

 [image: First Edition]

 MapReduce Design Patterns

Donald Miner

Adam Shook

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

Dedication

For William

Preface

Welcome to MapReduce Design Patterns! This book will be unique in some
 ways and familiar in others. First and foremost, this book is obviously about design patterns,
 which are templates or general guides to solving problems. We took a look at other design
 patterns books that have been written in the past as inspiration, particularly Design
 Patterns: Elements of Reusable Object-Oriented Software, by Gamma et al. (1995),
 which is commonly referred to as “The Gang of Four” book. For each pattern, you’ll see a template that we reuse over
 and over that we loosely based off of their book. Repeatedly seeing a similar template will help
 you get to the specific information you need. This will be especially useful in the future when
 using this book as a reference.
This book is a bit more open-ended than a book in the “cookbook”
 series of texts as we don’t call out specific problems. However, similarly
 to the cookbooks, the lessons in this book are short and categorized. You’ll
 have to go a bit further than just copying and pasting our code to solve
 your problems, but we hope that you will find a pattern to get you at least
 90% of the way for just about all of your challenges.
This book is mostly about the analytics side of Hadoop or MapReduce.
 We intentionally try not to dive into too much detail on how Hadoop or
 MapReduce works or talk too long about the APIs that we are using. These
 topics have been written about quite a few times, both online and in print,
 so we decided to focus on analytics.
In this preface, we’ll talk about how to read this book since its
 format might be a bit different than most books you’ve read.
Intended Audience

The motivation for us to write this book was to fill a missing gap we saw in a lot of new
 MapReduce developers. They had learned how to use the system, got comfortable with writing
 MapReduce, but were lacking the experience to understand how to do things right or well. The
 intent of this book is to prevent you from having to make some of your own mistakes by
 educating you on how experts have figured out how to solve problems with MapReduce. So, in
 some ways, this book can be viewed as an intermediate or advanced MapReduce developer
 resource, but we think early beginners and gurus will find use out of it.
This book is also intended for anyone wanting to learn more about
 the MapReduce paradigm. The book goes deeply into the technical side of
 MapReduce with code examples and detailed explanations of the inner
 workings of a MapReduce system, which will help software engineers develop
 MapReduce analytics. However, quite a bit of time is spent discussing the
 motivation of some patterns and the common use cases for these patterns,
 which could be interesting to someone who just wants to know what a system
 like Hadoop can do.
To get the most out of this book, we suggest you have some knowledge
 of Hadoop, as all of the code examples are written for Hadoop and many of
 the patterns are discussed in a Hadoop context. A brief refresher will be
 given in the first chapter, along with some suggestions for additional
 reading material.

Pattern Format

The patterns in this book follow a single template format so they
 are easier to read in succession. Some patterns will omit some of the
 sections if they don’t make sense in the context of that pattern.
	Intent
	This section is a quick description of the problem the pattern
 is intended to solve.

	Motivation
	This section explains why you would want to solve this problem
 or where it would appear. Some use cases are typically discussed in
 brief.

	Applicability
	This section contains a set of criteria that must be true to
 be able to apply this pattern to a problem. Sometimes these are
 limitations in the design of the pattern and sometimes they help you
 make sure this pattern will work in your situation.

	Structure
	This section explains the layout of the MapReduce job itself.
 It’ll explain what the map phase does, what the reduce phase does,
 and also lets you know if it’ll be using any custom partitioners,
 combiners, or input formats. This is the meat of the pattern and
 explains how to solve the problem.

	Consequences
	This section is pretty short and just explains what the output
 of the pattern will be. This is the end goal of the output this
 pattern produces.

	Resemblances
	For readers that have some experience with SQL or Pig, this
 section will show analogies of how this problem would be solved with
 these other languages. You may even find yourself reading this
 section first as it gets straight to the point of what this pattern
 does.
Sometimes, SQL, Pig, or both are omitted if what we are doing
 with MapReduce is truly unique.

	Known Uses
	This section outlines some common use cases for this
 pattern.

	Performance Analysis
	This section explains the performance profile of the analytic
 produced by the pattern. Understanding this is important because
 every MapReduce analytic needs to be tweaked and configured properly
 to maximize performance. Without the knowledge of what resources it
 is using on your cluster, it would be difficult to do this.

The Examples in This Book

All of the examples in this book are written for Hadoop version 1.0.3. MapReduce is a paradigm that is seen
 in a number of open source and commercial systems these days, but we had
 to pick one to make our examples consistent and easy to follow, so we
 picked Hadoop. Hadoop was a logical choice since it a widely used system,
 but we hope that users of MongoDB’s MapReduce and other MapReduce
 implementations will be able to extrapolate the examples in this text to their
 particular system of choice.
Caution
In general, we try to use the newer mapreduce API for all of our examples, not the
 deprecated mapred API. Just be
 careful when mixing code from this book with other sources, as plenty of
 people still use mapred and their
 APIs are not compatible.

Our examples generally omit any sort of error handling, mostly to
 make the code more terse. In real-world big data systems, you can expect
 your data to be malformed and you’ll want to be proactive in handling
 those situations in your analytics.
We use the same data set throughout this text: a dump of
 StackOverflow’s databases. StackOverflow is a popular website in which software developers can go to
 ask and answer questions about any coding topic (including Hadoop). This
 data set was chosen because it is reasonable in size, yet not so big that
 you can’t use it on a single node. This data set also contains
 human-generated natural language text as well as “structured” elements
 like usernames and dates.
Throughout the examples in this book, we try to break out parsing
 logic of this data set into helper functions to clearly distinguish what
 code is specific to this data set and which code is general and part of
 the pattern. Since the XML is pretty simple, we usually avoid using a
 full-blown XML parser and just parse it with some string operations in our
 Java code.
The data set contains five tables, of which we only use three:
 comments, posts, and users. All of the data is in well-formed XML, with
 one record per line.
We use the following three StackOverflow tables in this book:
	comments
	
<row Id="2579740" PostId="2573882" Text="Are you getting any results? What
are you specifying as the command text?" CreationDate="2010-04-04T08:48:51.347"
UserId="95437" />
Comments are follow-up questions or suggestions users of the
 site can leave on posts (i.e., questions or answers).

	posts
	
<row Id="6939296" PostTypeId="2" ParentId="6939137"
CreationDate="2011-08-04T09:50:25.043" Score="4" ViewCount=""
Body="<p>You should have imported Poll with <code>
from polls.models import Poll</code></p>
"
OwnerUserId="634150" LastActivityDate="2011-08-04T09:50:25.043"
CommentCount="1" />

<row Id="6939304" PostTypeId="1" AcceptedAnswerId="6939433"
CreationDate="2011-08-04T09:50:58.910" Score="1" ViewCount="26"
Body="<p>Is it possible to gzip a single asp.net 3.5 page? my
site is hosted on IIS7 and for technical reasons I cannot enable gzip
compression site wide. does IIS7 have an option to gzip individual pages or
will I have to override OnPreRender and write some code to compress the
output?</p>
" OwnerUserId="743184"
LastActivityDate="2011-08-04T10:19:04.107" Title="gzip a single asp.net page"
Tags="<asp.net><iis7><gzip>"
AnswerCount="2" />
Posts contain the questions and answers on the site. A user
 will post a question, and then other users are free to post answers
 to that question. Questions and answers can be upvoted and downvoted
 depending on if you think the post is constructive or not. In order
 to help categorize the questions, the creator of the question can
 specify a number of “tags,” which say what the post is about. In the
 example above, we see that this post is about asp.net, iis, and
 gzip.
One thing to notice is that the body of the post is escaped
 HTML. This makes parsing it a bit more challenging, but it’s not too
 bad with all the tools available. Most of the questions and many of
 the answers can get to be pretty long!
Posts are a bit more challenging because they contain both
 answers and questions intermixed. Questions have a PostTypeId of 1, while answers have a
 PostTypeId of 2. Answers point to
 their related question via the ParentId, a field that questions do not
 have. Questions, however, have a Title and Tags.

	users
	
<row Id="352268" Reputation="3313" CreationDate="2010-05-27T18:34:45.817"
DisplayName="orangeoctopus" EmailHash="93fc5e3d9451bcd3fdb552423ceb52cd"
LastAccessDate="2011-09-01T13:55:02.013" Location="Maryland" Age="26"
Views="48" UpVotes="294" DownVotes="4" />
The users table contains all of the data about the account
 holders on StackOverflow. Most of this information shows up in the
 user’s profile.
Users of StackOverflow have a reputation score, which goes up
 as other users upvote questions or answers that user has submitted
 to the website.

To learn more about the data set, refer to the documentation
 included with the download in README.txt.
In the examples, we parse the data set with a helper function that
 we wrote. This function takes in a line of StackOverflow data and returns
 a HashMap. This HashMap stores the labels as the keys and the actual data as the value.

package mrdp.utils;

import java.util.HashMap;
import java.util.Map;

public class MRDPUtils {

 // This helper function parses the stackoverflow into a Map for us.
 public static Map<String, String> transformXmlToMap(String xml) {
 Map<String, String> map = new HashMap<String, String>();
 try {
 // exploit the fact that splitting on double quote
 // tokenizes the data nicely for us
 String[] tokens = xml.trim().substring(5, xml.trim().length() - 3)
 .split("\"");

 for (int i = 0; i < tokens.length - 1; i += 2) {
 String key = tokens[i].trim();
 String val = tokens[i + 1];

 map.put(key.substring(0, key.length() - 1), val);
 }
 } catch (StringIndexOutOfBoundsException e) {
 System.err.println(xml);
 }

 return map;
 }
}

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution usually includes the title,
 author, publisher, and ISBN. For example: “MapReduce Design Patterns by
 Donald Miner and Adam Shook (O’Reilly). Copyright 2013 Donald Miner and Adam Shook,
 978-1-449-32717-0.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/mapreduce-design-patterns.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowldgements

Books published by O’Reilly are always top notch and now we know why
 first hand. The support staff, especially our editor Andy Oram, has been
 extremely helpful in guiding us through this process. They give freedom to
 the authors to convey the message while supporting us in any way we
 need.
A special thanks goes out to those that read our book and provided
 useful commentary and reviews: Tom Wheeler, Patrick Angeles, Tom Kulish,
 and Lance Byrd. Thanks to Jeff Gold for providing some early encouragement
 and comments. We appreciate Eric Sammer’s help in finding reviewers and
 wish him luck with his book Hadoop
 Operations.
The StackOverflow data set, which is used throughout this book, is
 freely available under the Creative Commons license. It’s great that
 people are willing to spend the time to release the data set so that
 projects like this can make use of the content. What a truly wonderful
 contribution.
Don would like to thank the support he got from coworkers at
 Greenplum, who provided slack in my schedule to work on this project,
 moral support, and technical suggestions. These folks from Greenplum have
 helped in one way or another, whether they realize it or not: Ian Andrews,
 Dan Baskette, Nick Cayou, Paul Cegielski, Will Davis, Andrew Ettinger,
 Mike Goddard, Jacque Istok, Mike Maxey, Michael Parks, and Parham Parvizi.
 Also, thanks to Andy O’Brien for contributing the chapter on
 Postgres.
Adam would like to thank his family, friends, and caffeine.

Chapter 1. Design Patterns and MapReduce

MapReduce is a computing paradigm for processing data that resides on hundreds of
 computers, which has been popularized recently by Google, Hadoop, and many
 others. The paradigm is extraordinarily powerful, but it does not provide a
 general solution to what many are calling “big data,” so while it works
 particularly well on some problems, some are more challenging. This book
 will teach you what problems are amenable to the MapReduce paradigm, as well
 as how to use it effectively.
At first glance, many people do not realize that MapReduce is more of
 a framework than a tool. You have to fit your solution into the framework of
 map and reduce, which in some situations might be challenging. MapReduce is
 not a feature, but rather a constraint.
This makes problem solving easier and harder. It provides clear
 boundaries for what you can and cannot do, making the number of options you
 have to consider fewer than you may be used to. At the same time, figuring
 out how to solve a problem with constraints requires cleverness and a change
 in thinking.
Learning MapReduce is a lot like learning recursion for the first
 time: it is challenging to find the recursive solution to the problem, but
 when it comes to you, it is clear, concise, and elegant. In many situations
 you have to be conscious of system resources being used by the MapReduce
 job, especially inter-cluster network utilization. The tradeoff of being
 confined to the MapReduce framework is the ability to process your data with
 distributed computing, without having to deal with concurrency, robustness,
 scale, and other common challenges. But with a unique system and a unique
 way of problem solving, come unique design patterns.
What is a MapReduce design pattern? It is a template for solving a common and general data
 manipulation problem with MapReduce. A pattern is not specific to a domain
 such as text processing or graph analysis, but it is a general approach to
 solving a problem. Using design patterns is all about using tried and true
 design principles to build better software.
Designing good software is challenging for a number of reasons, and
 similar challenges face those who want to achieve good design in MapReduce.
 Just as good programmers can produce bad software due to poor design, good
 programmers can produce bad MapReduce algorithms. With MapReduce we’re not
 only battling with clean and maintainable code, but also with the
 performance of a job that will be distributed across hundreds of nodes to
 compute over terabytes and even petabytes of data. In addition, this job is
 potentially competing with hundreds of others on a shared cluster of
 machines. This makes choosing the right design to solve your problem with
 MapReduce extremely important and can yield performance gains of several
 orders of magnitude. Before we dive into some design patterns in the
 chapters following this one, we’ll talk a bit about how and why design
 patterns and MapReduce together make sense, and a bit of a history lesson of
 how we got here.
Design Patterns

Design patterns have been making developers’ lives easier for
 years. They are tools for solving problems in a reusable and general way
 so that the developer can spend less time figuring out how he’s going to
 overcome a hurdle and move onto the next one. They are also a way for
 veteran problem solvers to pass down their knowledge in a concise way to
 younger generations.
One of the major milestones in the field of design patterns in software engineering is the
 book Design Patterns: Elements of Reusable Object-Oriented Software, by
 Gamma et al. (Addison-Wesley Professional, 1995), also known as the “Gang of Four” book. None of the patterns in this very popular book were new and many had been in use
 for several years. The reason why it was and still is so influential is the authors took the
 time to document the most important design patterns across the field of object-oriented
 programming. Since the book was published in 1994, most individuals interested in good design
 heard about patterns from word of mouth or had to root around conferences, journals, and a
 barely existent World Wide Web.
Design patterns have stood the test of time and have shown the right
 level of abstraction: not too specific that there are too many of them to
 remember and too hard to tailor to a problem, yet not too general that
 tons of work has to be poured into a pattern to get things working. This
 level of abstraction also has the major benefit of providing developers
 with a common language in which to communicate verbally and through code.
 Simply saying “abstract factory” is easier than explaining what an
 abstract factory is over and over. Also, when looking at a stranger’s code
 that implements an abstract factory, you already have a general
 understanding of what the code is trying to accomplish.
MapReduce design patterns fill this same role in a smaller space of
 problems and solutions. They provide a general framework for solving your
 data computation issues, without being specific to the problem domain.
 Experienced MapReduce developers can pass on knowledge of how to solve a
 general problem to more novice MapReduce developers. This is extremely
 important because MapReduce is a new technology with a fast adoption rate
 and there are new developers joining the community every day. MapReduce
 design patterns also provide a common language for teams working together
 on MapReduce problems. Suggesting to someone that they should use a
 “reduce-side join” instead of a “map-side replicated join” is more concise
 than explaining the low-level mechanics of each.
The MapReduce world is in a state similar to the object-oriented
 world before 1994. Patterns today are scattered across blogs, websites
 such as StackOverflow, deep inside other books, and inside very advanced
 technology teams at organizations across the world. The intent of this
 book is not to provide some groundbreaking new ways to solve problems with
 MapReduce that nobody has seen before, but instead to collect patterns
 that have been developed by veterans in the field so that they can be
 shared with everyone else.
Caution
Even provided with some design patterns, genuine experience with
 the MapReduce paradigm is still necessary to understand when to apply
 them. When you are trying to solve a new problem with a pattern you saw
 in this book or elsewhere, be very careful that the pattern fits the
 problem by paying close attention to its “Applicability” section.

For the most part, the MapReduce design patterns in this book are
 intended to be platform independent. MapReduce, being a paradigm published
 by Google without any actual source code, has been reimplemented a number
 of times, both as a standalone system (e.g., Hadoop, Disco, Amazon Elastic
 MapReduce) and as a query language within a larger system (e.g., MongoDB,
 Greenplum DB, Aster Data). Even if design patterns are intended to be
 general, we write this book with a Hadoop perspective. Many of these
 patterns can be applied in other systems, such as MongoDB, because they
 conform to the same conceptual architecture. However, some technical
 details may be different from implementation to implementation. The Gang
 of Four’s book on design patterns was written with a C++ perspective, but
 developers have found the concepts conveyed in the book useful in modern
 languages such as Ruby and Python. The patterns in this book should be
 usable with systems other than Hadoop. You’ll just have to use the code examples as a guide
 to developing your own code.

MapReduce History

How did we get to the point where a MapReduce design patterns book is a
 good idea? At a certain point, the community’s momentum and widespread use
 of the paradigm reaches a critical mass where it is possible to write a
 comprehensive list of design patterns to be shared with developers
 everywhere. Several years ago, when Hadoop was still in its infancy, not
 enough had been done with the system to figure out what it is capable of.
 But the speed at which MapReduce has been adopted is remarkable. It went
 from an interesting paper from Google in 2004 to a widely adopted industry
 standard in distributed data processing in 2012.
The actual origins of MapReduce are arguable, but the paper that
 most cite as the one that started us down this journey is “MapReduce:
 Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay Ghemawat in 2004. This paper described how Google
 split, processed, and aggregated their data set of mind-boggling
 size.
Shortly after the release of the paper, a free and open source
 software pioneer by the name of Doug Cutting started working on a MapReduce implementation
 to solve scalability in another project he was working on called Nutch, an
 effort to build an open source search engine. Over time and with some
 investment by Yahoo!, Hadoop split out as its own project and eventually became a
 top-level Apache Foundation project. Today, numerous independent people
 and organizations contribute to Hadoop. Every new release adds
 functionality and boosts performance.
Several other open source projects have been built with Hadoop at
 their core, and this list is continually growing. Some of the more popular
 ones include Pig, Hive, HBase, Mahout, and ZooKeeper. Doug Cutting and
 other Hadoop experts have mentioned several times that Hadoop is becoming
 the kernel of a distributed operating system in which distributed
 applications can be built. In this book, we’ll be explaining the examples
 with the least common denominator in the Hadoop ecosystem, Java MapReduce.
 In the resemblance sections of each pattern in some chapters, we’ll
 typically outline a parallel for Pig and SQL that could be used in
 Hive.

MapReduce and Hadoop Refresher

The point of this section is to provide a quick refresher on
 MapReduce in the Hadoop context, since the code examples in this book are
 written in Hadoop. Some beginners might want to refer to a more in-depth
 resource such as Tom White’s excellent Hadoop:
 The Definitive Guide or the Apache Hadoop website. These
 resources will help you get started in setting up a
 development or fully productionalized environment that will allow you to
 follow along the code examples in this book.
Hadoop MapReduce jobs are divided into a set of map tasks and
 reduce tasks that run in a distributed fashion on a
 cluster of computers. Each task works on the small subset of the data it
 has been assigned so that the load is spread across the cluster. The map
 tasks generally load, parse, transform, and filter data. Each reduce task
 is responsible for handling a subset of the map task output. Intermediate
 data is then copied from mapper tasks by the reducer tasks in order to
 group and aggregate the data. It is incredible what a wide range of
 problems can be solved with such a straightforward paradigm, from simple
 numerical aggregations to complex join operations and Cartesian
 products.
The input to a MapReduce job is a set of files in the data store
 that are spread out over the Hadoop Distributed File System
 (HDFS). In Hadoop, these files are split with an input format, which defines how to
 separate a file into input splits. An input split is a byte-oriented view of a chunk of the file
 to be loaded by a map task.
Each map task in Hadoop is broken into the following phases:
 record reader, mapper,
 combiner, and partitioner. The
 output of the map tasks, called the intermediate keys and values, are sent
 to the reducers. The reduce tasks are broken into the following phases:
 shuffle, sort,
 reducer, and output format. The
 nodes in which the map tasks run are optimally on the nodes in which the
 data rests. This way, the data typically does not have to move over the
 network and can be computed on the local machine.
	record reader
	The record reader translates an input split generated by input format
 into records. The purpose of the record reader is to parse the data
 into records, but not parse the record itself. It passes the data to
 the mapper in the form of a key/value pair. Usually the key in this
 context is positional information and the value is the chunk of data
 that composes a record. Customized record readers are outside the
 scope of this book. We generally assume you have an appropriate
 record reader for your data.

	map
	In the mapper, user-provided code is executed on each key/value pair
 from the record reader to produce zero or more new key/value pairs,
 called the intermediate pairs. The decision of what is the key and
 value here is not arbitrary and is very important to what the
 MapReduce job is accomplishing. The key is what the data will be
 grouped on and the value is the information pertinent to the
 analysis in the reducer. Plenty of detail will be provided in the
 design patterns in this book to explain what and why the particular
 key/value is chosen. One major differentiator between MapReduce
 design patterns is the semantics of this pair.

	combiner
	The combiner, an optional localized reducer, can group data in the
 map phase. It takes the intermediate keys from the mapper and
 applies a user-provided method to aggregate values in the small
 scope of that one mapper. For example, because the count of an
 aggregation is the sum of the counts of each part, you can produce
 an intermediate count and then sum those intermediate counts for the
 final result. In many situations, this significantly reduces the
 amount of data that has to move over the network. Sending (hello world, 3) requires fewer bytes than
 sending (hello world, 1) three
 times over the network. Combiners will be covered in more depth with
 the patterns that use them extensively. Many new Hadoop developers
 ignore combiners, but they often provide extreme performance gains
 with no downside. We will point out which patterns benefit from
 using a combiner, and which ones cannot use a combiner. A combiner
 is not guaranteed to execute, so it cannot be a part of the overall
 algorithm.

	partitioner
	The partitioner takes the intermediate key/value pairs from the mapper
 (or combiner if it is being used) and splits them up into shards,
 one shard per reducer. By default, the partitioner interrogates the
 object for its hash code, which is typically an md5sum. Then, the
 partitioner performs a modulus operation by the number of reducers: key.hashCode() %
 (number of reducers). This randomly distributes the
 keyspace evenly over the reducers, but still ensures that keys with
 the same value in different mappers end up at the same reducer. The
 default behavior of the partitioner can be customized, and will be
 in some more advanced patterns, such as sorting. However, changing
 the partitioner is rarely necessary. The partitioned data is written
 to the local file system for each map task and waits to be pulled by
 its respective reducer.

	shuffle and sort
	The reduce task starts with the shuffle and sort
 step. This step takes the output files written by all of the
 partitioners and downloads them to the local machine in which the
 reducer is running. These individual data pieces are then sorted by
 key into one larger data list. The purpose of this sort is to group
 equivalent keys together so that their values can be iterated over
 easily in the reduce task. This phase is not customizable and the
 framework handles everything automatically. The only control a
 developer has is how the keys are sorted and grouped by specifying a
 custom Comparator
 object.

	reduce
	The reducer takes the grouped data as input and runs a reduce function once per key grouping. The function is passed the key and
 an iterator over all of the values associated with that key. A wide
 range of processing can happen in this function, as we’ll see in
 many of our patterns. The data can be aggregated, filtered, and
 combined in a number of ways. Once the reduce
 function is done, it sends zero or more key/value pair to the final
 step, the output format. Like the map function,
 the reduce function will change from job to job
 since it is a core piece of logic in the solution.

	output format
	The output format translates the final key/value pair from the
 reduce function and writes it out to a file by a
 record writer. By default, it will separate the key and value with a
 tab and separate records with a newline character. This can
 typically be customized to provide richer output formats, but in the
 end, the data is written out to HDFS, regardless of format. Like the
 record reader, customizing your own output format is outside of the
 scope of this book, since it simply deals with I/O.

Hadoop Example: Word Count

Now that you’re refreshed on the steps of the whole MapReduce process, let’s
 dive into a quick and simple example. The “Word Count” program is the
 canonical example in MapReduce, and for good reason. It is a
 straightforward application of MapReduce and MapReduce can handle it
 extremely efficiently. Many people complain about the “Word Count” program
 being overused as an example, but hopefully the rest of the book makes up
 for that!
In this particular example, we’re going to be doing a word count
 over user-submitted comments on StackOverflow. The content of the Text field will be pulled out and preprocessed a
 bit, and then we’ll count up how many times we see each word. An example
 record from this data set is:
<row Id="8189677" PostId="6881722"
 Text="Have you looked at Hadoop?" CreationDate="2011-07-30T07:29:33.343"
 UserId="831878" />
This record is the 8,189,677th comment on Stack Overflow, and is associated with post
 number 6,881,722, and is by user number 831,878. The number of the PostId
 and the UserId are foreign keys to other portions of the data set. We’ll
 show how to join these datasets together in the chapter on join patterns.
The first chunk of code we’ll look at is the driver. The driver
 takes all of the components that we’ve built for our MapReduce job and
 pieces them together to be submitted to execution. This code is usually
 pretty generic and considered “boiler plate.” You’ll find that in all of
 our patterns the driver stays the same for the most part.
This code is derived from the “Word Count” example that ships with
 Hadoop Core:
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Map;
import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import org.apache.commons.lang.StringEscapeUtils;

public class CommentWordCount {

 public static class WordCountMapper
 extends Mapper<Object, Text, Text, IntWritable> {
 ...
 }

 public static class IntSumReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {
 ...
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs =
 new GenericOptionsParser(conf, args).getRemainingArgs();
 if (otherArgs.length != 2) {
 System.err.println("Usage: CommentWordCount <in> <out>");
 System.exit(2);
 }

 Job job = new Job(conf, "StackOverflow Comment Word Count");
 job.setJarByClass(CommentWordCount.class);
 job.setMapperClass(WordCountMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}
The purpose of the driver is to orchestrate the jobs. The first few
 lines of main are all about parsing
 command line arguments. Then we start setting up the job object by telling it what classes to use for computations and what
 input paths and output paths to use. That’s about it! It’s just important
 to make sure the class names match up with the classes you wrote and that
 the output key and value types match up with the output types of the
 mapper.
One way you’ll see this code change from pattern to pattern is the
 usage of job.setCombinerClass.
 In some cases, the combiner simply cannot be used due to the nature of the
 reducer. In other cases, the combiner class will be different from the
 reducer class. The combiner is very effective in the “Word Count” program
 and is quite simple to activate.
Next is the mapper code that parses and prepares the text. Once some
 of the punctuation and random text is cleaned up, the text string is split
 up into a list of words. Then the intermediate key produced is the word
 and the value produced is simply “1.” This means we’ve seen this word
 once. Even if we see the same word twice in one line, we’ll output the
 word and “1” twice and it’ll be taken care of in the end. Eventually, all
 of these ones will be summed together into the global count of that
 word.
public static class WordCountMapper
 extends Mapper<Object, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 // Parse the input string into a nice map
 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());

 // Grab the "Text" field, since that is what we are counting over
 String txt = parsed.get("Text");

 // .get will return null if the key is not there
 if (txt == null) {
 // skip this record
 return;
 }

 // Unescape the HTML because the data is escaped.
 txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());

 // Remove some annoying punctuation
 txt = txt.replaceAll("'", ""); // remove single quotes (e.g., can't)
 txt = txt.replaceAll("[^a-zA-Z]", " "); // replace the rest with a space

 // Tokenize the string by splitting it up on whitespace into
 // something we can iterate over,
 // then send the tokens away
 StringTokenizer itr = new StringTokenizer(txt);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
}
The first function, MRDPUtils.transformXmlToMap, is a
 helper function to parse a line of Stack Overflow data in a generic manner. You’ll see it
 used in a number of our examples. It basically takes a line of the StackOverflow XML (which
 has a very predictable format) and matches up the XML attributes with the values into a
 Map.
Next, turn your attention to the WordCountMapper class. This code is a bit more complicated than the driver (for good
 reason!). The mapper is where we’ll see most of the work done. The first
 major thing to notice is the type of the parent class:
Mapper<Object, Text, Text, IntWritable>
They map to the types of the input key, input value, output key, and
 output value, respectively. We don’t care about the key of the input in
 this case, so that’s why we use Object.
 The data coming in is Text (Hadoop’s
 special String type) because we are
 reading the data as a line-by-line text document. Our output key and value
 are Text and IntWritable because we will be using the word as the key and the count
 as the value.
Caution
The mapper input key and value data types are dictated by the
 job’s configured FileInputFormat. The
 default implementation is the TextInputFormat, which provides the number of
 bytes read so far in the file as the key in a LongWritable object and the line of text as
 the value in a Text object. These
 key/value data types are likely to change if you are using different
 input formats.

Up until we start using the StringTokenizer
 towards the bottom of the code, we’re just cleaning up the string. We
 unescape the data because the string was stored in an escaped manner so
 that it wouldn’t mess up XML parsing. Next, we remove any stray
 punctuation so that the literal string Hadoop! is considered the same word as Hadoop? and Hadoop. Finally, for each token (i.e., word) we
 emit the word with the number 1, which means we saw the word once. The
 framework then takes over to shuffle and sorts the key/value pairs to
 reduce tasks.
Finally comes the reducer code, which is relatively simple. The
 reduce function gets called once per key grouping, in this case each word.
 We’ll iterate through the values, which will be numbers, and take a
 running sum. The final value of this running sum will be the sum of the
 ones.
public static class IntSumReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }

 result.set(sum);
 context.write(key, result);
 }
}
As in the mapper, we specify the input and output types via the
 template parent class. Also like the mapper, the types correspond to the
 same things: input key, input value, output key, and output value. The
 input key and input value data types must match the output key/value types
 from the mapper. The output key and output value data types must match the
 types that the job’s configured FileOutputFormat is expecting. In this case, we are using the default TextOutputFormat,
 which can take any two Writable objects as output.
The reduce function has a
 different signature from map, though:
 it gives you an Iterator over values instead of just a
 single value. This is because you are now iterating over all values that
 have that key, instead of just one at a time. The key is very important in
 the reducer of pretty much every MapReduce job, unlike the input key in
 the map.
Anything we pass to context.write
 will get written out to a file. Each reducer will create one file, so if
 you want to coalesce them together you’ll have to write a post-processing
 step to concatenate them.
Now that we’ve gotten a straightforward example out of the way,
 let’s dive into some design patterns!

Pig and Hive

There is less need for MapReduce design patterns in a ecosystem with Hive and Pig. However,
 we would like to take this opportunity early in the book to explain why
 MapReduce design patterns are still important.
Pig and Hive are higher-level abstractions of MapReduce. They provide an
 interface that has nothing to do with “map” or “reduce,” but the systems
 interpret the higher-level language into a series of MapReduce jobs. Much
 like how a query planner in an RDBMS translates SQL into actual operations
 on data, Hive and Pig translate their respective languages into MapReduce
 operations.
As will be seen throughout this book in the resemblances sections,
 Pig and SQL (or HiveQL) can be significantly more terse than the raw
 Hadoop implementations in Java. For example, it will take several pages to
 explain total order sorting, while Pig is able to get the job done in a
 few lines.
So why should we use Java MapReduce in Hadoop at all when we have
 options like Pig and Hive? What was the point in the authors of this book
 spending time explaining how to implement something in hundreds of lines
 of code when the same can be accomplished in a couple lines? There are two
 core reasons.
First, there is conceptual value in understanding the lower-level
 workings of a system like MapReduce. The developer that understands how
 Pig actually performs a reduce-side join will make smarter decisions.
 Using Pig or Hive without understanding MapReduce can lead to some
 dangerous situations. Just because you’re benefiting from a higher-level
 interface doesn’t mean you can ignore the details. Large MapReduce
 clusters are heavy machinery and need to be respected as such.
Second, Pig and Hive aren’t there yet in terms of full functionality
 and maturity (as of 2012). It is obvious that they haven’t reached their
 full potential yet. Right now, they simply can’t tackle all of the
 problems in the ways that Java MapReduce can. This will surely change over
 time and with every major release, major features, and bux fixes are
 added. Speaking hypothetically, say that at Pig version 0.6, your
 organization could write 50% of their analytics in Pig. At version 0.9,
 now you are at 90%. With every release, more and more can be done at a
 higher-level of abstraction. The funny thing about trends things like this
 in software engineering is that the last 10% of problems that can’t be
 solved with a higher-level of abstraction are also likely to be the most
 critical and most challenging. This is when something like Java is going
 to be the best tool for the job. Some still use assembly language when
 they really have to!
When you can, write your MapReduce in Pig or Hive. Some of the major
 benefits of using these higher-level of abstractions include readability,
 maintainability, development time, and automatic optimization. Rarely is
 the often-cited performance hit due to indirection a serious
 consideration. These analytics are running in batch and are taking several
 minutes already, so what does a minute or two more really matter? In some
 cases, the query plan optimizer in Pig or Hive will be better at
 optimizing your code than you are! In a small fraction of situations, the
 extra few minutes added by Pig or Hive will matter, in which case you
 should use Java MapReduce.
Pig and Hive are likely to influence MapReduce design patterns more
 than anything else. New feature requests in Pig and Hive will likely
 translate down into something that could be a design pattern in MapReduce.
 Likewise, as more design patterns are developed for MapReduce, some of the
 more popular ones will become first-class operations at a higher level of
 abstraction.
Pig and Hive have patterns of their own and experts will start
 documenting more as they solve more problems. Hive has the benefit of
 building off of decades of SQL patterns, but not all patterns in SQL are
 smart in Hive and vice versa. Perhaps as these platforms gain more
 popularity, cookbook and design pattern books will be written for
 them.

Chapter 2. Summarization Patterns

Your data is large and vast, with more data coming into the system every
 day. This chapter focuses on design patterns that produce a top-level,
 summarized view of your data so you can glean insights not available from
 looking at a localized set of records alone. Summarization analytics are all
 about grouping similar data together and then performing an operation such
 as calculating a statistic, building an index, or just simply
 counting.
Calculating some sort of aggregate over groups in your data set is a
 great way to easily extract value right away. For example, you might want to
 calculate the total amount of money your stores have made by state or the
 average amount of time someone spends logged into your website by
 demographic. Typically, with a new data set, you’ll start with these types
 of analyses to help you gauge what is interesting or unique in your data and
 what needs a closer look.
The patterns in this chapter are numerical
 summarizations, inverted index, and
 counting with counters. They are more straightforward
 applications of MapReduce than some of the other patterns in this book. This
 is because grouping data together by a key is the core function of the
 MapReduce paradigm: all of the keys are grouped together and collected in
 the reducers. If you emit the fields in the mapper you want to group on as
 your key, the grouping is all handled by the MapReduce framework for
 free.
Numerical Summarizations

Pattern Description

The numerical summarizations pattern is a
 general pattern for calculating aggregate statistical
 values over your data is discussed in detail. Be careful of how
 deceptively simple this pattern is! It is extremely important to use the
 combiner properly and to understand the calculation you are
 performing.
Intent

Group records together by a key field and calculate a numerical
 aggregate per group to get a top-level view of the larger data
 set.
Consider θ to be a generic numerical
 summarization function we wish to execute over some list of values
 (v1, v2,
 v3, …, vn) to
 find a value λ, i.e. λ =
 θ(v1, v2,
 v3, …, vn).
 Examples of θ include a minimum, maximum,
 average, median, and standard deviation.

Motivation

Many data sets these days are too large for a human to get any
 real meaning out it by reading through it manually. For example, if
 your website logs each time a user logs onto the website, enters a
 query, or performs any other notable action, it would be extremely
 difficult to notice any real usage patterns just by reading through
 terabytes of log files with a text reader. If you group logins by the
 hour of the day and perform a count of the number of records in each
 group, you can plot these counts on a histogram and recognize times
 when your website is more active. Similarly, if you group
 advertisements by types, you can determine how affective your ads are
 for better targeting. Maybe you want to cycle ads based on how
 effective they are at the time of day. All of these types of questions
 can be answered through numerical summarizations to get a top-level
 view of your data.

Applicability

Numerical summarizations should be used when both of the
 following are true:
	You are dealing with numerical data or counting.

	The data can be grouped by specific fields.

Structure

Figure 2-1 shows the general structure
 of how a numerical summarization is executed in MapReduce. The
 breakdown of each MapReduce component is described in detail:
	The mapper outputs keys that consist of each field to group
 by, and values consisting of any pertinent numerical items.
 Imagine the mapper setting up a relational table, where the
 columns relate to the fields which the function
 θ will be executed over and each row contains
 an individual record output from the mapper. The output value of
 the mapper contains the values of each column and the output key
 determines the table as a whole, as each table is created by
 MapReduce’s grouping functionality.
Caution
Grouping typically involves sending a large subset of the
 input data down to finally be reduced. Each input record is most
 likely going to be output from the map phase. Make sure to
 reduce the amount of data being sent to the reducers by choosing
 only the fields that are necessary to the analytic and handling
 any bad input conditions properly.

	The combiner can greatly reduce the number of intermediate
 key/value pairs to be sent across the network to the reducers for
 some numerical summarization functions. If the function
 θ is an associative and commutative
 operation, it can be used for this purpose. That is, if you can
 arbitrarily change the order of the values and you can group the
 computation arbitrarily, you can use a combiner here. Discussions
 of such combiners are given in the examples following this
 section.

	Numerical summaries can benefit from a custom partitioner to
 better distribute key/value pairs across n
 number of reduce tasks. The need for this is rare, but can be done
 if job execution time is critical, the amount of data is huge, and
 there is severe data skew.
Caution
A custom partitioner is often overlooked, but taking the
 time to understand the distribution of output keys and
 partitioning based on this distribution will improve performance
 when grouping (and everything else, for that matter). Starting a
 hundred reduce tasks, only to have eighty of them complete in
 thirty seconds and the others in twenty-five minutes, is not
 efficient.

	The reducer receives a set of numerical values
 (v1, v2,
 v3, …,
 vn) associated with a group-by
 key records to perform the function λ =
 θ(v1, v2,
 v3, …,
 vn). The value of
 λ is output with the given input key.

[image: The structure of the numerical summarizations pattern]

Figure 2-1. The structure of the numerical summarizations pattern

Consequences

The output of the job will be a set of part files containing a
 single record per reducer input group. Each record will consist of the
 key and all aggregate values.

Known uses

	Word count
	The “Hello World” of MapReduce. The application outputs each word of a document as the
 key and “1” as the value, thus grouping by words. The reduce
 phase then adds up the integers and outputs each unique word
 with the sum. An example of a word count application can be seen
 in Chapter 1.

	Record count
	A very common analytic to get a heartbeat of your data flow rate on a
 particular interval (weekly, daily, hourly, etc.).

	Min/Max/Count
	An analytic to determine the minimum, maximum, and count
 of a particular event, such as the first time a user posted, the
 last time a user posted, and the number of times they posted in
 between that time period. You don’t have to collect all three of
 these aggregates at the same time, or any of the other use cases
 listed here if you are only interested in one of them.

	Average/Median/Standard deviation
	Similar to Min/Max/Count, but not as straightforward of an
 implementation because these operations are not associative. A
 combiner can be used for all three, but requires a more complex
 approach than just reusing the reducer implementation.

Resemblances

	SQL
	The Numerical Aggregation pattern is analogous to
 using aggregates after a GROUP BY in
 SQL:

SELECT MIN(numericalcol1), MAX(numericalcol1),
 COUNT(*) FROM table GROUP BY groupcol2;

	Pig
	The GROUP … BY
 expression, followed by a FOREACH …
 GENERATE:

b = GROUP a BY groupcol2;
c = FOREACH b GENERATE group, MIN(a.numericalcol1),
 MAX(a.numericalcol1), COUNT_STAR(a);

Performance analysis

Aggregations performed by jobs using this pattern typically
 perform well when the combiner is properly used. These types of
 operations are what MapReduce was built for. Like most of the patterns
 in this book, developers need to be concerned about the appropriate
 number of reducers and take into account any data skew that may be
 present in the reduce groups. That is, if there are going to be many
 more intermediate key/value pairs with a specific key than other keys,
 one reducer is going to have a lot more work to do than others.

Numerical Summarization Examples

Minimum, maximum, and count example

Calculating the minimum, maximum, and count of a given field are all
 excellent applications of the numerical summarization pattern. After a
 grouping operation, the reducer simply iterates through all the values
 associated with the group and finds the min and max, as well as counts
 the number of members in the key grouping. Due to the associative and
 commutative properties, a combiner can be used to vastly cut down on
 the number of intermediate key/value pairs that need to be shuffled to
 the reducers. If implemented correctly, the code used for your reducer
 can be identical to that of a combiner.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, determine the first and last time a user
 commented and the total number of comments from that user.
MinMaxCountTuple code

The MinMaxCountTuple is a
 Writable object that stores three values. This class is used as the
 output value from the mapper. While these values can be crammed into
 a Text object with some
 delimiter, it is typically a better practice to create a custom
 Writable. Not only is it cleaner,
 but you won’t have to worry about any string parsing when it comes
 time to grab these values from the reduce phase. These custom
 writable objects are used throughout other examples in this pattern.
 Below is the implementation of the MinMaxCountTuple writable object. Other
 writables used in this chapter are very similar to this and are
 omitted for brevity.

public class MinMaxCountTuple implements Writable {
 private Date min = new Date();
 private Date max = new Date();
 private long count = 0;

 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 public Date getMin() {
 return min;
 }

 public void setMin(Date min) {
 this.min = min;
 }

 public Date getMax() {
 return max;
 }

 public void setMax(Date max) {
 this.max = max;
 }

 public long getCount() {
 return count;
 }

 public void setCount(long count) {
 this.count = count;
 }

 public void readFields(DataInput in) throws IOException {
 // Read the data out in the order it is written,
 // creating new Date objects from the UNIX timestamp
 min = new Date(in.readLong());
 max = new Date(in.readLong());
 count = in.readLong();
 }

 public void write(DataOutput out) throws IOException {
 // Write the data out in the order it is read,
 // using the UNIX timestamp to represent the Date
 out.writeLong(min.getTime());
 out.writeLong(max.getTime());
 out.writeLong(count);
 }

 public String toString() {
 return frmt.format(min) + "\t" + frmt.format(max) + "\t" + count;
 }
}

Mapper code

The mapper will preprocess our input values by extracting the
 XML attributes from each input record: the creation data and the
 user identifier. The input key is ignored. The creation date is
 parsed into a Java Date object
 for ease of comparison in the combiner and reducer.
 The output key is the user ID and the value is three columns of our
 future output: the minimum date, the maximum date, and the number of
 comments this user has created. These three fields are stored in a
 custom Writable object of type
 MinMaxCountTuple, which stores
 the first two columns as Date
 objects and the final column as a long. These names are accurate for the
 reducer but don’t really reflect how the fields are used in the
 mapper, but we wanted to use the same data type for both the mapper
 and the reducer. In the mapper, we’ll set both min and max to the
 comment creation date. The date is output twice so that we can take
 advantage of the combiner optimization that is described later. The
 third column will be a count of 1, to indicate that we know this
 user posted one comment. Eventually, all of these counts are going
 to be summed together and the minimum and maximum date will be
 determined in the reducer.

 public static class MinMaxCountMapper extends
 Mapper<Object, Text, Text, MinMaxCountTuple> {

 // Our output key and value Writables
 private Text outUserId = new Text();
 private MinMaxCountTuple outTuple = new MinMaxCountTuple();

 // This object will format the creation date string into a Date object
 private final static SimpleDateFormat frmt =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS");

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Grab the "CreationDate" field since it is what we are finding
 // the min and max value of
 String strDate = parsed.get("CreationDate");

 // Grab the “UserID” since it is what we are grouping by
 String userId = parsed.get("UserId");
 // Parse the string into a Date object
 Date creationDate = frmt.parse(strDate);

 // Set the minimum and maximum date values to the creationDate
 outTuple.setMin(creationDate);
 outTuple.setMax(creationDate);

 // Set the comment count to 1
 outTuple.setCount(1);

 // Set our user ID as the output key
 outUserId.set(userId);

 // Write out the hour and the average comment length
 context.write(outUserId, outTuple);
 }
}

Reducer code

The reducer iterates through the values to find the minimum
 and maximum dates, and sums the counts. We start by initializing the
 output result for each input group. For each value in this group, if
 the output result’s minimum is not yet set, or the value’s minimum
 is less than result’s current minimum, we set the result’s minimum
 to the input value. The same logic applies to the maximum, except
 using a greater than operator. Each value’s count is added to a
 running sum, similar to the word count example in the introductory
 chapter. After determining the minimum and maximum dates from all
 input values, the final count is set to our output value. The input
 key is then written to the file system along with the output
 value.

 public static class MinMaxCountReducer extends
 Reducer<Text, MinMaxCountTuple, Text, MinMaxCountTuple> {

 // Our output value Writable
 private MinMaxCountTuple result = new MinMaxCountTuple();

 public void reduce(Text key, Iterable<MinMaxCountTuple> values,
 Context context) throws IOException, InterruptedException {

 // Initialize our result
 result.setMin(null);
 result.setMax(null);
 result.setCount(0);
 int sum = 0;

 // Iterate through all input values for this key
 for (MinMaxCountTuple val : values) {
 // If the value's min is less than the result's min
 // Set the result's min to value's
 if (result.getMin() == null ||
 val.getMin().compareTo(result.getMin()) < 0) {
 result.setMin(val.getMin());
 }

 // If the value's max is more than the result's max
 // Set the result's max to value's
 if (result.getMax() == null ||
 val.getMax().compareTo(result.getMax()) > 0) {
 result.setMax(val.getMax());
 }

 // Add to our sum the count for value
 sum += val.getCount();
 }

 // Set our count to the number of input values
 result.setCount(sum);
 context.write(key, result);
 }
}

Combiner optimization

The reducer implementation just shown can be used as the job’s
 combiner. As we are only interested in the count, minimum date, and
 maximum date, multiple comments from the same user do not have to be
 sent to the reducer. The minimum and maximum comment dates can be
 calculated for each local map task without having an effect on the
 final minimum and maximum. The counting operation is an associative
 and commutative operation and won’t be harmed by using a
 combiner.

Data flow diagram

Figure 2-2 shows the flow between the mapper,
 combiner, and reducer to help describe their interactions. Numbers
 are used rather than dates for simplicity, but the concept is the
 same. A combiner possibly executes over each of the highlighted
 output groups from a mapper, determining the minimum and maximum
 values in the first two columns and adding up the number of rows in
 the “table” (group). The combiner then outputs the minimum and
 maximum along with the new count. If a combiner does not execute
 over any rows, they will still be accounted for in the reduce
 phase.
[image: The Min/Max/Count MapReduce data flow through the combiner]

Figure 2-2. The Min/Max/Count MapReduce data flow through the
 combiner

Average example

To calculate an average, we need two values for each group: the sum of the values
 that we want to average and the number of values that went into the
 sum. These two values can be calculated on the reduce side very
 trivially, by iterating through each value in the set and adding to a
 running sum while keeping a count. After the iteration, simply divide
 the sum by the count and output the average. However, if we do it this
 way we cannot use this same reducer implementation as a combiner,
 because calculating an average is not an associative operation.
 Instead, our mapper will output two “columns” of data, count and
 average. For each input record, this will simply be “1” and the value
 of the field. The reducer will multiply the “count” field by the
 “average” field to add to a running sum, and add the “count” field to
 a running count. It will then divide the running sum with the running
 count and output the count with the calculated average. With this more
 round-about algorithm, the reducer code can be used as a combiner as
 associativity is preserved.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, determine the average
 comment length per hour of day.
Mapper code

The mapper will process each input record to calculate the
 average comment length based on the time of day. The output key is
 the hour of day, which is parsed from the creation date XML
 attribute. The output value is two columns, the comment count and
 the average length of the comments for that hour. Because the mapper
 operates on one record at a time, the count is simply 1 and the
 average length is equivalent to the comment length. These two values
 are output in a custom Writable,
 a CountAverageTuple. This type
 contains two float values, a count, and an average.

public static class AverageMapper extends
 Mapper<Object, Text, IntWritable, CountAverageTuple> {

 private IntWritable outHour = new IntWritable();
 private CountAverageTuple outCountAverage = new CountAverageTuple();
 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Grab the "CreationDate" field,
 // since it is what we are grouping by
 String strDate = parsed.get("CreationDate");

 // Grab the comment to find the length
 String text = parsed.get("Text");

 // get the hour this comment was posted in
 Date creationDate = frmt.parse(strDate);
 outHour.set(creationDate.getHours());

 // get the comment length
 outCountAverage.setCount(1);
 outCountAverage.setAverage(text.length());

 // write out the hour with the comment length
 context.write(outHour, outCountAverage);
 }
}

Reducer code

The reducer code iterates through all given values for the
 hour and keeps two local variables: a running count and running sum.
 For each value, the count is multiplied by the average and added to
 the running sum. The count is simply added to the running count.
 After iteration, the input key is written to the file system with
 the count and average, calculated by dividing the running sum by the
 running count.

public static class AverageReducer extends
 Reducer<IntWritable, CountAverageTuple,
 IntWritable, CountAverageTuple> {

 private CountAverageTuple result = new CountAverageTuple();

 public void reduce(IntWritable key, Iterable<CountAverageTuple> values,
 Context context) throws IOException, InterruptedException {

 float sum = 0;
 float count = 0;

 // Iterate through all input values for this key
 for (CountAverageTuple val : values) {
 sum += val.getCount() * val.getAverage();
 count += val.getCount();
 }

 result.setCount(count);
 result.setAverage(sum / count);

 context.write(key, result);
 }
}

Combiner optimization

When determining an average, the reducer code can be used as a
 combiner when outputting the count along with the average. An
 average is not an associative operation, but if the count is output
 from the reducer with the count, these two values can be multiplied
 to preserve the sum for the final reduce phase. Without outputting
 the count, a combiner cannot be used because taking an average of
 averages is not equivalent to the true average. Typically, writing
 the count along with the average to the file system is not an issue.
 However, if the count is impeding the analysis at hand, it can be
 omitted by making a combiner implementation nearly identical to the
 reducer implementation just shown. The only differentiation between
 the two classes is that the reducer does not write the count with
 the average.

Data flow diagram

Figure 2-3 shows the flow between the mapper,
 combiner, and reducer to help describe their interactions. A
 combiner possibly executes over each of the highlighted output
 groups from a mapper, determining the average and outputting it with
 the count, which is the number of rows corresponding to the group.
 If a combiner does not execute over any rows, they will still be
 accounted for in the reduce phase.
[image: Data flow for the average example]

Figure 2-3. Data flow for the average example

Median and standard deviation

Finding the median and standard deviation is a little more complex than the previous examples.
 Because these operations are not associative, they cannot benefit from
 a combiner as easily as their counterparts. A median is the numerical
 value separating the lower and higher halves of a data set. This
 requires the data set to be complete, which in turn requires it to be
 shuffled. The data must also be sorted, which can present a barrier
 because MapReduce does not sort values.
A standard deviation shows how much variation exists in the data
 from the average, thus requiring the average to be discovered prior to
 reduction. The easiest way to perform these operations involves
 copying the list of values into a temporary list in order to find the
 median or iterating over the set again to determine the standard
 deviation. With large data sets, this implementation may result in
 Java heap space issues, because each value is copied into memory for
 every input group. We’ll address these issues in the next
 example.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, determine the median
 and standard deviation of comment lengths per hour of day.
Mapper code

The mapper will process each input record to calculate the
 median comment length within each hour of the day. The output key is
 the hour of day, which is parsed from the CreationDate XML attribute. The output value is a single value: the
 comment length.

public static class MedianStdDevMapper extends
 Mapper<Object, Text, IntWritable, IntWritable> {

 private IntWritable outHour = new IntWritable();
 private IntWritable outCommentLength = new IntWritable();

 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Grab the "CreationDate" field,
 // since it is what we are grouping by
 String strDate = parsed.get("CreationDate");

 // Grab the comment to find the length
 String text = parsed.get("Text");

 // get the hour this comment was posted in
 Date creationDate = frmt.parse(strDate);
 outHour.set(creationDate.getHours());

 // set the comment length
 outCommentLength.set(text.length());

 // write out the user ID with min max dates and count
 context.write(outHour, outCommentLength);
 }
}

Reducer code

The reducer code iterates through the given set of values and
 adds each value to an in-memory list. The iteration also calculates
 a running sum and count. After iteration, the comment lengths are
 sorted to find the median value. If the list has an odd number of
 entries, the median value is set to the middle value. If the number
 is even, the middle two values are averaged. Next, the standard
 deviation is calculated by iterating through our sorted list after
 finding the mean from our running sum and count. A running sum of
 deviations is calculated by squaring the difference between each
 comment length and the mean. The standard deviation is then
 calculated from this sum. Finally, the median and standard deviation
 are output along with the input key.

public static class MedianStdDevReducer extends
 Reducer<IntWritable, IntWritable,
 IntWritable, MedianStdDevTuple> {

 private MedianStdDevTuple result = new MedianStdDevTuple();
 private ArrayList<Float> commentLengths = new ArrayList<Float>();

 public void reduce(IntWritable key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {

 float sum = 0;
 float count = 0;
 commentLengths.clear();
 result.setStdDev(0);

 // Iterate through all input values for this key
 for (IntWritable val : values) {
 commentLengths.add((float) val.get());
 sum += val.get();
 ++count;
 }

 // sort commentLengths to calculate median
 Collections.sort(commentLengths);

 // if commentLengths is an even value, average middle two elements
 if (count % 2 == 0) {
 result.setMedian((commentLengths.get((int) count / 2 - 1) +
 commentLengths.get((int) count / 2)) / 2.0f);
 } else {
 // else, set median to middle value
 result.setMedian(commentLengths.get((int) count / 2));
 }

 // calculate standard deviation
 float mean = sum / count;
 float sumOfSquares = 0.0f;
 for (Float f : commentLengths) {
 sumOfSquares += (f - mean) * (f - mean);
 }

 result.setStdDev((float) Math.sqrt(sumOfSquares / (count - 1)));
 context.write(key, result);
 }
}

Combiner optimization

A combiner cannot be used in this implementation. The reducer
 requires all the values associated with a key in order to find the
 median and standard deviation. Because a combiner runs only over a
 map’s locally output intermediate key/value pairs, being able to
 calculate the full median and standard deviation is impossible.
 However, the next example describes aa more complex implementation
 that uses a custom combiner.

Memory-conscious median and standard deviation

The following implementation is differentiated from the previous
 median and standard deviation example by reducing the memory
 footprint. Inserting every value into a list will result in many
 duplicate elements. One way to get around this duplication is to keep
 a count of elements instead. For instance, instead of keeping a list
 of < 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 5 >, a sorted map of values
 to counts is kept: (1→4, 2→2, 3→1,
 4→1, 5→3). The core concept is the same: all the
 values are iterated through in the reduce phase and stored in an
 in-memory data structure. The data structure and how it is searched
 are all that has changed. A map reduces the memory footprint
 drastically. Instead of having a list whose scaling is
 O(n) where n = number of
 comments, the number of key/value pairs in our map is
 O(max(m)) where m = maximum
 comment length. As an added bonus, a combiner can be used to help
 aggregate counts of comment lengths and output the map in a Writable object to be used later by the
 reducer.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, determine the median
 and standard deviation of comment lengths per hour of day.
Mapper code

The mapper processes each input record to calculate the median
 comment length based on the hour of the day during which the comment
 was posted. The output key is the hour of day, which is parsed from
 the creation date XML attribute. The output value is a SortedMapWritable object that contains one element: the comment length and a
 count of “1”. This map is used more heavily in the combiner and
 reducer.

public static class MedianStdDevMapper extends
 Mapper<lObject, Text, IntWritable, SortedMapWritable> {

 private IntWritable commentLength = new IntWritable();
 private static final LongWritable ONE = new LongWritable(1);
 private IntWritable outHour = new IntWritable();

 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Grab the "CreationDate" field,
 // since it is what we are grouping by
 String strDate = parsed.get("CreationDate");

 // Grab the comment to find the length
 String text = parsed.get("Text");

 // Get the hour this comment was posted in
 Date creationDate = frmt.parse(strDate);
 outHour.set(creationDate.getHours());

 commentLength.set(text.length());
 SortedMapWritable outCommentLength = new SortedMapWritable();
 outCommentLength.put(commentLength, ONE);

 // Write out the user ID with min max dates and count
 context.write(outHour, outCommentLength);
 }
}

Reducer code

The reducer code iterates through the given set of SortedMapWritable to aggregate all the
 maps together into a single TreeMap, which is a implementation of SortedMap. The
 key is the comment length and the value is the total count
 associated with the comment length.
After iteration, the median is calculated. The code finds the
 list index where the median would be by dividing the total number of
 comments by two. The entry set of the TreeMap is then iterated to find the keys
 that satisfy the condition previousCommentCount ≤ medianIndex <
 commentCount, adding the value of the tree map to comments at each step of the iteration.
 Once this condition is met, if there is an even number of comments
 and medianIndex is equivalent to
 previousComment, the median is
 reset to the average of the previous length and current length.
 Otherwise, the median is simply the current comment length.
Next, the standard deviation is calculated by iterating
 through the TreeMap again and
 finding the sum of squares, making sure to multiply by the count
 associated with the comment length. The standard deviation is then
 calculated from this sum. The median and standard deviation are
 output with the input key, the hour during which these comments were
 posted.

public static class MedianStdDevReducer extends
 Reducer<IntWritable, SortedMapWritable,
 IntWritable, MedianStdDevTuple> {

 private MedianStdDevTuple result = new MedianStdDevTuple();
 private TreeMap<Integer, Long> commentLengthCounts =
 new TreeMap<Integer, Long>();

 public void reduce(IntWritable key, Iterable<SortedMapWritable> values,
 Context context) throws IOException, InterruptedException {

 float sum = 0;
 long totalComments = 0;
 commentLengthCounts.clear();
 result.setMedian(0);
 result.setStdDev(0);

 for (SortedMapWritable v : values) {
 for (Entry<WritableComparable, Writable> entry : v.entrySet()) {
 int length = ((IntWritable) entry.getKey()).get();
 long count = ((LongWritable) entry.getValue()).get();

 totalComments += count;
 sum += length * count;

 Long storedCount = commentLengthCounts.get(length);
 if (storedCount == null) {
 commentLengthCounts.put(length, count);
 } else {
 commentLengthCounts.put(length, storedCount + count);
 }
 }
 }

 long medianIndex = totalComments / 2L;
 long previousComments = 0;
 long comments = 0;
 int prevKey = 0;
 for (Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
 comments = previousComments + entry.getValue();

 if (previousComments ≤ medianIndex && medianIndex < comments) {
 if (totalComments % 2 == 0 && previousComments == medianIndex) {
 result.setMedian((float) (entry.getKey() + prevKey) / 2.0f);
 } else {
 result.setMedian(entry.getKey());
 }
 break;
 }

 previousComments = comments;
 prevKey = entry.getKey();
 }

 // calculate standard deviation
 float mean = sum / totalComments;

 float sumOfSquares = 0.0f;
 for (Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
 sumOfSquares += (entry.getKey() - mean) * (entry.getKey() - mean) *
 entry.getValue();
 }

 result.setStdDev((float) Math.sqrt(sumOfSquares / (totalComments - 1)));
 context.write(key, result);
 }
}

Combiner optimization

Unlike the previous examples, the combiner for this algorithm
 is different from the reducer. While the reducer actually calculates
 the median and standard deviation, the combiner aggregates the
 SortedMapWritable entries for
 each local map’s intermediate key/value pairs. The code to parse
 through the entries and aggregate them in a local map is identical
 to the reducer code in the previous section. Here, a HashMap is used instead of a TreeMap, because sorting is unnecessary
 and a HashMap is typically
 faster. While the reducer uses this map to calculate the median and
 standard deviation, the combiner uses a SortedMapWritable in order to serialize it
 for the reduce phase.

public static class MedianStdDevCombiner extends
 Reducer<IntWritable, SortedMapWritable, IntWritable, SortedMapWritable> {

 protected void reduce(IntWritable key,
 Iterable<SortedMapWritable> values, Context context)
 throws IOException, InterruptedException {

 SortedMapWritable outValue = new SortedMapWritable();

 for (SortedMapWritable v : values) {
 for (Entry<WritableComparable, Writable> entry : v.entrySet()) {
 LongWritable count = (LongWritable) outValue.get(entry.getKey());

 if (count != null) {
 count.set(count.get()
 + ((LongWritable) entry.getValue()).get());
 } else {
 outValue.put(entry.getKey(), new LongWritable(
 ((LongWritable) entry.getValue()).get()));
 }
 }
 }

 context.write(key, outValue);
 }
}

Data flow diagram

Figure 2-4 shows the flow between the mapper,
 combiner, and reducer to help describe their interactions. A
 combiner possibly executes over each of the highlighted output
 groups from a mapper. For each group, it builds the internal map of
 comment length to the count of comment lengths. The combiner then
 outputs the input key and the SortedMapWritable of length/count pairs,
 which it serializes from the map.
[image: Data flow for the standard deviation example]

Figure 2-4. Data flow for the standard deviation example

Inverted Index Summarizations

Pattern Description

The inverted index pattern is commonly used as an example for MapReduce analytics. We’re
 going to discuss the general case where we want to build a map of some
 term to a list of identifiers.
Intent

Generate an index from a data set to allow for faster searches
 or data enrichment capabilities.

Motivation

It is often convenient to index large data sets on keywords, so
 that searches can trace terms back to records that contain specific
 values. While building an inverted index does require extra processing
 up front, taking the time to do so can greatly reduce the amount of
 time it takes to find something.
Search engines build indexes to improve search performance.
 Imagine entering a keyword and letting the engine crawl the Internet
 and build a list of pages to return to you. Such a query would take an
 extremely long amount of time to complete. By building an inverted
 index, the search engine knows all the web pages related to a keyword
 ahead of time and these results are simply displayed to the user.
 These indexes are often ingested into a database for fast query
 responses. Building an inverted index is a fairly straightforward
 application of MapReduce because the framework handles a majority of
 the work.

Applicability

Inverted indexes should be used when quick search query
 responses are required. The results of such a query can be
 preprocessed and ingested into a database.

Structure

Figure 2-5 shows the general
 structure of how an inverted index is executed in MapReduce. The
 breakdown of each MapReduce component is described in detail
 below:
	The mapper outputs the desired fields for the index as the
 key and the unique identifier as the value.

	The combiner can be omitted if you are just using the
 identity reducer, because under those circumstances a combiner would
 just create unnecessary processing. Some implementations
 concatenate the values associated with a group before outputting
 them to the file system. In this case, a combiner can be used. It
 won’t have as beneficial an impact on byte count as the combiners
 in other patterns, but there will be an improvement.

	The partitioner is responsible for determining where values
 with the same key will eventually be copied by a reducer for final
 output. It can be customized for more efficient load balancing if
 the intermediate keys are not evenly distributed.

	The reducer will receive a set of unique record identifiers
 to map back to the input key. The identifiers can either be
 concatenated by some unique delimiter, leading to the output of
 one key/value pair per group, or each input value can be written
 with the input key, known as the identity reducer.

[image: The structure of the inverted index pattern]

Figure 2-5. The structure of the inverted index pattern

Consequences

The final output of is a set of part files that contain a
 mapping of field value to a set of unique IDs of records containing
 the associated field value.

Performance analysis

The performance of building an inverted index depends mostly on
 the computational cost of parsing the content in the mapper, the
 cardinality of the index keys, and the number of content identifiers
 per key.
Parsing text or other types of content in the mapper can
 sometimes be the most computationally intense operation in a MapReduce
 job. This is especially true for semi-structured data, such as XML or
 JSON, since these typically require parsing arbitrary quantities of
 information into usable objects. It’s important to parse the incoming
 records as efficiently as possible to improve your overall job
 performance.
If the number of unique keys and the number of identifiers is
 large, more data will be sent to the reducers. If more data is going
 to the reducers, you should increase the number of reducers to
 increase parallelism during the reduce phase.
Inverted indexes are particularly susceptible to hot spots in
 the index keys, since the index keys are rarely evenly distributed.
 For example, the reducer that handles the word “the” in a text search
 application is going to be particularly busy since “the” is seen in so
 much text. This can slow down your entire job since a few reducers
 will take much longer than the others. To avoid this problem, you
 might need to implement a custom partitioner, or omit common index
 keys that add no value to your end goal.

Inverted Index Example

Wikipedia reference inverted index

Building an inverted index is a straightforward MapReduce application and is
 often the second example newcomers to MapReduce experience after the
 word count application. Much like the word count application, the bulk
 of the operation is a group and is therefore handled entirely by the
 MapReduce framework.
Suppose we want to add StackOverflow links to each Wikipedia
 page that is referenced in a StackOverflow comment. The following
 example analyzes each comment in StackOverflow to find hyperlinks to
 Wikipedia. If there is one, the link is output with the comment ID to
 generate the inverted index. When it comes to the reduce phase, all
 the comment IDs that reference the same hyperlink will be grouped
 together. These groups are then concatenated together into a white
 space delimited String and
 directly output to the file system. From here, this data file can be
 used to update the Wikipedia page with all the comments that reference
 it.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of user’s comments, build an inverted index of Wikipedia URLs to
 a set of answer post IDs .
Mapper code

The mapper parses the posts from StackOverflow to output the
 row IDs of all answer posts that contain a particular Wikipedia URL.
 First, the XML attributes for the text, post type, and row ID are
 extracted. If the post type is not an answer, identified by a post
 type of “2”, we parse the text to find a Wikipedia URL. This is done
 using the getWikipediaURL method,
 which takes in a String of
 unescaped HTML and returns a Wikipedia URL if found, or null otherwise. The method is omitted for
 brevity. If a URL is found, the URL is output as the key and the row
 ID is output as the value.

public static class WikipediaExtractor extends
 Mapper<Object, Text, Text, Text> {

 private Text link = new Text();
 private Text outkey = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // Grab the necessary XML attributes
 String txt = parsed.get("Body");
 String posttype = parsed.get("PostTypeId");
 String row_id = parsed.get("Id");

 // if the body is null, or the post is a question (1), skip
 if (txt == null || (posttype != null && posttype.equals("1"))) {
 return;
 }

 // Unescape the HTML because the SO data is escaped.
 txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());

 link.set(getWikipediaURL(txt));
 outkey.set(row_id);
 context.write(link, outkey);
 }
}

Reducer code

The reducer iterates through the set of input values and
 appends each row ID to a String,
 delimited by a space character. The input key is output along with
 this concatenation.

public static class Concatenator extends Reducer<Text,Text,Text,Text> {
 private Text result = new Text();

 public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {

 StringBuilder sb = new StringBuilder();
 boolean first = true;
 for (Text id : values) {
 if (first) {
 first = false;
 } else {
 sb.append(" ");
 }
 sb.append(id.toString());
 }

 result.set(sb.toString());
 context.write(key, result);
 }
}

Combiner optimization

The combiner can be used to do some concatenation prior to the
 reduce phase. Because all row IDs are simply concatenated together,
 the number of bytes that need to be copied by the reducer is more
 than in a numerical summarization pattern. The same code for the
 reducer class is used as the combiner.

Counting with Counters

Pattern Description

This pattern utilizes the MapReduce framework's counters utility to calculate a
 global sum entirely on the map side without producing any output.
Intent

An efficient means to retrieve count summarizations of large
 data sets.

Motivation

A count or summation can tell you a lot about particular fields
 of data, or your data as a whole. Hourly ingest record counts can be post processed to generate helpful
 histograms. This can be executed in a simple “word count” manner, in
 that for each input record, you output the same key, say the hour of
 data being processed, and a count of 1. The single reduce will sum all
 the input values and output the final record count with the hour. This
 works very well, but it can be done more efficiently using counters.
 Instead of writing any key value pairs at all, simply use the
 framework’s counting mechanism to keep track of the number of input
 records. This requires no reduce phase and no summation! The framework
 handles monitoring the names of the counters and their associated
 values, aggregating them across all tasks, as well as taking into
 account any failed task attempts.
Say you want to find the number of times your employees log into
 your heavily used public website every day. Assuming you have a few
 dozen employees, you can apply filter conditions while parsing through
 your web logs. Rather than outputting the employee’s user name with a
 count of ‘1’, you can simply create a counter with the employee’s ID
 and increment it by 1. At the end of the job, simply grab the counters
 from the framework and save them wherever your heart desires—the log,
 local file system, HDFS, etc.
Some counters come built into the framework, such as number of
 input/output records and bytes. Hadoop allows for programmers to
 create their own custom counters for whatever their needs may be. This
 pattern describes how to utilize these custom counters to gather count
 or summation metrics from your data sets. The major benefit of using
 counters is all the counting can be done during the map phase.
Caution
The caveat to using counters is they are all stored in-memory
 by the JobTracker. The counters are serialized by each map task and
 sent with status updates. In order to play nice and not bog down the
 JobTracker, the number of counters should be in the tens -- a
 hundred at most... and thats a big “at most”! Counters are
 definitely not meant to aggregate lots of statistics about your
 MapReduce job! Newer versions of Hadoop actually limit the number of
 counters a job can create to prevent any permanent damage to the
 JobTracker. The last thing you want is to have your analytic take
 down the JobTracker because you created a few hundred custom
 counters!

Applicability

Counting with counters should be used when:
	You have a desire to gather counts or summations over large
 data sets.

	The number of counters you are going to create is small—in
 the double digits.

Structure

Figure 2-6 shows the general
 structure of how this pattern works in MapReduce.
	The mapper processes each input record at a time to
 increment counters based on certain criteria. The counter is
 either incremented by one if counting a single instance, or
 incremented by some number if executing a summation. These
 counters are then aggregated by the TaskTrackers running the tasks
 and incrementally reported to the JobTracker for overall
 aggregation upon job success. The counters from any failed tasks
 are disregarded by the JobTracker in the final summation.

	As this job is map only, there is no combiner, partitioner,
 or reducer required.

Consequences

The final output is a set of counters grabbed from the job
 framework. There is no actual output from the analytic itself.
 However, the job requires an output directory to execute. This
 directory will exist and contain a number of empty part files
 equivalent to the number of map tasks. This directory should be
 deleted on job completion.
[image: The structure of the counting with counters pattern]

Figure 2-6. The structure of the counting with counters pattern

Known uses

	Count number of records
	Simply counting the number of records over a given time
 period is very common. It's typically a counter provided by the
 framework, among other common things.

	Count a small number of unique instances
	Counters can also be created on the fly by using a string
 variable. You might now know what the value is, but the counters
 don’t have to be created ahead of time. Simply creating a
 counter using the value of a field and incrementing it is enough
 to solve this use case. Just be sure the number of counters you
 are creating is a small number!

	Summations
	Counters can be used to sum fields of data together.
 Rather than performing the sum on the reduce side, simply create
 a new counter and use it to sum the field values.

Performance analysis

Using counters is very fast, as data is simply read in through
 the mapper and no output is written. Performance depends largely on
 the number of map tasks being executed and how much time it takes to
 process each record.

Counting with Counters Example

Number of users per state

For this example, we use a map-only job to count the number of users in
 each state. The Location attribute
 is a user-entered value and doesn’t have any concrete inputs. Because
 of this, there are a lot of null or empty fields, as well as made up
 locations. We need to account for this when processing each record to
 ensure we don’t create a large number of counters. We verify each
 location contains a state abbreviation code prior to creating a
 counter. This will create at most 52 counters - 50 for the states and
 two for NullOrEmpty and Unknown. This is a manageable number of
 custom counters for the JobTracker, but your job should not have many
 more than this!
The following descriptions of each code section explain the
 solution to the problem.
Problem: Count the number of users from each state using Hadoop
 custom counters.
Mapper code

The mapper reads each user record and gets his or her
 location. The location is split on white space and searched for
 something that resembles a state. We keep a set of all the state
 abbreviations in-memory to prevent creating an excessive amount of
 counters, as the location is simply a string set by the user and
 nothing structured. If a state is recognized, the counter for the
 state is incremented by one and the loop is broken. Counters are
 identified by both a group and a name. Here, the group is “State”
 (identified by a public String
 variable) and the counter name is the state abbreviation
 code.

public static class CountNumUsersByStateMapper extends
 Mapper<Object, Text, NullWritable, NullWritable> {

 public static final String STATE_COUNTER_GROUP = "State";
 public static final String UNKNOWN_COUNTER = "Unknown";
 public static final String NULL_OR_EMPTY_COUNTER = "Null or Empty";

 private String[] statesArray = new String[] { "AL", "AK", "AZ", "AR",
 "CA", "CO", "CT", "DE", "FL", "GA", "HI", "ID", "IL", "IN",
 "IA", "KS", "KY", "LA", "ME", "MD", "MA", "MI", "MN", "MS",
 "MO", "MT", "NE", "NV", "NH", "NJ", "NM", "NY", "NC", "ND",
 "OH", "OK", "OR", "PA", "RI", "SC", "SF", "TN", "TX", "UT",
 "VT", "VA", "WA", "WV", "WI", "WY" };

 private HashSet<String> states = new HashSet<String>(
 Arrays.asList(statesArray));

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // Get the value for the Location attribute
 String location = parsed.get("Location");

 // Look for a state abbreviation code if the
 // location is not null or empty
 if (location != null && !location.isEmpty()) {

 // Make location uppercase and split on white space
 String[] tokens = location.toUpperCase().split("\\s");

 // For each token
 boolean unknown = true;
 for (String state : tokens) {

 // Check if it is a state
 if (states.contains(state)) {
 // If so, increment the state's counter by 1
 // and flag it as not unknown
 context.getCounter(STATE_COUNTER_GROUP, state)
 .increment(1);
 unknown = false;
 break;
 }
 }

 // If the state is unknown, increment the UNKNOWN_COUNTER counter
 if (unknown) {
 context.getCounter(STATE_COUNTER_GROUP, UNKNOWN_COUNTER)
 .increment(1);
 }
 } else {
 // If it is empty or null, increment the
 // NULL_OR_EMPTY_COUNTER counter by 1
 context.getCounter(STATE_COUNTER_GROUP,
 NULL_OR_EMPTY_COUNTER).increment(1);
 }
 }
}

Driver code

The driver code is mostly boilerplate, with the exception of
 grabbing the counters after the job completes. If the job completed
 succesfully, we get the “States” counter group and write out the
 counter name and value to stdout.
 These counter values are also output when the job completes, so
 writing to stdout may be
 redundant if you are obtaining these values by scraping log files.
 The output directory is then deleted, success or otherwise, as this
 job doesn’t create any tangible output.

...

int code = job.waitForCompletion(true) ? 0 : 1;

if (code == 0) {
 for (Counter counter : job.getCounters().getGroup(
 CountNumUsersByStateMapper.STATE_COUNTER_GROUP)) {
 System.out.println(counter.getDisplayName() + "\t"
 + counter.getValue());
 }
}

// Clean up empty output directory
FileSystem.get(conf).delete(outputDir, true);

System.exit(code);

Chapter 3. Filtering Patterns

The patterns in this chapter all have one thing in common: they don’t change the
 actual records. These patterns all find a subset of data, whether it be
 small, like a top-ten listing, or large, like the results of a
 deduplication. This differentiates filtering patterns from those in the
 previous chapter, which was all about summarizing and grouping data by
 similar fields to get a top-level view of the data. Filtering is more about
 understanding a smaller piece of your data, such as all records generated
 from a particular user, or the top ten most used verbs in a corpus of text.
 In short, filtering allows you to apply a microscope to your data. It can
 also be considered a form of search. If you are interested in finding all
 records that involve a particular piece of distinguishing information, you
 can filter out records that do not match the search criteria.
Sampling, one common application of filtering, is about pulling out a sample of the
 data, such as the highest values for a particular field or a few random
 records. Sampling can be used to get a smaller, yet representative, data set
 in which more analysis can be done without having to deal with the much
 larger data set. Many machine learning algorithms simply do not work
 efficiently over a large data set, so tools that build models need to be
 applied to a smaller subset.
A subsample can also be useful for development purposes. Simply
 grabbing the first thousand records typically is not the best sample since
 the records are bound to be similar and do not give a good overall picture
 of the entire data set. A well-distributed sample will hopefully provide a
 better view of the data set and will allow your application and analytic
 development to be done against more realistic data, even if it is much
 smaller.
Four patterns are presented in this chapter:
 filtering, Bloom filtering, top
 ten, and distinct. There are numerous ways
 to find a slice of your data. Each pattern has a slight nuance to
 distinguish it from the others, even if they all pretty much do the same
 thing.
We will see a few clever uses of MapReduce in this chapter. Filtering,
 Bloom filtering, and simple random sampling allow us to use
 map-only jobs, which means we don’t need a
 reducer.
Filtering

Pattern Description

As the most basic pattern, filtering serves as an
 abstract pattern for some of the other patterns. Filtering simply
 evaluates each record separately and decides, based on some condition,
 whether it should stay or go.
Intent

Filter out records that are not of interest and keep ones that
 are.
Consider an evaluation function f that
 takes a record and returns a Boolean value of
 true or false. If this
 function returns true, keep the record;
 otherwise, toss it out.

Motivation

Your data set is large and you want to take a subset of this
 data to focus in on it and perhaps do follow-on analysis. The subset
 might be a significant portion of the data set or just a needle in the
 haystack. Either way, you need to use the parallelism of MapReduce to
 wade through all of your data and find the keepers.
For example, you might be interested only in records that have
 something to do with Hadoop: Hadoop is either mentioned in the raw
 text or the event is tagged by a
 “Hadoop” tag. Filtering can be used to keep records that meet
 the “something to do with Hadoop” criteria and keep them, while
 tossing out the rest of the records.
Big data and processing systems like Hadoop, in general, are
 about bringing all of your organization’s data to one location.
 Filtering is the way to pull subsets back out and deliver them to
 analysis shops that are interested in just that subset. Filtering is
 also used to zoom in on a particular set of records that match your
 criteria that you are more curious about. The exploration of a subset
 of data may lead to more valuable and complex analytics that are based
 on the behavior that was observed in the small subset.

Applicability

Filtering is very widely applicable. The only requirement is
 that the data can be parsed into “records” that can be categorized
 through some well-specified criterion determining whether they are to
 be kept.

Structure

The structure of the filter pattern is perhaps the simplest of
 all the patterns we’ll see in this book. Figure 3-1 shows this pattern.

map(key, record):
 if we want to keep record then
 emit key,value
[image: The structure of the filter pattern]

Figure 3-1. The structure of the filter pattern

Filtering is unique in not requiring the “reduce” part of
 MapReduce. This is because it doesn’t produce an aggregation. Each
 record is looked at individually and the evaluation of whether or not
 to keep that record does not depend on anything else in the data
 set.
The mapper applies the evaluation function to each record it
 receives. Typically, the mapper outputs the same key/value type as the
 types of the input, since the record is left unchanged. If the
 evaluation function returns true, the mapper simply output the key and
 value verbatim.

Consequences

The output of the job will be a subset of the records that pass
 the selection criteria. If the format was kept the same, any job that
 ran over the larger data set should be able to run over this filtered
 data set, as well.

Known uses

	Closer view of data
	Prepare a particular subset of data, where the records have
 something in common or something of interest, for more
 examination. For example, a local office in Maryland may only
 care about records originating in Maryland from your
 international dataset.

	Tracking a thread of events
	Extract a thread of consecutive events as a case study from
 a larger data set. For example, you may be interested in how a
 particular user interacts with your website by analyzing Apache
 web server logs. The events for a particular user are
 interspersed with all the other events, so it’s hard to figure
 out what happened. By filtering for that user’s IP address, you
 are able to get a good view of that particular user’s
 activities.

	Distributed grep
	Grep, a very powerful tool that uses regular expressions for finding
 lines of text of interest, is easily parallelized by applying a
 regular expression match against each line of input and only
 outputting lines that match.

	Data cleansing
	Data sometimes is dirty, whether it be malformed, incomplete, or in
 the wrong format. The data could have missing fields, a date
 could be not formatted as a date, or random bytes of binary data
 could be present. Filtering can be used to validate that each
 record is well-formed and remove any junk that does
 occur.

	Simple random sampling
	If you want a simple random sampling of your data set, you can
 use filtering where the evaluation function randomly returns
 true or false. A simple random sample is a sample of the larger
 data set in which each item has the same probability of being
 selected. You can tweak the number of records that make it
 through by having the evaluation function return true a smaller
 percentage of the time. For example, if your data set contains
 one trillion records and you want a sample size of about one
 million, have the evaluation function return true once in a
 million (because there are a million millions in a
 trillion).

	Removing low scoring data
	If you can score your data with some sort of scalar value,
 you can filter out records that don’t meet a certain threshold.
 If you know ahead of time that certain types of records are not
 useful for analysis, you can assign those records a small score
 and they will get filtered out. This effectively has the same
 purpose as the top ten pattern discussed later, except that you
 do not know how many records you will get.

Resemblances

	SQL
	The filter pattern is synonymous to using the WHERE clause
 in a SELECT * statement. The
 records stay the same, but some are simply filtered out. For
 example:
SELECT * FROM table WHERE value < 3;

	Pig
	The FILTER
 keyword.
b = FILTER a BY value < 3;

Performance analysis

This pattern is basically as efficient as MapReduce can get
 because the job is map-only. There are a couple of reasons why
 map-only jobs are efficient.
	Since no reducers are needed, data never has to be
 transmitted between the map and reduce phase. Most of the map
 tasks pull data off of their locally attached disks and then write
 back out to that node.

	Since there are no reducers, both the sort phase and the
 reduce phase are cut out. This usually doesn’t take very long, but
 every little bit helps.

One thing to be aware of is the size and number of the output
 files. Since this job is running with mappers only, you will get one
 output file per mapper with the prefix part-m- (note the m instead of the r). You may find that these files will be
 tiny if you filter out a lot of data, which can cause problems with
 scalability limitations of the NameNode further down the road.
If you are worried about the number of small files and do not
 mind if your job runs just a little bit longer, you can use an
 identity reducer to collect the results without doing anything with
 them. This will have the mapper send the reducer all of the data, but
 the reducer does nothing other than just output them to one file per
 reducer. The appropriate number of reducers depends on the amount of
 data that will be written to the file system and just how many small
 files you want to deal with.

Filtering Examples

Distributed grep

Grep is a popular text filtering utility that dates back to Unix
 and is available on most Unix-like systems. It scans through a file
 line-by-line and only outputs lines that match a specific pattern.
 We’d like to parallelize the regular expression search across a larger
 body of text. In this example, we’ll show how to apply a regular
 expression to every line in MapReduce.
Mapper code

The mapper is pretty straightforward since we use the Java
 built-in libraries for regular expressions. If the text line matches
 the pattern, we’ll output the line. Otherwise we do nothing and the
 line is effectively ignored. We use the setup function to retrieve the map regex from the job
 configuration.

public static class GrepMapper
 extends Mapper<Object, Text, NullWritable, Text> {

 private String mapRegex = null;

 public void setup(Context context) throws IOException,
 InterruptedException {

 mapRegex = context.getConfiguration().get("mapregex");
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 if (value.toString().matches(mapRegex)) {
 context.write(NullWritable.get(), value);
 }
 }
}
As this is a map-only job, there is no combiner or reducer.
 All output records will be written directly to the file
 system.

Simple Random Sampling

In simple random sampling (SRS), we want to grab a subset of our larger data set in which
 each record has an equal probability of being selected. Typically this
 is useful for sizing down a data set to be able to do representative
 analysis on a more manageable set of data.
Implementing SRS as a filter operation is not a direct
 application of the filtering pattern, but the structure is the same.
 Instead of some filter criteria function that bears some relationship
 to the content of the record, a random number generator will produce a
 value, and if the value is below a threshold, keep the record.
 Otherwise, toss it out.
Mapper Code

In the mapper code, the setup function is used to pull the filter_percentage configuration value so
 we can use it in the map
 function.
In the map function, a
 simple check against the next random number is done. The random
 number will be anywhere between 0 and 1, so by comparing against the
 specified threshold, we can keep or throw out the record.

public static class SRSMapper
 extends Mapper<Object, Text, NullWritable, Text> {

 private Random rands = new Random();
 private Double percentage;

 protected void setup(Context context) throws IOException,
 InterruptedException {
 // Retrieve the percentage that is passed in via the configuration
 // like this: conf.set("filter_percentage", .5);
 // for .5%
 String strPercentage = context.getConfiguration()
 .get("filter_percentage");
 percentage = Double.parseDouble(strPercentage) / 100.0;
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 if (rands.nextDouble() < percentage) {
 context.write(NullWritable.get(), value);
 }
 }
}
As this is a map-only job, there is no combiner or reducer.
 All output records will be written directly to the file system. When
 using a small percentage, you will find that the files will be tiny
 and plentiful. If this is the case, set the number of reducers to 1
 without specifying a reducer class, which will tell the MapReduce
 framework to use a single identity reducer that simply collects the
 output into a single file. The other option would be to collect the
 files as a post-processing step using hadoop fs
 -cat.

Bloom Filtering

Pattern Description

Bloom filtering does the same thing as the previous pattern, but it has a unique
 evaluation function applied to each record.
Intent

Filter such that we keep records that are member of some
 predefined set of values. It is not a problem if the output is a bit
 inaccurate, because we plan to do further checking. The predetermined
 list of values will be called the set of hot
 values.
For each record, extract a feature of that record. If that
 feature is a member of a set of values represented by a Bloom filter,
 keep it; otherwise toss it out (or the reverse).

Motivation

Bloom filtering is similar to generic filtering in that it is
 looking at each record and deciding whether to keep or remove it.
 However, there are two major differences that set it apart from
 generic filtering. First, we want to filter the record based on some
 sort of set membership operation against the hot values. For example:
 keep or throw away this record if the value in the user field is a
 member of a predetermined list of users. Second, the set membership is
 going to be evaluated with a Bloom filter, described in the Appendix A. In one sense, Bloom filtering is a join
 operation in which we don’t care about the data values of the right
 side of the join.
This pattern is slightly related to the replicated join pattern
 covered later in Chapter 5. It is comparing one list to another and
 doing some sort of join logic, using only map tasks. Instead of
 replicating the hot list everywhere with the distributed cache, as in
 the replicated join, we will send a Bloom filter data object to the
 distributed cache. This allows a filter like operation with a Bloom
 filter instead of the list itself, which allows you to perform this
 operation across a much larger data set because the Bloom filter is
 much more compact. Instead of being constrained by the size of the
 list in memory, you are mostly confined by the feature limitations of
 Bloom filters.
Using a Bloom filter to calculate set membership in this
 situation has the consequence that sometimes you will get a false
 positive. That is, sometimes a value will return as a member of the
 set when it should not have. If the Bloom filter says a value is not
 in the Bloom filter, we can guarantee that it is indeed not in the set
 of values. For more information on why this happens, refer to Appendix A. However, in some situations, this is not
 that big of a concern. In an example we’ll show code for at the end of
 this chapter, we’ll gather a rather large set of “interesting” words,
 in which when we see a record that contains one of those words, we’ll
 keep the record, otherwise we’ll toss it out. We want to do this
 because we want to filter down our data set significantly by removing
 uninteresting content. If we are using a Bloom filter to represent the
 list of watch words, sometimes a word will come back as a member of
 that list, even if it should not have. In this case, if we
 accidentally keep some records, we still achieved our goal of
 filtering out the majority of the garbage and keeping interesting
 stuff.

Applicability

The following criteria are necessary for Bloom filtering to be
 relevant:
	Data can be separated into records, as in filtering.

	A feature can be extracted from each record that could be in
 a set of hot values.

	There is a predetermined set of items for the hot
 values.

	Some false positives are acceptable (i.e., some records will
 get through when they should not have).

Structure

Figure 3-2 shows the structure
 of Bloom filtering and how it is split into two major components.
 First, the Bloom filter needs to be trained over the list of values.
 The resulting data object is stored in HDFS. Next is the filtering MapReduce job, which has the
 same structure as the previous filtering pattern in this chapter,
 except it will make use of the distributed cache as well. There are no
 reducers since the records are analyzed one-by-one and there is no
 aggregation done.
[image: The structure of the Bloom filtering pattern]

Figure 3-2. The structure of the Bloom filtering pattern

The first step of this job is to train the Bloom filter from the
 list of values. This is done by loading the data from where it is
 stored and adding each item to the Bloom filter. The trained Bloom
 filter is stored in HDFS at a known location.
The second step of this pattern is to do the actual filtering.
 When the map task starts, it loads the Bloom filter from the
 distributed cache. Then, in the map function, it iterates through the
 records and checks the Bloom filter for set membership in the hot
 values list. Each record is either forwarded or not based on the Bloom
 filter membership test.
The Bloom filter needs to be re-trained only when the data
 changes. Therefore, updating the Bloom filter in a lazy fashion (i.e.,
 only updating it when it needs to be updated) is typically
 appropriate.

Consequences

The output of the job will be a subset of the records in that
 passed the Bloom filter membership test. You should expect that some
 records in this set may not actually be in the set of hot values,
 because Bloom filters have a chance of false positives.

Known uses

	Removing most of the nonwatched values
	The most straightforward use case is cleaning out values
 that aren’t hot. For example, you may be interested only in data
 that contains a word in a list of 10,000 words that deal with
 Hadoop, such as “map,” “partitioning,” etc. You take this list,
 train a Bloom filter on it, then check text as it is coming in
 to see whether you get a Bloom filter hit on any of the words.
 If you do, forward the record, and if not don’t do anything. The
 fact that you’ll get some false positives isn’t that big of a
 deal, since you still got rid of most of the data.

	Prefiltering a data set for an expensive set membership
 check
	Sometimes, checking whether some value is a member of a
 set is going to be expensive. For example, you might have to hit
 a webservice or an external database to check whether that value
 is in the set. The situations in which this may be the case are
 far and few between, but they do crop up in larger
 organizations. Instead of dumping this list periodically to your
 cluster, you can instead have the originating system produce a
 Bloom filter and ship that instead. Once you have the Bloom
 filter in place and filter out most of the data, you can do a
 second pass on the records that make it through to double check
 against the authoritative source. If the Bloom filter is able to
 remove over 95% of the data, you’ll see the external resource
 hit only 5% as much as before! With this approach, you’ll
 eventually have 100% accuracy but didn’t have to hammer the
 external resource with tons of queries.

Later, in Chapter 5, we’ll see a pattern called “Reduce Side
 Join with Bloom Filtering” where a Bloom filter is used to reduce the
 amount of data going to reducers. By determining whether a record will
 be relevant ahead of time, we can reduce network usage
 significantly.

Resemblances

Bloom filters are relatively new in the field of data analysis,
 likely because the properties of big data particularly benefit from
 such a thing in a way previous methodologies have not. In both SQL and
 Pig, Bloom filters can be implemented as user-defined functions, but
 as of the writing of this book, there is no native functionality out
 of the box.

Performance analysis

The performance for this pattern is going to be very similar to
 simple filtering from a performance perspective. Loading up the Bloom
 filter from the distributed cache is not that expensive since the file
 is relatively small. Checking a value against the Bloom filter is also
 a relatively cheap operation, as each test is executed in constant
 time.

Bloom Filtering Examples

Hot list

One of the most basic applications of a Bloom filter is what it was
 designed for: representing a data set. For this example, a Bloom
 filter is trained with a hot list of keywords. We use this Bloom
 filter to test whether each word in a comment is in the hot list. If
 the test returns true, the entire record is output. Otherwise, it is
 ignored. Here, we are not concerned with the inevitable false
 positives that are output due to the Bloom filter. The next example
 details how one way to verify a positive Bloom filter test using
 HBase.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, filter out a majority
 of the comments that do not contain a particular keyword.
Bloom filter training

To demonstrate how to use Hadoop Bloom filters, the following
 code segment generates a Bloom filter off a predetermined set of
 words. This is a generic application that takes in an input gzip
 file or directory of gzip files, the number of elements in the file,
 a desired false positive rate, and finally the output file
 name.

public class BloomFilterDriver {
 public static void main(String[] args) throws Exception {
 // Parse command line arguments
 Path inputFile = new Path(args[0]);
 int numMembers = Integer.parseInt(args[1]);
 float falsePosRate = Float.parseFloat(args[2]);
 Path bfFile = new Path(args[3]);

 // Calculate our vector size and optimal K value based on approximations
 int vectorSize = getOptimalBloomFilterSize(numMembers, falsePosRate);
 int nbHash = getOptimalK(numMembers, vectorSize);

 // Create new Bloom filter
 BloomFilter filter = new BloomFilter(vectorSize, nbHash,
 Hash.MURMUR_HASH);

 System.out.println("Training Bloom filter of size " + vectorSize
 + " with " + nbHash + " hash functions, " + numMembers
 + " approximate number of records, and " + falsePosRate
 + " false positive rate");

 // Open file for read
 String line = null;
 int numElements = 0;
 FileSystem fs = FileSystem.get(new Configuration());

 for (FileStatus status : fs.listStatus(inputFile)) {
 BufferedReader rdr = new BufferedReader(new InputStreamReader(
 new GZIPInputStream(fs.open(status.getPath()))));

 System.out.println("Reading " + status.getPath());
 while ((line = rdr.readLine()) != null) {
 filter.add(new Key(line.getBytes()));
 ++numElements;
 }

 rdr.close();
 }

 System.out.println("Trained Bloom filter with " + numElements
 + " entries.");

 System.out.println("Serializing Bloom filter to HDFS at " + bfFile);

 FSDataOutputStream strm = fs.create(bfFile);
 filter.write(strm);
 strm.flush();
 strm.close();

 System.exit(0);
 }
}
A new BloomFilter object is
 constructed using the optimal vector size and optimal
 number of hash functions (k) based on the input
 parameters. Each file returned from listStatus is read line-by-line, and each
 line is used to train the Bloom filter. After all the input files
 are ready, the Bloom filter is serialized to the filename provided
 at the command line. Because a BloomFilter is also a Writable object, serializing it is fairly
 trivial. Simply use the FileSystem object to create a new FSDataOutputStream, pass the stream to the
 filter’s write method, then just
 flush and close the stream!
This Bloom filter can later be deserialized from HDFS just as
 easily as it was written. Just open up the file using the
 FileSystem object and pass it to BloomFilter.readFields. Deserialization of
 this Bloom filter is demonstrated in the setup method of the following Mapper
 code.

Mapper code

The setup method is called
 once for each mapper by the Hadoop framework prior to the many calls
 to map. Here, the Bloom filter is
 deserialized from the DistributedCache before being used in the
 map method. The DistributedCache
 is a Hadoop utility that ensures that a file in HDFS is present on
 the local file system of each task that requires that file. The
 Bloom filter was previously trained with a hot list of words.
In the map method, the comment is extracted from each input
 record. The comment is tokenized into words, and each word is
 cleaned of any extraneous characters. The clean words are testing
 against the Bloom filter. If the word is a member, the entire record
 is output to the file system.
Caution
A Bloom filter is trained on the bytes of the word. The
 important thing of this is that the words “the” and “The” may look
 the same, but the bytes are different. Unless case sensitivity
 matters in you algorithm, it is best to trim the string and make
 the string all lower case when training and testing the
 filter.

public static class BloomFilteringMapper extends
 Mapper<Object, Text, Text, NullWritable> {

 private BloomFilter filter = new BloomFilter();

 protected void setup(Context context) throws IOException,
 InterruptedException {
 // Get file from the DistributedCache
 URI[] files = DistributedCache.getCacheFiles(context
 .getConfiguration());
 System.out.println("Reading Bloom filter from: "
 + files[0].getPath());

 // Open local file for read.
 DataInputStream strm = new DataInputStream(new FileInputStream(
 files[0].getPath()));

 // Read into our Bloom filter.
 filter.readFields(strm);
 strm.close();
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Get the value for the comment
 String comment = parsed.get("Text");
 StringTokenizer tokenizer = new StringTokenizer(comment);
 // For each word in the comment
 while (tokenizer.hasMoreTokens()) {
 // If the word is in the filter, output the record and break
 String word = tokenizer.nextToken();
 if (filter.membershipTest(new Key(word.getBytes()))) {
 context.write(value, NullWritable.get());
 break;
 }
 }
 }
}
Because this is a map-only job, there is no combiner or
 reducer. All output records will be written directly to the file
 system.

HBase Query using a Bloom filter

Bloom filters can assist expensive operations by eliminating
 unnecessary ones. For the following example, a Bloom filter was
 previously trained with IDs of all users that have a reputation of at
 least 1,500. We use this Bloom filter to do an initial test before
 querying HBase to retrieve more information about each user. By
 eliminating unnecessary queries, we can speed up processing
 time.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of users’ comments, filter out comments
 from users with a reputation of less than 1,500.
Mapper Code

The setup method is called
 once for each mapper by the Hadoop framework prior to the many calls
 to the map method. Just like the
 previous example, the Bloom filter is deserialized from the DistributedCache before being used in the
 map method. This Bloom filter was
 trained with all user IDs that have a reputation of at least 1,500.
 This is a little over 1.5% of all users, so we will be filtering out
 a lot of unnecessary queries. In addition to the Bloom filter, a
 connection to the HBase table is obtained in setup.
In the map method, the user’s ID is extracted from each record
 and checked against the Bloom filter. If the test is positive, HBase
 is queried with the user ID to get the rest of the data associated
 with that user. Here, we nullify the possibilities of outputting
 false positives by verifying that the user’s actual reputation is at
 least 1,500. If it is, the record is output to the file
 system.

public static class BloomFilteringMapper extends
 Mapper<Object, Text, Text, NullWritable> {

 private BloomFilter filter = new BloomFilter();
 private HTable table = null;

 protected void setup(Context context) throws IOException,
 InterruptedException {

 // Get file from the Distributed Cache
 URI[] files = DistributedCache.getCacheFiles(context
 .getConfiguration());
 System.out.println("Reading Bloom filter from: "
 + files[0].getPath());

 // Open local file for read.
 DataInputStream strm = new DataInputStream(new FileInputStream(
 files[0].getPath()));

 // Read into our Bloom filter.
 filter.readFields(strm);
 strm.close();

 // Get HBase table of user info
 Configuration hconf = HBaseConfiguration.create();
 table = new HTable(hconf, "user_table");
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Get the value for the comment
 String userid = parsed.get("UserId");

 // If this user ID is in the set
 if (filter.membershipTest(new Key(userid.getBytes()))) {
 // Get the reputation from the HBase table
 Result r = table.get(new Get(userid.getBytes()));
 int reputation = Integer.parseInt(new String(r.getValue(
 "attr".getBytes(), "Reputation".getBytes())));

 // If the reputation is at least 1500,
 // write the record to the file system
 if (reputation >= 1500) {
 context.write(value, NullWritable.get());
 }
 }
 }
}
As this is a map-only job, there is no combiner or reducer.
 All output records will be written directly to the file system.
Query Buffer Optimization
The previous example is a fairly naive way of querying
 HBase. It is meant to show how to go about executing the pattern,
 but can be optimized further. HBase supports batch queries, so it
 would be ideal to buffer all the queries we want to execute up to
 some predetermined size. This constant depends on how many records
 you can comfortably store in memory before querying HBase. Then
 flush the queries to HBase and perform the further processing with
 the returned results. If the expensive operations can be buffered,
 it is recommended to do so. Just remember to flush the buffer in
 the mapper or the reducer’s cleanup method. The Context object can be used to write
 output just like in the map or
 reduce methods.

Top Ten

Pattern Description

The top ten pattern is a bit different than previous ones in that you know how
 many records you want to get in the end, no matter what the input size.
 In generic filtering, however, the amount of output depends on the
 data.
Intent

Retrieve a relatively small number of top K
 records, according to a ranking scheme in your data set, no matter how
 large the data.

Motivation

Finding outliers is an important part of data analysis because
 these records are typically the most interesting and unique pieces of
 data in the set. The point of this pattern is to find the best records
 for a specific criterion so that you can take a look at them and
 perhaps figure out what caused them to be so special. If you can
 define a ranking function or comparison function between two records
 that determines whether one is higher than the other, you can apply
 this pattern to use MapReduce to find the records with the highest
 value across your entire data set.
The reason why this pattern is particularly interesting springs
 from a comparison with how you might implement the top ten pattern
 outside of a MapReduce context. In SQL, you might be inclined to sort
 your data set by the ranking value, then take the top
 K records from that. In MapReduce, as we’ll find
 out in the next chapter, total ordering is extremely involved and uses
 significant resources on your cluster. This pattern will instead go
 about finding the limited number of high-values records without having
 to sort the data.
Plus, seeing the top ten of something is always fun! What are
 the highest scoring posts on Stack Overflow? Who is the oldest member
 of your service? What is the largest single order made on your
 website? Which post has the word “meow” the most number of
 times?

Applicability

	This pattern requires a comparator function ability between
 two records. That is, we must be able to compare one record to
 another to determine which is “larger.”

	The number of output records should be significantly fewer
 than the number of input records because at a certain point it
 just makes more sense to do a total ordering of the data
 set.

Structure

This pattern utilizes both the mapper and the reducer. The
 mappers will find their local top K, then all of
 the individual top K sets will compete for the
 final top K in the reducer. Since the number of
 records coming out of the mappers is at most K
 and K is relatively small, we’ll only need one
 reducer. You can see the structure of this pattern in Figure 3-3.

class mapper:
 setup():
 initialize top ten sorted list

 map(key, record):
 insert record into top ten sorted list
 if length of array is greater-than 10 then
 truncate list to a length of 10

 cleanup():
 for record in top sorted ten list:
 emit null,record

class reducer:
 setup():
 initialize top ten sorted list

 reduce(key, records):
 sort records
 truncate records to top 10
 for record in records:
 emit record
[image: The structure of the top ten pattern]

Figure 3-3. The structure of the top ten pattern

The mapper reads each record and keeps an array object of size
 K that collects the largest
 K values. In the cleanup phase of the mapper
 (i.e., right before it exits), we’ll finally emit the
 K records stored in the array as the value, with
 a null key. These are the lowest K for this
 particular map task.
We should expect K * M records coming into
 the reducer under one key, null, where M is the
 number of map tasks. In the reduce function, we’ll do what we did in
 the mapper: keep an array of K values and find
 the top K out of the values collected under the
 null key.
The reason we had to select the top K from
 every mapper is because it is conceivable that all of the top records
 came from one file split and that corner case needs to be accounted
 for.

Consequences

The top K records are returned.

Known uses

	Outlier analysis
	Outliers are usually interesting. They may be the users that
 are having difficulty using your system, or power users of your
 website. Outliers, like filtering and grouping, may give you
 another perspective from your data set.

	Select interesting data
	If you are able to score your records by some sort of
 value score, you can pull the “most valuable” data. This is
 particularly useful if you plan to submit data to follow-on
 processing, such as in a business intelligence tool or a SQL
 database, that cannot handle the scale of your original data
 set. Value scoring can be as complex as you make it by applying
 advanced algorithms, such as scoring text based on how
 grammatical it is and how accurate the spelling is so that you
 remove most of the junk.

	Catchy dashboards
	This isn’t a psychology book, so who knows why top ten
 lists are interesting to consumers, but they are. This pattern
 could be used to publish some interesting top ten stats about
 your website and your data that will encourage users to think
 more about your data or even to instill some competition.

Resemblances

	SQL
	In a traditional and small SQL database, ordering may
 not be a big deal. In this case, you would retrieve data ordered
 by the criterion for which you want the top ten, then take a
 limit. You could follow this same approach in MapReduce, but as
 you will find out in later patterns, sorting is an expensive
 operation.

SELECT * FROM table ORDER BY col4 DESC LIMIT 10;

	Pig
	Pig will have issues performing this query in any sort of
 optimal way. The most straightforward pattern is to mirror the
 SQL query, but the ordering is expensive just to find a few
 records. This is a situation in which you’ll find major gains in
 using Java MapReduce instead of Pig.

B = ORDER A BY col4 DESC;
C = LIMIT B 10;

Performance analysis

The performance of the top ten pattern is typically very good,
 but there are a number of important limitations and concerns to
 consider. Most of these limitations spring from the use of a single
 reducer, regardless of the number of records it is handling.
The number we need to pay attention to when using this pattern is how many records the
 reducer is getting. Each map task is going to output K records, and
 the job will consist of M map tasks, so the reducer is going to have
 to work through K * M records. This can be a lot.
A single reducer getting a lot of data is bad for a few
 reasons:
	The sort can become an expensive operation when it has too
 many records and has to do most of the sorting on local disk,
 instead of in memory.

	The host where the reducer is running will receive a lot of
 data over the network, which may create a network resource hot
 spot for that single host.

	Naturally, scanning through all the data in the reduce will
 take a long time if there are many records to look through.

	Any sort of memory growth in the reducer has the possibility
 of blowing through the Java virtual machine’s memory. For example,
 if you are collecting all of the values into an ArrayList to
 perform a median, that ArrayList can get very big. This will not
 be a particular problem if you’re really looking for the top ten
 items, but if you want to extract a very large number you may run
 into memory limits.

	Writes to the output file are not parallelized. Writing to
 the locally attached disk can be one of the more expensive
 operations in the reduce phase when we are dealing with a lot of
 data. Since there is only one reducer, we are not taking advantage
 of the parallelism involved in writing data to several hosts, or
 even several disks on the same host. Again, this is not an issue
 for the top ten, but becomes a factor when the data extracted is
 very large.

As K gets large, this pattern becomes less
 efficient. Consider the extreme case in which K
 is set at five million, when there are ten million records in the
 entire data set. Five million exceeds the number of records in any
 individual input split, so every mapper will send all of its records
 to the reducer. The single reducer will effectively have to handle all
 of the records in the entire dataset and the only thing that was
 parallelized was the data loading.
An optimization you could take if you have a large
 K and a large number of input splits is to
 prefilter some of the data, because you know what the top ten was last
 time and it hasn’t changed much. Imagine your data has a value that
 can only increase with time (e.g., hits on web pages) and you want to
 find the top hundred records. If, in your previous MapReduce job, the
 hundredth record had a value of 52,485, then you know you can filter
 out all records that have a value of less than 52,485. There is no way
 that a record with a value with less than 52,845 can compete with the
 previous top hundred that are still in the data set.
For all these reasons, this pattern is intended only for pretty
 small values for K, in the tens or hundreds at
 most, though you can likely push it a bit further. There is a fuzzy
 line in which just doing a total ordering of the data set is likely
 more effective.

Top Ten Examples

Top ten users by reputation

Determining the top ten records of a data set is an interesting use
 of MapReduce. Each mapper determines the top ten records of its input
 split and outputs them to the reduce phase. The mappers are
 essentially filtering their input split to the top ten records, and
 the reducer is responsible for the final ten. Just remember to
 configure your job to only use one reducer! Multiple reducers would
 shard the data and would result in multiple “top ten” lists.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user information, output the
 information of the top ten users based on reputation.
Mapper code

The mapper processes all input records and stores them in
 a TreeMap. A
 TreeMap is a subclass of Map that sorts on key. The default ordering of Integers is ascending. Then, if there are
 more than ten records in our TreeMap, the first element (lowest value)
 can be removed. After all the records have been processed, the top
 ten records in the TreeMap are
 output to the reducers in the cleanup method. This method gets called
 once after all key/value pairs have been through map, just like how setup is called once before any calls to
 map.

public static class TopTenMapper extends
 Mapper<Object, Text, NullWritable, Text> {

 // Stores a map of user reputation to the record
 private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 Map<String, String> parsed = transformXmlToMap(value.toString());

 String userId = parsed.get("Id");
 String reputation = parsed.get("Reputation");

 // Add this record to our map with the reputation as the key
 repToRecordMap.put(Integer.parseInt(reputation), new Text(value));

 // If we have more than ten records, remove the one with the lowest rep
 // As this tree map is sorted in descending order, the user with
 // the lowest reputation is the last key.
 if (repToRecordMap.size() > 10) {
 repToRecordMap.remove(repToRecordMap.firstKey());
 }
 }

 protected void cleanup(Context context) throws IOException,
 InterruptedException {
 // Output our ten records to the reducers with a null key
 for (Text t : repToRecordMap.values()) {
 context.write(NullWritable.get(), t);
 }
 }
}

Reducer code

Overall, the reducer determines its top ten records in a way
 that’s very similar to the mapper. Because we configured our job to
 have one reducer using job.setNumReduceTasks(1) and we used
 NullWritable as our key, there will be one input group for this
 reducer that contains all the potential top ten records. The reducer
 iterates through all these records and stores them in a TreeMap. If the TreeMap’s size is above ten, the first
 element (lowest value) is remove from the map. After all the values
 have been iterated over, the values contained in the TreeMap are flushed to the file system in
 descending order. This ordering is achieved by getting the
 descending map from the TreeMap
 prior to outputting the values. This can be done directly in the
 reduce method, because there will
 be only one input group, but doing it in the cleanup method would also work.

public static class TopTenReducer extends
 Reducer<NullWritable, Text, NullWritable, Text> {

 // Stores a map of user reputation to the record
 // Overloads the comparator to order the reputations in descending order
 private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();

 public void reduce(NullWritable key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {
 for (Text value : values) {
 Map<String, String> parsed = transformXmlToMap(value.toString());

 repToRecordMap.put(Integer.parseInt(parsed.get("Reputation")),
 new Text(value));

 // If we have more than ten records, remove the one with the lowest rep
 // As this tree map is sorted in descending order, the user with
 // the lowest reputation is the last key.
 if (repToRecordMap.size() > 10) {
 repToRecordMap.remove(repToRecordMap.firstKey());
 }
 }

 for (Text t : repToRecordMap.descendingMap().values()) {
 // Output our ten records to the file system with a null key
 context.write(NullWritable.get(), t);
 }
 }
}
Note
There is no need for a combiner in this job, although the
 reducer code could technically be used. The combiner would simply
 output the same ten records and thus cause unnecessary processing.
 Also, this job is hardcoded to find the top ten records, but could
 easily be configured to find the top K
 records using a variable captured in the setup method. Just be sure to keep in
 mind the limitations discussed in the Performance Analysis section
 as K increases.

Distinct

Pattern Description

This pattern filters the whole set, but it's more challenging because
 you want to filter out records that look like another record in the data
 set. The final output of this filter application is a set of unique
 records.
Intent

You have data that contains similar records and you want to find
 a unique set of values.

Motivation

Reducing a data set to a unique set of values has several uses. One particular
 use case that can use this pattern is deduplication. In some large
 data sets, duplicate or extremely similar records can become a nagging
 problem. The duplicate records can take up a significant amount of
 space or skew top-level analysis results. For example, every time
 someone visits your website, you collect what web browser and device
 they are using for marketing analysis. If that user visits your
 website more than once, you’ll log that information more than once. If
 you do some analysis to calculate the percentage of your users that
 are using a specific web browser, the number of times users have used
 your website will skew the results. Therefore, you should first
 deduplicate the data so that you have only one instance of each logged
 event with that device.
Records don’t necessarily need to be exactly the same in the raw
 form. They just need to be able to be translated into a form in which
 they will be exactly the same. For example, if our web browser
 analysis done on HTTP server logs, extract only the user name, the
 device, and the browser that user is using. We don’t care about the
 time stamp, the resource they were accessing, or what HTTP server it
 came from.

Applicability

The only major requirement is that you have duplicates values in
 your data set. This is not a requirement, but it would be silly to use
 this pattern otherwise!

Structure

This pattern is pretty slick in how it uses MapReduce. It exploits MapReduce’s ability
 to group keys together to remove duplicates. This pattern uses a mapper to transform the
 data and doesn’t do much in the reducer. The combiner can always be utilized in this
 pattern and can help considerably if there are a large number of duplicates. Duplicate
 records are often located close to another in a data set, so a combiner will deduplicate
 them in the map phase.

map(key, record):
 emit record,null

reduce(key, records):
 emit key
The mapper takes each record and extracts the data fields for
 which we want unique values. In our HTTP logs example, this means
 extracting the user, the web browser, and the device values. The
 mapper outputs the record as the key, and null as the value.
The reducer groups the nulls together by key, so we’ll have one
 null per key. We then simply output the key, since we don’t care how
 many nulls we have. Because each key is grouped together, the output
 data set is guaranteed to be unique.
One nice feature of this pattern is that the number of reducers
 doesn’t matter in terms of the calculation itself. Set the number of
 reducers relatively high, since the mappers will forward almost all
 their data to the reducers.
Note
This is a good time to resize your data file sizes. If you
 want your output files to be larger, reduce the number of reducers.
 If you want them smaller, increase the number of reducers. The files
 will come out to be about the same size thanks to the random hashing
 in the partitioner.

Consequences

The output data records are guaranteed to be unique, but any
 order has not been preserved due to the random partitioning of the
 records.

Known uses

	Deduplicate data
	If you have a system with a number of collection sources
 that could see the same event twice, you can remove duplicates
 with this pattern.

	Getting distinct values
	This is useful when your raw records may not be
 duplicates, but the extracted information is duplicated across
 records.

	Protecting from an inner join explosion
	If you are about to do an inner join between two data sets
 and your foreign keys are not unique, you risk retrieving a huge
 number of records. For example, if you have 3,000 of the same
 key in one data set, and 2,000 of the same key in the other data
 set, you’ll end up with 6,000,000 records, all sent to one
 reducer! By running the distinct pattern, you can pair down your
 values to make sure they are unique and mitigate against this
 problem.

Resemblances

	SQL
	SELECT DISTINCT
 performs this operation for us in SQL.

SELECT DISTINCT * FROM table;

	Pig
	The DISTINCT
 operation.

b = DISTINCT a;

Performance analysis

Understanding this pattern’s performance profile is important
 for effective use. The main consideration in determining how to set up
 the MapReduce job is the number of reducers you think you will need.
 The number of reducers is highly dependent on the total number of
 records and bytes coming out of the mappers, which is dependent on how
 much data the combiner is able to eliminate. Basically, if duplicates
 are very rare within an input split (and thus the combiner did almost
 nothing), pretty much all of the data is going to be sent to the
 reduce phase.
You can find the number of output bytes and records by looking
 at the JobTracker status of the job on a sample run. Take the number
 of output bytes and divide by the number of reducers you are thinking
 about using. That is about how many bytes each reducer will get, not
 accounting for skew. The number that a reducer can handle varies from
 deployment to deployment, but usually you shouldn’t pass it more than
 a few hundred megabytes. You also don’t want to pass too few records,
 because then your output files will be tiny and there will be
 unnecessary overhead in spinning up the reducers. Aim for each reducer
 to receive more than the block size of records (e.g., if your block
 size is 64MB, have at least 64MB sent to the reducer).
Since most of the data in the data set is going to be sent to
 the reducers, you will use a relatively large number of reducers to
 run this job. Anywhere from one reducer per hundred mappers, to one
 reducer per two mappers, will get the job done here. Start with the
 theoretical estimate based on the output records, but do additional
 testing to find the sweet spot. In general, with this pattern, if you
 want your reducers to run in half the time, double the number of
 reducers... Just be careful of the files getting too small.
Caution
Be conscious of how many reduce slots your cluster has when
 selecting the number of reducers of your job. A good start for the
 distinct pattern would be close to the number of reduce slots for
 reasonably sized data sets or twice the number of reduce slots for
 very large data sets.

Distinct Examples

Distinct user IDs

Finding a distinct set of values is a great example of MapReduce’s
 power. Because each reducer is presented with a unique key and a set
 of values associated with that key, in order to produce a distinct
 value, we simply need to set our key to whatever we are trying to
 gather a distinct set of.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of user’s comments, determine the distinct
 set of user IDs.
Mapper code

The Mapper will get the user ID from each input record. This
 user ID will be output as the key with a null value.

public static class DistinctUserMapper extends
 Mapper<Object, Text, Text, NullWritable> {

 private Text outUserId = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // Get the value for the UserId attribute
 String userId = parsed.get("UserId");

 // Set our output key to the user's id
 outUserId.set(userId);

 // Write the user's id with a null value
 context.write(outUserId, NullWritable.get());
 }
}

Reducer code

The grunt work of building a distinct set of user IDs is
 handled by the MapReduce framework. Each reducer is given a unique
 key and a set of null values. These values are ignored and the input
 key is written to the file system with a null value.

public static class DistinctUserReducer extends
 Reducer<Text, NullWritable, Text, NullWritable> {

 public void reduce(Text key, Iterable<NullWritable> values,
 Context context) throws IOException, InterruptedException {

 // Write the user's id with a null value
 context.write(key, NullWritable.get());
 }
}

Combiner optimization

A combiner can and should be used in the distinct pattern.
 Duplicate keys will be removed from each local map’s output, thus
 reducing the amount of network I/O required. The same code for the
 reducer can be used in the combiner.

Chapter 4. Data Organization Patterns

In contrast to the previous chapter on filtering, this chapter is all about reorganizing data. The
 value of individual records is often multipled by the way they are partitioned, sharded, or
 sorted. This is especially true in distributed systems, where partitioning, sharding, and
 sorting can be exploited for performance.
In many organizations, Hadoop and other MapReduce solutions are only a
 piece in the larger data analysis platform. Data will typically have to be
 transformed in order to interface nicely with the other systems. Likewise,
 data might have to be transformed from its original state to a new state to
 make analysis in MapReduce easier.
This chapter contains several pattern subcategories as you will see in each pattern description:
	The structured to hierarchical pattern

	The partitioning and
 binning patterns

	The total order sorting and
 shuffling patterns

	The generating data pattern

The patterns in this chapter are often used together to solve data organization
 problems. For example, you may want to restructure your data to be
 hierarchical, bin the data, and then have the bins be sorted. See Job Chaining in Chapter 6 for more details on how to
 tackle the problem of combining patterns together to solve more complex
 problems.
Structured to Hierarchical

Pattern Description

The structured to hierarchical pattern
 creates new records from data that started in a very
 different structure. Because of its importance, this pattern in many
 ways stands alone in the chapter.
Intent

Transform your row-based data to a hierarchical format, such as
 JSON or XML.

Motivation

When migrating data from an RDBMS to a Hadoop system, one of the
 first things you should consider doing is reformatting your data into
 a more conducive structure. Since Hadoop doesn’t care what format your
 data is in, you should take advantage of hierarchical data to avoid
 doing joins.
For example, our StackOverflow data contains a table about comments, a table about posts, etc.
 It is pretty obvious that the data is stored in an normalized SQL database. When you visit
 a post on StackOverflow, all the different pieces need to be coalesced into one view. This
 gets even more complicated when you are trying to do analytics at the level of individual
 posts. Imagine trying to correlate the length of the post with the length of the comments.
 This requires you to first do a join, an expensive operation, then extract the data that
 allows you to do your real work. If instead you group the data by post so that the
 comments are colocated with the posts and the edit revisions (i.e., denormalizing the
 tables), this type of analysis will be much easier and more intuitive. Keeping the data in
 a normalized form in this case serves little purpose.
Unfortunately, data doesn’t always come grouped together. When
 someone posts an answer to a StackOverflow question, Hadoop can’t
 insert that record into the hierarchy immediately. Therefore, creating
 the denormalized records for MapReduce has to be done in a batch
 fashion periodically.
Another way to deal with a steady stream of updates is HBase. HBase is able to store data in a semi-structured and hierarchical fashion well. MongoDB
 would also be a good candidate for storing this type of data.

Applicability

The following should be true for this pattern to be
 appropriate:
	You have data sources that are linked by some set of foreign
 keys.

	Your data is structured and row-based.

Structure

Figure 4-1 shows the structure
 for this pattern. The description of each component is as
 follows:
	If you wish to combine multiple data sources into a
 hierarchical data structure, a Hadoop class called MultipleInputs from org.apache.hadoop.mapreduce.lib.input is
 extremely valuable. MultipleInputs allows you to specify
 different input paths and different mapper classes for each input.
 The configuration is done in the driver. If you are loading data
 from only one source in this pattern, you don’t need this
 step.

	The mappers load the data and parse the records into one
 cohesive format so that your work in the reducers is easier. The
 output key should reflect how you want to identify the root of
 each hierarchical record. For example, in our StackOverflow
 example, the root would be the post ID. You also need to give each
 piece of data some context about its source. You need to identify
 whether this output record is a post or a comment. To do this, you
 can simply concatenate some sort of label to the output value
 text.

	In general, a combiner isn’t going to help you too much
 here. You could hypothetically group items with the same key and
 send them over together, but this has no major compression gains
 since all you would be doing is concatenating strings, so the size
 of the resulting string would be the same as the inputs.

	The reducer receives the data from all the different sources
 key by key. All of the data for a particular grouping is going to
 be provided for you in one iterator, so all that is left for you
 to do is build the hierarchical data structure from the list of
 data items. With XML or JSON, you’ll build a single object and
 then write it out as output. The examples in this section show
 XML, which provides several convenient methods for constructing
 data structures. If you are using some other format, such as a
 custom format, you’ll just need to use the proper object building
 and serialization methods.

[image: The structure of the structured to hierarchical pattern]

Figure 4-1. The structure of the structured to hierarchical
 pattern

Consequences

The output will be in a hierarchical form, grouped by the key
 that you specified.
However, be careful that many formats such as XML and JSON have
 some sort of top-level root element that encompasses all of the
 records. If you actually need the document to be well-formed
 top-to-bottom, it’s usually easier to add this header and footer text
 as some post-processing step.

Known uses

	Pre-joining data
	Data arrives in disjointed structured data sets, and for
 analytical purposes it would be easier to bring the data
 together into more complex objects. By doing this, you are
 setting up your data to take advantage of the NoSQL model of
 analysis.

	Preparing data for HBase or MongoDB
	HBase is a natural way to store this data, so you can use this method
 to bring the data together in preparation for loading into HBase
 or MongoDB. Creating a new table and then executing a bulk
 import via MapReduce is particularly effective. The alternative
 is to do several rounds of inserts, which might be less
 efficient.

Resemblances

	SQL
	It’s rare that you would want to do something like this in a
 relational database, since storing data in this way is not
 conducive to analysis with SQL. However, the way you would solve
 a similar problem in an RDBMS is to join the data and then
 perform analysis on the result.

	Pig
	Pig has reasonable support for hierarchical data
 structures. You can have hierarchical bags and tuples, which
 make it easy to represent hierarchical structures and lists of
 objects in a single record. The COGROUP method in Pig does a great job of bringing data together
 while preserving the original structure. However, using the
 predefined keywords to do any sort of real analysis on a complex
 record is more challenging out of the box. For this, a
 user-defined function is the right way to go. Basically, you
 would use Pig to build and group the records, then a UDF to make
 sense of the data.
data_a = LOAD '/data/comments/' AS PigStorage('|');
data_b = LOAD '/data/posts/' AS PigStorage(',');

grouped = COGROUP data_a BY $2, data_b BY $1;

analyzed = FOREACH grouped GENERATE udfs.analyze(group, $1, $2);

...

Performance analysis

There are two performance concerns that you need to pay
 attention to when using this pattern. First, you need to be aware of
 how much data is being sent to the reducers from the mappers, and
 second you need to be aware of the memory footprint of the object that
 the reducer builds.
Since records with the grouping key can be scattered anywhere in
 the data set, pretty much all of data is going to move across the
 network. For this reason, you will need to pay particular attention to
 having an adequate number of reducers. The same strategies apply here
 that are employed in other patterns that shuffle everything over the
 network.
The next major concern is the possibility of hot spots in the
 data that could result in an obscenely large record. With large data
 sets, it is conceivable that a particular output record is going to
 have a lot of data associated with it. Imagine that for some reason a
 post on StackOverflow has a million comments associated with it. That
 would be extremely rare and unlikely, but not in the realm of the
 impossible. If you are building some sort of XML object, all of those
 comments at one point might be stored in memory before writing the
 object out. This can cause you to blow out the heap of the Java
 Virtual Machine, which obviously should be avoided.
Another problem with hot spots is a skew in how much data each
 reducer is handling. This is going to be a similar problem in just
 about any MapReduce job. In many cases the skew can be ignored, but if
 it really matters you can write a custom partitioner to split the data
 up more evenly.

Structured to Hierarchical Examples

Post/comment building on StackOverflow

In this example, we will take the posts and comments of the StackOverflow data and group
 them together. A hierarchy will look something like:
Posts
 Post
 Comment
 Comment
 Post
 Comment
 Comment
 Comment
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a list of posts and comments, create a structured
 XML hierarchy to nest comments with their related post.
Driver code

We don’t usually describe the code for the driver, but in this
 case we are doing something exotic with MultipleInputs. All we do differently is
 create a MultipleInputs object and add the
 comments path and the posts path with their respective mappers. The
 paths for the posts and comments data are provided via the command
 line, and the program retrieves them from the args array.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "PostCommentHierarchy");
 job.setJarByClass(PostCommentBuildingDriver.class);

 MultipleInputs.addInputPath(job, new Path(args[0]),
 TextInputFormat.class, PostMapper.class);

 MultipleInputs.addInputPath(job, new Path(args[1]),
 TextInputFormat.class, CommentMapper.class);

 job.setReducerClass(UserJoinReducer.class);

 job.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(job, new Path(args[2]));

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true) ? 0 : 2);
}

Mapper code

In this case, there are two mapper classes, one for comments
 and one for posts. In both, we extract the post ID to use it as the
 output key. We output the input value prepended with a character
 (“P” for a post or “C” for a comment) so we know which data set the
 record came from during the reduce phase.

public static class PostMapper extends Mapper<Object, Text, Text, Text> {

 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // The foreign join key is the post ID
 outkey.set(parsed.get("Id"));

 // Flag this record for the reducer and then output
 outvalue.set("P" + value.toString());
 context.write(outkey, outvalue);
 }
}

public static class CommentMapper extends Mapper<Object, Text, Text, Text> {
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // The foreign join key is the post ID
 outkey.set(parsed.get("PostId"));

 // Flag this record for the reducer and then output
 outvalue.set("C" + value.toString());
 context.write(outkey, outvalue);
 }
}

Reducer code

The reducer builds the hierarchical XML object. All the values
 are iterated to get the post record and collect a list of comments.
 We know which record is which by the flag we added to the value.
 These flags are removed when assigning post or adding the list. Then, if the post
 is not null, an XML record is constructed with the post as the
 parent and comments as the children.
The implementation of the nestElements follows. We chose to use an
 XML library to build the final record, but please feel free to use
 whatever means you deem necessary.

public static class PostCommentHierarchyReducer extends
 Reducer<Text, Text, Text, NullWritable> {

 private ArrayList<String> comments = new ArrayList<String>();
 private DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 private String post = null;

 public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {
 // Reset variables
 post = null;
 comments.clear();

 // For each input value
 for (Text t : values) {
 // If this is the post record, store it, minus the flag
 if (t.charAt(0) == 'P') {
 post = t.toString().substring(1, t.toString().length())
 .trim();
 } else {
 // Else, it is a comment record. Add it to the list, minus
 // the flag
 comments.add(t.toString()
 .substring(1, t.toString().length()).trim());
 }
 }
 // If there are no comments, the comments list will simply be empty.

 // If post is not null, combine post with its comments.
 if (post != null) {
 // nest the comments underneath the post element
 String postWithCommentChildren = nestElements(post, comments);

 // write out the XML
 context.write(new Text(postWithCommentChildren),
 NullWritable.get());
 }
 }
 ...
The nestElements method
 takes the post and the list of comments to create a new string of
 XML to output. It uses a DocumentBuilder and some additional helper methods to copy the Element objects
 into new ones, in addition to their attributes. This copying occurs
 to rename the element tags from row to either post or comment. The final Document is then transformed into
 an XML string.

 private String nestElements(String post, List<String> comments) {
 // Create the new document to build the XML
 DocumentBuilder bldr = dbf.newDocumentBuilder();
 Document doc = bldr.newDocument();

 // Copy parent node to document
 Element postEl = getXmlElementFromString(post);
 Element toAddPostEl = doc.createElement("post");

 // Copy the attributes of the original post element to the new one
 copyAttributesToElement(postEl.getAttributes(), toAddPostEl);

 // For each comment, copy it to the "post" node
 for (String commentXml : comments) {
 Element commentEl = getXmlElementFromString(commentXml);
 Element toAddCommentEl = doc.createElement("comments");

 // Copy the attributes of the original comment element to
 // the new one
 copyAttributesToElement(commentEl.getAttributes(),
 toAddCommentEl);

 // Add the copied comment to the post element
 toAddPostEl.appendChild(toAddCommentEl);
 }

 // Add the post element to the document
 doc.appendChild(toAddPostEl);

 // Transform the document into a String of XML and return
 return transformDocumentToString(doc);
 }

 private Element getXmlElementFromString(String xml) {
 // Create a new document builder
 DocumentBuilder bldr = dbf.newDocumentBuilder();

 return bldr.parse(new InputSource(new StringReader(xml)))
 .getDocumentElement();
 }

 private void copyAttributesToElement(NamedNodeMap attributes,
 Element element) {

 // For each attribute, copy it to the element
 for (int i = 0; i < attributes.getLength(); ++i) {
 Attr toCopy = (Attr) attributes.item(i);
 element.setAttribute(toCopy.getName(), toCopy.getValue());
 }
 }

 private String transformDocumentToString(Document doc) {

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,
 "yes");
 StringWriter writer = new StringWriter();
 transformer.transform(new DOMSource(doc), new StreamResult(
 writer));
 // Replace all new line characters with an empty string to have
 // one record per line.
 return writer.getBuffer().toString().replaceAll("\n|\r", "");
 }
}

Question/answer building on StackOverflow

This is a continuation of the previous example and will use the
 previous analytic’s output as the input to this analytic. Now that we
 have the comments associated with the posts, we are going to associate
 the post answers with the post questions. This needs to be done
 because posts consist of both answers and questions and are
 differentiated only by their PostTypeId. We’ll group them together by
 Id in questions and ParentId in answers.
The main difference between the two applications of this pattern
 is that in this one we are dealing only with one data set.
 Effectively, we are using a self-join here to correlate the different
 records from the same data set.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given the output of the previous example, perform a
 self-join operation to create a question, answer, and comment
 hierarchy.
Mapper code

The first thing the mapper code does is determine whether the
 record is a question or an answer, because the behavior for each
 will be different. For a question, we will extract Id as the key and label it as a question.
 For an answer, we will extract ParentId as the key and label it as an
 answer.

public class QuestionAnswerBuildingDriver {

 public static class PostCommentMapper extends
 Mapper<Object, Text, Text, Text> {

 private DocumentBuilderFactory dbf = DocumentBuilderFactory
 .newInstance();
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 // Parse the post/comment XML hierarchy into an Element
 Element post = getXmlElementFromString(value.toString());

 int postType = Integer.parseInt(post.getAttribute("PostTypeId"));

 // If postType is 1, it is a question
 if (postType == 1) {
 outkey.set(post.getAttribute("Id"));
 outvalue.set("Q" + value.toString());
 } else {
 // Else, it is an answer
 outkey.set(post.getAttribute("ParentId"));
 outvalue.set("A" + value.toString());
 }

 context.write(outkey, outvalue);
 }

 private Element getXmlElementFromString(String xml) {
 // same as previous example, Mapper code
 }
 }

Reducer code

The reducer code is very similar to the that in the previous
 example. It iterates through the input values and grabs the question
 and answer, being sure to remove the flag. It then nests the answers
 inside the question in the same fashion as the previous example. The
 difference is that tags are “question” instead of the “post” and
 “answer” instead of “comment.” The helper functions are omitted here
 for brevity. They can be viewed in the previous example.

public static class QuestionAnswerReducer extends
 Reducer<Text, Text, Text, NullWritable> {

 private ArrayList<String> answers = new ArrayList<String>();
 private DocumentBuilderFactory dbf = DocumentBuilderFactory
 .newInstance();
 private String question = null;

 public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {
 // Reset variables
 question = null;
 answers.clear();

 // For each input value
 for (Text t : values) {
 // If this is the post record, store it, minus the flag
 if (t.charAt(0) == 'Q') {
 question = t.toString().substring(1, t.toString().length())
 .trim();
 } else {
 // Else, it is a comment record. Add it to the list, minus
 // the flag
 answers.add(t.toString()
 .substring(1, t.toString().length()).trim());
 }
 }

 // If post is not null
 if (question != null) {
 // nest the comments underneath the post element
 String postWithCommentChildren = nestElements(question, answers);

 // write out the XML
 context.write(new Text(postWithCommentChildren),
 NullWritable.get());
 }
 }

 ... // ommitted helper functions
}

Partitioning

Pattern Description

The partitioning pattern moves the records into categories (i.e., shards, partitions, or
 bins) but it doesn't really care about the order of records.
Intent

The intent is to take similar records in a data set and
 partition them into distinct, smaller data sets.

Motivation

If you want to look at a particular set of data—such as postings
 made on a particular date—the data items are normally spread out
 across the entire data set. So looking at just one of these subsets
 requires an entire scan of all of the data. Partitioning means
 breaking a large set of data into smaller subsets, which can be chosen
 by some criterion relevant to your analysis. To improve performance,
 you can run a job that takes the data set and breaks the partitions
 out into separate files. Then, when a particular subset for the data
 is to be analyzed, the job needs only to look at that data.
Partitioning by date is one of the most common schemes. This
 helps when we want to analyze a certain span of time, because the data
 is already grouped by that criterion. For instance, suppose you have
 event data that spans three years in your Hadoop cluster, but for
 whatever reason the records are not ordered at all by date. If you
 only care about data from January 27 to February 3 of the current
 year, you must scan all of the data since those events could be
 anywhere in the data set. If instead you had the events partitioned
 into months (i.e., you have a file with January data, a file with
 February data, etc.), you would only need to run your MapReduce job
 over the January and February partitions. It would be even better if
 they were partitioned by day!
Partitioning can also help out when you have several different
 types of records in the same data set, which is increasingly common in
 NoSQL. For example, in a HTTP server logs, you’ll have GET and POST requests, internal system messages, and
 error messages. Analysis may care about only one category of this
 data, so partitioning it into these categories will help narrow down
 the data the job runs over before it even runs.
In an RDBMS, a typical criterion for partitioning is what you
 normally filter by in the WHERE
 clause. So, for example, if you are typically filtering down records
 by country, perhaps you should partition by country. This applies in
 MapReduce as well. If you find yourself filtering out a bunch of
 records in the mapper due to the same criteria over and over, you
 should consider partitioning your data set.
There is no downside to partitioning other than having to build
 the partitions. A MapReduce job can still run over all the partitions
 at once if necessary.

Applicability

The one major requirement to apply this pattern is knowing how
 many partitions you are going to have ahead of time. For example, if
 you know you are going to partition by day of the week, you know that
 you will have seven partitions.
You can get around this requirement by running an analytic that
 determines the number of partitions. For example, if you have a bunch
 of timestamped data, but you don’t know how far back it spans, run a
 job that figures out the date range for you.

Structure

This pattern is interesting in that it exploits the fact that
 the partitioner partitions data (imagine that!). There is no actual
 partitioning logic; all you have to do is define the function that
 determines what partition a record is going to go to in a custom
 partitioner. Figure 4-2 shows the
 structure of this pattern.
	In most cases, the identity mapper can be used.

	The custom partitioner is the meat of this pattern. The
 custom partitioner will determine which reducer to send each
 record to; each reducer corresponds to particular
 partitions.

	In most cases, the identity reducer can be used. But this
 pattern can do additional processing in the reducer if needed.
 Data is still going to get grouped and sorted, so data can be
 deduplicated, aggregated, or summarized, per partition.

[image: The structure of the partitioning pattern]

Figure 4-2. The structure of the partitioning pattern

Consequences

The output folder of the job will have one part file for each partition.
Tip
Since each category will be written out to one large file,
 this is a great place to store the data in block-compressed SequenceFiles, which are arguably the most
 efficient and easy-to-use data format in Hadoop.

Known uses

	Partition pruning by continuous value
	You have some sort of continuous variable, such as a date
 or numerical value, and at any one time you care about only a
 certain subset of that data. Partitioning the data into bins
 will allow your jobs to load only pertinent data.

	Partition pruning by category
	Instead of having some sort of continuous variable, the
 records fit into one of several clearly defined categories, such
 as country, phone area code, or language.

	Sharding
	A system in your architecture has divisions of data—such as
 different disks—and you need to partition the data into these
 existing shards.

Resemblances

	SQL
	Some SQL databases allow for automatically partitioned
 tables. This allows “partition pruning” which allows the
 database to exclude large portions of irrelevant data before
 running the SQL.

	Other patterns
	This pattern is similar to the binning pattern in this
 chapter. In most cases, binning can perform the same
 partitioning behavior as this pattern.

Performance analysis

The main performance concern with this pattern is that the
 resulting partitions will likely not have similar number of records.
 Perhaps one partition turns out to hold 50% of the data of a very
 large data set. If implemented naively, all of this data will get sent
 to one reducer and will slow down processing significantly.
It’s pretty easy to get around this, though. Split very large
 partitions into several smaller partitions, even if just randomly.
 Assign multiple reducers to one partition and then randomly assign
 records into each to spread it out a bit better.
For example, consider the “last access date” field for a user in
 StackOverflow. If we partitioned on this property equally over months,
 the most recent month will very likely be much larger than any other
 month. To prevent skew, it may make sense to partition the most recent
 month into days, or perhaps just randomly.
This method doesn’t affect processing over partitions, since you
 know that these set of files represent one larger partition. Just
 include all of them as input.

Partitioning Examples

Partitioning users by last access date

In the StackOverflow data set, users are stored in the order in which they
 registered. Instead, we want to organize the data into partitions
 based on the year of the last access date. This is done by creating a
 custom partitioner to assign record to a particular partition based on
 that date.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of user information, partition the records
 based on the year of last access date, one partition per year.
Driver code

This driver is a little different than the norm. The job needs
 to be configured to use the custom built partitioner, and this
 partitioner needs to be configured. The minimum last access year
 needs to be configured, which is 2008. The reason for this is
 explained in the partitioner code section. Also, the number of
 reducers is important to make sure the full range of partitions is
 accounted for. Given that the authors are running this example in
 2012, the maximum last access year was in 2011, spanning 4 years
 from 2008 to 2011. Users can fall into these dates as well as those
 in between, meaning the job is configured to have exactly 4
 reducers.

...
// Set custom partitioner and min last access date
job.setPartitionerClass(LastAccessDatePartitioner.class);
LastAccessDatePartitioner.setMinLastAccessDate(job, 2008);

// Last access dates span between 2008-2011, or 4 years
job.setNumReduceTasks(4);
...

Mapper code

The mapper pulls the last access date out of each input
 record. This date is output as the key, and the full input record is
 output as the value. This is so the partitioner can do the work of
 putting each record into its appropriate partition. This key is
 later ignored during output from the reduce phase.

public static class LastAccessDateMapper extends
 Mapper<Object, Text, IntWritable, Text> {

 // This object will format the creation date string into a Date object
 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 private IntWritable outkey = new IntWritable();

 protected void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // Grab the last access date
 String strDate = parsed.get("LastAccessDate");

 // Parse the string into a Calendar object
 Calendar cal = Calendar.getInstance();
 cal.setTime(frmt.parse(strDate));
 outkey.set(cal.get(Calendar.YEAR));

 // Write out the year with the input value
 context.write(outkey, value);
 }
}

Partitioner code

The partitioner examines each key/value pair output by the
 mapper to determine which partition the key/value pair will be
 written. Each numbered partition will be copied by its associated
 reduce task during the reduce phase. The partitioner implements
 the Configurable
 interface. The setConf method is
 called during task construction to configure the partitioner. Here,
 the minimum value of the last access date is pulled from the
 configuration. The driver is responsible for calling LastAccessDatePartitioner.setMinLastAccessDate
 during job configuration. This date is used to subtract from each
 key (last access date) to determine what partition it goes to. The
 minimum last access date is 2008, so all users who last logged into
 StackOverflow in 2008 will be assigned to partition zero.

public static class LastAccessDatePartitioner extends
 Partitioner<IntWritable, Text> implements Configurable {

 private static final String MIN_LAST_ACCESS_DATE_YEAR =
 "min.last.access.date.year";

 private Configuration conf = null;
 private int minLastAccessDateYear = 0;

 public int getPartition(IntWritable key, Text value, int numPartitions) {
 return key.get() - minLastAccessDateYear;
 }

 public Configuration getConf() {
 return conf;
 }

 public void setConf(Configuration conf) {
 this.conf = conf;
 minLastAccessDateYear = conf.getInt(MIN_LAST_ACCESS_DATE_YEAR, 0);
 }

 public static void setMinLastAccessDate(Job job,
 int minLastAccessDateYear) {
 job.getConfiguration().setInt(MIN_LAST_ACCESS_DATE_YEAR,
 minLastAccessDateYear);
 }
}

Reducer code

The reducer code is very simple since we simply want to output
 the values. The work of partitioning has been done at this
 point.

public static class ValueReducer extends
 Reducer<IntWritable, Text, Text, NullWritable> {

 protected void reduce(IntWritable key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {
 for (Text t : values) {
 context.write(t, NullWritable.get());
 }
 }
}

Binning

Pattern Description

The binning pattern, much like the previous pattern, moves the records into
 categories irrespective of the order of records.
Intent

For each record in the data set, file each one into one or more
 categories.

Motivation

Binning is very similar to partitioning and often can be used to
 solve the same problem. The major difference is in how the bins or
 partitions are built using the MapReduce framework. In some
 situations, one solution works better than the other.
Binning splits data up in the map phase instead of in the
 partitioner. This has the major advantage of eliminating the need for
 a reduce phase, usually leading to more efficient resource allocation.
 The downside is that each mapper will now have one file per possible
 output bin. This means that, if you have a thousand bins and a
 thousand mappers, you are going to output a total of one million
 files. This is bad for NameNode scalability and follow-on analytics.
 The partitioning pattern will have one output file per category and
 does not have this problem.

Structure

	This pattern’s driver is unique in using the MultipleOutputs class, which sets up the job’s output to write multiple
 distinct files.

	The mapper looks at each line, then iterates through a list
 of criteria for each bin. If the record meets the criteria, it is
 sent to that bin. See Figure 4-3.

	No combiner, partitioner, or reducer is used in this
 pattern.

[image: The structure of the binning pattern]

Figure 4-3. The structure of the binning pattern

Consequences

Each mapper outputs one small file per bin.
Caution
Data should not be left as a bunch of tiny files. At some
 point, you should run some postprocessing that collects the outputs
 into larger files.

Resemblances

	Pig
	The SPLIT operation in
 Pig implements this pattern.

SPLIT data INTO
 eights IF col1 == 8,
 bigs IF col1 > 8,
 smalls IF (col1 < 8 AND col1 > 0);

Performance analysis

This pattern has the same scalability and performance properties
 as other map-only jobs. No sort, shuffle, or reduce needs to be
 performed, and most of the processing is going to be done on data that
 is local.

Binning Examples

Binning by Hadoop-related tags

We want to filter data by tag into different bins so that we can
 run follow-on analysis without having to run over all of the data. We
 care only about the Hadoop-related tags, specifically hadoop, pig,
 hive, and hbase. Also, if the post mentions Hadoop anywhere in the
 text or title, we’ll put that into its own bin.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of StackOverflow posts, bin the posts into
 four bins based on the tags hadoop, pig, hive, and hbase. Also, create
 a separate bin for posts mentioning hadoop in the text or
 title.
Driver code

The driver is pretty much the same boiler plate code, except
 that we use MultipleOutputs for the different bins.
 MultipleOutputs takes in a name,
 bins, that is used in the mapper
 to write different output. The name is essentially the output
 directory of the job. Output counters are disabled by default, so be
 sure to turn those on if you don’t expect a large number of named
 outputs. We also set the number of reduce tasks to zero, as this is
 a map-only job.

...
// Configure the MultipleOutputs by adding an output called "bins"
// With the proper output format and mapper key/value pairs
MultipleOutputs.addNamedOutput(job, "bins", TextOutputFormat.class,
 Text.class, NullWritable.class);

// Enable the counters for the job
// If there are a significant number of different named outputs, this
// should be disabled
MultipleOutputs.setCountersEnabled(job, true);

// Map-only job
job.setNumReduceTasks(0);
...

Mapper code

The setup phase creates an instance of MultipleOutputs using the context. The
 mapper consists of several if-else statements to check each of the
 tags of a post. Each tag is checked against one of our tags of
 interest. If the post contains the tag, it is written to the bin.
 Posts with multiple interesting tags will essentially be duplicated
 as they are written to the appropriate bins. Finally, we check
 whether the body of the post contains the word “hadoop”. If it does,
 we output it to a separate bin.
Be sure to close the MultipleOutputs during cleanup! Otherwise, you may not have much output at all.
Caution
The typical file names, part-mnnnnn,
 will be in the final output directory. These files will be empty
 unless the Context object is
 used to write key/value pairs. Instead, files will be named
 bin_name-mnnnnn. In
 the following example, bin_name will
 be, hadoop-tag, pig-tag, hive-tag, hbase-tag, or hadoop-post.
Note that setting the output format of the job to a NullOutputFormat will remove these empty
 output files when using the mapred package. In the newer API, the
 output files are not committed from their _temporary directory into the configured
 output directory in HDFS. This may be fixed in a newer version of
 Hadoop.

public static class BinningMapper extends
 Mapper<Object, Text, Text, NullWritable> {

 private MultipleOutputs<Text, NullWritable> mos = null;

 protected void setup(Context context) {
 // Create a new MultipleOutputs using the context object
 mos = new MultipleOutputs(context);
 }

 protected void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 String rawtags = parsed.get("Tags");

 // Tags are delimited by ><. i.e. <tag1><tag2><tag3>
 String[] tagTokens = StringEscapeUtils.unescapeHtml(rawtags).split(
 "><");

 // For each tag
 for (String tag : tagTokens) {
 // Remove any > or < from the token
 String groomed = tag.replaceAll(">|<", "").toLowerCase();

 // If this tag is one of the following, write to the named bin
 if (groomed.equalsIgnoreCase("hadoop")) {
 mos.write("bins", value, NullWritable.get(), "hadoop-tag");
 }
 if (groomed.equalsIgnoreCase("pig")) {
 mos.write("bins", value, NullWritable.get(), "pig-tag");
 }
 if (groomed.equalsIgnoreCase("hive")) {
 mos.write("bins", value, NullWritable.get(), "hive-tag");
 }
 if (groomed.equalsIgnoreCase("hbase")) {
 mos.write("bins", value, NullWritable.get(), "hbase-tag");
 }
 }

 // Get the body of the post
 String post = parsed.get("Body");

 // If the post contains the word "hadoop", write it to its own bin
 if (post.toLowerCase().contains("hadoop")) {
 mos.write("bins", value, NullWritable.get(), "hadoop-post");
 }
 }

 protected void cleanup(Context context) throws IOException,
 InterruptedException {
 // Close multiple outputs!
 mos.close();
 }
}

Total Order Sorting

Pattern Description

The total order sorting pattern is
 concerned with the order of the data from record to
 record.
Intent

You want to sort your data in parallel on a sort key.

Motivation

Sorting is easy in sequential programming. Sorting in MapReduce,
 or more generally in parallel, is not easy. This is because the
 typical “divide and conquer” approach is a bit harder to apply
 here.
Each individual reducer will sort its data by key, but
 unfortunately, this sorting is not global across all data. What we
 want to do here is a total order sorting where, if you concatenate the
 output files, the records are sorted. If we just concatenate the
 output of a simple MapReduce job, segments of the data will be sorted,
 but the whole set will not be.
Sorted data has a number of useful properties. Sorted by time,
 it can provide a timeline view on the data. Finding things in a sorted
 data set can be done with binary search instead of linear search. In
 the case of MapReduce, we know the upper and lower boundaries of each
 file by looking at the last and first records, respectively. This can
 be useful for finding records, as well, and is one of the primary
 characteristics of HBase. Some databases can bulk load data faster if
 the data is sorted on the primary key or index column.
There are countless more reasons to have sorted data from an
 application standpoint or follow-on system standpoint. However, having
 data sorted for use in MapReduce serves little purpose, so hopefully
 this expensive operation only has to be done sparingly.

Applicability

The main requirement here is pretty obvious: your sort key has to be comparable so the
 data can be ordered.

Structure

Total order sorting may be one of the more complicated patterns
 you’ll see. The reason this is that you first have to determine a set
 of partitions divided by ranges of values that will produce
 equal-sized subsets of data. These ranges will determine which reducer
 will sort which range of data. Then something similar to the
 partitioning pattern is run: a custom partitioner is used to partition
 data by the sort key. The lowest range of data goes to the first
 reducer, the next range goes to the second reducer, so on and so
 forth.
This pattern has two phases: an analyze phase that determines
 the ranges, and the order phase that actually sorts the data. The
 analyze phase is optional in some ways. You need to run it only once
 if the distribution of your data does not change quickly over time,
 because the value ranges it produces will continue to perform well.
 Also, in some cases, you may be able to guess the partitions yourself,
 especially if the data is evenly distributed. For example, if you are
 sorting comments by user ID, and you have a million users, you can
 assume that with a thousand reducers, each range is going to have a
 range of a thousand users. This is because comments by user ID should
 be spread out evenly and since you know the number of total users, you
 can divide that number by the number of reducers you want to
 use.
The analyze phase is a random sampling of the data. The
 partitions are then based on that random sample. The principle is that
 partitions that evely split the random sample should evenly split the
 larger data set well. The structure of the analyze step is as
 follows:
	The mapper does a simple random sampling. When dividing
 records, it outputs the sort key as its output key so that the
 data will show up sorted at the reducer. We don’t care at all
 about the actual record, so we’ll just use a null value to save on
 space.

	Ahead of time, determine the number of records in the total
 data set and figure out what percentage of records you’ll need to
 analyze to make a reasonable sample. For example, if you plan on
 running the order with a thousand reducers, sampling about a
 hundred thousand records should give nice, even partitions.
 Assuming you have a billion records, divide 100,000 by
 1,000,000,000. This gives 0.0001, meaning .01% of the records
 should be run through the analyze phase.

	Only one reducer will be used here. This will collect the
 sort keys together into a sorted list (they come in sorted, so
 that will be easy). Then, when all of them have been collected,
 the list of keys will be sliced into the data range
 boundaries.

The order phase is a relatively straightforward application of
 MapReduce that uses a custom partitioner. The structure of the order
 step is as follows:
	The mapper extracts the sort key in the same way as the
 analyze step. However, this time the record itself is stored as
 the value instead of being ignored.

	A custom partitioner is used that loads up the partition
 file. In Hadoop, you can use the TotalOrderPartitioner, which is built
 specifically for this purpose. It takes the data ranges from the
 partition file produced in the previous step and decides which
 reducer to send the data to.

	The reducer’s job here is simple. The shuffle and sort take
 care of the heavy lifting. The reduce function simply takes the
 values that have come in and outputs them. The number of reducers
 needs to be equal to the number of partitions for the TotalOrderPartitioner to work
 properly.

Caution
Note that the number of ranges in the intermediate partition
 needs to be equal to the number of reducers in the order step. If
 you decide to change the number of reducers and you’ve been reusing
 the same file, you’ll need to rebuild it.

Tip
If you want to have a primary sort key and a secondary sort
 key, concatenate the keys, delimited by something. For example, if
 you want to sort by last name first, and city second, use a key that
 looks like Smith^Baltimore.

Caution
Using Text for nearly everything in Hadoop is very natural
 since that’s the format in which data is coming in. Be careful when
 sorting on numerical data, though! The string "10000" is less than than "9" if they are compared as strings, which
 is not what we want. Either pad the numbers with zeros or use a
 numerical data type.

Consequences

The output files will contain sorted data, and the output file
 names will be sorted such that the data is in a total sorting. In
 Hadoop, you’ll be able to issue hadoop fs
 -cat output/part-r-* and retrieve the data in a sorted
 manner.

Resemblances

	SQL
	Ordering in SQL is pretty easy!

SELECT * FROM data ORDER BY col1;

	Pig
	Ordering in Pig is syntactically pretty easy, but it’s a very
 expensive operation. Behind the scenes, it will run a
 multi-stage MapReduce job to first find the partitions, and then
 perform the actual sort.

c = ORDER b BY col1;

Performance analysis

This operation is expensive because you effectively have to load
 and parse the data twice: first to build the partition ranges, and
 then to actually sort the data.
The job that builds the partitions is straightforward and
 efficient since it has only one reducer and sends a minimal amount of
 data over the network. The output file is small, so writing it out is
 trivial. Also, you may only have to run this now and then, which will
 amortize the cost of building it over time.
The order step of the job has performance characteristics similar to the other data
 organization patterns, because it has to move all of the data over the network and write
 all of the data back out. Therefore, you should use a relatively large number of
 reducers.

Total Order Sorting Examples

Sort users by last visit

The user data in our StackOverflow data set is in the order of
 the account’s creation. Instead, we’d like to have the data ordered by
 the last time they have visited the site.
For this example, we have a special driver that runs both the
 analyze and order steps. Also, there are two sets of MapReduce jobs,
 one for analyze and one for order.
Driver code

Let’s break the driver down into two sections: building the partition list via
 sampling, then performing the sort.
The first section parses the input command line arguments and
 creates input and output variables from them. It creates path files
 to the partition list and the staging directory. The partition list
 is used by the TotalOrderPartitioner to make sure the
 key/value pairs are sorted properly. The staging directory is used
 to store intermediate output between the two jobs. There is nothing
 too special with the first job configuration. The main thing to note
 is that the first job is a map-only only job that uses a SequenceFileOutputFormat.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Path inputPath = new Path(args[0]);
 Path partitionFile = new Path(args[1] + "_partitions.lst");
 Path outputStage = new Path(args[1] + "_staging");
 Path outputOrder = new Path(args[1]);

 // Configure job to prepare for sampling
 Job sampleJob = new Job(conf, "TotalOrderSortingStage");
 sampleJob.setJarByClass(TotalOrderSorting.class);

 // Use the mapper implementation with zero reduce tasks
 sampleJob.setMapperClass(LastAccessDateMapper.class);
 sampleJob.setNumReduceTasks(0);

 sampleJob.setOutputKeyClass(Text.class);
 sampleJob.setOutputValueClass(Text.class);

 TextInputFormat.setInputPaths(sampleJob, inputPath);

 // Set the output format to a sequence file
 sampleJob.setOutputFormatClass(SequenceFileOutputFormat.class);
 SequenceFileOutputFormat.setOutputPath(sampleJob, outputStage);

 // Submit the job and get completion code.
 int code = sampleJob.waitForCompletion(true) ? 0 : 1;

 ...
The second job uses the identity mapper and our reducer
 implementation. The input is the output from the first job, so we’ll
 use the identity mapper to output the key/value pairs as they are
 stored from the output. The job is configured to 10 reducers, but
 any reasonable number can be used. Next, the partition file is
 configured, even though we have not created it yet.
The next important line uses the InputSampler
 utility. This sampler writes the partition file by reading through
 the configured input directory of the job. Using the RandomSampler,
 it takes a configurable number of samples of the previous job’s
 output. This can be an expensive operation, as the entire output is
 read using this constructor. Another constructor of RandomSampler allows you to set the number
 of input splits that will be sampled. This will increase execution
 time, but you might not get as good a distribution.
After the partition file is written, the job is executed. The
 partition file and staging directory are then deleted, as they are
 no longer needed for this example.
Tip
If your data distribution is unlikely to change, it would be
 worthwhile to keep this partition file around. It can then be used
 over and over again for this job in the future as new data arrives
 on the system.

 ...

 if (code == 0) {
 Job orderJob = new Job(conf, "TotalOrderSortingStage");
 orderJob.setJarByClass(TotalOrderSorting.class);

 // Here, use the identity mapper to output the key/value pairs in
 // the SequenceFile
 orderJob.setMapperClass(Mapper.class);
 orderJob.setReducerClass(ValueReducer.class);

 // Set the number of reduce tasks to an appropriate number for the
 // amount of data being sorted
 orderJob.setNumReduceTasks(10);

 // Use Hadoop's TotalOrderPartitioner class
 orderJob.setPartitionerClass(TotalOrderPartitioner.class);

 // Set the partition file
 TotalOrderPartitioner.setPartitionFile(orderJob.getConfiguration(),
 partitionFile);

 orderJob.setOutputKeyClass(Text.class);
 orderJob.setOutputValueClass(Text.class);

 // Set the input to the previous job's output
 orderJob.setInputFormatClass(SequenceFileInputFormat.class);
 SequenceFileInputFormat.setInputPaths(orderJob, outputStage);

 // Set the output path to the command line parameter
 TextOutputFormat.setOutputPath(orderJob, outputOrder);

 // Set the separator to an empty string
 orderJob.getConfiguration().set(
 "mapred.textoutputformat.separator", "");

 // Use the InputSampler to go through the output of the previous
 // job, sample it, and create the partition file
 InputSampler.writePartitionFile(orderJob,
 new InputSampler.RandomSampler(.001, 10000));

 // Submit the job
 code = orderJob.waitForCompletion(true) ? 0 : 2;
 }

 // Clean up the partition file and the staging directory
 FileSystem.get(new Configuration()).delete(partitionFile, false);
 FileSystem.get(new Configuration()).delete(outputStage, true);

 System.exit(code);
}

Analyze mapper code

This mapper simply pulls the last access date for each user
 and sets it as the sort key for the record. The input value is
 output along with it. These key/value pairs, per our job
 configuration, are written to a SequenceFile that
 is used to create the partition list for the TotalOrderPartitioner. There is no reducer
 for this job.

public static class LastAccessDateMapper extends
 Mapper<Object, Text, Text, Text> {

 private Text outkey = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 outkey.set(parsed.get("LastAccessDate"));
 context.write(outkey, value);
 }
}

Order mapper code

This job simply uses the identity mapper to take each input
 key/value pair and output them. No special configuration or
 implementation is needed.

Order reducer code

Because the TotalOrderPartitioner took care of all the
 sorting, all the reducer needs to do is output the values with a
 NullWritable object. This will produce a part file for this reducer that is
 sorted by last access date. The partitioner ensures that the
 concatenation of all these part files (in order) produces a totally
 ordered data set.

public static class ValueReducer extends
 Reducer<Text, Text, Text, NullWritable> {

 public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {
 for (Text t : values) {
 context.write(t, NullWritable.get());
 }
 }
}

Shuffling

Pattern Description

The total order sorting and shuffling
 patterns are opposites in terms of effect, but the latter is also
 concerned with the order of data in records.
Intent

You have a set of records that you want to completely
 randomize.

Motivation

This whole chapter has been about applying some sort of order to
 your data set except for this pattern which is instead about
 completely destroying the order.
The use cases for doing such a thing are definitely few and far
 between, but two stand out. One is shuffling the data for the purposes
 of anonymizing it. Another is randomizing the data set for repeatable
 random sampling.
Anonymizing data has recently become important for organizations
 that want to maintain their users’ privacy, but still run analytics.
 The order of the data can provide some information that might lead to
 the identity of a user. By shuffling the entire data set, the
 organization is taking an extra step to anonymize the data.
Another reason for shuffling data is to be able to perform some
 sort of repeatable random sampling. For example, the first hundred
 records will be a simple random sampling. Every time we pull the first
 hundred records, we’ll get the same sample. This allows analytics that
 run over a random sample to have a repeatable result. Also, a separate
 job won’t have to be run to produce a simple random sampling every
 time you need a new sample.

Structure

	All the mapper does is output the record as the value along
 with a random key.

	The reducer sorts the random keys, further randomizing the
 data.

In other words, each record is sent to a random reducer. Then,
 each reducer sorts on the random keys in the records, producing a
 random order in that reducer.
Tip
The mapper in the shuffle pattern is barely doing anything.
 This would be a good time to anonymize the data further by
 transforming the records into an anonymized form.

Consequences

Each reducer outputs a file containing random records.

Resemblances

	SQL
	The SQL equivalent to this is to order the data set by a
 random value, instead of some column in the table. This makes it
 so each record is compared on the basis of two random numbers,
 which will produce a random ordering. We don’t have to go all
 the way and do a total ordering in MapReduce, as in the previous
 pattern. This is because sending data to a random reducer is
 sufficient.

SELECT * FROM data ORDER BY RAND()

	Pig
	Shuffling in Pig can be done as we did it in SQL: performing an
 ORDER BY on a random column.
 In this case, doing a total ordering is unnecessary. Instead, we
 can GROUP BY a random key,
 and then FLATTEN the
 grouping. This effectively implements the shuffle pattern we
 proposed behind the scenes.

c = GROUP b BY RANDOM();
d = FOREACH c GENERATE FLATTEN(b);

Performance analysis

The shuffle has some very nice performance properties. Since the
 reducer each record goes to is completely random, the data
 distribution across reducers will be completely balanced. With more
 reducers, the data will be more spread out. The size of the files will
 also be very predictable: each is the size of the data set divided by
 the number of reducers. This makes it easy to get a specific desired
 file size as output.
Other than that, the typical performance properties for the
 other patterns in this chapter apply. The pattern shuffles all of the
 data over the network and writes all of the data back to HDFS, so a
 relatively high number of reducers should be used.

Shuffle Examples

Anonymizing StackOverflow comments

To anonymize the StackOverflow comments, this example strips out the
 user ID and row ID, and truncates the date and time to just the date.
 Then the data is shuffled.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a large data set of StackOverflow comments,
 anonymize each comment by removing IDs, removing the time from the
 record, and then randomly shuffling the records within the data
 set.
Mapper code

The mapper transforms the data using our utility function that
 parses the data. Each XML attribute is looked at, and an action is
 taken based on the attribute to create a new line of XML. If it is a
 user ID or row ID, it is ignored. If it is a creation date, the
 characters following the ‘T’ are removed to ignore the time.
 Otherwise, just write out the XML attribute and value. A random key
 is generated and output along with the newly constructed
 record.

 public static class AnonymizeMapper extends
 Mapper<Object, Text, IntWritable, Text> {

 private IntWritable outkey = new IntWritable();
 private Random rndm = new Random();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 if (parsed.size() > 0) {
 StringBuilder bldr = new StringBuilder();
 // Create the start of the record
 bldr.append("<row ");

 // For each XML attribute
 for (Entry<String, String> entry : parsed.entrySet()) {

 // If it is a user ID or row ID, ignore it
 if (entry.getKey().equals("UserId")
 || entry.getKey().equals("Id")) {
 } else if (entry.getKey().equals("CreationDate")) {

 // If it is a CreationDate, remove the time from the date
 // i.e., anything after the 'T' in the value
 bldr.append(entry.getKey()
 + "=\""
 + entry.getValue().substring(0,
 entry.getValue().indexOf('T')) + "\" ");
 } else {
 // Otherwise, output the attribute and value as is
 bldr.append(entry.getKey() + "=\"" + entry.getValue()
 + "\" ");
 }

 }
 // Add the /> to finish the record
 bldr.append("/>");

 // Set the sort key to a random value and output
 outkey.set(rndm.nextInt());
 outvalue.set(bldr.toString());
 context.write(outkey, outvalue);
 }
 }
}

Reducer code

This reducer class just outputs the values in order to strip
 out the random key.

public static class ValueReducer extends
 Reducer<IntWritable, Text, Text, NullWritable> {

 protected void reduce(IntWritable key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {

 for (Text t : values) {
 context.write(t, NullWritable.get());
 }
 }
}

Chapter 5. Join Patterns

Having all your data in one giant data set is a rarity. For example, presume you have
 user information stored in a SQL database because it is updated frequently.
 Meanwhile, web logs arrive in a constant stream and are dumped directly into
 HDFS. Also, daily analytics that make sense of these logs are stored someone
 where in HDFS and financial records are stored in an encrypted repository.
 The list goes on.
Data is all over the place, and while it’s very valuable on its own,
 we can discover interesting relationships when we start analyzing these sets
 together. This is where join patterns come into play. Joins can be used to
 enrich data with a smaller reference set or they can be used to filter out
 or select records that are in some type of special list. The use cases go on
 and on as well.
In SQL, joins are accomplished using simple commands, and the database
 engine handles all of the grunt work. Sadly for us, joins in MapReduce are
 not nearly this simple. MapReduce operates on a single key/value pair at a
 time, typically from the same input. We are now working with at least two
 data sets that are probably of different structures, so we need to know what
 data set a record came from in order to process it correctly. Typically, no
 filtering is done prior to the join operation, so some join operations will
 require every single byte of input to be sent to the reduce phase, which is
 very taxing on your network. For example, joining a terabyte of data onto
 another terabyte data set could require at least two terabytes of network
 bandwith—and that’s before any actual join logic can be done.
On top of all of the complexity so far, one has to determine the best
 way out of a number of different ways to accomplish the same task. Because
 the framework is broken down into simple map and reduce tasks, there is a
 lot of hands-on work to do and a lot of things to keep in mind. After you
 learn the possibilities, the question to ask is when to use what pattern. As
 with any MapReduce operation, network bandwith is a very important resource
 and joins have a tendency to use a lot of it. Anything we can do to make the
 network transfer more efficient is worthwhile, and network optimizations are
 what differentiates these patterns.
Each of the upcoming patterns can be used to perform an inner join or
 at least one type of outer join. As far as what pattern to choose, it
 depends largely on how large the data sets are, how your data is formatted,
 and what type of join you want. On the other hand, the Cartesian product is
 completely different, but we can cross that bridge when we get there.
The first pattern discussed in this chapter, the reduce side
 join, is the most basic, along with a modified version that uses
 a Bloom filter. After that, we discuss two patterns that perform a join
 operation on the map-side using either the distributed cache or a merging
 feature in the Hadoop MapReduce API. Finally, we take a look at how to
 execute the crafty operation that is the Cartesian product.
Choosing the right type of join for your situation can be challenging. Make sure to pay
 careful attention to the criteria in the “Applicability” section of each of the pattern descriptions.
A Refresher on Joins

If you come from a strong SQL background, you can probably skip this section,
 but for those of us that started with Hadoop, joins may be a bit of a
 foreign concept.
Joins are possibly one of the most complex operations one can
 execute in MapReduce. By design, MapReduce is very good at processing
 large data sets by looking at every record or group in isolation, so
 joining two very large data sets together does not fit into the paradigm
 gracefully. Before we dive into the patterns themselves, let’s go over
 what we mean when we say join and the different
 types of joins that exist.
A join is an operation that combines records
 from two or more data sets based on a field or set of fields, known as the
 foreign key. The foreign key is the field in a
 relational table that matches the column of another table, and is used as
 a means to cross-reference between tables. Examples are the simplest way
 to go about explaining joins, so let’s dive right in. To simplify
 explanations of the join types, two data sets will be used,
 A and B, with the foreign key
 defined as f. As the different types of joins are
 described, keep the two tables A (Table 5-1) and B (Table 5-2) in mind, as they will be used in the upcoming
 descriptions.
Table 5-1. Table A
	User ID	Reputation	Location
	3	3738	New York, NY
	4	12946	New York, NY
	5	17556	San Diego, CA
	9	3443	Oakland, CA

Table 5-2. Table B
	User ID	Post ID	Text
	3	35314	Not sure why this is getting downvoted.
	3	48002	Hehe, of course, it’s all true!
	5	44921	Please see my post below.
	5	44920	Thank you very much for your reply.
	8	48675	HTML is not a subset of XML!

	INNER JOIN
	When people don’t specify the type of join when they say “join”,
 usually what they are talking about is an inner
 join. With this type of join, records from both
 A and B that contain
 identical values for a given foreign key f are
 brought together, such that all the columns of both
 A and B now make a new
 table. Records that contain values of f that
 are contained in A but not in
 B, and vice versa, are not represented in the
 result table of the join operation.
Table 5-3 shows the result of an inner
 join operation between A and
 B with User ID as
 f.
Table 5-3. Inner Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.

Records with a User ID of 3 or 5 are present in both tables,
 so they will be in the final table. Users 4 and 9 in table
 A and User 8 in table B
 are not represented in the other table, so the records will be
 omitted. However, these records will be present in a type of outer
 join, which brings us to our next type of join!

	OUTER JOIN
	An outer join is similar to an inner join, but records with a
 foreign key not present in both tables will be in the final table.
 There are three types of outer joins and each type will directly
 affect which unmatched records will be in the final table.
In a left outer join, the unmatched records in the “left” table will be in the
 final table, with null values in the columns of the right table that
 did not match on the foreign key. Unmatched records present in the
 right table will be discarded. A right outer
 join is the same as a left outer, but the difference is the right
 table records are kept and the left table values are null where
 appropriate. A full outer join will contain all unmatched records from both tables, sort
 of like a combination of both a left and right outer join.
Table 5-4 shows the result of a left
 outer join operation between A and
 B on User ID.
Table 5-4. Left Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	null	null	null
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	9	3443	Oakland, CA	null	null	null

Records with a user ID of 3 or 5 are present in both tables,
 so they will be in the final table. Users 4 and 9 in table
 A does not have a corresponding value in table
 B, but since this is a left outer join and
 A is on the left, these users will be kept but
 contain null values in the columns present only in table
 B. User 8 in B does not
 have a match in A, so it is omitted.
Table 5-5 shows the result of a
 right outer join operation between
 A and B on User ID.
Table 5-5. Right Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	null	null	null	8	48675	HTML is not a subset of XML!

Again, records with a user ID of 3 or 5 are present in both
 tables, so they will be in the final table. User 8 in
 B does not have a match in
 A, but is kept because B
 is the right table. Users 4 and 9 are omitted as they doesn’t have a
 match in table B.
Table 5-6 shows the result of a
 full outer join operation between
 A and B on User ID.
Table 5-6. Full Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	null	null	null
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	null	null	null	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	null	null	null

Once again, records with a user ID of 3 or 5 are present in
 both tables, so they will be in the final table. Users 4, 8, and 9
 are present in the resulting table even though they do not contain
 matches in their respective opposite table.

	ANTIJOIN
	An antijoin is a full outer join minus the inner join. That is, the resulting
 table contains only records that did not contain a match on
 f.
Table 5-7 shows the result of an antijoin
 operation between A and B
 on User ID.
Table 5-7. Antijoin of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	4	12946	New York, NY	null	null	null
	null	null	null	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	null	null	null

Users 4, 8, and 9 do not contain a value of
 f in both tables, so they are in the resulting
 table. Records from user 3 and 5 are not present, as they are in
 both tables.

	CARTESIAN PRODUCT
	A Cartesian product or cross
 product takes each record from a table and matches it up with every
 record from another table. If table X contains
 n records and table Y
 contains m records, the cross product of
 X and Y, denoted
 X × Y, contains
 n × m records. Unlike the
 other join operations, a Cartesian product does not contain a
 foreign key. As we will see in the upcoming pattern, this operation
 is extremely expensive to perform no matter where you implement it,
 and MapReduce is no exception.
Table 5-8 shows the result of a Cartesian
 product between A and
 B.
Table 5-8. Cartesian Product, A × B
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	3	3738	New York, NY	5	44921	Please see my post below.
	3	3738	New York, NY	5	44920	Thank you very much for your reply.
	3	3738	New York, NY	8	48675	HTML is not a subset of XML!
	4	12946	New York, NY	3	35314	Not sure why this is getting downvoted.
	4	12946	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	5	44921	Please see my post below.
	4	12946	New York, NY	5	44920	Thank you very much for your reply.
	4	12946	New York, NY	8	48675	HTML is not a subset of XML!
	5	17556	San Diego, CA	3	35314	Not sure why this is getting downvoted.
	5	17556	San Diego, CA	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	5	17556	San Diego, CA	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	3	35314	Not sure why this is getting downvoted.
	9	3443	Oakland, CA	3	48002	Hehe, of course, it’s all true!
	9	3443	Oakland, CA	5	44921	Please see my post below.
	9	3443	Oakland, CA	5	44920	Thank you very much for your reply.
	9	3443	Oakland, CA	8	48675	HTML is not a subset of XML!

Reduce Side Join

Pattern Description

The reduce side join pattern can take
 the longest time to execute compared to the other join
 patterns, but it is simple to implement and supports all the different
 join operations discussed in the previous section.
Intent

Join large multiple data sets together by some foreign
 key.

Motivation

A reduce side join is arguably one of the easiest implementations of a join in
 MapReduce, and therefore is a very attractive choice. It can be used to execute any of the
 types of joins described above with relative ease and there is no limitation on the size
 of your data sets. Also, it can join as many data sets together at once as you need. All
 that said, a reduce side join will likely require a large amount of network bandwidth
 because the bulk of the data is sent to the reduce phase. This can take some time, but if
 you have resources available and aren’t concerned about execution time, by all means use
 it! Unfortunately, if all of the data sets are large, this type of join may be your only
 choice.

Applicability

A reduce side join should be used when:
	Multiple large data sets are being
 joined by a foreign key. If all but one of the data sets can be
 fit into memory, try using the replicated join.

	You want the flexibility of being able to execute any join
 operation.

Structure

	The mapper prepares the join operation by taking each input
 record from each of the data sets and extracting the foreign key
 from the record. The foreign key is written as the output key, and
 the entire input record as the output value. This output value is
 flagged by some unique identifier for the data set, such as
 A or B if two data sets
 are used. See Figure 5-1.

	A hash partitioner can be used, or a customized partitioner
 can be created to distribute the intermediate key/value pairs more
 evenly across the reducers.

	The reducer performs the desired join operation by
 collecting the values of each input group into temporary lists.
 For example, all records flagged with A are
 stored in the ‘A’ list and all records flagged with
 B are stored in the ‘B’ list. These lists are
 then iterated over and the records from both sets are joined
 together. For an inner join, a joined record is output if all the
 lists are not empty. For an outer join (left, right, or full),
 empty lists are still joined with non empty lists. The antijoin is
 done by examining that exactly one list is empty. The records of
 the non-empty list are written with an empty writable.

[image: The structure of the reduce side join pattern]

Figure 5-1. The structure of the reduce side join pattern

Consequences

The output is a number of part files equivalent to the number of
 reduce tasks. Each of these part files together contains the portion
 of the joined records. The columns of each record depend on how they
 were joined in the reducer. Some column values will be null if an
 outer join or antijoin was performed.

Resemblances

	SQL
	Joins are very common in SQL and easy to execute.

SELECT users.ID, users.Location, comments.upVotes
FROM users
[INNER|LEFT|RIGHT] JOIN comments
ON users.ID=comments.UserID

	Pig
	Pig has support for inner joins and left, right, and full outer joins.

-- Inner Join
A = JOIN comments BY userID, users BY userID;

-- Outer Join
A = JOIN comments BY userID [LEFT|RIGHT|FULL] OUTER, users BY userID;

Performance analysis

A plain reduce side join puts a lot of strain on the cluster’s
 network. Because the foreign key of each input record is extracted and
 output along with the record and no data can be filtered ahead of
 time, pretty much all of the data will be sent to the shuffle and sort
 step. For this reason, reduce side joins will typically utilize
 relatively more reducers than your typical analytic.
If any of the other pattern described in this chapter can be
 used (other than Cartesian product), it is recommended that you do so.
 Sometimes this basic join pattern is the only one that fits the
 circumstances.

Reduce Side Join Example

User and comment join

In this example, we’ll be using the users and comments tables from the StackOverflow data set.
 Storing data in this matter makes sense, as storing repetitive user data with each comment
 is unnecessary. This would also make updating user information difficult. However, having
 disjoint data sets poses problems when it comes to associating a comment with the user who
 wrote it. Through the use of a reduce side join, these two data sets can be merged
 together using the user ID as the foreign key. In this example, we’ll perform an inner,
 outer, and antijoin. The choice of which join to execute is set during job
 configuration.
Hadoop supports the ability to use multiple input data types at
 once, allowing you to create a mapper class and input format for each
 input split from different data sources. This is extremely helpful,
 because you don’t have to code logic for two different data inputs in
 the same map implementation. In the following example, two mapper
 classes are created: one for the user data and one for the comments.
 Each mapper class outputs the user ID as the foreign key, and the
 entire record as the value along with a single character to flag which
 record came from what set. The reducer then copies all values for each
 group in memory, keeping track of which record came from what data
 set. The records are then joined together and output.
Caution
Be advised that the output key and value types need to be
 identical for all of the mapper classes used.

The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of user information and a list of user’s
 comments, enrich each comment with the information about the user who
 created the comment.
Driver code

The job configuration is slightly different from the standard
 configuration due to the user of the multiple input utility. We also
 set the join type in the job configuration to args[2] so it can be used in the reducer.
 The relevant piece of the driver code to use the MultipleInput follows:
...
// Use MultipleInputs to set which input uses what mapper
// This will keep parsing of each data set separate from a logical standpoint
// The first two elements of the args array are the two inputs
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class,
 UserJoinMapper.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class,
 CommentJoinMapper.class);

job.getConfiguration()..set("join.type", args[2]);
...

User mapper code

This mapper parses each input line of user data XML. It grabs
 the user ID associated with each record and outputs it along with
 the entire input value. It prepends the letter A in front of the entire value. This
 allows the reducer to know which values came from what data
 set.

public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {

 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 // Parse the input string into a nice map
 Map<String, String> parsed =
 MRDPUtils.transformXmlToMap(value.toString());

 String userId = parsed.get("Id");

 // The foreign join key is the user ID
 outkey.set(userId);

 // Flag this record for the reducer and then output
 outvalue.set("A" + value.toString());
 context.write(outkey, outvalue);
 }
}
Tip
When you output the value from the map side, the entire
 record doesn’t have to be sent. This is an opportunity to optimize
 the join by keeping only the fields of data you want to join
 together. It requires more processing on the map side, but is
 worth it in the long run. Also, since the foreign key is in the
 map output key, you don’t need to keep that in the value,
 either.

Comment mapper code

This mapper parses each input line of comment XML. Very
 similar to the UserJoinMapper, it
 too grabs the user ID associated with each record and outputs it
 along with the entire input value. The only different here is that
 the XML attribute UserId
 represents the user that posted to comment, where as Id in the user data set is the user ID.
 Here, this mapper prepends the letter B in front of the entire value.

public static class CommentJoinMapper extends
 Mapperlt;Object, Text, Text, Text> {

 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // The foreign join key is the user ID
 outkey.set(parsed.get("UserId"));

 // Flag this record for the reducer and then output
 outvalue.set("B" + value.toString());
 context.write(outkey, outvalue);
 }
}

Reducer code

The reducer code iterates through all the values of each group
 and looks at what each record is tagged with and then puts the
 record in one of two lists. After all values are binned in either
 list, the actual join logic is executed using the two lists. The
 join logic differs slightly based on the type of join, but always
 involves iterating through both lists and writing to the Context object. The type of join is pulled
 from the job configuration in the setup method. Let’s look at the
 main reduce method before looking at the join logic.

public static class UserJoinReducer extends Reducer<Text, Text, Text, Text> {

 private static final Text EMPTY_TEXT = Text("");
 private Text tmp = new Text();
 private ArrayList<Text> listA = new ArrayList<Text>();
 private ArrayList<Text> listB = new ArrayList<Text>();
 private String joinType = null;

 public void setup(Context context) {
 // Get the type of join from our configuration
 joinType = context.getConfiguration().get("join.type");
 }

 public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException {

 // Clear our lists
 listA.clear();
 listB.clear();

 // iterate through all our values, binning each record based on what
 // it was tagged with. Make sure to remove the tag!
 while (values.hasNext()) {
 tmp = values.next();
 if (tmp.charAt(0) == 'A') {
 listA.add(new Text(tmp.toString().substring(1)));
 } else if (tmp.charAt('0') == 'B') {
 listB.add(new Text(tmp.toString().substring(1)));
 }
 }

 // Execute our join logic now that the lists are filled
 executeJoinLogic(context);
 }

 private void executeJoinLogic(Context context)
 throws IOException, InterruptedException {
 ...
 }
The input data types to the reducer are two Text objects. The input key is the foreign
 join key, which in this example is the user’s ID. The input values
 associated with the foreign key contain one record from the “users”
 data set tagged with ‘B’, as well as all the comments the user
 posted tagged with ‘B’. Any type of data formatting you would want
 to perform should be done here prior to outputting. For simplicity,
 the raw XML value from the left data set (users) is output as the
 key and the raw XML value from the right data set (comments) is
 output as the value.
Next, let’s look at each of the join types. First up is an inner join. If both the
 lists are not empty, simply perform two nested for loops and join each of the values
 together.

if (joinType.equalsIgnoreCase("inner")) {
 // If both lists are not empty, join A with B
 if (!listA.isEmpty() && !listB.isEmpty()) {
 for (Text A : listA) {
 for (Text B : listB) {
 context.write(A, B);
 }
 }
 }
} ...

 For a left outer join, if the right list is not empty, join A with
 B. If the right list is empty, output each record of
 A with an empty string.

... else if (joinType.equalsIgnoreCase("leftouter")) {
 // For each entry in A,
 for (Text A : listA) {
 // If list B is not empty, join A and B
 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {
 // Else, output A by itself
 context.write(A, EMPTY_TEXT);
 }
 }
} ...

 A right outer join is very similar, except switching from the check for empty elements
 from B to A. If the left list is empty, write
 records from B with an empty output key.

... else if (joinType.equalsIgnoreCase("rightouter")) {
 // For each entry in B,
 for (Text B : listB) {
 // If list A is not empty, join A and B
 if (!listA.isEmpty()) {
 for (Text A : listA) {
 context.write(A, B);
 }
 } else {
 // Else, output B by itself
 context.write(EMPTY_TEXT, B);
 }
 }
} ...

 A full outer join is more complex, in that we want to keep all records, ensuring that we
 join records where appropriate. If list A is not empty, then for every element in
 A, join with B when the
 B list is not empty, or output A by itself.
 If A is empty, then just output B.

... else if (joinType.equalsIgnoreCase("fullouter")) {
 // If list A is not empty
 if (!listA.isEmpty()) {
 // For each entry in A
 for (Text A : listA) {
 // If list B is not empty, join A with B
 if (!listB.isEmpty()) {
 for (Text B : listB) {
 context.write(A, B);
 }
 } else {
 // Else, output A by itself
 context.write(A, EMPTY_TEXT);
 }
 }
 } else {
 // If list A is empty, just output B
 for (Text B : listB) {
 context.write(EMPTY_TEXT, B);
 }
 }
} ...

 For an antijoin, if at least one of the lists is empty, output the records from the
 non-empty list with an empty Text object.

... else if (joinType.equalsIgnoreCase("anti")) {
 // If list A is empty and B is empty or vice versa
 if (listA.isEmpty() ^ listB.isEmpty()) {

 // Iterate both A and B with null values
 // The previous XOR check will make sure exactly one of
 // these lists is empty and therefore the list will be skipped
 for (Text A : listA) {
 context.write(A, EMPTY_TEXT);
 }

 for (Text B : listB) {
 context.write(EMPTY_TEXT, B);
 }
 }
} ...
Caution
Be considerate of follow on data parsing to ensure proper field delimiters.
 Outputting an empty text object is actually unwise. A record that contains the proper
 structure but with null fields should be generated instead of outputting an empty
 object. This will ensure proper parsing for follow-on analytics.

Combiner optimization

Because the join logic is performed on the reduce side, a
 combiner will not provide much optimization in this example.

Reduce Side Join with Bloom Filter

Reputable user and comment join

This example is very similar to the previous one, but with the added
 optimization of using a Bloom filter to filter out some of mapper
 output. This will help reduce the amount of data being sent to the
 reducers and in effect reduce the runtime of our analytic. Say we are
 only interested in enriching comments with reputable users, i.e.,
 greater than 1,500 reputation. A standard reduce side join could be
 used, with the added condition to verify that a user’s reputation is
 greater than 1,500 prior to writing to the context object. This
 requires all the data to be parsed and forwarded to the reduce phase
 for joining. If we could stop outputting data from the mappers that we
 know are not going to be needed in the join, then we can drastically
 reduce network I/O. Using a Bloom filter is particularly useful with
 an inner join operation, and may not be useful at all with a full
 outer join operation or an antijoin. The latter two operations require
 all records to be sent to the reducer, so adding a Bloom filter has no
 value.
Filtering out users that do not meet the reputation requirement
 is simple enough for the UserJoinMapper class, because the user
 reputation is in the data. However, there are a lot more comments than
 users and the user reputation is not available in each comment record.
 Through the use of a Bloom filter, a small amount of memory can be
 used to perform the test we desire. A preprocess stage is needed to
 train a Bloom filter with all users that have at least 1,500
 reputation.
In the following example, both mappers are slightly different
 from the previous. The UserJoinMapper adds a test prior to writing
 key/value pairs to the context to ensure the user has at least 1,500
 reputation. The CommentJoin Mapper
 deserializes a Bloom filter from the DistributedCache and then used it as a test case prior to writing any output.
 The reducer remains the same as in the previous reduce side join
 example. The driver code is slightly different in that we use the
 DistributedCache to store the Bloom
 filters. This is omitted in the following code, as more information on
 how to use a Bloom filter with the DistributedCache can be found in the Appendix A.
User mapper code

The user ID is pulled from the XML record along with the reputation. If the
 reputation is greater than 1,500, the record is output along with the foreign key (user
 ID).

public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {

 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 // If the reputation is greater than 1,500,
 // output the user ID with the value
 if (Integer.parseInt(parsed.get("Reputation")) > 1500) {
 outkey.set(parsed.get("Id"));
 outvalue.set("A" + value.toString());
 context.write(outkey, outvalue);
 }
 }
}

Comment mapper code

The Bloom filter is initially deserialized from the DistributedCache prior to any calls to
 the map method. After deserialization, the user ID is pulled from the XML record and
 used for the membership test of the Bloom filter. If the test passes, the record is
 output along with the foreign key (user ID).

public static class CommentJoinMapperWithBloom extends
 Mapper<Object, Text, Text, Text> {

 private BloomFilter bfilter = new BloomFilter();
 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void setup(Context context) {
 Path[] files =
 DistributedCache.getLocalCacheFiles(context.getConfiguration());
 DataInputStream strm = new DataInputStream(
 new FileInputStream(new File(files[0].toString())));
 bfilter.readFields(strm);
 }

 public void map(Object key, Text value, Context context) {
 throws IOException, InterruptedException {

 Map>String, String> parsed = transformXmlToMap(value.toString());

 String userId = parsed.get("UserId");

 if (bfilter.membershipTest(new Key(userId.getBytes()))) {
 outkey.set(userId);
 outvalue.set("B" + value.toString());
 context.write(outkey, outvalue);
 }
 }
}
Caution
In this algorithm, we don’t need to verify the user’s
 reputation in the reducer prior to writing to the file system.
 While false positive records were output from the CommentJoinMapperWithBloom, they won’t
 be joined up with users on the reduce side since there will be
 nothing to join them with. The 100% check was done by only
 outputting user IDs with a reputation greater than 1,500. The main
 gain we received out of this Bloom filter was vastly reducing the
 number of comments output to the mapper phase. Be conscious of
 Bloom filter false positives and how they will affect your reduce
 side join operation.

Replicated Join

Pattern Description

A replicated join is a special type of join operation between one large and many small
 data sets that can be performed on the map-side.
Intent

This pattern completely eliminates the need to shuffle any data
 to the reduce phase.

Motivation

A replicated join is an extremely useful, but has a strict size
 limit on all but one of the data sets to be joined. All the data sets
 except the very large one are essentially read into memory during the
 setup phase of each map task, which is limited by the JVM heap. If you
 can live within this limitation, you get a drastic benefit because
 there is no reduce phase at all, and therefore no shuffling or
 sorting. The join is done entirely in the map phase, with the very
 large data set being the input for the MapReduce job.
There is an additional restriction that a replicated join is
 really useful only for an inner or a left outer join where the large
 data set is the “left” data set. The other join types require a reduce
 phase to group the “right” data set with the entirety of the left data
 set. Although there may not be a match for the data stored in memory
 for a given map task, there could be match in another input split.
 Because of this, we will restrict this pattern to inner and left outer
 joins.

Applicability

A replicated join should be used when:
	The type of join to execute is an inner join or a left outer
 join, with the large input data set being the “left” part of the
 operation.

	All of the data sets, except for the large one, can be fit
 into main memory of each map task.

Structure

	The mapper is responsible for reading all files from the distributed cache during
 the setup phase and storing them into in-memory lookup tables. After this setup phase
 completes, the mapper processes each record and joins it with all the data stored
 in-memory. If the foreign key is not found in the in-memory structures, the record is
 either omitted or output, based on the join type. See Figure 5-2.

	No combiner, partitioner, or reducer is used for this
 pattern. It is map-only.

[image: The structure of the replicated join pattern]

Figure 5-2. The structure of the replicated join pattern

Consequences

The output is a number of part files equivalent to the number of
 map tasks. The part files contain the full set of joined records. If a
 left outer join is used, the input to the MapReduce analytic will be
 output in full, with possible null values.

Resemblances

	Pig
	Pig has native support for a replicated join through a
 simple modification to the standard join operation syntax. Only
 inner and left outer joins are supported for replicated joins,
 for the same reasons we couldn’t do it above. The order of the
 data sets in the line of code matters because all but the first
 data sets listed are stored in-memory.

huge = LOAD 'huge_data' AS (h1,h2);
smallest = LOAD 'smallest_data' AS (ss1,ss2);
small = LOAD 'small_data' AS (s1,s2);
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING 'replicated';

Performance analysis

A replicated join can be the fastest type of join executed
 because there is no reducer required, but it comes at a cost. There
 are limitations on the amount of data that can be stored safely inside
 the JVM, which is largely dependent on how much memory you are willing
 to give to each map and reduce task. Experiment around with your data
 sets to see how much you can fit into memory prior to fully
 implementing this pattern. Also, be aware that the memory footprint of
 your data set stored in-memory is not necessarily the number of bytes
 it takes to store it on disk. The data will be inflated due to Java
 object overhead. Thankfully, you can omit any data you know you will
 not need.

Replicated Join Examples

Replicated user comment example

This example is closely related to the previous replicated join with
 Bloom filter example. The DistributedCache is utilized to push a file around to all map tasks, but
 instead of a Bloom filter representation of the data, the data itself
 is read into memory. Instead of filtering out data that will never be
 joined on the reduce side, the data is joined in the map phase.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a small set of user information and a large set
 of comments, enrich the comments with user information data.
Mapper code

During the setup phase of the mapper, the user data is read
 from the DistributedCache and
 stored in memory. Each record is parsed and the user ID is pulled
 out of the record. Then, the user ID and record are added to
 a HashMap for
 retrieval in the map method. This
 is where an out of memory error could occur, as the entire contents
 of the file is stored, with additional overhead of the data
 structure itself. If it does, you will either have to increase the
 JVM size or use a plain reduce side join.
After setup, consecutive calls to the map method are performed. For each input
 record, the user ID is pulled from the comment. This user ID is then
 used to retrieve a value from the HashMap built during the setup phase of
 the map. If a value is found, the input value is output along with
 the retrieved value. If a value is not found, but a left outer join
 is being executed, the input value is output with an empty Text object. That’s all there is to it!
 The input data is enriched with the data stored in memory.

public static class ReplicatedJoinMapper extends
 Mapper<Object, Text, Text, Text> {

 private static final Text EMPTY_TEXT = new Text("");
 private HashMap<String, String> userIdToInfo = new HashMap<String, String>();

 private Text outvalue = new Text();
 private String joinType = null;

 public void setup(Context context) throws IOException,
 InterruptedException {
 Path[] files =
 DistributedCache.getLocalCacheFiles(context.getConfiguration());
 // Read all files in the DistributedCache
 for (Path p : files) {
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(
 new GZIPInputStream(new FileInputStream(
 new File(p.toString())))));

 String line = null;
 // For each record in the user file
 while ((line = rdr.readLine()) != null) {

 // Get the user ID for this record
 Map<String, String> parsed = transformXmlToMap(line);
 String userId = parsed.get("Id");

 // Map the user ID to the record
 userIdToInfo.put(userId, line);
 }
 }

 // Get the join type from the configuration
 joinType = context.getConfiguration().get("join.type");
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = transformXmlToMap(value.toString());

 String userId = parsed.get("UserId");
 String userInformation = userIdToInfo.get(userId);

 // If the user information is not null, then output
 if (userInformation != null) {
 outvalue.set(userInformation);
 context.write(value, outvalue);
 } else if (joinType.equalsIgnoreCase("leftouter")) {
 // If we are doing a left outer join,
 // output the record with an empty value
 context.write(value, EMPTY_TEXT);
 }
 }
}

Composite Join

Pattern Description

A composite join is a specialized type of join operation that can be performed
 on the map-side with many very large formatted inputs.
Intent

Using this pattern completely eliminates the need to shuffle and
 sort all the data to the reduce phase. However, it requires the data
 to be already organized or prepared in a very specific way.

Motivation

Composite joins are particularly useful if you want to join very
 large data sets together. However, the data sets must first be sorted
 by foreign key, partitioned by foreign key, and read in a very
 particular manner in order to use this type of join. With that said,
 if your data can be read in such a way or you can prepare your data, a
 composite join has a huge leg-up over the other types.
Hadoop has built in support for a composite join using the CompositeInputFormat. This join utility is
 restricted to only inner and full outer joins. The inputs for each
 mapper must be partitioned and sorted in a specific way, and each
 input dataset must be divided into the same number of partitions. In
 addition to that, all the records for a particular foreign key must be
 in the same partition. Usually, this occurs only if the output of
 several jobs has the same number of reducers and the same foreign key,
 and output files aren’t splittable, i.e., not bigger than the HDFS
 block size or gzipped. In many cases, one of the other patterns
 presented in this chapter is more applicable. If you find yourself
 having to format the data prior to using a composite join, you are
 probably better off just using a reduce side join unless this output
 is used by many analytics.

Applicability

A composite join should be used when:
	An inner or full outer join is desired.

	All the data sets are sufficiently large.

	All data sets can be read with the foreign key as the input
 key to the mapper.

	All data sets have the same number of partitions.

	Each partition is sorted by foreign key, and all the foreign
 keys reside in the associated partition of each data set. That is,
 partition X of data sets
 A and B contain the same
 foreign keys and these foreign keys are present only in partition
 X. For a visualization of this partitioning
 and sorting key, refer to Figure 5-3.

	The data sets do not change often (if they have to be
 prepared).

[image: Data sets that are sorted and partitioned on the same key]

Figure 5-3. Data sets that are sorted and partitioned on the same
 key

Structure

	The driver code handles most of the work in the job
 configuration stage. It sets up the type of input format used to
 parse the data sets, as well as the join type to execute. The
 framework then handles executing the actual join when the data is
 read. See Figure 5-4.

	The mapper is very trivial. The two values are retrieved
 from the input tuple and simply output to the file system.

	No combiner, partitioner, or reducer is used for this
 pattern. It is map-only.

[image: The structure of the composite join pattern]

Figure 5-4. The structure of the composite join pattern

Consequences

The output is a number of part files equivalent to the number of
 map tasks. The part files contain the full set of joined records. If
 configured for an outer join, there may be null values.

Performance analysis

A composite join can be executed relatively quickly over large
 data sets. However, the MapReduce framework can only set up the job so
 that one of the two data sets are data local. The respective files
 that are partitioned by the same key cannot be assumed to be on the
 same node.
Any sort of data preparation needs to taken into account in the
 performance of this analytic. The data preparation job is typically a
 MapReduce job, but if the data sets rarely change, then the sorted and
 partitioned data sets can be used over and over. Thus, the cost of
 producing these prepared data sets is averaged out over all of the
 runs.

Composite Join Examples

Composite user comment join

To meet the preconditions of a composite join, both the user and
 comment data sets have been preprocessed by MapReduce and output using
 the TextOutputFormat.
 The key of each data set is the user ID, and the value is either the
 user XML or comment XML, based on the data set. Hadoop has a KeyValueTextOutputFormat that can parse these formatted data sets exactly as required.
 The key will be the output key of our format job (user ID) and the
 value will be the output value (user or comment data).
Each data set was sorted by the foreign key, the caveat being
 that they are sorted as Text objects
 rather than LongWritable objects.
 That is, user “12345” comes before user “2”. This is because
 the CompositeInputFormat uses Text objects as the key for comparisons when
 doing the join. Each data set was then gzipped to prevent it from
 being split. The driver code demonstrates how to configure MapReduce
 to handle the join, while the mapper code is trivial.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given two large formatted data sets of user information
 and comments, enrich the comments with user information data.
Driver code

The driver parses the input arguments for the job: the path to
 the user data, the path to the comment data, the analytic output
 directory, and the type of join (inner or outer). The CompositeInputFormat utilizes the older
 mapred API, but configuration is similar to the mapreduce API.
 The most important piece of configuration is setting the input
 format and then configuring the join expression.
The input format has a static helper function to create the
 join expression itself. It takes in the join type (inner or outer),
 the input format class used to parse all the data sets, and then as
 many Path or
 String objects as desired, which represent the data sets to
 join together.
That’s all there is to it! After setting the remaining
 required parameters, the job is run until completion and the program
 exits.
Tip
For the curious reader, more information about the details of the magic join
 expression can be found in the CompositeInputFormat
 documentation.

public static void main(String[] args) throws Exception {

 Path userPath = new Path(args[0]);
 Path commentPath = new Path(args[1]);
 Path outputDir = new Path(args[2]);
 String joinType = args[3];

 JobConf conf = new JobConf("CompositeJoin");
 conf.setJarByClass(CompositeJoinDriver.class);
 conf.setMapperClass(CompositeMapper.class);
 conf.setNumReduceTasks(0);

 // Set the input format class to a CompositeInputFormat class.
 // The CompositeInputFormat will parse all of our input files and output
 // records to our mapper.
 conf.setInputFormat(CompositeInputFormat.class);

 // The composite input format join expression will set how the records
 // are going to be read in, and in what input format.
 conf.set("mapred.join.expr", CompositeInputFormat.compose(joinType,
 KeyValueTextInputFormat.class, userPath, commentPath));

 TextOutputFormat.setOutputPath(conf, outputDir);

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(Text.class);

 RunningJob job = JobClient.runJob(conf);
 while (!job.isComplete()) {
 Thread.sleep(1000);
 }

 System.exit(job.isSuccessful() ? 0 : 1);
}

Mapper code

The input to the mapper is the foreign key and a TupleWritable.
 This tuple contains a number of Text objects equivalent to the number of
 data sets. As far as position is concerned, the ordering of the
 Text objects maps directly to how it was configured. The first
 input path is the zeroth index, the second input path is the first
 index, and so on. The mapper simply grabs the objects from the tuple
 and outputs them. There are only two data sets to be joined in this
 example, so they are output as the key and value. If more were used,
 the strings would need be concatenated in some manner prior to being
 output.

public static class CompositeMapper extends MapReduceBase implements
 Mapper<Text, TupleWritable, Text, Text> {

 public void map(Text key, TupleWritable value,
 OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {

 // Get the first two elements in the tuple and output them
 output.collect((Text) value.get(0), (Text) value.get(1));
 }
}

Reducer and combiner

This pattern has no reducer or combiner implementation because
 it is map only.

Cartesian Product

Pattern Description

The Cartesian product pattern is an effective way to pair every record of multiple inputs
 with every other record. This functionality comes at a cost though, as a
 job using this pattern can take an extremely long time to
 complete.
Intent

Pair up and compare every single record with every other record
 in a data set.

Motivation

A Cartesian product allows relationships between every pair of
 records possible between one or more data sets to be analyzed. Rather
 than pairing data sets together by a foreign key, a Cartesian product
 simply pairs every record of a data set with every record of all the
 other data sets.
With that in mind, a Cartesian product does not fit into the
 MapReduce paradigm very well because the operation is not intuitively
 splittable, cannot be parallelized very well, and thus requires a lot
 of computation time and a lot of network traffic. Any preprocessing of
 that data that can be done to improve execution time and reduce the
 byte count should be done to improve runtimes.
It is very rare that you would need to do a Cartesian product,
 but sometimes there is simply no foreign key to join on and the
 comparison is too complex to group by ahead of time. Most use cases
 for using a Cartesian product are some sort of similarity analysis on
 documents or media.

Applicability

Use a Cartesian product when:
	You want to analyze relationships between all pairs of
 individual records.

	You’ve exhausted all other means to solve this
 problem.

	You have no time constraints on execution time.

Structure

	The cross product of the input splits is determined during
 job setup and configuration. After these are calculated, each
 record reader is responsible for generating the cross product from
 both of the splits it is given. The record reader gives a pair of
 records to a mapper class, which simply writes them both out to
 the file system. See Figure 5-5.

	No reducer, combiner, or partitioner is needed. This is a
 map-only job.

[image: The structure of the Cartesian product pattern]

Figure 5-5. The structure of the Cartesian product pattern

Consequences

The final data set is made up of tuples equivalent to the number
 of input data sets. Every possible tuple combination from the input
 records is represented in the final output.

Resemblances

	SQL
	Although very rarely seen, the Cartesian product is the
 syntactically simplest of all joins in SQL. Just select from
 multiple tables without a where clause.

SELECT * FROM tablea, tableb;

	Pig
	Pig can perform a Cartesian product using the CROSS
 statement. It also comes along with a warning that it is an
 expensive operation and should be used sparingly.

A = LOAD 'data1' AS (a1, a2, a3);
DUMP A;
(1,2,3)
(4,5,6)

B = LOAD 'data2' AS (b1, b2);
DUMP B;
(1,2)
(3,4)
(5,6)

C = CROSS A, B;

DUMP C;
(1,2,3,1,2)
(1,2,3,3,4)
(1,2,3,5,6)
(4,5,6,1,2)
(4,5,6,3,4)
(4,5,6,5,6)

Performance Analysis

The Cartesian product produces a massive explosion in data size,
 as even a self-join of a measly million records produces a trillion
 records. It should be used very sparingly because it will use up many
 map slots for a very long time. This will dramatically increase the
 run time of other analytics, as any map slots taken by a Cartesian
 product are unusable by other jobs until completion. If the number of
 tasks is greater than or equal to the total number of map slots in the
 cluster, all other work won’t get done for quite some time.
Each input split is paired up with every other input
 split—effectively creating a data set of
 O(n2),
 n being the number of bytes. A single record is
 read from the left input split, and then the entire right input split
 is read and reset before the second record from the left input split
 is read. If a single input split contains a thousand records, this
 means the right input split needs to be read a thousand times before
 the task can finish. This is a massive amount of processing time! If a
 single task fails for an odd reason, the whole thing needs to be
 restarted! You can see why a Cartesian product is a terrible, terrible
 thing to do in MapReduce.

Cartesian Product Examples

Comment Comparison

This example demonstrates how to perform a self-join using the StackOverflow comments. This self-join inspects a pair of comments and
 determines how similar they are to one another based on common words
 used between the two. If they are similar enough, the pair is output
 to the file system. Common words are removed from each comment along
 with other extra data in a preprocessing stage.
This example is different than all other examples in the book,
 in that it pays special attention to how the data is read. Here, we
 create a custom input format to generate the Cartesian product of the
 input splits for the Job. If the data set to be processed contains 11
 input splits, the job would contain 121 input splits, because 121
 pairs are generated from the cross product. The record reader of each
 map task performs the actual Cartesian product and presents each pair
 to the mapper for processing. It accomplishes this by reading a single
 record from the “left” data set, then pairing it with all the records
 from the “right” data set. The next record is read from the left data
 set, the reader of the right data set is reset, and it is used to pair
 up again. This process continues until there are no more records in
 the left set.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a groomed data set of StackOverflow comments,
 find pairs of comments that are similar based on the number of like
 words between each pair.
Caution
This is a homegrown Hadoop implementation of this problem for
 version 1.0.3 to demonstrate the idea behind how a cross product can
 be executed using MapReduce. Future versions of Hadoop MapReduce
 will have this functionality packaged with the distribution!

Input format code

The CartesianImportFormat
 piggybacks on a large portion of the CompositeInputFormat seen in the previous example of a composite join. It is
 implemented to support a Cartesian product for just two data sets
 for demonstration purposes in order to keep the code more simple.
 A single data set can be used as both the left and right data sets, as we
 do for this example. During job setup, getInputSplits creates the cross product
 of the input splits of both data sets into a list of CompositeInputSplits. This is done by
 creating the underlying input format for each data set to get the
 splits, and then calculating the cross product. These input splits
 are then assigned to map task across the cluster for
 processing.

public static class CartesianInputFormat extends FileInputFormat {

 public static final String LEFT_INPUT_FORMAT = "cart.left.inputformat";
 public static final String LEFT_INPUT_PATH = "cart.left.path";
 public static final String RIGHT_INPUT_FORMAT = "cart.right.inputformat";
 public static final String RIGHT_INPUT_PATH = "cart.right.path";

 public static void setLeftInputInfo(JobConf job,
 Class<? extends FileInputFormat> inputFormat, String inputPath) {
 job.set(LEFT_INPUT_FORMAT, inputFormat.getCanonicalName());
 job.set(LEFT_INPUT_PATH, inputPath);
 }

 public static void setRightInputInfo(JobConf job,
 Class<? extends FileInputFormat> inputFormat, String inputPath) {
 job.set(RIGHT_INPUT_FORMAT, inputFormat.getCanonicalName());
 job.set(RIGHT_INPUT_PATH, inputPath);
 }

 public InputSplit[] getSplits(JobConf conf, int numSplits)
 throws IOException {
 // Get the input splits from both the left and right data sets
 InputSplit[] leftSplits = getInputSplits(conf,
 conf.get(LEFT_INPUT_FORMAT), conf.get(LEFT_INPUT_PATH),
 numSplits);
 InputSplit[] rightSplits = getInputSplits(conf,
 conf.get(RIGHT_INPUT_FORMAT), conf.get(RIGHT_INPUT_PATH),
 numSplits);

 // Create our CompositeInputSplits, size equal to
 // left.length * right.length
 CompositeInputSplit[] returnSplits =
 new CompositeInputSplit[leftSplits.length *
 rightSplits.length];

 int i = 0;
 // For each of the left input splits
 for (InputSplit left : leftSplits) {
 // For each of the right input splits
 for (InputSplit right : rightSplits) {
 // Create a new composite input split composing of the two
 returnSplits[i] = new CompositeInputSplit(2);
 returnSplits[i].add(left);
 returnSplits[i].add(right);
 ++i;
 }
 }

 // Return the composite splits
 LOG.info("Total splits to process: " + returnSplits.length);
 return returnSplits;
 }

 public RecordReader getRecordReader(InputSplit split, JobConf conf,
 Reporter reporter) throws IOException {
 // Create a new instance of the Cartesian record reader
 return new CartesianRecordReader((CompositeInputSplit) split,
 conf, reporter);
 }

 private InputSplit[] getInputSplits(JobConf conf,
 String inputFormatClass, String inputPath, int numSplits)
 throws ClassNotFoundException, IOException {
 // Create a new instance of the input format
 FileInputFormat inputFormat = (FileInputFormat) ReflectionUtils
 .newInstance(Class.forName(inputFormatClass), conf);

 // Set the input path for the left data set
 inputFormat.setInputPaths(conf, inputPath);

 // Get the left input splits
 return inputFormat.getSplits(conf, numSplits);
 }
}

Driver code

The driver sets the necessary parameters for using the CartesianInputFormat. The same
 input path is used as both data sets for the input format, as we are
 performing a comparison between pairs of comments.

public static void main(String[] args) throws IOException,
 InterruptedException, ClassNotFoundException {

 // Configure the join type
 JobConf conf = new JobConf("Cartesian Product");
 conf.setJarByClass(CartesianProduct.class);

 conf.setMapperClass(CartesianMapper.class);
 conf.setNumReduceTasks(0);

 conf.setInputFormat(CartesianInputFormat.class);

 // Configure the input format
 CartesianInputFormat.setLeftInputInfo(conf, TextInputFormat.class, args[0]);
 CartesianInputFormat.setRightInputInfo(conf, TextInputFormat.class, args[0]);

 TextOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(Text.class);

 RunningJob job = JobClient.runJob(conf);
 while (!job.isComplete()) {
 Thread.sleep(1000);
 }

 System.exit(job.isSuccessful() ? 0 : 1);
}

Record reader code

The record reader is where the magic happens of performing the
 cross product. During task setup, getRecordReader is called by the framework
 to return the CartesianRecordReader. The constructor of
 this class creates two separate record reader objects, one for each
 split.
The first call to next
 reads the first record from the left data set for the mapper input
 key, and the first record from the right data set as the mapper
 input value. This key/value pair is then given to the mapper for
 processing by the framework.
Subsequent calls to next
 then continue to read all the records from the right record reader,
 allowing the mapper to process them, until it says it has no more.
 In this case, a flag is set and the do-while will loop backwards,
 reading the second record from the left data set. The right record
 reader is reset, and the process continues.
This process completes until the left record reader returns
 false, stating there are no more key/value pairs. At this point, the
 record reader has given the Cartesian product of both input splits
 to the map task.
Tip
Some of the more simple methods to adhere to the
 RecordReader interface are missing for brevity, such as close() and getPos(). There are also some
 optimization opportunities that could be implemented, such as
 forcing the record reader to the next left record if you know it
 is not going to be useful. In this example, if the left record
 contains only one word in it and we are looking for pairs of
 comments that have a minimum of 3 common words, it doesn’t make
 much sense to read the entire right input split because no output
 is going to be made.

public static class CartesianRecordReader<K1, V1, K2, V2> implements
 RecordReader<Text, Text> {

 // Record readers to get key value pairs
 private RecordReader leftRR = null, rightRR = null;

 // Store configuration to re-create the right record reader
 private FileInputFormat rightFIF;
 private JobConf rightConf;
 private InputSplit rightIS;
 private Reporter rightReporter;

 // Helper variables
 private K1 lkey;
 private V1 lvalue;
 private K2 rkey;
 private V2 rvalue;
 private boolean goToNextLeft = true, alldone = false;

 public CartesianRecordReader(CompositeInputSplit split, JobConf conf,
 Reporter reporter) throws IOException {
 this.rightConf = conf;
 this.rightIS = split.get(1);
 this.rightReporter = reporter;

 // Create left record reader
 FileInputFormat leftFIF = (FileInputFormat) ReflectionUtils
 .newInstance(Class.forName(conf
 .get(CartesianInputFormat.LEFT_INPUT_FORMAT)), conf);

 leftRR = leftFIF.getRecordReader(split.get(0), conf, reporter);

 // Create right record reader
 rightFIF = (FileInputFormat) ReflectionUtils.newInstance(Class
 .forName(conf
 .get(CartesianInputFormat.RIGHT_INPUT_FORMAT)), conf);

 rightRR = rightFIF.getRecordReader(rightIS, rightConf, rightReporter);

 // Create key value pairs for parsing
 lkey = (K1) this.leftRR.createKey();
 lvalue = (V1) this.leftRR.createValue();

 rkey = (K2) this.rightRR.createKey();
 rvalue = (V2) this.rightRR.createValue();
 }

 public boolean next(Text key, Text value) throws IOException {
 do {
 // If we are to go to the next left key/value pair
 if (goToNextLeft) {
 // Read the next key value pair, false means no more pairs
 if (!leftRR.next(lkey, lvalue)) {
 // If no more, then this task is nearly finished
 alldone = true;
 break;
 } else {
 // If we aren't done, set the value to the key and set
 // our flags
 key.set(lvalue.toString());
 goToNextLeft = alldone = false;

 // Reset the right record reader
 this.rightRR = this.rightFIF.getRecordReader(
 this.rightIS, this.rightConf,
 this.rightReporter);
 }
 }

 // Read the next key value pair from the right data set
 if (rightRR.next(rkey, rvalue)) {
 // If success, set the value
 value.set(rvalue.toString());
 } else {
 // Otherwise, this right data set is complete
 // and we should go to the next left pair
 goToNextLeft = true;
 }

 // This loop will continue if we finished reading key/value
 // pairs from the right data set
 } while (goToNextLeft);

 // Return true if a key/value pair was read, false otherwise
 return !alldone;
 }
}

Mapper code

The mapper is presented with a cross product pair. For each
 Text object, it reads the word
 tokens into a set. The sets are then iterated to determine how many
 common words there are between the two. If there are more then ten words, the pair is output to the file
 system.

public static class CartesianMapper extends MapReduceBase implements
 Mapper<Text, Text, Text, Text> {

 private Text outkey = new Text();

 public void map(Text key, Text value,
 OutputCollector<Text, Text> output, Reporter reporter)
 throws IOException {

 // If the two comments are not equal
 if (!key.toString().equals(value.toString())) {
 String[] leftTokens = key.toString().split("\\s");
 String[] rightTokens = value.toString().split("\\s");

 HashSet<String> leftSet = new HashSet<String>(
 Arrays.asList(leftTokens));
 HashSet<String> rightSet = new HashSet<String>(
 Arrays.asList(rightTokens));

 int sameWordCount = 0;
 StringBuilder words = new StringBuilder();
 for (String s : leftSet) {
 if (rightSet.contains(s)) {
 words.append(s + ",");
 ++sameWordCount;
 }
 }

 // If there are at least three words, output
 if (sameWordCount > 2) {
 outkey.set(words + "\t" + key);
 output.collect(outkey, value);
 }
 }
 }
}

Chapter 6. Metapatterns

This chapter is different from the others in that it doesn’t contain
 patterns for solving a particular problem, but patterns that deal with
 patterns. The term metapatterns is directly translated to “patterns about patterns.” The first
 method that will be discussed is job chaining, which is
 piecing together several patterns to solve complex, multistage problems. The
 second method is job merging, which is an optimization for performing several analytics in
 the same MapReduce job, effectively killing multiple birds with one
 stone.
Job Chaining

Job chaining is extremely important to understand and have an operational
 plan for in your environment. Many people find that they can’t solve a
 problem with a single MapReduce job. Some jobs in a chain will run in
 parallel, some will have their output fed into other jobs, and so on. Once
 you start to understand how to start solving problems as a series of
 MapReduce jobs, you’ll be able to tackle a whole new class of
 challenges.
Job chaining is one of the more complicated processes to handle
 because it’s not a feature out of the box in most MapReduce frameworks.
 Systems like Hadoop are designed for handling one MapReduce job very well,
 but handling a multistage job takes a lot of manual coding. There are
 operational considerations for handling failures in the stages of the job
 and cleaning up intermediate output. In this section, a few different
 approaches to job chaining will be discussed. Some will seem more
 appealing than others for your particular environment, as each has its own
 pros and cons.
A couple of frameworks and tools have emerged to fill this niche. If
 you do a lot of job flows and your chaining is pretty complex, you should
 consider using one of these. The approaches described in this section are
 more lightweight and need to be implemented on a job-by-job basis. Oozie, an open source Apache project, has functionality for building
 workflows and coordinating job running. Building job chains is only one of
 the many features that are useful for operationally running Hadoop
 MapReduce.
One particular common pitfall is to use MapReduce for something that
 is small enough that distributing the job is not necessary. If you think
 chaining two jobs together is the right choice, think about how much
 output there is from the first. If there are tons of output data, then by
 all means use a second MapReduce job. Many times, however, the output of
 the job is small and can be processed quite effectively on a single node.
 The two ways of doing this is to either load the data through the file
 system API in the driver after the job has completed, or incorporate
 it in some sort of bash script wrapper.
Caution
A major problem with MapReduce chains is the size of the temporary
 files. In some cases, they may be tiny, which will cause a significant
 amount of overhead in firing up way too many map tasks to load
 them.
In a nonchained job, the number of reducers typically depends more
 on the amount of data they are receiving than the amount of data you’d
 like to output. When chaining, the size of the output files is likely
 more important, even if the reducers will take a bit longer. Try to
 shoot for output files about the size of one block on the distributed
 filesystem. Just play around with the number of reducers and see what
 the impact is on performance (which is good advice in general).
The other option is to consistently use CombineFileInputFormat for jobs that load intermittent output. CombineFileInputFormat takes smaller blocks and lumps them
 together to make a larger input split before being processed by the mapper.

With the Driver

Probably the simplest method for performing job chaining is to have a master
 driver that simply fires off multiple job-specific drivers. There’s
 nothing special about a MapReduce driver in Hadoop; it’s pretty generic
 Java. It doesn’t derive from some sort of special class or
 anything.
Take the driver for each MapReduce job and call them in the
 sequence they should run. You’ll have to specifically be sure that the
 output path of the first job is the input path of the second. You can be
 sure of this by storing the temporary path string as a variable and
 sharing it.
In a production scenario, the temporary directories should be
 cleaned up so they don’t linger past the completion of the job. Lack of
 discipline here can surprisingly fill up your cluster rather quickly.
 Also, be careful of how much temporary data you are actually creating
 because you’ll need storage in your file system to store that
 data.
You can pretty easily extrapolate this approach to create chains
 that are much longer than just two jobs. Just be sure to keep track of
 all of the temporary paths and optionally clean up the data not being
 used anymore as the job runs.
You can also fire off multiple jobs in parallel by using Job.submit()
 instead of Job.waitForCompletion(). The submit method
 returns immediately to the current thread and runs the job in the
 background. This allows you to run several jobs at once. Use Job.isComplete(), a
 nonblocking job completion check, to constantly poll to see whether all
 of the jobs are complete.
The other thing to pay attention to is job success. It’s not good
 enough to just know that the job completed. You also need to check
 whether it succeeded or not. If a dependency job failed, you should
 break out of the entire chain instead of trying to let it
 continue.
It’s pretty obvious that this process is going to be rather
 difficult to manage and maintain from a software engineering prospective
 as the job chains get more complicated. This is where something
 like JobControl or
 Oozie comes in.

Job Chaining Examples

Basic job chaining

The goal of this example is to output a list of users along with a couple
 pieces of information: their reputations and how many posts each has
 issued. This could be done in a single MapReduce job, but we also want
 to separate users into those with an above-average number of posts and
 those with a below-average number. We need one job to perform the
 counts and another to separate the users into two bins based on the
 number of posts. Four different patterns are used in this example:
 numerical summarization, counting, binning, and a replicated join. The
 final output consists of a user ID, the number of times they posted,
 and their reputation.
The average number of posts per user is calculated between the
 two jobs using the framework’s counters. The users data set is put in
 the DistributedCache in the
 second job to enrich the output data with the users’
 reputations. This enrichment occurs in order to feed in to the next
 example in this section, which calculates the average reputation of
 the users in the two bins.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a data set of StackOverflow posts, bin users
 based on if they are below or above the number of average posts per
 user. Also to enrich each user with his or her reputation from a
 separate data set when generating the output.
Job one mapper

Before we look at the driver, let’s get an understanding of
 the mapper and reducer for both jobs. The mapper records the user ID
 from each record by assigning the value of the OwnerUserId attribute as the output key
 for the job, with a count of one as the value. It also increments a
 record counter by one. This value is later used in the driver to
 calculate the average number of posts per user. The AVERAGE_CALC_GROUP is a public static string at the driver
 level.

public static class UserIdCountMapper extends
 Mapper<Object, Text, Text, LongWritable> {

 public static final String RECORDS_COUNTER_NAME = "Records";

 private static final LongWritable ONE = new LongWritable(1);
 private Text outkey = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 String userId = parsed.get("OwnerUserId");

 if (userId != null) {
 outkey.set(userId);
 context.write(outkey, ONE);
 context.getCounter(AVERAGE_CALC_GROUP,
 RECORDS_COUNTER_NAME).increment(1);
 }
 }
}

Job one reducer

The reducer is also fairly trivial. It simply iterates through
 the input values (all of which we set to 1) and keeps a running sum,
 which is output along with the input key. A different counter is
 also incremented by one for each reduce group, in order to calculate
 the average.

public static class UserIdSumReducer extends
 Reducer<Text, LongWritable, Text, LongWritable> {

 public static final String USERS_COUNTER_NAME = "Users";
 private LongWritable outvalue = new LongWritable();

 public void reduce(Text key, Iterable<LongWritable> values,
 Context context) throws IOException, InterruptedException {

 // Increment user counter, as each reduce group represents one user
 context.getCounter(AVERAGE_CALC_GROUP, USERS_COUNTER_NAME).increment(1);

 int sum = 0;
 for (LongWritable value : values) {
 sum += value.get();
 }

 outvalue.set(sum);
 context.write(key, outvalue);
 }
}

Job two mapper

This mapper is more complicated than the previous jobs. It is
 doing a few different things to get the desired output. The setup
 phase accomplishes three different things. The average number of
 posts per user is pulled from the Context object that was set during job
 configuration. The MultipleOutputs
 utility is initialized as well. This is used to write the output to
 different bins. Finally, the user data set is parsed from the
 DistributedCache to build a map
 of user ID to reputation. This map is used for the desired data
 enrichment during output.
Compared to the setup, the map method is much easier. The
 input value is parsed to get the user ID and number of times posted.
 This is done by simply splitting on tabs and getting the first two
 fields of data. Then the mapper sets the output key to the user ID
 and the output value to the number of posts along with the user’s
 reputation, delimited by a tab. The user’s number of posts is then
 compared to the average, and the user is binned
 appropriately.
An optional fourth parameter of MultipleOutputs.write is used in this
 example to name each part file. A constant is used to specify the
 directory for users based on whether they are below or above average
 in their number of posts. The filename in the folder is named
 through an extra /part string.
 This becomes the beginning of the filename, to which the framework
 will append -m-nnnnn, where
 nnnnn is the task ID number. With this
 name, a folder will be created for both bins and the folders will
 contain a number of part files.
 This is done for easier input/output management for the next example
 on parallel jobs.
Finally, MultipleOutputs is
 closed in the cleanup stage.

public static class UserIdBinningMapper extends
 Mapper<Object, Text, Text, Text> {

 public static final String AVERAGE_POSTS_PER_USER = "avg.posts.per.user";

 public static void setAveragePostsPerUser(Job job, double avg) {
 job.getConfiguration().set(AVERAGE_POSTS_PER_USER,
 Double.toString(avg));
 }

 public static double getAveragePostsPerUser(Configuration conf) {
 return Double.parseDouble(conf.get(AVERAGE_POSTS_PER_USER));
 }

 private double average = 0.0;
 private MultipleOutputs<Text, Text> mos = null;
 private Text outkey = new Text(), outvalue = new Text();
 private HashMap<String, String> userIdToReputation =
 new HashMap<String, String>();

 protected void setup(Context context) throws IOException,
 InterruptedException {
 average = getAveragePostsPerUser(context.getConfiguration());

 mos = new MultipleOutputs<Text, Text>(context);

 Path[] files = DistributedCache.getLocalCacheFiles(context
 .getConfiguration());

 // Read all files in the DistributedCache
 for (Path p : files) {
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(
 new GZIPInputStream(new FileInputStream(
 new File(p.toString())))));

 String line;
 // For each record in the user file
 while ((line = rdr.readLine()) != null) {
 // Get the user ID and reputation
 Map<String, String> parsed = MRDPUtils
 .transformXmlToMap(line);
 // Map the user ID to the reputation
 userIdToReputation.put(parsed.get("Id"),
 parsed.get("Reputation"));
 }
 }
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 String[] tokens = value.toString().split("\t");

 String userId = tokens[0];
 int posts = Integer.parseInt(tokens[1]);

 outkey.set(userId);
 outvalue.set((long) posts + "\t" + userIdToReputation.get(userId));

 if ((double) posts < average) {
 mos.write(MULTIPLE_OUTPUTS_BELOW_NAME, outkey, outvalue,
 MULTIPLE_OUTPUTS_BELOW_NAME + "/part");
 } else {
 mos.write(MULTIPLE_OUTPUTS_ABOVE_NAME, outkey, outvalue,
 MULTIPLE_OUTPUTS_ABOVE_NAME + "/part");
 }
 }

 protected void cleanup(Context context) throws IOException,
 InterruptedException {
 mos.close();
 }
}

Driver code

Now let’s take a look at this more complicated driver. It is
 broken down into two sections for discussion: the first job and the
 second job. The first job starts by parsing command-line arguments
 to create proper input and output directories. It creates an
 intermediate directory that will be deleted by the driver at the end
 of the job chain.
Caution
A string is tacked on to the name of the output directory
 here to make our intermediate output directory. This is fine for
 the most part, but it may be a good idea to come up with a naming
 convention for any intermediate directories to avoid conflicts. If
 an output directory already exists during job submission, the job
 will never start.

public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();
 Path postInput = new Path(args[0]);
 Path userInput = new Path(args[1]);
 Path outputDirIntermediate = new Path(args[2] + "_int");
 Path outputDir = new Path(args[2]);

 // Setup first job to counter user posts
 Job countingJob = new Job(, "JobChaining-Counting");
 countingJob.setJarByClass(JobChainingDriver.class);

 // Set our mapper and reducer, we can use the API's long sum reducer for
 // a combiner!
 countingJob.setMapperClass(UserIdCountMapper.class);
 countingJob.setCombinerClass(LongSumReducer.class);
 countingJob.setReducerClass(UserIdSumReducer.class);

 countingJob.setOutputKeyClass(Text.class);
 countingJob.setOutputValueClass(LongWritable.class);

 countingJob.setInputFormatClass(TextInputFormat.class);

 TextInputFormat.addInputPath(countingJob, postInput);

 countingJob.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

 // Execute job and grab exit code
 int code = countingJob.waitForCompletion(true) ? 0 : 1;

 ...
The first job is checked for success before executing the
 second job. This seems simple enough, but with more complex job
 chains it can get a little annoying. Before the second job is
 configured, we grab the counter values from the first job to get the
 average posts per user. This value is then added to the job
 configuration. We set our mapper code and disable the reduce phase,
 as this is a map-only job. The other key parts to pay attention to
 are the configuration of MultipleOutputs
 and the DistributedCache.
 The job is then executed and the framework takes over
 from there.
Lastly and most importantly, success or failure, the
 intermediate output directory is cleaned up. This is an important
 and often overlooked step. Leaving any intermediate output will fill
 up a cluster quickly and require you to delete the output by hand.
 If you won’t be needing the intermediate output for any other
 analytics, by all means delete it in the code.

 if (code == 0) {
 // Calculate the average posts per user by getting counter values
 double numRecords = (double) countingJob
 .getCounters()
 .findCounter(AVERAGE_CALC_GROUP,
 UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();
 double numUsers = (double) countingJob
 .getCounters()
 .findCounter(AVERAGE_CALC_GROUP,
 UserIdSumReducer.USERS_COUNTER_NAME).getValue();

 double averagePostsPerUser = numRecords / numUsers;

 // Setup binning job
 Job binningJob = new Job(new Configuration(), "JobChaining-Binning");
 binningJob.setJarByClass(JobChainingDriver.class);

 // Set mapper and the average posts per user
 binningJob.setMapperClass(UserIdBinningMapper.class);
 UserIdBinningMapper.setAveragePostsPerUser(binningJob,
 averagePostsPerUser);

 binningJob.setNumReduceTasks(0);

 binningJob.setInputFormatClass(TextInputFormat.class);
 TextInputFormat.addInputPath(binningJob, outputDirIntermediate);

 // Add two named outputs for below/above average
 MultipleOutputs.addNamedOutput(binningJob,
 MULTIPLE_OUTPUTS_BELOW_NAME, TextOutputFormat.class,
 Text.class, Text.class);

 MultipleOutputs.addNamedOutput(binningJob,
 MULTIPLE_OUTPUTS_ABOVE_NAME, TextOutputFormat.class,
 Text.class, Text.class);

 MultipleOutputs.setCountersEnabled(binningJob, true);

 TextOutputFormat.setOutputPath(binningJob, outputDir);

 // Add the user files to the DistributedCache
 FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
 for (FileStatus status : userFiles) {
 DistributedCache.addCacheFile(status.getPath().toUri(),
 binningJob.getConfiguration());
 }

 // Execute job and grab exit code
 code = binningJob.waitForCompletion(true) ? 0 : 1;
 }

 // Clean up the intermediate output
 FileSystem.get(conf).delete(outputDirIntermediate, true);

 System.exit(code);
}

Parallel job chaining

The driver in parallel job chaining is similar to the previous
 example. The only big enhancement is that jobs are submitted in
 parallel and then monitored until completion. The two jobs run in this
 example are independent. (However, they require the previous example
 to have completed successfully.) This has the added benefit of
 utilizing cluster resources better to have them execute
 simultaneously.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given the previous example’s output of binned users,
 run parallel jobs over both bins to calculate the average reputation
 of each user.
Mapper code

The mapper splits the input value into a string array. The
 third column of this index is the reputation of the particular user.
 This reputation is output with a unique key. This key is shared
 across all map tasks in order to group all the reputations together
 for the average calculation. NullWritable can be used to group all the records together, but we want
 the key to have a meaningful value.
Caution
This can be expensive for very large data sets, as one
 reducer is responsible for streaming all the intermediate
 key/value pairs over the network. The added benefit here over
 serially reading the data set on one node is that the input splits
 are read in parallel and the reducers use a configurable number of
 threads to read each mapper’s output.

public static class AverageReputationMapper extends
 Mapper<LongWritable, Text, Text, DoubleWritable> {

 private static final Text GROUP_ALL_KEY = new Text("Average Reputation:");
 private DoubleWritable outvalue = new DoubleWritable();

 protected void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 // Split the line into tokens
 String[] tokens = value.toString().split("\t");

 // Get the reputation from the third column
 double reputation = Double.parseDouble(tokens[2]);

 // Set the output value and write to context
 outvalue.set(reputation);
 context.write(GROUP_ALL_KEY, outvalue);
 }
}

Reducer code

The reducer simply iterates through the reputation values,
 summing the numbers and keeping a count. The average is then
 calculated and output with the input key.

public static class AverageReputationReducer extends
 Reducer<Text, DoubleWritable, Text, DoubleWritable> {

 private DoubleWritable outvalue = new DoubleWritable();

 protected void reduce(Text key, Iterable<DoubleWritable> values,
 Context context) throws IOException, InterruptedException {

 double sum = 0.0;
 double count = 0;
 for (DoubleWritable dw : values) {
 sum += dw.get();
 ++count;
 }

 outvalue.set(sum / count);
 context.write(key, outvalue);
 }
}

Driver code

The driver code parses command-line arguments to get the input
 and output directories for both jobs. A helper function is then
 called to submit the job configuration, which we will look at next.
 The Job objects for both are then
 returned and monitored for job completion. So long as either job is
 still running, the driver goes back to sleep for five seconds. Once
 both jobs are complete, they are checked for success or failure and
 an appropriate log message is printed. An exit code is then returned
 based on job success.

public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Path belowAvgInputDir = new Path(args[0]);
 Path aboveAvgInputDir = new Path(args[1]);
 Path belowAvgOutputDir = new Path(args[2]);
 Path aboveAvgOutputDir = new Path(args[3]);

 Job belowAvgJob = submitJob(conf, belowAvgInputDir, belowAvgOutputDir);
 Job aboveAvgJob = submitJob(conf, aboveAvgInputDir, aboveAvgOutputDir);

 // While both jobs are not finished, sleep

 while (!belowAvgJob.isComplete() || !aboveAvgJob.isComplete()) {
 Thread.sleep(5000);
 }

 if (belowAvgJob.isSuccessful()) {
 System.out.println("Below average job completed successfully!");
 } else {
 System.out.println("Below average job failed!");
 }

 if (aboveAvgJob.isSuccessful()) {
 System.out.println("Above average job completed successfully!");
 } else {
 System.out.println("Above average job failed!");
 }

 System.exit(belowAvgJob.isSuccessful() &&
 aboveAvgJob.isSuccessful() ? 0 : 1);
}
This helper function is configured for each job. It looks very
 standard to any other configuration, except Job.submit
 is used rather than Job.waitForCompletion. This will submit
 the job and then immediately return, allowing the application to
 continue. As we saw, the returned Job is monitored in the main method until completion.

private static Job submitJob(Configuration conf, Path inputDir,
 Path outputDir) throws Exception {

 Job job = new Job(conf, "ParallelJobs");
 job.setJarByClass(ParallelJobs.class);

 job.setMapperClass(AverageReputationMapper.class);
 job.setReducerClass(AverageReputationReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(DoubleWritable.class);

 job.setInputFormatClass(TextInputFormat.class);
 TextInputFormat.addInputPath(job, inputDir);

 job.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(job, outputDir);

 // Submit job and immediately return, rather than waiting for completion
 job.submit();
 return job;
}

With Shell Scripting

This method of job chaining is very similar to the previous approach of
 implementing a complex job flow in a master driver that fires off
 individual job drivers, except that we do it in a shell script. Each job
 in the chain is fired off separately in the way you would run it from
 the command line from inside of a shell script.
This has a few major benefits and a couple minor downsides. One
 benefit is that changes to the job flow can be made without having to
 recompile the code because the master driver is a scripting language
 instead of Java. This is important if the job is prone to failure and
 you need to easily be able to manually rerun or repair failed jobs.
 Also, you’ll be able to use jobs that have already been productionalized
 to work through a command-line interface, but not a script. Yet another
 benefit is that the shell script can interact with services, systems,
 and tools that are not Java centric. For example, later in this chapter
 we’ll discuss post-processing of output, which may be very natural to do
 with sed or awk, but less natural to do in Java.
One of the downsides of this approach is it may be harder to
 implement more complicated job flows in which jobs are running in
 parallel. You can run jobs in the background and then test for success,
 but it may not be as clean as in Java.
Tip
Wrapping any Hadoop MapReduce job in a script, whether it be a
 single Java MapReduce job, a Pig job, or whatever, has a number of
 benefits. This includes post-processing, data flows, data preparation,
 additional logging, and more.

In general, using shell scripting is useful to chain new jobs with
 existing jobs quickly. For more robust applications, it may make more
 sense to build a driver-based chaining mechanism that can better
 interface with Hadoop.
Bash example

In this example, we use the Bash shell to tie together the basic
 job chaining and parallel jobs examples. The script is broken into two
 pieces: setting variables to actually execute the jobs, and then
 executing them.
Bash script

Input and outputs are stored in variables to create the a
 number of executable commands. There are two commands to run both
 jobs, cat the output to the
 screen, and cleanup all the analytic output.

#!/bin/bash

JAR_FILE="mrdp.jar"
JOB_CHAIN_CLASS="mrdp.ch6.JobChainingDriver"
PARALLEL_JOB_CLASS="mrdp.ch6.ParallelJobs"
HADOOP="$(which hadoop)"

POST_INPUT="posts"
USER_INPUT="users"
JOBCHAIN_OUTDIR="jobchainout"

BELOW_AVG_INPUT="${JOBCHAIN_OUTDIR}/belowavg"
ABOVE_AVG_INPUT="${JOBCHAIN_OUTDIR}/aboveavg"

BELOW_AVG_REP_OUTPUT="belowavgrep"
ABOVE_AVG_REP_OUTPUT="aboveavgrep"

JOB_1_CMD="${HADOOP} jar ${JAR_FILE} ${JOB_CHAIN_CLASS} ${POST_INPUT} \
 ${USER_INPUT} ${JOBCHAIN_OUTDIR}"
JOB_2_CMD="${HADOOP} jar ${JAR_FILE} ${PARALLEL_JOB_CLASS} ${BELOW_AVG_INPUT} \
 ${ABOVE_AVG_INPUT} ${BELOW_AVG_REP_OUTPUT} ${ABOVE_AVG_REP_OUTPUT}"

CAT_BELOW_OUTPUT_CMD="${HADOOP} fs -cat ${BELOW_AVG_REP_OUTPUT}/part-*"
CAT_ABOVE_OUTPUT_CMD="${HADOOP} fs -cat ${ABOVE_AVG_REP_OUTPUT}/part-*"

RMR_CMD="${HADOOP} fs -rmr ${JOBCHAIN_OUTDIR} ${BELOW_AVG_REP_OUTPUT} \
 ${ABOVE_AVG_REP_OUTPUT}"

LOG_FILE="avgrep_`date +%s`.txt"
The next part of the script echos each command
 prior to running it. It executes the first job, and then checks the return code to see
 whether it failed. If it did, output is deleted and the script exits. Upon success, the
 second job is executed and the same error condition is checked. If the second job completes successfully, the output
 of each job is written to the log file and all the output is deleted. All the extra
 output is not required, and since the final output of each file consists only one line,
 storing it in the log file is worthwhile, instead of keeping it in HDFS.

{
 echo ${JOB_1_CMD}
 ${JOB_1_CMD}

 if [$? -ne 0]
 then
 echo "First job failed!"
 echo ${RMR_CMD}
 ${RMR_CMD}
 exit $?
 fi

 echo ${JOB_2_CMD}
 ${JOB_2_CMD}

 if [$? -ne 0]
 then
 echo "Second job failed!"
 echo ${RMR_CMD}
 ${RMR_CMD}
 exit $?
 fi

 echo ${CAT_BELOW_OUTPUT_CMD}
 ${CAT_BELOW_OUTPUT_CMD}

 echo ${CAT_ABOVE_OUTPUT_CMD}
 ${CAT_ABOVE_OUTPUT_CMD}

 echo ${RMR_CMD}
 ${RMR_CMD}

 exit 0

} &> ${LOG_FILE}

Sample run

A sample run of the script follows. The MapReduce analytic
 output is omitted for brevity.

/home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.JobChainingDriver posts \
 users jobchainout
12/06/10 15:57:43 INFO input.FileInputFormat: Total input paths to process : 5
12/06/10 15:57:43 INFO util.NativeCodeLoader: Loaded the native-hadoop library
12/06/10 15:57:43 WARN snappy.LoadSnappy: Snappy native library not loaded
12/06/10 15:57:44 INFO mapred.JobClient: Running job: job_201206031928_0065
...
12/06/10 15:59:14 INFO mapred.JobClient: Job complete: job_201206031928_0065
...
12/06/10 15:59:15 INFO mapred.JobClient: Running job: job_201206031928_0066
...
12/06/10 16:02:02 INFO mapred.JobClient: Job complete: job_201206031928_0066

/home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.ParallelJobs \
 jobchainout/belowavg jobchainout/aboveavg belowavgrep aboveavgrep
12/06/10 16:02:08 INFO input.FileInputFormat: Total input paths to process : 1
12/06/10 16:02:08 INFO util.NativeCodeLoader: Loaded the native-hadoop library
12/06/10 16:02:08 WARN snappy.LoadSnappy: Snappy native library not loaded
12/06/10 16:02:12 INFO input.FileInputFormat: Total input paths to process : 1
Below average job completed successfully!
Above average job completed successfully!

/home/mrdp/hadoop/bin/hadoop fs -cat belowavgrep/part-*
Average Reputation:	275.36385831014724

/home/mrdp/hadoop/bin/hadoop fs -cat aboveavgrep/part-*
Average Reputation:	2375.301960784314

/home/mrdp/hadoop/bin/hadoop fs -rmr jobchainout belowavgrep aboveavgrep
Deleted hdfs://localhost:9000/user/mrdp/jobchainout
Deleted hdfs://localhost:9000/user/mrdp/belowavgrep
Deleted hdfs://localhost:9000/user/mrdp/aboveavgrep

With JobControl

The JobControl and ControlledJob classes make up a system for chaining MapReduce jobs and has some
 nice features like being able to track the state of the chain and fire
 off jobs automatically when they’re ready by declaring their
 dependencies. Using JobControl is the
 right way of doing job chaining, but can sometimes be too heavyweight
 for simpler applications.
To use JobControl, start by
 wrapping your jobs with ControlledJob. Doing this is relatively
 simple: you create your job like you usually would, except you also
 create a ControlledJob that takes in
 your Job or Configuration as a parameter, along with a
 list of its dependencies (other ControlledJobs). Then, you add them one-by-one
 to the JobControl object, which
 handles the rest.
You still have to keep track of temporary data and clean it up
 afterwards or in the event of a failure.
Note
You can use any of the methods we’ve discussed so far to create
 iterative jobs that run the same job over and over. Typically, each
 iteration takes the previous iteration’s data as input. This is common
 practice for algorithms that have some sort of optimization component,
 such as k-means clustering in MapReduce. This is also common practice
 in many graph algorithms in MapReduce.

Job control example

For an example of a driver using JobControl, let’s combine the previous two
 examples of basic job chaining and parallel jobs. We are already
 familiar with the mapper and reducer code, so there is no need to go
 over them again. The driver is the main showpiece here for job
 configuration. It uses basic job chaining to launch the first job, and
 then uses JobControl to execute the
 remaining job in the chain and the two parallel jobs. The initial job
 is not added via JobControl because
 you need to interrupt the control for the in-between step of using the
 counters of the first job to help assist in configuration of the
 second job. All jobs must be completely configured before executing
 the entire job chain, which can be limiting.
Main method

Let’s take a look at the main method. Here, we parse the
 command line arguments and create all the paths we will need for all
 four jobs to execute. We take special care when naming the variables
 to know our data flows. The first job is then configured via a
 helper function and executed. Upon completion of the first job, we
 invoke Configuration methods in helper functions
 to create three ControlledJob
 objects. Each Configuration
 method determines what mapper, reducer, etc. goes into each
 job.
The binningControlledJob
 has no dependencies, other than verifying that previous job executed
 and completed successfully. The next two jobs are dependent on the
 binning ControlledJob. These two
 jobs will not be executed by JobControl until the binning job completes
 successfully. If it doesn’t complete successfully, the other jobs
 won’t be executed at all.
All three ControlledJobs
 are added to the JobControl
 object, and then it is run. The call to JobControl.run will block until the group
 of jobs completes. We then check the failed job list to see if any
 jobs failed and set our exit code accordingly. Intermediate output
 is cleaned up prior to exiting.

public static final String AVERAGE_CALC_GROUP = "AverageCalculation";
public static final String MULTIPLE_OUTPUTS_ABOVE_NAME = "aboveavg";
public static final String MULTIPLE_OUTPUTS_BELOW_NAME = "belowavg";

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 Path postInput = new Path(args[0]);
 Path userInput = new Path(args[1]);
 Path countingOutput = new Path(args[3] + "_count");
 Path binningOutputRoot = new Path(args[3] + "_bins");
 Path binningOutputBelow = new Path(binningOutputRoot + "/"
 + JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME);
 Path binningOutputAbove = new Path(binningOutputRoot + "/"
 + JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME);

 Path belowAverageRepOutput = new Path(args[2]);
 Path aboveAverageRepOutput = new Path(args[3]);

 Job countingJob = getCountingJob(conf, postInput, countingOutput);

 int code = 1;
 if (countingJob.waitForCompletion(true)) {
 ControlledJob binningControlledJob = new ControlledJob(
 getBinningJobConf(countingJob, conf, countingOutput,
 userInput, binningOutputRoot));

 ControlledJob belowAvgControlledJob = new ControlledJob(
 getAverageJobConf(conf, binningOutputBelow,
 belowAverageRepOutput));
 belowAvgControlledJob.addDependingJob(binningControlledJob);

 ControlledJob aboveAvgControlledJob = new ControlledJob(
 getAverageJobConf(conf, binningOutputAbove,
 aboveAverageRepOutput));
 aboveAvgControlledJob.addDependingJob(binningControlledJob);

 JobControl jc = new JobControl("AverageReputation");
 jc.addJob(binningControlledJob);
 jc.addJob(belowAvgControlledJob);
 jc.addJob(aboveAvgControlledJob);

 jc.run();
 code = jc.getFailedJobList().size() == 0 ? 0 : 1;
 }

 FileSystem fs = FileSystem.get(conf);
 fs.delete(countingOutput, true);
 fs.delete(binningOutputRoot, true);

 System.exit(code);
}

Helper methods

Following are all the helper methods used to create the
 actual Job or
 Configuration objects. A ControlledJob can be created from either
 class. There are three separate methods, the final method being used
 twice to create the identical parallel jobs. The inputs and outputs
 are all that differentiate them.

public static Job getCountingJob(Configuration conf, Path postInput,
 Path outputDirIntermediate) throws IOException {
 // Setup first job to counter user posts
 Job countingJob = new Job(conf, "JobChaining-Counting");
 countingJob.setJarByClass(JobChainingDriver.class);

 // Set our mapper and reducer, we can use the API's long sum reducer for
 // a combiner!
 countingJob.setMapperClass(UserIdCountMapper.class);
 countingJob.setCombinerClass(LongSumReducer.class);
 countingJob.setReducerClass(UserIdSumReducer.class);

 countingJob.setOutputKeyClass(Text.class);
 countingJob.setOutputValueClass(LongWritable.class);

 countingJob.setInputFormatClass(TextInputFormat.class);

 TextInputFormat.addInputPath(countingJob, postInput);

 countingJob.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

 return countingJob;
}

public static Configuration getBinningJobConf(Job countingJob,
 Configuration conf, Path jobchainOutdir, Path userInput,
 Path binningOutput) throws IOException {
 // Calculate the average posts per user by getting counter values
 double numRecords = (double) countingJob
 .getCounters()
 .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,
 UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();
 double numUsers = (double) countingJob
 .getCounters()
 .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,
 UserIdSumReducer.USERS_COUNTER_NAME).getValue();

 double averagePostsPerUser = numRecords / numUsers;

 // Setup binning job
 Job binningJob = new Job(conf, "JobChaining-Binning");
 binningJob.setJarByClass(JobChainingDriver.class);

 // Set mapper and the average posts per user
 binningJob.setMapperClass(UserIdBinningMapper.class);
 UserIdBinningMapper.setAveragePostsPerUser(binningJob,
 averagePostsPerUser);

 binningJob.setNumReduceTasks(0);

 binningJob.setInputFormatClass(TextInputFormat.class);
 TextInputFormat.addInputPath(binningJob, jobchainOutdir);

 // Add two named outputs for below/above average
 MultipleOutputs.addNamedOutput(binningJob,
 JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME,
 TextOutputFormat.class, Text.class, Text.class);

 MultipleOutputs.addNamedOutput(binningJob,
 JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME,
 TextOutputFormat.class, Text.class, Text.class);
 MultipleOutputs.setCountersEnabled(binningJob, true);

 // Configure multiple outputs
 conf.setOutputFormat(NullOutputFormat.class);
 FileOutputFormat.setOutputPath(conf, outputDir);
 MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_ABOVE_5000,
 TextOutputFormat.class, Text.class, LongWritable.class);
 MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_BELOW_5000,
 TextOutputFormat.class, Text.class, LongWritable.class);

 // Add the user files to the DistributedCache
 FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
 for (FileStatus status : userFiles) {
 DistributedCache.addCacheFile(status.getPath().toUri(),
 binningJob.getConfiguration());
 }

 // Execute job and grab exit code
 return binningJob.getConfiguration();
}

public static Configuration getAverageJobConf(Configuration conf,
 Path averageOutputDir, Path outputDir) throws IOException {

 Job averageJob = new Job(conf, "ParallelJobs");
 averageJob.setJarByClass(ParallelJobs.class);

 averageJob.setMapperClass(AverageReputationMapper.class);
 averageJob.setReducerClass(AverageReputationReducer.class);

 averageJob.setOutputKeyClass(Text.class);
 averageJob.setOutputValueClass(DoubleWritable.class);

 averageJob.setInputFormatClass(TextInputFormat.class);

 TextInputFormat.addInputPath(averageJob, averageOutputDir);

 averageJob.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(averageJob, outputDir);

 // Execute job and grab exit code
 return averageJob.getConfiguration();
}

Chain Folding

Chain folding is an optimization that is applied to MapReduce job chains.
 Basically, it is a rule of thumb that says each record can be submitted to
 multiple mappers, or to a reducer and then a mapper. Such combined
 processing would save a lot of time reading files and transmitting data.
 The structure of the jobs often make these feasible because a map phase is
 completely shared-nothing: it looks at each record alone, so it doesn’t
 really matter what the organization of the data is or if it is grouped or
 not. When building large MapReduce chains, folding the chain to combine
 map phases will have some drastic performance benefits.
The main benefit of chain folding is reducing the amount of data
 movement in the MapReduce pipeline, whether it be the I/O of loading and
 storing to disk, or shuffling data over the network. In chained MapReduce
 jobs, temporary data is stored in HDFS, so if we can reduce the number of
 times we hit the disks, we’re reducing the total I/O in the chain.
There are a number of patterns in chains to look for to determine
 what to fold.
	Take a look at the map phases in the chain. If multiple map
 phases are adjacent, merge them into one phase. This would be the case
 if you had a map-only job (such as a replicated join), followed by a
 numerical aggregation. In this step, we are reducing the amount of
 times we’re hitting the disks. Consider a two-job chain in which the
 first job is a map-only job, which is then followed by a traditional
 MapReduce job with a map phase and a reduce phase. Without this
 optimization, the first map-only job will write its output out to the
 distributed file system, and then that data will be loaded by the
 second job.
Instead, if we merge the map phase of the map-only job and the traditional job,
 that temporary data never gets written, reducing the I/O
 significantly. Also, fewer tasks are started, reducing overhead of
 task management. Chaining many map tasks together is an even more
 drastic optimization. In this case, there really isn’t any downside to
 do this other than having to possibly alter already existing
 code.

	If the job ends with a map phase (combined or otherwise), push
 that phase into the reducer right before it. This is a special case
 with the same performance benefits as the previous step. It removes
 the I/O of writing temporary data out and then running a map-only job
 on it. It also reduces the task start-up overhead.

	Note that the the first map phase of the chain cannot benefit
 from this next optimization. As much as possible, split up each map
 phase (combined or otherwise) between operations that
 decrease the amount of data (e.g., filtering) and
 operations that increase the amount of data
 (e.g., enrichment). In some cases, this is not possible because you
 may need some enrichment data in order to do the filtering. In these
 cases, look at dependent phases as one larger phase that cumulatively
 increases or decreases the amount of data. Push the processes that
 decrease the amount of data into the previous reducer, while keeping
 the processes that increase the amount of data where they are.
This step is a bit more complex and the difference is more
 subtle. The gain here is that if you push minimizing map-phase
 processing into the previous reducer, you will reduce the amount of
 data written to temporary storage, as well as the amount of data
 loaded off disk into the next part of the chain. This can be pretty
 significant if a drastic amount of filtering is done.

Caution
Be careful when merging phases that require lots of memory. For
 example, merging five replicated joins together might not be a good idea
 because it will exceed the total memory available to the task. In these
 cases, it might be better to just leave them separate.

Note
Regardless of whether a job is a chain or not, try to filter as
 much data as early as possible. The most expensive parts of a MapReduce
 job are typically pushing data through the pipeline: loading the data,
 the shuffle/sort, and storing the data. For example, if you care only
 about data from item 2012, filter that out in the map phase, not after
 the reducer has grouped the data together.

Let’s run through a couple of examples to help explain the idea and
 why it is so useful.
To exemplify step one, consider the chain in Figure 6-1. The original chain (on top) is optimized so that
 the replicated join is folded into the mapper of the second MapReduce job
 (bottom).
[image: Original chain and optimizing mappers]

Figure 6-1. Original chain and optimizing mappers

 This job performs a word count on comments from teenagers. We
 do this to find out what topics are interesting to our youngest users. The
 age of the user isn’t with the comment, which is why we need to do a join.
 In this case, the map-only replicated join can be merged into the
 preprocessing of the second job.
To exemplify step two, consider the following chain in Figure 6-2. The original chain (top) is optimized so that the
 replicated join is folded into the reducer of the second MapReduce job
 (bottom).
[image: Original chain and optimizing a reducer with a mapper]

Figure 6-2. Original chain and optimizing a reducer with a mapper

 This job enriches each user’s information with the number of
 comments that user has posted. It uses a generic counting MapReduce job,
 then uses a replicated join to add in the user information to the count.
 In this case, the map-only replicated join can be merged into the
 reducer.
To exemplify step three, consider the following chain in Figure 6-3. The original chain (top) is optimized so that the
 replicated join is folded into the reducer of the second MapReduce job
 (bottom).
[image: Original chain and optimizing a mapper with a reducer]

Figure 6-3. Original chain and optimizing a mapper with a reducer

 This job is a bit more complicated than the others, as is
 evident from the long chain used to solve it. The intent is to find the
 most popular tags per age group, which is is done by finding a count of
 each user, enriching their user information onto it, filtering out counts
 less than 5, then finally grouping by the age group and summing up the
 original counts. When we look at the map tasks (enrichment and filtering),
 the replicated join is adding data, while the filter is removing data.
 Following step three, we are going to move the filtering to the first
 MapReduce job, and then move the replicated join into the map phase of the
 second MapReduce job. This gives us the new chain that can be seen at the
 bottom of Figure 6-3. Now the first MapReduce job will
 write out significantly less data than before and then it follows that the
 second MapReduce job is loading less data.
There are two primary methods for implementing chain folding:
 manually cutting and pasting code together, and a more elegant approach
 that uses special classes called ChainMapper and ChainReducer. If this is a one-time job and
 logically has multiple map phases, just implement it in one shot with the
 manual approach. If several of the map phases are reused (in a software
 reuse sense), then you should use the ChainMapper and ChainReducer approach to follow good software
 engineering practice.
The ChainMapper and ChainReducer Approach

ChainMapper and ChainReducer are special mapper and reducer classes that allow you to run multiple
 map phases in the mapper and multiple map phases after the reducer. You
 are effectively expanding the traditional map and reduce paradigm into
 several map phases, followed by a reduce phase, followed by several map
 phases. However, only one map phase and one reduce phase is ever
 invoked.
Each chained map phase feeds into the next in the pipeline. The
 output of the first is then processed by the second, which is then
 processed by the third, and so on. The map phases on the backend of the
 reducer take the output of the reducer and do additional computation.
 This is useful for post-processing operations or additional
 filtering.
Caution
Be sure that the input types and output types between each chain
 match up. If the first phase outputs a <LongWritable, Text>, be sure the
 second phase takes its input as <LongWritable, Text>.

Chain Folding Example

Bin users by reputation

This example is a slight modification of the job chaining example. Here,
 we use two mapper implementations for the initial map phase. The first
 formats each input XML record and writes out the user ID with a count
 of one. The second mapper then enriches the user ID with his or her
 reputation, which is read during the setup phase via the DistributedCache.
These two individual mapper classes are then chained together to
 feed a single reducer. This reducer is a basic LongSumReducer that simply iterates through all the values and sums the
 numbers. This sum is then output along with the input key.
Finally, a third mapper is called that will bin the records
 based on whether their reputation is below or above 5,000. This entire
 flow is executed in one MapReduce job using ChainMapper and ChainReducer.
Caution
This example uses the deprecated mapred API, because ChainMapper and ChainReducer were not available in the
 mapreduce package when this
 example was written.

The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of user posts and user information, bin
 users based on whether their reputation is below or above
 5,000.
Parsing mapper code

This mapper implementation gets the user ID from the input
 post record and outputs it with a count of 1.

public static class UserIdCountMapper extends MapReduceBase implements
 Mapper<Object, Text, Text, LongWritable> {

 public static final String RECORDS_COUNTER_NAME = "Records";
 private static final LongWritable ONE = new LongWritable(1);
 private Text outkey = new Text();

 public void map(Object key, Text value,
 OutputCollector<Text, LongWritable> output, Reporter reporter)
 throws IOException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // Get the value for the OwnerUserId attribute
 outkey.set(parsed.get("OwnerUserId"));
 output.collect(outkey, ONE);
 }
}

Replicated join mapper code

This mapper implementation is fed the output from the previous
 mapper. It reads the users data set during the setup phase to create
 a map of user ID to reputation. This map is used in the calls to
 map to enrich the output value
 with the user’s reputation. This new key is then output along with
 the input value.

public static class UserIdReputationEnrichmentMapper extends MapReduceBase
 implements Mapper<Text, LongWritable, Text, LongWritable> {

 private Text outkey = new Text();
 private HashMap<String, String> userIdToReputation =
 new HashMap<String, String>();

 public void configure(JobConf job) {

 Path[] files = DistributedCache.getLocalCacheFiles(job);

 // Read all files in the DistributedCache
 for (Path p : files) {
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(
 new GZIPInputStream(new FileInputStream(
 new File(p.toString())))));

 String line;
 // For each record in the user file
 while ((line = rdr.readLine()) != null) {
 // Get the user ID and reputation
 Map<String, String> parsed = MRDPUtils
 .transformXmlToMap(line);

 // Map the user ID to the reputation
 userIdToReputation.put(parsed.get("Id",
 parsed.get("Reputation"));
 }
 }
 }

 public void map(Text key, LongWritable value,
 OutputCollector<Text, LongWritable> output, Reporter reporter)
 throws IOException {

 String reputation = userIdToReputation.get(key.toString());
 if (reputation != null) {
 outkey.set(value.get() + "\t" + reputation);
 output.collect(outkey, value);
 }
 }
}

Reducer code

This reducer implementation sums the values together and
 outputs this summation with the input key: user ID and
 reputation.

public static class LongSumReducer extends MapReduceBase implements
 Reducer<Text, LongWritable, Text, LongWritable> {

 private LongWritable outvalue = new LongWritable();

 public void reduce(Text key, Iterator<LongWritable> values,
 OutputCollector<Text, LongWritable> output, Reporter reporter)
 throws IOException {

 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 outvalue.set(sum);
 output.collect(key, outvalue);
 }
}

Binning mapper code

This mapper uses MultipleOutputs to bin users into two data
 sets. The input key is parsed to pull out the reputation. This
 reputation value is then compared to the value 5,000 and the record
 is binned appropriately.

public static class UserIdBinningMapper extends MapReduceBase implements
 Mapper<Text, LongWritable, Text, LongWritable> {

 private MultipleOutputs mos = null;

 public void configure(JobConf conf) {
 mos = new MultipleOutputs(conf);
 }

 public void map(Text key, LongWritable value,
 OutputCollector<Text, LongWritable> output, Reporter reporter)
 throws IOException {

 if (Integer.parseInt(key.toString().split("\t")[1]) < 5000) {
 mos.getCollector(MULTIPLE_OUTPUTS_BELOW_5000, reporter)
 .collect(key, value);
 } else {
 mos.getCollector(MULTIPLE_OUTPUTS_ABOVE_5000, reporter)
 .collect(key, value);
 }
 }

 public void close() {
 mos.close();
 }
}

Driver code

The driver handles configuration of the ChainMapper
 and ChainReducer. The most
 interesting piece here is adding mappers and setting the reducer.
 The order in which they are added affects the execution of the
 different mapper implementations. ChainMapper is first used to add the two
 map implementations that will be called back to back before any
 sorting and shuffling occurs. Then, the ChainReducer static methods are used to
 set the reducer implementation, and then finally a mapper on the
 end. Note that you don’t use ChainMapper to add a mapper after a
 reducer: use ChainReducer.
The signature of each method takes in the JobConf of a
 mapper/reducer class, the input and output key value pair types, and
 another JobConf for the
 mapper/reducer class. This can be used in case the mapper or reducer
 has overlapping configuration parameters. No special configuration
 is required, so we simply pass in empty JobConf objects. The seventh parameter in
 the signature is a flag as to pass values in the chain by reference
 or by value. This is an added optimization you can use if the
 collector does not modify the keys or values in either the mapper or
 the reducer. Here, we make these assumptions, so we pass objects by
 reference (byValue =
 false).
In addition to configuring the chain mappers and reducers, we
 also add the user data set to the DistributedCache so our second mapper can
 perform the enrichment. We also set configure the MultipleOutputs and use a NullOutputFormat rather than the typical TextOutputFormat. Use of this output
 format will prevent the framework from creating the default empty
 part files.

public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf("ChainMapperReducer");
 conf.setJarByClass(ChainMapperDriver.class);

 Path postInput = new Path(args[0]);
 Path userInput = new Path(args[1]);
 Path outputDir = new Path(args[2]);

 ChainMapper.addMapper(conf, UserIdCountMapper.class,
 LongWritable.class, Text.class, Text.class, LongWritable.class,
 false, new JobConf(false));

 ChainMapper.addMapper(conf, UserIdReputationEnrichmentMapper.class,
 Text.class, LongWritable.class, Text.class, LongWritable.class,
 false, new JobConf(false));

 ChainReducer.setReducer(conf, LongSumReducer.class, Text.class,
 LongWritable.class, Text.class, LongWritable.class, false,
 new JobConf(false));

 ChainReducer.addMapper(conf, UserIdBinningMapper.class, Text.class,
 LongWritable.class, Text.class, LongWritable.class, false,
 new JobConf(false));

 conf.setCombinerClass(LongSumReducer.class);

 conf.setInputFormat(TextInputFormat.class);
 TextInputFormat.setInputPaths(conf, postInput);

 // Configure multiple outputs
 conf.setOutputFormat(NullOutputFormat.class);
 FileOutputFormat.setOutputPath(conf, outputDir);
 MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_ABOVE_5000,
 TextOutputFormat.class, Text.class, LongWritable.class);
 MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_BELOW_5000,

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(LongWritable.class);

 // Add the user files to the DistributedCache
 FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
 for (FileStatus status : userFiles) {
 DistributedCache.addCacheFile(status.getPath().toUri(), conf);
 }

 RunningJob job = JobClient.runJob(conf);

 while (!job.isComplete()) {
 Thread.sleep(5000);
 }

 System.exit(job.isSuccessful() ? 0 : 1);
}

Job Merging

Like job folding, job merging is another
 optimization aimed to reduce the amount of I/O through the MapReduce
 pipeline. Job merging is a process that allows two unrelated jobs that are
 loading the same data to share the MapReduce pipeline. The main benefit of
 merging is that the data needs to be loaded and parsed only once. For some
 large-scale jobs, that task might be the most expensive part of the whole
 operation. One of the downsides of “schema-on-load” and storing the data
 in its original form is having to parse it over and over again, which can
 really impact performance if parsing is complicated (e.g., XML).
Assume we have two jobs that need to run over the exact same massive
 amount of data. These two jobs both load and parse the data, then perform
 their computations. With job merging, we’ll have one MapReduce job that
 logically performs the two jobs at once without mixing the two
 applications as seen in Figure 6-4. The original chain
 (top) is optimized so that the two mappers run on the same data, and the
 two reducers run on the same data (bottom).
Nothing is stopping you from applying job merging to more than two
 jobs at once. The more the merrier! The more you consolidate a shared
 burden across jobs, the more compute resources you’ll have available in
 your cluster.
[image: Original jobs and merged jobs]

Figure 6-4. Original jobs and merged jobs

Likely, this process will be relevant only for important and already
 existing jobs in a production cluster. Development groups that take the
 time to consolidate their core analytics will see significant reductions
 in cluster utilization. When the jobs are merged, they’ll have to run
 together and the source code will have to be kept together. This is likely
 not worth it for jobs that are run in an ad hoc manner or are relatively
 new to the environment.
Unfortunately, you must satisfy a number of prerequisites before
 applying this pattern. The most obvious one is that both jobs need to have
 the same intermediate keys and output formats, because they’ll be sharing
 the pipeline and thus need to use the same data types. Serialization or
 polymorphism can be used if this is truly a problem, but adds a bit of
 complexity.
Job merging is a dirty procedure. Some hacks will have to be done to
 get it to work, but definitely more work can be put into a merging
 solution to make it a bit cleaner. From a software engineering
 perspective, this complicates the code organization, because unrelated
 jobs now share the same code. At a high level, the same map function will
 now be performing the original duties of the old map functions, while the
 reduce function will perform one action or another based on a tag on the
 key that tells which data set it came from. The steps for merging two jobs
 are as follows:
	Bring the code for the two mappers together.
There are a couple of ways to do this. Copying and pasting the
 code works, but may complicate which piece of code is doing what. Good
 in-code comments can help you compensate for this. The other method is
 to separate the code into two helper map functions that process the
 input for each algorithm.

	In the mapper, change the writing of the key and value to “tag”
 the key with the map source.
Tagging the key to indicate which map it came from is critical
 so that the data from the different maps don’t get mixed up. There are
 a few ways to do this depending on the original data type. If it is a
 string, you can simply make the first character the tag, so for
 instance you could change “parks” to “Aparks” when it comes from the
 first map, and “Bparks” when it comes from the second map.
The general way to tag is to make a custom composite tuple-like
 key that stores the tag separately from the original data. This is
 definitely the cleaner way of doing things, but takes a bit more
 work.

	In the reducer, parse out the tag and use an if-statement to
 switch what reducer code actually gets executed.
As in the mapper, you can either just copy and paste the code
 into an if-statement or have the if-statement call out to helper
 functions. The if-statement controls the path of execution based on
 the tag.

	Use MultipleOutputs to separate the output for the jobs.
MultipleOutputs is a special
 output format helper class that allows you to write to different
 folders of output for the same reducer, instead of just a single
 folder. Make it so the one reducer path always writes to one folder of
 the MultipleOutputs, while the
 other reducer path writes to the other folder.

Job Merging Examples

Anonymous comments and distinct users

This example combines Anonymizing StackOverflow comments and Distinct user IDs. Both examples used the comments data
 set as input. However, their outputs were very different. One created
 a distinct set of users, while the other created an anonymized version
 of each record. The comment portion of the StackOverflow data set is
 the largest we have, so merging these jobs together will definitely
 cut our processing time down. This way, the data set needs to be read
 only once.
The following descriptions of each code section explain the
 solution to the problem.
Problem: Given a set of comments, generate an anonymized version
 of the data and a distinct set of user IDs.
TaggedText WritableComparable

A custom WritableComparable
 object is created to tag a Text with a string. This is a cleaner way of splitting the logic
 between the two jobs, and saves us some string parsing in the
 reducer.
This object has two private member variables and getters and
 setters for each variable. It holds a String that the mapper uses to tag each Text value
 that is also held by this object. The reducer then examines the tag
 to find out which reduce logic to execute. The compareTo method is what makes this object
 also comparable and allowed for use as a key in the MapReduce
 framework. This method first examines the tag for equality. If they
 are equal, the text inside the object is then compared and the value
 immediately returned. If they are not equal, the value of the
 comparison is then returned. Items are sorted by tag first, and then
 by the text value. This type of comparison will produce output such
 as:
A:100004122
A:120019879
D:10
D:22
D:23

public static class TaggedText implements WritableComparable<TaggedText> {

 private String tag = "";
 private Text text = new Text();

 public TaggedText() { }

 public void setTag(String tag) {
 this.tag = tag;
 }

 public String getTag() {
 return tag;
 }

 public void setText(Text text) {
 this.text.set(text);
 }

 public void setText(String text) {
 this.text.set(text);
 }

 public Text getText() {
 return text;
 }

 public void readFields(DataInput in) throws IOException {
 tag = in.readUTF();
 text.readFields(in);
 }

 public void write(DataOutput out) throws IOException {
 out.writeUTF(tag);
 text.write(out);
 }

 public int compareTo(TaggedText obj) {
 int compare = tag.compareTo(obj.getTag());
 if (compare == 0) {
 return text.compareTo(obj.getText());
 } else {
 return compare;
 }
 }

 public String toString() {
 return tag.toString() + ":" + text.toString();
 }
}

Merged mapper code

The map method simply passes the parameters to two helper
 functions, each of which processes the map logic individual to write
 output to context. The map
 methods were slightly changed from their original respective
 examples in order to both output Text objects as the key and value. This is
 a necessary change so we can have the same type of intermediate
 key/value pairs we had in the separate map logic. The anonymizeMap method generates an anonymous
 record from the input value, whereas the distinctMap method grabs the user ID from
 the record and outputs it. Each intermediate key/value pair written
 out from each helper map method is tagged with either “A” for
 anonymize or “D” for distinct.
Tip
Each helper math method parses the input record, but this
 parsing should instead be done inside the actual map method, The resulting Map<String,String> can then be
 passed to both helper methods. Any little optimizations like this
 can be very beneficial in the long run and should be
 implemented!

public static class AnonymizeDistinctMergedMapper extends
 Mapper<Object, Text, TaggedText, Text> {

 private static final Text DISTINCT_OUT_VALUE = new Text();

 private Random rndm = new Random();
 private TaggedText anonymizeOutkey = new TaggedText(),
 distinctOutkey = new TaggedText();
 private Text anonymizeOutvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 anonymizeMap(key, value, context);
 distinctMap(key, value, context);
 }

 private void anonymizeMap(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 if (parsed.size() > 0) {
 StringBuilder bldr = new StringBuilder();
 bldr.append("<row ");
 for (Entry<String, String> entry : parsed.entrySet()) {

 if (entry.getKey().equals("UserId")
 || entry.getKey().equals("Id")) {
 // ignore these fields
 } else if (entry.getKey().equals("CreationDate")) {
 // Strip out the time, anything after the 'T'
 // in the value
 bldr.append(entry.getKey()
 + "=\""
 + entry.getValue().substring(0,
 entry.getValue().indexOf('T'))
 + "\" ");
 } else {
 // Otherwise, output this.
 bldr.append(entry.getKey() + "=\"" + entry.
 getValue() + "\" ");
 }
 }

 bldr.append(">");
 anonymizeOutkey.setTag("A");
 anonymizeOutkey.setText(Integer.toString(rndm.nextInt()));
 anonymizeOutvalue.set(bldr.toString());
 context.write(anonymizeOutkey, anonymizeOutvalue);
 }
 }

 private void distinctMap(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 // Otherwise, set our output key to the user's id,
 // tagged with a "D"
 distinctOutkey.setTag("D");
 distinctOutkey.setText(parsed.get("UserId"));

 // Write the user's id with a null value
 context.write(distinctOutkey, DISTINCT_OUT_VALUE);
 }
}

Merged reducer code

The reducer’s calls to setup and cleanup handle the creation and closing of
 the MultipleOutputs
 utility. The reduce method checks
 the tag of each input key and calls a helper reducer method based on
 the tag. The reduce methods are passed the Text object inside the TaggedText.
For the anonymous call, all the input values are iterated over
 and written to a named output of anonymize/part. Adding the slash and the
 “part” creates a folder under the configured output directory that
 contains a number of part files equivalent to the number of reduce
 tasks.
For the distinct reduce call, the input key is written to
 MultipleOutputs with a NullWritable to a named output of distinct/part. Again, this will create a
 folder called distinct underneath
 the job’s configured output directory.
Caution
In this example, we are outputting the same essential
 format—a Text object and a
 NullWritable object— from each
 of the reduce calls. This won’t always be the case! If your jobs
 have conflicting output key/value types, you can utilize the
 Text object to normalize the
 outputs.

public static class AnonymizeDistinctMergedReducer extends
 Reducer<TaggedText, Text, Text, NullWritable> {

 private MultipleOutputs<Text, NullWritable> mos = null;

 protected void setup(Context context) throws IOException,
 InterruptedException {
 mos = new MultipleOutputs<Text, NullWritable>(context);
 }

 protected void reduce(TaggedText key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {

 if (key.getTag().equals("A")) {
 anonymizeReduce(key.getText(), values, context);
 } else {
 distinctReduce(key.getText(), values, context);
 }
 }

 private void anonymizeReduce(Text key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {

 for (Text value : values) {
 mos.write(MULTIPLE_OUTPUTS_ANONYMIZE, value,
 NullWritable.get(), MULTIPLE_OUTPUTS_ANONYMIZE + "/part");
 }
 }

 private void distinctReduce(Text key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {
 mos.write(MULTIPLE_OUTPUTS_DISTINCT, key, NullWritable.get(),
 MULTIPLE_OUTPUTS_DISTINCT + "/part");
 }

 protected void cleanup(Context context) throws IOException,
 InterruptedException {
 mos.close();
 }
}

Driver code

The driver code looks just like any other driver that uses
 MultipleOutputs. All the logic of
 merging jobs is done inside the mapper and reducer implementation.

public static void main(String[] args) throws Exception {

 // Configure the merged job
 Job job = new Job(new Configuration(), "MergedJob");
 job.setJarByClass(MergedJobDriver.class);

 job.setMapperClass(AnonymizeDistinctMergedMapper.class);
 job.setReducerClass(AnonymizeDistinctMergedReducer.class);
 job.setNumReduceTasks(10);

 TextInputFormat.setInputPaths(job, new Path(args[0]));
 TextOutputFormat.setOutputPath(job, new Path(args[1]));

 MultipleOutputs.addNamedOutput(job, MULTIPLE_OUTPUTS_ANONYMIZE,
 TextOutputFormat.class, Text.class, NullWritable.class);
 MultipleOutputs.addNamedOutput(job, MULTIPLE_OUTPUTS_DISTINCT,
 TextOutputFormat.class, Text.class, NullWritable.class);

 job.setOutputKeyClass(TaggedText.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);
}

Chapter 7. Input and Output Patterns

In this chapter, we’ll be focusing on what is probably the most often overlooked way to
 improve the value of MapReduce: customizing input and output. You will not
 always want to load or store data the way Hadoop MapReduce does out of the
 box. Sometimes you can skip the time-consuming step of storing data in HDFS
 and just accept data from some original source, or feed it directly to some
 process that uses it after MapReduce is finished. Sometimes the basic Hadoop
 paradigm of file blocks and input splits doesn’t do what you need, so this
 is where a custom InputFormat or OutputFormat comes into play.
Three patterns in this chapter deal with input: generating
 data, external source input, and
 partition pruning. All three input patterns share an
 interesting property: the map phase is completely unaware that tricky things
 are going on before it gets its input pairs. Customizing an input format is
 a great way to abstract away details of the method you use to load
 data.
On the flip side, Hadoop will not always store data in the way you
 need it to. There is one pattern in this chapter, external source
 output, that writes data to a system outside of Hadoop and HDFS.
 Just like the custom input formats, custom output formats keep the map or
 reduce phase from realizing that tricky things are going on as the data is
 going out.
Customizing Input and Output in Hadoop

Hadoop allows you to modify the way data is loaded on disk in two major
 ways: configuring how contiguous chunks of input are generated from blocks
 in HDFS (or maybe more exotic sources), and configuring how records appear
 in the map phase. The two classes you’ll be playing with to do this are
 RecordReader and InputFormat. These work with the Hadoop MapReduce framework in a very similar
 way to how mappers and reducers are plugged in.
Hadoop also allows you to modify the way data is stored in an
 analogous way: with an OutputFormat
 and a RecordWriter.
InputFormat

Hadoop relies on the input format of the job to do three
 things:
	Validate the input configuration for the job (i.e., checking that the data is
 there).

	Split the input blocks and files into logical chunks of type InputSplit, each of which is assigned to a map task for
 processing.

	Create the RecordReader implementation to be used
 to create key/value pairs from the raw InputSplit. These pairs are sent one by one to their mapper.

The most common input formats are subclasses of FileInputFormat, with the Hadoop default
 being TextInputFormat. The input format first validates the input into the job by ensuring that all of the
 input paths exist. Then it logically splits each input file based on the total size of the
 file in bytes, using the block size as an upper bound. For example, a 160 megabyte file in
 HDFS will generate three input splits along the byte ranges 0MB-64MB, 64MB-128MB and 128MB-160MB. Each map task will be assigned exactly one of these
 input splits, and then the RecordReader implementation is
 responsible for generate key/value pairs out of all the bytes it has been assigned.
Typically, the RecordReader has the additional
 responsibility of fixing boundaries, because the input split boundary is arbitrary and
 probably will not fall on a record boundary. For example, the TextInputFormat reads text files using a LineRecordReader to create key/value pairs for each map task for each line of text (i.e., separated
 by a newline character). The key is the number of bytes read in the file so far and the
 value is a string of characters up to a newline character. Because it is very unlikely that
 the chunk of bytes for each input split will be lined up with a newline character, the
 LineRecordReader will read past its given “end” in
 order to make sure a complete line is read. This bit of data comes from a different data
 block and is therefore not stored on the same node, so it is streamed from a DataNode
 hosting the block. This streaming is all handled by an instance of the FSDataInputStream class, and we
 (thankfully) don’t have to deal with any knowledge of where these blocks are.
Don’t be afraid to go past split boundaries in your own formats,
 just be sure to test thoroughly so you aren’t duplicating or missing any
 data!
Tip
Custom input formats are not limited to file-based input. As
 long as you can express the input as InputSplit objects and key/value pairs,
 custom or otherwise, you can read anything into the map phase of a
 MapReduce job in parallel. Just be sure to keep in mind what an input
 split represents and try to take advantage of data locality.

The InputFormat abstract class
 contains two abstract methods:
	getSplits
	The implementation of getSplits typically uses the given JobContext object to retrieve the
 configured input and return a List of InputSplit objects. The input splits
 have a method to return an array of machines associated with the
 locations of the data in the cluster, which gives clues to the
 framework as to which TaskTracker should process the map task.
 This method is also a good place to verify the configuration and
 throw any necessary exceptions, because the method is used on the
 front-end (i.e. before the job is submitted to the
 JobTracker).

	createRecordReader
	This method is used on the back-end to generate an implementation of
 RecordReader, which we’ll
 discuss in more detail shortly. Typically, a new instance is
 created and immediately returned, because the record reader has an
 initialize method that is
 called by the framework.

RecordReader

The RecordReader abstract class
 creates key/value pairs from a given InputSplit. While the InputSplit represents the byte-oriented view
 of the split, the RecordReader makes
 sense out of it for processing by a mapper. This is why Hadoop and
 MapReduce is considered schema on read. It is in
 the RecordReader that the schema is
 defined, based solely on the record reader implementation, which changes
 based on what the expected input is for the job. Bytes are read from the
 input source and turned into a WritableComparable
 key and a Writable value. Custom data
 types are very common when creating custom input formats, as they are a
 nice object-oriented way to present information to a mapper.
A RecordReader uses the data
 within the boundaries created by the input split to generate key/value
 pairs. In the context of file-based input, the “start” is the byte
 position in the file where the RecordReader should start generating key/value
 pairs. The “end” is where it should stop reading records. These are not
 hard boundaries as far as the API is concerned—there is nothing stopping
 a developer from reading the entire file for each map task. While
 reading the entire file is not advised, reading outside of the
 boundaries it often necessary to ensure that a complete record is
 generated.
Consider the case of XML. While using a TextInputFormat
 to grab each line works, XML elements are typically not on the same line
 and will be split by a typical MapReduce input. By reading past the
 “end” input split boundary, you can complete an entire record. After
 finding the bottom of the record, you just need to ensure that each
 record reader starts at the beginning of an XML element. After seeking
 to the start of the input split, continue reading until the beginning of
 the configured XML tag is read. This will allow the MapReduce framework
 to cover the entire contents of an XML file, while not duplicating any
 XML records. Any XML that is skipped by seeking forward to the start of
 an XML element will be read by the preceding map task.
The RecordReader abstract class
 has a number of methods that must be overridden.
	initialize
	This method takes as arguments the map task’s assigned InputSplit and TaskAttemptContext, and prepares the
 record reader. For file-based input formats, this is a good place
 to seek to the byte position in the file to begin reading.

	getCurrentKey and
 getCurrentValue
	These methods are used by the framework to give generated key/value
 pairs to an implementation of Mapper. Be sure to reuse the objects
 returned by these methods if at all possible!

	nextKeyValue
	Like the corresponding method of the InputFormat class, this reads a single
 key/value pair and returns true
 until the data is consumed.

	getProgress
	Like the corresponding method of the InputFormat class, this is an optional
 method used by the framework for metrics gathering.

	close
	This method is used by the framework for cleanup after there are no
 more key/value pairs to process.

OutputFormat

Similarly to an input format, Hadoop relies on the output format of the job for
 two main tasks:
	Validate the output configuration for the job.

	Create the RecordWriter implementation that will
 write the output of the job.

On the flip side of the FileInputFormat,
 there is a FileOutputFormat to
 work with file-based output. Because most output from a
 MapReduce job is written to HDFS, the many file-based output formats
 that come with the API will solve most of yours needs. The default used
 by Hadoop is the TextOutputFormat,
 which stores key/value pairs to HDFS at a configured output directory
 with a tab delimiter. Each reduce task writes an individual part file to
 the configured output directory. The TextOutputFormat also validates that the output directory does not exist prior
 to starting the MapReduce job.
The TextOutputFormat uses a
 LineRecordWriter to write key/value pairs for each map task or reduce task,
 depending on whether there is a reduce phase or not. This class uses the
 toString method to serialize each
 each key/value pair to a part file in HDFS, delimited by a tab. This tab
 delimiter is the default and can be changed via job
 configuration.
Again, much like an InputFormat, you are not restricted to storing
 data to HDFS. As long as you can write key/value pairs to some other
 source with Java (e.g., a JDBC database connection), you can use
 MapReduce to do a parallel bulk write. Just make sure whatever you are
 writing to can handle the large number of connections from the many
 tasks.
The OutputFormat abstract class
 contains three abstract methods for implementation:
	checkOutputSpecs
	This method is used to validate the output specification for the job, such
 as making sure the directory does not already exist prior to it
 being submitted. Otherwise, the output would be
 overwritten.

	getRecordWriter
	This method returns a RecordWriter implementation that serializes key/value pairs to an output,
 typically a FileSystem
 object.

	getOutputCommiter
	The output committer of a job sets up each task during initialization, commits the task upon
 successful completion, and cleans up each task when it finishes —
 successful or otherwise. For file-based output, a FileOutputCommitter can be used to
 handle all the heavy lifting. It will create temporary output
 directories for each map task and move the successful output to
 the configured output directory when necessary.

RecordWriter

The RecordWriter abstract
 class writes key/value pairs to a file system, or another
 output. Unlike its RecordReader
 counterpart, it does not contain an initialize phase. However, the
 constructor can always be used to set up the record writer for whatever
 is needed. Any parameters can be passed in during construction, because
 the record writer instance is created via OutputFormat.getRecordWriter.
The RecordWriter abstract class is a much simpler
 interface, containing only two methods:
	write
	This method is called by the framework for each key/value pair that
 needs to be written. The implementation of this method depends
 very much on your use case. The examples we’ll show will write
 each key/value pair to an external in-memory key/value store
 rather than a file system.

	close
	This method is used by the framework after there are no more key/value pairs to
 write out. This can be used to release any file handles, shut down
 any connections to other services, or any other cleanup tasks
 needed.

Generating Data

Pattern Description

The generating data pattern is interesting because instead of loading data that comes
 from somewhere outside, it generates that data on the fly and in
 parallel.
Intent

You want to generate a lot of data from scratch.

Motivation

This pattern is different from all of the others in the book in
 that it doesn’t load data. With this pattern, you generate the data
 and store it back in the distributed file system.
Generating data isn’t common. Typically you’ll generate a bunch
 of the data at once then use it over and over again. However, when you
 do need to generate data, MapReduce is an excellent system for doing
 it.
The most common use case for this pattern is generating random
 data. Building some sort of representative data set could be useful
 for large scale testing for when the real data set is still too small.
 It can also be useful for building “toy domains” for researching a
 proof of concept for an analytic at scale.
Generating random data is also used often used as part of a
 benchmark, such as the commonly used TeraGen/TeraSort and
 DFSIO.
Unfortunately, the implementation of this pattern isn’t
 straightforward in Hadoop because one of the foundational pieces of
 the framework is assigning one map task to an input split and
 assigning one map function call to one record. In this case, there are
 no input splits and there are no records, so we have to fool the
 framework to think there are.

Structure

To implement this pattern in Hadoop, implement a
 custom InputFormat and let
 a RecordReader
 generate the random data. The map function is completely oblivious to
 the origin of the data, so it can be built on the fly instead of being
 loaded out of some file in HDFS. For the most part, using the identity
 mapper is fine here, but you might want to do some post-processing in
 the map task, or even analyze it right away. See Figure 7-1.
This pattern is map-only.
	The InputFormat creates
 the fake splits from nothing. The number of splits it creates
 should be configurable.

	The RecordReader takes
 its fake split and generates random records from it.
In some cases, you can assign some information in the input
 split to tell the record reader what to generate. For example, to
 generate random date/time data, have each input split account for
 an hour.

	In most cases, the IdentityMapper is used to just write the data out as it comes in.

[image: The structure of the generating data pattern]

Figure 7-1. The structure of the generating data pattern

Tip
The lazy way of doing implementing this pattern is to seed the job with many fake
 input files containing a single bogus record. Then, you can just use a generic InputFormat and RecordReader and generate the data in the map function. The empty input
 files are then deleted on application exit.

Consequences

Each mapper outputs a file containing random data.

Resemblances

There are a number of ways to create random data with SQL and
 Pig, but nothing that is eloquent or terse.

Performance analysis

The major consideration here in terms of performance is how many
 worker map tasks are needed to generate the data. In general, the more
 map tasks you have, the faster you can generate data since you are
 better utilizing the parallelism of the cluster. However, it makes
 little sense to fire up more map tasks than you have map slots since
 they are all doing the same thing.

Generating Data Examples

Generating random StackOverflow comments

To generate random StackOverflow data, we’ll take a list of 1,000
 words and just make random blurbs. We also have to generate a random
 score, a random row ID (we can ignore that it likely won’t be unique),
 a random user ID, and a random creation date.
The following descriptions of each code section explain the
 solution to the problem.
Driver code

The driver parses the four command line arguments to configure
 this job. It sets our custom input format and calls the static
 methods to configure it further. All the output is written to the
 given output directory. The identity mapper is used for this job,
 and the reduce phase is disabled by setting the number of reduce
 tasks to zero.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 int numMapTasks = Integer.parseInt(args[0]);
 int numRecordsPerTask = Integer.parseInt(args[1]);
 Path wordList = new Path(args[2]);
 Path outputDir = new Path(args[3]);

 Job job = new Job(conf, "RandomDataGenerationDriver");
 job.setJarByClass(RandomDataGenerationDriver.class);

 job.setNumReduceTasks(0);

 job.setInputFormatClass(RandomStackOverflowInputFormat.class);

 RandomStackOverflowInputFormat.setNumMapTasks(job, numMapTasks);
 RandomStackOverflowInputFormat.setNumRecordPerTask(job,
 numRecordsPerTask);
 RandomStackOverflowInputFormat.setRandomWordList(job, wordList);

 TextOutputFormat.setOutputPath(job, outputDir);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(NullWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 2);
}

InputSplit code

The FakeInputSplit class
 simply extends InputSplit and
 implements Writable. There is no
 implementation for any of the overridden methods, or for methods
 requiring return values return basic values. This input split is
 used to trick the framework into assigning a task to generate the
 random data.

public static class FakeInputSplit extends InputSplit implements
 Writable {

 public void readFields(DataInput arg0) throws IOException {
 }

 public void write(DataOutput arg0) throws IOException {
 }

 public long getLength() throws IOException, InterruptedException {
 return 0;
 }

 public String[] getLocations() throws IOException,
 InterruptedException {
 return new String[0];
 }
}

InputFormat code

The input format has two main purposes: returning the list of input splits for the
 framework to generate map tasks from, and then creating the RandomStackOverflowRecordReader for the map task. We override the getSplits method to return a configured number of FakeInputSplit splits. This number is pulled from the configuration. When the framework calls
 createRecordReader, a RandomStackOverflowRecordReader is
 instantiated, initialized, and returned.

public static class RandomStackOverflowInputFormat extends
 InputFormat<Text, NullWritable> {

 public static final String NUM_MAP_TASKS = "random.generator.map.tasks";
 public static final String NUM_RECORDS_PER_TASK =
 "random.generator.num.records.per.map.task";
 public static final String RANDOM_WORD_LIST =
 "random.generator.random.word.file";

 public List<InputSplit> getSplits(JobContext job) throws IOException {

 // Get the number of map tasks configured for
 int numSplits = job.getConfiguration().getInt(NUM_MAP_TASKS, -1);

 // Create a number of input splits equivalent to the number of tasks
 ArrayList<InputSplit> splits = new ArrayList<InputSplit>();
 for (int i = 0; i < numSplits; ++i) {
 splits.add(new FakeInputSplit());
 }

 return splits;
 }

 public RecordReader<Text, NullWritable> createRecordReader(
 InputSplit split, TaskAttemptContext context)
 throws IOException, InterruptedException {
 // Create a new RandomStackOverflowRecordReader and initialize it
 RandomStackOverflowRecordReader rr =
 new RandomStackOverflowRecordReader();
 rr.initialize(split, context);
 return rr;
 }

 public static void setNumMapTasks(Job job, int i) {
 job.getConfiguration().setInt(NUM_MAP_TASKS, i);
 }

 public static void setNumRecordPerTask(Job job, int i) {
 job.getConfiguration().setInt(NUM_RECORDS_PER_TASK, i);
 }

 public static void setRandomWordList(Job job, Path file) {
 DistributedCache.addCacheFile(file.toUri(), job.getConfiguration());
 }
}

RecordReader code

This record reader is where the data is actually generated. It is given during our FakeInputSplit during initialization, but simply ignores it.
 The number of records to create is pulled from the job configuration, and the list of
 random words is read from the DistributedCache. For each call to
 nextKeyValue, a random record is created using a
 simple random number generator. The body of the comment is generated by a helper
 function that randomly selects words from the list, between one and thirty words (also
 random). The counter is incremented to keep track of how many records have been
 generated. Once all the records are generated, the record reader returns false, signaling the framework that there is no more input
 for the mapper.

public static class RandomStackOverflowRecordReader extends
 RecordReader<Text, NullWritable> {

 private int numRecordsToCreate = 0;
 private int createdRecords = 0;
 private Text key = new Text();
 private NullWritable value = NullWritable.get();
 private Random rndm = new Random();
 private ArrayList<String> randomWords = new ArrayList<String>();

 // This object will format the creation date string into a Date
 // object
 private SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 public void initialize(InputSplit split, TaskAttemptContext context)
 throws IOException, InterruptedException {

 // Get the number of records to create from the configuration
 this.numRecordsToCreate = context.getConfiguration().getInt(
 NUM_RECORDS_PER_TASK, -1);

 // Get the list of random words from the DistributedCache
 URI[] files = DistributedCache.getCacheFiles(context
 .getConfiguration());

 // Read the list of random words into a list
 BufferedReader rdr = new BufferedReader(new FileReader(
 files[0].toString()));

 String line;
 while ((line = rdr.readLine()) != null) {
 randomWords.add(line);
 }
 rdr.close();
 }

 public boolean nextKeyValue() throws IOException,
 InterruptedException {
 // If we still have records to create
 if (createdRecords < numRecordsToCreate) {
 // Generate random data
 int score = Math.abs(rndm.nextInt()) % 15000;
 int rowId = Math.abs(rndm.nextInt()) % 1000000000;
 int postId = Math.abs(rndm.nextInt()) % 100000000;
 int userId = Math.abs(rndm.nextInt()) % 1000000;
 String creationDate = frmt
 .format(Math.abs(rndm.nextLong()));

 // Create a string of text from the random words
 String text = getRandomText();

 String randomRecord = "<row Id=\"" + rowId + "\" PostId=\""
 + postId + "\" Score=\"" + score + "\" Text=\""
 + text + "\" CreationDate=\"" + creationDate
 + "\" UserId\"=" + userId + "\" />";

 key.set(randomRecord);
 ++createdRecords;
 return true;
 } else {
 // We are done creating records
 return false;
 }
 }

 private String getRandomText() {
 StringBuilder bldr = new StringBuilder();
 int numWords = Math.abs(rndm.nextInt()) % 30 + 1;

 for (int i = 0; i < numWords; ++i) {
 bldr.append(randomWords.get(Math.abs(rndm.nextInt())
 % randomWords.size())
 + " ");
 }
 return bldr.toString();
 }

 public Text getCurrentKey() throws IOException,
 InterruptedException {
 return key;
 }

 public NullWritable getCurrentValue() throws IOException,
 InterruptedException {
 return value;
 }

 public float getProgress() throws IOException, InterruptedException {
 return (float) createdRecords / (float) numRecordsToCreate;
 }

 public void close() throws IOException {
 // nothing to do here...
 }
}

External Source Output

Pattern Description

As stated earlier in this chapter, the external source
 output pattern writes data to a system outside of Hadoop and
 HDFS.
Intent

You want to write MapReduce output to a nonnative
 location.

Motivation

With this pattern, we are able to output data from the MapReduce
 framework directly to an external source. This is extremely useful for
 direct loading into a system instead of staging the data to be
 delivered to the external source. The pattern skips storing data in a
 file system entirely and sends output key/value pairs directly where
 they belong. MapReduce is rarely ever hosting an applications as-is,
 so using MapReduce to bulk load into an external source in parallel
 has its uses.
In a MapReduce approach, the data is written out in parallel. As
 with using an external source for input, you need to be sure the
 destination system can handle the parallel ingest it is bound to
 endure with all the open connections.

Structure

Figure 7-2 shows the external
 source output structure, explained below.
	The OutputFormat verifies
 the output specification of the job configuration
 prior to job submission. This is a great place to ensure that the
 external source is fully functional, as it won’t be good to
 process all the data only to find out the external source was
 unable when it was time to commit the data. This method also is
 responsible for creating and initializing a RecordWriter implementation.

	The RecordWriter writes
 all key/value pairs to the external source. Much
 like a RecordReader, the
 implementation varies depending on the external data source being
 written to. During construction of the object, establish any
 needed connections using the external source’s API. These
 connections are then used to write out all the data from each map
 or reduce task.

[image: The structure of the external source output pattern]

Figure 7-2. The structure of the external source output pattern

Consequences

The output data has been sent to the external source and that
 external source has loaded it successfully.
Caution
Note that task failures are bound to happen, and when they do,
 any key/value pairs written in the write method can’t be reverted. In a
 typical MapReduce job, temporary output is written to the file
 system. In the event of a failure, this output is simply discarded.
 When writing to an external source directly, it will receive the
 data in a stream. If a task fails, the external source won’t
 automatically know about it and discard all the data it received
 from a task. If this is unacceptable, consider using a custom
 OutputCommitter to write
 temporary output to the file system. This temporary output can then
 be read, delivered to the external source, and deleted upon success,
 or deleted from the file system outright in the event of a
 failure.

Performance analysis

From a MapReduce perspective, there isn’t much to worry about
 since the map and reduce are generic. However, you do have to be very
 careful that the receiver of the data can handle the parallel
 connections. Having a thousand tasks writing to a single SQL database
 is not going to work well. To avoid this, you may have to have each
 reducer handle a bit more data than you typically would to reduce the
 number of parallel writes to the data sink. This is not necessarily a
 problem if the destination of the data is parallel in nature and
 supports parallel ingestation. For example, for writing to a sharded
 SQL database, you could have each reducer write to a specific database
 instance.

External Source Output Example

Writing to Redis instances

This example is a basic means for writing to a number of Redis instances in parallel from
 MapReduce.
 Redis is an open-source, in-memory, key-value
 store. It is often referred to as a data structure server, since keys can contain strings,
 hashes, lists, sets, and sorted sets. Redis is written in ANSI C and works in most POSIX
 systems, such as Linux, without any external dependencies.
In order to work with the Hadoop framework, Jedis is used to communicate with
 Redis. Jedis is an open-source “blazingly small and sane Redis java client.” A list of
 clients written for other languages is available on their website.
Unlike other examples in this book, there is no actual analysis
 in this example (along with the rest of the examples in this chapter).
 It focuses on how to take a data set stored in HDFS and store it in an
 external data source using a custom FileOutputFormat. In this example, the Stack
 Overflow users data set is written to a configurable number of Redis
 instances, specifically the user-to-reputation mappings. These
 mappings are randomly distributed evenly among a single Redis
 hash.
A Redis hash is a map between string fields and string values,
 similar to a Java HashMap. Each
 hash is given a key to identify the hash. Every hash can store more
 than four billion field-value pairs.
The sections below with its corresponding code explain the
 following problem.
Problem: Given a set of user information, randomly distributed
 user-to-reputation mappings to a configurable number of Redis
 instances in parallel.
OutputFormat code

The RedisHashOutputFormat
 is responsible for establishing and verifying the job
 configuration prior to being submitted to the JobTracker. Once the
 job has been submitted, it also creates the RecordWriter to serialize all the output
 key/value pairs. Typically, this is a file in HDFS. However, we are
 not bound to using HDFS, as we will see in the RecordWriter later on.
The output format contains configuration variables that must
 be set by the driver to ensure it has all the information required
 to do its job. Here, we have a couple public static methods to take some of the
 guess work out of what a developer needs to set. This output format
 takes in a list of Redis instance hosts as a CSV structure and a
 Redis hash key to write all the output to. In the checkOutputSpecs method, we ensure that
 both of these parameters are set before we even both launching the
 job, as it will surely fail without them. This is where you’ll want
 to verify your configuration!
The getRecordWriter method
 is used on the back end to create an instance of a RecordWriter for the map or reduce task.
 Here, we get the configuration variables required by the RedisHashRecordWriter and return a new
 instance of it. This record writer is a nested class of the RedisHashOutputFormat, which is not
 required but is more of a convention. The details of this class are
 in the following section.
The final method of this output format is getOutputCommitter. The output committer
 is used by the framework to manage any temporary output before
 committing in case the task fails and needs to be reexecuted. For
 this implementation, we don’t typically care whether the task fails
 and needs to be re-executed. As long as the job finishes we are
 okay. An output committer is required by the framework, but the
 NullOutputFormat contains an
 output committer implementation that doesn’t do anything.

public static class RedisHashOutputFormat extends OutputFormat<Text, Text> {

 public static final String REDIS_HOSTS_CONF =
 "mapred.redishashoutputformat.hosts";
 public static final String REDIS_HASH_KEY_CONF =
 "mapred.redishashinputformat.key";

 public static void setRedisHosts(Job job, String hosts) {
 job.getConfiguration().set(REDIS_HOSTS_CONF, hosts);
 }

 public static void setRedisHashKey(Job job, String hashKey) {
 job.getConfiguration().set(REDIS_HASH_KEY_CONF, hashKey);
 }

 public RecordWriter<Text, Text> getRecordWriter(TaskAttemptContext job)
 throws IOException, InterruptedException {
 return new RedisHashRecordWriter(job.getConfiguration().get(
 REDIS_HASH_KEY_CONF), job.getConfiguration().get(
 REDIS_HOSTS_CONF));
 }

 public void checkOutputSpecs(JobContext job) throws IOException {
 String hosts = job.getConfiguration().get(REDIS_HOSTS_CONF);
 if (hosts == null || hosts.isEmpty()) {
 throw new IOException(REDIS_HOSTS_CONF
 + " is not set in configuration.");
 }

 String hashKey = job.getConfiguration().get(
 REDIS_HASH_KEY_CONF);
 if (hashKey == null || hashKey.isEmpty()) {
 throw new IOException(REDIS_HASH_KEY_CONF
 + " is not set in configuration.");
 }
 }

 public OutputCommitter getOutputCommitter(TaskAttemptContext context)
 throws IOException, InterruptedException {
 return (new NullOutputFormat<Text, Text>()).getOutputCommitter(context);
 }

 public static class RedisHashRecordWriter extends RecordWriter<Text, Text> {
 // code in next section
 }
}

RecordReader code

The RedisHashRecordWriter
 handles connecting to Redis via the Jedis client and writing
 out the data. Each key/value pair is randomly written to a Redis
 instance, providing an even distribution of all data across all
 Redis instances. The constructor stores the hash key to write to and
 creates a new Jedis instance.
The code then connects to the Jedis instance and maps it to an
 integer. This map is used in the write method to get the assigned Jedis
 instance. The hash code is the key is taken modulo the number of
 configured Redis instances. The key/value pair is then written to
 the returned Jedis instance to the configured hash. Finally, all
 Jedis instances are disconnected in the close method.

public static class RedisHashRecordWriter extends RecordWriter<Text, Text> {

 private HashMap<Integer, Jedis> jedisMap = new HashMap<Integer, Jedis>();
 private String hashKey = null;

 public RedisHashRecordWriter(String hashKey, String hosts) {
 this.hashKey = hashKey;

 // Create a connection to Redis for each host
 // Map an integer 0-(numRedisInstances - 1) to the instance
 int i = 0;
 for (String host : hosts.split(",")) {
 Jedis jedis = new Jedis(host);
 jedis.connect();
 jedisMap.put(i, jedis);
 ++i;
 }
 }

 public void write(Text key, Text value) throws IOException,
 InterruptedException {
 // Get the Jedis instance that this key/value pair will be
 // written to
 Jedis j = jedisMap.get(Math.abs(key.hashCode()) % jedisMap.size());

 // Write the key/value pair
 j.hset(hashKey, key.toString(), value.toString());
 }

 public void close(TaskAttemptContext context) throws IOException,
 InterruptedException {
 // For each jedis instance, disconnect it
 for (Jedis jedis : jedisMap.values()) {
 jedis.disconnect();
 }
 }
}

Mapper Code

The Mapper instance is very straightforward and looks like any
 other mapper. The user ID and reputation are retrieved from the
 record and then output. The output format does all the heavy lifting
 for us, allowing it to be reused multiple times to write whatever we
 want to a Redis hash.

public static class RedisOutputMapper extends
 Mapper<Object, Text, Text, Text> {

 private Text outkey = new Text();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 String userId = parsed.get("Id");
 String reputation = parsed.get("Reputation");

 // Set our output key and values
 outkey.set(userId);
 outvalue.set(reputation);

 context.write(outkey, outvalue);
 }
}

Driver Code

The driver code parses the command lines and calls our
 public static methods to set up
 writing data to Redis. The job is then submitted just like any
 other.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 Path inputPath = new Path(args[0]);
 String hosts = args[1];
 String hashName = args[2];

 Job job = new Job(conf, "Redis Output");
 job.setJarByClass(RedisOutputDriver.class);

 job.setMapperClass(RedisOutputMapper.class);
 job.setNumReduceTasks(0);

 job.setInputFormatClass(TextInputFormat.class);
 TextInputFormat.setInputPaths(job, inputPath);

 job.setOutputFormatClass(RedisHashOutputFormat.class);
 RedisHashOutputFormat.setRedisHosts(job, hosts);
 RedisHashOutputFormat.setRedisHashKey(job, hashName);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 int code = job.waitForCompletion(true) ? 0 : 2;

 System.exit(code);
}

External Source Input

Pattern Description

The external source input pattern doesn’t load data from HDFS, but instead from some system
 outside of Hadoop, such as an SQL database or a web service.
Intent

You want to load data in parallel from a source that is not part
 of your MapReduce framework.

Motivation

The typical model for using MapReduce to analyze your data is to
 store it into your storage platform first (i.e., HDFS), then analyze
 it. With this pattern, you can hook up the MapReduce framework into an
 external source, such as a database or a web service, and pull the
 data directly into the mappers.
There are a few reasons why you might want to analyze the data
 directly from the source instead of staging it first. It may be faster
 to load the data from outside of Hadoop without having to stage it
 into files first. For example, dumping a database to the file system
 is likely to be an expensive operation, and taking it from the
 database directly ensures that the MapReduce job has the most
 up-to-date data available. A lot can happen on a busy cluster, and
 dumping a database prior to running an analytics can also fail,
 causing a stall in the entire pipeline.
In a MapReduce approach, the data is loaded in parallel rather
 than in a serial fashion. The caveat to this is that the source needs
 to have well-defined boundaries on which data is read in parallel in
 order to scale. For example, in the case of a sharded databases, each
 map task can be assigned a shard to load from the a table, thus
 allowing for very quick parallel loads of data without requiring a
 database scan.

Structure

Figure 7-3 shows the external
 source input structure.
	The InputFormat creates
 all the InputSplit objects,
 which may be based on a custom object. An input
 split is a chunk of logical input, and that largely depends on the
 format in which it will be reading data. In this pattern, the
 input is not from a file-based input but an external source. The
 input could be from a series of SQL tables or a number of
 distributed services spread through the cluster. As long as the
 input can be read in parallel, this is a good fit for
 MapReduce.

	The InputSplit contains
 all the knowledge of where the sources are and how much of each
 source is going to be read. The framework uses the location
 information to help determine where to assign the map task. A
 custom InputSplit must also
 implement the Writable
 interface, because the framework uses the methods of this
 interface to transmit the input split information to a
 TaskTracker. The number of map tasks distributed among
 TaskTrackers is equivalent to the number of input splits generated
 by the input format. The InputSplit is then used to initialize a RecordReader for processing.

	The RecordReader uses the
 job configuration provided and InputSplit information to read key/value
 pairs. The implementation of this class depends on the data source
 being read. It sets up any connections required to read data from
 the external source, such as using JDBC to load from a database or
 creating a REST call to access a RESTful service.

[image: The structure of the external source input pattern]

Figure 7-3. The structure of the external source input pattern

Consequences

Data is loaded from the external source into the MapReduce job
 and the map phase doesn’t know or care where that data came
 from.

Performance analysis

The bottleneck for a MapReduce job implementing this pattern is
 going to be the source or the network. The source may not scale well
 with multiple connections (e.g., a single-threaded SQL database isn’t
 going to like 1,000 mappers all grabbing data at once). Another
 problem may be the network infrastructure. Given that the source is
 probably not in the MapReduce cluster’s network backplane, the
 connections may be reaching out on a single connection on a slower
 public network. This should not be a problem if the source is inside
 the cluster.

External Source Input Example

Reading from Redis Instances

This example demonstrates how to read data we just wrote to Redis.
 Again, we take in a CSV list of Redis instance hosts in order to
 connect to and read all the data from the hash. Since we distributed
 the data across a number of Redis instances, this data can be read in parallel. All
 we need to do is create a map task for each Redis instance, connect to
 Redis, and then create key/value pairs out of all the data we
 retrieve. This example uses the identity mapper to simply output each
 key/value pair received from Redis.
The sections below with its corresponding code explain the
 following problem.
Problem: Given a list of Redis instances in CSV format, read all
 the data stored in a configured hash in parallel.
InputSplit code

The RedisInputSplit
 represents the data to be processed by an individual Mapper. In
 this example, we store the Redis instance hostname as the location
 of the input split, as well as the hash key. The input split
 implements the Writable
 interface, so that it is serializable by the framework, and includes
 a default constructor in order for the framework to create a new
 instance via reflection. We return the location via the getLocations method, in the hopes that the
 JobTracker will assign each map task to a TaskTracker that is
 hosting the data.

public static class RedisHashInputSplit extends InputSplit implements Writable {

 private String location = null;
 private String hashKey = null;

 public RedisHashInputSplit() {
 // Default constructor for reflection
 }

 public RedisHashInputSplit(String redisHost, String hash) {
 this.location = redisHost;
 this.hashKey = hash;
 }

 public String getHashKey() {
 return this.hashKey;
 }

 public void readFields(DataInput in) throws IOException {
 this.location = in.readUTF();
 this.hashKey = in.readUTF();
 }

 public void write(DataOutput out) throws IOException {
 out.writeUTF(location);
 out.writeUTF(hashKey);
 }

 public long getLength() throws IOException, InterruptedException {
 return 0;
 }

 public String[] getLocations() throws IOException, InterruptedException {
 return new String[] { location };
 }
}

InputFormat code

The RedisHashInputFormat
 mirrors that of the RedisHashOutputFormat in many ways. It
 contains configuration variables to know which Redis instances to
 connect to and which hash to read from. In the getSplits method, the configuration is
 verified and a number of RedisHashInputSplits is created based on
 the number of Redis hosts. This will create one map task for each
 configured Redis instance. The Redis hostname and hash key are
 stored in the input split in order to be retrieved later by the
 RedisHashRecordReader. The
 createRecordReader method is
 called by the framework to get a new instance of a record reader.
 The record reader’s initialize
 method is called by the framework, so we can just create a new
 instance and return it. Again by convention, this class contains two
 nested classes for the record reader and input split
 implementations.

public static class RedisHashInputFormat extends InputFormat<Text, Text> {

 public static final String REDIS_HOSTS_CONF =
 "mapred.redishashinputformat.hosts";
 public static final String REDIS_HASH_KEY_CONF =
 "mapred.redishashinputformat.key";
 private static final Logger LOG = Logger
 .getLogger(RedisHashInputFormat.class);

 public static void setRedisHosts(Job job, String hosts) {
 job.getConfiguration().set(REDIS_HOSTS_CONF, hosts);
 }

 public static void setRedisHashKey(Job job, String hashKey) {
 job.getConfiguration().set(REDIS_HASH_KEY_CONF, hashKey);
 }

 public List<InputSplit> getSplits(JobContext job) throws IOException {
 String hosts = job.getConfiguration().get(REDIS_HOSTS_CONF);

 if (hosts == null || hosts.isEmpty()) {
 throw new IOException(REDIS_HOSTS_CONF
 + " is not set in configuration.");
 }

 String hashKey = job.getConfiguration().get(REDIS_HASH_KEY_CONF);
 if (hashKey == null || hashKey.isEmpty()) {
 throw new IOException(REDIS_HASH_KEY_CONF
 + " is not set in configuration.");
 }

 // Create an input split for each host
 List<InputSplit> splits = new ArrayList<InputSplit>();
 for (String host : hosts.split(",")) {
 splits.add(new RedisHashInputSplit(host, hashKey));
 }

 LOG.info("Input splits to process: " + splits.size());
 return splits;
 }

 public RecordReader<Text, Text> createRecordReader(InputSplit split,
 TaskAttemptContext context) throws IOException,
 InterruptedException {
 return new RedisHashRecordReader();
 }

 public static class RedisHashRecordReader extends RecordReader<Text, Text> {
 // code in next section
 }

 public static class RedisHashInputSplit extends
 InputSplit implements Writable {
 // code in next section
 }
}

RecordReader code

The RedisHashRecordReader is where most of the work is done. The initialize method is called by the framework and provided with an input
 split we created in the input format. Here, we get the Redis instance to connect to and
 the hash key. We then connect to Redis and get the number of key/value pairs we will be
 reading from Redis. The hash doesn’t have a means to iterate or stream the data one at a
 time or in bulk, so we simply pull everything over and disconnect from Redis. We store
 an iterator over the entries and log some helpful statements along the way.
In nextKeyValue, we iterate
 through the map of entries one at a time and set the record reader’s
 writable objects for the key and value. A return value of true informs the framework that there is a
 key/value pair to process. Once we have exhausted all the key/value
 pairs, false is returned so the
 map task can complete.
The other methods of the record reader are used by the
 framework to get the current key and value for the mapper to
 process. It is worthwhile to reuse this object whenever possible.
 The getProgress method is useful
 for reporting gradual status to the JobTracker and should also be
 reused if possible. Finally, the close method is for finalizing the
 process. Since we pulled all the information and disconnected from
 Redis in the initialize method,
 there is nothing to do here.

public static class RedisHashRecordReader extends RecordReader<Text, Text> {

 private static final Logger LOG =
 Logger.getLogger(RedisHashRecordReader.class);
 private Iterator<Entry<String, String>> keyValueMapIter = null;
 private Text key = new Text(), value = new Text();
 private float processedKVs = 0, totalKVs = 0;
 private Entry<String, String> currentEntry = null;

 public void initialize(InputSplit split, TaskAttemptContext context)
 throws IOException, InterruptedException {
 // Get the host location from the InputSplit
 String host = split.getLocations()[0];
 String hashKey = ((RedisHashInputSplit) split).getHashKey();

 LOG.info("Connecting to " + host + " and reading from "
 + hashKey);

 Jedis jedis = new Jedis(host);
 jedis.connect();
 jedis.getClient().setTimeoutInfinite();

 // Get all the key/value pairs from the Redis instance and store
 // them in memory
 totalKVs = jedis.hlen(hashKey);
 keyValueMapIter = jedis.hgetAll(hashKey).entrySet().iterator();
 LOG.info("Got " + totalKVs + " from " + hashKey);
 jedis.disconnect();
 }

 public boolean nextKeyValue() throws IOException,
 InterruptedException {

 // If the key/value map still has values
 if (keyValueMapIter.hasNext()) {
 // Get the current entry and set the Text objects to the entry
 currentEntry = keyValueMapIter.next();
 key.set(currentEntry.getKey());
 value.set(currentEntry.getValue());
 return true;
 } else {
 // No more values? return false.
 return false;
 }
 }

 public Text getCurrentKey() throws IOException,
 InterruptedException {
 return key;
 }

 public Text getCurrentValue() throws IOException,
 InterruptedException {
 return value;
 }

 public float getProgress() throws IOException, InterruptedException {
 return processedKVs / totalKVs;
 }

 public void close() throws IOException {
 // nothing to do here
 }
}

Driver code

Much like the previous example’s driver, we use the public static methods provided by the
 input format to modify the job configuration. Since we are just
 using the identity mapper, we don’t need to set any special classes.
 The number of reduce tasks is set to zero to specify that this is a
 map-only job.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 String hosts = otherArgs[0];
 String hashKey = otherArgs[1];
 Path outputDir = new Path(otherArgs[2]);

 Job job = new Job(conf, "Redis Input");
 job.setJarByClass(RedisInputDriver.class);

 // Use the identity mapper
 job.setNumReduceTasks(0);

 job.setInputFormatClass(RedisHashInputFormat.class);
 RedisHashInputFormat.setRedisHosts(job, hosts);
 RedisHashInputFormat.setRedisHashKey(job, hashKey);

 job.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(job, outputDir);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true) ? 0 : 3);
}

Partition Pruning

Pattern Description

Partition pruning configures the way the framework picks input splits and drops files
 from being loaded into MapReduce based on the name of the file.
Intent

You have a set of data that is partitioned by a predetermined value, which you can use
 to dynamically load the data based on what is requested by the application.

Motivation

Typically, all the data loaded into a MapReduce job is assigned into map tasks and
 read in parallel. If entire files are going to be thrown out based on the query, loading
 all of the files is a large waste of processing time. By partitioning the data by a common
 value, you can avoid significant amounts of processing time by looking only where the data
 would exist. For example, if you are commonly analyzing data based on date ranges,
 partitioning your data by date will make it so you only need to load the data inside of
 that range.
The added caveat to this pattern is this should be handled
 transparently, so you can run the same MapReduce job over and over
 again, but over different data sets. This is done by simply changing
 the data you are querying for, rather than changing the implementation
 of the job. A great way to do this would be to strip away how the data
 is stored on the file system and instead put it inside an input
 format. The input format knows where to locate and get the data,
 allowing the number of map tasks generated to change based on the
 query.
Tip
This is exceptionally useful if the data storage is volatile
 and likely to change. If you have dozens of analytics using some
 type of partitioned input format, you can change the input format
 implementation and simply recompile all analytics using the new
 input format code. Since all your analytics get input from a query
 rather than a file, you don’t need to re-implement how the data is
 read into the analytic. This can save a massive amount of
 development time, making you look really good to your boss!

Structure

Figure 7-4 shows the
 structure for partition pruning, explained below.
	The InputFormat is
 where this pattern comes to life. The getSplits method is where we pay special
 attention, because it determines the input splits that will be
 created, and thus the number of map tasks. While the configuration
 is typically a set of files, configuration turns into more of a
 query than a set of file paths. For instance, if data is stored on
 a file system by date, the InputFormat can accept a date range as
 input, then determine which folders to pull into the MapReduce
 job. If data is sharded in an external service by date, say 12
 shards for each month, only one shard needs to be read by the
 MapReduce job when looking for data in March. The key here is that
 the input format determines where the data comes from based on a
 query, rather than passing in a set of files.

	The RecordReader
 implementation depends on how the data is being stored. If it is a
 file-based input, something like a LineRecordReader can be used to read
 key/value pairs from a file. If it is an external source, you’ll
 have to customize something more to your needs.

[image: The structure of the partition pruning pattern]

Figure 7-4. The structure of the partition pruning pattern

Consequences

Partition pruning changes only the amount of data that is read
 by the MapReduce job, not the eventual outcome of the analytic. The
 main reason for partition pruning is to reduce the overall processing
 time to read in data. This is done by ignoring input that will not
 produce any output before it even gets to a map task.

Resemblances

	SQL
	Many modern relational databases handle partition pruning
 transparently. When you create the table, you specify how the
 database should partition the data and the database will handle
 the rest on inserts. Hive also supports partitioning.

CREATE TABLE parted_data
(foo_date DATE)
PARTITION BY RANGE(foo_date)
(
PARTITION foo_2012 VALUES LESS THAN(TO_DATE('01/01/2013','DD/MM/YYYY')),
PARTITION foo_2011 VALUES LESS THAN(TO_DATE('01/01/2012','DD/MM/YYYY')),
PARTITION foo_2010 VALUES LESS THAN(TO_DATE('01/01/2011','DD/MM/YYYY')),
);
Then, when you query with a specific value in the WHERE clause, the database will
 automatically use only the relevant partitions.

SELECT * FROM parted_data WHERE foo_date=TO_DATE('01/31/2012');

Performance analysis

The data in this pattern is loaded into each map task is as fast
 as in any other pattern. Only the number of tasks changes based on the
 query at hand. Utilizing this pattern can provide massive gains by
 reducing the number of tasks that need to be created that would not
 have generated output anyways. Outside of the I/O, the performance
 depends on the other pattern being applied in the map and reduce
 phases of the job.

Partition Pruning Examples

Partitioning by last access date to Redis instances

This example demonstrates a smarter way to store and read data in Redis. Rather than
 randomly distributing the user-to-reputation mappings, we can partition this data on
 particular criteria. The user-to-reputation mappings are partitioned based on last access
 date and stored in six different Redis instances. Two months of data are stored in separate hashes on each
 Redis instance. That is, January and February are stored in different hashes on Redis
 instance 0, March and April on instance 1, and so on.
By distributing the data in this manner, we can more
 intelligently read it based on a user query. Whereas the previous
 examples took in a list of Redis instances and a hash key via the
 command line, this pattern hardcodes all the logic of where and how to
 store the data in the output format, as well as in the input format.
 This completely strips away knowledge from the mapper and reducer of
 where the data is coming from, which has its advantages and
 disadvantages for a developer using our input and output
 formats.
Caution
It may not be the best idea to actually hardcode information
 into the Java code itself, but instead have a rarely-changing
 configuration file that can be found by your formats. This way,
 things can still be changed if necessary and prevent a recompile.
 Environment variables work nicely, or it can just be passed in via
 the command line.

The sections below with its corresponding code explain the
 following problem.
Problem: Given a set of user data, partition the
 user-to-reputation mappings by last access date across six Redis
 instances.
Custom WritableComparable code

To help better store information, a custom WritableComparable is implemented in order
 to allow the mapper to set information needed by the record writer.
 This class contains methods to set and get the field name to be
 stored in Redis, as well as the last access month. The last access
 month accepts a zero-based integer value for the month, but is later
 turned into a string representation for easier querying in the next
 example. Take the time to implement the compareTo, toString, and hashCode methods (like every good Java
 developer!).

public static class RedisKey implements WritableComparable<RedisKey> {

 private int lastAccessMonth = 0;
 private Text field = new Text();

 public int getLastAccessMonth() {
 return this.lastAccessMonth;
 }

 public void setLastAccessMonth(int lastAccessMonth) {
 this.lastAccessMonth = lastAccessMonth;
 }

 public Text getField() {
 return this.field;
 }

 public void setField(String field) {
 this.field.set(field);
 }

 public void readFields(DataInput in) throws IOException {
 lastAccessMonth = in.readInt();
 this.field.readFields(in);
 }

 public void write(DataOutput out) throws IOException {
 out.writeInt(lastAccessMonth);
 this.field.write(out);
 }

 public int compareTo(RedisKey rhs) {
 if (this.lastAccessMonth == rhs.getLastAccessMonth()) {
 return this.field.compareTo(rhs.getField());
 } else {
 return this.lastAccessMonth < rhs.getLastAccessMonth() ? -1 : 1;
 }
 }

 public String toString() {
 return this.lastAccessMonth + "\t" + this.field.toString();
 }

 public int hashCode() {
 return toString().hashCode();
 }
}

OutputFormat code

This output format is extremely basic, as all the grunt work is handled in
 the record writer. The main thing to focus on is the templated
 arguments when extending the InputFormat
 class. This output format accepts our custom class as the output key
 and a Text object as the output
 value. Any other classes will cause errors when trying to write any
 output.
Since our record writer implementation is coded to a specific
 and known output, there is no need to verify any output
 specification of the job. An output committer is still required by
 the framework, so we use NullOutputFormat’s
 output committer.

public static class RedisLastAccessOutputFormat
 extends OutputFormat<RedisKey, Text> {

 public RecordWriter<RedisKey, Text> getRecordWriter(
 TaskAttemptContext job) throws IOException, InterruptedException {
 return new RedisLastAccessRecordWriter();
 }

 public void checkOutputSpecs(JobContext context) throws IOException,
 InterruptedException {
 }

 public OutputCommitter getOutputCommitter(TaskAttemptContext context)
 throws IOException, InterruptedException {
 return (new NullOutputFormat<Text, Text>()).getOutputCommitter(context);
 }

 public static class RedisLastAccessRecordWriter
 extends RecordWriter<RedisKey, Text> {
 // Code in next section
 }
}

RecordWriter code

The RedisLastAccessRecordWriter is templated to accept the same classes as the output format. The construction
 of the class connects to all six Redis instances and puts them in a map. This map stores
 the month-to-Redis-instance mappings and is used in the write method to retrieve the proper instance. The write method then uses a map of month int to a three character month code
 for serialization. This map is omitted for brevity, but looks something like 0→JAN, 1→FEB, ..., 11→DEC. This means all the hashes in Redis are named based on
 the three-character month code. The close method
 disconnects all the Redis instances.

public static class RedisLastAccessRecordWriter
 extends RecordWriter<RedisKey, Text> {

 private HashMap<Integer, Jedis> jedisMap = new HashMap<Integer, Jedis>();

 public RedisLastAccessRecordWriter() {
 // Create a connection to Redis for each host
 int i = 0;
 for (String host : MRDPUtils.REDIS_INSTANCES) {
 Jedis jedis = new Jedis(host);
 jedis.connect();
 jedisMap.put(i, jedis);
 jedisMap.put(i + 1, jedis);
 i += 2;
 }
 }

 public void write(RedisKey key, Text value) throws IOException,
 InterruptedException {
 // Get the Jedis instance that this key/value pair will be
 // written to -- (0,1)->0, (2-3)->1, ... , (10-11)->5
 Jedis j = jedisMap.get(key.getLastAccessMonth());

 // Write the key/value pair
 j.hset(MONTH_FROM_INT.get(key.getLastAccessMonth()), key
 .getField().toString(), value.toString());
 }

 public void close(TaskAttemptContext context) throws IOException,
 InterruptedException {
 // For each jedis instance, disconnect it
 for (Jedis jedis : jedisMap.values()) {
 jedis.disconnect();
 }
 }
}

Mapper code

The mapper code parses each input record and sets the values
 for the output RedisKey and the
 output value. The month of the last access data is parsed via the
 Calendar and SimpleDateFormat classes.

public static class RedisLastAccessOutputMapper extends
 Mapper<Object, Text, RedisKey, Text> {

 // This object will format the creation date string into a Date object
 private final static SimpleDateFormat frmt = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS");

 private RedisKey outkey = new RedisKey();
 private Text outvalue = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
 .toString());

 String userId = parsed.get("Id");
 String reputation = parsed.get("Reputation");

 // Grab the last access date
 String strDate = parsed.get("LastAccessDate");

 // Parse the string into a Calendar object
 Calendar cal = Calendar.getInstance();
 cal.setTime(frmt.parse(strDate));

 // Set our output key and values
 outkey.setLastAccessMonth(cal.get(Calendar.MONTH));
 outkey.setField(userId);
 outvalue.set(reputation);

 context.write(outkey, outvalue);
 }
}

Driver code

The driver looks very similar to a more basic job
 configuration. All the special configuration is entirely handled by
 the output format class and record writer.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 Path inputPath = new Path(args[0]);

 Job job = new Job(conf, "Redis Last Access Output");
 job.setJarByClass(PartitionPruningOutputDriver.class);

 job.setMapperClass(RedisLastAccessOutputMapper.class);
 job.setNumReduceTasks(0);

 job.setInputFormatClass(TextInputFormat.class);
 TextInputFormat.setInputPaths(job, inputPath);

 job.setOutputFormatClass(RedisHashSetOutputFormat.class);

 job.setOutputKeyClass(RedisKey.class);
 job.setOutputValueClass(Text.class);

 int code = job.waitForCompletion(true) ? 0 : 2;

 System.exit(code);
}

Querying for user reputation by last access date

This example demonstrates how to query for the information we just stored in
 Redis. Unlike most examples, where you provide some path to files in
 HDFS, we instead just pass in the months of data we want. Figuring out
 where to get the data is entirely handled intelligently by the input
 format.
The heart of partition pruning is to avoid reading data that you
 don’t have to read. By storing the user-to-reputation mappings across
 six different Redis servers, we need to connect only to the instances
 that are hosting the requested month’s data. Even better, we need to
 read only from the hashes that are holding the specific month. For
 instance, passing in “JAN,FEB,MAR,NOV” on the command line will create
 three input splits, one for each Redis instance hosting the data (0,
 1, and 5). All the data on Redis instance 0 will be read, but only the
 first months on Redis instances 1 and 5 will be pulled. This is much
 better than having to connect to all the desired instances and read
 all the data, only to throw most of it away!
The sections below with its corresponding code explain the
 following problem.
Problem: Given a query for user to reputation mappings by
 months, read only the data required to satisfy the query in
 parallel.
InputSplit code

The input split shown here is very similar to the input split in External Source Input Example. Instead of storing one hash
 key, we are going to store multiple hash keys. This is because the
 data is partitioned based on month, instead of all the data being
 randomly distributed in one hash.

public static class RedisLastAccessInputSplit
 extends InputSplit implements Writable {

 private String location = null;
 private List<String> hashKeys = new ArrayList<String>();

 public RedisLastAccessInputSplit() {
 // Default constructor for reflection
 }

 public RedisLastAccessInputSplit(String redisHost) {
 this.location = redisHost;
 }

 public void addHashKey(String key) {
 hashKeys.add(key);
 }

 public void removeHashKey(String key) {
 hashKeys.remove(key);
 }

 public List<String> getHashKeys() {
 return hashKeys;
 }

 public void readFields(DataInput in) throws IOException {
 location = in.readUTF();
 int numKeys = in.readInt();
 hashKeys.clear();
 for (int i = 0; i < numKeys; ++i) {
 hashKeys.add(in.readUTF());
 }
 }

 public void write(DataOutput out) throws IOException {
 out.writeUTF(location);
 out.writeInt(hashKeys.size());
 for (String key : hashKeys) {
 out.writeUTF(key);
 }
 }

 public long getLength() throws IOException, InterruptedException {
 return 0;
 }

 public String[] getLocations() throws IOException, InterruptedException {
 return new String[] { location };
 }
}

InputFormat code

This input format class intelligently creates RedisLastAccessInputSplit objects from the selected months of data. Much
 like the output format we showed earlier in OutputFormat code,
 this output format writes RedisKey objects, this
 input format reads the same objects and is templated to enforce this on mapper
 implementations. It initially creates a hash map of host-to-input splits in order to add
 the hash keys to the input split, rather than adding both months of data to the same
 split. If a split has not been created for a particular month, a new one is created and
 the month hash key is added. Otherwise, the hash key is added to the split that has
 already been created. A List is then created out of
 the values stored in the map. This will create a number of input splits equivalent to
 the number of Redis instances required to satisfy the query.
There are a number of helpful hash maps to help convert a
 month string to an integer, as well as figure out which Redis
 instance hosts which month of data. The initialization of these hash
 maps are ommitted from the static
 block for brevity.

public static class RedisLastAccessInputFormat
 extends InputFormat<RedisKey, Text> {

 public static final String REDIS_SELECTED_MONTHS_CONF =
 "mapred.redilastaccessinputformat.months";
 private static final HashMap<String, Integer> MONTH_FROM_STRING =
 new HashMap<String, Integer>();
 private static final HashMap<String, String> MONTH_TO_INST_MAP =
 new HashMap<String, String>();
 private static final Logger LOG = Logger
 .getLogger(RedisLastAccessInputFormat.class);

 static {
 // Initialize month to Redis instance map
 // Initialize month 3 character code to integer
 }

 public static void setRedisLastAccessMonths(Job job, String months) {
 job.getConfiguration().set(REDIS_SELECTED_MONTHS_CONF, months);
 }

 public List<InputSplit> getSplits(JobContext job) throws IOException {

 String months = job.getConfiguration().get(
 REDIS_SELECTED_MONTHS_CONF);

 if (months == null || months.isEmpty()) {
 throw new IOException(REDIS_SELECTED_MONTHS_CONF
 + " is null or empty.");
 }

 // Create input splits from the input months
 HashMap<String, RedisLastAccessInputSplit> instanceToSplitMap =
 new HashMap<String, RedisLastAccessInputSplit>();

 for (String month : months.split(",")) {
 String host = MONTH_TO_INST_MAP.get(month);
 RedisLastAccessInputSplit split = instanceToSplitMap.get(host);
 if (split == null) {
 split = new RedisLastAccessInputSplit(host);
 split.addHashKey(month);
 instanceToSplitMap.put(host, split);
 } else {
 split.addHashKey(month);
 }
 }

 LOG.info("Input splits to process: " +
 instanceToSplitMap.values().size());
 return new ArrayList<InputSplit>(instanceToSplitMap.values());
 }

 public RecordReader<RedisKey, Text> createRecordReader(
 InputSplit split, TaskAttemptContext context)
 throws IOException, InterruptedException {
 return new RedisLastAccessRecordReader();
 }

 public static class RedisLastAccessRecordReader
 extends RecordReader<RedisKey, Text> {
 // Code in next section
 }
}

RecordReader code

The RedisLastAccessRecordReader is a
 bit more complicated than the other record readers we
 have seen. It needs to read from multiple hashes, rather than just
 reading everything at once in the initialize method. Here, the configuration
 is simply read in this method.
In nextKeyValue, a new
 connection to Redis is created if the iterator through the hash is
 null, or if we have reached the end of all the hashes to read. If
 the iterator through the hashes does not have a next value, we
 immediately return false, as
 there is no more data for the map task. Otherwise, we connect to
 Redis and pull all the data from the specific hash. The hash
 iterator is then used to exhaust all the field value pairs from
 Redis. A do-while loop is used to ensure that once a hash iterator
 is complete, it will loop back around to get data from the next hash
 or inform the task there is no more data to be read.
The implementation of the remaining methods are identical to
 that of the RedisHashRecordReader
 and are omitted.

public static class RedisLastAccessRecordReader
 extends RecordReader<RedisKey, Text> {

 private static final Logger LOG = Logger
 .getLogger(RedisLastAccessRecordReader.class);
 private Entry<String, String> currentEntry = null;
 private float processedKVs = 0, totalKVs = 0;
 private int currentHashMonth = 0;
 private Iterator<Entry<String, String>> hashIterator = null;
 private Iterator<String> hashKeys = null;
 private RedisKey key = new RedisKey();
 private String host = null;
 private Text value = new Text();

 public void initialize(InputSplit split, TaskAttemptContext context)
 throws IOException, InterruptedException {

 // Get the host location from the InputSplit
 host = split.getLocations()[0];

 // Get an iterator of all the hash keys we want to read
 hashKeys = ((RedisLastAccessInputSplit) split)
 .getHashKeys().iterator();

 LOG.info("Connecting to " + host);
 }
 public boolean nextKeyValue() throws IOException,
 InterruptedException {

 boolean nextHashKey = false;
 do {
 // if this is the first call or the iterator does not have a
 // next
 if (hashIterator == null || !hashIterator.hasNext()) {
 // if we have reached the end of our hash keys, return
 // false
 if (!hashKeys.hasNext()) {
 // ultimate end condition, return false
 return false;
 } else {
 // Otherwise, connect to Redis and get all
 // the name/value pairs for this hash key
 Jedis jedis = new Jedis(host);
 jedis.connect();
 String strKey = hashKeys.next();
 currentHashMonth = MONTH_FROM_STRING.get(strKey);
 hashIterator = jedis.hgetAll(strKey).entrySet()
 .iterator();
 jedis.disconnect();
 }
 }

 // If the key/value map still has values
 if (hashIterator.hasNext()) {
 // Get the current entry and set
 // the Text objects to the entry
 currentEntry = hashIterator.next();
 key.setLastAccessMonth(currentHashMonth);
 key.setField(currentEntry.getKey());
 value.set(currentEntry.getValue());
 } else {
 nextHashKey = true;
 }
 } while (nextHashKey);

 return true;
 }

 ...
}

Driver code

The driver code sets the months most recently accessed passed
 in via the command line. This configuration parameter is used by the
 input format to determine which Redis instances to read from, rather
 than reading from every Redis instance. It also sets the output
 directory for the job. Again, it uses the identity mapper rather
 than performing any analysis on the data retrieved.

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 String lastAccessMonths = args[0];
 Path outputDir = new Path(args[1]);

 Job job = new Job(conf, "Redis Input");
 job.setJarByClass(PartitionPruningInputDriver.class);

 // Use the identity mapper
 job.setNumReduceTasks(0);

 job.setInputFormatClass(RedisLastAccessInputFormat.class);
 RedisLastAccessInputFormat.setRedisLastAccessMonths(job,
 lastAccessMonths);

 job.setOutputFormatClass(TextOutputFormat.class);
 TextOutputFormat.setOutputPath(job, outputDir);

 job.setOutputKeyClass(RedisKey.class);
 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true) ? 0 : 2);
}

Chapter 8. Final Thoughts and the Future of Design
 Patterns

At the time of this book’s writing, MapReduce is moving quickly. New
 features and new systems are popping up every day and new users are out in
 droves. More importantly for the subject of MapReduce Design
 Patterns, a growing number of users brings along a growing number
 of experts. These experts are the ones that will drive the community’s
 documentation of design patterns not only by sharing new ones, but also by
 maturing the already existing ones.
In this chapter, we’ll discuss and speculate what the future holds for
 MapReduce design patterns. Where will they come from? What systems will
 benefit from design patterns? How will today’s design patterns change with
 the technology? What trends in data will affect the design patterns of
 today?
Trends in the Nature of Data

MapReduce systems such as Hadoop aren’t being used just for text analysis
 anymore. Increasing number of users are deploying MapReduce jobs that
 analyze data once thought to be too hard for the paradigm. New design
 patterns are surely to arise to deal with this to transform a solution
 from pushing the limits of the system to making it daily practice.
Images, Audio, and Video

One of the most obvious trends in the nature of data is the rise
 of image, audio, and video analysis. This form of data is a
 good candidate for a distributed system using MapReduce because these
 files are typically very large. Retailers want to analyze their security
 video to detect what stores are busiest. Medical imaging analysis is
 becoming harder with the astronomical resolutions of the pictures.
 Unfortunately, as a text processing platform, some artifacts remain in
 MapReduce that make this type of analysis challenging. Since this is a
 MapReduce book, we’ll acknowledge the fact that analyzing this type of
 data is really hard, even on a single node with not much data, but we
 will not go into more detail.
One place we may see a surge in design patterns is dealing with
 multidimensional data. Videos have colored pixels that
 change over time, laid out on a two-dimensional grid. To top it off,
 they also may have an audio track. MapReduce follows a very
 straightforward, one-dimensional tape paradigm. The data is in order
 from front to back and that is how it is analyzed. Therefore, it’s
 challenging to take a look at 10-pixel by 10-pixel by 5-second section
 of video and audio as a “record.” As multidimensional data increases in
 popularity, we’ll see more patterns showing how to logically split the
 data into records and input splits properly. Or, it is possible that new
 systems will fill this niche. For example, SciDB, an open-source analytical database, is specifically
 built to deal with multi-dimensional data.

Streaming Data

MapReduce is traditionally a batch analytics system, but streaming analytics feels like
 a natural progression. In many production MapReduce systems, data is
 constantly streaming in and then gets processed in batch on an interval.
 For example, data from web server logs are streaming in, but the
 MapReduce job is only executed every hour.
This is inconvenient for a few reasons. First, processing an
 hour’s worth of data at once can strain resources. Because it’s coming
 in gradually, processing it as it arrives will spread out the
 computational resources of the cluster better. Second, MapReduce systems
 typically depend on a relatively large block size to reduce the overhead
 of distributed computation. When data is streaming in, it comes in
 record by record. These hurdles make processing streaming data difficult
 with MapReduce.
As in the previous section about large media files, this gap is
 likely to be filled by a combination of two things: new patterns and new
 systems. Some new operational patterns for storing data of this nature
 might crop up as users take this problem more seriously in production.
 New patterns for doing streaming-like analysis in the framework of batch
 MapReduce will mature. Novel systems that deal with streaming data in
 Hadoop have cropped up, most notably the commercial product HStreaming and the open-source Storm platform, recently
 released by Twitter.
Note
The authors actually considered some “streaming patterns” to be
 put into this book, but none of them were anywhere near mature enough
 or vetted enough to be officially documented.
The first is an exotic RecordReader. The map task starts up and
 streams data into the RecordReader
 instead of loading already existing data from a file. This has
 significant operational concerns that make it difficult to
 implement.
The second is splitting up the job into several one-map task
 jobs that get fired off every time some data comes in. The output is
 partitioned into k bins for future “reducers.”
 Every now and then, a map-only job with k mappers
 starts up and plays the role of the reducer.

The Effects of YARN

YARN (Yet Another Resource Negotiator) is a high-visibility advancement of Hadoop MapReduce that is currently in version
 2.0.x and will eventually make it into the current stable release. Many in the Hadoop
 community cannot wait for it to mature, as it fills a number of gaps. At a high level, YARN
 splits the responsibilities of the JobTracker and TaskTrackers into a single ResourceManager,
 one NodeManager per node, and one ApplicationMaster per application or job. The
 ResourceManager and NodeManagers abstract away computational resources from the current
 map-and-reduce slot paradigm and allow arbitrary computation. Each ApplicationMaster handles a
 framework-specific model of computation that breaks down a job into resource allocation
 requests, which is in turn handled by the ResourceManager and the NodeManagers.
What this does is separate the computation framework from the
 resource management. In this model, MapReduce is just another framework
 and doesn’t look any more special than a custom frameworks such as MPI,
 streaming, commercial products, or who knows what.
MapReduce design patterns will not change in and of themselves, because MapReduce will
 still exist. However, now that users can build their own distributed application frameworks or
 use other frameworks with YARN, some of the more intricate solutions to problems may be more
 natural to solve in another framework. We’ll see some design patterns that will still exist
 but just aren’t used very much anymore, since the natural solution lies in another distributed
 framework. We will likely eventually see ApplicationMaster patterns for building completely
 new frameworks for solving a type of problem.

Patterns as a Library or Component

Over time, as patterns get more and more use, someone may decide to
 componentize that pattern as a built-in utility class in a library. This
 type of progression is seen in traditional design patterns, as well, in
 which the library parameterizes the pattern and you just interact with it,
 instead of reimplementing the pattern. This is seen with several of the
 custom Hadoop MapReduce pieces that exist in the core Hadoop libraries, such as TotalOrderPartitioner, ChainReducer, and MultipleOutputs.
This is very natural from a standpoint of code reuse. The patterns
 in this book are presented to help you start solving a problem from
 scratch. By adding a layer of indirection, modules that set up the job for
 you and offer several parameters as points of customization can be helpful
 in the long run.

How You Can Help

If you think you’ve developed a novel MapReduce pattern that you haven’t
 seen before and you are feeling generous, you should definitely go through
 the motions of documenting it and sharing it with the world.
There are a number of questions you should try to answer. These were
 some of the questions we considered when choosing the patterns for this
 book.
	Is the problem you are trying to solve similar to another
 pattern’s target problem?
	Identifying this is important for preventing any sort of
 confusion. Chapter 5, in particular, takes this question
 seriously.

	What is at the root of this pattern?
	You probably developed the pattern to solve a very specific
 problem and have custom code interspersed throughout. Developers
 will be smart enough to tailor a pattern to their own problem or mix
 patterns to solve their more complicated problems. Tear down the
 code and only have the pattern left.

	What is the performance profile?
	Understanding what kinds of resources a pattern will use is
 important for gauging how many reducers will be needed and in
 general how expensive this operation will be. For example, some
 people may be surprised how resource intensive sorting is in a
 distributed system.

	How might have you solved this problem otherwise?
	Finding some examples outside of a MapReduce context (such as
 we did with SQL and Pig) is useful as a metaphor that helps
 conceptually bridge to a MapReduce-specific solution.

Appendix A. Bloom Filters

Overview

Conceived by Burton Howard Bloom in 1970, a Bloom filter is a
 probabilistic data structure used to test whether a member is an element
 of a set. Bloom filters have a strong space advantage over other data
 structures such as a Java Set, in that
 each element uses the same amount of space, no matter its actual size. For
 example, a string of 32 characters takes up the same amount of memory in a
 Bloom filter as a string of 1024 characters, which is drastically
 different than other data structures. Bloom filters are introduced as part
 of a pattern in Bloom Filtering.
While the data structure itself has vast memory advantages, it is
 not always 100% accurate. While false positives are possible, false
 negatives are not. This means the result of each test is either a
 definitive “no” or “maybe.” You will never get a definitive “yes.” With a
 traditional Bloom filter, elements can be added to the set, but not
 removed. There are a number of Bloom filter implementations that address
 this limitation, such as a Counting Bloom Filter, but they typically
 require more memory. As more elements are added to the set, the
 probability of false positives increases. Bloom filters cannot be resized
 like other data structures. Once they have been sized and trained, they
 cannot be reverse-engineered to achieve the original set nor resized and
 still maintain the same data set representation.
The following variables are used in the more detailed explanation of
 a Bloom filter below:
	m
	The number of bits in the filter

	n
	The number of members in the set

	p
	The desired false positive rate

	k
	The number of different hash functions used to map some
 element to one of the m bits with a uniform
 random distribution.

A Bloom filter is represented by a continuous string of
 m bits initialized to zero. For each element in
 n, k hash function values are
 taken modulo m to achieve an index from zero to
 m - 1. The bits of the Bloom filter at the resulting
 indices are set to one. This operation is often called
 training a Bloom filter. As elements are added to the
 Bloom filter, some bits may already be set to one from previous elements
 in the set. When testing whether a member is an element of the set, the
 same hash functions are used to check the bits of the array. If a single
 bit of all the hashes is set to zero, the test returns “no.” If all the
 bits are turned on, the test returns “maybe.” If the member was used to
 train the filter, the k hashs would have set all the
 bits to one.
The result of the test cannot be a definitive “yes” because the bits
 may have been turned on by a combination of other elements. If the test
 returns “maybe” but should have been “no,” this is known as a
 false positive. Thankfully, the false positive rate
 can be controlled if n is known ahead of time, or at
 least an approximation of n.
The following sections describe a number of common use cases for
 Bloom filters, the limitations of Bloom filters and a means to tweak your
 Bloom filter to get the lowest false positive rate. A code example of
 training and using a Hadoop Bloom filter can be found in Bloom filter training.

Use Cases

This section lists a number of common use cases for Bloom filters. In any
 application that can benefit from a Boolean test prior to some sort of
 expensive operation, a Bloom filter can most likely be utilized to reduce
 a large number of unneeded operations.
Representing a Data Set

One of the most basic uses of a Bloom filter is to represent very
 large data sets in applications. A data set with millions of elements
 can take up gigabytes of memory, as well as the expensive I/O required
 simply to pull the data set off disk. A Bloom filter can drastically
 reduce the number of bytes required to represent this data set, allowing
 it to fit in memory and decrease the amount of time required to read.
 The obvious downside to representing a large data set with a Bloom
 filter is the false positives. Whether or not this is a big deal varies
 from one use case to another, but there are ways to get a 100%
 validation of each test. A post-process join operation on the actual
 data set can be executed, or querying an external database is also a
 good option.

Reduce Queries to External Database

One very common use case of Bloom filters is to reduce the number
 of queries to databases that are bound to return many empty or negative
 results. By doing an initial test using a Bloom filter, an application
 can throw away a large number of negative results before ever querying
 the database. If latency is not much of a concern, the positive Bloom
 filter tests can be stored into a temporary buffer. Once a certain limit
 is hit, the buffer can then be iterated through to perform a bulk query
 against the database. This will reduce the load on the system and keep
 it more stable. This method is exceptionally useful if a large number of
 the queries are bound to return negative results. If most results are
 positive answers, then a Bloom filter may just be a waste of precious
 memory.

Google BigTable

Google’s BigTable design uses Bloom filters to reduce the need to read a file for
 non-existent data. By keeping a Bloom filter for each block in memory,
 the service can do an initial check to determine whether it is
 worthwhile to read the file. If the test returns a negative value, the
 service can return immediately. Positive tests result in the service
 opening the file to validate whether the data exists or not. By
 filtering out negative queries, the performance of this database
 increases drastically.

Downsides

The false positive rate is the largest downside to using a Bloom
 filter. Even with a Bloom filter large enough to have a 1% false positive
 rate, if you have ten million tests that should result in a negative
 result, then about a hundred thousand of those tests are going to return
 positive results. Whether or not this is a real issue depends largely on
 the use case.
Traditionally, you cannot remove elements from a Bloom filter set
 after training the elements. Removing an element would require bits to be
 set to zero, but it is extremely likely that more than one element hashed
 to a particular bit. Setting it to zero would destroy any future tests of
 other elements. One way around this limitation is called a
 Counting Bloom Filter, which keeps an integer at each index of the array. When
 training a Bloom filter, instead of setting a bit to zero, the integers
 are increased by one. When an element is removed, the integer is decreased
 by one. This requires much more memory than using a string of bits, and
 also lends itself to having overflow errors with large data sets. That is,
 adding one to the maximum allowed integer will result in a negative value
 (or zero, if using unsigned integers) and cause problems when executing
 tests over the filter and removing elements.
When using a Bloom filter in a distributed application like
 MapReduce, it is difficult to actively train a Bloom filter in the sense
 of a database. After a Bloom filter is trained and serialized to HDFS, it
 can easily be read and used by other applications. However, further
 training of the Bloom filter would require expensive I/O operations,
 whether it be sending messages to every other process using the Bloom
 filter or implementing some sort of locking mechanism. At this point, an
 external database might as well be used.

Tweaking Your Bloom Filter

Before training a Bloom filter with the elements of a set, it can be very
 beneficial to know an approximation of the number of elements. If you know
 this ahead of time, a Bloom filter can be sized appropriately to have a
 hand-picked false positive rate. The lower the false positive rate, the
 more bits required for the Bloom filter’s array. Figure A-1 shows how to calculate the size of a Bloom
 filter with an optimal-k.
[image: Optimal size of a Bloom filter with an optimal-k]

Figure A-1. Optimal size of a Bloom filter with an optimal-k

The following Java helper function calculates the optimal
 m.

/**
 * Gets the optimal Bloom filter sized based on the input parameters and the
 * optimal number of hash functions.
 *
 * @param numElements
 * The number of elements used to train the set.
 * @param falsePosRate
 * The desired false positive rate.
 * @return The optimal Bloom filter size.
 */
public static int getOptimalBloomFilterSize(int numElements,
 float falsePosRate) {
 return (int) (-numElements * (float) Math.log(falsePosRate)
 / Math.pow(Math.log(2), 2));
}
The optimal-k is defined as the number of hash
 functions that should be used for the Bloom filter. With a Hadoop Bloom
 filter implementation, the size of the Bloom filter and the number of hash
 functions to use are given when the object is constructed. Using the
 previous formula to find the appropriate size of the Bloom filter assumes
 the optimal-k is used.
Figure A-2 shows how the
 optimal-k is based solely on the size of the Bloom
 filter and the number of elements used to train the filter.
[image: Optimal-k of a Bloom filter]

Figure A-2. Optimal-k of a Bloom filter

The following helper function calculates the
 optimal-k.

/**
 * Gets the optimal-k value based on the input parameters.
 *
 * @param numElements
 * The number of elements used to train the set.
 * @param vectorSize
 * The size of the Bloom filter.
 * @return The optimal-k value, rounded to the closest integer.
 */
public static int getOptimalK(float numElements, float vectorSize) {
 return (int) Math.round(vectorSize * Math.log(2) / numElements);
}

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	access dates, partitioning users by, Partitioning users by last access date–Reducer code, Querying for user reputation by last access date–Driver code
	anonymizing data, Motivation–Reducer code, Anonymous comments and distinct users–Driver code
	antijoin operations, A Refresher on Joins
	Apache Hadoop, MapReduce and Hadoop Refresher (see Hadoop)
	audio, trends in nature of data, Images, Audio, and Video
	averages, calculating, Average example–Data flow diagram

B
	BigTable design (Google), Google BigTable
	binning pattern, Pattern Description–Performance analysis, Binning by Hadoop-related tags–Mapper code
		description, Pattern Description–Performance analysis
	examples, Binning by Hadoop-related tags–Mapper code

	Bloom filtering pattern, Pattern Description–Performance analysis, Hot list–Mapper Code, Reputable user and comment join–Comment mapper code
		description, Pattern Description–Performance analysis
	examples, Hot list–Mapper Code
	reduce side joins with, Reputable user and comment join–Comment mapper code

	Bloom filters, Overview, Use Cases–Google BigTable, Downsides, Tweaking Your Bloom Filter
		about, Overview
	downsides, Downsides
	tweaking, Tweaking Your Bloom Filter
	use cases, Use Cases–Google BigTable

	Bloom, Burton Howard, Overview
	BloomFilter class, Bloom filter training

C
	Cartesian product pattern, Pattern Description–Performance Analysis, Comment Comparison–Mapper code
		description, Pattern Description–Performance Analysis
	examples, Comment Comparison–Mapper code

	Cartesian products, A Refresher on Joins
	chain folding, Chain Folding–Chain Folding, The ChainMapper and ChainReducer Approach, The ChainMapper and ChainReducer Approach, Bin users by reputation–Driver code, Driver code, Driver code
		about, Chain Folding–Chain Folding
	ChainMapper class and, The ChainMapper and ChainReducer Approach, Driver code
	ChainReducer class and, The ChainMapper and ChainReducer Approach, Driver code
	examples, Bin users by reputation–Driver code

	ChainMapper class, The ChainMapper and ChainReducer Approach, Driver code
	ChainReducer class, The ChainMapper and ChainReducer Approach, Driver code, Patterns as a Library or Component
		about, Patterns as a Library or Component
	chain folding example, The ChainMapper and ChainReducer Approach, Driver code

	CombineFileInputFormat class, Job Chaining
	combiner phase (Hadoop), MapReduce and Hadoop Refresher
	comments, The Examples in This Book, Post/comment building on StackOverflow–Reducer code, Anonymizing StackOverflow comments, User and comment join–Combiner optimization, Comment Comparison–Mapper code, Anonymous comments and distinct users–Driver code, Generating random StackOverflow comments–RecordReader code
		about, The Examples in This Book
	anonymizing, Anonymizing StackOverflow comments, Anonymous comments and distinct users–Driver code
	building on StackOverflow, Post/comment building on StackOverflow–Reducer code
	generating random, Generating random StackOverflow comments–RecordReader code
	reduce side join example, User and comment join–Combiner optimization
	self-joining, Comment Comparison–Mapper code

	Comparator interface, MapReduce and Hadoop Refresher
	composite join pattern, Pattern Description–Performance analysis, Composite user comment join–Reducer and combiner
		description, Pattern Description–Performance analysis
	examples, Composite user comment join–Reducer and combiner

	CompositeInputFormat class, Motivation, Composite user comment join, Input format code
		Cartesian project examples, Input format code
	composite join examples, Motivation, Composite user comment join

	CompositeInputSplit class, Input format code
	Configurable interface, Partitioner code
	Configuration class, Main method, Helper methods
	Context interface, Mapper Code
	ControlledJob class, With JobControl–Helper methods
	count of a field, Minimum, maximum, and count example–Data flow diagram
	Counting Bloom Filter, Downsides
	counting with counters pattern, Pattern Description–Performance analysis, Number of users per state–Driver code
		description, Pattern Description–Performance analysis
	examples, Number of users per state–Driver code

	CreationDate XML attribute, Mapper code
	CROSS statement (Pig), Resemblances
	Cutting, Doug, MapReduce History

D
	data cleansing, Known uses
	data organization patterns, Data Organization Patterns, Pattern Description–Reducer code, Pattern Description–Reducer code, Pattern Description–Mapper code, Pattern Description–Order reducer code, Pattern Description–Reducer code, Pattern Description–RecordReader code
		binning pattern, Pattern Description–Mapper code
	generating data pattern, Data Organization Patterns, Pattern Description–RecordReader code
	partitioning pattern, Pattern Description–Reducer code
	shuffling pattern, Pattern Description–Reducer code
	structured to hierarchical pattern, Pattern Description–Reducer code
	total order sorting pattern, Pattern Description–Order reducer code

	Date class, Mapper code
	Dean, Jeffrey, MapReduce History
	deduplication, Motivation
	design patterns, Design Patterns and MapReduce–Design Patterns, Design Patterns, Pig and Hive, Summarization Patterns–Driver code, Filtering Patterns–Combiner optimization, Data Organization Patterns–Reducer code, Join Patterns–Mapper code, Metapatterns–Driver code, Input and Output Patterns–Driver code, Trends in the Nature of Data–Streaming Data, The Effects of YARN, Patterns as a Library or Component, How You Can Help
		about, Design Patterns
	data organization patterns, Data Organization Patterns–Reducer code
	effects of YARN, The Effects of YARN
	filtering patterns, Filtering Patterns–Combiner optimization
	importance of, Pig and Hive
	input and output patterns, Input and Output Patterns–Driver code
	join patterns, Join Patterns–Mapper code
	as libraries or
 components, Patterns as a Library or Component
	MapReduce and, Design Patterns and MapReduce–Design Patterns
	metapatterns, Metapatterns–Driver code
	sharing, How You Can Help
	summarization patterns, Summarization Patterns–Driver code
	trends in nature of data, Trends in the Nature of Data–Streaming Data

	DISTINCT operation (Pig), Resemblances
	distinct pattern, Pattern Description–Performance analysis, Distinct user IDs–Combiner optimization
		description, Pattern Description–Performance analysis
	examples, Distinct user IDs–Combiner optimization

	distributed grep, Known uses, Distributed grep
	DistributedCache class, Mapper code, Mapper Code, Reputable user and comment join, Reputable user and comment join, Replicated user comment example, Basic job chaining, Driver code, Bin users by reputation, Driver code, RecordReader code
		Bloom filtering examples, Mapper code, Mapper Code, Reputable user and comment join
	chain folding example, Bin users by reputation, Driver code
	generating data examples, RecordReader code
	job chaining examples, Basic job chaining, Driver code
	reduced side join examples, Reputable user and comment join
	replicated join examples, Replicated user comment example

	DocumentBuilder class, Reducer code

E
	Element class, Reducer code
	external source input pattern, Pattern Description–Performance analysis, Reading from Redis Instances–Driver code
		description, Pattern Description–Performance analysis
	examples, Reading from Redis Instances–Driver code

	external source output pattern, Pattern Description–Performance analysis, Writing to Redis instances–Driver Code
		description, Pattern Description–Performance analysis
	examples, Writing to Redis instances–Driver Code

F
	FileInputFormat class, Hadoop Example: Word Count, InputFormat, OutputFormat
		customizing input and output, InputFormat, OutputFormat
	“Word Count” program
 example, Hadoop Example: Word Count

	FileOutputCommitter class, OutputFormat
	FileOutputFormat class, Hadoop Example: Word Count, OutputFormat, Writing to Redis instances
		customizing input and output, OutputFormat
	external source output examples, Writing to Redis instances
	“Word Count” program
 example, Hadoop Example: Word Count

	FileSystem class, Bloom filter training, OutputFormat
	FILTER keyword (Pig), Resemblances
	filtering pattern, Pattern Description–Performance analysis, Distributed grep–Mapper Code
		description, Pattern Description–Performance analysis
	examples, Distributed grep–Mapper Code

	filtering patterns, Pattern Description–Mapper Code, Pattern Description–Mapper Code, Pattern Description–Reducer code, Pattern Description–Combiner optimization
		Bloom filtering pattern, Pattern Description–Mapper Code
	distinct pattern, Pattern Description–Combiner optimization
	filtering pattern, Pattern Description–Mapper Code
	top ten pattern, Pattern Description–Reducer code

	FOREACH … GENERATE expression (Pig), Resemblances
	FSDataInputStream class, InputFormat
	full outer joins, A Refresher on Joins, A Refresher on Joins

G
	“The Gang of Four” book, Preface, Design Patterns
	generating data pattern, Data Organization Patterns, Pattern Description–Performance analysis, Generating random StackOverflow comments–RecordReader code
		about, Data Organization Patterns
	description, Pattern Description–Performance analysis
	examples, Generating random StackOverflow comments–RecordReader code

	Ghemawat, Sanjay, MapReduce History
	Google BigTable design, Google BigTable
	grep tool, Known uses, Distributed grep
	GROUP BY clause (SQL), Resemblances
	GROUP … BY expression (Pig), Resemblances

H
	Hadoop, The Examples in This Book, Design Patterns, MapReduce History, MapReduce and Hadoop Refresher–MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher–MapReduce and Hadoop Refresher, Hadoop Example: Word Count–Hadoop Example: Word Count
		about, The Examples in This Book
	design patterns and, Design Patterns
	historical overview, MapReduce History
	map tasks, MapReduce and Hadoop Refresher–MapReduce and Hadoop Refresher
	reduce tasks, MapReduce and Hadoop Refresher–MapReduce and Hadoop Refresher
	“Word Count” program
 example, Hadoop Example: Word Count–Hadoop Example: Word Count

	Hadoop Distributed File System (HDFS), MapReduce and Hadoop Refresher, Structure
	HashMap class, The Examples in This Book, Combiner optimization, Mapper code, Writing to Redis instances
		about, The Examples in This Book
	numerical summarizations example, Combiner optimization
	Redis hash and, Writing to Redis instances
	replicated join examples, Mapper code

	HBase database, HBase Query using a Bloom filter–Mapper Code, Motivation
		Bloom filter example, HBase Query using a Bloom filter–Mapper Code
	updating data and, Motivation

	HDFS (Hadoop Distributed File System), MapReduce and Hadoop Refresher, Structure
	Hive data warehouse, Pig and Hive
	hot list of keywords example, Hot list–Mapper code
	HStreaming product, Streaming Data

I
	identity reducers, Structure
	IdentityMapper class, Structure
	images, trends in nature of data, Images, Audio, and Video
	inner joins, Known uses, A Refresher on Joins
		about, A Refresher on Joins
	protecting against explosions, Known uses

	input and output patterns, Input and Output Patterns, Customizing Input and Output in Hadoop–RecordWriter, Pattern Description–RecordReader code, Pattern Description–Driver Code, Pattern Description–Driver code, Pattern Description–Driver code
		about, Input and Output Patterns
	customizing input and output, Customizing Input and Output in Hadoop–RecordWriter
	external source input pattern, Pattern Description–Driver code
	external source output pattern, Pattern Description–Driver Code
	generating data pattern, Pattern Description–RecordReader code
	partition pruning pattern, Pattern Description–Driver code

	input format, MapReduce and Hadoop Refresher, InputFormat
	input splits, MapReduce and Hadoop Refresher, InputFormat
	InputFormat class, Customizing Input and Output in Hadoop–InputFormat, InputFormat, InputFormat, Structure, InputFormat code, Structure, InputFormat code, Structure, OutputFormat code, InputFormat code
		about, Customizing Input and Output in Hadoop–InputFormat
	createRecordReader method, InputFormat
	external source input examples, Structure, InputFormat code
	generating data examples, Structure, InputFormat code
	getSplits method, InputFormat, Structure
	partition pruning examples, OutputFormat code, InputFormat code

	InputSampler class, Driver code
	InputSplit class, InputFormat, Structure, InputSplit code, InputSplit code
		about, InputFormat
	external source input examples, Structure, InputSplit code
	partition pruning examples, InputSplit code

	IntWritable class, Hadoop Example: Word Count
	inverted index pattern, Pattern Description–Performance analysis, Wikipedia reference inverted index–Combiner optimization
		description, Pattern Description–Performance analysis
	examples, Wikipedia reference inverted index–Combiner optimization

J
	job chaining, Job Chaining, With the Driver, Basic job chaining–Driver code, Parallel job chaining–Driver code, With Shell Scripting–Sample run, With JobControl–Helper methods
		about, Job Chaining
	examples, Basic job chaining–Driver code
	with job control, With JobControl–Helper methods
	with master drivers, With the Driver
	parallel, Parallel job chaining–Driver code
	with shell scripting, With Shell Scripting–Sample run

	Job class, Hadoop Example: Word Count, Hadoop Example: Word Count, Reducer code, With the Driver, With the Driver, With the Driver, Driver code, Driver code
		about, Hadoop Example: Word Count
	isComplete method, With the Driver
	setCombinerClass method, Hadoop Example: Word Count
	setNumReduceTasks method, Reducer code
	submit method, With the Driver, Driver code
	waitForCompletion method, With the Driver, Driver code

	job merging, Metapatterns, Job Merging–Job Merging, Anonymous comments and distinct users–Driver code
		about, Metapatterns, Job Merging–Job Merging
	examples, Anonymous comments and distinct users–Driver code

	JobConf class, Driver code
	JobControl class, With the Driver, With JobControl–Helper methods
	join operations, A Refresher on Joins, A Refresher on Joins, A Refresher on Joins–A Refresher on Joins, A Refresher on Joins, A Refresher on Joins
		about, A Refresher on Joins
	antijoins, A Refresher on Joins
	Cartesian products, A Refresher on Joins
	inner joins, A Refresher on Joins
	outer joins, A Refresher on Joins–A Refresher on Joins

	join patterns, Join Patterns, Pattern Description–Comment mapper code, Pattern Description–Mapper code, Pattern Description–Reducer and combiner, Pattern Description–Mapper code
		about, Join Patterns
	Cartesian product pattern, Pattern Description–Mapper code
	composite join pattern, Pattern Description–Reducer and combiner
	reduce side join pattern, Pattern Description–Comment mapper code
	replicated join pattern, Pattern Description–Mapper code

K
	KeyValueTextOutputFormat class, Composite user comment join
	keywords hot list example, Hot list–Mapper code

L
	left outer joins, A Refresher on Joins
	LineRecordReader class, InputFormat, Structure
		about, InputFormat
	partition pruning examples, Structure

	LineRecordWriter class, OutputFormat
	LongSumReducer class, Bin users by reputation
	LongWritable class, Hadoop Example: Word Count

M
	Map class, Mapper code
	map function, Mapper Code
	map phase (Hadoop), MapReduce and Hadoop Refresher, Chain Folding
	map tasks (Hadoop), MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, Chain Folding
		about, MapReduce and Hadoop Refresher
	combiner phase, MapReduce and Hadoop Refresher
	map phase, MapReduce and Hadoop Refresher, Chain Folding
	partitioner phase, MapReduce and Hadoop Refresher
	record reader phase, MapReduce and Hadoop Refresher
	reduce tasks and, MapReduce and Hadoop Refresher

	mapred API, The Examples in This Book, Driver code
	MapReduce, Design Patterns and MapReduce, Design Patterns and MapReduce–Design Patterns, MapReduce History, Pig and Hive
		about, Design Patterns and MapReduce
	design patterns and, Design Patterns and MapReduce–Design Patterns
	historical overview, MapReduce History
	Pig and Hive considerations, Pig and Hive

	mapreduce API, The Examples in This Book, Driver code
	maximum value of a field, Minimum, maximum, and count example–Data flow diagram
	median, calculating, Median and standard deviation–Data flow diagram
	metapatterns, Metapatterns, Job Chaining–Helper methods, Chain Folding–Driver code, Job Merging–Driver code
		about, Metapatterns
	chain folding, Chain Folding–Driver code
	job chaining, Job Chaining–Helper methods
	job merging, Job Merging–Driver code

	minimum value of a field, Minimum, maximum, and count example–Data flow diagram
	modulus operation, MapReduce and Hadoop Refresher
	MongoDB database, Known uses
	MRDPUtils.transformXmlToMap helper function, Hadoop Example: Word Count
	multidimensional data, Images, Audio, and Video
	MultipleInputs class, Structure, Driver code, Driver code
	MultipleOutputs class, Structure, Driver code, Job two mapper, Driver code, Binning mapper code, Driver code, Job Merging, Merged reducer code, Patterns as a Library or Component
		about, Patterns as a Library or Component
	binning pattern and, Structure, Driver code
	chain folding example, Binning mapper code, Driver code
	job chaining examples, Job two mapper, Driver code
	job merging examples, Job Merging, Merged reducer code

N
	NullOutputFormat class, Mapper code, Driver code, OutputFormat code
		binning examples, Mapper code
	chain folding examples, Driver code
	partition pruning examples, OutputFormat code

	NullWritable class, Reducer code, Order reducer code, Mapper code, Merged reducer code
		job chaining examples, Mapper code
	job merging examples, Merged reducer code
	top ten examples, Reducer code
	total order sorting examples, Order reducer code

	Numerical Aggregation pattern, Resemblances
	numerical summarizations pattern, Pattern Description–Performance analysis, Minimum, maximum, and count example–Data flow diagram
		description, Pattern Description–Performance analysis
	examples, Minimum, maximum, and count example–Data flow diagram

O
	Oozie project, Job Chaining
	outer joins, A Refresher on Joins–A Refresher on Joins
	outlier analysis, Known uses
	output committers, OutputFormat, Consequences
	output format phase (Hadoop), MapReduce and Hadoop Refresher
	output patterns, Input and Output Patterns (see input and output patterns)
	OutputFormat class, Customizing Input and Output in Hadoop, OutputFormat, OutputFormat, OutputFormat, OutputFormat, RecordWriter, Structure, OutputFormat code, OutputFormat code
		about, Customizing Input and Output in Hadoop, OutputFormat
	checkOutputSpecs method, OutputFormat
	external source output examples, Structure, OutputFormat code
	getOutputCommitter method, OutputFormat
	getRecordWriter method, OutputFormat, RecordWriter
	partition pruning examples, OutputFormat code

P
	parallel job chaining, Parallel job chaining–Driver code
	partition pruning pattern, Pattern Description, Partitioning by last access date to Redis instances–Driver code
		description, Pattern Description
	examples, Partitioning by last access date to Redis instances–Driver code

	partitioner phase (Hadoop), MapReduce and Hadoop Refresher
	partitioning pattern, Pattern Description–Performance analysis, Partitioning users by last access date–Reducer code
		description, Pattern Description–Performance analysis
	examples, Partitioning users by last access date–Reducer code

	Path interface, Driver code
	patterns, Pig and Hive (see design patterns)
	Pig language, Pig and Hive, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances
		about, Pig and Hive
	COGROUP method, Resemblances
	CROSS statement, Resemblances
	DISTINCT operation, Resemblances
	FILTER keyword, Resemblances
	FOREACH … GENERATE expression, Resemblances
	GROUP … BY expression, Resemblances
	hierarchical data structures and, Resemblances
	join operations, Resemblances, Resemblances
	ordering in, Resemblances
	shuffling data in, Resemblances
	SPLIT operation, Resemblances
	top ten pattern considerations, Resemblances

	posts, The Examples in This Book, Post/comment building on StackOverflow–Reducer code
		about, The Examples in This Book
	building on StackOverflow, Post/comment building on StackOverflow–Reducer code

	pruning partitions, Known uses, Pattern Description–Driver code

R
	random sampling of data, Known uses, Simple Random Sampling
	RandomSampler class, Driver code
	record counts, Known uses, Motivation, Known uses–Driver code
		counting with counters example, Motivation, Known uses–Driver code
	numerical summarizations example, Known uses

	record reader phase (Hadoop), MapReduce and Hadoop Refresher
	RecordReader class, Customizing Input and Output in Hadoop–RecordReader, RecordReader, RecordReader, RecordReader, RecordReader, RecordReader, RecordReader, Structure, RecordReader code, RecordReader code, Structure, RecordReader code, Structure, RecordReader code
		about, Customizing Input and Output in Hadoop–RecordReader
	close method, RecordReader
	external source input examples, Structure, RecordReader code
	external source output examples, RecordReader code
	generating data examples, Structure, RecordReader code
	getCurrentKey method, RecordReader
	getCurrentValue method, RecordReader
	getProgress method, RecordReader
	initialize method, RecordReader
	nextKeyValue method, RecordReader
	partition pruning examples, Structure, RecordReader code

	records, filtering out, Known uses
	RecordWriter class, Customizing Input and Output in Hadoop, RecordWriter, RecordWriter, RecordWriter, Structure, RecordWriter code
		about, Customizing Input and Output in Hadoop, RecordWriter
	close method, RecordWriter
	external source output examples, Structure
	partition pruning examples, RecordWriter code
	write method, RecordWriter

	Redis key-value store, Writing to Redis instances–Driver Code, Reading from Redis Instances–Driver code, Partitioning by last access date to Redis instances
		external source input examples, Reading from Redis Instances–Driver code
	external source output examples, Writing to Redis instances–Driver Code
	partition pruning examples, Partitioning by last access date to Redis instances

	reduce function, MapReduce and Hadoop Refresher, Hadoop Example: Word Count
	reduce phase (Hadoop), MapReduce and Hadoop Refresher
	reduce side join pattern, Pattern Description–Performance analysis, User and comment join–Combiner optimization, Reputable user and comment join–Comment mapper code
		with Bloom filter, Reputable user and comment join–Comment mapper code
	description, Pattern Description–Performance analysis
	examples, User and comment join–Combiner optimization

	reduce tasks (Hadoop), MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher, MapReduce and Hadoop Refresher
		about, MapReduce and Hadoop Refresher
	map tasks and, MapReduce and Hadoop Refresher
	output format phase, MapReduce and Hadoop Refresher
	reduce phase, MapReduce and Hadoop Refresher
	shuffle phase, MapReduce and Hadoop Refresher
	sort phase, MapReduce and Hadoop Refresher

	replicated join pattern, Pattern Description–Performance analysis, Replicated user comment example–Mapper code
		description, Pattern Description–Performance analysis
	examples, Replicated user comment example–Mapper code

	right outer joins, A Refresher on Joins, A Refresher on Joins

S
	sampling data, Filtering Patterns, Known uses, Simple Random Sampling
	SciDB database, Images, Audio, and Video
	SELECT DISTINCT statement (SQL), Resemblances
	self-joining comments, Comment Comparison–Mapper code
	SequenceFile class, Consequences, Analyze mapper code
	SequenceFileOutputFormat class, Driver code
	setup function, Mapper code, Mapper Code
	sharding data, Known uses
	shell scripts, job chaining in, With Shell Scripting–Sample run
	shuffle phase (Hadoop), MapReduce and Hadoop Refresher
	shuffling pattern, Pattern Description–Performance analysis, Anonymizing StackOverflow comments–Reducer code
		description, Pattern Description–Performance analysis
	examples, Anonymizing StackOverflow comments–Reducer code

	simple random sampling (SRS), Known uses, Simple Random Sampling
	sort phase (Hadoop), MapReduce and Hadoop Refresher
	SortedMap interface, Reducer code
	SortedMapWritable class, Mapper code–Data flow diagram
	sorting pattern, Pattern Description–Performance analysis, Sort users by last visit–Order reducer code
		description, Pattern Description–Performance analysis
	examples, Sort users by last visit–Order reducer code

	SPLIT operation (Pig), Resemblances
	SQL, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances, Resemblances
		GROUP BY clause, Resemblances
	hierarchical data structures and, Resemblances
	join operations, Resemblances
	ordering data by random value, Resemblances
	ordering in, Resemblances
	partition pruning and, Resemblances
	SELECT DISTINCT statement, Resemblances
	top ten pattern considerations, Resemblances
	WHERE clause, Resemblances, Resemblances

	SRS (simple random sampling), Known uses, Simple Random Sampling
	StackOverflow, The Examples in This Book, The Examples in This Book, The Examples in This Book, The Examples in This Book, Motivation, Post/comment building on StackOverflow–Reducer code, Question/answer building on StackOverflow–Reducer code, Anonymizing StackOverflow comments, User and comment join–Combiner optimization, Comment Comparison–Mapper code, Anonymous comments and distinct users, Generating random StackOverflow comments–RecordReader code
		about, The Examples in This Book
	anonymizing comments, Anonymizing StackOverflow comments, Anonymous comments and distinct users
	comments table, The Examples in This Book
	generating random comments, Generating random StackOverflow comments–RecordReader code
	post/comment building on, Post/comment building on StackOverflow–Reducer code
	posts table, The Examples in This Book
	question/answer building on, Question/answer building on StackOverflow–Reducer code
	self-joining comments, Comment Comparison–Mapper code
	updating data and, Motivation
	user and comment joins, User and comment join–Combiner optimization
	users table, The Examples in This Book

	standard deviation, calculating, Median and standard deviation–Data flow diagram
	streaming data, Streaming Data
	String class, Wikipedia reference inverted index, Driver code, TaggedText WritableComparable
		composite join example, Driver code
	inverted index example, Wikipedia reference inverted index
	job merging examples, TaggedText WritableComparable

	StringTokenizer class, Hadoop Example: Word Count
	structured to hierarchical pattern, Pattern Description–Performance analysis, Post/comment building on StackOverflow–Reducer code
		description, Pattern Description–Performance analysis
	examples, Post/comment building on StackOverflow–Reducer code

	summarization patterns, Pattern Description–Data flow diagram, Pattern Description–Combiner optimization, Pattern Description–Driver code
		counting with counters pattern, Pattern Description–Driver code
	inverted index pattern, Pattern Description–Combiner optimization
	numerical summarizations pattern, Pattern Description–Data flow diagram

T
	temporary files, Job Chaining
	Text class, Hadoop Example: Word Count, Composite user comment join, Mapper code, TaggedText WritableComparable, TaggedText WritableComparable
		composite join examples, Composite user comment join, Mapper code
	job merging examples, TaggedText WritableComparable, TaggedText WritableComparable
	“Word Count” program
 example, Hadoop Example: Word Count

	TextInputFormat class, Hadoop Example: Word Count, InputFormat, RecordReader
		customizing input and output, InputFormat, RecordReader
	“Word Count” program
 example, Hadoop Example: Word Count

	TextOutputFormat class, Hadoop Example: Word Count, Composite user comment join, OutputFormat
		composite join examples, Composite user comment join
	customizing input and output, OutputFormat
	“Word Count” program
 example, Hadoop Example: Word Count

	top ten pattern, Pattern Description–Performance analysis, Top ten users by reputation–Reducer code
		description, Pattern Description–Performance analysis
	examples, Top ten users by reputation–Reducer code

	total order sorting pattern, Pattern Description–Performance analysis, Sort users by last visit–Order reducer code
		description, Pattern Description–Performance analysis
	examples, Sort users by last visit–Order reducer code

	TotalOrderPartitioner class, Structure, Driver code, Analyze mapper code, Patterns as a Library or Component
		about, Patterns as a Library or Component
	total order sorting pattern and, Structure, Driver code, Analyze mapper code

	tracking threads of events, Known uses
	TreeMap class, Reducer code, Mapper code
		numerical summarizations example, Reducer code
	top ten example, Mapper code

	TupleWritable class, Mapper code

U
	use cases, Bloom filters, Use Cases–Google BigTable
	user IDs, distinct set of, Distinct user IDs
	users, The Examples in This Book, Partitioning users by last access date–Reducer code, User and comment join–Combiner optimization, Querying for user reputation by last access date–Driver code
		about, The Examples in This Book
	partitioning by last access date, Partitioning users by last access date–Reducer code, Querying for user reputation by last access date–Driver code
	reduce side join example, User and comment join–Combiner optimization

V
	video, trends in nature of data, Images, Audio, and Video
	viewing data, Known uses

W
	WHERE clause (SQL), Resemblances, Resemblances
	White, Tom, MapReduce and Hadoop Refresher
	Wikipedia reference inverted index example, Wikipedia reference inverted index–Combiner optimization
	“Word Count”
 program example (Hadoop), Hadoop Example: Word Count–Hadoop Example: Word Count
	word counts, Hadoop Example: Word Count–Hadoop Example: Word Count, Known uses
		numerical summarizations example, Known uses
	“Word Count” program
 example, Hadoop Example: Word Count–Hadoop Example: Word Count

	WordCountMapper class, Hadoop Example: Word Count
	Writable interface, InputSplit code
	WritableComparable interface, TaggedText WritableComparable, RecordReader, Custom WritableComparable code
		about, RecordReader
	job merging examples, TaggedText WritableComparable
	partition pruning examples, Custom WritableComparable code

	Writeable interface, Hadoop Example: Word Count, MinMaxCountTuple code
		numerical summarization example, MinMaxCountTuple code
	“Word Count” program
 example, Hadoop Example: Word Count

Y
	YARN (Yet Another Resource Negotiator), The Effects of YARN

About the Authors
Donald Miner serves as a Solutions Architect at EMC Greenplum,advising and helping customers implement and use Greenplum's big data systems. Prior to working with Greenplum, Dr. Miner architected several large-scale and mission-critical Hadoop deployments with the U.S. Government as a contractor. He is also involved in teaching, having previously instructed industry classes on Hadoop and a variety of artificial intelligence courses at the University of Maryland, BC. Dr. Miner received his PhD from the University of Maryland, BC in Computer Science, where he focused on Machine Learning and Multi-Agent Systems in his dissertation.
Adam Shook is a Software Engineer at ClearEdge IT Solutions, LLC, working with a number of big data technologies such as Hadoop, Accumulo, Pig, and ZooKeeper. Shook graduated with a B.S. in Computer Science from the University of Maryland Baltimore County (UMBC) and took a job building a new high-performance graphics engine for a game studio. Seeking new challenges, he enrolled in the graduate program at UMBC with a focus on distributed computing technologies. He quickly found development work as a U.S. government contractor on a large-scale Hadoop deployment. Shook is involved in developing and instructing training curriculum for both Hadoop and Pig. He spends what little free time he has working on side projects and playing video games.

Colophon
 The animal on the cover of MapReduce Design Patterns is Père David’s
 deer or the Chinese Elaphur (Elaphurus davidianus). It is originally from
 China, and in the 19th century the Emperor of China kept all Père David’s deer in special
 hunting grounds. However, at the turn of the century, the remaining population in the hunting
 grounds were killed in a number of natural and man-made events, making the deer extinct in
 China. Since Père David, a zoologist and botanist, spirited a few away during the 19th century
 for study, the deer survives today in numbers of over 2,000.
Père David’s deer grow to be a little over 2 meters in length, and 1.2 meters tall. Its
 coat ranges from reddish in the summer to grey in the winter. Père David’s deer is considered a
 semiaquatic animal, as it enjoys swimming. The deer eats grass and aquatic plants.
 In China this deer is sometimes known as sibuxiang or
 “like none of the four” because it has characteristics of four animals and yet is none of them.
 Many remark that it has the tail of a donkey, the hoofs of a cow, the neck of a camel, and the
 antlers of a deer.
The cover image is from Cassell’s Natural History. The cover font is
 Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
 Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

MapReduce Design Patterns

Donald Miner

Adam Shook

Editor
Mike Hendrickson

Editor
Andy Oram

	Revision History
	2012-11-20	First release

Copyright © 2012 Donald Miner and Adam Shook, Donald Miller and Adam Shook

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
 trademarks of O’Reilly Media, Inc. MapReduce Design Patterns, the image
 of Père David’s deer, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc., was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and authors assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-11-21T07:03:26-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1427535.png
Input
Split

Input
Split

Input
Split

Binning
Mapper

—»| PartA

[

—»| PartC

Binning
Mapper

—»| PartA

[

—»| Part C

Binning
Mapper

—»| PartA

[

—»| Part C

OEBPS/httpatomoreillycomsourceoreillyimages1427552.png
} omposite E\\
 Input Split 1 Lem
} i
! |
| '
]
} | N
\ |
‘ M Output
} L Part
)
)
)
}
 Composite E\\
 Input Split2 +=-=a
\
\
i
\ N
)
| Mapper Output
} b Part
\
)
)
\
\
 Composite
 Input Split n)
1]
]
1]
i N
'
Mapper Output

\
)
\
)
\
)
}
} Part
)
)
\
)
\

OEBPS/httpatomoreillycomsourceoreillyimages1427544.png
Rep Join
Mapper

Rep Join
Mapper

Rep Join
Mapper

Rep Join
Mapper

Distributed

cache

Output
Part

Output
Part

Output
Part

Output
Part

OEBPS/httpatomoreillycomsourceoreillyimages1427574.png
AN
Posts

Posts

Posts

Counts the
number of
times each
user has
posted

Map: Reduce:
Extract user Count

Average
number of
words per
tag

Reduce:
Average words

Extract toplc tag,
word count

Counts the
Map: : number of
Extract user times each
user has
posted

Average
Map: Reduce: number of

Extract topic tag, | Average words words per
word count tag

OEBPS/httpatomoreillycomsourceoreillyimages1427531.png
dentity
Mapper

dentity
Mapper

dentity
Mapper

dentity
Mapper

dentity
Mapper

dentity
Mapper

Partitioner | | Partitioner | | Partitioner | | Partitioner | | Partitioner

Partitioner

Shuffle
and Sort

Identity
Reducer

Identity
Reducer

Identity
Reducer

Part

OEBPS/httpatomoreillycomsourceoreillyimages1427587.png
External Input Split sl

External Input Split sl

External Input Split sl

External
Record
Reader

External
Record
Reader

External
Record
Reader

Mapper

Mapper

Mapper

™

Output
file

AN

Output
file

Output
file

OEBPS/httpatomoreillycomsourceoreillyimages1427592.png
Input Format during Execution

! 1
| |

i External | | AN
! InputSplit == | Record Mapper Output

i Reader | | file

! |

! |

Input Format during Execution

InputSplit == | Record
Reader

AN
Mapper Output
file

1 1
1 1
1 1
H External | |
: .
1 1
1 1
1 1

OEBPS/httpatomoreillycomsourceoreillyimages1427505.png
keyword, unique
keyword, unique

S8

Mapper Partitioner

(keyword A, list of IDs)

Reducer (keyword D, lst of IDs)

keyword, unique
keyword, unique

SS

Partitioner

(keyword B, list of IDs)

Reducer (keyword G, list of IDs)

keyword, unique
keyword, unique

EiE

Mapper Partitioner

OEBPS/httpatomoreillycomsourceoreillyimages1427583.png
AN

Input External Source
AN

Input External Source

plit Mapper External Source

D\
Input External Source
Split R OutputFormat

OEBPS/httpatomoreillycomsourceoreillyimages1427518.png
Output
File

OEBPS/httpatomoreillycomsourceoreillyimages1427548.png
hash(fk) % 5=10

hash(fk) % 5=1

hash(fk) % 5=2

hash(fk) %5 =3

hash(fk) % 5=4

Data Set A
foreign keys

Adam
Adam
James
Xavier

Bradley
Stella
William

N
Christopher
Dennis
Dennis

Frank
Fred
Nicholas

Data Set B
foreign keys

Adam
Xavier
Xavier
Xavier

Donald

Donald

Frank
Fred
Nicholas

pauos pauos payios pauos

payios

OEBPS/httpatomoreillycomsourceoreillyimages1427600.png

OEBPS/httpatomoreillycomsourceoreillyimages1427539.png
(bob, “md")

AN
Join Output
Reducer Part
D\
Shuffle Join Output
and Sort Reducer Part
(bob, 37) AN
Join Output
Reducer Part

(bob, 33)

OEBPS/oreilly_large.png.jpg

OEBPS/orm_front_cover.jpg
Building Effective Algoritbms and Analytics
Jor Hadoop and Other Systems

O'REILLY* Donald Miner & Adam Shook

OEBPS/httpatomoreillycomsourceoreillyimages1427578.png
......

........
......

........
......

......

D
ES Identit
E Z el Mappe): =P Output
— AN
2 Identity
g § —’ Mapper —> Output
— AN
Es Identity
g E —lp Mapper =P Output
— D
e [dentit
28 > Mappe); =P Output

OEBPS/httpatomoreillycomsourceoreillyimages1427501.png
Map Output / Combiner Input

Input Key Input Value Combiner executes over Group 1and 2.

Hour Length Count Pairs

Does not execute over last two rows.

4 |81
] B O L
E T

ER T

ER T

Combiner Output / Reducer Input

OutputKey OutputValue

Length Count Pairs

18:2, 14:1

OEBPS/httpatomoreillycomsourceoreillyimages1427492.png
Map Output / Combiner Input

Input Key Input Value Combiner executes over Group 1and 2.

Minimum Maximum

Does not execute over last two rows.

Combiner Output / Reducer Input

OutputKey | OutputValue

Minimum Maximum Count

OEBPS/httpatomoreillycomsourceoreillyimages1427488.png
key, summary field)
key, summary field

Partitioner

(group B, summary)

Reducer (group D, summary)

key, summary fi
key, summary fi

Mapper Partitioner

(group B, summary)

Reducer (group D, summary)

key, summary field)
key, summary field)

Mapper Partitioner

OEBPS/httpatomoreillycomsourceoreillyimages1427497.png
Map Output / Combiner Input

Input Key Input Value Combiner executes over Group 1and 2.

Count

Average

Does not execute over last two rows.

Combiner Output / Reducer Input

OutputKey OutputValue

Hour Count Average

I ER R
X KR LN
ER S L

OEBPS/httpatomoreillycomsourceoreillyimages1427509.png
Counting

Mapper

Counting
Mapper

Counting
Mapper

TaskTracker

Job Success
TaskTracker JobTracker

TaskTracker

Counter A
Counter B

Counter C
Counter D

OEBPS/httpatomoreillycomsourceoreillyimages1427561.png
Map: Filter out
Comments Teenager Teenager

N\
m
comments Comments
N |d
Users

istributed
cache

Map: Tokenize
remove stop
words

Reduce: Teenager
Word count Word
Count

AN

Map: Filter out

Teenager Teenager
comments Reduce:
ments s Word

Com|
tokenize, Word count Count
remove stop
Users

words

'

OEBPS/httpatomoreillycomsourceoreillyimages1427514.png
,

Input

Split

v

,

Input
Split

Filter
Mapper

0 N

utput

,

Input
Split

Filter
Mapper

Split

0 N

utput

,
by

Input
Split

Filter
Mapper

Split

0 N

utput

Filter
Mapper

v

Split

Output
Split

OEBPS/httpatomoreillycomsourceoreillyimages1427522.png
w
=

/

/

/

/

/

w
=

TopTen
Mapper

local top 10

local top 10

local top 10

local top 10

local top 10

local top 10

TopTen
Reducer

final top 10

Top 10
Output

OEBPS/httpatomoreillycomsourceoreillyimages1427557.png
Data Set A

Data Set B
2 Splits staset
D\
Identity o
e File
: AN
nput 2 Identity o
Split B-2 g8 gnty)
N
e Output
e File
D\
Identity o
e File
D\
Identity o
e File
nput
Split B-3

Record
Reader

N
Identity ot
Mapper

File

OEBPS/httpatomoreillycomsourceoreillyimages1427570.png
Reduce:
Count user-+topic

Map: Extract

Fosts user, topic tags

Map: Enrich
user Counts the

information number of
times each
user with
age has
posted to
each tag

Map: filter counts
<5, pull out age
group & tag

Reduce:
Sum counts

Map: Enrich
user
information, pull
outage group
&tag

Reduce:
Sum counts

Users

Counts the
number of
times each

user has
posted to
each tag

many times
eachage
group has.
posted to

each tag

Counts the

number of

times each
user has
posted to
each tag

each age
group has.
posted to
eachtag

Counts of how

Counts of how
many times

OEBPS/httpatomoreillycomsourceoreillyimages1427596.png
—nin(p)

 In(2)?

OEBPS/httpatomoreillycomsourceoreillyimages1427527.png
Dat; Set | (post D, post data)

Mapper
Data Set
A
Mapper AN
Heirarchy Output
Reducer Part
Shuffle
and Sort
AN
Heirarchy Output
Reducer Part

DataSet | (parent ID, child data)
B
Mapper

OEBPS/httpatomoreillycomsourceoreillyimages1427565.png
™\

Comments

Map: Extract Reduce: User
username Count by user comment
counts

Map: Enrich
with user
information

D\
Users

AN Reduce:
ManiEt et Count by user, User
Comments usg_rname enrich information
with user with counts
information

AN
Users

