclat - find frequent item sets with the eclat algorithm
version 2.6 (2004.08.16) (c) 2002-2004 Christian Borgelt
create itemset ...
set transactions ...[429033 item(s), 20001 transaction(s)] done [2.44s].
sorting and recoding items ... [74 item(s)] done [0.14s].
creating bit matrix ... [74 row(s), 20001 column(s)] done [0.01s].
writing ... [10 set(s)] done [0.01s].
Creating S4 object ... done [0.02s].
You can view information about the results with the summary function:
> summary(audioscrobbler.eclat)
set of 10 itemsets
most frequent items:
Green Day Radiohead Red Hot Chili Peppers
5 5 3
Nirvana The Beatles (Other)
3 2 2
element (itemset/transaction) length distribution:sizes
2
10
Min. 1st Qu. Median Mean 3rd Qu. Max.
2 2 2 2 2 2
summary of quality measures:
support
Min. :0.1291
1st Qu.:0.1303
Median :0.1360
Mean :0.1382
3rd Qu.:0.1394
Max. :0.1567
includes transaction ID lists: FALSE
mining info:
data ntransactions support
audioscrobbler 20001 0.129
You can also view the item sets with the inspect function:
> inspect(audioscrobbler.eclat)
items support
1 {Red Hot Chili Peppers,
Radiohead} 0.1290935
2 {Red Hot Chili Peppers,
Green Day} 0.1397430
3 {Red Hot Chili Peppers,
Nirvana} 0.1336433
4 {Nirvana,
Radiohead} 0.1384931
5 {Green Day,
Nirvana} 0.1382931
6 {Coldplay,
Radiohead} 0.1538423
7 {Coldplay,
Green Day} 0.1292435
8 {Green Day,
Radiohead} 0.1335433
9 {The Beatles,
Green Day} 0.1290935
10 {The Beatles,
Radiohead} 0.1566922
As above, you can draw your own conclusions about whether the results are interesting.
[61] You can read their paper here: http://rakesh.agrawal-family.com/papers/sigmod93assoc.pdf.
Clustering
Another important data mining technique is clustering. Clustering is a way to find similar sets of observations in a data set; groups of similar observations are called clusters. There are several functions available for clustering in R.
Distance Measures
To effectively use clustering algorithms, you need to begin by measuring the distance between observations. A convenient way to do this in R is through the function dist in the stats package:
dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)
The dist function computes the distance between pairs of objects in another object, such as a matrix or a data frame. It returns a distance matrix (an object of type dist) containing the computed distances. Here is a description of the arguments to dist.
Argument | Description | Default |
---|---|---|
x | The object on which to compute distances. Must be a data frame, matrix, or dist object. | |
method | The method for computing distances. Specify method="euclidean" for Euclidean distances (2-norm), method="maximum" for the maximum distance between observations (supremum norm), method="manhattan" for the absolute distance between two vectors (1-norm), method="canberra" for Canberra distances (see the help file), method="binary" to regard nonzero values as 1 and zeros as 0, or method="minkowski" to use the p-norm (the pth root of the sum of the pth powers of the differences of the components). | "euclidean" |
diag | A logical value specifying whether the diagonal of the distance matrix should be printed by print.dist . | FALSE |
upper | A logical value specifying whether the upper triangle of the distance matrix should be printed. | FALSE |
p | The power of the Minkowski distance (when method="minkowski" ). | 2 |
An alternative method for computing distances between points is the daisy function in the cluster package:
daisy(x, metric = c("euclidean", "manhattan", "gower"),
stand = FALSE, type = list()
The daisy function computes the pairwise dissimilarities between observations in a data set. Here is a description of the arguments to daisy.
Argument | Description | Default |
---|---|---|
x | A numeric matrix or data frame on which to compute distances. | |
metric | A character value specifying the distance metric to use. Specify metric="euclidean" for Euclidean distances, metric="manhattan" for Manhattan distances (like walking around blocks in Manhattan), or metric="gower" to use Gower’s distance. | "euclidean" |
stand | A logical flag indicating whether to standardize measurements before computing distances. | FALSE |
type | A list of values specifying the types of variables in x. Use "ordratio" for ratio-scaled variables to be treated as ordinal variables, "logratio" for ratio-scaled variables that must be logarithmically transformed, "assym" for asymmetric binary, and "symm" for symmetric binary. |
Clustering Algorithms
k-means clustering is one of the simplest clustering algorithms. To use k-means clustering, use the function kmeans from the stats package:
kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen")
Here is a description of the arguments to kmeans.
Argument | Description | Default |
---|---|---|
x | A numeric matrix (or an object that can be coerced to a matrix) on which to cluster. | |
centers | If a numeric value, specifies the number of clusters. If a numeric vector, specifies the initial cluster centers. | |
iter.max | A numeric value specifying the maximum number of iterations. | 10 |
nstart | Specifies the number of random sets to choose (if centers is a number). | 1 |
algorithm | A character value specifying the clustering algorithm to use. Legal values include algorithm="Hartigan-Wong", algorithm="Lloyd", algorithm="Forgy", and algorithm="MacQueen" . | "Hartigan-Wong" |
As an example, let’s try building clusters on the San Francisco home sales data set. First, we need to create a distance matrix from the data frame. To do this, we’ll need to include only a subset of variables:
> sf.dist <- daisy(
+ na.omit(sanfrancisco.home.sales[,
+ c("price", "bedrooms", "squarefeet", "lotsize",
+ "year", "latitude", "longitude")]),
+ metric="euclidean",
+ stand=TRUE)
> summary(sf.dist)
973710 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.015086 3.167900 4.186900 4.617100 5.432400 25.519000
Metric : euclidean
Number of objects : 1396
Next, we’ll try k-means clustering. After some experimentation with different numbers of clusters, I found that six clusters gave some interesting results:
> sf.price.model.kmeans <- kmeans(sf.dist, centers=6)
> sf.price.model.kmeans$size
[1] 502 4 324 130 42 394
> sf.price.model.kmeans$withinss
[1] 346742.69 26377.99 446048.17 254858.23 211858.99 280531.60
Let’s label the original data set with the clusters so that we can show summary statistics for each cluster:
> sanfrancisco.home.sales$cluster <- NA
> for (i in names(sf.price.model.kmeans$cluster)) {
+ sanfrancisco.home.sales[i,"cluster"] <-
+ sf.price.model.kmeans$cluster[i]
+ }
Here are the mean values for each cluster:
> by(sanfrancisco.home.sales[ ,
+ c("price", "bedrooms", "squarefeet",
+ "lotsize", "year", "latitude", "longitude") ],
+ INDICES=sanfrancisco.home.sales$cluster,
+ FUN=mean)
sanfrancisco.home.sales$cluster: 1
price bedrooms squarefeet lotsize year
620227.091633 1.123506 1219.633466 2375.193227 1933.109562
latitude longitude
37.729114 -122.428059
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 2
price bedrooms squarefeet lotsize year
7258750.00000 7.25000 7634.75000 5410.25000 1926.75000
latitude longitude
37.79023 -122.44317
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 3
price bedrooms squarefeet lotsize year
1.151657e+06 2.040123e+00 2.150068e+03 3.003188e+03 1.931238e+03
latitude longitude
3.776289e+01 -1.224434e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 4
price bedrooms squarefeet lotsize year
1.571292e+06 2.907692e+00 2.718185e+03 4.677015e+03 1.934446e+03
latitude longitude
3.777158e+01 -1.224429e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 5
price bedrooms squarefeet lotsize year
2.297417e+06 2.928571e+00 4.213286e+03 6.734905e+03 1.924929e+03
latitude longitude
3.777424e+01 -1.224362e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 6
price bedrooms squarefeet lotsize year
886409.898477 1.284264 1518.230964 2857.159898 1931.637056
latitude longitude
37.752869 -122.474225
As an alternative, you may want to try partitioning around medoids, which is a more robust version of k-means clustering. To use this algorithm in R, try the pam function in the cluster library:
libary(cluster)
pam(x, k, diss = inherits(x, "dist"), metric = "euclidean",
medoids = NULL, stand = FALSE, cluster.only = FALSE,
do.swap = TRUE,
keep.diss = !diss && !cluster.only && n < 100,
keep.data = !diss && !cluster.only, trace.lev = 0)
Let’s try pam on the San Francisco home sales data set:
> sf.price.model.pam <- pam(sf.dist, k=6)
There is a plot method for partition objects (like the object returned by pam), which will display some useful information about the clusters:
> plot(sf.price.model.pam)
The results of this call are shown in Figure 22-1. The call produces two different plots: a cluster plot and a silhouette plot.
Figure 22-1. Information about San Francisco house price pam model
Many other clustering algorithms are available in R:
Agglomerative clustering is available through the agnes function in the cluster package.
Divisive hierarchical clustering is available through the diana function in the cluster package or through mona (if only binary variables are used).
Fuzzy clustering is available through the fanny function in the cluster package.
Self-organizing maps are available through the batchSOM and SOM functions in the class package.
Chapter 23. Time Series Analysis
Time series are a little different from other types of data. Time series data often has long-term trends or periodic patterns that traditional summary statistics don’t capture. To find these patterns, you need to use different types of analyses. As an example of a time series, we will revisit the turkey price data that we first saw in Time Series.
Autocorrelation Functions
One important property of a time series is the autocorrelation function. You can estimate the autocorrelation function for time series using R’s acf function:
acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, ...)
The function pacf is an alias for acf, except with the default type of "partial":
pacf(x, lag.max, plot, na.action, ...)
By default, this function plots the results. (An example plot is shown in Plotting Time Series.) As an example, let’s show the autocorrelation function of the turkey price data:
> library(nutshell)
> data(turkey.price.ts)
> acf(turkey.price.ts, plot=FALSE)
Autocorrelations of series ‘turkey.price.ts’, by lag
0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500
1.000 0.465 -0.019 -0.165 -0.145 -0.219 -0.215 -0.122 -0.136 -0.200
0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833
-0.016 0.368 0.723 0.403 -0.013 -0.187 -0.141 -0.180 -0.226 -0.130
> pacf(turkey.price.ts,plot=FALSE)
Partial autocorrelations of series ‘turkey.price.ts’, by lag
0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333
0.465 -0.300 -0.020 -0.060 -0.218 -0.054 -0.061 -0.211 -0.180 0.098
0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833
0.299 0.571 -0.122 -0.077 -0.075 0.119 0.064 -0.149 -0.061
The function ccf plots the cross-correlation function for two time series:
ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),
plot = TRUE, na.action = na.fail, ...)
By default, this function will plot the results. You can suppress the plot (to just view the function) with the argument plot=FALSE.
As an example of cross-correlations, we can use average ham prices in the United States. These are included in the nutshell package as ham.price.ts:
> library(nutshell)
> data(ham.price.ts)
> ccf(turkey.price.ts, ham.price.ts, plot=FALSE)
Autocorrelations of series 'X', by lag
-1.0833 -1.0000 -0.9167 -0.8333 -0.7500 -0.6667 -0.5833 -0.5000 -0.4167
0.147 0.168 -0.188 -0.259 -0.234 -0.098 -0.004 0.010 0.231
-0.3333 -0.2500 -0.1667 -0.0833 0.0000 0.0833 0.1667 0.2500 0.3333
0.228 0.059 -0.038 0.379 0.124 -0.207 -0.315 -0.160 -0.084
0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 1.0000 1.0833
-0.047 -0.005 0.229 0.223 -0.056 -0.099 0.189 0.039 -0.108
You can apply filters to a time series with the filter function or convolutions (using fast Fourier transforms [FFTs]) with the convolve function.
Time Series Models
Time series models are a little different from other models that we’ve seen in R. With most other models, the goal is to predict a value (the response variable) from a set of other variables (the predictor variables). Usually, we explicitly assume that there is no autocorrelation—that the sequence of observations does not matter.
With time series, we assume the opposite: we assume that previous observations help predict future observations (see Figure 23-1).
Figure 23-1. Extrapolating times series (http://xkcd.com/605/)
To fit an autoregressive model to a time series, use the function ar:
ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"),
na.action, series, ...)
Here is a description of the arguments to ar.
Argument | Description | |
---|---|---|
x | A time series. | |
aic | A logical value that specifies whether the Akaike information criterion is used to choose the order of the model. | TRUE |
order.max | A numeric value specifying the maximum order of the model to fit. | NULL |
method | A character value that specifies the method to use for fitting the model. Specify method="yw" (or method="yule-walker") for the Yule-Walker method, method="burg" for the Burg method, method="ols" for ordinary least squares, or method="mle" for maximum likelihood estimation. | c("yule-walker", "burg", "ols", "mle", "yw") |
na.action | A function that specifies how to handle missing values. | |
series | A character vector of names for the series. | |
demean | A logical value specifying if a mean should be estimated during fitting. | |
var.method | Specifies the method used to estimate the innovations variance when method="ar.burg" . | |
... | Additional arguments, depending on method. |
The ar function actually calls one of four other functions, depending on the fit method chosen: ar.yw, ar.burg, ar.ols, or ar.mle. As an example, let’s fit an autoregressive model to the turkey price data:
> library(nutshell)
> data(turkey.price.ts)
> turkey.price.ts.ar <- ar(turkey.price.ts)
> turkey.price.ts.ar
Call:
ar(x = turkey.price.ts)
Coefficients:
1 2 3 4 5 6 7
0.3353 -0.1868 -0.0024 0.0571 -0.1554 -0.0208 0.0914
8 9 10 11 12
-0.0658 -0.0952 0.0649 0.0099 0.5714
Order selected 12 sigma^2 estimated as 0.05182
You can use the model to predict future values. To do this, use the predict function. Here is the method for ar objects:
predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)
The argument object specifies the model object to use for prediction. You can use newdata to specify new data to use for prediction or n.ahead to specify a number of periods ahead to predict. The argument se.fit specifies whether to return standard errors of the prediction error.
Here is a forecast for the next 12 months for turkey prices:
> predict(turkey.price.ts.ar, n.ahead=12)
$pred
Jan Feb Mar Apr May Jun
2008 1.8827277 1.7209182
2009 1.5439290 1.6971933 1.5849406 1.7800358
Jul Aug Sep Oct Nov Dec
2008 1.7715016 1.9416776 1.7791961 1.4822070 0.9894343 1.1588863
2009
$se
Jan Feb Mar Apr May Jun
2008 0.2276439 0.2400967
2009 0.2450732 0.2470678 0.2470864 0.2480176
Jul Aug Sep Oct Nov Dec
2008 0.2406938 0.2415644 0.2417360 0.2429339 0.2444610 0.2449850
2009
To take a look at a forecast from an autoregressive model, you can use the function ts.plot. This function plots multiple time series on a single chart, even if the times are not overlapping. You can specify colors, line types, or other characteristics of each series as vectors; the ith place in the vector determines the property for the ith series.
Here is how to plot the turkey price time series as a solid line, and a projection 24 months into the future as a dashed line:
ts.plot(turkey.price.ts,
predict(turkey.price.ts.ar,n.ahead=24)$pred,
lty=c(1:2))
The plot is shown in Figure 23-2. You can also fit autoregressive integrated moving average (ARIMA) models in R using the arima function:
arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.method = "BFGS",
optim.control = list(), kappa = 1e6)
Figure 23-2. Forecast of turkey prices using an autoregressive model
Here is a description of the arguments to arima.
Argument | Description | Default |
---|---|---|
x | A time series. | |
order | A numeric vector (p, d, q), where p is the AR order, d is the degree of differencing, and q is the MA order. | c(0, 0, 0) |
seasonal | A list specifying the seasonal part of the model. The list contains two parts: the order and the period. | list(order = c(0, 0, 0), period = NA) |
xreg | An (optional) vector or matrix of external regressors (with the same number of rows as x ). | NULL |
include.mean | A logical value specifying whether the model should include a mean/intercept term. | TRUE |
tranform.pars | A logical value specifying whether the AR parameters should be transformed to ensure that they remain in the region of stationarity. | TRUE |
fixed | An optional numeric vector specifying fixed values for parameters. (Only NA values are varied.) | NULL |
init | A numeric vector of initial parameter values. | NULL |
method | A character value specifying the fitting method to use. The default setting, method="CSS-ML", uses conditional sum of squares to find starting values, then maximum likelihood. Specify method="ML" for maximum likelihood only or method="CSS" for conditional sum of squares only. | c("CSS-ML", "ML", "CSS") |
n.cond | A numeric value indicating the number of initial values to ignore (used only for conditional sum of squares). | |
optim.method | A character value that is passed to optim as method . | "BFGS" |
optim.control | A list of values that is passed to optim as control . | list() |
kappa | The prior variance for the past observations in a differenced model. See the help file for more information. | 1e-6 |
The arima function uses the optim function to fit models. You can use the result of an ARIMA model to smooth a time series with the tsSmooth function. For more information, see the help file for tsSmooth.
Part VI. Additional Topics
This part of the book contains chapters on advanced topics that don’t fit neatly into other parts of the book.
Chapter 24. Optimizing R Programs
In my experience, R runs well on modern computers and moderate-size data sets, returning results in seconds or minutes. If you’re dealing with small data sets and doing normal calculations, you probably don’t have to worry too much about performance. However, if you are dealing with big data sets or doing very complex calculations, then you could run into trouble.
This chapter includes some tips for making R run faster, especially when tackling unusually large or complicated problems.
Measuring R Program Performance
To make your programs faster, you have to measure what they are doing. You have to determine what parts of your program are taking the most time to determine where to focus your optimization efforts. Additionally, you have to measure resource consumption (particularly memory usage) and determine how this affects performance.
Timing
The easiest way to measure your programs is to use the system.time function:
system.time(expr, gcFirst = TRUE)
This function will execute the expression expr, optionally running the garbage collector first (if gcFirst=TRUE). It won’t give you a detailed report on where a program is spending its time, but it won’t slow down the performance of the code you are measuring either. Here’s an example:
> do.stuff <- function() {
+ a <- 1 : 10000
+ for (i in 1 : 10000)
+ a[i] <- a[i]^2
+ a
+ }
> system.time(do.stuff())
user system elapsed
0.081 0.001 0.106
This shows the user time, system time, and total elapsed time required to run your program. The user time shows the time taken by R itself, the system time shows the time used by your operating system (for example, to read files or to communicate with network resources), and the elapsed time shows the total elapsed time. This helps you distinguish between time that your computer is doing other things (like getting email), and time that it is doing work in R.
Profiling
To measure where your R programs are spending their time (this is called profiling), you can use the Rprof function to profile your code:
Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling=FALSE)
Rprof accepts the following options:
Argument | Description | Default |
---|---|---|
filename | Specifies the path to which Rprof will write results. Use NULL to stop profiling. | NULL |
append | Controls whether Rprof will append results to the file (if it exists), or overwrite the file | FALSE |
interval | Specifies the time between samples | 0.02 |
memory.profiling | Specifies whether to write memory information to the file | FALSE |
After using Rprof to start and stop collecting profiling data, you use the summaryRprof function to view the results:
summaryRprof(filename = "Rprof.out", chunksize = 5000,
memory=c("none","both","tseries","stats"),
index=2, diff=TRUE, exclude=NULL)
Here is a description of the arguments to summaryRprof:
Argument | Description | Default |
---|---|---|
filename | Specifies the path from which to read results. | "Rprof.out" |
chunksize | Number of lines to read at once | 5000 |
memory | Specifies how to show memory information. Specify memory="none" to exclude memory information, memory="both" to include both timing and memory data, memory="tseries" to present the data as a time series, or memory="tstats" to show statistics on memory consumption. | "none" |
index | Specifies whether to write memory information to the file | 2 |
diff | Specifies whether to use changes in memory usage or total memory usage in memory statistics | TRUE |
exclude | Specifies a set of functions to exclude from the results | NULL |
Here’s a quick example:
> # define a function to create arrays with text labels for each element
> # We'll revisit this example below
> labeled.array <- function(n) {
+ a <- 1:n
+ from <- "0123456789"
+ to <- "ABCDEFGHIJ"
+ for (i in 1:n) {
+ names(a)[i] <- chartr(from,to,i)
+ }
+ a
+ }
> # turn on profiling
> Rprof(filename="~/labeled.array.profiling.out"), memory.profiling=TRUE
> # do some work
> arrays <- list()
> for (i in 10:15) {
+ arrays[[as.character(2 **i)]] <- labeled.array(2 ** i)
+ }
> # turn off profiling
> Rprof()
> # look at the output
> summaryRprof(filename="~/labeled.array.profiling.out")
$by.self
self.time self.pct total.time total.pct mem.total
"names<-" 28.92 63.87 28.92 63.87 229.0
"labeled.array" 15.84 34.98 45.28 100.00 380.5
"chartr" 0.52 1.15 0.52 1.15 5.6
$by.total
total.time total.pct mem.total self.time self.pct
"labeled.array" 45.28 100.00 380.5 15.84 34.98
"names<-" 28.92 63.87 229.0 28.92 63.87
"chartr" 0.52 1.15 5.6 0.52 1.15
$sample.interval
[1] 0.02
$sampling.time
[1] 45.28
As you can see, the names assignment in the labeled.array function consumed most of the time taken by this expression (63.87%). In contrast, the function chartr used 1.15%. So if you wanted to optimize this program, your best choice would be to optimize the assignment statement, not the character swap function.
Monitor How Much Memory You Are Using
The function gc serves two purposes. First, it causes garbage collection to occur immediately, potentially freeing up storage space. Second, it displays statistics on free memory:
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 774900 20.7 919870 24.6 3032449 81.0
Vcells 53549840 408.6 176511395 1346.7 380946917 2906.4
To check on the (approximate) size of a specific object, use the function object.size:
> object.size(1)
32 bytes
> object.size("Hello world!")
72 bytes
> object.size(audioscrobbler)
39374504 bytes
The function memory.profile displays information on memory usage by object type:
> memory.profile()
NULL symbol pairlist closure environment
1 9479 160358 3360 1342
promise language special builtin char
8162 44776 138 1294 48872
logical integer double complex character
4727 8373 2185 4 29761
... any list expression bytecode
0 0 3488 2 0
externalptr weakref raw S4
993 272 273 1008
To monitor how much memory R is using on a Microsoft Windows system, you can use the function memory.size. (On other platforms, this function returns the value Inf with a warning.) On startup, here is how much memory R used:
> memory.size()
[1] 10.58104
This function reports memory usage in MB. You can check the maximum amount of memory used so far through the memory.size(max=TRUE) option:
> memory.size(max=TRUE)
[1] 12.3125
Profiling Memory Usage
To get more detailed statistics on memory usage in R, you can use the function Rprofmem:
Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)
This function accepts the following arguments:
Argument | Description | Default |
---|---|---|
filename | Pathname to which Rprofmem should write profiling data | "Rprofmem.out" |
append | Specifies whether to append to an existing file or overwrite it | FALSE |
threshold | Specifies a threshold value for writing results; this specifies that only objects allocated on R’s large vector heap of this size and above will be recorded | 0 |
Another useful function in R is the tracemem function and the accompanying functions untracem and retracemen:
tracemem(x)
untracemem(x)
retracemem(x, previous = NULL)
These functions will cause R to print a message whenever R code copes the specified object x, disables that functionality, or reenables it.
Optimizing Your R Code
Once you figure out where your program is spending its time, you can focus on improving those areas. This section describes some common causes for poor performance and shows how to resolve them.
Using Vector Operations
R is a functional language with built-in support for vector operations. Whenever possible, you should use vector operations in your code and not write iterative algorithms. This section explains why.
Iterative algorithms and vector operations
Let’s consider a simple problem: calculating a vector with the square of every integer between 1 and n. Consider the following naive implementation:
> naive.vector.of.squares <- function(n) {
+ v <- 1:n
+ for (i in 1:n)
+ v[i] <- v[i]^2
+ v
+ }
> naive.vector.of.squares(10)
[1] 1 4 9 16 25 36 49 64 81 100
How does the performance of this function vary with n? Let’s do a quick experiment:
> # 10,000 values
> system.time(naive.vector.of.squares(10000))
user system elapsed
0.037 0.000 0.037
> # 10,000,000 values
> system.time(naive.vector.of.squares(10000000))
user system elapsed
30.211 0.233 30.178
As you can see, the time required to compute the vector varies linearly with the size of the vector (n). This makes sense: R is looping through all n elements in the vector and changing each element one at a time. (Note that R doesn’t actually copy the vector v repeatedly inside the loop; see Objects Are Copied in Assignment Statements for more about how this works.)
It turns out that there is a much better way to implement this function: you can use a single vector operation. Built-in vector functions like `^` are implemented natively in C or Fortran code and not calculated by the R interpreter, and are calculated in a single call to the underlying library. Many common math functions are included as native functions in R. In most cases, these functions are implemented as calls to external math libraries. For many reasons, these vector math operations can be much faster. As an example, let’s re-implement the vector of squares function that we implemented above:
> better.vector.of.squares <- function(n) {
+ (1:n)^2
+ }
How does the better algorithm compare with the original? Let’s try the two algorithms with inputs of size 10,000 and 10,000,000:
> # 10,000 values
> system.time(better.vector.of.squares(10000))
user system elapsed
0.001 0.000 0.000
> # 10,000,000 values
> system.time(better.vector.of.squares(10000000))
user system elapsed
0.084 0.001 0.083
As you can see, better.vector.of.squares performs much better than naive.vector.of.squares; it’s over 300 times as fast. Although many programmers find iterative algorithms like the one in naive.vector.of.squares more intuitive than vector operations like the one used in better.vector.of.squares, vector operations are much, much faster. Whenever possible, use vector operations in R.
Transforming problems to use built-in functions
Clearly, R’s built-in math functions perform better than algorithms coded in R. (As an obvious example, if you want to multiply two matrices together, you should probably use the %∗% operator and not write your own matrix multiplication code in R.)
Often, it is possible to use built-in functions by transforming a problem. As an example, let’s consider an example from queueing theory. Queueing theory is the study of systems where “customers” arrive, wait in a “queue” for service, are served, and then leave. As an example, picture a cafeteria with a single cashier. After customers select their food, they proceed to the cashier for payment. If there is no line, they pay the cashier and then leave. If there is a line, they wait in the line until the cashier is free. If we suppose that customers arrive according to a Poisson process and that the time required for the cashier to finish each transaction is given by an exponential distribution, then this is called an M/M/1 queue. (This means “memoryless” arrivals, “memoryless” service time, and one server.)
A very useful formula for queueing theory is Erlang’s B formula. Picture a call center with n operators but no queue: if a customer calls the center and there is a free operator, then the operator will answer the customer’s call. However, if every operator is busy, the customer will get a busy signal. Further, let’s make the same assumptions as above: customers arrive according to a Poisson process, and the time required to service each call is given by an exponential distribution. This is called an M/M/n/n queue. Erlang’s B formula tells us the probability that all operators are busy at a given time; it is the probability that a customer who calls into the data center will get a busy signal:
Unfortunately, you’ll find that it’s hard to calculate this value directly for more than a handful of operators because R can’t handle numbers as big (or as small) as it needs to handle. One trick to perform this calculation is to transform this formula into formulas that are already implemented as R functions: Poisson distribution calculations:[62]
So, to calculate Erlang’s B formula in R, you could use an R function like this:
erlangb <- function(c, r) {dpois(c,r)/ppois(c,r)}
By using the built-in function, we are using compiled code written in a low-level language (usually C or Fortran, depending on the function). This code is typically faster than interpreted R code.
Lookup Performance in R
You can use vector, lists, or environment objects to store objects in R and to look them up by key. But environment objects have two special features that they don’t share with vectors or lists. First, environment objects are mutable. Secondly, environment objects are implemented in hash tables, so you can look up values in (essentially) constant time.
Even better, R allows you to define new functions for working with objects and use native R syntax to manipulate these objects. So it’s possible to substitute environment objects for lists and vectors without rewriting all your existing code.
Let me explain how this works.
Lookups and R objects
It’s often useful to look up data in a table of values, and it is tempting to use names to look up items in R vectors. For small data sets, this is OK. Unfortunately, you might run into some performance problems with large tables. Let’s take a closer look at the performance of table lookups in R.
To start with, let’s build a large, labeled vector in R. To make things simple, I wrote a function to generate a labeled vector for a given input size. I filled each vector with sequential numerical values. Then I assigned each value a label by translating each value to a character string.
> labeled.array <- function(n) {
+ a <- 1:n
+ from <- "0123456789"
+ to <- "ABCDEFGHIJ"
+ for (i in 1:n) {
+ names(a)[i] <- chartr(from,to,i)
+ }
+ a
+ }
Here’s an example of the output of this function:
> a.20 <- labeled.array(20)
> a.20
B C D E F G H I J BA BB BC BD BE BF BG BH BI BJ CA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Now let’s do the same thing for environments. We’ll create a new environment, specifying that a hash table should be used. Then we’ll assign identical values to the labeled.array function:
> labeled.environment <- function(n) {
+ e <- new.env(hash=TRUE, size=n)
+ from <- "0123456789"
+ to <- "ABCDEFGHIJ"
+ for (i in 1:n) {
+ assign(x=chartr(from, to, i), value=i, envir=e)
+ }
+ e
+ }
Here are a couple of examples showing how you fetch values from the environment object:
> get("B", envir=e.20)
[1] 1
> get("CA", envir=e.20)
[1] 20
Alternately, you can use the `[[` operator:
> e.20[["B"]]
[1] 1
> e.20[["CA"]]
[1] 20
We’d like to show how long it takes to look up values in an array using different methods. Let’s start by creating a set of arrays and environments for testing:
> arrays <- list()
> for (i in 10:15) {
+ arrays[[as.character(2 ** i)]] <- labeled.array(2 ** i)}
> environments <- list()
> for (i in 10:15) {
+ environments[[as.character(2 ** i)]] <- labeled.environment(2 ** i)}
Notice that I created a set of different size arrays and environments for testing. I created sets for different powers of 2, between 1,024 and 32,768.
Now the fun part. Let’s write a test function to compute the time required to perform the lookups on different data objects. We’ll design the test function so that we can vary the input data type, lookup operation, data size, and number of repetitions.
To do the calculations, I took advantage of a nifty R feature. R allows you to pass around R functions, then execute these expressions later. This allowed me to write a single lookup expression as a functions and then apply this function to different data objects.
We will show how to do the lookup in a few different ways:
by index
by label, using the single-bracket lookup operator
by label, using the double-bracket lookup operator with exact matches only (the default)
by label, using the double-bracket lookup operator with inexact matches allowed
I performed 1,024 lookups for each lookup type and data size. Here is the script that I used to calculate the results:
test_expressions <- function(description, fun, data, reps) {
# data should be a list
# fun should be a function that takes a data object, length,
# and number of repetitions
# description should be a char
cat(paste(description,"\n"))
results <- vector()
for (n in names(data)) {
results[[n]] <- system.time(fun(data[[n]],
as.integer(n), reps))[["user.self"]]
}
print(results)
}
test_expressions(
"first element, by index:",
function(d,l,r) {
s <- 0
for (v in 1:r) {s <- s + d[1]}
},
arrays, 1024)
test_expressions(
"last element, by index:",
function(d,l,r) {
s <- 0
for (v in 1:r) {s <- s + d[l]}
},
arrays, 1024)
# useful definitons for translation
from <- "0123456789"
to <- "ABCDEFGHIJ"
test_expressions(
"arrays, first element, by label, single bracket:",
function(d,l,r) {
s <- 0
min <- chartr(from,to,1)
for (v in 1:r) {s <- s + d[min]}
},
arrays, 1024)
test_expressions(
"arrays, last element, by label, single bracket:",
function(d,l,r) {
s <- 0
max <- chartr(from,to,l)
for (v in 1:r) {s <- s + d[max]}
},
arrays, 1024)
test_expressions(
"arrays, first element, by label, double bracket, exact (default):",
function(d,l,r) {
s <- 0
min <- chartr(from,to,1)
for (v in 1:r) {s <- s + d[[min]]}
},
arrays, 1024)
test_expressions(
"arrays, last element, by label, double bracket, exact (default):",
function(d,l,r) {
s <- 0
max <- chartr(from,to,l)
for (v in 1:r) {s <- s + d[[max]]}
},
arrays, 1024)
test_expressions(
"arrays, first element, by label, double bracket, not exact:",
function(d,l,r) {
s <- 0
min <- chartr(from,to,1)
for (v in 1:r) {s <- s + d[[min, exact=FALSE]]}
},
arrays, 1024)
test_expressions(
"arrays, last element, by label, double bracket, not exact:",
function(d,l,r) {
s <- 0
max <- chartr(from,to,l)
for (v in 1:r) {s <- s + d[[max, exact=FALSE]]}
},
arrays, 1024)
test_expressions(
"environments, first element, by label:",
function(d,l,r) {
s <- 0;
min <- chartr(from,to,1);
for (v in 1:r) {s <- s + get(x=min,envir=d)}
},
environments, 1024)
test_expressions(
"environments, last element, by label:",
function(d,l,r) {
s <- 0;
max <- chartr(from,to,l);
for (v in 1:r) {s <- s + get(x=max,envir=d)}
},
environments, 1024)
Here are the results of running these tests on my computer (an aluminum MacBook, 2 GHz, 4 GB RAM):
first element, by index:
1024 2048 4096 8192 16384 32768
0.010 0.003 0.004 0.003 0.005 0.004
last element, by index:
1024 2048 4096 8192 16384 32768
0.010 0.004 0.004 0.004 0.003 0.004
arrays, first element, by label, single bracket:
1024 2048 4096 8192 16384 32768
0.268 0.282 0.588 1.439 2.728 5.397
arrays, last element, by label, single bracket:
1024 2048 4096 8192 16384 32768
0.173 0.278 0.582 1.517 2.713 5.266
arrays, first element, by label, double bracket, exact (default):
1024 2048 4096 8192 16384 32768
0.002 0.002 0.002 0.002 0.003 0.002
arrays, last element, by label, double bracket, exact (default):
1024 2048 4096 8192 16384 32768
0.036 0.070 0.136 0.273 0.549 1.107
arrays, first element, by label, double bracket, not exact:
1024 2048 4096 8192 16384 32768
0.010 0.003 0.003 0.002 0.003 0.003
arrays, last element, by label, double bracket, not exact:
1024 2048 4096 8192 16384 32768
0.042 0.069 0.137 0.275 0.551 1.112
environments, first element, by label:
1024 2048 4096 8192 16384 32768
0.012 0.005 0.006 0.006 0.005 0.005
environments, last element, by label:
1024 2048 4096 8192 16384 32768
0.012 0.005 0.006 0.005 0.006 0.005
Notice that lookups by array are fastest, followed by lookups of the first element using the double-bracket notation. Lookups with the single-bracket notation take substantially longer, but take approximately the same time as looking up the last element by double-bracket notation.
If you test this yourself with other array sizes, you’ll find that the performance of lookups by index is essentially constant, but that lookups by reference scale linearly with the size of the array (in the worst case).
The reason is that vectors are implemented as an array of values and an array of names. Looking up a value by location takes essentially constant time. Looking up a value by label requires R to scan every label in the array of names. In the worst case, R has to scan every name in the array. When you use single-bracket notation, R tried to match all elements with a given label, including fuzzy matches. That means that R scans all the element in the array when you use single-bracket notation. Using double-bracket notation works slightly better; R will return the first matching element that it finds, so it performs well when looking up the first element but badly when looking up the last.
For those of you with an algorithm background, here’s a summary:
Array value lookup by index: Θ(1) time
Array value lookup by label, using the single-bracket lookup operator: : Θ(n) time
Array value lookup by label, using the double-bracket lookup operator with exact matches only (the default): O(1) time
Array value lookup by label, using the double-bracket lookup operator with inexact matches allowed: O(1) time
Notice that lookups in the environment are much, much faster. (If you look at other numbers of elements, you’ll find that performance is essentially constant.) The reason for this is that environments are implemented using hash tables. Hash tables are slower than index lookups by a constant factor: it takes a little time to calculate the hash for an item. (By the way, I haven’t checked exactly which hash implementation is used in R. Depending on the implementation, hash lookups could take up to O(n) time in the worst case.)
For those of you with an algorithm background, here’s a summary:
Environment value lookup by label: O(1) time on average
So what are the lessons here? First, if the performance of your program is OK, don’t worry about what type of lookup you are using. Using environment objects can be less elegant and more confusing than vectors. It is usually more important to write correct code that you and other people can understand and maintain than it is to write fast code.
Using environment objects in place of vectors
Suppose that you have measured the performance of your program and it’s not good enough for your application. If you’re looking up elements by index (and not by value), you should stick with vectors: vectors are slightly faster than environments. However, if your program contains a large number of lookups by label, you might consider replacing vectors with environments.
If you have already written a program that uses lots of single-bracket notation and want to switch to environments, you have two choices:
Change to the double-bracket operator. There are built in methods for both lookup (`[[`) and assignment (`[[<-`) for environment objects.
Redefine the single-bracket operator so that it works with environments. (Doing this isn’t suggested, but it’s possible.)
By default, single-bracket notation is implemented using a primitive function:
> `[`
.Primitive("[")
The primitive function will return an error message when applied to environments; you can’t just define a new method `[.environment`. As an alternative, you can create a wrapper around the primitive function that uses the get method for environments to look up the value:
`[` <- function(x, y, ...) {
if (class(x) == "environment")
get(x=y,envir=x)
else
.Primitive("[")(x,y,...)
}
One final lesson: if you are looking up exactly one value in R, consider using the double-bracket notation (such as x[[i]]) and not the single-bracket notation (such as x[i]). As we showed above, the double-bracket operator will be at least as fast as the single-bracket operator when looking up values in vectors. Additionally, the double-bracket notation makes it easier to change your implementation to use environment objects for storage.
Use a Database to Query Large Data Sets
If you need to query large tables of data, you should consider storing the values in a database. You don’t need to use an external database; the RSQLite package provides an interface to the SQLite library that allows you to store data in files and query the files using SQL. (This is the strategy used by Bioconductor to store annotation databases.) See DBI for more information on how to use this package.
Preallocate Memory
In R, you don’t have to explicitly allocate memory before you use it. For example, you could fill an array with numbers using the following code:
v <- c()
for (i in 1:100000) {v[i] <- i;}
This code works correctly; however, it takes a long time to finish (about 30 seconds on my computer). You can speed up this code substantially by preallocating memory to the vector. You can do this by setting the length, nrow, ncol, or dim attributes for an object. Here is an example:
v2 <- c(NA)
length(v2) <- 100000
for (i in 1:100000) {v2[i] <- i;}
This code works identically but performs much, much faster.
Cleaning Up Memory
As we noted above, you can use the gc function to force the garbage collector to run, potentially freeing up memory:
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 774900 20.7 919870 24.6 3032449 81.0
Vcells 53549840 408.6 176511395 1346.7 380946917 2906.4
> # remove a big object
> rm(audioscrobbler)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 328394 8.8 919870 24.6 3032449 81.0
Vcells 50049839 381.9 141209116 1077.4 380946917 2906.4
If you are running out of storage space on a Microsoft Windows platform, you can get or set the memory limit on a system with the function memory.limit:
> memory.limit()
[1] 1023.484
> memory.limit(size=1280)
NULL
> memory.limit()
[1] 1280
On other platforms, this function will return Inf and print a warning message. On these platforms, you can use the function mem.limits to get or set memory limits:
mem.limits(nsize = NA, vsize = NA)
The argument nsize specifies the number of cons cells (basic units of storage).
If there are no explicit limits, this function may return NA:
> mem.limits()
nsize vsize
NA NA
In R, you usually don’t have to manually manage memory; the system automatically allocates and unallocates memory as needed. However, you can get some information on the process (and control it a little) through the function gc, as described earlier.
If you’re running out of storage space, you might want to try removing objects from the workspace. You can remove an object (or a set of objects) from an environment with the rm function. By default, this function removes objects from the current environment:
> # remove a big object
> rm(audioscrobbler)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 328394 8.8 919870 24.6 3032449 81.0
Vcells 50049839 381.9 141209116 1077.4 380946917 2906.4
Functions for Big Data Sets
If you’re working with a very large data set, you may not have enough memory to use the standard regression functions. Luckily, R includes an alternative set of regression functions for working with big data sets. These functions are slower than the standard regression functions but will work when there is not enough memory to use the standard regression functions:
library(biglm)
# substitute for lm, works in dataframes
biglm(formula, data, weights=NULL, sandwich=FALSE)
# substitute for glm, works in data frames
bigglm(formula, data, family=gaussian(),
weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7,
start=NULL,quiet=FALSE,...)
It’s even possible to use bigglm on data sets inside a database. To do this, you would open a database connection using RODBC or RSQLite and then call bigglm with the data argument specifying the database connection and tablename specifying the table in which to evaluate the formula:
bigglm(formula, data, family=gaussian(),
tablename, ..., chunksize=5000)
[62] Another alternative is to notice that Erlang’s B formula can be rewritten as a recurrence and write a program to iteratively calculate the probability. For more details on this method, see a book like Fundamentals of Queueing Theory by Donald Gross et al. (Wiley-InterScience).
Other Ways to Speed Up R
Sometimes you can cheat a little bit: you can make R run faster without tuning your code. This section shows two ways to do that.
The R Byte Code Compiler
Normally, R is an interpreted language.
But beginning in R 2.13.0, R has included a byte code compiler to speed up computations. As an example, let’s consider the vector of squares function that we used above:
> naive.vector.of.squares
function(n) {
v <- 1:n
for (i in 1:n)
v[i] <- v[i]^2
}
> system.time(naive.vector.of.squares(1000000))
user system elapsed
3.025 0.016 3.036
Now we’ll use the cmpfun function to create a compiled version of this function and then test its performance.
> library(compiler)
> compiled.naive.vector.of.squares <- cmpfun(naive.vector.of.squares)
> system.time(compiled.naive.vector.of.squares(1000000))
user system elapsed
0.637 0.005 0.636
As you can see, the compiled version of this function runs much faster. Of course, it still runs more slowly than the vector operation:
> system.time(better.vector.of.squares(1000000))
user system elapsed
0.008 0.000 0.008
And compiling the vector operation does not make a huge difference:
> better.vector.of.squares.compiled <- cmpfun(better.vector.of.squares)
> system.time(better.vector.of.squares.compiled(1000000))
user system elapsed
0.007 0.000 0.007
But that doesn’t mean you shouldn’t try the compiler for your problem. It’s one of the simplest tricks for speeding up your code. (It’s even easier than ordering a new, faster server. And it’s cheaper.)
Manual compilation
Here’s a description of the compiler functions. To compile an R expression, use the compile function:
compile(e, env = .GlobalEnv, options = NULL)
If you have assigned a function to variable, you can use the cmpfun function as a shorthand:
cmpfun(f, options = NULL)
If you have a large amount of code to compile, you can store it in file and use cmpfile to compile everything at once:
cmpfile(infile, outfile, ascii = FALSE, env = .GlobalEnv,
verbose = FALSE, options = NULL)
Each of these functions allows you to specify a list of options:
optimize
The level of optimization; the default is 2.
suppressAll
Disables printing messages; default is false.
suppressUndefined
Suppressed messages about undefined variables if set to TRUE. If set to a vector of character values, suppresses messages about the names of variables in the list. Default is c(".Generic", ".Method", ".Random.seed", ".self").
You can also set these options globally with the setCompilerOptions function, or find their current values with the getCompilerOption function. The argument level is an integer between 0 and 3 that describes how much compilation you would like:
0
Disables compilation
1
Compiles closures before first use
2
Compiles closures before first use, and closures before they are duplicated
3
Compiles closures before first use, closures before they are duplicated, and loops before they are executed
Inspecting byte code
Printing a compiled function will show the original R code and a reference to the byte code:
> compiled.naive.vector.of.squares
function(n) {
v <- 1:n
for (i in 1:n)
v[i] <- v[i]^2
}
<bytecode: 0x117f7db90>
To see the byte code, you can use the disassemble function:
> disassemble(compiled.naive.vector.of.squares)
list(.Code, list(7L, GETBUILTIN.OP, 1L, PUSHCONSTARG.OP, 2L,
GETVAR.OP, 3L, PUSHARG.OP, CALLBUILTIN.OP, 4L, SETVAR.OP,
5L, POP.OP, GETBUILTIN.OP, 1L, PUSHCONSTARG.OP, 2L, GETVAR.OP,
3L, PUSHARG.OP, CALLBUILTIN.OP, 4L, STARTFOR.OP, 7L, 6L,
51L, GETVAR.OP, 5L, STARTSUBSET.OP, 8L, 35L, GETVAR_MISSOK.OP,
6L, PUSHARG.OP, DFLTSUBSET.OP, LDCONST.OP, 9L, EXPT.OP, 10L,
STARTASSIGN.OP, 5L, STARTSUBASSIGN.OP, 11L, 48L, GETVAR_MISSOK.OP,
6L, PUSHARG.OP, DFLTSUBASSIGN.OP, ENDASSIGN.OP, 5L, POP.OP,
STEPFOR.OP, 26L, ENDFOR.OP, INVISIBLE.OP, RETURN.OP), list(
{
v <- 1:n
for (i in 1:n) v[i] <- v[i]^2
}, `:`, 1, n, 1:n, v, i, for (i in 1:n) v[i] <- v[i]^2, v[i],
2, v[i]^2, `[<-`(`*tmp*`, i, value = v[i]^2)))
Just-in-time compilation
If you want to compile all of your R code as you are using it, you can enable just-in-time compilation with the compiler package. To do this, execute the function enableJIT:
$ enableJIT(level)
The argument level is an integer between 0 and 3 that is described above. You can also set the environment variable R_ENABLE_JIT to your desired compilation level (1, 2, or 3) to enable the JIT for everything you do in R.
However, before you set the default to level 3 for all computation, you should remember two things. First, it takes time to compile code. For very simple operations on small data sets, it might take more time to compile your code than to execute it. Secondly, the compiler is still experimental. It’s possible that some code might execute differently after compilation, resulting in subtle and difficult-to-understand bugs. So make sure to use this feature carefully.
High-Performance R Binaries
On some platforms (like Mac OS X), R is compiled with high-quality math libraries. However, the default libraries on other platforms (like Windows) can be sluggish. If you’re working with large data sets or complicated mathematical operations, you might find it worthwhile to build an optimized version of R with better math libraries.
Revolution R
Revolution Computing is a software company that makes a high-performance version of R. It offers both free and commercial versions, including a 64-bit build of R for Windows. For the latest version, check out its website: http://www.revolution-computing.com/.
Revolution R looks a lot like the standard R binaries (although a little outdated; at the time I was writing this book, Revolution was shipping Revolution R 1.3.0 included R 2.7.2, while the current version from CRAN was 2.10.0). The key difference is the addition of improved math libraries. These are multithreaded and can take advantage of multiple cores when available. There are two helper functions included with Revolution R that can help you set and check the number of cores in use. To check the number of cores, use:
getMKLthreads()
Revolution R guesses the number of threads to use, but you can change the number yourself if it guesses wrong (or if you want to experiment). To set the number of cores explicitly, use:
setMKLthreads(n)
The help file suggests not setting the number of threads higher than the number of available cores.
Building your own
Building your own R can be useful if you want to compile it to run more efficiently. For example, you can compile a 64-bit version of R if you want to work with data sets that require much more than 4 GB of memory. This section explains how to build R yourself.
Building on Microsoft Windows
The easiest way to build your own R binaries on Microsoft Windows is to use the Rtools software. The R compilation process is very sensitive to the tools that you use. So the Rtools software bundles together a set of tools that are known to work correctly with R. Even if you plan to use your own compiler, math libraries, or other components, you should probably start with the standard toolkit and incrementally modify it. That will help you isolate problems in the build process.
Here is how to successfully build your own R binaries (and installer!) on Microsoft Windows:
Download the R source code from http://cran.r-project.org/src/base/.
Download the “Rtools” software from http://www.murdoch-sutherland.com/Rtools/.
Run the Rtools installer application. Follow the directions to install Rtools. You can select most default options, but I do not suggest installing all components at this stage. (The “Extras to build R” needs to be installed in the source code directory to be useful. However, we don’t install those until steps 4 and 5. Unfortunately, you need other tools from the RTools software in order to execute steps 4 and 5, so we can’t change the order of the steps to avoid running the installer twice.) As shown in Figure 24-1, you should select everything except “Extras to build R.” We’ll install that stuff later, so don’t throw out the tools installer yet. Also, if you use Cygwin, be sure to read the notes about conflicts with Cygwin DLLs (dynamic-link libraries). Be sure to select the option allowing Rtools to modify your PATH variable (or make sure to change it yourself).
Move the source code file to a build directory, open a command-line window (possibly with cmd), and change to the build directory. (Be sure to open the command shell after installing the Rtools and modifying your PATH. This will guarantee that the commands in the next few steps are available.)
Run the following command to unpack the source code into the directory R-2.9.2:
$ tar xvfz R-2.9.2.tar.gz
(Note that I used R-2.9.2.tar.gz. Change the command as needed for the R version you are installing.)
Rerun the Rtools setup program. This time, select only the “Extras to build R” component, and no other components. Install the components into the source code directory that you just unpacked. (For example, if you have installed R into C:\stuff\things, then select C:\stuff\things\R-2.9.2.)
Figure 24-1. Selecting components in Rtools
At this point, you may install several additional pieces of software:
(Optional) If you want to build Microsoft HTML help files, then download and install the Microsoft HTML Help Workshop from http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-c8a6-452f-9aa0-d597d16580cc. Make sure the location where it is installed (for example, C:\Program Files\HTML Help Workshop) is included in the PATH.
(Optional) If you want to build your own R installer, then download and install Inno Setup from http://www.jrsoftware.org/isinfo.php. After you have done this, edit the file src\gnuwin32\MkRules in the R-2.9.2 directory. Change ISDIR to the location where Inno Setup was installed. (By default, this location is C:\Program Files\Inno Setup 5.)
(Optional) Download and install LaTeX if you want to build PDF versions of the help files. A suitable version is MiKTeX, from http://www.miktex.org/.
Return to the command window and change directories to the src\gnuwin32 directory in the R sources (for example, C:\stuff\things\R-2.9.2\src\gnuwin32). Run the following command to build R:
$ make all recommended
To check that the build was successful, you can run the command:
$ make check
Or for more comprehensive checks:
$ make check-all
I found that the checks failed due to a silly error. (The checks included testing examples in libraries, so the test application tried to open a network connection to http://foo.bar, a hostname that could not be resolved.) Use your own discretion about whether the tests were successful or not.
If everything worked correctly, you can now try your own build of R. The executables will be located in the R-2.9.2\bin directory. The full GUI version is named Rgui.exe; the command-line version is R.exe.
If you would like to build your own installer, then execute the following command in the src\gnuwin32 directory:
$ make distribution
(I got some errors late in the install process. The standard makefiles try to delete content when they’re done. If you don’t make it past building rinstaller, manually run make cran.) To check if the process worked, look for the installer in the gnuwin32\cran directory.
For more information about how to build R on Microsoft Windows platforms, see the directions in the R Installation and Administration Manual. (You can read the manual online at http://cran.r-project.org/doc/manuals/R-admin.html, or you can download a PDF from http://cran.r-project.org/doc/manuals/R-admin.pdf.)
Building R on Unix-like systems
Unix-like systems are by far the easiest systems on which to build R. Here is how to do it:
Install the standard development tools: gcc, make, perl, binutiles, and LaTeX. (If you don’t know if you have all the tools and are using a standard Linux version such as Fedora, you have probably already installed all the components you need. Unfortunately, it’s outside the scope of this book to explain how to find and install missing components. Try using the precompiled binaries, or find a good book on Unix system administration.)
Download the R source code from http://cran.r-project.org/src/base/.
Run the following command to unpack the source code into the directory R-2.10.0:
$ tar xvfz R-2.10.0.tar.gz
(Note that I used R-2.10.0.tar.gz. Change the command as needed for the R version you are installing.)
Change to the R-2.10.0 directory. Run the following commands to build R:
$ ./configure
$ make
To check that the build was successful, you can run the command:
$ make check
Or for more comprehensive checks:
$ make check-all
Finally, if everything is OK, run the following command to install R:
$ make install
These directions will work on Mac OS X if you want to build a command-line version of R or a version of R that works through the X Windows system. They will not build the full Mac OS X GUI.
Building R on Mac OS X
Building R on Mac OS X is a little trickier than building it on Windows or Linux systems because you have to fetch more individual pieces. For directions on how to compile R on Mac OS X, see http://cran.r-project.org/doc/manuals/R-admin.html. You may also want to read the FAQ file at http://cran.cnr.Berkeley.edu/bin/macosx/RMacOSX-FAQ.html, which gives some hints on how to build.
Chapter 25. Bioconductor
Most of this book is applicable across multiple areas of study, but this chapter focuses on a single field: bioinformatics. In particular, we’re going to focus on the Bioconductor project. Bioconductor is an open-source software project for analyzing genomic data in R. Initially, it focused on just gene expression data, but it now includes tools for analyzing other types of data such as serial analysis of gene expression (SAGE), proteomic, single-nucleotide polymorphism (SNP), and gene sequence data.
Biological data isn’t much different from other types of data we’ve seen in the book: data is stored in vectors, arrays, and data frames. You can process and analyze this data using the same tools that R provides for other types of data, including data access tools, statistical models, and graphics.
Bioconductor provides tools for each step of the analysis process: loading, cleaning, and analyzing data. Depending on the type of data you are working with, you might need to use other software in conjunction with Bioconductor. For example, if you are working with Affymetrix GeneChip arrays, you will need to use the Affymetrix GeneChip Command Console software to scan the arrays and produce probe cell intensity data (CEL files) that can be loaded into R. You can then load the probe cell intensity files into Bioconductor for further processing.
This chapter provides a very brief overview of Bioconductor. In this chapter, we’ll first look at an example, using publicly available gene expression data. Next, I’ll describe some popular packages in Bioconductor. After that, I will describe some of the key data structures in Bioconductor. Finally, I’ll provide some pointers for additional information.
An Example
In this chapter, we will load a data set from NCBI’s Gene Expression Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/geo/). GEO is a public repository that archives and freely distributes microarray, next-generation sequencing, and other forms of high-throughput functional genomic data submitted by the scientific community. It is one of many resources available through the National Center for Biotechnology Information (NCBI), an organization that is part of the National Library of Medicine, and, in turn, part of the U.S. National Institutes of Health (NIH). This is a very useful resource when learning to use Bioconductor, because you can find not only raw data but also references to papers that analyzed that data.
As an example, we’ll use the data files from GSE2034 (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE2034), a study that looked for predictors of relapse-free breast cancer survival. (I used data from the same study as an example in Survival Models.) My goal was not to re-create the results shown in the original papers (which I did not do), but instead to show how Bioconductor tools could be used to load and inspect this data.
Loading Raw Expression Data
Let’s start with an example of loading raw data into R. We’ll show how to load Affymetrix CEL files, which are output from Affymetrix’s scanner software. If you would like to try this yourself, you can download the raw CEL files from ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE2034/GSE2034_RAW.tar.
WARNING
The CEL files are immense: almost 1 GB compressed. See Loading Data from GEO for instructions on how to get pre-processed expression files for this experiment.
Affymetrix is a leading provider of tools for genetic analysis, including high-density arrays, scanners, and analysis software. For this study, the authors used Affymetrix GeneChip Human Genome U133 Arrays,[63] which are used to measure the expression level of over 22,000 probe sets that translate to 14,500 human genes. These arrays work by measuring the amount of thousands of different RNA fragments using thousands of different probes. Each probe is 25 bases long. The CEL files contain scanner data for each probe for each sample. Data processing software (like Bioconductor) is used to translate combinations of probes to probe sets, which can, in turn, be mapped to genes. A probe set is composed of a set of perfect-match (PM) probes (for which all 25 bases match) and mismatch (MM) probes (for which the 13th base is reversed); the software measures the actual expression level of genes by comparing the two types of probes. Typically, each probe set comprises 11 to 20 different probes. Data for each sample is stored in a separate CEL file.
You can load these files into R as a single batch using ReadAffy. The ReadAffy function will load all files in the current working directory by default. If you are using a machine with a lot of memory and have placed the files in the directory ~/GSE2034/CEL, you could load the data with the following commands:
> library(affy)
> # assuming the files are in ~/GSE2034/CEL
> setwd("~/GSE2034/CEL")
> GSE2034 <- ReadAffy()
I have 4 GB on my computer, which wasn’t enough to read all the raw files into memory. So I took a subset of the CEL files for a random sample of subjects.
To pick the stratified sample, I used several R functions from outside Bioconductor. I used a stratified sample, selecting 50 subjects with no relapse and 50 with relapse. To select the set of filenames to load, I used the strata function from the sampling package to pick a set of GEO accession numbers to load. (These are the identifiers for each subject.) Next, I pasted the prefix “.CEL” on the end of each number to generate filenames. Finally, I passed this vector as an argument to ReadAffy.
Here is the code I used to read in the data:
> library(nutshell)
> data(GSE2034)
> library(sampling)
> setwd("~/Documents/book/data/GSE2034/CEL")
> GSE2034.fromcel.smpl <-
+ ReadAffy(filenames=paste(
+ GSE2034[strata(GSE2034,
+ stratanames="relapse",
+ size=c(50,50),
+ method="srswor"
+ )$ID_unit,
+ ]$GEO.asscession.number,
+ ".CEL",
+ sep=""))
The ReadAffy function returns an AffyBatch object, containing unprocessed gene expression data:
> GSE2034.fromcel.smpl
AffyBatch object
size of arrays=712x712 features (16 kb)
cdf=HG-U133A (22283 affyids)
number of samples=100
number of genes=22283
annotation=hgu133a
notes=
Before we can analyze this data, we need to attach phenotype (patient) data, normalize the data, summarize by probe, and associate the expression data with annotation (gene symbol) data.
First, the sample names in the AffyBatch object match the filenames, not the identifiers (GEO accession numbers) in the patient data table:
> sampleNames(GSE2034.fromcel.smpl)[1:10]
[1] "GSM36796.CEL" "GSM36834.CEL" "GSM36873.CEL" "GSM36917.CEL"
[5] "GSM36919.CEL" "GSM36938.CEL" "GSM36944.CEL" "GSM36965.CEL"
[9] "GSM36991.CEL" "GSM36993.CEL"
Let’s clean up the sample names in the AffyBatch object so that we can match them to names in the patient data table. (We’ll do that in Matching Phenotype Data.)
> sampleNames(GSE2034.fromcel.smpl) <-
+ sub("\\.CEL$","",sampleNames(GSE2034.fromcel.smpl))
> sampleNames(GSE2034.fromcel.smpl)[1:10]
[1] "GSM36796" "GSM36834" "GSM36873" "GSM36917" "GSM36919" "GSM36938"
[7] "GSM36944" "GSM36965" "GSM36991" "GSM36993"
An important step in data processing is quality control (QC). You want to make sure that no errors occurred in handling the experimental data or scanning the arrays. You can use the qc function in the simpleaffy package for quality control. This function calculates a set of QC metrics (recommended by Affymetrix) to check that arrays have hybridized correctly and that sample quality is acceptable. It returns an object of class QCStats that you can plot to check for problematic samples. As an example, we’ll calculate QC metrics on the first 20 samples that we loaded into R. (I picked 20 so the plot would be readable in print.)
> myqc <- qc(GSE2034.fromcel.smpl[, 1:20])
> plot(myqc, cex=0.7)
The results are shown in Figure 25-1. Each line represents a separate sample. The vertical solid line in the middle of the diagram corresponds to zero fold change, the dotted line to the left and right to three fold downregulation and three fold upregulation change, respectively. The lines plotted on each row show which scale factors are acceptable. Good values are blue, suspicious are red, when viewed on screen. In this example, all the bars are acceptable. For more information on how to read this diagram, see the help file for plot.qc.stats.
Before analyzing the microarray data, it needs additional pre-processing. First, the raw data needs to be background corrected and normalized between arrays. You can do this with the Bioconductor vsn package, using the vsn2 function. The vsn2 function returns a vsn object containing background-corrected and normalized probe intensity data.
Next, the data needs to be log transformed, summarized by probe set, and transformed into an ExpressionSet that can be used in further analysis. As we noted above, CEL files include information on all probes; these need to be grouped into probe sets and adjusted for mismatches. Raw expression data values are exponentially distributed; a log transformation makes the distribution normal. You can do this through the rma function in the affy package.
If you don’t plan to tweak parameters, you can execute both steps at once through the vsnrma function in the vsn package. (The vsn function requires a lot of memory to process large AffyBatch objects. My computer couldn’t handle all 100 arrays at once, so I took a subset of 50 observations.)
> library(affy)
> GSE2034.fromcel.smpl.vsnrma <- vsnrma(GSE2034.fromcel.smpl[,1:50])
vsn2: 506944 x 50 matrix (1 stratum).
Please use 'meanSdPlot' to verify the fit.
Calculating Expression
Figure 25-1. QC plot
Following the recommendation above (in the output of vsn2), let’s use meanSdPlot to plot the row standard deviation versus row means for the output:
> meanSdPlot(GSE2034.fromcel.smpl.vsnrma)
The results are shown in Figure 25-2.
Figure 25-2. Row standard deviation versus row means, from meanSdPlot
Loading Data from GEO
In this specific case, we can cheat. This example uses a data set that was shared through GEO, so we can use the getGEO function in the GEOquery package to download preprocessed expression sets directly into R. (Clearly this won’t work with data that isn’t available on GEO, but it does make this step simpler.)
> library(GEOquery)
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material. To view, type
'openVignette()'. To cite Bioconductor, see
'citation("Biobase")' and for packages 'citation(pkgname)'.
Loading required package: RCurl
Loading required package: bitops
> GSE2034.geo <- getGEO("GSE2034")
Found 2 file(s)
GSE2034_series_matrix-1.txt.gz
trying URL 'ftp://ftp.ncbi.nih.gov/pub/geo/DATA/
SeriesMatrix/GSE2034/GSE2034_series_matrix-1.txt.gz'
ftp data connection made, file length 12800217 bytes
opened URL
==================================================
downloaded 12.2 Mb
trying URL 'http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?targ=self&acc=GPL96&form=text&view=full'
Content type 'geo/text' length unknown
opened URL
.......... .......... .......... .......... ..........
downloaded 27.9 Mb
File stored at:
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpnO9uT5/GPL96.soft
GSE2034_series_matrix-2.txt.gz
trying URL 'ftp://ftp.ncbi.nih.gov/pub/geo/DATA/
SeriesMatrix/GSE2034/GSE2034_series_matrix-2.txt.gz'
ftp data connection made, file length 1662337 bytes
opened URL
==================================================
downloaded 1.6 Mb
trying URL 'http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?targ=self&acc=GPL96&form=text&view=full'
Content type 'geo/text' length unknown
opened URL
.......... .......... .......... .......... ..........
downloaded 27.9 Mb
File stored at:
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpnO9uT5/GPL96.soft
In this case, the object is a list of two ExpressionSet objects:
> class(GSE2034.geo)
[1] "list"
> class(GSE2034.geo[[1]])
[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"
> GSE2034.geo
$`GSE2034_series_matrix-1.txt.gz`
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 255 samples
element names: exprs
phenoData
sampleNames: GSM36777, GSM36778, ..., GSM37031 (255 total)
varLabels and varMetadata description:
title: NA
geo_accession: NA
...: ...
data_row_count: NA
(23 total)
featureData
featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at (22283 total)
fvarLabels and fvarMetadata description:
ID: NA
GB_ACC: NA
...: ...
Gene.Ontology.Molecular.Function: NA
(16 total)
additional fvarMetadata: Column, Description
experimentData: use 'experimentData(object)'
Annotation: GPL96
$`GSE2034_series_matrix-2.txt.gz`
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 31 samples
element names: exprs
phenoData
sampleNames: GSM37032, GSM37033, ..., GSM37062 (31 total)
varLabels and varMetadata description:
title: NA
geo_accession: NA
...: ...
data_row_count: NA
(23 total)
featureData
featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at (22283 total)
fvarLabels and fvarMetadata description:
ID: NA
GB_ACC: NA
...: ...
Gene.Ontology.Molecular.Function: NA
(16 total)
additional fvarMetadata: Column, Description
experimentData: use 'experimentData(object)'
Annotation: GPL96
In the rest of this chapter, I’ll focus on the first object in the list:
> GSE2034.geo1 <- GSE2034.geo[[1]]
Matching Phenotype Data
Neither the CEL files nor the series matrix files from GEO contain clinical information. In Survival Models, we used a file from GEO containing the experimental outcomes for this experiment, including an indicator of which patients experienced a relapse and the time until relapse or last checkup. We’ll add this information to the AffyBatch file by matching observations in the GSE2034 data set to the expression data. We can add data to the files created from the CEL files using the following code:
> matches <- match(
+ subset(GSE2034,
+ GSE2034$GEO.asscession.number %in%
+ sampleNames(GSE2034.fromcel.smpl))$GEO.asscession.number,
+ sampleNames(GSE2034.fromcel.smpl))
> phenoData(GSE2034.fromcel.smpl) <- new(
+ "AnnotatedDataFrame",
+ data=subset(GSE2034,
+ GSE2034$GEO.asscession.number %in%
+ sampleNames(GSE2034.fromcel.smpl))[matches,])
To add patient information to the matrix files from GEO, we’ll use a slightly different strategy. Loading the matrix files created ExpressionSet objects that were already tagged with phenotype information. Instead of replacing this information, we’ll just add more patient information. (Again, notice that I’m using R code to create the new data frame of phenotype data and the data frame with variable metadata. There’s nothing fancy about Bioconductor; it’s just a set of R functions for dealing with a certain type of data.)
> # matching in new version
> matches <- match(
+ subset(GSE2034,
+ GSE2034$GEO.asscession.number %in%
+ sampleNames(GSE2034.geo1))$GEO.asscession.number,
+ sampleNames(GSE2034.geo1))
> names(GSE2034) <- c("PID", "geo_accession", "lymph.node.status",
+ "months.to.relapse.or.last.followup", "relapse", "ER.Status",
+ "Brain.relapses")
> GSE2034.pdata <- merge(pData(GSE2034.geo1),GSE2034[,2:7])
> GSE2034.varMetadata <- rbind(varMetadata(GSE2034.geo1),
+ data.frame(row.names=names(GSE2034)[3:7],labelDescription=rep(NA,5)))
> pData(GSE2034.geo1) <- GSE2034.pdata
> varMetadata(GSE2034.geo1) <- GSE2034.varMetadata
Analyzing Expression Data
As an analysis example, I’ll use the file downloaded in Loading Data from GEO. The expression set we are examining contains 22,283 features on 255 subjects. Fitting a model to a data set this large could take a long time, so we’ll start the analysis by filtering out some probes. Specifically, we’ll filter out probes with low variance using the nsFilter function in the genefilter package:
> annotation(GSE2034.geo1)
[1] "GPL96"
> # there is no GPL96 annotation package that is easily available,
> # though this is the same as affy hgu133a, so use that instead
> annotation(GSE2034.geo1) <- "hgu133a"
> library(genefilter)
> GSE2034.geo1.f <- nsFilter(GSE2034.geo1, var.cutoff=0.5)
The filtered expression set contains only 6,534 features, which is much more manageable. Let’s start by drawing a “volcano plot” using the expression data. To draw the plot, we’ll start by calculating a t-test on each row, segmenting observations based on relapse status:
> tt <- rowttests(GSE2034.geo1.f$eset, "relapse")
Next, we’ll plot the log of the p-value (from the t-test) for each probe versus the difference in group means. (Both are included in the output of the rowttests function.)
> plot(tt$dm, -log10(tt$p.value), pch=".", xlab="log-ratio",
+ ylab=expression(-log[10]~p))
The plot is shown in Figure 25-3. As you can see, there are a few values far to the right of the plot.
Figure 25-3. Volcano plot of filtered GSE2034 data
In the original paper on this study, the authors fit a Cox proportional hazard model using the expression data. We can do the same thing, using the rbsurv package from Bioconductor, which stands for “robust survival” analysis. The rbsurv function allows you to fit a model to an expression object, choosing predictive variables using n-fold cross-validation. I chose to restrict the model to 75 genes, and the fitting to six iterations of threefold validation to keep the running time manageable (though this function still required an hour to fit the model):
> library(rbsurv)
Loading required package: survival
Loading required package: splines
> GSE2034.rbsurv <- rbsurv(
+ time=pData(GSE2034.geo1.f$eset)$months.to.relapse.or.last.followup,
+ status=pData(GSE2034.geo1.f$eset)$relapse,
+ x=assayData(GSE2034.geo1.f$eset)$exprs,
+ gene.ID=row.names(assayData(GSE2034.geo1.f$eset)$exprs),
+ max.n.genes=75,
+ n.fold=3,
+ n.iter=6)
Please wait... Done.
This function uses bootstrap resampling to generate the robust estimate, so you may get different results, depending on the state of your random number generator. This function returns a list containing a number of different objects:
> typeof(GSE2034.rbsurv)
[1] "list"
> names(GSE2034.rbsurv)
[1] "n.genes" "n.samples" "method" "n.iter" "n.fold"
[6] "covariates" "model" "gene.list"
We can take a look at the coefficients in the fitted model to see which probes are significant. Not surprisingly, with over 6,000 predictors, there are a lot of genes that are highly correlated with relapse-free survival time. The fitted model contained 62 probes; here are the first 20:
> GSE2034.rbsurv$model[1:20]
Seq Order Gene nloglik AIC Selected
0 1 0 0 495.16 990.32
110 1 1 221286_s_at 487.39 976.79 *
2 1 2 209096_at 481.33 966.65 *
3 1 3 201817_at 475.60 957.20 *
4 1 4 214459_x_at 471.54 951.08 *
5 1 5 207165_at 468.15 946.30 *
6 1 6 211430_s_at 465.70 943.40 *
7 1 7 203218_at 458.58 931.16 *
8 1 8 209539_at 455.17 926.33 *
9 1 9 202666_s_at 452.74 923.48 *
10 1 10 222201_s_at 449.92 919.83 *
11 1 11 212898_at 445.67 913.34 *
12 1 12 216598_s_at 441.15 906.29 *
13 1 13 203530_s_at 440.51 907.01 *
14 1 14 201178_at 437.32 902.63 *
15 1 15 203764_at 435.25 900.49 *
16 1 16 202324_s_at 435.14 902.27 *
17 1 17 220757_s_at 434.71 903.41 *
18 1 18 201010_s_at 433.90 903.80 *
19 1 19 218919_at 432.35 902.70 *
The gene.list element contains the Affymetrix probe names from a Human Genome U133A Array:
> annotation(GSE2034.geo1)
[1] "hgu133a"
To show a list of gene symbols corresponding to these probes, we can use the getSYMBOL function from the annotate package:
> library(annotate)
> getSYMBOL(GSE2034.rbsurv$gene.list, "hgu133a")
221286_s_at 209096_at 201817_at 214459_x_at
"MGC29506" "UBE2V2" "UBE3C" "HLA-C"
207165_at 211430_s_at 203218_at 209539_at
"HMMR" "IGHG3" "MAPK9" "ARHGEF6"
202666_s_at 222201_s_at 212898_at 216598_s_at
"ACTL6A" "CASP8AP2" "KIAA0406" "CCL2"
203530_s_at 201178_at 203764_at 202324_s_at
"STX4" "FBXO7" "DLGAP5" "ACBD3"
220757_s_at 201010_s_at 218919_at 200726_at
"UBXN6" "TXNIP" "ZFAND1" "PPP1CC"
221432_s_at 215088_s_at 215379_x_at 219215_s_at
"SLC25A28" "hCG_1776980" "CKAP2" "SLC39A4"
204252_at 212900_at 209380_s_at 209619_at
"CDK2" "SEC24A" "ABCC5" "CD74"
208843_s_at 203524_s_at 209312_x_at 222077_s_at
"GORASP2" "MPST" "HLA-DRB1" "RACGAP1"
202824_s_at 212687_at 221500_s_at 217258_x_at
"TCEB1" "LIMS1" "STX16" "IVD"
205034_at 201849_at 201664_at 215946_x_at
"CCNE2" "BNIP3" "SMC4" "IGLL3"
219494_at 208757_at 221671_x_at 212149_at
"RAD54B" "TMED9" "IGKC" "EFR3A"
202969_at 209831_x_at 204641_at 217378_x_at
"DYRK2" "DNASE2" "NEK2" "LOC100130100"
204670_x_at 211761_s_at 205812_s_at 216401_x_at
"HLA-DRB5" "CACYBP" "SULT1C4" "LOC652493"
217816_s_at 201368_at 209422_at 213391_at
"PCNP" "ZFP36L2" "PHF20" "DPY19L4"
208306_x_at 201288_at 206102_at
"HLA-DRB4" "ARHGDIB" "GINS1"
To get more information on these probes, we can use functions from the anaffy package to annotate the results. This package can provide a lot of information on each probe; the function aaf.handler shows the available fields:
> aaf.handler()
[1] "Probe" "Symbol" "Description"
[4] "Chromosome" "Chromosome Location" "GenBank"
[7] "Gene" "Cytoband" "UniGene"
[10] "PubMed" "Gene Ontology" "Pathway"
Let’s include the Probe, Symbol, Description, PubMed ID, Gene Ontology, and Pathway for each probe. To do this, we first create an aafTable object with the annotation information and then save it as an HTML file so we can view it:
> anntable <- aafTableAnn(probeid=GSE2034.rbsurv$gene.list,
+ chip="hgu133a.db",
+ colnames=c("Probe", "Symbol", "Description",
+ "PubMed", "Gene Ontology", "Pathway"))
> saveHTML(anntable, filename="~/results.html")
Figure 25-4 shows a screen shot of the results. As you can see, the annotation package can provide a lot of supplemental information about each probe, hopefully allowing you to learn something interesting from the experiment.
Figure 25-4. Screen shot of Safari showing annotated results from the GSE2034.rbsurv model
Finally, you can use R to visualize the expression levels using a heat map. Heat maps are like image plots or level plots, but automatically reorder observations using clustering to show hot or cold spots. To make the diagram legible, we’ll pick 50 subjects: 25 with relapse, 25 without:
> relapse.df <- data.frame(row.names=GSE2034.geo1$geo_accession,
+ relapse=GSE2034.geo1$relapse)
> library(sampling)
> smpl <- strata(relapse.df, c("relapse"), size=c(25,25), method="srswor")
Now let’s plot the heat map using R’s heatmap function. By default, R uses hierarchical clustering to group similar observations together. Dendrograms are plotted in the margins showing the clustering. Heat maps are plotted with colors ranging from yellow to red on screen, though you can use the col parameter to control the color palette. Here is the code that I used to generate the heat map shown in Figure 25-5:
> heatmap(assayData(GSE2034.geo1.f$eset)$exprs[
+ GSE2034.rbsurv$gene.list,smpl$ID_unit],
+ Colv=smpl$relapse, cexRow=0.45, cexCol=0.45)
Figure 25-5. Heat map showing expression level for 50 subjects
[63] See http://www.affymetrix.com/products_services/arrays/specific/hgu133av2.affx for more information on this platform.
Key Bioconductor Packages
The Bioconductor repository contains over 300 packages for working with genetic data. Below is a list of some popular packages, with short descriptions of the classes and functions that they contain.
Category | Package | Description |
---|---|---|
Loading, pre-processing | aCGH | Classes and functions for array comparative genomic hybridization data. Functions for reading aCGH data from image analysis output files and clone information files and for creating aCGH S3 objects for storing these data. Basic methods for accessing/replacing, subsetting, printing, and plotting aCGH objects. |
affy | Methods for Affymetrix oligonucleotide arrays. Includes class definitions for representing microarray data. Also includes methods for importing data, quality control, and normalization. | |
affyQCReport | A package to generate QC reports for Affymetrix array data. | |
arrayQuality | Functions for performing print-run and array-level quality assessment. | |
gcrma | Background adjustment using sequence information. The main function gcrma converts background-adjusted probe intensities to expression measures using the same normalization and summarization methods as RMA (robust multiarray average). | |
limma | limma is an R package for the analysis of gene expression microarray data, especially the use of linear models for analyzing designed experiments and the assessment of differential expression. | |
lumi | Functions to preprocess Illumina microarray (BeadArray) data. It includes functions of Illumina data input, quality control, variance stabilization, normalization, and gene annotation. | |
marray | Diagnostic plots and normalization of cDNA microarray data. | |
oligo | The oligo package includes tools for preprocessing data from oligonucleotide arrays. It supports all microarray designs provided by Affymetrix and NimbleGen: expression, tiling, SNP, and exon arrays. | |
prada | Tools for analyzing and navigating data from high-throughput phenotyping experiments based on cellular assays and fluorescent detection (flow cytometry [FACS], high-content screening microscopy). | |
PROcess | The PROcess package contains a collection of functions for processing spectra (particularly, Ciphergen SELDI-TOF spectra for proteomic data) to remove baseline drifts, if any, detect peaks, and align them to a set of protobiomarkers. | |
Ringo | Tools for working with two-color oligoarrays (particularly NimlbeGen arrays). Stands for R Investigation of NimbleGen Oligoarrays. | |
simpleaffy | Provides high-level functions for reading affy .CEL files and phenotypic data and then computing simple things with it, such as t-tests, fold changes, and the like. Also has some basic scatter plot functions and mechanisms for generating high-resolution journal figures. | |
vsn | Variance stabilization and calibration for microarray data. The package implements a method for normalizing microarray intensities, both between colors within an array and between arrays. | |
Annotation | annotate | The basic purpose of annotate is to supply interface routines that support user actions that rely on the different metadata packages provided through the Bioconductor Project. |
annaffy | This package is designed to help interface between Affymetrix analysis results and web-based databases. It provides classes and functions for accessing those resources both interactively and through statically generated HTML pages. | |
annBuilder | annBuilder constructs annotation data packages for given sets of genes with known mappings to GenBank accession numbers, UniGene identifiers, Image identifiers, or Entrez Gene identifiers. | |
biomaRt | Interface to BioMart databases (e.g., Ensembl, Wormbase, and Gramene). | |
GOstats | A set of tools for interacting with Gene Ontology (GO) and microarray data. A variety of basic manipulation tools for graphs, hypothesis testing, and other simple calculations. | |
Analysis | affypdnn | Probe-dependent nearest neighbors for affy probes. |
affyPLM | Methods for fitting probe-level models. | |
bioDist | A collection of software tools for calculating distance measures. | |
factDesign | This package provides a set of tools for analyzing data from a factorial designed microarray experiment or any microarray experiment for which a linear model is appropriate. The functions can be used to evaluate tests of contrast of biological interest and perform single outlier detection. | |
genefilter | Methods for filtering genes from microarray experiments. | |
GSEABase | This package provides classes and methods to support Gene Set Enrichment Analysis (GSEA). | |
hopach | Hierarchical Ordered Partitioning and Collapsing Hybrid. | |
MLInterfaces | Uniform interfaces to machine learning code for data in Bioconductor containers. Includes clustering, classification, and regression algorithms. | |
limma | limma is an R package for the analysis of gene expression microarray data, especially the use of linear models for analyzing designed experiments and the assessment of differential expression. | |
marray | Diagnostic plots and normalization of cDNA microarray data. | |
multtest | The multtest package contains a collection of functions for multiple hypothesis testing. These functions can be used to identify differentially expressed genes in microarray experiments (i.e., genes whose expression levels are associated with a response or covariate of interest). | |
ROC | Functions for calculating and plotting receiver operating characteristic (ROC) curves with microarray data. | |
simpleaffy | Provides high-level functions for reading Affy .CEL files and phenotypic data and then computing simple things with it, such as t-tests, fold changes, and the like. Also has some basic scatter plot functions and mechanisms for generating high-resolution journal figures. | |
Visualization | affycomp | Graphical tools for assessing Affymetrix expression measures. These tools rely on two studies: a dilution study and a spike-in study. |
geneplotter | Graphics-related functions for Bioconductor. | |
graph | The graph package provides an implementation of graphs (the kind with nodes and edges) in R. | |
RBGL | Provides an interface to graph algorithms (such as shortest path, connectivity, etc.). | |
Rgraphviz | Provides graph-rendering functionality. Different layout algorithms are provided, and parameters like node plotting, line type, and color can be controlled by the user. | |
SNPchip | This package defines classes and functions for plotting copy number and genotype in high-throughput SNP platforms such as Affymetrix and Illumina. In particular, SNPchip is a useful add-on to the oligo package for visualizing SNP-level estimates after preprocessing. | |
Utilities | Biobase | Biobase contains standardized data structures to represent genomic data. |
Biostrings | Memory-efficient string containers, string-matching algorithms, and other utilities, for fast manipulation of large biological sequences or set of sequences. | |
BSgenome | Infrastructure shared by all the Biostrings -based genome data packages. | |
convert | Tools to convert between limma, marray, and Biobase data objects. |
Data Structures
One of the best features of Bioconductor is the use of structured data to represent biological concepts. This section presents a few important classes that are used through Bioconductor.
Bioconductor classes are implemented using formal class methods; see Chapter 10 for more details. Most of these classes inherit from the basic classes in the Biobase package, so you can use the same methods to work with different types of objects. For example, you can use the same method to read phenotype data for expression data from different vendors (such as Affymetrix arrays and Illumina arrays). You could also use the same method to read phenotype data for expression data from completely different types of data (such as gene expression data and proteomic data).
Objects in Bioconductor contain many different types of information about an experiment: the experimental platform, information about the samples, information about the phenotypes, the experimental results, and almost anything else that is relevant for describing an experiment or the results of the experiment. Classes defined in the Biobase package provide a general framework that fits many different types of experimental data. Classes defined in other packages can be used to represent data from specific types of microarrays, often for specific products from specific vendors. This section contains descriptions of a few key classes defined in Biobase.
eSet
eSet is a virtual class that is used by many Bioconductor functions. Objects based on eSet package together all the relevant information about a high-throughput experiment: expression data, metadata describing the experiment, annotation about the chip or technology used, and a description of the experiment itself.
Many other classes inherit from eSet: In Biobase, the classes ExpressionSet (for high-throughput expression-level assays), MultiSet (also for high-throughput expression-level assays), SnpSet (for high-throughput SNP assays), and NChannelSet (for multiple-channel arrays) are children of eSet. In the affy package, the class AffyBatch (used to represent Affymetrix GeneChip probe-level data) inherits from eSet. In the lumi package, LumiBatch (used to represent Illumina microarray data) is based on eSet. In oligoClasses, the classes SnpLevelSet, SnpCallSet, SnpCopyNumberSet, oligoSnpSet, and SnpCallSetPlus all inherit from eSet.
An eSet object has the following slots:
assayData
An assayData object containing the expression data. (The expression data must contain matrices with equal dimensions and with column numbers equal to nrow(phenoData).)
phenoData
An AnnotatedDataFrame object describing the sample phenotypes.
featureData
An AnnotatedDataFrame object describing the features or probes (corresponding to columns in assayData) for this experiment.
experimentData
A MIAME object containing detailed information on the experimental method(s).
annotation
A character value describing the annotation package used for the experiment.
There are included methods for getting or setting the object in each of these slots directly. (For example, assayData(x) <- y will set the assayData slot in eSet x to y.) Additionally, methods are defined for directly accessing commonly used slots within each of these objects:
sampleNames, sampleNames<-
Get or set sample names in assayData and phenoData.
featureNames, featureNames<-
Get or set feature names in assayData.
dims
Gets the dimensions for the expression data in assayData.
pData
Gets or sets sample data (pData slot in phenoData).
fData
Gets or sets feature data information (pData slot in featureData).
varMetadata
Gets or sets metadata describing variables in pData.
varLabels
Gets or sets variable labels in phenoData.
fvarMetadata
Gets or sets metadata describing features in fData.
fVarLabels
Gets or sets variable labels in featureData.
description
Alias for experimentData.
pMedIds
Gets or sets PubMed Identifiers (PMIDs) from experimentData.
abstract
Gets abstract from experimentData.
preproc, preproc<-
Get or set preprocessing information in experimentData.
storageMode, storageMode<-
Get or set storage mode for assayData.
assayDataElement
Gets or sets an element in an AssayData object.
notes
Used to add free-form notes to an AssayData object.
There are methods to coerce eSet objects to ExpressionSet and MultiSet objects. See the help file for eSet for more details.
AssayData
AssayData objects hold expression data. You can access the contents of an AssayData object with the following methods:
featureNames, featureNames<-
Get or set the feature names (or probe names) for an object.
sampleNames, sampleNames<-
Get or set the sample names for an object.
storageMode, storageMode<-
Get or set the storage mode for an AssayData object.[64]
assayDataElement
Gets or sets a specific element in an AssayData object.
AssayData objects are used in eSet objects to hold expression data.
AnnotatedDataFrame
AnnotatedDataFrame objects are what they sound like: a data frame plus annotation. Typically, they are used to include a data frame containing some experimental data, plus information about each column/variable in the data frame. AnnotatedDataFrame objects contain two slots:
data
A data frame. Rows represent samples; columns represent variables.
varMetaData
A data frame with one row corresponding to each column in data. This data frame must include a column called labelDescription but may contain additional information.
The Biobase package defines a few useful methods for accessing information in AnnotatedDataFrame objects:
pData, pData<-
Get or set the data stored in the object.
varMetaData, varMetaData<-
Get or set the metadata.
sampleNames, sampleNames<-
Get or set the sample names.
featureNames, featureNames<-
Alias for sampleNames, sampleNames<-.
varLabels, varLabels<-
Get or set the variable labels.
dimLabels, dimLabels<-
Get or set the dimension labels (rowNames, columnNames).
AnnotatedDataFrame objects are used to hold information about samples in eSet objects.
MIAME
MIAME stands for Minimum Information About a Microarray Experiment.[65] MIAME objects are used to contain information about an experiment. Slots in MIAME objects include the following:
name
Experimenter name
lab
Lab where the experiment was conducted
contact
Contact information for the experimenter
title
Single-sentence description of the experiment
abstract
An abstract describing the experiment
url
A URL reference with information about the experiment
samples
Information about the samples
hybridization
Information about the hybridizations
normControls
Information about the controls
preprocessing
Information about preprocessing steps performed on raw data from the experiment
pubMedIds
PubMed Identifiers of papers relevant for this data
other
Other information about the experiment that doesn’t fit elsewhere
MIAME objects are used in eSet objects to describe an experiment.
Other Classes Used by Bioconductor Packages
There are a variety of other classes used in different Bioconductor packages and functions:
AssayData
A container class defined as a class union of list and environment. Designed to contain one or more matrices of the same dimension.
ProbeSet
A simple class that contains the raw probe data (PM and MM data) for a probe set from one or more samples.
RGList
A class used to store raw intensities as they are read in from an image analysis output file.
MAList
A simple list-based class for storing M-values and A-values for a batch of spotted microarrays.
Elist
A simple list-based class for storing expression values (E-values) for a set of one-channel microarrays.
Elistraw
A simple list-based class for storing expression values (E-values) for a set of one-channel microarrays (in raw form).
MArray-LM
A list-based class for storing the results of fitting gene-wise linear models to a batch of microarrays.
TestResults
A matrix-based class for storing the results of simultaneous tests.
DBPDInfo
A class for Platform Design Information objects, stored using a database approach.
QuantificationSet
A virtual class to store summarized measures.
FeatureSet
A class to store data from expression/exon/SNP/tiling arrays at the feature level.
See the help files for more information on these classes.
[64] AssayData objects can hold the expression data in a list, environments, or “locked” environments; see the help file for more information.
[65] MIAME is a standard developed by the MGED Society. See http://www.mged.org/Workgroups/MIAME/miame.html for more information.
Where to Go Next
This chapter just scratches the surface of the tools available through Bioconductor; there are dozens of packages available on Bioconductor for doing different types of analysis. The best place to start is the Bioconductor website: http://www.bioconductor.org.
Here are some suggestions for learning more about this project and how to use the Bioconductor tools.
Resources Outside Bioconductor
If you are working with genetic data, there are a variety of R packages outside Bioconductor that you might find useful. See http://cran.r-project.org/web/views/Genetics.html for more information.
Vignettes
In Getting Help, I introduced vignettes. There is at least one vignette for every package in Bioconductor. For example, let’s attach the affy package and look at the available vignettes:
> library(affy)
> vignette(all=FALSE)
This shows the following list of available vignettes (from affy and Biobase):
Vignettes in package 'affy':
affy 1. Primer (source, pdf)
builtinMethods 2. Built-in Processing Methods (source,
pdf)
customMethods 3. Custom Processing Methods (source, pdf)
vim 4. Import Methods (source, pdf)
Vignettes in package 'Biobase':
BiobaseDevelopment Notes for eSet developers (source, pdf)
Bioconductor Bioconductor Overview (source, pdf)
ExpressionSetIntroduction
An introduction to Biobase and
ExpressionSets (source, pdf)
HowTo Notes for writing introductory 'how to'
documents (source, pdf)
Qviews quick views of eSet instances (source, pdf)
esApply esApply Introduction (source, pdf)
If you are not familiar with a package but think it could be useful for your work, try reading the included vignettes. In many cases, the vignettes will guide you through the whole analysis process: loading, cleaning, and analyzing data.
Courses
The Bioconductor project offers classes on Bioconductor. See http://www.bioconductor.org/workshops for a list of past course materials and upcoming events.
Books
The developers of Bioconductor have published several books; I found these very helpful when learning Bioconductor. If you are not familiar with the methods of modern biology or Bioconductor, then [Gentleman2005] is a very good choice. If you are familiar with modern biology and just want to see more examples, try [Hahne2008]. [Foulkes2009] provides a good introduction to statistical genetics using a number of tools outside Bioconductor (such as the genetics package). Finally, [Ewens2005] is a good book on statistical genetics, though it does not specifically discuss R.
Chapter 26. R and Hadoop
One of the best techniques for speeding up large computing problems is to break them into lots of little pieces, solve the pieces separately, and then put the pieces back together. This is called parallel computing, because it enables you to solve problems in parallel. For example, suppose that you had a lot of laundry: enough to fill 10 washing machines. Suppose each wash took 45 minutes, and each drying took 45 minutes. If you had only one washing machine and dryer, it would take 495 minutes to finish all the laundry. However, if you had 10 washing machines and 10 dryers, you could finish the laundry in 90 minutes.
In Chapters 20 and 21, we showed some cutting-edge techniques for statistical modeling. Many of these problems are very computationally intensive and could take a long time to finish. Luckily, many of them are very parallelizable. For example, we will show several algorithms that build models by fitting a large number of tree models to the underlying data (such as boosting, bagging, and random forests). Each of these algorithms could be run in parallel if more processors were available.
There are many packages available for parallel and distributed computing with R. In this chapter, I’ve focused on Hadoop-based solutions. Hadoop isn’t the best solution for all problems, but it’s popular, open source, and runs well in the cloud.
R and Hadoop
Over the past few years, Hadoop has become the de facto standard for processing big data. For many people, Hadoop is Big Data. You may have heard of Hadoop. But you may not know what it is, what it’s good for, and how you can you use it with R. That’s what this section is all about.
Overview of Hadoop
Hadoop is a system for working with huge data sets. Facebook uses it to store photos, LinkedIn uses it to generate recommendations, and Amazon uses it to generate search indexes. It’s a very useful system to use when you have a very large amount of data.
Hadoop is a system that lets you store a lot of data and solve really big problems. It works by connecting many different computers together, but it lets you work with them as if they were one giant computer. Working with parallel and distributed systems is tricky and complicated; Hadoop hides a lot of complexity from you so that you can worry about solving your problem.
In terms of the laundry analogy above, Hadoop is like a commercial laundry service. You give the service many loads of dirty laundry, and it sends you back bags of clean laundry the next day.
Map/Reduce
To help make it easier to write efficient parallel programs, Hadoop uses a model called Map/Reduce to process large amounts of data. Many common data processing tasks (including filtering data, merging data, and aggregating data) fit easily into Map/Reduce. Many (but not all) mathematical and machine learning algorithms can also use the Map/Reduce framework. To help explain how Map/Reduce works, let’s consider three problems:
Creating a web traffic report
Suppose that you want to calculate the number of requests and bytes served by a set of web servers each hour. You are given a set of large log files from web servers in common log format. Each line in the file contains seven fields: the host name or IP address of the remote host, the remote logname of the user, the username of an authenticated user, the date and time of the request, the request itself, the HTTP status returned to the client, and the number of bytes served.
Reporting on web traffic by location
Suppose that you want to calculate the number of requests and bytes served by a set of web servers by location. Just like above, suppose that you are given a set of large log files from web servers in common log format. But in this case, you’re also given a database for mapping IP addresses to locations. The database will contain an entry for the first 3 bytes of every IP address, mapping that to a location.
Predicting user behavior
Now, suppose that you want to predict how likely a user is to purchase an item from a website. Suppose that you have already computed (maybe using Map/Reduce), a set of variables describing each user: most common locations, the number of pages viewed, the number of purchases made in the past. Based on your experience, you’d like to calculate this forecast using random forests.
You can solve each of these problems efficiently with Map/Reduce. By implementing your solution with Map/Reduce, you can process your data in parallel on many servers, speeding up the computation immensely. Map/Reduce algorithms proceed in two steps:
Map step
In the map step, tasks read in input data as a set of records, process the records, and send groups of similar records to reducers. In Hadoop terminology, the mapper extracts a key from each input record. Hadoop will then route all records with the same key to the same reducer.
Reduce step
In the reduce step, tasks read in a set of related records, process the records, and outputs the results. In Hadoop terminology, the reducer will iterate through all results for the same key, processing the data and writing out the results.
Map/Reduce sounds very limiting, but it is a very flexible system for processing data. Programs can do many different things in the map step: they can drop fields or whole records, they can write out more than one output record for each input record, they can transform the input however the user would like. Similarly, programs can do many different thing in the reduce step. They can count input records, add fields from a set of records, combine records of different types, or do anything else the user would like to do with sets of records.
The great strength of Map/Reduce is that both maps and reducers are easily parallelizable. Each mapper processes a set of input records. Map tasks do not maintain state, nor do they need to communicate with one another. So it is possible to divide the mapping work across many map processes on many machines. Similarly, reduce tasks do not maintain state between keys, nor do they need to communicate with one another. Each reduce task will process sets of records (corresponding to sets of keys). Records with different keys are consistently sent to the same reduce task. So it is possible to efficiently process massive data sets with Map/Reduce.
To help show how this works, let’s explain how to use map/reduce to solve each of the examples above.
Creating a web traffic report
Each mapper will read in a web server log (or a set of logs). The mapper will process the logs one line at a time. For each record, the mapper will extract the timestamp and round the time to the nearest hour; the mapper will use this as the key. The mapper will then extract the number of bytes, which will be used as the value. The mapper will write out these fields.
The reducer will iterate over a set of byte counts for each key. The reducer will count the number of records and sum the number of bytes for each key, and then write out the results.
Reporting on web traffic by location
To solve this problem, we’ll need our mappers to do two things. First, some mappers will read web server logs. They will look at the IP address in each entry, extracting the first 3 bytes to use as a key. They will then extract the number of bytes and use that as the value and send these entries to the reducers.
Next, some mappers will process the IP geolocation data. They will extract the first 3 bytes of an IP address as a key and the location as the value. They will send these results to the reducers.
The reducers will then collect two things. When they are processing input records, they will do two things. When they encounter a location record, they will record the location. When they encounter a traffic record, they will add the request to the total requests and add the number of bytes to the total bytes. When the reducer finishes iterating through the entries, it will then write out the location, the number of bytes, and the number of requests.
Predicting user behavior
As you may recall, random forests work by calculating a set of regression trees and then averaging them together to create a single model. It can be time consuming to fit the random trees to the data, but each new tree can be calculated independently.
There are many ways to accomplish this task. One way to tackle this problem is to use a set of map tasks to generate random trees, and then send the models to a single reducer task to average the results and produce the model.[66]
Map/Reduce is a very powerful model for doing distributed computation. With some practice, you can learn to formulate data problems as Map/Reduce problems and solve them efficiently.
To make programs scalable, there are some restrictions on what map tasks and reduce tasks can do:
Map tasks should be stateless. Map tasks should calculate the same results strictly based on the input data, regardless of the order of the input data.
Reduce tasks should be stateless but may maintain state while iterating through inputs with the same key.
Tasks cannot communicate with one another. Each task should be able to commute its result based strictly on the input data.
There is one other type of task that is commonly used: combine tasks. Combine tasks work like reduce tasks, but they run on subsets of the data. The results of the combine tasks are then combined by the reducer. Reduce tasks are typically run on map nodes. Combiners are not required but are often useful as an optimization. In my examples, I’ve omitted combine tasks to keep things easy to understand.
A great place to learn about Map/Reduce is from the original Google Map/Reduce paper.
Distributed data storage
A second major feature of Hadoop is the Hadoop Distributed File System (HDFS). HDFS is a system for storing data on a Hadoop cluster, often on the same nodes that run user code. HDFS allows you to store very large volumes of data, because the data is distributed across many different machines. (You can even split single files into parts and distribute them across multiple machines.) Usually, HDFS stores each file on more than one machine. This helps prevent data loss if computers (or hard drives) fail.
Hadoop provides an additional feature for large computational jobs. Modern computers are typically so fast at calculating results that computers don’t spend all their time computing. Instead, they spend most of their time waiting: waiting for data to be read from storage (memory or disk), sent across a network, or written to storage. In many cases, simply copying data within memory can take a substantial amount of time. Within a large job, Hadoop will try to run tasks close to one another (to minimize network connections across racks or clusters). When starting a job, Hadoop will also try to assign tasks to the same machines where the data is stored. For large jobs, this can substantially improve performance.
Managing a cluster of servers
Hadoop has many features to enable processing large data sets, and many options for configuring these tasks. You can tune the number of tasks, the way records are divided across tasks, the way that data is sorted, and many other aspects of your computation.
Hadoop also has many features to make sure that tasks will finish and data will not be lost even if machines fail. Here’s why this is important. Suppose that you had one server, and the probability that this server fails on a given day is 1/1000 (approximately once every three years). You might not worry too much about system failures; the probability that the server does not fail on a given day is .999. But now suppose that you had 1000 servers. The probability that none of the servers fail is now (1 - 1/1000)1000, or 0.368.
To protect against failures, Hadoop provides several different tools. First, files are replicated on several servers. If any individual disk fails, a copy of each file can be retrieved from other locations. Secondly, Hadoop constantly monitors tasks; if any individual task fails to respond when contacted, or appears to be taking too long to complete, Hadoop will attempt to end that task and start a duplicate task. (This is called “speculative execution.”) Finally, Hadoop will track which nodes are having problems and stop sending them new tasks.
As an end user of Hadoop, you do not normally have to worry about task failures, replication factors, and node blacklisting. These are all included with the framework.
Java framework
One other important note: Hadoop was written in Java and (originally) designed to help write Java programs. If you don’t want to write Java code, there are other tools that you can use with Hadoop: Apache Hive (which lets you write SQL queries), Apache Pig (an SQL-like scripting language), or Cascading (a system for writing pipelines in Scala, Clojure, or other languages). You can even use other applications (such as R) to do your data processing on Hadoop, and just use Hadoop to schedule jobs and move around data. (This is called streaming.)
There are some good things about Hadoop’s Java roots. You can access Hadoop from any language that runs on the JVM (Java Virtual Machine). Additionally, you can install and run it on many different platforms including Linux, Mac OS X, and Windows. (You could probably run Hadoop on your Android phone.) But there is one big negative. If you want to use Hadoop, you need to learn how to read and write Java code and how to use Java tools; you will see Java error messages, you will need to read Java documentation, and you will need to compile and run Java programs.
If you can learn R, you can learn Java. (And if you’ve read this far into this book, I’m confident that you can learn R.) But you should prepare yourself to invest some time learning new things if you plan to use Hadoop.
When should you consider Hadoop?
Hadoop is a great tool for storing and processing huge amounts of data, but it’s not the best tool for storing and processing any amount data. It’s hard to start a Hadoop cluster and keep it working over time. Additionally, it can be expensive to move data among different computers using Java: Hadoop isn’t always the fastest option. Before using Hadoop, I’d recommend shrinking the problem (by sampling data or reducing the complexity of the problem), or growing your computer (by adding more processors or memory).
In general, I’d consider using Hadoop if:
You cannot solve the problem with one machine, even after shrinking your data or expanding the machine.
It’s possible to formulate the problem as a Map/Reduce problem. Many, but not all, important problems fit into a Map/Reduce model.
You have the right expertise to run a Hadoop cluster. Companies that actively use Hadoop often have teams of people to manage Hadoop.
I’d consider using R with Hadoop if I needed to take advantage of some unique features of R, such as some of the modeling facilities. Using R and Hadoop is not always the most efficient solution for solving a problem. For example, we count the number of deaths by sex in the United States during 2009 in An example RHadoop application. Using RHadoop and a four-node cluster, this job takes 15 minutes; using one server and R it takes 1 hour; and using one server and Perl it takes about 15 seconds to solve this problem. That might sound like a huge difference in performance (and it is). Hadoop can definitely help you speed up R programs, even if you can find faster solutions outside of R.
In the rest of this section, we’ll show three ways to use Hadoop: using the RHadoop package in R, using Segue, and using Hadoop streaming.
RHadoop
The most mature (and best integrated) project for R and Hadoop is RHadoop. Written by Antonio Piccolboni, with support from Revolution Analytics, it’s a well tested and thought out project.
There are three different parts of RHadoop:
rmr
This is the core package in RHadoop. It contains functions for moving data in and out of a Hadoop cluster and executing Map/Reduce jobs on the cluster.[67]
rhdfs
The rhdfs package includes a set of tools for managing files on HDFS, the Hadoop file system. These functions cover most normal file system functions; they’re principally useful for scripting common operations within R. There is a set of functions that duplicate the hadoop fs command for changing permissions, checking file properties, listing directories, creating and deleting directories, and removing files; see help(hdfs.ls) for a list. There are also functions for copying local files to HDFS, moving them from HDFS, or moving them around hdfs; see help(hdfs.copy) for a list.
rhbase
Rhbase contains a set of functions for manipulating Hbase from R. There are functions for creating or modifying Hbase tables, or reading and writing Hbase records. See help(hb.defaults) for more information about functions for creating or modifying Hbase tables, or help(hb.insert) for more information about the functions for reading and writing records.
I’ll focus on rmr in this section, because that’s going to be the most useful package for most R users.
Make sure Hadoop is installed locally
If you aren’t using Hadoop yet, you should begin by installing some tools locally. RHadoop was built with the Cloudera Hadoop distribution and is tested against it. I used CDH Version 3 Update 4 for this example; you can download and unpack it with these commands on a system prompt (not from inside R):
$ wget http://archive.cloudera.com/cdh/3/hadoop-0.20.2-cdh3u4.tar.gz
$ tar xvfz hadoop-0.20.2-cdh3u4.tar.gz
You can check if Hadoop is installed correctly by using the command hadoop version on your OS shell (not from inside R). You should see a message like this:
$ hadoop version
Hadoop 0.20.2-cdh3u4
Subversion git://ubuntu-slave01/var/lib/jenkins/workspace/CDH3u4-Full-RC/
build/cdh3/hadoop20/0.20.2-cdh3u4/source -r
214dd731e3bdb687cb55988d3f47dd9e248c5690
Compiled by jenkins on Mon May 7 13:01:39 PDT 2012
From source with checksum a60c9795e41a3248b212344fb131c12c
I strongly recommend testing locally before running your code in the cloud. Local Hadoop jobs are easier and faster to debug. Just make sure to shrink your data.
If you don’t have your own Hadoop cluster to play with, you can rent one from a cloud service (such as Amazon Web Services or Rackspace). See the following sidebar for a description of how I installed my own small cluster for this book.
HADOOP IN THE CLOUD
Hadoop is a big, complicated piece of software. There are whole books on how to configure and administer Hadoop clusters.
But there is a fast, relatively painless way to create a real Hadoop cluster in the cloud: using Apache Whirr. I created my own cluster when I was writing this book and used it for the included examples. (Specifically, I used AWS EC2, the Elastic Compute Cloud. This lets you create virtual computers in the cloud and run software on them.) Here’s a description of how I built my own cluster for this book using AWS.
1. Get an account with a cloud provider.
You will need to register with the provider, providing contact and billing information. The most popular choice is Amazon Web Services, but Rackspace is also a good choice. (I’m recommending choosing one of these two providers because these are the best supported by Apache Whirr; see below for an explanation of why that matters.) Either provider will allows you to allocate a set of virtual computers and provide management tools to let you use them. You will be charged based upon usage: an hourly fee per server, fees for each GB of data that you transfer in and out of the cloud, fees for each GB of storage space that you use, and additional charges for other services. In my experience, the charges are reasonable, but you should be careful to use only what you need.
2. Configure security settings.
To use cloud services, you’ll need to get several security settings correct. For AWS, you need to find your Access Key ID and Secret Access Key, and additionally need to create an SSH keypair. (The Access Key ID and Secret Access Key are used for communication with Amazon Web Services management features; you use these keys to start and stop services. The SSH key pair is used to connect to virtual machines in the cloud.)
You can find the Access Key ID and Secret Access Key from AWS’s security credentials page. For convenience, I set the environment variable AWS_ACCESS_KEY_ID to my Access Key ID, and AWS_SECRET_ACCESS_KEY to my secret key:
$ # using Bash shell syntax
$ EXPORT AWS_ACCESS_KEY_ID=my_access_key_id
$ EXPORT AWS_SECRET_ACCESS_KEY=my_secret_key
I created a new SSH key pair to connect to my EC2 instances (saving them in the default location):
$ # create a key pair with no password for the private key
$ ssh-keygen -t rsa -P ''
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/jadler/.ssh/id_rsa):
Your identification has been saved in ./id_rsa.
Your public key has been saved in ./id_rsa.pub.
...
$ # save a copy of the key in PEM format to make AWS happy:
$ ssh-keygen -e -f ~/.ssh/id_rsa -m pem > ~/.ssh/id_rsa.pub.pem
Next, I went to the EC2 management console and installed the key pair. (Make sure you are using the console for the region, or regions, in which you want to set up your cluster.)
3. Install Apache Whirr.
Apache Whirr (http://whirr.apache.org) is a set of libraries for running cloud services. Whirr makes it easy to set up complicated services and manage them from your desktop; with just a few lines of configuration, you can install a Hadoop cluster.
4. Configure Whirr.
You will need to define a properties file to use Whirr; as an example, you might start with recipes/hadoop-ec2-properties in the Whirr distribution, or better yet, RHadoop/rmr/pkg/tools/whirr/hadoop-ec2-centos.properties in the rmr source code. For my example, I used the following configuration:
# Change the cluster name here
whirr.cluster-name=hadoop-my-ec2-cluster
# Change the number of machines in the cluster here
# I used 1 machine for the name node and job tracker, and
# 4 machines for data nodes and tasktrackers:
whirr.instance-templates=1 hadoop-namenode+hadoop-jobtracker,\
4 hadoop-datanode+hadoop-tasktracker
# rmr requries Cloudera Hadoop, so use CDH
whirr.hadoop.install-function=install_cdh_hadoop
whirr.hadoop.configure-function=configure_cdh_hadoop
# make sure java is set up correctly, requires Whirr >= 0.7.1
whirr.java.install-function=install_oab_java
# read AWS keys from environment variables
whirr.provider=aws-ec2
whirr.identity=${env:AWS_ACCESS_KEY_ID}
whirr.credential=${env:AWS_SECRET_ACCESS_KEY}
# The size of the instance to use.
# See http://aws.amazon.com/ec2/instance-types/
whirr.hardware-id=m1.large
# select recent, 64-bit CentOS AMI from RightScale
# Note that this image may not be available in your region, or
# might be out of date when you try this.
whirr.image-id=us-west-1/ami-8f6a37ca
# If you choose a different location, make sure whirr.image-id
# is also updated
whirr.location-id=us-west-1
# By default use the user system SSH keys. Override them here.
# whirr.private-key-file=${sys:user.home}/.ssh/id_rsa
# whirr.public-key-file=${whirr.private-key-file}.pub
hadoop-env.JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64
I saved my configuration in a file called rian-hadoop-cluster.properties. Amazingly, that’s all you need in order to use Whirr to create, configure, and stop a Hadoop cluster.
5. Start the cluster and install rmr.
I started my cluster using whirr (output truncated for brevity):
$ whirr launch-cluster --config rian-hadoop-cluster.properties
Bootstrapping cluster
Configuring template
Configuring template
Starting 1 node(s) with roles [hadoop-namenode, hadoop-jobtracker]
Starting 4 node(s) with roles [hadoop-datanode, hadoop-tasktracker]
...
6. Run a script on all nodes to install rmr.
Next, you’ll need to install R and rmr on all the nodes in your cluster. Whirr lets you easily write a command line script and execute it on every node. You can find the R install script in the rmr distribution under RHadoop/rmr/pkg/tools/whirr/rmr-master-centos.sh. To run this, use the command
$ whirr run-script --script rmr-master-centos.sh \
--config rian-hadoop-cluster.properties
7. Connect to the job tracker/namde node machine and check permissions.
I needed to fix group permissions before I could run jobs on the cluster:
$ sudo -u hdfs hadoop fs -chmod 777 /
8. Configure your local machine to run hadoop jobs in the cloud.
When you start a cluster with Whirr, Whirr will create a configuration directory for the new cluster and as script for connecting to that cluster. By default, these are in a folder inside the ~/.whirr directory, with a name corresponding to your cluster name. For my example, here is how I used these files to connect to my cluster:
$ export HADOOP_CONF_DIR=~/.whirr/hadoop-my-ec2-cluster
$ $HADOOP_CONF_DIR/hadoop-proxy.sh &
And that should be it; you now have your own Hadoop cluster for experimentation! When you’re done, you can destroy the cluster with the command:
$ whirr destroy-cluster --config hadoop-ec2-properties
Thanks to Jeffrey Breen for writing a short tutorial on how to start a cluster for running rmr.
Installing RHadoop locally
You’ll need to install RHadoop both locally (on the machine you use to run R) and on all the nodes of your Hadoop cluster. The easiest way to download and install RHadoop is to use the devtools package. (Output edited for brevity.)
> library(devtools)
> install_url("https://github.com/downloads/RevolutionAnalytics/RHadoop/
rmr_1.3.tar.gz")
Installing rmr_1.3.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rmr_1.3.tar.gz
Installing rmr
Installing dependencies for rmr:
...
> # make sure to set HADOOP_HOME to the location of your HADOOP installation,
> # HADOOP_CONF to the location of your hadoop config files, and make sure
> # that the hadoop bin diretory is on your path
> Sys.setenv(HADOOP_HOME="/Users/jadler/src/hadoop-0.20.2-cdh3u4")
> Sys.setenv(HADOOP_CONF=paste(Sys.getenv("HADOOP_HOME"),
+ "/conf", sep=""))
> Sys.setenv(PATH=paste(Sys.getenv("PATH"), ":", Sys.getenv("HADOOP_HOME"),
+ "/bin", sep=""))
> install_url("https://github.com/downloads/RevolutionAnalytics/RHadoop/
rhdfs_1.0.4.tar.gz")
Installing rhdfs_1.0.4.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rhdfs_1.0.4.tar.gz
Installing rhdfs
...
> install_url("https://github.com/downloads/RevolutionAnalytics/
RHadoop/rhbase_1.0.4.tar.gz")
Installing rhbase_1.0.4.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rhbase_1.0.4.tar.gz
Installing rhbase
Make sure to double-check the current version at the RHadoop Download Page on GitHub; you’ll get an error if the version numbers change.
An example RHadoop application
Most Map/Reduce examples start with a word count program. I like to be different, so I decided to calculate statistics using the mortality data that we loaded in Using Other Languages to Preprocess Text Files and Comparing means across more than two groups. This data set contains a record of every death in the United States, including the cause of death and demographic information about the deceased. It’s a pretty big file: in 2009, the mortality data file was 1.1 GB and contained 2,441,219 records. One of the best things about Hadoop is that you can work with a set of raw, unstructured files. To make this example more realistic, we’ll parse the data as we process it.
To get started, I got a copy of the raw mortality data from the CDC website and uploaded it to my cluster.
$ # get the file from the CDC
$ wget ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/DVS/
mortality/mort2009us.zip
$ # unzip the file
$ unzip mort2009us.zip
$ # create a directory on hdfs
$ hadoop fs -mkdir mort09
$ # copy to that directory on hdfs
$ hadoop fs -copyFromLocal VS09MORT.DUSMCPUB mort09
$ # look at the files
$ hadoop fs -ls mort09
Found 1 items
-rw-r--r-- 3 jadler supergroup 1196197310 2012-08-02 16:31
/user/jadler/mort09/VS09MORT.DUSMCPUB
I also created a small (100 observation) sample for testing on my local machine:
$ head -n 100 VS09MORT.DUSMCPUB > VS09MORT.DUSMCPUB.sample
I took a look at the Mortality Public Use File Documentation, and used this to figure out how to read the file. This is a fixed format file. Normally, you’d read a file like this with read.fwf, but I would not have access to read.fwf from RHadoop functions, so I decided to write my own parsing function.
First, I created a vector labeled with field sizes, labeling each by position. For fields that were blank, I gave them names that started with .X. (That’s an arbitrary choice.)
mort.schema <- c(
.X0=19, ResidentStatus=1, .X1=40, Education1989=2, Education2003=1,
EducationFlag=1,MonthOfDeath=2,.X2=2,Sex=1,AgeDetail=4, AgeSubstitution=1,
AgeRecode52=2,AgeRecode27=2,AgeRecode12=2,AgeRecodeInfant22=2,
PlaceOfDeath=1,MaritalStatus=1,DayOfWeekofDeath=1,.X3=16,
CurrentDataYear=4, InjuryAtWork=1, MannerOfDeath=1, MethodOfDisposition=1,
Autopsy=1,.X4=34,ActivityCode=1,PlaceOfInjury=1,ICDCode=4,
CauseRecode358=3,.X5=1,CauseRecode113=3,CauseRecode130=3,
CauseRecode39=2,.X6=1,Conditions=281,.X8=1,Race=2,BridgeRaceFlag=1,
RaceImputationFlag=1,RaceRecode3=1,RaceRecode5=1,.X9=33,
HispanicOrigin=3,.X10=1,HispanicOriginRecode=1)
I chose a vector so that I could easily lookup up field sizes and names by position, and also so that I could check my work:
> # according to the documentation, each line is 488 characters long
> sum(mort.schema)
[1] 488
Next I wrote a function for reading records from a data file, using a vector like the one above to determine the position and name of each field. This function returns a list and skips over any field name that begins with .X.
unpack.line <- function(data, schema) {
filter.func <- function(x) {substr(x,1,2) != ".X"}
data.pointer <- 1
output.data <- list()
for (i in 1:length(schema)) {
if (filter.func(names(schema)[i])) {
output.data[[names(schema)[i]]] <-
type.convert(
substr(data, data.pointer, data.pointer+schema[i] - 1),
as.is=TRUE)
}
data.pointer <- data.pointer + schema[i]
}
output.data
}
Here’s a small example that shows how this function works:
> test.data <- c("A11a 8", "B22b09", "C33c10")
> test.schema <- c(one=1, .X1=2, three=1, four=2)
> t(sapply(test.data, FUN=function(x) unpack.line(x,test.schema)))
one three four
A11a 8 "A" "a" 8
B22b09 "B" "b" 9
C33c10 "C" "c" 10
Now let’s try a simple example: counting the number of deaths by sex. First we’ll create a map function that reads in each input line, labels the sex as the key, and emits a 1 as the value.
sex.map.fn <- function(k,v) {
record <- unpack.line(v, mort.schema)
# type.convert assumes the character F means FALSE
key <- ifelse(record[["Sex"]]==FALSE,"female","male")
keyval(key, 1)
}
Next we’ll create a reduce function to count the set of values for each key:
count.records.reduce.fn <- function(k, v) {
keyval(k, length(v))
}
Let’s now use mapreduce to run this code on the input data and tabulate the results. We’ll start with our small sample file as input, and specify the map and reduce functions. We’ll also tell mapreduce to treat the input file as plain text, but to output the data in CSV format (to make it easier to read later):
sex.counts <- mapreduce(
input="VS09MORT.DUSMCPUB.sample", # change this path as needed
map=sex.map.fn,
reduce=count.records.reduce.fn,
combine=NULL,
input.format="text",
output.format="csv")
Running this function produces a lot of output (truncated and edited for readability):
...
12/08/01 14:50:54 INFO streaming.StreamJob: Running job: job_local_0001
12/08/01 14:50:54 INFO streaming.StreamJob: Job running in-process (local
Hadoop)
12/08/01 14:50:54 INFO mapred.Task: Using ResourceCalculatorPlugin : null
12/08/01 14:50:54 INFO mapred.MapTask: numReduceTasks: 1
...
12/08/01 14:50:57 INFO streaming.StreamJob: map 100% reduce 0%
...
12/08/01 14:50:57 INFO mapred.LocalJobRunner: Records R/W=100/1 > reduce
12/08/01 14:50:57 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
12/08/01 14:50:58 INFO streaming.StreamJob: map 100% reduce 100%
12/08/01 14:50:58 INFO streaming.StreamJob: Job complete: job_local_0001
12/08/01 14:50:58 INFO streaming.StreamJob: Output:
/var/folders/j9/040rj_5x6ynbkr7xy5l86lf80000gp/T//RtmpwyGSF1/filef1b2e2d29ef
If everything is set up correctly, the job will end with a statement like the one above (and no error messages). Notice that the message says that the job is 100% complete. Finally, we can read the results back into R using the from.dfs function:
> from.dfs(sex.counts, format="csv", structured=TRUE)
V1 V2
1 male 53
2 female 47
Warning message:
In keyval.list.to.data.frame(retval) : dropping keys
If everything looks correct when you run this locally, you can try to run the code at scale on a cluster (output edited for clarity and brevity):
> sex.counts <- mapreduce(
+ input="mort09",
+ map=sex.map.fn,
+ reduce=count.records.reduce.fn,
+ combine=NULL,
+ input.format="text",
+ output.format="csv")
...
12/08/01 21:11:50 mapred.FileInputFormat: Total input paths to process : 4
...
12/08/01 21:11:53 streaming.StreamJob: map 0% reduce 0%
12/08/01 21:12:07 streaming.StreamJob: map 1% reduce 0%
12/08/01 21:12:12 streaming.StreamJob: map 2% reduce 0%
12/08/01 21:12:18 streaming.StreamJob: map 3% reduce 0%
...
12/08/01 21:24:44 streaming.StreamJob: map 99% reduce 31%
12/08/01 21:25:32 streaming.StreamJob: map 100% reduce 31%
12/08/01 21:26:08 streaming.StreamJob: map 100% reduce 67%
12/08/01 21:28:33 streaming.StreamJob: map 100% reduce 83%
12/08/01 21:31:00 streaming.StreamJob: map 100% reduce 100%
12/08/01 21:31:10 streaming.StreamJob: Job complete: job_201208012345_0001
12/08/01 21:31:10 streaming.StreamJob: Output:
> from.dfs(sex.counts, format="csv", structured=TRUE)
V1 V2
1 male 1220120
2 female 1221099
Let’s try a slightly more complicated example that really shows off what you can do in R: we’ll calculate a series of density plots for every cause of death. Here’s the plan: we’ll use map functions to extract the cause of death and age from each record. We’ll then use a reduce function to calculate a histogram for each key. Finally, we’ll plot the output in R. First, we’ll write some helper functions to decode the data in the file
cause.decode <- function(x) {
switch(x,
`1`="Tuberculosis",
`2`="Syphilis",
`3`="Human immunodeficiency virus",
`4`="Malignant neoplasms",
`5`="Malignant neoplasm of stomach",
`6`="Malignant neoplasms of colon, rectum and anus",
`7`="Malignant neoplasm of pancreas",
`8`="Malignant neoplasms of trachea, bronchus and lung",
`9`="Malignant neoplasm of breast",
`10`="Malignant neoplasms of cervix uteri, corpus uteri and ovary",
`11`="Malignant neoplasm of prostate",
`12`="Malignant neoplasms of urinary tract",
`13`="Non-Hodgkin's lymphoma",
`14`="Leukemia",
`15`="Other malignant neoplasms",
`16`="Diabetes mellitus",
`17`="Alzheimer's disease",
`18`="Major cardiovascular diseases",
`19`="Diseases of heart",
`20`="Hypertensive heart disease with or without renal disease",
`21`="Ischemic heart diseases",
`22`="Other diseases of heart",
`23`="Essential",
`24`="Cerebrovascular diseases",
`25`="Atherosclerosis",
`26`="Other diseases of circulatory system",
`27`="Influenza and pneumonia",
`28`="Chronic lower respiratory diseases",
`29`="Peptic ulcer",
`30`="Chronic liver disease and cirrhosis",
`31`="Nephritis, nephrotic syndrome, and nephrosis",
`32`="Pregnancy, childbirth and the puerperium",
`33`="Certain conditions originating in the perinatal period",
`34`="Birth Defects",
`35`="Sudden infant death syndrome",
`36`="Other",
`37`="All other diseases",
`38`="Motor vehicle accidents",
`39`="All other and unspecified accidents and adverse effects",
`40`="Intentional self-harm",
`41`="Assault",
`42`="All other external causes"
)
}
age.decode <- function(x) {
if (x>9000)
NA
else if (x > 5000)
0
else if (x > 4000)
floor((x - 4000) / 365)
else if (x > 2000)
floor((x - 2000) / 12)
else if (x > 1000)
(x - 1000)
else
NA
}
Next we’ll write a map function to extract the cause of death and age. We won’t decode the cause of death yet, so we can move less data around the cluster:
cause.map.fn <- function(k,v) {
record <- unpack.line(v, mort.schema)
key <- record[["CauseRecode39"]]
val <- age.decode(record[["AgeDetail"]])
keyval(key, val)
}
We’ll write a reduce function that tabulates the number of deaths by age (we’ll cut off ages at 110):
hist.reduce.fn <- function(key, values) {
counts <- rep(0, 112)
names(counts) <- c(0:110,NA)
for (value in values) {
if (!is.na(value)) {
if (value < 110) {
counts[value + 1] <- counts[value + 1] + 1
} else {
counts[111] <- counts[111] + 1
}
} else {
counts[112] <- counts[112] + 1
}
}
keyval(cause.decode(key), counts)
}
Next, we’ll run the map reduce job to tabulate the results:
deaths.by.age.and.cause.mr <- mapreduce(
input="mort09", # change this path as needed
map=cause.map.fn,
reduce=hist.reduce.fn,
input.format="text",
# use native output format so we can read the output R objects
output.format="native"
)
While running, you’ll see output like this (edited for brevity):
12/08/02 16:43:26 streaming.StreamJob: Running job: job_201208021921_0002
...
12/08/02 16:43:27 streaming.StreamJob: map 0% reduce 0%
12/08/02 16:43:39 streaming.StreamJob: map 1% reduce 0%
12/08/02 16:43:45 streaming.StreamJob: map 2% reduce 0%
12/08/02 16:43:51 streaming.StreamJob: map 3% reduce 0%
12/08/02 17:02:29 streaming.StreamJob: map 100% reduce 98%
12/08/02 17:02:50 streaming.StreamJob: map 100% reduce 99%
12/08/02 17:02:53 streaming.StreamJob: map 100% reduce 100%
12/08/02 17:02:58 streaming.StreamJob: Job complete: job_201208021921_0002
12/08/02 17:02:58 streaming.StreamJob: Output:
We’ll copy the object from the cluster to our local session:
> deaths.by.age.and.cause.object <-
+ from.dfs(deaths.by.age.and.cause.mr, format="native", structured=TRUE)
The object contains two lists, keys and values:
> names(deaths.by.age.and.cause.object)
[1] "key" "val"
As a sanity check, we’ll make sure that there are the correct number of observations in the data:
> # The Reduce function is part of R, not map/reduce...
> Reduce(sum, deaths.by.age.and.cause.object$val)
[1] 2441219
Now we’re ready to plot the results. Let’s calculate the densities:
> # make the results into a matrix, drop NA column
> deaths.by.age.and.cause <-
+ as.matrix(deaths.by.age.and.cause.object$val[ ,1:111])
> row.names(deaths.by.age.and.cause) <-
+ deaths.by.age.and.cause.object$key$V1
> total.by.condition <- apply(deaths.by.age.and.cause,1, sum)
> densities <- deaths.by.age.and.cause / total.by.condition
Let’s plot the density by age for the top six diseases:
> # list the top six diseases
> sort(apply(deaths.by.age.and.cause, 1, sum),decreasing=TRUE)[1:6]
All other diseases
414663
Ischemic heart diseases
387038
Other diseases of heart
177240
Malignant neoplasms of trachea, bronchus and lung
158263
Other malignant neoplasms
144284
Chronic lower respiratory diseases
137417
> # get the list of names
> top.six <- names(
+ sort(apply(deaths.by.age.and.cause, 1, sum), decreasing=TRUE)[1:6])
> library(reshape)
> densities.df <- melt(densities)
> # color version
> qplot(x=Age, y=Density,data=subset(densities.df,Condition %in% top.six),
+ color=Condition, geom="line") +
+ guides(col=guide_legend(ncol=2)) +
+ opts(legend.position="bottom")
> # black and white version
> qplot(x=Age,y=Density,data=subset(densities.df,Condition %in% top.six),
+ linetype=Condition, geom="line") +
+ guides(linetype=guide_legend(ncol=2)) +
+ opts(legend.position="bottom")
The plot is shown in Figure 26-1. Here’s what this plot means: people who die of lung cancer (or other cancer) tend to die from that disease earlier than people who die from heart disease or other diseases.
Figure 26-1. Density plot for top diseases
Details of rmr
The workhorse of rmr is the mapreduce function:
mapreduce(input, output, map, reduce, combine,
input.format, output.format, vectorized,
structured, backend.parameters, verbose)
This function will run your map/reduce job using Hadoop. It returns an object that you can pass along to other mapreduce calls, calls to from.dfs, or writes the output to a specific file. In most cases, you’ll want to specify the map and reduce functions (as we showed above.) Here’s a description of the arguments to mapreduce:
Argument | Description | Default |
---|---|---|
input | HDFS path for the input data, output of another mapreduce call, or a call to to.dfs | |
output | HDFS path for the output data. If NULL, the return value of mapreduce can be passed along to another call to mapreduce or from.dfs . | NULL |
map | The map function applied to the data. An R function that takes two arguments as input (a key and value) and returns either NULL or a value created by keyval. The map function may accept two single values, or a pair of equal length lists (see vectorized below). | to.map(identity) |
reduce | A reduce function that is (optionally) applied to the output of the map stage (or the combine function if specified) | NULL |
combine | A function that is (optionally) applied to the output of the map stage, then fed to the reduce stage. | NULL |
input.format | Data input format, typically specified through make.input.format | "native" |
output.format | Data output format, typically specified through make.output.format | "native" |
vectorized | Specifies whether the map and reduce functions can process multiple records at the same time. (The reduce functionality isn’t implemented yet, as of rmr 1.3.) | list(map=FALSE,reduce=FALSE) |
structured | Specifies whether the inputs to map and reduce are structured data. If so, the input is coerced to a data frame. | list(map=FALSE,reduce=FALSE) |
backend.parameters | Additional parameters passed to hadoop ; see the documentation for more details. | list() |
verbose | Specifies whether to run HADOOP in verbose mode | TRUE |
The rmr package includes a set of helper functions for creating or manipulating key value pairs:
keys(kvl)
values(kvl)
keyval(k, v, vectorized = FALSE)
You can convert a pair of functions to the correct form of map, reduce, and combine functions using the functions to.map and to.reduce:
to.map(fun1, fun2 = identity)
to.reduce(fun1, fun2 = identity)
If both fun1 and fun2 are specified, then fun1 is specified to the key and fun2 to the value. Otherwise, fun1 is applied to each key/value pair.
You can pass an R object to the mapreduce function with the function to.dfs:
to.dfs(object, output = dfs.tempfile(), format = "native")
You can also retrieve the results of a mapreduce function call with the function from.dfs:
from.dfs(input, format = "native", to.data.frame = FALSE,
vectorized = FALSE, structured = FALSE)
Learning more
You can learn more about the RHadoop project from the RHadoop Wiki, or by reading the included help files.
You may also want to check out Rhipe, another integration of R and Hadoop.
Hadoop Streaming
An alternative way to use R code with Hadoop is using Hadoop streaming. With streaming, you write R scripts that act as map tasks, reduce tasks, and optionally combine tasks. Each task is responsible for reading input from standard input and writing output to standard output. Typically, you would use streaming with tab-separated text files, though you can use other input files. You would then execute the stream from the command line.
Streaming is actually simpler than it sounds. Here’s an example to show how it works. We’ll use the mortality data again, but this time we will calculate the average age of death for each cause. We’ll need to write two R scripts: a map script and a reduce script. We’ll then execute these on the cluster using streaming and examine the results. Where I reuse data and function definitions from RHadoop, I’ve omitted the duplicate code and replaced it with an elipsis.
First, we’ll put the following R code into a file called map.R:
#! /usr/bin/env Rscript
mort.schema <- ...
unpack.line <- ...
age.decode <- ...
con <- file("stdin", open="r")
while(length(line <- readLines(con, n=1)) > 0) {
parsed <- unpack.line(line,mort.schema)
write(paste(parsed[["CauseRecode39"]],
age.decode(parsed[["AgeDetail"]]),
sep="\t"),
stdout())
}
close(con)
This map script defines the data structures and functions that we need to unpack and decipher the input data. It then opens the standard input connection and reads the input one line at a time. As it reads each record, it writes the record to standard output (separating the key and value with a tab).
(By the way, notice the first line of the script. That tells your computer how to execute the script. Don’t leave that part out. Also, note that this works on Unix-like systems; you’ll need to change the scripts for Windows.)
Next we’ll put the following R code into a file called reduce.R:
#! /usr/bin/env Rscript
cause.decode <- ...
con <- file("stdin", open="r")
current.key <- NA
cumulative.age <- 0
count <- 0
print.results <- function(k, n, d) {
write(paste(cause.decode(k),n/d,sep="\t"),stdout())
}
while(length(line <- readLines(con, n=1)) > 0) {
parsed <- strsplit(line,"\t")
key <- parsed[[1]][1]
value <- type.convert(parsed[[1]][2], as.is=TRUE)
if (is.na(current.key)) {
current.key <- key
} else if (current.key != key) {
print.results(current.key, cumulative.age, count)
current.key <- key
cumulative.age <- 0
count <- 0
}
if (!is.na(value)) {
cumulative.age <- cumulative.age + value
count <- count + 1
}
}
close(con)
print.results(current.key, cumulative.age, count)
This script will read each line of input (the output from the map stage). It takes advantage of the fact that all the records for each key are sent to exactly one reduce task, and the data is provided in order. The function splits each input line into a key and value, and then tabulates the cumulative number of records seen and total ages. Whenever the key changes, the reduce function will output the results.
We’ll make both scripts executable:
$ chmod +x map.R
$ chmod +x reduce.R
Finally, we will use Hadoop to chain together this job. We need to specify the input data directory, the output data directory, the name of the mapper executable, the name of the reducer executable, and the name of any files that need to be sent to all the nodes. Here’s what it looks like when we put this all together (output edited for brevity and clarity):
$ hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-*.jar \
-input mort09 \
-output averagebycondition \
-mapper map.R \
-reducer reduce.R \
-file map.R \
-file reduce.R
...
12/08/02 23:49:11 mapred.FileInputFormat: Total input paths to process : 1
12/08/02 23:49:13 streaming.StreamJob: getLocalDirs(): [/tmp/
hadoop-jadler/mapred/local]
12/08/02 23:49:13 streaming.StreamJob: Running job: job_201208030115_0005
...
12/08/03 00:03:15 streaming.StreamJob: map 100% reduce 97%
12/08/03 00:03:18 streaming.StreamJob: map 100% reduce 98%
12/08/03 00:03:25 streaming.StreamJob: map 100% reduce 100%
12/08/03 00:03:28 streaming.StreamJob: Job complete: job_201208030115_0005
12/08/03 00:03:28 streaming.StreamJob: Output: averagebycondition
We can now fetch the results from HDFS using the hadoop fs -cat command:
$ fs -cat averagebycondition/part-00000
Tuberculosis 68.7895716945996
Malignant neoplasms of cervix uteri, corpus uteri and ovary
Malignant neoplasm of prostate 78.8757602703183
Malignant neoplasms of urinary tract 73.6232744438881
Non-Hodgkin's lymphoma 72.7357622055727
Leukemia 70.3787303549355
Other malignant neoplasms 68.9533836045577
Diabetes mellitus 72.2713882749796
Alzheimer's disease 86.3567794679693
Syphilis 65.7647058823529
Hypertensive heart disease with or without renal disease 73.3070619826703
Ischemic heart diseases 77.3131372113333
Other diseases of heart 77.9667230873392
Essential 78.8974886465086
Cerebrovascular diseases 78.7811490083932
Atherosclerosis 83.5731707317073
Other diseases of circulatory system 76.0453367875648
Influenza and pneumonia 77.2984175390966
Chronic lower respiratory diseases 76.5816602021584
Peptic ulcer 74.906239460371
Human immunodeficiency virus 48.1772741713439
Chronic liver disease and cirrhosis 59.8160532932763
Nephritis, nephrotic syndrome, and nephrosis 77.1696725831818
Pregnancy, childbirth and the puerperium 31.6104166666667
Certain conditions originating in the perinatal period 0.104190432732527
Birth defects 20.0559306661292
Sudden infant death syndrome 0
Other 71.5369307614645
All other diseases 75.821365783781
Motor vehicle accidents 42.4689925669931
All other and unspecified accidents and adverse effects 57.7371714053424
Intentional self-harm 46.7301651663828
Assault 33.3116436324812
All other external causes 43.0446477584629
Malignant neoplasm of stomach 70.268135986437
Malignant neoplasms of colon, rectum and anus 71.8581289805881
Malignant neoplasm of pancreas 71.4979390404621
Malignant neoplasms of trachea, bronchus and lung 70.8628864611438
Malignant neoplasm of breast 67.9600389152377
Learning More
Hadoop is a big, complicated system; this chapter has touched on only a few core concepts and showed how to use it with R. The best place to start is the official Apache Hadoop website. If you want to read a good overview of Hadoop, complete with some case studies, Tom White’s book Hadoop: The Definitive Guide is an excellent choice. To learn how to administer a Hadoop cluster, see Eric Sammer’s book Hadoop Operations.
Several companies provide commercial support for Hadoop including Cloudera and Hortonworks.
[66] To load the input data, we’d use the Distributed Cache.
[67] The name rmr is an unfortunate choice; hadoop fs -rmr is Hadoop’s recursive delete command.
Other Packages for Parallel Computation with R
Segue
The segue package by JD Long is a great choice for running simple parallel programs; it’s intended to be a gentle introduction to parallel computation. Segue runs programs in the cloud using AWS’s Elastic MapReduce service. (This is a distinct product from EC2, which I used to install my own private Hadoop cluster.) It borrows some Hadoop infrastructure, but it isn’t a full map/reduce package. Segue is modeled on the apply function in R; you use it to apply a function to a data set across a set of computers in the cloud. Let’s show how it works.
The segue package is hosted on Google Code, not CRAN. To install it, you can use the install_url command in the devtools package:
> library(devtools)
> # At the time I wrote this book, the current version was 0.05;
> # make sure to change the link to get the latest version:
> install_url("http://segue.googlecode.com/files/segue_0.05.tar.gz")
You’ll need an Amazon Web Services account to use it.
WARNING
You will be billed by the hour for using AWS. Make sure that you understand how you will be charged and how to use AWS before you start.
You’ll need to get your Access Key ID and Secret Access Key from AWS’s Security Credentials page.
> library(segue)
Loading required package: rJava
Loading required package: caTools
Loading required package: bitops
Segue did not find your AWS credentials. Please run the setCredentials()
function.
> # set aws.access.id to your amazon access id, aws.secret.key to your key
> setCredentials(aws.access.id, aws.secret.key)
To use segue, you first need to create a cluster object with createCluster:
createCluster(numInstances=2, cranPackages, customPackages,
filesOnNodes, rObjectsOnNodes, enableDebugging=FALSE,
instancesPerNode, masterInstanceType="m1.large",
slaveInstanceType="m1.large", location="us-east-1c", ec2KeyName,
copy.image=FALSE, otherBootstrapActions, sourcePackagesToInstall,
masterBidPrice, slaveBidPrice)
To calculate the results, use the function emrlapply (which stands for “Elastic Map Reduce lapply”):
emrlapply(clusterObject, X, FUN, taskTimeout=10, ...)
When you’re done, make sure to call stopCluster to terminate the EMR cluster (and stop Amazon from billing you):
stopCluster(clusterObject)
doMC
In Looping Extensions, we showed some extensions to R’s built-in looping functions. (Specifically, we showed how to use the foreach package and foreach function.) Revolution Computing developed these extensions to help facilitate parallel computation. Revolution Computing has also released a package called doMC that facilitates running R code on multiple cores.
To write code that takes advantage of multiple cores, you need to initialize the doMC package:
> library(doMC)
> registerDoMC()
This will allow the %dopar% operator (and related functions) in the foreach package to run in parallel. Revolution Computing has additional tools available in its enterprise version. See its website for more information.
Where to Learn More
If you’d like to learn more about high-performance computing with R, a good place to start is with the CRAN Task View page on High Performance Computing.
Q. Ethan McCallum has written a whole book on parallel computing with R, Parallel R: Data Analysis in the Distributed World.
Appendix A. R Reference
base
This package contains the basic functions that let R function as a language: arithmetic, input/output, basic programming support, and so on. Its contents are available through inheritance from any environment.
Functions
Data Sets
boot
This package provides functions for bootstrap resampling.
Functions
Data Sets
class
This package provides functions for classification.
Functions
cluster
This package provides functions for cluster analysis.
Functions
Data Sets
codetools
This package provides tools for analyzing R code. It is mainly intended to support the other tools in this package and byte code compilation. See the help file for more information.
foreign
This package provides functions for reading data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, and so forth.
Functions
Function | Description |
---|---|
data.restore | Reads binary data files or data.dump files that were produced in S version 3. |
lookup.xport | Scans a file as a SAS XPORT format library and returns a list containing information about the SAS library. |
read.S | Reads binary data files or data.dump files that were produced in S version 3. |
read.arff | Reads data from Weka Attribute-Relation File Format (ARFF) files. |
read.dbf | Reads a DBF file into a data frame, converting character fields to factors and trying to respect NULL fields. |
read.dta | Reads a file in Stata version 5–10 binary format into a data frame. |
read.epiinfo | Reads data files in the .REC format used by Epi Info versions 6 and earlier and by EpiData. Epi Info is a public-domain database and statistics package produced by the U.S. Centers for Disease Control and Prevention, and EpiData is a freely available data entry and validation system. |
read.mtp | Returns a list with the data stored in a file as a Minitab portable worksheet. |
read.octave | Reads a file in Octave text data format into a list. |
read.spss | Reads a file stored by the SPSS save or export commands. |
read.ssd | Generates a SAS program to convert the ssd contents to SAS transport format and then uses read.xport to obtain a data frame. |
read.systat | Reads a rectangular data file stored by the Systat SAVE command as (legacy) *.sys or, more recently, *.syd files. |
read.xport | Reads a file as a SAS XPORT format library and returns a list of data.frames. |
write.arff | Writes data into Weka Attribute-Relation File Format (ARFF) files. |
write.dbf | Tries to write a data frame to a DBF file. |
write.dta | Writes the data frame to file in the Stata binary format. Does not write array variables unless they can be drop -ed to a vector. |
write.foreign | Exports simple data frames to other statistical packages by writing the data as free-format text and writing a separate file of instructions for the other package to read the data. |
grDevices
This package provides functions for graphics devices and support for base and grid graphics.
Functions
Data Sets
graphics
This package contains functions for base graphics. Base graphics are traditional S graphics, as opposed to the newer grid graphics.
Functions
grid
This package is a low-level graphics system that provides a great deal of control and flexibility in the appearance and arrangement of graphical output. It does not provide high-level functions that create complete plots. What it does provide is a basis for developing such high-level functions (e.g., the lattice package), the facilities for customizing and manipulating lattice output, the ability to produce high-level plots or non-statistical images from scratch, and the ability to add sophisticated annotations to the output from base graphics functions (see the gridBase package). For more information, see the help files for grid.
KernSmooth
This package provides functions for kernel smoothing.
Functions
lattice
Trellis graphics is a framework for data visualization developed at Bell Labs by Richard Becker, William Cleveland, et al., extending ideas presented in Bill Cleveland’s 1993 book Visualizing Data.
lattice is best thought of as an implementation of Trellis graphics for R. It is built upon the grid graphics engine and requires the grid add-on package. It is not (readily) compatible with traditional R graphics tools. The public interface is based on the implementation in S-PLUS but features several extensions, in addition to incompatibilities introduced through the use of grid. To the extent possible, care has been taken to ensure that existing Trellis code written for S-PLUS works unchanged (or with minimal change) in lattice. If you are having problems porting S-PLUS code, read the entry for panel in the documentation for xyplot. Most high-level Trellis functions in S-PLUS are implemented, with the exception of piechart.
Functions
Data Sets
MASS
This is the main package of Venables and Ripley’s MASS.
Functions
Data Sets
methods
This package contains formally defined methods and classes for R objects, plus other programming tools.
Functions
mgcv
This package provides functions for generalized additive modeling and generalized additive mixed modeling. The term GAM is taken to include any GLM estimated by quadratically penalized (possibly quasi-) likelihood maximization. For more information on this package, see the help file.
nlme
This package provides functions for linear and nonlinear mixed-effects models. See the help file for more information.
nnet
This package provides functions for feed-forward neural networks and multinomial log-linear models.
Functions
rpart
This package provides functions for recursive partitioning and regression trees.
Functions
Data Sets
spatial
This package provides functions for Kriging and point pattern analysis.
Functions
splines
This package provides functions for working with regression splines using the B-spline basis, bs, and the natural cubic spline basis, ns.
Functions
stats
This package contains functions to perform a wide variety of statistical analyses.
Functions
Data Set
Data Set | Class | Description |
---|---|---|
p.adjust.methods | character | Allowed methods for p.adjust . |
stats4
This package contains statistical functions using S4 methods and classes.
Functions
survival
This package contains functions for survival analysis.
Functions
Data Sets
tcltk
The package contains interface and language bindings to Tcl/Tk GUI elements. Please see the online help for more details.
tools
This package provides tools for developing packages.
Functions
Data Sets
utils
This package contains a variety of utility functions for R, including package management, file reading and writing, and editing.
Functions
Function | Description |
---|---|
? | Documentation on a topic. |
RShowDoc | Utility function to find and display R documentation. |
RSiteSearch | Searches for keywords or phrases in the R-help mailing list archives, help pages, vignettes, or task views, using the search engine at http://search.r-project.org , and displays the results in a web browser. |
Rprof | Enables or disables profiling of the execution of R expressions. |
Rprofmem | Enables or disables reporting of memory allocation in R. |
Rtangle | A driver for Stangle that extracts R code chunks. |
RtangleSetup | A driver for Stangle that extracts R code chunks. |
RtangleWritedoc | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveChunkPrefix | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveEvalWithOpt | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveLatex | A driver for Sweave that translates R code chunks in LaTeX files. |
RweaveLatexFinish | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveLatexOptions | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveLatexSetup | A driver for Sweave that translates R code chunks in LaTeX files. |
RweaveLatexWritedoc | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
RweaveTryStop | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
Stangle | A front end to Sweave using a simple driver by default, which discards the documentation and concatenates all code chunks the current S engine understands. |
Sweave | Sweave provides a flexible framework for mixing text and S code for automatic report generation. The basic idea is to replace the S code with its output, such that the final document only contains the text and the output of the statistical analysis. |
SweaveSyntConv | This function converts the syntax of files in Sweave format to another Sweave syntax definition. |
URLdecode | Function to decode characters in URLs. |
URLencode | Function to encode characters in URLs. |
View | Invokes a spreadsheet-style data viewer on a matrix-like R object. |
alarm | Gives an audible or visual signal to the user. |
apropos | apropos() returns a character vector giving the names of all objects in the search list matching a specified value. |
argsAnywhere | Returns the arguments for all functions with a name matching its argument, whether visible on the search path, registered as an S3 method, or in a namespace but not exported. |
as.person | A class and utility method for holding information about persons such as name and email address. |
as.personList | A class and utility method for holding information about persons such as name and email address. |
as.relistable | relist() is an S3 generic function with a few methods in order to allow easy inversion of unlist(obj) when that is used with an object of (S3) class "relistable" . |
as.roman | Manipulates integers as Roman numerals. |
assignInNamespace | Utility function to access and replace the nonexported functions in a namespace, for use in developing packages with namespaces. |
available.packages | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
browseEnv | Opens a browser with list of objects currently in the sys.frame() environment. |
browseURL | Loads a given URL into a web browser. |
browseVignettes | Lists available vignettes in an HTML browser with links to PDF, LaTeX/noweb source, and (tangled) R code (if available). |
bug.report | Invokes an editor to write a bug report and optionally mail it to the automated r-bugs repository at r-bugs@r-project.org. Some standard information on the current version and configuration of R are included automatically. |
capture.output | Evaluates its arguments with the output being returned as a character string or sent to a file. Related to sink in the same way that with is related to attach . |
checkCRAN | Functions helping to maintain CRAN, some of which may also be useful to administrators of other repository networks. |
chooseCRANmirror | Interacts with the user to choose a CRAN mirror. |
citEntry | Creates “citation” objects, which are modeled after BibTeX entries. |
citFooter | Creates a footer in a CITATION file. |
citHeader | Creates a header in a CITATION file. |
citation | Shows how to cite R and R packages in publications. |
close.socket | Closes the socket and frees the space in the file descriptor table. The port may not be freed immediately. |
combn | Generates all combinations of the elements of x taken m at a time. If x is a positive integer, returns all combinations of the elements of seq(x) taken m at a time. If argument FUN is not NULL, applies a function given by the argument to each point. If simplify is FALSE, returns a list; otherwise, returns an array, typically a matrix. ... are passed unchanged to the FUN function, if specified. |
compareVersion | Compares two package version numbers to see which is later. |
contrib.url | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
count.fields | Counts the number of fields, as separated by sep, in each of the lines of file read. |
data | Loads specified data sets or lists the available data sets. |
data.entry, dataentry, de, de.ncols, de.restore, de.setup | Spreadsheet-like editors for entering or editing data. |
debugger | Function to dump the evaluation environments (frames) and to examine dumped frames. |
demo | User-friendly interface for running some demonstration R scripts. demo() gives the list of available topics. |
download.file | Used to download a file from the Internet. |
download.packages | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
dump.frames | Function to dump the evaluation environments (frames) and to examine dumped frames. |
edit | Invokes an editor on an R object. |
emacs | Invokes the text editor emacs on an R object. |
example | Runs all the R code from the Examples part of R’s online help. |
file.edit | Edits one or more files in a text editor. |
file_test | Utility for shell-style file tests. |
find | Returns a character vector giving the names of all objects in the search list matching a given value. |
fix | Invokes edit on x and assigns the new (edited) version of x in the user’s workspace. |
fixInNamespace | Utility function to access and replace the nonexported functions in a namespace, for use in developing packages with namespaces. |
flush.console | On the Mac OS X and Windows GUIs, ensures that the display of output in the console is current, even if output buffering is on. (This does nothing except on console-based versions of R.) |
formatOL, formatUL | Format unordered (itemize) and ordered (enumerate) lists. |
getAnywhere | Locates and returns all objects with a name matching its argument, whether visible on the search path, registered as an S3 method, or in a namespace but not exported. |
getCRANmirrors | Interacts with the user to choose a CRAN mirror. |
getFromNamespace | Utility function to access and replace the nonexported functions in a namespace, for use in developing packages with namespaces. |
getS3method | Gets a method for an S3 generic, possibly from a namespace. |
getTxtProgressBar | Text progress bar in the R console. |
glob2rx | Changes wildcard (aka globbing) patterns into the corresponding regular expressions (regexp ). |
head | Returns the first or last parts of a vector, matrix, table, data frame, or function. Since head() and tail() are generic functions, they may also have been extended to other classes. |
help | The primary interface to R’s help system. |
help.request | Prompts users to check that they have done all that is expected of them before sending a post to the R-help mailing list, provides a template for the post with session information included, and optionally sends the email (on Unix systems). |
help.search | Allows for searching the help system for documentation matching a given character string in the (file) name, alias, title, concept, or keyword entries (or any combination thereof), using either fuzzy matching or regular expression matching. Names and titles of the matched help entries are displayed nicely formatted. |
help.start | Starts the hypertext (currently HTML) version of R’s online documentation. |
history | Loads or saves or displays the commands history. |
index.search | Used to search the indexes for help files, possibly under aliases. |
install.packages | Used to automatically compare version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
installed.packages | Finds (or retrieves) details of all packages installed in the specified libraries. |
is.relistable | relist() is an S3 generic function with a few methods in order to allow easy inversion of unlist(obj) when that is used with an object of (S3) class "relistable" . |
limitedLabels | Allows the user to browse directly on any of the currently active function calls and is suitable as an error option. The expression options(error=recover) will make this the error option. |
loadhistory | Loads or saves or displays the commands history. |
localeToCharset | Aims to find a suitable coding for the locale named, by default the current locale, and if it is a UTF-8 locale, a suitable single-byte encoding. |
ls.str, lsf.str | ls.str and lsf.str are variations of ls applying str() to each matched name. |
make.packages.html | Updates HTML documentation files. |
make.socket | With server = FALSE, attempts to open a client socket to the specified port and host. With server = TRUE, listens on the specified port for a connection and then returns a server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you get only 64 of them. |
makeRweaveLatex CodeRunner | These functions are handy for writing Sweave drivers and currently not documented. Look at the source code of the Sweave Latex driver (in this package) or the HTML driver (in the R2HTML package from CRAN) to see how they can be used. |
memory.limit | Gets or sets the memory limit on Microsoft Windows platforms. |
memory.size | Checks the current memory usage on Microsoft Windows platforms. |
menu | Presents the user with a menu of choices labeled from 1 to the number of choices. To exit without choosing an item, select 0. |
methods | Lists all available methods for an S3 generic function or all methods for a class. |
mirror2html | Functions helping to maintain CRAN, some of which may also be useful to administrators of other repository networks. |
modifyList | Modifies a possibly nested list recursively by changing a subset of elements at each level to match a second list. |
new.packages | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
normalizePath | Converts file paths to canonical form for the platform, to display them in a user-understandable form. |
nsl | Interface to gethostbyname . |
object.size | Provides an estimate of the memory that is being used to store an R object. |
old.packages | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
package.skeleton | Automates some of the setup for a new source package. It creates directories; saves functions, data, and R code files to appropriate places; and creates skeleton help files and a Read-and-delete-me file describing further steps in packaging. |
packageDescription | Parses and returns the DESCRIPTION file of a package. |
packageStatus | Summarizes information about installed packages and packages available at various repositories, and automatically upgrades outdated packages. |
page | Displays a representation of the object named by x in a pager via file.show . |
person | Creates a “person” object. |
personList | Creates a “personList” object. |
pico | Invokes a text editor on an R object. |
prompt | Facilitates the construction of files documenting R objects. |
promptData | Generates a shell of documentation for a data set. |
promptPackage | Generates a shell of documentation for an installed or source package. |
read.DIF | Reads a file in Data Interchange Format (DIF) and creates a data frame from it. DIF is a format for data matrices such as single spreadsheets. |
read.csv, read.csv2, read.delim, read.delim2 | Read a file in table format and create a data frame from it, with cases corresponding to lines and variables to fields in the file. |
read.fortran | Reads fixed-format data files using FORTRAN-style format specifications. |
read.fwf | Reads a table of fixed-width-formatted data into a data.frame . |
read.socket | read.socket reads a string from the specified socket; write.socket writes to the specified socket. There is very little error checking done by either. |
read.table | Reads a file in table format and creates a data frame from it, with cases corresponding to lines and variables to fields in the file. |
readCitationFile | The CITATION file of R packages contains an annotated list of references that should be used for citing the packages. |
recover | Allows the user to browse directly on any of the currently active function calls and is suitable as an error option. The expression options(error=recover) will make this the error option. |
relist | relist() is an S3 generic function with a few methods in order to allow easy inversion of unlist(obj) when that is used with an object of (S3) class "relistable" . |
remove.packages | Removes installed packages/bundles and updates index information as necessary. |
rtags | Provides etags-like indexing capabilities for R code, using R’s own parser. |
savehistory | Loads or saves or displays the commands history. |
select.list | Selects item(s) from a character vector. |
sessionInfo | Prints version information about R and attached or loaded packages. |
setRepositories | Interacts with the user to choose the package repositories to be used. |
setTxtProgressBar | Text progress bar in the R console. |
stack | Stacking vectors concatenates multiple vectors into a single vector along with a factor indicating where each observation originated; unstacking reverses this. |
str | Compactly displays the internal structure of an R object; the idea is to give reasonable output for any R object. |
strOptions | strOptions() is a convenience function for setting options(str = .) . |
summaryRprof | Summarizes the output of the Rprof function to show the amount of time used by different R functions. |
tail | Returns the first or last parts of a vector, matrix, table, data frame, or function. Since head() and tail() are generic functions, they may also have been extended to other classes. |
timestamp | Writes a timestamp (or other message) into the history and echoes it to the console. |
toBibtex | Converts R objects to character vectors with BibTeX markup. |
toLatex | Converts R objects to character vectors with LaTeX markup. |
txtProgressBar | Text progress bar in the R console. |
type.convert | Converts a character vector to logical, integer, numeric, complex, or factor, as appropriate. |
unstack | Stacking vectors concatenates multiple vectors into a single vector along with a factor indicating where each observation originated; unstacking reverses this. |
unzip | Extracts files from or lists a zip archive. |
update.packageStatus | Summarizes information about installed packages and packages available at various repositories and automatically upgrades outdated packages. |
update.packages | Used to automatically compare the version numbers of installed packages with the newest available version on the repositories and update outdated packages on the fly. |
upgrade | Summarizes information about installed packages and packages available at various repositories and automatically upgrades outdated packages. |
url.show | Extension of file.show to display text files from a remote server. |
vi | Invokes a text editor on an R object. |
vignette | Views a specified vignette or lists the available ones. |
write.csv, write.csv2 | Convenience wrappers to write.table for producing CSV files from an R object. |
write.socket | read.socket reads a string from the specified socket; write.socket writes to the specified socket. There is very little error checking done by either. |
write.table | Prints its required argument x (after converting it to a data frame if it is not one, nor a matrix) to a file or connection. |
wsbrowser | The browseEnv function opens a browser with list of objects currently in the sys.frame() environment. |
xedit | Invokes the xedit editor on an R object. |
xemacs | Invokes the xemacs editor on an R object. |
zip.file.extract | Extracts the file named file from the zip archive, if possible, and writes it in a temporary location. |
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