SQL Server 2012 with PowerShell V3 Cookbook
SQL Server 2012 with PowerShell V3 Cookbook
Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2012
Production Reference: 1151012
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84968-646-4
www.packtpub.com
Cover Image by Artie Ng (<artherng@yahoo.com.au>)
Credits
Author
Donabel Santos
Reviewers
Edwin Sarmiento
Laerte Poltronieri Junior
Acquisition Editor
Rukhsana Khambatta
Lead Technical Editor
Azharuddin Sheikh
Technical Editors
Charmaine Pereira
Sharvari Baet
Jalasha D'costa
Copy Editors
Alfida Paiva
Brandt D'Mello
Insiya Morbiwala
Aditya Nair
Project Coordinator
Yashodhan Dere
Proofreader
Chris Smith
Indexer
Tejal R. Soni
Production Coordinator
Manu Joseph
Cover Work
Manu Joseph
About the Author
Donabel Santos is a SQL Server MVP and is the senior SQL Server Developer/DBA/Trainer at QueryWorks Solutions, a consulting and training company in Vancouver, BC. She has worked with SQL Server since version 2000 in numerous development, tuning, reporting, and integration projects with ERPs, CRMs, SharePoint, and other custom applications. She holds MCITP certifications for SQL Server 2005/2008, and an MCTS for SharePoint. She is a Microsoft Certified Trainer (MCT), and is also the lead instructor for SQL Server Administration, Development, and SSIS courses at British Columbia Institute of Technology (BCIT).
Donabel is a proud member of PASS (Professional Association of SQL Server), and a proud BCIT alumna (CST diploma and degree). She blogs (www.sqlmusings.com), tweets (@sqlbelle), speaks and presents (SQLSaturday, VANPASS, Vancouver TechFest, and so on), trains (BCIT, QueryWorks Solutions), and writes (Packt, Idera, SSWUG, and so on).
Acknowledgement
Writing a book would not be possible without the unwavering support of family, friends, colleagues, mentors, acquaintances, and an awesome community. This is my first book, a dream come true, so please forgive me if I go overboard with my thanks.
To Eric, thank you… for finding me. Despite long days, sleepless nights, lengthy writing marathons, one smile from you never fails to wipe away my tiredness. Thank you for always supporting me, for believing in me, for helping me reach whichever dreams I dare to chase. I look forward to our journey together—a lifelong of hopes, dreams, and happiness.
To Mama and Papa, I am the luckiest daughter to have you as my parents. Thank you for all the sacrifices you made for me and my brothers. Words are not enough to express how much we love you, and how grateful we will always be.
To JR and RR—you will always be my baby brothers, and I am so proud to be your big sis. To Lisa, my dear sis-in-law, thank you for being part of our family. The whole family adores you. To Veronica, thanks for keeping up with the Santos' quirks. You're cool, girl! Now that the book is done, we can all play more Kinect, Acquire, and Ticket to Ride.
To my in laws—Mom Lisa, Dad Richard, Ama, Aunt Rose, Catherine, David, and Jayden—thank you for always making me feel welcome, for never making me feel I am different from your family. And to my unborn niece Kristina, auntie will teach you and Jayden SQL Server… one of these years.
To Edwin Sarmiento and Laerte Junior—my utmost and sincerest thanks for all the advice and constructive feedback. I have the highest respect for both of you. It is very humbling to work with both of you, and I learned so much from all the corrections and suggestions. Thank you for bearing with me through the revisions, despite your respective hectic schedules and numerous other commitments. I am very grateful.
To Elsie Au, thank you for introducing me to databases. I cannot imagine doing anything else. Thank you for the friendship all these years. To Kevin Cudihee, thank you for all the support all these years, for letting me do two things that I love the most—teaching and SQL Server. To Anne Marie Johnston and Alan Marchant, thank you for giving me fun work with databases. To my students, thank you for learning, sharing, and growing with me.
To BCIT—my second home. To me, BCIT was my place of refuge. When I was at a low point in my life, feeling down and out, and without direction (and afraid of computers!), BCIT provided me a place to learn, grow, and dream again. Now as an instructor, I hope I can help give back to students what BCIT gave me when I was one.
To the SQL community, the SQL family, and the SQL Server MVPs—I am so proud to be part of this group. There are so many smart SQL rockstars that I admire (Brent Ozar, Glenn Berry, Kevin Kline, Brian Knight, Grant Fritchey, Jorge Sergarra, Jeremiah Peschka, Jen Stirrup, and so many others I would love to mention and thank), who are way up there, yet who are always ready to help and inspire anyone who asks. "Community" for this group is not just lip service. It's the SQL way of life. I have learned so much from this community, and I would not be anywhere near where I am today if not for the selfless way this community shares and helps.
To the PowerShell community, thank you to the awesome authors, bloggers, and tweeps. Your articles, blogs, and books have immensely helped folks like me to learn, understand, and get excited about PowerShell.To Microsoft and the SQL Server and PowerShell respective Product Teams —thanks for creating these two amazing products. It doubles the fun for SQL geeks like me!
To the Packt team—Dhwani Dewater, Yashodhan Dere, Azharuddin Sheikh, Charmaine Pereira, Sharvari Baet and the rest of the editors and technical reviewers—thank you for giving me the chance to write this book and helping me as the book writing progressed. It is one of the most humbling, but also one of the most rewarding experiences.
To numerous friends (Shereen Qumsieh, Matthew Carriere, Grace Dimaculangan, Ben Peach, Yaroslav Pentsarskyy, Joe Xing, Min Zhu, Mary Mootatamby, Blake Wiggs, and many others), to all of my mentors and students, acquaintances via twitter (such as @pinaldave, @dsfnet, @StangSCT, @retracement, @NikoNeugebauer, @TimCost), and so many others who have helped, inspired, and encouraged me along the way—thank you.
And most importantly, thank you Lord, for all the miracles and blessings in my life.
About the Reviewers
Edwin Sarmiento is a Microsoft SQL Server MVP from Ottawa, Canada specializing in high availability, disaster recovery, and system infrastructures running on the Microsoft server technology stack. He is very passionate about technology but has interests in music, professional and organizational development, leadership, and management matters when not working with databases. He lives up to his primary mission statement—To help people and organizations grow and develop their full potential as God has planned for them.
He wants the whole world to know that the FILIPINO is a world-class citizen and brings Jesus Christ to the world.
Laerte Poltronieri Junior started in the IT world early, at the age of 12. When 16, he was developing software using Clipper Summer 85 and he used almost all versions. Then in 1998 he was introduced to SQL Server 6.5; since then it was love at first sight and marriage. In 2008, he met PowerShell and as he is an aficionado for automated, smart, and flexible solutions in SQL Server, from this marriage was born a son. And today they are a happy family.
Currently, he is writing a book for Manning Publications.
First of all, I would like to thank God. I have not always been a guy next to him, but I'm learning to give back all the love and affection that he has given me.
My family—my father, an unforgettable super-hero, my beloved mother and grandma, and my dear sister and nephews.
Also, a special thanks to some exceptional professionals and friends who are teaching and mentoring me from the beginning: Buck Woody, Chad Miller, Shay Levy, and Ravikanth Chaganti.
And last but not the least, all the #sqlfamily , #powershell and Simple-Talk friends, you guys simply rock. I owe you all the good things that happened and are happening to me.
www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.
Preface
PowerShell is Microsoft's new command-line shell and scripting language that promises to simplify automation and integration across different Microsoft applications and components. Database professionals can leverage PowerShell by utilizing its numerous built-in cmdlets, or using any of the readily available .NET classes, to automate database tasks, simplify integration, or just discover new ways to accomplish the job at hand.
SQL Server 2012 with PowerShell V3 Cookbook provides easy-to-follow, practical examples for the busy database professional. Whether you're auditing your servers, or exporting data, or deploying reports, there is a recipe that you can use right away!
You start off with basic topics to get you going with SQL Server and PowerShell scripts and progress into more advanced topics to help you manage and administer your SQL Server databases.
The first few chapters demonstrate how to work with SQL Server settings and objects, including exploring objects, creating databases, configuring server settings, and performing inventories. The book then dives deeply into more administration topics such as backup and restore, credentials, policies, and jobs.
Additional development and BI-specific topics are also explored, including deploying and downloading assemblies, BLOB data, SSIS packages, and SSRS reports.
A short PowerShell primer is also provided as a supplement in the Appendix, which the database professional can use as a refresher or occasional reference material. Packed with more than 100 practical, ready-to-use scripts, SQL Server 2012 with PowerShell V3 Cookbook will be your go-to reference in automating and managing SQL Server.
What this book covers
Chapter 1, Getting Started with SQL Server and PowerShell explains what PowerShell is, and why you should consider learning PowerShell. It also introduces PowerShell V3 new features, and explains what needs to be in place when working with SQL Server 2012 and PowerShell.
Chapter 2, SQL Server and PowerShell Basic Tasks demonstrates scripts and snippets of code that accomplish some basic SQL Server tasks using PowerShell. We start with simple tasks such as listing SQL Server instances, and creating objects such as tables, indexes, stored procedures, and functions to get you comfortable while working with SQL Server programmatically.
Chapter 3, Basic Administration tackles more administrative tasks that can be accomplished using PowerShell, and provides recipes that can help automate a lot of repetitive tasks. Some recipes deal with instance and database properties; others provide ways of checking disk space, creating WMI alerts, setting up Database Mail, and creating and maintaining SQL Server Jobs.
Chapter 4, Security provides snippets that simplify security monitoring, including how to check failed login attempts by parsing out event logs, or how to administer roles and permissions.
Chapter 5, Advanced Administration shows how PowerShell can help you leverage features such as Policy Based Management (PBM) and encryption using PowerShell. This chapter also explores working with SQL Server Profiler trace files and events programmatically.
Chapter 6, Backup and Restore looks into different ways of backing up and restoring SQL Server databases programmatically using PowerShell.
Chapter 7, SQL Server Development provides snippets and guidance on how you can work with XML, XSL, binary data, and CLR assemblies with SQL Server and PowerShell.
Chapter 8, Business Intelligence covers how PowerShell can help automate and manage any BI-related tasks—from rendering SQL Server Reporting Services (SSRS) reports, to deploying the new SQL Server Integration Services (SSIS) 2012 ISPAC files, to backing up and restoring SQL Server Analysis Services (SSAS) cubes.
Chapter 9, Helpful PowerShell Snippets tackles a variety of recipes that are not SQL Server specific, but you may find them useful as you work with PowerShell. Recipes include snippets for creating files that use timestamps, analyzing event logs for recent system errors, and exporting a list of processes to CSV or XML.
Appendix A, SQL Server and PowerShell CheatSheet provides a concise cheatsheet of commonly used terms and snippets when working with SQL Server and PowerShell.
Appendix B, PowerShell Primer offers a brief primer on PowerShell fundamentals.
Appendix C, Resources lists additional PowerShell and SQL Server books, blogs and links.
Appendix D, Creating a SQL Server VM provides a step-by-step tutorial on how to create and configure the virtual machine that was used for this book.
What you need for this book
Windows Server 2008 R2
SQL Server 2012 Developer
Visual Studio 2010 Professional
Windows Management Framework 3.0 (includes PowerShell 3.0, WMI, and WinRM)
Who this book is for
This book is written for the SQL Server database professional (DBA, developer, BI developer) who wants to use PowerShell to automate, integrate, and simplify database tasks. A little bit of scripting background is helpful, but not necessary.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "We can include other contexts through the use of the include directive."
A block of code is set as follows:
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#list server instances
$managedComputer.ServerInstances
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#list server instances
$managedComputer.ServerInstances
Any command-line input or output is written as follows:
PS C:\>. .\SampleScript.ps1 param1 param2
PS C:\>C:\MyScripts\SampleScript.ps1 param1 param2
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next screen".
Warnings or important notes appear in a box like this.
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a book that you need and would like to see us publish, please send us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail <suggest@packtpub.com>.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Getting Started with SQL Server and PowerShell
In this chapter, we will cover:
Introduction
PowerShell is an administrative tool that has both shell and scripting capabilities that can leverage Windows Management Instrumentation (WMI), COM components, and .NET libraries. PowerShell is becoming more prominent with each generation of Microsoft products. Support for it is being bundled, and improved, in a number of new and upcoming Microsoft product releases. Windows Server, Exchange, ActiveDirectory, SharePoint, and even SQL Server, have all shipped with added PowerShell support and cmdlets. Even vendors such as VMWare, Citrix, Cisco, and Quest, to name a few, have provided ways to allow their products to be accessible via PowerShell.
What makes PowerShell tick? Every systems administrator probably knows the pain of trying to integrate heterogeneous systems using some kind of scripting. Historically, the solution involved some kind of VBScript, some good old batch files, maybe some C# code, some Perl—you name it. Sysadmins either had to resort to duct taping different languages together to get things to work the way they intended, or just did not bother because of the complicated code.
This is where PowerShell comes in. One of the strongest points for PowerShell is that it simplifies automation and integration between different Microsoft ecosystems. As most products have support for PowerShell, getting one system to talk to another is just a matter of discovering what cmdlets, functions, or modules need to be pulled into the script. Even if the product does not have support yet for PowerShell, it most likely has .NET or COM support, which PowerShell can easily use.
Notable PowerShell V3 features
Some of the notable features in the latest PowerShell version are:
helps automate the distribution, orchestration, and completion of multi-computer tasks, freeing users and administrators to focus on higher-level tasks.
PSWF leverages Windows Workflow Foundation 4.0 for the declarative framework, but using familiar PowerShell syntax and constructs.
#check current modules in session
Get-Module
#use cmdlet from CimCmdlets module, which
#is not loaded yet
Get-CimInstance win32_bios
#note new module loaded CimCmdlets
Get-Module
#use cmdlet from SQLPS module, which
#is not loaded yet
Invoke-Sqlcmd -Query "SELECT GETDATE()" -ServerInstance "KERRIGAN"
#note new modules loaded SQLPS and SQLASCmdlets
Get-Module
What you used to write in V1 and V2 with curly braces and $_ as follows:
Get-Service | Where-Object { $_.Status -eq 'Running' }
can now be rewritten in V3 as:
Get-Service | Where-Object Status -eq 'Running'
Before you start: Working with SQL Server and PowerShell
Before we dive into the recipes, let's go over a few important concepts and terminologies that will help you understand how SQL Server and PowerShell can work together:
To get a list of the supported PSProvider objects, type:
Get-PSProvider
You should see something similar to the following screenshot:
Depending on which instance of PSProvider is already available in your system, yours may be slightly different:
Get-PSDrive
You should see something similar to the following screenshot:
Note that there is a PSDrive for SQLServer, which can be used to navigate, access, and manipulate SQL Server objects.
Set-ExecutionPolicy RemoteSigned
This setting will allow PowerShell to run digitally-signed scripts, or local unsigned scripts.
Snap-ins are Dynamically Linked Libraries (DLL), and need to be registered before they can be used. Snap-ins are available in V1, V2, and V3. For example:
Add-PSSnapin SqlServerCmdletSnapin100
Modules, on the other hand, are more like your regular PowerShell .ps1 script files. Modules are available in V2 and V3. You do not need to register a module to use it, you just need to import:
Import-Module SQLPS
For more information on PowerShell basics, check out Appendix B, PowerShell Primer.
Working with the sample code
Samples in this book have been created and tested against SQL Server 2012 on Windows Server 2008 R2.
To work with the sample code in this book using a similar VM setup that the book uses, see Appendix D, Creating a SQL Server VM.
How to do it...
If you want to use your current machine without creating a separate VM, as illustrated in Appendix D, Creating a SQL Server VM, follow these steps to prepare your machine:
http://msdn.microsoft.com/en-us/library/ms143506.aspx
Install Microsoft .NET Framework 4.0, if it's not already there.
Download and install Windows Management Framework 3.0, which contains PowerShell V3. At the time of writing this book, the Release Candidate (RC) is available from:
http://www.microsoft.com/en-us/download/details.aspx?id=29939
PS C:\Users\Administrator>Import-Module ServerManager PS C:\Users\Administrator>Add-WindowsFeature PowerShell-ISE
PS C:\Users\Administrator> powershell_ise
Alternatively you can go to Start | All Programs | Accessories | Windows PowerShell | Windows PowerShell ISE.
Set-ExecutionPolicy RemoteSigned
If you want to run PowerShell V2 and V3 side by side, you can check out Jeffery Hicks' article, PowerShell 2 and 3, Side by Side:
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
See also
http://technet.microsoft.com/en-us/edge/Video/hh533298k
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx
Exploring the SQL Server PowerShell hierarchy
In SQL Server 2012, the original mini-shell has been deprecated, and SQLPS is now provided as a module. Launching PowerShell from SSMS now launches a Windows PowerShell session, imports the SQLPS module, and sets the current context to the item the PowerShell session was launched from. DBAs and developers can then start navigating the object hierarchy from here.
Getting ready
Log in to SQL Server 2012 Management Studio.
How to do it...
In this recipe, we will navigate the SQL Server PowerShell hierarchy by launching a PowerShell session from SQL Server Management Studio:
Note the starting path in this window.
This is similar to the objects you can find under the instance node in Object Explorer in SQL Server Management Studio.
Note that the starting path of this window is different from the starting path when you first launched PowerShell in the second step. If you type dir from this location, you will see all items that are sitting underneath the AdventureWorks2008R2 database.
You can see some of the items enumerated in this screen in SQL Server Management Studio's Object Explorer, if you expand the AdventureWorks2008R2 database node.
How it works...
When PowerShell is launched through Management Studio, a context-sensitive PowerShell session is created, which automatically loads the SQLPS module. This will be evident in the prompt, which by default shows the current path of the object from which the Start PowerShell menu item was clicked.
SQL Server 2008/2008 R2 was shipped with a SQLPS mini-shell, also referred to as SQLPS utility. This can also be launched from SSMS by right-clicking on an object from Object Explorer, and clicking on Start PowerShell. This mini-shell was designed to be a closed shell preloaded with SQL Server extensions. This shell was meant to be used for SQL Server only, which proved to be quite limiting because DBAs and developers often need to load additional snap-ins and modules in order to integrate SQL Server with other systems through PowerShell. The alternative way is to launch a full-fledged PowerShell session, and depending on your PowerShell version either load snap-ins or load the SQLPS module.
In SQL Server 2012, the original mini-shell has been deprecated. When you launch a PowerShell session from SSMS in SQL Server 2012, it launches the full-fledged PowerShell session, with the updated SQLPS module loaded by default.
SQL Server is exposed as a PowerShell drive (PSDrive), which allows for traversing of objects as if they are folders and files. Thus, familiar commands for traversing directories are supported in this provider, such as dir or ls. Note that these familiar commands are often just aliases to the real cmdlet name, in this case, Get-ChildItem.
When you launch PowerShell from Management Studio, you can immediately start navigating the SQL Server PowerShell hierarchy.
Installing SMO
SQL Server Management Objects (SMO) was introduced with SQL Server 2005 to allow SQL Server to be accessed and managed programmatically. SMO can be used in any .NET language, including C#, VB.NET, and PowerShell. SMO is the key to automating most SQL Server tasks. SMO is also backward compatible to previous versions of SQL Server, extending support all the way to SQL Server 2000.
SMO is comprised of two distinct classes: instance classes and utility classes.
Instance classes are the SQL Server objects. Properties of objects such as the server, the databases, and tables can be accessed and set using the instance classes.
Utility classes are helper or utility classes that accomplish common SQL Server tasks. These classes belong to one of three groups: Transfer class, Backup and Restore classes, or Scripter class.
To gain access to the SMO libraries, SMO needs to be installed, and the SQL Server-related assemblies need to be loaded.
Getting ready
There are a few ways to get SMO installed:
How to do it...
If you are installing SQL Server or already have SQL Server:
After this, you should already have all the binaries needed to use SMO.
If you are not installing SQL Server, you must install SMO using the SQL Server Feature Pack on the machine you are using SMO with:
There's more...
By default, the SMO assemblies will be installed in <SQL Server Install Directory>\110\SDK\Assemblies.
Loading SMO assemblies
Before you can use the SMO library, the assemblies need to be loaded. In SQL Server 2012, this step is easier than ever.
Getting ready
SQL Management Objects(SMO) must have already been installed on your machine.
How to do it...
In this recipe, we will load the SQLPS module.
Import-Module SQLPS
Get-Module
How it works...
The way to load SMO assemblies has changed between different versions of PowerShell. In PowerShell v1, loading assemblies can be done explicitly using the Load() or LoadWithPartialName() methods. LoadWithPartialName() accepts the partial name of the assembly, and loads from the application directory or the Global Assembly Cache (GAC):
[void][Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo")
Although LoadWithPartialName()is still supported and still remains a popular way of loading assemblies, this method should not be used because it will be deprecated in future versions.
Load() requires the fully qualified name of the assembly:
[void][Reflection.Assembly]::Load("Microsoft.SqlServer.Smo, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91")
In PowerShell V2, assemblies can be added by using Add-Type:
Add-Type -AssemblyName "Microsoft.SqlServer.Smo"
In PowerShell V3, loading these assemblies one by one is no longer necessary as long as the SQLPS module is loaded:
Import-Module SQLPS
There may be cases where you will still want to load specific DLL versions if you are dealing with specific SQL Server versions. Or you may want to load only specific assemblies without loading the whole SQLPS module. In this case, the Add-Type command is still the viable method of bringing the assemblies in.
There's more...
When you import the SQLPS module, you might see an error about conflicting or unapproved verbs:
The names of some imported commands from the module SQLPS include unapproved verbs that might make them less discoverable. To find the commands with unapproved verbs, run the Import-Module command again with the Verbose parameter. For a list of approved verbs, type Get-Verb.
This means there are some cmdlets that do not conform to the PowerShell naming convention, but the module and its containing cmdlets are still all loaded into your host. To suppress this warning, import the module with the –DisableNameChecking parameter.
See also
Discovering SQL-related cmdlets and modules
In order to be effective at working with SQL Server and PowerShell, knowing how to explore and discover cmdlets, snap-ins, and modules is in order.
Getting ready
Log in to your SQL Server instance, and launch PowerShell ISE. If you prefer the console, you can also launch that instead.
How to do it...
In this recipe we will list the SQL-Server related commands and cmdlets.
#how many commands from modules that
#have SQL in the name
Get-Command -Module "*SQL*" | Measure-Object
#list all the SQL-related commands
Get-Command -Module "*SQL*" |
Select CommandType, Name, ModuleName |
Sort -Property ModuleName, CommandType, Name |
Format-Table -AutoSize
After you execute the line, your output window should look similar to the following screenshot:
Get-Module -Name "*SQL*"
If you have already used any of the cmdlets in the previous step, then you should see both SQLPS and SQLASCMDLETS. Otherwise, you will need to load these modules before you can use them.
Import-Module -Name "SQLPS"
Note that SQLASCMDLETS will be loaded when you load SQLPS.
How it works...
At the core of PowerShell are cmdlets. A cmdlet (pronounced commandlet) can be a compiled, reusable .NET code, or an advanced function, or a workflow that typically performs a very specific task. All cmdlets follow the verb-noun naming notation.
PowerShell ships with many cmdlets and can be further extended if the shipped cmdlets are not sufficient for your purposes.
A legacy way of extending PowerShell is by registering additional snap-ins. A snap-in is a binary, or a DLL, that contains cmdlets. You can create your own by building your own .NET source, compiling, and registering the snap-in. You will always need to register snap-ins before you can use them. Snap-ins are a popular way of extending PowerShell.
The following table summarizes common tasks with snap-ins:
Task	Syntax
List loaded snap-ins | Get-PSSnapin |
List installed snap-ins | Get-PSSnapin -Registered |
Show commands in a snap-in | Get-Command -Module "SnapinName" |
Load a specific snap-in | Add-PSSnapin "SnapinName" |
When starting, PowerShell V2, modules are available as the improved and preferred method of extending PowerShell.
A module is a package that can contain cmdlets, providers, functions, variables, and aliases. In PowerShell V2, modules are not loaded by default, so required modules need to be explicitly imported.
Common tasks with modules are summarized in the following table:
Task | Syntax |
---|---|
List loaded modules | Get-Module |
List installed modules | Get-Module -ListAvailable |
Show commands in a module | Get-Command -Module "ModuleName" |
Load a specific module | Import-Module -Name "ModuleName" |
One of the improved features with PowerShell V3 is that it supports autoloading modules. You do not need to always explicitly load modules before using the contained cmdlets. Using the cmdlet in your script is enough to trigger PowerShell to load the module that contains it.
The SQL Server 2012 modules are located in the PowerShell/Modules folder of the Install directory:
There's more...
The following table shows the list of the SQLPS and SQLASCMDLETS cmdlets of this version:
CommandType Name | ModuleName |
---|---|
Cmdlet Add-RoleMember | SQLASCMDLETS |
Cmdlet Backup-ASDatabase | SQLASCMDLETS |
Cmdlet Invoke-ASCmd | SQLASCMDLETS |
Cmdlet Invoke-ProcessCube | SQLASCMDLETS |
Cmdlet Invoke-ProcessDimension | SQLASCMDLETS |
Cmdlet Invoke-ProcessPartition | SQLASCMDLETS |
Cmdlet Merge-Partition | SQLASCMDLETS |
Cmdlet New-RestoreFolder | SQLASCMDLETS |
Cmdlet New-RestoreLocation | SQLASCMDLETS |
Cmdlet Remove-RoleMember | SQLASCMDLETS |
Cmdlet Restore-ASDatabase | SQLASCMDLETS |
Cmdlet Add-SqlAvailabilityDatabase | SQLPS |
Cmdlet Add-SqlAvailabilityGroupListenerStaticIp | SQLPS |
Cmdlet Backup-SqlDatabase | SQLPS |
Cmdlet Convert-UrnToPath | SQLPS |
Cmdlet Decode-SqlName | SQLPS |
Cmdlet Disable-SqlHADRService | SQLPS |
Cmdlet Enable-SqlHADRService | SQLPS |
Cmdlet Encode-SqlName | SQLPS |
Cmdlet Invoke-PolicyEvaluation | SQLPS |
Cmdlet Invoke-Sqlcmd | SQLPS |
Cmdlet Join-SqlAvailabilityGroup | SQLPS |
Cmdlet New-SqlAvailabilityGroup | SQLPS |
Cmdlet New-SqlAvailabilityGroupListener | SQLPS |
Cmdlet New-SqlAvailabilityReplica | SQLPS |
Cmdlet New-SqlHADREndpoint | SQLPS |
Cmdlet Remove-SqlAvailabilityDatabase | SQLPS |
Cmdlet Remove-SqlAvailabilityGroup | SQLPS |
Cmdlet Remove-SqlAvailabilityReplica | SQLPS |
Cmdlet Restore-SqlDatabase | SQLPS |
Cmdlet Resume-SqlAvailabilityDatabase | SQLPS |
Cmdlet Set-SqlAvailabilityGroup | SQLPS |
Cmdlet Set-SqlAvailabilityGroupListener | SQLPS |
Cmdlet Set-SqlAvailabilityReplica | SQLPS |
Cmdlet Set-SqlHADREndpoint | SQLPS |
Cmdlet Suspend-SqlAvailabilityDatabase | SQLPS |
Cmdlet Switch-SqlAvailabilityGroup | SQLPS |
Cmdlet Test-SqlAvailabilityGroup | SQLPS |
Cmdlet Test-SqlAvailabilityReplica | SQLPS |
Test-SqlDatabaseReplicaState | SQLPS |
To learn more about these cmdlets, use the Get-Help cmdlet. For example:
Get-Help "Invoke-Sqlcmd"
Get-Help "Invoke-Sqlcmd" -Detailed
Get-Help "Invoke-Sqlcmd" -Examples
Get-Help "Invoke-Sqlcmd" -Full
You can also check out the MSDN article on SQL Server database engine cmdlets:
http://msdn.microsoft.com/en-us/library/cc281847.aspx
When you load the SQLPS module, several assemblies are loaded into your host.
To get a list of SQL Server-related assemblies loaded with the SQLPS module, use the following script, which will work in both PowerShell V2 and V3:
Import-Module SQLPS –DisableNameChecking
[appdomain]::CurrentDomain.GetAssemblies() |
Where {$_.FullName -match "SqlServer" } |
Select FullName
If you want to run on a strictly V3 environment, you can take advantage of the simplified syntax:
Import-Module SQLPS –DisableNameChecking
[appdomain]::CurrentDomain.GetAssemblies() |
Where FullName -match "SqlServer" |
Select FullName
This will show you all the loaded assemblies, including their public key tokens:
More information on running PowerShell scripts
By default, PowerShell is running in restricted mode, in other words, it does not run scripts. To run our scripts from the book, we will set the execution policy to RemoteSigned as follows:
Set-ExecutionPolicy RemoteSigned
See the Execution policy section in Appendix B, PowerShell Primer, for further explanation of different execution policies.
If you save your PowerShell code in a file, you need to ensure it has a .ps1 extension otherwise PowerShell will not run it. Ideally the filename you give your script does not have spaces. You can run this script from the PowerShell console simply by calling the name. For example if you have a script called myscript.ps1 located in the C:\ directory, this is how you would invoke it:
PS C:\> .\myscript.ps1
If the file or path to the file has spaces, then you will need to enclose the full path and file name in single or double quotes, and use the call (&) operator:
PS C:\>&'.\my script.ps1'
If you want to retain the variables and functions included in the script, in memory, thus making them available globally in your session, then you will need to dot source the script. To dot source is literally to prefix the filename, or the path to the file, with a dot and a space:
PS C:\> . .\myscript.ps1
PS C:\> . '.\my script.ps1'
More information on mixed assembly error
You may encounter an error when running some commands that are built using older .NET versions. Interestingly, you may see this while running your script in the PowerShell ISE, but not necessarily in the shell.
Invoke-Sqlcmd: Mixed mode assembly is built against version 'V2.0.50727' of the runtime and cannot be loaded in the 4.0 runtime without additional configuration information.
A few steps are required to solve this issue:
For the 32-bit ISE, this is the default path:
%windir%\sysWOW64\WindowsPowerShell\v1.0\PowerShell_ISE.exe
For the 64-bit ISE, this is the default path:
%windir%\system32\WindowsPowerShell\v1.0\PowerShell_ISE.exe
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0" />
</startup>
<runtime>
<generatePublisherEvidence enabled="false" />
</runtime>
</configuration>
Creating a SQL Server instance object
Most of what you will need to do in SQL Server will require a connection to an instance.
Getting ready
Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.
You will need to note what your instance name is. If you have a default instance, you can use your machine name. If you have a named instance, the format will be <machine name>\<instance name>.
How to do it...
If you are connecting to your instance using Windows authentication, and using your current Windows login, follow these steps:
#import SQLPS module
Import-Module SQLPS –DisableNameChecking
#create a variable for your instance name
$instanceName = "KERRIGAN"
#create your server instance
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
If you are connecting using SQL Authentication, you will need to know the username and password that you will use to authenticate. In this case, you will need to add the following code, which will set the connection to mixed mode and prompt for the username and password:
#set connection to mixed mode
$server.ConnectionContext.set_LoginSecure($false)
#set the login name
#of course we don't want to hardcode credentials here
#so we will prompt the user
#note password is passed as a SecureString type
$credentials = Get-Credential
#remove leading backslash in username
$login = $credentials.UserName -replace("\\", "")
$server.ConnectionContext.set_Login($login)
$server.ConnectionContext.set_SecurePassword($credentials.Password)
#check connection string
$server.ConnectionContext.ConnectionString
Write-Verbose "Connected to $($server.Name)"
Write-Verbose "Logged in as $($server.ConnectionContext.TrueLogin)"
How it works...
Before you can access or manipulate SQL Server programmatically, you will often need to create references to its objects. At the most basic is the server.
The server instance uses the type Microsoft.SqlServer.Management.Smo.Server. By default, connections to the server are made using trusted connections, meaning it uses the Windows account you're currently using when you log into the server. So all it needs is the instance name in its argument list:
#create your server instance
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
If, however, you need to connect using a SQL login, you will need to set the ConnectionContext.LoginSecure property of the SMO Server class setting to false:
#set connection to mixed mode
$server.ConnectionContext.set_LoginSecure($false)
You will also need to explicitly set the username and the password. The best way to accomplish this is to prompt the user for the credentials.
#prompt
$credentials = Get-Credential
The credential window will capture the login and password. The Get-Credential cmdlet returns the username with a leading backslash if the domain is not specified. In this case, we want to remove this leading backslash.
#remove leading backslash in username
$login = $credentials.UserName -replace("\\","")
Once we have the login, we can pass it to the set_Login method. The password is already a SecureString type, which is what the set_SecurePassword expects, so we can readily pass this to the method:
$server.ConnectionContext.set_Login($login)
$server.ConnectionContext.set_SecurePassword($credentials.Password)
Should you want to hardcode the username and just prompt for the password, you can also do this:
$login="belle"
#prompt
$credentials = Get-Credential –Credential $login
In the script, you will also notice we are using Write-Verbose instead of Write-Host to display our results. This is because we want to be able to control the output without needing to always go back to our script and remove all the Write-Host commands.
By default, the script will not display any output, that is, the $VerbosePreference special variable is set to SilentlyContinue. If you want to run the script in verbose mode, you simply need to add this line in the beginning of your script:
$VerbosePreference = "Continue"
When you are done, you just need to revert the value to SilentlyContinue:
$VerbosePreference = "SilentlyContinue"
See also
Exploring SMO server objects
SQL Management Objects (SMO) comes with a hierarchy of objects that are accessible programmatically. For example, when we create an SMO server variable, we can then access databases, logins, and database-level triggers. Once we get a handle of individual databases, we can then traverse the tables, stored procedures, and views that it contains. Since many tasks involve SMO objects, you will be at an advantage if you know how to discover and navigate these objects.
Getting ready
Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.
You will also need to note what your instance name is. If you have a default instance, you can use your machine name. If you have a named instance, the format will be <machine name>\<instance name>
How to do it...
In this recipe, we will start exploring the hierarchy of objects with SMO.
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.Server `
-ArgumentList $instanceName
$server |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"
$server.Databases |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"
$server.Databases["AdventureWorks2008R2"].Tables |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"
How it works...
SMO contains a hierarchy of objects. At the very top there is a server object, which in turn contains objects such as Databases, Configuration, SqlMail, LoginCollection, and the like. These objects in turn contain other objects, for example, Databases is a collection that contains Database objects, and a Database in turn, contains Tables and so on.
See also
http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx
Chapter 2. SQL Server and PowerShell Basic Tasks
In this chapter, we will cover:
Introduction
This chapter demonstrates scripts and snippets of code that accomplish some basic SQL Server tasks, using PowerShell. We will start with simple tasks, such as listing SQL Server instances and creating objects such as tables, indexes, stored procedures, and functions, to get you comfortable with working with SQL Server programmatically.
You will find that many of the recipes can be accomplished using PowerShell and SQL Management Objects (SMO). SMO is a library that exposes SQL Server classes, which allows for programmatic manipulation and automation of many database tasks. For some recipes, we will also explore alternative ways of accomplishing the same tasks, using different native PowerShell cmdlets.
SMO is explained in more detail in Chapter 1, Getting Started with SQL Server and PowerShell.
Even though we are exploring how to create some common database objects using PowerShell, I would like to note that PowerShell is not always the best tool for the task. There will be tasks that are best left accomplished using T-SQL. Even so, it is still good to know what is possible with PowerShell and how to do it, so that you know you have alternatives depending on your requirements or situation.
Development environment
The development environment used in the recipes has the following configurations:
Component | Syntax |
---|---|
Domain | QUERYWORKS |
Machine name | KERRIGAN |
Instances | KERRIGAN or (local) or localhost SQL01 |
Databases | AdventureWorks2008R2 |
Domain accounts | QUERYWORKS\aterra QUERYWORKS\jraynor QUERYWORKS\mhorner |
Administrator
To simplify the exercises, run the PowerShell scripts as an administrator in your box. In addition, ensure this account has full access to the SQL Server instance on which you are working.
PowerShell ISE
We will be using the PowerShell ISE for all the scripts in this task. These are some things you need to remember.
The Script Pane is where you will be typing in your PowerShell code. The Output Pane is where you will see the results.
The Command Pane is where you can type ad hoc commands, which get executed as soon as you press Enter.
For our recipes, we will be using the Script Pane to write and execute our scripts. Depending on the task, you may need to do one of the following:
Running scripts
If you prefer running the script from the PowerShell console rather than running the commands from the ISE, you can follow these steps:
See the Execution Policy section of the Running PowerShell scripts recipe in Appendix B, PowerShell Primer, for further explanation of different execution policies.
PS C:\>.\SampleScript.ps1 param1 param2
PS C:\>#if your path has no space
PS C:\>C:\MyScripts\SampleScript.ps1 param1 param2
PS C:\>#if your path has space
PS C:\>& "C:\My Scripts\SampleScript.ps1" param1 param2
PS C:\>. .\SampleScript.ps1 param1 param2
PS C:\>. "C:\My Scripts\SampleScript.ps1" param1 param2
Listing SQL Server instances
In this recipe, we will list all SQL Server instances in the local network.
Getting ready
Log in to the server that has your SQL Server development instance, as an administrator.
How to do it...
Import-Module SQLPS -DisableNameChecking
#sql browser must be installed and running
Start-Service "SQLBrowser"
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#list server instances
$managedComputer.ServerInstances
Your result should look similar to the one shown in the following screenshot:
Note that $managedComputer.ServerInstances gives you not only instance names, but also additional properties such as ServerProtocols, Urn, State, and so on.
How it works...
All services in a Windows operating system are exposed and accessible using Windows Management Instrumentation (WMI). WMI is Microsoft's framework for listing, setting, and configuring any Microsoft-related resource. This framework follows Web-based Enterprise Management (WBEM). Distributed Management Task Force, Inc. defines WBEM as follows (http://www.dmtf.org/standards/wbem):
a set of management and internet standard technologies developed to unify the management of distributed computing environments. WBEM provides the ability for the industry to deliver a well-integrated set of standard-based management tools, facilitating the exchange of data across otherwise disparate technologies and platforms.
In order to access SQL Server WMI-related objects, you can create a WMI ManagedComputer instance:
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
The ManagedComputer object has access to a ServerInstance property, which in turn lists all available instances in the local network. These instances, however, are only identifiable if the SQL Server Browser service is running.
SQL Server Browser is a Windows service that can provide information on installed instances in a box. You need to start this service if you want to list the SQL Server-related services.
There's more...
An alternative to using the ManagedComputer object is using the System.Data.Sql.SQLSourceEnumerator class to list all the SQL Server instances in the local network, thus:
[System.Data.Sql.SqlDataSourceEnumerator]::Instance.GetDataSources() |
Select ServerName, InstanceName, Version |
Format-Table -AutoSize
When you execute this, your result should look similar to the following screenshot:
Yet another way to get a handle to the SQL Server WMI object is by using the Get-WmiObject cmdlet. This will not, however, expose exactly the same properties exposed by the Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer object.
To do this, you will need to discover first what namespace is available in your environment, thus:
$hostname = "KERRIGAN"
$namespace = Get-WMIObject -ComputerName $hostName -NameSpace root\Microsoft\SQLServer -Class "__NAMESPACE" |
Where Name -Like "ComputerManagement*"
If you are using PowerShell V2, you will have to change the Where cmdlet usage to use the curly braces ({}) and the $_ variable, thus:
Where {$_.Name -Like "ComputerManagement*" }
For SQL Server 2012, this value is:
ROOT\Microsoft\SQLServer\ComputerManagement11
Once you have the namespace, you can use this value with Get-WmiObject to retrieve the instances. One property we can use to filter is SqlServiceType.
According to MSDN (http://msdn.microsoft.com/en-us/library/ms179591.aspx), the following are the values of SqlServiceType:
SqlServiceType | Description |
---|---|
1 | SQL Server service |
2 | SQL Server Agent service |
3 | Full-text Search Engine service |
4 | Integration Services service |
5 | Analysis Services service |
6 | Reporting Services service |
7 | SQL Server Browser service |
Thus, to retrieve the SQL Server instances, you need to filter for SQL Server service, or SQLServiceType = 1.
Get-WmiObject -ComputerName $hostname `
-Namespace "$($namespace.__NAMESPACE)\$($namespace.Name)" `
-Class SqlService |
Where SQLServiceType -eq 1 |
Select ServiceName, DisplayName, SQLServiceType |
Format-Table –AutoSize
If you are using PowerShell V2, you will have to change the Where cmdlet usage to use the curly braces ({}) and the $_ variable:
Where {$_.SQLServiceType -Like –eq 1 }
Your result should look similar to the following screenshot:
Discovering SQL Server services
In this recipe, we enumerate all SQL Server services and list their status.
Getting ready
Check which SQL Server services are installed in your instance. Go to Start | Run and type services.msc. You should see a screen similar to this:
How to do it...
Let's assume you are running this script on the server box.
Import-Module SQLPS
#replace KERRIGAN with your instance name
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#list services
$managedComputer.Services |
Select Name, Type, Status, DisplayName |
Format-Table -AutoSize
Your result will look similar to the one shown in the following screenshot:
Items listed on your screen will vary depending on the features installed and running in your instance.
How it works...
Services that are installed on a system can be queried using WMI. Specific services for SQL Server are exposed through SMO's WMI ManagedComputer object. Some of the exposed properties include:
There's more...
An alternative way to get SQL Server-related services is by using Get-WMIObject. We will need to pass in the hostname, as well as SQL Server WMI provider for the Computer Management namespace. For SQL Server 2012, this value is:
ROOT\Microsoft\SQLServer\ComputerManagement11
The script to retrieve the services is provided in the following code. Note that we are dynamically composing the WMI namespace here.
$hostName = "KERRIGAN"
$namespace = Get-WMIObject -ComputerName $hostName -NameSpace root\Microsoft\SQLServer -Class "__NAMESPACE" |
Where Name -Like "ComputerManagement*"
Get-WmiObject -ComputerName $hostname -Namespace "$($namespace.__NAMESPACE)\$($namespace.Name)" -Class SqlService |
Select ServiceName
Yet another alternative but less accurate way of listing possible SQL Server-related services is the following snippet of code:
#alterative - but less accurate
Get-Service *SQL*
It uses the Get-Service cmdlet and filters based on the service name. It is less accurate because this cmdlet grabs all processes that have SQL in the name but may not necessarily be SQL Server-related. For example, if you have MySQL installed, that will get picked up as a process. Conversely, this cmdlet will not pick up SQL Server-related services that do not have SQL in the name, such as ReportServer.
See also
Starting/stopping SQL Server services
This recipe describes how to start and/or stop SQL Server services.
Getting ready
Check which SQL services are installed in your machine. Go to Start | Run and type Services.msc. You should see a screen similar to this:
How to do it...
Let's look at the steps to toggle states for your SQL Server services:
$Verbosepreference = "Continue"
$services = @("SQLBrowser", "ReportServer")
$hostName = "KERRIGAN"
$services | ForEach-Object {
$service = Get-Service -Name $_
if($service.Status -eq "Stopped")
{
Write-Verbose "Starting $($service.Name)"
Start-Service -Name $service.Name
}
else
{
Write-Verbose "Stopping $($service.Name)"
Stop-Service -Name $service.Name
}
}
$VerbosePreference = "SilentlyContinue"
For example, in our previous sample, both SQLBrowser and ReportServer were initially running. Once the script was executed, both services stopped.
How it works...
In this recipe, we picked two services—SQLBrowser and ReportServer—that we want to manipulate and saved them into an array:
$services = @("SQLBrowser","ReportServer")
We then pipe the array contents to a Foreach-Object cmdlet, so we can determine what action to perform for each service. For our purposes, if the service is stopped, we want to start it. Otherwise, we stop it. Note that this code will work in both PowerShell V2 and V3:
$services | ForEach-Object {
$service = Get-Service -Name $_
if($service.Status -eq "Stopped")
{
Write-Verbose "Starting $($service.Name)"
Start-Service -Name $service.Name
}
else
{
Write-Verbose "Stopping $($service.Name)"
Stop-Service -Name $service.Name
}
}
You may also want to determine dependent services, or services that rely on a particular service. You may want to consider synchronizing the starting/stopping of these services with the main service they depend on.
To identify dependent services, you can use the DependentServices property of the System.ServiceProcess.ServiceController class:
$services | ForEach-Object {
$service = Get-Service -Name $_
Write-Verbose "Services Dependent on $($service.Name)"
$service.DependentServices | Select Name
}
The following list shows the properties and methods of the System.ServiceProcess.ServiceController class, which is generated from the Get-Service cmdlet:
An alternative way of working with SQL Server services is by using the Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer class. Note that the following code will work in both PowerShell V2 and V3:
Import-Module SQLPS -DisableNameChecking
#list services you want to start/stop here
$services = @("SQLBrowser", "ReportServer")
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#go through each service and toggle the state
$services | ForEach-Object {
$service = $managedComputer.Services[$_]
switch($service.ServiceState)
{
"Running"
{
Write-Verbose "Stopping $($service.Name)"
$service.Stop()
}
"Stopped"
{
Write-Verbose "Starting $($service.Name)"
$service.Start()
}
}
}
When using the Smo.Wmi.ManagedComputer object, you can simply use the Stop method provided with the class and the Start method to stop and start the service respectively.
The following list shows the properties and methods available with the Smo.Wmi.ManagedComputer class:
There's more...
To explore available cmdlets that can help manage and maintain services, use the following command:
Get-Command -Name *Service* -CommandType Cmdlet -ModuleName *PowerShell*
This will enumerate all cmdlets that have "Service" in the name:
All of these cmdlets relate to Windows services, with the exception of New-WebServiceProxy, which is described in MSDN as a cmdlet that creates a Web service proxy object that lets you use and manage the Web service in Windows PowerShell.
Here is a brief comparison between these service-oriented cmdlets and the methods available for the object of Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer service, as discussed in the recipe:
Service Methods | Service-related cmdlets |
---|---|
Start() | Start-Service |
Stop() | Stop-Service |
Continue() | Resume-Service |
Pause() | Suspend-Service |
Refresh() | Restart-Service |
Note that there isn't necessarily a one-to-one mapping between the methods of the Service class and the service cmdlets. For example, there is a Restart-Service cmdlet, but there isn't a Restart method.
This should not raise alarm bells, though. Although it may seem that some methods or cmdlets may be missing, it is important to note that PowerShell is a rich scripting platform and language. In addition to its own cmdlets, it leverages the whole .NET platform. Whatever you can do in the .NET platform, you most likely can do using PowerShell. Even if you think something is not doable when you look at a specific class or object, there is most likely a cmdlet somewhere that can perform that same task, or vice versa. If you still cannot find your ideal solution, you can create your own—be it a class, a module, a cmdlet, or a function.
See also
Listing SQL Server configuration settings
This recipe walks through how to list SQL Server configurable and non-configurable instance settings using PowerShell.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
To explore what members and methods are included in the SMO server, use the following code snippet in PowerShell V3:
#Explore: get all properties available for a server object
#http://msdn.microsoft.com/en-us/library/ms212724.aspx
$server | Get-Member | Where MemberType -eq "Property"
In PowerShell V2, you will need to slightly modify your syntax:
$server | Get-Member | Where {$_.MemberType -eq "Property"}
#The Information class lists nonconfigrable instance settings,
#like BuildNumber, OSVersion, ProductLevel etc
#Also includes settings specified during install
$server.Information.Properties |
Select Name, Value |
Format-Table –AutoSize
#The Settings lists some instance level configurable settings,
#like LoginMode, BackupDirectory etc
$server.Settings.Properties |
Select Name, Value |
Format-Table -AutoSize
#The UserOptions include options that can be set for user
#connections, for example
#AnsiPadding, AnsiNulls, NoCount, QuotedIdentifier
$server.UserOptions.Properties |
Select Name, Value |
Format-Table -AutoSize
#The Configuration class contains instance specific settings,
#like AgentXPs, clr enabled, xp_cmdshell
#You will normally see this when you run
#the stored procedure sp_configure
$server.Configuration.Properties |
Select DisplayName, Description, RunValue, ConfigValue | Format-Table –AutoSize
How it works...
Most SQL Server settings and configurations are exposed using SMO or WMI, which allows for these values to be programmatically retrieved.
At the core of accessing configuration details is the SMO Server class. This class exposes a SQL Server instance's properties, some of which are configurable, while some are not.
To create an SMO Server class, you will need to know your instance name and pass it as an argument:
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
The following are the four main properties that store settings/configurations that we looked at in this recipe:
Server property | Description |
---|---|
Information | Includes non-configurable instance settings, such as BuildNumber, Edition, OSVersion, and ProductLevel It also includes settings specified during install, for example Collation, MasterDBPath, and MasterDBLogPath |
Settings | Lists some instance-level configurable settings, such as LoginMode and BackupDirectory |
UserOptions | Contain options that can be set for user connections, such as AnsiWarnings, AnsiNulls, AnsiPadding, and NoCount |
Configuration | Instance-specific settings, such as AgentXPs, remote access, clr enabled, and xp_cmdshell, which you will normally see and set when you use the sp_configure system stored procedure |
See also
http://msdn.microsoft.com/en-us/library/ms212724.aspx
Changing SQL Server instance configurations
This recipe walks through how to change instance configuration settings using PowerShell.
Getting ready
For this recipe, we will:
How to do it...
Let's change some SQL Server settings using PowerShell:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
<#
run value vs config value
config_value," is what the setting has been set to (but may or may not be what SQL Server is actually running now. Some settings don't go into effect until SQL Server has been restarted, or until the RECONFIGURE WITH OVERRIDE option has been run, as appropriate.) And the last column, "run_value," is the value of the setting currently in effect.
#>
#change FillFactor
$server.Configuration.FillFactor.ConfigValue = 60
#enable SQL Server Agent extended stored procedures
$server.Configuration.AgentXPsEnabled.ConfigValue = 1
#change minimum server memory to 500MB; MB is default
$server.Configuration.MinServerMemory.ConfigValue = 500
$server.Configuration.Alter()
#confirm changes
$server.Configuration.Properties |
Select DisplayName, ConfigValue |
Format-Table -AutoSize
#change authentication mode
$server.Settings.LoginMode = [Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Mixed
$server.Alter()
#confirm changes
$server.settings.LoginMode
To confirm fill factor:
A side effect of enabling SQL Server Agent extended stored procedures is enabling SQL Server Agent. To confirm SQL Server Agent has been enabled:
To confirm Minimum server memory:
To confirm authentication mode:
How it works...
Depending on what server properties you need to change, you may need to determine which of the following classes you may need to access: Settings, UserOptions, or Configuration.
Once you have determined which class and property you want to change, you can change the values and invoke the Alter method:
#to make Configuration changes permanent
$server.Configuration.Alter()
#to make Settings changes permanent
$server.Alter()
There's more...
When you run sp_configure, you will see a result that shows both run_value and config_value as follows:
There is often confusion between run_value and config_value. config_value is what value the setting is set to. run_value is what SQL Server is currently using. Sometimes, a new value may be set (config_value), but it isn't used by SQL Server until the instance is restarted.
See also
Searching for database objects
In this recipe, we will search for database objects based on a search string by using PowerShell.
Getting ready
We will use AdventureWorks2008R2, in this exercise, and will look for SQL Server objects with the word "Product" in their names.
To get an idea of what are expecting to retrieve, run the following script in SQL Server Management Studio:
USE AdventureWorks2008R2
GO
SELECT
*
FROM
sys.objects
WHERE
name LIKE '%Product%'
-- filter table level objects only
AND [type] NOT IN ('C', 'D', 'PK', 'F')
ORDER BY
[type]
This will get you 23 results. Remember this number.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databaseName = "AdventureWorks2008R2"
$db = $server.Databases[$databaseName]
#what keyword are we looking for?
$searchString = "Product"
#create empty array, we will store results here
$results = @()
#now we will loop through all database SMO
#properties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
$type = $_.Name
$db.$type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace("Microsoft.SqlServer.Management.Smo.", "")
"ObjectName"=$_.Name
}
$results += $result
}
}
#display results
$results
#export results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation
#display file contents
notepad $file
Your results will look like this:
How it works...
After creating our usual SMO Server object, we create an SMO database handle to our AdventureWorks2008R2 database.
$databasename = "AdventureWorks2008R2"
$db = $server.Databases[$databasename]
We also define our search string. Our goal is to get all database objects that have the word "Product" in their names:
#what keyword are we looking for?
$searchString = "Product"
We also create an empty array, where we can save our search results as records. This will enable us to display our final results in a tabular fashion when we're done with our iteration.
$results = @()
We will then go through all the database-related SMO properties and look for objects that contain the keyword we're looking for. Note that the following script will work only with PowerShell V3, because of the simplified Where cmdlet usage. If you want to use this in PowerShell V2, replace the Where syntax with the V2 variation.
#now we will loop through all database SMO
#properties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
$type = $_.Name
$db.$type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace("Microsoft.SqlServer.Management.Smo.", "")
"ObjectName"=$_.Name
}
$results += $result
}
}
In our loop, we have one long line that parses and creates our result.
The first part inspects each property and checks whether the name contains our search string.
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
$type = $_.Name
$db.$type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace("Microsoft.SqlServer.Management.Smo.", "")
"ObjectName"=$_.Name
}
$results += $result
}
}
Note that we have two conditions that we pass in the outer Where-Object cmdlets (here simplified to Where usage, which is supported only in PowerShell V3), as follows:
The second part builds a new row for the result with two columns: ObjectType and ObjectName. This new result is of type PSObject. Once constructed, we store this in our $results array. We also strip out the substring Microsoft.SqlServer.Management.Smo from the resulting object types, for brevity.
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
$type = $_.Name
$db.$type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace("Microsoft.SqlServer.Management.Smo.", "")
"ObjectName"=$_.Name
}
$results += $result
}
}
Lastly, we export our results to a CSV file, using the Export-Csv cmdlet, and display in notepad:
#export results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation
#display file contents
notepad $file
When you inspect your results, however, you will notice two extra objects that were not captured in our T-SQL statement in the Getting ready section. If we compare the two approaches, our PowerShell approach is more complete. In addition to the expected 23 results, PowerShell has also captured:
There's more...
Another way to iterate through the objects is by using the EnumObjects method of the SMO database variable $db:
$searchString = "Product"
$db.EnumObjects() |
Where Name -Like "*$searchString*" |
Select DatabaseObjectTypes, Name |
Format-Table -AutoSize
Yes, there is still yet another alternative. This one is longer and less flexible, but it still gets you what you need. You can look for objects that match the search string by going through the $db object properties one by one, like this:
#long version is to enumerate explicitly each object type
$db.Tables | Where Name -Like "*$searchstring*"
$db.StoredProcedures | Where Name -Like "*$searchstring*"
$db.Triggers | Where Name -Like "*$searchstring*"
$db.UserDefinedFunctions | Where Name -Like "*$searchstring*"
#etc
This is useful, and will be faster, if you know exactly what type of object you are looking for.
See also
Creating a database
This recipe walks through creating a database with default properties using PowerShell.
Getting ready
In this example, we are going to create a database called TestDB, and we assume that this database does not yet exist in your instance.
For your reference, the equivalent T-SQL code for this task is:
CREATE DATABASE TestDB
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#database TestDB with default settings
#assumption is that this database does not yet exist
$dbName = "TestDB"
$db = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Database($server, $dbName)
$db.Create()
#to confirm, list databases in your instance
$server.Databases |
Select Name, Status, Owner, CreateDate
How it works...
There are two key steps to creating a database using SMO and PowerShell: creating an SMO Server object and creating an SMO Database object.
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "TestDB"
$db = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Database($server, $dbName)
The SMO Database constructor requires both the SMO Server handle and a database object. The final action is to call the database object's Create method:
$db.Create()
Many SMO objects are consistent with the methods. You will see the Create method again in several recipes in this chapter.
Altering database properties
This recipe shows you how to change database properties, using SMO and PowerShell.
Getting ready
Create a database called TestDB by following the steps in the Creating a database recipe.
Using TestDB, we will:
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#database
$dbName = "TestDB"
#we are going to assume db exists
$db = $server.Databases[$dbName]
#DatabaseOptions
#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false
#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single
$db.DatabaseOptions.UserAccess = [Microsoft.SqlServer.Management.Smo.DatabaseUserAccess]::Restricted
$db.Alter()
#some options are not available through the
#DatabaseOptions property
#so we will need to access the database object directly
#change compatiblity level to SQL Server 2005
#available CompatibilityLevel values are from
#Version 6.5 ('Version65') all the way to SQL
#Server 2012 ('Version110')
#however Version80 is not a valid compatibility option
#for SQL Server 2012
$db.AutoUpdateStatisticsEnabled = $true
$db.CompatibilityLevel = [Microsoft.SqlServer.Management.Smo.CompatibilityLevel]::Version90
$db.Alter()
#set to readonly
$db.DatabaseOptions.ReadOnly = $true
$db.Alter()
To start confirming:
You will notice right away in Object Explorer that your database is grayed out and that its status has changed to (Restricted User / Read-Only).
To confirm ANSI NULLS, ANSI PADDING, and Compatibility Level:
How it works...
To alter database properties, you will need to create an SMO handle to your database:
#we are going to assume db exists
$db = $server.Databases[$dbName]
After this, you will need to investigate which of the properties contains the setting you want to change. For example, ANSI NULLS, ANSI WARNINGS, database access restriction options, and Read Only are available through the DatabaseOptions property of your database object:
#DatabaseOptions
#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false
#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single
$db.DatabaseOptions.UserAccess = [Microsoft.SqlServer.Management.Smo.DatabaseUserAccess]::Restricted
#set to readonly
$db.DatabaseOptions.ReadOnly = $true
AutoUpdateStatisticsEnabled and CompatibilityLevel are their own properties, directly accessible from the $db object:
$db.AutoUpdateStatisticsEnabled = $true
$db.CompatibilityLevel = [Microsoft.SqlServer.Management.Smo.CompatibilityLevel]::Version90
Note that for SQL Server 2012, the earliest version you can set the compatibility level to is SQL Server 2005 (Version 90).
Once you've set the new values, you can persist the changes by invoking the Alter method of your database object:
$db.Alter()
Finding exactly which property the settings you are looking for reside in is half the battle, so it's a great idea to familiarize yourself with the properties of the object you are changing. Technet and MSDN are great resources, as are books and numerous articles and blog posts. However, remember there is help at your fingertips. Remember that the Get-Member cmdlet is your friend. You can invoke the Get-Member cmdlet as follows:
$db | Get-Member
See also
Dropping a database
This recipe shows how you can drop a database, using PowerShell and SMO.
Getting ready
This task assumes you have created a database called TestDB. If you haven't, create one by following the steps in the Creating a database recipe.
How to do it...
The following are the steps to drop your TestDB database:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "TestDB"
#need to check if database exists, and if it does, drop it
$db = $server.Databases[$dbName]
if ($db)
{
#we will use KillDatabase instead of Drop
#Kill database will drop active connections before
#dropping the database
$server.KillDatabase($dbName)
}
How it works...
To drop an SMO server or database object, you can simply invoke the Drop method. However, if you have ever tried dropping a database before, you might have already experienced being blocked by active connections to that database. For this reason, we chose the KillDatabase method, which will kill active connections before dropping the database. This option is also available in Management Studio when you drop a database from Object Explorer. When you right-click on a database, the Delete Object window will appear. At the bottom of the window you will find a checkbox called Close existing connections, which will do the job.
Changing a database owner
This recipe shows how to programmatically change a SQL Server database owner.
Getting ready
This task assumes you have created a database called TestDB and that a Windows account QUERYWORKS\aterra. QUERYWORKS\aterra has been created in your test VM.
See Appendix D, Creating a SQL Server VM.
If you don't already have one, create a TestDB database by following the steps the Creating a database recipe.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#create database handle
$dbName = "TestDB"
$db = $server.Databases[$dbName]
#display current owner
$db.Owner
#change owner
#SetOwner requires two parameters:
#loginName and overrideIfAlreadyUser
$db.SetOwner("QUERYWORKS\aterra", $true)
#refresh db
$db.Refresh()
#check Owner value
$db.Owner
How it works...
Changing the database owner is a short and straightforward task in PowerShell. First, you need to create a database handle.
The only other action required is invoking the SetOwner method of the Microsoft.SqlServer.Management.Smo.Database class, which requires two parameters:
The OverrideIfAlreadyUser option can be set to either true or false. If set to true, it means that the currently logged-in user already exists as a user in the target database, and that user is dropped and re-added as owner. If set to false and the logged-in user is already mapped to that database, the SetOwner method will produce an error.
See also
Creating a table
This recipe shows how to create a table using PowerShell and SMO.
Getting ready
We will use the AdventureWorks2008R2 database to create a table named Student, which has five columns. To give you a better idea of what we are trying to achieve, the equivalent T-SQL script needed to create this table is as follows:
USE AdventureWorks2008R2
GO
CREATE TABLE [dbo].[Student](
[StudentID] [INT] IDENTITY(1,1) NOT NULL,
[FName] [VARCHAR](50) NULL,
[LName] [VARCHAR](50) NOT NULL,
[DateOfBirth] [DATETIME] NULL,
[Age] AS (DATEPART(YEAR,GETDATE())-DATEPART(YEAR,[DateOfBirth])),
CONSTRAINT [PK_Student_StudentID] PRIMARY KEY CLUSTERED
(
[StudentID] ASC
)
GO
How to do it...
Let's create the Student table using PowerShell:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$tableName = "Student"
$db = $server.Databases[$dbName]
$table = $db.Tables[$tableName]
#if table exists drop
if($table)
{
$table.Drop()
}
#table class on MSDN
#http://msdn.microsoft.com/en-us/library/ms220470.aspx
$table = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Table -ArgumentList $db, $tableName
#column class on MSDN
#http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.column.aspx
#column 1
$col1Name = "StudentID"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int;
$col1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col1Name, $type
$col1.Nullable = $false
$col1.Identity = $true
$col1.IdentitySeed = 1
$col1.IdentityIncrement = 1
$table.Columns.Add($col1)
#column 2 - nullable
$col2Name = "FName"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)
$col2 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col2Name, $type
$col2.Nullable = $true
$table.Columns.Add($col2)
#column 3 - not nullable, with default value
$col3Name = "LName"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)
$col3 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col3Name, $type
$col3.Nullable = $false
$col3.AddDefaultConstraint("DF_Student_LName").Text = "'Doe'"
$table.Columns.Add($col3)
#column 4 - nullable, with default value
$col4Name = "DateOfBirth"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::DateTime;
$col4 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col4Name, $type
$col4.Nullable = $true
$col4.AddDefaultConstraint("DF_Student_DateOfBirth").Text = "'1800-00-00'"
$table.Columns.Add($col4)
#column 5
$col5Name = "Age"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int;
$col5 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col5Name, $type
$col5.Nullable = $false
$col5.Computed = $true
$col5.ComputedText = "YEAR(GETDATE()) - YEAR(DateOfBirth)";
$table.Columns.Add($col5)
$table.Create()
###
#make StudentID a clustered PK
###
#note this is just a "placeholder" right now for PK
#no columns are added in this step
$PK=New-Object-TypeNameMicrosoft.SqlServer.Management.SMO.Index-ArgumentList$table,"PK_Student_StudentID"
$PK.IsClustered =$true
$PK.IndexKeyType =[Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey
#identify columns part of the PK
$PKcol=New-Object-TypeNameMicrosoft.SqlServer.Management.SMO.IndexedColumn-ArgumentList$PK,$col1Name
$PK.IndexedColumns.Add($PKcol)
$PK.Create()
How it works...
To create a table, the first step is to create an SMO table object, thus:
$table = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Table -ArgumentList $db, $tableName
After this, all columns have to be defined one by one and added to the table before the Create method of the Microsoft.SqlServer.Management.SMO.Table class is invoked.
Let's take this step by step. To create a column, we first need to identify the data type we are storing in the column and the properties of that column.
Column data types in SMO are defined in Microsoft.SqlServer.Management.SMO.DataType. Every T-SQL data type is pretty much represented in this enumeration. To use a data type, the format should be as follows:
[Microsoft.SqlServer.Management.SMO.DataType]::DataType
To create a column, you will have to specify the table variable, the data type, and the column name:
$col1Name = "StudentID"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int
$col1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col1Name, $type
Common column properties will now be accessible to your column variable. Some common properties include:
For example:
#column 4 - nullable, with default value
$col4Name = "DateOfBirth"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::DateTime;
$col4 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Column -ArgumentList $table, $col4Name, $type
$col4.Nullable = $true
$col4.AddDefaultConstraint("DF_Student_DateOfBirth").Text = "'1800-00-00'"
There are additional properties that are exposed, depending on the data type you've chosen. For example, [Microsoft.SqlServer.Management.SMO.DataType]::Int will allow you to specify whether this is an identity and let you set seed and increment. [Microsoft.SqlServer.Management.SMO.DataType]::Varchar will allow you to set length.
Once you have set the properties, you can add columns to your table, as follows:
$table.Columns.Add($col4)
When everything is set up, you can invoke the table's Create method:
$table.Create()
Now, to create a primary key, you will need to create two other SMO Objects. The first one is the Index object. For this object, you can specify what type of index this is and whether it is clustered or nonclustered:
$PK = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Index -ArgumentList $table, "PK_Student_StudentID"
$PK.IsClustered = $true
$PK.IndexKeyType = [Microsoft.SqlServer.Management.SMO.IndexKeyType]::DriPrimaryKey
The second object, IndexedColumn, specifies what columns are part of the index.
#identify columns part of the PK
$PKcol = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $PK, $col1Name
If this column is an included column, simply set the IsIncluded property of the IndexedColumn object to true.
Once you've created all index columns, you can add them to the Index and invoke the Create method of the Index object:
$PK.IndexedColumns.Add($PKcol)
$PK.Create()
You must be thinking right now that what we've just gone over is a long-winded way to create a table. And you're thinking right. It is a more verbose way to create a table. However, keep in mind this is just one more way to get things done. When you need to create a table and if T-SQL is a faster way to do it, go for it. However, knowing how to do it in PowerShell and SMO is just one more tool in your arsenal for those scenarios where you might need to create the tables dynamically or more flexibly—for example, if you need to import the definition stored in Excel, CSV, or XML files from multiple users.
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
Creating a view
This recipe shows how to create a view using PowerShell and SMO.
Getting ready
We will use the Person.Person table in the AdventureWorks2008R2 database for this recipe.
To give you an idea of what we are attempting to create in this recipe, this is the T-SQL equivalent:
CREATE VIEW dbo.vwVCPerson
AS
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
$viewName = "vwVCPerson"
$view = $db.Views[$viewName]
#if view exists, drop it
if ($view)
{
$view.Drop()
}
$view = New-Object -TypeName Microsoft.SqlServer.Management.SMO.View -ArgumentList $db, $viewName, "dbo"
#TextMode = false meaning we are not
#going to explicitly write the CREATE VIEW header
$view.TextMode = $false
$view.TextBody = @"
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@
$view.Create()
$result = Invoke-Sqlcmd `
-Query "SELECT * FROM vwVCPerson" `
-ServerInstance "$instanceName" `
-Database $dbName
$result | Format-Table -AutoSize
How it works...
To create a view using SMO and PowerShell, you first need to create an SMO View variable, which requires three parameters: database handle, view name, and schema.
$view = New-Object -TypeName Microsoft.SqlServer.Management.SMO.View -ArgumentList $db, $viewName, "dbo"
You can optionally set the view owner:
$view.Owner = "QUERYWORKS\aterra"
The crux of the view creation is with the view definition. You have the option here of setting the TextMode property to either true or false.
$view.TextMode = $false
$view.TextBody = @"
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@
If you set the TextMode property to false, it means you are letting SMO construct the view header for you:
$view.TextMode = $false
If you set the TextMode property to true, it means you have to define the view's TextHeader property:
$view.TextMode = $true
$view.TextHeader = "CREATE VIEW dbo.vwVCPerson AS "
When all the pieces are in place, you can invoke the view's Create method:
$view.Create()
There's more...
When creating database objects such as views, stored procedures, or functions, you are often required to write blocks of code for the object definition. Although you can technically put all these in one line, it is best to put them in a multiline format for readability.
To embed these blocks of code in PowerShell, you will need to use a here-string. A here-string starts with @" followed by nothing else, and is ended by "@, which must be the first two character in its own line:
$view.TextBody = @"
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@
This construction might remind you a little bit of a C-style comment, which starts with /* and ends with */, albeit using different characters.
Creating a stored procedure
This recipe shows how to create an encrypted stored procedure using SMO and PowerShell.
Getting ready
The T-SQL equivalent of the encrypted stored procedure we are about to recreate in PowerShell is as follows:
CREATE PROCEDURE [dbo].[uspGetPersonByLastName] @LastName [varchar](50)
WITH ENCRYPTION
AS
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
How to do it...
Follow these steps to create the uspGetPersonByLastName stored procedure using PowerShell:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
#storedProcedure class on MSDN:
#http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.storedprocedure.aspx
$sprocName = "uspGetPersonByLastName"
$sproc = $db.StoredProcedures[$sprocName]
#if stored procedure exists, drop it
if ($sproc)
{
$sproc.Drop()
}
$sproc = New-Object -TypeName Microsoft.SqlServer.Management.SMO.StoredProcedure -ArgumentList $db, $sprocName
#TextMode = false means stored procedure header
#is not editable as text
#otherwise our text will contain the CREATE PROC block
$sproc.TextMode = $false
$sproc.IsEncrypted = $true
$paramtype = [Microsoft.SqlServer.Management.SMO.Datatype]::VarChar(50);
$param = New-Object -TypeName Microsoft.SqlServer.Management.SMO.StoredProcedureParameter -ArgumentList $sproc,"@LastName",$paramtype
$sproc.Parameters.Add($param)
#Set the TextBody property to define the stored procedure.
$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"@
Create the stored procedure on the instance of SQL Server.
$sproc.Create()
#if later on you need to change properties, can use the Alter method
$lastName = "Abercrombie"
$result = Invoke-Sqlcmd `
-Query "EXEC uspGetPersonByLastName @LastName=`'$LastName`'" `
-ServerInstance "$instanceName" `
-Database $dbName
$result | Format-Table -AutoSize
How it works...
To create a stored procedure, you first need to initialize an SMO StoredProcedure object. When creating this object, you need to pass the database handle and the stored procedure name as parameters:
$sproc = New-Object -TypeName Microsoft.SqlServer.Management.SMO.StoredProcedure -ArgumentList $db, $sprocName
You can then set some properties of the stored procedure object, such as whether it's encrypted or not:
$sproc.IsEncrypted = $true
If you specify TextMode = true, you will need to create the stored procedure header yourself. If you have parameters, these will have to be defined in your text header, for example:
$sproc.TextMode = $true
$sproc.TextHeader = @"
CREATE PROCEDURE [dbo].[uspGetPersonByLastName]
@LastName [varchar](50)
AS
"@
Otherwise, if you set TextMode = $false, you are technically allowing PowerShell to autogenerate this header for you, based on the other properties and parameters you have set. You will also have to create the parameter objects one-by-one and add them to the stored procedure.
$sproc.TextMode = $false
$paramtype = [Microsoft.SqlServer.Management.SMO.Datatype]::VarChar(50);
$param = New-Object -TypeName Microsoft.SqlServer.Management.SMO.StoredProcedureParameter -ArgumentList $sproc,"@LastName",$paramtype
$sproc.Parameters.Add($param)
When creating the stored procedure, use a here-string as you set the definition of the TextBody property of the stored procedure object:
$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"@
Once the header, definition, and properties of the stored procedure are in place, you can invoke the Create method, which sends the CREATEPROC statement to SQL Server and creates the stored procedure.
Create the stored procedure on the instance of SQL Server.
$sproc.Create()
Creating a trigger
This recipe demonstrates how to programmatically create a trigger in SQL Server using SMO and PowerShell.
Getting ready
For this recipe, we will use the Person.Person table in the AdventureWorks2008R2 database. We will create a trivial AFTER trigger that merely displays values from the inserted and deleted records upon firing.
The following is the T-SQL equivalent of what we are going to accomplish programmatically in this section:
CREATE TRIGGER [Person].[tr_u_Person]
ON [Person].[Person]
AFTER UPDATE
AS
SELECT
GETDATE() AS UpdatedOn,
SYSTEM_USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID
How to do it...
Let's follow these steps to create an AFTER trigger in PowerShell:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
$tableName = "Person"
$schemaName = "Person"
#get a handle to the Person.Person table
$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "$tableName"
$triggerName = "tr_u_Person";
#note here we need to check triggers attached to table
$trigger = $table.Triggers[$triggerName]
#if trigger exists, drop it
if ($trigger)
{
$trigger.Drop()
}
$trigger = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Trigger -ArgumentList $table, $triggerName
$trigger.TextMode = $false
#this is just an update trigger
$trigger.Insert = $false
$trigger.Update = $true
$trigger.Delete = $false
#3 options for ActivationOrder: First, Last, None
$trigger.InsertOrder = [Microsoft.SqlServer.Management.SMO.Agent.ActivationOrder]::None
$trigger.ImplementationType = [Microsoft.SqlServer.Management.SMO.ImplementationType]::TransactSql
#simple example
$trigger.TextBody = @"
SELECT
GETDATE() AS UpdatedOn,
SYSTEM_USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID
"@
$trigger.Create()
$firstName = "Frankk"
$result = Invoke-Sqlcmd `
-Query "UPDATE Person.Person SET FirstName = `'$firstName`' WHERE BusinessEntityID = 2081 " `
-ServerInstance "$instanceName" `
-Database $dbName
$result | Format-Table –AutoSize
Your result should look similar to the following:
How it works...
The code for this section is quite long, so we will break it down here.
To create a trigger, you need to create a reference to both the instance and the database first. This is something we have done for most of the recipes in this chapter, in case you have skipped the previous recipes.
A trigger is bound to a table or view. You will need to create a variable that points to the table you want the trigger to attach to:
$tableName = "Person"
$schemaName = "Person"
$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "$tableName"
For purposes of this recipe, if the trigger exists, we will drop it.
$trigger = $table.Triggers[$triggerName]
#if trigger exists, drop it
if ($trigger)
{
$trigger.Drop()
}
Next, you need to create an SMO Trigger object:
$trigger = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Trigger -ArgumentList $table, $triggerName
Next, set the TextMode property. If set to true, it means you have to define the trigger header text yourself. Otherwise, SMO will automatically generate it for you.
$trigger.TextMode = $false
You will also need to define what type of DML trigger this is. Your options are insert, update, and/or delete triggers. Our example is just an update trigger.
#this is just an update trigger
$trigger.Insert = $false
$trigger.Update = $true
$trigger.Delete = $false
You can also optionally define the trigger order. By default, there is no guarantee in what order the triggers will be run by SQL Server, but you have the option to set it to First or Last. In our example, we leave it at the default value, but we still explicitly define it for readability.
#3 options for ActivationOrder: First, Last, None
$trigger.InsertOrder = [Microsoft.SqlServer.Management.SMO.Agent.ActivationOrder]::None
Our trigger is a Transact-SQL trigger. SQL Server SMO also supports SQLCLR triggers.
$trigger.ImplementationType = [Microsoft.SqlServer.Management.SMO.ImplementationType]::TransactSql
To specify the trigger definition, you can set the value of the trigger's TextBody property. You can use a here-string to assign the trigger code block to the TextBody property:
#simple example
$trigger.TextBody = @"
SELECT
GETDATE() AS UpdatedOn,
SYSTEM_USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID
"@
When ready, invoke the Create() method of the trigger.
$trigger.Create()
Creating an index
This recipe demonstrates how to create a non-clustered index with an included column using PowerShell and SMO.
Getting ready
We will use the Person.Person table in the AdventureWorks2008R2 database. We will create a non-clustered index on FirstName, LastName, and include MiddleName. The T-SQL equivalent of this task is:
CREATE NONCLUSTERED INDEX [idxLastNameFirstName]
ON [Person].[Person]
(
[LastName] ASC,
[FirstName] ASC
)
INCLUDE ([MiddleName])
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
$tableName = "Person"
$schemaName = "Person"
$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "$tableName"
$indexName = "idxLastNameFirstName"
$index = $table.Indexes[$indexName]
#if stored procedure exists, drop it
if ($index)
{
$index.Drop()
}
$index = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Index -ArgumentList $table, $indexName
#first index column, by default sorted ascending
$idxCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "LastName", $false
$index.IndexedColumns.Add($idxCol1)
#second index column, by default sorted ascending
$idxCol2 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "FirstName", $false
$index.IndexedColumns.Add($idxCol2)
#included column
$inclCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "MiddleName"
$inclCol1.IsIncluded = $true
$index.IndexedColumns.Add($inclCol1)
#Set the index properties.
<#
None - no constraint
DriPrimaryKey - primary key
DriUniqueKey - unique constraint
#>
$index.IndexKeyType = [Microsoft.SqlServer.Management.SMO.IndexKeyType]::None
$index.IsClustered = $false
$index.FillFactor = 70
#Create the index on the instance of SQL Server.
$index.Create()
How it works...
The first step to creating an index is to create an SMO index object, which requires both the table/view handle and the index name:
$index = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Index -ArgumentList $table, $indexName
The next step is to identify all index columns using the IndexedColumn property of the Microsoft.SqlServer.Management.SMO.Index class:
#first index column
$idxCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "LastName", $false; #sort asc
$index.IndexedColumns.Add($idxCol1)
#second index column
$idxCol2 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "FirstName", $false; #sort asc
$index.IndexedColumns.Add($idxCol2)
Optionally, you can add included columns, in other words, columns that "tag along" with the index but are not part of the indexed columns:
#included column
$inclCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.IndexedColumn -ArgumentList $index, "MiddleName"
$inclCol1.IsIncluded = $true
$index.IndexedColumns.Add($inclCol1)
The type of the index can be specified using the IndexKeyType property of the Microsoft.SqlServer.Management.SMO.IndexedColumn class, which accepts three possible values:
Additional properties can also be set, including FillFactor, and whether this key is clustered or not:
$index.IndexKeyType = [Microsoft.SqlServer.Management.SMO.IndexKeyType]::None
$index.IsClustered = $false
$index.FillFactor = 70
When all properties are set, invoke the Create method of the SMO index object.
#Create the index on the instance of SQL Server.
$index.Create()
There's more...
The SMO Index object also supports different kinds of indexes:
Index Type | What to set |
---|---|
Filtered | HasFilter FilterDefinition |
FullText | IsFullTextKey = $true |
XML | IsXMLIndex = $true |
Spatial | IsSpatialIndex = $true |
To get more information about index options, check out the MSDN documentation on SMO indexes:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx
See also
Executing a query / SQL script
This recipe shows how you can execute either a hardcoded query or a SQL script, from PowerShell.
Getting ready
Create a file in your C:\Temp folder called SampleScript.sql. This should contain:
SELECT *
FROM Person.Person
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
#execute a passthrough query, and export to a CSV file
Invoke-Sqlcmd `
-Query "SELECT * FROM Person.Person" `
-ServerInstance "$instanceName" `
-Database $dbName |
Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv" `
-NoTypeInformation
#execute the SampleScript.sql, and display results to screen
Invoke-SqlCmd `
-InputFile "C:\Temp\SampleScript.sql" `
-ServerInstance "$instanceName" `
-Database $dbName |
Select FirstName, LastName, ModifiedDate |
Format-Table
How it works...
Start warming up to the Invoke-Sqlcmd cmdlet. We will be using it a lot in this book.
As the name suggests, this cmdlet allows you to run T-SQL code or scripts and commands supported by the SQLCMD utility. It also allows you to run XQuery code. Invoke-Sqlcmd is your all-purpose SQL utility cmdlet.
To get more information about Invoke-Sqlcmd, use the Get-Help cmdlet
Get-Help Invoke-Sqlcmd -Full
In this recipe, we looked at two ways of using Invoke-Sqlcmd. The first is by specifying a query to run. For this, you should use the –Query option:
#execute a passthrough query, and export to a CSV file
Invoke-Sqlcmd `
-Query "SELECT * FROM Person.Person" `
-ServerInstance "$instanceName" `
-Database $dbName |
Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv" `
-NoTypeInformation
For the second way, which requires running a SQL Script, you need to specify the –InputFile switch:
#execute the SampleScript.sql, and display results to screen
Invoke-SqlCmd `
-InputFile "C:\Temp\SampleScript.sql" `
-ServerInstance "$instanceName" `
-Database $dbName |
Select FirstName, LastName, ModifiedDate |
Format-Table
Performing bulk export using Invoke-Sqlcmd
This recipe demonstrates how to export contents of a table to a CSV file using PowerShell and the Invoke-Sqlcmd cmdlet.
Getting ready
Make sure you have access to the AdventureWorks2008R2 database. We will use the Person.Person table.
Create a C:\Temp folder, if you don't already have one on your system.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#database handle
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
#export file name
$exportfile = "C:\Temp\Person_Person.csv"
$query = @"
SELECT
*
FROM
Person.Person
"@
Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName" -Database $dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation
How it works...
In this recipe, we export the results of a query to a CSV file. There are two core parts of the export approach in this recipe.
The first part is executing the query, and for this, we use the Invoke-Sqlcmd cmdlet. We specify the instance and database and send a query to SQL Server through this cmdlet:
Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName" -Database $dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation
The second part is piping the results to the Export-Csv cmdlet and specifying the file in which the results are supposed to be stored. We also specify –NoTypeInformation, so the cmdlet will omit the #TYPE .NET information type as the first line in the file:
Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName" -Database $dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation
See also
Performing bulk export using bcp
This recipe demonstrates how to export contents of a table to a CSV file using PowerShell and bcp.
Getting ready
Make sure you have access to the AdventureWorks2008R2 database. We will export the Person.Person table to a timestamped text file delimited by a pipe (|).
Create a C:\Temp\Exports folder, if you don't already have it on your system.
How to do it...
$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Person.Person"
$curdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$foldername = "C:\Temp\Exports\"
#format file name
$formatfilename = "$($table)_$($curdate).fmt"
#export file name
$exportfilename = "$($table)_$($curdate).csv"
$destination_exportfilename = "$($foldername)$($exportfilename)"
$destination_formatfilename = "$($foldername)$($formatfilename)"
#command to generate format file
$cmdformatfile = "bcp $table format nul -T -c -t `"|`" -r `"\n`" -f `"$($destination_formatfilename)`" -S$($server)"
#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`" -S$($server) -T -f `"$destination_formatfilename`""
<#
$cmdformatfile gives you something like this:
bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r "\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-27_913PM.fmt" -S KERRIGAN
$cmdexport gives you something like this:
bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-27_913PM.csv" -S KERRIGAN -T -c -f "C:\Temp\Exports\AdventureWorks2008R2.Per
son.Person_2011-12-27_913PM.fmt"
#>
#run the format file command
Invoke-Expression $cmdformatfile
#delay 1 sec, give server some time to generate the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1
#run the export command
Invoke-Expression $cmdexport
#check the folder for generated file
explorer.exe $foldername
How it works...
Using SQL Server's bcp command is often the faster way to export records out of SQL Server. It is also often preferred, because bcp offers flexibility in the export format.
The default export format of bcp uses a tab (\t) as a field delimiter and a carriage return newline character (\r\n) as a row delimiter. If you want to change this, you will need to create and use a format file that specifies how you want the export to be formatted.
In our recipe, we first timestamp both the format file and then export file names.
$curdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$foldername = "C:\Temp\Exports\"
#format file name
$formatfilename = "$($table)_$($curdate).fmt"
#export file name
$exportfilename = "$($table)_$($curdate).csv"
$destination_exportfilename = "$($foldername)$($exportfilename)"
$destination_formatfilename = "$($foldername)$($formatfilename)"
We then construct the string that will generate the format file as follows:
#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`" -S$($server) -T -f `"$destination_formatfilename`""
Note that because the actual command requires double quotes, when we construct the command, we need to escape the double quote within the command with a backtick (`).
This command that is constructed should be similar to the following:
bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r "\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-27_913PM.fmt" -SKERRIGAN
We also construct the command that will export the records using the format file we just created:
#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`" -S$($server) -T -f `"$destination_formatfilename`""
This will give us something similar to the following:
bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-27_913PM.csv" -SKERRIGAN -T -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-27_913PM.fmt"
When the strings containing the commands are complete, we can execute the command using the Invoke-Expression cmdlet. We run the format file creation command first, and then use the Start-Sleep cmdlet to pause for 1 second, to ensure the format file has been created first, before we invoke the command to do the actual export.
#run the format file command
Invoke-Expression $cmdformatfile
#delay 1 sec, give server some time to generate
#the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1
#run the export command
Invoke-Expression $cmdexport
If we don't wait, there will be a bigger chance for all the commands to be executed really fast, and the command to export will run before the format file has been generated. This will lead to an error, because the bcp command will not be able to find the format file.
Lastly, we just open up Windows Explorer, so we can inspect the files we generated.
#check the folder for generated file
explorer.exe $foldername
See also
Performing bulk import using BULK INSERT
This recipe will walk you through importing contents of a CSV file to SQL Server using PowerShell and BULK INSERT.
Getting ready
To do a test import, we will first need to create a Person table similar to the Person.Person table from the AdventureWorks2008R2 database, with some slight modifications.
We will create this in the Test schema, and we will remove some of the constraints and keep this table as simple and independent as we can.
To create the table that we need for this exercise, open up Management Studio and run the following code:
CREATE SCHEMA [Test]
GO
CREATE TABLE [Test].[Person](
[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar](2) NOT NULL,
[NameStyle] [dbo].[NameStyle] NOT NULL,
[Title] [nvarchar](8) NULL,
[FirstName] [dbo].[Name] NOT NULL,
[MiddleName] [dbo].[Name] NULL,
[LastName] [dbo].[Name] NOT NULL,
[Suffix] [nvarchar](10) NULL,
[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,
[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL
)
GO
For this recipe, we will import a file called AdventureWorks2008R2.Person.Person.csv, which is provided with the downloadable materials from the Packt site. Save this in the folder C:\Temp\Exports.
Alternatively, create a CSV file, as mentioned in the Performing bulk export using bcp recipe, and replace the filename reference in this recipe with the filename you generate.
How to do it...
Import-Module SQLPS -DisableNameChecking
function Import-Person {
<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)
$query = @"
TRUNCATE TABLE Test.Person
GO
BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT(*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;
#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName
}
$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName
How it works...
Importing records from a CSV or text file into a SQL Server table using the BULK INSERT command will require constructing the BULK INSERT T-SQL statement and executing this statement using the Invoke-Sqlcmd cmdlet:
Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName
However, we have done things a little bit differently than in our previous recipes. In this recipe, we first created a function that encapsulates all the core import tasks.
To create a function, you first need to create a function header:
function Import-Person {
The function header starts with the keyword function and is then followed by the function name in the format verb-noun. The body of the function is encapsulated by opening and closing curly braces { }.
Right after the function header, we also create a comment-based help header comment.
<#
.SYNOPSIS
Very simple function to get number of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sqlmusings.com
#>
Block comments in PowerShell start with <# and end with #>. In addition, this is a special type of block comment that allows this function's comments to be displayed in a Get-Help cmdlet. We now type:
Get-Help Import-Person
This will provide output similar to the help you get for any other cmdlet:
After the function header and comment come the parameters. Our Import-Person function accepts two parameters: instance name and database name.
param([string]$instanceName,[string]$dbName)
Following our parameter definition is the function definition. We start by creating a here-string, which contains our T-SQL statement:
$query = @"
TRUNCATE TABLE Test.Person
GO
BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT(*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;
After our query is constructed, we pass it to the Invoke-Sqlcmd cmdlet, which in turn sends and executes it in our SQL Server instance.
Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName
Functions in PowerShell are local-scoped by default, but when run through the ISE maintain a global scope. In our recipe, once you run the first part of the script that has the function definition, this function can be invoked at any time in the current session. We can see that the function simplifies importing the records and all that we need is the instance name, the database name, and the Import-Person function.
$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName
If you are using the shell and you want this function to persist globally across different scopes, save the script as a .ps1 file and dot source it. Another way is to prepend the function name with global:
function global:Import-Person {
See also
Performing bulk import using bcp
This recipe will walk you through the process of importing the contents of a CSV file to SQL Server using PowerShell and bcp.
Getting ready
To do a test import, let's first create a Person table similar to the Person.Person table from the AdventureWorks2008R2 database, with some slight modifications. We will create this in the Test schema, and we will remove some of the constraints and keep this table as simple and independent as we can.
If Test.Person does not yet exist in your environment, let's create it. Open up Management Studio, and run the following code:
CREATE SCHEMA [Test]
GO
CREATE TABLE [Test].[Person](
[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar](2) NOT NULL,
[NameStyle] [dbo].[NameStyle] NOT NULL,
[Title] [nvarchar](8) NULL,
[FirstName] [dbo].[Name] NOT NULL,
[MiddleName] [dbo].[Name] NULL,
[LastName] [dbo].[Name] NOT NULL,
[Suffix] [nvarchar](10) NULL,
[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,
[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL
)
GO
How to do it...
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
function Truncate-Table {
<#
.SYNOPSIS
Very simple function to truncate
records from Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)
$query = @"
TRUNCATE TABLE Test.Person
"@
#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance $instanceName `
-Database $dbName
}
function Get-PersonCount {
<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)
$query = @"
SELECT COUNT(*) AS NumRecords
FROM Test.Person
"@
#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance $instanceName `
-Database $dbName
}
#let's clean up the Test.Person table first
Truncate-Table $instanceName $dbName
$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv"
#command to import from csv
$cmdimport = "bcp $($table) in `"$($importfile)`" -S$server -T -c -t `"|`" -r `"\n`" "
<#
$cmdimport gives you something like this:
bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv" –SKERRIGAN -T -c -t "|" -r "\n"
#>
#run the import command
Invoke-Expression $cmdimport
#delay 1 sec, give server some time to import records
#sleep helps us avoid race conditions
Start-Sleep -s 2
Get-PersonCount $instanceName $dbName
How it works...
Performing a bulk import using bcp is a straightforward task—we need to use the Invoke-Expression cmdlet and pass in the bcp command. In this recipe, however, we have cleaned up our script a little bit and have started off with a couple of helper functions.
The first helper function, Truncate-Table, is a simple helper function that truncates the Test.Person table to which we want to import the records. This function passes the TRUNCATE TABLE command to SQL Server using the Invoke-Sqlcmd cmdlet. To use this function, simply call:
Truncate-Table $instanceName $dbName
The second helper function, Get-PersonCount, simply returns a count of the records that have been imported into the Test.Person table. This also uses the Invoke-Sqlcmd cmdlet. To invoke the function, use the following code:
Get-PersonCount $instanceName $dbName
The core of this recipe is with the construction of the bcp import command:
$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv"
#command to import from csv
$cmdimport = "bcp " + $table + " in " + '"' + $importfile + '"' + " -S $server -T -c -t `"|`" -r `"\n`" "
This will give us the bcp command that points to the import file; it specifies the pipe as the field delimiter and newline as the row delimiter:
bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv" -T -c -t "|" -r "\n"
Once this command is constructed, we just need to pass it to the Invoke-Sqlcmd expression:
Invoke-Expression $cmdimport
We also added a little bit of delay here using the Start-Sleep cmdlet, with a sleep interval of 2 seconds, to allow INSERT to happen before we count the records. This is a very simplistic way to avoid race conditions, but for our purposes in this recipe it is sufficient.
See also
Chapter 3. Basic Administration
In this chapter, we will cover:
Introduction
In this chapter, we will tackle some more administrative tasks that can be accomplished using PowerShell. PowerShell can help automate a lot of the repetitive, tedious, and mundane tasks that take many clicks to accomplish. We will look at ways to get SQL Server instance and database properties and log them to a file. We are also going to explore tasks such as checking disk space, creating WMI alerts, setting up Database Mail, and creating and maintaining SQL Server jobs.
Check out the Introduction section in Chapter 2, SQL Server and PowerShell Basic Tasks, for the development environment settings needed for the recipes in this chapter.
Creating a SQL Server instance inventory
In this recipe, we will export SQL Server instance properties to a text file.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#specify folder and filename to be produced
$folder = "C:\Temp"
$currdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "$($instanceName)_InstanceInventory_$($currdate).csv"
$fullpath = Join-Path $folder $filename
#export all “server” object properties
#note we are using V3 simplified Where-Object syntax
$server |
Get-Member |
Where-Object Name -ne "SystemMessages" |
Where-Object MemberType -eq "Property" |
Select Name, @{Name="Value";Expression={$server.($_.Name)}} |
Export-Csv -Path $fullpath -NoTypeInformation
#jobs are also extremely important to monitor, archive
#export all job names + last run date and result
$server.JobServer.Jobs |
Select @{Name="Name";Expression={"Job: $($_.Name)"}},
@{Name="Value";Expression={"Last run: $($_.LastRunDate) ($($_.LastRunOutcome))" }} |
Export-Csv -Path $fullpath -NoTypeInformation -Append
#show file in explorer
explorer $folder
How it works...
It is important to regularly take an inventory of your SQL Server instances, in other words, get a list of the instances and their properties, for auditing and archiving purposes. It will be easier to detect changes if you know what your baseline properties are.
There are different ways of extracting different SQL Server settings using PowerShell. What we will be using in this recipe is a fairly simple script, but exhaustive.
Let's dissect the first part first. Note that this block of code will work only in PowerShell V3 because of the simplified Where-Object syntax:
$server |
Get-Member |
Where-Object Name -ne "SystemMessages" |
Where-Object MemberType -eq "Property" |
Select Name, @{Name="Value";Expression={$server.($_.Name)}} |
Export-Csv -Path $fullpath -NoTypeInformation
If you want to do this in V2, this is the equivalent block of code:
#export all “server” object properties
$server |
Get-Member |
Where {$_.MemberType -eq "Property" -and $_.Name -ne "SystemMessages"} |
| Select Name, @{Name="Value";Expression={$server.($_.Name)}}
| Export-Csv -path $fullpath -noTypeInformation
The first couple of lines retrieve all the properties and methods of the server object:
$server |
Get-Member |
The next part retrieves all the non-system message properties:
Where-Object Name -ne "SystemMessages" |
Where-Object MemberType -eq "Property" |
We filter out all system messages because these would clutter our inventory. This filter would normally lead to a result that looks similar to the one shown in the following screenshot:
Instead of displaying the results, we pipe the results to the line:
Select Name, @{Name="Value";Expression={$server.($_.Name)}} |
This is at the core of retrieving the inventory. The interim results containing the properties are piped to this line, and $server.($_.Name) retrieves the current property in the pipe. For example, if the current property in the pipeline is Collation, then this would be translated to $server.Collation.
The last part of this line exports the results to a text, Comma-Separated Value (CSV) file:
Export-Csv -Path $fullpath -NoTypeInformation
This is not where we stop our script though. We append the job names of a server, including the last run date and last run result, to this file:
$server.JobServer.Jobs |
Select @{Name="Name";Expression={"Job: $($_.Name)"}},
@{Name="Value";Expression={"Last run: $($_.LastRunDate) ($($_.LastRunOutcome))" }} |
Export-Csv -Path $fullpath -NoTypeInformation -Append
For this line, we have to use $server.JobServer.Jobs instead of $server only. We take the Job's Name, LastRunDate, and LastRunOutcome properties.
Your resulting Excel file should look similar to this:
There's more...
There are different ways to extract inventory information. The recipe just loops through all properties exposed with SMO and exports them to our CSV file. However, you may prefer to extract specific properties and eliminate ones that are not applicable to your inventory. This will entail exploring the SMO object model and working with Get-Member to nail down exactly which properties you want exported. With this approach, the resulting CSV is going to be more concise and relevant to your needs.
These are examples of other explicitly defined properties:
$server.Information.EngineEdition
$server.Information.Collation
$server.Settings.LoginMode
$server.Settings.MailProfile
$server.Configuration.AgentXPsEnabled
$server.Configuration. DatabaseMailEnabled
To export to CSV, you can store these properties into a hash and create a PSObject class from the hash. The PSObject class can be piped to the Export-Csv cmdlet:
#export some “server” object properties
#capture info you want to capture into a hash
#the hash will make it easier to export to CSV
$hash = @{
"EngineEdition" = $server.Information.EngineEdition
"Collation" = $server.Information.Collation
"LoginMode" = $server.Settings.LoginMode
"MailProfile" = $server.Settings.MailProfile
"AgentXPsEnabled" = $server.Configuration.AgentXPsEnabled
"DatabaseMailEnabled" = $server.Configuration.DatabaseMailEnabled
}
#create a new "row" and add to the results array
$item = New-Object PSObject -Property $hash
$item |
Export-Csv -Path $fullpath -NoTypeInformation
See also
Creating a SQL Server database inventory
This recipe walks you through the process of retrieving database properties and saving them to a file for inventorying purposes.
Getting ready
Log in to your SQL Server instance. Check which user databases are available for you to investigate. These same databases should appear in your resulting file after you run the PowerShell script.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#specify folder and filename to be produced
$folder = "C:\Temp"
$currdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "$($instanceName)_DatabaseInventory_$($currdate).csv"
$fullpath = Join-Path $folder $filename
$result = @()
#get properties of all databases in instance
foreach ($db in $server.Databases)
{
$item = $null
#capture info you want to capture into a hash
#the hash will make it easier to export to CSV
$hash = @{
"DatabaseName" = $db.Name
"CreateDate" = $db.CreateDate
"Owner" = $db.Owner
"RecoveryModel" = $db.RecoveryModel
"SizeMB" = $db.Size
"DataSpaceUsage" = ($db.DataSpaceUsage/1MB).ToString("0.00")
"IndexSpaceUsage" = ($db.IndexSpaceUsage/1MB).ToString("0.00")
"Collation" = $db.Collation
"Users" = (($db.Users | Foreach {$_.Name}) -join ",")
"UserCount" = $db.Users.Count
"TableCount" = $db.Tables.Count
"SPCount" = $db.StoredProcedures.Count
"UDFCount" = $db.UserDefinedFunctions.Count
"ViewCount" = $db.Views.Count
"TriggerCount" = $db.Triggers.Count
"LastBackupDate" = $db.LastBackupDate
"LastDiffBackupDate" = $db.LastDifferentialBackupDate
"LastLogBackupDate" = $db.LastBackupDate
}
#create a new "row" and add to the results array
$item = New-Object PSObject -Property $hash
$result += $item
}
#export result to CSV
#note CSV can be opened in Excel, which is handy
$result |
Select DatabaseName, CreateDate, Owner, RecoveryModel, SizeMB, DataSpaceUsage, IndexSpaceUsage, Collation, UserCount, TableCount, SPCount, ViewCount, TriggerCount, LastBackupDate, LastDiffBackupDate, LastLogBackupDate, Users |
Export-Csv -Path $fullpath -NoTypeInformation
#view folder
explorer $folder
How it works...
We have taken a slightly different approach with the database inventory compared to the previous server inventory.
In this recipe, we first constructed our timestamped filename.
#specify folder and filename to be produced
$folder = "C:\Temp"
$currdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "$($instanceName)_DatabaseInventory_$($currdate).csv"
$fullpath = Join-Path $folder $filename
We then created an empty array where we can store our data:
$result = @()
In the next step, we created a hash of values that we then stored back to our $result array. The hash helps us create a nice tabular result that we can easily export into our CSV file.
foreach ($db in $server.Databases)
{
$item = $null
#capture info you want to capture into a hash
#the hash will make it easier to export to CSV
$hash = @{ "DatabaseName" = $db.Name
"CreateDate" = $db.CreateDate
#other properties
"Users" = (($db.Users | Foreach {$_.Name}) -join ",")
"LastLogBackupDate" = $db.LastBackupDate
}
#create a new "row" and add to the results array
$item = New-Object PSObject -Property $hash
$result += $item
}
We have explicitly identified the properties we want to record. Once done, your result should look similar to this:
A database has many properties that you may, or may not, want to capture in an inventory file. We have picked a few properties here, but your situation and needs may be different, so adjust this script as necessary.
See also
Listing installed hotfixes and service packs
In this recipe, we will check which service pack and hotfixes/patches are installed on our server.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#to get the version
#major.minor.build.buildminor
#this should tell you collectively at what
#level your install is
$server.Information.VersionString
#from MSDN
#version of SQL Server
#RTM = Original release version
#SPn = Service pack version
#CTP, = Community Technology Preview version
$server.Information.ProductLevel
#to get hotfixes/updates/patches, we can use
#the Get-Hotfix cmdlet
#Get-Hotfix wraps the WMI class Win32_QuickFixEngineering
#but this may miss some updates or properties,
#depending on your OS
#this also does not include updates that are supplied by
#Microsoft Windows Installer (MSI)
#get all hotfixes
#note the Get-Hotfix cmdlet does not list updates
#applied by MSI (Microsoft Installer)
Get-Hotfix
#check if a specific hotfix is installed
Get-Hotfix -Id "KB2620704"
How it works...
The script for this task can be divided into two separate parts. The first part is a SQL Server script that specifically allows us to check which version and service pack has been installed in our instance.
The bit that gives us the service pack level is straightforward:
#version of SQL Server
#RTM = Original release version
#SPn = Service pack version
#CTP, = Community Technology Preview version
$server.Information.ProductLevel
The block that gives us the version string provides a bit more information than you might guess:
#to get the version
#major.minor.build.buildminor
#this should tell you collectively at what
#level your install is
$server.Information.VersionString
You may get a version such as 10.50.2796.0, which is SQL Server 2008 R2 (major and minor version 10.50) with Service Pack 1 and Cumulative Update 4 (build number 2796.0). When you install a hotfix or service pack, it should tell you what build your instance is going to be:
The second part of the script is not SQL Server-specific. PowerShell has a cmdlet called Get-Hotfix, which can query either the local or a remote machine for installed hotfixes. Simply calling Get-Hotfix will list all installed hotfixes, or you can also pass a specific hotfix number (or KB Number) and it will query that specific item for you:
#check if a specific hotfix is installed
Get-Hotfix -Id "KB2620704"
Be aware that there is a documented limitation of Get-Hotfix. It is documented in MSDN (http://msdn.microsoft.com/en-us/library/dd315358.aspx) as follows:
This cmdlet uses the Win32_QuickFixEngineering WMI class, which represents small system-wide updates of the operating system. Starting with Windows Vista, this class returns only the updates supplied by Component Based Servicing (CBS). It does not include updates that are supplied by Microsoft Windows Installer (MSI) or the Windows update site.
To get a complete picture of all updates, see Laerte Junior's Simple-Talk article List updates, hotfixes, and Service Packs with Simple Commands (http://www.simple-talk.com/blogs/2011/09/08/list-updates-hotfixes-and-service-packs-with-simple-commands/).
There's more...
Some of the terms used in this recipe may be familiar to you, but only vaguely. In case they are, let's define some of these terms. After all, you may hear them again and again in your dealings with your network admin, system admin, or your DBA.
Terminology | Description | Cycle |
---|---|---|
RTM |
| N/A |
Hotfix |
| N/A |
Cumulative Update (CU) | A package that contains a bundle of hotfixes that have passed an acceptance criteria Full regression test still not performed, and should not be applied by all customers | Every 2 months |
Service pack | According to Microsoft's official terminology guide, it is defined as follows: a tested, cumulative set of all hotfixes, security updates, critical updates, and update | Every 12 to 18 months |
See also
http://technet.microsoft.com/en-us/library/cc750077.aspx#XSLTsection127121120120
http://support.microsoft.com/kb/824684
http://sqlserverbuilds.blogspot.com/
Listing running/blocking processes
This recipe lists processes in your SQL Server instance and their status.
Getting ready
In order to see blocking processes in your list, we will have to force some blocking queries.
Open SQL Server Management Studio. Connect to the instance you want to test. We will assume you have AdventureWorks2008R2. If not, you can use a different database and table altogether.
Open two new query windows for that connection. Type and run the following in the two query windows:
USE AdventureWorks2008R2
GO
BEGIN TRAN
SELECT *
FROM dbo.ErrorLog
WITH (TABLOCKX)
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#List all processes
$server.EnumProcesses() |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table -AutoSize
You should see something similar to this:
#List blocking Processes
#This assumes you already ran the SQL Script in the
#prep section to create the blocking processes
#Otherwise you may not see any results
#Note this is a V3 syntax because of the simplified
#Where syntax
$server.EnumProcesses() |
Where-Object BlockingSpid -ne 0 |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table -AutoSize
Your result should show the blocking process you produced in the prep section:
How it works...
The SMO server object has a method named EnumProcesses that simplifies the listing of running processes in an instance. Once the SMO server object is instantiated, all you need to invoke is the EnumProcesses method:
$server.EnumProcesses() |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table –AutoSize
If you wish to display processes that are blocked, this command can be filtered to show processes where the BlockingSpid is not zero, that is, blocked:
Where-Object BlockingSpid -ne 0 |
Note that this is a PowerShell V3 syntax because of the simplified use of the Where-Object cmdlet. To use this in PowerShell V2, simply modify this line to use the curly braces {} and $_ special variable:
Where-Object {$_.BlockingSpid -ne 0} |
There are a number of overloads for the EnumProcesses method. Without any parameter, it returns all processes. Other overloads allow you to:
The result returned by EnumProcesses is similar to the information you get from the system stored procedure sp_who2. The information includes the following:
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.enumprocesses(v=sql.110).aspx
Killing a blocking process
This recipe illustrates how you can kill a blocking process in SQL Server.
Getting ready
In order to see blocking processes in your list, we will have to force some blocking queries. If you have already done the prep work in the List running/blocking processes recipe, you do not need to do this prep section. If you haven't, go ahead and perform this section:
Open SQL Server Management Studio. Connect to the instance you want to test. We will assume you have AdventureWorks2008R2. If not, you can use a different database and table altogether.
Open two new query windows for that connection. Type and run the following in the two query windows:
USE AdventureWorks2008R2
GO
BEGIN TRAN
SELECT *
FROM dbo.ErrorLog
WITH (TABLOCKX)
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$VerbosePreference = "Continue"
#This assumes you already ran the SQL Script in the
#prep section to create the blocking processes
#Otherwise you may not see any results
$server.EnumProcesses() |
Where-Object BlockingSpid -ne 0 |
ForEach-Object {
Write-Verbose "Killing SPID $($_.BlockingSpid)"
$server.KillProcess($_.BlockingSpid)
}
$VerbosePreference = "SilentlyContinue"
How it works...
To kill a blocking process in PowerShell using SMO simply requires the invocation of the KillProcess method of the SMO Server class:
$server.KillProcess($_.BlockingSpid)
However, this entails knowing which Process ID needs to be killed. In this recipe, we've also identified—via scripting—which processes are blocking, and then killed them. Thus, we need to identify all blocking processes:
$server.EnumProcesses() |
Where-Object BlockingSpid -ne 0 |
ForEach-Object {
Write-Verbose "Killing SPID $($_.BlockingSpid)"
$server.KillProcess($_.BlockingSpid)
}
Once we've identified all blocking processes, we can kill the processes. In our recipe we also display which process ID we are killing:
$server.EnumProcesses() |
Where-Object BlockingSpid -ne 0 |
ForEach-Object {
Write-Verbose "Killing SPID $($_.BlockingSpid)"
$server.KillProcess($_.BlockingSpid)
}
There's more...
We have all run into a situation where SQL Server is running a process that is out of control. Perhaps it is a query missing a join or a process that is taking up too much memory. Using scripting can reduce manual errors of accidentally killing a process that wasn't blocking, and help with automating this task.
Killing a process is a drastic measure. Use this script with caution.
See also
Checking disk space usage
This recipe shows how to list disks available for your SQL Server instance, how much is used, and how much is available.
How to do it...
#get server list
$servers = @("KERRIGAN")
#this can come from a file instead of hardcoding
#the servers
#servers = Get-Content <filename>
Get-WmiObject -ComputerName $servers -Class Win32_Volume |
Select @{N="Name";E={$_.Name}},
@{N="DriveLetter";E={$_.DriveLetter}},
@{N="DeviceType";
E={switch ($_.DriveType)
{
0 {"Unknown"}
1 {"No Root Directory"}
2 {"Removable Disk"}
3 {"Local Disk"}
4 {"Network Drive"}
5 {"Compact Disk"}
6 {"RAM"}
}};
},
@{N="Size(GB)";E={"{0:N1}" -f($_.Capacity/1GB)}},
@{N="FreeSpace(GB)";E={"{0:N1}" -f($_.FreeSpace/1GB)}},
@{N="FreeSpacePercent";E={
if ($_.Capacity -gt 0)
{
"{0:P0}" -f($_.FreeSpace/$_.Capacity)
}
else
{
0
}
}
} |
Format-Table -AutoSize
The result should look similar to the following screenshot:
How it works...
An essential task for a database administrator is to know how much disk the database server is consuming. An automated script can help the administrator create an accurate profile of the database server storage, and allows for scaling the system too.
For this recipe, we enlist the help of the Windows Management Instrumentation (WMI) Win32_Volume class.
Get-WmiObject -ComputerName $servers -Class Win32_Volume
WMI is further discussed in the Listing SQL Server instances recipe in Chapter 2, SQL Server and PowerShell Basic Tasks.
Using WMI, we can list all the drives recognized on the target machine, including removable drives, local hard drives, network disks, compact disks, and RAM disks.
The Win32_Volume WMI class, according to MSDN (http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx), represents an area of storage on a hard disk. The class returns local volumes that are either formatted, unformatted, mounted, or offline.
We use Win32_Volume instead of Win32_LogicalDisk because:
For purposes of this recipe, we list all disks. In reality, you will most likely always filter the results to show just the local and networked hard drives. In the script, once we capture the disks using the Win32_Volume class, we pipe the information to a Select or Select-Object cmdlet, where we format our output. Note that formatting the output in the Select cmdlet will require that we specify the hash, the Name, and the Expression:
Select @{Name="Name";Expression={$_.Name}},
We can also shorten this by using N for Name and E for Expression:
Select @{N="Name";E={$_.Name}},
Expressions can also accept some format specifiers, and we have used {0:N1} for single decimal numeric values and {0:P0} for 0 decimal percent.
In the recipe we display each disk name, drive letter, device type, drive type, size in GB, free space in GB, and percent free space.
Get-WmiObject -ComputerName $servers -Class Win32_Volume |
Select @{N="Name";E={$_.Name}},
@{N="DriveLetter";E={$_.DriveLetter}},
@{N="DeviceType";
E={switch ($_.DriveType)
{
0 {"Unknown"}
1 {"No Root Directory"}
2 {"Removable Disk"}
3 {"Local Disk"}
4 {"Network Drive"}
5 {"Compact Disk"}
6 {"RAM"}
}};
},
@{N="Size(GB)";E={"{0:N1}" -f($_.Capacity/1GB)}},
@{N="FreeSpace(GB)";E={"{0:N1}" -f($_.FreeSpace/1GB)}},
@{N="FreeSpacePercent";E={
if ($_.Capacity -gt 0)
{
"{0:P0}" -f($_.FreeSpace/$_.Capacity)
}
else
{
0
}
}
} |
Format-Table -AutoSize
See also
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
Setting up WMI Server event alerts
In this recipe, we will set up a simple WMI Server event alert for a DDL event.
Getting ready
We will set up an alert that creates a timestamped text file every time there is a DDL Login event (CREATE, ALTER, or DROP). We will utilize the WMI provider for server events in this exercise.
These are the values you will need to know:
Item | Value |
---|---|
Namespace (if using the default instance) | root\Microsoft\SqlServer\ServerEvents\MSSQLServer |
Namespace (if using a named instance) | root\Microsoft\SqlServer\ServerEvents\SQL01 |
WMI query | SELECT * FROM DDL_LOGIN_EVENTS |
DDL_LOGIN_EVENTS properties (partial list) | SQLInstance LoginName PostTime SPID ComputerName LoginType |
For WMI events hitting SQL Server, you will also need to ensure that SQL Server Broker is running on your target database. In our case, we need to ensure that the Broker is running on the msdb database.
SELECT
is_broker_enabled, *
FROM
sys.databases
ORDER BY
name
Check the msdb database's is_broker_enabled field in the result.
If service broker is not running on msdb, run the following T-SQL statement from SQL Server Management Studio:
ALTER DATABASE msdb
SET ENABLE_BROKER
Alternatively, you can do this using PowerShell:
$database.BrokerEnabled = $true
$database.Alter()
How to do it...
$namespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
#WQL for Login Events
#note we will capture CREATE, DROP, ALTER
#if you want to more specific, use these events
#DROP_LOGIN, CREATE_LOGIN, ALTER_LOGIN
$query = "SELECT * FROM DDL_LOGIN_EVENTS"
#register the event
#if the event is triggered, it will respond by
#creating a timestamped file containing event
#details
Register-WMIEvent `
-Namespace $namespace `
-Query $query -SourceIdentifier "SQLLoginEvent" `
-Action {
$date = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "C:\Temp\LoginEvent-$($date).txt"
New-Item –ItemType file $filename
$msg = @"
DDL Login Event Occurred`n
PostTime: $($event.SourceEventArgs.NewEvent.PostTime)
SQLInstance: $($event.SourceEventArgs.NewEvent.SQLInstance)
LoginType: $($event.SourceEventArgs.NewEvent.LoginType)
LoginName: $($event.SourceEventArgs.NewEvent.LoginName)
SID: $($event.SourceEventArgs.NewEvent.SID)
SPID: $($event.SourceEventArgs.NewEvent.SPID)
TSQLCommand: $($event.SourceEventArgs.NewEvent.TSQLCommand)
"@
$msg | Out-File -FilePath $filename -Append
}
USE [master]
GO
CREATE LOGIN [eric]
WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE=[master],
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF
GO
Note that this is a fairly generic log. If you want to narrow it down to exactly which login event has occurred, you can attach this to more specific events, such as DROP_LOGIN, CREATE_LOGIN, and ALTER_LOGIN.
How it works...
We are utilizing Windows Management Instrumentation (WMI) and WMI Query Language (WQL) in this recipe. However, before we can put this into place, Service Broker has to be enabled in your instance, as specified in the Getting Ready section. The Service Broker is what the WMI provider uses to send the SQL Server instance events.
WMI is further discussed in the Listing SQL Server Instances recipe in Chapter 2, SQL Server and PowerShell Basic Tasks.
The first thing to identify is which namespace to use. For our purposes, because we want to capture the SQL Server events from the default instance, our namespace will be:
$namespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
If you have a named instance, you simply have to replace MSSQLSERVER with the instance name.
The next step is to identify which WQL query we need to capture the events on which we want to be alerted. In our case, it is just DDL_LOGIN_EVENTS. The other available events that you can query are listed in MSDN's WMI Provider for Server Events Classes and Properties article.
#WQL for Login Events
#note we will capture CREATE, DROP, ALTER
#if you want to more specific, use these events
#ROP_LOGIN, CREATE_LOGIN, ALTER_LOGIN
$query = "SELECT * FROM DDL_LOGIN_EVENTS"
Another way to explore the SQL Server WMI events is to use a tool similar to Marc van Orsouw's (also known as The PowerShell Guy) PowerShell WMI Explorer (http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx):
Marc has provided instructions on his blog on how to use this tool, which is pretty straightforward. Once you navigate to the ROOT\Microsoft\SqlServer\ServerEvents\MSSQLSERVER namespace and the DDL_LOGIN_EVENTS class, the supported properties and methods will be displayed on the right-hand pane.
After you finalize the namespace and WQL query, you need to register this as a WMI event. When registering this event, we will specify an action section to create a timestamped log file each time the event is triggered. This log file will contain event properties such as PostTime, LoginType, LoginName, SID, SPID, and the T-SQL command that caused the event trigger to fire.
Register-WMIEvent `
-Namespace $namespace `
-Query $query -SourceIdentifier "SQLLoginEvent" `
-Action {
$date = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "C:\Temp\LoginEvent-$($date).txt"
New-Item –ItemType file $filename
$msg = @"
DDL Login Event Occurred`n
PostTime: $($event.SourceEventArgs.NewEvent.PostTime)
SQLInstance: $($event.SourceEventArgs.NewEvent.SQLInstance)
LoginType: $($event.SourceEventArgs.NewEvent.LoginType)
LoginName: $($event.SourceEventArgs.NewEvent.LoginName)
SID: $($event.SourceEventArgs.NewEvent.SID)
SPID: $($event.SourceEventArgs.NewEvent.SPID)
TSQLCommand: $($event.SourceEventArgs.NewEvent.TSQLCommand)
"@
$msg | Out-File -FilePath $filename -Append
}
The Register-WmiEvent cmdlet translates the query into SQL Server event notifications, which are handled by the Service Broker.
To unregister the event, use the Unregister-Event cmdlet:
Unregister-Event "SQLLoginEvent"
One caveat about the Register-WmiEvent cmdlet is that it's a temporarily registered event. This means that it will go away if the program hosting it stops or the server gets restarted.
There's more...
The WMI Provider for Server Events Classes and Properties article can be found here:
http://msdn.microsoft.com/en-us/library/ms186449(v=sql.110).aspx
To learn more about DDL event groups, check out MSDN:
http://msdn.microsoft.com/en-us/library/bb510452(v=sql.110).aspx
Also check out the MSDN article on Understanding the WMI Provider for Server Events:
http://msdn.microsoft.com/en-us/library/ms181893(v=sql.110).aspx
WMI Query Language (WQL) will become more and more important as you work with more WMI events. There is an excellent free e-book provided by one of the prominent bloggers in the PowerShell community, Ravikanth Chaganti. You can download his WQL e-book from:
http://www.ravichaganti.com/blog/?p=1979
One tool that can help you explore the WMI properties and events is Marc van Orsouw's PowerShell WMI Explorer:
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
Detaching a database
In this recipe we will detach a database programmatically.
Getting ready
For purposes of this recipe, let's create a database called TestDB. Open up SQL Server Management Studio and run the following code:
CREATE DATABASE [TestDB]
CONTAINMENT = NONE
ON PRIMARY
(NAME = N'TestDB', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf' , SIZE = 4096KB , FILEGROWTH = 1024KB),
FILEGROUP [FG1]
(NAME = N'data1', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\data1.ndf' , SIZE = 4096KB , FILEGROWTH = 1024KB),
FILEGROUP [FG2]
(NAME = N'data2', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\data2.ndf' , SIZE = 4096KB , FILEGROWTH = 1024KB)
LOG ON
(NAME = N'TestDB_log', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB_log.ldf' , SIZE = 1024KB , FILEGROWTH = 10%)
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
#parameters accepted are databasename, boolean
#flag for updatestatistics, and boolean flag
#for removeFulltextIndexFile
$server.DetachDatabase($databasename, $false, $false)
How it works...
Detaching a database programmatically is fairly straightforward. The DetachDatabase method of the $server object accepts three parameters: database name and the updateStatistics and removeFulltextIndexFile Boolean flags.
$server.DetachDatabase($databasename, $false, $false)
There is another overload of the DetachDatabase method that accepts only two parameters: database name and the updateStatistics flag.
Also note that there are settings that may prevent you from detaching your databases, such as:
You can read the full documentation from MSDN:
http://msdn.microsoft.com/en-us/library/ms190794.aspx
There's more...
Capturing the mdf, ndf, and ldf information can be useful, especially if you plan to detach the database and re-attach it right away to a different instance.
One way to get this information is by using the mdf file to extract all the other data and log files that the detached database uses. You can supply the full mdf file path to two methods to get all the information about the data and log files:
$server.EnumDetachedDatabaseFiles($mdfname)
$server.EnumDetachedLogFiles($mdfname)
From the script, you can easily pass this information to your Attach Database script or code block.
See also
Attaching a database
In this recipe, we will programmatically attach a database with a primary data file (.mdf), log file (.ldf), and multiple secondary data files (.ndf).
Getting ready
Before we can attach a database, we must have the data files and optional log files attached. If you have not completed the Detaching a database recipe, perform the following steps:
IF DB_ID('TestDB') IS NOT NULL
DROP DATABASE TestDB
GO
CREATE DATABASE [TestDB]
CONTAINMENT = NONE
ON PRIMARY
(NAME = N'TestDB', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf' , SIZE = 4096KB , FILEGROWTH = 1024KB),
FILEGROUP [FG1]
(NAME = N'data1', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\data1.ndf' , SIZE = 4096KB , FILEGROWTH = 1024KB),
FILEGROUP [FG2]
(NAME = N'data2', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\data2.ndf' , SIZE = 4096KB , FILEGROWTH = 1024KB)
LOG ON
(NAME = N'TestDB_log', FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB_log.ldf' , SIZE = 1024KB , FILEGROWTH = 10%)
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
#identify the primary data file
#this typically has the .mdf extension
$mdfname = "C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf"
#FYI only
#view detached database info
$server.DetachedDatabaseInfo($mdfname) | Format-Table
#attachdatabase accepts a StringCollection, so we need
#to add our files in this collection
$filecoll = New-Object System.Collections.Specialized.StringCollection
#add all data files
#this includes the primary data file
$server.EnumDetachedDatabaseFiles($mdfname) |
Foreach-Object {
$filecoll.Add($_)
}
#add all log files
$server.EnumDetachedLogFiles($mdfname) |
ForEach-Object {
$filecoll.Add($_)
}
$owner = "QUERYWORKS\jraynor"
<#
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions.aspx
None There are no attach options. Value = 0.
EnableBroker Enables Service Broker . Value = 1.
NewBroker Creates a new Service Broker . Value = 2.
ErrorBrokerConversations Stops all current active Service Broker conversations at the save point and issues
an error message. Value = 3.
RebuildLog Rebuilds the log. Value = 4.
#>
$server.AttachDatabase($databasename, $filecoll, $owner, [Microsoft.SqlServer.Management.Smo.AttachOptions]::None)
How it works...
Attaching a database requires a little bit more work compared to detaching a database. With detaching a database, all you really need to know and supply is the instance details and the database name.
With attaching a database, you will also need to supply, at minimum, all the files (primary data, secondary data, and log) that the database used to use. You can attach a database without supplying log files. SQL Server will recreate new log files for you. While log files are technically "optional", it is best if you have preserved the log files in case this will be needed later on for any point-in-time restore (applicable only to Bulk Logged and Full Recovery Model).
Backup and Restore are covered in Chapter 5, Advanced Administration. Recovery models Simple, Bulk Logged and Full are discussed in this chapter.
Before we can attach the database, we need to identify the primary data file.
#identify the primary data file
#this typically has the .mdf extension
$mdfname = "C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\TestDB.mdf"
Note that primary data files do not have to have the .mdf extension, although it is very typical to preserve this extension.
We also need to create a StringCollection object that we will pass as parameter to the AttachDatabase method of the SMO server object:
#attachdatabase accepts a StringCollection, so we need
#to add our files in this collection
$filecoll = New-Object System.Collections.Specialized.StringCollection
Once we have our primary data file path and our StringCollection object, we can start adding all the files listed in the mdf header into our collection:
#add all data files
$server.EnumDetachedDatabaseFiles($mdfname) |
Foreach-Object {
$filecoll.Add($_)
}
If you need to change the location of the files, you will need to replace the path before you add the filename to the collection. For example:
$newpath = "C:\Temp"
$server.EnumDetachedDatabaseFiles($mdfname) |
Foreach-Object {
$newfile = Join-Path $newpath (Split-Path $_ -Leaf)
$filecoll.Add($newfile)
}
Ideally, you will also add all the logfile information:
$server.EnumDetachedLogFiles($mdfname) |
ForEach-Object {
$filecoll.Add($_)
}
You can also reset a few additional properties, including database owner:
$owner = "QueryWorks\jraynor"
When ready, you can invoke the AttachDatabase method:
$server.AttachDatabase($databasename, $filecoll, $owner, [Microsoft.SqlServer.Management.Smo.AttachOptions]::None)
There are 5 attach options: None, EnableBroker, NewBrooker, ErrorBrokerConversations, and RebuildLog. If you do not have the logfiles handy, make sure to choose RebuildLog.
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.attachoptions(v=sql.110).aspx
Copying a database
In this recipe, we will look at how to copy a database using PowerShell and SMO.
Getting ready
In this recipe, we will assume you have the TestDB database already created from previous recipes. If you do not have it, you can also substitute this with any database you already have in your instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$sourcedatabase = $server.Databases[$databasename]
#Create a database to hold the copy of your database
$dbnamecopy = "$($databasename)_copy"
$dbcopy = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Database -ArgumentList $server, $dbnamecopy
$dbcopy.Create()
#need to specify source database
#Use SMO Transfer Class
$transfer = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Transfer -ArgumentList $sourcedatabase
$transfer.CopyAllTables = $true
$transfer.Options.WithDependencies = $true
$transfer.Options.ContinueScriptingOnError = $true
$transfer.DestinationDatabase = $dbnamecopy
$transfer.DestinationServer = $server.Name
$transfer.DestinationLoginSecure = $true
$transfer.CopySchema = $true
#if you want to only produce a script that will
#“copy” your database, use the ScriptTransfer method
$transfer.ScriptTransfer()
#if you want to perform the actual transfer
#you should use the TransferData method
$transfer.TransferData()
How it works...
Copying a database using SMO is made a lot simpler by the Microsoft.SqlServer.Management.SMO.Transfer class. To create a database copy, we first need to create an empty database that will eventually hold the copied database:
#Create a database to hold the copy of your database
$dbnamecopy = "$($databasename)_copy"
$dbcopy = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Database -ArgumentList $server, $dbnamecopy
$dbcopy.Create()
We will then need to create an SMO Transfer class, which accepts the source database as a parameter:
$transfer = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Transfer -ArgumentList $sourcedatabase
In the transfer object, you can specify properties you want either brought over or excluded, when the copy happens:
$transfer.CopyAllTables = $true
$transfer.Options.WithDependencies = $true
$transfer.Options.ContinueScriptingOnError = $true
$transfer.DestinationDatabase = $dbnamecopy
$transfer.DestinationServer = $server.Name
$transfer.DestinationLoginSecure = $true
$transfer.CopySchema = $true
There is an option to just script out the transfer, if you wish to just generate the copy script. You achieve this using the ScriptTransfer method:
#if you want to only produce a script that will
#“copy” your database, use the ScriptTransfer method
$transfer.ScriptTransfer()
When you are ready to bring the data and schema over, you can use the TransferData method:
#if you want to perform the actual transfer
#you should use the TransferData method
$transfer.TransferData()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer(v=sql.110).aspx
Executing a SQL query to multiple servers
This recipe executes a pre-defined SQL query to multiple SQL Server instances specified in a text file.
Getting ready
In this recipe, we will connect to multiple SQL Server instances and execute a SQL command against all of them.
Identify the available instances for you to run your query on. Once you have identified all the instances you want to execute the command to, create a text file in C:\Temp called sqlinstances.txt and put each instance name line by line into that file. For example:
KERRIGAN
KERRIGAN\SQL01
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instances = Get-content "C:\Temp\sqlinstances.txt"
$query = "SELECT @@SERVERNAME 'SERVERNAME', @@VERSION 'VERSION'"
$databasename = "master"
$instances |
ForEach-Object {
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $_
Invoke-Sqlcmd -ServerInstance $_ -Database $databasename -Query $query
}
How it works...
In this script, we are leveraging the Invoke-Sqlcmd cmdlet to accomplish our task.
We first get all the instances and temporarily store them in a variable. Note that you can alternatively just pipe the results of the Get-Content cmdlet to the succeeding cmdlets in the pipeline.
$instances = Get-content "C:\Temp\sqlinstances.txt"
Next we just define the global query we want to execute and the database we want to execute it against, regardless of the instance.
$query = "SELECT @@SERVERNAME 'SERVERNAME', @@VERSION 'VERSION'"
$databasename = "master"
The core of the recipe is iterating through all instances. For each instance, we create a new SMO server object and use the Invoke-Sqlcmd cmdlet to execute the query. Note that what we are passing in the pipeline is the instance name, thus we need to refer to it as $_ when we create the SMO server object.
$instances |
ForEach-Object {
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $_
Invoke-Sqlcmd -ServerInstance $_ -Database $databasename -Query $query
}
See also
Creating a filegroup
This recipe describes how to create a filegroup programmatically, using PowerShell and SMO.
Getting ready
We will add a filegroup called FGActive to your TestDB database.
In this recipe, this is the T-SQL equivalent of what we are trying to accomplish:
ALTER DATABASE [TestDB]
ADD FILEGROUP [FGActive]
GO
How to do it...
These are the steps to add a filegroup to your database:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$database = $server.Databases[$databasename]
$fgname = "FGActive"
#For purposes of this test, we are going to drop this
#filegroup if it exists, so we can recreate it without
#any issues
if ($database.FileGroups[$fgname])
{
$database.FileGroups[$fgname].Drop()
}
#create the filegroup
$fg = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Filegroup -ArgumentList $database, $fgname
$fg.Create()
a. Right-click on TestDB database and go to Properties.
b. On the left-hand pane, click on Filegroups. Check if the FGActive filegroup is there.
How it works...
Adding a filegroup can be accomplished with very little code, in PowerShell. This task entails creating a Microsoft.SqlServer.Management.SMO.Filegroup object and invoking its Create method.
$fg = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Filegroup -ArgumentList $database, $fgname
$fg.Create()
If you want to make this filegroup the default filegroup, it will require adding data files to this filegroup first.
Once data files are added, you can use the following block to make a filegroup default:
#make sure there’s a data file before you set a
#filegroup default
#otherwise you will get an error
$fg = $database.FileGroups[$fgname]
$fg.IsDefault = $true
$fg.Alter()
See also
Adding secondary data files to a filegroup
This recipe walks you through adding secondary data files to a filegroup using PowerShell and SMO.
Getting ready
In this recipe, we will add data files to the FGActive filegroup we created for the TestDB database in the previous recipe. If you don't have this filegroup yet, execute the following T-SQL statement in Management Studio to create the filegroup:
ALTER DATABASE [TestDB]
ADD FILEGROUP [FGActive]
GO
In this recipe, we will accomplish this T-SQL equivalent:
ALTER DATABASE [TestDB]
ADD FILE (
NAME = N'datafile1',
FILENAME = N'C:\Temp\datafile1.ndf')
TO FILEGROUP [FGActive]
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$fgname = "FGActive"
$fg = $database.FileGroups[$fgname]
#Define a DataFile object on the file group and set the logical #file name.
$df = New-Object -TypeName Microsoft.SqlServer.Management.SMO.DataFile -ArgumentList $fg, "datafile1"
#Make sure to have a directory created to hold the designated data #file
$df.FileName = "c:\\Temp\\datafile1.ndf"
#Call the Create method to create the data file on the instance of #SQL Server.
$df.Create()
How it works...
You will first need to get a handle to the filegroup to which you want to add the secondary file:
$fg = $database.FileGroups[$fgname]
Once the filegroup handle is in place, you can create a Microsoft.SqlServer.Management.SMO.DataFile object and specify the logical filename:
#Define a DataFile object on the file group and set the logical file #name
$df = New-Object -TypeName Microsoft.SqlServer.Management.SMO.DataFile -ArgumentList $fg, "datafile1"
#Make sure to have a directory created to hold the designated data #file
$df.FileName = "c:\\Temp\\datafile1.ndf"
The last step is to invoke the Create method of the DataFile object:
#Call the Create method to create the data file on the instance of SQL #Server.
$df.Create()
See also
Moving an index to a different filegroup
This recipe illustrates how to move indexes to a different filegroup.
Getting ready
Using the TestDB database, or any database of your choice, let's create a table called Student with a clustered primary key.
Open SQL Server Management Studio, and execute the following code:
USE TestDB
GO
-- this is going to be stored to the default filegroup
IF OBJECT_ID('Student') IS NOT NULL
DROP TABLE Student
GO
CREATE TABLE Student
(
ID INT IDENTITY(1,1) NOT NULL,
FName VARCHAR(50),
CONSTRAINT [PK_Student] PRIMARY KEY CLUSTERED
([ID] ASC)
)
GO
-- insert some sample data
-- nothing fancy, every student will be called Joe for now :)
INSERT INTO Student(FName)
VALUES('Joe')
GO 20
INSERT INTO Student(FName)
SELECT FName FROM Student
GO 10
-- check how many records are inserted
-- this should give 20480
SELECT COUNT(*) FROM Student
The T-SQL equivalent of what we are trying to accomplish in this recipe is as follows:
CREATE UNIQUE CLUSTERED INDEX PK_Student
ON dbo.Student
(
ID ASC
)
WITH (DROP_EXISTING=ON, ONLINE=ON)
ON FGStudent
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$database = $server.Databases[$databasename]
$tablename = "Student"
$table = $database.Tables[$tablename]
#now move to a different filegroup
$fgname = "FGStudent"
if ($database.FileGroups[$fgname])
{
$database.FileGroups[$fgname].Drop()
}
$fg = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Filegroup -ArgumentList $database, $fgname
$fg.Create()
$fg = $database.FileGroups[$fgname]
#create a datafile and specify the filename
$df = New-Object -TypeName Microsoft.SqlServer.Management.SMO.DataFile -ArgumentList $fg, "studentdata"
$df.FileName = "c:\\Temp\\studentdata.ndf"
#create the datafile
$df.Create()
#now let's recreate the clustered index
#(Microsoft.SqlServer.Management.Smo.Index)
#onto the new filegroup
#note this is V3 syntax because of simplified Where-Object
$clusteredindex = $table.Indexes |
Where-Object IsClustered -eq $true
$clusteredindex.FileGroup = $fgname
$clusteredindex.Recreate()
#display which filegroup the table is on now
$table.Refresh()
$table.FileGroup
How it works...
Your indexes might outgrow your initial space allocation for them, or you may want to place them into a different disk purely for performance reasons. There will be a number of reasons to move your indexes to a different filegroup, and the good news is that PowerShell and SMO can accomplish this task.
For purposes of our exercise, the first few steps are creating a filegroup called FGStudent and adding a secondary data file into the new filegroup.
See the Creating a filegroup and Adding secondary data files to a filegroup recipes for additional information.
For this recipe, we will be moving our clustered index into a different filegroup. We need to capture the clustered index. The following code implicitly creates a Microsoft.SqlServer.Management.Smo.Index object. Here we use the V3 syntax:
$clusteredindex = $table.Indexes |
Where-Object IsClustered -eq $true
If you want to do this in a V2 environment, you have to change the Where-Object clause:
$clusteredindex = $table.Indexes |
Where-Object {$_.IsClustered -eq $true}
After you get a handle to the clustered index, you will need to specify the new filegroup this clustered index should belong to:
$clusteredindex.FileGroup = $fgname
Once you've specified the filegroup, you can invoke the Recreate method of the Microsoft.SqlServer.Management.Smo.Index object. Note that we are recreating the index—not simply creating it—because the index already exists. The Recreate method is equivalent to CREATE...WITH DROP EXISTING.
$clusteredindex.Recreate()
To check, you can refresh the table and see which filegroup the index is attached to:
#display which filegroup the table is on now
$table.Refresh()
$table.FileGroup
There's more...
To move nonclustered indexes to a different filegroup, you will follow the same method described in the previous recipe. Here's an example:
$idxname = $table.Indexes["idxname"]
$idxname.FileGroup = $fgname
$idxname.Recreate()
$idxname.Refresh()
$idxname.FileGroup
If you are dealing with a clustered index that is not a primary key, you can also consider the DropAndMove method of the Microsoft.SqlServer.Management.Smo.Index object. This method drops the clustered index and recreates it in the specified filegroup.
$idxname.DropAndMove($fgname)
See also
Checking index fragmentation
In this recipe, we will look at the steps to display index fragmentation using SMO and PowerShell.
Getting ready
We will investigate the index fragmentation of the Person.Person table in the AdventureWorks2008R2 database.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking;
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
$tableName = "Person"
$schemaName = "Person"
$table = $database.Tables |
Where Schema -Like $schemaName |
Where Name -Like $tableName
#From MSDN:
#EnumFragmentation enumerates a list of
#fragmentation information for the index
#using the default fast fragmentation option.
$table.Indexes |
Foreach {
$_.EnumFragmentation() |
Select Index_Name, @{Name="Value";Expression={($_.AverageFragmentation).ToString("0.0000")}}
} |
Format-Table -AutoSize
The result you see should look similar to the one shown in the following screenshot:
How it works...
The SMO Index class contains the EnumFragmentation method for the Microsoft.SqlServer.Management.Smo.Index object. This object can enumerate fragmentation of indexes in a table.
You can invoke the EnumFragmentation method against all indexes in a table. This method provides the following information:
In the script, we looped through all the indexes and invoked EnumFragmentation. We are displaying only the index name and AverageFragmentation property (formatted to display four decimal places):
$table.Indexes |
Foreach {
$_.EnumFragmentation() |
select Index_Name, @{Name="Value";Expression={($_.AverageFragmentation).ToString("0.0000")}}
} |
Format-Table -AutoSize
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.enumfragmentation(v=sql.110).aspx
Reorganizing/rebuilding an index
This recipe demonstrates how to reorganize or rebuild an index.
Getting ready
We will iterate through all the indexes in the Person.Person table in the AdventureWorks2008R2 database, for this exercise.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$VerbosePreference = "Continue"
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
$tableName = "Person"
$schemaName = "Person"
$table = $database.Tables |
Where Schema -Like $schemaName |
Where Name -Like $tableName
#From MSDN:
#EnumFragmentation enumerates a list of
#fragmentation information
#for the index using the default fast fragmentation option.
$table.Indexes |
ForEach-Object {
$_.EnumFragmentation() |
ForEach-Object {
$item = $_
#reorganize if 10 and 30% fragmentation
if($item.AverageFragmentation -ge 10 -and `
$item.AverageFragmentation -le 30 -and `
$item.Pages -ge 1000)
{
Write-Verbose "Reorganizing $index.Name ... "
$index.Reorganize()
}
#rebuild if more than 30%
elseif ($item.AverageFragmentation -gt 30 -and `
$item.Pages -ge 1000)
{
Write-Verbose "Rebuilding $index.Name ... "
$index.Rebuild()
}
}
}
$VerbosePreference = "SilentlyContinue"
How it works...
The EnumFragmentation method allows additional information about indexes to be extracted—like average fragmentation and number of pages. Instead of just blindly rebuilding or reorganizing all indexes, we can check these properties and put more smarts as to when the indexes need to be reorganized or rebuilt, if at all.
These are the rules of thumb:
1,000 pages for the index page count is more of a guideline (documented in articles and discussed in conferences; check out an old Index Defragmentation Best Practices White Paper that discusses this http://technet.microsoft.com/library/Cc966523). I personally have used this number in a benchmarking exercise and it worked well in that environment. Test this on your system; you may find that the number of pages that work for you are a little bit higher or a little bit lower.
To do this conditional rebuild/reorganize strategy in PowerShell, you can use an if/else statement to divert the action to the correct code block depending on the fragmentation and page values:
#reorganize if 10 and 30% fragmentation
if($item.AverageFragmentation -ge 10 -and `
$item.AverageFragmentation -le 30 -and `
$item.Pages -ge 1000)
{
Write-Verbose "Reorganizing $index.Name ... "
$index.Reorganize()
}
#rebuild if more than 30%
elseif ($item.AverageFragmentation -gt 30 -and `
$item.Pages -ge 1000)
{
Write-Verbose "Rebuilding $index.Name ... "
$index.Rebuild()
}
See also
Running DBCC commands
This recipe shows you some of the DBCC commands that can be run using PowerShell.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
#RepairType Values: AllowDataLost, Fast, None, Rebuild
$database.CheckTables([Microsoft.SqlServer.Management.Smo.RepairType]::None)
How it works...
Not all DBCC commands are wrapped in SMO methods. Some of the available methods on a database level are:
To invoke the SMO DBCC methods, you need to get a handle to the database. The CheckTables method requires a parameter for RepairType:
#RepairType Values: AllowDataLost, Fast, None, Rebuild
$database.CheckTables([Microsoft.SqlServer.Management.Smo.RepairType]::None)
For other DBCC commands that are not nicely wrapped in methods, you can still execute them using the Invoke-Sqlcmd cmdlet. For example:
$query = "DBCC SHRINKFILE(TestDB_Log)"
Invoke-Sqlcmd -ServerInstance $instanceName -Query $query
Setting up Database Mail
This recipe demonstrates how to set up Database Mail programmatically, using PowerShell.
Getting ready
The assumption in this recipe is that database mail is not yet configured on your instance.
These are the settings we will use for this recipe:
Setting | Value |
---|---|
Mail Server | mail.queryworks.local |
Mail Server Port | 25 |
Email Address for Database Mail Profile | dbmail@queryworks.local |
SMTP Authentication | Basic authentication |
Credentials for Email Address | Username: dbmail@queryworks.local Password: <somepassword> |
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#enable DatabaseMail
#this is similar to an sp_configure TSQL command
$server.Configuration.DatabaseMailEnabled.ConfigValue = 1
$server.Configuration.Alter()
$server.Refresh()
#set up account
$accountName = "DBMail"
$accountDescription = "QUERYWORKS Database Mail"
$displayName = "QUERYWORKS mail"
$emailAddress = "dbmail@queryworks.local"
$replyToAddress = "dbmail@queryworks.local"
$mailServerAddress = "mail.queryworks.local"
$account = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Mail.MailAccount -ArgumentList $server.Mail, $accountName, $accountDescription, $displayName, $emailAddress
$account.ReplyToAddress = $replyToAddress
$account.Create()
#default mail server that was saved in the previous script
#was the server name, we need to change this to the
#appropriate mail server
$mailserver = $account.MailServers[$instanceName]
$mailserver.Rename($mailServerAddress)
$mailserver.Alter()
#default SMTP authentication is Anonymous Authentication
#set propert authentication
$mailserver.SetAccount("dbmail@queryworks.local", "some password")
$mailserver.Port = 25
$mailserver.Alter()
#create a profile
$profileName = "DB Mail Profile"
$profileDescription= "DB Mail Description"
if($mailProfile)
{
$mailProfile.Drop()
}
$mailProfile = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Mail.MailProfile -ArgumentList $server.Mail, $profileName, $profileDescription
$mailProfile.Create()
$mailProfile.Refresh()
#add account to the profile
$mailProfile.AddAccount($accountName, 0)
$mailProfile.AddPrincipal('public', 1)
$mailProfile.Alter()
#link this mail profile to SQL Server Agent
$server.JobServer.AgentMailType = 'DatabaseMail'
$server.JobServer.DatabaseMailProfile = $profileName
$server.JobServer.Alter()
#restart SQL Server Agent
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
$servicename = "SQLSERVERAGENT"
$service = $managedComputer.Services[$servicename]
$service.Stop()
$service.Start()
How it works...
Database Mail is a feature introduced in SQL Server 2005 that simplifies the sending of e-mails from your SQL Server instance. With Database Mail, you can set up:
Database Mail is a disabled service by default. To start using it, you first need to enable it.
#enable DatabaseMail
#this is similar to an sp_configure TSQL command
$server.Configuration.DatabaseMailEnabled.ConfigValue = 1
$server.Configuration.Alter()
The previous statement is equivalent to the following T-SQL statement:
EXEC sp_configure 'Database Mail XPs', 1
GO
RECONFIGURE
GO
To continue with setting up Database Mail, you need to set up an account first:
#set up account
$accountName = "DBMail"
$accountDescription = "QUERYWORKS Database Mail"
$displayName = "QUERYWORKS mail"
$emailAddress = "dbmail@queryworks.local"
$replyToAddress = "dbmail@queryworks.local"
$mailServerAddress = "mail.queryworks.local"
$account = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Mail.MailAccount -ArgumentList $server.Mail, $accountName, $accountDescription, $displayName, $emailAddress
$account.ReplyToAddress = $replyToAddress
$account.Create()
The next step is to create a profile:
$mailProfile = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Mail.MailProfile -ArgumentList $server.Mail, $profileName, $profileDescription;
$mailProfile.Create()
$mailProfile.Refresh()
Once both the account(s) and profile are set up, you need to add the accounts to the mail profile:
#add account to the profile
$mailProfile.AddAccount($accountName, 0)
$mailProfile.AddPrincipal('public', 1)
$mailProfile.Alter()
A big reason to set up Database Mail is to use this with SQL Server Agent. If this is not set up, SQL Server Agent will not be able to alert operators for a job via e-mail. Setting up the alert for SQL Server Agent is a key step and is often missed.
#link this mail profile to SQL Server Agent
$server.JobServer.AgentMailType = 'DatabaseMail'
$server.JobServer.DatabaseMailProfile = $profileName
$server.JobServer.Alter()
Once the Database Mail profile is hooked to SQL Server Agent, you also need to restart the server before you can start using it.
There's more...
In the development server, I've used hMailServer as my mail server. hMailServer (http://www.hmailserver.com/) is a free e-mail server for machines running on Windows operating systems. hMailServer supports IMAP, SMTP and POP3.
I needed to install a mail server in my Windows Server 2008 R2 VM because Windows Server 2008 and 2008 R2 no longer come with a POP3 server, which can be used to demonstrate or test e-mail capabilities. Windows Server 2003 used to come with this service.
Listing SQL Server jobs
This recipe illustrates how to list SQL Server jobs using PowerShell.
Getting ready
Do a visual check of the SQL Server jobs in your instance. These should be the jobs you will see after you run the script in this recipe:
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobs=$server.JobServer.Jobs
$jobs |
Select Name, OwnerLoginName, LastRunDate, LastRunOutcome |
Sort -Property Name |
Format-Table -AutoSize
How it works...
Listing SQL Server jobs is a short, simple task in PowerShell. To list the jobs, you first need to get a handle to the JobServer.Jobs object:
$jobs=$server.JobServer.Jobs
Once you have the jobs, you can query the properties you are interested in:
$jobs |
Select Name, OwnerLoginName, LastRunDate, LastRunOutcome |
Sort -Property Name |
Format-Table -AutoSize
Each Job object exposes a variety of information about the job. Here is a sample of the complete output from a single job:
Parent : [KERRIGAN]
Category : [Uncategorized (Local)]
CategoryType : 1
CurrentRunRetryAttempt : 0
CurrentRunStatus : Idle
CurrentRunStep : 0 (unknown)
DateCreated : 1/15/2012 4:30:58 PM
DateLastModified : 1/26/2012 8:58:30 PM
DeleteLevel : Never
Description : No description available.
EmailLevel : OnFailure
EventLogLevel : OnFailure
HasSchedule : True
HasServer : True
HasStep : True
IsEnabled : True
JobID : 908881ad-ad98-42f7-813a-52b93853b1d2
JobType : Local
LastRunDate : 1/27/2012 11:30:00 PM
LastRunOutcome : Succeeded
NetSendLevel : Never
NextRunDate : 1/30/2012 12:00:00 AM
NextRunScheduleID : 37
OperatorToEmail : jraynor
OperatorToNetSend :
OperatorToPage :
OriginatingServer : KERRIGAN
OwnerLoginName : KERRIGAN\Administrator
PageLevel : Never
StartStepID : 1
VersionNumber : 23
Name : Sample Job
CategoryID : 0
JobSteps : {Step 1}
JobSchedules : {Every 3rd Friday 6AM, Every Monthend 1130PM, Every Monthend 1130PM 2, Every Monthend 1130PM 2...}
Urn : Server[@Name='KERRIGAN']/JobServer/Job[@Name='Test Job' and @CategoryID='0']
Properties : {Name=Category/Type=System.String/Writable=True/Value=[Uncategorized (Local)], Name=CategoryID/Type=System.Int32/Writable=True/Value=0,
Name=CategoryType/Type=System.Byte/Writable=True/Value=1, Name=CurrentRunRetryAttempt/Type=System.Int32/Writable=False/Value=0...}
UserData :
If you want to list only the failed jobs using PowerShell V3, pipe the results and filter for LastRunOutcome of Failed:
$jobs=$server.JobServer.Jobs
$jobs |
Where LastRunOutcome -Like "Failed" |
Select Name, OwnerLoginName, LastRunDate, LastRunOutcome | Format-Table -AutoSize
On a V2 environment, you can use the following Where-Object syntax:
Where {$_.LastRunOutcome -Like "Failed"} |
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.job(v=sql.110).aspx
Adding a SQL Server operator
This recipe shows how you can create a SQL Server operator using SMO and PowerShell
Getting ready
For this recipe, we will create an operator with the following settings:
Setting | Value |
---|---|
Operator name | jraynor |
Operator e-mail | jraynor@queryworks.local |
If you do not have this account set up in your system, you can substitute this with another available account in your environment.
To set up an operator, you must be a sysadmin in your instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobserver = $server.JobServer
$operatorName = "jraynor"
$operatorEmail = "jraynor@queryworks.local"
$operator = New-Object Microsoft.SqlServer.Management.Smo.Agent.Operator -ArgumentList $jobserver, $operatorName
$operator.EmailAddress = $operatorEmail
$operator.Create()
#verify by listing operators
$jobserver.Operators
How it works...
To create an operator, you must first get a handle to the JobServer object of your instance:
$jobserver = $server.JobServer
An operator will require a name, and a method to be contacted. We are going to use e-mail in this case, but you can also specify the NetSendAddress and PagerAddress properties of the Microsoft.SqlServer.Management.Smo.Agent.Operator object:
$operatorName = "jraynor"
$operatorEmail = "jraynor@queryworks.local"
$operator = New-Object Microsoft.SqlServer.Management.Smo.Agent.Operator -ArgumentList $jobserver, $operatorName
$operator.EmailAddress = $operatorEmail
Once these settings are in place, you can just invoke the Create method of the Microsoft.SqlServer.Management.Smo.Agent.Operator object to persist the operator in the instance:
$operator.Create()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.operator(v=SQL.110)
Creating a SQL Server job
In this recipe, we will create a simple SQL Server job programmatically.
Getting ready
We are going to create a simple job called Test Job, and set up jraynor as our operator. If you don't have jraynor, choose another SQL Server operator that's available in your instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobName = "Test Job"
if($server.JobServer.Jobs[$jobName])
{
$server.JobServer.Jobs[$jobName].Drop()
}
$job = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Agent.Job -ArgumentList $server.JobServer, $jobName
#Specify which operator to inform and the completion action.
$operatorName = "jraynor"
$operator = $server.JobServer.Operators[$operatorName]
$job.OperatorToEmail = $operator.Name
#CompletionAction can be Never, OnSuccess, OnFailure, Always
$job.EmailLevel = [Microsoft.SqlServer.Management.SMO.Agent.CompletionAction]::OnFailure
#create
$job.Create()
#apply to local instance of SQL Server
$job.ApplyToTargetServer($instanceName)
#now let's add a simple T-SQL Job Step
$jobStep = New-Object Microsoft.SqlServer.Management.Smo.Agent.JobStep($job, "Test Job Step")
$jobStep.Subsystem = [Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem]::TransactSql
$jobStep.Command = "SELECT GETDATE()"
$jobStep.OnSuccessAction = [Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithSuccess
$jobStep.OnFailAction = [Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithFailure
$jobStep.Create()
How it works...
To create a Job programmatically, first create a Microsoft.SqlServer.Management.SMO.Agent.Job object:
$job = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Agent.Job -ArgumentList $server.JobServer, "Test Job"
Next, specify the operator. This is an optional step.
#Specify which operator to inform and the completion action.
$operatorName = "jraynor"
$operator = $server.JobServer.Operators[$operatorName]
$job.OperatorToEmail = $operator.Name
For the notification, you can select either by e-mail, net send, or pager. You will also need to specify when the alert should happen. This can be either Never, OnSuccess, OnFailure, or Always.
$job.EmailLevel = [Microsoft.SqlServer.Management.SMO.Agent.CompletionAction]::OnFailure
When ready, invoke the Create method of the Microsoft.SqlServer.Management.SMO.Agent.Job object.
We also need to specify the target server; in our case, just the local instance of SQL Server:
$job.ApplyToTargetServer($instanceName)
In this recipe we also add a simple job step:
#now let's add a simple T-SQL Job Step
$jobStep = New-Object Microsoft.SqlServer.Management.Smo.Agent.JobStep($job, "Test Job Step")
We can create different types of job steps in SQL Server, and these are defined in PowerShell as an AgentSubSystem enumeration. The possible values for this Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem enumeration are:
For our simple step, we will use a T-SQL subsystem. We will also attach a simple T-SQL statement to this step to retrieve the current system date as a command:
$jobStep.Subsystem = [Microsoft.SqlServer.Management.Smo.Agent.AgentSubSystem]::TransactSql
$jobStep.Command = "SELECT GETDATE()"
We can also define the failure and completion actions:
$jobStep.OnSuccessAction = [Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithSuccess
$jobStep.OnFailAction = [Microsoft.SqlServer.Management.Smo.Agent.StepCompletionAction]::QuitWithFailure
When ready, we can create the job step by invoking the Create method of the Microsoft.SqlServer.Management.Smo.Agent.JobStep object:
$jobStep.Create()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
Adding a SQL Server event alert
This recipe walks you through the steps in adding a SQL Server event alert.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobserver = $server.JobServer
#for purposes of our exercise, we will drop this
#alert if it already exists
$alertname = "Test Alert"
$alert = $jobserver.Alerts[$alertname]
if($alert)
{
$alert.Drop()
}
#accepts a JobServer and an alert name
$alert = New-Object Microsoft.SqlServer.Management.Smo.Agent.Alert $jobserver, "Test Alert"
$alert.Severity = 10
#Raise Alert when Message contains
$alert.EventDescriptionKeyword = "failed"
#Set notification message
$alert.NotificationMessage = "This is a test alert, dont worry"
$alert.Create()
How it works...
To create an alert, you will first need to create a Microsoft.SqlServer.Management.Smo.Agent.Alert object:
$alert = New-Object Microsoft.SqlServer.Management.Smo.Agent.Alert $jobserver, "Test Alert"
This alert, by default, is a SQLServerEvent alert type. For this alert event type, we will need to specify either error number or severity. You can also optionally specify a keyword that can trigger this notification:
$alert.Severity = 10
#Raise Alert when Message contains
$alert.EventDescriptionKeyword = "failed"
Other options for the alert type are: SqlServerPerformanceCondition, NonSqlServerEvent, and WmiEvent. The AlertType property is a read-only property. To choose an event alert type, you will need to set the properties required for that alert type. For example, if you want to create a WmiEvent alert, you will need to set the values for WmiEventNamespace and WmiEventQuery.
Once the alert settings have been provided, you can also add a notification message:
$alert.NotificationMessage = "This is a test alert, dont worry"
To create the alert, just invoke the Create method of the Microsoft.SqlServer.Management.Smo.Agent.Alert object:
$alert.Create()
There's more...
SQL Server provides a mechanism to alert DBAs and other database staff of possible issues or thresholds reached by the instances. If you navigate to SQL Server Agent and expand Alerts, you should see all the alerts set up in your instance.
When you first set up a SQL Server Agent alert, you will be shown the New Alert window:
This table summarizes the types of alerts you can set up in SQL Server:
Alert type | Description |
---|---|
SQL Server event alert | Typically used for specific error numbers, severity, or keywords that exist in the error message. |
SQL Server performance condition alert | Typically set up if a performance threshold is reached. For example, if data file size exceeds 100 GB. |
WMI event alert | Used for WMI events that you want to flag within SQL Server. For example, if you want to monitor if a file gets created, or a deadlock is detected in one of the instances. |
To learn more about the Alert class, check out the MSDN documentation here:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.alert(v=sql.110).aspx
See also
Running a SQL Server job
This recipe demonstrates how you can run a SQL Server job programmatically.
Getting ready
In this recipe, we assume you have a job in your development environment called Test Job that you can run. If not, pick another job in your system that you can run.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobserver = $server.JobServer
$jobname ="Test Job"
$job = $jobserver.Jobs[$jobname]
$job.Start()
#sleep to wait for job to finish
#check last run date
Start-Sleep-s1
$job.Refresh()
$job.LastRunDate
How it works...
The first step is to get a handle to your instance's JobServer object.
$jobserver = $server.JobServer
$jobname = "Test Job"
You also need to specify the name of the job you want to run. Once you get a handle to the name, you can just invoke the Start method of the JobServer.Job object:
$job = $jobserver.Jobs[$jobname]
$job.Start()
If you want to start your job at a specified step, you can pass in the job step name to the Start method.
To check if it recently ran, you can check the LastRunDate:
#sleep to wait for job to finish
#check last run date
Start-Sleep -s 1
$job.Refresh()
$job.LastRunDate
An alternative way to check is to go to SQL Server Management Studio. Go to that job, right-click on it, and select View Job History. The window that will appear should show a history of the times this job has been run, including the job run status.
See also
Scheduling a SQL Server job
In this recipe, we will demonstrate how to schedule a SQL Server job using PowerShell and SMO.
Getting ready
In this recipe, we assume you have a job in your development environment called Test Job that you can run. If not, pick another job in your system that you can run.
We will schedule this job to run every weekend night at 10 P.M.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$jobserver = $server.JobServer
$jobname = "Test Job"
$job = $jobserver.Jobs[$jobname]
$jobschedule = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Agent.JobSchedule -ArgumentList $job, "Every Weekend Night 10PM"
#Values for FrequencyTypes are:
#AutoStart, Daily, Monthly, MonthlyRelative, OneTime,
#OnIdle, Unknown, Weekly
$jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly
<#
#from MSDN:
#These are the list of FrequencyInterval values
WeekDays.Sunday = 1
WeekDays.Monday = 2
WeekDays.Tuesday = 4
WeekDays.Wednesday = 8
WeekDays.Thursday = 16
WeekDays.Friday = 32
WeekDays.Saturday = 64
WeekDays.WeekDays = 62
WeekDays.WeekEnds = 65
WeekDays.EveryDay = 127
Combine values using an OR logical operator to set more than a single day.
For example, combine WeekDays.Monday andWeekDays.Friday (FrequencyInterval = 2 + 32 = 34) to schedule an activity for Monday and Friday.
#>
#every Saturday and Sunday
#can also use 65
$jobschedule.FrequencyInterval = [Microsoft.SqlServer.Management.SMO.Agent.WeekDays]::WeekEnds
#set time
#3 parameters - hours, mins, days
#if we don't specify time, it will start at midnight
$starttime = New-Object -TypeName TimeSpan -ArgumentList 22, 0, 0
$jobschedule.ActiveStartTimeOfDay = $starttime
#frequency of recurrence
$jobschedule.FrequencyRecurrenceFactor = 1
$jobschedule.ActiveStartDate = "01/01/2012"
#Create the job schedule on the instance of SQL Agent.
$jobschedule.Create()
How it works...
To schedule a job, you first need to get a handle to the job you are scheduling:
$job = $jobserver.Jobs[$jobname]
The next step is to create a Microsoft.SqlServer.Management.SMO.Agent.JobSchedule object. You need to pass the job object and the name of the schedule.
$jobschedule = New-Object -TypeName Microsoft.SqlServer.Management.SMO.Agent.JobSchedule -ArgumentList $job, "Every Weekend Night 10PM"
For this recipe, we wanted to schedule it every Saturday and Sunday at 10 P.M. The settings that need to be set are:
You will notice that depending on the schedule you want to set, you may need to skip some of these settings, but need to set different properties altogether.
More scheduling examples are provided in the There's more… section.
Because the schedule happens every week, we need to set the FrequencyType to Weekly:
$jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly
Different values available for FrequencyTypes are: AutoStart, Daily, Monthly, MonthlyRelative, OneTime, OnIdle, Unknown, and Weekly.
For FrequencyInterval, we need to set the value to every weekend:
#every Saturday and Sunday
#can also use 65
$jobschedule.FrequencyInterval = [Microsoft.SqlServer.Management.SMO.Agent.WeekDays]::WeekEnds
Note that valid FrequencyInterval values are as follows:
FrequencyInterval | Value | Notes |
---|---|---|
WeekDays.Sunday | 1 | 20 |
WeekDays.Monday | 2 | 21 |
WeekDays.Tuesday | 4 | 22 |
WeekDays.Wednesday | 8 | 23 |
WeekDays.Thursday | 16 | 24 |
WeekDays.Friday | 32 | 25 |
WeekDays.Saturday | 64 | 26 |
WeekDays.WeekDays | 62 | Monday + Tuesday + ... + Friday |
WeekDays.WeekEnds | 65 | Saturday + Sunday |
WeekDays.EveryDay | 127 | Sunday + Monday + ... + Saturday |
As documented in MSDN, should you decide to mix and match the days, you will have to use a logical OR to get the value. For example, if you want to schedule a job for Wednesday (8) and Thursday (16), the value you assign to FrequencyInterval should be 8+16 = 24.
To specify that the job needs to run at 10 P.M., we need to use a TimeSpan object, which accepts three parameters for hour, minute, and second:
$starttime = New-Object -TypeName TimeSpan -ArgumentList 22, 0, 0
$jobschedule.ActiveStartTimeOfDay = $starttime
To set the start date, we need to set the ActiveStartDate property of the JobSchedule object:
$jobschedule.ActiveStartDate = "01/01/2012"
The FrequencyRecurrenceFactor property specifies how often in this time period should the job run. In this case, only once:
#frequency of recurrence
$jobschedule.FrequencyRecurrenceFactor = 1
The last piece is to invoke the Create method:
#Create the job schedule on the instance of SQL Agent.
$jobschedule.Create()
There's more...
There are various possible schedules that you may need to set up for jobs in your instance. Here are a few more samples, with different variations, to get you started:
Schedule | PowerShell code to set up a schedule |
---|---|
Every weekend at 10 P.M. | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly |
Every half hour between 8 A.M. and 4 P.M. on each weekday | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly |
At 11:30 P.M. on the last day of every month | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative |
At noon on every Tuesday and Thursday | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::Weekly |
At 6 A.M. on every 3rd Friday of the month | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative |
At 11 P.M. on every last Thursday of the month | $jobschedule.FrequencyTypes = [Microsoft.SqlServer.Management.SMO.Agent.FrequencyTypes]::MonthlyRelative |
Check out FrequencyTypes from the following URL:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.frequencytypes.aspx
Frequency interval documentation can be found here:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.jobschedule.frequencyinterval(v=sql.110).aspx
See also
Chapter 4. Security
In this chapter, we will cover:
Introduction
PowerShell can help database administrators and developers to automate security tasks. Whether you need to monitor repeated failed login attempts by parsing out event logs, or manage roles and permissions, especially if the number of users in the system is very large, PowerShell can help you deliver. This chapter will show you the classes and snippets of scripts that will help you manage your SQL Server logins and database users programmatically.
Listing SQL Server service accounts
We will list service accounts in this recipe.
How to do it...
These are the steps to listing SQL Server service accounts:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace KERRIGAN with your instance name
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
#list services
$managedComputer.Services |
Select Name, ServiceAccount, DisplayName, ServiceState |
Format-Table -AutoSize
How it works...
A service account is an account created for the exclusive purpose of running a service. To list service accounts, we can use the Wmi.ManagedComputer object:
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' $instanceName
The managedComputer instance has a property called ServiceAccount, which is what we want to list:
#list services
$managedComputer.Services |
Select Name, ServiceAccount, DisplayName, ServiceState |
Format-Table –AutoSize
We can also alternatively use the Get-WmiObject cmdlet to list the service accounts.
To use Get-WmiObject, we must first identify the hostname and the SQL Server namespace:
$hostname = "KERRIGAN"
$namespace = Get-WMIObject -ComputerName $hostName -NameSpace root\Microsoft\SQLServer -Class "__NAMESPACE" |
Where Name -Like "ComputerManagement*"
For SQL Server 2012, this value is ROOT\Microsoft\SQLServer\ComputerManagement11
We can then use Get-WmiObject to list all the SQL Server services and service accounts. The service account is stored in the property StartName:
Get-WmiObject -ComputerName $hostname `
-Namespace "$($namespace.__NAMESPACE)\$($namespace.Name)" `
-Class SqlService |
Select ServiceName,
DisplayName,
@{N="ServiceAccount";E={$_.StartName}} |
Format-Table –AutoSize
See also
Changing SQL Server service account
We will see how to change SQL Server accounts in this recipe.
Getting ready
To perform this recipe, you will need to create another Windows/Domain account that you can use to change the service account to.
In this recipe, we will change the service account for SQLSERVERAGENT from QUERYWORKS\sqlagent to QUERYWORKS\sqlagent01. Feel free to substitute these with accounts that already exist in your system.
How to do it...
Let's explore the code required to change a SQL Server service account:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$managedComputer = New-Object -TypeName 'Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer' -ArgumentList $instanceName
#get handle to service
#note we are using V3 simplified Where-Object syntax
$servicename = "SQLSERVERAGENT"
$sqlservice = $managedComputer.Services |
Where-Object Name -eq $servicename
#=================================
#Option 1: change account using bare text
#=================================
#might be ok as long as no one is looking over
#your shoulder, especially if you need to
#set password for many servers
$username = "QUERYWORKS\sqlagent01"
$password = "P@ssword"
$sqlservice.SetServiceAccount($username, $password)
#sleep to wait for account change to finish
Start-Sleep -s 1
#display new service account
$sqlservice.ServiceAccount
#=================================
#Option 2: change account using GetNetworkCredentials
#=================================
$username = "QUERYWORKS\sqlagent01"
$credential = Get-Credential -credential $username
#problem here: SetServiceAccount accepts two strings
#Get-Credential provides the password as securestring
#by default if you pass this to SetServiceAccount,
#you will get an error to pass, you need to use $credential.GetNetworkCredential().password to
#get text equivalent
$sqlservice.SetServiceAccount($credential.UserName, $credential.GetNetworkCredential().Password)
#sleep to wait for account change to finish
Start-Sleep -s 1
#display new service account
$sqlservice.ServiceAccount
#list services
$managedComputer.Services |
Where Name -eq $servicename |
Select Name, ServiceAccount, DisplayName, ServiceState | Format-Table -AutoSize
How it works...
To change the service account, the first step is to get a handle to the service that you want to change. In this recipe, we get a handle to SQLSERVERAGENT:
#get handle to service
$servicename = "SQLSERVERAGENT"
$sqlservice = $wmiserver.Services |
Where Name -eq $servicename
If you are using PowerShell V2, you will have to change the Where, or Where-Object, cmdlet usage to use the curly braces {} and the $_ variable:
Where {$_.Name -eq $serviceName }
In this recipe, we looked at two alternatives. The first alternative is using a variable for the username, and another one to store bare, clear text password, which we pass to the SetServiceAccount method of the Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer class.
#=================================
#Option 1: change account using bare text
#=================================
#might be ok as long as no one is looking over your shoulder, esp if you need to set password for many servers
$username = "QUERYWORKS\sqlagent01"
$password = "P@ssword"
$sqlservice.SetServiceAccount($username, $password)
This is not the ideal way to pass a password. Therefore, in the second alternative, we do pretty much the same steps, but replace the password variable assignment with the Get-Credential cmdlet:
$username = "QUERYWORKS\sqlagent01"
$credential = Get-Credential -credential $username
With the Get-Credential cmdlet, you will be prompted for the password, and the password will be stored as a SecureString. A SecureString is text that is encrypted using the Windows Data Protection API (http://msdn.microsoft.com/en-us/library/ms995355.aspx).
It's good news because now our password is secure, isn't it? There's a caveat though. The SetServiceAccount method accepts a string password, not a SecureString password. This means that to set the new service account's password, we need to convert the password back to a readable string that SetServiceAccount method can accept:
$sqlservice.SetServiceAccount($credential.UserName, $credential.GetNetworkCredential().Password)
This is still a better approach than the first alternative. However, you need to take care that nobody gets a handle to this script before you end your session. Otherwise, they will still see the password in clear text if they invoke the following command:
$credential.GetNetworkCredential().Password
See also
Listing authentication modes
In this recipe, we will list authentication modes using PowerShell and SMO.
Getting ready
Confirm which authentication mode your instance is running.
Go to SQL Server Management Studio, and log in to your instance. Once logged in, right-click on the instance and go to Properties, and then to Security:
How to do it...
Let's list the steps required to display your instance's current authentication mode:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#display login mode
$server.settings.LoginMode
How it works...
This is a very short recipe. To display the login mode, you need to have a handle to the instance first. Once the server handle is established, you need to access the server object's Settings.LoginMode property:
#display login mode
$server.settings.LoginMode
Authentication modes are discussed in more detail in the Changing authentication mode recipe.
See also
Changing authentication mode
In this recipe, we will change the SQL Server authentication mode.
Getting ready
Confirm which authentication mode your instance is running.
Go to SQL Server Management Studio, and log in to your instance. Once logged in, right-click on the instance and go to Properties, and to Security, similar to what we did in the previous recipe:
In this recipe, we will change the authentication mode from Mixed to Integrated.
How to do it...
Let's explore the steps required to complete the task:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#according to MSDN, there are four (4) possible
#values for LoginMode:
#Normal, Integrated, Mixed and Unknown
#let's change ours to Integrated
$server.settings.LoginMode = [Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Integrated
$server.Alter()
$server.Refresh()
#display login mode
$server.settings.LoginMode
How it works...
To change the authentication mode, you first need to get a handle to the server instance. Once you have the handle, you can assign a valid LoginMode enumeration value to the LoginMode property:
$server.settings.LoginMode = [Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Integrated
There are four possible values: Normal, Integrated, Mixed, and Unknown. Once the new authentication mode is assigned, you can invoke the Alter method of the SMO server object. Optionally, you can also call the Refresh method if you want to display the new value right away:
$server.Alter()
$server.Refresh()
Note however, that while the GUI may reflect the change in authentication mode, the actual change will not take effect until the SQL Server service is restarted.
There's more...
Authentication mode in SQL Server identifies how login accounts can connect to an instance. There are two well-known modes: Mixed and Integrated.
However, if you check out the valid enumeration values for LoginMode on MSDN, there are four:
LoginMode | Description |
---|---|
Normal | SQL Authentication only |
Integrated | Windows Authentication only |
Mixed | SQL and Windows Authentication |
Unknown | Unknown |
It is interesting to note that the two lesser-known modes are not accessible using SQL Server Management Studio. If you do try to set these values using PowerShell and SMO, it will disable the Authentication Mode in Management Studio:
$server.settings.LoginMode = [Microsoft.SqlServer.Management.Smo.ServerLoginMode]::Normal
$server.Alter()
$server.Refresh()
In Management Studio, this is what you will see.
For our example, we only need to be concerned with Mixed and Integrated. Normal and Unknown are legacy values, and should not be used in today's production environments.
Check out the MSDN article on different ServerLoginMode enumeration values:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverloginmode.aspx
More on legacy LoginMode values
Tibor Karaszi wrote a blog post called Watch out for Old Stuff that explains the four ServerLoginMode values and where we might encounter them:
http://sqlblog.com/blogs/tibor_karaszi/archive/2010/09/15/watch-outfor-old-stuff.aspx
See also
Listing SQL Server log errors
In this recipe, we will list SQL Server log errors.
Getting ready
Check your SQL Server log in Management Studio. This should be what our PowerShell script should report.
How to do it...
Let's check how we can list SQL Server errors using PowerShell:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#According to MSDN:
#ReadErrorLog: returns A StringCollection system object
#value that contains an enumerated list of errors from
#the SQL Server error log.
#Note we are using PowerShell V3 because of simplified
#Where-Object syntax
[datetime]$date = "2011-11-01"
$server.ReadErrorLog() |
Where-Object Text -Like "*failed*" |
Where-Object LogDate -ge $date |
Format-Table –AutoSize
Your result should look similar to the following screenshot:
Open SQL Server Management Studio, and connect to your instance. Expand SQL Server Agent | Error Logs:
#if you want to get all the generic errors from the Event Log
#you can use this
Get-EventLog Application -Source "MSSQLSERVER" -EntryType Error
To check this visually, you can go to Administrative Tools | Event Viewer. Go to Application, and Filter Current Log. Check Error, Critical, and Warning under Event level, and under Event sources choose MSSQLSERVER.
What you should see after you filter are only the errors pertaining to the default instance MSSQLSERVER:
How it works...
SMO provides a way to easily retrieve and display SQL Server-related errors. This is through the ReadErrorLog method of the SMO server object. The ReadErrorLog method retrieves a list of errors from the SQL Server error log. In our recipe, we filtered only the log entries that contained the word failed, and only those ones that happened after November 01, 2011. Note that we are using the simplified PowerShell V3 syntax for the Where-Object cmdlet:
[datetime]$date = "2011-11-01"
$server.ReadErrorLog() |
Where-Object Text -Like "*failed*" |
Where-Object LogDate -ge $date |
Format-Table –AutoSize
Note that to use V2 syntax, you will need to change the Where-Object line to:
Where-Object {$_.Text -Like "*failed*" -and $_.LogDate -ge $date}
You can read more about the ReadErrorLog method from MSDN:
http://msdn.microsoft.com/en-us/library/ms210384.aspx
Instead of using the ReadErrorLog method, an alternative is to use the Get-EventLog cmdlet and filter by source and keyword:
Get-EventLog Application -Source "MSSQLSERVER" -Message "*failed*"
The Get-EventLog cmdlet supports a number of switches that allow you to further filter and sort results. If you want to display strictly Error entry types, you can use:
Get-EventLog Application -Source "MSSQLSERVER" -EntryType Error
Type the following to get more information about the Get-EventLog syntax and usage:
Get-Help Get-EventLog
See also
Listing failed login attempts
This recipe lists failed login attempts in your SQL Server instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#According to MSDN:
#ReadErrorLog returns A StringCollection system object
#value that contains an enumerated list of errors
#from the SQL Server error log.
$server.ReadErrorLog() |
Where-Object ProcessInfo -Like "*Logon*" |
Where-Object Text -Like "*Login failed*" |
Format-List
How it works...
One way to get failed login attempts is by using the method ReadErrorLog of the SMO Server object and filtering by ProcessInfo and Text properties. The ProcessInfo value we are targeting is Logon, and we want to display any login activities that have failed. We are using the simplified PowerShell V3 syntax for Where-Object in this code block:
$server.ReadErrorLog() |
Where-Object ProcessInfo -Like "*Logon*" |
Where-Object Text -Like "*Login failed*" |
Format-List
To use V2 syntax, you will need to change the Where-Object line to:
Where-Object {$_.ProcessInfo -Like "*Logon*" -and $_.Text -Like "*Login failed*"}
See also
Listing logins, users, and database mappings
This recipe lists logins and their corresponding usernames and database mappings.
Getting ready
To check the logins and their database mappings in SQL Server Management Studio, log in to SSMS. Go to the Security folder, expand Logins, and double-click on a particular login. This will show you the Login Properties window. Click on the User Mapping option on the left pane, as shown in the following screenshot:
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#display login info
#these are two different ways of displaying login info
$server.Logins
$server.EnumWindowsUserInfo()
#List users, and database mappings
$server.Databases |
ForEach-Object {
#capture database object
$database = $_
#capture users in this database
$users = $_.Users
$users |
Where-Object { -not($_.IsSystemObject)} |
Select @{N="Login";E={$_.Login}},
@{N="User";E={$_.Name}},
@{N="DatabaseName";E={$database.Name}},
@{N="LoginType";E={$_.LoginType}},
@{N="UserType";E={$_.UserType}}
} |
Format-Table -AutoSize
This should give a result similar to the following:
How it works...
To just display the logins, you can use the server object and the Logins property.
$server.Logins
An alternative way, if you are only interested in a Windows account, is using the EnumWindowsUserInfo method of the SMO server class, which returns the Windows users who have been explicitly given SQL Server access:
$server.EnumWindowsUserInfo()
To display only database users, you can get a handle to a specific database and use the Users property of that database's handle.
The most straightforward way of getting all the mappings is by looping through all the databases, and getting a handle to all the users in that database. Once there is a handle to the database object's Users, you can display properties such as Login, User, LoginType, and UserType. Note that we create a custom table so we can display the results with a more meaningful format and headers. To do this, we provide formatting instructions to our Select cmdlet; N refers to the Name of the property, and E refers to the Expression that will derive the value:
$server.Databases |
ForEach-Object {
#capture database object
$database = $_
#capture users in this database
$users = $_.Users
$users |
Where-Object { -not($_.IsSystemObject)} |
Select @{N="Login";E={$_.Login}},
@{N="User";E={$_.Name}},
@{N="DatabaseName";E={$database.Name}},
@{N="LoginType";E={$_.LoginType}},
@{N="UserType";E={$_.UserType}}
} |
Format-Table –AutoSize
There's more...
Logins and users are two terms that are often interchanged, but shouldn't be. A login is a server principal that is used for authenticating who can connect and who will have access, on the instance level.
SQL Server supports two types of logins—Windows Login and SQL Login. A Windows Login is a Windows-level principal, which means that this is seen and shared with the Windows OS or domain. A SQL Login is a SQL Server principal or a login known only to SQL Server.
A user, on the other hand, is a database principal. This means that it is a database-level object and not a server-level object. A user is often mapped to a valid login using the login's Security ID (SID). There are cases when the user isn't mapped; this is when the user is orphaned. This can happen when the database has been moved or restored to a different instance that does not contain the original login. This can also happen when a login has been removed from the instance, and the related database users have not been cleaned up or reassigned.
See also
Listing login/user roles and permissions
This recipe shows how you can list a login- and user-related roles and permissions.
How to do it...
Let's check the code needed to list the login/user roles and permissions.
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$server.Databases |
ForEach-Object {
#capture database object
$database = $_
#capture users in this database
$users = $_.Users
$users |
Where-Object { -not($_.IsSystemObject)} |
Select @{N="Login";E={$_.Login}},
@{N="User";E={$_.Name}},
@{N="DatabaseName";E={$databaseName}},
@{N="DBRoles";E={$_.EnumRoles()}},
@{N="ObjectPermissions";
E={$database.EnumObjectPermissions($_.Name)}}
} |
Format-Table -AutoSize
You should see a display similar to the following screenshot:
How it works...
A database mapping determines which logins are related to which database users. Remember that a database user is a database-level principal that is mapped to a login via a Security ID (SID).
To display the database mappings, we will need to loop through all the databases and display the mappings using each individual User class' objects. In this recipe, we ignored all system objects (such as sys, guest, information_schema). For each user, we also displayed their respective database roles using the EnumRoles method of the User class, and their respective database-level permissions using EnumObjectPermissions of the database class:
$server.Databases |
ForEach-Object {
#capture database object
$database = $_
#capture users in this database
$users = $_.Users
$users |
Where-Object { -not($_.IsSystemObject)} |
Select @{N="Login";E={$_.Login}},
@{N="User";E={$_.Name}},
@{N="DatabaseName";E={$databaseName}},
@{N="DBRoles";E={$_.EnumRoles()}},
@{N="ObjectPermissions";
E={$database.EnumObjectPermissions($_.Name)}}
} |
Format-Table -AutoSize
See also
Creating a login
This recipe shows how you can create a login using PowerShell and SMO.
Getting ready
For this recipe, we will create a SQL login called eric. The T-SQL equivalent of what we are trying to accomplish is:
CREATE LOGIN [eric]
WITH PASSWORD=N'YourSuperStrongPassword',
CHECK_EXPIRATION=OFF
GO
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$loginName = "eric"
drop login if it exists
if ($server.Logins.Contains($loginName))
{
$server.Logins[$loginName].Drop()
}
$login = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.Login `
-ArgumentList $server, $loginName
$login.LoginType = [Microsoft.SqlServer.Management.Smo.LoginType]::SqlLogin
$login.PasswordExpirationEnabled = $false
prompt for password
$pw = Read-Host "PW" –AsSecureString
$login.Create($pw)
How it works...
The first thing we need to do, after getting an SMO server object handle, is create an SMO Login object:
$login = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.Login `
-ArgumentList $server, $loginName
The next step is to identify what type of login this is. The possible LoginTypes are AsymmetricKey, Certificate, SQLLogin, WindowsGroup, and WindowsUser. In our recipe, we are using a SQLLogin:
$login.LoginType = [Microsoft.SqlServer.Management.Smo.LoginType]::SqlLogin
The login object also has a few settable properties, such as PasswordPolicyEnforced and PasswordExpirationEnabled.
$login.PasswordExpirationEnabled = $false
When ready, you can invoke the Create method of the Login class. Note that the Create method has a few overloads, some of which allow you to pass LoginCreateOptions. In our recipe, we are only passing in a password, which we collect using a Read-Host cmdlet. We prompt the user for the password instead of hardcoding it with our script ourselves:
$pw = Read-Host "PW" –AsSecureString
$login.Create($pw)
See also
Assigning permissions and roles to a login
This recipe shows you how to assign permissions and roles to a login by using PowerShell and SMO.
Getting ready
If you haven't already done so in the Creating a login recipe, create a SQL login name eric. We will be assigning the dbcreator and setupadmin server role to this login, as well as granting ALTER permissions to any setting or database. The T-SQL equivalent of what we are trying to accomplish is:
ALTER SERVER ROLE [dbcreator]
ADD MEMBER [eric]
GO
ALTER SERVER ROLE [setupadmin]
ADD MEMBER [eric]
GO
GRANT
ALTER ANY DATABASE,
ALTER SETTINGS
TO [eric]
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#assumption is this login already exists
$loginName = "eric"
#assign server level roles
$login = $server.Logins[$loginName]
$login.AddToRole("dbcreator")
$login.AddToRole("setupadmin")
$login.Alter()
#grant server level permissions
$permissionset = New-Object Microsoft.SqlServer.Management.Smo.ServerPermissionSet([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterAnyDatabase)
$permissionset.Add([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterSettings)
$server.Grant($permissionset, $loginName)
#confirm server roles
$login.ListMembers()
#confirm permissions
$server.EnumServerPermissions($loginName) |
Select Grantee, PermissionType, PermissionState |
Format-Table -AutoSize
You should get a result similar to the following:
How it works...
After we create an SMO server object, we create a handle to the SMO login object that we want to query:
$loginName = "eric"
#assign server level roles
$login = $server.Logins[$loginName]
The login object has an AddToRole method, which we can use to add the login as a member of fixed server roles:
$login.AddToRole("dbcreator")
$login.AddToRole("setupadmin")
When we're ready to send this command to SQL Server, we issue the Alter method of the login object.
$login.Alter()
Now we also have the option to assign specific permissions outside of the role, for the login. This requires creating a ServerPermissionSet object. The following code creates the permission set and adds the permission AlterAnyDatabase to the list of permissions that we will be assigning:
$permissionset = New-Object Microsoft.SqlServer.Management.Smo.ServerPermissionSet([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterAnyDatabase)
This permission set can accommodate multiple server-level permissions. In our recipe, we add another permission—AlterSettings—by issuing this command:
$permissionset.Add([Microsoft.SqlServer.Management.Smo.ServerPermission]::AlterSettings)
To finalize the process, we issue the grant statement on the object with the parameters being the permission set that we have created, and the login.
$server.Grant($permissionset, $loginName)
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermissionset(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.serverpermission.aspx
Creating a database user
This recipe demonstrates how to create a database user by using PowerShell and SMO.
Getting ready
If you haven't already done so in the Creating a login recipe, create a SQL login called eric.
In our recipe, we will use a login called eric, which we will map to a user called eric in the AdventureWorks2008R2 database. The T-SQL equivalent of what we are trying to accomplish is:
USE [AdventureWorks2008R2]
GO
CREATE USER [eric]
FOR LOGIN [eric]
How to do it...
Here are the steps for creating a database user:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$loginName = "eric"
#get login
$login = $server.Logins[$loginName]
#add a database mapping
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
if($database.Users[$dbUserName])
{
$database.Users[$dbUserName].Drop()
}
$dbUserName = "eric"
$dbuser = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.User `
-ArgumentList $database, $dbUserName
$dbuser.Login = $loginName
$dbuser.Create()
How it works...
After creating the SMO server object, create a handle to the login you wish to use:
$loginName = "eric"
#get login
$login = $server.Logins[$loginName]
Next, you need to get a handle to the database that you want this login to have a corresponding user to. In our case, we will be using AdventureWorks2008R2:
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
To create a database user, we need to instantiate a Microsoft.SqlServer.Management.Smo.User object, and pass the database and database username as arguments:
$dbUserName = "eric"
$dbuser = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.User `
-ArgumentList $database, $dbUserName
$dbuser.Login = $loginName
The final step is to issue the Create method on the $dbuser object.
$dbuser.Create()
See also
Assigning permissions to a database user
This recipe shows how to assign permissions to a database user via SMO and PowerShell.
Getting ready
In this recipe, we will use the AdventureWorks2008R2 database user eric that we created in the previous recipes. We will grant this user ALTER and CREATE TABLE permissions. The T-SQL equivalent of what we are trying to accomplish is:
USE [AdventureWorks2008R2]
GO
GRANT
ALTER,
CREATE TABLE
TO [eric]
You can substitute this with any database user you have in your database.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
#get a handle to the database user we want
#to assign permissions to
$dbusername = "eric"
$dbuser = $database.Users[$dbusername]
#assign database permissions
$permissionset = New-Object Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)
$permissionset.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)
#grant the permissions
$database.Grant($permissionset, $dbuser.Name)
#confirm permissions
$database.Users |
ForEach-Object {
$database.EnumDatabasePermissions($_.Name) |
Select PermissionState, PermissionType, Grantee
} |
Format-Table -AutoSize
When the script has been successfully executed, you should see a screen similar to the following:
How it works...
To add specific permissions to a database user, you must first get a handle to the database user.
$dbusername = "eric"
$dbuser = $database.Users[$dbusername]
The next step is to define a DatabasePermissionSet object. This object will contain all the permissions you want to assign to your database user:
#assign database permissions
$permissionset = New-Object Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)
$permissionset.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)
Once you've added all the permissions, invoke the Grant method of the database object:
#grant the permissions
$database.Grant($permissionset, $dbuser.Name)
To list all the permissions, we can go through each of the database users, and pass each user to the database's EnumDatabasePermissions method. This should list whether GRANT, DENY, or REVOKE has been assigned to a particular permission and principal:
$database.Users |
ForEach-Object {
$database.EnumDatabasePermissions($_.Name) |
Select PermissionState, PermissionType, Grantee
} |
Format-Table -AutoSize
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.databasepermissionset(v=sql.110).aspx
Creating a database role
In this recipe, we will walk through creating a custom database role.
Getting ready
In this recipe, we will create a database role called Custom Role, and we will grant it SELECT permissions to the HumanResources schema, and ALTER and CREATE TABLE permissions to the database.
The T-SQL equivalent of what we are trying to accomplish is:
USE AdventureWorks2008R2
GO
CREATE ROLE [Custom Role]
GO
GRANT SELECT
ON SCHEMA::[HumanResources]
TO [Custom Role]
GRANT ALTER, CREATE TABLE
TO [Custom Role]
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
#role
$rolename = "Custom Role"
if($database.Roles[$rolename])
{
$database.Roles[$rolename].Drop()
}
#let's assume this custom role, we want to grant
#everyone in this role select, insert access
#to the HumanResources Schema, in addition to the
#CreateTable permission
$dbrole = New-Object Microsoft.SqlServer.Management.Smo.DatabaseRole -ArgumentList $database, $rolename
$dbrole.Create()
#verify; list database roles
$database.Roles
#create a permission set to contain SELECT permissions
#for the HumanResources schema
$permissionset1 = New-Object Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)
$permissionset1.Add([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)
$hrschema = $database.Schemas["HumanResources"]
$hrschema.Grant($permissionset1, $dbrole.Name)
#create another permission set that contains
#CREATE TABLE and ALTER on this database
$permissionset2 = New-Object Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)
$permissionset2.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)
$database.Grant($permissionset2, $dbrole.Name)
#to add member
#assume eric is already a user in the database
$username = "eric"
$dbrole.AddMember($username)
#confirm permissions
$database.Roles[$rolename] |
ForEach-Object {
$currentrole = $_
$database.EnumDatabasePermissions($_.Name) |
Select PermissionState, PermissionType, Grantee,
@{N="Members";E={$currentrole.EnumMembers()}}
} |
Format-Table -AutoSize
When the script has been successfully executed, you should see a screen similar to the following:
How it works...
A database role enables easier management of users and permissions on the database level.
To create a database role, you need to create an instance of an SMO DatabaseRole first:
$dbrole = New-Object Microsoft.SqlServer.Management.Smo.DatabaseRole -ArgumentList $database, "Custom Role"
$dbrole.Create()
The next step is to identify what permissions this group needs to have. You will need to create a different permission set for each type of securable that you want to assign permissions to.
In our recipe, we created two permission sets. The first one is at the schema level, allowing the database user to use the SELECT statement against all objects belonging to the HumanResources schema:
#create a permission set to contain SELECT permissions
#for the HumanResources schema
$permissionset1 = New-Object Microsoft.SqlServer.Management.Smo.ObjectPermissionSet([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)
$permissionset1.Add([Microsoft.SqlServer.Management.Smo.ObjectPermission]::Select)
$hrschema = $database.Schemas["HumanResources"]
$hrschema.Grant($permissionset1, $dbrole.Name)
Our second permission set pertains to the database securable, allowing CREATE and ALTER for the AdventureWorks2008R2 database:
#create another permission set that contains
#CREATE TABLE and ALTER on this database
$permissionset2 = New-Object Microsoft.SqlServer.Management.Smo.DatabasePermissionSet([Microsoft.SqlServer.Management.Smo.DatabasePermission]::CreateTable)
$permissionset2.Add([Microsoft.SqlServer.Management.Smo.DatabasePermission]::Alter)
$database.Grant($permissionset2, $dbrole.Name)
The last step in our recipe is to add users to this role. This step does not need to follow granting permissions. It can be completed as soon as the role is set up:
#to add member
#assume eric is already a user in the database
$username = "eric"
$dbrole.AddMember($username)
To confirm the settings, we use PowerShell to target this specific role. We use the EnumDatabasePermissions method of the SMO database class to display the PermissionState, PermissionType, and Grantee properties. In addition, we display the members of this database role by using the EnumMembers method of the SMO Role class:
#confirm permissions
$database.Roles[$rolename] |
ForEach-Object {
$currentrole = $_
$database.EnumDatabasePermissions($_.Name) |
Select PermissionState, PermissionType, Grantee,
@{N="Members";E={$currentrole.EnumMembers()}}
} |
Format-Table -AutoSize
See also
Fixing orphaned users
This recipe shows how you can remap orphaned database users to valid logins.
Getting ready
Let us create an orphaned user to use in this recipe. Open up SQL Server Management Studio, and execute the following T-SQL statements:
USE [master]
GO
CREATE LOGIN [marymargaret]
WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE=[master],
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF
GO
USE [AdventureWorks2008R2]
GO
CREATE USER [marymargaret]
FOR LOGIN [marymargaret]
GO
USE [master]
GO
DROP LOGIN [marymargaret]
GO
-- create another login, this will generate a
-- different SID
CREATE LOGIN [marymargaret]
WITH PASSWORD=N'P@ssword',
DEFAULT_DATABASE=[master],
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF
This code has created an orphaned user called marymargaret in the AdventureWorks2008R2 database. Although we have recreated a login with the same name, this would generate a different Security ID (SID), thus leaving the database user orphaned.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
$loginname = "marymargaret"
$username = "marymargaret"
$user = $database.Users[$username]
#display current status
$user | Select Parent, Name, Login, LoginType, UserType
When the script successfully finishes executing, you should see a screen similar to this. We can confirm that marymargaret is an orphaned user because the Login value in the result is blank, and the UserType is NoLogin:
$query = "ALTER USER $($username) WITH LOGIN=$($loginname)"
Invoke-Sqlcmd -ServerInstance $instanceName -Query $query -Database $databasename
Start-Sleep -Seconds 1
#display current status
$user.Refresh()
$user | Select Parent, Name, Login, LoginType, UserType
How it works...
An orphaned user is a database user that is not mapped to a valid login anymore. This may stem from a number of scenarios, but more often, it happens when you move a database from server to server, for example, from production to development.
To fix an orphaned user, you need to remap this orphaned user to a valid, recognized login in your instance. The core of the solution lies in these statements:
$query = "ALTER USER $($username) WITH LOGIN=$($loginname)"
Invoke-Sqlcmd -ServerInstance $instanceName -Query $query -Database $databasename
We acquired handles to the User objects merely to display the status of the user. While it's still orphaned, the UserType will indicate NoLogin.
There's more...
Following the patterns of the previous recipes, you may have thought that we should be able to use SMO to fix our orphaned user. This snippet of code should allow us to remap the user:
#unfortunately this doesn't work
$user.Login = "marymargaret"
$user.Alter()
$user.Refresh()
The code makes sense syntax-wise, however when you execute this, it will give an exception:
System.Management.Automation.MethodInvocationException: Exception calling "Alter" with "0" argument(s): "Alter failed for User 'marymargaret'. " --->Microsoft.SqlServer.Management.Smo.FailedOperationException: Alter failed for User 'marymargaret'. --->Microsoft.SqlServer.Management.Smo.SmoException: Modifying the Login property of the User object is not allowed. You must drop and recreate the object with the desired property.
This error complains that the Login property cannot be modified unless the User object is dropped. Therefore to make it work using SMO, we will need to drop and recreate the database user. Dropping and recreating can work to an extent, but you will have to remember to reassign all the permissions and roles to this user. For some situations, this may not be the ideal solution.
See also
Creating a credential
This recipe goes through the code needed for creating a SQL Server credential.
Getting ready
In this recipe, we create a credential for a domain account that has access to certain files and folders in our system, QUERYWORKS\filemanager. The equivalent T-SQL for what we are trying to accomplish is:
CREATE CREDENTIAL [filemanagercred]
WITH IDENTITY = N'QUERYWORKS\filemanager',
SECRET = N'YourSuperStrongPassword'
You can substitute this with another known Windows account that you have in your environment.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$identity = "QUERYWORKS\filemanager"
$credentialname = "filemanagercred"
if($server.Credentials.Contains($credentialname))
{
$server.Credentials[$credentialname].Drop()
}
$credential=New-Object "Microsoft.SqlServer.Management.Smo.Credential" $server, $credentialname
$credential.Create($identity, "YourSuperStrongPassword")
#list credentials
$server.Credentials
When the script has been successfully executed, you should see a screen similar to the following:
This should confirm that the credential has been created.
How it works...
A credential in SQL Server allows a server principal to connect to resources outside of SQL Server, using a different identity or username/password combination. This is often used to map SQL Server logins to a Windows account needed to access files/folders/programs outside of SQL Server.
Creating a credential in PowerShell is short and straightforward. To create a credential, you will need to know the username and password of the external account that you want to use as a credential:
$credential=New-Object "Microsoft.SqlServer.Management.Smo.Credential" $server, $credentialname
$credential.Create($identity, "YourSuperStrongPassword")
You may not want to hardcode the password in your script. In that case, you can use the Get-Credential cmdlet to capture the password.
The Get-Credential cmdlet is used and discussed further in the Change SQL Server service account recipe.
See also
Creating a proxy
In this recipe, we will create a SQL Server proxy.
Getting ready
In this recipe, we will map out our SQL Server Agent service account (QUERYWORKS\sqlagent) to the credential we created in the previous recipe, filemanagercred. We are also going to grant this proxy with rights to run the PowerShell agent steps and operating system (CmdExec) steps. The equivalent T-SQL statements of what we are trying to achieve are as follows:
EXEC msdb.dbo.sp_add_proxy
@proxy_name = N'filemanagerproxy',
@credential_name = N'filemanagercred',
@enabled = 1,
@description = N'Proxy Account for PowerShell Agent Job steps'
EXEC msdb.dbo.sp_grant_login_to_proxy
@proxy_name = N'filemanagerproxy',
@login_name = N'QUERYWORKS\sqlagent'
-- PowerShell subsystem
EXEC msdb.dbo.sp_grant_proxy_to_subsystem
@proxy_name = N'filemanagerproxy',
@subsystem_id = 12
-- CmdExec subsystem
EXEC msdb.dbo.sp_grant_proxy_to_subsystem
@proxy_name = N'filemanagerproxy',
@subsystem_id = 12
You can substitute this with known SQL Server principals and credentials in your environment.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$proxyname = "filemanagerproxy"
$credentialname = "filemanagercred"
$jobserver = $server.JobServer
if($jobserver.ProxyAccounts[$proxyname])
{
$jobserver.ProxyAccounts[$proxyname].Drop()
}
$proxy=New-Object "Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount" $jobserver, $proxyname, $credentialname, $true, "Proxy Account for PowerShell Agent Job steps"
$proxy.Create()
#add sql server agent account - QUERYWORKS\sqlagent
$agentlogin = "QUERYWORKS\sqlagent"
$proxy.AddLogin($agentlogin)
$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::PowerShell)
$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::CmdExec)
#confirm, list proxy accounts
$jobserver.ProxyAccounts |
ForEach-Object {
$currproxy = $_
$subsytems = ($currproxy.EnumSubSystems() |
Select -ExpandProperty Name) -Join ","
$currproxy |
Select Name, CredentialName, CredentialIdentity,
@{N="Subsystems";E={$subsytems}}
} |
Format-Table -AutoSize
When the script has been successfully executed, you should see a screen similar to this. This should confirm that the proxy has been created and subsystems have been assigned.
How it works...
The first step is to create an SMO proxy instance:
$proxy=New-Object "Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount" $jobserver, $proxyname, $credentialname, $true, "Proxy Account for PowerShell Agent Job steps"
$proxy.Create()
To create a proxy, you will need two pieces of information—the server principal (login) you want to use, and the SQL Server credential to map it to. In our recipe, we mapped our SQL Server Agent service account QUERYWORKS\sqlagent to a domain account called QUERYWORKS\filemanager via the filemanagercred credential.
$agentlogin = "QUERYWORKS\sqlagent"
$proxy.AddLogin($agentlogin)
In SQL Server, we also need to narrow down on which specific subsystems the proxy can be used:
$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::PowerShell)
$proxy.AddSubSystem([Microsoft.SqlServer.Management.Smo.Agent.AgentSubsystem]::CmdExec)
In our recipe, we specified the PowerShell and CmdExec subsystems. Other common options include TransactSQL, ActiveScripting, AnalysisCommand, AnalysisQuery, and SSIS.
To confirm, we iterate through all ProxyAccounts, and we also use the method EnumSubsystems of the Microsoft.SqlServer.Management.Smo.Agent.ProxyAccount class to display which subsystems are tied to a proxy.
#confirm, list proxy accounts
$jobserver.ProxyAccounts |
ForEach-Object {
$currproxy = $_
$subsytems = ($currproxy.EnumSubSystems() |
Select -ExpandProperty Name) -Join ","
$currproxy |
Select Name, CredentialName, CredentialIdentity,
@{N="Subsystems";E={$subsytems}}
} |
Format-Table -AutoSize
You can find the complete enumeration values from MSDN:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.agent.agentsubsystem.aspx
There's more...
You will often encounter the need to use proxies when you have some principals that need to access external resources, but you don't want to grant them those extra permissions outside of SQL Server. One common scenario is with your SSIS packages. SQL Server Agent would usually not have the extra rights to access files and folders. To avoid granting these extra rights, you will need to map the agent account to another account that already has these rights.
See also
Chapter 5. Advanced Administration
In this chapter, we will cover:
Introduction
The most recent versions of SQL Server have seen new features that can help IT professionals get a better handle on the instances and databases they are managing. Policies can now be created on SQL Server, and applied to single or multiple instances, to ensure compliance of settings and configurations with company rules. SQL Server also supports different levels of encryption, including cell-level or column-level encryption, and database-level encryption. PowerShell can help with setting up security policies, or enabling Transparent Database Encryption (TDE) for encrypting your whole database. In this chapter, we will also look at how we can work with SQL Server Profiler trace files and trace events.
Listing facets and facet properties
In this recipe, we will list all available facets and their properties.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets |
ForEach-Object {
$facet = $_
$facet.FacetProperties |
Select @{N="FacetName";E={$facet.Name}},
@{N="PropertyName";E={$_.Name}},
@{N="PropertyType";E={$_.PropertyType}}
} |
Format-Table
When the script successfully finishes executing, the resulting screen should display all the facets and their properties.
How it works...
Facets are introduced with SQL Server 2008's Policy Based Management (PBM). Facets are defined in MSDN as follows:
a set of logical properties that model the behavior or characteristics for certain types of managed targets.
Simply, these are the SQL Server components manageable through PBM.
For exploring facets, you need to connect to the PolicyStore parameter, using the Microsoft.SqlServer.Management.Dmf.PolicyStore namespace.
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets
Note that DMF is the old PBM name, which stands for Declarative Management Framework.
In this recipe we iterate through all the facets, and display the facet name, facet property name, and type:
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets |
ForEach-Object {
For each facet we extract the respective facet properties:
[Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets |
ForEach-Object {
$facet = $_
$facet.FacetProperties |
Select @{N="FacetName";E={$facet.Name}},
@{N="PropertyName";E={$_.Name}},
@{N="PropertyType";E={$_.PropertyType}}
} |
Format-Table
To explore facets more, use the $facet object and pipe it to Get-Member.
$facet | Get-Member
See also
http://blogs.msdn.com/b/sqlpbm/archive/2008/05/24/facets.aspx
Listing policies
In this recipe, we will list policies deployed in our SQL Server instance.
Getting ready
Check which policies are being used in your environment using SQL Server Management Studio. Connect to SSMS, and expand Management | Policy Management | Policies:
These are the same policies you should get when you run the PowerShell script in this recipe.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
#NOTE notice how the namespace is still called DMF
#DMF - declarative management framework
#DMF was the old reference to Policy Based Management
$PolicyStore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
$PolicyStore.Policies |
Select Name, CreateDate, Condition, ObjectSet, Enabled |
Format-List
When the script successfully finishes executing, the resulting screen should display all the policies registered in your instance:
How it works...
To list the policies in your instance, you need to connect to the PolicyStore parameter. Note that the PolicyStore parameter requires a different type of Connection compared to the SMO server connections we have been making in the previous recipes. To connect to the PolicyStore parameter, you first need to create an Sfc.SqlStoreConnection object:
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
Once Sfc.SqlStoreConnection has been established, you can connect to the PolicyStore parameter:
#NOTE notice how the namespace is still called DMF
#DMF - declarative management framework
#DMF was the old reference to Policy Based Management
$PolicyStore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
Once you have a handle to the PolicyStore parameter, you can use the Policies object and list Name, CreateDate, and Condition—among other properties:
$PolicyStore.Policies |
Select Name, CreateDate, Condition, ObjectSet, Enabled |
Format-List
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.sdk.sfc.sqlstoreconnection.aspx
Exporting a policy
In this recipe, we will export a policy to an XML file using PowerShell.
Getting ready
We will export a policy called PW Expiry to an XML file. To do this we must first create this policy by performing the following steps:
Alternatively, you can substitute this with another policy that exists in your system.
How to do it...
To export a policy to an XML file, perform the following steps:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
#NOTE this is still called DMF, which stands for
#PBM's old name, Declarative Management Framework
$policystore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
#change this to your policy name
$policyname = "PW Expiry"
$policy = $policystore.Policies[$policyname]
#create an XML writer, to enable us to
#write an XML file
$folder = "C:\Temp\"
$policyfilename = "$($policy.Name).xml"
$fullpath = Join-Path $folder $policyfilename
$xmlwriter = [System.Xml.XmlWriter]::Create($fullpath)
$policy.Serialize($xmlwriter)
$xmlwriter.Close()
How it works...
Policies are stored as XML documents, so these policies can be easily exported as XML files.
To export a policy, you first need to get a handle to the PolicyStore parameter:
$policystore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
Once the connection to the PolicyStore parameter is established, you can get a handle to the policy you want to export:
$policyname = "PW Expiry"
$policy = $policystore.Policies[$policyname]
Exporting the policy requires writing the contents of the policy to an XML file in your file system. We will need to use XMLWriter in this case:
#create an XML writer, to enable us to
#write an XML file
$folder = "C:\Temp\"
$policyfilename = "$($policy.Name).xml"
$fullpath = Join-Path $folder $policyfilename
$xmlwriter = [System.Xml.XmlWriter]::Create($fullpath)
$policy.Serialize($xmlwriter)
$xmlwriter.Close()
Once that's done, double-check the file that was created. When you open it, you should see the XML structure used to store your policies.
There's more...
To export a policy from SQL Server Management Studio, you can right-click on a policy and select Export Policy as shown in the following screenshot:
See also
Importing a policy
This recipe will show how you can import a policy stored as an XML file into SQL Server.
Getting ready
In this recipe, we will use an XML policy that comes with the default SQL Server installation. This policy is called Guest Permissions.xml, and is stored in C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033
Feel free to substitute this with a policy you have available in your system.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
#connect to policystore
$policyStore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
#you can replace this with your own file
$policyXmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033\Guest Permissions.xml"
$xmlReader = [System.Xml.XmlReader]::Create($policyXmlPath)
#ready to import
$policyStore.ImportPolicy($xmlReader, [Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged, $true, $true)
#list policies to confirm
$policyStore.Policies
All the loaded policies should be listed when the script has finished executing. Check that the Guest Permissions policy is included in the list.
How it works...
To import a policy defined in an XML file, you will first need to connect to the PolicyStore parameter.
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
#connect to policystore
$policyStore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
You will also need to specify which file you want to import:
#you can replace this with your own file
$policyXmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033\Guest Permissions.xml"
You will need to load this using an XMLReader class, which we will pass to our import method:
$xmlReader = [System.Xml.XmlReader]::Create($policyXmlPath)
When you are ready to import, you can use the ImportPolicy method of the PolicyStore object:
$policyStore.ImportPolicy($xmlReader, [Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged, $true, $true)
If you want to import all policies, you can get all the XML files from the default path for the policies using the Get-ChildItem cmdlet. Iterate through each file, and load each of them using the ImportPolicy method.
$xmlPath = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Policies\DatabaseEngine\1033\"
Get-ChildItem -Path "$($xmlPath)*.xml" |
ForEach-Object {
$xmlReader = [System.Xml.XmlReader]::Create($_.FullName)
$policyStore.ImportPolicy($xmlReader, [Microsoft.SqlServer.Management.Dmf.ImportPolicyEnabledState]::Unchanged, $true, $true) |
Out-Null
}
There's more...
The ImportPolicy method accepts four parameters:
See also
Creating a condition
In this recipe, we will create a condition to be later used programmatically for a policy.
Getting ready
In this recipe, we will create a condition called xp_cmdshell is disabled, which checks the Server Security facet, XPCmdShellEnabled.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$connectionstring ="server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
$policystore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
$conditionName = "xp_cmdshell is disabled"
if ($policystore.Conditions[$conditionName])
{
$policystore.Conditions[$conditionName].Drop()
}
#facet name
#we are retrieving facet name in this manner because
#some facet names are different from the display names
#note this is PowerShell V3 syntax Where-Object syntax
$selectedfacetdisplayname = "Server Security"
$selectedfacet = [Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets |
Where-Object DisplayName -eq $selectedfacetdisplayname
#if you want to use PowerShell V2 syntax, use the
#following for the Where-Object clause:
#Where-Object {
#$_.DisplayName -eq $selectedfacetdisplayname
#}
#display, for visual reference
$selectedfacet.Name
#create condition
$condition = New-Object Microsoft.SqlServer.Management.Dmf.Condition($conn, $conditionName)
$condition.Facet = $selectedfacet.Name
#a condition consists of a facet, an operator,
#and a value to compare to
$op = [Microsoft.SqlServer.Management.Dmf.OperatorType]::EQ
$attr = New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeAttribute("XPCmdShellEnabled")
$value = [Microsoft.SqlServer.Management.Dmf.ExpressionNode]::ConstructNode($false)
#create the expression node
#this is equivalent to "@XPCmdShellEnabled = false"
$expressionNode = New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator($op, $attr, $value)
#display expression node that was constructed
$expressionNode
#assign the expression node to the condition, and create
$condition.ExpressionNode = $expressionNode
$condition.Create()
#confirm by displaying conditions in PolicyStore
$policystore.Conditions |
Where Name -eq $conditionName |
Select Name, Facet, ExpressionNode |
Format-Table -AutoSize
When the script finishes, you should see the new condition displayed in the resulting output:
How it works...
Creating a condition for policy-based management requires creating what is called an expression node. This is the expression that will be utilized by policies, and will be evaluated to be true or false.
#a condition consists of a facet, an operator,
#and a value to compare to
$op = [Microsoft.SqlServer.Management.Dmf.OperatorType]::EQ
$attr = New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeAttribute("XPCmdShellEnabled")
$value = [Microsoft.SqlServer.Management.Dmf.ExpressionNode]::ConstructNode($false)
To put these together, we use the ExpressionNodeOperator class of the Microsoft.SqlServer.Management.Dmf namespace to construct the final expression node. The constructor, or special method to create a new object, of this class accepts an operator type, a left expression, and a right expression.
#create the expression node
#this is equivalent to "@XPCmdShellEnabled = false"
$expressionNode = New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator($op, $attr, $value)
Some conditions are straightforward, and will not require an ExpressionNodeOperator class to construct them. For example:
This expression node is what we need to assign to the condition object.
#assign the expression node to the condition, and create
$condition.ExpressionNode = $expressionNode
Once the expression has been assigned, we can now invoke the Create method of the Microsoft.SqlServer.Management.Dmf.Condition class to create the condition in SQL Server:
$condition.Create()
See also
Creating a policy
In this recipe, we will create a policy programmatically using PowerShell.
Getting ready
In this recipe, we will use a condition called xp_cmdshell is disabled, which we created in a previous recipe. Feel free to substitute this with a condition that is available in your instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
$policystore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
$policyName = "xp_cmdshell must be disabled"
$conditionName = "xp_cmdshell is disabled"
if ($policystore.Policies[$policyName])
{
$policystore.Policies[$policyName].Drop()
}
#facet name this policy refers to
#note we are using PowerShell V3 syntax in
#Where-Object
$selectedfacetdisplayname = "Server Security"
$selectedfacet = [Microsoft.SqlServer.Management.Dmf.PolicyStore]::Facets |
Where DisplayName -eq $selectedfacetdisplayname
#if you want to use PowerShell V2 syntax, use the
#following for the Where-Object clause:
#Where-Object {$_.DisplayName -eq
#$selectedfacetdisplayname}
#create objectset
#objectset represents a policy-based management set of objects
$objectsetName = "$($policyName)_ObjectSet"
$objectset = New-Object Microsoft.SqlServer.Management.Dmf.ObjectSet($policystore, $objectsetName)
$objectset.Facet = $selectedfacet.Name
$objectset.Create()
#confirm, display objectset name
#again we are using PowerShell V3 simplified
#Where-Object syntax here
$objectset.Name
$policystore.ObjectSets |
Where Name -eq $objectsetName |
Format-List
#if using PowerShell V2, use
#Where {$_.Name -eq $objectsetName} | Format-List
#create policy
$policy = New-Object Microsoft.SQLServer.Management.Dmf.Policy ($conn, $policyName)
#assumption here is conditions have been pre-created
#if not, see recipe for creating a condition
$policy.Condition=$conditionName
$policy.ObjectSet = $objectsetName
$policy.AutomatedPolicyEvaluationMode=[Microsoft.SqlServer.Management.Dmf.AutomatedPolicyEvaluationMode]::None
$policy.Create()
#confirm, display policies
#PowerShell V3 syntax
$policystore.Policies |
Where-Object Name -eq $policyName
#PowerShell V2
#Where-Object {$_.Name -eq $policyName}
How it works...
To start, you need to create a Policy instance:
#create policy
$policy = New-Object Microsoft.SQLServer.Management.Dmf.Policy ($conn, $policyName)
Before you create a policy, you need to make sure you have available condition(s) you can use to attach to your policy. In our recipe, we will use the condition xp_cmdshell is disabled.
The xp_cmdshell is disabled condition is created in the Create a condition recipe.
To attach a condition to a policy, you can assign this to the policy's Condition property.
#assumption here is conditions have been pre-created
$policy.Condition=$conditionName
PBM also requires an object set. An object set is defined in MSDN as an object that represents a policy-based management set of objects. The object set provides the target objects for the policy, in our case, our facet.
#create objectset
#objectset represents a policy-based management set of objects
$objectsetName = "$($policyName)_ObjectSet"
$objectset = New-Object Microsoft.SqlServer.Management.Dmf.ObjectSet($policystore, $objectsetName)
$objectset.Facet = $selectedfacet.Name
$objectset.Create()
You will also need to specify what the evaluation mode is. The valid values for evaluation mode are:
Evaluation mode | Description |
---|---|
None | No policy checking |
Enforce | Use DDL triggers to evaluate or prevent policy violations |
CheckOnChanges | Use event notification to evaluate a policy when changes happen |
CheckOnSchedule | Use SQL Server Agent to evaluate a policy based on schedule |
Not all facets support all possible evaluation modes. Most support OnDemand (ie, None) and OnSchedule. Aaron Bertrand posted a blog called Policy-Based Management : Which facets support which evaluation methods? that provides a way to determine which evaluation methods are supported by each facet (http://sqlblog.com/blogs/aaron_bertrand/archive/2011/10/03/policy-based-management-which-facets-support-which-evaluation-methods.aspx).
For our purposes, we will just choose None, or OnDemand:
$policy.AutomatedPolicyEvaluationMode=[Microsoft.SqlServer.Management.Dmf.AutomatedPolicyEvaluationMode]::None
When ready, invoke the Create method of the policy object:
$policy.Create()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.dmf.automatedpolicyevaluationmode(v=sql.110).aspx
Evaluating a policy
In this recipe, we will evaluate a policy against our SQL Server instance.
Getting ready
In this recipe, we will evaluate the policy xp_cmdshell must be disabled, which we created in a previous recipe. We also want to export this to an XML file, so we can see two different ways of evaluating the policy. Use the Exporting a policy recipe to export the policy xp_cmdshell must be disabled and save it in C:\Temp. Alternatively you can:
Feel free to substitute this with a policy that is available in your instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$connectionstring = "server='KERRIGAN';Trusted_Connection=true"
$conn = New-Object Microsoft.SQlServer.Management.Sdk.Sfc.SqlStoreConnection($connectionstring)
$policystore = New-Object Microsoft.SqlServer.Management.DMF.PolicyStore($conn)
$policyName = "xp_cmdshell must be disabled"
$policy = $policystore.Policies[$policyName]
#evaluate using the Evaluate() method
$policy.Evaluate([Microsoft.SqlServer.Management.DMF.AdHocPolicyEvaluationMode]::Check,$conn)
#check evaluation history
Write-Host "$("=" * 100)`n Evaluation Histories`n $("=" * 100)"
$policy.EvaluationHistories
#an alternative way to invoke a policy is
#to use the Invoke-PolicyEvaluation cmdlet instead
#of using the Evaluate() method
#however you need to have a handle to the actual XML file
#this alternative way allows you to capture the results
#which you can save to another XML file
#assuming we have this policy definition in
$file = "C:\Temp\$($policyName).xml"
$result = Invoke-PolicyEvaluation -Policy $file -TargetServer $instanceName
#display results
Write-Host "$("=" * 100)`n Invocation Result`n $("=" * 100)"
$result
This is what your result should look similar to:
How it works...
In this recipe, we covered a couple of ways to evaluate a policy.
The first way is by using the Policy object. We first need to get a handle to the Policy object:
$policyName = "xp_cmdshell must be disabled"
$policy = $policystore.Policies[$policyName]
The Policy object has a method called Evaluate, which we can invoke as follows:
$policy.Evaluate([Microsoft.SqlServer.Management.DMF.AdHocPolicyEvaluationMode]::Check,$conn)
The Evaluate method returns a Boolean value—true if every object you evaluated the policy against are in compliance to the policy, and false otherwise.
An alternative way to invoke a policy is by using the Invoke-PolicyEvaluation cmdlet. You will need to provide the full path of the XML file that contains the policy. This cmdlet also returns the result of the evaluation, also in XML format, which you can either display or save to a file:
$result = Invoke-PolicyEvaluation -Policy $file -TargetServer $instanceName
There's more...
To get more information about Invoke-PolicyEvaluation, type:
Get-Help Invoke-PolicyEvaluation
You will quickly find out that this cmdlet allows you to:
See also
Enabling/disabling change tracking
This recipe shows you how you can enable and disable change tracking to your target database.
Getting ready
In this recipe, we will use a test database called TestDB. If you don't already have this database, log in to SQL Server Management Studio and execute the following T-SQL code:
IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO
Check which of your databases have change tracking enabled. Connect to your instance using SQL Server Management Studio, and type in this T-SQL statement:
SELECT
DB_NAME(database_id) AS 'DB',
*
FROM
sys.change_tracking_databases
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$database = $server.Databases[$databasename]
$database.ChangeTrackingEnabled
$database.ChangeTrackingEnabled = $true
$database.Alter()
$database.Refresh()
$database.ChangeTrackingEnabled
To disable change tracking, you just need to set the database property ChangeTrackingEnabled to false, and invoke the Alter method again.
$database.ChangeTrackingEnabled = $false
$database.Alter()
How it works...
Change tracking is a database-level feature that can be turned on or off using the database object's ChangeTrackingEnabled property. Once you get a handle to the database, you can set this property to a true or false Boolean value, followed by an invocation of the Alter method:
$database.ChangeTrackingEnabled
$database.ChangeTrackingEnabled = $true
$database.Alter()
There's more...
Change Tracking (CT) is a feature introduced in SQL Server 2008. It is a lightweight solution that enables developers and administrators alike to detect if changes have been done to a user table they are monitoring. This is a pretty lightweight solution, because it only tracks those changes that have occurred, and does not keep track of all intermediate changes.
See also
Running and saving a profiler trace event
In this recipe, we will run and save a profiler trace event using PowerShell.
Getting ready
To run and save a profiler trace event, we will need to use the x86 version of PowerShell and/or PowerShell ISE. This is unfortunate, but some of the classes we need to use are only supported in 32-bit mode.
In this recipe, we will need to use the standard trace Template Definition File (TDF) as our starting template for the trace we're going to run. This can be found in C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Profiler\Templates\Microsoft SQL Server\110\Standard.tdf
For our purposes, we are also going to limit the number of events to 50.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfoExtended") |
Out-Null
#load ConnectionInfo, contains SqlConnectionInfo class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfo") |
Out-Null
#create SqlConnectionInfo object,
#specifically required to run the traces
#need to specifically use the ConnectionInfoBase type
[Microsoft.SqlServer.Management.Common.ConnectionInfoBase]$conn = New-Object Microsoft.SqlServer.Management.Common.SqlConnectionInfo -ArgumentList "KERRIGAN"
$conn.UseIntegratedSecurity = $true
#create new TraceServer object
#The TraceServer class can start and read traces
$trcserver = New-Object -TypeName Microsoft.SqlServer.Management.Trace.TraceServer
#need to get a handle to a Trace Template
#in this case we are using the Standard template
#that comes with Microsoft
$standardTemplate = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Profiler\Templates\Microsoft SQL Server\110\Standard.tdf"
$trcserver.InitializeAsReader($conn,$standardTemplate) | Out-Null
$received = 0
#where do you want to write the trace?
#here we compose a timestamped file
$folder = "C:\Temp\"
$currdate = Get-Date -Format "yyyy-MM-dd_hmmtt"
$filename = "$($instanceName)_trace_$($currdate).trc"
$outputtrace = Join-Path $folder $filename
#number of events to capture
$numevents = 10
#create new TraceFile object
#and initialize as writer
#The TraceFile class can read and write a Trace File
$trcwriter = New-Object Microsoft.SqlServer.Management.Trace.TraceFile
$trcwriter.InitializeAsWriter($trcserver,$outputtrace) | Out-Null
while ($trcserver.Read())
{
#write incoming trace to file
$trcwriter.Write() | Out-Null
$received++
#we dont know how many columns are included
#in the template so we will have to loop if we
#want to capture and display all of them
#get number of columns
#we need to subtract 1 because column array
#is zero-based, ie index starts at 0
$cols = ($trcserver.FieldCount) -1
#we'll need to dynamically create a hash to
#contain the trace events
#because we need to dynamically build this hash
#based on number of columns included in a template,
#we'll have to store the code to build the hash
#as string first and then invoke expression
#to actually build the hash in PowerShell
$hashstr = "`$hash = `$null; `n `$hash = @{ `n"
for($i = 0;$i -le $cols; $i++)
{
$colname = $trcserver.GetName($i)
#add each column to our hash
#we will not capture the binary data
if($colname -ne "BinaryData")
{
$colvalue = $trcserver.GetValue($trcserver.GetOrdinal($colname))
$hashstr += "`"$($colname)`"=`"$($colvalue)`" `n"
}
}
$hashstr += "}"
#create the real hash
Invoke-Expression $hashstr
#display
$item = New-Object PSObject -Property $hash
$item | Format-List
if($received -ge $numevents)
{
break
}
}
$trcwriter.Close()
$trcserver.Close()
What you should see in your PowerShell ISE results pane is a stream of events that are happening in SQL Server, much like what you would see if you were running SQL Server Profiler.
How it works...
This is a long recipe. There are quite a few things going on here. What we are doing is simulating what you can do and see with SQL Server Profiler using PowerShell. There will be cases where this will be useful and cases where SQL Server Profiler is still the right tool for the job. Regardless, it is good to know how to do it using PowerShell.
To start, it is important to use PowerShell ISE (x86), instead of the usual (x64) version we have been using in other recipes. The classes we need to use are only supported in 32-bit mode.
We first need to load a few extra libraries, ConnectionInfo and ConnectionInfoExtended, because we will need to pass these as arguments to the TraceServer class constructor when we are creating our TraceServer object.
#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfoExtended") | Out-Null
#load ConnectionInfo, contains SqlConnectionInfo class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfo") | Out-Null
Next, we need to create a SqlConnectionInfo connection object, which needs to be stored into a ConnectionInfoBase class.
#create SqlConnectionInfo object,
#specifically required to run the traces
[Microsoft.SqlServer.Management.Common.ConnectionInfoBase]
$conn = New-Object Microsoft.SqlServer.Management.Common.SqlConnectionInfo -ArgumentList "KERRIGAN"
$conn.UseIntegratedSecurity = $true
There are a couple of Trace-specific classes we need to initialize. The first one is the TraceServer— which will enable us to start and read the traces.
#create new TraceServer object
#The TraceServer class can start and read traces
$trcserver = New-Object -TypeName Microsoft.SqlServer.Management.Trace.TraceServer
We will need to initialize this as Reader, and we need to pass our connection object and the path to our Standard Trace Template:
#need to get a handle to a Trace Template
#in this case we are using the Standard template
#that comes with Microsoft
$standardTemplate = "C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Profiler\Templates\Microsoft SQL Server\110\Standard.tdf"
$trcserver.InitializeAsReader($conn,$standardTemplate) |
Out-Null
The goal of our recipe is to both start and read the trace, as well as write new trace events to a trace file. To achieve this, we need to create a TraceFile object, which allows for writing the Trace file.
#create new TraceFile object
#and initialize as writer
#The TraceFile class can read and write a Trace File
$trcwriter = New-Object Microsoft.SqlServer.Management.Trace.TraceFile
$trcwriter.InitializeAsWriter($trcserver,$outputtrace) |
Out-Null
Once the TraceServer and TraceFile objects are set up, we can start reading the trace. This will need to happen in a loop:
while ($trcserver.Read())
This start of the while loop will go on as long as there are events being captured by our TraceServer object.
Inside the loop, we do two things. The first one is we write these events to a trace file, using our TraceFile object called $trcwriter:
$trcwriter.Write()
The second thing we do is display the trace. For this particular exercise, we want to capture the events and be able to display them in a tabular fashion if we need to. To do this, we can store this event data in a hash, and display this before the end of the loop. This is a little bit challenging to do if you do not know which columns, and how many columns, are being captured. This will depend on the trace template you are using. To accommodate different templates, we'll determine first how many columns are being captured by the TraceServer object. Note that when we retrieve the columns from the TraceServer, the column index will start at zero, so we need to subtract one from the total number of columns to avoid any index out of bounds errors.
$cols = ($trcserver.FieldCount) -1
Based on the columns, we can dynamically build our hash. We can use the GetName method of the TraceServer object to get the name of the incoming column, and the GetValue and GetOrdinal methods of the TraceServer class to extract the value of the column coming in.
$hashstr = "`$hash = `$null; `n `$hash = @{ `n"
for($i = 0;$i -le $cols; $i++)
{
$colname = $trcserver.GetName($i)
#add each column to our hash
#we will not capture the binary data
if($colname -ne "BinaryData")
{
$colvalue = $trcserver.GetValue($trcserver.GetOrdinal($colname))
$hashstr += "`"$($colname)`"=`"$($colvalue)`" `n"
}
}
$hashstr += "}"
This is an example of the dynamically constructed hash code:
We then take this dynamically created code to create the actual hash using the Invoke-Expression cmdlet:
Invoke-Expression $hashstr
Once the hash is created, we can display it on the screen:
#display
$item = New-Object PSObject -Property $hash
$item | Format-List
When done with our loop, we need to close both the TraceServer and TraceFile handles:
$trcwriter.Close()
$trcserver.Close()
See also
It is a little bit outdated, but is still very relevant if you want to programmatically work with traces using .NET languages.
Extracting the contents of a trace file
In this recipe, we will extract the contents of a trace file (.trc) using PowerShell.
Getting ready
We will need to use the x86 version of PowerShell and/or PowerShell ISE for this recipe. This is unfortunate, but some of the classes we need to use are only supported in 32-bit mode.
In this recipe, we will use a previously saved trace (.trc) file. Feel free to substitute this with a trace file that you have available.
How to do it...
Let's look at how we can extract the contents of a trace file.
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfoExtended") | Out-Null
#load ConnectionInfo, contains SqlConnectionInfo class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfo") | Out-Null
#replace this with your own filename
$path = "C:\Temp\KERRIGAN_trace_2012-02-11_206PM.trc"
$trcreader = New-Object Microsoft.SqlServer.Management.Trace.TraceFile
$trcreader.InitializeAsReader($path)
#extract all
$result = @()
if($trcreader.Read())
{
while($trcreader.Read())
{
#let's extract only the ones that
#took more than 1000ms
$duration = $trcreader.GetValue($trcreader.GetOrdinal("Duration"))
if($duration -ge 1000)
{
$cols = ($trcreader.FieldCount) -1
#we need to dynamically build the hash string
#because we don't know how many columns
#are in the incoming trace file
$hashstr = "`$hash = @{ `n"
for($i = 0;$i -le $cols; $i++)
{
$colname = $trcreader.GetName($i)
#don't include binary data
if($colName -ne "BinaryData")
{
$colvalue = $trcreader.GetValue($trcreader.GetOrdinal($colname))
$hashstr += "`"$($colname)`"=`"$($colvalue)`" `n"
}
}
$hashstr += "}"
#create the real hash
Invoke-Expression $hashstr
$item = New-Object PSObject -Property $hash
$result += $item
}
}
}
#display
$result | Format-List
Once the script finishes executing, the results on your screen should look like this:
How it works...
To extract the contents of a trace file (.trc), we first need to to load a few extra libraries, ConnectionInfo and ConnectionInfoExtended. These contain the TraceFile class we need to use in this recipe.
#load ConnectionInfoExtended, this contains TraceFile class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfoExtended") | Out-Null
#load ConnectionInfo, contains SqlConnectionInfo class
[Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.ConnectionInfo") | Out-Null
We then need to create a TraceFile object, initialized as a reader:
#replace this with your own filename
$path = "C:\Temp\KERRIGAN_trace_2012-02-11_206PM.trc"
$trcreader = New-Object Microsoft.SqlServer.Management.Trace.TraceFile
$trcreader.InitializeAsReader($path)
To read all the contents, we need to put the reader in a while loop, and keep on iterating while there are events in the trace file to be read:
while($trcreader.Read())
In our recipe, we only cared about any events that had a duration of over 1000 ms.
#let's extract only the ones that took more than 1000ms
$duration = $trcreader.GetValue($trcreader.GetOrdinal("Duration"))
The GetOrdinal method of the TraceFile class allows you to get the nth column in which Duration is. Using this, we can pass it to the GetValue method of the TraceFile class to extract the value in that column position.
Also note that in our recipe, we extract all the columns except the BinaryData in the trace file. We do this by looping through all the columns, and putting them into a hash we dynamically build:
#we need to dynamically build the hash string
#because we don't know how many columns are in the
#incoming trace file
$hashstr = "`$hash = @{ `n"
for($i = 0;$i -le $cols; $i++)
{
$colname = $trcreader.GetName($i)
#don't include binary data
if($colName -ne "BinaryData")
{
$colvalue = $trcreader.GetValue($trcreader.GetOrdinal($colname))
$hashstr += "`"$($colname)`"=`"$($colvalue)`" `n"
}
}
$hashstr += "}"
This is an example of the dynamically constructed hash code:
Once the hash string is built, we can use the Invoke-Expression cmdlet to create the real hash.
#create the real hash
Invoke-Expression $hashstr
We then store this to an array, which we display after the loop is finished:
$item = New-Object PSObject -Property $hash
$result += $item
}
}
}
#display
$result | Format-List
An alternative to dynamically building the hash is explicitly identifying which columns you want included in the hash. This is doable only if you are familiar with the template used when capturing the trace file. The syntax you would use would be similar to this:
$hash = @{
"EventClass"=$trcreader.GetValue($trcreader.GetOrdinal("EventClass"))
"TextData"=$trcreader.GetValue($trcreader.G$hash = @{
"EventClass"=$trcreader.GetValue($trcreader.GetOrdinal("EventClass"))
"TextData"=$trcreader.GetValue($trcreader.GetOrdinal("TextData"))
"Duration"=$trcreader.GetValue($trcreader.GetOrdinal("Duration"))
}
$item = New-Object PSObject -Property $hash
$result += $item
See also
Creating a database master key
In this recipe, we will create a database master key.
Getting ready
We will create a database master key for the master database in this recipe. You can substitute a different database for this exercise if you wish.
The T-SQL equivalent of what we are trying to accomplish is:
USE master
GO
CREATE MASTER KEY ENCRYPTION
BY PASSWORD = 'P@ssword'
How to do it...
Let's list the steps required to complete the task:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$VerbosePreference = "Continue"
$masterdb = $server.Databases["master"]
if($masterdb.MasterKey -eq $null)
{
$masterkey = New-Object Microsoft.SqlServer.Management.Smo.MasterKey -ArgumentList $masterdb
$masterkey.Create("P@ssword")
Write-Verbose "Master Key Created : $($masterkey.CreateDate)"
}
$VerbosePreference = "SilentlyContinue"
If successful, in your output, you should see a one-line message containing the success message, and the date on which the master key was created.
How it works...
A database master key is required if you want to do any database-level encryption. It is used to encrypt keys and certificates in a specific database.
Creating a database master key is straightforward. You need to create an SMO MasterKey object:
$masterkey = New-Object Microsoft.SqlServer.Management.Smo.MasterKey -ArgumentList $masterdb
$masterkey.Create("P@ssword")
There are a couple of overloads to the Create method of the MasterKey class. In our recipe, we chose to provide a single password. The alternative is to pass both a decryption and encryption password.
If the database master key already exists, you may not necessarily be able to drop it right away. If there are encryption objects already created that are being protected by the database master key, you must drop those encryption objects first before you can drop the database master key. Once there are no more dependent objects, you can use the following PowerShell code to drop the master key:
#drop master key
$masterkey.Drop()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.masterkey(v=sql.110).aspx
Creating a certificate
This recipe demonstrates how you can create a certificate using PowerShell and SMO.
Getting ready
In this recipe, we will create a certificate called Test Certificate, protected by the database master key. You will need to make sure that the database master key has been created first for the database.
The T-SQL equivalent of what we are trying to accomplish is:
CREATE CERTIFICATE [Test Certificate]
WITH SUBJECT = N'This is a test certificate.',
START_DATE = N'02/10/2012',
EXPIRY_DATE = N'01/01/2015'
How to do it...
Let's list the steps required to complete the task.
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$certificateName = "Test Certificate"
$masterdb = $server.Databases["master"]
if ($masterdb.Certificates[$certificateName])
{
$masterdb.Certificates[$certificateName].Drop()
}
$certificate = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $masterdb, $certificateName
#set properties
$certificate.StartDate = "February 10, 2012"
$certificate.Subject = "This is a test certificate."
$certificate.ExpirationDate = "January 01, 2015"
#create certificate
#you can optionally provide a password, but this
#certificate we created is protected by the master key
$certificate.Create()
#display all properties
$certificate | Select *
When the certificate is created and the script is done executing, the resulting screen will look similar to the following screenshot:
SELECT *
FROM sys.certificates
WHERE [name] = 'Test Certificate'
How it works...
To create a certificate, you need to first create an SMO Certificate object:
$certificate = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $masterdb, $certificateName
There are a few properties we can set for an SMO Certificate object. In this recipe, we set the StartDate, Subject, and ExpirationDate values:
$certificate.StartDate = "February 10, 2012"
$certificate.Subject = "This is a test certificate."
$certificate.ExpirationDate = "January 01, 2015"
If you want to create a certificate that is protected by the database master key, you can just invoke the Create method of the Certificate class. You can optionally provide a password:
$certificate.Create()
There's more...
A certificate is essentially a digitally signed document that binds a public key with an identity, and is used to prove authenticity of ownership. This helps prevent malicious impersonations, in other words, somebody or something pretending to be someone or something they are not.
Learn more about certifi cates from MSDN:
http://msdn.microsoft.com/en-us/library/ms189586(v=sql.110).aspx
See also
Creating symmetric and asymmetric keys
In this recipe, we will create symmetric and asymmetric keys.
Getting ready
In this recipe, we will use the TestDB database. If you don't already have this database, log in the SQL Server Management Studio and execute the following T-SQL code:
IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO
We will also need a user called eric in our TestDB database. This user will map to the SQL login eric. Feel free to create this user using the Creating a database user recipe. Alternatively, execute the following T-SQL code from SQL Server Management Studio:
Use TestDB
GO
CREATE USER [eric]
FOR LOGIN [eric]
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#database handle
$databasename = "TestDB"
$database = $server.Databases[$databasename]
#==
Create Database Master Key
#==
#this is equivalent to:
<#
USE TestDB
GO
CREATE MASTER KEY ENCRYPTION
BY PASSWORD = 'P@ssword'
#>
#create (user) database master key
#if this doesn't exist yet
$dbmk = New-Object Microsoft.SqlServer.Management.Smo.MasterKey -ArgumentList $database
$dbmk.Create("P@ssword")
#==
Create Asymmetric Key
#==
#this is equivalent to:
<#
USE TestDB
GO
CREATE ASYMMETRIC KEY [EncryptionAsymmetricKey]
AUTHORIZATION [eric]
WITH ALGORITHM = RSA_2048
#>
$asymk = New-Object Microsoft.SqlServer.Management.Smo.AsymmetricKey -ArgumentList $database, "EncryptionAsymmetricKey"
#replace this with a known database user in the
#database you are using for this recipe
$asymk.Owner = "eric"
$asymk.Create([Microsoft.SqlServer.Management.Smo.AsymmetricKeyEncryptionAlgorithm]::Rsa2048)
#==
Create Symmetric Key
#==
#this is equivalent to :
<#
CREATE CERTIFICATE [Encryption]
WITH SUBJECT = N'This is a test certificate.',
START_DATE = N'02/10/2012',
EXPIRY_DATE = N'01/01/2015'
#>
#create certificate first to be used for Symmetric Key
$cert = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $database, "Encryption"
$cert.StartDate = "February 10, 2012"
$cert.Subject = "This is a test certificate."
$cert.ExpirationDate = "January 01, 2015"
$cert.Create()
#create a symmetric key based on certificate
#this is equivalent to :
<#
CREATE SYMMETRIC KEY [EncryptionSymmetricKey]
WITH ALGORITHM = TRIPLE_DES
ENCRYPTION BY CERTIFICATE [Encryption]
#>
$symk = New-Object Microsoft.SqlServer.Management.Smo.SymmetricKey -ArgumentList $database, "EncryptionSymmetricKey"
$symkenc = New-Object Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryption ([Microsoft.SqlServer.Management.Smo.KeyEncryptionType]::Certificate, "Encryption")
$symk.Create($symkenc, [Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryptionAlgorithm]::TripleDes)
#list each object we created
$dbmk.Parent
$cert.Name
$asymk
$symk
The resulting screen should look similar to the following:
Alternatively, you can use the following T-SQL statement to confirm the existence of the database master key, certificate, symmetric, and asymmetric keys we created in this recipe:
SELECT 'DB Master Key' ,
is_master_key_encrypted_by_server
FROM sys.databases
WHERE [name] = 'TestDB'
SELECT 'Certificate' , *
FROM sys.certificates
WHERE [name] = 'Encryption'
SELECT 'Asymmetric Key' , *
FROM sys.asymmetric_keys
WHERE [name] = 'EncryptionAsymmetricKey'
SELECT 'Symmetric Key' , *
FROM sys.symmetric_keys
WHERE [name] = 'EncryptionSymmetricKey'
How it works...
Before we can create a symmetric or asymmetric key, we have to first create a database master key. MSDN defines a database master key as follows:
a symmetric key used to protect the private keys of certificates and asymmetric keys that are present in the database.
Consider the following code for creating the master key:
$dbmk = New-Object Microsoft.SqlServer.Management.Smo.MasterKey -ArgumentList $database
$dbmk.Create("P@ssword")
Once the database master key is in place, we can create our symmetric and asymmetric keys.
To create the asymmetric key, you need to create an SMO asymmetric key instance, and assign an owner and encryption algorithm. The available AsymmetricKeyEncryptionAlgorithm values are CryptographicProviderDefined, Rsa512, Rsa1024, and Rsa2048.
$asymk = New-Object Microsoft.SqlServer.Management.Smo.AsymmetricKey -ArgumentList $database, "EncryptionAsymmetricKey"
#replace this with a known user in your instance
$asymk.Owner = "EncryptionUser"
$asymk.Create([Microsoft.SqlServer.Management.Smo.AsymmetricKeyEncryptionAlgorithm]::Rsa2048)
To create a symmetric key, we must first create a certificate:
#create certificate first to be used for Symmetric Key
$cert = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $database, "Encryption"
$cert.StartDate = "February 10, 2012"
$cert.Subject = "This is a test certificate."
$cert.ExpirationDate = "January 01, 2015"
$cert.Create()
To create a symmetric key based on the certificate, we should first instantiate an SMO SymmetricKey object:
$symk = New-Object Microsoft.SqlServer.Management.Smo.SymmetricKey -ArgumentList $database, "EncryptionSymmetricKey"
We then need to specify the SymmetricKey encryption type. The available values are SymmetricKey, Certificate, Password, AsymmetricKey, and Provider.
$symkenc = New-Object Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryption ([Microsoft.SqlServer.Management.Smo.KeyEncryptionType]::Certificate, "Encryption")
When we create the SymmetricKey, we must also specify which algorithm to use. The available SymmetricKeyAlgorithm values are CryptographicProviderDefined, RC2, RC4, Des, TripleDes, DesX, Aes128, Aes192, Aes256, and TripleDes3Key:
$symk.Create($symkenc, [Microsoft.SqlServer.Management.Smo.SymmetricKeyEncryptionAlgorithm]::TripleDes)
There's more...
Symmetric and asymmetric keys can be used to set up cell-level encryption in SQL Server. The typical steps to setting up cell-level encryption are:
You can learn more about symmetric and asymmetric keys from this MSDN article:
http://support.microsoft.com/kb/246071
Another MSDN article that walks you through how you can encrypt a column of data using T-SQL is http://msdn.microsoft.com/en-us/library/ms179331(v=sql.110).aspx.
See also
Setting up Transparent Data Encryption (TDE)
This recipe shows how you can set up Transparent Data Encryption using PowerShell and SMO.
Getting ready
In this recipe, we will enable Transparent Data Encryption (TDE) on the TestDB database. If you don't already have this test database, log in the SQL Server Management Studio and execute the following T-SQL code:
IF DB_ID('TestDB') IS NULL
CREATE DATABASE TestDB
GO
You must already have a database master key for this TestDB database. If not, create it using the Creating a database master key recipe.
How to do it...
These are the steps to set up Transparent Data Encryption (TDE) programmatically:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "TestDB"
$database = $server.Databases[$databasename]
#if not yet created, create or obtain a certificate
#protected by the master key
#this is equivalent to
<#
USE master
GO
CREATE CERTIFICATE [Encryption]
WITH SUBJECT = N'This is a test certificate.',
START_DATE = N'02/10/2012',
EXPIRY_DATE = N'01/01/2015'
#>
$certificateName = "Test Certificate"
$masterdb = $server.Databases["master"]
if ($masterdb.Certificates[$certificateName])
{
$masterdb.Certificates[$certificateName].Drop()
}
$certificate = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $masterdb, $certificateName
#create certificate protected by the master key
$certificate.StartDate = "February 10, 2012"
$certificate.Subject = "This is a test certificate."
$certificate.ExpirationDate = "January 01, 2015"
#you can optionally provide a password, but this
#certificate we created is protected by the master key
$certificate.Create()
#create a database encryption key
#this is equivalent to
<#
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE [Test Certificate]
#>
$dbencryption = New-Object Microsoft.SqlServer.Management.Smo.DatabaseEncryptionKey
$dbencryption.Parent = $database
$dbencryption.EncryptionAlgorithm = [Microsoft.SqlServer.Management.Smo.DatabaseEncryptionAlgorithm]::Aes256
$dbencryption.EncryptionType = [Microsoft.SqlServer.Management.Smo.DatabaseEncryptionType]::ServerCertificate
#associate certificate name
$dbencryption.EncryptorName = $certificateName
$dbencryption.Create()
#enable TDE
#this is equivalent to :
<#
ALTER DATABASE [TestDB]
SET ENCRYPTION ON
#>
$database.EncryptionEnabled = $true
$database.Alter()
$database.Refresh()
#display TDE setting
$database.EncryptionEnabled
The resulting screen should look similar to the following:
The final line should say True, if Transparent Data Encryption was successfully turned on for TestDB.
SELECT db.name ,
db.is_encrypted ,
dm.encryption_state ,
dm.percent_complete ,
dm.key_algorithm ,
dm.key_length
FROM sys.databases db
LEFT OUTER JOIN sys.dm_database_encryption_keys dm
ON db.database_id = dm.database_id
This should give you a result similar to the following:
The encryption_state = 3 means encryption of that database has already completed. Notice also that tempdb is also encrypted. By default, if any user databases are encrypted, tempdb also automatically gets encrypted.
How it works...
There are a few preparatory steps required to enable Transparent Data Encryption (TDE).
You first need to create a master key. You will then need to create a certificate stored in the master database, and protected by the database master key for the master database.
$certificate = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Certificate -ArgumentList $masterdb, $certificateName
#create certificate protected by the master key
$certificate.StartDate = "February 10, 2012"
$certificate.Subject = "This is a test certificate."
$certificate.ExpirationDate = "January 01, 2015"
#you can optionally provide a password, but this
#certificate we created is protected by the master key
$certificate.Create()
The next step is to create a database encryption key protected by the certificate. This key is needed for transparently encrypting a user database.
#create a database encryption key
$dbencryption = New-Object Microsoft.SqlServer.Management.Smo.DatabaseEncryptionKey
We need to associate this with the database for which we want to turn on TDE.
$dbencryption.Parent = $database
When creating a database encryption key, we also need to specify the encryption algorithm. The available encryptions are Aes128, Aes192, Aes256, and TripleDes.
$dbencryption.EncryptionAlgorithm = [Microsoft.SqlServer.Management.Smo.DatabaseEncryptionAlgorithm]::Aes256
We also need to associate this key with the certificate we previously created. The possible DatabaseEncryptionType values are ServerCertificate and ServerAsymmetricKey.
$dbencryption.EncryptionType = [Microsoft.SqlServer.Management.Smo.DatabaseEncryptionType]::ServerCertificate
#associate certificate name
$dbencryption.EncryptorName = $certificateName
You are now ready to create the database encryption key:
$dbencryption.Create()
At this point, the preparatory steps are complete. We can now turn on TDE, and alter our target database.
#enable TDE
$database.EncryptionEnabled = $true
$database.Alter()
$database.Refresh()
There's more...
Transparent Data Encryption (TDE) is introduced in SQL Server 2008 as a solution for database-level encryption. If TDE is turned on, data in the data and log files are encrypted. This will also automatically encrypt tempdb.
See also
http://msdn.microsoft.com/en-us/library/bb934049(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/bb677274.aspx
Chapter 6. Backup and Restore
In this chapter, we will cover:
Introduction
Knowing how to back up and restore a database is one of the most fundamental skills you need to have when managing your database environment.
There are different ways to do backup and restore. It can be done through SQL Server Management Studio, by using stored procedures, or through SSIS. And now, these tasks can be done with PowerShell. The key is to determine which tool is best suited for the particular task.
Doing the backups and restores using PowerShell has its own advantages, including being able to automate backups across multiple servers, being able to retrieve, consolidate, and filter all backup histories if needed. It is even easier to do these tasks in SQL Server 2012 because of additional cmdlets for backup and restore. It also gives you access to the full power of SMO should you need to add additional parameters.
Changing database recovery model
In this recipe, we will explore how to change SQL Server recovery model using PowerShell.
Getting ready
We will use AdventureWorks2008R2 in this exercise, and change the recovery model from Full to Simple. Feel free to substitute this with a database of your choice.
Check what SQL Server recovery model your instance is set to, using SSMS. Open your Object Explorer and right-click on the database you chose and click on Properties | Options:
If your database is set to either Simple or Bulk-logged, change this to Full and click on OK. Since we will be using AdventureWorks2008R2 in later exercises, we need to change this recovery model back to Full after this exercise.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
#possible values for RecoveryModel are
#Full, Simple and BulkLogged
$database.DatabaseOptions.RecoveryModel = [Microsoft.SqlServer.Management.Smo.RecoveryModel]::Simple
$database.Alter()
$database.Refresh()
#list Recovery Model again
$database.DatabaseOptions.RecoveryModel
#remember to change the recovery model back
#to full for the next recipes
How it works...
To change a database's RecoveryModel property, get a handle to that database first:
$databasename = "AdventureWorks2008R2"
$database = $server.Databases[$databasename]
Once you have the handle, use the DatabaseOptions property of the database object to set the RecoveryModel property to Simple:
#possible values for RecoveryModel are
#Full, Simple and BulkLogged
$database.DatabaseOptions.RecoveryModel = [Microsoft.SqlServer.Management.Smo.RecoveryModel]::Simple
$database.Alter()
$database.Refresh()
There's more...
RecoveryModel is a database property that specifies what backup and restore operations are permitted. There are three possible values for RecoveryModel: Full, BulkLogged, and Simple.
Full and BulkLogged recovery models allow the use of logfiles for backup and restore purposes. The Full recovery model heavily uses the transaction logfiles, and allows for point-in-time recovery.
The BulkLogged recovery model minimally logs the bulk events. If there are no bulk events in the system, then point-in-time recovery is possible. If there are bulk events, however, point-in-time recoverability will be affected, and it is possible not to be able to recover from your logfiles at all. See Paul Randal's blog post on A SQL Server DBA myth a day: (28/30) BULK_LOGGED recovery model:
http://www.sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(2830)-BULK_LOGGED-recovery-model.aspx
The Simple recovery model does not support transaction log backups and restores at all. This means that there is no point-in-time recovery possible, and the window for data loss could be large. Simple recovery model, therefore, is not a recommended setting for production servers; it can be a setting used for development and sandbox servers, or any instance where data loss would not be critical.
The RecoveryModel you choose in your environment will typically be determined by the company's Recovery Point Objective (RPO) and Recovery Time Objective (RTO), although in most cases the recommended setting would be Full recovery model.
Read more about RecoveryModel from MSDN:
http://msdn.microsoft.com/en-us/library/ms189275(v=sql.110).aspx
See also
Listing backup history
In this recipe, we will list the backup history for a SQL Server instance.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#display date of last backup
$server.Databases |
Select Name, RecoveryModel, LastBackupDate, LastDifferentialBackupDate, LastLogBackupDate |
Format-Table -AutoSize
Your result should look similar to the following screenshot:
Note that when you see a date of 1/1/0001 12:00:00 AM, then it means no backup has ever been taken for that database.
How it works...
Listing the backup history is a simple task, using a little bit of PowerShell and SMO. After you get a database handle, you can display the last backup dates onto the screen.
#display days ago since last backup
$server.Databases |
Select Name, RecoveryModel, LastBackupDate, LastDifferentialBackupDate, LastLogBackupDate |
Format-Table -AutoSize
Alternatively, you can capture this in a file, or a table, whichever your requirements specify.
See also
Creating a backup device
This recipe shows how you can create a backup device using PowerShell.
Getting ready
We are going to create a backup device in this recipe. The equivalent T-SQL of what we are trying to accomplish is:
EXEC master.dbo.sp_addumpdevice @devtype = N'disk',
@logicalname = N'Full Backups',
@physicalname = N'C:\Backup\backupfile.bak'
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#this file will be created by PowerShell/SMO
$backupfilename = "Full Backups"
$backupfile = "C:\Backup\backupfile.bak"
$backupdevice = New-Object Microsoft.SqlServer.Management.Smo.BackupDevice($server,$backupfilename)
#BackupDeviceType values are:
#CDRom, Disk, FloppyA, FloppyB, Tape, Pipe, Unknown
$backupdevice.BackupDeviceType = [Microsoft.SqlServer.Management.Smo.BackupDeviceType]::Disk
$backupdevice.PhysicalLocation = $backupfile
$backupdevice.Create()
#list backup devices
$server.BackupDevices
How it works...
A backup device is a layer of abstraction that allows you to reference a backup medium—be it a file, a network share, or a tape—using a logical name instead of specifying the full physical path.
To create a backup device using PowerShell and SMO, you will need to first create a handle to an SMO BackupDevice object:
$backupdevice = New-Object Microsoft.SqlServer.Management.Smo.BackupDevice($server,$backupfilename)
You will also need to specify BackupDeviceType, and the physical location of the media. BackupDeviceType can be one of CDRom, Disk, FloppyA, FloppyB, Tape, Pipe, and Unknown. This is illustrated in the following code:
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$backupdevice.BackupDeviceType = [Microsoft.SqlServer.Management.Smo.BackupDeviceType]::Disk
$backupdevice.PhysicalLocation = $backupfile
$backupdevice.Create()
See also
http://msdn.microsoft.com/en-us/library/ms179313(v=sql.110).aspx
Listing backup header and file list information
In this recipe, we will look at listing backup header information from a backup file.
Getting ready
For this task, we will look at listing an existing backup's header information.
If you do not have any backups in your system yet, you can do any of this chapter's backup recipes prior to performing this recipe.
How to do it...
To list the header information, follow these steps:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
#replace this with your backup file
$backupfile = "AdventureWorks2008R2_Full_20120205231407.bak"
#change this to where your backup directory is
#in our case we're using default backup directory
$backupfilepath = Join-Path $server.Settings.BackupDirectory $backupfile
$smoRestore.Devices.AddDevice($backupfilepath, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadBackupHeader($server)
$smoRestore.ReadFileList($server)
The result you are going to get will be similar to the following screenshot:
Notice that you can see the BackupName, BackupType, ServerName, BackupSize, BackupStartDate, BackupFinishDate, and different LSN values.
$smoRestore.ReadFileList($server)
The result you are going to get will be similar to the following screenshot:
Notice that you can see properties such as LogicalName, PhysicalName, FileGroupName, and Size of both the data and logfiles associated with this backup file.
How it works...
You will often want to find out more information about the contents of your backup files. The backup header and the file list of the backup files allow you to retrieve additional information about the contents of a backup file or backup device. Starting with SQL Server 2008, one must have the CREATE DATABASE permission before the header information can be listed.
To start, we must first create a reference to an SMO Restore object:
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore;
The ReadBackupHeader method of the Microsoft.SqlServer.Management.Smo.Restore class lists all the backup headers for all backup sets contained in a backup device or file. The information it returns includes:
We will also need to create a reference to the backup file or backup device from which we wish to read the information. We do this by adding the backup file using the AddDevice method of the Restore object.
$backupfile = "AdventureWorks2008R2_Full_20120205231407.bak"
#change this to where your backup directory is
#in our case we're using default backup directory
$backupfilepath = Join-Path $server.Settings.BackupDirectory $backupfile
$smoRestore.Devices.AddDevice($backupfilepath, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
To retrieve the backup header, just invoke the ReadBackupHeader method of the Restore object and pass in the server object as an argument.
$smoRestore.ReadBackupHeader($server)
The file list contains the actual database and logfiles associated in a particular backup set. Listing the file list requires a very similar syntax to reading the backup header. We need to invoke the method ReadFileList, passing the server object as an argument again.
$smoRestore.ReadFileList($server)
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.restore_methods(v=sql.110).aspx
Creating a full backup
In this recipe, we will look at how we can do a full database backup using PowerShell.
Getting ready
We will use the AdventureWorks2008R2 database for this recipe. We will create a full compressed backup of the database to a timestamped .bak file in the C:\Backup folder. Feel free to use a database of your choice for this task.
The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:
BACKUP DATABASE [AdventureWorks2008R2]
TO DISK = N'C:\Backup\AdventureWorks2008R2_Full_20120227092409.bak'
WITH NOFORMAT, INIT,
NAME = N'AdventureWorks2008R2 Full Backup',
NOSKIP, REWIND, NOUNLOAD, COMPRESSION,
STATS = 10, CHECKSUM
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_Full_$($timestamp).bak"
$fullBackupFile = Join-Path $backupfolder $backupfile
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $fullBackupFile `
-Checksum `
-Initialize `
-BackupSetName "$databasename Full Backup" `
-CompressionOption On
Check your C:\Backup directory and confirm that the timestamped backup file has been created.
#confirm by reading the header
#backup type for full is 1
#this is a block of code you would want to put
#in a function so you can use anytime
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fullBackupFile, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadBackupHeader($server)
$smoRestore.ReadFileList($server)
How it works...
In this recipe, we first create a timestamped filename:
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_Full_$($timestamp).bak"
$fullBackupFile = Join-Path $backupfolder $backupfile
This will give you a filename similar to this:
C:\Backup\AdventureWorks2008R2_Full_20120227092409.bak
Next, you need to invoke the Backup-SqlDatabase cmdlet. The Backup-SqlDatabase cmdlet has been introduced for SQL Server 2012, and this cmdlet encapsulates a lot of the options that used to be available only via SMO.
It is imperative, for this recipe, that we use the Get-Help cmdlet for the Backup-SqlDatabase cmdlet first, to know which parameters are available.
Here is one part of the help content:
SYNTAX
Backup-SqlDatabase [-Database] <string> [[-BackupFile] <string[]>] [-BackupAction <BackupActionType>] [-BackupDevice <BackupDeviceItem[]>]
[-BackupSetDescription <string>] [-BackupSetName <string>] [-BlockSize <int>] [-BufferCount <int>] [-Checksum] [-CompressionOption
<BackupCompressionOptions>] [-ContinueAfterError] [-CopyOnly] [-DatabaseFile <string[]>] [-DatabaseFileGroup <string[]>] [-ExpirationDate
<DateTime>] [-Format] [-Incremental] [-Initialize] [-LogTruncationType <BackupTruncateLogType>] [-MaxTransferSize <int>] [-MediaDescription
<string>] [-MediaName <string>] [-MirrorDevices <BackupDeviceList[]>] [-NoRecovery] [-NoRewind] [-Passthru] [-Path <string[]>] [-Restart]
[-RetainDays <int>] [-SkipTapeHeader] [-UndoFileName <string>] [-UnloadTapeAfter] [-Confirm] [-WhatIf] [<CommonParameters>]
At the time of writing this book, there are still some corrections that need to be made to the help contents for Backup-SqlDatabase. This is documented in this MS Connect item http://connect.microsoft.com/SQLServer/feedback/details/683594/backup-sqldatabase-cmdlet-help. The content of the help, nevertheless, is still useful in getting you up and running with the cmdlet.
In our recipe, this is the command we executed:
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $fullBackupFile `
-Checksum `
-Initialize `
-BackupSetName "$databasename Full Backup" `
-CompressionOption On
Note that we used the line continuation character back tick (`) for readability purposes, so we can align each parameter at the same position on each line.
Let's explain in more detail these options that we have chosen:
Parameter | Explanation |
---|---|
-ServerInstance $instanceName | Instance to backup |
-Database $databasename | Database to backup |
-BackupFile $fullBackupFile | Backup file name |
-Checksum | Enable backup checksum, which can be used in restore operation to determine if backup file is corrupt |
-Initialize | Specifies backup set contained in the file or backup device will be overwritten |
-BackupSetName "$databasename Full Backup" | Backup set name |
-CompressionOption On | Specifies whether compression should be applied to the backup file You can also provide the complete enum reference for the CompressionOption value: -CompressionOption ([Microsoft.SqlServer.Management.Smo.BackupCompressionOptions]::On) |
Once you get more familiar with the Backup-SqlDatabase cmdlet, you will soon realize that all other backup types will be just a matter of adding or changing some of these parameters.
There's more...
Although there is already a cmdlet available for backing up databases, it will also be useful to look at how you can do the backups via SMO. Using SMO may be the more code-heavy way of tackling a database backup in PowerShell, but it is nonetheless still very powerful and flexible.
The cmdlet can be viewed as simply a wrapper to the SMO backup methods. Taking a peek at how this is done can be a beneficial exercise.
The first few steps for this approach are similar to the steps we have for this recipe: import SQLPS, and create the SMO server object. After that, we will need to create an SMO Backup object.
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_Full_$($timestamp).bak"
$fullBackupFile = Join-Path $backupfolder $backupfile
#This belongs in Microsoft.SqlServer.SmoExtended assembly
$smoBackup = New-Object Microsoft.SqlServer.Management.Smo.Backup
With a handle to the SMO backup object, you will have more granular control over what values are set to which properties. Action can be any of Database, File, or Log.
$smoBackup.Action = [Microsoft.SqlServer.Management.Smo.BackupActionType]::Database
$smoBackup.BackupSetName = "$databasename Full Backup"
$smoBackup.Database = $databasename
$smoBackup.MediaDescription = "Disk"
$smoBackup.Devices.AddDevice($fullBackupFile, "File")
$smoBackup.Checksum = $true
$smoBackup.Initialize = $true
$smoBackup.CompressionOption = [Microsoft.SqlServer.Management.Smo.BackupCompressionOptions]::On
You can also optionally set up your own event notification on the backup progress using the Microsoft.SqlServer.Management.Smo.PercentCompleteEventHandler and Microsoft.SqlServer.Management.Common.ServerMessageEventHandler classes.
#the notification part below is optional
#it just creates an
#event handler that indicates progress every 20%
$smoBackup.PercentCompleteNotification = 20
$percentEventHandler = [Microsoft.SqlServer.Management.Smo.PercentCompleteEventHandler] {
Write-Host "Backing up $($databasename)...$($_.Percent)%"
}
$completedEventHandler = [Microsoft.SqlServer.Management.Common.ServerMessageEventHandler] {
Write-Host $_.Error.Message
}
$smoBackup.add_PercentComplete($percentEventHandler)
$smoBackup.add_Complete($completedEventHandler)
When done setting the properties, you can just invoke the SqlBackup method of the SMO Backup class and pass the server object:
#backup
$smoBackup.SqlBackup($server)
Conversely, when you do a restore with SMO, the steps are going to be pretty similar. You will need to create the SMO Restore object, set the properties, and call the SqlRestore method of the Restore class in the end.
More about Backup and PercentCompleteEventHandler
Learn more about these SMO classes:
See also
Creating a backup on mirrored media sets
In this recipe, we will create a full database backup on mirrored backup files.
Getting ready
We will use the AdventureWorks2008R2 database for this recipe. We will create a mirrored backup of the database, and both timestamped backup files will be stored in C:\Backup. Feel free to substitute this with the database you want to use with mirrored backups.
The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:
BACKUP DATABASE [AdventureWorks2008R2]
TO DISK = N'AdventureWorks2008R2.bak'
MIRROR
TO DISK = N'C:\Backup\AdventureWorks2008R2_Full_20120227092409_Copy1.bak'
MIRROR TO DISK = N'C:\Backup\AdventureWorks2008R2_Full_20120227092409_Copy2.bak'
WITH FORMAT, INIT,
NAME = N'AdventureWorks2008R2 Full Backup', SKIP, REWIND,
NOUNLOAD, COMPRESSION, STATS = 10, CHECKSUM
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
#create filenames, which we will use as Device
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile1 = Join-Path $backupfolder "$($databasename)_Full_$($timestamp)_Copy1.bak"
$backupfile2 = Join-Path $backupfolder "$($databasename)_Full_$($timestamp)_Copy2.bak"
#create a backup device list
#in this example, we will only use two (2)
#mirrored media sets
#note a maximum of four (4) is allowed
$backupDevices = New-Object Microsoft.SqlServer.Management.Smo.BackupDeviceList(2)
$backupDevices.AddDevice($backupfile1, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$backupDevices.AddDevice($backupfile2, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
#backup database
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupSetName "$databasename Full Backup" `
-Checksum `
-Initialize `
-FormatMedia `
-SkipTapeHeader `
-MirrorDevices $backupDevices `
-CompressionOption On
How it works...
With SQL Server, it is possible to create a backup with up to four mirrors per media set. Mirrored media sets allow you to have multiple copies of that backup, which are stored in different backup devices.
For our recipe, we must first create a set of files that we will use to save our backup to.
#create backup devices
#in this example, we will only use two (2) mirrored media sets
#note a maximum of four (4) is allowed
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile1 = Join-Path $backupfolder "$($databasename)_Full_$($timestamp)_Copy1.bak"
$backupfile2 = Join-Path $backupfolder "$($databasename)_Full_$($timestamp)_Copy2.bak"
We then need to add these files' backup devices to our BackupDeviceList object. The value that we pass to our BackupDeviceList constructor, represents the number of backup devices we are adding. A maximum of four is allowed for mirrored media.
$backupDevices = New-Object Microsoft.SqlServer.Management.Smo.BackupDeviceList(2)
$backupDevices.AddDevice($backupfile1, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$backupDevices.AddDevice($backupfile2, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
In the Backup-SqlDatabase cmdlet, the highlighted code in the following snippet shows the options that enable mirrored backups. Note that we used the line continuation character backtick (`) for readability purposes, so we can align each parameter at the same position on each line.
#backup database
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupSetName "$databasename Full Backup" `
-Checksum `
-Initialize `
-FormatMedia `
-SkipTapeHeader `
-MirrorDevices $backupDevices `
-CompressionOption On
Let's explain a bit more about some of these highlighted options:
Parameter | Explanation |
---|---|
-Initialize | Specifies backup set contained in the file or backup device will be overwritten |
-FormatMedia | Overwrites existing media header information, and creates a new media set |
-SkipTapeHeader | Skip checking backup tape expiration |
-MirrorDevices | Allows backup on mirrored media sets; accepts a BackupDeviceList array |
See also
http://msdn.microsoft.com/en-us/library/ms175053(v=sql.110).aspx
Creating a differential backup
This recipe shows how you can create a differential backup on your database.
Getting ready
We will use the AdventureWorks2008R2 database for this recipe. We will create a differential compressed backup of the database to a timestamped .bak file in the C:\Backup folder. Feel free to use a database of your choice for this task.
The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:
BACKUP DATABASE [AdventureWorks2008R2]
TO DISK = N'C:\Backup\AdventureWorks2008R2_Diff_20120227092409.bak'
WITH DIFFERENTIAL , NOFORMAT, INIT,
NAME = N'AdventureWorks2008R2 Diff Backup',
NOSKIP, REWIND, NOUNLOAD, COMPRESSION,
STATS = 10, CHECKSUM
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_Diff_$($timestamp).bak"
$diffBackupFile = Join-Path $backupfolder $backupfile
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $diffBackupFile `
-Checksum `
-Initialize `
-Incremental `
-BackupSetName "$databasename Diff Backup" `
-CompressionOption On
#confirm by reading the header
#backup type for differential is 5
#this is a block of code you would want to put
#in a function so you can use anytime
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($diffBackupFile, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadBackupHeader($server)
$smoRestore.ReadFileList($server)
How it works...
A differential backup captures all changes to a database since the last full backup. Creating a differential backup in PowerShell is very similar to creating a full backup when using the Backup-SqlDatabase cmdlet, with a slight change in the set of options that need to be specified.
Backup-SqlDatabase `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $diffBackupFile `
-Checksum `
-Initialize `
-Incremental `
-BackupSetName "$databasename Diff Backup" `
-CompressionOption On
The one option that differentiates a full and differential backup is the option -Incremental.
More information about these options used with the Backup-SqlDatabase cmdlet is explained in more details in the Creating a full backup recipe.
There's more...
To do a differential backup using SMO, the code will be similar to the SMO code you would use with a full backup. The one line that you will need to add is:
$smoBackup.Incremental = $true
Check out a more detailed example and explanation of how to use SMO for backups, instead of the Backup-SqlDatabase cmdlet, in the Creating a full backup recipe.
See also
Creating a transaction log backup
In this recipe, we will create a transaction log backup.
Getting ready
We will use the AdventureWorks2008R2 database for this recipe. We will create a timestamped transaction log backup file in the C:\Backup folder. Feel free to use a database of your choice for this task.
Ensure the recovery model of the database you are backing up is either Full or BulkLogged. You can use the Changing database recovery model recipe as a reference. The main code you can execute to query the current recovery model setting of your database is:
$database.DatabaseOptions.RecoveryModel
You can also check this using SQL Server Management Studio.
The T-SQL syntax that will be generated by this PowerShell recipe will look similar to:
BACKUP LOG [AdventureWorks2008R2]
TO DISK = N'C:\Backup\AdventureWorks2008R2_Txn_20120815235319.bak'
WITH NOFORMAT, NOINIT, NOSKIP, REWIND, NOUNLOAD, STATS = 10
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#create a transaction log backup
$databasename = "AdventureWorks2008R2"
$timestamp = Get-Date -Format yyyyMMddHHmmss
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_Txn_$($timestamp).bak"
$txnBackupFile = Join-Path $backupfolder $backupfile
Backup-SqlDatabase `
-BackupAction Log `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $txnBackupFile
How it works...
Transaction log backups are only permitted if the database you are backing up is in either the Full or BulkLogged Recovery Model. To create a transaction log backup using the Backup-SqlDatabase cmdlet, there is one option that must be specified:
Backup-SqlDatabase `
-BackupAction Log `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $txnBackupFile
When backing up databases, one of the most important parameters is BackupAction, which accepts three valid values: Database, Files, and Log.
You can also optionally use the fully qualified name of the BackupActionType enumeration:
-BackupAction ([Microsoft.SqlServer.Management.Smo.BackupActionType]::Log
Additional options you can specify when doing transaction log backups are:
Parameter | Explanation |
---|---|
-NoRecovery | Required when you are taking tail log backups; this puts the database in the Restoring state, and the log is not truncated |
-LogTruncationType | Accepts an SMO BackupTruncateLogType enumeration value, which is one of: NoTruncate, Truncate, and TruncateOnly |
There's more...
Tail log backups will contain anything that hasn't been backed up yet. These backups are usually taken in the event of a disaster, or just before a restore operation. Taking a tail log backup leaves the database in a Restoring state, that is, in an inaccessible state to prevent further changes.
See also
http://msdn.microsoft.com/en-us/library/ms179314(v=sql.110).aspx
Creating a filegroup backup
In this recipe, we will create a filegroup backup using the Backup-SqlDatabase PowerShell cmdlet.
Getting ready
For testing purposes, let's create a small sample database called StudentDB that contains a couple of filegroups called FG1 and FG2. Each filegroup will have two datafiles.
Open up SQL Server Management Studio and run the following script:
CREATE DATABASE [StudentDB]
ON PRIMARY
(NAME = N'StudentDB', FILENAME = N'C:\Temp\StudentDB.mdf'),
FILEGROUP [FG1]
(NAME = N'StudentData1', FILENAME = N'C:\Temp\StudentData1.ndf'),
(NAME = N'StudentData2', FILENAME = N'C:\Temp\StudentData2.ndf'),
FILEGROUP [FG2]
(NAME = N'StudentData3', FILENAME = N'C:\Temp\StudentData3.ndf')
LOG ON
(NAME = N'StudentDB_log', FILENAME = N'C:\Temp\StudentDB.ldf')
GO
We will use this database to do our filegroup backup.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$databasename = "StudentDB"
$timestamp = Get-Date -Format yyyyMMddHHmmss
#create a file to backup FG1 filegroup
$backupfolder = "C:\Backup\"
$backupfile = "$($databasename)_FG1_$($timestamp).bak"
$fgBackupFile = Join-Path $backupfolder $backupfile
Backup-SqlDatabase `
-BackupAction Files `
-DatabaseFileGroup "FG1" `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $fgBackupFile `
-Checksum `
-Initialize `
-BackupSetName "$databasename FG1 Backup" `
-CompressionOption On
#confirm by reading the header
#backup type for files is 4
#this is a block of code you would want to put
#in a function so you can use anytime
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fgBackupFile, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadBackupHeader($server)
How it works...
Backing up filegroups can be considered a practical alternative for VLDBs, or very large databases, where a full backup can take up impractical amounts of space and time. With filegroup backups, you can strategize which filegroups to back up more frequently and which ones less frequently. Filegroup backups also enable you to take advantage of online piecemeal restores for Enterprise Edition of SQL Server, starting with SQL Server 2005.
See the Performing an online piecemeal restore recipe for more details.
In our recipe, we chose to backup FG1. Our main backup command looks like this:
Backup-SqlDatabase `
-BackupAction Files `
-DatabaseFileGroup "FG1" `
-ServerInstance $instanceName `
-Database $databasename `
-BackupFile $fgBackupFile `
-Checksum `
-Initialize `
-BackupSetName "$databasename FG1 Backup" `
-CompressionOption On;
Notice the highlighted lines of code. These lines enable the filegroup backups. For the BackupAction parameter, we have to specify Files. The other options for BackupAction are Database and Log.
Once we have specified that we want the Files value for the BackupAction parameter, we should also pass the name of the filegroup we want to back up using the DatabaseFileGroup parameter.
See also
http://msdn.microsoft.com/en-us/library/ms179401(v=sql.110).aspx
Restoring a database to a point in time
In this recipe, we will use the different backup files we have to restore to a point in time.
Getting ready
In this recipe, we will use the AdventureWorks2008R2 database. You can also substitute this with your preferred database on your development environment.
The AdventureWorks2008R2 database has a single filegroup that contains a single datafile. We will restore this database to another SQL Server instance at a different point in time using three different backup files from three different backup types:
We can create these three types of backups on the AdventureWorks2008R2 database using PowerShell as illustrated in previous recipes. If you are fairly comfortable with T-SQL, this can also be done with T-SQL backup commands.
To help us verify if our point-in-time restore worked as expected, create a timestamped table before taking any type of backup. Alternatively, create a table and insert a timestamped record in the table before taking a backup.
Place these backups in the folder called C:\Backup\.
You can use the following script to create your files 6464 - Ch05 - 10 - Restore a database to a point in time - Prep.ps1, which is included in the downloadable files for this book. When the script has finished executing, you should have timestamped Student tables in the AdventureWorks2008R2 database, created within one minute intervals, similar to the following screenshot:
For our recipe, we will restore the AdventureWorks2008R2 database to a second instance, KERRIGAN\SQL01, up to 2012-04-07 08:21:59. This means that after the point-in-time restore, we should have only four timestamped Student tables in KERRIGAN\SQL01 restored database:
How to do it...
To restore to a point in time using a full, differential, and several transaction logfiles, follow these steps:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN\SQL01"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
#backupfilefolder
$backupfilefolder = "C:\Backup\"
#look for the last full backupfile
#you can be more specific and specify filename
$fullBackupFile =
Get-ChildItem $backupfilefolder -Filter "*Full*" |
Sort -Property LastWriteTime -Descending |
Select -Last 1
#read the filelist info within the backup file
#so that we know which other files we need to restore
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fullBackupFile.FullName, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$filelist = $smoRestore.ReadFileList($server)
#read headers of the full backup file,
#because we are restoring to a default instance, we will
#need to specify we want to move the files
#to the default data directory of our KERRIGAN\SQL01 instance
$relocateFileList = @()
$relocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL11.SQL01\MSSQL\DATA"
#we are putting this in an array in case we have
#multiple data and logfiles associated with the database
foreach($file in $fileList)
{
#restore to different instance
#replace default directory path for both
$relocateFile = Join-Path $relocatePath (Split-Path $file.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName, $relocateFile)
}
#let's timestamp our restored databasename
#this is strictly for testing our recipe
$timestamp = Get-Date -Format yyyyMMddHHmmss
$restoredDBName = "AWRestored_$($timestamp)"
#==
#restore the full backup to the new instance name
#==
#note we have a NoRecovery option, because we have
#additional files to restore
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoredDBName `
-BackupFile $fullBackupFile.FullName `
-RelocateFile $relocateFileList `
-NoRecovery
#==
#restore last differential
#note the database is still in Restoring State
#==
#using PowerShell V2 Where syntax
$diffBackupFile =
Get-ChildItem $backupfilefolder -Filter "*Diff*" |
Where {$_.LastWriteTime -ge $fullBackupFile.LastWriteTime} |
Sort -Property LastWriteTime -Descending |
Select -Last 1
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $diffBackupFile.FullName `
-NoRecovery
#==
#restore all transaction log backups from last
#differential up to 2012-04-07 08:21:59
#==
#identify the last txn log backup file we need to restore
#we need this so we can specify point in time
$lastTxnFileName = "AdventureWorks2008R2_Txn_201204070821"
$lastTxnBackupFile =
Get-ChildItem $backupfilefolder -Filter "*$lastTxnFileName*"
#restore all transaction log backups after the
#last differential, except the last transaction
#backup that requires the point-in-time restore
foreach ($txnBackup in Get-ChildItem $backupfilefolder -Filter "*Txn*" |
Where {$_.LastWriteTime -ge $diffBackupFile.LastWriteTime -and $_.LastWriteTime -lt $lastTxnBackupFile.LastWriteTime} |
Sort -Property LastWriteTime)
{
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $txnBackup.FullName `
-NoRecovery
}
#restore last txn backup file to point in time
#restore only up to 2012-04-07 08:21:59
#this time we are going to restore using with recovery
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $lastTxnBackupFile.FullName `
-ToPointInTime "2012-04-07 08:21:59"
How it works...
In this recipe, we are using the Restore-SqlDatabase cmdlet, the counterpart of the Backup-SqlDatabase cmdlet that was introduced in SQL Server 2012.
Let's get a high-level overview of how to perform a point-in-time restore, and then we can break it down and explain the pieces involved in this recipe:
Step 1 – Gather your backup files
You will need to collect your backup files. They don't necessarily have to reside in the same folder or drive, but it will be ideal, as it can simplify your restore script because you will have a uniform folder/drive to refer to. You will also need read permissions for these files.
In our recipe, we have simplified this step. We have collected our full, differential, and transaction log backup files and stored them in the C:\Backup\ folder for ease of access. If your backup files reside in different locations, you will just need to adjust the directory references in your script appropriately.
Once you have the backup files, assuming you follow a file naming convention, you can filter out all the full backups in your directory. In our sample, we are using the convention databasename_type_timestamp.bak. For this scenario, we can extract that one full backup file by specifying the keyword or pattern in our filename. We use the Get-ChildItem cmdlet to filter for the latest full backup file:
#look for the last full backupfile
#you can be more specific and specify filename
$fullBackupFile =
Get-ChildItem $backupfilefolder -Filter "*Full*" |
Sort -Property LastWriteTime -Descending |
Select -Last 1
Once you have the full backup handle, you can read the filelist that is stored in that backup file. You can use the ReadFileList method that is available with an SMO Restore object. Reading the filelist can help you automate by extracting the filenames of the data and logfiles you will need to restore.
#read the filelist info within the backup file
#so that we know which other files we need to restore
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fullBackupFile.FullName, [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$filelist = $smoRestore.ReadFileList($server)
When reading the filelist, one property you can extract is the type of file that is stored:
The different types are:
Step 2 – Restore the last good full backup, with NORECOVERY
The first step in restore operations is to restore the last known good full backup. This provides you a baseline to which you can restore additional files. The NORECOVERY option is very important, as it preserves (or does not roll back) uncommitted transactions and allows additional files to be restored. We will be using the NORECOVERY option throughout our restore process.
Because the full backup is always the first file that needs to be restored, all the prep work required when moving files also happens at this stage.
For our recipe, we want to restore the database, originally from the default instance KERRIGAN, to another instance, KERRIGAN\SQL01. For this reason, we will need to move our files from the path stored with our backup file, to the new path we want to use. In this example we only want to move from the default data directory of our default instance to the data directory of our named instance KERRIGAN\SQL01. We do this by retrieving the full paths of the original data and logfiles from the filelist, and replacing the full path with the new location we want to restore to. The highlighted code in the following snippet shows how we change this location:
$relocateFileList = @()
$relocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL11.SQL01\MSSQL\DATA"
#we are putting this in an array in case we have
#multiple data and logfiles associated with the database
foreach($file in $fileList)
{
#restore to different instance
#replace default directory path for both
$relocateFile = Join-Path $relocatePath (Split-Path $file.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName, $relocateFile)
}
Note that our array contains the Microsoft.SqlServer.Management.Smo.RelocateFile object, which will contain the logical and (relocated) physical names of our database files.
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($file.LogicalName, $relocateFile)
To restore our database, we are simply going to use the Backup-SqlDatabase cmdlet. There are a couple of really important options here such as RelocateFile and NoRecovery.
#restore the full backup to the new instance name
#note we have a NoRecovery option, because we have
#additional files to restore
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoredDBName `
-BackupFile $fullBackupFile.FullName `
-RelocateFile $relocateFileList `
-NoRecovery
Step 3 – Restore the last good differential backup taken after the full backup you just restored, with NORECOVERY
Once the full backup is restored, we can add the last good differential backup following our full backup. This is going to be a less involved process, because at this point we've already restored our base database and relocated our files. We need to restore the differential backup with NORECOVERY to prevent uncommitted transactions from being rolled back:
#using PowerShell V2 Where syntax
$diffBackupFile =
Get-ChildItem $backupfilefolder -Filter "*Diff*" |
Where {$_.LastWriteTime -ge $fullBackupFile.LastWriteTime} |
Sort -Property LastWriteTime -Descending |
Select -Last 1
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $diffBackupFile.FullName `
-NoRecovery
Note that you may, or may not, have a differential backup file in your environment. If you don't, don't worry, it does not affect your recoverability as long as you have all the transaction log backup files intact and available for restore.
Step 4 – Restore the transaction logs taken after your differential backup
After we restore our differential backup file, we can start restoring our transaction log backup files. These transaction log backup files should be the ones following your differential backup. You may, or may not, need the complete set of logfiles following your differential backup. If you need to restore up to the point of a database crash, you will need to restore all transaction log backups including the tail log backup. If not, you will only need the backup files up to the time to which you want to restore.
For our recipe, we identify first the last transaction log backup file we want to restore. This is important because we need to know how to use a PointInTime parameter when we use this particular transaction log backup file.
#identify the last txn log backup file we need to restore
#we need this so we can specify point in time
$lastTxnFileName = "AdventureWorks2008R2_Txn_201204070821"
$lastTxnBackupFile =
Get-ChildItem $backupfilefolder -Filter "*$lastTxnFileName*"
For all other transaction log backup files, we loop through our backup folder and restore all .txn files that were taken after the last differential backup, and before the last transaction log backup file we want to restore. We also need to sort the files by the WriteTime parameter so that we can restore them sequentially to our database. Note that we need to restore all these files with NORECOVERY.
foreach ($txnBackup in Get-ChildItem $backupfilefolder -Filter "*Txn*" |
Where {$_.LastWriteTime -ge $diffBackupFile.LastWriteTime -and $_.LastWriteTime -lt $lastTxnBackupFile.LastWriteTime} |
Sort -Property LastWriteTime)
{
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $txnBackup.FullName `
-NoRecovery
}
Once all these files are restored, then we are ready to restore the last transaction logfile. Once this file is restored, the database needs to be accessible, and all uncommitted transactions need to be rolled back.
There are two methods to do this. The first method, which we used in the recipe, is to restore the last file with the ToPointInTime parameter, and without the NoRecovery parameter.
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $lastTxnBackupFile.FullName `
-ToPointInTime "2012-04-07 08:21:59"
An alternative is to restore this last transaction log backup file with NoRecovery as well, but add another command in the end to restore the database using WITH RECOVERY. In reality, it is safer to restore all the required transaction log backup files with NORECOVERY all the way through. This is safer because if we accidentally restore a file using WITH RECOVERY, the only way to correct it is to re-do the entire restore process. This may not be such a big deal for smaller databases, but for bigger databases this could be very time-consuming.
Once we have confirmed that all the required files have been restored, we can restore the database using WITH RECOVERY. One way to achieve this in our recipe, is by using a T-SQL statement, and passing this statement to our Invoke-Sqlcmd cmdlet:
#get the database out of Restoring state
#make the database accessible
$sql = "RESTORE DATABASE $restoreddbname WITH RECOVERY"
Invoke-Sqlcmd -ServerInstance $instanceName -Query $sql
The RESTORE DATABASE command takes our database from a restoring state, to an accessible and ready-to-use state. The RESTORE command rolls back all unfinished transactions and readies the database for use.
See also
http://msdn.microsoft.com/en-us/library/ms179451(v=sql.110).aspx
Performing an online piecemeal restore
In this recipe, we will perform an online piecemeal restore.
Getting ready
We will use a test database called StudentDB database, which has three filegroups—one primary, two custom filegroups FG1 and FG2—in this recipe. Each of FG1 and FG2 will have one secondary datafile stored in the C:\Temp folder.
You can use the script 6464 - Ch05 - 11 - Perform an Online PieceMeal Restore - Prep.ps1 to create your files, which is included in the downloadable files for this book. When the script has finished executing, you should see the following database:
This is how the tables will be structured:
Table | Filegroup | Datafile name | Datafile location |
---|---|---|---|
Student_PRIMARY | PRIMARY | StudentDB.mdf | Default data directory |
Student_FG1 | FG1 | Student_FG1_data | C:\Temp |
Student_FG2 | FG2 | Student_FG2_data | C:\Temp |
Student_TXN | PRIMARY | StudentDB.mdf | Default data directory |
For our recipe, we will restore only the PRIMARY filegroup, and filegroup FG2 to our second SQL Server instance KERRIGAN\SQL01. At the end of our task, only Student_PRIMARY and Student_FG2 tables will be accessible.
Feel free to substitute this with a database available in your development environment that already has separate filegroups and filegroup backups.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN\SQL01"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
$backupfolder = "C:\Backup\"
#let's timestamp our databasename
#this is strictly for testing and checking purposes
$timestamp = Get-Date -Format yyyyMMddHHmmss
$restoreddbname = "StudentDBRestored_$($timestamp)"
$relocatePath = "C:\Program Files\Microsoft SQL Server\MSSQL11.SQL01\MSSQL\DATA"
#for this piecemeal restore, we need to specify
#files to restore
#primary filegroup
$primaryfgbackup = "C:\Backup\StudentDB_PRIMARY.bak"
#additional filegroup(s) to restore, and filegroup name
$fg2backup = "C:\Backup\StudentDB_FG2.bak"
$fg2name = "Student_FG2_data"
#transaction log backup
$txnbackup = "C:\Backup\StudentDB_TXN.bak"
#===
#primary fg
#===
#because we want to restore to a different instance,
#we need to create an array of files which will
#contain the new file locations of data and log
#files in the primary filegroup
$relocateFileList = @()
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($primaryfgbackup , [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadFileList($server) |
ForEach-Object {
$relocateFile = Join-Path $relocatePath (Split-Path $_.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($_.LogicalName, $relocateFile)
}
#===
#restore primary fg
#partial must be used if restoring primary fg
#needs to be only mdf and ldf
#===
Restore-SqlDatabase `
-Partial `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $primaryfgbackup `
-RelocateFile $relocateFileList `
-NoRecovery
#===
#fg2
#===
$relocateFileList = @()
#for the custom filegroup we want to restore, we want to
#relocate only that filegroup's datafiles
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fg2backup , [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadFileList($server) |
ForEach-Object {
if($_.LogicalName -eq $fg2name)
{
$relocateFile = Join-Path $relocatePath (Split-Path $_.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($_.LogicalName, $relocateFile)
}
}
#===
#restore fg2
#dont need partial anymore
#===
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $fg2backup `
-RelocateFile $relocateFileList `
-NoRecovery
#===
#restore transaction log backup
#this will restore using with recovery
#===
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $txnbackup
How it works...
Online piecemeal restore is an Enterprise feature available starting from SQL Server 2005. This type of restore, also referred to as partial restore, allows you to stage your restores. With each restore sequence, one or more filegroups are available online, leaving the rest offline. The power of this feature is that as soon as your first filegroup is restored, the objects you have in this filegroup already become accessible to your end users or applications.
The first thing you will need to do is line up your files. You will need to specify where the PRIMARY filegroup backup, any user filegroups you want to restore, and the transaction log backup files are. In our recipe, we are also restoring the database to a different instance, so we will need to relocate our database files. For this reason, we must also specify what the filegroup names are for the filegroups we are restoring.
#primary filegroup
$primaryfgbackup = "C:\Backup\StudentDB_PRIMARY.bak"
#additional filegroup(s) to restore, and filegroup name
$fg2backup = "C:\Backup\StudentDB_FG2.bak"
$fg2name = "Student_FG2_data"
#transaction log backup
$txnbackup = "C:\Backup\StudentDB_TXN.bak"
Once we have the files lined up, we need to create an array that contains the files we are relocating:
$relocateFileList = @()
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($primaryfgbackup , [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadFileList($server) |
ForEach-Object {
$relocateFile = Join-Path $relocatePath (Split-Path $_.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($_.LogicalName, $relocateFile)
}
We can then use our Restore-SqlDatabase cmdlet to restore the primary filegroup first with NORECOVERY. Note that when restoring the PRIMARY filegroup, you will need to specify the option Partial:
#===
#restore primary fg
#partial must be used if restoring primary fg
#needs to be only mdf and ldf
#===
Restore-SqlDatabase `
-Partial `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $primaryfgbackup `
-RelocateFile $relocateFileList `
-NoRecovery
Next, for our user filegroups, we must still create an array that contains the specific filenames of the filegroup(s) we are restoring.
$relocateFileList = @()
#for the custom filegroup we want to restore, we want to
#relocate only that filegroup's datafiles
$smoRestore = New-Object Microsoft.SqlServer.Management.Smo.Restore
$smoRestore.Devices.AddDevice($fg2backup , [Microsoft.SqlServer.Management.Smo.DeviceType]::File)
$smoRestore.ReadFileList($server) |
ForEach-Object {
if($_.LogicalName -eq $fg2name)
{
$relocateFile = Join-Path $relocatePath (Split-Path $_.PhysicalName -Leaf)
$relocateFileList += New-Object Microsoft.SqlServer.Management.Smo.RelocateFile($_.LogicalName, $relocateFile)
}
}
If we add items in the array that pertain to filegroups that we are not restoring, we are going to get an error like this:
Microsoft.SqlServer.Management.Smo.SmoException: System.Data.SqlClient.SqlError: The operating system returned the error '5(Access is denied.)' while attempting 'RestoreContainer::ValidateTargetForCreation' on ... 'c:\\Temp\\Student_FG1_data.ndf'
Once we have the array of relocated files, we can restore our user filegroup. Note that for this statement, we no longer need to specify the option Partial:
#===
#restore fg2
#dont need partial anymore
#===
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $fg2backup `
-RelocateFile $relocateFileList `
-NoRecovery
Lastly, we need to restore the transaction logfile(s). If there are multiple transaction logfiles, each transaction logfile before the final transaction logfile needs to be restored with NORECOVERY. The last transaction logfile can be restored using WITH RECOVERY.
#===
#restore transaction log backup
#===
Restore-SqlDatabase `
-ReplaceDatabase `
-ServerInstance $instanceName `
-Database $restoreddbname `
-BackupFile $txnbackup
What you should see after you restore this sequence is shown in the following screenshot:
It is a little bit deceiving because it looks like the whole database is already available and accessible. However, since we only restored FG2, only objects in FG2 are truly accessible. If you try to access any of the objects that reside in the unrestored filegroup, you will get an error similar to this:
Msg 8653, Level 16, State 1, Line 2
The query processor is unable to produce a plan for the table or view 'Student_FG1' because the table resides in a filegroup which is not online.
To restore the rest of your filegroups, you can use the same steps as described previously until the final filegroup is restored. Remember to always restore the filegroup, and then the transaction log backup. Lather, rinse, and repeat.
See also
http://msdn.microsoft.com/en-us/library/ms177425(v=sql.110).aspx
Chapter 7. SQL Server Development
In this chapter, we will cover:
Introduction
The last few versions of SQL Server have seen immense enhancements and support to different components that were traditionally not supported natively in databases, such as XML and Common Language Runtime (CLR) assemblies. This chapter explores how you can use PowerShell to simplify and automate some of the tasks you need to do with these items.
To do the exercises in this chapter:
CREATE DATABASE SampleDB
a.BLOB Files
b.CLR Files
c.XML Files
Inserting XML into SQL Server
In this recipe, we will insert the content of some XML files into a SQL Server table that has XML columns.
Getting ready
We will create a sample table that we can use for this recipe. Run the following in SQL Server Management Studio to create a table named SampleXML that has an XML field:
USE SampleDB
GO
IF OBJECT_ID('SampleXML') IS NOT NULL
DROP TABLE SampleXML
GO
CREATE TABLE SampleXML
(
ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
FileName VARCHAR(200),
InsertedDate DATETIME DEFAULT GETDATE(),
InsertedBy VARCHAR(100) DEFAULT SUSER_SNAME(),
XMLStuff XML,
FileExtension VARCHAR(50)
)
Create a directory called C:\XML Files\ and copy the sample XML files that come with the book scripts. Alternatively, you can use your own directory and XML files.
How to do it...
These are the steps to insert the contents of XML files into SQL Server:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$VerbosePreference = "Continue"
#define variables for directory, instance, database
$xmlDirectory = "C:\XML Files\"
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
#get all XML files from your XML directory
Get-ChildItem $xmlDirectory -Filter "*.xml" |
ForEach-Object {
#need to replace some illegal XML characters
Write-Verbose "Importing $($_.FullName) "
#we need to escape single quotes
#because we are passing the
#XML content to a T-SQL statement
[string]$xml = (Get-Content $_.FullName) -replace "'", "''"
$query = @"
INSERT INTO SampleXML
(FileName,XMLStuff,FileExtension)
VALUES('$($_.Name)','$xml','.xml')
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
}
$VerbosePreference = "SilentlyContinue"
When you are done, your result should look similar to this:
How it works...
Inserting the contents of an XML file into a SQL Server XML column is easily done with a combination of T-SQL and PowerShell.
PowerShell can perform file-related functions, while T-SQL can do INSERT statements more effectively.
The first step in this recipe is to loop through a set of XML files:
Get-ChildItem $xmlDirectory -Filter "*.xml"
We then pipe this to a Foreach-Object cmdlet that enables each file to be inserted into the table. Inside the Foreach-Object cmdlet, we display which file we are importing first:
#need to replace some illegal XML characters
Write-Verbose "Importing $($_.FullName) ..."
We then extract the content of each XML file. Because we will be passing the content as text back to the server, we need to make sure we escape all single quotes. Otherwise the string we are inserting will be erroneously terminated.
[string]$xml = (Get-Content $_.FullName) -replace "'", "''"
Once the XML content is saved into a variable, we can compose an INSERT statement to insert into our table that has the XML column. Note that our INSERT statement is using a here-string variable.
$query = @"
INSERT INTO SampleXML
(FileName,XMLStuff,FileExtension)
VALUES('$($_.Name)','$xml','.xml')
"@
Remember a here-string variable allows you to more easily create variables containing multi-line text. The text needs to start with @" at the end of a line, and end with "@ in a line by itself.
To perform the insert, we can use the Invoke-SqlCmd cmdlet and pass our INSERT query:
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
See also
http://msdn.microsoft.com/en-us/library/ms187339.aspx
Extracting XML from SQL Server
In this recipe, we will extract the XML content from SQL Server and save each record back to individual files in the filesystem.
Getting ready
For this recipe, we will use the table we created in the previous recipe, Inserting XML into SQL Server, to extract files. Feel free to use your own tables that have XML columns; just ensure you change the table name in the script.
How to do it...
These are the steps to extract XML from SQL Server:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$VerbosePreference = "Continue"
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
$foldername = "C:\XML Files\"
#we will save all retrieved files in a new folder
$newchildfolder = "Retrieved XML $(Get-Date -format 'yyyy-MMM-dd-hhmmtt')"
$newfolder = Join-Path -Path "$($foldername)" -ChildPath $newchildfolder
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
#query to get XML content from database
$query = @"
SELECT FileName, XMLStuff
FROM SampleXML
WHERE XMLStuff IS NOT NULL
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query -MaxCharLength 99999999 |
ForEach-Object {
Write-Verbose "Retrieving $($_.FileName) ..."
[xml]$xml = $_.XmlStuff
$xml.Save((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))
}
explorer $newfolder
$VerbosePreference = "SilentlyContinue"
When you are done, go to your folder and you will see something similar to this:
How it works...
SQL Server has great support for querying and manipulating XML stored in SQL Server tables, but needs external support if these files need to be extracted and saved back to the filesystem. PowerShell can definitely help in this area.
We first create a new timestamped folder where we can store our retrieved XML files. This will help us keep track of which files were downloaded at any specific time. We use the New-Item cmdlet to create this new folder. If the folder already exists, no error will be displayed since we specified the parameter -ErrorAction SilentlyContinue.
#we will save all retrieved files in a new folder
$newchildfolder = "Retrieved XML $(Get-Date -format 'yyyy-MMM-dd-hhmmtt')"
$newfolder = Join-Path -Path "$($foldername)" -ChildPath $newchildfolder
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
We then construct our T-SQL statement to retrieve the XML data from our table.
$query = @"
SELECT FileName, XMLStuff
FROM SampleXML
WHERE XMLStuff IS NOT NULL
"@
We can pass this to the Invoke-Sqlcmd cmdlet to retrieve all our XML records. We also have to specify a big number for the variable MaxCharLength, which defines the maximum number of characters returned for columns, because the content of the XML files we are retrieving will be big. By default, the MaxCharLength value is 4000.
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query -MaxCharLength 99999999 |
ForEach-Object {
Write-Verbose "Retrieving $($_.FileName) ..."
[xml]$xml = $_.XmlStuff
$xml.Save((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))
}
For each record returned in our query result, we save the content back to a strongly typed XML variable, by putting [xml] right beside our $xml variable.
ForEach-Object {
Write-Verbose "Retrieving $($_.FileName) ..."
[xml]$xml = $_.XmlStuff
$xml.Save((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))
The XML variable, because it is an XML object, will have inherited a Save method that allows us to save the content back to the filesystem.
ForEach-Object {
Write-Verbose "Retrieving $($_.FileName) ..."
[xml]$xml = $_.XmlStuff
$xml.Save((Join-Path -Path $newfolder -ChildPath "$($_.FileName)"))
See also
Creating an RSS feed from SQL Server content
In this recipe, we will create an RSS feed from SQL Server content.
Getting ready
For this task, we will use a trivial query to populate our RSS feed. We will just list our database list from sys.databases, and use that as fictional content for our RSS file.
How to do it...
These are the steps to create an RSS feed using T-SQL and PowerShell.
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
$timestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
$rssFileName = "C:\XML Files\rss_$timestamp.xml"
#values to be used for RSS
$rssTitle = "QueryWorks Latest News"
$rssLink = "http://www.queryworks.ca/rss.xml"
$rssDescription = "What's new in the world of QueryWorks"
#use r as date formatter to get
#date in RFC1123Pattern
$rssDate = (Get-Date -Format r)
$rssManagingEditor = "info@queryworks.ca"
$rssGenerator = "SQL Server 2012 XML and PowerShell"
$rssDocs = "http://www.queryworks.ca/rss.xml"
$query = @"
DECLARE @rssbody XML
SET @rssbody = (SELECT
name AS 'title' ,
collation_name AS 'description' ,
'false' AS 'guid/@isPermaLink' ,
'http://www.queryworks.ca/?p=' +
CAST(database_id AS VARCHAR(5)) AS 'guid'
FROM
sys.databases
FOR XML PATH('item') , TYPE)
SELECT @rssbody
"@
$rssFromSQL = Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
#extract the RSS from the SQL Server result
[string] $rssBody = $rssFromSQL.Column1.ToString()
#create the final RSS
$rsstext = @"
<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title><![CDATA[$rssTitle]]></title>
<atom:link href="http://www.queryworks.ca/rss.xml" rel="self" type="application/rss+xml" />
<link>$rssLink</link>
<description><![CDATA[$rssDescription]]></description>
<pubDate>$rssDate</pubDate>
<lastBuildDate>$rssDate</lastBuildDate>
<managingEditor>$rssManagingEditor</managingEditor>
<generator>$rssGenerator</generator>
<docs>$rssDocs</docs>
$rssBody
</channel>
</rss>
"@
[xml] $rss = $rsstext
$rss.Save($rssFileName)
When the script has finished executing, open the RSS file. The content of the file should look similar to this:
To validate, www.w3.org has an RSS feed validator at http://validator.w3.org/feed/check.cgi. Use the tab Validate by Direct Input, and copy the contents of the file into the textarea. Click on the Validate button. If validated, you should see a message like this:
How it works...
SQL Server has embraced support for XML since version 2005. While creating the content for RSS feeds is doable using T-SQL in SQL Server, there are still some challenges with composing the RSS file. For example, the RSS file should have the following header:
<?xml version="1.0" encoding="UTF-8" ?>
Although adding this line at the beginning of the content is doable in SQL Server, it is not very straightforward. It will take a few CAST functions to get your RSS feed content properly formatted. When you are done with the formatting, you will still need to use another means or tool to save this back to an XML file.
Combining T-SQL with PowerShell allows you to accomplish creating the RSS feed file with ease.
The first thing we do is define a timestamped filename:
$timestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
$rssFileName = "C:\XML Files\rss_$timestamp.xml"
We then have to define the parameters we want to use to populate our RSS header. These include the title, link, description, date, managingEditor, generator, and docs variables. We will insert these variables later in the actual RSS feed string:
#values to be used for for RSS
$rssTitle = "QueryWorks Latest News"
$rssLink = "http://www.queryworks.ca/rss.xml"
$rssDescription = "What's new in the world of QueryWorks"
#use r as date formatter to get
#date in RFC1123Pattern
$rssDate = (Get-Date -Format r)
$rssManagingEditor = "info@queryworks.ca"
$rssGenerator = "SQL Server 2012 XML and PowerShell"
$rssDocs = "http://www.queryworks.ca/rss.xml"
To retrieve data from our SQL Server table, we define a here-string query. Note here, to get the content in the XML format that we want, we use the FOR XML PATH with our query:
$query = @"
DECLARE @rssbody XML
SET @rssbody = (SELECT
name AS 'title' ,
collation_name AS 'description' ,
'false' AS 'guid/@isPermaLink' ,
'http://www.queryworks.ca/?p=' +
CAST(database_id AS VARCHAR(5)) AS 'guid'
FROM
sys.databases
FOR XML PATH('item') , TYPE)
SELECT @rssbody
"@
This query will give you a result similar to this:
When we execute the query, we can use the Invoke-Sqlcmd cmdlet, and capture the result using another PowerShell variable.
$rssFromSQL = Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
Remember, though, that our result from our Invoke-Sqlcmd cmdlet is still a table, so we still need to extract just the XML content from the result. We do this by extracting what's been returned in Column1 (that is, the first column of the result), and saving this as a string:
#extract the RSS from the SQL Server result
[string] $rssBody = $rssFromSQL.Column1.ToString()
Once we have all the information, we can formulate the RSS file. Note that we are using a here-string variable as the main template, and each tag is populated by the values we set for our RSS-related variables. These are the variables (shown in bold) embedded in the here-string query below:
#create the final RSS
$rsstext = @"
<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title><![CDATA[$rssTitle]]></title>
<atom:link href="http://www.queryworks.ca/rss.xml" rel="self" type="application/rss+xml" />
<link>$rssLink</link>
<description><![CDATA[$rssDescription]]></description>
<pubDate>$rssDate</pubDate>
<lastBuildDate>$rssDate</lastBuildDate>
<managingEditor>$rssManagingEditor</managingEditor>
<generator>$rssGenerator</generator>
<docs>$rssDocs</docs>
$rssBody</channel>
</rss>
"@
To validate and create the file, we need to create a strongly typed XML variable. We are hitting two birds with one stone this way. This can check for well-formed XML. If the XML is not well formed, we will get an error when we try to assign our content to the XML variable.
#this can validate the RSS file
[xml]$rss = $rsstext
The XML object also comes with a Save method that allows us to save the content to a file on a disk.
$rss.Save($rssFileName)
There's more...
RSS stands for Really Simple Syndication. It allows items such as blog entries and news items to be syndicated or published automatically, and consumed by RSS readers from different devices. An RSS feed is nothing more than a specific-formatted XML file that contains specific information such as author, title, description, and the like.
Learn more about RSS feeds and their variations from http://cyber.law.harvard.edu/rss/rss.html and http://www.rss-specifications.com/rss-specifications.htm.
On the SQL Server side, to learn more about creating XML documents from your records, read up on the FOR XML clause from http://msdn.microsoft.com/en-us/library/ms190922.aspx.
See also
Applying XSL to an RSS feed
In this recipe, we will create a styled HTML file based on an existing RSS feed and XSL (stylesheet).
Getting ready
The files needed for this recipe are included in the downloadable book scripts from Packt. Once downloaded, copy the XML Files\RSS folder to your local C:\ directory. This folder will have two files: one sample RSS feed (sample_rss.xml) and one sample XSL file (rss_style.xsl).
How to do it...
These are the steps for styling an RSS feed:
$xsl = "C:\XML Files\RSS\rss_style.xsl"
$rss = "C:\XML Files\RSS\sample_rss.xml"
$styled_rss = "C:\XML Files\RSS\sample_result.html"
$xslt = New-Object System.Xml.Xsl.XslCompiledTransform
$xslt.Load($xsl)
$xslt.Transform($rss, $styled_rss)
#load the resulting styled html
#in Internet Explorer
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie $styled_rss
When done, an Internet Explorer browser will open and show a page similar to this:
How it works...
XSL stands for Extensible Stylesheet Language. It is a stylesheet, similar to its cousin Cascading Style Sheets (CSS), which defines how an XML document can be styled and potentially transformed.
Although this recipe may not be directly related to SQL Server, knowing how to apply this may have some benefits to the SQL Server professional.
To style our RSS feed, we will first create some variables that contain our .xsl file and our .xml file (or the RSS feed file). For our recipe, we will style the RSS to produce an HTML file, so we will create a variable to reference this new file as well:
$xsl = "C:\XML Files\RSS\rss_style.xsl"
$rss = "C:\XML Files\RSS\sample_rss.xml"
$styled_rss = "C:\XML Files\RSS\sample_result.html"
The content of our XSL file looks like this:
It is important to show a sample section of the XSL to help map visually where the RSS items are incorporated.
The styling of the XML with XSL is done using the .NET class XslCompiledTransform.
$xslt = New-Object System.Xml.Xsl.XslCompiledTransform
To transform our RSS feed, which is a simple XML file, into a styled HTML file, the XSL (stylesheet) needs to be loaded using the Load method of the XslCompiledTransform variable.
$xslt.Load($xsl)
The actual transformation and styling happens when the Transform method of the XslCompiledTransform object is invoked, and passed with the XML content and a handle (or variable) to the resulting HTML file.
$xslt.Transform($rss, $styled_rss)
The last piece we added is just to display the resulting HTML file in Internet Explorer. We create an alias for Internet Explorer using the Set-Alias cmdlet, and use it to open our resulting HTML file.
#load the resulting styled html
#in Internet Explorer
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie $styled_rss
See also
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://msdn.microsoft.com/en-us/library/system.xml.xsl.xslcompiledtransform.aspx
Storing binary data into SQL Server
In this recipe, we will store some binary data, including some images, a PDF, and a Word document, into SQL Server.
Getting ready
Let's create a sample table we can use for this recipe. Run the following in SQL Server Management Studio to create a table called SampleBLOB that has a BLOB, or VARBINARY(MAX), field:
USE SampleDB
GO
IF OBJECT_ID('SampleBLOB') IS NOT NULL
DROP TABLE SampleBLOB
GO
CREATE TABLE SampleBLOB
(
ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
FileName VARCHAR(200) ,
InsertedDate DATETIME DEFAULT GETDATE() ,
InsertedBy VARCHAR(100) DEFAULT SUSER_SNAME() ,
BLOBStuff VARBINARY(MAX) ,
FileExtension VARCHAR(50)
)
Create a directory called C:\BLOB Files\ and copy the sample BLOB files that come with the book scripts, or use your own directory and BLOB files.
How to do it...
These are the steps to save binary data into SQL Server:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$VerbosePreference = "Continue"
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
$folderName = "C:\BLOB Files\"
#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$_.PSIsContainer -eq $false} |
ForEach-Object {
$blobFile = $_
$fileExtension = $blobFile.Extension
Write-Verbose "Importing file $($blobFile.FullName)..."
$query = @"
INSERT INTO SampleBLOB
(FileName, FileExtension, BLOBStuff)
SELECT '$blobFile','$fileExtension',*
FROM OPENROWSET(BULK N'$folderName$blobFile', SINGLE_BLOB) as tmpImage
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
Start-Sleep -Seconds 2
}
$VerbosePreference = "SilentlyContinue"
When you're done, you should see something similar to this:
How it works...
Inserting the contents of a binary file into a SQL Server table can be made easier with the combination of T-SQL and PowerShell.
In this recipe we have a few files—a PDF, a Word document, and a few images—that we want to store to SQL Server.
To start, we first need to define which folder we are importing, and to which instance and which database we are importing from:
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
$folderName = "C:\BLOB Files\"
We then pipe a series of cmdlets to accomplish our task. First we use the Get-ChildItem cmdlet to get all our files. In our recipe, we import all the files in C:\BLOB Files.
#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$_.PSIsContainer -eq $false} |
We exclude folders by specifying Where-Object {$_.PSIsContainer -eq $false}. Of course, you have an option of filtering by file extensions if you want. You can just add the –Include parameter for Get-ChildItem and specify which extensions you want to import, as such:
Get-ChildItem -Path "C:\BLOB Files*.*" -Include *.jpg,*.png
The Foreach-Object cmdlet then takes each file we retrieve, and composes a T-SQL statement that inserts the file into our SampleBLOB table. We use OPENROWSET to import the contents of the binary file as a SINGLE_BLOB file.
$blobFile = $_
$fileExtension = $blobFile.Extension
Write-Verbose "Importing file $($blobFile.FullName)..."
$query = @"
INSERT INTO SampleBLOB
(FileName, FileExtension, BLOBStuff)
SELECT '$blobFile','$fileExtension', *
FROM OPENROWSET(BULK N'$folderName$blobFile', SINGLE_BLOB) as tmpImage
"@
This T-SQL statement is then passed to the Invoke-Sqlcmd cmdlet, which executes the statement on our instance. We also sleep for 2 seconds to give the command some time to complete.
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
Start-Sleep -Seconds 2
There's more...
Read more about the OPENROWSET method at http://msdn.microsoft.com/en-us/library/ms190312.aspx.
See also
Extracting binary data from SQL Server
In this recipe, we will extract binary content from SQL Server and save it back to individual files in the filesystem.
Getting ready
For this recipe, we will use the table we created in the previous recipe, Inserting binary data into SQL Server, to extract files. Feel free to use your own tables that have VARBINARY(MAX) columns; just ensure you change the table name in the script.
In addition to our SampleBLOB table, we will create an empty table with a single VARBINARY(MAX) table. We will use this for facilitating the creation of a format file we need for exporting binary data out of SQL Server using bcp.
USE SampleDB
GO
IF OBJECT_ID('EmptyBLOB') IS NOT NULL
DROP TABLE EmptyBLOB
GO
CREATE TABLE EmptyBLOB
(
BLOBStuff VARBINARY(MAX)
)
How to do it...
These are the steps to extract binary data from SQL Server.
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$timestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
$emptyBLOB_tableName = "SampleDB.dbo.EmptyBLOB"
$formatFileName = "C:\BLOB Files\blob$($timestamp).fmt"
$fmtcmd = "bcp `"$emptyBLOB_tableName`" format nul -T -N -f `"$formatfilename`" -S $instanceName"
#create the format file
Invoke-Expression -Command$fmtcmd
#now there is a problem, by default the format file
#will use 8 as prefix length for varbinary
#we need this to be zero, so we will replace
(Get-Content $formatFileName) |
ForEach-Object { $_ -replace "8", "0" } |
Set-Content $formatFileName
$databaseName = "SampleDB"
$folderName = "C:\BLOB Files\"
$newFolderName = "Retrieved BLOB $timestamp"
$newFolder = Join-Path -Path "$($foldername)" -ChildPath $newfoldername
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
$query = @"
SELECT ID, FileName
FROM SampleBLOB
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query |
ForEach-Object {
$item = $_
Write-Verbose "Retrieving $($item.FileName) ..."
$newFileName = Join-Path $newFolder $item.FileName
$blobQuery = @"
SELECT BLOBStuff
FROM SampleBLOB
WHERE ID = $($item.ID)
"@
$cmd = "bcp `"$blobQuery`" queryout `"$newFileName`" -S $server -T -d $databaseName -f `"$formatFileName`""
Invoke-Expression $cmd
}
explorer $newFolder
$VerbosePreference = "SilentlyContinue"
When you are done, your retrieved files should look like this:
How it works...
To retrieve a BLOB, or binary large object, from SQL Server and saving it back to the filesystem, we utilize a combination of T-SQL and PowerShell cmdlets.
The most important part of retrieving binary data and save them back to a file format is preserving the raw format and encoding. We our data using bcp with a format file. To help us create this format file, we created a simple table in our prep section that has a single VARBINARY(MAX) column.
To create the format file, we use the dynamically built bcp command that will create the format file.
$fmtcmd = "bcp `"$emptyBLOB_tableName`" format nul -T -N -f `"$formatfilename`" -S $instanceName"
A fully composed command will look similar to:
bcp "SampleDB.dbo.EmptyBLOB" format nul -T -N -f "C:\BLOB Files\blob2012-Apr-29-0443PM.fmt" -S KERRIGAN
The options we specified in our bcp are (based on Books Online):
Option | Description |
---|---|
format nul –f | Specifies the non-XML format file |
-T | Indicates a trusted connection |
-N | Specifies to perform bcp using native data types for noncharacter data, and Unicode character data |
To create the file, we can use the Invoke-Expression command to execute the bcp command against the server.
Invoke-Expression -Command$fmtcmd
This will create a format file that contains:
Unfortunately, the bcp command that creates the format file automatically assigned a prefix length of 8 for our SQLBINARY data. This will create problems for our binary file because it adds additional characters to our file, which can "corrupt" the file. We want to replace this prefix length with zero (0), and we do it using this code:
(Get-Content $formatFileName) |
ForEach-Object { $_ -replace "8", "0" } |
Set-Content $formatFileName
Once our format file is ready, we create our timestamped folder.
$newFolderName = "Retrieved BLOB $timestamp"
$newFolder = Join-Path -Path "$($foldername)" -ChildPath $newfoldername
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
We then get all the records from our SampleBLOB table. We will first only get the ID and FileName variables.
$query = @"
SELECT ID, FileName
FROM SampleBLOB
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query |
For each record we retrieve that contains the ID and FileName variables, we query SQL Server again, but this time for the binary content. We use this query in another bcp command we are constructing. This bcp command uses the format file we created in the previous section. We pass this bcp command again to the Invoke-Expression cmdlet to create the binary file in the filesystem.
ForEach-Object {
$item = $_
Write-Verbose "Retrieving $($item.FileName) ..."
$newFileName = Join-Path $newFolder $item.FileName
$blobQuery = @"
SELECT BLOBStuff
FROM SampleBLOB
WHERE ID = $($item.ID)
"@
$cmd = "bcp `"$blobQuery`" queryout `"$newFileName`" -S $server -T -d $databaseName -f `"$formatFileName`""
Invoke-Expression $cmd
}
There's more...
Read more about bcp:
http://msdn.microsoft.com/en-us/library/ms162802.aspx
See also
Creating a new assembly
In this recipe, we will create a new user-defined assembly.
Getting ready
Create a folder named C:\CLR Files and copy the QueryWorksCLR.dll file that comes with the book's sample files into this folder.
We will load this to the SampleDB database. Feel free to use a database accessible to you; just ensure you replace the database name in the script.
How to do it...
These are the steps to create a new assembly in SQL Server:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$databaseName = "SampleDB"
$assemblyName = "QueryWorksCLR"
$assemblyFile = "C:\CLR Files\QueryWorksCLR.dll"
#this is for SAFE assemblies only
$query = @"
CREATE ASSEMBLY $assemblyName
FROM '$assemblyFile'
WITH PERMISSION_SET = SAFE
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
How it works...
Starting with version 2005, SQL Server has supported integration with the Common Language Runtime (CLR). This means that you can create .NET code in your language of preference, compile it into DLL (Dynamic Linked Library) files, and create these as SQL Server database objects called assemblies.
Creating an assembly in SQL Server can be straightforward. In this recipe, we looked at the simplest case, where we create an assembly with SAFE access.
To create the assembly, we need to specify where the DLL is located, and pass it to a CREATE ASSEMBLY T-SQL statement:
$assemblyFile = "C:\CLR Files\QueryWorksCLR.dll"
#this is for SAFE assemblies only
$query = @"
CREATE ASSEMBLY $assemblyName
FROM '$assemblyFile'
WITH PERMISSION_SET = SAFE
"@
Once the parameters are defined, we simply use the Invoke-Sqlcmd cmdlet to create the assembly.
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query
Note that in SQL Server, an assembly might be successfully created and database objects can be created from it (for example, SQLCLR functions and stored procedures), but these will not be usable until SQLCLR integration has been enabled in your instance. This can be done using the T-SQL stored procedure sp_configure, or using PowerShell.
To enable SQLCLR using T-SQL, we can use:
EXEC sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO
EXEC sp_configure 'clr enabled', 1
GO
RECONFIGURE
GO
To do the same thing using PowerShell, we can use the following snippet after we create the $server SMO object:
$server.Configuration.IsSqlClrEnabled.ConfigValue = 1
$server.Alter()
There's more...
CLRs can be very powerful components within a SQL Server environment, thus there needs to be control as to what is allowed and not allowed to do. A lot of this can be controlled through Code Access Security (CAS). There are three security levels, and simply put, these are the differences between them:
Permission Setting | Description |
---|---|
SAFE | Restricted to internal computation, and local SQL Server access Cannot access external resources such as files, folders, and so on |
EXTERNAL_ACCESS | Allows external access to files, registry, networks, and so on By default executes as the SQL Server service account |
UNSAFE | Least restrictive Can potentially do anything CLRs can do |
We have only covered how to deploy SAFE assemblies. EXTERNAL_ACCESS and UNSAFE can be a bit more complicated, and will require creating certificates, logins, and symmetric/asymmetric keys.
Check out the section on Creating EXTERNAL_ACCESS and UNSAFE Assemblies from the MSDN article CLR Integration Code Access Security: http://msdn.microsoft.com/en-us/library/ms345101.aspx.
Note that this article strongly encourages not to set the TRUSTWORTHY property of your database to ON.
See also
Listing user-defined assemblies
In this recipe, we will list the user-defined assemblies in a SQL Server database.
Getting ready
We can use the SampleDB database that we used in the previous recipe, or you can substitute this with any database that is accessible to you that has some user-defined assemblies.
How to do it...
These are the steps to list user-defined assemblies:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.Server `
-ArgumentList $instanceName
$databaseName = "SampleDB"
$database = $server.Databases[$databaseName]
#list assemblies except system assemblies
#using PowerShell V3 syntax
$database.Assemblies | Where-Object IsSystemObject -eq $false
How it works...
Listing user-defined assemblies is a straightforward task.
After importing the SQLPS module, we create a server handle and database handle:
$instanceName = "KERRIGAN"
$server = New-Object `
-TypeName Microsoft.SqlServer.Management.Smo.Server `
-ArgumentList $instanceName
$databaseName = "SampleDB"
$database = $server.Databases[$databaseName]
An assembly is a database-level object, which means we can access assemblies through our database variable. We also want to filter out any system assemblies. Note we are using the PowerShell V3 Where-Object syntax.
$database.Assemblies | Where-Object IsSystemObject -eq $false
To do this using the PowerShell V2 Where-Object syntax, we need to add the curly braces and use $_.
$database.Assemblies | Where-Object {$_.IsSystemObject -eq $false}
There's more...
Learn more about SQLCLR assemblies from MSDN:
http://msdn.microsoft.com/en-us/library/ms254498(v=vs.110).aspx
See also
Extracting user-defined assemblies
In this recipe, we will extract user-defined assemblies and resave these back to the filesystem as DLLs.
Getting ready
We can use the SampleDB database that we used in the previous recipe, or you can substitute this with any database that is accessible to you that has some user-defined assemblies.
How to do it...
These are the steps to extract user-defined assemblies:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
$VerbosePreference = "Continue"
$instanceName = "KERRIGAN"
$timestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
$emptyBLOB_tableName = "SampleDB.dbo.EmptyBLOB"
$formatFileName = "C:\CLR Files\clr$($timestamp).fmt"
$fmtcmd = "bcp `"$emptyBLOB_tableName`" format nul -T -N -f `"$formatFileName`" -S $instanceName"
#create the format file
Invoke-Expression -Command$fmtcmd
#now there is a problem, by default the format file
#will use 8 as prefix length for varbinary
#we need this to be zero, so we will replace
(Get-Content $formatFileName) |
ForEach-Object { $_ -replace "8", "0" } |
Set-Content $formatFileName
$databaseName = "SampleDB"
$folderName = "C:\CLR Files\"
$newFolderName = "Retrieved CLR $timestamp"
$newFolder = Join-Path -Path "$($foldername)" -ChildPath $newfoldername
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
#get all user defined assemblies
$query = @"
SELECT
af.file_id AS ID,
a.name + '.dll' AS FileName
FROM
sys.assembly_files af
INNER JOIN sys.assemblies a
ON af.assembly_id = a.assembly_id
WHERE
a.is_user_defined = 1
"@
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query |
ForEach-Object {
$item = $_
Write-Verbose "Retrieving $($item.FileName) ..."
$newFileName = Join-Path $newFolder $item.FileName
$blobQuery = @"
SELECT
af.content
FROM
sys.assembly_files af
WHERE
af.file_id = $($item.ID)
"@
$cmd = "bcp `"$blobQuery`" queryout `"$newFileName`" -S $instanceName -T -d $databaseName -f `"$formatFileName`""
Invoke-Expression $cmd
}
explorer $newFolder
$VerbosePreference = "SilentlyContinue"
Once done, you can check out the file you generated. Your extracted file(s) will look similar to this:
How it works...
When we deploy SQLCLR assemblies, the definition of each assembly is saved to the target database. There may be times you want to extract these back to their DLL (Dynamic Link Library) binary forms. Retrieving and saving the DLL back into the file system is similar to retrieving and saving BLOB data back into the filesystem.
The first thing we do is to create a format file.
See recipe Extracting binary data from SQL Server for details on creating the format file for BLOB retrieval.
Once we have the format file, we create a timestamped folder where we will store our retrieved DLLs. This will help us keep track of what we extracted, and when:
$folderName = "C:\CLR Files\"
$newFolderName = "Retrieved CLR $timestamp"
$newFolder = Join-Path -Path "$($foldername)" -ChildPath $newfoldername
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $newfolder -ErrorAction SilentlyContinue
We construct a T-SQL statement to retrieve all user-defined assemblies in our target database. We can get the definition of the assemblies from sys.assembly_files. To get only user-defined assemblies, we must filter sys.assembly for is_user_defined = 1. If we do not filter, we may potentially get other files that were deployed with this assembly, such as debug files, especially when the assembly is deployed from SQL Server Data Tools. Alternatively, if you want to export only a selection, you can include a filter in your SELECT statement.
#get all user defined assemblies
$query = @"
SELECT
af.file_id AS ID,
a.name + '.dll' AS FileName
FROM
sys.assembly_files af
INNER JOIN sys.assemblies a
ON af.assembly_id = a.assembly_id
WHERE
a.is_user_defined = 1
"@
We then pass this T-SQL statement to the Invoke-Sqlcmd cmdlet:
Invoke-Sqlcmd -ServerInstance $instanceName -Database $databaseName -Query $query |
For each record returned to us, we then compose another query that will retrieve the binary contents of the current DLL file from sys.assembly_files by passing its file_id, and save this back to the filesystem using bcp and the format file that we created at the beginning of the recipe.
ForEach-Object {
$item = $_
Write-Verbose "Retrieving $($item.FileName) ..."
$newFileName = Join-Path $newFolder $item.FileName
$blobQuery = @"
SELECT
af.content
FROM
sys.assembly_files af
WHERE
af.file_id = $($item.ID)
"@
$cmd = "bcp `"$blobQuery`" queryout `"$newFileName`" -S $instanceName -T -d $databaseName -f `"$formatFileName`""
Invoke-Expression $cmd
}
To ensure we have maintained the integrity of the DLL file, we can use Red Gate's .NET Reflector tool to peek into what is in the DLL file. If all is well, you should be able to see all the classes and the definition of the methods when you open up this file in Reflector. Otherwise, Reflector will not be able to load this file.
See also
http://www.reflector.net/
Chapter 8. Business Intelligence
In this chapter, we will cover:
Introduction
Over the years and the various versions, SQL Server has increased its Business Intelligence (BI) support and capabilities. Its BI stack—Reporting Services, Integration Services, and Analysis Services—have become strong players in today's BI market.
PowerShell offers capabilities to automate and manage any BI-related tasks—from rendering SQL Server Reporting Services (SSRS) reports, to deploying the new SQL Server Integration Services (SSIS) 2012 ISPAC files, to backing up and restoring SQL Server Analysis Services (SSAS) cubes.
Listing items in your SSRS Report Server
In this recipe, we will list items in an SSRS Report Server that is configured in native mode.
Getting ready
Identify your SSRS 2012 Report Server URL. We will need to reference the ReportService2010 web service, and you can reference it using <ReportServer URL>/ReportService2010.asmx.
For this recipe, we will use the default Windows credential to authenticate to the server.
How to do it...
Let's explore the code required to list items in your SSRS Report Server that is configured in native mode.
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
#list all children
$proxy.ListChildren("/", $true) |
Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize
#if you want to list only reports
#note this is using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where TypeName -eq "Report" |
Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize
Here is a sample result:
How it works...
The SSRS ReportService2010 web service provides an API that allows objects in the Report Server to be managed programmatically, whether the Report Server is configured for native mode or SharePoint integrated mode.
This recipe assumes a SQL Server Reporting Services Native Mode install, although listing reports in SSRS SharePoint Integrated mode should employ a similar approach.
The first step is to get a handle to create a web service proxy. A web service proxy in PowerShell allows you to manage the web service as you would for any other PowerShell object. To create a new web service proxy, you need to use the New-WebServiceProxy cmdlet and pass to it the web service URL as follows:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
To display all the items in the Report Server, we just need to call the ListChildren method of the ReportingService2010 web proxy object. This will list all items it can find at the path we specified, in this case the root "/".
#list all children
$proxy.ListChildren("/", $true) |
Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize
If you want to list just the reports, we can pipe the results of the ListChildren method and filter for TypeName = "Report". Note that in the old version of the web service, ReportService2005, this property was called Type instead of TypeName.
#if you want to list only reports
#note this is using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where TypeName -eq "Report" |
Select Name, TypeName, Path, CreationDate |
Format-Table -AutoSize
See also
http://msdn.microsoft.com/en-us/library/ms155398.aspx
http://msdn.microsoft.com/en-us/library/dd315258.aspx
http://msdn.microsoft.com/en-us/library/ms152872
Listing SSRS report properties
In this recipe, we will list a single SSRS report's properties.
Getting ready
Identify your SSRS 2012 report server URL. We will need to reference the ReportService2010 web service, and you can reference it using:
<ReportServer URL>/ReportService2010.asmx
Specify your Report Manager URI in the variable $ReportServerUri.
Pick a report deployed in your SSRS 2012 Report Manager. Note the path to the item, and replace the variable $reportPath with your own path.
How to do it...
Here are the steps required to list SSRS report properties.
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$reportPath = "/Customers/Customer Contact Numbers"
#using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where-Object Path -eq $reportPath
A sample result follows:
How it works...
To get SSRS 2012 Report Properties, we must first get a web service proxy.
$ReportServerUri = http://localhost/ReportServer/ReportService2010.asmx
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
We must also identify which report we want to display properties for:
$reportPath = "/Customers/Customer Contact Numbers"
Once we get a proxy and once we know which report we are querying, we need to get the catalog items that are related to this Report Server instance. We do this by using the ListChildren method of the proxy object. This method accepts a starting path to traverse, and we will pass "/" to indicate we want to get all items from the root path of the Report Server. We specify recursive lookup by passing the Boolean value $true as a second parameter in ListChildren.
#using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where-Object Path -eq $reportPath
To narrow down the displayed properties to just our report's, we can pipe the result of the ListChildren method to the Where-Object cmdlet and filter only by reports that match $reportPath. Note that we are using the PowerShell V3 Where-Object syntax here:
#using PowerShell V3 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where-Object Path -eq $reportPath
To do this in PowerShell V2:
#using PowerShell V2 Where-Object syntax
$proxy.ListChildren("/", $true) |
Where-Object {$_.Path -eq $reportPath}
Note that a report in ReportServer2010 web service is a CatalogItem class, not a Report class, which was available in previous SSRS versions. If you pipe the previous code to the Get-Member cmdlet, you will see TypeName at the beginning of the displayed results:
TypeName: Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy1tServer_Report
Service2010_asmx.CatalogItem
See also
http://msdn.microsoft.com/en-us/library/reportservice2010.catalogitem
Using ReportViewer to view your SSRS report
This recipe shows how to display a report using the ReportViewer redistributable.
Getting ready
First, you need to download ReportViewer redistributable and install it on your machine. At the time of writing of this book, the download link is at:
http://www.microsoft.com/en-us/download/details.aspx?id=6442
Identify your SSRS 2012 Report Server URL. We will need to reference the ReportService2010 web service, and you can reference it using:
<ReportServer URL>/ReportService2010.asm
Pick a report you want to display using the ReportViewer control. Identify the full path, and replace the value of the variable $reportViewer.ServerReport.ReportPath in the script.
How to do it...
This list shows how we can display a report using ReportViewer.
#load the ReportViewer WinForms assembly
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"
$reportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer
$reportViewer.ProcessingMode = "Remote"
$reportViewer.ServerReport.ReportServerUrl = "http://localhost/ReportServer"
$reportViewer.ServerReport.ReportPath = "/Customers/Customer Contact Numbers"
#if you need to provide basic credentials, use the following
#$reportViewer.ServerReport.ReportServerCredentials.NetworkCredentials= New-Object System.Net.NetworkCredential("sqladmin", "P@ssword");
$reportViewer.Height = 600
$reportViewer.Width = 800
$reportViewer.RefreshReport()
#create a new Windows form
$form = New-Object Windows.Forms.Form
#we're going to make the form just slightly bigger
#than the ReportViewer
$form.Height = 610
$form.Width= 810
#form is not resizable
$form.FormBorderStyle = "FixedSingle"
#do not allow user to maximize
$form.MaximizeBox = $false
$form.Controls.Add($reportViewer)
#show the report in the form
$reportViewer.Show()
#show the form
$form.ShowDialog()
After you run the script, here is a sample result. Notice how the top bar is similar to the top bar in your Report Manager:
How it works...
The ReportViewer is a control that allows you to embed and display an SSRS report into a web or Windows form, and supply the user with the familiar interface they might be accustomed to seeing when using the Report Manager. This control always connects back to the Report Server when processing and rendering the report.
The ReportViewer is a redistributable package that does not come with Reporting Services installations; you will need to download and install this separately. See the Getting Ready section.
In this recipe, we are displaying a specific report in a Windows form.
To start, we have to load the assemblies related to ReportViewer and Windows forms:
#load the ReportViewer WinForms assembly
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"
We need to load the strong name of the ReportViewer.WinForms assembly using the Add-Type cmdlet, that is, to load it with the assembly name, version, culture, and public key token information. To determine the strong name, you can open up C:\Windows\assembly and check the properties of the Microsoft.ReportViewer.WinForms assembly. Note that you may get multiple versions of the assembly if you have different versions of ReportViewer redistributable installed in your system.
If you use the partial name to load the assembly, you can get an error similar to this:
Add-Type : Could not load file or assembly 'Microsoft.ReportViewer.WinForms, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a' or one of its dependencies. The system cannot find the file specified.
A Microsoft Connect item (https://connect.microsoft.com/PowerShell/feedback/details/417844/ctp3-v2b-add-type-a-microsoft-sqlserver-smo-wont-loadsmo-assemblies) filed regarding this issue still appears to be true at the time of writing of this book. The answer to the Connect item explains that Add-Type <partial name> looks at a hardcoded list of assembly versions, which seems to be Version=8.0.0.0 for Microsoft.ReportViewer.WinForms.
Once the assemblies are loaded, we then have to create a ReportViewer object:
$reportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer
We also need to set some properties that specify where and how the report is going to be fetched:
$reportViewer.ProcessingMode = "Remote"
$reportViewer.ServerReport.ReportServerUrl = "http://localhost/ReportServer"
$reportViewer.ServerReport.ReportPath = "/Customers/Customer Contact Numbers"
ProcessingMode can either be Local or Remote. ReportServerUrl and ReportPath are properties of the ServerReport object, and these should point to your Report Server and the full path to your report. Should you need to specify the credentials to connect to the Report Manager, you will need to set the ReportCredentials property, like this:
$reportViewer.ServerReport.ReportServerCredentials.NetworkCredentials= New-Object System.Net.NetworkCredential("sqladmin", "P@ssword");
We then also specify the ReportViewer dimensions:
$reportViewer.Height = 600
$reportViewer.Width = 800
$reportViewer.RefreshReport()
For this recipe, we embedded the ReportViewer object in a Windows form, and lastly, showed it as a dialog form. Since we have pre-set the size of the report to 800 x 600, we are going to disable the maximize button, and the resizability of the window to prevent the users from resizing the form and seeing only empty spaces when the form is resized.
#create a new Windows form
$form = New-Object Windows.Forms.Form
#we're going to make the form just slightly bigger
#than the ReportViewer
$form.Height = 610
$form.Width= 810
#form is not resizable
$form.FormBorderStyle = "FixedSingle"
#do not allow user to maximize
$form.MaximizeBox = $false
$form.Controls.Add($reportViewer)
#show the report in the form
$reportViewer.Show()
#show the form
$form.ShowDialog()
See also
http://msdn.microsoft.com/en-us/library/microsoft.reporting.winforms.reportviewer.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.reportviewer_properties
http://msdn.microsoft.com/en-us/library/ms251771.aspx
Downloading an SSRS report in Excel and PDF
This recipe shows how to download an SSRS report in Excel and PDF format.
Getting ready
To perform this recipe, you must first download and install the ReportViewer control. The ReportViewer control allows SSRS reports to be displayed and viewed to a web or Windows form.
See the Using ReportViewer to view your SSRS report recipe on how and where to download the ReportViewer control.
After installing the ReportViewer control, select a report that you wish to download into an Excel or PDF version.
In this recipe, we will download a report /Customers/Customer Contact Numbers into Excel and PDF. Alternatively, choose a report you wish to download and replace the $reportViewer.ServerReport.ReportPath variable.
How to do it...
Let's explore the code required to view your report in Excel and PDF.
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$reportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer
$reportViewer.ProcessingMode = "Remote"
$reportViewer.ServerReport.ReportServerUrl = "http://localhost/ReportServer"
$reportViewer.ServerReport.ReportPath = "/Customers/Customer Contact Numbers"
#required variables for rendering
$mimeType = $null
$encoding = $null
$extension = $null
$streamids = $null
$warnings = $null
#export to Excel
$excelFile = "C:\Temp\Customer Contact Numbers.xls"
$bytes = $reportViewer.ServerReport.Render("Excel", $null,
[ref] $mimeType,
[ref] $encoding,
[ref] $extension,
[ref] $streamids,
[ref] $warnings)
$fileStream = New-Object System.IO.FileStream($excelFile, [System.IO.FileMode]::OpenOrCreate)
$fileStream.Write($bytes, 0, $bytes.Length)
$fileStream.Close()
#let's open up our Excel document
$excel = New-Object -comObject Excel.Application
$excel.visible = $true
$excel.Workbooks.Open($excelFile) | Out-Null
#export to PDF
$pdfFile = "C:\Temp\Customer Contact Numbers.pdf"
$bytes = $reportViewer.ServerReport.Render("PDF", $null,
[ref] $mimeType,
[ref] $encoding,
[ref] $extension,
[ref] $streamids,
[ref] $warnings)
$fileStream = New-Object System.IO.FileStream($pdfFile, [System.IO.FileMode]::OpenOrCreate)
$fileStream.Write($bytes, 0, $bytes.Length)
$fileStream.Close()
#let's open up up our PDF application
[System.Diagnostics.Process]::Start($pdfFile)
How it works...
For this recipe, we will need to load a few assemblies. We need to load the ReportViewer assembly, which will render the SSRS report from Report Manager into different formats:
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
We will also need to set the properties of the report:
$reportViewer = New-Object Microsoft.Reporting.WinForms.ReportViewer
$reportViewer.ProcessingMode = "Remote"
$reportViewer.ServerReport.ReportServerUrl = "http://localhost/ReportServer"
$reportViewer.ServerReport.ReportPath = "/Customers/Customer Contact Numbers"
There are also few variables we need to declare, to render our report. We need to declare these because they need to be passed by reference to the Render method of ReportViewer.
#required variables for rendering
$mimeType = $null
$encoding = $null
$extension = $null
$streamids = $null
$warnings = $null
We want to render the report first as an Excel file. The ReportViewer handle has a Render method that allows the report to be rendered in different formats, including Excel, PDF, and image. To render a report to Excel, we must invoke the ServerReport.Render method. The first parameter that we pass is for format, and it should be Excel. We are also going to pass five output parameters for MIME type, encoding, extension, stream IDs, and warnings respectively. We need to assign the result of this method's invocation into a byte variable.
#export to Excel
$excelFile = "C:\Temp\Customer Contact Numbers.xls"
$bytes = $reportViewer.ServerReport.Render("Excel", $null,
[ref] $mimeType,
[ref] $encoding,
[ref] $extension,
[ref] $streamids,
[ref] $warnings)
To create an Excel file based on what was rendered, we should use a System.IO.FileStream object:
$fileStream = New-Object System.IO.FileStream($excelFile, [System.IO.FileMode]::OpenOrCreate)
$fileStream.Write($bytes, 0, $bytes.Length)
$fileStream.Close()
When done, we create an Excel.Application COM object. We pass the filename, and open the workbook using the Excel object's Workbooks.Open method.
#let's open up our excel document
$excel = New-Object -comObject Excel.Application
$excel.visible = $true
$excel.Workbooks.Open($excelFile) | Out-Null
To render the report in PDF format, the same ServerReport.Render method can be invoked, but this time passing PDF instead of Excel as the first parameter:
$pdfFile = "C:\Temp\Customer Contact Numbers.pdf"
$bytes = $reportViewer.ServerReport.Render("PDF", $null,
[ref] $mimeType,
[ref] $encoding,
[ref] $extension,
[ref] $streamids,
[ref] $warnings);
Saving the rendered PDF document also requires using the System.IO.FileStream object.
$fileStream = New-Object System.IO.FileStream($pdfFile, [System.IO.FileMode]::OpenOrCreate)
$fileStream.Write($bytes, 0, $bytes.Length)
$fileStream.Close()
The [System.Diagnostics.Process]::Start method is then used to open the PDF using the default application installed to run PDFs:
#let's open up up our PDF application
[System.Diagnostics.Process]::Start($pdfFile)
See also
http://msdn.microsoft.com/en-us/library/ms251771.aspx
http://msdn.microsoft.com/en-us/library/microsoft.reporting.webforms.serverreport.render(v=vs.100).aspx
Creating an SSRS folder
In this recipe, we create a timestamped SSRS folder.
Getting ready
Identify your SSRS 2012 Report Server URL. We will need to reference the ReportService2010 web service, and you can reference it using:
<ReportServer URL>/ReportService2010.asmx
How to do it...
Let's explore the code required to create an SSRS folder programmatically.
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
#A workaround we have to do to ensure
#we don't get any namespace clashes is to
#capture the auto-generated namespace, and
#create our objects based on this namespace
#capture automatically generated namespace
#this is a workaround to avoid namespace clashes
#resulting in using –Class with New-WebServiceProxy
$type = $Proxy.GetType().Namespace
#formulate data type we need
$datatype = ($type + '.Property')
#display datatype, just for our reference
$datatype
#create new Property
#if we were using –Class SSRS, this would be similar to
#$property = New-Object SSRS.Property
$property = New-Object ($datatype)
$property.Name = "Description"
$property.Value = "SQLSaturdays Rock! Attendees are cool!"
$folderName = "SQLSat 114 " + (Get-Date -format "yyyy-MMM-dd-hhmmtt")
#Report SSRS Properties
#http://msdn.microsoft.com/en-us/library/ms152826.aspx
$numProperties = 1
$properties = New-Object ($datatype + '[]')$numProperties
$properties[0] = $property
$proxy.CreateFolder($folderName, "/", $properties)
#display new folder in IE
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie "http://localhost/Reports"
Once done, go to your Report Manager and verify that the folder has been created:
How it works...
To create a folder, or any item, in your Report Server, we have to first create a handle to the Report Server web service by creating a proxy:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
Typically, when you check sample code, you will find that the –Class switch is specified with the New-WebServiceProxy class, like this:
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential -Class SSRS2008
We don't use –Class in this recipe because of a couple of issues:
See http://www.sqlmusings.com/2012/02/04/resolvingssrs-and-powershell-new-webserviceproxy-namespaceissue/ for more details on using the –Class switch for the New-WebServiceProxy cmdlet.
On the other hand, if we do not use namespace, a different issue arises. The automatically generated namespace is unpredictable. For example, a sample namespace is:
PS C:\Users\Administrator> $Proxy.GetType().Namespace
Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy1tServer_ReportService2010
_asmx
This poses a problem because we need to refer to this namespace when we create any ReportService2010 object. To work around this issue, we can omit the –Class and dynamically capture the namespace, and subsequently use it when creating our SSRS objects.
In the following script, we are creating a Property object that we are going to use for our folder:
#capture automatically generated namespace
#this is a workaround to avoid namespace clashes
#resulting in using –Class with New-WebServiceProxy
$type = $Proxy.GetType().Namespace
#formulate data type we need
$datatype = ($type + '.Property')
#display datatype, just for our reference
$datatype
#create new Property
#if we were using –Class SSRS, this would be similar to
#$property = New-Object SSRS.Property
$property = New-Object ($datatype)
Once we have created the Property object, we can assign the values. One property we can set for a folder is Description:
$property.Name = "Description"
$property.Value = "SQLSaturdays Rock! Attendees are cool!"
$folderName = "SQLSat 114 " + (Get-Date -format "yyyy-MMM-dd-hhmmtt")
We then need to add this to a Property[] array, which is what the CreateFolder method of the proxy accepts. Note that when we create this array, we still need to create this dynamically, similar to how we created our Property object:
#Report SSRS Properties
#http://msdn.microsoft.com/en-us/library/ms152826.aspx
$numProperties = 1
$properties = New-Object ($datatype + '[]')$numProperties
$properties[0] = $property
When done, we can create the folder using the CreateFolder method, which accepts the folder name, the parent, and a properties array:
$proxy.CreateFolder($folderName, "/", $properties)
The last step we have in the recipe is creating an alias for IE, and launching our Report Manager to verify the folder has been created:
#display new folder in IE
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie "http://localhost/Reports"
See also
http://www.sqlmusings.com/2012/02/04/resolving-ssrs-andpowershell-new-webserviceproxy-namespace-issue/
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createfolder.aspx
Creating an SSRS data source
In this recipe, we will create an SSRS data source.
Getting ready
In our recipe, we will create a data source called Sample that is stored in the /Data Sources folder. This data source uses Integrated authentication and points to the AdventureWorks2008R2 database.
Before we start, we will need to identify the typical information needed for a data source, including:
Property | Value |
---|---|
Data source name | Sample |
Data source type | SQL |
Connection string | Data Source=KERRIGAN;Initial Catalog=AdventureWorks2008R2 |
Credentials | Integrated |
Parent (that is, folder where this data source will be placed; must exist already) | /Data Sources |
These are the same pieces of information you can find when you go to a data source's properties in your Report Manager:
How to do it...
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$type = $Proxy.GetType().Namespace
#create a DataSourceDefinition
$dataSourceDefinitionType = ($type + '.DataSourceDefinition')
$dataSourceDefinition = New-Object($dataSourceDefinitionType)
$dataSourceDefinition.CredentialRetrieval = "Integrated"
$dataSourceDefinition.ConnectString = "Data Source=KERRIGAN;Initial Catalog=AdventureWorks2008R2"
$dataSourceDefinition.extension = "SQL"
$dataSourceDefinition.enabled = $true
$dataSourceDefinition.Prompt = $null
$dataSourceDefinition.WindowsCredentials = $false
#NOTE this is SSRS native mode
#CreateDataSource method accepts the following parameters:
#datasource name
#parent (data folder) – must already exist
#overwrite
#data source definition
#properties
$dataSource = "Sample"
$parent = "/Data Sources"
$overwrite = $true
$newDataSource = $proxy.CreateDataSource($dataSource, $parent, $overwrite,$dataSourceDefinition, $null)
When done, open up your Report Manager and confirm that the data source has been created:
How it works...
To create a data source programmatically, we first need to get a web service proxy:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
We then need to capture the automatically generated namespace. We will use this in succeeding steps:
$type = $Proxy.GetType().Namespace
We then need to create a DataSourceDefinition class. We start by using our automatically generated namespace to help us create a new DataSourceDefinition object:
#create a DataSourceDefinition
$dataSourceDefinitionType = ($type + '.DataSourceDefinition')
$dataSourceDefinition = New-Object($dataSourceDefinitionType)
See the How it works... section of the Creating an SSRS folder recipe for additional details on automatically generated namespace issues.
We then need to specify the properties of DataSourceDefinition:
We are also setting the report so that it does not prompt for credentials when run by setting the Prompt property to null; and WindowsCredentials to be false, for the report not to pass credentials as Windows credentials:
$dataSourceDefinition.CredentialRetrieval = "Integrated"
$dataSourceDefinition.ConnectString = "Data Source=KERRIGAN;Initial Catalog=AdventureWorks2008R2"
$dataSourceDefinition.extension = "SQL"
$dataSourceDefinition.enabled = $true
$dataSourceDefinition.Prompt = $null
$dataSourceDefinition.WindowsCredentials = $false
To create a data source in native mode, we need to use the CreateDataSource method, which accepts five parameters:
This is illustrated in the following code:
$dataSource = "Sample"
$parent = "/Data Sources"
$overwrite = $true
$newDataSource = $proxy.CreateDataSource($dataSource, $parent, $overwrite,$dataSourceDefinition, $null)
See also
http://msdn.microsoft.com/en-us/library/reportservice2010.datasourcedefinition.aspx
Changing an SSRS report's data source reference
In this recipe, we will update an SSRS report's data source.
Getting ready
In our recipe we will change the data source of our report /Customers/Customer Contact Numbers, which originally uses the data source reference /Data Sources/Sample to point to /Data Sources/KERRIGAN.
Alternatively, pick an existing report in your environment and the data source you want this report to reference. Note the names and the path to these items.
How to do it...
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
#get autogenerated namespace
$type = $proxy.GetType().Namespace
#specify which report's data source to change
$reportPath = "/Customers/Customer Contact Numbers"
#look for the report in the catalog items array
#note we are using PowerShell V3 Where-Object syntax
$report = $proxy.ListChildren("/", $true) |
Where-Object Path -eq $reportPath
#get current data source name
#this needs to be the same name in the RDL
$dataSourceName = $($proxy.GetItemDataSources($report.Path)).Name
#specify new data source reference
$newDataSourcePath = "/Data Sources/Sample"
#dynamically create data types based on the new
#autogenerated namespace
$dataSourceType = ($type + '.DataSource')
$numItems = 1
$dataSourceArrayType = ($type + '.DataSource[]')
$dataSourceReferenceType = ($type + '.DataSourceReference')
#create a data source array containing
#the new data source path
$dataSourceArray = New-Object ($datasourceArrayType)$numItems
$dataSourceArray[0] = New-Object ($dataSourceType)
$dataSourceArray[0].Name = $dataSourceName
$dataSourceArray[0].Item = New-Object ($dataSourceReferenceType)
$dataSourceArray[0].Item.Reference = $newDataSourcePath
#set the new data source
$proxy.SetItemDataSources($report.Path, $dataSourceArray)
You can confirm the changes by opening the Report Manager, and opening that report's Data Sources. Ensure that the data source reference now points to the correct path:
How it works...
In order to change a report's data source, we must first get a handle to this report.
The first step is to create a web server proxy:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
In this recipe, we will also be creating a few ReportService2010 objects, so we will need to capture the dynamically generated namespace:
$type = $proxy.GetType().Namespace
See the How it works... section of the Creating an SSRS folder recipe for additional details on automatically generated namespace issues.
We then need to get a handle to the report. In order to do this, we need to capture all the Report Server objects, and extract the report that matches the path we specified:
#look for the report in the catalog items array
#note we are using PowerShell V3 Where-Object syntax
$report = $proxy.ListChildren("/", $true) |
Where-Object Path -eq $reportPath
We also need to capture the report's current data source name by using the GetItemDataSources method of the proxy object. We need to keep the same name.
Note that paths, report names, and data source names and references are case sensitive.
Later in the code, we will need to change the data source path it references:
#get current data source name
#this needs to be the same name in the RDL
$dataSourceName = $($proxy.GetItemDataSources($report.Path)).Name
#specify new data source reference
$newDataSourcePath = "/Data Sources/Sample"
The next step is to create a data source array (DataSource[] object). Because we have a dynamically generated namespace, we must first compose the data types dynamically based on the namespace—here, stored in the variable $type:
#dynamically create data types based on the new
#autogenerated namespace
$dataSourceType = ($type + '.DataSource')
$numItems = 1
$dataSourceArrayType = ($type + '.DataSource[]')
$dataSourceReferenceType = ($type + '.DataSourceReference')
To create a data source array, we use the new types:
#create a data source array containing
#the new data source path
$dataSourceArray = New-Object ($datasourceArrayType)$numItems
$dataSourceArray[0] = New-Object ($dataSourceType)
$dataSourceArray[0].Name = $dataSourceName
$dataSourceArray[0].Item = New-Object ($dataSourceReferenceType)
$dataSourceArray[0].Item.Reference = $newDataSourcePath
We are now ready to call the SetItemDataSources method of the proxy object to change our report's data source reference. This method accepts a catalog item name path, and a data source array.
$proxy.SetItemDataSources($report.Path, $dataSourceArray);
See also
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setitemdatasources.aspx
Uploading an SSRS report to Report Manager
In this recipe, we will upload an SSRS Report (.rdl file) to the Report Manager.
Getting ready
You can use the sample RDL file that comes with this cookbook and save it to the C:\SSRS folder. The sample RDL file uses the AdventureWorks2008R2 sample database. Alternatively, use an RDL file that is readily available to you. Be sure to update the RDL file reference in the script to reflect where your report file is located.
How to do it...
Here is how we can upload an RDL file to the Report Manager:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$type = $proxy.GetType().Namespace
#specify where the RDL file is
$rdl = "C:\SSRS\Customer Sales.rdl"
#extract report name from the RDL file
$reportName = [System.IO.Path]::GetFileNameWithoutExtension($rdl)
#get contents of the RDL
$byteArray = Get-Content $rdl -Encoding Byte
#The fully qualified URL for the parent folder that will contain #the item.
$parent = "/Customers"
$overwrite = $true
$warnings = $null
#create report
$report = $proxy.CreateCatalogItem("Report", $reportName, $parent, $overwrite, $byteArray, $null, [ref]$warnings)
#data source name must match what's in the RDL
$dataSourceName = "KERRIGAN"
#data source path should match what's in the report server
$dataSourcePath = "/Data Sources/KERRIGAN"
#when we upload the report, if the
#data source from the source is different
#or has a different path from what's in the
#report manager, the data source will be broken
#and we will need to update
#create our data type references
$dataSourceArrayType = ($type + '.DataSource[]')
$dataSourceType = ($type + '.DataSource')
$dataSourceReferenceType = ($type + '.DataSourceReference')
#create data source array
$numDataSources = 1
$dataSourceArray = New-Object ($dataSourceArrayType)$numDataSources
$dataSourceReference = New-Object ($dataSourceReferenceType)
#update data source
$dataSourceArray[0] = New-Object ($dataSourceType)
$dataSourceArray[0].Name = $dataSourceName
$dataSourceArray[0].Item = New-Object ($dataSourceReferenceType)
$dataSourcearray[0].Item.Reference = $dataSourcePath
$proxy.SetItemDataSources($report.Path, $dataSourceArray)
How it works...
First, we create a web service proxy object:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$type = $Proxy.GetType().Namespace
We will then need to specify the path to the RDL file. In this recipe, we will keep the file name the same as the RDL filename, without the extension:
#specify where the RDL file is
$rdl = "C:\SSRS\Customer Sales.rdl"
#extract report name from the RDL file
$reportName = [System.IO.Path]::GetFileNameWithoutExtension($rdl)
We need to extract the contents of the RDL file to create the report programmatically. To do so, we will use the Get-Content cmdlet, but using the switch –Encoding to ensure we preserve the encoding used in the report:
#get contents of the RDL
$byteArray = Get-Content $rdl -Encoding Byte
To create the report, we need to use the CreateCatalogItem method of the proxy object, which accepts the catalog item type, report name, parent, overwrite Boolean flag, the contents of the RDL file, and a warnings variable:
#The fully qualified URL for the parent folder that will contain #the item.
$parent = "/Customers"
$overwrite = $true
$warnings = $null
#create report
$report = $proxy.CreateCatalogItem("Report", $reportName, $parent, $overwrite, $byteArray, $null, [ref]$warnings)
The supported CatalogItem types in native mode are:
At this point, the report is already uploaded to the server. However, if the data source path stored in the report is different from where the data source is located in the server, the report will still not be usable.
To change the data source, we must create a DataSource array, and change only the DataSourceReference value. We change the report's data source reference by using the SetItemDataSources method of the proxy object:
#data source name must match what's in the RDL
$dataSourceName = "KERRIGAN"
#data source path should match what's in the report server
$dataSourcePath = "/Data Sources/KERRIGAN"
#when we upload the report, if the
#data source from the source is different
#or has a different path from what's in the
#report manager, the data source will be broken
#and we will need to update
#create our data type references
$dataSourceArrayType = ($type + '.DataSource[]')
$dataSourceType = ($type + '.DataSource')
$dataSourceReferenceType = ($type + '.DataSourceReference')
#create data source array
$numDataSources = 1
$dataSourceArray = New-Object ($dataSourceArrayType)$numDataSources
$dataSourceReference = New-Object ($dataSourceReferenceType)
#update data source
$dataSourceArray[0] = New-Object ($dataSourceType)
$dataSourceArray[0].Name = $dataSourceName
$dataSourceArray[0].Item = New-Object ($dataSourceReferenceType)
$dataSourcearray[0].Item.Reference = $dataSourcePath
$proxy.SetItemDataSources($report.Path, $dataSourceArray)
See the Changing an SSRS report's data source reference recipe for more details on the steps.
See also
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.createcatalogitem.aspx
Downloading all SSRS report RDL files
This recipe shows how you can download all RDL files from your Report Server.
Getting ready
In this recipe, we will download all RDL files from the SSRS Report Server into C:\SSRS\ in a subfolder structure that mimics the folder structure in the Report Server.
Identify your SSRS 2012 Report Server URL. We will need to reference the ReportService2010 web service, and you can reference it using:
<ReportServer URL>/ReportService2010.asmx
How to do it...
Let's explore the code required to download the RDL files from your Report Server.
$VerbosePreference = "Continue"
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$destinationFolder = "C:\SSRS\"
#create a new folder where we will save the files
#we'll use a time-stamped folder, format similar
#to 2012-Mar-28-0850PM
$ts = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$folderName = "RDL Files $($ts)"
$fullFolderName = Join-Path -Path "$($destinationFolder)" -ChildPath $folderName
#If the path exists, will error silently and continue
New-Item -ItemType Directory -Path $fullFolderName -ErrorAction SilentlyContinue
#get all reports
#second parameter means recursive
#CHANGE ALERT:
#in ReportingService2005 - Type
#in ReportingService2010 - TypeName
$proxy.ListChildren("/", $true) |
Select TypeName, Path, ID, Name |
Where-Object TypeName -eq "Report" |
ForEach-Object {
$item = $_
[string]$path = $item.Path
$pathItems=$path.Split("/")
#get path name; we will mirror structure
#when we save the file
$reportName = $pathitems[$pathItems.Count -1]
$subfolderName = $path.Trim($reportName)
$fullSubfolderName = Join-Path -Path "$($fullFolderName)" -ChildPath $subfolderName
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $fullSubfolderName -ErrorAction SilentlyContinue
#CHANGE ALERT:
#in ReportingService2005 - GetReportDefinition
#in ReportingService2010 - GetItemDefinition
#use $Proxy | gm to learn more
[byte[]] $reportDefinition = $proxy.GetItemDefinition($item.Path)
#note here we're forcing the actual definition to be
#stored as a byte array
#if you take out the @() from the
#MemoryStream constructor,
#you'll get an error
[System.IO.MemoryStream] $memStream = New-Object System.IO.MemoryStream(@(,$reportDefinition))
#save the XML file
$rdlFile = New-Object System.Xml.XmlDocument
$rdlFile.Load($memStream) | Out-Null
$fullReportFileName = "$($fullSubfolderName)$($item.Name).rdl"
Write-Verbose "Saving $($fullReportFileName)"
$rdlFile.Save($fullReportFileName)
}
Write-Verbose "Done downloading your RDL files to $($fullFolderName)"
$VerbosePreference = "SilentlyContinue"
How it works...
This recipe will re-create the entire folder structure of the Report Manager, and save the appropriate RDL files in their respective folders.
To do this, we first create a proxy to the ReportService2010 web service:
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
We will also need to specify where we want to store the downloaded RDL files:
$destinationFolder = "C:\SSRS\"
We also want to create a new timestamped folder where we will store the RDL files:
$ts = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$folderName = "RDL Files $($ts)"
$fullFolderName = Join-Path -Path "$($destinationFolder)" -ChildPath $folderName
We then get all report items. Note that we have to filter these to return only items with TypeName = Report:
$proxy.ListChildren("/", $true) |
Select TypeName, Path, ID, Name |
Where-Object TypeName -eq "Report" |
ForEach-Object {
We can pass all Report items to the Foreach-Object cmdlet so we can download each RDL file from Report Manager. For each report, we want to investigate the path. If the path contains a series of folders, we want to recreate these folders in our destination folder:
$item = $_
[string]$path = $item.Path
$pathItems=$path.Split("/")
#get path name; we will mirror structure
#when we save the file
$reportName = $pathitems[$pathItems.Count -1]
$subfolderName = $path.Trim($reportName)
$fullSubfolderName = Join-Path -Path "$($fullFolderName)" -ChildPath $subfolderName
#If the path exists, will error silently and continue
New-Item -ItemType directory -Path $fullSubfolderName -ErrorAction SilentlyContinue
Once we have created the folder structure, we can get the report definition using the GetItemDefinition method of the proxy object. This needs to be stored in a byte array, to ensure we store unaltered, raw bytes of the report:
#CHANGE ALERT:
#in ReportingService2005 - GetReportDefinition
#in ReportingService2010 - GetItemDefinition
#use $Proxy | gm to learn more
[byte[]] $reportDefinition = $proxy.GetItemDefinition($item.Path)
#note here we're forcing the actual definition to be
#stored as a byte array
#if you take out the @() from the
#MemoryStream constructor,
#you'll get an error
[System.IO.MemoryStream] $memStream = New-Object System.IO.MemoryStream(@(,$reportDefinition))
We can then store the memory stream in an XmlDocument object, which can in turn save the file back to the filesystem, given a full file path and name:
#save the XML file
$rdlFile = New-Object System.Xml.XmlDocument
$rdlFile.Load($memStream) | Out-Null
$fullReportFileName = "$($fullSubfolderName)$($item.Name).rdl"
Write-Verbose "Saving $($fullReportFileName)"
$rdlFile.Save($fullReportFileName)
See also
Adding a user with a role to an SSRS report
In this recipe, we will add a user with a few roles to SSRS.
Getting ready
In this recipe, we will add QUERYWORKS\aterra as a browser and Content Manager to the Customer Contact Numbers report.
For your environment, instead of using QUERYWORKS\aterra, you can identify a user you want to add to an existing report, and which roles you want to assign to them.
How to do it...
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$type = $Proxy.GetType().Namespace
$itemPath = "/Customers/Customer Contact Numbers"
#this will hold all the groups/users for a report
$newPolicies = @()
$inherit = $null
#list current report users
$proxy.GetPolicies($itemPath, [ref]$inherit)
#NOTE that when we change policies, it will
#automatically break inheritance
#ALSO NOTE that when you programmatically mess
#with policies, you will need to "re-add" users that were
#already there, if you want them to keep on having access
#to your reports
#this gets all users who currently have
#access to this report
#need to pass $inherit by reference
$proxy.GetPolicies($itemPath, [ref]$inherit) |
ForEach-Object {
#re-add existing policies
$newPolicies += $_
}
$policyDataType = ($type + '.Policy')
$newPolicy = New-Object ($policyDataType)
$newPolicy.GroupUserName = "QUERYWORKS\aterra"
#a policy must have roles
$roleDataType = ($type + '.Role')
$newRole = New-Object ($roleDataType)
$newRole.Name = "Browser"
#add the role to the policy
$newPolicy.roles += $newRole
#a policy must have roles
$roleDataType = ($type + '.Role')
$newRole = New-Object ($roleDataType)
$newRole.Name = "Content Manager"
#add the role to the policy
$newPolicy.roles += $newrole
#check if this user already exists in your policy array
#if user does not exist yet with current role, add policy
if ($($newPolicies | ForEach-Object {$_.GroupUserName}) -notcontains $newPolicy.GroupUserName)
{
$newPolicies += $newPolicy
}
#set the policies
$proxy.SetPolicies($itemPath,$newPolicies)
#list new report users
$proxy.GetPolicies($itemPath, [ref]$inherit)
When done, check the report that you just added a user to, from Report Manager. Go to its Properties and look at its security settings. Note that the user has been added, but inheritance is broken—as illustrated by the checkboxes, and the extra menu item called Revert to Parent Security has been added:
How it works...
When adding or changing users in an SSRS report programmatically, we will need to get a handle to the whole policy object, add or change the users or roles, and then re-apply the policy. Because this is manually changing a single item's security, inheritance is automatically broken for this item.
First, we need to create a proxy, and extract the dynamically created namespace.
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
$type = $proxy.GetType().Namespace
See the How it works... section of the Create an SSRS folder recipe for additional details on automatically generated namespace issues.
We also need to specify the path of the report we want to change:
$itemPath = "/Customers/Customer Contact Numbers"
To change policies, we will need to re-save existing policies. We will do this by retrieving the current users and roles using the GetPolicies method of the proxy object, and saving them to an array. The $inherit variable will hold whether that item inherits its security policy from its parent or not:
$newPolicies = @()
$inherit = $null
#this gets all users who currently have
#access to this report
#need to pass $inherit by reference
$proxy.GetPolicies($itemPath, [ref]$inherit) |
ForEach-Object {
#re-add existing policies
$newPolicies += $_
}
We then need to specify the account we are adding. This needs to be held in a ReportingService2010.Policy object, and can either be a user or group name:
$policyDataType = ($type + '.Policy')
$newPolicy = New-Object ($policyDataType)
$newPolicy.GroupUserName = "QUERYWORKS\aterra"
Next, we add the roles that will be associated with this group or user:
#a policy must have roles
$roleDataType = ($type + '.Role')
$newRole = New-Object ($roleDataType)
$newRole.Name = "Browser"
#add the role to the policy
$newPolicy.roles += $newRole
#a policy must have roles
$roleDataType = ($type + '.Role')
$newRole = New-Object ($roleDataType)
$newRole.Name = "Content Manager"
#add the role to the policy
$newPolicy.roles += $newrole
Once the new account and roles are in place, we need to add it to our policy array, which contains all existing policies for the item:
#check if this user already exists in your policy array
#if user does not exist yet with current role, add policy
if ($($newPolicies | ForEach-Object {$_.GroupUserName}) -notcontains $newPolicy.GroupUserName)
{
$newPolicies += $newPolicy
}
When everything is set, we can call the SetPolicies method of the proxy object:
#set the policies
$proxy.SetPolicies($itemPath,$newPolicies)
See also
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.getpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.setpolicies
http://msdn.microsoft.com/en-us/library/reportservice2010.reportingservice2010.inheritparentsecurity
Creating folders in an SSIS package store and MSDB
In this recipe, we will see how to create a folder in the SSIS instance and the package store.
Getting ready
For this recipe, we will create a timestamped folder prefixed with the word QueryWorks. Feel free to replace it with your folder name by changing the variable $newfolder.
How to do it...
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$server = "KERRIGAN"
#create new app
$app = New-Object ("Microsoft.SqlServer.Dts.Runtime.Application")
$ts = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$newfolder = "QueryWorks File System $($ts)"
#folder in package store
#will appear under "Stored Packages > File System"
if (!$app.FolderExistsOnDtsServer("\File System\$($newfolder)", $server))
{
$app.CreateFolderOnDtsServer("\File System\", $newfolder, $server)
}
#folder in SSIS instance
#will appear under "Stored Packages > MSDB"
$newfolder = "QueryWorks SSIS $($ts)"
if (!$app.FolderExistsOnSqlServer($newfolder, $server, $null, $null))
{
$app.CreateFolderOnSqlServer("\", $newfolder, $server, $null, $null)
}
When the script finishes, connect to the Integration Services instance. Expand both File System and MSDB nodes, and confirm that the folders have been created.
How it works...
The assembly Microsoft.SqlServer.ManagedDTS exposes SSIS 2005 and 2008 objects for programmatic access. Although this can be considered legacy SSIS when SQL Server 2012 came out, this method was still supported, and will still be used by developers.
To create folders in the package store and the SSIS instance, we must first load the ManagedDTS assembly. We need to do this explicitly because this assembly does not come with the SQLPS module:
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
We then need to create an application object, which contains the methods to create the folders:
$server = "KERRIGAN"
#create new app
$app = New-Object ("Microsoft.SqlServer.Dts.Runtime.Application")
To create the folder in the SSIS package store, we first check if the folder is created already. If not, we create the folder using the CreateFolderOnDtsServer method of the DTS Application object, which accepts the parent path, the new folder name, and the server name:
#folder in package store
#will appear under "Stored Packages > File System"
if (!$app.FolderExistsOnDtsServer("\File System\$($newfolder)", $server))
{
$app.CreateFolderOnDtsServer("\File System\", $newfolder, $server)
}
Creating the folder in the SSIS instance is very similar to creating folders in the package store. However, the methods to check and create the instance folders accept more parameters. Both the FolderExistsOnSqlServer and CreateFolderOnSqlServer methods of the DTS application object accept two extra parameters for username and password used to authenticate to SQL Server:
#folder in SSIS instance
#will appear under "Stored Packages > MSDB"
$newfolder = "QueryWorks SSIS $($ts)"
if (!$app.FolderExistsOnSqlServer($newfolder, $server, $null, $null))
{
$app.CreateFolderOnSqlServer("\", $newfolder, $server, $null, $null)
}
See also
http://msdn.microsoft.com/en-us/library/ms211665
Deploying an SSIS package to the package store
In this recipe, we will deploy an SSIS package (.dtsx) to the SSIS package store.
Getting ready
Use the sample SSIS package—Customer Package.dtsx—that came with the downloadable code of this book. Save this file to C:\SSIS. We will deploy this to our SSIS instance, and save it under the \File System\QueryWorks package folder. Alternatively, use a .dtsx package that is readily available in your environment.
How to do it...
Let's explore the code required to deploy an SSIS .dtsx file.
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$server = "KERRIGAN"
#create new app
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
#specify package to be deployed
$dtsx = "C:\SSIS\Customer Package.dtsx"
$package = $app.LoadPackage($dtsx, $null)
#where are we going to deploy?
$SSISPackageStorePath = "\File System\QueryWorks"
$destinationName = "$($SSISPackageStorePath)\$($package.Name)"
#save to the package store
$app.SaveToDtsServer($package, $events, $destinationName, $server)
When done, log in to the SSIS instance in Management Studio, and confirm that the package has been deployed:
How it works...
Deploying a .dtsx file to the package store in the filesystem, or the msdb database, is considered a legacy way of deploying SSIS packages in SQL Server 2012. This is now referred to as a Package Deployment model.
See the Deploying an ISPAC file to SSISDB recipe for more details on deploying SSIS projects in SQL Server 2012.
Although this may be considered legacy already, this may still be the preferred way to deploy packages in some environments for a while.
To deploy programmatically, we must first create a handle to the ManagedDTS assembly:
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
After loading the ManagedDTS object, we need to create an Application object:
$server = "KERRIGAN"
#create new app
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
We then need to load the SSIS .dtsx package into a variable using the LoadPackage method of the DTS Application object. We will load the package from the C:\SSIS folder where we saved the Customer Package.dtsx package:
#deploy a package
$dtsx = "C:\SSIS\Customer Package.dtsx"
$package = $app.LoadPackage($dtsx, $null)
We also need to specify where the package is going to be deployed. If the package is to be deployed to the File System, we prefix the path with \File System\; if to the database, we prefix \MSDB\.
#where are we going to deploy?
$SSISPackageStorePath = "\File System\QueryWorks"
$destinationName = "$($SSISPackageStorePath)\$($package.Name)"
#save to the package store
$app.SaveToDtsServer($package, $events, $destinationName, $server)
If you want to save to the MSDB folder, you will have to use the SaveToSQLServer method instead of the SaveToDtsServer method.
See also
http://msdn.microsoft.com/en-us/library/ms188550.aspx
Executing an SSIS package stored in the package store or File System
In this recipe, we will execute an SSIS package using PowerShell.
Getting ready
In our recipe, we will execute Customer Package, which is saved in the package store, and we will also execute the C:\SSIS\SamplePackage.dtsx file—also included in the downloadable files for this chapter—directly from the filesystem.
Alternatively, you can locate an available SSIS package in your system that you want to execute instead. Identify whether this package is stored in the filesystem, or in the SSIS package store.
How to do it...
Let's explore the code required to execute an SSIS package programmatically using PowerShell.
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$server = "KERRIGAN"
#create new app we'll use for SSIS
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
#execute package in SSIS Package Store
$packagePath = "\File System\QueryWorks\Customer Package"
$package = $app.LoadFromDtsServer($packagePath, $server,$null)
$package.Execute()
#execute package saved in filesystem
$packagePath = "C:\SSIS\SamplePackage.dtsx"
$package = $app.LoadPackage($packagePath, $null)
$package.Execute()
How it works...
In SQL Server 2012, a new method of storing is introduced to SSIS. Using the Project Deployment model, SSIS packages are deployed with their corresponding parameters and environments to the SSISDB catalog. SQL Server 2012 still supports the legacy way of storing packages, however—which is through the filesystem, or package store.
The default package store is in:
<SQL Server Install Directory>\110\DTS\Packages
The first step is to load the ManagedDTS assembly, and create an Application object:
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
#create new app we'll use for SSIS
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
To load a package stored in the package store, we need to use the LoadFromDtsServer method of the DTS Application object and supply it with three parameters—the path to the package relative to the File System, the server name, and a third parameter for events, which we will leave null.
$packagePath = "\File System\QueryWorks\Customer Package"
$package = $app.LoadFromDtsServer($packagePath, $server,$null)
If a package is stored in the filesystem, we have to use the method LoadPackage of the DTS Application object, and pass to it the path of the package:
$packagePath = "C:\SSIS\SamplePackage.dtsx"
$package = $app.LoadPackage($packagePath, $null)
If you still have packages deployed in msdb, you can also execute these packages by using the LoadFromSqlServer method of the DTS Application object:
$packagePath = "\MSDB\SamplePackage"
$package = $app.LoadFromSqlServer($packagePath, $server, $null, $null, $null)
$package.Execute()
There's more...
Before a package can be executed, it must be loaded first. Check out different methods to load an SSIS package:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromsqlserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadfromdtsserver.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.application.loadpackage.aspx
See also
Downloading an SSIS package to a file
This recipe will download an SSIS package back to a .dtsx file.
Getting ready
Locate a package stored in the package store that you want to download to the filesystem. Note the path to this package.
How to do it...
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$server = "KERRIGAN"
#create new app
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
$timestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$destinationFolder = "C:\SSIS"
$packageToDownload = "Customer Package"
$packageParentPath = "\File System\QueryWorks"
#download the specified package
#here we're dealing with a package in
#the SSIS Package store
$app.GetDtsServerPackageInfos($packageParentPath,$server) |
Where-Object Flags -eq "Package" |
ForEach-Object {
$package = $_
$packagePath = "$($package.Folder)\$($package.Name)"
#check if this package does exist in the Package Store
if($app.ExistsOnDtsServer($packagePath, $server))
{
$fileName = Join-Path $destinationFolder "$($package.Name)_$($timestamp).dtsx"
$newPackage = $app.LoadFromDtsServer($packagePath, $server,$null)
$app.SaveToXml($fileName, $newPackage, $null)
}
}
How it works...
The first step is to load the ManagedDTS assembly and create an application object:
#add ManagedDTS assembly
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$server = "KERRIGAN"
#create new app
$app = New-Object "Microsoft.SqlServer.Dts.Runtime.Application"
We will also define our variables for timestamp, destination folder, and which package we want to download:
$timestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$destinationFolder = "C:\SSIS"
$packageToDownload = "Customer Package"
$packageParentPath = "\File System\QueryWorks"
We then retrieve all packages using the GetDtsServerPackageInfos method of the DTS application object:
$app.GetDtsServerPackageInfos($packageParentPath,$server) |
Where-Object Flags -eq "Package" |
ForEach-Object {
For each package, we check if this matches the package we wanted to download. If it does, we can use the LoadFromDtsServer method to load the package, and use the SaveToXml method to save the package back to the filesystem. Remember that a .dtsx file is simply an XML file.
ForEach-Object {
$package = $_
$packagePath = "$($package.Folder)\$($package.Name)"
#check if this package does exist in the Package Store
if($app.ExistsOnDtsServer($packagePath, $server))
{
$fileName = Join-Path $destinationFolder "$($package.Name)_$($timestamp).dtsx"
$newPackage = $app.LoadFromDtsServer($packagePath, $server,$null)
$app.SaveToXml($fileName, $newPackage, $null)
}
}
Note that we constructed a timestamped filename for our recipe; you can definitely change this filename to whatever suits your requirements.
See also
Creating an SSISDB catalog
In this recipe, we will create an SSISDB catalog.
Getting ready
To create an SSISDB catalog, we must first enable SQLCLR on the instance. Log in to SQL Server Management Studio, and use the system stored procedure sp_configure to enable CLR. Execute the following T-SQL script:
sp_configure 'clr enabled', 1
GO
RECONFIGURE
GO
How to do it...
Let's step through creating SSISDB programmatically.
Import-Module SQLPS -DisableNameChecking
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
if(!$SSISServer.Catalogs["SSISDB"])
{
#constructor accepts three (3) parameters:
#parent, name, password
$SSISDB = New-Object Microsoft.SqlServer.Management.IntegrationServices.Catalog ($SSISServer, "SSISDB", "P@ssword")
$SSISDB.Create()
}
How it works...
SQL Server 2012 introduces SSIS catalog for Integration Services. The catalog is implemented as a database called SSISDB that stores Integration Services objects (projects, packages, and parameters) and logs when projects are deployed using the new Project Deployment model. This database is accessible from SQL Server Management Studio and can be queried like any regular database:
To create SSISDB programmatically, we must first load the IntegrationServices assembly. This assembly exposes the SSIS Catalog Managed Object Model to allow programmatic access to the new SSIS objects:
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
To figure out the version and public key token, you can check out C:\Windows\assembly, and check the properties of this assembly:
First, we need to create a SQLConnection object, which we will need to pass to the IntegrationServices constructor:
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI;"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
We then need to create an IntegrationServices object:
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
To create an SSISDB catalog, we create a new Catalog object, which accepts three parameters: IntegrationServices server object, name of the catalog (SSISDB), and a password:
if(!$SSISServer.Catalogs["SSISDB"])
{
#constructor accepts three (3) parameters:
#parent, name, password
$SSISDB = New-Object Microsoft.SqlServer.Management.IntegrationServices.Catalog ($SSISServer, "SSISDB", "P@ssword")
$SSISDB.Create()
}
See also
http://msdn.microsoft.com/en-us/library/gg471508.aspx
http://msdn.microsoft.com/en-us/library/hh479588.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
Creating an SSISDB folder
In this recipe, we will create a folder in the SSISDB catalog.
Getting ready
In this recipe, we assume that the SSISDB catalog has been created. We will create a folder called QueryWorks inside the SSISDB catalog.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs["SSISDB"]
#create QueryWorks catalog folder here
$folderName = "QueryWorks"
$folderDescription = "New SSISDB folder"
$SSISDBFolder = New-Object Microsoft.SqlServer.Management.IntegrationServices.CatalogFolder ($SSISDB, $folderName, $folderDescription)
$SSISDBFolder.Create()
When done, log in to Management Studio and connect to your database engine. Expand Integration Services Catalogs, and check that the folder has been created under the SSISDB node:
How it works...
A folder in an SSISDB catalog can hold multiple projects and environments.
To create a folder inside SSISDB, also called a catalog folder, we must first get a handle to SSISDB. The core code required to do this is is as follows:
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs["SSISDB"]
Once we have the SSISDB handle, creating the folder is straightforward. It requires creating a new CatalogFolder object. The constructor takes in the SSISDB object, the name of the catalog folder, and the description:
#create QueryWorks catalog folder here
$folderName = "QueryWorks"
$folderDescription = "New SSISDB folder"
$SSISDBFolder = New-Object Microsoft.SqlServer.Management.IntegrationServices.CatalogFolder ($SSISDB, $folderName, $folderDescription)
The Create() method will persist the catalog folder in SSISDB:
$SSISDBFolder.Create()
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.catalogfolder.aspx
Deploying an ISPAC file to SSISDB
You will see how to deploy an ISPAC file to SSISDB.
Getting ready
Save the Customer Package Project.ispac file provided with the sample code of this book to the C:\SSIS folder. Alternatively, if you have an available ISPAC file that you want to use, change the $ispacFilePath variable's value to reflect your file.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs["SSISDB"]
$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]
$ispacFilePath = "C:\SSIS\Customer Package Project.ispac"
[byte[]] $ispac = [System.IO.File]::ReadAllBytes($ispacFilePath)
$SSISDBFolder.DeployProject("Customer Package Project", $ispac)
When done, log in to Management Studio and expand Integration Services Catalogs. Under SSISDB, open the QueryWorks folder, and confirm that Customer Package Project has been deployed:
How it works...
SQL Server 2012 Integration Services supports two deployment models: Package Deployment model and Project Deployment model. The Package Deployment model is the older, legacy way of deploying, where packages are deployed as standalone entities. The newer Project Deployment model is the default mode supported when you create a new SSIS project in SQL Server Data Tools (SSDT), previously known as Business Intelligence Development Studio (BIDS).
In the Package Deployment model, everything needed to deploy a project is packaged up into a single file with an .ispac extension. This file is created when you deploy the SSIS 2012 project. Although it appears to be a single file, you will discover that this is a series of files that have been compressed. Simply change the .ispac extension to .zip, and extract the file. You should see something similar to the files shown in the following screenshot:
A package manifest has been created when the SSIS was built in SQL Server Data Tools (SSDT), in addition to the package files and parameter file.
To deploy the .ispac file programmatically using PowerShell and the new SSIS object model, we first need to load the IntegrationServices assembly, and create a handle to the IntegrationServices object:
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
The next step is to get a handle to the folder where the ISPAC file will be deployed. This means we need to get a handle to each object in the hierarchy that leads to the folder, that is, create a handle to SSISDB, and then to the folder:
$SSISDB = $SSISServer.Catalogs["SSISDB"]
$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]
Once we have a handle to the folder, we need to read the byte content of the ISPAC file, and use the DeployProject method of the SSISDBFolder object available with the catalog folder object:
$ispacFilePath = "C:\SSIS\Customer Package Project.ispac"
[byte[]] $ispac = [System.IO.File]::ReadAllBytes($ispacFilePath)
$SSISDBFolder.DeployProject("Customer Package Project", $ispac)
See also
http://msdn.microsoft.com/en-us/library/ff952821(v=sql.110)
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices(v=sql.110).aspx
Executing an SSIS package stored in SSISDB
In this recipe, we execute a package stored in SSISDB.
Getting ready
In this recipe, we execute the package that comes with the Customer Package Project that was deployed in the Deploying an ISPAC File to SSISDB recipe. Alternatively, replace the variables for folder, project, and package names.
How to do it...
#import SQL Server module
Import-Module SQLPS -DisableNameChecking
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI;"
$conn = New-Object System.Data.SqlClient.SqlConnection $constr
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs["SSISDB"]
$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]
$projectName= "Customer Package Project"
$packageName= "Package.dtsx"
$SSISDBFolder.Projects[$projectName].Packages[$packageName].Execute($false, $null)
Once the script finishes, it will return the process ID of the execution.
You should see the All Executions report rendered. Confirm that the ID returned by the script is in the report. You can also check the execution start time (not shown in the screenshot, but is in the third rightmost column of the report):
How it works...
To execute a package stored in the SSISDB catalog, we need to get a handle to the package first. To get a handle to the package, we must first get to the SSISDB catalog:
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI;"
$conn = New-Object System.Data.SqlClient.SqlConnection $constr
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
$SSISDB = $SSISServer.Catalogs["SSISDB"]
We also need to have access to the folder where the package is saved:
$SSISDBFolderName = "QueryWorks"
$SSISDBFolder = $SSISDB.Folders[$SSISDBFolderName]
To execute, we must trace where the package is and invoke the Execute method of the Package object. The method accepts two parameters: a Boolean value for use32RuntimeOn64, and EnvironmentReference:
$projectName= "Customer Package Project"
$packageName= "Package.dtsx"
$SSISDBFolder.Projects[$projectName].Packages[$packageName].Execute($false, $null)
This method returns the process ID of the execution.
See also
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.integrationservices.packageinfo.aspx
Listing SSAS cmdlets
This recipe lists the new SSAS cmdlets in SQL Server 2012.
How to do it...
Let's explore the code required to list the SSAS cmdlets.
Get-Command -Module SQLASCmdlets
This should give a result similar to this:
How it works...
SQL Server Analysis Services (SSAS) gets some PowerShell love in SQL Server 2012. You can import the SQLASCMDLETS module to start using the new cmdlets.
To list the new AS cmdlets, simply use the Get-Command as follows:
Get-Command -Module SQLASCMDLETS
You will notice that some of the common SSAS tasks have been wrapped in cmdlets, such as Backup-ASDatabase, Restore-ASDatabase, Invoke-ASCmd, Invoke-ProcessCube, and the like.
See also
http://msdn.microsoft.com/en-us/library/hh213141.aspx
http://msdn.microsoft.com/en-us/library/hh758425.aspx
Listing SSAS instance properties
We will list SSAS instance properties in this recipe.
How to do it...
Let's explore the code required to list SSAS instance properties.
Import-Module SQLASCMDLETS -DisableNameChecking
#Connect to your Analysis Services server
$SSASServer = New-Object Microsoft.AnalysisServices.Server
$instanceName = "KERRIGAN"
$SSASServer.connect($instanceName)
#get all properties
$SSASServer | Select *
You should see a result similar to this:
How it works...
To get SSAS instance properties, we first need to load the SQLASCMDLETS module:
Import-Module SQLASCMDLETS -DisableNameChecking
We can then create an Analysis Server object and connect to our instance:
#Connect to your Analysis Services server
$SSASServer = New-Object Microsoft.AnalysisServices.Server
$instanceName = "KERRIGAN"
$SSASServer.connect($instanceName)
Once we get a handle to our SSAS instance, we can display its properties:
#get all properties
$SSASServer | Select *
Note that in SQL Server 2012, there are two flavors of Analysis Services: multidimensional and tabular. You can identify this by checking the ServerMode properties.
See also
http://msdn.microsoft.com/en-us/library/microsoft.analysisservices.server.aspx
Backing up an SSAS database
In this recipe, we will create an SSAS database backup.
Getting ready
Choose an SSAS database you want to back up, and replace the –Name parameter in the recipe. Ensure that you are running PowerShell with administrator privileges to the SSAS instance.
How to do it...
#import SQLASCMDLETS module
Import-Module SQLASCMDLETS -DisableNameChecking
$instanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"
Backup-ASDatabase -BackupFile $backupfile -Name "SampleDW" -Server $instanceName -AllowOverwrite -ApplyCompression
How it works...
The Backup-ASDatabase cmdlet allows multidimensional or tabular SSAS databases to be backed up to a file. In our recipe, we chose to do a compressed backup for the SampleDW SSAS database to an Analysis Services Backup file (.abf).
$instanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"
Backup-ASDatabase -BackupFile $backupfile -Name "SampleDW" -Server $instanceName -AllowOverwrite -ApplyCompression
Other switches that can be set using the Backup-ASDatabase cmdlet are:
See also
http://msdn.microsoft.com/en-us/library/hh479574.aspx
Restoring an SSAS database
You will see how to restore an SSAS database in this recipe.
Getting ready
Locate your SSAS backup file, and replace the backup file parameter with the location of your file.
How to do it...
#import SQLASCMDLETS module
Import-Module SQLASCMDLETS -DisableNameChecking
$instanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"
Restore-ASDatabase -RestoreFile $backupfile -Server $instanceName -Name "SampleDW" -AllowOverwrite
How it works...
The Restore-ASDatabase cmdlet allows multidimensional or tabular SSAS databases to be restored when provided with a backup file:
$instanceName = "KERRIGAN"
$backupfile = "C:\Temp\AWDW.abf"
Restore-ASDatabase -RestoreFile $backupfile -Server $instanceName -Name "SampleDW" -AllowOverwrite
See also
http://msdn.microsoft.com/en-us/library/hh510169.aspx
Processing an SSAS cube
In this recipe, we will process an SSAS cube.
Getting ready
Choose a cube that is readily available in your SSAS instance.
How to do it...
#import SQL Server module
Import-Module SQLASCMDLETS -DisableNameChecking
$instanceName = "KERRIGAN"
Invoke-ProcessCube -Name "AW" -Server $instanceName -Database "SampleDW" -ProcessType ([Microsoft.AnalysisServices.ProcessType]::ProcessFull)
To check that the cube has been processed:
How it works...
Processing, or reprocessing, a cube is a common task that needs to be done in an SSAS environment on a regular basis. Processing a cube ensures that your cube has the latest data that has been loaded to the source data warehouse, or any changes to the cube's structure are in place.
The Invoke-Process cmdlet simplifies this process if you are doing this task through PowerShell:
Invoke-ProcessCube -Name "AW" -Database "SampleDW" -ProcessType ([Microsoft.AnalysisServices.ProcessType]::ProcessFull)
All we need to specify is the cube name and the SSAS database where this cube belongs. Processing cubes requires administrative privileges on the SSAS instance.
There are different processing types that can be specified with the –ProcessType switch, including ProcessFull, ProcessAdd, and ProcessUpdate. Check out the different processing options and settings from MSDN:
http://msdn.microsoft.com/en-us/library/ms174774.aspx
See also
http://msdn.microsoft.com/en-us/library/hh510171.aspx
http://msdn.microsoft.com/en-us/library/ms174774.aspx
Chapter 9. Helpful PowerShell Snippets
In this chapter, we will cover:
Introduction
In this chapter, we tackle a variety of recipes that are not SQL Server specific; but you may find them useful as you work with PowerShell. Often you will need to create files that use a timestamp, analyze event logs for recent system errors, export a list of processes to CSV or XML, or even access web services. Here you will find snippets of code that you can use in existing or new scripts, or whenever you need them.
Documenting PowerShell script for Get-Help
In this recipe, we will use header comments that can be utilized by the Get-Help cmdlet.
How to do it...
In this recipe, we will explore comment-based Help.
<#
.SYNOPSIS
Creates a full database backup
.DESCRIPTION
Creates a full database backup using specified instance name and database name
This will place the backup file to the default backup directory of the instance
.PARAMETER instanceName
instance where database to be backed up resides
.PARAMETER databaseName
database to be backed up
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.ps1 -instanceName "QUERYWORKS\SQL01" -databaseName "pubs"
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.ps1 -instance "QUERYWORKS\SQL01" -database "pubs"
.NOTES
To get help:
Get-Help .\Backup-Database.ps1
#>
param
(
[Parameter(Position=0)]
[alias("instance")]
[string]$instanceName,
[Parameter(Position=1)]
[alias("database")]
[string]$databaseName
)
function main
{
#this is just a stub file
}
cls
#get general help
Get-Help "C:\PowerShell\Backup-Database.ps1"
#get examples
Get-Help "C:\PowerShell\Backup-Database.ps1" -Examples
Check appendices A and B for executing the script from the PowerShell console.
Here is a sample result:
How it works...
Starting PowerShell V2, if a script or a function has some header comments formatted in a specific way, these can be displayed when Get-Help is invoked for that function or script. This is also called comment-based help.
This comment block must be the first section in a script, or must be the first lines in a function. Once composed, the script or the function name can be passed as a parameter to Get-Help.
Some of the core keywords of the comment-based help are as follows:
<#
.SYNOPSIS
summary
.DESCRIPTION
Description
.PARAMETER parameter1Name
Parameter description
.PARAMETER parameter1Name
Parameter description
.EXAMPLE
Usage example; Appears when you use –examples
.EXAMPLE
Usage example; Appears when you use –examples
.NOTES
Additional notes; Appears when you use –full
#>
Additional sections that can be used are as follows:
There's more...
http://msdn.microsoft.com/en-us/library/windows/desktop/dd819489.aspx
http://technet.microsoft.com/en-us/magazine/ff458353.aspx
Getting a timestamp
In this recipe, we simply get the system's current timestamp.
How to do it...
This is how we will get the timestamp.
$timestamp = Get-Date -Format "yyyy-MMM-dd-hhmmtt"
#display timestamp
$timestamp
Following is a sample result:
How it works...
Often, we find ourselves needing the timestamp to append to different files we create or modify. To get the timestamp in PowerShell, we simply have to use the Get-Date cmdlet, which gives the following default format:
To change the format, we can use the –Format switch, which accepts a format string. In our recipe, we used the following format: "yyyy-MMM-dd-hhmmtt".
There are a number of standard format strings that return preformatted datetime type, or you can also compose your own format string. Common format strings, as documented in MSDN are as follows:
Format Pattern | Description |
---|---|
tt | AM/PM designator |
ss | Seconds with leading zero |
mm | Minutes with leading zero |
dd | Day of month with leading zero |
dddd | Full name of the day of the week |
hh | 12-hour clock with leading zero |
HH | 24-hour clock with leading zero |
dd | Day of month with leading zero |
MM | Numeric month with leading zero |
MMM | Abbreviated month name |
MMMM | Full month name |
yy | Two-digit year |
yyyy | Four-digit year |
There's more...
http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://technet.microsoft.com/en-us/library/ee692801.aspx
http://technet.microsoft.com/en-us/library/hh849887
Getting additional error messages
In this recipe, we will learn to display additional error messages.
How to do it...
Let's take a look at how to display more error messages.
Clear-Host
$error[0] | Format-List -Force
How it works...
PowerShell supports some special variables and constants. Some of these display arguments, user directories, and other settings. The $error is an array variable that holds all the error objects that are encountered in your PowerShell session. To display the last error message, you can use the following:
$error[0] | Format-List -Force
To check the number of errors contained in your variable, you can use the following:
$error.Count
$error works like a circular buffer. By default, $error stores the last 256 errors in your session. If you want to increase the number of error objects the array can store, you can set the $MaximumErrorCount variable to a new value.
$MaximumErrorCount = 300
Should you want to clear all the errors, you can use the clear method.
$error.Clear()
To get more information about variables that are set in your session, you can use the following command:
Get-Variable |
Select Name, Value, Options |
Format-Table -AutoSize
A partial list of special variables is presented in the following table:
Special Variable | Description |
---|---|
$_ | Current pipeline object |
$args | Arguments passed to a function |
$error | Stores the last error |
$home | User's home directory |
$host | Host information |
$match | Regex matches |
$PSHome | Install directory of PowerShell |
$pid | Process ID (PID) of PowerShell process |
$pwd | Present working directory |
$true | Boolean true |
$false | Boolean false |
$null | Null value |
Listing processes
In this recipe, we will list processes in the system.
How to do it...
Let's list processes using PowerShell.
#list all processes to screen
Get-Process
#list 10 most recently started processes
Get-Process |
Sort -Property StartTime -Descending |
Select Name, StartTime, Path, Responding -First 10
#save processes to a text file
$txtFile = "C:\Temp\processes.txt"
Get-Process |
Out-File -FilePath $txtFile -Force
notepad $txtFile
#save processes to a csv file,
#and display first five lines in file
$csvFile = "C:\Temp\processes.csv"
Get-Process |
Export-Csv -Path $csvFile -Force -NoTypeInformation
Get-Content $csvFile -totalCount 5
#save the top 5 CPU-heavy processes that
#start with S to an xml file,
#and display in Internet Explorer
$xmlFile = "C:\Temp\processes.xml"
#note we are using PowerShell V3 Where-Object syntax
Get-Process |
Where-Object ProcessName -like "S*" |
Sort -Property CPU -Descending |
Select Name, CPU -First 5 |
Export-Clixml -path $xmlFile -Force
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie $xmlFile
How it works...
In this recipe, we have used the Get-Process cmdlet to display processes in the system. We explored a few variations in this recipe.
The first example lists all processes.
Get-Process |
The second example is slightly different. We pipe the results of Get-Process, and get only the 10 most recently started processes. We achieve this by sorting StartTime in descending order, and selecting only the top 10.
Sort -Property StartTime -Descending |
Select Name, StartTime, Path, Responding -First 10
Note, however, that this will throw some errors because there are system processes that are not accessible to non-elevated users. Refer to http://blogs.technet.com/b/heyscriptingguy/archive/2010/08/07/weekend-scripter-boot-tracing-with-windows-powershell.aspx.
The result is shown in the following screenshot:
The results of Get-Process can be piped to other cmdlets and exported to different file formats, such as text file, CSV file, or XML.
To pipe results to a text file, we can use the Out-File cmdlet.
$txtFile = "C:\Temp\processes.txt"
Get-Process |
Out-File -FilePath $txtFile -Force
notepad $txtFile
To create a CSV file, we can use the Export-Csv cmdlet. In this sample, we also read back the first five lines of the CSV file that we just created.
$csvFile = "C:\Temp\processes.csv"
Get-Process |
Export-Csv -Path $csvFile -Force -NoTypeInformation
Get-Content $csvFile -totalCount 5
If you require an XML format, you can achieve that by using the Export-Clixml cmdlet. In this sample, we also filter for only processes that start with s, and we only get the top five CPU-heavy processes.
#save the top 5 CPU-heavy processes that
#start with S to an xml file,
#and display in Internet Explorer
$xmlFile = "C:\Temp\processes.xml"
#note we are using PowerShell V3 Where-Object syntax
Get-Process |
Where-Object ProcessName -like "S*" |
Sort -Property CPU -Descending |
Select Name, CPU -First 5 |
Export-Clixml -path $xmlFile -Force
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie $xmlFile
The last two lines simply create an alias for Internet Explorer, and then display the XML file.
There's more...
http://msdn.microsoft.com/en-us/library/ee176855.aspx
http://msdn.microsoft.com/en-us/library/hh849832
See also
Getting aliases
In this recipe, we look at aliases in PowerShell.
How to do it...
Let's check out aliases in PowerShell.
#list all aliases
Get-Alias
#get members of Get-Alias
Get-Alias | Get-Member
#list cmdlet that is aliased as dir
$alias:dir
#list cmdlet that is aliased as ls
$alias:ls
#get all aliases of Get-ChildItem
Get-Alias -Definition "Get-ChildItem"
How it works...
The Get-Alias cmdlet returns all PowerShell aliases. PowerShell's building blocks are cmdlets, and are named using the <Verb-Noun> convention. For example, to list contents of a directory, we use Get-ChildItem. There are, however, better-known ways to get this information such as dir if running the Windows Command Prompt, and ls if running in a Unix environment. Aliases allow most well-known commands to be run from within PowerShell. To list all aliases, use the following:
#list all aliases
Get-Alias
To get the members of Get-Alias, we can pipe the result of Get-Alias to Get-Member.
Get-Alias | Get-Member
If there is a well-known command, such as dir or ls that is supported in PowerShell and you are curious which cmdlet it refers to, you can use the following:
#list cmdlet that is aliased as dir
$alias:dir
#list cmdlet that is aliased as ls
$alias:ls
On the other hand, if you want to know all aliases for a cmdlet, you can use the following:
Get-Alias -Definition "Get-ChildItem"
There's more...
For more information on MSDN Get-Alias, refer to:
http://technet.microsoft.com/en-us/library/hh849948
Exporting to CSV and XML
In this recipe, we pipe the results of the Get-Process cmdlet to a CSV and XML file.
How to do it...
Following are the steps to export to CSV and XML:
$csvFile = "C:\Temp\sample.csv"
Get-Process |
Export-Csv -path $csvFile -Force -NoTypeInformation
notepad $csvFile
$xmlFile = "C:\Temp\process.xml"
Get-Process |
Export-Clixml -path $xmlFile -Force
notepad $xmlFile
How it works...
PowerShell provides a few cmdlets that support exporting data to files of different formats. Export-Csv saves information to a comma-separated value file, and Export-Clixml exports the piped data to XML.
$csvFile = "C:\Temp\sample.csv"
Get-Process |
Export-Csv -Path $csvFile -Force -NoTypeInformation
notepad $csvFile
$xmlFile = "C:\Temp\process.xml"
Get-Process |
Export-Clixml -Path $xmlFile -Force
notepad $xmlFile
The Export-Csv cmdlet converts each object passed to it from the pipeline into a row in the resulting CSV file. Although the default delimiter is a comma, this can be changed to other characters by using the –Delimiter switch. You can also start appending data using the –Append switch, which was added in PowerShell V3.
The Export-Clixml cmdlet converts data passed to it into XML and saves it to a file. The resulting XML is similar to what the ConvertTo-Xml cmdlet would return.
There's more...
http://msdn.microsoft.com/en-us/library/hh849932
http://msdn.microsoft.com/en-us/library/hh849916
Using Invoke-Expression
In this recipe, we will use the Invoke-Expression cmdlet.
Getting ready
For this recipe, we will use the 7-zip application to compress some files. Download 7-zip from http://www.7-zip.org/.
How to do it...
Let's check out the Invoke-Expression cmdlet.
$VerbosePreference = "Continue"
$program = "`"C:\Program Files\7-Zip\7z.exe`""
$7zargs = " a -tzip "
$zipFile = " `"C:\Temp\new archive.zip`" "
$directoryToZip = " `"C:\Temp\old`" "
$cmd = "& $program $7zargs $zipFile $directoryToZip "
#display final command
Write-Verbose $cmd
Invoke-Expression $cmd
$VerbosePreference = "SilentlyContinue"
How it works...
The Invoke-Expression cmdlet allows PowerShell expressions to be run from PowerShell. These expressions can consist of other PowerShell statements and functions, or they can contain executables and arguments.
In this recipe, we are composing the command to run 7z.exe and pass it the name of a folder, which needs to be compressed into a ZIP file.
The challenge faced most often with using Invoke-Expression is making sure that the full path of the program, or the full arguments, are all properly escaped. In our recipe, we individually compose the strings for the executable and the arguments. All the strings are escaped with a backtick.
$program = "`"C:\Program Files\7-Zip\7z.exe`""
$7zargs = " a -tzip "
$zipFile = " `"C:\Temp\new archive.zip`" "
$directoryToZip = " `"C:\Temp\old`" "
$cmd = "& $program $7zargs $zipFile $directoryToZip "
#display final command
Write-Verbose $cmd
When we display the command, we will see that the double quotes are preserved:
The preceding ampersand is considered as a call operator, and this whole expression is meant to run the 7z.exe application and compress the C:\Temp\old folder into a file called new archive.zip.
Finally, running the expression requires using the Invoke-Expression cmdlet, and passing the string command argument:
Invoke-Expression $cmd
There's more...
http://msdn.microsoft.com/en-us/library/hh849893
Testing regular expressions
In this recipe we are going to explore some ways to use and test regular expressions.
How to do it...
Let's check out regular expressions in PowerShell.
$VerbosePreference = "Continue"
#check if valid email address
$str = "belle@sqlmusings.com"
$pattern = "^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.(?:[A-Z]{2}|com|org|net|gov|ca|mil|biz|info|mobi|name|aero|jobs|museum)$"
if ($str -match $pattern)
{
Write-Verbose "Valid Email Address"
}
else
{
Write-Verbose "Invalid Email Address"
}
#another way to test
[Regex]::Match($str, $pattern)
#can also use regex in switch
$str = "V1A 2V1"
$str = "90250"
switch -regex ($str)
{
"(^\d{5}$)|(^\d{5}-\d{4}$)"
{
Write-Verbose "Valid US Postal Code"
}
"[A-Za-z]\d[A-Za-z]\s*\d[A-Za-z]\d"
{
Write-Verbose "Valid Canadian Postal Code"
}
default
{
Write-Verbose "Don't Know"
}
}
#use regex and extract matches
#to create named groups - use format ?<groupname>
$str = "Her number is (604)100-1004. Sometimes she can be reached at (604)100-1005."
$pattern = @"
(?<phone>\(\d{3}\)\d{3}-\d{4})
"@
$m = [regex]::Matches($str, $pattern)
#list individual phones
$m | Foreach {
Write-Verbose "$($_.Groups["phone"].Value)"
}
$VerbosePreference = "SilentlyContinue"
How it works...
We have looked at a few ways to use and test regular expressions in this recipe.
A regular expression is a string pattern—for example, a pattern for a valid ZIP code, or an e-mail address, that can be used to compare strings.
The following are some of the common patterns:
Pattern | Description |
---|---|
\ | Escape character |
^ | Beginning of line |
$ | End of line |
* | Matches zero or many times |
? | Matches zero or one time |
+ | Matches one or more times |
. | Matches a single character except newline |
pattern1|pattern2 | Matches either of the patterns |
pattern{m} | Matches a pattern exactly m times |
pattern{m,n} | Matches minimum m to a maximum n times |
pattern{m, } | Matches minimum m times |
[abcd] | Matches any character in a set |
[a-d] | Matches any character in a range |
[^abcd] | Matches characters NOT in a set |
\n | Newline |
\r | Carriage return |
\b | Word boundary |
\B | Non-word boundary |
\d | Digits: 0-9 |
\D | Non-digit |
\w | Word character; equivalent to [A-Za-z0-9_] |
\W | Non-word character |
\s | Space character |
\S | Non whitespace character |
PowerShell has the –match and –replace operators that allow strings to be matched or replaced against a pattern. PowerShell also supports the static methods of the Regex class, such as [regex]::Match, and [regex]::Matches.
In the first example, we will check for a valid e-mail address and we will use the –match operator.
#check if valid e-mail address
$str = "belle@sqlmusings.com"
$pattern = "^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.(?:[A-Z]{2}|com|org|net|gov|ca|mil|biz|info|mobi|name|aero|jobs|museum)$"
if ($str -match $pattern)
{
Write-Verbose "Valid Email Address"
}
else
{
Write-Verbose "Invalid Email Address"
}
Regular expressions can also be used in a switch statement. In our example, we were checking if our string is either a valid US or Canadian postal code:
#can also use regex in switch
$str = "V1A 2V1";
switch -regex ($str)
{
"(^\d{5}$)|(^\d{5}-\d{4}$)"
{
Write-Verbose "Valid US Postal Code"
}
"[A-Za-z]\d[A-Za-z]\s*\d[A-Za-z]\d"
{
Write-Verbose "Valid Canadian Postal Code"
}
default
{
Write-Verbose "Don't Know"
}
}
If there is a possibility of multiple matches, we can use the [regex]::Matches operator, and pipe the result to a Foreach cmdlet to display the group matches.
#use regex and extract matches
#to create named groups - use format ?<groupname>
$str = "Her number is (604)100-1004. Sometimes she can be reached at (604)100-1005."
$pattern = @"
(?<phone>\(\d{3}\)\d{3}-\d{4})
"@
$m = [regex]::Matches($str, $pattern)
#list individual phones
$m | Foreach {
Write-Verbose "$($_.Groups["phone"].Value)"
}
The pattern we are using is a named group, specified by the (?<phone>) label. Anything that is matched by the pattern in the parenthesis can later be referred to by the label phone.
There's more...
http://msdn.microsoft.com/en-us/library/axa83z9t
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://www.powershelladmin.com/wiki/Powershell_regular_expressions
Managing folders
In this recipe, we will explore different cmdlets that support folder management.
How to do it...
Let's take a look at different cmdlets that can be used for folders.
#list folders ordered by name descending
$path = "C:\Temp"
#get directories only
Get-Childitem $path | Where PSIsContainer
#create folder
$newFolder = "C:\Temp\NewFolder"
New-Item -Path $newFolder -ItemType Directory -Force
#check if folder exists
Test-Path $newFolder
#copy folder
$anotherFolder = "C:\Temp\NewFolder2"
Copy-Item $newFolder $anotherFolder -Force
#move folder
Move-Item $anotherFolder $newFolder
#delete folder
Remove-Item $newFolder -Force -Recurse
How it works...
The following are some cmdlets that support folder manipulation:
Cmdlet | Description |
---|---|
Get-ChildItem | Lists all directories in a path #get directories onlyGet-Childitem $path | Where PSIsContainer |
Test-Path | Checks if a folder exists Test-Path $newFolder |
New-Item | Creates a new folder PS> NewItem -Path $newFolder -ItemType Directory -Force |
Copy-Item | Copies a folder Copy-Item $newFolder $anotherFolder -Force |
Move-Item | Moves a folder to a different location Move-Item $anotherFolder $newFolder |
Remove-Item | Deletes a folder and all its contents Remove-Item $newFolder -Force -Recurse |
There's more...
Refer to the following links provided to gain a better understanding on folder management using cmdlets:
http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988
See also
Manipulating files
In this recipe, we will look at different cmdlets that help to manipulate files.
How to do it...
Let's explore different ways to manage files.
#create file
$timestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"
$path = "C:\Temp\"
$filename = "$timestamp.txt"
$fullpath = Join-Path $path $filename
New-Item -Path $path -Name $filename -ItemType "File"
#check if file exists
Test-Path $fullpath
#copy file
$path = "C:\Temp\"
$newfilename = $timestamp + "_2.txt"
$fullpath2 = Join-Path $path $newfilename
Copy-Item $fullpath $fullpath2
#move file
$newfolder = "C:\Data"
Move-Item $fullpath2 $newfolder
#append to file
Add-Content $fullpath "Additional Item"
notepad $fullpath
#merge file contents
$newcontent = Get-Content "C:\Temp\processes.txt"
Add-Content $fullpath $newcontent
notepad $fullpath
#delete file
Remove-Item $fullpath
How it works...
Here are some of the cmdlets that support file manipulation:
Cmdlet | Description |
---|---|
Test-Path | Checks if a file exists Test-Path $fullpath |
Join-Path | Combines a path and a child path Join-Path $path $filename |
New-Item | Creates a new file New-Item -Path $path -Name $filename -ItemType "File" |
Get-Content | Retrieves the content of a file Get-Content "C:\Temp\processes.txt" |
Add-Content | Appends content to a file Add-Content $fullpath $newcontent |
Copy-Item | Copies a file Copy-Item $fullpath $fullpath2 |
Move-Item | Moves a file to a different location Move-Item $fullpath2 $newfolder |
Remove-Item | Deletes a file Remove-Item $fullpath |
There's more...
Refer to the following for more information on file manipulation:
http://technet.microsoft.com/en-us/library/ee176983
http://technet.microsoft.com/en-us/library/ee176985
http://technet.microsoft.com/en-us/library/ee176988
See also
Searching for files
In this recipe, we will search for files based on filenames, attributes, and content.
How to do it...
Let's explore different ways to use Get-ChildItem to search for files.
#search for file with specific extension
$path = "C:\Temp"
Get-ChildItem -Path $path -Include *.sql -Recurse
#search for file based on date creation
#use LastWriteTime for date modification
[datetime]$startDate = "2012-05-01"
[datetime]$endDate = "2012-05-20"
#note date is at 12 midnight
#sample date Sunday, May 20, 2012 12:00:00 AM
#PowerShell V3 Where-Object syntax
Get-ChildItem -Path $path -Recurse |
Where CreationTime -ge $startDate |
Where CreationTime -le $endDate |
Sort -Property LastWriteTime
#list files greater than 10MB
#PowerShell V3 syntax
Get-ChildItem $path -Recurse |
Where Length -ge 10Mb |
Select Name,
@{Name="MB";Expression={"{0:N2}" -f ($_.Length/1MB)}} |
Sort -Property Length -Descending |
Format-Table –AutoSize
#search for content of file
#search TXT, CSV and SQL files that contain
#the word "QueryWorks"
$pattern = "QueryWorks"
Get-ChildItem -Path $path -Include *.txt, *.csv, *.sql -Recurse |
Select-String -Pattern $pattern
How it works...
The Get-ChildItem cmdlet displays contents of a given path:
Get-ChildItem
You can also use the aliases gci, ls, or dir instead of Get-ChildItem when typing this command.
We can pipe the results of Get-ChildItem to a Where cmdlet to filter the results. For example, if we wanted to look for only .sql files, we would use:
#search for file with specific extension
$path = "C:\Temp"
Get-ChildItem -Path $path -Include *.sql -Recurse
To get files created within a date range, we pipe the results, and in the Where-Object cmdlet, we filter based on the CreationTime property. Note that dates are automatically assigned a timestamp of midnight, and the following example actually gets all files created between May 1 and May 19:
#search for file based on creation date
#use LastWriteTime for modification date
[datetime]$startDate = "2012-05-01"
[datetime]$endDate = "2012-05-20"
#note date is at 12 midnight
#sample date Sunday, May 20, 2012 12:00:00 AM
#PowerShell V3
Get-ChildItem -Path $path -Recurse |
Where CreationTime -ge $startDate |
Where CreationTime -le $endDate |
Sort -Property LastWriteTime
To retrieve the same files in PowerShell V2, we can use the Where-Object syntax:
#PowerShell V2
Get-ChildItem -Path $path -Recurse |
Where {$_.CreationTime -ge $startDate -and $_.CreationTime -le $endDate} |
Sort -Property LastWriteTime
To filter files based on file size, we can filter the files using the Length property. Note that PowerShell supports the constants KB (kilobyte), MB (megabyte), GB (gigabyte), TB (terabyte), and PB (petabyte):
#list files greater than 10MB
#PowerShell V3 syntax
Get-ChildItem $path -Recurse |
Where Length -ge 10Mb |
Select Name,
@{Name="MB";Expression={"{0:N2}" -f ($_.Length/1MB)}} |
Sort -Property Length -Descending |
Format-Table –AutoSize
The last example showcases the use of the –Include switch with the Get-ChildItem cmdlet, which allows the cmdlet to selectively include only specific files based on the pattern that was passed. This example also highlights how we can search not only filenames and paths, but the actual contents of the file using the Select-String cmdlet. The Select-String cmdlet can only search for text files, however; it cannot search other proprietary formats such as .doc, .docx, and .pdf.
#search for content of file
#search TXT, CSV and SQL files that contain
#the word "QueryWorks"
$pattern = "QueryWorks"
Get-ChildItem -Path $path -Include *.txt, *.csv, *.sql -Recurse |
Select-String -Pattern $pattern
There's more...
http://msdn.microsoft.com/en-us/library/hh849903
See also
Reading an event log
In this recipe, we will read the event log.
How to do it...
Let's see how we can read the Windows event log from PowerShell.
Get-EventLog -LogName Application -Newest 20 -EntryType Error
How it works...
Reading the event log is straightforward in PowerShell. We can do this using the Get-EventLog cmdlet. This cmdlet accepts a few switches, which includes LogName and EntryType.
Get-EventLog -LogName Application -Newest 20 -EntryType Error
Some of the possible LogName values are as follows:
You can alternatively pass it the name of a custom log available in your system.
The EntryType switch can be of the following types:
In our recipe, we also use the –Newest switch, to filter only for the newest 20 error events.
There's more...
Refer to MSDN Get-EventLog, available at:
http://msdn.microsoft.com/en-us/library/hh849834
Sending e-mail
In this recipe, we send an e-mail with an attachment.
Getting ready
Before proceeding, identify the following in your environment:
How to do it...
The following are the steps to send an e-mail:
$file = "C:\Temp\processes.csv"
$timestamp = Get-Date -format "yyyy-MMM-dd-hhmmtt"
#note we are using backticks to put each parameter
#in its own line to make code more readable
Send-MailMessage `
-SmtpServer "queryworks.local" `
-To "administrator@queryworks.local" `
-From "powershell@gaia.local" `
-Subject "Process Email - $file - $timestamp" `
-Body "Your requested file is attached." `
-Attachments $file
How it works...
One way to send an e-mail using PowerShell is by using the Send-MailMessage cmdlet. Some of the switches it accepts are as follows:
There's more...
Refer to MSDN Send-MailMessage, available at:
http://msdn.microsoft.com/en-us/library/hh849925.aspx
Embedding C# code
In this recipe, we will embed and execute C# code in our PowerShell script.
How to do it...
Let's explore how to embed C# code in PowerShell.
#define code
#note this can also come from a file
$code = @"
using System;
public class HelloWorld
{
public static string SayHello(string name)
{
return (String.Format("Hello there {0}", name));
}
public string GetLuckyNumber(string name)
{
Random random = new Random();
int randomNumber = random.Next(0, 100);
string message = String.Format("{0}, your lucky" +
" number for today is {1}",
name, randomNumber);
return message;
}
}
"@
#add this code to current session
Add-Type -TypeDefinition $code
#call static method
[HelloWorld]::SayHello("belle")
#create instance
$instance = New-Object HelloWorld
#call instance method
$instance.GetLuckyNumber("belle")
How it works...
We can use C# code from within PowerShell. This will require constructing a class in a here-string and adding that class as a type to the session using the Add-Type cmdlet. The Add-Type cmdlet allows the construction of the class in the session, or to all sessions if created within the PowerShell profile.
In the recipe, we use a very simple class defined in a here-string:
$code = @"
using System;
public class HelloWorld
{
public static string SayHello(string name)
{
return (String.Format("Hello there {0}", name));
}
public string GetLuckyNumber(string name)
{
Random random = new Random();
int randomNumber = random.Next(0, 100);
string message = String.Format("{0}, your lucky" +
" number for today is {1}",
name, randomNumber);
return message;
}
}
"@
This code does not have to be built and hardcoded within the script. It can be read from another file using the Get-Content cmdlet and stored into the $code variable.
To put this class in effect in the current session, we use the Add-Type cmdlet:
#add this code to current session
Add-Type -TypeDefinition $code
Note that this class has both a static and non-static method. To call the static method, we must use the class name:
#call static method
[HelloWorld]::SayHello("belle")
To call the non-static method, we must instantiate an object first, and then call the method using the object:
#call instance method
$instance.GetLuckyNumber("belle")
There's more...
Refer to MSDN Add-Type, available at:
http://msdn.microsoft.com/en-us/library/hh849914
Creating an HTML report
In this recipe, we will create an HTML report based on the system's services.
How to do it...
This is a sample of how we can create an HTML report using PowerShell.
#simple CSS Style
$style = @"
<style type='text/css'>
td {border:1px solid gray;}
.stopped{background-color: #E01B1B;}
</style>
"@
#let's get content from Get-Service
#and output this to styled HTML
Get-Service |
ConvertTo-Html -Property Name, Status -Head $style |
Foreach {
#if service is running, use green background
if ($_ -like "*<td>Stopped</td>*")
{
$_ -replace "<tr>", "<tr class='stopped'>"
}
else
{
#display normally
$_
}
} |
Out-File "C:\Temp\sample.html" -force
Set-Alias ie "$env:programfiles\Internet Explorer\iexplore.exe"
ie "C:\Temp\sample.html"
The following screenshot shows a sample result:
How it works...
In this recipe, we piped the result of the Get-Service cmdlet, which returns all services, into the ConvertTo-HTML cmdlet. The ConvertTo-HTML cmdlet formats the results as HTML. This cmdlet also allows you to configure what goes into an HTML <head> tag. This is where you typically add your CSS styles and JavaScript.
Once the file has been created, we set an alias to Internet Explorer and just display the resulting HTML file in the browser.
There's more...
Refer to MSDN ConvertTo-HTML, available at:
http://msdn.microsoft.com/en-us/library/hh849944
Parsing XML
In this recipe, we will parse a sample XML document using PowerShell.
Getting ready
In this recipe, we will use Vancouver's 2012 daily weather data, which can be downloaded from the following URL:
http://www.climate.weatheroffice.gc.ca/climateData/dailydata_e.html?Prov=BC&StationID=889&Year=2012&Month=4&Day=30&timeframe=2
How to do it...
Let's look at how we can parse XML files.
$vancouverXML = "C:\XML Files\eng-daily-01012012-12312012.xml"
[xml]$xml = Get-Content $vancouverXML
#get number of entries
$xml.climatedata.stationdata.Count
#store max temps in array
$maxtemp = $xml.climatedata.stationdata |
Foreach { [int]$_.maxtemp."#text" }
#list all daily max temperatures
$maxtemp | Sort -Descending
#get max temperature recorded in 2012
$maxtemp | Sort -Descending | Select -First 1
How it works...
One of the key things to do, when working with XML data, is to make sure the data is stored as an XML object. In our recipe, we get the contents of the file using Get-Content, and store it in the strongly typed variable, $xml. We know it is strongly typed because we have placed the [xml] data type right at the variable declaration:
$vancouverXML = "C:\XML Files\eng-daily-01012012-12312012.xml"
[xml]$xml = Get-Content $vancouverXML
The following screenshot is an example of how the file is formatted:
To know how many records are in the file, we can traverse the stationdata nodes and count the records:
#get number of entries
$xml.climatedata.stationdata.Count
To manipulate the maxtemp data, we can loop through all the nodes and extract the values into an array:
#store max temps in array
$maxtemp = $xml.climatedata.stationdata |
Foreach { [int]$_.maxtemp."#text" }
When the data is in the array, we can further manipulate it. For example, we can now more easily sort as needed, or get the overall maximum value if required:
#list all daily max temperatures
$maxtemp | Sort -Descending
#get max temperature recorded in 2012
$maxtemp | Sort -Descending | Select -First 1
Extracting data from a web service
In this recipe, we will extract data from a free, public web service.
How to do it...
Let's explore how to access and retrieve data from a web service.
#delayed stock quote URI
$stockUri = "http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx"
$stockproxy = New-WebServiceProxy -Uri $stockUri -UseDefaultCredential
#get quote
$stockresult = $stockProxy.GetQuote("MSFT","")
#display results
$stockresult.StockSymbol
$stockresult.DayHigh
$stockresult.DayLow
$stockresult.LastTradeDateTime
How it works...
To work with a web service, we first need to create a proxy object that will allow us to access the methods available from a web service. We can achieve this by using the New-WebProxy cmdlet, which accepts the web service URL.
$stockUri = "http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx"
This URI points to a free web service that provides delayed stock quote values. If we go to this URI from the browser, the following screenshot is what we are going to see:
We can see that this web service has a method called GetQuote, which retrieves the current stock quote. This accepts a stock symbol and a license key. In our script, we call this method through our proxy object:
#get quote
$stockresult = $stockProxy.GetQuote("MSFT","")
If we were to plug these values into the browser, the following screenshot is a sample result that we might get:
To display these in our script, we simply need to know how to traverse the nodes from the root to the values we want to display. In our case, we wanted to display StockSymbol, DayHigh, DayLow, and LastTradeDateTime.
#display results
$stockresult.StockSymbol
$stockresult.DayHigh
$stockresult.DayLow
$stockresult.LastTradeDateTime
There's more...
Refer to MSDN New-WebServiceProxy, available at:
http://msdn.microsoft.com/en-us/library/hh849841
Using PowerShell Remoting
In this recipe, we will use PowerShell Remoting to execute commands on a remote machine.
Getting ready
We first need to identify which remote machine we want to use. In our recipe, we will connect to a remote machine called ZERATULDC from our client machine KERRIGAN. These two machines are in the same domain.
Log in to ZERATULDC, or to a machine you want to use for remoting. We need to enable PowerShell Remoting. Check out the system and permission requirements for running PowerShell Remoting from MSDN about_Remote_Requirements, available at http://msdn.microsoft.com/en-us/library/hh847859.aspx.
To turn on remoting, open up the PowerShell console using elevated privileges. Right-click on the PowerShell console and go to Run as Administrator. Execute the following command:
PS> Enable-PSRemoting
You will be prompted to confirm a couple of times. Answer A (or Yes to All) to these questions. Your screen should look similar to the following screenshot:
We also need to add our remote computer ZERATULDC as a trusted host. Open a PowerShell console as administrator from KERRIGAN and run the following:
Set-Item wsman:localhost\client\trustedhosts -value ZERATULDC
How to do it...
Let's explore how to use PowerShell Remoting to execute commands on a remote machine.
Invoke-Command -ComputerName ZERATULDC -Credential "QUERYWORKS\Administrator" -ScriptBlock {
Get-Wmiobject win32_computersystem
}
Enter-PSSession -ComputerName ZERATULDC -Credential "QUERYWORKS\Administrator"
Note that as soon as we are authenticated, the prompt changes to indicate we are now in ZERATULDC. This is shown in the following screenshot:
Get-Wmiobject win32_computersystem
You should see a result similar to the following screenshot. Note the prompt still displays ZERATULDC.
How it works...
PowerShell Remoting allows you to connect and execute PowerShell commands on remote machines. PowerShell Remoting uses Web Services for Management (WSMan) to communicate to a remote machine, and Windows Remote Management (WinRM) service on the remote machine to listen for incoming WSMan requests.
There are different ways to execute remote commands. We can use the Invoke-Command cmdlet to establish a remote connection, execute our command(s) and get our results, and disconnect. The command(s) we want to execute can either be placed in the –ScriptBlock parameter, or in a file specified with the –FilePath parameter. In our recipe we used –ScriptBlock.
Invoke-Command -ComputerName ZERATULDC -Credential "QUERYWORKS\Administrator" -Authentication Negotiate -ScriptBlock {
Get-Wmiobject win32_computersystem
}
We have also chosen to provide our credentials to ZERATULDC by specifying the –Credential parameter. You can choose to prompt for both username and password by using the Get-Credential cmdlet, and passing this to the Invoke-Command cmdlet.
$cred = Get-Credential
Another way to execute a remote command is by establishing an interactive session to a remote machine. We do this by using the Enter-PSSession cmdlet:
Enter-PSSession -ComputerName ZERATULDC -Credential "QUERYWORKS\Administrator" -Authentication Negotiate
Once the remoting interactive session is started, you will notice that the PowerShell prompt changes to show the remote computer's name. We can then start executing commands in this session.
What we have shown in this recipe is just a very brief example of how you can use PowerShell Remoting. To learn more about PowerShell Remoting, including system and permission requirements, how to set up HTTPS, and so on, be sure to check the recommended additional resources in the There's more… section.
There's more...
Check the following resources for additional information on remoting:
http://msdn.microsoft.com/en-us/library/hh847859.aspx
http://www.ravichaganti.com/blog/?p=1305
http://powershellbooks.com/SecretsofPowerShellRemoting.pdf
Appendix A. SQL Server and PowerShell CheatSheet
Learning PowerShell
Get-Help Restore-SqlDatabase
Get-Help Backup-SqlDatabase –Examples
Get-Help Invoke-Sqlcmd –Full
Get-Help Get-Process -Online
Get-Command -Module SQLPS
Get-Command -Module SQLASCMDLETS
Get-Command -Name "*Event*"
$server | Get-Member -Name "*Version*" |
Select Name, MemberType
PowerShell V2 versus V3 Where-Object syntax
PowerShell V2 uses {} and $_:
$server | Get-Member |
Where-Object {$_.MemberType -eq "Property"}
PowerShell V3 is simplified:
$server | Get-Member |
Where-Object MemberType -eq "Property"
Changing execution policy
The execution policy determines which PowerShell scripts are allowed to run:
Get-ExecutionPolicy
Set-ExecutionPolicy RemoteSigned
Execution policies
Execution Policy | Description |
---|---|
Restricted | Default execution policy PowerShell will not run any scripts |
AllSigned | PowerShell will run only signed scripts |
RemoteSigned | PowerShell will run signed scripts, or locally created scripts |
Unrestricted | PowerShell will run any scripts, signed or not |
Bypass | PowerShell will not block any scripts, and will prevent any prompts or warnings |
Undefined | PowerShell will remove the set execution policy in the current user scope |
Running a script
Save your PowerShell code in a file with a .ps1 extension.
PS C:\> .\MyScript.ps1
PS C:\> & '.\My Script.ps1'
PS C:\> & 'C:\Temp\My Script.ps1'
PS C:\> . '.\My Script.ps1'
PS C:\> . 'C:\Temp\My Script.ps1'
C:\>powershell.exe -ExecutionPolicy RemoteSigned -File "C:\PowerShell\My Script.ps1"
Common aliases
Command | Alias |
---|---|
Foreach-Object | %, Foreach |
Where-Object | ?, Where |
Sort-Object | Sort |
Compare-Object | compare, diff |
Write-Output | echo, write |
help | man |
Get-Content | cat, gc, type |
Get-ChildItem | dir, gci, ls |
Copy-Item | copy, cp, cpi |
Move-Item | mi, move, mv |
Remove-Item | del, erase, rd, ri, rm, rmdir |
Get-Process | gps, ps |
Stop-Process | kill, spps |
Get-Location | gl, pwd |
Set-Location | cd, chdir, sl |
Clear-Host | clear, cls |
Get-History | h, ghy, history |
Displaying output
PS C:\> Get-Command -Name "*Write*" -CommandType Cmdlet
Cmdlet | Description |
---|---|
Write-Debug | Displays a debug message to the console Typically used with: $DebugPreference = "Continue" |
Write-Error | Displays a non-terminating error message to the console |
Write-EventLog | Writes a message to Windows Event Log |
Write-Host | Displays a string message to the host |
Write-Output | Writes an object to the pipeline |
Write-Progress | Display a progress bar |
Write-Verbose | Displays a verbose message to the console Typically used with: $VerbosePreference = "Continue" |
Write-Warning | Displays a warning message to the console |
Special characters
Special character | Special character name | Explanation |
---|---|---|
$ | Dollar | Variable |
$_ | Dollar underscore | Current object in pipeline |
| | Pipe | Command chaining; output from one command to input to another |
` | Backtick | Escape or continuation character |
@ | At sign | Array |
| Hash sign | Comment |
[] | Square brackets | For indexes and strongly typing variables |
() | Parentheses | For array members; For calling functions |
& | Ampersand | Call operator |
* | Star or asterisk | Wildcard |
% | Percent | Alias for Foreach-Object |
? | Question mark | Alias for Where-Object |
+ | Plus | Addition; String concatenation operator |
Special variables
Special variable | Explanation |
---|---|
$_ | Current pipeline object |
$args | Arguments passed to a function |
$error | Array that stores all errors |
$home | User's home directory |
$host | Host information |
$match | Regex matches |
$profile | Path to profile, if available |
$PSHome | Install directory of PowerShell |
$PSISE | PowerShell Scripting Environment object |
$pid | Process ID (PID) of PowerShell process |
$pwd | Present Working Directory |
$true | Boolean true |
$false | Boolean false |
$null | Null value |
Common operators
Note that many operators perform case-insensitive string comparisons by default. If you want to do case-sensitive matching, prepend with c. For example, -ceq, -clike, -cnotlike.
PowerShell | Traditional | Explanation |
---|---|---|
-eq | == | Equal to |
-ne | <> or != | Not equal to |
-match -notmatch | Match using regex; searches anywhere in the string | |
-contains -notcontains | Collection match. Does the item exist in the array or collection? | |
-like -notlike | Wildcard match * (asterisk) for zero or more characters ? (question mark) for any single character | |
-clike -cnotlike | Case-sensitive wildcard match | |
-not | ! | Negation |
-lt | < | Less than |
-le | <= | Less than or equal to |
-gt | > | Greater than |
-ge | >= | Greater than or equal to |
-and | && | Logical and |
-or | || | Logical or |
-bor | | | Bitwise or |
-band | & | Bitwise and |
-xor | ^ | Exclusive or |
Common date-time format strings
PS C:\> Get-Date -Format "yyyy-MMM-dd-hhmmtt"
Format pattern | Explanation |
---|---|
tt | A.M./P.M. designator |
ss | Seconds with leading zero |
mm | Minutes with leading zero |
dd | Day of the month with leading zero |
dddd | Full name of the day of the week |
hh | 12 hour clock with leading zero |
HH | 24 hour clock with leading zero |
MM | Numeric month with leading zero |
MMM | Abbreviated month name |
MMMM | Full month name |
yy | Two digit year |
yyyy | Four digit year |
Comments
#this is a single line comment
<#
this is a block comment
#>
Here-string
A here-string is a string that often contains large blocks of text. It starts with @" and must end with a line that contains only "@ (no other characters or spaces before it):
$query = @"
INSERT INTO SampleXML
(FileName, XMLStuff, FileExtension)
VALUES('$xmlfile', '$xml', '$fileextension')
"@
Common regex characters and patterns
\ | Escape character |
^ | Beginning of line |
$ | End of line |
* | Matches zero or many times |
? | Matches zero or one time |
+ | Matches one or more times |
. | Matches a single character except newline |
pattern1|pattern2 | Matches either pattern |
pattern{m} | Matches pattern exactly m times |
pattern{m,n} | Matches minimum m to a maximum n times |
pattern{m, } | Matches minimum m times |
[abcd] | Matches any character in set |
[a-d] | Matches any character in range |
[^abcd] | Matches characters NOT in set |
\n | Newline |
\r | Carriage Return |
\b | Word boundary |
\B | Non word boundary |
\d | Digit; 0-9 |
\D | Non digit |
\w | Word character; equivalent to [A-Za-z0-9_] |
\W | Non word character |
\s | Space character |
\S | Non white space character |
Arrays and hash tables
An array is a collection of items:
#simple array
$simplearray = @(1,2,3,4)
$simplearray.Count
#array of processes consuming >30% CPU
$processes = (Get-Process | Where CPU –gt 30)
A hash table is a collection of key-value pairs. It is also referred to as an associative array:
#simple hash
$simplehash = @{
"BCIT" = "BC Institute of Technology"
"CST" = "Computer Systems Technology"
"CIT" = "Computer Information Technology"
}
$simplehash.Count
#hash containing process IDs and names
$hash = @{}
Get-Process | Foreach {$hash.Add($_.Id, $_.Name)}
$hash.GetType()
Arrays and loops
$command = ""
while($command.ToLower() -NotMatch "quit" –and $command.ToLower() -NotMatch "q")
{
$command = Read-Host "Enter your command >"
}
for($counter = 0; $counter -lt 10; $counter++)
{
Write-Verbose "Processing item $counter"
}
$processes = (Get-Process | Where CPU -gt 30)
foreach($process in $processes)
{
Write-Verbose "$($process.ProcessName):$($process.CPU)"
}
Note that this Foreach loop can be rewritten as:
Get-Process | Where CPU -gt 30 |
Foreach {
Write-Verbose "$($_.ProcessName) : $($_.CPU)"
}
Logic
$course = "COMP4677"
if ($course -eq "COMP4677") {
"SQL Server Administration"
}
elseif ($course -eq "COMP4678") {
"SQL Server Development"
}
else {
"Don't know"
}
switch ($course)
{
"COMP4677" { "SQL Server Administration" }
"COMP4678" { "SQL Server Development" }
Default { "Don't Know" }
}
Functions
Functions are a block or blocks of code that are encapsulated into a construct that has a name, can be reused, and can be called with parameters.
function Get-SQLErrorLogs
{
param
(
[Parameter(Position=0,Mandatory=$true)]
[alias("instance")]
[string]$instanceName
)
Import-Module SQLPS -DisableNameChecking | Out-Null
#replace this with your instance name
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
Write-Output $server.ReadErrorLog()
}
Get-SQLErrorLogs -instanceName "KERRIGAN" |
Where LogDate -gt "2012-09-01"
Common Cmdlets
Utility | ConvertFrom-Csv ConvertFrom-Json ConvertTo-Csv ConvertTo-Html ConvertTo-Json ConvertTo-Xml Export-Clixml Export-Csv Format-List Format-Table Get-Alias Get-Date Get-Member Import-Clixml Import-Csv Read-Host |
Management | Get-ChildItem Get-Content Get-EventLog Get-HotFix Get-Process Get-Service Get-WmiObject New-WebServiceProxy Start-Process Start-Service |
Security | ConvertFrom-SecureString ConvertTo-SecureString Get-Credential Get-ExecutionPolicy Set-ExecutionPolicy |
Import SQLPS module
Introduced in PowerShell V2:
Import-Module SQLPS -DisableNameChecking
Add SQL Server Snapins
Introduced in PowerShell V1, it can be used with SQL Server 2008/R2:
SQLServerCmdletSnapin100
SqlServerProviderSnapin100
if (!(Get-PSSnapin -Name SQLServerCmdletSnapin100 -ErrorAction SilentlyContinue))
{
Add-PSSnapin SQLServerCmdletSnapin100
}
Add SQL Server Assemblies
Need to be loaded for PowerShell V1 to work with SQL Server from the PowerShell prompt:
Microsoft.SqlServer.Smo
Microsoft.SqlServer.SmoExtended
Microsoft.SqlServer.SqlEnum
Microsoft.SqlServer.SmoEnum
Microsoft.SqlServer.ConnectionInfo
Add-Type -Assembly "Microsoft.SqlServer.Smo, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
Getting credentials
$credential = Get-Credential
#create file
Read-Host -AsSecureString | ConvertFrom-SecureString |
Out-File "C:\password.txt" -Force
#read back credentials
$pw = (Get-Content "C:\password.txt") |
ConvertTo-SecureString
$username = "QUERYWORKS\Administrator"
$credential = New-Object System.Management.Automation.PSCredential $username, $pw
Running and blocking SQL Server processes
#assume $server has already been defined
$server.EnumProcesses() |
Where BlockingSpid -ne 0 |
Select Name, Spid, Command, Status, Login, Database, BlockingSpid |
Format-Table -AutoSize
Read file into an array
$instances = Get-Content "C:\Temp\sqlinstances.txt"
SQL Server-Specific Cmdlets
Get-Command -CommandType Cmdlet -Module SQLPS,SQLASCMDLETS |
Select Name, Module |
Sort Module, Name |
Format-Table -AutoSize
Results:
Add-RoleMember SQLASCMDLETS
Backup-ASDatabase SQLASCMDLETS
Invoke-ASCmd SQLASCMDLETS
Invoke-ProcessCube SQLASCMDLETS
Invoke-ProcessDimension SQLASCMDLETS
Invoke-ProcessPartition SQLASCMDLETS
Merge-Partition SQLASCMDLETS
New-RestoreFolder SQLASCMDLETS
New-RestoreLocation SQLASCMDLETS
Remove-RoleMember SQLASCMDLETS
Restore-ASDatabase SQLASCMDLETS
Add-SqlAvailabilityDatabase SQLPS
Add-SqlAvailabilityGroupListenerStaticIp SQLPS
Backup-SqlDatabase SQLPS
Convert-UrnToPath SQLPS
Decode-SqlName SQLPS
Disable-SqlAlwaysOn SQLPS
Enable-SqlAlwaysOn SQLPS
Encode-SqlName SQLPS
Invoke-PolicyEvaluation SQLPS
Invoke-Sqlcmd SQLPS
Join-SqlAvailabilityGroup SQLPS
New-SqlAvailabilityGroup SQLPS
New-SqlAvailabilityGroupListener SQLPS
New-SqlAvailabilityReplica SQLPS
New-SqlHADREndpoint SQLPS
Remove-SqlAvailabilityDatabase SQLPS
Remove-SqlAvailabilityGroup SQLPS
Remove-SqlAvailabilityReplica SQLPS
Restore-SqlDatabase SQLPS
Resume-SqlAvailabilityDatabase SQLPS
Set-SqlAvailabilityGroup SQLPS
Set-SqlAvailabilityGroupListener SQLPS
Set-SqlAvailabilityReplica SQLPS
Set-SqlHADREndpoint SQLPS
Suspend-SqlAvailabilityDatabase SQLPS
Switch-SqlAvailabilityGroup SQLPS
Test-SqlAvailabilityGroup SQLPS
Test-SqlAvailabilityReplica SQLPS
Test-SqlDatabaseReplicaState SQLPS
Invoke-SqlCmd
$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
$query = "SELECT TOP 10 * FROM Person.Person"
$fileName = "C:\Temp\ResultsFromPassThrough.csv"
#export query results to CSV
Invoke-Sqlcmd -Query $query -ServerInstance $instanceName -Database $dbName |
Export-Csv -LiteralPath $fileName -NoTypeInformation
Create SMO Server Object
An SMO object, or SQL Server Management Object, allows you to programmatically access and manipulate SQL Server:
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.Server -ArgumentList $instanceName
Create SSRS Proxy Object
$ReportServerUri = "http://localhost/ReportServer/ReportService2010.asmx"
$proxy = New-WebServiceProxy -Uri $ReportServerUri -UseDefaultCredential
#list all children
$proxy.ListChildren("/", $true)
Create SSIS Object (SQL Server 2005/2008/2008R2)
For most SSIS objects included in Package Deployment Model:
Add-Type -AssemblyName "Microsoft.SqlServer.ManagedDTS, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$app = New-Object Microsoft.SqlServer.Dts.Runtime.Application
Create an SSIS Object (SQL Server 2012)
For most SSIS objects used in the new SQL Server 2012 Project Deployment Model:
Import-Module SQLPS -DisableNameChecking
Add-Type -AssemblyName "Microsoft.SqlServer.Management.IntegrationServices, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
$instanceName = "KERRIGAN"
$connectionString = "Data Source=$instanceName;Initial Catalog=master;Integrated Security=SSPI;"
$conn = New-Object System.Data.SqlClient.SqlConnection $connectionString
$SSISServer = New-Object Microsoft.SqlServer.Management.IntegrationServices.IntegrationServices $conn
Create SSAS Object
Import-Module SQLASCMDLETS -DisableNameChecking
#Connect to your Analysis Services server
$SSASServer = New-Object Microsoft.AnalysisServices.Server
Appendix B. PowerShell Primer
In this appendix, we will cover:
Introduction
This appendix is a very short primer to get you up and running with PowerShell. We cover the basics of the language and the syntax; however, we will not go into in-depth details and variations. A host of recommended resources is available in Appendix C, Resources to augment what you learn from this book.
What is PowerShell, and why learn another language
PowerShell is both a scripting environment and a scripting language meant to support administrators and developers alike in automating and integrating processes and environments.
You may already be familiar with other tools or languages that help accomplish your task, and you may be asking why you should even bother learning PowerShell. It is important to note that PowerShell is just another tool, but could be a very powerful one if used in the appropriate situations.
There are different reasons for using PowerShell:
If we minimize clicks, or eliminate them in some cases, the task can potentially be done so much faster. Think about compressing, copying, archiving, and renaming multiple files. If we had to rely on the UI, this task may take much longer. However, if we can bake the logic into a script, and run the script once, then the task can be accomplished much faster and more efficiently.
Instead of using a duct-taped mishmash of scripting languages (batch file for some items, VBScript, Perl, COM), we can now use one single language to handle most tasks.
The .NET library provides a rich collection of classes that pretty much covers most programmatic items you can think of such as forms, database connectivity, networking, and the like.
More and more Microsoft products are being shipped with a growing number of PowerShell cmdlets because PowerShell scripting is part of Microsoft's Common Engineering Criteria program (http://www.microsoft.com/cec/en/us/cec-overview.aspx#man-windows). Windows Server, Exchange, Active Directory, SharePoint, SQL Server, to name a few, all have some PowerShell support.
Setting up the Environment
Before we can start talking about PowerShell, we first need to make sure you have access to an environment that has PowerShell.
PowerShell V3 comes natively with the following operating systems: Windows 8 and Windows Server 2012.
Although Windows 7, Windows Server 2008, and Windows Server 2008 R2 come with PowerShell V2, you can also install PowerShell V3 on these operating systems. You can download the Windows Management Framework 3.0 (WMF 3.0), which contains PowerShell V3 from http://www.microsoft.com/en-us/download/details.aspx?id=34595. If you have been testing the Beta or CTP versions of PowerShell V3, you will need to uninstall these previous versions prior to installing the Released to Manufacturing (RTM) version, which is the official publicly available version.
Running PowerShell scripts
It is now time to run your first script!
Through shell or through ISE
You can run ad hoc commands through the shell or through the Integrated Scripting Environment (ISE).
To use the PowerShell console, you can launch the shell by opening Start | All Programs | Accessories | Windows PowerShell | Windows PowerShell. Often when managing your servers, you may need to run this as Administrator (right-click on the PowerShell icon and select Run as Administrator).
Once the console is ready, you can type your commands and press Enter to see the results. For example, to display ten (10) running processes, you can use the Get-Process cmdlet, as shown in the following screenshot:
You can also use the ISE, and to launch the ISE, go to Start | All Programs | Accessories | Windows PowerShell | Windows PowerShell ISE. Similar to the shell, you can type your command and press the Run button (green arrow icon).
More details about the ISE are covered in Chapter 1, Getting Started with SQL Server and PowerShell.
Typically, you would save your commands in a script file with the .ps1 extension, and run them from the shell in few different ways:
PS C:\ > & "C:\PowerShell\My Script.ps1"
PS C:\PowerShell > . ".\My Script.ps1"
PS C:\> . "C:\PowerShell\My Script.ps1"
C:\>powershell.exe -ExecutionPolicy RemoteSigned -File "C:\PowerShell\My Script.ps1"
Execution policy
PowerShell scripts are not authorized to just run.
Remember the "I Love You" virus? It took off because it was so easy to launch a script just by double-clicking the .vbs file.
To avoid problems such as this, PowerShell scripts by default are blocked from running. This means you cannot just accidentally double-click a PowerShell script and execute it.
The rules that determine which PowerShell scripts can run are contained in the Execution Policy. This will need to be set ahead of time. The different settings are:
Execution Policy | Description |
---|---|
Restricted | Default execution policy PowerShell will not run any scripts |
AllSigned | PowerShell will run only signed scripts |
RemoteSigned | PowerShell will run signed scripts, or locally created scripts |
Unrestricted | PowerShell will run any scripts, signed or not |
Bypass | PowerShell will not block any scripts, and will prevent any prompts or warnings |
Undefined | PowerShell will remove set execution policy in current user scope |
To determine what your current setting is, you can use Get-ExecutionPolicy:
PS C:\>Get-ExecutionPolicy
If you try to run a script without setting the proper execution policy, you may get an error similar to this:
File C:\Sample Script.ps1 cannot be loaded because the execution of scripts is disabled on this system. For more information, see about_execution_policies.
To change the execution policy, use Set-ExecutionPolicy:
PS C:\>Set-ExecutionPolicy RemoteSigned
Typically, if you need to run a script that does a lot of administrative tasks, you will need to run the script as administrator.
To learn more about execution policies, run:
help about_execution_policies
For more information about how to sign your script, use:
help about_signing
Basics—points to remember
Let's explore some PowerShell basic concepts.
Cmdlets
Cmdlets, pronounced as "commandlets", are the foundation of PowerShell. Cmdlets are small commands, or specialized commands. The naming convention for cmdlets follows the Verb-Noun format, such as Get-Command or Invoke-Expression.
PowerShell V3 boasts a lot of new cmdlets, including cmdlets to manipulate JSON (ConvertFrom-Json, ConvertTo-Json), web services (Invoke-RestMethod, Invoke-WebRequest), and background jobs (Register-JobEvent, Resume-Job, Suspend-Job). In addition to built-in cmdlets, there are also downloadable community PowerShell extensions such as SQLPSX, which can be downloaded from http://sqlpsx.codeplex.com/.
Many cmdlets accept parameters. Parameters can either be specified by name or by position. Let's take a look at a specific example. The syntax for the Get-ChildItem cmdlet is:
Get-ChildItem [[-Path] <string[]>] [[-Filter] <string>]
[-Include <string[]>] [-Exclude <string[]>]
[-Recurse] [-Force] [-Name]
[-UseTransaction] [<CommonParameters>]
The Get-ChildItem cmdlet gets all the "children" in a specified path. For example, to get all files with a .txt extension in the C:\Temp folder, we can use Get-ChildItem with the –Path and –Filter parameters:
Get-ChildItem -Path "C:\Temp" -Filter "*.csv"
We can alternatively omit the parameter names by passing the parameter values by position. When passing parameters by position, the order in which the values are passed matters. They need be to in the same order in which the parameters are defined in the Get-ChildItem cmdlet:
Get-ChildItem "C:\Temp" "*.csv"
To learn the order in which parameters are expected to come, you can use the Get-Help cmdlet:
Get-Help Get-ChildItem
Learning PowerShell
The best way to learn PowerShell is to explore the cmdlets, and try them out as you learn them. The best way to learn is to explore. Young Jedi, you need to get acquainted with these three (3) cmdlets: Get-Command, Get-Help, and Get-Member.
Get-Command
There are many cmdlets. And that list is just going to get bigger. It will be hard to remember all the cmdlets except for the handful you use day in and day out. Besides using the search engine, you can use the Get-Command cmdlet to help you look for cmdlets.
Here are a few helpful cmdlets:
Get-Command
Get-Command -Name "*Event*"
Get-Command -Module SQLASCMDLETS
Get-Help
Now that you've found the command you're looking for, how do you use it? The best way to get help is Get-Help (no pun intended). The Get-Help cmdlet provides the syntax of a cmdlet, examples, and some additional notes or links where available.
Get-Help Backup-SqlDatabase
Get-Help Backup-SqlDatabase –Examples
Get-Help Backup-SqlDatabase -Detailed
Get-Help Backup-SqlDatabase -Full
Get-Help Backup-SqlDatabase -Online #opens browser
The different parameters—Examples, Detailed, Full, and Online—will determine the amount of information that will be displayed. The Online parameter opens up the online help in a browser.
Get-Member
To really understand a command or an object and explore what's available, you can use the Get-Member cmdlet. This will list all the properties, methods of an object, or anything incoming from the pipeline.
$dt = (Get-Date)
$dt | Get-Member
Starter notes
We are almost ready to start learning the syntax. However, here are a few last notes, some points to keep in mind about PowerShell as you learn it. Keep a mental note of these items, and you are ready to go full steam ahead.
PowerShell is object oriented, and works with .NET
PowerShell works with objects, and can take advantage of the objects' methods and properties. PowerShell can also leverage the ever-growing .NET framework library. It can import any of the .NET classes, and reuse any of the already available classes.
You can find out the base class of an object by using the GetType method, which comes with all objects.
$dt = Get-Date
$dt.GetType() #DateTime is the base type
To investigate an object, you can always use the Get-Member cmdlet.
$dt | Get-Member
To leverage the .NET libraries, you can import them in your script. A sample import of the .NET libraries follows:
#load the Windows.Forms assembly
Add-Type -AssemblyName "System.Windows.Forms"
There will be cases when you may have multiple versions of the same assembly name. In these cases, you will need to specify the strong name of the assembly with the Add-Type cmdlet. This means you will need to supply the AssemblyName, Version, Culture, and PublicKeyToken:
#load the ReportViewer WinForms assembly
Add-Type -AssemblyName "Microsoft.ReportViewer.WinForms, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"
To determine the strong name, you can open up C:\Windows\assembly and navigate to the assembly you want to load. You can either check the displayed properties, or right-click on the particular assembly and select Properties.
Cmdlets may have aliases or you can create one
We may already know some scripting or programming languages, and may already have preferences on how we do things. For example, when listing directories from the Command Prompt, we may be on autopilot when we type dir. In PowerShell, listing directories can be accomplished by the Get-ChildItem cmdlet. Fear not, you can still use dir if you prefer. If there is another name you want to use instead of Get-ChildItem, you can create your own alias.
To find out aliases of a cmdlet, you can use Get-Alias. For example, to get the aliases of Get-ChildItem, you can execute:
Get-Alias -Definition "Get-ChildItem"
To create your own alias, you can use New-Alias:
New-Alias "list" Get-ChildItem
Here are some of the common aliases already built-in with PowerShell:
Cmdlet | Alias |
---|---|
Foreach-Object | %, Foreach |
Where-Object | ?, Where |
Sort-Object | Sort |
Compare-Object | compare, diff |
Write-Output | echo, write |
help | man |
Get-Content | cat, gc, type |
Get-ChildItem | dir, gci, ls |
Copy-Item | copy, cp, cpi |
Move-Item | mi, move, mv |
Remove-Item | del, erase, rd, ri, rm, rmdir |
Get-Process | gps, ps |
Stop-Process | kill, spps |
Get-Location | gl, pwd |
Set-Location | cd, chdir, sl |
Clear-Host | clear, cls |
Get-History | h, ghy, history |
You can chain commands
You can take the result from one command and use it as an input to another command. The operator to chain commands is a vertical bar (|) called pipe. This feature makes PowerShell really powerful. This can also make your statements more concise.
If you are familiar with the Unix/Linux environment, pipes are a must-have and are incredibly valuable tools.
Let's take an example. We will export the newest log entries (time and source fields only) to a text file in JSON format:
Get-EventLog -LogName Application -Newest 10
Select Time, Source
ConvertTo-Json
Out-File -FilePath "C:\Temp\json.txt" -Force
Get-EventLog -LogName Application -Newest 10 |
Select Time, Source |
ConvertTo-Json |
Out-File -FilePath "C:\Temp\json.txt" -Force
This is just a simple example of how you can chain commands, but should give you an idea how it can be done.
Filter left, format right
When you chain commands, especially when your last actions are for formatting the result, you want to do this as efficiently as possible. Otherwise, you may use a lot of resources to format data, and end up only needing to display a few. It is best to trim your data first, before you pass them down the pipeline for formatting.
Package and reuse
Functions and modules allow you to package up the logic you built in your scripts, and put it in reusable structures. A function can be simply described as a callable code block. A module allows you to put together a library of variables and functions that can be loaded into any session, and allow the use of these variables and functions.
Your goal should be to package up most of what you've already built in scripts, and put it into functions, and later compile them into a module. Note that you can also create your functions so they behave like cmdlets.
Converting your scripts into functions is tackled at a later section in this appendix.
Common Cmdlets
Typically, cmdlets are categorized to their main purpose or functionality based on the verb used in their name. Here is a partial list of cmdlets to explore. Note that many cmdlet names are self-documenting:
Category | Cmdlet |
---|---|
Utility | ConvertFrom-Csv ConvertFrom-Json ConvertTo-Csv ConvertTo-Html ConvertTo-Json ConvertTo-Xml Export-Clixml Export-Csv Format-List Format-Table Get-Alias Get-Date Get-Member Import-Clixml Import-Csv Read-Host |
Management | Get-ChildItem Get-Content Get-EventLog Get-HotFix Get-Process Get-Service Get-WmiObject New-WebServiceProxy Start-Process Start-Service |
Security | ConvertFrom-SecureString ConvertTo-SecureString Get-Credential Get-ExecutionPolicy Set-ExecutionPolicy |
Scripting syntax
We will now dive into the specifics of PowerShell syntax.
Statement terminators
A semicolon is typically a mandatory statement terminator in many programming and scripting languages. PowerShell considers both a newline and a semicolon as statement terminators, although using the newline is more common, that's why you won't see a lot of semicolons in most PowerShell scripts. There is a caveat for using the newline; that is, the previous line must be a complete statement before it gets executed.
Escape and line continuation
The backtick (`) is a peculiar character in PowerShell, and it has double meaning. You can typically find this character in your keyboard above the left Tab key, and is in the same key as the tilde (~) symbol.
The backtick is the escape character in PowerShell. Some of the common characters that need to be escaped are:
Escaped Character | Description |
---|---|
`n | Newline |
`r | Carriage return |
`' | Single quote |
`" | Double quote |
`0 | Null |
PowerShell also uses the backtick as a line continuation character. You may find yourself writing a long chain of commands and may want to put different parts of the command onto different lines to make the code more readable. If you do, you need to make sure to put a backtick at the end of each line you are continuing, otherwise PowerShell treats the newline as a statement terminator. You also need to make sure there are not any extra spaces after the backtick:
Invoke-Sqlcmd `
-Query $query `
-ServerInstance $instanceName `
-Database $dbName
Variables
Variables are placeholders for values. Variables in PowerShell start with a dollar ($) sign.
$a = 10
By default, variables are loosely and dynamically typed—meaning the variable assumes the data type based on the value of the content:
$a = 10
$a.GetType() #Int32
$a = "Hello"
$a.GetType() #String
$a = Get-Date
$a.GetType() #DateTime
Note how the data type changes based on the value we assign to the variable. You can however create strongly typed variables.
[int]$a = 10
$a.GetType() #Int32
When we have strongly typed variables, we can no longer just haphazardly assign it any value. If we do, we will get an error:
$a = "Hello"
<# Error
Cannot convert value "Hello" to type "System.Int32". Error: "Input string was not in a correct format."
At line:3 char:1
+ $a = "Hello"
+ ~~~~~~~~~~~~
+ CategoryInfo : MetadataError: (:) [], ArgumentTransformationMetadataException
+ FullyQualifiedErrorId : RuntimeException
#>
We have also mentioned in the previous section that PowerShell is object oriented. Variables in PowerShell are automatically created as objects. Depending on the data type, variables are packaged with their own attributes and methods. To explore what properties and methods are available with a data type, use the Get-Member cmdlet:
Here-string
There may be times when you need to create a string variable that will contain multiple lines of code. You should create these as here-string.
A here-string is a string that often contains large blocks of text. It starts with @" and must end with a line that contains only "@. For the here-string terminating character pair, make sure this is placed in its own line, and there are no other characters and no spaces before or after it.
$query = @"
INSERT INTO SampleXML
(FileName,XMLStuff,FileExtension)
VALUES('$xmlfile','$xml','$fileextension')
"@
String interpolation
When working with strings, you need to remember that using a double quote evaluates enclosed variables, that is variables are replaced with their values. For example:
$today = Get-Date
Write-Host "Today is $today"
#result
#Today is 06/12/2012 19:48:24
This behavior may sometimes cause issues especially if you need to use multiple variables in continuation, as in the following case where we want to combine $name, and underscore (_), $ts and .txt to create a timestamped filename.
$name = "belle"
$ts = Get-Date -Format yyyy-MMM-dd
$filename = "$name_$ts.txt"
This will give an incorrect result, because it will look for $name_ and $ts, but since it cannot find $name_, the final filename we get is 2012-Jun-06.txt and not belle_2012-Jun-06.txt.
To resolve this issue, we can use any of the following to ensure proper interpolation:
$filename = "$($name)_$($ts).txt"
Write-Host $filename
$filename = "${name}_${ts}.txt"
Write-Host $filename
$filename = "{0}_{1}.txt" -f $name, $ts
Write-Host $filename
A single quote, on the other hand, preserves the actual variable name and does not interpolate the value:
$today = Get-Date
Write-Host 'Today is $today'
#result
#Today is $today
You can also store actual commands in a string. However, this is treated as a string unless you prepend it with an ampersand (&)‑which is PowerShell's invoke or call operator.
$cmd = "Get-Process"
$cmd #just displays Get-Process, treated as string
&$cmd #actually executes Get-Process
Operators
The operators used in PowerShell may not be readily familiar to you even if you have already done some programming before. This is because the operators in PowerShell do not use the common operator symbols.
PowerShell | Traditional Operator | Description |
---|---|---|
-eq | == | Equal to |
-ne | <> or != | Not equal to |
-match -notmatch | Match using regex; searches anywhere in string | |
-contains -notcontains | Collection match. Does item exist in array or collection? | |
-like -notlike | Wildcard match * (asterisk) for zero or more characters ? (question mark) for any single character | |
-clike -cnotlike | Case—sensitive wildcard match | |
-not | ! | Negation |
-lt | < | Less than |
-le | <= | Less than or equal to |
-gt | > | Greater than |
-ge | >= | Greater than or equal to |
-and | && | Logical and |
-or | || | Logical or |
-bor | | | Bitwise or |
-band | & | Bitwise and |
-xor | ^ | Exclusive or |
Note that many operators perform case-insensitive string comparisons by default. If you want to do case-sensitive matching, prepend with c. For example, –ceq, -clike, -cnotlike.
Displaying messages
Often we will need to display or log messages as our scripts execute. PowerShell provides a few cmdlets to help us accomplish this.
Get-Command -Name "*Write*" -CommandType Cmdlet
This should give a list of our Write- related cmdlets:
Cmdlet | Description |
---|---|
Write-Debug | Display debug message to console Typically used with $DebugPreference = "Continue" |
Write-Error | Display non-terminating error message to console |
Write-EventLog | Write message to Windows Event Log |
Write-Host | Display string message to host |
Write-Output | Write an object to pipeline |
Write-Progress | Display a progress bar |
Write-Verbose | Display verbose message to console Typically used with $VerbosePreference = "Continue" |
Write-Warning | Display warning message to console |
Although some of these cmdlets seem similar, there are some fundamental differences. For example, Write-Host and Write-Output seem to display the same messages on screen. Write-Host however simply displays a string, but Write-Ouput writes objects that have properties that can be queried, and can eventually be used in the pipeline.
We use Write-Verbose a fair bit in the recipes in this book. Write-Verbose does not automatically display messages on the host. It relies on the $VerbosePreference setting. By default, $VerbosePreference is set to SilentlyContinue, but it can also be set to Continue, which allows us to display messages used with Write-Verbose to screen.
$VerbosePreference = "Continue"
$folderName = "C:\BLOB Files\"
#using PowerShell V2 style Where-Object syntax
Get-ChildItem $folderName |
Where-Object {$_.PSIsContainer -eq $false} |
ForEach-Object {
$blobFile = $_
Write-Verbose "Importing file $($blobFile.FullName)..."
}
$VerbosePreference = "SilentlyContinue"
This is an elegant way of turning all messages on or off, without needing to change the script. This can also be used as a switch and can be passed to the script or a function.
Comments
Comments are important in any programming or scripting language. Comments are often used to document logic, and sometimes a chain of changes to the script.
Single line comments start with a hash sign (#):
#this is a single line comment
Block comments start with <# and end with #>:
<#
this is a block comment
#>
PowerShell also supports what's called Comment Based Help. This feature allows you to put a special comment block at the start of your script, or in the beginning of your function, that allows the script or function to be looked up using Get-Help. A sample of this type of comment block follows:
<#
.SYNOPSIS
Creates a full database backup
.DESCRIPTION
Creates a full database backup using specified instance name and database name
This will place the backup file to the default backup directory of the instance
.PARAMETER instanceName
instance where database to be backed up resides
.PARAMETER databaseName
database to be backed up
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.ps1 -instanceName "QUERYWORKS\SQL01" -databaseName "pubs"
.EXAMPLE
PS C:\PowerShell> .\Backup-Database.ps1 -instance "QUERYWORKS\SQL01" -database "pubs"
.NOTES
To get help:
Get-Help .\Backup-Database.ps1
.LINK
http://msdn.microsoft.com/en-us/library/hh245198.aspx
#>
To look up the help, you can simply type a Get-Help followed by the script filename, or the function name:
PS>Get-Help .\Backup-Database.ps1
Special variables
PowerShell also has some special variables. These special variables do not need to be created ahead of time, they are already available. Some of the special variables are:
Special Variable | Description |
---|---|
$_ | Current pipeline object |
$args | Arguments passed to a function |
$error | Array that stores all errors |
$home | User's home directory |
$host | Host information |
$match | Regex matches |
$profile | Path to profile, if available |
$PSHome | Install directory of PowerShell |
$PSISE | PowerShell Scripting Environment object |
$pid | Process ID (PID) of PowerShell process |
$pwd | Present working directory |
$true | Boolean true |
$false | Boolean false |
$null | Null value |
Conditions
PowerShell supports conditional logic using if/else statements or switch statements. These two constructs allow you to check for a condition, and consequently execute different blocks of code if the condition is met or not.
Let's look at an example of an if/else block:
$answer = Read-Host "Which course are you taking?"
if ($answer -eq "COMP 4677")
{
Write-Host "That's SQL Server Administration"
}
elseif ($answer -eq "COMP 4678")
{
Write-Host "That's SQL Server Development"
}
else
{
Write-Host "That's another course"
}
Note that the elseif and else blocks are optional. They don't need to be defined if you do not have a separate code to execute if the condition is not met.
An equivalent switch block can be written for the above code:
$answer = Read-Host "Which course are you taking?"
switch ($answer)
{
"COMP 4677"
{
Write-Host "That's SQL Server Administration"
}
"COMP 4678"
{
Write-Host "That's SQL Server Development"
}
default
{
Write-Host "That's another course"
}
}
Note that these two constructs can be functionally equivalent for simple comparisons. The choice to use one over the other hinges on preference and readability. If there are many choices, the switch can definitely make the code more readable.
Regular Expressions
Regular expressions, more commonly referred to as regex, specify a string pattern to match. Regex can be extremely powerful, and is often used when dealing with massive amounts of text. The area of bioinformatics, for example, tends to rely heavily on regular expressions for gene pattern matching.
Regex can also be quite confusing especially for beginners. It has its own set of patterns and wildcards, and it is up to you to put these together to ensure you are matching what you need to be matched.
See the recipe Testing Regular Expressions in Chapter 9, Helpful PowerShell Snippets.
Arrays
Arrays are collections of items. Often we find ourselves needing to store a group of items, either for further processing, or for exporting.
#ways to create an array
$myArray = @() #empty
$myArray = 1,2,3,4,5
$myArray = @(1,2,3,4,5)
#array of processes consuming >30% CPU
$myArray = (Get-Process | Where CPU -gt 30)
Arrays can either be of a fixed size or not. Fixed-size arrays are instantiated with a fixed number of items. Some of the typical methods such as Add or Remove cannot be used with fixed-size arrays:
$myArray = @()
$myArray += 1,2,3,4,5
$myArray += 6,7,8
$myArray.Add(9) #error because array is fixed size
Removing an item from a fixed array is a little bit tricky. Although arrays have Remove and RemoveAt methods—to remove based on value and index respectively—we cannot use these with fixed-size arrays. To remove an item from a fixed-size array, we will need to reassign the new set of values to the array variable.
#remove 6
$myArray = $myArray -ne 6
#remove 7
$myArray = $myArray -ne 7
To create a dynamic-sized array, you will need to declare the array as an array list, and add items using the Add method. This also supports removing items from the list using the Remove method.
$myArray = New-Object System.Collections.ArrayList
$myArray.Add(1)
$myArray.Add(2)
$myArray.Add(3)
$myArray.Remove(2)
We can use indices to retrieve information from the array:
#retrieve first item
$myArray[0]
#retrieve first 3 items
$myArray[0..2]
We can also retrieve based on some comparison or condition:
#retrieving anything > 3
$myArray -gt 3
Hashes
A hash is also a collection. This is different from an array, however, because hashes are collections of key-value pairs. Hashes are also called associative arrays, or hash tables.
#simple hash
$simplehash = @{
"BCIT" = "BC Institute of Technology"
"CST" = "Computer Systems Technology"
"CIT" = "Computer Information Technology"
}
$simplehash.Count
#hash containing process IDs and names
$hash = @{}
Get-Process | Foreach {$hash.Add($_.Id, $_.Name)}
$hash.GetType()
To access items in a hash, we can refer to the hash table variable, and retrieve based on the stored key:
$simplehash["BCIT"]
$simplehash.BCIT
Loop
A loop allows you to repeatedly execute block(s) of code based on some condition. There are different types of loop support in PowerShell. For all intents and purposes, you may not need to use all of these types, but it's always useful to be aware of what's available and doable.
There is a while loop, where the condition is tested at the beginning of the block:
$i = 1;
while($i -le 5)
{
#code block
$i
$i++
}
There is also support for the do while loop, where the condition is tested at the bottom of the block:
$i = 1
do
{
#code block
$i
$i++
}while($i -le 5)
The for loop allows you to loop a specified number of times, based on a counter you create at the for header.
for($i = 1; $i -le 5; $i++)
{
$i
}
There is yet another type of loop, a foreach loop. This loop is a little bit different because it works with arrays or collections. It allows a block of code to be executed for each item in a collection.
$backupcmds = Get-Command -Name "*Backup*" -CommandType Cmdlet
foreach($backupcmd in $backupcmds)
{
$backupcmd | Get-Member
}
If you're a developer, this code looks very familiar to you. In PowerShell, however, you can use pipelining to make your code more concise.
Get-Command -Name "*Backup*" -CommandType Cmdlet |
Foreach { $_ | Get-Member}
Error Handling
When developing functions or scripts, it is important to think beyond just the functionality you are trying to achieve. You also want to handle exceptions, or errors, when they happen. We all want our scripts to gracefully exit if something goes wrong, rather than display some rather intimidating or cryptic error messages.
Developers in the house will be familiar with the concept of try/catch/finally. This is a construct that allows us to put the code we want to run in one block (try), exception handling code in another (catch), and any must-execute housekeeping blocks in a final block (finally).
$dividend = 20
$divisor = 0
try
{
$result = $dividend/$divisor
}
catch
{
Write-Host ("======" * 20)
Write-Host "Exception $error[0]"
Write-Host ("======" * 20)
}
finally
{
Write-Host "Housekeeping block"
Write-Host "Must execute by hook or by crook"
}
Converting script into functions
A function is a reusable, callable code block(s). A function can accept parameters, and can produce different results based on values that are passed to it.
A typical anatomy of a PowerShell function looks like:
function Do-Something
{
<#
comment based help
#>
param
(
#parameters
)
#blocks of code
}
To illustrate, let's create a very simple function that takes a report server URL and lists all items in that report server. This function will take in a parameter for the report server URL, and another switch called $ReportsOnly, which can toggle displaying between all items, or only report items.
function Get-SSRSItems
{
<#
comment based help
#>
param
(
[Parameter(Position=0,Mandatory=$true)]
[alias("reportServer")]
[string]$ReportServerUri,
[switch]$ReportsOnly
)
Write-Verbose "Processing $($ReportServerUri) ..."
$proxy = New-WebServiceProxy `
-Uri $ReportServerUri `
-UseDefaultCredential
if ($ReportsOnly)
{
$proxy.ListChildren("/", $true) |
Where TypeName -eq "Report"
}
else
{
$proxy.ListChildren("/", $true)
}
}
To call this function, we can pass in the value for –ReportServerUri and also set the –ReportsOnly switch:
$server = "http://server1/ReportServer/ReportService2010.asmx"
Get-SSRSItems -ReportsOnly -ReportServerUri $server |
Select Path, TypeName |
Format-Table -AutoSize
To allow your function to behave more like a cmdlet and work with the pipeline, we will need to add the [CmdletBinding()] attribute. We can also change the parameters to enable values to come from the pipeline by using ValueFromPipeline=$true. Inside the function definition, we will need to add three blocks:
Preprocessing; anything in this block will be executed once when the function is called.
Actual processing that is done for each item that is passed in the pipeline.
Post-processing; this block will be executed once before the function terminates executing.
We will also need to specify in the parameter block that we want to accept input from the pipeline.
A revised function follows:
function Get-SSRSItems
{
<#
comment based help
#>
[CmdletBinding()]
param
(
[Parameter(Position=0,Mandatory=$true,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=$true)]
[alias("reportServer")]
[string]$ReportServerUri,
[switch]$ReportsOnly
)
BEGIN
{
}
PROCESS
{
Write-Verbose "Processing $($ReportServerUri) ..."
$proxy = New-WebServiceProxy `
-Uri $ReportServerUri -UseDefaultCredential
if ($ReportsOnly)
{
$proxy.ListChildren("/", $true) |
Where TypeName -eq "Report"
}
else
{
$proxy.ListChildren("/", $true)
}
}
END
{
Write-Verbose "Finished processing"
}
}
To invoke, we can pipe an array of servers to the Get-SSRSItems function, and this automatically maps the servers to our –ReportServerUri parameter since we specified ValueFromPipeline=$true. Note that Get-SSRSItems will get invoked for each value in our array:
$servers = @("http://server1/ReportServer/ReportService2010.asmx", "http://server2/ReportServer/ReportService2010.asmx")
$servers |
Get-SSRSItems -Verbose -ReportsOnly |
Select Path, TypeName |
Format-Table -AutoSize
More about PowerShell
We have barely touched PowerShell basics, but this appendix should give you an idea how to use PowerShell. To learn more about PowerShell, check out Appendix C, Resources, which lists a number of other resources you might find useful with your PowerShell adventure.
Appendix C. Resources
Resources
There are a lot of good websites, articles, webcasts, blogs, and bloggers on PowerShell. This is by no means an exhaustive list of resources. The list below is simply meant to help you jumpstart your adventure with PowerShell and SQL Server. Bear in mind that beyond this list, there are a lot more to explore! Enjoy the adventure!
PowerShell Books
PowerShell V3
by Don Jones, Richard Siddaway, and Jeffery Hicks
by Richard Siddaway
by Doug Finke
PowerShell V2
by Don Jones
by Don Jones
by Richard Siddaway
by Richard Siddaway
by William R. Stanek
by Lee Holmes
by Bruce G. Payette
PowerShell V2 Free E-books
by Dr. Tobias Weltner and Aleksandar Nikolic
http://powershell.com/cs/media/p/4908.aspx
by Keith Hill
http://rkeithhill.wordpress.com/2009/03/08/effective-windowspowershell-the-free-ebook/
by Ravikanth Chaganti
http://www.ravichaganti.com/blog/?p=1305
by Dr. Tobias Weltner
http://powershell.com/cs/blogs/ebookv2/default.aspx
by Jonathan Medd
http://www.jonathanmedd.net/wp-content/uploads/2010/09/PowerShell_2_One_Cmdlet_at_a_Time.pdf
by Don Jones and Dr. Tobias Weltner
http://powershellbooks.com/SecretsOfPowerShellRemoting.zip
by Ravikanth Chaganti
http://www.ravichaganti.com/blog/?page_id=2134
PowerShell Blogs and Sites
http://www.powershell.com
http://blogs.msdn.com/powershell/
http://www.powershellmagazine.com/
http://poshcode.org/
http://social.technet.microsoft.com/wiki/contents/articles/183.windows-powershell-survival-guide-en-us.aspx
http://gallery.technet.microsoft.com/scriptcenter/
http://social.technet.microsoft.com/wiki/contents/articles/4725.powershell-v3-guide-en-us.aspx
http://blogs.technet.com/b/heyscriptingguy/
http://technet.microsoft.com/en-US/scriptcenter/dd742419.aspx
PowerShell Bloggers
http://www.windowsitpro.com/topics/powershell-scripting/don-jones-on-powershell
http://richardspowershellblog.wordpress.com/
http://jdhitsolutions.com/blog/
http://blogs.microsoft.co.il/blogs/scriptfanatic/
http://www.leeholmes.com/blog/
http://blogs.technet.com/b/heyscriptingguy/
http://www.ravichaganti.com/blog/
http://powershell.com/cs/blogs/tobias/
http://www.powershell.nu/
http://rkeithhill.wordpress.com/
http://www.dougfinke.com
http://tfl09.blogspot.ca/
http://huddledmasses.org/
http://www.jonathanmedd.net/
http://blog.usepowershell.com
http://powershellers.blogspot.ca/
SQL Server and PowerShell Bloggers
http://sqlblog.com/blogs/allen_white/
http://shellyourexperience.wordpress.com/
http://www.sqlvariant.com
http://bassplayerdoc.blogspot.ca/
http://sev17.com
http://www.maxtblog.com/2011/10/sql-server-powershell-smosimple-way-to-change-sql-user-passwords/
http://www.sqlmusings.com
PowerShell Webcasts and Podcasts
http://channel9.msdn.com/tags/PowerShell/
http://powerscripting.wordpress.com/
PowerShell Tools
http://www.idera.com/PowerShell/powershell-plus/
http://powergui.org/index.jspa
http://www.sapien.com/software/primalscript
SQLPSX
SQLPSX is a set of modules that wrap SMO objects into easier-to-use functions. This is a project maintained and contributed to by Chad Miller, Mike Shepard, Laerte Junior, Steve Murawski, Kriszio, and Max Trinidad.
http://sqlpsx.codeplex.com/
PSCX
PowerShell Community Extensions is a set of modules that extend PowerShell with additional cmdlets, functions, aliases, and filters. This project is maintained by R Keith Hill.
http://pscx.codeplex.com/
Appendix D. Creating a SQL Server VM
In this appendix we will cover:
Introduction
I find the best way to learn new software or application is by creating a virtual machine that has the new software on it. I typically use SQL Server VMs for my development and administration classes. I want the students to have full autonomy over the machines they are using, so that they can try different features and configurations without worrying about wrecking their own machines.
Creating and working with virtual machines may seem confusing at first for the novice. I originally wrote a step-by-step guide for my students at the following URL:
http://www.sqlmusings.com/wp-content/uploads/2009/09/Step-by-Step-Guide-to-Creating-a-SQL-Server-VM-Using-VMWare.pdf
This original document uses VMWare Server, which is no longer available and supported.
What you see in this appendix is an updated version, specifically using VMWare Player and SQL Server 2012.
Terminology
Let's start off with some terminologies:
Terminology | Description |
---|---|
Virtual Machine, or VM | This is essentially a standalone computer installed within another platform/OS. A virtual machine is also sometimes called a guest machine. This typically provides a complete system platform with its own set of operating system, hardware configurations, and installed software packages, but still runs on top of a host machine that has the main OS (operating system), and the physical hardware. There are different applications that can create and run virtual machines. A partial list includes:
|
ISO File | This is a disk image—an archive file of an optical disc in a format defined by the International Organization for Standardization (ISO). This contains archived CD/DVD content. In a VM, an ISO file can be treated as a real CD/DVD. All you need to do is to point the CD/DVD settings to the ISO file path. If you need to, you can also burn the ISO to CD/DVD or create ISO files using any CD/DVD image file processing tool, such as:
|
Service Account | This is the account used to run services running on a Windows operating system. |
Downloading software
We will use VMWare Player, a free virtual machine application, and the trial versions for Windows Server 2008 R2, SQL Server 2012, Windows Management Framework, and optionally Visual Studio 2010.
http://www.vmware.com/products/player/
You can find the VMWare Player documentation at http://www.vmware.com/support/pubs/player_pubs.html.
http://technet.microsoft.com/en-us/evalcenter/dd459137.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=29066
http://www.microsoft.com/en-us/download/details.aspx?id=34595
(Optional) If you are planning to create some SQLCLR assemblies, you will need at least Visual Studio 2010 Professional. SQL Server Data Tools (previously known as BIDS, or Business Intelligence Development Studio) is not sufficient for creating the assemblies.
http://www.microsoft.com/en-us/download/details.aspx?id=12187
VM details and accounts
The following table lists accounts and VM details that we will use in this appendix:
Item | Description |
---|---|
Virtual Machine Name | SQL2012VM |
Virtual Machine Computer Name | KERRIGAN |
Virtual Machine Computer Administrator Account | UserName: Administrator Password: P@ssword |
SQL Server Instances | Default: KERRIGAN Named: KERRIGAN\SQL01 |
SQL Server Service Account | UserName: QUERYWORKS\sqlservice Password: P@ssword |
SQL Server Agent Account | UserName: QUERYWORKS\sqlagent Password: P@ssword |
Additional domain accounts | QUERYWORKS\aterra QUERYWORKS\jraynor QUERYWORKS\mhorner |
One more note to log in to the VM when it's ready: | |
Item | Description |
Logging in to the VM | Click on VM | Send Ctrl + Alt + Del Additional VMWare shortcuts can be found here: http://www.vmware.com/support/ws55/doc/ws_learning_keyboard_shortcuts.html |
Creating an empty virtual machine
Determine first if your host is a 64-bit machine. You can go to Start | All Programs | Accessories | System Tools | System Information. You should see it under System Type. If you see x86, then you will need to use the 32-bit versions of the software.
Once ready, we will create our empty virtual machine. We will call our virtual machine SQL2012VM:
You can also do this by going to File | Create New Virtual Machine.
Installing Windows Server 2008 R2 as Guest OS
To install the operating system, we first need to mount the Windows Server ISO and play the virtual machine. After that, we can follow the installation wizard.
For the installation language we will use English, and keyboard will be US.
When prompted to install, select Install Now.
Provide the administrator password as shown in the following screenshot:
When done, click on the arrow. This will log you in to your new VM.
a. In the Computer description, type SQL2012 VM.
b. Click on the Change button.
c. In the Computer name textbox, type KERRIGAN.
Click on OK, and then Apply. You will be prompted to restart the VM; choose Restart Later.
Installing VMWare tools
For an enhanced VM experience, we want to install VMWare tools.
Configuring a domain controller
In a production environment, it is not recommended to install the domain controller with any of your other server software.
Note that this section is optional. You do not need to configure a domain controller to start using the recipes in this book.
For development and testing purposes (such as ours), however, we will install them on the same machine. Should you want to mimic a production setup, you can create another Windows Server 2008 R2 VM with a different computer name, and follow the steps given:
Creating domain accounts
Next, we will create some domain accounts to be used for our exercises. We will create the following:
To add these accounts, follow the steps listed below:
Installing SQL Server 2012 on a VM
We are now ready to install SQL Server 2012. Carry out the following steps:
For security reasons, it is recommended to not install SQL Server on top of the domain controller, as discussed in the article at http://msdn.microsoft.com/en-us/library/ms143506.aspx. For our purposes, this is just a test machine that will not be used as a production box, we can ignore this warning.
Feel free to choose additional features you want to try and then click on Next.
Note that the original Report Server Database screen will now be populated with the newly configured values.
Installing sample databases
The SQL Server sample databases can be found here:
http://msftdbprodsamples.codeplex.com/
You can choose to install both SQL Server 2012 OLTP and DW samples. If you are going to try the recipes that involve Analysis Services cubes, then you definitely have to install the DW samples.
Complete instructions on how to install the sample databases can be found at:
http://social.technet.microsoft.com/wiki/contents/articles/3735.sql-server-samples-readme-en-us.aspx#Readme_for_Adventure_Works_Sample_Databases
Installing PowerShell V3
As Windows Server 2008 R2 does not natively come with PowerShell V3, we will need to install it separately.
Table of Contents
SQL Server 2012 with PowerShell V3 Cookbook
SQL Server 2012 with PowerShell V3 Cookbook
Credits
About the Author
Acknowledgement
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Instant Updates on New Packt Books
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Getting Started with SQL Server and PowerShell
Introduction
Notable PowerShell V3 features
Before you start: Working with SQL Server and PowerShell
Working with the sample code
How to do it...
See also
Exploring the SQL Server PowerShell hierarchy
Getting ready
How to do it...
How it works...
Installing SMO
Getting ready
How to do it...
There's more...
Loading SMO assemblies
Getting ready
How to do it...
How it works...
There's more...
See also
Discovering SQL-related cmdlets and modules
Getting ready
How to do it...
How it works...
There's more...
More information on running PowerShell scripts
More information on mixed assembly error
Creating a SQL Server instance object
Getting ready
How to do it...
How it works...
See also
Exploring SMO server objects
Getting ready
How to do it...
How it works...
See also
2. SQL Server and PowerShell Basic Tasks
Introduction
Development environment
Administrator
PowerShell ISE
Running scripts
Listing SQL Server instances
Getting ready
How to do it...
How it works...
There's more...
Discovering SQL Server services
Getting ready
How to do it...
How it works...
There's more...
See also
Starting/stopping SQL Server services
Getting ready
How to do it...
How it works...
There's more...
See also
Listing SQL Server configuration settings
How to do it...
How it works...
See also
Changing SQL Server instance configurations
Getting ready
How to do it...
How it works...
There's more...
See also
Searching for database objects
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a database
Getting ready
How to do it...
How it works...
Altering database properties
Getting ready
How to do it...
How it works...
See also
Dropping a database
Getting ready
How to do it...
How it works...
Changing a database owner
Getting ready
How to do it...
How it works...
See also
Creating a table
Getting ready
How to do it...
How it works...
See also
Creating a view
Getting ready
How to do it...
How it works...
There's more...
Creating a stored procedure
Getting ready
How to do it...
How it works...
Creating a trigger
Getting ready
How to do it...
How it works...
Creating an index
Getting ready
How to do it...
How it works...
There's more...
See also
Executing a query / SQL script
Getting ready
How to do it...
How it works...
Performing bulk export using Invoke-Sqlcmd
Getting ready
How to do it...
How it works...
See also
Performing bulk export using bcp
Getting ready
How to do it...
How it works...
See also
Performing bulk import using BULK INSERT
Getting ready
How to do it...
How it works...
See also
Performing bulk import using bcp
Getting ready
How to do it...
How it works...
See also
3. Basic Administration
Introduction
Creating a SQL Server instance inventory
How to do it...
How it works...
There's more...
See also
Creating a SQL Server database inventory
Getting ready
How to do it...
How it works...
See also
Listing installed hotfixes and service packs
How to do it...
How it works...
There's more...
See also
Listing running/blocking processes
Getting ready
How to do it...
How it works...
See also
Killing a blocking process
Getting ready
How to do it...
How it works...
There's more...
See also
Checking disk space usage
How to do it...
How it works...
See also
Setting up WMI Server event alerts
Getting ready
How to do it...
How it works...
There's more...
Detaching a database
Getting ready
How to do it...
How it works...
There's more...
See also
Attaching a database
Getting ready
How to do it...
How it works...
See also
Copying a database
Getting ready
How to do it...
How it works...
See also
Executing a SQL query to multiple servers
Getting ready
How to do it...
How it works...
See also
Creating a filegroup
Getting ready
How to do it...
How it works...
See also
Adding secondary data files to a filegroup
Getting ready
How to do it...
How it works...
See also
Moving an index to a different filegroup
Getting ready
How to do it...
How it works...
There's more...
See also
Checking index fragmentation
Getting ready
How to do it...
How it works...
See also
Reorganizing/rebuilding an index
Getting ready
How to do it...
How it works...
See also
Running DBCC commands
How to do it...
How it works...
Setting up Database Mail
Getting ready
How to do it...
How it works...
There's more...
Listing SQL Server jobs
Getting ready
How to do it...
How it works...
See also
Adding a SQL Server operator
Getting ready
How to do it...
How it works...
See also
Creating a SQL Server job
Getting ready
How to do it...
How it works...
See also
Adding a SQL Server event alert
How to do it...
How it works...
There's more...
See also
Running a SQL Server job
Getting ready
How to do it...
How it works...
See also
Scheduling a SQL Server job
Getting ready
How to do it...
How it works...
There's more...
See also
4. Security
Introduction
Listing SQL Server service accounts
How to do it...
How it works...
See also
Changing SQL Server service account
Getting ready
How to do it...
How it works...
See also
Listing authentication modes
Getting ready
How to do it...
How it works...
See also
Changing authentication mode
Getting ready
How to do it...
How it works...
There's more...
More on legacy LoginMode values
See also
Listing SQL Server log errors
Getting ready
How to do it...
How it works...
See also
Listing failed login attempts
How to do it...
How it works...
See also
Listing logins, users, and database mappings
Getting ready
How to do it...
How it works...
There's more...
See also
Listing login/user roles and permissions
How to do it...
How it works...
See also
Creating a login
Getting ready
How to do it...
How it works...
See also
Assigning permissions and roles to a login
Getting ready
How to do it...
How it works...
See also
Creating a database user
Getting ready
How to do it...
How it works...
See also
Assigning permissions to a database user
Getting ready
How to do it...
How it works...
See also
Creating a database role
Getting ready
How to do it...
How it works...
See also
Fixing orphaned users
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a credential
Getting ready
How to do it...
How it works...
See also
Creating a proxy
Getting ready
How to do it...
How it works...
There's more...
See also
5. Advanced Administration
Introduction
Listing facets and facet properties
How to do it...
How it works...
See also
Listing policies
Getting ready
How to do it...
How it works...
See also
Exporting a policy
Getting ready
How to do it...
How it works...
There's more...
See also
Importing a policy
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a condition
Getting ready
How to do it...
How it works...
See also
Creating a policy
Getting ready
How to do it...
How it works...
See also
Evaluating a policy
Getting ready
How to do it...
How it works...
There's more...
See also
Enabling/disabling change tracking
Getting ready
How to do it...
How it works...
There's more...
See also
Running and saving a profiler trace event
Getting ready
How to do it...
How it works...
See also
Extracting the contents of a trace file
Getting ready
How to do it...
How it works...
See also
Creating a database master key
Getting ready
How to do it...
How it works...
See also
Creating a certificate
Getting ready
How to do it...
How it works...
There's more...
See also
Creating symmetric and asymmetric keys
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up Transparent Data Encryption (TDE)
Getting ready
How to do it...
How it works...
There's more...
See also
6. Backup and Restore
Introduction
Changing database recovery model
Getting ready
How to do it...
How it works...
There's more...
See also
Listing backup history
How to do it...
How it works...
See also
Creating a backup device
Getting ready
How to do it...
How it works...
See also
Listing backup header and file list information
Getting ready
How to do it...
How it works...
See also
Creating a full backup
Getting ready
How to do it...
How it works...
There's more...
More about Backup and PercentCompleteEventHandler
See also
Creating a backup on mirrored media sets
Getting ready
How to do it...
How it works...
See also
Creating a differential backup
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a transaction log backup
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a filegroup backup
Getting ready
How to do it...
How it works...
See also
Restoring a database to a point in time
Getting ready
How to do it...
How it works...
Step 1 – Gather your backup files
Step 2 – Restore the last good full backup, with NORECOVERY
Step 3 – Restore the last good differential backup taken after the full backup you just restored, with NORECOVERY
Step 4 – Restore the transaction logs taken after your differential backup
See also
Performing an online piecemeal restore
Getting ready
How to do it...
How it works...
See also
7. SQL Server Development
Introduction
Inserting XML into SQL Server
Getting ready
How to do it...
How it works...
See also
Extracting XML from SQL Server
Getting ready
How to do it...
How it works...
See also
Creating an RSS feed from SQL Server content
Getting ready
How to do it...
How it works...
There's more...
See also
Applying XSL to an RSS feed
Getting ready
How to do it...
How it works...
See also
Storing binary data into SQL Server
Getting ready
How to do it...
How it works...
There's more...
See also
Extracting binary data from SQL Server
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a new assembly
Getting ready
How to do it...
How it works...
There's more...
See also
Listing user-defined assemblies
Getting ready
How to do it...
How it works...
There's more...
See also
Extracting user-defined assemblies
Getting ready
How to do it...
How it works...
See also
8. Business Intelligence
Introduction
Listing items in your SSRS Report Server
Getting ready
How to do it...
How it works...
See also
Listing SSRS report properties
Getting ready
How to do it...
How it works...
See also
Using ReportViewer to view your SSRS report
Getting ready
How to do it...
How it works...
See also
Downloading an SSRS report in Excel and PDF
Getting ready
How to do it...
How it works...
See also
Creating an SSRS folder
Getting ready
How to do it...
How it works...
See also
Creating an SSRS data source
Getting ready
How to do it...
How it works...
See also
Changing an SSRS report's data source reference
Getting ready
How to do it...
How it works...
See also
Uploading an SSRS report to Report Manager
Getting ready
How to do it...
How it works...
See also
Downloading all SSRS report RDL files
Getting ready
How to do it...
How it works...
See also
Adding a user with a role to an SSRS report
Getting ready
How to do it...
How it works...
See also
Creating folders in an SSIS package store and MSDB
Getting ready
How to do it...
How it works...
See also
Deploying an SSIS package to the package store
Getting ready
How to do it...
How it works...
See also
Executing an SSIS package stored in the package store or File System
Getting ready
How to do it...
How it works...
There's more...
See also
Downloading an SSIS package to a file
Getting ready
How to do it...
How it works...
See also
Creating an SSISDB catalog
Getting ready
How to do it...
How it works...
See also
Creating an SSISDB folder
Getting ready
How to do it...
How it works...
See also
Deploying an ISPAC file to SSISDB
Getting ready
How to do it...
How it works...
See also
Executing an SSIS package stored in SSISDB
Getting ready
How to do it...
How it works...
See also
Listing SSAS cmdlets
How to do it...
How it works...
See also
Listing SSAS instance properties
How to do it...
How it works...
See also
Backing up an SSAS database
Getting ready
How to do it...
How it works...
See also
Restoring an SSAS database
Getting ready
How to do it...
How it works...
See also
Processing an SSAS cube
Getting ready
How to do it...
How it works...
See also
9. Helpful PowerShell Snippets
Introduction
Documenting PowerShell script for Get-Help
How to do it...
How it works...
There's more...
Getting a timestamp
How to do it...
How it works...
There's more...
Getting additional error messages
How to do it...
How it works...
Listing processes
How to do it...
How it works...
There's more...
See also
Getting aliases
How to do it...
How it works...
There's more...
Exporting to CSV and XML
How to do it...
How it works...
There's more...
Using Invoke-Expression
Getting ready
How to do it...
How it works...
There's more...
Testing regular expressions
How to do it...
How it works...
There's more...
Managing folders
How to do it...
How it works...
There's more...
See also
Manipulating files
How to do it...
How it works...
There's more...
See also
Searching for files
How to do it...
How it works...
There's more...
See also
Reading an event log
How to do it...
How it works...
There's more...
Sending e-mail
Getting ready
How to do it...
How it works...
There's more...
Embedding C# code
How to do it...
How it works...
There's more...
Creating an HTML report
How to do it...
How it works...
There's more...
Parsing XML
Getting ready
How to do it...
How it works...
Extracting data from a web service
How to do it...
How it works...
There's more...
Using PowerShell Remoting
Getting ready
How to do it...
How it works...
There's more...
A. SQL Server and PowerShell CheatSheet
Learning PowerShell
PowerShell V2 versus V3 Where-Object syntax
Changing execution policy
Execution policies
Running a script
Common aliases
Displaying output
Special characters
Special variables
Common operators
Common date-time format strings
Comments
Here-string
Common regex characters and patterns
Arrays and hash tables
Arrays and loops
Logic
Functions
Common Cmdlets
Import SQLPS module
Add SQL Server Snapins
Add SQL Server Assemblies
Getting credentials
Running and blocking SQL Server processes
Read file into an array
SQL Server-Specific Cmdlets
Invoke-SqlCmd
Create SMO Server Object
Create SSRS Proxy Object
Create SSIS Object (SQL Server 2005/2008/2008R2)
Create an SSIS Object (SQL Server 2012)
Create SSAS Object
B. PowerShell Primer
Introduction
What is PowerShell, and why learn another language
Setting up the Environment
Running PowerShell scripts
Through shell or through ISE
Execution policy
Basics—points to remember
Cmdlets
Learning PowerShell
Get-Command
Get-Help
Get-Member
Starter notes
PowerShell is object oriented, and works with .NET
Cmdlets may have aliases or you can create one
You can chain commands
Filter left, format right
Package and reuse
Common Cmdlets
Scripting syntax
Statement terminators
Escape and line continuation
Variables
Here-string
String interpolation
Operators
Displaying messages
Comments
Special variables
Conditions
Regular Expressions
Arrays
Hashes
Loop
Error Handling
Converting script into functions
More about PowerShell
C. Resources
Resources
PowerShell Books
PowerShell V3
PowerShell V2
PowerShell V2 Free E-books
PowerShell Blogs and Sites
PowerShell Bloggers
SQL Server and PowerShell Bloggers
PowerShell Webcasts and Podcasts
PowerShell Tools
SQLPSX
PSCX
D. Creating a SQL Server VM
Introduction
Terminology
Downloading software
VM details and accounts
Creating an empty virtual machine
Installing Windows Server 2008 R2 as Guest OS
Installing VMWare tools
Configuring a domain controller
Creating domain accounts
Installing SQL Server 2012 on a VM
Installing sample databases
Installing PowerShell V3