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Preface



Welcome to MapReduce Design Patterns! This book will be unique in some
    ways and familiar in others. First and foremost, this book is obviously about design patterns,
    which are templates or general guides to solving problems. We took a look at other design
    patterns books that have been written in the past as inspiration, particularly Design
      Patterns: Elements of Reusable Object-Oriented Software, by Gamma et al. (1995),
    which is commonly referred to as “The Gang of Four” book. For each pattern, you’ll see a template that we reuse over
    and over that we loosely based off of their book. Repeatedly seeing a similar template will help
    you get to the specific information you need. This will be especially useful in the future when
    using this book as a reference.
This book is a bit more open-ended than a book in the “cookbook”
  series of texts as we don’t call out specific problems. However, similarly
  to the cookbooks, the lessons in this book are short and categorized. You’ll
  have to go a bit further than just copying and pasting our code to solve
  your problems, but we hope that you will find a pattern to get you at least
  90% of the way for just about all of your challenges.
This book is mostly about the analytics side of Hadoop or MapReduce.
  We intentionally try not to dive into too much detail on how Hadoop or
  MapReduce works or talk too long about the APIs that we are using. These
  topics have been written about quite a few times, both online and in print,
  so we decided to focus on analytics.
In this preface, we’ll talk about how to read this book since its
  format might be a bit different than most books you’ve read.
Intended Audience



The motivation for us to write this book was to fill a missing gap we saw in a lot of new
      MapReduce developers. They had learned how to use the system, got comfortable with writing
      MapReduce, but were lacking the experience to understand how to do things right or well. The
      intent of this book is to prevent you from having to make some of your own mistakes by
      educating you on how experts have figured out how to solve problems with MapReduce. So, in
      some ways, this book can be viewed as an intermediate or advanced MapReduce developer
      resource, but we think early beginners and gurus will find use out of it.
This book is also intended for anyone wanting to learn more about
    the MapReduce paradigm. The book goes deeply into the technical side of
    MapReduce with code examples and detailed explanations of the inner
    workings of a MapReduce system, which will help software engineers develop
    MapReduce analytics. However, quite a bit of time is spent discussing the
    motivation of some patterns and the common use cases for these patterns,
    which could be interesting to someone who just wants to know what a system
    like Hadoop can do.
To get the most out of this book, we suggest you have some knowledge
    of Hadoop, as all of the code examples are written for Hadoop and many of
    the patterns are discussed in a Hadoop context. A brief refresher will be
    given in the first chapter, along with some suggestions for additional
    reading material.

Pattern Format



The patterns in this book follow a single template format so they
    are easier to read in succession. Some patterns will omit some of the
    sections if they don’t make sense in the context of that pattern.
	Intent
	This section is a quick description of the problem the pattern
          is intended to solve.

	Motivation
	This section explains why you would want to solve this problem
          or where it would appear. Some use cases are typically discussed in
          brief.

	Applicability
	This section contains a set of criteria that must be true to
          be able to apply this pattern to a problem. Sometimes these are
          limitations in the design of the pattern and sometimes they help you
          make sure this pattern will work in your situation.

	Structure
	This section explains the layout of the MapReduce job itself.
          It’ll explain what the map phase does, what the reduce phase does,
          and also lets you know if it’ll be using any custom partitioners,
          combiners, or input formats. This is the meat of the pattern and
          explains how to solve the problem.

	Consequences
	This section is pretty short and just explains what the output
          of the pattern will be. This is the end goal of the output this
          pattern produces.

	Resemblances
	For readers that have some experience with SQL or Pig, this
          section will show analogies of how this problem would be solved with
          these other languages. You may even find yourself reading this
          section first as it gets straight to the point of what this pattern
          does.
Sometimes, SQL, Pig, or both are omitted if what we are doing
          with MapReduce is truly unique.

	Known Uses
	This section outlines some common use cases for this
          pattern.

	Performance Analysis
	This section explains the performance profile of the analytic
          produced by the pattern. Understanding this is important because
          every MapReduce analytic needs to be tweaked and configured properly
          to maximize performance. Without the knowledge of what resources it
          is using on your cluster, it would be difficult to do this.




The Examples in This Book



All of the examples in this book are written for Hadoop version 1.0.3. MapReduce is a paradigm that is seen
    in a number of open source and commercial systems these days, but we had
    to pick one to make our examples consistent and easy to follow, so we
    picked Hadoop. Hadoop was a logical choice since it a widely used system,
    but we hope that users of MongoDB’s MapReduce and other MapReduce
    implementations will be able to extrapolate the examples in this text to their
    particular system of choice.
Caution
In general, we try to use the newer mapreduce API for all of our examples, not the
      deprecated mapred API. Just be
      careful when mixing code from this book with other sources, as plenty of
      people still use mapred and their
      APIs are not compatible.

Our examples generally omit any sort of error handling, mostly to
    make the code more terse. In real-world big data systems, you can expect
    your data to be malformed and you’ll want to be proactive in handling
    those situations in your analytics.
We use the same data set throughout this text: a dump of
    StackOverflow’s databases. StackOverflow is a popular website in which software developers can go to
    ask and answer questions about any coding topic (including Hadoop). This
    data set was chosen because it is reasonable in size, yet not so big that
    you can’t use it on a single node. This data set also contains
    human-generated natural language text as well as “structured” elements
    like usernames and dates.
Throughout the examples in this book, we try to break out parsing
    logic of this data set into helper functions to clearly distinguish what
    code is specific to this data set and which code is general and part of
    the pattern. Since the XML is pretty simple, we usually avoid using a
    full-blown XML parser and just parse it with some string operations in our
    Java code.
The data set contains five tables, of which we only use three:
    comments, posts, and users. All of the data is in well-formed XML, with
    one record per line.
We use the following three StackOverflow tables in this book:
	comments
	
<row Id="2579740" PostId="2573882" Text="Are you getting any results? What
are you specifying as the command text?" CreationDate="2010-04-04T08:48:51.347"
UserId="95437" />
Comments are follow-up questions or suggestions users of the
          site can leave on posts (i.e., questions or answers).

	posts
	
<row Id="6939296" PostTypeId="2" ParentId="6939137"
CreationDate="2011-08-04T09:50:25.043" Score="4" ViewCount=""
Body="&lt;p&gt;You should have imported Poll with &lt;code&gt;
from polls.models import Poll&lt;/code&gt;&lt;/p&gt;&#xA;"
OwnerUserId="634150" LastActivityDate="2011-08-04T09:50:25.043"
CommentCount="1" />

<row Id="6939304" PostTypeId="1" AcceptedAnswerId="6939433"
CreationDate="2011-08-04T09:50:58.910" Score="1" ViewCount="26"
Body="&lt;p&gt;Is it possible to gzip a single asp.net 3.5 page? my
site is hosted on IIS7 and for technical reasons I cannot enable gzip
compression site wide. does IIS7 have an option to gzip individual pages or
will I have to override OnPreRender and write some code to compress the
output?&lt;/p&gt;&#xA;" OwnerUserId="743184"
LastActivityDate="2011-08-04T10:19:04.107" Title="gzip a single asp.net page"
Tags="&lt;asp.net&gt;&lt;iis7&gt;&lt;gzip&gt;"
AnswerCount="2" />
Posts contain the questions and answers on the site. A user
          will post a question, and then other users are free to post answers
          to that question. Questions and answers can be upvoted and downvoted
          depending on if you think the post is constructive or not. In order
          to help categorize the questions, the creator of the question can
          specify a number of “tags,” which say what the post is about. In the
          example above, we see that this post is about asp.net, iis, and
          gzip.
One thing to notice is that the body of the post is escaped
          HTML. This makes parsing it a bit more challenging, but it’s not too
          bad with all the tools available. Most of the questions and many of
          the answers can get to be pretty long!
Posts are a bit more challenging because they contain both
          answers and questions intermixed. Questions have a PostTypeId of 1, while answers have a
          PostTypeId of 2. Answers point to
          their related question via the ParentId, a field that questions do not
          have. Questions, however, have a Title and Tags.

	users
	
<row Id="352268" Reputation="3313" CreationDate="2010-05-27T18:34:45.817"
DisplayName="orangeoctopus" EmailHash="93fc5e3d9451bcd3fdb552423ceb52cd"
LastAccessDate="2011-09-01T13:55:02.013" Location="Maryland" Age="26"
Views="48" UpVotes="294" DownVotes="4" />
The users table contains all of the data about the account
          holders on StackOverflow. Most of this information shows up in the
          user’s profile.
Users of StackOverflow have a reputation score, which goes up
          as other users upvote questions or answers that user has submitted
          to the website.



To learn more about the data set, refer to the documentation
    included with the download in README.txt.
In the examples, we parse the data set with a helper function that
    we wrote. This function takes in a line of StackOverflow data and returns
    a HashMap. This HashMap stores the labels as the keys and the actual data as the value.
    
package mrdp.utils;

import java.util.HashMap;
import java.util.Map;

public class MRDPUtils {

   // This helper function parses the stackoverflow into a Map for us.
   public static Map<String, String> transformXmlToMap(String xml) {
      Map<String, String> map = new HashMap<String, String>();
      try {
         // exploit the fact that splitting on double quote
         //  tokenizes the data nicely for us
         String[] tokens = xml.trim().substring(5, xml.trim().length() - 3)
            .split("\"");

         for (int i = 0; i < tokens.length - 1; i += 2) {
            String key = tokens[i].trim();
            String val = tokens[i + 1];

            map.put(key.substring(0, key.length() - 1), val);
         }
      } catch (StringIndexOutOfBoundsException e) {
         System.err.println(xml);
      }

      return map;
   }
}

Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution usually includes the title,
      author, publisher, and ISBN. For example: “MapReduce Design Patterns by
      Donald Miner and Adam Shook (O’Reilly). Copyright 2013 Donald Miner and Adam Shook,
      978-1-449-32717-0.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online (www.safaribooksonline.com)
      is an on-demand digital library that delivers expert content in both
      book and video form from the world’s leading authors in technology and
      business.

Technology professionals, software developers, web designers, and
    business and creative professionals use Safari Books Online as their
    primary resource for research, problem solving, learning, and
    certification training.
Safari Books Online offers a range of product mixes
    and pricing programs for organizations,
    government
    agencies, and individuals.
    Subscribers have access to thousands of books, training videos, and
    prepublication manuscripts in one fully searchable database from
    publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
    Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
    Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
    Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
    McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
    information about Safari Books Online, please visit us online.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at http://oreil.ly/mapreduce-design-patterns.
To comment or ask technical questions about this book, send email to
    bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Design Patterns and MapReduce



MapReduce is a computing paradigm for processing data that resides on hundreds of
  computers, which has been popularized recently by Google, Hadoop, and many
  others. The paradigm is extraordinarily powerful, but it does not provide a
  general solution to what many are calling “big data,” so while it works
  particularly well on some problems, some are more challenging. This book
  will teach you what problems are amenable to the MapReduce paradigm, as well
  as how to use it effectively.
At first glance, many people do not realize that MapReduce is more of
  a framework than a tool. You have to fit your solution into the framework of
  map and reduce, which in some situations might be challenging. MapReduce is
  not a feature, but rather a constraint.
This makes problem solving easier and harder. It provides clear
  boundaries for what you can and cannot do, making the number of options you
  have to consider fewer than you may be used to. At the same time, figuring
  out how to solve a problem with constraints requires cleverness and a change
  in thinking.
Learning MapReduce is a lot like learning recursion for the first
  time: it is challenging to find the recursive solution to the problem, but
  when it comes to you, it is clear, concise, and elegant. In many situations
  you have to be conscious of system resources being used by the MapReduce
  job, especially inter-cluster network utilization. The tradeoff of being
  confined to the MapReduce framework is the ability to process your data with
  distributed computing, without having to deal with concurrency, robustness,
  scale, and other common challenges. But with a unique system and a unique
  way of problem solving, come unique design patterns.
What is a MapReduce design pattern? It is a template for solving a common and general data
  manipulation problem with MapReduce. A pattern is not specific to a domain
  such as text processing or graph analysis, but it is a general approach to
  solving a problem. Using design patterns is all about using tried and true
  design principles to build better software.
Designing good software is challenging for a number of reasons, and
  similar challenges face those who want to achieve good design in MapReduce.
  Just as good programmers can produce bad software due to poor design, good
  programmers can produce bad MapReduce algorithms. With MapReduce we’re not
  only battling with clean and maintainable code, but also with the
  performance of a job that will be distributed across hundreds of nodes to
  compute over terabytes and even petabytes of data. In addition, this job is
  potentially competing with hundreds of others on a shared cluster of
  machines. This makes choosing the right design to solve your problem with
  MapReduce extremely important and can yield performance gains of several
  orders of magnitude. Before we dive into some design patterns in the
  chapters following this one, we’ll talk a bit about how and why design
  patterns and MapReduce together make sense, and a bit of a history lesson of
  how we got here.
Design Patterns



Design patterns have been making developers’ lives easier for
    years. They are tools for solving problems in a reusable and general way
    so that the developer can spend less time figuring out how he’s going to
    overcome a hurdle and move onto the next one. They are also a way for
    veteran problem solvers to pass down their knowledge in a concise way to
    younger generations.
One of the major milestones in the field of design patterns in software engineering is the
      book Design Patterns: Elements of Reusable Object-Oriented Software, by
      Gamma et al. (Addison-Wesley Professional, 1995), also known as the “Gang of Four” book. None of the patterns in this very popular book were new and many had been in use
      for several years. The reason why it was and still is so influential is the authors took the
      time to document the most important design patterns across the field of object-oriented
      programming. Since the book was published in 1994, most individuals interested in good design
      heard about patterns from word of mouth or had to root around conferences, journals, and a
      barely existent World Wide Web.
Design patterns have stood the test of time and have shown the right
    level of abstraction: not too specific that there are too many of them to
    remember and too hard to tailor to a problem, yet not too general that
    tons of work has to be poured into a pattern to get things working. This
    level of abstraction also has the major benefit of providing developers
    with a common language in which to communicate verbally and through code.
    Simply saying “abstract factory” is easier than explaining what an
    abstract factory is over and over. Also, when looking at a stranger’s code
    that implements an abstract factory, you already have a general
    understanding of what the code is trying to accomplish.
MapReduce design patterns fill this same role in a smaller space of
    problems and solutions. They provide a general framework for solving your
    data computation issues, without being specific to the problem domain.
    Experienced MapReduce developers can pass on knowledge of how to solve a
    general problem to more novice MapReduce developers. This is extremely
    important because MapReduce is a new technology with a fast adoption rate
    and there are new developers joining the community every day. MapReduce
    design patterns also provide a common language for teams working together
    on MapReduce problems. Suggesting to someone that they should use a
    “reduce-side join” instead of a “map-side replicated join” is more concise
    than explaining the low-level mechanics of each.
The MapReduce world is in a state similar to the object-oriented
    world before 1994. Patterns today are scattered across blogs, websites
    such as StackOverflow, deep inside other books, and inside very advanced
    technology teams at organizations across the world. The intent of this
    book is not to provide some groundbreaking new ways to solve problems with
    MapReduce that nobody has seen before, but instead to collect patterns
    that have been developed by veterans in the field so that they can be
    shared with everyone else.
Caution
Even provided with some design patterns, genuine experience with
      the MapReduce paradigm is still necessary to understand when to apply
      them. When you are trying to solve a new problem with a pattern you saw
      in this book or elsewhere, be very careful that the pattern fits the
      problem by paying close attention to its “Applicability” section.

For the most part, the MapReduce design patterns in this book are
    intended to be platform independent. MapReduce, being a paradigm published
    by Google without any actual source code, has been reimplemented a number
    of times, both as a standalone system (e.g., Hadoop, Disco, Amazon Elastic
    MapReduce) and as a query language within a larger system (e.g., MongoDB,
    Greenplum DB, Aster Data). Even if design patterns are intended to be
    general, we write this book with a Hadoop perspective. Many of these
    patterns can be applied in other systems, such as MongoDB, because they
    conform to the same conceptual architecture. However, some technical
    details may be different from implementation to implementation. The Gang
    of Four’s book on design patterns was written with a C++ perspective, but
    developers have found the concepts conveyed in the book useful in modern
    languages such as Ruby and Python. The patterns in this book should be
    usable with systems other than Hadoop. You’ll just have to use the code examples as a guide
    to developing your own code.

MapReduce History



How did we get to the point where a MapReduce design patterns book is a
    good idea? At a certain point, the community’s momentum and widespread use
    of the paradigm reaches a critical mass where it is possible to write a
    comprehensive list of design patterns to be shared with developers
    everywhere. Several years ago, when Hadoop was still in its infancy, not
    enough had been done with the system to figure out what it is capable of.
    But the speed at which MapReduce has been adopted is remarkable. It went
    from an interesting paper from Google in 2004 to a widely adopted industry
    standard in distributed data processing in 2012.
The actual origins of MapReduce are arguable, but the paper that
    most cite as the one that started us down this journey is “MapReduce:
    Simplified Data Processing on Large Clusters”  by Jeffrey Dean and Sanjay Ghemawat in 2004. This paper described how Google
    split, processed, and aggregated their data set of mind-boggling
    size.
Shortly after the release of the paper, a free and open source
    software pioneer by the name of Doug Cutting started working on a MapReduce implementation
    to solve scalability in another project he was working on called Nutch, an
    effort to build an open source search engine. Over time and with some
    investment by Yahoo!, Hadoop split out as its own project and eventually became a
    top-level Apache Foundation project. Today, numerous independent people
    and organizations contribute to Hadoop. Every new release adds
    functionality and boosts performance.
Several other open source projects have been built with Hadoop at
    their core, and this list is continually growing. Some of the more popular
    ones include Pig, Hive, HBase, Mahout, and ZooKeeper. Doug Cutting and
    other Hadoop experts have mentioned several times that Hadoop is becoming
    the kernel of a distributed operating system in which distributed
    applications can be built. In this book, we’ll be explaining the examples
    with the least common denominator in the Hadoop ecosystem, Java MapReduce.
    In the resemblance sections of each pattern in some chapters, we’ll
    typically outline a parallel for Pig and SQL that could be used in
    Hive.

MapReduce and Hadoop Refresher



The point of this section is to provide a quick refresher on
    MapReduce in the Hadoop context, since the code examples in this book are
    written in Hadoop. Some beginners might want to refer to a more in-depth
    resource such as Tom White’s excellent Hadoop:
    The Definitive Guide or the Apache Hadoop website. These
    resources will help you get started in setting up a
    development or fully productionalized environment that will allow you to
    follow along the code examples in this book.
Hadoop MapReduce jobs are divided into a set of map tasks and
    reduce tasks that run in a distributed fashion on a
    cluster of computers. Each task works on the small subset of the data it
    has been assigned so that the load is spread across the cluster. The map
    tasks generally load, parse, transform, and filter data. Each reduce task
    is responsible for handling a subset of the map task output. Intermediate
    data is then copied from mapper tasks by the reducer tasks in order to
    group and aggregate the data. It is incredible what a wide range of
    problems can be solved with such a straightforward paradigm, from simple
    numerical aggregations to complex join operations and Cartesian
    products.
The input to a MapReduce job is a set of files in the data store
    that are spread out over the Hadoop Distributed File System
    (HDFS). In Hadoop, these files are split with an input format, which defines how to
    separate a file into input splits. An input split is a byte-oriented view of a chunk of the file
    to be loaded by a map task.
Each map task in Hadoop is broken into the following phases:
    record reader, mapper,
    combiner, and partitioner. The
    output of the map tasks, called the intermediate keys and values, are sent
    to the reducers. The reduce tasks are broken into the following phases:
    shuffle, sort,
    reducer, and output format. The
    nodes in which the map tasks run are optimally on the nodes in which the
    data rests. This way, the data typically does not have to move over the
    network and can be computed on the local machine.
	record reader
	The record reader translates an input split generated by input format
          into records. The purpose of the record reader is to parse the data
          into records, but not parse the record itself. It passes the data to
          the mapper in the form of a key/value pair. Usually the key in this
          context is positional information and the value is the chunk of data
          that composes a record. Customized record readers are outside the
          scope of this book. We generally assume you have an appropriate
          record reader for your data.

	map
	In the mapper, user-provided code is executed on each key/value pair
          from the record reader to produce zero or more new key/value pairs,
          called the intermediate pairs. The decision of what is the key and
          value here is not arbitrary and is very important to what the
          MapReduce job is accomplishing. The key is what the data will be
          grouped on and the value is the information pertinent to the
          analysis in the reducer. Plenty of detail will be provided in the
          design patterns in this book to explain what and why the particular
          key/value is chosen. One major differentiator between MapReduce
          design patterns is the semantics of this pair.

	combiner
	The combiner, an optional localized reducer, can group data in the
          map phase. It takes the intermediate keys from the mapper and
          applies a user-provided method to aggregate values in the small
          scope of that one mapper. For example, because the count of an
          aggregation is the sum of the counts of each part, you can produce
          an intermediate count and then sum those intermediate counts for the
          final result. In many situations, this significantly reduces the
          amount of data that has to move over the network. Sending (hello world, 3) requires fewer bytes than
          sending (hello world, 1) three
          times over the network. Combiners will be covered in more depth with
          the patterns that use them extensively. Many new Hadoop developers
          ignore combiners, but they often provide extreme performance gains
          with no downside. We will point out which patterns benefit from
          using a combiner, and which ones cannot use a combiner. A combiner
          is not guaranteed to execute, so it cannot be a part of the overall
          algorithm.

	partitioner
	The partitioner takes the intermediate key/value pairs from the mapper
          (or combiner if it is being used) and splits them up into shards,
          one shard per reducer. By default, the partitioner interrogates the
          object for its hash code, which is typically an md5sum. Then, the
          partitioner performs a modulus operation by the number of reducers: key.hashCode() %
          (number of reducers). This randomly distributes the
          keyspace evenly over the reducers, but still ensures that keys with
          the same value in different mappers end up at the same reducer. The
          default behavior of the partitioner can be customized, and will be
          in some more advanced patterns, such as sorting. However, changing
          the partitioner is rarely necessary. The partitioned data is written
          to the local file system for each map task and waits to be pulled by
          its respective reducer.

	shuffle and sort
	The reduce task starts with the shuffle and sort
          step. This step takes the output files written by all of the
          partitioners and downloads them to the local machine in which the
          reducer is running. These individual data pieces are then sorted by
          key into one larger data list. The purpose of this sort is to group
          equivalent keys together so that their values can be iterated over
          easily in the reduce task. This phase is not customizable and the
          framework handles everything automatically. The only control a
          developer has is how the keys are sorted and grouped by specifying a
          custom Comparator
          object.

	reduce
	The reducer takes the grouped data as input and runs a reduce function once per key grouping. The function is passed the key and
          an iterator over all of the values associated with that key. A wide
          range of processing can happen in this function, as we’ll see in
          many of our patterns. The data can be aggregated, filtered, and
          combined in a number of ways. Once the reduce
          function is done, it sends zero or more key/value pair to the final
          step, the output format. Like the map function,
          the reduce function will change from job to job
          since it is a core piece of logic in the solution.

	output format
	The output format translates the final key/value pair from the
          reduce function and writes it out to a file by a
          record writer. By default, it will separate the key and value with a
          tab and separate records with a newline character. This can
          typically be customized to provide richer output formats, but in the
          end, the data is written out to HDFS, regardless of format. Like the
          record reader, customizing your own output format is outside of the
          scope of this book, since it simply deals with I/O.




Hadoop Example: Word Count



Now that you’re refreshed on the steps of the whole MapReduce process, let’s
    dive into a quick and simple example. The “Word Count” program is the
    canonical example in MapReduce, and for good reason. It is a
    straightforward application of MapReduce and MapReduce can handle it
    extremely efficiently. Many people complain about the “Word Count” program
    being overused as an example, but hopefully the rest of the book makes up
    for that!
In this particular example, we’re going to be doing a word count
    over user-submitted comments on StackOverflow. The content of the Text field will be pulled out and preprocessed a
    bit, and then we’ll count up how many times we see each word. An example
    record from this data set is:
<row Id="8189677" PostId="6881722"
    Text="Have you looked at Hadoop?" CreationDate="2011-07-30T07:29:33.343"
    UserId="831878" />
This record is the 8,189,677th comment on Stack Overflow, and is associated with post
      number 6,881,722, and is by user number 831,878. The number of the PostId
      and the UserId are foreign keys to other portions of the data set. We’ll
      show how to join these datasets together in the chapter on join patterns.
The first chunk of code we’ll look at is the driver. The driver
    takes all of the components that we’ve built for our MapReduce job and
    pieces them together to be submitted to execution. This code is usually
    pretty generic and considered “boiler plate.” You’ll find that in all of
    our patterns the driver stays the same for the most part.
This code is derived from the “Word Count” example that ships with
    Hadoop Core:
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Map;
import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import org.apache.commons.lang.StringEscapeUtils;

public class CommentWordCount {


  public static class WordCountMapper
       extends Mapper<Object, Text, Text, IntWritable> {
           ...
   }

  public static class IntSumReducer
       extends Reducer<Text, IntWritable, Text, IntWritable> {
           ...
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs =
        new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: CommentWordCount <in> <out>");
      System.exit(2);
    }

    Job job = new Job(conf, "StackOverflow Comment Word Count");
    job.setJarByClass(CommentWordCount.class);
    job.setMapperClass(WordCountMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}
The purpose of the driver is to orchestrate the jobs. The first few
    lines of main are all about parsing
    command line arguments. Then we start setting up the job object by telling it what classes to use for computations and what
    input paths and output paths to use. That’s about it! It’s just important
    to make sure the class names match up with the classes you wrote and that
    the output key and value types match up with the output types of the
    mapper.
One way you’ll see this code change from pattern to pattern is the
    usage of job.setCombinerClass.
    In some cases, the combiner simply cannot be used due to the nature of the
    reducer. In other cases, the combiner class will be different from the
    reducer class. The combiner is very effective in the “Word Count” program
    and is quite simple to activate.
Next is the mapper code that parses and prepares the text. Once some
    of the punctuation and random text is cleaned up, the text string is split
    up into a list of words. Then the intermediate key produced is the word
    and the value produced is simply “1.” This means we’ve seen this word
    once. Even if we see the same word twice in one line, we’ll output the
    word and “1” twice and it’ll be taken care of in the end. Eventually, all
    of these ones will be summed together into the global count of that
    word.
public static class WordCountMapper
      extends Mapper<Object, Text, Text, IntWritable> {

  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();

  public void map(Object key, Text value, Context context)
        throws IOException, InterruptedException {

    // Parse the input string into a nice map
    Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());

    // Grab the "Text" field, since that is what we are counting over
    String txt = parsed.get("Text");

    // .get will return null if the key is not there
    if (txt == null) {
      // skip this record
        return;
    }

    // Unescape the HTML because the data is escaped.
    txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());

    // Remove some annoying punctuation
    txt = txt.replaceAll("'", ""); // remove single quotes (e.g., can't)
    txt = txt.replaceAll("[^a-zA-Z]", " "); // replace the rest with a space

    // Tokenize the string by splitting it up on whitespace into
    //  something we can iterate over,
    //  then send the tokens away
    StringTokenizer itr = new StringTokenizer(txt);
    while (itr.hasMoreTokens()) {
      word.set(itr.nextToken());
      context.write(word, one);
    }
  }
}
The first function, MRDPUtils.transformXmlToMap, is a
      helper function to parse a line of Stack Overflow data in a generic manner. You’ll see it
      used in a number of our examples. It basically takes a line of the StackOverflow XML (which
      has a very predictable format) and matches up the XML attributes with the values into a
        Map.
Next, turn your attention to the WordCountMapper class. This code is a bit more complicated than the driver (for good
    reason!). The mapper is where we’ll see most of the work done. The first
    major thing to notice is the type of the parent class:
Mapper<Object, Text, Text, IntWritable>
They map to the types of the input key, input value, output key, and
    output value, respectively. We don’t care about the key of the input in
    this case, so that’s why we use Object.
    The data coming in is Text (Hadoop’s
    special String type) because we are
    reading the data as a line-by-line text document. Our output key and value
    are Text and IntWritable because we will be using the word as the key and the count
    as the value.
Caution
The mapper input key and value data types are dictated by the
      job’s configured FileInputFormat. The
      default implementation is the TextInputFormat, which provides the number of
      bytes read so far in the file as the key in a LongWritable object and the line of text as
      the value in a Text object. These
      key/value data types are likely to change if you are using different
      input formats.

Up until we start using the StringTokenizer
    towards the bottom of the code, we’re just cleaning up the string. We
    unescape the data because the string was stored in an escaped manner so
    that it wouldn’t mess up XML parsing. Next, we remove any stray
    punctuation so that the literal string Hadoop! is considered the same word as Hadoop? and Hadoop. Finally, for each token (i.e., word) we
    emit the word with the number 1, which means we saw the word once. The
    framework then takes over to shuffle and sorts the key/value pairs to
    reduce tasks.
Finally comes the reducer code, which is relatively simple. The
    reduce function gets called once per key grouping, in this case each word.
    We’ll iterate through the values, which will be numbers, and take a
    running sum. The final value of this running sum will be the sum of the
    ones.
public static class IntSumReducer
      extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable result = new IntWritable();

  public void reduce(Text key, Iterable<IntWritable> values,
        Context context) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
      sum += val.get();
    }

    result.set(sum);
    context.write(key, result);
  }
}
As in the mapper, we specify the input and output types via the
    template parent class. Also like the mapper, the types correspond to the
    same things: input key, input value, output key, and output value. The
    input key and input value data types must match the output key/value types
    from the mapper. The output key and output value data types must match the
    types that the job’s configured FileOutputFormat is expecting. In this case, we are using the default TextOutputFormat,
    which can take any two Writable objects as output.
The reduce function has a
    different signature from map, though:
    it gives you an Iterator over values instead of just a
    single value. This is because you are now iterating over all values that
    have that key, instead of just one at a time. The key is very important in
    the reducer of pretty much every MapReduce job, unlike the input key in
    the map.
Anything we pass to context.write
    will get written out to a file. Each reducer will create one file, so if
    you want to coalesce them together you’ll have to write a post-processing
    step to concatenate them.
Now that we’ve gotten a straightforward example out of the way,
    let’s dive into some design patterns!

Pig and Hive



There is less need for MapReduce design patterns in a ecosystem with Hive and Pig. However,
    we would like to take this opportunity early in the book to explain why
    MapReduce design patterns are still important.
Pig and Hive are higher-level abstractions of MapReduce. They provide an
    interface that has nothing to do with “map” or “reduce,” but the systems
    interpret the higher-level language into a series of MapReduce jobs. Much
    like how a query planner in an RDBMS translates SQL into actual operations
    on data, Hive and Pig translate their respective languages into MapReduce
    operations.
As will be seen throughout this book in the resemblances sections,
    Pig and SQL (or HiveQL) can be significantly more terse than the raw
    Hadoop implementations in Java. For example, it will take several pages to
    explain total order sorting, while Pig is able to get the job done in a
    few lines.
So why should we use Java MapReduce in Hadoop at all when we have
    options like Pig and Hive? What was the point in the authors of this book
    spending time explaining how to implement something in hundreds of lines
    of code when the same can be accomplished in a couple lines? There are two
    core reasons.
First, there is conceptual value in understanding the lower-level
    workings of a system like MapReduce. The developer that understands how
    Pig actually performs a reduce-side join will make smarter decisions.
    Using Pig or Hive without understanding MapReduce can lead to some
    dangerous situations. Just because you’re benefiting from a higher-level
    interface doesn’t mean you can ignore the details. Large MapReduce
    clusters are heavy machinery and need to be respected as such.
Second, Pig and Hive aren’t there yet in terms of full functionality
    and maturity (as of 2012). It is obvious that they haven’t reached their
    full potential yet. Right now, they simply can’t tackle all of the
    problems in the ways that Java MapReduce can. This will surely change over
    time and with every major release, major features, and bux fixes are
    added. Speaking hypothetically, say that at Pig version 0.6, your
    organization could write 50% of their analytics in Pig. At version 0.9,
    now you are at 90%. With every release, more and more can be done at a
    higher-level of abstraction. The funny thing about trends things like this
    in software engineering is that the last 10% of problems that can’t be
    solved with a higher-level of abstraction are also likely to be the most
    critical and most challenging. This is when something like Java is going
    to be the best tool for the job. Some still use assembly language when
    they really have to!
When you can, write your MapReduce in Pig or Hive. Some of the major
    benefits of using these higher-level of abstractions include readability,
    maintainability, development time, and automatic optimization. Rarely is
    the often-cited performance hit due to indirection a serious
    consideration. These analytics are running in batch and are taking several
    minutes already, so what does a minute or two more really matter? In some
    cases, the query plan optimizer in Pig or Hive will be better at
    optimizing your code than you are! In a small fraction of situations, the
    extra few minutes added by Pig or Hive will matter, in which case you
    should use Java MapReduce.
Pig and Hive are likely to influence MapReduce design patterns more
    than anything else. New feature requests in Pig and Hive will likely
    translate down into something that could be a design pattern in MapReduce.
    Likewise, as more design patterns are developed for MapReduce, some of the
    more popular ones will become first-class operations at a higher level of
    abstraction.
Pig and Hive have patterns of their own and experts will start
    documenting more as they solve more problems. Hive has the benefit of
    building off of decades of SQL patterns, but not all patterns in SQL are
    smart in Hive and vice versa. Perhaps as these platforms gain more
    popularity, cookbook and design pattern books will be written for
    them.


Chapter 2. Summarization Patterns



Your data is large and vast, with more data coming into the system every
  day. This chapter focuses on design patterns that produce a top-level,
  summarized view of your data so you can glean insights not available from
  looking at a localized set of records alone. Summarization analytics are all
  about grouping similar data together and then performing an operation such
  as calculating a statistic, building an index, or just simply
  counting.
Calculating some sort of aggregate over groups in your data set is a
  great way to easily extract value right away. For example, you might want to
  calculate the total amount of money your stores have made by state or the
  average amount of time someone spends logged into your website by
  demographic. Typically, with a new data set, you’ll start with these types
  of analyses to help you gauge what is interesting or unique in your data and
  what needs a closer look.
The patterns in this chapter are numerical
  summarizations, inverted index, and
  counting with counters. They are more straightforward
  applications of MapReduce than some of the other patterns in this book. This
  is because grouping data together by a key is the core function of the
  MapReduce paradigm: all of the keys are grouped together and collected in
  the reducers. If you emit the fields in the mapper you want to group on as
  your key, the grouping is all handled by the MapReduce framework for
  free.
Numerical Summarizations



Pattern Description



The numerical summarizations pattern is a
      general pattern for calculating aggregate statistical
      values over your data is discussed in detail. Be careful of how
      deceptively simple this pattern is! It is extremely important to use the
      combiner properly and to understand the calculation you are
      performing.
Intent



Group records together by a key field and calculate a numerical
        aggregate per group to get a top-level view of the larger data
        set.
Consider θ to be a generic numerical
        summarization function we wish to execute over some list of values
        (v1, v2,
        v3, …, vn) to
        find a value λ, i.e. λ =
        θ(v1, v2,
        v3, …, vn).
        Examples of θ include a minimum, maximum,
        average, median, and standard deviation.

Motivation



Many data sets these days are too large for a human to get any
        real meaning out it by reading through it manually. For example, if
        your website logs each time a user logs onto the website, enters a
        query, or performs any other notable action, it would be extremely
        difficult to notice any real usage patterns just by reading through
        terabytes of log files with a text reader. If you group logins by the
        hour of the day and perform a count of the number of records in each
        group, you can plot these counts on a histogram and recognize times
        when your website is more active. Similarly, if you group
        advertisements by types, you can determine how affective your ads are
        for better targeting. Maybe you want to cycle ads based on how
        effective they are at the time of day. All of these types of questions
        can be answered through numerical summarizations to get a top-level
        view of your data.

Applicability



Numerical summarizations should be used when both of the
        following are true:
	You are dealing with numerical data or counting.

	The data can be grouped by specific fields.




Structure



Figure 2-1 shows the general structure
        of how a numerical summarization is executed in MapReduce. The
        breakdown of each MapReduce component is described in detail:
	The mapper outputs keys that consist of each field to group
            by, and values consisting of any pertinent numerical items.
            Imagine the mapper setting up a relational table, where the
            columns relate to the fields which the function
            θ will be executed over and each row contains
            an individual record output from the mapper. The output value of
            the mapper contains the values of each column and the output key
            determines the table as a whole, as each table is created by
            MapReduce’s grouping functionality.
Caution
Grouping typically involves sending a large subset of the
              input data down to finally be reduced. Each input record is most
              likely going to be output from the map phase. Make sure to
              reduce the amount of data being sent to the reducers by choosing
              only the fields that are necessary to the analytic and handling
              any bad input conditions properly.


	The combiner can greatly reduce the number of intermediate
            key/value pairs to be sent across the network to the reducers for
            some numerical summarization functions. If the function
            θ is an associative and commutative
            operation, it can be used for this purpose. That is, if you can
            arbitrarily change the order of the values and you can group the
            computation arbitrarily, you can use a combiner here. Discussions
            of such combiners are given in the examples following this
            section.

	Numerical summaries can benefit from a custom partitioner to
            better distribute key/value pairs across n
            number of reduce tasks. The need for this is rare, but can be done
            if job execution time is critical, the amount of data is huge, and
            there is severe data skew.
Caution
A custom partitioner is often overlooked, but taking the
              time to understand the distribution of output keys and
              partitioning based on this distribution will improve performance
              when grouping (and everything else, for that matter). Starting a
              hundred reduce tasks, only to have eighty of them complete in
              thirty seconds and the others in twenty-five minutes, is not
              efficient.


	The reducer receives a set of numerical values
            (v1, v2,
            v3, …,
            vn) associated with a group-by
            key records to perform the function λ =
            θ(v1, v2,
            v3, …,
            vn). The value of
            λ is output with the given input key.



[image: The structure of the numerical summarizations pattern]

Figure 2-1. The structure of the numerical summarizations pattern



Consequences



The output of the job will be a set of part files containing a
        single record per reducer input group. Each record will consist of the
        key and all aggregate values.

Known uses



	Word count
	The “Hello World” of MapReduce. The application outputs each word of a document as the
              key and “1” as the value, thus grouping by words. The reduce
              phase then adds up the integers and outputs each unique word
              with the sum. An example of a word count application can be seen
              in Chapter 1.

	Record count
	A very common analytic to get a heartbeat of your data flow rate on a
              particular interval (weekly, daily, hourly, etc.).

	Min/Max/Count
	An analytic to determine the minimum, maximum, and count
              of a particular event, such as the first time a user posted, the
              last time a user posted, and the number of times they posted in
              between that time period. You don’t have to collect all three of
              these aggregates at the same time, or any of the other use cases
              listed here if you are only interested in one of them.

	Average/Median/Standard deviation
	Similar to Min/Max/Count, but not as straightforward of an
              implementation because these operations are not associative. A
              combiner can be used for all three, but requires a more complex
              approach than just reusing the reducer implementation.




Resemblances



	SQL
	The Numerical Aggregation pattern is analogous to
              using aggregates after a GROUP BY in
              SQL:

SELECT MIN(numericalcol1), MAX(numericalcol1),
        COUNT(*) FROM table GROUP BY groupcol2;

	Pig
	The GROUP … BY
              expression, followed by a FOREACH …
              GENERATE:

b = GROUP a BY groupcol2;
c = FOREACH b GENERATE group, MIN(a.numericalcol1),
        MAX(a.numericalcol1), COUNT_STAR(a);




Performance analysis



Aggregations performed by jobs using this pattern typically
        perform well when the combiner is properly used. These types of
        operations are what MapReduce was built for. Like most of the patterns
        in this book, developers need to be concerned about the appropriate
        number of reducers and take into account any data skew that may be
        present in the reduce groups. That is, if there are going to be many
        more intermediate key/value pairs with a specific key than other keys,
        one reducer is going to have a lot more work to do than others.


Numerical Summarization Examples



Minimum, maximum, and count example



Calculating the minimum, maximum, and count of a given field are all
        excellent applications of the numerical summarization pattern. After a
        grouping operation, the reducer simply iterates through all the values
        associated with the group and finds the min and max, as well as counts
        the number of members in the key grouping. Due to the associative and
        commutative properties, a combiner can be used to vastly cut down on
        the number of intermediate key/value pairs that need to be shuffled to
        the reducers. If implemented correctly, the code used for your reducer
        can be identical to that of a combiner.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, determine the first and last time a user
          commented and the total number of comments from that user.
MinMaxCountTuple code



The MinMaxCountTuple is a
          Writable object that stores three values. This class is used as the
          output value from the mapper. While these values can be crammed into
          a Text object with some
          delimiter, it is typically a better practice to create a custom
          Writable. Not only is it cleaner,
          but you won’t have to worry about any string parsing when it comes
          time to grab these values from the reduce phase. These custom
          writable objects are used throughout other examples in this pattern.
          Below is the implementation of the MinMaxCountTuple writable object. Other
          writables used in this chapter are very similar to this and are
          omitted for brevity.

public class MinMaxCountTuple implements Writable {
    private Date min = new Date();
    private Date max = new Date();
    private long count = 0;

    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public Date getMin() {
        return min;
    }

    public void setMin(Date min) {
        this.min = min;
    }

    public Date getMax() {
        return max;
    }

    public void setMax(Date max) {
        this.max = max;
    }

    public long getCount() {
        return count;
    }

    public void setCount(long count) {
        this.count = count;
    }

    public void readFields(DataInput in) throws IOException {
        // Read the data out in the order it is written,
        // creating new Date objects from the UNIX timestamp
        min = new Date(in.readLong());
        max = new Date(in.readLong());
        count = in.readLong();
    }

    public void write(DataOutput out) throws IOException {
        // Write the data out in the order it is read,
        // using the UNIX timestamp to represent the Date
        out.writeLong(min.getTime());
        out.writeLong(max.getTime());
        out.writeLong(count);
    }

    public String toString() {
        return frmt.format(min) + "\t" + frmt.format(max) + "\t" + count;
    }
}

Mapper code



The mapper will preprocess our input values by extracting the
          XML attributes from each input record: the creation data and the
          user identifier. The input key is ignored. The creation date is
          parsed into a Java Date object
          for ease of comparison in the combiner and reducer.
          The output key is the user ID and the value is three columns of our
          future output: the minimum date, the maximum date, and the number of
          comments this user has created. These three fields are stored in a
          custom Writable object of type
          MinMaxCountTuple, which stores
          the first two columns as Date
          objects and the final column as a long. These names are accurate for the
          reducer but don’t really reflect how the fields are used in the
          mapper, but we wanted to use the same data type for both the mapper
          and the reducer. In the mapper, we’ll set both min and max to the
          comment creation date. The date is output twice so that we can take
          advantage of the combiner optimization that is described later. The
          third column will be a count of 1, to indicate that we know this
          user posted one comment. Eventually, all of these counts are going
          to be summed together and the minimum and maximum date will be
          determined in the reducer.

  public static class MinMaxCountMapper extends
   Mapper<Object, Text, Text, MinMaxCountTuple> {

    // Our output key and value Writables
    private Text outUserId = new Text();
    private MinMaxCountTuple outTuple = new MinMaxCountTuple();

    // This object will format the creation date string into a Date object
    private final static SimpleDateFormat frmt =
                        new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // Grab the "CreationDate" field since it is what we are finding
        // the min and max value of
        String strDate = parsed.get("CreationDate");

        // Grab the “UserID” since it is what we are grouping by
        String userId = parsed.get("UserId");
        // Parse the string into a Date object
        Date creationDate = frmt.parse(strDate);

        // Set the minimum and maximum date values to the creationDate
        outTuple.setMin(creationDate);
        outTuple.setMax(creationDate);

        // Set the comment count to 1
        outTuple.setCount(1);

        // Set our user ID as the output key
        outUserId.set(userId);

        // Write out the hour and the average comment length
        context.write(outUserId, outTuple);
    }
}

Reducer code



The reducer iterates through the values to find the minimum
          and maximum dates, and sums the counts. We start by initializing the
          output result for each input group. For each value in this group, if
          the output result’s minimum is not yet set, or the value’s minimum
          is less than result’s current minimum, we set the result’s minimum
          to the input value. The same logic applies to the maximum, except
          using a greater than operator. Each value’s count is added to a
          running sum, similar to the word count example in the introductory
          chapter. After determining the minimum and maximum dates from all
          input values, the final count is set to our output value. The input
          key is then written to the file system along with the output
          value.

    public static class MinMaxCountReducer extends
    Reducer<Text, MinMaxCountTuple, Text, MinMaxCountTuple> {

    // Our output value Writable
    private MinMaxCountTuple result = new MinMaxCountTuple();

    public void reduce(Text key, Iterable<MinMaxCountTuple> values,
            Context context) throws IOException, InterruptedException {

        // Initialize our result
        result.setMin(null);
        result.setMax(null);
        result.setCount(0);
        int sum = 0;

        // Iterate through all input values for this key
        for (MinMaxCountTuple val : values) {
            // If the value's min is less than the result's min
            // Set the result's min to value's
            if (result.getMin() == null ||
                    val.getMin().compareTo(result.getMin()) < 0) {
                result.setMin(val.getMin());
            }

            // If the value's max is more than the result's max
            // Set the result's max to value's
            if (result.getMax() == null  ||
                    val.getMax().compareTo(result.getMax()) > 0) {
                result.setMax(val.getMax());
            }

            // Add to our sum the count for value
            sum += val.getCount();
        }

        // Set our count to the number of input values
        result.setCount(sum);
        context.write(key, result);
    }
}

Combiner optimization



The reducer implementation just shown can be used as the job’s
          combiner. As we are only interested in the count, minimum date, and
          maximum date, multiple comments from the same user do not have to be
          sent to the reducer. The minimum and maximum comment dates can be
          calculated for each local map task without having an effect on the
          final minimum and maximum. The counting operation is an associative
          and commutative operation and won’t be harmed by using a
          combiner.

Data flow diagram



Figure 2-2 shows the flow between the mapper,
          combiner, and reducer to help describe their interactions. Numbers
          are used rather than dates for simplicity, but the concept is the
          same. A combiner possibly executes over each of the highlighted
          output groups from a mapper, determining the minimum and maximum
          values in the first two columns and adding up the number of rows in
          the “table” (group). The combiner then outputs the minimum and
          maximum along with the new count. If a combiner does not execute
          over any rows, they will still be accounted for in the reduce
          phase.
[image: The Min/Max/Count MapReduce data flow through the combiner]

Figure 2-2. The Min/Max/Count MapReduce data flow through the
            combiner



Average example



To calculate an average, we need two values for each group: the sum of the values
        that we want to average and the number of values that went into the
        sum. These two values can be calculated on the reduce side very
        trivially, by iterating through each value in the set and adding to a
        running sum while keeping a count. After the iteration, simply divide
        the sum by the count and output the average. However, if we do it this
        way we cannot use this same reducer implementation as a combiner,
        because calculating an average is not an associative operation.
        Instead, our mapper will output two “columns” of data, count and
        average. For each input record, this will simply be “1” and the value
        of the field. The reducer will multiply the “count” field by the
        “average” field to add to a running sum, and add the “count” field to
        a running count. It will then divide the running sum with the running
        count and output the count with the calculated average. With this more
        round-about algorithm, the reducer code can be used as a combiner as
        associativity is preserved.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, determine the average
        comment length per hour of day.
Mapper code



The mapper will process each input record to calculate the
          average comment length based on the time of day. The output key is
          the hour of day, which is parsed from the creation date XML
          attribute. The output value is two columns, the comment count and
          the average length of the comments for that hour. Because the mapper
          operates on one record at a time, the count is simply 1 and the
          average length is equivalent to the comment length. These two values
          are output in a custom Writable,
          a CountAverageTuple. This type
          contains two float values, a count, and an average.

public static class AverageMapper extends
        Mapper<Object, Text, IntWritable, CountAverageTuple> {

    private IntWritable outHour = new IntWritable();
    private CountAverageTuple outCountAverage = new CountAverageTuple();
    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // Grab the "CreationDate" field,
        // since it is what we are grouping by
        String strDate = parsed.get("CreationDate");

        // Grab the comment to find the length
        String text = parsed.get("Text");
        
        // get the hour this comment was posted in
        Date creationDate = frmt.parse(strDate);
        outHour.set(creationDate.getHours());

        // get the comment length
        outCountAverage.setCount(1);
        outCountAverage.setAverage(text.length());

        // write out the hour with the comment length
        context.write(outHour, outCountAverage);
    }
}

Reducer code



The reducer code iterates through all given values for the
          hour and keeps two local variables: a running count and running sum.
          For each value, the count is multiplied by the average and added to
          the running sum. The count is simply added to the running count.
          After iteration, the input key is written to the file system with
          the count and average, calculated by dividing the running sum by the
          running count.

public static class AverageReducer extends
        Reducer<IntWritable, CountAverageTuple,
            IntWritable, CountAverageTuple> {
        
    private CountAverageTuple result = new CountAverageTuple();

    public void reduce(IntWritable key, Iterable<CountAverageTuple> values,
            Context context) throws IOException, InterruptedException {

        float sum = 0;
        float count = 0;

        // Iterate through all input values for this key
        for (CountAverageTuple val : values) {
            sum += val.getCount() * val.getAverage();
            count += val.getCount();
        }

        result.setCount(count);
        result.setAverage(sum / count);

        context.write(key, result);
    }
}

Combiner optimization



When determining an average, the reducer code can be used as a
          combiner when outputting the count along with the average. An
          average is not an associative operation, but if the count is output
          from the reducer with the count, these two values can be multiplied
          to preserve the sum for the final reduce phase. Without outputting
          the count, a combiner cannot be used because taking an average of
          averages is not equivalent to the true average. Typically, writing
          the count along with the average to the file system is not an issue.
          However, if the count is impeding the analysis at hand, it can be
          omitted by making a combiner implementation nearly identical to the
          reducer implementation just shown. The only differentiation between
          the two classes is that the reducer does not write the count with
          the average.

Data flow diagram



Figure 2-3 shows the flow between the mapper,
          combiner, and reducer to help describe their interactions. A
          combiner possibly executes over each of the highlighted output
          groups from a mapper, determining the average and outputting it with
          the count, which is the number of rows corresponding to the group.
          If a combiner does not execute over any rows, they will still be
          accounted for in the reduce phase.
[image: Data flow for the average example]

Figure 2-3. Data flow for the average example




Median and standard deviation



Finding the median and standard deviation is a little more complex than the previous examples.
        Because these operations are not associative, they cannot benefit from
        a combiner as easily as their counterparts. A median is the numerical
        value separating the lower and higher halves of a data set. This
        requires the data set to be complete, which in turn requires it to be
        shuffled. The data must also be sorted, which can present a barrier
        because MapReduce does not sort values.
A standard deviation shows how much variation exists in the data
        from the average, thus requiring the average to be discovered prior to
        reduction. The easiest way to perform these operations involves
        copying the list of values into a temporary list in order to find the
        median or iterating over the set again to determine the standard
        deviation. With large data sets, this implementation may result in
        Java heap space issues, because each value is copied into memory for
        every input group. We’ll address these issues in the next
        example.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, determine the median
        and standard deviation of comment lengths per hour of day.
Mapper code



The mapper will process each input record to calculate the
          median comment length within each hour of the day. The output key is
          the hour of day, which is parsed from the CreationDate XML attribute. The output value is a single value: the
          comment length.

public static class MedianStdDevMapper extends
        Mapper<Object, Text, IntWritable, IntWritable> {

    private IntWritable outHour = new IntWritable();
    private IntWritable outCommentLength = new IntWritable();

    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // Grab the "CreationDate" field,
        // since it is what we are grouping by
        String strDate = parsed.get("CreationDate");

        // Grab the comment to find the length
        String text = parsed.get("Text");
        
        // get the hour this comment was posted in
        Date creationDate = frmt.parse(strDate);
        outHour.set(creationDate.getHours());

        // set the comment length
        outCommentLength.set(text.length());

        // write out the user ID with min max dates and count
        context.write(outHour, outCommentLength);
    }
}

Reducer code



The reducer code iterates through the given set of values and
          adds each value to an in-memory list. The iteration also calculates
          a running sum and count. After iteration, the comment lengths are
          sorted to find the median value. If the list has an odd number of
          entries, the median value is set to the middle value. If the number
          is even, the middle two values are averaged. Next, the standard
          deviation is calculated by iterating through our sorted list after
          finding the mean from our running sum and count. A running sum of
          deviations is calculated by squaring the difference between each
          comment length and the mean. The standard deviation is then
          calculated from this sum. Finally, the median and standard deviation
          are output along with the input key.

public static class MedianStdDevReducer extends
        Reducer<IntWritable, IntWritable,
            IntWritable, MedianStdDevTuple> {

    private MedianStdDevTuple result = new MedianStdDevTuple();
    private ArrayList<Float> commentLengths = new ArrayList<Float>();

    public void reduce(IntWritable key, Iterable<IntWritable> values,
        Context context) throws IOException, InterruptedException {

        float sum = 0;
        float count = 0;
        commentLengths.clear();
        result.setStdDev(0);

        // Iterate through all input values for this key
        for (IntWritable val : values) {
            commentLengths.add((float) val.get());
            sum += val.get();
            ++count;
        }

        // sort commentLengths to calculate median
        Collections.sort(commentLengths);

        // if commentLengths is an even value, average middle two elements
        if (count % 2 == 0) {
            result.setMedian((commentLengths.get((int) count / 2 - 1) +
                    commentLengths.get((int) count / 2)) / 2.0f);
        } else {
            // else, set median to middle value
            result.setMedian(commentLengths.get((int) count / 2));
        }

        // calculate standard deviation
        float mean = sum / count;
        float sumOfSquares = 0.0f;
        for (Float f : commentLengths) {
            sumOfSquares += (f - mean) * (f - mean);
        }

        result.setStdDev((float) Math.sqrt(sumOfSquares / (count - 1)));
        context.write(key, result);
    }
}

Combiner optimization



A combiner cannot be used in this implementation. The reducer
          requires all the values associated with a key in order to find the
          median and standard deviation. Because a combiner runs only over a
          map’s locally output intermediate key/value pairs, being able to
          calculate the full median and standard deviation is impossible.
          However, the next example describes aa more complex implementation
          that uses a custom combiner.


Memory-conscious median and standard deviation



The following implementation is differentiated from the previous
        median and standard deviation example by reducing the memory
        footprint. Inserting every value into a list will result in many
        duplicate elements. One way to get around this duplication is to keep
        a count of elements instead. For instance, instead of keeping a list
        of < 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 5 >, a sorted map of values
        to counts is kept: (1→4, 2→2, 3→1,
        4→1, 5→3). The core concept is the same: all the
        values are iterated through in the reduce phase and stored in an
        in-memory data structure. The data structure and how it is searched
        are all that has changed. A map reduces the memory footprint
        drastically. Instead of having a list whose scaling is
        O(n) where n = number of
        comments, the number of key/value pairs in our map is
        O(max(m)) where m = maximum
        comment length. As an added bonus, a combiner can be used to help
        aggregate counts of comment lengths and output the map in a Writable object to be used later by the
        reducer.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, determine the median
        and standard deviation of comment lengths per hour of day.
Mapper code



The mapper processes each input record to calculate the median
          comment length based on the hour of the day during which the comment
          was posted. The output key is the hour of day, which is parsed from
          the creation date XML attribute. The output value is a SortedMapWritable object that contains one element: the comment length and a
          count of “1”. This map is used more heavily in the combiner and
          reducer.

public static class MedianStdDevMapper extends
        Mapper<lObject, Text, IntWritable, SortedMapWritable> {

    private IntWritable commentLength = new IntWritable();
    private static final LongWritable ONE = new LongWritable(1);
    private IntWritable outHour = new IntWritable();

    private final static SimpleDateFormat frmt = new SimpleDateFormat(
        "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // Grab the "CreationDate" field,
        // since it is what we are grouping by
        String strDate = parsed.get("CreationDate");

        // Grab the comment to find the length
        String text = parsed.get("Text");
        
        // Get the hour this comment was posted in
        Date creationDate = frmt.parse(strDate);
        outHour.set(creationDate.getHours());

        commentLength.set(text.length());
        SortedMapWritable outCommentLength = new SortedMapWritable();
        outCommentLength.put(commentLength, ONE);

        // Write out the user ID with min max dates and count
        context.write(outHour, outCommentLength);
   }
}

Reducer code



The reducer code iterates through the given set of SortedMapWritable to aggregate all the
          maps together into a single TreeMap, which is a implementation of SortedMap. The
          key is the comment length and the value is the total count
          associated with the comment length.
After iteration, the median is calculated. The code finds the
          list index where the median would be by dividing the total number of
          comments by two. The entry set of the TreeMap is then iterated to find the keys
          that satisfy the condition previousCommentCount ≤ medianIndex <
          commentCount, adding the value of the tree map to comments at each step of the iteration.
          Once this condition is met, if there is an even number of comments
          and medianIndex is equivalent to
          previousComment, the median is
          reset to the average of the previous length and current length.
          Otherwise, the median is simply the current comment length.
Next, the standard deviation is calculated by iterating
          through the TreeMap again and
          finding the sum of squares, making sure to multiply by the count
          associated with the comment length. The standard deviation is then
          calculated from this sum. The median and standard deviation are
          output with the input key, the hour during which these comments were
          posted.

public static class MedianStdDevReducer extends
        Reducer<IntWritable, SortedMapWritable,
            IntWritable, MedianStdDevTuple> {

    private MedianStdDevTuple result = new MedianStdDevTuple();
    private TreeMap<Integer, Long> commentLengthCounts =
            new TreeMap<Integer, Long>();

    public void reduce(IntWritable key, Iterable<SortedMapWritable> values,
            Context context) throws IOException, InterruptedException {

        float sum = 0;
        long totalComments = 0;
        commentLengthCounts.clear();
        result.setMedian(0);
        result.setStdDev(0);

        for (SortedMapWritable v : values) {
            for (Entry<WritableComparable, Writable> entry : v.entrySet()) {
                int length = ((IntWritable) entry.getKey()).get();
                long count = ((LongWritable) entry.getValue()).get();

                totalComments += count;
                sum += length * count;

                Long storedCount = commentLengthCounts.get(length);
                if (storedCount == null) {
                    commentLengthCounts.put(length, count);
                } else {
                    commentLengthCounts.put(length, storedCount + count);
                }
            }
        }

        long medianIndex = totalComments / 2L;
        long previousComments = 0;
        long comments = 0;
        int prevKey = 0;
        for (Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
            comments = previousComments + entry.getValue();

            if (previousComments ≤ medianIndex && medianIndex < comments) {
                if (totalComments % 2 == 0 && previousComments == medianIndex) {
                    result.setMedian((float) (entry.getKey() + prevKey) / 2.0f);
                } else {
                    result.setMedian(entry.getKey());
                }                
                break;
            }

            previousComments = comments;
            prevKey = entry.getKey();
        }

        // calculate standard deviation
        float mean = sum / totalComments;

        float sumOfSquares = 0.0f;
        for (Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
            sumOfSquares += (entry.getKey() - mean) * (entry.getKey() - mean) *
                    entry.getValue();
        }

        result.setStdDev((float) Math.sqrt(sumOfSquares / (totalComments - 1)));
        context.write(key, result);
    }
}

Combiner optimization



Unlike the previous examples, the combiner for this algorithm
          is different from the reducer. While the reducer actually calculates
          the median and standard deviation, the combiner aggregates the
          SortedMapWritable entries for
          each local map’s intermediate key/value pairs. The code to parse
          through the entries and aggregate them in a local map is identical
          to the reducer code in the previous section. Here, a HashMap is used instead of a TreeMap, because sorting is unnecessary
          and a HashMap is typically
          faster. While the reducer uses this map to calculate the median and
          standard deviation, the combiner uses a SortedMapWritable in order to serialize it
          for the reduce phase.

public static class MedianStdDevCombiner extends
       Reducer<IntWritable, SortedMapWritable, IntWritable, SortedMapWritable> {

    protected void reduce(IntWritable key,
            Iterable<SortedMapWritable> values, Context context)
            throws IOException, InterruptedException {

        SortedMapWritable outValue = new SortedMapWritable();

        for (SortedMapWritable v : values) {
            for (Entry<WritableComparable, Writable> entry : v.entrySet()) {
                LongWritable count = (LongWritable) outValue.get(entry.getKey());

                if (count != null) {
                    count.set(count.get()
                            + ((LongWritable) entry.getValue()).get());
                } else {
                    outValue.put(entry.getKey(), new LongWritable(
                            ((LongWritable) entry.getValue()).get()));
                }
            }
        }

        context.write(key, outValue);
    }
}

Data flow diagram



Figure 2-4 shows the flow between the mapper,
          combiner, and reducer to help describe their interactions. A
          combiner possibly executes over each of the highlighted output
          groups from a mapper. For each group, it builds the internal map of
          comment length to the count of comment lengths. The combiner then
          outputs the input key and the SortedMapWritable of length/count pairs,
          which it serializes from the map.
[image: Data flow for the standard deviation example]

Figure 2-4. Data flow for the standard deviation example





Inverted Index Summarizations



Pattern Description



The inverted index pattern is commonly used as an example for MapReduce analytics. We’re
      going to discuss the general case where we want to build a map of some
      term to a list of identifiers.
Intent



Generate an index from a data set to allow for faster searches
        or data enrichment capabilities.

Motivation



It is often convenient to index large data sets on keywords, so
        that searches can trace terms back to records that contain specific
        values. While building an inverted index does require extra processing
        up front, taking the time to do so can greatly reduce the amount of
        time it takes to find something.
Search engines build indexes to improve search performance.
        Imagine entering a keyword and letting the engine crawl the Internet
        and build a list of pages to return to you. Such a query would take an
        extremely long amount of time to complete. By building an inverted
        index, the search engine knows all the web pages related to a keyword
        ahead of time and these results are simply displayed to the user.
        These indexes are often ingested into a database for fast query
        responses. Building an inverted index is a fairly straightforward
        application of MapReduce because the framework handles a majority of
        the work.

Applicability



Inverted indexes should be used when quick search query
        responses are required. The results of such a query can be
        preprocessed and ingested into a database.

Structure



Figure 2-5 shows the general
        structure of how an inverted index is executed in MapReduce. The
        breakdown of each MapReduce component is described in detail
        below:
	The mapper outputs the desired fields for the index as the
            key and the unique identifier as the value.

	The combiner can be omitted if you are just using the
            identity reducer, because under those circumstances a combiner would
            just create unnecessary processing. Some implementations
            concatenate the values associated with a group before outputting
            them to the file system. In this case, a combiner can be used. It
            won’t have as beneficial an impact on byte count as the combiners
            in other patterns, but there will be an improvement.

	The partitioner is responsible for determining where values
            with the same key will eventually be copied by a reducer for final
            output. It can be customized for more efficient load balancing if
            the intermediate keys are not evenly distributed.

	The reducer will receive a set of unique record identifiers
            to map back to the input key. The identifiers can either be
            concatenated by some unique delimiter, leading to the output of
            one key/value pair per group, or each input value can be written
            with the input key, known as the identity reducer.



[image: The structure of the inverted index pattern]

Figure 2-5. The structure of the inverted index pattern



Consequences



The final output of is a set of part files that contain a
        mapping of field value to a set of unique IDs of records containing
        the associated field value.

Performance analysis



The performance of building an inverted index depends mostly on
        the computational cost of parsing the content in the mapper, the
        cardinality of the index keys, and the number of content identifiers
        per key.
Parsing text or other types of content in the mapper can
        sometimes be the most computationally intense operation in a MapReduce
        job. This is especially true for semi-structured data, such as XML or
        JSON, since these typically require parsing arbitrary quantities of
        information into usable objects. It’s important to parse the incoming
        records as efficiently as possible to improve your overall job
        performance.
If the number of unique keys and the number of identifiers is
        large, more data will be sent to the reducers. If more data is going
        to the reducers, you should increase the number of reducers to
        increase parallelism during the reduce phase.
Inverted indexes are particularly susceptible to hot spots in
        the index keys, since the index keys are rarely evenly distributed.
        For example, the reducer that handles the word “the” in a text search
        application is going to be particularly busy since “the” is seen in so
        much text. This can slow down your entire job since a few reducers
        will take much longer than the others. To avoid this problem, you
        might need to implement a custom partitioner, or omit common index
        keys that add no value to your end goal.


Inverted Index Example



Wikipedia reference inverted index



Building an inverted index is a straightforward MapReduce application and is
        often the second example newcomers to MapReduce experience after the
        word count application. Much like the word count application, the bulk
        of the operation is a group and is therefore handled entirely by the
        MapReduce framework.
Suppose we want to add StackOverflow links to each Wikipedia
        page that is referenced in a StackOverflow comment. The following
        example analyzes each comment in StackOverflow to find hyperlinks to
        Wikipedia. If there is one, the link is output with the comment ID to
        generate the inverted index. When it comes to the reduce phase, all
        the comment IDs that reference the same hyperlink will be grouped
        together. These groups are then concatenated together into a white
        space delimited String and
        directly output to the file system. From here, this data file can be
        used to update the Wikipedia page with all the comments that reference
        it.
The following descriptions of each code section explain the
        solution to the problem.
Problem:  Given a set of user’s comments, build an inverted index of Wikipedia URLs to
          a set of answer post IDs .
Mapper code



The mapper parses the posts from StackOverflow to output the
          row IDs of all answer posts that contain a particular Wikipedia URL.
          First, the XML attributes for the text, post type, and row ID are
          extracted. If the post type is not an answer, identified by a post
          type of “2”, we parse the text to find a Wikipedia URL. This is done
          using the getWikipediaURL method,
          which takes in a String of
          unescaped HTML and returns a Wikipedia URL if found, or null otherwise. The method is omitted for
          brevity. If a URL is found, the URL is output as the key and the row
          ID is output as the value.

public static class WikipediaExtractor extends
        Mapper<Object, Text, Text, Text> {

    private Text link = new Text();
    private Text outkey = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // Grab the necessary XML attributes
        String txt = parsed.get("Body");
        String posttype = parsed.get("PostTypeId");
        String row_id = parsed.get("Id");

        // if the body is null, or the post is a question (1), skip
        if (txt == null || (posttype != null && posttype.equals("1"))) {
            return;
        }

        // Unescape the HTML because the SO data is escaped.
        txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());
        
        link.set(getWikipediaURL(txt));
        outkey.set(row_id);
        context.write(link, outkey);
    }
}

Reducer code



The reducer iterates through the set of input values and
          appends each row ID to a String,
          delimited by a space character. The input key is output along with
          this concatenation.

public static class Concatenator extends Reducer<Text,Text,Text,Text> {
    private Text result = new Text();

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {

        StringBuilder sb = new StringBuilder();
        boolean first = true;
        for (Text id : values) {
            if (first) {
                first = false;
            } else {
                sb.append(" ");
            }
            sb.append(id.toString());
        }

        result.set(sb.toString());
        context.write(key, result);
    }
}

Combiner optimization



The combiner can be used to do some concatenation prior to the
          reduce phase. Because all row IDs are simply concatenated together,
          the number of bytes that need to be copied by the reducer is more
          than in a numerical summarization pattern. The same code for the
          reducer class is used as the combiner.




Counting with Counters



Pattern Description



This pattern utilizes the MapReduce framework's counters utility to calculate a
      global sum entirely on the map side without producing any output.
Intent



An efficient means to retrieve count summarizations of large
        data sets.

Motivation



A count or summation can tell you a lot about particular fields
        of data, or your data as a whole. Hourly ingest record counts can be post processed to generate helpful
        histograms. This can be executed in a simple “word count” manner, in
        that for each input record, you output the same key, say the hour of
        data being processed, and a count of 1. The single reduce will sum all
        the input values and output the final record count with the hour. This
        works very well, but it can be done more efficiently using counters.
        Instead of writing any key value pairs at all, simply use the
        framework’s counting mechanism to keep track of the number of input
        records. This requires no reduce phase and no summation! The framework
        handles monitoring the names of the counters and their associated
        values, aggregating them across all tasks, as well as taking into
        account any failed task attempts.
Say you want to find the number of times your employees log into
        your heavily used public website every day. Assuming you have a few
        dozen employees, you can apply filter conditions while parsing through
        your web logs. Rather than outputting the employee’s user name with a
        count of ‘1’, you can simply create a counter with the employee’s ID
        and increment it by 1. At the end of the job, simply grab the counters
        from the framework and save them wherever your heart desires—the log,
        local file system, HDFS, etc.
Some counters come built into the framework, such as number of
        input/output records and bytes. Hadoop allows for programmers to
        create their own custom counters for whatever their needs may be. This
        pattern describes how to utilize these custom counters to gather count
        or summation metrics from your data sets. The major benefit of using
        counters is all the counting can be done during the map phase.
Caution
The caveat to using counters is they are all stored in-memory
          by the JobTracker. The counters are serialized by each map task and
          sent with status updates. In order to play nice and not bog down the
          JobTracker, the number of counters should be in the tens -- a
          hundred at most... and thats a big “at most”! Counters are
          definitely not meant to aggregate lots of statistics about your
          MapReduce job! Newer versions of Hadoop actually limit the number of
          counters a job can create to prevent any permanent damage to the
          JobTracker. The last thing you want is to have your analytic take
          down the JobTracker because you created a few hundred custom
          counters!


Applicability



Counting with counters should be used when:
	You have a desire to gather counts or summations over large
            data sets.

	The number of counters you are going to create is small—in
            the double digits.




Structure



Figure 2-6 shows the general
        structure of how this pattern works in MapReduce.
	The mapper processes each input record at a time to
            increment counters based on certain criteria. The counter is
            either incremented by one if counting a single instance, or
            incremented by some number if executing a summation. These
            counters are then aggregated by the TaskTrackers running the tasks
            and incrementally reported to the JobTracker for overall
            aggregation upon job success. The counters from any failed tasks
            are disregarded by the JobTracker in the final summation.

	As this job is map only, there is no combiner, partitioner,
            or reducer required.




Consequences



The final output is a set of counters grabbed from the job
        framework. There is no actual output from the analytic itself.
        However, the job requires an output directory to execute. This
        directory will exist and contain a number of empty part files
        equivalent to the number of map tasks. This directory should be
        deleted on job completion.
[image: The structure of the counting with counters pattern]

Figure 2-6. The structure of the counting with counters pattern


Known uses



	Count number of records
	Simply counting the number of records over a given time
              period is very common. It's typically a counter provided by the
              framework, among other common things.

	Count a small number of unique instances
	Counters can also be created on the fly by using a string
              variable. You might now know what the value is, but the counters
              don’t have to be created ahead of time. Simply creating a
              counter using the value of a field and incrementing it is enough
              to solve this use case. Just be sure the number of counters you
              are creating is a small number!

	Summations
	Counters can be used to sum fields of data together.
              Rather than performing the sum on the reduce side, simply create
              a new counter and use it to sum the field values.




Performance analysis



Using counters is very fast, as data is simply read in through
        the mapper and no output is written. Performance depends largely on
        the number of map tasks being executed and how much time it takes to
        process each record.


Counting with Counters Example



Number of users per state



For this example, we use a map-only job to count the number of users in
        each state. The Location attribute
        is a user-entered value and doesn’t have any concrete inputs. Because
        of this, there are a lot of null or empty fields, as well as made up
        locations. We need to account for this when processing each record to
        ensure we don’t create a large number of counters. We verify each
        location contains a state abbreviation code prior to creating a
        counter. This will create at most 52 counters - 50 for the states and
        two for NullOrEmpty and Unknown. This is a manageable number of
        custom counters for the JobTracker, but your job should not have many
        more than this!
The following descriptions of each code section explain the
        solution to the problem.
Problem: Count the number of users from each state using Hadoop
        custom counters.
Mapper code



The mapper reads each user record and gets his or her
          location. The location is split on white space and searched for
          something that resembles a state. We keep a set of all the state
          abbreviations in-memory to prevent creating an excessive amount of
          counters, as the location is simply a string set by the user and
          nothing structured. If a state is recognized, the counter for the
          state is incremented by one and the loop is broken. Counters are
          identified by both a group and a name. Here, the group is “State”
          (identified by a public String
          variable) and the counter name is the state abbreviation
          code.

public static class CountNumUsersByStateMapper extends
        Mapper<Object, Text, NullWritable, NullWritable> {

    public static final String STATE_COUNTER_GROUP = "State";
    public static final String UNKNOWN_COUNTER = "Unknown";
    public static final String NULL_OR_EMPTY_COUNTER = "Null or Empty";

    private String[] statesArray = new String[] { "AL", "AK", "AZ", "AR",
            "CA", "CO", "CT", "DE", "FL", "GA", "HI", "ID", "IL", "IN",
            "IA", "KS", "KY", "LA", "ME", "MD", "MA", "MI", "MN", "MS",
            "MO", "MT", "NE", "NV", "NH", "NJ", "NM", "NY", "NC", "ND",
            "OH", "OK", "OR", "PA", "RI", "SC", "SF", "TN", "TX", "UT",
            "VT", "VA", "WA", "WV", "WI", "WY" };

    private HashSet<String> states = new HashSet<String>(
            Arrays.asList(statesArray));

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // Get the value for the Location attribute
        String location = parsed.get("Location");

        // Look for a state abbreviation code if the
        // location is not null or empty
        if (location != null && !location.isEmpty()) {

            // Make location uppercase and split on white space
            String[] tokens = location.toUpperCase().split("\\s");

            // For each token
            boolean unknown = true;
            for (String state : tokens) {

                // Check if it is a state
                if (states.contains(state)) {
                    // If so, increment the state's counter by 1
                    // and flag it as not unknown
                    context.getCounter(STATE_COUNTER_GROUP, state)
                            .increment(1);
                    unknown = false;
                    break;
                }
            }

            // If the state is unknown, increment the UNKNOWN_COUNTER counter
            if (unknown) {
                context.getCounter(STATE_COUNTER_GROUP, UNKNOWN_COUNTER)
                        .increment(1);
            }
        } else {
            // If it is empty or null, increment the
            // NULL_OR_EMPTY_COUNTER counter by 1
            context.getCounter(STATE_COUNTER_GROUP,
                    NULL_OR_EMPTY_COUNTER).increment(1);
        }
    }
}

Driver code



The driver code is mostly boilerplate, with the exception of
          grabbing the counters after the job completes. If the job completed
          succesfully, we get the “States” counter group and write out the
          counter name and value to stdout.
          These counter values are also output when the job completes, so
          writing to stdout may be
          redundant if you are obtaining these values by scraping log files.
          The output directory is then deleted, success or otherwise, as this
          job doesn’t create any tangible output.

...

int code = job.waitForCompletion(true) ? 0 : 1;

if (code == 0) {
    for (Counter counter : job.getCounters().getGroup(
            CountNumUsersByStateMapper.STATE_COUNTER_GROUP)) {
        System.out.println(counter.getDisplayName() + "\t"
                + counter.getValue());
    }
}

// Clean up empty output directory
FileSystem.get(conf).delete(outputDir, true);

System.exit(code);





Chapter 3. Filtering Patterns



The patterns in this chapter all have one thing in common: they don’t change the
  actual records. These patterns all find a subset of data, whether it be
  small, like a top-ten listing, or large, like the results of a
  deduplication. This differentiates filtering patterns from those in the
  previous chapter, which was all about summarizing and grouping data by
  similar fields to get a top-level view of the data. Filtering is more about
  understanding a smaller piece of your data, such as all records generated
  from a particular user, or the top ten most used verbs in a corpus of text.
  In short, filtering allows you to apply a microscope to your data. It can
  also be considered a form of search. If you are interested in finding all
  records that involve a particular piece of distinguishing information, you
  can filter out records that do not match the search criteria.
Sampling, one common application of filtering, is about pulling out a sample of the
  data, such as the highest values for a particular field or a few random
  records. Sampling can be used to get a smaller, yet representative, data set
  in which more analysis can be done without having to deal with the much
  larger data set. Many machine learning algorithms simply do not work
  efficiently over a large data set, so tools that build models need to be
  applied to a smaller subset.
A subsample can also be useful for development purposes. Simply
  grabbing the first thousand records typically is not the best sample since
  the records are bound to be similar and do not give a good overall picture
  of the entire data set. A well-distributed sample will hopefully provide a
  better view of the data set and will allow your application and analytic
  development to be done against more realistic data, even if it is much
  smaller.
Four patterns are presented in this chapter:
  filtering, Bloom filtering, top
  ten, and distinct. There are numerous ways
  to find a slice of your data. Each pattern has a slight nuance to
  distinguish it from the others, even if they all pretty much do the same
  thing.
We will see a few clever uses of MapReduce in this chapter. Filtering,
  Bloom filtering, and simple random sampling allow us to use
  map-only jobs, which means we don’t need a
  reducer.
Filtering



Pattern Description



As the most basic pattern, filtering serves as an
      abstract pattern for some of the other patterns. Filtering simply
      evaluates each record separately and decides, based on some condition,
      whether it should stay or go.
Intent



Filter out records that are not of interest and keep ones that
        are.
Consider an evaluation function f that
        takes a record and returns a Boolean value of
        true or false. If this
        function returns true, keep the record;
        otherwise, toss it out.

Motivation



Your data set is large and you want to take a subset of this
        data to focus in on it and perhaps do follow-on analysis. The subset
        might be a significant portion of the data set or just a needle in the
        haystack. Either way, you need to use the parallelism of MapReduce to
        wade through all of your data and find the keepers.
For example, you might be interested only in records that have
        something to do with Hadoop: Hadoop is either mentioned in the raw
        text or the event is tagged by a 
        “Hadoop” tag. Filtering can be used to keep records that meet
        the “something to do with Hadoop” criteria and keep them, while
        tossing out the rest of the records.
Big data and processing systems like Hadoop, in general, are
        about bringing all of your organization’s data to one location.
        Filtering is the way to pull subsets back out and deliver them to
        analysis shops that are interested in just that subset. Filtering is
        also used to zoom in on a particular set of records that match your
        criteria that you are more curious about. The exploration of a subset
        of data may lead to more valuable and complex analytics that are based
        on the behavior that was observed in the small subset.

Applicability



Filtering is very widely applicable. The only requirement is
        that the data can be parsed into “records” that can be categorized
        through some well-specified criterion determining whether they are to
        be kept.

Structure



The structure of the filter pattern is perhaps the simplest of
        all the patterns we’ll see in this book. Figure 3-1 shows this pattern.

map(key, record):
   if we want to keep record then
      emit key,value
[image: The structure of the filter pattern]

Figure 3-1. The structure of the filter pattern

Filtering is unique in not requiring the “reduce” part of
        MapReduce. This is because it doesn’t produce an aggregation. Each
        record is looked at individually and the evaluation of whether or not
        to keep that record does not depend on anything else in the data
        set.
The mapper applies the evaluation function to each record it
        receives. Typically, the mapper outputs the same key/value type as the
        types of the input, since the record is left unchanged. If the
        evaluation function returns true, the mapper simply output the key and
        value verbatim.

Consequences



The output of the job will be a subset of the records that pass
        the selection criteria. If the format was kept the same, any job that
        ran over the larger data set should be able to run over this filtered
        data set, as well.

Known uses



	Closer view of data
	Prepare a particular subset of data, where the records have
              something in common or something of interest, for more
              examination. For example, a local office in Maryland may only
              care about records originating in Maryland from your
              international dataset.

	Tracking a thread of events
	Extract a thread of consecutive events as a case study from
              a larger data set. For example, you may be interested in how a
              particular user interacts with your website by analyzing Apache
              web server logs. The events for a particular user are
              interspersed with all the other events, so it’s hard to figure
              out what happened. By filtering for that user’s IP address, you
              are able to get a good view of that particular user’s
              activities.

	Distributed grep
	Grep, a very powerful tool that uses regular expressions for finding
              lines of text of interest, is easily parallelized by applying a
              regular expression match against each line of input and only
              outputting lines that match.

	Data cleansing
	Data sometimes is dirty, whether it be malformed, incomplete, or in
              the wrong format. The data could have missing fields, a date
              could be not formatted as a date, or random bytes of binary data
              could be present. Filtering can be used to validate that each
              record is well-formed and remove any junk that does
              occur.

	Simple random sampling
	If you want a simple random sampling of your data set, you can
              use filtering where the evaluation function randomly returns
              true or false. A simple random sample is a sample of the larger
              data set in which each item has the same probability of being
              selected. You can tweak the number of records that make it
              through by having the evaluation function return true a smaller
              percentage of the time. For example, if your data set contains
              one trillion records and you want a sample size of about one
              million, have the evaluation function return true once in a
              million (because there are a million millions in a
              trillion).

	Removing low scoring data
	If you can score your data with some sort of scalar value,
              you can filter out records that don’t meet a certain threshold.
              If you know ahead of time that certain types of records are not
              useful for analysis, you can assign those records a small score
              and they will get filtered out. This effectively has the same
              purpose as the top ten pattern discussed later, except that you
              do not know how many records you will get.




Resemblances



	SQL
	The filter pattern is synonymous to using the WHERE clause
              in a SELECT * statement. The
              records stay the same, but some are simply filtered out. For
              example:
SELECT * FROM table WHERE value < 3;

	Pig
	The FILTER
              keyword.
b = FILTER a BY value < 3;




Performance analysis



This pattern is basically as efficient as MapReduce can get
        because the job is map-only. There are a couple of reasons why
        map-only jobs are efficient.
	Since no reducers are needed, data never has to be
            transmitted between the map and reduce phase. Most of the map
            tasks pull data off of their locally attached disks and then write
            back out to that node.

	Since there are no reducers, both the sort phase and the
            reduce phase are cut out. This usually doesn’t take very long, but
            every little bit helps.



One thing to be aware of is the size and number of the output
        files. Since this job is running with mappers only, you will get one
        output file per mapper with the prefix part-m- (note the m instead of the r). You may find that these files will be
        tiny if you filter out a lot of data, which can cause problems with
        scalability limitations of the NameNode further down the road.
If you are worried about the number of small files and do not
        mind if your job runs just a little bit longer, you can use an
        identity reducer to collect the results without doing anything with
        them. This will have the mapper send the reducer all of the data, but
        the reducer does nothing other than just output them to one file per
        reducer. The appropriate number of reducers depends on the amount of
        data that will be written to the file system and just how many small
        files you want to deal with.


Filtering Examples



Distributed grep



Grep is a popular text filtering utility that dates back to Unix
        and is available on most Unix-like systems. It scans through a file
        line-by-line and only outputs lines that match a specific pattern.
        We’d like to parallelize the regular expression search across a larger
        body of text. In this example, we’ll show how to apply a regular
        expression to every line in MapReduce.
Mapper code



The mapper is pretty straightforward since we use the Java
          built-in libraries for regular expressions. If the text line matches
          the pattern, we’ll output the line. Otherwise we do nothing and the
          line is effectively ignored. We use the setup function to retrieve the map regex from the job
          configuration.

public static class GrepMapper
        extends Mapper<Object, Text, NullWritable, Text> {

    private String mapRegex = null;

    public void setup(Context context) throws IOException,
        InterruptedException {
       
        mapRegex = context.getConfiguration().get("mapregex");
    } 
    
    public void map(Object key, Text value, Context context)
        throws IOException, InterruptedException {

        if (value.toString().matches(mapRegex)) {
           context.write(NullWritable.get(), value);
        }
    }
}
As this is a map-only job, there is no combiner or reducer.
          All output records will be written directly to the file
          system.


Simple Random Sampling



In simple random sampling (SRS), we want to grab a subset of our larger data set in which
        each record has an equal probability of being selected. Typically this
        is useful for sizing down a data set to be able to do representative
        analysis on a more manageable set of data.
Implementing SRS as a filter operation is not a direct
        application of the filtering pattern, but the structure is the same.
        Instead of some filter criteria function that bears some relationship
        to the content of the record, a random number generator will produce a
        value, and if the value is below a threshold, keep the record.
        Otherwise, toss it out.
Mapper Code



In the mapper code, the setup function is used to pull the filter_percentage configuration value so
          we can use it in the map
          function.
In the map function, a
          simple check against the next random number is done. The random
          number will be anywhere between 0 and 1, so by comparing against the
          specified threshold, we can keep or throw out the record.

public static class SRSMapper
        extends Mapper<Object, Text, NullWritable, Text> {

    private Random rands = new Random();
    private Double percentage;

    protected void setup(Context context) throws IOException,
          InterruptedException {
        // Retrieve the percentage that is passed in via the configuration
        //    like this: conf.set("filter_percentage", .5);
        //         for .5%
        String strPercentage = context.getConfiguration()
                .get("filter_percentage");
        percentage = Double.parseDouble(strPercentage) / 100.0;
    }

    public void map(Object key, Text value, Context context)
          throws IOException, InterruptedException {

        if (rands.nextDouble() < percentage) {
            context.write(NullWritable.get(), value);
        }
    }
}
As this is a map-only job, there is no combiner or reducer.
          All output records will be written directly to the file system. When
          using a small percentage, you will find that the files will be tiny
          and plentiful. If this is the case, set the number of reducers to 1
          without specifying a reducer class, which will tell the MapReduce
          framework to use a single identity reducer that simply collects the
          output into a single file. The other option would be to collect the
          files as a post-processing step using hadoop fs
          -cat.




Bloom Filtering



Pattern Description



Bloom filtering does the same thing as the previous pattern, but it has a unique
      evaluation function applied to each record.
Intent



Filter such that we keep records that are member of some
        predefined set of values. It is not a problem if the output is a bit
        inaccurate, because we plan to do further checking. The predetermined
        list of values will be called the set of hot
        values.
For each record, extract a feature of that record. If that
        feature is a member of a set of values represented by a Bloom filter,
        keep it; otherwise toss it out (or the reverse).

Motivation



Bloom filtering is similar to generic filtering in that it is
        looking at each record and deciding whether to keep or remove it.
        However, there are two major differences that set it apart from
        generic filtering. First, we want to filter the record based on some
        sort of set membership operation against the hot values. For example:
        keep or throw away this record if the value in the user field is a
        member of a predetermined list of users. Second, the set membership is
        going to be evaluated with a Bloom filter, described in the Appendix A. In one sense, Bloom filtering is a join
        operation in which we don’t care about the data values of the right
        side of the join.
This pattern is slightly related to the replicated join pattern
        covered later in Chapter 5. It is comparing one list to another and
        doing some sort of join logic, using only map tasks. Instead of
        replicating the hot list everywhere with the distributed cache, as in
        the replicated join, we will send a Bloom filter data object to the
        distributed cache. This allows a filter like operation with a Bloom
        filter instead of the list itself, which allows you to perform this
        operation across a much larger data set because the Bloom filter is
        much more compact. Instead of being constrained by the size of the
        list in memory, you are mostly confined by the feature limitations of
        Bloom filters.
Using a Bloom filter to calculate set membership in this
        situation has the consequence that sometimes you will get a false
        positive. That is, sometimes a value will return as a member of the
        set when it should not have. If the Bloom filter says a value is not
        in the Bloom filter, we can guarantee that it is indeed not in the set
        of values. For more information on why this happens, refer to Appendix A. However, in some situations, this is not
        that big of a concern. In an example we’ll show code for at the end of
        this chapter, we’ll gather a rather large set of “interesting” words,
        in which when we see a record that contains one of those words, we’ll
        keep the record, otherwise we’ll toss it out. We want to do this
        because we want to filter down our data set significantly by removing
        uninteresting content. If we are using a Bloom filter to represent the
        list of watch words, sometimes a word will come back as a member of
        that list, even if it should not have. In this case, if we
        accidentally keep some records, we still achieved our goal of
        filtering out the majority of the garbage and keeping interesting
        stuff.

Applicability



The following criteria are necessary for Bloom filtering to be
        relevant:
	Data can be separated into records, as in filtering.

	A feature can be extracted from each record that could be in
            a set of hot values.

	There is a predetermined set of items for the hot
            values.

	Some false positives are acceptable (i.e., some records will
            get through when they should not have).




Structure



Figure 3-2 shows the structure
        of Bloom filtering and how it is split into two major components.
        First, the Bloom filter needs to be trained over the list of values.
        The resulting data object is stored in HDFS. Next is the filtering MapReduce job, which has the
        same structure as the previous filtering pattern in this chapter,
        except it will make use of the distributed cache as well. There are no
        reducers since the records are analyzed one-by-one and there is no
        aggregation done.
[image: The structure of the Bloom filtering pattern]

Figure 3-2. The structure of the Bloom filtering pattern


The first step of this job is to train the Bloom filter from the
        list of values. This is done by loading the data from where it is
        stored and adding each item to the Bloom filter. The trained Bloom
        filter is stored in HDFS at a known location.
The second step of this pattern is to do the actual filtering.
        When the map task starts, it loads the Bloom filter from the
        distributed cache. Then, in the map function, it iterates through the
        records and checks the Bloom filter for set membership in the hot
        values list. Each record is either forwarded or not based on the Bloom
        filter membership test.
The Bloom filter needs to be re-trained only when the data
        changes. Therefore, updating the Bloom filter in a lazy fashion (i.e.,
        only updating it when it needs to be updated) is typically
        appropriate.

Consequences



The output of the job will be a subset of the records in that
        passed the Bloom filter membership test. You should expect that some
        records in this set may not actually be in the set of hot values,
        because Bloom filters have a chance of false positives.

Known uses



	Removing most of the nonwatched values
	The most straightforward use case is cleaning out values
              that aren’t hot. For example, you may be interested only in data
              that contains a word in a list of 10,000 words that deal with
              Hadoop, such as “map,” “partitioning,” etc. You take this list,
              train a Bloom filter on it, then check text as it is coming in
              to see whether you get a Bloom filter hit on any of the words.
              If you do, forward the record, and if not don’t do anything. The
              fact that you’ll get some false positives isn’t that big of a
              deal, since you still got rid of most of the data.

	Prefiltering a data set for an expensive set membership
            check
	Sometimes, checking whether some value is a member of a
              set is going to be expensive. For example, you might have to hit
              a webservice or an external database to check whether that value
              is in the set. The situations in which this may be the case are
              far and few between, but they do crop up in larger
              organizations. Instead of dumping this list periodically to your
              cluster, you can instead have the originating system produce a
              Bloom filter and ship that instead. Once you have the Bloom
              filter in place and filter out most of the data, you can do a
              second pass on the records that make it through to double check
              against the authoritative source. If the Bloom filter is able to
              remove over 95% of the data, you’ll see the external resource
              hit only 5% as much as before! With this approach, you’ll
              eventually have 100% accuracy but didn’t have to hammer the
              external resource with tons of queries.



Later, in Chapter 5, we’ll see a pattern called “Reduce Side
        Join with Bloom Filtering” where a Bloom filter is used to reduce the
        amount of data going to reducers. By determining whether a record will
        be relevant ahead of time, we can reduce network usage
        significantly.

Resemblances



Bloom filters are relatively new in the field of data analysis,
        likely because the properties of big data particularly benefit from
        such a thing in a way previous methodologies have not. In both SQL and
        Pig, Bloom filters can be implemented as user-defined functions, but
        as of the writing of this book, there is no native functionality out
        of the box.

Performance analysis



The performance for this pattern is going to be very similar to
        simple filtering from a performance perspective. Loading up the Bloom
        filter from the distributed cache is not that expensive since the file
        is relatively small. Checking a value against the Bloom filter is also
        a relatively cheap operation, as each test is executed in constant
        time.


Bloom Filtering Examples



Hot list



One of the most basic applications of a Bloom filter is what it was
        designed for: representing a data set. For this example, a Bloom
        filter is trained with a hot list of keywords. We use this Bloom
        filter to test whether each word in a comment is in the hot list. If
        the test returns true, the entire record is output. Otherwise, it is
        ignored. Here, we are not concerned with the inevitable false
        positives that are output due to the Bloom filter. The next example
        details how one way to verify a positive Bloom filter test using
        HBase.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, filter out a majority
        of the comments that do not contain a particular keyword.
Bloom filter training



To demonstrate how to use Hadoop Bloom filters, the following
          code segment generates a Bloom filter off a predetermined set of
          words. This is a generic application that takes in an input gzip
          file or directory of gzip files, the number of elements in the file,
          a desired false positive rate, and finally the output file
          name.

public class BloomFilterDriver {
    public static void main(String[] args) throws Exception {
        // Parse command line arguments
        Path inputFile = new Path(args[0]);
        int numMembers = Integer.parseInt(args[1]);
        float falsePosRate = Float.parseFloat(args[2]);
        Path bfFile = new Path(args[3]);

        // Calculate our vector size and optimal K value based on approximations
        int vectorSize = getOptimalBloomFilterSize(numMembers, falsePosRate);
        int nbHash = getOptimalK(numMembers, vectorSize);

        // Create new Bloom filter
        BloomFilter filter = new BloomFilter(vectorSize, nbHash,
                Hash.MURMUR_HASH);

        System.out.println("Training Bloom filter of size " + vectorSize
                + " with " + nbHash + " hash functions, " + numMembers
                + " approximate number of records, and " + falsePosRate
                + " false positive rate");

        // Open file for read
        String line = null;
        int numElements = 0;
        FileSystem fs = FileSystem.get(new Configuration());

        for (FileStatus status : fs.listStatus(inputFile)) {
            BufferedReader rdr = new BufferedReader(new InputStreamReader(
                    new GZIPInputStream(fs.open(status.getPath()))));

            System.out.println("Reading " + status.getPath());
            while ((line = rdr.readLine()) != null) {
                filter.add(new Key(line.getBytes()));
                ++numElements;
            }

            rdr.close();
        }

        System.out.println("Trained Bloom filter with " + numElements
            + " entries.");
            
        System.out.println("Serializing Bloom filter to HDFS at " + bfFile);

        FSDataOutputStream strm = fs.create(bfFile);
        filter.write(strm);
        strm.flush();
        strm.close();
        
        System.exit(0);
    }
}
A new BloomFilter object is
          constructed using the optimal vector size and optimal
          number of hash functions (k) based on the input
          parameters. Each file returned from listStatus is read line-by-line, and each
          line is used to train the Bloom filter. After all the input files
          are ready, the Bloom filter is serialized to the filename provided
          at the command line. Because a BloomFilter is also a Writable object, serializing it is fairly
          trivial. Simply use the FileSystem object to create a new FSDataOutputStream, pass the stream to the
          filter’s write method, then just
          flush and close the stream!
This Bloom filter can later be deserialized from HDFS just as
          easily as it was written. Just open up the file using the
          FileSystem object and pass it to BloomFilter.readFields. Deserialization of
          this Bloom filter is demonstrated in the setup method of the following Mapper
          code.

Mapper code



The setup method is called
          once for each mapper by the Hadoop framework prior to the many calls
          to map. Here, the Bloom filter is
          deserialized from the DistributedCache before being used in the
          map method. The DistributedCache
          is a Hadoop utility that ensures that a file in HDFS is present on
          the local file system of each task that requires that file. The
          Bloom filter was previously trained with a hot list of words.
In the map method, the comment is extracted from each input
          record. The comment is tokenized into words, and each word is
          cleaned of any extraneous characters. The clean words are testing
          against the Bloom filter. If the word is a member, the entire record
          is output to the file system.
Caution
A Bloom filter is trained on the bytes of the word. The
            important thing of this is that the words “the” and “The” may look
            the same, but the bytes are different. Unless case sensitivity
            matters in you algorithm, it is best to trim the string and make
            the string all lower case when training and testing the
            filter.


public static class BloomFilteringMapper extends
    Mapper<Object, Text, Text, NullWritable> {

  private BloomFilter filter = new BloomFilter();

  protected void setup(Context context) throws IOException,
      InterruptedException {
    // Get file from the DistributedCache
    URI[] files = DistributedCache.getCacheFiles(context
        .getConfiguration());
    System.out.println("Reading Bloom filter from: "
        + files[0].getPath());

    // Open local file for read.
    DataInputStream strm = new DataInputStream(new FileInputStream(
        files[0].getPath()));

    // Read into our Bloom filter.
    filter.readFields(strm);
    strm.close();
  }

  public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {

    Map<String, String> parsed = transformXmlToMap(value.toString());

    // Get the value for the comment
    String comment = parsed.get("Text");
    StringTokenizer tokenizer = new StringTokenizer(comment);
    // For each word in the comment
    while (tokenizer.hasMoreTokens()) {
      // If the word is in the filter, output the record and break
      String word = tokenizer.nextToken();
      if (filter.membershipTest(new Key(word.getBytes()))) {
        context.write(value, NullWritable.get());
        break;
      }
    }
  }
}
Because this is a map-only job, there is no combiner or
          reducer. All output records will be written directly to the file
          system.


HBase Query using a Bloom filter



Bloom filters can assist expensive operations by eliminating
        unnecessary ones. For the following example, a Bloom filter was
        previously trained with IDs of all users that have a reputation of at
        least 1,500. We use this Bloom filter to do an initial test before
        querying HBase to retrieve more information about each user. By
        eliminating unnecessary queries, we can speed up processing
        time.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of users’ comments, filter out comments
        from users with a reputation of less than 1,500.
Mapper Code



The setup method is called
          once for each mapper by the Hadoop framework prior to the many calls
          to the map method. Just like the
          previous example, the Bloom filter is deserialized from the DistributedCache before being used in the
          map method. This Bloom filter was
          trained with all user IDs that have a reputation of at least 1,500.
          This is a little over 1.5% of all users, so we will be filtering out
          a lot of unnecessary queries. In addition to the Bloom filter, a
          connection to the HBase table is obtained in setup.
In the map method, the user’s ID is extracted from each record
          and checked against the Bloom filter. If the test is positive, HBase
          is queried with the user ID to get the rest of the data associated
          with that user. Here, we nullify the possibilities of outputting
          false positives by verifying that the user’s actual reputation is at
          least 1,500. If it is, the record is output to the file
          system.

public static class BloomFilteringMapper extends
    Mapper<Object, Text, Text, NullWritable> {

  private BloomFilter filter = new BloomFilter();
  private HTable table = null;

  protected void setup(Context context) throws IOException,
      InterruptedException {

    // Get file from the Distributed Cache
    URI[] files = DistributedCache.getCacheFiles(context
          .getConfiguration());
    System.out.println("Reading Bloom filter from: "
        + files[0].getPath());

    // Open local file for read.
    DataInputStream strm = new DataInputStream(new FileInputStream(
        files[0].getPath()));

    // Read into our Bloom filter.
    filter.readFields(strm);
    strm.close();

    // Get HBase table of user info
    Configuration hconf = HBaseConfiguration.create();
    table = new HTable(hconf, "user_table");
  }

  public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {

    Map<String, String> parsed = transformXmlToMap(value.toString());

    // Get the value for the comment
    String userid = parsed.get("UserId");

    // If this user ID is in the set
      if (filter.membershipTest(new Key(userid.getBytes()))) {
        // Get the reputation from the HBase table
        Result r = table.get(new Get(userid.getBytes()));
        int reputation = Integer.parseInt(new String(r.getValue(
            "attr".getBytes(), "Reputation".getBytes())));

        // If the reputation is at least 1500,
        // write the record to the file system
        if (reputation >= 1500) {
          context.write(value, NullWritable.get());
      }
    }
  }
}
As this is a map-only job, there is no combiner or reducer.
          All output records will be written directly to the file system.
Query Buffer Optimization
The previous example is a fairly naive way of querying
            HBase. It is meant to show how to go about executing the pattern,
            but can be optimized further. HBase supports batch queries, so it
            would be ideal to buffer all the queries we want to execute up to
            some predetermined size. This constant depends on how many records
            you can comfortably store in memory before querying HBase. Then
            flush the queries to HBase and perform the further processing with
            the returned results. If the expensive operations can be buffered,
            it is recommended to do so. Just remember to flush the buffer in
            the mapper or the reducer’s cleanup method. The Context object can be used to write
            output just like in the map or
            reduce methods.





Top Ten



Pattern Description



The top ten pattern is a bit different than previous ones in that you know how
      many records you want to get in the end, no matter what the input size.
      In generic filtering, however, the amount of output depends on the
      data.
Intent



Retrieve a relatively small number of top K
        records, according to a ranking scheme in your data set, no matter how
        large the data.

Motivation



Finding outliers is an important part of data analysis because
        these records are typically the most interesting and unique pieces of
        data in the set. The point of this pattern is to find the best records
        for a specific criterion so that you can take a look at them and
        perhaps figure out what caused them to be so special. If you can
        define a ranking function or comparison function between two records
        that determines whether one is higher than the other, you can apply
        this pattern to use MapReduce to find the records with the highest
        value across your entire data set.
The reason why this pattern is particularly interesting springs
        from a comparison with how you might implement the top ten pattern
        outside of a MapReduce context. In SQL, you might be inclined to sort
        your data set by the ranking value, then take the top
        K records from that. In MapReduce, as we’ll find
        out in the next chapter, total ordering is extremely involved and uses
        significant resources on your cluster. This pattern will instead go
        about finding the limited number of high-values records without having
        to sort the data.
Plus, seeing the top ten of something is always fun! What are
        the highest scoring posts on Stack Overflow? Who is the oldest member
        of your service? What is the largest single order made on your
        website? Which post has the word “meow” the most number of
        times?

Applicability



	This pattern requires a comparator function ability between
            two records. That is, we must be able to compare one record to
            another to determine which is “larger.”

	The number of output records should be significantly fewer
            than the number of input records because at a certain point it
            just makes more sense to do a total ordering of the data
            set.




Structure



This pattern utilizes both the mapper and the reducer. The
        mappers will find their local top K, then all of
        the individual top K sets will compete for the
        final top K in the reducer. Since the number of
        records coming out of the mappers is at most K
        and K is relatively small, we’ll only need one
        reducer. You can see the structure of this pattern in Figure 3-3.

class mapper:
   setup():
      initialize top ten sorted list

   map(key, record):
      insert record into top ten sorted list
      if length of array is greater-than 10 then
         truncate list to a length of 10

   cleanup():
      for record in top sorted ten list:
         emit null,record

class reducer:
   setup():
      initialize top ten sorted list

   reduce(key, records):
      sort records
      truncate records to top 10
      for record in records:
         emit record
[image: The structure of the top ten pattern]

Figure 3-3. The structure of the top ten pattern

The mapper reads each record and keeps an array object of size
        K that collects the largest
        K values. In the cleanup phase of the mapper
        (i.e., right before it exits), we’ll finally emit the
        K records stored in the array as the value, with
        a null key. These are the lowest K for this
        particular map task.
We should expect K * M records coming into
        the reducer under one key, null, where M is the
        number of map tasks. In the reduce function, we’ll do what we did in
        the mapper: keep an array of K values and find
        the top K out of the values collected under the
        null key.
The reason we had to select the top K from
        every mapper is because it is conceivable that all of the top records
        came from one file split and that corner case needs to be accounted
        for.

Consequences



The top K records are returned.

Known uses



	Outlier analysis
	Outliers are usually interesting. They may be the users that
              are having difficulty using your system, or power users of your
              website. Outliers, like filtering and grouping, may give you
              another perspective from your data set.

	Select interesting data
	If you are able to score your records by some sort of
              value score, you can pull the “most valuable” data. This is
              particularly useful if you plan to submit data to follow-on
              processing, such as in a business intelligence tool or a SQL
              database, that cannot handle the scale of your original data
              set. Value scoring can be as complex as you make it by applying
              advanced algorithms, such as scoring text based on how
              grammatical it is and how accurate the spelling is so that you
              remove most of the junk.

	Catchy dashboards
	This isn’t a psychology book, so who knows why top ten
              lists are interesting to consumers, but they are. This pattern
              could be used to publish some interesting top ten stats about
              your website and your data that will encourage users to think
              more about your data or even to instill some competition.




Resemblances



	SQL
	In a traditional and small SQL database, ordering may
              not be a big deal. In this case, you would retrieve data ordered
              by the criterion for which you want the top ten, then take a
              limit. You could follow this same approach in MapReduce, but as
              you will find out in later patterns, sorting is an expensive
              operation.

SELECT * FROM table ORDER BY col4 DESC LIMIT 10;

	Pig
	Pig will have issues performing this query in any sort of
              optimal way. The most straightforward pattern is to mirror the
              SQL query, but the ordering is expensive just to find a few
              records. This is a situation in which you’ll find major gains in
              using Java MapReduce instead of Pig.

B = ORDER A BY col4 DESC;
C = LIMIT B 10;




Performance analysis



The performance of the top ten pattern is typically very good,
        but there are a number of important limitations and concerns to
        consider. Most of these limitations spring from the use of a single
        reducer, regardless of the number of records it is handling.
The number we need to pay attention to when using this pattern is how many records the
          reducer is getting. Each map task is going to output K records, and
          the job will consist of M map tasks, so the reducer is going to have
          to work through K * M records. This can be a lot.
A single reducer getting a lot of data is bad for a few
        reasons:
	The sort can become an expensive operation when it has too
            many records and has to do most of the sorting on local disk,
            instead of in memory.

	The host where the reducer is running will receive a lot of
            data over the network, which may create a network resource hot
            spot for that single host.

	Naturally, scanning through all the data in the reduce will
            take a long time if there are many records to look through.

	Any sort of memory growth in the reducer has the possibility
            of blowing through the Java virtual machine’s memory. For example,
            if you are collecting all of the values into an ArrayList to
            perform a median, that ArrayList can get very big. This will not
            be a particular problem if you’re really looking for the top ten
            items, but if you want to extract a very large number you may run
            into memory limits.

	Writes to the output file are not parallelized. Writing to
            the locally attached disk can be one of the more expensive
            operations in the reduce phase when we are dealing with a lot of
            data. Since there is only one reducer, we are not taking advantage
            of the parallelism involved in writing data to several hosts, or
            even several disks on the same host. Again, this is not an issue
            for the top ten, but becomes a factor when the data extracted is
            very large.



As K gets large, this pattern becomes less
        efficient. Consider the extreme case in which K
        is set at five million, when there are ten million records in the
        entire data set. Five million exceeds the number of records in any
        individual input split, so every mapper will send all of its records
        to the reducer. The single reducer will effectively have to handle all
        of the records in the entire dataset and the only thing that was
        parallelized was the data loading.
An optimization you could take if you have a large
        K and a large number of input splits is to
        prefilter some of the data, because you know what the top ten was last
        time and it hasn’t changed much. Imagine your data has a value that
        can only increase with time (e.g., hits on web pages) and you want to
        find the top hundred records. If, in your previous MapReduce job, the
        hundredth record had a value of 52,485, then you know you can filter
        out all records that have a value of less than 52,485. There is no way
        that a record with a value with less than 52,845 can compete with the
        previous top hundred that are still in the data set.
For all these reasons, this pattern is intended only for pretty
        small values for K, in the tens or hundreds at
        most, though you can likely push it a bit further. There is a fuzzy
        line in which just doing a total ordering of the data set is likely
        more effective.


Top Ten Examples



Top ten users by reputation



Determining the top ten records of a data set is an interesting use
        of MapReduce. Each mapper determines the top ten records of its input
        split and outputs them to the reduce phase. The mappers are
        essentially filtering their input split to the top ten records, and
        the reducer is responsible for the final ten. Just remember to
        configure your job to only use one reducer! Multiple reducers would
        shard the data and would result in multiple “top ten” lists.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user information, output the
        information of the top ten users based on reputation.
Mapper code



The mapper processes all input records and stores them in
          a TreeMap. A
          TreeMap is a subclass of Map that sorts on key. The default ordering of Integers is ascending. Then, if there are
          more than ten records in our TreeMap, the first element (lowest value)
          can be removed. After all the records have been processed, the top
          ten records in the TreeMap are
          output to the reducers in the cleanup method. This method gets called
          once after all key/value pairs have been through map, just like how setup is called once before any calls to
          map.

public static class TopTenMapper extends
    Mapper<Object, Text, NullWritable, Text> {

  // Stores a map of user reputation to the record
  private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();

  public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {
    Map<String, String> parsed = transformXmlToMap(value.toString());

    String userId = parsed.get("Id");
    String reputation = parsed.get("Reputation");

    // Add this record to our map with the reputation as the key
    repToRecordMap.put(Integer.parseInt(reputation), new Text(value));

    // If we have more than ten records, remove the one with the lowest rep
    // As this tree map is sorted in descending order, the user with
    // the lowest reputation is the last key.
    if (repToRecordMap.size() > 10) {
      repToRecordMap.remove(repToRecordMap.firstKey());
    }
  }

  protected void cleanup(Context context) throws IOException,
      InterruptedException {
    // Output our ten records to the reducers with a null key
    for (Text t : repToRecordMap.values()) {
      context.write(NullWritable.get(), t);
    }
  }
}

Reducer code



Overall, the reducer determines its top ten records in a way
          that’s very similar to the mapper. Because we configured our job to
          have one reducer using job.setNumReduceTasks(1) and we used
          NullWritable as our key, there will be one input group for this
          reducer that contains all the potential top ten records. The reducer
          iterates through all these records and stores them in a TreeMap. If the TreeMap’s size is above ten, the first
          element (lowest value) is remove from the map. After all the values
          have been iterated over, the values contained in the TreeMap are flushed to the file system in
          descending order. This ordering is achieved by getting the
          descending map from the TreeMap
          prior to outputting the values. This can be done directly in the
          reduce method, because there will
          be only one input group, but doing it in the cleanup method would also work.

public static class TopTenReducer extends
    Reducer<NullWritable, Text, NullWritable, Text> {

  // Stores a map of user reputation to the record
  // Overloads the comparator to order the reputations in descending order
  private TreeMap<Integer, Text> repToRecordMap = new TreeMap<Integer, Text>();

  public void reduce(NullWritable key, Iterable<Text> values,
      Context context) throws IOException, InterruptedException {
    for (Text value : values) {
      Map<String, String> parsed = transformXmlToMap(value.toString());

      repToRecordMap.put(Integer.parseInt(parsed.get("Reputation")),
          new Text(value));

      // If we have more than ten records, remove the one with the lowest rep
      // As this tree map is sorted in descending order, the user with
      // the lowest reputation is the last key.
      if (repToRecordMap.size() > 10) {
        repToRecordMap.remove(repToRecordMap.firstKey());
      }
    }

    for (Text t : repToRecordMap.descendingMap().values()) {
      // Output our ten records to the file system with a null key
      context.write(NullWritable.get(), t);
    }
  }
}
Note
There is no need for a combiner in this job, although the
            reducer code could technically be used. The combiner would simply
            output the same ten records and thus cause unnecessary processing.
            Also, this job is hardcoded to find the top ten records, but could
            easily be configured to find the top K
            records using a variable captured in the setup method. Just be sure to keep in
            mind the limitations discussed in the Performance Analysis section
            as K increases.





Distinct



Pattern Description



This pattern filters the whole set, but it's more challenging because
      you want to filter out records that look like another record in the data
      set. The final output of this filter application is a set of unique
      records.
Intent



You have data that contains similar records and you want to find
        a unique set of values.

Motivation



Reducing a data set to a unique set of values has several uses. One particular
        use case that can use this pattern is deduplication. In some large
        data sets, duplicate or extremely similar records can become a nagging
        problem. The duplicate records can take up a significant amount of
        space or skew top-level analysis results. For example, every time
        someone visits your website, you collect what web browser and device
        they are using for marketing analysis. If that user visits your
        website more than once, you’ll log that information more than once. If
        you do some analysis to calculate the percentage of your users that
        are using a specific web browser, the number of times users have used
        your website will skew the results. Therefore, you should first
        deduplicate the data so that you have only one instance of each logged
        event with that device.
Records don’t necessarily need to be exactly the same in the raw
        form. They just need to be able to be translated into a form in which
        they will be exactly the same. For example, if our web browser
        analysis done on HTTP server logs, extract only the user name, the
        device, and the browser that user is using. We don’t care about the
        time stamp, the resource they were accessing, or what HTTP server it
        came from.

Applicability



The only major requirement is that you have duplicates values in
        your data set. This is not a requirement, but it would be silly to use
        this pattern otherwise!

Structure



This pattern is pretty slick in how it uses MapReduce. It exploits MapReduce’s ability
          to group keys together to remove duplicates. This pattern uses a mapper to transform the
          data and doesn’t do much in the reducer. The combiner can always be utilized in this
          pattern and can help considerably if there are a large number of duplicates. Duplicate
          records are often located close to another in a data set, so a combiner will deduplicate
          them in the map phase.

map(key, record):
   emit record,null

reduce(key, records):
   emit key
The mapper takes each record and extracts the data fields for
        which we want unique values. In our HTTP logs example, this means
        extracting the user, the web browser, and the device values. The
        mapper outputs the record as the key, and null as the value.
The reducer groups the nulls together by key, so we’ll have one
        null per key. We then simply output the key, since we don’t care how
        many nulls we have. Because each key is grouped together, the output
        data set is guaranteed to be unique.
One nice feature of this pattern is that the number of reducers
        doesn’t matter in terms of the calculation itself. Set the number of
        reducers relatively high, since the mappers will forward almost all
        their data to the reducers.
Note
This is a good time to resize your data file sizes. If you
          want your output files to be larger, reduce the number of reducers.
          If you want them smaller, increase the number of reducers. The files
          will come out to be about the same size thanks to the random hashing
          in the partitioner.


Consequences



The output data records are guaranteed to be unique, but any
        order has not been preserved due to the random partitioning of the
        records.

Known uses



	Deduplicate data
	If you have a system with a number of collection sources
              that could see the same event twice, you can remove duplicates
              with this pattern.

	Getting distinct values
	This is useful when your raw records may not be
              duplicates, but the extracted information is duplicated across
              records.

	Protecting from an inner join explosion
	If you are about to do an inner join between two data sets
              and your foreign keys are not unique, you risk retrieving a huge
              number of records. For example, if you have 3,000 of the same
              key in one data set, and 2,000 of the same key in the other data
              set, you’ll end up with 6,000,000 records, all sent to one
              reducer! By running the distinct pattern, you can pair down your
              values to make sure they are unique and mitigate against this
              problem.




Resemblances



	SQL
	SELECT DISTINCT
              performs this operation for us in SQL.

SELECT DISTINCT * FROM table;

	Pig
	The DISTINCT
              operation.

b = DISTINCT a;




Performance analysis



Understanding this pattern’s performance profile is important
        for effective use. The main consideration in determining how to set up
        the MapReduce job is the number of reducers you think you will need.
        The number of reducers is highly dependent on the total number of
        records and bytes coming out of the mappers, which is dependent on how
        much data the combiner is able to eliminate. Basically, if duplicates
        are very rare within an input split (and thus the combiner did almost
        nothing), pretty much all of the data is going to be sent to the
        reduce phase.
You can find the number of output bytes and records by looking
        at the JobTracker status of the job on a sample run. Take the number
        of output bytes and divide by the number of reducers you are thinking
        about using. That is about how many bytes each reducer will get, not
        accounting for skew. The number that a reducer can handle varies from
        deployment to deployment, but usually you shouldn’t pass it more than
        a few hundred megabytes. You also don’t want to pass too few records,
        because then your output files will be tiny and there will be
        unnecessary overhead in spinning up the reducers. Aim for each reducer
        to receive more than the block size of records (e.g., if your block
        size is 64MB, have at least 64MB sent to the reducer).
Since most of the data in the data set is going to be sent to
        the reducers, you will use a relatively large number of reducers to
        run this job. Anywhere from one reducer per hundred mappers, to one
        reducer per two mappers, will get the job done here. Start with the
        theoretical estimate based on the output records, but do additional
        testing to find the sweet spot. In general, with this pattern, if you
        want your reducers to run in half the time, double the number of
        reducers... Just be careful of the files getting too small.
Caution
Be conscious of how many reduce slots your cluster has when
          selecting the number of reducers of your job. A good start for the
          distinct pattern would be close to the number of reduce slots for
          reasonably sized data sets or twice the number of reduce slots for
          very large data sets.



Distinct Examples



Distinct user IDs



Finding a distinct set of values is a great example of MapReduce’s
        power. Because each reducer is presented with a unique key and a set
        of values associated with that key, in order to produce a distinct
        value, we simply need to set our key to whatever we are trying to
        gather a distinct set of.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of user’s comments, determine the distinct
        set of user IDs.
Mapper code



The Mapper will get the user ID from each input record. This
          user ID will be output as the key with a null value.

public static class DistinctUserMapper extends
      Mapper<Object, Text, Text, NullWritable> {

  private Text outUserId = new Text();

  public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {
      
    Map<String, String> parsed = transformXmlToMap(value.toString());

    // Get the value for the UserId attribute
    String userId = parsed.get("UserId");

    // Set our output key to the user's id
    outUserId.set(userId);

    // Write the user's id with a null value
    context.write(outUserId, NullWritable.get());
  }
}

Reducer code



The grunt work of building a distinct set of user IDs is
          handled by the MapReduce framework. Each reducer is given a unique
          key and a set of null values. These values are ignored and the input
          key is written to the file system with a null value.

public static class DistinctUserReducer extends
      Reducer<Text, NullWritable, Text, NullWritable> {

  public void reduce(Text key, Iterable<NullWritable> values,
      Context context) throws IOException, InterruptedException {

    // Write the user's id with a null value
    context.write(key, NullWritable.get());
  }
}

Combiner optimization



A combiner can and should be used in the distinct pattern.
          Duplicate keys will be removed from each local map’s output, thus
          reducing the amount of network I/O required. The same code for the
          reducer can be used in the combiner.





Chapter 4. Data Organization Patterns



In contrast to the previous chapter on filtering, this chapter is all about reorganizing data. The
    value of individual records is often multipled by the way they are partitioned, sharded, or
    sorted. This is especially true in distributed systems, where partitioning, sharding, and
    sorting can be exploited for performance.
In many organizations, Hadoop and other MapReduce solutions are only a
  piece in the larger data analysis platform. Data will typically have to be
  transformed in order to interface nicely with the other systems. Likewise,
  data might have to be transformed from its original state to a new state to
  make analysis in MapReduce easier.
This chapter contains several pattern subcategories as you will see in each pattern description:
	The structured to hierarchical pattern

	The partitioning and
      binning patterns

	The total order sorting and
      shuffling patterns

	The generating data pattern



The patterns in this chapter are often used together to solve data organization
  problems. For example, you may want to restructure your data to be
  hierarchical, bin the data, and then have the bins be sorted. See Job Chaining in Chapter 6 for more details on how to
  tackle the problem of combining patterns together to solve more complex
  problems.
Structured to Hierarchical



Pattern Description



The structured to hierarchical pattern
      creates new records from data that started in a very
      different structure. Because of its importance, this pattern in many
      ways stands alone in the chapter.
Intent



Transform your row-based data to a hierarchical format, such as
        JSON or XML.

Motivation



When migrating data from an RDBMS to a Hadoop system, one of the
        first things you should consider doing is reformatting your data into
        a more conducive structure. Since Hadoop doesn’t care what format your
        data is in, you should take advantage of hierarchical data to avoid
        doing joins.
For example, our StackOverflow data contains a table about comments, a table about posts, etc.
          It is pretty obvious that the data is stored in an normalized SQL database. When you visit
          a post on StackOverflow, all the different pieces need to be coalesced into one view. This
          gets even more complicated when you are trying to do analytics at the level of individual
          posts. Imagine trying to correlate the length of the post with the length of the comments.
          This requires you to first do a join, an expensive operation, then extract the data that
          allows you to do your real work. If instead you group the data by post so that the
          comments are colocated with the posts and the edit revisions (i.e., denormalizing the
          tables), this type of analysis will be much easier and more intuitive. Keeping the data in
          a normalized form in this case serves little purpose.
Unfortunately, data doesn’t always come grouped together. When
        someone posts an answer to a StackOverflow question, Hadoop can’t
        insert that record into the hierarchy immediately. Therefore, creating
        the denormalized records for MapReduce has to be done in a batch
        fashion periodically.
Another way to deal with a steady stream of updates is HBase. HBase is able to store data in a semi-structured and hierarchical fashion well. MongoDB
          would also be a good candidate for storing this type of data.

Applicability



The following should be true for this pattern to be
        appropriate:
	You have data sources that are linked by some set of foreign
            keys.

	Your data is structured and row-based.




Structure



Figure 4-1 shows the structure
        for this pattern. The description of each component is as
        follows:
	If you wish to combine multiple data sources into a
            hierarchical data structure, a Hadoop class called MultipleInputs from org.apache.hadoop.mapreduce.lib.input is
            extremely valuable. MultipleInputs allows you to specify
            different input paths and different mapper classes for each input.
            The configuration is done in the driver. If you are loading data
            from only one source in this pattern, you don’t need this
            step.

	The mappers load the data and parse the records into one
            cohesive format so that your work in the reducers is easier. The
            output key should reflect how you want to identify the root of
            each hierarchical record. For example, in our StackOverflow
            example, the root would be the post ID. You also need to give each
            piece of data some context about its source. You need to identify
            whether this output record is a post or a comment. To do this, you
            can simply concatenate some sort of label to the output value
            text.

	In general, a combiner isn’t going to help you too much
            here. You could hypothetically group items with the same key and
            send them over together, but this has no major compression gains
            since all you would be doing is concatenating strings, so the size
            of the resulting string would be the same as the inputs.

	The reducer receives the data from all the different sources
            key by key. All of the data for a particular grouping is going to
            be provided for you in one iterator, so all that is left for you
            to do is build the hierarchical data structure from the list of
            data items. With XML or JSON, you’ll build a single object and
            then write it out as output. The examples in this section show
            XML, which provides several convenient methods for constructing
            data structures. If you are using some other format, such as a
            custom format, you’ll just need to use the proper object building
            and serialization methods.
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Figure 4-1. The structure of the structured to hierarchical
            pattern



Consequences



The output will be in a hierarchical form, grouped by the key
        that you specified.
However, be careful that many formats such as XML and JSON have
        some sort of top-level root element that encompasses all of the
        records. If you actually need the document to be well-formed
        top-to-bottom, it’s usually easier to add this header and footer text
        as some post-processing step.

Known uses



	Pre-joining data
	Data arrives in disjointed structured data sets, and for
              analytical purposes it would be easier to bring the data
              together into more complex objects. By doing this, you are
              setting up your data to take advantage of the NoSQL model of
              analysis.

	Preparing data for HBase or MongoDB
	HBase is a natural way to store this data, so you can use this method
              to bring the data together in preparation for loading into HBase
              or MongoDB. Creating a new table and then executing a bulk
              import via MapReduce is particularly effective. The alternative
              is to do several rounds of inserts, which might be less
              efficient.




Resemblances



	SQL
	It’s rare that you would want to do something like this in a
              relational database, since storing data in this way is not
              conducive to analysis with SQL. However, the way you would solve
              a similar problem in an RDBMS is to join the data and then
              perform analysis on the result.

	Pig
	Pig has reasonable support for hierarchical data
              structures. You can have hierarchical bags and tuples, which
              make it easy to represent hierarchical structures and lists of
              objects in a single record. The COGROUP method in Pig does a great job of bringing data together
              while preserving the original structure. However, using the
              predefined keywords to do any sort of real analysis on a complex
              record is more challenging out of the box. For this, a
              user-defined function is the right way to go. Basically, you
              would use Pig to build and group the records, then a UDF to make
              sense of the data.
data_a = LOAD '/data/comments/' AS PigStorage('|');
data_b = LOAD '/data/posts/' AS PigStorage(',');

grouped = COGROUP data_a BY $2, data_b BY $1;

analyzed = FOREACH grouped GENERATE udfs.analyze(group, $1, $2);

...




Performance analysis



There are two performance concerns that you need to pay
        attention to when using this pattern. First, you need to be aware of
        how much data is being sent to the reducers from the mappers, and
        second you need to be aware of the memory footprint of the object that
        the reducer builds.
Since records with the grouping key can be scattered anywhere in
        the data set, pretty much all of data is going to move across the
        network. For this reason, you will need to pay particular attention to
        having an adequate number of reducers. The same strategies apply here
        that are employed in other patterns that shuffle everything over the
        network.
The next major concern is the possibility of hot spots in the
        data that could result in an obscenely large record. With large data
        sets, it is conceivable that a particular output record is going to
        have a lot of data associated with it. Imagine that for some reason a
        post on StackOverflow has a million comments associated with it. That
        would be extremely rare and unlikely, but not in the realm of the
        impossible. If you are building some sort of XML object, all of those
        comments at one point might be stored in memory before writing the
        object out. This can cause you to blow out the heap of the Java
        Virtual Machine, which obviously should be avoided.
Another problem with hot spots is a skew in how much data each
        reducer is handling. This is going to be a similar problem in just
        about any MapReduce job. In many cases the skew can be ignored, but if
        it really matters you can write a custom partitioner to split the data
        up more evenly.


Structured to Hierarchical Examples



Post/comment building on StackOverflow



In this example, we will take the posts and comments of the StackOverflow data and group
        them together. A hierarchy will look something like: 
Posts
    Post
      Comment
      Comment
    Post
      Comment
      Comment
      Comment
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a list of posts and comments, create a structured
        XML hierarchy to nest comments with their related post.
Driver code



We don’t usually describe the code for the driver, but in this
          case we are doing something exotic with MultipleInputs. All we do differently is
          create a MultipleInputs object and add the
          comments path and the posts path with their respective mappers. The
          paths for the posts and comments data are provided via the command
          line, and the program retrieves them from the args array.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = new Job(conf, "PostCommentHierarchy");
    job.setJarByClass(PostCommentBuildingDriver.class);

    MultipleInputs.addInputPath(job, new Path(args[0]),
            TextInputFormat.class, PostMapper.class);

    MultipleInputs.addInputPath(job, new Path(args[1]),
            TextInputFormat.class, CommentMapper.class);

    job.setReducerClass(UserJoinReducer.class);

    job.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(job, new Path(args[2]));

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    System.exit(job.waitForCompletion(true) ? 0 : 2);
}

Mapper code



In this case, there are two mapper classes, one for comments
          and one for posts. In both, we extract the post ID to use it as the
          output key. We output the input value prepended with a character
          (“P” for a post or “C” for a comment) so we know which data set the
          record came from during the reduce phase.

public static class PostMapper extends Mapper<Object, Text, Text, Text> {

    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // The foreign join key is the post ID
        outkey.set(parsed.get("Id"));

        // Flag this record for the reducer and then output
        outvalue.set("P" + value.toString());
        context.write(outkey, outvalue);
    }
}

public static class CommentMapper extends Mapper<Object, Text, Text, Text> {
    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // The foreign join key is the post ID
        outkey.set(parsed.get("PostId"));

        // Flag this record for the reducer and then output
        outvalue.set("C" + value.toString());
        context.write(outkey, outvalue);
    }
}

Reducer code



The reducer builds the hierarchical XML object. All the values
          are iterated to get the post record and collect a list of comments.
          We know which record is which by the flag we added to the value.
          These flags are removed when assigning post or adding the list. Then, if the post
          is not null, an XML record is constructed with the post as the
          parent and comments as the children.
The implementation of the nestElements follows. We chose to use an
          XML library to build the final record, but please feel free to use
          whatever means you deem necessary.

public static class PostCommentHierarchyReducer extends
        Reducer<Text, Text, Text, NullWritable> {

    private ArrayList<String> comments = new ArrayList<String>();
    private DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
    private String post = null;

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        // Reset variables
        post = null;
        comments.clear();

        // For each input value
        for (Text t : values) {
            // If this is the post record, store it, minus the flag
            if (t.charAt(0) == 'P') {
                post = t.toString().substring(1, t.toString().length())
                        .trim();
            } else {
                // Else, it is a comment record. Add it to the list, minus
                // the flag
                comments.add(t.toString()
                        .substring(1, t.toString().length()).trim());
            }
        }
        // If there are no comments, the comments list will simply be empty.

        // If post is not null, combine post with its comments.
        if (post != null) {
            // nest the comments underneath the post element
            String postWithCommentChildren = nestElements(post, comments);

            // write out the XML
            context.write(new Text(postWithCommentChildren),
                    NullWritable.get());
        }
    }
    ...
The nestElements method
          takes the post and the list of comments to create a new string of
          XML to output. It uses a DocumentBuilder and some additional helper methods to copy the Element objects
          into new ones, in addition to their attributes. This copying occurs
          to rename the element tags from row to either post or comment. The final Document is then transformed into
          an XML string.

    private String nestElements(String post, List<String> comments) {
        // Create the new document to build the XML
        DocumentBuilder bldr = dbf.newDocumentBuilder();
        Document doc = bldr.newDocument();

        // Copy parent node to document
        Element postEl = getXmlElementFromString(post);
        Element toAddPostEl = doc.createElement("post");

        // Copy the attributes of the original post element to the new one
        copyAttributesToElement(postEl.getAttributes(), toAddPostEl);

        // For each comment, copy it to the "post" node
        for (String commentXml : comments) {
            Element commentEl = getXmlElementFromString(commentXml);
            Element toAddCommentEl = doc.createElement("comments");

            // Copy the attributes of the original comment element to
            // the new one
            copyAttributesToElement(commentEl.getAttributes(),
                     toAddCommentEl);

            // Add the copied comment to the post element
            toAddPostEl.appendChild(toAddCommentEl);
        }

        // Add the post element to the document
        doc.appendChild(toAddPostEl);

        // Transform the document into a String of XML and return
        return transformDocumentToString(doc);
    }

    private Element getXmlElementFromString(String xml) {
        // Create a new document builder
        DocumentBuilder bldr = dbf.newDocumentBuilder();

        return bldr.parse(new InputSource(new StringReader(xml)))
                .getDocumentElement();
    }

    private void copyAttributesToElement(NamedNodeMap attributes,
            Element element) {

        // For each attribute, copy it to the element
        for (int i = 0; i < attributes.getLength(); ++i) {
            Attr toCopy = (Attr) attributes.item(i);
            element.setAttribute(toCopy.getName(), toCopy.getValue());
        }
    }

    private String transformDocumentToString(Document doc) {

        TransformerFactory tf = TransformerFactory.newInstance();
        Transformer transformer = tf.newTransformer();
        transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,
                "yes");
        StringWriter writer = new StringWriter();
        transformer.transform(new DOMSource(doc), new StreamResult(
                writer));
        // Replace all new line characters with an empty string to have
        // one record per line.
        return writer.getBuffer().toString().replaceAll("\n|\r", "");
    }
}


Question/answer building on StackOverflow



This is a continuation of the previous example and will use the
        previous analytic’s output as the input to this analytic. Now that we
        have the comments associated with the posts, we are going to associate
        the post answers with the post questions. This needs to be done
        because posts consist of both answers and questions and are
        differentiated only by their PostTypeId. We’ll group them together by
        Id in questions and ParentId in answers.
The main difference between the two applications of this pattern
        is that in this one we are dealing only with one data set.
        Effectively, we are using a self-join here to correlate the different
        records from the same data set.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given the output of the previous example, perform a
        self-join operation to create a question, answer, and comment
        hierarchy.
Mapper code



The first thing the mapper code does is determine whether the
          record is a question or an answer, because the behavior for each
          will be different. For a question, we will extract Id as the key and label it as a question.
          For an answer, we will extract ParentId as the key and label it as an
          answer.

public class QuestionAnswerBuildingDriver {

    public static class PostCommentMapper extends
            Mapper<Object, Text, Text, Text> {

        private DocumentBuilderFactory dbf = DocumentBuilderFactory
                .newInstance();
        private Text outkey = new Text();
        private Text outvalue = new Text();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {

            // Parse the post/comment XML hierarchy into an Element
            Element post = getXmlElementFromString(value.toString());

            int postType = Integer.parseInt(post.getAttribute("PostTypeId"));

            // If postType is 1, it is a question
            if (postType == 1) {
                outkey.set(post.getAttribute("Id"));
                outvalue.set("Q" + value.toString());
            } else {
                // Else, it is an answer
                outkey.set(post.getAttribute("ParentId"));
                outvalue.set("A" + value.toString());
            }

            context.write(outkey, outvalue);
        }

        private Element getXmlElementFromString(String xml) {
            // same as previous example, Mapper code
        }
    }

Reducer code



The reducer code is very similar to the that in the previous
          example. It iterates through the input values and grabs the question
          and answer, being sure to remove the flag. It then nests the answers
          inside the question in the same fashion as the previous example. The
          difference is that tags are “question” instead of the “post” and
          “answer” instead of “comment.” The helper functions are omitted here
          for brevity. They can be viewed in the previous example.

public static class QuestionAnswerReducer extends
        Reducer<Text, Text, Text, NullWritable> {

    private ArrayList<String> answers = new ArrayList<String>();
    private DocumentBuilderFactory dbf = DocumentBuilderFactory
            .newInstance();
    private String question = null;

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        // Reset variables
        question = null;
        answers.clear();

        // For each input value
        for (Text t : values) {
            // If this is the post record, store it, minus the flag
            if (t.charAt(0) == 'Q') {
                question = t.toString().substring(1, t.toString().length())
                        .trim();
            } else {
                // Else, it is a comment record. Add it to the list, minus
                // the flag
                answers.add(t.toString()
                        .substring(1, t.toString().length()).trim());
            }
        }

        // If post is not null
        if (question != null) {
            // nest the comments underneath the post element
            String postWithCommentChildren = nestElements(question, answers);

            // write out the XML
            context.write(new Text(postWithCommentChildren),
                    NullWritable.get());
        }
    }

    ... // ommitted helper functions
}




Partitioning



Pattern Description



The partitioning pattern moves the records into categories (i.e., shards, partitions, or
      bins) but it doesn't really care about the order of records.
Intent



The intent is to take similar records in a data set and
        partition them into distinct, smaller data sets.

Motivation



If you want to look at a particular set of data—such as postings
        made on a particular date—the data items are normally spread out
        across the entire data set. So looking at just one of these subsets
        requires an entire scan of all of the data. Partitioning means
        breaking a large set of data into smaller subsets, which can be chosen
        by some criterion relevant to your analysis. To improve performance,
        you can run a job that takes the data set and breaks the partitions
        out into separate files. Then, when a particular subset for the data
        is to be analyzed, the job needs only to look at that data.
Partitioning by date is one of the most common schemes. This
        helps when we want to analyze a certain span of time, because the data
        is already grouped by that criterion. For instance, suppose you have
        event data that spans three years in your Hadoop cluster, but for
        whatever reason the records are not ordered at all by date. If you
        only care about data from January 27 to February 3 of the current
        year, you must scan all of the data since those events could be
        anywhere in the data set. If instead you had the events partitioned
        into months (i.e., you have a file with January data, a file with
        February data, etc.), you would only need to run your MapReduce job
        over the January and February partitions. It would be even better if
        they were partitioned by day!
Partitioning can also help out when you have several different
        types of records in the same data set, which is increasingly common in
        NoSQL. For example, in a HTTP server logs, you’ll have GET and POST requests, internal system messages, and
        error messages. Analysis may care about only one category of this
        data, so partitioning it into these categories will help narrow down
        the data the job runs over before it even runs.
In an RDBMS, a typical criterion for partitioning is what you
        normally filter by in the WHERE
        clause. So, for example, if you are typically filtering down records
        by country, perhaps you should partition by country. This applies in
        MapReduce as well. If you find yourself filtering out a bunch of
        records in the mapper due to the same criteria over and over, you
        should consider partitioning your data set.
There is no downside to partitioning other than having to build
        the partitions. A MapReduce job can still run over all the partitions
        at once if necessary.

Applicability



The one major requirement to apply this pattern is knowing how
        many partitions you are going to have ahead of time. For example, if
        you know you are going to partition by day of the week, you know that
        you will have seven partitions.
You can get around this requirement by running an analytic that
        determines the number of partitions. For example, if you have a bunch
        of timestamped data, but you don’t know how far back it spans, run a
        job that figures out the date range for you.

Structure



This pattern is interesting in that it exploits the fact that
        the partitioner partitions data (imagine that!). There is no actual
        partitioning logic; all you have to do is define the function that
        determines what partition a record is going to go to in a custom
        partitioner. Figure 4-2 shows the
        structure of this pattern.
	In most cases, the identity mapper can be used.

	The custom partitioner is the meat of this pattern. The
            custom partitioner will determine which reducer to send each
            record to; each reducer corresponds to particular
            partitions.

	In most cases, the identity reducer can be used. But this
            pattern can do additional processing in the reducer if needed.
            Data is still going to get grouped and sorted, so data can be
            deduplicated, aggregated, or summarized, per partition.



[image: The structure of the partitioning pattern]

Figure 4-2. The structure of the partitioning pattern


Consequences



The output folder of the job will have one part file for each partition.
Tip
Since each category will be written out to one large file,
          this is a great place to store the data in block-compressed SequenceFiles, which are arguably the most
          efficient and easy-to-use data format in Hadoop.


Known uses



	Partition pruning by continuous value
	You have some sort of continuous variable, such as a date
              or numerical value, and at any one time you care about only a
              certain subset of that data. Partitioning the data into bins
              will allow your jobs to load only pertinent data.

	Partition pruning by category
	Instead of having some sort of continuous variable, the
              records fit into one of several clearly defined categories, such
              as country, phone area code, or language.

	Sharding
	A system in your architecture has divisions of data—such as
              different disks—and you need to partition the data into these
              existing shards.




Resemblances



	SQL
	Some SQL databases allow for automatically partitioned
              tables. This allows “partition pruning” which allows the
              database to exclude large portions of irrelevant data before
              running the SQL.

	Other patterns
	This pattern is similar to the binning pattern in this
              chapter. In most cases, binning can perform the same
              partitioning behavior as this pattern.




Performance analysis



The main performance concern with this pattern is that the
        resulting partitions will likely not have similar number of records.
        Perhaps one partition turns out to hold 50% of the data of a very
        large data set. If implemented naively, all of this data will get sent
        to one reducer and will slow down processing significantly.
It’s pretty easy to get around this, though. Split very large
        partitions into several smaller partitions, even if just randomly.
        Assign multiple reducers to one partition and then randomly assign
        records into each to spread it out a bit better.
For example, consider the “last access date” field for a user in
        StackOverflow. If we partitioned on this property equally over months,
        the most recent month will very likely be much larger than any other
        month. To prevent skew, it may make sense to partition the most recent
        month into days, or perhaps just randomly.
This method doesn’t affect processing over partitions, since you
        know that these set of files represent one larger partition. Just
        include all of them as input.


Partitioning Examples



Partitioning users by last access date



In the StackOverflow data set, users are stored in the order in which they
        registered. Instead, we want to organize the data into partitions
        based on the year of the last access date. This is done by creating a
        custom partitioner to assign record to a particular partition based on
        that date.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a set of user information, partition the records
        based on the year of last access date, one partition per year.
Driver code



This driver is a little different than the norm. The job needs
          to be configured to use the custom built partitioner, and this
          partitioner needs to be configured. The minimum last access year
          needs to be configured, which is 2008. The reason for this is
          explained in the partitioner code section. Also, the number of
          reducers is important to make sure the full range of partitions is
          accounted for. Given that the authors are running this example in
          2012, the maximum last access year was in 2011, spanning 4 years
          from 2008 to 2011. Users can fall into these dates as well as those
          in between, meaning the job is configured to have exactly 4
          reducers.

...
// Set custom partitioner and min last access date
job.setPartitionerClass(LastAccessDatePartitioner.class);
LastAccessDatePartitioner.setMinLastAccessDate(job, 2008);

// Last access dates span between 2008-2011, or 4 years
job.setNumReduceTasks(4);
...

Mapper code



The mapper pulls the last access date out of each input
          record. This date is output as the key, and the full input record is
          output as the value. This is so the partitioner can do the work of
          putting each record into its appropriate partition. This key is
          later ignored during output from the reduce phase.

public static class LastAccessDateMapper extends
        Mapper<Object, Text, IntWritable, Text> {

    // This object will format the creation date string into a Date object
    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    private IntWritable outkey = new IntWritable();

    protected void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // Grab the last access date
        String strDate = parsed.get("LastAccessDate");

        // Parse the string into a Calendar object
        Calendar cal = Calendar.getInstance();
        cal.setTime(frmt.parse(strDate));
        outkey.set(cal.get(Calendar.YEAR));

        // Write out the year with the input value
        context.write(outkey, value);
    }
}

Partitioner code



The partitioner examines each key/value pair output by the
          mapper to determine which partition the key/value pair will be
          written. Each numbered partition will be copied by its associated
          reduce task during the reduce phase. The partitioner implements
          the Configurable
          interface. The setConf method is
          called during task construction to configure the partitioner. Here,
          the minimum value of the last access date is pulled from the
          configuration. The driver is responsible for calling LastAccessDatePartitioner.setMinLastAccessDate
          during job configuration. This date is used to subtract from each
          key (last access date) to determine what partition it goes to. The
          minimum last access date is 2008, so all users who last logged into
          StackOverflow in 2008 will be assigned to partition zero.

public static class LastAccessDatePartitioner extends
        Partitioner<IntWritable, Text> implements Configurable {

    private static final String MIN_LAST_ACCESS_DATE_YEAR =
            "min.last.access.date.year";

    private Configuration conf = null;
    private int minLastAccessDateYear = 0;

    public int getPartition(IntWritable key, Text value, int numPartitions) {
        return key.get() - minLastAccessDateYear;
    }

    public Configuration getConf() {
        return conf;
    }

    public void setConf(Configuration conf) {
        this.conf = conf;
        minLastAccessDateYear = conf.getInt(MIN_LAST_ACCESS_DATE_YEAR, 0);
    }

    public static void setMinLastAccessDate(Job job,
            int minLastAccessDateYear) {
        job.getConfiguration().setInt(MIN_LAST_ACCESS_DATE_YEAR,
                minLastAccessDateYear);
    }
}

Reducer code



The reducer code is very simple since we simply want to output
          the values. The work of partitioning has been done at this
          point.

public static class ValueReducer extends
        Reducer<IntWritable, Text, Text, NullWritable> {

    protected void reduce(IntWritable key, Iterable<Text> values,
            Context context) throws IOException, InterruptedException {
        for (Text t : values) {
            context.write(t, NullWritable.get());
        }
    }
}




Binning



Pattern Description



The binning pattern, much like the previous pattern, moves the records into
      categories irrespective of the order of records.
Intent



For each record in the data set, file each one into one or more
        categories.

Motivation



Binning is very similar to partitioning and often can be used to
        solve the same problem. The major difference is in how the bins or
        partitions are built using the MapReduce framework. In some
        situations, one solution works better than the other.
Binning splits data up in the map phase instead of in the
        partitioner. This has the major advantage of eliminating the need for
        a reduce phase, usually leading to more efficient resource allocation.
        The downside is that each mapper will now have one file per possible
        output bin. This means that, if you have a thousand bins and a
        thousand mappers, you are going to output a total of one million
        files. This is bad for NameNode scalability and follow-on analytics.
        The partitioning pattern will have one output file per category and
        does not have this problem.

Structure



	This pattern’s driver is unique in using the MultipleOutputs class, which sets up the job’s output to write multiple
            distinct files.

	The mapper looks at each line, then iterates through a list
            of criteria for each bin. If the record meets the criteria, it is
            sent to that bin. See Figure 4-3.

	No combiner, partitioner, or reducer is used in this
            pattern.



[image: The structure of the binning pattern]

Figure 4-3. The structure of the binning pattern



Consequences



Each mapper outputs one small file per bin.
Caution
Data should not be left as a bunch of tiny files. At some
          point, you should run some postprocessing that collects the outputs
          into larger files.


Resemblances



	Pig
	The SPLIT operation in
              Pig implements this pattern.

SPLIT data INTO
    eights IF col1 == 8,
    bigs IF col1 > 8,
    smalls IF (col1 < 8 AND col1 > 0);




Performance analysis



This pattern has the same scalability and performance properties
        as other map-only jobs. No sort, shuffle, or reduce needs to be
        performed, and most of the processing is going to be done on data that
        is local.


Binning Examples



Binning by Hadoop-related tags



We want to filter data by tag into different bins so that we can
        run follow-on analysis without having to run over all of the data. We
        care only about the Hadoop-related tags, specifically hadoop, pig,
        hive, and hbase. Also, if the post mentions Hadoop anywhere in the
        text or title, we’ll put that into its own bin.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a set of StackOverflow posts, bin the posts into
        four bins based on the tags hadoop, pig, hive, and hbase. Also, create
        a separate bin for posts mentioning hadoop in the text or
        title.
Driver code



The driver is pretty much the same boiler plate code, except
          that we use MultipleOutputs for the different bins.
          MultipleOutputs takes in a name,
          bins, that is used in the mapper
          to write different output. The name is essentially the output
          directory of the job. Output counters are disabled by default, so be
          sure to turn those on if you don’t expect a large number of named
          outputs. We also set the number of reduce tasks to zero, as this is
          a map-only job.

...
// Configure the MultipleOutputs by adding an output called "bins"
// With the proper output format and mapper key/value pairs
MultipleOutputs.addNamedOutput(job, "bins", TextOutputFormat.class,
        Text.class, NullWritable.class);

// Enable the counters for the job
// If there are a significant number of different named outputs, this
// should be disabled
MultipleOutputs.setCountersEnabled(job, true);

// Map-only job
job.setNumReduceTasks(0);
...

Mapper code



The setup phase creates an instance of MultipleOutputs using the context. The
          mapper consists of several if-else statements to check each of the
          tags of a post. Each tag is checked against one of our tags of
          interest. If the post contains the tag, it is written to the bin.
          Posts with multiple interesting tags will essentially be duplicated
          as they are written to the appropriate bins. Finally, we check
          whether the body of the post contains the word “hadoop”. If it does,
          we output it to a separate bin.
Be sure to close the MultipleOutputs during cleanup! Otherwise, you may not have much output at all.
Caution
The typical file names, part-mnnnnn,
            will be in the final output directory. These files will be empty
            unless the Context object is
            used to write key/value pairs. Instead, files will be named
            bin_name-mnnnnn. In
            the following example, bin_name will
            be, hadoop-tag, pig-tag, hive-tag, hbase-tag, or hadoop-post.
Note that setting the output format of the job to a NullOutputFormat will remove these empty
            output files when using the mapred package. In the newer API, the
            output files are not committed from their _temporary directory into the configured
            output directory in HDFS. This may be fixed in a newer version of
            Hadoop. 


public static class BinningMapper extends
    Mapper<Object, Text, Text, NullWritable> {

    private MultipleOutputs<Text, NullWritable> mos = null;

    protected void setup(Context context) {
        // Create a new MultipleOutputs using the context object
        mos = new MultipleOutputs(context);
    }

    protected void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        String rawtags = parsed.get("Tags");

        // Tags are delimited by ><. i.e. <tag1><tag2><tag3>
        String[] tagTokens = StringEscapeUtils.unescapeHtml(rawtags).split(
                "><");

        // For each tag
        for (String tag : tagTokens) {
            // Remove any > or < from the token
            String groomed = tag.replaceAll(">|<", "").toLowerCase();

            // If this tag is one of the following, write to the named bin
            if (groomed.equalsIgnoreCase("hadoop")) {
                mos.write("bins", value, NullWritable.get(), "hadoop-tag");
            }
            if (groomed.equalsIgnoreCase("pig")) {
                mos.write("bins", value, NullWritable.get(), "pig-tag");
            }
            if (groomed.equalsIgnoreCase("hive")) {
                mos.write("bins", value, NullWritable.get(), "hive-tag");
            }
            if (groomed.equalsIgnoreCase("hbase")) {
                mos.write("bins", value, NullWritable.get(), "hbase-tag");
            }
        }

        // Get the body of the post
        String post = parsed.get("Body");

        // If the post contains the word "hadoop", write it to its own bin
        if (post.toLowerCase().contains("hadoop")) {
            mos.write("bins", value, NullWritable.get(), "hadoop-post");
        }
    }

    protected void cleanup(Context context) throws IOException,
            InterruptedException {
        // Close multiple outputs!
        mos.close();
    }
}




Total Order Sorting



Pattern Description



The total order sorting pattern is
      concerned with the order of the data from record to
      record.
Intent



You want to sort your data in parallel on a sort key.

Motivation



Sorting is easy in sequential programming. Sorting in MapReduce,
        or more generally in parallel, is not easy. This is because the
        typical “divide and conquer” approach is a bit harder to apply
        here.
Each individual reducer will sort its data by key, but
        unfortunately, this sorting is not global across all data. What we
        want to do here is a total order sorting where, if you concatenate the
        output files, the records are sorted. If we just concatenate the
        output of a simple MapReduce job, segments of the data will be sorted,
        but the whole set will not be.
Sorted data has a number of useful properties. Sorted by time,
        it can provide a timeline view on the data. Finding things in a sorted
        data set can be done with binary search instead of linear search. In
        the case of MapReduce, we know the upper and lower boundaries of each
        file by looking at the last and first records, respectively. This can
        be useful for finding records, as well, and is one of the primary
        characteristics of HBase. Some databases can bulk load data faster if
        the data is sorted on the primary key or index column.
There are countless more reasons to have sorted data from an
        application standpoint or follow-on system standpoint. However, having
        data sorted for use in MapReduce serves little purpose, so hopefully
        this expensive operation only has to be done sparingly.

Applicability



The main requirement here is pretty obvious: your sort key has to be comparable so the
          data can be ordered.

Structure



Total order sorting may be one of the more complicated patterns
        you’ll see. The reason this is that you first have to determine a set
        of partitions divided by ranges of values that will produce
        equal-sized subsets of data. These ranges will determine which reducer
        will sort which range of data. Then something similar to the
        partitioning pattern is run: a custom partitioner is used to partition
        data by the sort key. The lowest range of data goes to the first
        reducer, the next range goes to the second reducer, so on and so
        forth.
This pattern has two phases: an analyze phase that determines
        the ranges, and the order phase that actually sorts the data. The
        analyze phase is optional in some ways. You need to run it only once
        if the distribution of your data does not change quickly over time,
        because the value ranges it produces will continue to perform well.
        Also, in some cases, you may be able to guess the partitions yourself,
        especially if the data is evenly distributed. For example, if you are
        sorting comments by user ID, and you have a million users, you can
        assume that with a thousand reducers, each range is going to have a
        range of a thousand users. This is because comments by user ID should
        be spread out evenly and since you know the number of total users, you
        can divide that number by the number of reducers you want to
        use.
The analyze phase is a random sampling of the data. The
        partitions are then based on that random sample. The principle is that
        partitions that evely split the random sample should evenly split the
        larger data set well. The structure of the analyze step is as
        follows:
	The mapper does a simple random sampling. When dividing
            records, it outputs the sort key as its output key so that the
            data will show up sorted at the reducer. We don’t care at all
            about the actual record, so we’ll just use a null value to save on
            space.

	Ahead of time, determine the number of records in the total
            data set and figure out what percentage of records you’ll need to
            analyze to make a reasonable sample. For example, if you plan on
            running the order with a thousand reducers, sampling about a
            hundred thousand records should give nice, even partitions.
            Assuming you have a billion records, divide 100,000 by
            1,000,000,000. This gives 0.0001, meaning .01% of the records
            should be run through the analyze phase.

	Only one reducer will be used here. This will collect the
            sort keys together into a sorted list (they come in sorted, so
            that will be easy). Then, when all of them have been collected,
            the list of keys will be sliced into the data range
            boundaries.



The order phase is a relatively straightforward application of
        MapReduce that uses a custom partitioner. The structure of the order
        step is as follows:
	The mapper extracts the sort key in the same way as the
            analyze step. However, this time the record itself is stored as
            the value instead of being ignored.

	A custom partitioner is used that loads up the partition
            file. In Hadoop, you can use the TotalOrderPartitioner, which is built
            specifically for this purpose. It takes the data ranges from the
            partition file produced in the previous step and decides which
            reducer to send the data to.

	The reducer’s job here is simple. The shuffle and sort take
            care of the heavy lifting. The reduce function simply takes the
            values that have come in and outputs them. The number of reducers
            needs to be equal to the number of partitions for the TotalOrderPartitioner to work
            properly.



Caution
Note that the number of ranges in the intermediate partition
          needs to be equal to the number of reducers in the order step. If
          you decide to change the number of reducers and you’ve been reusing
          the same file, you’ll need to rebuild it.

Tip
If you want to have a primary sort key and a secondary sort
          key, concatenate the keys, delimited by something. For example, if
          you want to sort by last name first, and city second, use a key that
          looks like Smith^Baltimore.

Caution
Using Text for nearly everything in Hadoop is very natural
          since that’s the format in which data is coming in. Be careful when
          sorting on numerical data, though! The string "10000" is less than than "9" if they are compared as strings, which
          is not what we want. Either pad the numbers with zeros or use a
          numerical data type.


Consequences



The output files will contain sorted data, and the output file
        names will be sorted such that the data is in a total sorting. In
        Hadoop, you’ll be able to issue hadoop fs
        -cat output/part-r-* and retrieve the data in a sorted
        manner.

Resemblances



	SQL
	Ordering in SQL is pretty easy!

SELECT * FROM data ORDER BY col1;

	Pig
	Ordering in Pig is syntactically pretty easy, but it’s a very
              expensive operation. Behind the scenes, it will run a
              multi-stage MapReduce job to first find the partitions, and then
              perform the actual sort.

c = ORDER b BY col1;




Performance analysis



This operation is expensive because you effectively have to load
        and parse the data twice: first to build the partition ranges, and
        then to actually sort the data.
The job that builds the partitions is straightforward and
        efficient since it has only one reducer and sends a minimal amount of
        data over the network. The output file is small, so writing it out is
        trivial. Also, you may only have to run this now and then, which will
        amortize the cost of building it over time.
The order step of the job has performance characteristics similar to the other data
          organization patterns, because it has to move all of the data over the network and write
          all of the data back out. Therefore, you should use a relatively large number of
            reducers.


Total Order Sorting Examples



Sort users by last visit



The user data in our StackOverflow data set is in the order of
        the account’s creation. Instead, we’d like to have the data ordered by
        the last time they have visited the site.
For this example, we have a special driver that runs both the
        analyze and order steps. Also, there are two sets of MapReduce jobs,
        one for analyze and one for order.
Driver code



Let’s break the driver down into two sections: building the partition list via
            sampling, then performing the sort.
The first section parses the input command line arguments and
          creates input and output variables from them. It creates path files
          to the partition list and the staging directory. The partition list
          is used by the TotalOrderPartitioner to make sure the
          key/value pairs are sorted properly. The staging directory is used
          to store intermediate output between the two jobs. There is nothing
          too special with the first job configuration. The main thing to note
          is that the first job is a map-only only job that uses a SequenceFileOutputFormat.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Path inputPath = new Path(args[0]);
    Path partitionFile = new Path(args[1] + "_partitions.lst");
    Path outputStage = new Path(args[1] + "_staging");
    Path outputOrder = new Path(args[1]);

    // Configure job to prepare for sampling
    Job sampleJob = new Job(conf, "TotalOrderSortingStage");
    sampleJob.setJarByClass(TotalOrderSorting.class);

    // Use the mapper implementation with zero reduce tasks
    sampleJob.setMapperClass(LastAccessDateMapper.class);
    sampleJob.setNumReduceTasks(0);

    sampleJob.setOutputKeyClass(Text.class);
    sampleJob.setOutputValueClass(Text.class);

    TextInputFormat.setInputPaths(sampleJob, inputPath);

    // Set the output format to a sequence file
    sampleJob.setOutputFormatClass(SequenceFileOutputFormat.class);
    SequenceFileOutputFormat.setOutputPath(sampleJob, outputStage);

    // Submit the job and get completion code.
    int code = sampleJob.waitForCompletion(true) ? 0 : 1;

    ...
The second job uses the identity mapper and our reducer
          implementation. The input is the output from the first job, so we’ll
          use the identity mapper to output the key/value pairs as they are
          stored from the output. The job is configured to 10 reducers, but
          any reasonable number can be used. Next, the partition file is
          configured, even though we have not created it yet.
The next important line uses the InputSampler
          utility. This sampler writes the partition file by reading through
          the configured input directory of the job. Using the RandomSampler,
          it takes a configurable number of samples of the previous job’s
          output. This can be an expensive operation, as the entire output is
          read using this constructor. Another constructor of RandomSampler allows you to set the number
          of input splits that will be sampled. This will increase execution
          time, but you might not get as good a distribution.
After the partition file is written, the job is executed. The
          partition file and staging directory are then deleted, as they are
          no longer needed for this example.
Tip
If your data distribution is unlikely to change, it would be
            worthwhile to keep this partition file around. It can then be used
            over and over again for this job in the future as new data arrives
            on the system.


    ...

    if (code == 0) {
        Job orderJob = new Job(conf, "TotalOrderSortingStage");
        orderJob.setJarByClass(TotalOrderSorting.class);

        // Here, use the identity mapper to output the key/value pairs in
        // the SequenceFile
        orderJob.setMapperClass(Mapper.class);
        orderJob.setReducerClass(ValueReducer.class);

        // Set the number of reduce tasks to an appropriate number for the
        // amount of data being sorted
        orderJob.setNumReduceTasks(10);

        // Use Hadoop's TotalOrderPartitioner class
        orderJob.setPartitionerClass(TotalOrderPartitioner.class);

        // Set the partition file
        TotalOrderPartitioner.setPartitionFile(orderJob.getConfiguration(),
                partitionFile);

        orderJob.setOutputKeyClass(Text.class);
        orderJob.setOutputValueClass(Text.class);

        // Set the input to the previous job's output
        orderJob.setInputFormatClass(SequenceFileInputFormat.class);
        SequenceFileInputFormat.setInputPaths(orderJob, outputStage);

        // Set the output path to the command line parameter
        TextOutputFormat.setOutputPath(orderJob, outputOrder);

        // Set the separator to an empty string
        orderJob.getConfiguration().set(
                "mapred.textoutputformat.separator", "");

        // Use the InputSampler to go through the output of the previous
        // job, sample it, and create the partition file
        InputSampler.writePartitionFile(orderJob,
                new InputSampler.RandomSampler(.001, 10000));

        // Submit the job
        code = orderJob.waitForCompletion(true) ? 0 : 2;
    }

    // Clean up the partition file and the staging directory
    FileSystem.get(new Configuration()).delete(partitionFile, false);
    FileSystem.get(new Configuration()).delete(outputStage, true);

    System.exit(code);
}

Analyze mapper code



This mapper simply pulls the last access date for each user
          and sets it as the sort key for the record. The input value is
          output along with it. These key/value pairs, per our job
          configuration, are written to a SequenceFile that
          is used to create the partition list for the TotalOrderPartitioner. There is no reducer
          for this job.

public static class LastAccessDateMapper extends
        Mapper<Object, Text, Text, Text> {

    private Text outkey = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        outkey.set(parsed.get("LastAccessDate"));
        context.write(outkey, value);
    }
}

Order mapper code



This job simply uses the identity mapper to take each input
          key/value pair and output them. No special configuration or
          implementation is needed.

Order reducer code



Because the TotalOrderPartitioner took care of all the
          sorting, all the reducer needs to do is output the values with a
          NullWritable object. This will produce a part file for this reducer that is
          sorted by last access date. The partitioner ensures that the
          concatenation of all these part files (in order) produces a totally
          ordered data set.

public static class ValueReducer extends
        Reducer<Text, Text, Text, NullWritable> {

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        for (Text t : values) {
            context.write(t, NullWritable.get());
        }
    }
}




Shuffling



Pattern Description



The total order sorting and shuffling
      patterns are opposites in terms of effect, but the latter is also
      concerned with the order of data in records.
Intent



You have a set of records that you want to completely
        randomize.

Motivation



This whole chapter has been about applying some sort of order to
        your data set except for this pattern which is instead about
        completely destroying the order.
The use cases for doing such a thing are definitely few and far
        between, but two stand out. One is shuffling the data for the purposes
        of anonymizing it. Another is randomizing the data set for repeatable
        random sampling.
Anonymizing data has recently become important for organizations
        that want to maintain their users’ privacy, but still run analytics.
        The order of the data can provide some information that might lead to
        the identity of a user. By shuffling the entire data set, the
        organization is taking an extra step to anonymize the data.
Another reason for shuffling data is to be able to perform some
        sort of repeatable random sampling. For example, the first hundred
        records will be a simple random sampling. Every time we pull the first
        hundred records, we’ll get the same sample. This allows analytics that
        run over a random sample to have a repeatable result. Also, a separate
        job won’t have to be run to produce a simple random sampling every
        time you need a new sample.

Structure



	All the mapper does is output the record as the value along
            with a random key.

	The reducer sorts the random keys, further randomizing the
            data.



In other words, each record is sent to a random reducer. Then,
        each reducer sorts on the random keys in the records, producing a
        random order in that reducer.
Tip
The mapper in the shuffle pattern is barely doing anything.
          This would be a good time to anonymize the data further by
          transforming the records into an anonymized form.


Consequences



Each reducer outputs a file containing random records.

Resemblances



	SQL
	The SQL equivalent to this is to order the data set by a
              random value, instead of some column in the table. This makes it
              so each record is compared on the basis of two random numbers,
              which will produce a random ordering. We don’t have to go all
              the way and do a total ordering in MapReduce, as in the previous
              pattern. This is because sending data to a random reducer is
              sufficient.

SELECT * FROM data ORDER BY RAND()

	Pig
	Shuffling in Pig can be done as we did it in SQL: performing an
              ORDER BY on a random column.
              In this case, doing a total ordering is unnecessary. Instead, we
              can GROUP BY a random key,
              and then FLATTEN the
              grouping. This effectively implements the shuffle pattern we
              proposed behind the scenes.

c = GROUP b BY RANDOM();
d = FOREACH c GENERATE FLATTEN(b);




Performance analysis



The shuffle has some very nice performance properties. Since the
        reducer each record goes to is completely random, the data
        distribution across reducers will be completely balanced. With more
        reducers, the data will be more spread out. The size of the files will
        also be very predictable: each is the size of the data set divided by
        the number of reducers. This makes it easy to get a specific desired
        file size as output.
Other than that, the typical performance properties for the
        other patterns in this chapter apply. The pattern shuffles all of the
        data over the network and writes all of the data back to HDFS, so a
        relatively high number of reducers should be used.


Shuffle Examples



Anonymizing StackOverflow comments



To anonymize the StackOverflow comments, this example strips out the
        user ID and row ID, and truncates the date and time to just the date.
        Then the data is shuffled.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a large data set of StackOverflow comments,
        anonymize each comment by removing IDs, removing the time from the
        record, and then randomly shuffling the records within the data
        set.
Mapper code



The mapper transforms the data using our utility function that
          parses the data. Each XML attribute is looked at, and an action is
          taken based on the attribute to create a new line of XML. If it is a
          user ID or row ID, it is ignored. If it is a creation date, the
          characters following the ‘T’ are removed to ignore the time.
          Otherwise, just write out the XML attribute and value. A random key
          is generated and output along with the newly constructed
          record.

    public static class AnonymizeMapper extends
        Mapper<Object, Text, IntWritable, Text> {

    private IntWritable outkey = new IntWritable();
    private Random rndm = new Random();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        if (parsed.size() > 0) {
            StringBuilder bldr = new StringBuilder();
            // Create the start of the record
            bldr.append("<row ");

            // For each XML attribute
            for (Entry<String, String> entry : parsed.entrySet()) {

                // If it is a user ID or row ID, ignore it
                if (entry.getKey().equals("UserId")
                        || entry.getKey().equals("Id")) {
                } else if (entry.getKey().equals("CreationDate")) {

                    // If it is a CreationDate, remove the time from the date
                    // i.e., anything after the 'T' in the value
                    bldr.append(entry.getKey()
                            + "=\""
                            + entry.getValue().substring(0,
                                    entry.getValue().indexOf('T')) + "\" ");
                } else {
                    // Otherwise, output the attribute and value as is
                    bldr.append(entry.getKey() + "=\"" + entry.getValue()
                            + "\" ");
                }

            }
            // Add the /> to finish the record
            bldr.append("/>");

            // Set the sort key to a random value and output
            outkey.set(rndm.nextInt());
            outvalue.set(bldr.toString());
            context.write(outkey, outvalue);
        }
    }
}

Reducer code



This reducer class just outputs the values in order to strip
          out the random key.

public static class ValueReducer extends
        Reducer<IntWritable, Text, Text, NullWritable> {

        protected void reduce(IntWritable key, Iterable<Text> values,
            Context context) throws IOException, InterruptedException {

        for (Text t : values) {
            context.write(t, NullWritable.get());
        }
    }
}





Chapter 5. Join Patterns



Having all your data in one giant data set is a rarity. For example, presume you have
  user information stored in a SQL database because it is updated frequently.
  Meanwhile, web logs arrive in a constant stream and are dumped directly into
  HDFS. Also, daily analytics that make sense of these logs are stored someone
  where in HDFS and financial records are stored in an encrypted repository.
  The list goes on.
Data is all over the place, and while it’s very valuable on its own,
  we can discover interesting relationships when we start analyzing these sets
  together. This is where join patterns come into play. Joins can be used to
  enrich data with a smaller reference set or they can be used to filter out
  or select records that are in some type of special list. The use cases go on
  and on as well.
In SQL, joins are accomplished using simple commands, and the database
  engine handles all of the grunt work. Sadly for us, joins in MapReduce are
  not nearly this simple. MapReduce operates on a single key/value pair at a
  time, typically from the same input. We are now working with at least two
  data sets that are probably of different structures, so we need to know what
  data set a record came from in order to process it correctly. Typically, no
  filtering is done prior to the join operation, so some join operations will
  require every single byte of input to be sent to the reduce phase, which is
  very taxing on your network. For example, joining a terabyte of data onto
  another terabyte data set could require at least two terabytes of network
  bandwith—and that’s before any actual join logic can be done.
On top of all of the complexity so far, one has to determine the best
  way out of a number of different ways to accomplish the same task. Because
  the framework is broken down into simple map and reduce tasks, there is a
  lot of hands-on work to do and a lot of things to keep in mind. After you
  learn the possibilities, the question to ask is when to use what pattern. As
  with any MapReduce operation, network bandwith is a very important resource
  and joins have a tendency to use a lot of it. Anything we can do to make the
  network transfer more efficient is worthwhile, and network optimizations are
  what differentiates these patterns.
Each of the upcoming patterns can be used to perform an inner join or
  at least one type of outer join. As far as what pattern to choose, it
  depends largely on how large the data sets are, how your data is formatted,
  and what type of join you want. On the other hand, the Cartesian product is
  completely different, but we can cross that bridge when we get there.
The first pattern discussed in this chapter, the reduce side
  join, is the most basic, along with a modified version that uses
  a Bloom filter. After that, we discuss two patterns that perform a join
  operation on the map-side using either the distributed cache or a merging
  feature in the Hadoop MapReduce API. Finally, we take a look at how to
  execute the crafty operation that is the Cartesian product.
Choosing the right type of join for your situation can be challenging. Make sure to pay
    careful attention to the criteria in the “Applicability” section of each of the pattern descriptions.
A Refresher on Joins



If you come from a strong SQL background, you can probably skip this section,
    but for those of us that started with Hadoop, joins may be a bit of a
    foreign concept.
Joins are possibly one of the most complex operations one can
    execute in MapReduce. By design, MapReduce is very good at processing
    large data sets by looking at every record or group in isolation, so
    joining two very large data sets together does not fit into the paradigm
    gracefully. Before we dive into the patterns themselves, let’s go over
    what we mean when we say join and the different
    types of joins that exist.
A join is an operation that combines records
    from two or more data sets based on a field or set of fields, known as the
    foreign key. The foreign key is the field in a
    relational table that matches the column of another table, and is used as
    a means to cross-reference between tables. Examples are the simplest way
    to go about explaining joins, so let’s dive right in. To simplify
    explanations of the join types, two data sets will be used,
    A and B, with the foreign key
    defined as f. As the different types of joins are
    described, keep the two tables A (Table 5-1) and B (Table 5-2) in mind, as they will be used in the upcoming
    descriptions.
Table 5-1. Table A
	User ID	Reputation	Location
	3	3738	New York, NY
	4	12946	New York, NY
	5	17556	San Diego, CA
	9	3443	Oakland, CA



Table 5-2. Table B
	User ID	Post ID	Text
	3	35314	Not sure why this is getting downvoted.
	3	48002	Hehe, of course, it’s all true!
	5	44921	Please see my post below.
	5	44920	Thank you very much for your reply.
	8	48675	HTML is not a subset of XML!



	INNER JOIN
	When people don’t specify the type of join when they say “join”,
          usually what they are talking about is an inner
          join. With this type of join, records from both
          A and B that contain
          identical values for a given foreign key f are
          brought together, such that all the columns of both
          A and B now make a new
          table. Records that contain values of f that
          are contained in A but not in
          B, and vice versa, are not represented in the
          result table of the join operation.
Table 5-3 shows the result of an inner
          join operation between A and
          B with User ID as
          f.
Table 5-3. Inner Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.



Records with a User ID of 3 or 5 are present in both tables,
          so they will be in the final table. Users 4 and 9 in table
          A and User 8 in table B
          are not represented in the other table, so the records will be
          omitted. However, these records will be present in a type of outer
          join, which brings us to our next type of join!

	OUTER JOIN
	An outer join is similar to an inner join, but records with a
          foreign key not present in both tables will be in the final table.
          There are three types of outer joins and each type will directly
          affect which unmatched records will be in the final table.
In a left outer join, the unmatched records in the “left” table will be in the
          final table, with null values in the columns of the right table that
          did not match on the foreign key. Unmatched records present in the
          right table will be discarded. A right outer
          join is the same as a left outer, but the difference is the right
          table records are kept and the left table values are null where
          appropriate. A full outer join will contain all unmatched records from both tables, sort
          of like a combination of both a left and right outer join.
Table 5-4 shows the result of a left
          outer join operation between A and
          B on User ID.
Table 5-4. Left Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	null	null	null
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	9	3443	Oakland, CA	null	null	null



Records with a user ID of 3 or 5 are present in both tables,
          so they will be in the final table. Users 4 and 9 in table
          A does not have a corresponding value in table
          B, but since this is a left outer join and
          A is on the left, these users will be kept but
          contain null values in the columns present only in table
          B. User 8 in B does not
          have a match in A, so it is omitted.
Table 5-5 shows the result of a
          right outer join operation between
          A and B on User ID.
Table 5-5. Right Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	null	null	null	8	48675	HTML is not a subset of XML!



Again, records with a user ID of 3 or 5 are present in both
          tables, so they will be in the final table. User 8 in
          B does not have a match in
          A, but is kept because B
          is the right table. Users 4 and 9 are omitted as they doesn’t have a
          match in table B.
Table 5-6 shows the result of a
          full outer join operation between
          A and B on User ID.
Table 5-6. Full Outer Join of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	null	null	null
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	null	null	null	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	null	null	null



Once again, records with a user ID of 3 or 5 are present in
          both tables, so they will be in the final table. Users 4, 8, and 9
          are present in the resulting table even though they do not contain
          matches in their respective opposite table.

	ANTIJOIN
	An antijoin is a full outer join minus the inner join. That is, the resulting
          table contains only records that did not contain a match on
          f.
Table 5-7 shows the result of an antijoin
          operation between A and B
          on User ID.
Table 5-7. Antijoin of A + B on User ID
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	4	12946	New York, NY	null	null	null
	null	null	null	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	null	null	null



Users 4, 8, and 9 do not contain a value of
          f in both tables, so they are in the resulting
          table. Records from user 3 and 5 are not present, as they are in
          both tables.

	CARTESIAN PRODUCT
	A Cartesian product or cross
          product takes each record from a table and matches it up with every
          record from another table. If table X contains
          n records and table Y
          contains m records, the cross product of
          X and Y, denoted
          X × Y, contains
          n × m records. Unlike the
          other join operations, a Cartesian product does not contain a
          foreign key. As we will see in the upcoming pattern, this operation
          is extremely expensive to perform no matter where you implement it,
          and MapReduce is no exception.
Table 5-8 shows the result of a Cartesian
          product between A and
          B.
Table 5-8. Cartesian Product, A × B
	A.User ID	A.Reputation	A.Location	B.User ID	B.Post ID	B.Text
	3	3738	New York, NY	3	35314	Not sure why this is getting downvoted.
	3	3738	New York, NY	3	48002	Hehe, of course, it’s all true!
	3	3738	New York, NY	5	44921	Please see my post below.
	3	3738	New York, NY	5	44920	Thank you very much for your reply.
	3	3738	New York, NY	8	48675	HTML is not a subset of XML!
	4	12946	New York, NY	3	35314	Not sure why this is getting downvoted.
	4	12946	New York, NY	3	48002	Hehe, of course, it’s all true!
	4	12946	New York, NY	5	44921	Please see my post below.
	4	12946	New York, NY	5	44920	Thank you very much for your reply.
	4	12946	New York, NY	8	48675	HTML is not a subset of XML!
	5	17556	San Diego, CA	3	35314	Not sure why this is getting downvoted.
	5	17556	San Diego, CA	3	48002	Hehe, of course, it’s all true!
	5	17556	San Diego, CA	5	44921	Please see my post below.
	5	17556	San Diego, CA	5	44920	Thank you very much for your reply.
	5	17556	San Diego, CA	8	48675	HTML is not a subset of XML!
	9	3443	Oakland, CA	3	35314	Not sure why this is getting downvoted.
	9	3443	Oakland, CA	3	48002	Hehe, of course, it’s all true!
	9	3443	Oakland, CA	5	44921	Please see my post below.
	9	3443	Oakland, CA	5	44920	Thank you very much for your reply.
	9	3443	Oakland, CA	8	48675	HTML is not a subset of XML!







Reduce Side Join



Pattern Description



The reduce side join pattern can take
      the longest time to execute compared to the other join
      patterns, but it is simple to implement and supports all the different
      join operations discussed in the previous section.
Intent



Join large multiple data sets together by some foreign
        key.

Motivation



A reduce side join is arguably one of the easiest implementations of a join in
          MapReduce, and therefore is a very attractive choice. It can be used to execute any of the
          types of joins described above with relative ease and there is no limitation on the size
          of your data sets. Also, it can join as many data sets together at once as you need. All
          that said, a reduce side join will likely require a large amount of network bandwidth
          because the bulk of the data is sent to the reduce phase. This can take some time, but if
          you have resources available and aren’t concerned about execution time, by all means use
          it! Unfortunately, if all of the data sets are large, this type of join may be your only
          choice.

Applicability



A reduce side join should be used when:
	Multiple large data sets are being
            joined by a foreign key. If all but one of the data sets can be
            fit into memory, try using the replicated join.

	You want the flexibility of being able to execute any join
            operation.




Structure



	The mapper prepares the join operation by taking each input
            record from each of the data sets and extracting the foreign key
            from the record. The foreign key is written as the output key, and
            the entire input record as the output value. This output value is
            flagged by some unique identifier for the data set, such as
            A or B if two data sets
            are used. See Figure 5-1.

	A hash partitioner can be used, or a customized partitioner
            can be created to distribute the intermediate key/value pairs more
            evenly across the reducers.

	The reducer performs the desired join operation by
            collecting the values of each input group into temporary lists.
            For example, all records flagged with A are
            stored in the ‘A’ list and all records flagged with
            B are stored in the ‘B’ list. These lists are
            then iterated over and the records from both sets are joined
            together. For an inner join, a joined record is output if all the
            lists are not empty. For an outer join (left, right, or full),
            empty lists are still joined with non empty lists. The antijoin is
            done by examining that exactly one list is empty. The records of
            the non-empty list are written with an empty writable.



[image: The structure of the reduce side join pattern]

Figure 5-1. The structure of the reduce side join pattern


Consequences



The output is a number of part files equivalent to the number of
        reduce tasks. Each of these part files together contains the portion
        of the joined records. The columns of each record depend on how they
        were joined in the reducer. Some column values will be null if an
        outer join or antijoin was performed.

Resemblances



	SQL
	Joins are very common in SQL and easy to execute.

SELECT users.ID, users.Location, comments.upVotes
FROM users
[INNER|LEFT|RIGHT] JOIN comments
ON users.ID=comments.UserID

	Pig
	Pig has support for inner joins and left, right, and full outer joins.

-- Inner Join
A = JOIN comments BY userID, users BY userID;

-- Outer Join
A = JOIN comments BY userID [LEFT|RIGHT|FULL] OUTER, users BY userID;




Performance analysis



A plain reduce side join puts a lot of strain on the cluster’s
        network. Because the foreign key of each input record is extracted and
        output along with the record and no data can be filtered ahead of
        time, pretty much all of the data will be sent to the shuffle and sort
        step. For this reason, reduce side joins will typically utilize
        relatively more reducers than your typical analytic.
If any of the other pattern described in this chapter can be
        used (other than Cartesian product), it is recommended that you do so.
        Sometimes this basic join pattern is the only one that fits the
        circumstances.


Reduce Side Join Example



User and comment join



In this example, we’ll be using the users and comments tables from the StackOverflow data set.
          Storing data in this matter makes sense, as storing repetitive user data with each comment
          is unnecessary. This would also make updating user information difficult. However, having
          disjoint data sets poses problems when it comes to associating a comment with the user who
          wrote it. Through the use of a reduce side join, these two data sets can be merged
          together using the user ID as the foreign key. In this example, we’ll perform an inner,
          outer, and antijoin. The choice of which join to execute is set during job
          configuration.
Hadoop supports the ability to use multiple input data types at
        once, allowing you to create a mapper class and input format for each
        input split from different data sources. This is extremely helpful,
        because you don’t have to code logic for two different data inputs in
        the same map implementation. In the following example, two mapper
        classes are created: one for the user data and one for the comments.
        Each mapper class outputs the user ID as the foreign key, and the
        entire record as the value along with a single character to flag which
        record came from what set. The reducer then copies all values for each
        group in memory, keeping track of which record came from what data
        set. The records are then joined together and output.
Caution
Be advised that the output key and value types need to be
          identical for all of the mapper classes used.

The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a set of user information and a list of user’s
        comments, enrich each comment with the information about the user who
        created the comment.
Driver code



The job configuration is slightly different from the standard
          configuration due to the user of the multiple input utility. We also
          set the join type in the job configuration to args[2] so it can be used in the reducer.
          The relevant piece of the driver code to use the MultipleInput follows: 
...
// Use MultipleInputs to set which input uses what mapper
// This will keep parsing of each data set separate from a logical standpoint
// The first two elements of the args array are the two inputs
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class,
        UserJoinMapper.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class,
        CommentJoinMapper.class);

job.getConfiguration()..set("join.type", args[2]);
...

User mapper code



This mapper parses each input line of user data XML. It grabs
          the user ID associated with each record and outputs it along with
          the entire input value. It prepends the letter A in front of the entire value. This
          allows the reducer to know which values came from what data
          set.

public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {

    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        // Parse the input string into a nice map
        Map<String, String> parsed =
                MRDPUtils.transformXmlToMap(value.toString());

        String userId = parsed.get("Id");
        
        // The foreign join key is the user ID
        outkey.set(userId);

        // Flag this record for the reducer and then output
        outvalue.set("A" + value.toString());
        context.write(outkey, outvalue);
    }
}
Tip
When you output the value from the map side, the entire
            record doesn’t have to be sent. This is an opportunity to optimize
            the join by keeping only the fields of data you want to join
            together. It requires more processing on the map side, but is
            worth it in the long run. Also, since the foreign key is in the
            map output key, you don’t need to keep that in the value,
            either.


Comment mapper code



This mapper parses each input line of comment XML. Very
          similar to the UserJoinMapper, it
          too grabs the user ID associated with each record and outputs it
          along with the entire input value. The only different here is that
          the XML attribute UserId
          represents the user that posted to comment, where as Id in the user data set is the user ID.
          Here, this mapper prepends the letter B in front of the entire value.

public static class CommentJoinMapper extends
        Mapperlt;Object, Text, Text, Text> {

    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // The foreign join key is the user ID
        outkey.set( parsed.get("UserId"));

        // Flag this record for the reducer and then output
        outvalue.set("B" + value.toString());
        context.write(outkey, outvalue);
    }
}

Reducer code



The reducer code iterates through all the values of each group
          and looks at what each record is tagged with and then puts the
          record in one of two lists. After all values are binned in either
          list, the actual join logic is executed using the two lists. The
          join logic differs slightly based on the type of join, but always
          involves iterating through both lists and writing to the Context object. The type of join is pulled
          from the job configuration in the setup method. Let’s look at the
          main reduce method before looking at the join logic.

public static class UserJoinReducer extends Reducer<Text, Text, Text, Text> {

  private static final Text EMPTY_TEXT = Text("");
    private Text tmp = new Text();
    private ArrayList<Text> listA = new ArrayList<Text>();
    private ArrayList<Text> listB = new ArrayList<Text>();
    private String joinType = null;

    public void setup(Context context) {
        // Get the type of join from our configuration
        joinType = context.getConfiguration().get("join.type");
    }

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {

        // Clear our lists
        listA.clear();
        listB.clear();

        // iterate through all our values, binning each record based on what
        // it was tagged with.  Make sure to remove the tag!
        while (values.hasNext()) {
            tmp = values.next();
            if (tmp.charAt(0) == 'A') {
                listA.add(new Text(tmp.toString().substring(1)));
            } else if (tmp.charAt('0') == 'B') {
                listB.add(new Text(tmp.toString().substring(1)));
            }
        }

        // Execute our join logic now that the lists are filled
        executeJoinLogic(context);
    }

    private void executeJoinLogic(Context context)
            throws IOException, InterruptedException {
        ...
    }
The input data types to the reducer are two Text objects. The input key is the foreign
          join key, which in this example is the user’s ID. The input values
          associated with the foreign key contain one record from the “users”
          data set tagged with ‘B’, as well as all the comments the user
          posted tagged with ‘B’. Any type of data formatting you would want
          to perform should be done here prior to outputting. For simplicity,
          the raw XML value from the left data set (users) is output as the
          key and the raw XML value from the right data set (comments) is
          output as the value.
Next, let’s look at each of the join types. First up is an inner join. If both the
            lists are not empty, simply perform two nested for loops and join each of the values
            together.
            
if (joinType.equalsIgnoreCase("inner")) {
    // If both lists are not empty, join A with B
    if (!listA.isEmpty() && !listB.isEmpty()) {
        for (Text A : listA) {
            for (Text B : listB) {
                context.write(A, B);
            }
        }
    }
} ...

            For a left outer join, if the right list is not empty, join A with
              B. If the right list is empty, output each record of
              A with an empty string.
            
... else if (joinType.equalsIgnoreCase("leftouter")) {
    // For each entry in A,
    for (Text A : listA) {
        // If list B is not empty, join A and B
        if (!listB.isEmpty()) {
            for (Text B : listB) {
                context.write(A, B);
            }
        } else {
            // Else, output A by itself
            context.write(A, EMPTY_TEXT);
        }
    }
} ...

            A right outer join is very similar, except switching from the check for empty elements
            from B to A. If the left list is empty, write
            records from B with an empty output key.
            
... else if (joinType.equalsIgnoreCase("rightouter")) {
    // For each entry in B,
    for (Text B : listB) {
       // If list A is not empty, join A and B
        if (!listA.isEmpty()) {
            for (Text A : listA) {
                context.write(A, B);
            }
        } else {
            // Else, output B by itself
            context.write(EMPTY_TEXT, B);
        }
    }
} ...

            A full outer join is more complex, in that we want to keep all records, ensuring that we
            join records where appropriate. If list A is not empty, then for every element in
              A, join with B when the
              B list is not empty, or output A by itself.
            If A is empty, then just output B.
            
... else if (joinType.equalsIgnoreCase("fullouter")) {
    // If list A is not empty
    if (!listA.isEmpty()) {
        // For each entry in A
        for (Text A : listA) {
            // If list B is not empty, join A with B
            if (!listB.isEmpty()) {
                for (Text B : listB) {
                    context.write(A, B);
                }
            } else {
                // Else, output A by itself
                context.write(A, EMPTY_TEXT);
            }
        }
    } else {
        // If list A is empty, just output B
        for (Text B : listB) {
            context.write(EMPTY_TEXT, B);
        }
    }
} ...

            For an antijoin, if at least one of the lists is empty, output the records from the
            non-empty list with an empty Text object.
            
...  else if (joinType.equalsIgnoreCase("anti")) {
    // If list A is empty and B is empty or vice versa
    if (listA.isEmpty() ^ listB.isEmpty()) {

        // Iterate both A and B with null values
        // The previous XOR check will make sure exactly one of
        // these lists is empty and therefore the list will be skipped
        for (Text A : listA) {
            context.write(A, EMPTY_TEXT);
        }

        for (Text B : listB) {
            context.write(EMPTY_TEXT, B);
        }
    }
} ...
Caution
Be considerate of follow on data parsing to ensure proper field delimiters.
              Outputting an empty text object is actually unwise. A record that contains the proper
              structure but with null fields should be generated instead of outputting an empty
              object. This will ensure proper parsing for follow-on analytics.


Combiner optimization



Because the join logic is performed on the reduce side, a
          combiner will not provide much optimization in this example.



Reduce Side Join with Bloom Filter



Reputable user and comment join



This example is very similar to the previous one, but with the added
        optimization of using a Bloom filter to filter out some of mapper
        output. This will help reduce the amount of data being sent to the
        reducers and in effect reduce the runtime of our analytic. Say we are
        only interested in enriching comments with reputable users, i.e.,
        greater than 1,500 reputation. A standard reduce side join could be
        used, with the added condition to verify that a user’s reputation is
        greater than 1,500 prior to writing to the context object. This
        requires all the data to be parsed and forwarded to the reduce phase
        for joining. If we could stop outputting data from the mappers that we
        know are not going to be needed in the join, then we can drastically
        reduce network I/O. Using a Bloom filter is particularly useful with
        an inner join operation, and may not be useful at all with a full
        outer join operation or an antijoin. The latter two operations require
        all records to be sent to the reducer, so adding a Bloom filter has no
        value.
Filtering out users that do not meet the reputation requirement
        is simple enough for the UserJoinMapper class, because the user
        reputation is in the data. However, there are a lot more comments than
        users and the user reputation is not available in each comment record.
        Through the use of a Bloom filter, a small amount of memory can be
        used to perform the test we desire. A preprocess stage is needed to
        train a Bloom filter with all users that have at least 1,500
        reputation.
In the following example, both mappers are slightly different
        from the previous. The UserJoinMapper adds a test prior to writing
        key/value pairs to the context to ensure the user has at least 1,500
        reputation. The CommentJoin Mapper
        deserializes a Bloom filter from the DistributedCache and then used it as a test case prior to writing any output.
        The reducer remains the same as in the previous reduce side join
        example. The driver code is slightly different in that we use the
        DistributedCache to store the Bloom
        filters. This is omitted in the following code, as more information on
        how to use a Bloom filter with the DistributedCache can be found in the Appendix A.
User mapper code



The user ID is pulled from the XML record along with the reputation. If the
            reputation is greater than 1,500, the record is output along with the foreign key (user
            ID).
            
public static class UserJoinMapper extends Mapper<Object, Text, Text, Text> {

    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
        throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        // If the reputation is greater than 1,500,
        // output the user ID with the value
        if (Integer.parseInt(parsed.get("Reputation")) > 1500) {
            outkey.set(parsed.get("Id"));
            outvalue.set("A" + value.toString());
            context.write(outkey, outvalue);
        }
    }
}

Comment mapper code



The Bloom filter is initially deserialized from the DistributedCache prior to any calls to
            the map method. After deserialization, the user ID is pulled from the XML record and
            used for the membership test of the Bloom filter. If the test passes, the record is
            output along with the foreign key (user ID).
            
public static class CommentJoinMapperWithBloom extends
        Mapper<Object, Text, Text, Text> {

    private BloomFilter bfilter = new BloomFilter();
    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void setup(Context context) {
        Path[] files =
                DistributedCache.getLocalCacheFiles(context.getConfiguration());
        DataInputStream strm = new DataInputStream(
            new FileInputStream(new File(files[0].toString())));
        bfilter.readFields(strm);
    }

    public void map(Object key, Text value, Context context) {
            throws IOException, InterruptedException {

        Map>String, String> parsed = transformXmlToMap(value.toString());

        String userId = parsed.get("UserId");

        if (bfilter.membershipTest(new Key(userId.getBytes()))) {
            outkey.set(userId);
            outvalue.set("B" + value.toString());
            context.write(outkey, outvalue);
        }
    }
}
Caution
In this algorithm, we don’t need to verify the user’s
            reputation in the reducer prior to writing to the file system.
            While false positive records were output from the CommentJoinMapperWithBloom, they won’t
            be joined up with users on the reduce side since there will be
            nothing to join them with. The 100% check was done by only
            outputting user IDs with a reputation greater than 1,500. The main
            gain we received out of this Bloom filter was vastly reducing the
            number of comments output to the mapper phase. Be conscious of
            Bloom filter false positives and how they will affect your reduce
            side join operation.





Replicated Join



Pattern Description



A replicated join is a special type of join operation between one large and many small
      data sets that can be performed on the map-side.
Intent



This pattern completely eliminates the need to shuffle any data
        to the reduce phase.

Motivation



A replicated join is an extremely useful, but has a strict size
        limit on all but one of the data sets to be joined. All the data sets
        except the very large one are essentially read into memory during the
        setup phase of each map task, which is limited by the JVM heap. If you
        can live within this limitation, you get a drastic benefit because
        there is no reduce phase at all, and therefore no shuffling or
        sorting. The join is done entirely in the map phase, with the very
        large data set being the input for the MapReduce job.
There is an additional restriction that a replicated join is
        really useful only for an inner or a left outer join where the large
        data set is the “left” data set. The other join types require a reduce
        phase to group the “right” data set with the entirety of the left data
        set. Although there may not be a match for the data stored in memory
        for a given map task, there could be match in another input split.
        Because of this, we will restrict this pattern to inner and left outer
        joins.

Applicability



A replicated join should be used when:
	The type of join to execute is an inner join or a left outer
            join, with the large input data set being the “left” part of the
            operation.

	All of the data sets, except for the large one, can be fit
            into main memory of each map task.




Structure



	The mapper is responsible for reading all files from the distributed cache during
              the setup phase and storing them into in-memory lookup tables. After this setup phase
              completes, the mapper processes each record and joins it with all the data stored
              in-memory. If the foreign key is not found in the in-memory structures, the record is
              either omitted or output, based on the join type. See Figure 5-2.

	No combiner, partitioner, or reducer is used for this
            pattern. It is map-only.



[image: The structure of the replicated join pattern]

Figure 5-2. The structure of the replicated join pattern



Consequences



The output is a number of part files equivalent to the number of
        map tasks. The part files contain the full set of joined records. If a
        left outer join is used, the input to the MapReduce analytic will be
        output in full, with possible null values.

Resemblances



	Pig
	Pig has native support for a replicated join through a
              simple modification to the standard join operation syntax. Only
              inner and left outer joins are supported for replicated joins,
              for the same reasons we couldn’t do it above. The order of the
              data sets in the line of code matters because all but the first
              data sets listed are stored in-memory.

huge = LOAD 'huge_data' AS (h1,h2);
smallest = LOAD 'smallest_data' AS (ss1,ss2);
small = LOAD 'small_data' AS (s1,s2);
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING 'replicated';




Performance analysis



A replicated join can be the fastest type of join executed
        because there is no reducer required, but it comes at a cost. There
        are limitations on the amount of data that can be stored safely inside
        the JVM, which is largely dependent on how much memory you are willing
        to give to each map and reduce task. Experiment around with your data
        sets to see how much you can fit into memory prior to fully
        implementing this pattern. Also, be aware that the memory footprint of
        your data set stored in-memory is not necessarily the number of bytes
        it takes to store it on disk. The data will be inflated due to Java
        object overhead. Thankfully, you can omit any data you know you will
        not need.


Replicated Join Examples



Replicated user comment example



This example is closely related to the previous replicated join with
        Bloom filter example. The DistributedCache is utilized to push a file around to all map tasks, but
        instead of a Bloom filter representation of the data, the data itself
        is read into memory. Instead of filtering out data that will never be
        joined on the reduce side, the data is joined in the map phase.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a small set of user information and a large set
        of comments, enrich the comments with user information data.
Mapper code



During the setup phase of the mapper, the user data is read
          from the DistributedCache and
          stored in memory. Each record is parsed and the user ID is pulled
          out of the record. Then, the user ID and record are added to
          a HashMap for
          retrieval in the map method. This
          is where an out of memory error could occur, as the entire contents
          of the file is stored, with additional overhead of the data
          structure itself. If it does, you will either have to increase the
          JVM size or use a plain reduce side join.
After setup, consecutive calls to the map method are performed. For each input
          record, the user ID is pulled from the comment. This user ID is then
          used to retrieve a value from the HashMap built during the setup phase of
          the map. If a value is found, the input value is output along with
          the retrieved value. If a value is not found, but a left outer join
          is being executed, the input value is output with an empty Text object. That’s all there is to it!
          The input data is enriched with the data stored in memory.

public static class ReplicatedJoinMapper extends
        Mapper<Object, Text, Text, Text> {

  private static final Text EMPTY_TEXT = new Text("");
    private HashMap<String, String> userIdToInfo = new HashMap<String, String>();

    private Text outvalue = new Text();
    private String joinType = null;

    public void setup(Context context) throws IOException,
            InterruptedException {
        Path[] files =
                DistributedCache.getLocalCacheFiles(context.getConfiguration());
        // Read all files in the DistributedCache
        for (Path p : files) {
            BufferedReader rdr = new BufferedReader(
                    new InputStreamReader(
                            new GZIPInputStream(new FileInputStream(
                                    new File(p.toString())))));

            String line = null;
            // For each record in the user file
            while ((line = rdr.readLine()) != null) {

            // Get the user ID for this record
                Map<String, String> parsed = transformXmlToMap(line);
                String userId = parsed.get("Id");

                // Map the user ID to the record
                userIdToInfo.put(userId, line);
            }
        }

        // Get the join type from the configuration
        joinType = context.getConfiguration().get("join.type");
    }

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = transformXmlToMap(value.toString());

        String userId = parsed.get("UserId");
        String userInformation = userIdToInfo.get(userId);

        // If the user information is not null, then output
        if (userInformation != null) {
            outvalue.set(userInformation);
            context.write(value, outvalue);
        } else if (joinType.equalsIgnoreCase("leftouter")) {
            // If we are doing a left outer join,
            // output the record with an empty value
            context.write(value, EMPTY_TEXT);
        }
    }
}




Composite Join



Pattern Description



A composite join is a specialized type of join operation that can be performed
      on the map-side with many very large formatted inputs.
Intent



Using this pattern completely eliminates the need to shuffle and
        sort all the data to the reduce phase. However, it requires the data
        to be already organized or prepared in a very specific way.

Motivation



Composite joins are particularly useful if you want to join very
        large data sets together. However, the data sets must first be sorted
        by foreign key, partitioned by foreign key, and read in a very
        particular manner in order to use this type of join. With that said,
        if your data can be read in such a way or you can prepare your data, a
        composite join has a huge leg-up over the other types.
Hadoop has built in support for a composite join using the CompositeInputFormat. This join utility is
        restricted to only inner and full outer joins. The inputs for each
        mapper must be partitioned and sorted in a specific way, and each
        input dataset must be divided into the same number of partitions. In
        addition to that, all the records for a particular foreign key must be
        in the same partition. Usually, this occurs only if the output of
        several jobs has the same number of reducers and the same foreign key,
        and output files aren’t splittable, i.e., not bigger than the HDFS
        block size or gzipped. In many cases, one of the other patterns
        presented in this chapter is more applicable. If you find yourself
        having to format the data prior to using a composite join, you are
        probably better off just using a reduce side join unless this output
        is used by many analytics.

Applicability



A composite join should be used when:
	An inner or full outer join is desired.

	All the data sets are sufficiently large.

	All data sets can be read with the foreign key as the input
            key to the mapper.

	All data sets have the same number of partitions.

	Each partition is sorted by foreign key, and all the foreign
            keys reside in the associated partition of each data set. That is,
            partition X of data sets
            A and B contain the same
            foreign keys and these foreign keys are present only in partition
            X. For a visualization of this partitioning
            and sorting key, refer to Figure 5-3.

	The data sets do not change often (if they have to be
            prepared).



[image: Data sets that are sorted and partitioned on the same key]

Figure 5-3. Data sets that are sorted and partitioned on the same
            key



Structure



	The driver code handles most of the work in the job
            configuration stage. It sets up the type of input format used to
            parse the data sets, as well as the join type to execute. The
            framework then handles executing the actual join when the data is
            read. See Figure 5-4.

	The mapper is very trivial. The two values are retrieved
            from the input tuple and simply output to the file system.

	No combiner, partitioner, or reducer is used for this
            pattern. It is map-only.



[image: The structure of the composite join pattern]

Figure 5-4. The structure of the composite join pattern


Consequences



The output is a number of part files equivalent to the number of
        map tasks. The part files contain the full set of joined records. If
        configured for an outer join, there may be null values.

Performance analysis



A composite join can be executed relatively quickly over large
        data sets. However, the MapReduce framework can only set up the job so
        that one of the two data sets are data local. The respective files
        that are partitioned by the same key cannot be assumed to be on the
        same node.
Any sort of data preparation needs to taken into account in the
        performance of this analytic. The data preparation job is typically a
        MapReduce job, but if the data sets rarely change, then the sorted and
        partitioned data sets can be used over and over. Thus, the cost of
        producing these prepared data sets is averaged out over all of the
        runs.


Composite Join Examples



Composite user comment join



To meet the preconditions of a composite join, both the user and
        comment data sets have been preprocessed by MapReduce and output using
        the TextOutputFormat.
        The key of each data set is the user ID, and the value is either the
        user XML or comment XML, based on the data set. Hadoop has a KeyValueTextOutputFormat that can parse these formatted data sets exactly as required.
        The key will be the output key of our format job (user ID) and the
        value will be the output value (user or comment data).
Each data set was sorted by the foreign key, the caveat being
        that they are sorted as Text objects
        rather than LongWritable objects.
        That is, user “12345” comes before user “2”. This is because
        the CompositeInputFormat uses Text objects as the key for comparisons when
        doing the join. Each data set was then gzipped to prevent it from
        being split. The driver code demonstrates how to configure MapReduce
        to handle the join, while the mapper code is trivial.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given two large formatted data sets of user information
        and comments, enrich the comments with user information data.
Driver code



The driver parses the input arguments for the job: the path to
          the user data, the path to the comment data, the analytic output
          directory, and the type of join (inner or outer). The CompositeInputFormat utilizes the older
          mapred API, but configuration is similar to the mapreduce API.
          The most important piece of configuration is setting the input
          format and then configuring the join expression.
The input format has a static helper function to create the
          join expression itself. It takes in the join type (inner or outer),
          the input format class used to parse all the data sets, and then as
          many Path or
          String objects as desired, which represent the data sets to
          join together.
That’s all there is to it! After setting the remaining
          required parameters, the job is run until completion and the program
          exits.
Tip
For the curious reader, more information about the details of the magic join
              expression can be found in the CompositeInputFormat
              documentation.


public static void main(String[] args) throws Exception {

    Path userPath = new Path(args[0]);
    Path commentPath = new Path(args[1]);
    Path outputDir = new Path(args[2]);
    String joinType = args[3];

    JobConf conf = new JobConf("CompositeJoin");
    conf.setJarByClass(CompositeJoinDriver.class);
    conf.setMapperClass(CompositeMapper.class);
    conf.setNumReduceTasks(0);

    // Set the input format class to a CompositeInputFormat class.
    // The CompositeInputFormat will parse all of our input files and output
    // records to our mapper.
    conf.setInputFormat(CompositeInputFormat.class);

    // The composite input format join expression will set how the records
    // are going to be read in, and in what input format.
    conf.set("mapred.join.expr", CompositeInputFormat.compose(joinType,
            KeyValueTextInputFormat.class, userPath, commentPath));

    TextOutputFormat.setOutputPath(conf, outputDir);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    RunningJob job = JobClient.runJob(conf);
    while (!job.isComplete()) {
        Thread.sleep(1000);
    }

    System.exit(job.isSuccessful() ? 0 : 1);
}

Mapper code



The input to the mapper is the foreign key and a TupleWritable.
          This tuple contains a number of Text objects equivalent to the number of
          data sets. As far as position is concerned, the ordering of the
          Text objects maps directly to how it was configured. The first
          input path is the zeroth index, the second input path is the first
          index, and so on. The mapper simply grabs the objects from the tuple
          and outputs them. There are only two data sets to be joined in this
          example, so they are output as the key and value. If more were used,
          the strings would need be concatenated in some manner prior to being
          output.

public static class CompositeMapper extends MapReduceBase implements
        Mapper<Text, TupleWritable, Text, Text> {

    public void map(Text key, TupleWritable value,
            OutputCollector<Text, Text> output,
            Reporter reporter) throws IOException {

        // Get the first two elements in the tuple and output them
        output.collect((Text) value.get(0), (Text) value.get(1));
    }
}

Reducer and combiner



This pattern has no reducer or combiner implementation because
          it is map only.




Cartesian Product



Pattern Description



The Cartesian product pattern is an effective way to pair every record of multiple inputs
      with every other record. This functionality comes at a cost though, as a
      job using this pattern can take an extremely long time to
      complete.
Intent



Pair up and compare every single record with every other record
        in a data set.

Motivation



A Cartesian product allows relationships between every pair of
        records possible between one or more data sets to be analyzed. Rather
        than pairing data sets together by a foreign key, a Cartesian product
        simply pairs every record of a data set with every record of all the
        other data sets.
With that in mind, a Cartesian product does not fit into the
        MapReduce paradigm very well because the operation is not intuitively
        splittable, cannot be parallelized very well, and thus requires a lot
        of computation time and a lot of network traffic. Any preprocessing of
        that data that can be done to improve execution time and reduce the
        byte count should be done to improve runtimes.
It is very rare that you would need to do a Cartesian product,
        but sometimes there is simply no foreign key to join on and the
        comparison is too complex to group by ahead of time. Most use cases
        for using a Cartesian product are some sort of similarity analysis on
        documents or media.

Applicability



Use a Cartesian product when:
	You want to analyze relationships between all pairs of
            individual records.

	You’ve exhausted all other means to solve this
            problem.

	You have no time constraints on execution time.




Structure



	The cross product of the input splits is determined during
            job setup and configuration. After these are calculated, each
            record reader is responsible for generating the cross product from
            both of the splits it is given. The record reader gives a pair of
            records to a mapper class, which simply writes them both out to
            the file system. See Figure 5-5.

	No reducer, combiner, or partitioner is needed. This is a
            map-only job.



[image: The structure of the Cartesian product pattern]

Figure 5-5. The structure of the Cartesian product pattern



Consequences



The final data set is made up of tuples equivalent to the number
        of input data sets. Every possible tuple combination from the input
        records is represented in the final output.

Resemblances



	SQL
	Although very rarely seen, the Cartesian product is the
              syntactically simplest of all joins in SQL. Just select from
              multiple tables without a where clause.

SELECT * FROM tablea, tableb;

	Pig
	Pig can perform a Cartesian product using the CROSS
              statement. It also comes along with a warning that it is an
              expensive operation and should be used sparingly.

A = LOAD 'data1' AS (a1, a2, a3);
DUMP A;
(1,2,3)
(4,5,6)

B = LOAD 'data2' AS (b1, b2);
DUMP B;
(1,2)
(3,4)
(5,6)

C = CROSS A, B;

DUMP C;
(1,2,3,1,2)
(1,2,3,3,4)
(1,2,3,5,6)
(4,5,6,1,2)
(4,5,6,3,4)
(4,5,6,5,6)




Performance Analysis



The Cartesian product produces a massive explosion in data size,
        as even a self-join of a measly million records produces a trillion
        records. It should be used very sparingly because it will use up many
        map slots for a very long time. This will dramatically increase the
        run time of other analytics, as any map slots taken by a Cartesian
        product are unusable by other jobs until completion. If the number of
        tasks is greater than or equal to the total number of map slots in the
        cluster, all other work won’t get done for quite some time.
Each input split is paired up with every other input
        split—effectively creating a data set of
        O(n2),
        n being the number of bytes. A single record is
        read from the left input split, and then the entire right input split
        is read and reset before the second record from the left input split
        is read. If a single input split contains a thousand records, this
        means the right input split needs to be read a thousand times before
        the task can finish. This is a massive amount of processing time! If a
        single task fails for an odd reason, the whole thing needs to be
        restarted! You can see why a Cartesian product is a terrible, terrible
        thing to do in MapReduce.


Cartesian Product Examples



Comment Comparison



This example demonstrates how to perform a self-join using the StackOverflow comments. This self-join inspects a pair of comments and
        determines how similar they are to one another based on common words
        used between the two. If they are similar enough, the pair is output
        to the file system. Common words are removed from each comment along
        with other extra data in a preprocessing stage.
This example is different than all other examples in the book,
        in that it pays special attention to how the data is read. Here, we
        create a custom input format to generate the Cartesian product of the
        input splits for the Job. If the data set to be processed contains 11
        input splits, the job would contain 121 input splits, because 121
        pairs are generated from the cross product. The record reader of each
        map task performs the actual Cartesian product and presents each pair
        to the mapper for processing. It accomplishes this by reading a single
        record from the “left” data set, then pairing it with all the records
        from the “right” data set. The next record is read from the left data
        set, the reader of the right data set is reset, and it is used to pair
        up again. This process continues until there are no more records in
        the left set.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a groomed data set of StackOverflow comments,
        find pairs of comments that are similar based on the number of like
        words between each pair.
Caution
This is a homegrown Hadoop implementation of this problem for
          version 1.0.3 to demonstrate the idea behind how a cross product can
          be executed using MapReduce. Future versions of Hadoop MapReduce
          will have this functionality packaged with the distribution!

Input format code



The CartesianImportFormat
          piggybacks on a large portion of the CompositeInputFormat seen in the previous example of a composite join. It is
          implemented to support a Cartesian product for just two data sets
          for demonstration purposes in order to keep the code more simple.
           A single data set can be used as both the left and right data sets, as we
          do for this example. During job setup, getInputSplits creates the cross product
          of the input splits of both data sets into a list of CompositeInputSplits. This is done by
          creating the underlying input format for each data set to get the
          splits, and then calculating the cross product. These input splits
          are then assigned to map task across the cluster for
          processing.

public static class CartesianInputFormat extends FileInputFormat {

    public static final String LEFT_INPUT_FORMAT = "cart.left.inputformat";
    public static final String LEFT_INPUT_PATH = "cart.left.path";
    public static final String RIGHT_INPUT_FORMAT = "cart.right.inputformat";
    public static final String RIGHT_INPUT_PATH = "cart.right.path";

    public static void setLeftInputInfo(JobConf job,
            Class<? extends FileInputFormat> inputFormat, String inputPath) {
        job.set(LEFT_INPUT_FORMAT, inputFormat.getCanonicalName());
        job.set(LEFT_INPUT_PATH, inputPath);
    }

    public static void setRightInputInfo(JobConf job,
            Class<? extends FileInputFormat> inputFormat, String inputPath) {
        job.set(RIGHT_INPUT_FORMAT, inputFormat.getCanonicalName());
        job.set(RIGHT_INPUT_PATH, inputPath);
    }

    public InputSplit[] getSplits(JobConf conf, int numSplits)
            throws IOException {
        // Get the input splits from both the left and right data sets
        InputSplit[] leftSplits = getInputSplits(conf,
                conf.get(LEFT_INPUT_FORMAT), conf.get(LEFT_INPUT_PATH),
                    numSplits);
        InputSplit[] rightSplits = getInputSplits(conf,
                conf.get(RIGHT_INPUT_FORMAT), conf.get(RIGHT_INPUT_PATH),
                    numSplits);

        // Create our CompositeInputSplits, size equal to
        // left.length * right.length
        CompositeInputSplit[] returnSplits =
                new CompositeInputSplit[leftSplits.length *
                    rightSplits.length];

        int i = 0;
        // For each of the left input splits
        for (InputSplit left : leftSplits) {
                // For each of the right input splits
            for (InputSplit right : rightSplits) {
                // Create a new composite input split composing of the two
                returnSplits[i] = new CompositeInputSplit(2);
                returnSplits[i].add(left);
                returnSplits[i].add(right);
                ++i;
            }
        }

        // Return the composite splits
        LOG.info("Total splits to process: " + returnSplits.length);
        return returnSplits;
      }

    public RecordReader getRecordReader(InputSplit split, JobConf conf,
            Reporter reporter) throws IOException {
            // Create a new instance of the Cartesian record reader
            return new CartesianRecordReader((CompositeInputSplit) split,
                    conf, reporter);
    }

    private InputSplit[] getInputSplits(JobConf conf,
            String inputFormatClass, String inputPath, int numSplits)
            throws ClassNotFoundException, IOException {
        // Create a new instance of the input format
        FileInputFormat inputFormat = (FileInputFormat) ReflectionUtils
                .newInstance(Class.forName(inputFormatClass), conf);

        // Set the input path for the left data set
        inputFormat.setInputPaths(conf, inputPath);

        // Get the left input splits
        return inputFormat.getSplits(conf, numSplits);
    }
}

Driver code



The driver sets the necessary parameters for using the CartesianInputFormat. The same
          input path is used as both data sets for the input format, as we are
          performing a comparison between pairs of comments.

public static void main(String[] args) throws IOException,
        InterruptedException, ClassNotFoundException {

    // Configure the join type
    JobConf conf = new JobConf("Cartesian Product");
    conf.setJarByClass(CartesianProduct.class);

    conf.setMapperClass(CartesianMapper.class);
    conf.setNumReduceTasks(0);

    conf.setInputFormat(CartesianInputFormat.class);

    // Configure the input format
    CartesianInputFormat.setLeftInputInfo(conf, TextInputFormat.class, args[0]);
    CartesianInputFormat.setRightInputInfo(conf, TextInputFormat.class, args[0]);

    TextOutputFormat.setOutputPath(conf, new Path(args[1]));

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    RunningJob job = JobClient.runJob(conf);
    while (!job.isComplete()) {
        Thread.sleep(1000);
    }

    System.exit(job.isSuccessful() ? 0 : 1);
}

Record reader code



The record reader is where the magic happens of performing the
          cross product. During task setup, getRecordReader is called by the framework
          to return the CartesianRecordReader. The constructor of
          this class creates two separate record reader objects, one for each
          split.
The first call to next
          reads the first record from the left data set for the mapper input
          key, and the first record from the right data set as the mapper
          input value. This key/value pair is then given to the mapper for
          processing by the framework.
Subsequent calls to next
          then continue to read all the records from the right record reader,
          allowing the mapper to process them, until it says it has no more.
          In this case, a flag is set and the do-while will loop backwards,
          reading the second record from the left data set. The right record
          reader is reset, and the process continues.
This process completes until the left record reader returns
          false, stating there are no more key/value pairs. At this point, the
          record reader has given the Cartesian product of both input splits
          to the map task.
Tip
Some of the more simple methods to adhere to the
            RecordReader interface are missing for brevity, such as close() and getPos(). There are also some
            optimization opportunities that could be implemented, such as
            forcing the record reader to the next left record if you know it
            is not going to be useful. In this example, if the left record
            contains only one word in it and we are looking for pairs of
            comments that have a minimum of 3 common words, it doesn’t make
            much sense to read the entire right input split because no output
            is going to be made.


public static class CartesianRecordReader<K1, V1, K2, V2> implements
        RecordReader<Text, Text> {

    // Record readers to get key value pairs
    private RecordReader leftRR = null, rightRR = null;

    // Store configuration to re-create the right record reader
    private FileInputFormat rightFIF;
    private JobConf rightConf;
    private InputSplit rightIS;
    private Reporter rightReporter;

    // Helper variables
    private K1 lkey;
    private V1 lvalue;
    private K2 rkey;
    private V2 rvalue;
    private boolean goToNextLeft = true, alldone = false;

    public CartesianRecordReader(CompositeInputSplit split, JobConf conf,
            Reporter reporter) throws IOException {
        this.rightConf = conf;
        this.rightIS = split.get(1);
        this.rightReporter = reporter;

        // Create left record reader
        FileInputFormat leftFIF = (FileInputFormat) ReflectionUtils
                .newInstance(Class.forName(conf
                        .get(CartesianInputFormat.LEFT_INPUT_FORMAT)), conf);

        leftRR = leftFIF.getRecordReader(split.get(0), conf, reporter);

        // Create right record reader
        rightFIF = (FileInputFormat) ReflectionUtils.newInstance(Class
                .forName(conf
                        .get(CartesianInputFormat.RIGHT_INPUT_FORMAT)), conf);

        rightRR = rightFIF.getRecordReader(rightIS, rightConf, rightReporter);
      
        // Create key value pairs for parsing
        lkey = (K1) this.leftRR.createKey();
        lvalue = (V1) this.leftRR.createValue();

        rkey = (K2) this.rightRR.createKey();
        rvalue = (V2) this.rightRR.createValue();
    }

    public boolean next(Text key, Text value) throws IOException {
        do {
            // If we are to go to the next left key/value pair
            if (goToNextLeft) {
                // Read the next key value pair, false means no more pairs
                if (!leftRR.next(lkey, lvalue)) {
                    // If no more, then this task is nearly finished
                    alldone = true;
                    break;
                } else {
                    // If we aren't done, set the value to the key and set
                    // our flags
                    key.set(lvalue.toString());
                    goToNextLeft = alldone = false;

                    // Reset the right record reader
                    this.rightRR = this.rightFIF.getRecordReader(
                            this.rightIS, this.rightConf,
                            this.rightReporter);
                }
            }

            // Read the next key value pair from the right data set
            if (rightRR.next(rkey, rvalue)) {
                // If success, set the value
                value.set(rvalue.toString());
            } else {
                // Otherwise, this right data set is complete
                // and we should go to the next left pair
                goToNextLeft = true;
            }

            // This loop will continue if we finished reading key/value
            // pairs from the right data set
        } while (goToNextLeft);

        // Return true if a key/value pair was read, false otherwise
        return !alldone;
    }
}

Mapper code



The mapper is presented with a cross product pair. For each
          Text object, it reads the word
          tokens into a set. The sets are then iterated to determine how many
          common words there are between the two.  If there are more then ten words, the pair is output to the file
          system.

public static class CartesianMapper extends MapReduceBase implements
        Mapper<Text, Text, Text, Text> {

    private Text outkey = new Text();

    public void map(Text key, Text value,
            OutputCollector<Text, Text> output, Reporter reporter)
            throws IOException {

        // If the two comments are not equal
        if (!key.toString().equals(value.toString())) {
            String[] leftTokens = key.toString().split("\\s");
            String[] rightTokens = value.toString().split("\\s");

            HashSet<String> leftSet = new HashSet<String>(
                    Arrays.asList(leftTokens));
            HashSet<String> rightSet = new HashSet<String>(
                    Arrays.asList(rightTokens));

            int sameWordCount = 0;
            StringBuilder words = new StringBuilder();
            for (String s : leftSet) {
                if (rightSet.contains(s)) {
                    words.append(s + ",");
                    ++sameWordCount;
                }
            }

            // If there are at least three words, output
            if (sameWordCount > 2) {
                outkey.set(words + "\t" + key);
                output.collect(outkey, value);
            }
        }
    }
}





Chapter 6. Metapatterns



This chapter is different from the others in that it doesn’t contain
  patterns for solving a particular problem, but patterns that deal with
  patterns. The term metapatterns is directly translated to “patterns about patterns.” The first
  method that will be discussed is job chaining, which is
  piecing together several patterns to solve complex, multistage problems. The
  second method is job merging, which is an optimization for performing several analytics in
  the same MapReduce job, effectively killing multiple birds with one
  stone.
Job Chaining



Job chaining is extremely important to understand and have an operational
    plan for in your environment. Many people find that they can’t solve a
    problem with a single MapReduce job. Some jobs in a chain will run in
    parallel, some will have their output fed into other jobs, and so on. Once
    you start to understand how to start solving problems as a series of
    MapReduce jobs, you’ll be able to tackle a whole new class of
    challenges.
Job chaining is one of the more complicated processes to handle
    because it’s not a feature out of the box in most MapReduce frameworks.
    Systems like Hadoop are designed for handling one MapReduce job very well,
    but handling a multistage job takes a lot of manual coding. There are
    operational considerations for handling failures in the stages of the job
    and cleaning up intermediate output. In this section, a few different
    approaches to job chaining will be discussed. Some will seem more
    appealing than others for your particular environment, as each has its own
    pros and cons.
A couple of frameworks and tools have emerged to fill this niche. If
    you do a lot of job flows and your chaining is pretty complex, you should
    consider using one of these. The approaches described in this section are
    more lightweight and need to be implemented on a job-by-job basis. Oozie, an open source Apache project, has functionality for building
    workflows and coordinating job running. Building job chains is only one of
    the many features that are useful for operationally running Hadoop
    MapReduce.
One particular common pitfall is to use MapReduce for something that
    is small enough that distributing the job is not necessary. If you think
    chaining two jobs together is the right choice, think about how much
    output there is from the first. If there are tons of output data, then by
    all means use a second MapReduce job. Many times, however, the output of
    the job is small and can be processed quite effectively on a single node.
    The two ways of doing this is to either load the data through the file
    system API in the driver after the job has completed, or incorporate
    it in some sort of bash script wrapper.
Caution
A major problem with MapReduce chains is the size of the temporary
      files. In some cases, they may be tiny, which will cause a significant
      amount of overhead in firing up way too many map tasks to load
      them.
In a nonchained job, the number of reducers typically depends more
      on the amount of data they are receiving than the amount of data you’d
      like to output. When chaining, the size of the output files is likely
      more important, even if the reducers will take a bit longer. Try to
      shoot for output files about the size of one block on the distributed
      filesystem. Just play around with the number of reducers and see what
      the impact is on performance (which is good advice in general).
The other option is to consistently use CombineFileInputFormat for jobs that load intermittent output. CombineFileInputFormat takes smaller blocks and lumps them
        together to make a larger input split before being processed by the mapper. 

With the Driver



Probably the simplest method for performing job chaining is to have a master
      driver that simply fires off multiple job-specific drivers. There’s
      nothing special about a MapReduce driver in Hadoop; it’s pretty generic
      Java. It doesn’t derive from some sort of special class or
      anything.
Take the driver for each MapReduce job and call them in the
      sequence they should run. You’ll have to specifically be sure that the
      output path of the first job is the input path of the second. You can be
      sure of this by storing the temporary path string as a variable and
      sharing it.
In a production scenario, the temporary directories should be
      cleaned up so they don’t linger past the completion of the job. Lack of
      discipline here can surprisingly fill up your cluster rather quickly.
      Also, be careful of how much temporary data you are actually creating
      because you’ll need storage in your file system to store that
      data.
You can pretty easily extrapolate this approach to create chains
      that are much longer than just two jobs. Just be sure to keep track of
      all of the temporary paths and optionally clean up the data not being
      used anymore as the job runs.
You can also fire off multiple jobs in parallel by using Job.submit()
      instead of Job.waitForCompletion(). The submit method
      returns immediately to the current thread and runs the job in the
      background. This allows you to run several jobs at once. Use Job.isComplete(), a
      nonblocking job completion check, to constantly poll to see whether all
      of the jobs are complete.
The other thing to pay attention to is job success. It’s not good
      enough to just know that the job completed. You also need to check
      whether it succeeded or not. If a dependency job failed, you should
      break out of the entire chain instead of trying to let it
      continue.
It’s pretty obvious that this process is going to be rather
      difficult to manage and maintain from a software engineering prospective
      as the job chains get more complicated. This is where something
      like JobControl or
      Oozie comes in.

Job Chaining Examples



Basic job chaining



The goal of this example is to output a list of users along with a couple
        pieces of information: their reputations and how many posts each has
        issued. This could be done in a single MapReduce job, but we also want
        to separate users into those with an above-average number of posts and
        those with a below-average number. We need one job to perform the
        counts and another to separate the users into two bins based on the
        number of posts. Four different patterns are used in this example:
        numerical summarization, counting, binning, and a replicated join. The
        final output consists of a user ID, the number of times they posted,
        and their reputation.
The average number of posts per user is calculated between the
        two jobs using the framework’s counters. The users data set is put in
        the DistributedCache in the
        second job to enrich the output data with the users’
        reputations. This enrichment occurs in order to feed in to the next
        example in this section, which calculates the average reputation of
        the users in the two bins.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a data set of StackOverflow posts, bin users
        based on if they are below or above the number of average posts per
        user. Also to enrich each user with his or her reputation from a
        separate data set when generating the output.
Job one mapper



Before we look at the driver, let’s get an understanding of
          the mapper and reducer for both jobs. The mapper records the user ID
          from each record by assigning the value of the OwnerUserId attribute as the output key
          for the job, with a count of one as the value. It also increments a
          record counter by one. This value is later used in the driver to
          calculate the average number of posts per user. The AVERAGE_CALC_GROUP is a public static string at the driver
          level.

public static class UserIdCountMapper extends
        Mapper<Object, Text, Text, LongWritable> {

    public static final String RECORDS_COUNTER_NAME = "Records";

    private static final LongWritable ONE = new LongWritable(1);
    private Text outkey = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        String userId = parsed.get("OwnerUserId");

        if (userId != null) {
            outkey.set(userId);
            context.write(outkey, ONE);
            context.getCounter(AVERAGE_CALC_GROUP,
                    RECORDS_COUNTER_NAME).increment(1);
        }
    }
}

Job one reducer



The reducer is also fairly trivial. It simply iterates through
          the input values (all of which we set to 1) and keeps a running sum,
          which is output along with the input key. A different counter is
          also incremented by one for each reduce group, in order to calculate
          the average.

public static class UserIdSumReducer extends
        Reducer<Text, LongWritable, Text, LongWritable> {

    public static final String USERS_COUNTER_NAME = "Users";
    private LongWritable outvalue = new LongWritable();

    public void reduce(Text key, Iterable<LongWritable> values,
            Context context) throws IOException, InterruptedException {

        // Increment user counter, as each reduce group represents one user
        context.getCounter(AVERAGE_CALC_GROUP, USERS_COUNTER_NAME).increment(1);

        int sum = 0;
        for (LongWritable value : values) {
            sum += value.get();
        }

        outvalue.set(sum);
        context.write(key, outvalue);
    }
}

Job two mapper



This mapper is more complicated than the previous jobs. It is
          doing a few different things to get the desired output. The setup
          phase accomplishes three different things. The average number of
          posts per user is pulled from the Context object that was set during job
          configuration. The MultipleOutputs
          utility is initialized as well. This is used to write the output to
          different bins. Finally, the user data set is parsed from the
          DistributedCache to build a map
          of user ID to reputation. This map is used for the desired data
          enrichment during output.
Compared to the setup, the map method is much easier. The
          input value is parsed to get the user ID and number of times posted.
          This is done by simply splitting on tabs and getting the first two
          fields of data. Then the mapper sets the output key to the user ID
          and the output value to the number of posts along with the user’s
          reputation, delimited by a tab. The user’s number of posts is then
          compared to the average, and the user is binned
          appropriately.
An optional fourth parameter of MultipleOutputs.write is used in this
          example to name each part file. A constant is used to specify the
          directory for users based on whether they are below or above average
          in their number of posts. The filename in the folder is named
          through an extra /part string.
          This becomes the beginning of the filename, to which the framework
          will append -m-nnnnn, where
          nnnnn is the task ID number. With this
          name, a folder will be created for both bins and the folders will
          contain a number of part files.
          This is done for easier input/output management for the next example
          on parallel jobs.
Finally, MultipleOutputs is
          closed in the cleanup stage.

public static class UserIdBinningMapper extends
        Mapper<Object, Text, Text, Text> {

    public static final String AVERAGE_POSTS_PER_USER = "avg.posts.per.user";

    public static void setAveragePostsPerUser(Job job, double avg) {
        job.getConfiguration().set(AVERAGE_POSTS_PER_USER,
                Double.toString(avg));
    }

    public static double getAveragePostsPerUser(Configuration conf) {
        return Double.parseDouble(conf.get(AVERAGE_POSTS_PER_USER));
    }

    private double average = 0.0;
    private MultipleOutputs<Text, Text> mos = null;
    private Text outkey = new Text(), outvalue = new Text();
    private HashMap<String, String> userIdToReputation =
            new HashMap<String, String>();

    protected void setup(Context context) throws IOException,
            InterruptedException {
        average = getAveragePostsPerUser(context.getConfiguration());

        mos = new MultipleOutputs<Text, Text>(context);

        Path[] files = DistributedCache.getLocalCacheFiles(context
                .getConfiguration());

        // Read all files in the DistributedCache
        for (Path p : files) {
            BufferedReader rdr = new BufferedReader(
                    new InputStreamReader(
                            new GZIPInputStream(new FileInputStream(
                                    new File(p.toString())))));

            String line;
            // For each record in the user file
            while ((line = rdr.readLine()) != null) {
                // Get the user ID and reputation
                Map<String, String> parsed = MRDPUtils
                        .transformXmlToMap(line);
                // Map the user ID to the reputation
                userIdToReputation.put(parsed.get("Id"),
                        parsed.get("Reputation"));
            }
        }
    }

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        String[] tokens = value.toString().split("\t");

        String userId = tokens[0];
        int posts = Integer.parseInt(tokens[1]);

        outkey.set(userId);
        outvalue.set((long) posts + "\t" + userIdToReputation.get(userId));

        if ((double) posts < average) {
            mos.write(MULTIPLE_OUTPUTS_BELOW_NAME, outkey, outvalue,
                    MULTIPLE_OUTPUTS_BELOW_NAME + "/part");
        } else {
            mos.write(MULTIPLE_OUTPUTS_ABOVE_NAME, outkey, outvalue,
                    MULTIPLE_OUTPUTS_ABOVE_NAME + "/part");
        }
    }

    protected void cleanup(Context context) throws IOException,
            InterruptedException {
        mos.close();
    }
}

Driver code



Now let’s take a look at this more complicated driver. It is
          broken down into two sections for discussion: the first job and the
          second job. The first job starts by parsing command-line arguments
          to create proper input and output directories. It creates an
          intermediate directory that will be deleted by the driver at the end
          of the job chain.
Caution
A string is tacked on to the name of the output directory
            here to make our intermediate output directory. This is fine for
            the most part, but it may be a good idea to come up with a naming
            convention for any intermediate directories to avoid conflicts. If
            an output directory already exists during job submission, the job
            will never start.


public static void main(String[] args) throws Exception {

    Configuration conf = new Configuration();
    Path postInput = new Path(args[0]);
    Path userInput = new Path(args[1]);
    Path outputDirIntermediate = new Path(args[2] + "_int");
    Path outputDir = new Path(args[2]);

    // Setup first job to counter user posts
    Job countingJob = new Job(, "JobChaining-Counting");
    countingJob.setJarByClass(JobChainingDriver.class);

    // Set our mapper and reducer, we can use the API's long sum reducer for
    // a combiner!
    countingJob.setMapperClass(UserIdCountMapper.class);
    countingJob.setCombinerClass(LongSumReducer.class);
    countingJob.setReducerClass(UserIdSumReducer.class);

    countingJob.setOutputKeyClass(Text.class);
    countingJob.setOutputValueClass(LongWritable.class);

    countingJob.setInputFormatClass(TextInputFormat.class);

    TextInputFormat.addInputPath(countingJob, postInput);

    countingJob.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

    // Execute job and grab exit code
    int code = countingJob.waitForCompletion(true) ? 0 : 1;

    ...
The first job is checked for success before executing the
          second job. This seems simple enough, but with more complex job
          chains it can get a little annoying. Before the second job is
          configured, we grab the counter values from the first job to get the
          average posts per user. This value is then added to the job
          configuration. We set our mapper code and disable the reduce phase,
          as this is a map-only job. The other key parts to pay attention to
          are the configuration of MultipleOutputs
          and the DistributedCache.
          The job is then executed and the framework takes over
          from there.
Lastly and most importantly, success or failure, the
          intermediate output directory is cleaned up. This is an important
          and often overlooked step. Leaving any intermediate output will fill
          up a cluster quickly and require you to delete the output by hand.
          If you won’t be needing the intermediate output for any other
          analytics, by all means delete it in the code.

    if (code == 0) {
        // Calculate the average posts per user by getting counter values
        double numRecords = (double) countingJob
                .getCounters()
                .findCounter(AVERAGE_CALC_GROUP,
                        UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();
        double numUsers = (double) countingJob
                .getCounters()
                .findCounter(AVERAGE_CALC_GROUP,
                        UserIdSumReducer.USERS_COUNTER_NAME).getValue();

        double averagePostsPerUser = numRecords / numUsers;

        // Setup binning job
        Job binningJob = new Job(new Configuration(), "JobChaining-Binning");
        binningJob.setJarByClass(JobChainingDriver.class);

        // Set mapper and the average posts per user
        binningJob.setMapperClass(UserIdBinningMapper.class);
        UserIdBinningMapper.setAveragePostsPerUser(binningJob,
                averagePostsPerUser);

        binningJob.setNumReduceTasks(0);

        binningJob.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(binningJob, outputDirIntermediate);

        // Add two named outputs for below/above average
        MultipleOutputs.addNamedOutput(binningJob,
                MULTIPLE_OUTPUTS_BELOW_NAME, TextOutputFormat.class,
                Text.class, Text.class);

        MultipleOutputs.addNamedOutput(binningJob,
                MULTIPLE_OUTPUTS_ABOVE_NAME, TextOutputFormat.class,
                Text.class, Text.class);

        MultipleOutputs.setCountersEnabled(binningJob, true);

        TextOutputFormat.setOutputPath(binningJob, outputDir);

        // Add the user files to the DistributedCache
        FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
        for (FileStatus status : userFiles) {
            DistributedCache.addCacheFile(status.getPath().toUri(),
                    binningJob.getConfiguration());
        }

        // Execute job and grab exit code
        code = binningJob.waitForCompletion(true) ? 0 : 1;
    }

    // Clean up the intermediate output
    FileSystem.get(conf).delete(outputDirIntermediate, true);

    System.exit(code);
}


Parallel job chaining



The driver in parallel job chaining is similar to the previous
        example. The only big enhancement is that jobs are submitted in
        parallel and then monitored until completion. The two jobs run in this
        example are independent. (However, they require the previous example
        to have completed successfully.) This has the added benefit of
        utilizing cluster resources better to have them execute
        simultaneously.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given the previous example’s output of binned users,
        run parallel jobs over both bins to calculate the average reputation
        of each user.
Mapper code



The mapper splits the input value into a string array. The
          third column of this index is the reputation of the particular user.
          This reputation is output with a unique key. This key is shared
          across all map tasks in order to group all the reputations together
          for the average calculation. NullWritable can be used to group all the records together, but we want
          the key to have a meaningful value.
Caution
This can be expensive for very large data sets, as one
            reducer is responsible for streaming all the intermediate
            key/value pairs over the network. The added benefit here over
            serially reading the data set on one node is that the input splits
            are read in parallel and the reducers use a configurable number of
            threads to read each mapper’s output.


public static class AverageReputationMapper extends
        Mapper<LongWritable, Text, Text, DoubleWritable> {

    private static final Text GROUP_ALL_KEY = new Text("Average Reputation:");
    private DoubleWritable outvalue = new DoubleWritable();

    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // Split the line into tokens
        String[] tokens = value.toString().split("\t");

        // Get the reputation from the third column
        double reputation = Double.parseDouble(tokens[2]);

        // Set the output value and write to context
        outvalue.set(reputation);
        context.write(GROUP_ALL_KEY, outvalue);
    }
}

Reducer code



The reducer simply iterates through the reputation values,
          summing the numbers and keeping a count. The average is then
          calculated and output with the input key.

public static class AverageReputationReducer extends
        Reducer<Text, DoubleWritable, Text, DoubleWritable> {

    private DoubleWritable outvalue = new DoubleWritable();

    protected void reduce(Text key, Iterable<DoubleWritable> values,
            Context context) throws IOException, InterruptedException {

        double sum = 0.0;
        double count = 0;
        for (DoubleWritable dw : values) {
            sum += dw.get();
            ++count;
        }

        outvalue.set(sum / count);
        context.write(key, outvalue);
    }
}

Driver code



The driver code parses command-line arguments to get the input
          and output directories for both jobs. A helper function is then
          called to submit the job configuration, which we will look at next.
          The Job objects for both are then
          returned and monitored for job completion. So long as either job is
          still running, the driver goes back to sleep for five seconds. Once
          both jobs are complete, they are checked for success or failure and
          an appropriate log message is printed. An exit code is then returned
          based on job success.

public static void main(String[] args) throws Exception {

    Configuration conf = new Configuration();
    
    Path belowAvgInputDir = new Path(args[0]);
    Path aboveAvgInputDir = new Path(args[1]);
    Path belowAvgOutputDir = new Path(args[2]);
    Path aboveAvgOutputDir = new Path(args[3]);

    Job belowAvgJob = submitJob(conf, belowAvgInputDir, belowAvgOutputDir);
    Job aboveAvgJob = submitJob(conf, aboveAvgInputDir, aboveAvgOutputDir);

    // While both jobs are not finished, sleep

    while (!belowAvgJob.isComplete() || !aboveAvgJob.isComplete()) {
        Thread.sleep(5000);
    }

    if (belowAvgJob.isSuccessful()) {
        System.out.println("Below average job completed successfully!");
    } else {
        System.out.println("Below average job failed!");
    }

    if (aboveAvgJob.isSuccessful()) {
        System.out.println("Above average job completed successfully!");
    } else {
        System.out.println("Above average job failed!");
    }

    System.exit(belowAvgJob.isSuccessful() &&
            aboveAvgJob.isSuccessful() ? 0 : 1);
}
This helper function is configured for each job. It looks very
          standard to any other configuration, except Job.submit
          is used rather than Job.waitForCompletion. This will submit
          the job and then immediately return, allowing the application to
          continue. As we saw, the returned Job is monitored in the main method until completion.

private static Job submitJob(Configuration conf, Path inputDir,
        Path outputDir) throws Exception {

    Job job = new Job(conf, "ParallelJobs");
    job.setJarByClass(ParallelJobs.class);

    job.setMapperClass(AverageReputationMapper.class);
    job.setReducerClass(AverageReputationReducer.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(DoubleWritable.class);

    job.setInputFormatClass(TextInputFormat.class);
    TextInputFormat.addInputPath(job, inputDir);

    job.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(job, outputDir);

    // Submit job and immediately return, rather than waiting for completion
    job.submit();
    return job;
}



With Shell Scripting



This method of job chaining is very similar to the previous approach of
      implementing a complex job flow in a master driver that fires off
      individual job drivers, except that we do it in a shell script. Each job
      in the chain is fired off separately in the way you would run it from
      the command line from inside of a shell script.
This has a few major benefits and a couple minor downsides. One
      benefit is that changes to the job flow can be made without having to
      recompile the code because the master driver is a scripting language
      instead of Java. This is important if the job is prone to failure and
      you need to easily be able to manually rerun or repair failed jobs.
      Also, you’ll be able to use jobs that have already been productionalized
      to work through a command-line interface, but not a script. Yet another
      benefit is that the shell script can interact with services, systems,
      and tools that are not Java centric. For example, later in this chapter
      we’ll discuss post-processing of output, which may be very natural to do
      with sed or awk, but less natural to do in Java.
One of the downsides of this approach is it may be harder to
      implement more complicated job flows in which jobs are running in
      parallel. You can run jobs in the background and then test for success,
      but it may not be as clean as in Java.
Tip
Wrapping any Hadoop MapReduce job in a script, whether it be a
        single Java MapReduce job, a Pig job, or whatever, has a number of
        benefits. This includes post-processing, data flows, data preparation,
        additional logging, and more.

In general, using shell scripting is useful to chain new jobs with
      existing jobs quickly. For more robust applications, it may make more
      sense to build a driver-based chaining mechanism that can better
      interface with Hadoop.
Bash example



In this example, we use the Bash shell to tie together the basic
        job chaining and parallel jobs examples. The script is broken into two
        pieces: setting variables to actually execute the jobs, and then
        executing them.
Bash script



Input and outputs are stored in variables to create the a
          number of executable commands. There are two commands to run both
          jobs, cat the output to the
          screen, and cleanup all the analytic output.

#!/bin/bash

JAR_FILE="mrdp.jar"
JOB_CHAIN_CLASS="mrdp.ch6.JobChainingDriver"
PARALLEL_JOB_CLASS="mrdp.ch6.ParallelJobs"
HADOOP="$( which hadoop )"

POST_INPUT="posts"
USER_INPUT="users"
JOBCHAIN_OUTDIR="jobchainout"

BELOW_AVG_INPUT="${JOBCHAIN_OUTDIR}/belowavg"
ABOVE_AVG_INPUT="${JOBCHAIN_OUTDIR}/aboveavg"

BELOW_AVG_REP_OUTPUT="belowavgrep"
ABOVE_AVG_REP_OUTPUT="aboveavgrep"

JOB_1_CMD="${HADOOP} jar ${JAR_FILE} ${JOB_CHAIN_CLASS} ${POST_INPUT} \
    ${USER_INPUT} ${JOBCHAIN_OUTDIR}"
JOB_2_CMD="${HADOOP} jar ${JAR_FILE} ${PARALLEL_JOB_CLASS} ${BELOW_AVG_INPUT} \
    ${ABOVE_AVG_INPUT} ${BELOW_AVG_REP_OUTPUT} ${ABOVE_AVG_REP_OUTPUT}"

CAT_BELOW_OUTPUT_CMD="${HADOOP} fs -cat ${BELOW_AVG_REP_OUTPUT}/part-*"
CAT_ABOVE_OUTPUT_CMD="${HADOOP} fs -cat ${ABOVE_AVG_REP_OUTPUT}/part-*"

RMR_CMD="${HADOOP} fs -rmr ${JOBCHAIN_OUTDIR} ${BELOW_AVG_REP_OUTPUT} \
    ${ABOVE_AVG_REP_OUTPUT}"

LOG_FILE="avgrep_`date +%s`.txt"
The next part of the script echos each command
            prior to running it. It executes the first job, and then checks the return code to see
            whether it failed. If it did, output is deleted and the script exits. Upon success, the
            second job is executed and the same error condition is checked. If the second job completes successfully, the output
            of each job is written to the log file and all the output is deleted. All the extra
            output is not required, and since the final output of each file consists only one line,
            storing it in the log file is worthwhile, instead of keeping it in HDFS.

{
   echo ${JOB_1_CMD}
   ${JOB_1_CMD}

   if [ $? -ne 0 ]
   then
     echo "First job failed!"
     echo ${RMR_CMD}
     ${RMR_CMD}
     exit $?
   fi

   echo ${JOB_2_CMD}
   ${JOB_2_CMD}

   if [ $? -ne 0 ]
   then
     echo "Second job failed!"
     echo ${RMR_CMD}
     ${RMR_CMD}
     exit $?
   fi

   echo ${CAT_BELOW_OUTPUT_CMD}
   ${CAT_BELOW_OUTPUT_CMD}

   echo ${CAT_ABOVE_OUTPUT_CMD}
   ${CAT_ABOVE_OUTPUT_CMD}

   echo ${RMR_CMD}
   ${RMR_CMD}

   exit 0

} &> ${LOG_FILE}

Sample run



A sample run of the script follows. The MapReduce analytic
          output is omitted for brevity.

/home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.JobChainingDriver posts \
        users jobchainout
12/06/10 15:57:43 INFO input.FileInputFormat: Total input paths to process : 5
12/06/10 15:57:43 INFO util.NativeCodeLoader: Loaded the native-hadoop library
12/06/10 15:57:43 WARN snappy.LoadSnappy: Snappy native library not loaded
12/06/10 15:57:44 INFO mapred.JobClient: Running job: job_201206031928_0065
...
12/06/10 15:59:14 INFO mapred.JobClient: Job complete: job_201206031928_0065
...
12/06/10 15:59:15 INFO mapred.JobClient: Running job: job_201206031928_0066
...
12/06/10 16:02:02 INFO mapred.JobClient: Job complete: job_201206031928_0066

/home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.ParallelJobs \
        jobchainout/belowavg jobchainout/aboveavg belowavgrep aboveavgrep
12/06/10 16:02:08 INFO input.FileInputFormat: Total input paths to process : 1
12/06/10 16:02:08 INFO util.NativeCodeLoader: Loaded the native-hadoop library
12/06/10 16:02:08 WARN snappy.LoadSnappy: Snappy native library not loaded
12/06/10 16:02:12 INFO input.FileInputFormat: Total input paths to process : 1
Below average job completed successfully!
Above average job completed successfully!

/home/mrdp/hadoop/bin/hadoop fs -cat belowavgrep/part-*
Average Reputation:	275.36385831014724

/home/mrdp/hadoop/bin/hadoop fs -cat aboveavgrep/part-*
Average Reputation:	2375.301960784314

/home/mrdp/hadoop/bin/hadoop fs -rmr jobchainout belowavgrep aboveavgrep
Deleted hdfs://localhost:9000/user/mrdp/jobchainout
Deleted hdfs://localhost:9000/user/mrdp/belowavgrep
Deleted hdfs://localhost:9000/user/mrdp/aboveavgrep



With JobControl



The JobControl and ControlledJob classes make up a system for chaining MapReduce jobs and has some
      nice features like being able to track the state of the chain and fire
      off jobs automatically when they’re ready by declaring their
      dependencies. Using JobControl is the
      right way of doing job chaining, but can sometimes be too heavyweight
      for simpler applications.
To use JobControl, start by
      wrapping your jobs with ControlledJob. Doing this is relatively
      simple: you create your job like you usually would, except you also
      create a ControlledJob that takes in
      your Job or Configuration as a parameter, along with a
      list of its dependencies (other ControlledJobs). Then, you add them one-by-one
      to the JobControl object, which
      handles the rest.
You still have to keep track of temporary data and clean it up
      afterwards or in the event of a failure.
Note
You can use any of the methods we’ve discussed so far to create
        iterative jobs that run the same job over and over. Typically, each
        iteration takes the previous iteration’s data as input. This is common
        practice for algorithms that have some sort of optimization component,
        such as k-means clustering in MapReduce. This is also common practice
        in many graph algorithms in MapReduce.

Job control example



For an example of a driver using JobControl, let’s combine the previous two
        examples of basic job chaining and parallel jobs. We are already
        familiar with the mapper and reducer code, so there is no need to go
        over them again. The driver is the main showpiece here for job
        configuration. It uses basic job chaining to launch the first job, and
        then uses JobControl to execute the
        remaining job in the chain and the two parallel jobs. The initial job
        is not added via JobControl because
        you need to interrupt the control for the in-between step of using the
        counters of the first job to help assist in configuration of the
        second job. All jobs must be completely configured before executing
        the entire job chain, which can be limiting.
Main method



Let’s take a look at the main method. Here, we parse the
          command line arguments and create all the paths we will need for all
          four jobs to execute. We take special care when naming the variables
          to know our data flows. The first job is then configured via a
          helper function and executed. Upon completion of the first job, we
          invoke Configuration methods in helper functions
          to create three ControlledJob
          objects. Each Configuration
          method determines what mapper, reducer, etc. goes into each
          job.
The binningControlledJob
          has no dependencies, other than verifying that previous job executed
          and completed successfully. The next two jobs are dependent on the
          binning ControlledJob. These two
          jobs will not be executed by JobControl until the binning job completes
          successfully. If it doesn’t complete successfully, the other jobs
          won’t be executed at all.
All three ControlledJobs
          are added to the JobControl
          object, and then it is run. The call to JobControl.run will block until the group
          of jobs completes. We then check the failed job list to see if any
          jobs failed and set our exit code accordingly. Intermediate output
          is cleaned up prior to exiting.

public static final String AVERAGE_CALC_GROUP = "AverageCalculation";
public static final String MULTIPLE_OUTPUTS_ABOVE_NAME = "aboveavg";
public static final String MULTIPLE_OUTPUTS_BELOW_NAME = "belowavg";

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    Path postInput = new Path(args[0]);
    Path userInput = new Path(args[1]);
    Path countingOutput = new Path(args[3] + "_count");
    Path binningOutputRoot = new Path(args[3] + "_bins");
    Path binningOutputBelow = new Path(binningOutputRoot + "/"
            + JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME);
    Path binningOutputAbove = new Path(binningOutputRoot + "/"
            + JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME);

    Path belowAverageRepOutput = new Path(args[2]);
    Path aboveAverageRepOutput = new Path(args[3]);

    Job countingJob = getCountingJob(conf, postInput, countingOutput);

    int code = 1;
    if (countingJob.waitForCompletion(true)) {
        ControlledJob binningControlledJob = new ControlledJob(
                getBinningJobConf(countingJob, conf, countingOutput,
                        userInput, binningOutputRoot));

        ControlledJob belowAvgControlledJob = new ControlledJob(
                getAverageJobConf(conf, binningOutputBelow,
                        belowAverageRepOutput));
        belowAvgControlledJob.addDependingJob(binningControlledJob);

        ControlledJob aboveAvgControlledJob = new ControlledJob(
                getAverageJobConf(conf, binningOutputAbove,
                        aboveAverageRepOutput));
        aboveAvgControlledJob.addDependingJob(binningControlledJob);

        JobControl jc = new JobControl("AverageReputation");
        jc.addJob(binningControlledJob);
        jc.addJob(belowAvgControlledJob);
        jc.addJob(aboveAvgControlledJob);

        jc.run();
        code = jc.getFailedJobList().size() == 0 ? 0 : 1;
    }

    FileSystem fs = FileSystem.get(conf);
    fs.delete(countingOutput, true);
    fs.delete(binningOutputRoot, true);

    System.exit(code);
}

Helper methods



Following are all the helper methods used to create the
          actual Job or
          Configuration objects. A ControlledJob can be created from either
          class. There are three separate methods, the final method being used
          twice to create the identical parallel jobs. The inputs and outputs
          are all that differentiate them.

public static Job getCountingJob(Configuration conf, Path postInput,
        Path outputDirIntermediate) throws IOException {
    // Setup first job to counter user posts
    Job countingJob = new Job(conf, "JobChaining-Counting");
    countingJob.setJarByClass(JobChainingDriver.class);

    // Set our mapper and reducer, we can use the API's long sum reducer for
    // a combiner!
    countingJob.setMapperClass(UserIdCountMapper.class);
    countingJob.setCombinerClass(LongSumReducer.class);
    countingJob.setReducerClass(UserIdSumReducer.class);

    countingJob.setOutputKeyClass(Text.class);
    countingJob.setOutputValueClass(LongWritable.class);

    countingJob.setInputFormatClass(TextInputFormat.class);

    TextInputFormat.addInputPath(countingJob, postInput);

    countingJob.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

    return countingJob;
}

public static Configuration getBinningJobConf(Job countingJob,
        Configuration conf, Path jobchainOutdir, Path userInput,
        Path binningOutput) throws IOException {
    // Calculate the average posts per user by getting counter values
    double numRecords = (double) countingJob
            .getCounters()
            .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,
                    UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();
    double numUsers = (double) countingJob
            .getCounters()
            .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,
                    UserIdSumReducer.USERS_COUNTER_NAME).getValue();

    double averagePostsPerUser = numRecords / numUsers;

    // Setup binning job
    Job binningJob = new Job(conf, "JobChaining-Binning");
    binningJob.setJarByClass(JobChainingDriver.class);

    // Set mapper and the average posts per user
    binningJob.setMapperClass(UserIdBinningMapper.class);
    UserIdBinningMapper.setAveragePostsPerUser(binningJob,
            averagePostsPerUser);

    binningJob.setNumReduceTasks(0);

    binningJob.setInputFormatClass(TextInputFormat.class);
    TextInputFormat.addInputPath(binningJob, jobchainOutdir);

    // Add two named outputs for below/above average
    MultipleOutputs.addNamedOutput(binningJob,
            JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME,
            TextOutputFormat.class, Text.class, Text.class);

    MultipleOutputs.addNamedOutput(binningJob,
            JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME,
            TextOutputFormat.class, Text.class, Text.class);
    MultipleOutputs.setCountersEnabled(binningJob, true);

    // Configure multiple outputs
    conf.setOutputFormat(NullOutputFormat.class);
    FileOutputFormat.setOutputPath(conf, outputDir);
    MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_ABOVE_5000,
            TextOutputFormat.class, Text.class, LongWritable.class);
    MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_BELOW_5000,
            TextOutputFormat.class, Text.class, LongWritable.class);

    // Add the user files to the DistributedCache
    FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
    for (FileStatus status : userFiles) {
        DistributedCache.addCacheFile(status.getPath().toUri(),
                binningJob.getConfiguration());
    }

    // Execute job and grab exit code
    return binningJob.getConfiguration();
}

public static Configuration getAverageJobConf(Configuration conf,
        Path averageOutputDir, Path outputDir) throws IOException {

    Job averageJob = new Job(conf, "ParallelJobs");
    averageJob.setJarByClass(ParallelJobs.class);

    averageJob.setMapperClass(AverageReputationMapper.class);
    averageJob.setReducerClass(AverageReputationReducer.class);

    averageJob.setOutputKeyClass(Text.class);
    averageJob.setOutputValueClass(DoubleWritable.class);

    averageJob.setInputFormatClass(TextInputFormat.class);

    TextInputFormat.addInputPath(averageJob, averageOutputDir);

    averageJob.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(averageJob, outputDir);

    // Execute job and grab exit code
    return averageJob.getConfiguration();
}




Chain Folding



Chain folding is an optimization that is applied to MapReduce job chains.
    Basically, it is a rule of thumb that says each record can be submitted to
    multiple mappers, or to a reducer and then a mapper. Such combined
    processing would save a lot of time reading files and transmitting data.
    The structure of the jobs often make these feasible because a map phase is
    completely shared-nothing: it looks at each record alone, so it doesn’t
    really matter what the organization of the data is or if it is grouped or
    not. When building large MapReduce chains, folding the chain to combine
    map phases will have some drastic performance benefits.
The main benefit of chain folding is reducing the amount of data
    movement in the MapReduce pipeline, whether it be the I/O of loading and
    storing to disk, or shuffling data over the network. In chained MapReduce
    jobs, temporary data is stored in HDFS, so if we can reduce the number of
    times we hit the disks, we’re reducing the total I/O in the chain.
There are a number of patterns in chains to look for to determine
    what to fold.
	Take a look at the map phases in the chain. If multiple map
        phases are adjacent, merge them into one phase. This would be the case
        if you had a map-only job (such as a replicated join), followed by a
        numerical aggregation. In this step, we are reducing the amount of
        times we’re hitting the disks. Consider a two-job chain in which the
        first job is a map-only job, which is then followed by a traditional
        MapReduce job with a map phase and a reduce phase. Without this
        optimization, the first map-only job will write its output out to the
        distributed file system, and then that data will be loaded by the
        second job.
Instead, if we merge the map phase of the map-only job and the traditional job,
        that temporary data never gets written, reducing the I/O
        significantly. Also, fewer tasks are started, reducing overhead of
        task management. Chaining many map tasks together is an even more
        drastic optimization. In this case, there really isn’t any downside to
        do this other than having to possibly alter already existing
        code.

	If the job ends with a map phase (combined or otherwise), push
        that phase into the reducer right before it. This is a special case
        with the same performance benefits as the previous step. It removes
        the I/O of writing temporary data out and then running a map-only job
        on it. It also reduces the task start-up overhead.

	Note that the the first map phase of the chain cannot benefit
        from this next optimization. As much as possible, split up each map
        phase (combined or otherwise) between operations that
        decrease the amount of data (e.g., filtering) and
        operations that increase the amount of data
        (e.g., enrichment). In some cases, this is not possible because you
        may need some enrichment data in order to do the filtering. In these
        cases, look at dependent phases as one larger phase that cumulatively
        increases or decreases the amount of data. Push the processes that
        decrease the amount of data into the previous reducer, while keeping
        the processes that increase the amount of data where they are.
This step is a bit more complex and the difference is more
        subtle. The gain here is that if you push minimizing map-phase
        processing into the previous reducer, you will reduce the amount of
        data written to temporary storage, as well as the amount of data
        loaded off disk into the next part of the chain. This can be pretty
        significant if a drastic amount of filtering is done.



Caution
Be careful when merging phases that require lots of memory. For
      example, merging five replicated joins together might not be a good idea
      because it will exceed the total memory available to the task. In these
      cases, it might be better to just leave them separate.

Note
Regardless of whether a job is a chain or not, try to filter as
      much data as early as possible. The most expensive parts of a MapReduce
      job are typically pushing data through the pipeline: loading the data,
      the shuffle/sort, and storing the data. For example, if you care only
      about data from item 2012, filter that out in the map phase, not after
      the reducer has grouped the data together.

Let’s run through a couple of examples to help explain the idea and
    why it is so useful.
To exemplify step one, consider the chain in Figure 6-1. The original chain (on top) is optimized so that
    the replicated join is folded into the mapper of the second MapReduce job
    (bottom). 
[image: Original chain and optimizing mappers]

Figure 6-1. Original chain and optimizing mappers


 This job performs a word count on comments from teenagers. We
    do this to find out what topics are interesting to our youngest users. The
    age of the user isn’t with the comment, which is why we need to do a join.
    In this case, the map-only replicated join can be merged into the
    preprocessing of the second job.
To exemplify step two, consider the following chain in Figure 6-2. The original chain (top) is optimized so that the
    replicated join is folded into the reducer of the second MapReduce job
    (bottom). 
[image: Original chain and optimizing a reducer with a mapper]

Figure 6-2. Original chain and optimizing a reducer with a mapper


 This job enriches each user’s information with the number of
    comments that user has posted. It uses a generic counting MapReduce job,
    then uses a replicated join to add in the user information to the count.
    In this case, the map-only replicated join can be merged into the
    reducer.
To exemplify step three, consider the following chain in Figure 6-3. The original chain (top) is optimized so that the
    replicated join is folded into the reducer of the second MapReduce job
    (bottom). 
[image: Original chain and optimizing a mapper with a reducer]

Figure 6-3. Original chain and optimizing a mapper with a reducer

 This job is a bit more complicated than the others, as is
    evident from the long chain used to solve it. The intent is to find the
    most popular tags per age group, which is is done by finding a count of
    each user, enriching their user information onto it, filtering out counts
    less than 5, then finally grouping by the age group and summing up the
    original counts. When we look at the map tasks (enrichment and filtering),
    the replicated join is adding data, while the filter is removing data.
    Following step three, we are going to move the filtering to the first
    MapReduce job, and then move the replicated join into the map phase of the
    second MapReduce job. This gives us the new chain that can be seen at the
    bottom of Figure 6-3. Now the first MapReduce job will
    write out significantly less data than before and then it follows that the
    second MapReduce job is loading less data.
There are two primary methods for implementing chain folding:
    manually cutting and pasting code together, and a more elegant approach
    that uses special classes called ChainMapper and ChainReducer. If this is a one-time job and
    logically has multiple map phases, just implement it in one shot with the
    manual approach. If several of the map phases are reused (in a software
    reuse sense), then you should use the ChainMapper and ChainReducer approach to follow good software
    engineering practice.
The ChainMapper and ChainReducer Approach



ChainMapper and ChainReducer are special mapper and reducer classes that allow you to run multiple
      map phases in the mapper and multiple map phases after the reducer. You
      are effectively expanding the traditional map and reduce paradigm into
      several map phases, followed by a reduce phase, followed by several map
      phases. However, only one map phase and one reduce phase is ever
      invoked.
Each chained map phase feeds into the next in the pipeline. The
      output of the first is then processed by the second, which is then
      processed by the third, and so on. The map phases on the backend of the
      reducer take the output of the reducer and do additional computation.
      This is useful for post-processing operations or additional
      filtering.
Caution
Be sure that the input types and output types between each chain
        match up. If the first phase outputs a <LongWritable, Text>, be sure the
        second phase takes its input as <LongWritable, Text>.


Chain Folding Example



Bin users by reputation



This example is a slight modification of the job chaining example. Here,
        we use two mapper implementations for the initial map phase. The first
        formats each input XML record and writes out the user ID with a count
        of one. The second mapper then enriches the user ID with his or her
        reputation, which is read during the setup phase via the DistributedCache.
These two individual mapper classes are then chained together to
        feed a single reducer. This reducer is a basic LongSumReducer that simply iterates through all the values and sums the
        numbers. This sum is then output along with the input key.
Finally, a third mapper is called that will bin the records
        based on whether their reputation is below or above 5,000. This entire
        flow is executed in one MapReduce job using ChainMapper and ChainReducer.
Caution
This example uses the deprecated mapred API, because ChainMapper and ChainReducer were not available in the
          mapreduce package when this
          example was written.

The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a set of user posts and user information, bin
        users based on whether their reputation is below or above
        5,000.
Parsing mapper code



This mapper implementation gets the user ID from the input
          post record and outputs it with a count of 1.

public static class UserIdCountMapper extends MapReduceBase implements
        Mapper<Object, Text, Text, LongWritable> {

    public static final String RECORDS_COUNTER_NAME = "Records";
    private static final LongWritable ONE = new LongWritable(1);
    private Text outkey = new Text();

    public void map(Object key, Text value,
            OutputCollector<Text, LongWritable> output, Reporter reporter)
            throws IOException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        // Get the value for the OwnerUserId attribute
        outkey.set(parsed.get("OwnerUserId"));
        output.collect(outkey, ONE);
    }
}

Replicated join mapper code



This mapper implementation is fed the output from the previous
          mapper. It reads the users data set during the setup phase to create
          a map of user ID to reputation. This map is used in the calls to
          map to enrich the output value
          with the user’s reputation. This new key is then output along with
          the input value.

public static class UserIdReputationEnrichmentMapper extends MapReduceBase
        implements Mapper<Text, LongWritable, Text, LongWritable> {

    private Text outkey = new Text();
    private HashMap<String, String> userIdToReputation =
            new HashMap<String, String>();

    public void configure(JobConf job) {

        Path[] files = DistributedCache.getLocalCacheFiles(job);

        // Read all files in the DistributedCache
        for (Path p : files) {
            BufferedReader rdr = new BufferedReader(
                    new InputStreamReader(
                            new GZIPInputStream(new FileInputStream(
                                    new File(p.toString())))));

            String line;
            // For each record in the user file
            while ((line = rdr.readLine()) != null) {
                // Get the user ID and reputation
                Map<String, String> parsed = MRDPUtils
                        .transformXmlToMap(line);

                // Map the user ID to the reputation
                userIdToReputation.put(parsed.get("Id",
                        parsed.get("Reputation"));
            }
        }
    }

    public void map(Text key, LongWritable value,
            OutputCollector<Text, LongWritable> output, Reporter reporter)
            throws IOException {

        String reputation = userIdToReputation.get(key.toString());
        if (reputation != null) {
            outkey.set(value.get() + "\t" + reputation);
            output.collect(outkey, value);
        }
    }
}

Reducer code



This reducer implementation sums the values together and
          outputs this summation with the input key: user ID and
          reputation.

public static class LongSumReducer extends MapReduceBase implements
        Reducer<Text, LongWritable, Text, LongWritable> {

    private LongWritable outvalue = new LongWritable();

        public void reduce(Text key, Iterator<LongWritable> values,
                OutputCollector<Text, LongWritable> output, Reporter reporter)
                throws IOException {

              int sum = 0;
              while (values.hasNext()) {
                    sum += values.next().get();
              }
              outvalue.set(sum);
              output.collect(key, outvalue);
          }
}

Binning mapper code



This mapper uses MultipleOutputs to bin users into two data
          sets. The input key is parsed to pull out the reputation. This
          reputation value is then compared to the value 5,000 and the record
          is binned appropriately.

public static class UserIdBinningMapper extends MapReduceBase implements
        Mapper<Text, LongWritable, Text, LongWritable> {

    private MultipleOutputs mos = null;

    public void configure(JobConf conf) {
        mos = new MultipleOutputs(conf);
    }

    public void map(Text key, LongWritable value,
            OutputCollector<Text, LongWritable> output, Reporter reporter)
            throws IOException {

        if (Integer.parseInt(key.toString().split("\t")[1]) < 5000) {
            mos.getCollector(MULTIPLE_OUTPUTS_BELOW_5000, reporter)
                    .collect(key, value);
        } else {
            mos.getCollector(MULTIPLE_OUTPUTS_ABOVE_5000, reporter)
                    .collect(key, value);
        }
    }

    public void close() {
        mos.close();
    }
}

Driver code



The driver handles configuration of the ChainMapper
          and ChainReducer. The most
          interesting piece here is adding mappers and setting the reducer.
          The order in which they are added affects the execution of the
          different mapper implementations. ChainMapper is first used to add the two
          map implementations that will be called back to back before any
          sorting and shuffling occurs. Then, the ChainReducer static methods are used to
          set the reducer implementation, and then finally a mapper on the
          end. Note that you don’t use ChainMapper to add a mapper after a
          reducer: use ChainReducer.
The signature of each method takes in the JobConf of a
          mapper/reducer class, the input and output key value pair types, and
          another JobConf for the
          mapper/reducer class. This can be used in case the mapper or reducer
          has overlapping configuration parameters. No special configuration
          is required, so we simply pass in empty JobConf objects. The seventh parameter in
          the signature is a flag as to pass values in the chain by reference
          or by value. This is an added optimization you can use if the
          collector does not modify the keys or values in either the mapper or
          the reducer. Here, we make these assumptions, so we pass objects by
          reference (byValue =
          false).
In addition to configuring the chain mappers and reducers, we
          also add the user data set to the DistributedCache so our second mapper can
          perform the enrichment. We also set configure the MultipleOutputs and use a NullOutputFormat rather than the typical TextOutputFormat. Use of this output
          format will prevent the framework from creating the default empty
          part files.

public static void main(String[] args) throws Exception {
    JobConf conf = new JobConf("ChainMapperReducer");
    conf.setJarByClass(ChainMapperDriver.class);

    Path postInput = new Path(args[0]);
    Path userInput = new Path(args[1]);
    Path outputDir = new Path(args[2]);

    ChainMapper.addMapper(conf, UserIdCountMapper.class,
            LongWritable.class, Text.class, Text.class, LongWritable.class,
            false, new JobConf(false));

    ChainMapper.addMapper(conf, UserIdReputationEnrichmentMapper.class,
            Text.class, LongWritable.class, Text.class, LongWritable.class,
            false, new JobConf(false));

    ChainReducer.setReducer(conf, LongSumReducer.class, Text.class,
            LongWritable.class, Text.class, LongWritable.class, false,
            new JobConf(false));

    ChainReducer.addMapper(conf, UserIdBinningMapper.class, Text.class,
            LongWritable.class, Text.class, LongWritable.class, false,
            new JobConf(false));

    conf.setCombinerClass(LongSumReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    TextInputFormat.setInputPaths(conf, postInput);
    
    // Configure multiple outputs
    conf.setOutputFormat(NullOutputFormat.class);
    FileOutputFormat.setOutputPath(conf, outputDir);
    MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_ABOVE_5000,
            TextOutputFormat.class, Text.class, LongWritable.class);
    MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_BELOW_5000,
    
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(LongWritable.class);

    // Add the user files to the DistributedCache
    FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);
    for (FileStatus status : userFiles) {
        DistributedCache.addCacheFile(status.getPath().toUri(), conf);
    }

    RunningJob job = JobClient.runJob(conf);

    while (!job.isComplete()) {
        Thread.sleep(5000);
    }

    System.exit(job.isSuccessful() ? 0 : 1);
}




Job Merging



Like job folding, job merging is another
    optimization aimed to reduce the amount of I/O through the MapReduce
    pipeline. Job merging is a process that allows two unrelated jobs that are
    loading the same data to share the MapReduce pipeline. The main benefit of
    merging is that the data needs to be loaded and parsed only once. For some
    large-scale jobs, that task might be the most expensive part of the whole
    operation. One of the downsides of “schema-on-load” and storing the data
    in its original form is having to parse it over and over again, which can
    really impact performance if parsing is complicated (e.g., XML).
Assume we have two jobs that need to run over the exact same massive
    amount of data. These two jobs both load and parse the data, then perform
    their computations. With job merging, we’ll have one MapReduce job that
    logically performs the two jobs at once without mixing the two
    applications as seen in Figure 6-4. The original chain
    (top) is optimized so that the two mappers run on the same data, and the
    two reducers run on the same data (bottom).
Nothing is stopping you from applying job merging to more than two
      jobs at once. The more the merrier! The more you consolidate a shared
      burden across jobs, the more compute resources you’ll have available in
      your cluster.
[image: Original jobs and merged jobs]

Figure 6-4. Original jobs and merged jobs


Likely, this process will be relevant only for important and already
    existing jobs in a production cluster. Development groups that take the
    time to consolidate their core analytics will see significant reductions
    in cluster utilization. When the jobs are merged, they’ll have to run
    together and the source code will have to be kept together. This is likely
    not worth it for jobs that are run in an ad hoc manner or are relatively
    new to the environment.
Unfortunately, you must satisfy a number of prerequisites before
    applying this pattern. The most obvious one is that both jobs need to have
    the same intermediate keys and output formats, because they’ll be sharing
    the pipeline and thus need to use the same data types. Serialization or
    polymorphism can be used if this is truly a problem, but adds a bit of
    complexity.
Job merging is a dirty procedure. Some hacks will have to be done to
    get it to work, but definitely more work can be put into a merging
    solution to make it a bit cleaner. From a software engineering
    perspective, this complicates the code organization, because unrelated
    jobs now share the same code. At a high level, the same map function will
    now be performing the original duties of the old map functions, while the
    reduce function will perform one action or another based on a tag on the
    key that tells which data set it came from. The steps for merging two jobs
    are as follows:
	Bring the code for the two mappers together.
There are a couple of ways to do this. Copying and pasting the
        code works, but may complicate which piece of code is doing what. Good
        in-code comments can help you compensate for this. The other method is
        to separate the code into two helper map functions that process the
        input for each algorithm.

	In the mapper, change the writing of the key and value to “tag”
        the key with the map source.
Tagging the key to indicate which map it came from is critical
        so that the data from the different maps don’t get mixed up. There are
        a few ways to do this depending on the original data type. If it is a
        string, you can simply make the first character the tag, so for
        instance you could change “parks” to “Aparks” when it comes from the
        first map, and “Bparks” when it comes from the second map.
The general way to tag is to make a custom composite tuple-like
        key that stores the tag separately from the original data. This is
        definitely the cleaner way of doing things, but takes a bit more
        work.

	In the reducer, parse out the tag and use an if-statement to
        switch what reducer code actually gets executed.
As in the mapper, you can either just copy and paste the code
        into an if-statement or have the if-statement call out to helper
        functions. The if-statement controls the path of execution based on
        the tag.

	Use MultipleOutputs to separate the output for the jobs.
MultipleOutputs is a special
        output format helper class that allows you to write to different
        folders of output for the same reducer, instead of just a single
        folder. Make it so the one reducer path always writes to one folder of
        the MultipleOutputs, while the
        other reducer path writes to the other folder.



Job Merging Examples



Anonymous comments and distinct users



This example combines Anonymizing StackOverflow comments and Distinct user IDs. Both examples used the comments data
        set as input. However, their outputs were very different. One created
        a distinct set of users, while the other created an anonymized version
        of each record. The comment portion of the StackOverflow data set is
        the largest we have, so merging these jobs together will definitely
        cut our processing time down. This way, the data set needs to be read
        only once.
The following descriptions of each code section explain the
        solution to the problem.
Problem: Given a set of comments, generate an anonymized version
        of the data and a distinct set of user IDs.
TaggedText WritableComparable



A custom WritableComparable
          object is created to tag a Text with a string. This is a cleaner way of splitting the logic
          between the two jobs, and saves us some string parsing in the
          reducer.
This object has two private member variables and getters and
          setters for each variable. It holds a String that the mapper uses to tag each Text value
          that is also held by this object. The reducer then examines the tag
          to find out which reduce logic to execute. The compareTo method is what makes this object
          also comparable and allowed for use as a key in the MapReduce
          framework. This method first examines the tag for equality. If they
          are equal, the text inside the object is then compared and the value
          immediately returned. If they are not equal, the value of the
          comparison is then returned. Items are sorted by tag first, and then
          by the text value. This type of comparison will produce output such
          as: 
A:100004122
A:120019879
D:10
D:22
D:23

public static class TaggedText implements WritableComparable<TaggedText> {

    private String tag = "";
    private Text text = new Text();

    public TaggedText() { }

    public void setTag(String tag) {
        this.tag = tag;
    }

    public String getTag() {
        return tag;
    }

    public void setText(Text text) {
        this.text.set(text);
    }
    
    public void setText(String text) {
        this.text.set(text);
    }

    public Text getText() {
        return text;
    }

    public void readFields(DataInput in) throws IOException {
        tag = in.readUTF();
        text.readFields(in);
    }

    public void write(DataOutput out) throws IOException {
        out.writeUTF(tag);
        text.write(out);
    }

    public int compareTo(TaggedText obj) {
        int compare = tag.compareTo(obj.getTag());
        if (compare == 0) {
            return text.compareTo(obj.getText());
        } else {
            return compare;
        }
    }
    
    public String toString() {
        return tag.toString() + ":" + text.toString();
    }
}

Merged mapper code



The map method simply passes the parameters to two helper
          functions, each of which processes the map logic individual to write
          output to context. The map
          methods were slightly changed from their original respective
          examples in order to both output Text objects as the key and value. This is
          a necessary change so we can have the same type of intermediate
          key/value pairs we had in the separate map logic. The anonymizeMap method generates an anonymous
          record from the input value, whereas the distinctMap method grabs the user ID from
          the record and outputs it. Each intermediate key/value pair written
          out from each helper map method is tagged with either “A” for
          anonymize or “D” for distinct.
Tip
Each helper math method parses the input record, but this
            parsing should instead be done inside the actual map method, The resulting Map<String,String> can then be
            passed to both helper methods. Any little optimizations like this
            can be very beneficial in the long run and should be
            implemented!


public static class AnonymizeDistinctMergedMapper extends
              Mapper<Object, Text, TaggedText, Text> {

        private static final Text DISTINCT_OUT_VALUE = new Text();

        private Random rndm = new Random();
        private TaggedText anonymizeOutkey = new TaggedText(),
                distinctOutkey = new TaggedText();
        private Text anonymizeOutvalue = new Text();

        public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
              anonymizeMap(key, value, context);
              distinctMap(key, value, context);
        }

        private void anonymizeMap(Object key, Text value, Context context)
                    throws IOException, InterruptedException {

              Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                    .toString());

              if (parsed.size() > 0) {
                    StringBuilder bldr = new StringBuilder();
                    bldr.append("<row ");
                    for (Entry<String, String> entry : parsed.entrySet()) {

                          if (entry.getKey().equals("UserId")
                                  || entry.getKey().equals("Id")) {
                                // ignore these fields
                          } else if (entry.getKey().equals("CreationDate")) {
                        // Strip out the time, anything after the 'T' 
                        // in the value
                                bldr.append(entry.getKey()
                                        + "=\""
                                        + entry.getValue().substring(0,
                                                entry.getValue().indexOf('T')) 
                                                + "\" ");
                          } else {
                                // Otherwise, output this.
                                bldr.append(entry.getKey() + "=\"" + entry.
                                                getValue() + "\" ");
                          }
                    }

                    bldr.append(">");
                    anonymizeOutkey.setTag("A");
                    anonymizeOutkey.setText(Integer.toString(rndm.nextInt()));
                    anonymizeOutvalue.set(bldr.toString());
                    context.write(anonymizeOutkey, anonymizeOutvalue);
              }
        }

        private void distinctMap(Object key, Text value, Context context)
                    throws IOException, InterruptedException {

              Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                      .toString());

              // Otherwise, set our output key to the user's id,
              // tagged with a "D"
              distinctOutkey.setTag("D");
              distinctOutkey.setText(parsed.get("UserId"));

              // Write the user's id with a null value
              context.write(distinctOutkey, DISTINCT_OUT_VALUE);
        }
}

Merged reducer code



The reducer’s calls to setup and cleanup handle the creation and closing of
          the MultipleOutputs
          utility. The reduce method checks
          the tag of each input key and calls a helper reducer method based on
          the tag. The reduce methods are passed the Text object inside the TaggedText.
For the anonymous call, all the input values are iterated over
          and written to a named output of anonymize/part. Adding the slash and the
          “part” creates a folder under the configured output directory that
          contains a number of part files equivalent to the number of reduce
          tasks.
For the distinct reduce call, the input key is written to
          MultipleOutputs with a NullWritable to a named output of distinct/part. Again, this will create a
          folder called distinct underneath
          the job’s configured output directory.
Caution
In this example, we are outputting the same essential
            format—a Text object and a
            NullWritable object— from each
            of the reduce calls. This won’t always be the case! If your jobs
            have conflicting output key/value types, you can utilize the
            Text object to normalize the
            outputs.


public static class AnonymizeDistinctMergedReducer extends
        Reducer<TaggedText, Text, Text, NullWritable> {

    private MultipleOutputs<Text, NullWritable> mos = null;

    protected void setup(Context context) throws IOException,
            InterruptedException {
        mos = new MultipleOutputs<Text, NullWritable>(context);
    }

    protected void reduce(TaggedText key, Iterable<Text> values,
            Context context) throws IOException, InterruptedException {

        if (key.getTag().equals("A")) {
            anonymizeReduce(key.getText(), values, context);
        } else {
            distinctReduce(key.getText(), values, context);
        }
    }

    private void anonymizeReduce(Text key, Iterable<Text> values,
            Context context) throws IOException, InterruptedException {

        for (Text value : values) {
            mos.write(MULTIPLE_OUTPUTS_ANONYMIZE, value,
                    NullWritable.get(), MULTIPLE_OUTPUTS_ANONYMIZE + "/part");
        }
    }

    private void distinctReduce(Text key, Iterable<Text> values,
            Context context) throws IOException, InterruptedException {
        mos.write(MULTIPLE_OUTPUTS_DISTINCT, key, NullWritable.get(),
                MULTIPLE_OUTPUTS_DISTINCT + "/part");
    }

    protected void cleanup(Context context) throws IOException,
            InterruptedException {
        mos.close();
    }
}

Driver code



The driver code looks just like any other driver that uses
          MultipleOutputs. All the logic of
          merging jobs is done inside the mapper and reducer implementation.

public static void main(String[] args) throws Exception {

    // Configure the merged job
    Job job = new Job(new Configuration(), "MergedJob");
    job.setJarByClass(MergedJobDriver.class);

    job.setMapperClass(AnonymizeDistinctMergedMapper.class);
    job.setReducerClass(AnonymizeDistinctMergedReducer.class);
    job.setNumReduceTasks(10);

    TextInputFormat.setInputPaths(job, new Path(args[0]));
    TextOutputFormat.setOutputPath(job, new Path(args[1]));

    MultipleOutputs.addNamedOutput(job, MULTIPLE_OUTPUTS_ANONYMIZE,
            TextOutputFormat.class, Text.class, NullWritable.class);
    MultipleOutputs.addNamedOutput(job, MULTIPLE_OUTPUTS_DISTINCT,
            TextOutputFormat.class, Text.class, NullWritable.class);

    job.setOutputKeyClass(TaggedText.class);
    job.setOutputValueClass(Text.class);

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}





Chapter 7. Input and Output Patterns



In this chapter, we’ll be focusing on what is probably the most often overlooked way to
  improve the value of MapReduce: customizing input and output. You will not
  always want to load or store data the way Hadoop MapReduce does out of the
  box. Sometimes you can skip the time-consuming step of storing data in HDFS
  and just accept data from some original source, or feed it directly to some
  process that uses it after MapReduce is finished. Sometimes the basic Hadoop
  paradigm of file blocks and input splits doesn’t do what you need, so this
  is where a custom InputFormat or OutputFormat comes into play.
Three patterns in this chapter deal with input: generating
  data, external source input, and
  partition pruning. All three input patterns share an
  interesting property: the map phase is completely unaware that tricky things
  are going on before it gets its input pairs. Customizing an input format is
  a great way to abstract away details of the method you use to load
  data.
On the flip side, Hadoop will not always store data in the way you
  need it to. There is one pattern in this chapter, external source
  output, that writes data to a system outside of Hadoop and HDFS.
  Just like the custom input formats, custom output formats keep the map or
  reduce phase from realizing that tricky things are going on as the data is
  going out.
Customizing Input and Output in Hadoop



Hadoop allows you to modify the way data is loaded on disk in two major
    ways: configuring how contiguous chunks of input are generated from blocks
    in HDFS (or maybe more exotic sources), and configuring how records appear
    in the map phase. The two classes you’ll be playing with to do this are
    RecordReader and InputFormat. These work with the Hadoop MapReduce framework in a very similar
    way to how mappers and reducers are plugged in.
Hadoop also allows you to modify the way data is stored in an
    analogous way: with an OutputFormat
    and a RecordWriter.
InputFormat



Hadoop relies on the input format of the job to do three
      things:
	Validate the input configuration for the job (i.e., checking that the data is
            there).

	Split the input blocks and files into logical chunks of type InputSplit, each of which is assigned to a map task for
            processing.

	Create the RecordReader implementation to be used
            to create key/value pairs from the raw InputSplit. These pairs are sent one by one to their mapper.



The most common input formats are subclasses of FileInputFormat, with the Hadoop default
        being TextInputFormat. The input format first validates the input into the job by ensuring that all of the
        input paths exist. Then it logically splits each input file based on the total size of the
        file in bytes, using the block size as an upper bound. For example, a 160 megabyte file in
        HDFS will generate three input splits along the byte ranges 0MB-64MB, 64MB-128MB and 128MB-160MB. Each map task will be assigned exactly one of these
        input splits, and then the RecordReader implementation is
        responsible for generate key/value pairs out of all the bytes it has been assigned.
Typically, the RecordReader has the additional
        responsibility of fixing boundaries, because the input split boundary is arbitrary and
        probably will not fall on a record boundary. For example, the TextInputFormat reads text files using a LineRecordReader to create key/value pairs for each map task for each line of text (i.e., separated
        by a newline character). The key is the number of bytes read in the file so far and the
        value is a string of characters up to a newline character. Because it is very unlikely that
        the chunk of bytes for each input split will be lined up with a newline character, the
          LineRecordReader will read past its given “end” in
        order to make sure a complete line is read. This bit of data comes from a different data
        block and is therefore not stored on the same node, so it is streamed from a DataNode
        hosting the block. This streaming is all handled by an instance of the FSDataInputStream class, and we
        (thankfully) don’t have to deal with any knowledge of where these blocks are.
Don’t be afraid to go past split boundaries in your own formats,
      just be sure to test thoroughly so you aren’t duplicating or missing any
      data!
Tip
Custom input formats are not limited to file-based input. As
        long as you can express the input as InputSplit objects and key/value pairs,
        custom or otherwise, you can read anything into the map phase of a
        MapReduce job in parallel. Just be sure to keep in mind what an input
        split represents and try to take advantage of data locality.

The InputFormat abstract class
      contains two abstract methods:
	getSplits
	The implementation of getSplits typically uses the given JobContext object to retrieve the
            configured input and return a List of InputSplit objects. The input splits
            have a method to return an array of machines associated with the
            locations of the data in the cluster, which gives clues to the
            framework as to which TaskTracker should process the map task.
            This method is also a good place to verify the configuration and
            throw any necessary exceptions, because the method is used on the
            front-end (i.e. before the job is submitted to the
            JobTracker).

	createRecordReader
	This method is used on the back-end to generate an implementation of
            RecordReader, which we’ll
            discuss in more detail shortly. Typically, a new instance is
            created and immediately returned, because the record reader has an
            initialize method that is
            called by the framework.




RecordReader



The RecordReader abstract class
      creates key/value pairs from a given InputSplit. While the InputSplit represents the byte-oriented view
      of the split, the RecordReader makes
      sense out of it for processing by a mapper. This is why Hadoop and
      MapReduce is considered schema on read. It is in
      the RecordReader that the schema is
      defined, based solely on the record reader implementation, which changes
      based on what the expected input is for the job. Bytes are read from the
      input source and turned into a WritableComparable
      key and a Writable value. Custom data
      types are very common when creating custom input formats, as they are a
      nice object-oriented way to present information to a mapper.
A RecordReader uses the data
      within the boundaries created by the input split to generate key/value
      pairs. In the context of file-based input, the “start” is the byte
      position in the file where the RecordReader should start generating key/value
      pairs. The “end” is where it should stop reading records. These are not
      hard boundaries as far as the API is concerned—there is nothing stopping
      a developer from reading the entire file for each map task. While
      reading the entire file is not advised, reading outside of the
      boundaries it often necessary to ensure that a complete record is
      generated.
Consider the case of XML. While using a TextInputFormat
      to grab each line works, XML elements are typically not on the same line
      and will be split by a typical MapReduce input. By reading past the
      “end” input split boundary, you can complete an entire record. After
      finding the bottom of the record, you just need to ensure that each
      record reader starts at the beginning of an XML element. After seeking
      to the start of the input split, continue reading until the beginning of
      the configured XML tag is read. This will allow the MapReduce framework
      to cover the entire contents of an XML file, while not duplicating any
      XML records. Any XML that is skipped by seeking forward to the start of
      an XML element will be read by the preceding map task.
The RecordReader abstract class
      has a number of methods that must be overridden.
	initialize
	This method takes as arguments the map task’s assigned InputSplit and TaskAttemptContext, and prepares the
            record reader. For file-based input formats, this is a good place
            to seek to the byte position in the file to begin reading.

	getCurrentKey and
          getCurrentValue
	These methods are used by the framework to give generated key/value
            pairs to an implementation of Mapper. Be sure to reuse the objects
            returned by these methods if at all possible!

	nextKeyValue
	Like the corresponding method of the InputFormat class, this reads a single
            key/value pair and returns true
            until the data is consumed.

	getProgress
	Like the corresponding method of the InputFormat class, this is an optional
            method used by the framework for metrics gathering.

	close
	This method is used by the framework for cleanup after there are no
            more key/value pairs to process.




OutputFormat



Similarly to an input format, Hadoop relies on the output format of the job for
      two main tasks:
	Validate the output configuration for the job.

	Create the RecordWriter implementation that will
            write the output of the job.



On the flip side of the FileInputFormat,
      there is a FileOutputFormat to
      work with file-based output. Because most output from a
      MapReduce job is written to HDFS, the many file-based output formats
      that come with the API will solve most of yours needs. The default used
      by Hadoop is the TextOutputFormat,
      which stores key/value pairs to HDFS at a configured output directory
      with a tab delimiter. Each reduce task writes an individual part file to
      the configured output directory. The TextOutputFormat also validates that the output directory does not exist prior
      to starting the MapReduce job.
The TextOutputFormat uses a
      LineRecordWriter to write key/value pairs for each map task or reduce task,
      depending on whether there is a reduce phase or not. This class uses the
      toString method to serialize each
      each key/value pair to a part file in HDFS, delimited by a tab. This tab
      delimiter is the default and can be changed via job
      configuration.
Again, much like an InputFormat, you are not restricted to storing
      data to HDFS. As long as you can write key/value pairs to some other
      source with Java (e.g., a JDBC database connection), you can use
      MapReduce to do a parallel bulk write. Just make sure whatever you are
      writing to can handle the large number of connections from the many
      tasks.
The OutputFormat abstract class
      contains three abstract methods for implementation:
	checkOutputSpecs
	This method is used to validate the output specification for the job, such
            as making sure the directory does not already exist prior to it
            being submitted. Otherwise, the output would be
            overwritten.

	getRecordWriter
	This method returns a RecordWriter implementation that serializes key/value pairs to an output,
            typically a FileSystem
            object.

	getOutputCommiter
	The output committer of a job sets up each task during initialization, commits the task upon
            successful completion, and cleans up each task when it finishes —
            successful or otherwise. For file-based output, a FileOutputCommitter can be used to
            handle all the heavy lifting. It will create temporary output
            directories for each map task and move the successful output to
            the configured output directory when necessary.




RecordWriter



The RecordWriter abstract
      class writes key/value pairs to a file system, or another
      output. Unlike its RecordReader
      counterpart, it does not contain an initialize phase. However, the
      constructor can always be used to set up the record writer for whatever
      is needed. Any parameters can be passed in during construction, because
      the record writer instance is created via OutputFormat.getRecordWriter.
The RecordWriter abstract class is a much simpler
        interface, containing only two methods:
	write
	This method is called by the framework for each key/value pair that
            needs to be written. The implementation of this method depends
            very much on your use case. The examples we’ll show will write
            each key/value pair to an external in-memory key/value store
            rather than a file system.

	close
	This method is used by the framework after there are no more key/value pairs to
            write out. This can be used to release any file handles, shut down
            any connections to other services, or any other cleanup tasks
            needed.





Generating Data



Pattern Description



The generating data pattern is interesting because instead of loading data that comes
      from somewhere outside, it generates that data on the fly and in
      parallel.
Intent



You want to generate a lot of data from scratch.

Motivation



This pattern is different from all of the others in the book in
        that it doesn’t load data. With this pattern, you generate the data
        and store it back in the distributed file system.
Generating data isn’t common. Typically you’ll generate a bunch
        of the data at once then use it over and over again. However, when you
        do need to generate data, MapReduce is an excellent system for doing
        it.
The most common use case for this pattern is generating random
        data. Building some sort of representative data set could be useful
        for large scale testing for when the real data set is still too small.
        It can also be useful for building “toy domains” for researching a
        proof of concept for an analytic at scale.
Generating random data is also used often used as part of a
        benchmark, such as the commonly used TeraGen/TeraSort and
        DFSIO.
Unfortunately, the implementation of this pattern isn’t
        straightforward in Hadoop because one of the foundational pieces of
        the framework is assigning one map task to an input split and
        assigning one map function call to one record. In this case, there are
        no input splits and there are no records, so we have to fool the
        framework to think there are.

Structure



To implement this pattern in Hadoop, implement a
        custom InputFormat and let
        a RecordReader
        generate the random data. The map function is completely oblivious to
        the origin of the data, so it can be built on the fly instead of being
        loaded out of some file in HDFS. For the most part, using the identity
        mapper is fine here, but you might want to do some post-processing in
        the map task, or even analyze it right away. See Figure 7-1.
This pattern is map-only.
	The InputFormat creates
            the fake splits from nothing. The number of splits it creates
            should be configurable.

	The RecordReader takes
            its fake split and generates random records from it.
In some cases, you can assign some information in the input
            split to tell the record reader what to generate. For example, to
            generate random date/time data, have each input split account for
            an hour.

	In most cases, the IdentityMapper is used to just write the data out as it comes in.



[image: The structure of the generating data pattern]

Figure 7-1. The structure of the generating data pattern

Tip
The lazy way of doing implementing this pattern is to seed the job with many fake
            input files containing a single bogus record. Then, you can just use a generic InputFormat and RecordReader and generate the data in the map function. The empty input
            files are then deleted on application exit.


Consequences



Each mapper outputs a file containing random data.

Resemblances



There are a number of ways to create random data with SQL and
        Pig, but nothing that is eloquent or terse.

Performance analysis



The major consideration here in terms of performance is how many
        worker map tasks are needed to generate the data. In general, the more
        map tasks you have, the faster you can generate data since you are
        better utilizing the parallelism of the cluster. However, it makes
        little sense to fire up more map tasks than you have map slots since
        they are all doing the same thing.


Generating Data Examples



Generating random StackOverflow comments



To generate random StackOverflow data, we’ll take a list of 1,000
        words and just make random blurbs. We also have to generate a random
        score, a random row ID (we can ignore that it likely won’t be unique),
        a random user ID, and a random creation date.
The following descriptions of each code section explain the
        solution to the problem.
Driver code



The driver parses the four command line arguments to configure
          this job. It sets our custom input format and calls the static
          methods to configure it further. All the output is written to the
          given output directory. The identity mapper is used for this job,
          and the reduce phase is disabled by setting the number of reduce
          tasks to zero.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    int numMapTasks = Integer.parseInt(args[0]);
    int numRecordsPerTask = Integer.parseInt(args[1]);
    Path wordList = new Path(args[2]);
    Path outputDir = new Path(args[3]);

    Job job = new Job(conf, "RandomDataGenerationDriver");
    job.setJarByClass(RandomDataGenerationDriver.class);

    job.setNumReduceTasks(0);

    job.setInputFormatClass(RandomStackOverflowInputFormat.class);

    RandomStackOverflowInputFormat.setNumMapTasks(job, numMapTasks);
    RandomStackOverflowInputFormat.setNumRecordPerTask(job,
            numRecordsPerTask);
    RandomStackOverflowInputFormat.setRandomWordList(job, wordList);

    TextOutputFormat.setOutputPath(job, outputDir);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(NullWritable.class);

    System.exit(job.waitForCompletion(true) ? 0 : 2);
}

InputSplit code



The FakeInputSplit class
          simply extends InputSplit and
          implements Writable. There is no
          implementation for any of the overridden methods, or for methods
          requiring return values return basic values. This input split is
          used to trick the framework into assigning a task to generate the
          random data.

public static class FakeInputSplit extends InputSplit implements
        Writable {

    public void readFields(DataInput arg0) throws IOException {
    }

    public void write(DataOutput arg0) throws IOException {
    }

    public long getLength() throws IOException, InterruptedException {
        return 0;
    }

    public String[] getLocations() throws IOException,
            InterruptedException {
        return new String[0];
    }
}

InputFormat code



The input format has two main purposes: returning the list of input splits for the
            framework to generate map tasks from, and then creating the RandomStackOverflowRecordReader for the map task. We override the getSplits method to return a configured number of FakeInputSplit splits. This number is pulled from the configuration. When the framework calls
              createRecordReader, a RandomStackOverflowRecordReader is
            instantiated, initialized, and returned.

public static class RandomStackOverflowInputFormat extends
        InputFormat<Text, NullWritable> {

    public static final String NUM_MAP_TASKS = "random.generator.map.tasks";
    public static final String NUM_RECORDS_PER_TASK =
            "random.generator.num.records.per.map.task";
    public static final String RANDOM_WORD_LIST =
            "random.generator.random.word.file";

    public List<InputSplit> getSplits(JobContext job) throws IOException {

        // Get the number of map tasks configured for
        int numSplits = job.getConfiguration().getInt(NUM_MAP_TASKS, -1);

        // Create a number of input splits equivalent to the number of tasks
        ArrayList<InputSplit> splits = new ArrayList<InputSplit>();
        for (int i = 0; i < numSplits; ++i) {
            splits.add(new FakeInputSplit());
        }

        return splits;
    }

    public RecordReader<Text, NullWritable> createRecordReader(
            InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        // Create a new RandomStackOverflowRecordReader and initialize it
        RandomStackOverflowRecordReader rr =
                new RandomStackOverflowRecordReader();
        rr.initialize(split, context);
        return rr;
    }

    public static void setNumMapTasks(Job job, int i) {
        job.getConfiguration().setInt(NUM_MAP_TASKS, i);
    }

    public static void setNumRecordPerTask(Job job, int i) {
        job.getConfiguration().setInt(NUM_RECORDS_PER_TASK, i);
    }

    public static void setRandomWordList(Job job, Path file) {
        DistributedCache.addCacheFile(file.toUri(), job.getConfiguration());
    }
}

RecordReader code



This record reader is where the data is actually generated. It is given during our FakeInputSplit during initialization, but simply ignores it.
            The number of records to create is pulled from the job configuration, and the list of
            random words is read from the DistributedCache. For each call to
              nextKeyValue, a random record is created using a
            simple random number generator. The body of the comment is generated by a helper
            function that randomly selects words from the list, between one and thirty words (also
            random). The counter is incremented to keep track of how many records have been
            generated. Once all the records are generated, the record reader returns false, signaling the framework that there is no more input
            for the mapper.

public static class RandomStackOverflowRecordReader extends
        RecordReader<Text, NullWritable> {

    private int numRecordsToCreate = 0;
    private int createdRecords = 0;
    private Text key = new Text();
    private NullWritable value = NullWritable.get();
    private Random rndm = new Random();
    private ArrayList<String> randomWords = new ArrayList<String>();

    // This object will format the creation date string into a Date
    // object
    private SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void initialize(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {

        // Get the number of records to create from the configuration
        this.numRecordsToCreate = context.getConfiguration().getInt(
                NUM_RECORDS_PER_TASK, -1);

        // Get the list of random words from the DistributedCache
        URI[] files = DistributedCache.getCacheFiles(context
                .getConfiguration());

        // Read the list of random words into a list
        BufferedReader rdr = new BufferedReader(new FileReader(
                files[0].toString()));

        String line;
        while ((line = rdr.readLine()) != null) {
            randomWords.add(line);
        }
        rdr.close();
    }

    public boolean nextKeyValue() throws IOException,
            InterruptedException {
        // If we still have records to create
        if (createdRecords < numRecordsToCreate) {
            // Generate random data
            int score = Math.abs(rndm.nextInt()) % 15000;
            int rowId = Math.abs(rndm.nextInt()) % 1000000000;
            int postId = Math.abs(rndm.nextInt()) % 100000000;
            int userId = Math.abs(rndm.nextInt()) % 1000000;
            String creationDate = frmt
                    .format(Math.abs(rndm.nextLong()));

            // Create a string of text from the random words
            String text = getRandomText();

            String randomRecord = "<row Id=\"" + rowId + "\" PostId=\""
                    + postId + "\" Score=\"" + score + "\" Text=\""
                    + text + "\" CreationDate=\"" + creationDate
                    + "\" UserId\"=" + userId + "\" />";

            key.set(randomRecord);
            ++createdRecords;
            return true;
        } else {
            // We are done creating records
            return false;
        }
    }

    private String getRandomText() {
        StringBuilder bldr = new StringBuilder();
        int numWords = Math.abs(rndm.nextInt()) % 30 + 1;

        for (int i = 0; i < numWords; ++i) {
            bldr.append(randomWords.get(Math.abs(rndm.nextInt())
                    % randomWords.size())
                    + " ");
        }
        return bldr.toString();
    }

    public Text getCurrentKey() throws IOException,
            InterruptedException {
        return key;
    }

    public NullWritable getCurrentValue() throws IOException,
            InterruptedException {
        return value;
    }

    public float getProgress() throws IOException, InterruptedException {
        return (float) createdRecords / (float) numRecordsToCreate;
    }

    public void close() throws IOException {
        // nothing to do here...
    }
}




External Source Output



Pattern Description



As stated earlier in this chapter, the external source
      output pattern writes data to a system outside of Hadoop and
      HDFS.
Intent



You want to write MapReduce output to a nonnative
        location.

Motivation



With this pattern, we are able to output data from the MapReduce
        framework directly to an external source. This is extremely useful for
        direct loading into a system instead of staging the data to be
        delivered to the external source. The pattern skips storing data in a
        file system entirely and sends output key/value pairs directly where
        they belong. MapReduce is rarely ever hosting an applications as-is,
        so using MapReduce to bulk load into an external source in parallel
        has its uses.
In a MapReduce approach, the data is written out in parallel. As
        with using an external source for input, you need to be sure the
        destination system can handle the parallel ingest it is bound to
        endure with all the open connections.

Structure



Figure 7-2 shows the external
        source output structure, explained below.
	The OutputFormat verifies
            the output specification of the job configuration
            prior to job submission. This is a great place to ensure that the
            external source is fully functional, as it won’t be good to
            process all the data only to find out the external source was
            unable when it was time to commit the data. This method also is
            responsible for creating and initializing a RecordWriter implementation.

	The RecordWriter writes
            all key/value pairs to the external source. Much
            like a RecordReader, the
            implementation varies depending on the external data source being
            written to. During construction of the object, establish any
            needed connections using the external source’s API. These
            connections are then used to write out all the data from each map
            or reduce task.



[image: The structure of the external source output pattern]

Figure 7-2. The structure of the external source output pattern


Consequences



The output data has been sent to the external source and that
        external source has loaded it successfully.
Caution
Note that task failures are bound to happen, and when they do,
          any key/value pairs written in the write method can’t be reverted. In a
          typical MapReduce job, temporary output is written to the file
          system. In the event of a failure, this output is simply discarded.
          When writing to an external source directly, it will receive the
          data in a stream. If a task fails, the external source won’t
          automatically know about it and discard all the data it received
          from a task. If this is unacceptable, consider using a custom
          OutputCommitter to write
          temporary output to the file system. This temporary output can then
          be read, delivered to the external source, and deleted upon success,
          or deleted from the file system outright in the event of a
          failure.


Performance analysis



From a MapReduce perspective, there isn’t much to worry about
        since the map and reduce are generic. However, you do have to be very
        careful that the receiver of the data can handle the parallel
        connections. Having a thousand tasks writing to a single SQL database
        is not going to work well. To avoid this, you may have to have each
        reducer handle a bit more data than you typically would to reduce the
        number of parallel writes to the data sink. This is not necessarily a
        problem if the destination of the data is parallel in nature and
        supports parallel ingestation. For example, for writing to a sharded
        SQL database, you could have each reducer write to a specific database
        instance.


External Source Output Example



Writing to Redis instances



This example is a basic means for writing to a number of Redis instances in parallel from
          MapReduce. 
          Redis is an open-source, in-memory, key-value
          store. It is often referred to as a data structure server, since keys can contain strings,
          hashes, lists, sets, and sorted sets. Redis is written in ANSI C and works in most POSIX
          systems, such as Linux, without any external dependencies.
In order to work with the Hadoop framework,  Jedis is used to communicate with
          Redis. Jedis is an open-source “blazingly small and sane Redis java client.” A list of
          clients written for other languages is available on their website.
Unlike other examples in this book, there is no actual analysis
        in this example (along with the rest of the examples in this chapter).
        It focuses on how to take a data set stored in HDFS and store it in an
        external data source using a custom FileOutputFormat. In this example, the Stack
        Overflow users data set is written to a configurable number of Redis
        instances, specifically the user-to-reputation mappings. These
        mappings are randomly distributed evenly among a single Redis
        hash.
A Redis hash is a map between string fields and string values,
        similar to a Java HashMap. Each
        hash is given a key to identify the hash. Every hash can store more
        than four billion field-value pairs.
The sections below with its corresponding code explain the
        following problem.
Problem: Given a set of user information, randomly distributed
        user-to-reputation mappings to a configurable number of Redis
        instances in parallel.
OutputFormat code



The RedisHashOutputFormat
          is responsible for establishing and verifying the job
          configuration prior to being submitted to the JobTracker. Once the
          job has been submitted, it also creates the RecordWriter to serialize all the output
          key/value pairs. Typically, this is a file in HDFS. However, we are
          not bound to using HDFS, as we will see in the RecordWriter later on.
The output format contains configuration variables that must
          be set by the driver to ensure it has all the information required
          to do its job. Here, we have a couple public static methods to take some of the
          guess work out of what a developer needs to set. This output format
          takes in a list of Redis instance hosts as a CSV structure and a
          Redis hash key to write all the output to. In the checkOutputSpecs method, we ensure that
          both of these parameters are set before we even both launching the
          job, as it will surely fail without them. This is where you’ll want
          to verify your configuration!
The getRecordWriter method
          is used on the back end to create an instance of a RecordWriter for the map or reduce task.
          Here, we get the configuration variables required by the RedisHashRecordWriter and return a new
          instance of it. This record writer is a nested class of the RedisHashOutputFormat, which is not
          required but is more of a convention. The details of this class are
          in the following section.
The final method of this output format is getOutputCommitter. The output committer
          is used by the framework to manage any temporary output before
          committing in case the task fails and needs to be reexecuted. For
          this implementation, we don’t typically care whether the task fails
          and needs to be re-executed. As long as the job finishes we are
          okay. An output committer is required by the framework, but the
          NullOutputFormat contains an
          output committer implementation that doesn’t do anything.

public static class RedisHashOutputFormat extends OutputFormat<Text, Text> {

    public static final String REDIS_HOSTS_CONF =
            "mapred.redishashoutputformat.hosts";
    public static final String REDIS_HASH_KEY_CONF =
            "mapred.redishashinputformat.key";

    public static void setRedisHosts(Job job, String hosts) {
        job.getConfiguration().set(REDIS_HOSTS_CONF, hosts);
    }

    public static void setRedisHashKey(Job job, String hashKey) {
        job.getConfiguration().set(REDIS_HASH_KEY_CONF, hashKey);
    }

    public RecordWriter<Text, Text> getRecordWriter(TaskAttemptContext job)
            throws IOException, InterruptedException {
        return new RedisHashRecordWriter(job.getConfiguration().get(
                REDIS_HASH_KEY_CONF), job.getConfiguration().get(
                REDIS_HOSTS_CONF));
    }

    public void checkOutputSpecs(JobContext job) throws IOException {
        String hosts = job.getConfiguration().get(REDIS_HOSTS_CONF);
        if (hosts == null || hosts.isEmpty()) {
            throw new IOException(REDIS_HOSTS_CONF
                    + " is not set in configuration.");
        }

        String hashKey = job.getConfiguration().get(
                REDIS_HASH_KEY_CONF);
        if (hashKey == null || hashKey.isEmpty()) {
            throw new IOException(REDIS_HASH_KEY_CONF
                    + " is not set in configuration.");
        }
    }

    public OutputCommitter getOutputCommitter(TaskAttemptContext context)
            throws IOException, InterruptedException {
        return (new NullOutputFormat<Text, Text>()).getOutputCommitter(context);
    }

    public static class RedisHashRecordWriter extends RecordWriter<Text, Text> {
        // code in next section
    }
}

RecordReader code



The RedisHashRecordWriter
          handles connecting to Redis via the Jedis client and writing
          out the data. Each key/value pair is randomly written to a Redis
          instance, providing an even distribution of all data across all
          Redis instances. The constructor stores the hash key to write to and
          creates a new Jedis instance.
The code then connects to the Jedis instance and maps it to an
          integer. This map is used in the write method to get the assigned Jedis
          instance. The hash code is the key is taken modulo the number of
          configured Redis instances. The key/value pair is then written to
          the returned Jedis instance to the configured hash. Finally, all
          Jedis instances are disconnected in the close method.

public static class RedisHashRecordWriter extends RecordWriter<Text, Text> {

    private HashMap<Integer, Jedis> jedisMap = new HashMap<Integer, Jedis>();
    private String hashKey = null;

    public RedisHashRecordWriter(String hashKey, String hosts) {
        this.hashKey = hashKey;

        // Create a connection to Redis for each host
        // Map an integer 0-(numRedisInstances - 1) to the instance
        int i = 0;
        for (String host : hosts.split(",")) {
            Jedis jedis = new Jedis(host);
            jedis.connect();
            jedisMap.put(i, jedis);
            ++i;
        }
    }

    public void write(Text key, Text value) throws IOException,
            InterruptedException {
        // Get the Jedis instance that this key/value pair will be
        // written to
        Jedis j = jedisMap.get(Math.abs(key.hashCode()) % jedisMap.size());

        // Write the key/value pair
        j.hset(hashKey, key.toString(), value.toString());
    }

    public void close(TaskAttemptContext context) throws IOException,
            InterruptedException {
        // For each jedis instance, disconnect it
        for (Jedis jedis : jedisMap.values()) {
            jedis.disconnect();
        }
    }
}

Mapper Code



The Mapper instance is very straightforward and looks like any
          other mapper. The user ID and reputation are retrieved from the
          record and then output. The output format does all the heavy lifting
          for us, allowing it to be reused multiple times to write whatever we
          want to a Redis hash.

public static class RedisOutputMapper extends
        Mapper<Object, Text, Text, Text> {

    private Text outkey = new Text();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        String userId = parsed.get("Id");
        String reputation = parsed.get("Reputation");

        // Set our output key and values
        outkey.set(userId);
        outvalue.set(reputation);

        context.write(outkey, outvalue);
    }
}

Driver Code



The driver code parses the command lines and calls our
          public static methods to set up
          writing data to Redis. The job is then submitted just like any
          other.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    Path inputPath = new Path(args[0]);
    String hosts = args[1];
    String hashName = args[2];

    Job job = new Job(conf, "Redis Output");
    job.setJarByClass(RedisOutputDriver.class);

    job.setMapperClass(RedisOutputMapper.class);
    job.setNumReduceTasks(0);

    job.setInputFormatClass(TextInputFormat.class);
    TextInputFormat.setInputPaths(job, inputPath);

    job.setOutputFormatClass(RedisHashOutputFormat.class);
    RedisHashOutputFormat.setRedisHosts(job, hosts);
    RedisHashOutputFormat.setRedisHashKey(job, hashName);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    int code = job.waitForCompletion(true) ? 0 : 2;

    System.exit(code);
}




External Source Input



Pattern Description



The external source input pattern doesn’t load data from HDFS, but instead from some system
      outside of Hadoop, such as an SQL database or a web service.
Intent



You want to load data in parallel from a source that is not part
        of your MapReduce framework.

Motivation



The typical model for using MapReduce to analyze your data is to
        store it into your storage platform first (i.e., HDFS), then analyze
        it. With this pattern, you can hook up the MapReduce framework into an
        external source, such as a database or a web service, and pull the
        data directly into the mappers.
There are a few reasons why you might want to analyze the data
        directly from the source instead of staging it first. It may be faster
        to load the data from outside of Hadoop without having to stage it
        into files first. For example, dumping a database to the file system
        is likely to be an expensive operation, and taking it from the
        database directly ensures that the MapReduce job has the most
        up-to-date data available. A lot can happen on a busy cluster, and
        dumping a database prior to running an analytics can also fail,
        causing a stall in the entire pipeline.
In a MapReduce approach, the data is loaded in parallel rather
        than in a serial fashion. The caveat to this is that the source needs
        to have well-defined boundaries on which data is read in parallel in
        order to scale. For example, in the case of a sharded databases, each
        map task can be assigned a shard to load from the a table, thus
        allowing for very quick parallel loads of data without requiring a
        database scan.

Structure



Figure 7-3 shows the external
        source input structure.
	The InputFormat creates
            all the InputSplit objects,
            which may be based on a custom object. An input
            split is a chunk of logical input, and that largely depends on the
            format in which it will be reading data. In this pattern, the
            input is not from a file-based input but an external source. The
            input could be from a series of SQL tables or a number of
            distributed services spread through the cluster. As long as the
            input can be read in parallel, this is a good fit for
            MapReduce.

	The InputSplit contains
            all the knowledge of where the sources are and how much of each
            source is going to be read. The framework uses the location
            information to help determine where to assign the map task. A
            custom InputSplit must also
            implement the Writable
            interface, because the framework uses the methods of this
            interface to transmit the input split information to a
            TaskTracker. The number of map tasks distributed among
            TaskTrackers is equivalent to the number of input splits generated
            by the input format. The InputSplit is then used to initialize a RecordReader for processing.

	The RecordReader uses the
            job configuration provided and InputSplit information to read key/value
            pairs. The implementation of this class depends on the data source
            being read. It sets up any connections required to read data from
            the external source, such as using JDBC to load from a database or
            creating a REST call to access a RESTful service.



[image: The structure of the external source input pattern]

Figure 7-3. The structure of the external source input pattern



Consequences



Data is loaded from the external source into the MapReduce job
        and the map phase doesn’t know or care where that data came
        from.

Performance analysis



The bottleneck for a MapReduce job implementing this pattern is
        going to be the source or the network. The source may not scale well
        with multiple connections (e.g., a single-threaded SQL database isn’t
        going to like 1,000 mappers all grabbing data at once). Another
        problem may be the network infrastructure. Given that the source is
        probably not in the MapReduce cluster’s network backplane, the
        connections may be reaching out on a single connection on a slower
        public network. This should not be a problem if the source is inside
        the cluster.


External Source Input Example



Reading from Redis Instances



This example demonstrates how to read data we just wrote to Redis.
        Again, we take in a CSV list of Redis instance hosts in order to
        connect to and read all the data from the hash. Since we distributed
        the data across a number of Redis instances, this data can be read in parallel. All
        we need to do is create a map task for each Redis instance, connect to
        Redis, and then create key/value pairs out of all the data we
        retrieve. This example uses the identity mapper to simply output each
        key/value pair received from Redis.
The sections below with its corresponding code explain the
        following problem.
Problem: Given a list of Redis instances in CSV format, read all
        the data stored in a configured hash in parallel.
InputSplit code



The RedisInputSplit
          represents the data to be processed by an individual Mapper. In
          this example, we store the Redis instance hostname as the location
          of the input split, as well as the hash key. The input split
          implements the Writable
          interface, so that it is serializable by the framework, and includes
          a default constructor in order for the framework to create a new
          instance via reflection. We return the location via the getLocations method, in the hopes that the
          JobTracker will assign each map task to a TaskTracker that is
          hosting the data.

public static class RedisHashInputSplit extends InputSplit implements Writable {

    private String location = null;
    private String hashKey = null;

    public RedisHashInputSplit() {
        // Default constructor for reflection
    }

    public RedisHashInputSplit(String redisHost, String hash) {
        this.location = redisHost;
        this.hashKey = hash;
    }

    public String getHashKey() {
        return this.hashKey;
    }

    public void readFields(DataInput in) throws IOException {
        this.location = in.readUTF();
        this.hashKey = in.readUTF();
    }

    public void write(DataOutput out) throws IOException {
        out.writeUTF(location);
        out.writeUTF(hashKey);
    }

    public long getLength() throws IOException, InterruptedException {
        return 0;
    }

    public String[] getLocations() throws IOException, InterruptedException {
        return new String[] { location };
    }
}

InputFormat code



The RedisHashInputFormat
          mirrors that of the RedisHashOutputFormat in many ways. It
          contains configuration variables to know which Redis instances to
          connect to and which hash to read from. In the getSplits method, the configuration is
          verified and a number of RedisHashInputSplits is created based on
          the number of Redis hosts. This will create one map task for each
          configured Redis instance. The Redis hostname and hash key are
          stored in the input split in order to be retrieved later by the
          RedisHashRecordReader. The
          createRecordReader method is
          called by the framework to get a new instance of a record reader.
          The record reader’s initialize
          method is called by the framework, so we can just create a new
          instance and return it. Again by convention, this class contains two
          nested classes for the record reader and input split
          implementations.

public static class RedisHashInputFormat extends InputFormat<Text, Text> {

    public static final String REDIS_HOSTS_CONF =
            "mapred.redishashinputformat.hosts";
    public static final String REDIS_HASH_KEY_CONF =
            "mapred.redishashinputformat.key";
    private static final Logger LOG = Logger
            .getLogger(RedisHashInputFormat.class);

    public static void setRedisHosts(Job job, String hosts) {
        job.getConfiguration().set(REDIS_HOSTS_CONF, hosts);
    }

    public static void setRedisHashKey(Job job, String hashKey) {
        job.getConfiguration().set(REDIS_HASH_KEY_CONF, hashKey);
    }

    public List<InputSplit> getSplits(JobContext job) throws IOException {
        String hosts = job.getConfiguration().get(REDIS_HOSTS_CONF);

        if (hosts == null || hosts.isEmpty()) {
            throw new IOException(REDIS_HOSTS_CONF
                    + " is not set in configuration.");
        }

        String hashKey = job.getConfiguration().get(REDIS_HASH_KEY_CONF);
        if (hashKey == null || hashKey.isEmpty()) {
            throw new IOException(REDIS_HASH_KEY_CONF
                    + " is not set in configuration.");
        }

        // Create an input split for each host
        List<InputSplit> splits = new ArrayList<InputSplit>();
        for (String host : hosts.split(",")) {
            splits.add(new RedisHashInputSplit(host, hashKey));
        }

        LOG.info("Input splits to process: " + splits.size());
        return splits;
    }

    public RecordReader<Text, Text> createRecordReader(InputSplit split,
            TaskAttemptContext context) throws IOException,
            InterruptedException {
        return new RedisHashRecordReader();
    }

    public static class RedisHashRecordReader extends RecordReader<Text, Text> {
        // code in next section
    }

    public static class RedisHashInputSplit extends 
            InputSplit implements Writable {
        // code in next section
    }
}

RecordReader code



The RedisHashRecordReader is where most of the work is done. The initialize method is called by the framework and provided with an input
            split we created in the input format. Here, we get the Redis instance to connect to and
            the hash key. We then connect to Redis and get the number of key/value pairs we will be
            reading from Redis. The hash doesn’t have a means to iterate or stream the data one at a
            time or in bulk, so we simply pull everything over and disconnect from Redis. We store
            an iterator over the entries and log some helpful statements along the way.
In nextKeyValue, we iterate
          through the map of entries one at a time and set the record reader’s
          writable objects for the key and value. A return value of true informs the framework that there is a
          key/value pair to process. Once we have exhausted all the key/value
          pairs, false is returned so the
          map task can complete.
The other methods of the record reader are used by the
          framework to get the current key and value for the mapper to
          process. It is worthwhile to reuse this object whenever possible.
          The getProgress method is useful
          for reporting gradual status to the JobTracker and should also be
          reused if possible. Finally, the close method is for finalizing the
          process. Since we pulled all the information and disconnected from
          Redis in the initialize method,
          there is nothing to do here.

public static class RedisHashRecordReader extends RecordReader<Text, Text> {

    private static final Logger LOG =
            Logger.getLogger(RedisHashRecordReader.class);
    private Iterator<Entry<String, String>> keyValueMapIter = null;
    private Text key = new Text(), value = new Text();
    private float processedKVs = 0, totalKVs = 0;
    private Entry<String, String> currentEntry = null;

    public void initialize(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        // Get the host location from the InputSplit
        String host = split.getLocations()[0];
        String hashKey = ((RedisHashInputSplit) split).getHashKey();

        LOG.info("Connecting to " + host + " and reading from "
                + hashKey);

        Jedis jedis = new Jedis(host);
        jedis.connect();
        jedis.getClient().setTimeoutInfinite();

        // Get all the key/value pairs from the Redis instance and store
        // them in memory
        totalKVs = jedis.hlen(hashKey);
        keyValueMapIter = jedis.hgetAll(hashKey).entrySet().iterator();
        LOG.info("Got " + totalKVs + " from " + hashKey);
        jedis.disconnect();
    }

    public boolean nextKeyValue() throws IOException,
            InterruptedException {

        // If the key/value map still has values
        if (keyValueMapIter.hasNext()) {
            // Get the current entry and set the Text objects to the entry
            currentEntry = keyValueMapIter.next();
            key.set(currentEntry.getKey());
            value.set(currentEntry.getValue());
            return true;
        } else {
            // No more values? return false.
            return false;
        }
    }

    public Text getCurrentKey() throws IOException,
            InterruptedException {
        return key;
    }

    public Text getCurrentValue() throws IOException,
            InterruptedException {
        return value;
    }

    public float getProgress() throws IOException, InterruptedException {
        return processedKVs / totalKVs;
    }

    public void close() throws IOException {
        // nothing to do here
    }
}

Driver code



Much like the previous example’s driver, we use the public static methods provided by the
          input format to modify the job configuration. Since we are just
          using the identity mapper, we don’t need to set any special classes.
          The number of reduce tasks is set to zero to specify that this is a
          map-only job.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    String hosts = otherArgs[0];
    String hashKey = otherArgs[1];
    Path outputDir = new Path(otherArgs[2]);

    Job job = new Job(conf, "Redis Input");
    job.setJarByClass(RedisInputDriver.class);

    // Use the identity mapper
    job.setNumReduceTasks(0);

    job.setInputFormatClass(RedisHashInputFormat.class);
    RedisHashInputFormat.setRedisHosts(job, hosts);
    RedisHashInputFormat.setRedisHashKey(job, hashKey);

    job.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(job, outputDir);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    System.exit(job.waitForCompletion(true) ? 0 : 3);
}




Partition Pruning



Pattern Description



Partition pruning configures the way the framework picks input splits and drops files
      from being loaded into MapReduce based on the name of the file.
Intent



You have a set of data that is partitioned by a predetermined value, which you can use
          to dynamically load the data based on what is requested by the application.

Motivation



Typically, all the data loaded into a MapReduce job is assigned into map tasks and
          read in parallel. If entire files are going to be thrown out based on the query, loading
          all of the files is a large waste of processing time. By partitioning the data by a common
          value, you can avoid significant amounts of processing time by looking only where the data
          would exist. For example, if you are commonly analyzing data based on date ranges,
          partitioning your data by date will make it so you only need to load the data inside of
          that range.
The added caveat to this pattern is this should be handled
        transparently, so you can run the same MapReduce job over and over
        again, but over different data sets. This is done by simply changing
        the data you are querying for, rather than changing the implementation
        of the job. A great way to do this would be to strip away how the data
        is stored on the file system and instead put it inside an input
        format. The input format knows where to locate and get the data,
        allowing the number of map tasks generated to change based on the
        query.
Tip
This is exceptionally useful if the data storage is volatile
          and likely to change. If you have dozens of analytics using some
          type of partitioned input format, you can change the input format
          implementation and simply recompile all analytics using the new
          input format code. Since all your analytics get input from a query
          rather than a file, you don’t need to re-implement how the data is
          read into the analytic. This can save a massive amount of
          development time, making you look really good to your boss!


Structure



Figure 7-4 shows the
        structure for partition pruning, explained below.
	The InputFormat is
            where this pattern comes to life. The getSplits method is where we pay special
            attention, because it determines the input splits that will be
            created, and thus the number of map tasks. While the configuration
            is typically a set of files, configuration turns into more of a
            query than a set of file paths. For instance, if data is stored on
            a file system by date, the InputFormat can accept a date range as
            input, then determine which folders to pull into the MapReduce
            job. If data is sharded in an external service by date, say 12
            shards for each month, only one shard needs to be read by the
            MapReduce job when looking for data in March. The key here is that
            the input format determines where the data comes from based on a
            query, rather than passing in a set of files.

	The RecordReader
            implementation depends on how the data is being stored. If it is a
            file-based input, something like a LineRecordReader can be used to read
            key/value pairs from a file. If it is an external source, you’ll
            have to customize something more to your needs.



[image: The structure of the partition pruning pattern]

Figure 7-4. The structure of the partition pruning pattern



Consequences



Partition pruning changes only the amount of data that is read
        by the MapReduce job, not the eventual outcome of the analytic. The
        main reason for partition pruning is to reduce the overall processing
        time to read in data. This is done by ignoring input that will not
        produce any output before it even gets to a map task.

Resemblances



	SQL
	Many modern relational databases handle partition pruning
              transparently. When you create the table, you specify how the
              database should partition the data and the database will handle
              the rest on inserts. Hive also supports partitioning.

CREATE TABLE parted_data
(foo_date    DATE)
PARTITION BY RANGE(foo_date)
(
PARTITION foo_2012 VALUES LESS THAN(TO_DATE('01/01/2013','DD/MM/YYYY')),
PARTITION foo_2011 VALUES LESS THAN(TO_DATE('01/01/2012','DD/MM/YYYY')),
PARTITION foo_2010 VALUES LESS THAN(TO_DATE('01/01/2011','DD/MM/YYYY')),
);
Then, when you query with a specific value in the WHERE clause, the database will
              automatically use only the relevant partitions.

SELECT * FROM parted_data WHERE foo_date=TO_DATE('01/31/2012');




Performance analysis



The data in this pattern is loaded into each map task is as fast
        as in any other pattern. Only the number of tasks changes based on the
        query at hand. Utilizing this pattern can provide massive gains by
        reducing the number of tasks that need to be created that would not
        have generated output anyways. Outside of the I/O, the performance
        depends on the other pattern being applied in the map and reduce
        phases of the job.


Partition Pruning Examples



Partitioning by last access date to Redis instances



This example demonstrates a smarter way to store and read data in Redis. Rather than
          randomly distributing the user-to-reputation mappings, we can partition this data on
          particular criteria. The user-to-reputation mappings are partitioned based on last access
          date and stored in six different Redis instances. Two months of data are stored in separate hashes on each
          Redis instance. That is, January and February are stored in different hashes on Redis
          instance 0, March and April on instance 1, and so on.
By distributing the data in this manner, we can more
        intelligently read it based on a user query. Whereas the previous
        examples took in a list of Redis instances and a hash key via the
        command line, this pattern hardcodes all the logic of where and how to
        store the data in the output format, as well as in the input format.
        This completely strips away knowledge from the mapper and reducer of
        where the data is coming from, which has its advantages and
        disadvantages for a developer using our input and output
        formats.
Caution
It may not be the best idea to actually hardcode information
          into the Java code itself, but instead have a rarely-changing
          configuration file that can be found by your formats. This way,
          things can still be changed if necessary and prevent a recompile.
          Environment variables work nicely, or it can just be passed in via
          the command line.

The sections below with its corresponding code explain the
        following problem.
Problem: Given a set of user data, partition the
        user-to-reputation mappings by last access date across six Redis
        instances.
Custom WritableComparable code



To help better store information, a custom WritableComparable is implemented in order
          to allow the mapper to set information needed by the record writer.
          This class contains methods to set and get the field name to be
          stored in Redis, as well as the last access month. The last access
          month accepts a zero-based integer value for the month, but is later
          turned into a string representation for easier querying in the next
          example. Take the time to implement the compareTo, toString, and hashCode methods (like every good Java
          developer!).

public static class RedisKey implements WritableComparable<RedisKey> {

    private int lastAccessMonth = 0;
    private Text field = new Text();

    public int getLastAccessMonth() {
        return this.lastAccessMonth;
    }

    public void setLastAccessMonth(int lastAccessMonth) {
        this.lastAccessMonth = lastAccessMonth;
    }

    public Text getField() {
        return this.field;
    }

    public void setField(String field) {
        this.field.set(field);
    }

    public void readFields(DataInput in) throws IOException {
        lastAccessMonth = in.readInt();
        this.field.readFields(in);
    }

    public void write(DataOutput out) throws IOException {
        out.writeInt(lastAccessMonth);
        this.field.write(out);
    }

    public int compareTo(RedisKey rhs) {
        if (this.lastAccessMonth == rhs.getLastAccessMonth()) {
            return this.field.compareTo(rhs.getField());
        } else {
            return this.lastAccessMonth < rhs.getLastAccessMonth() ? -1 : 1;
        }
    }

    public String toString() {
        return this.lastAccessMonth + "\t" + this.field.toString();
    }

    public int hashCode() {
        return toString().hashCode();
    }
}

OutputFormat code



This output format is extremely basic, as all the grunt work is handled in
          the record writer. The main thing to focus on is the templated
          arguments when extending the InputFormat
          class. This output format accepts our custom class as the output key
          and a Text object as the output
          value. Any other classes will cause errors when trying to write any
          output.
Since our record writer implementation is coded to a specific
          and known output, there is no need to verify any output
          specification of the job. An output committer is still required by
          the framework, so we use NullOutputFormat’s
          output committer.

public static class RedisLastAccessOutputFormat
        extends OutputFormat<RedisKey, Text> {

    public RecordWriter<RedisKey, Text> getRecordWriter(
            TaskAttemptContext job) throws IOException, InterruptedException {
        return new RedisLastAccessRecordWriter();
    }

    public void checkOutputSpecs(JobContext context) throws IOException,
            InterruptedException {
    }

    public OutputCommitter getOutputCommitter(TaskAttemptContext context)
            throws IOException, InterruptedException {
        return (new NullOutputFormat<Text, Text>()).getOutputCommitter(context);
    }

    public static class RedisLastAccessRecordWriter
            extends RecordWriter<RedisKey, Text> {
        // Code in next section
    }
}

RecordWriter code



The RedisLastAccessRecordWriter is templated to accept the same classes as the output format. The construction
            of the class connects to all six Redis instances and puts them in a map. This map stores
            the month-to-Redis-instance mappings and is used in the write method to retrieve the proper instance. The write method then uses a map of month int to a three character month code
            for serialization. This map is omitted for brevity, but looks something like 0→JAN, 1→FEB, ..., 11→DEC. This means all the hashes in Redis are named based on
            the three-character month code. The close method
            disconnects all the Redis instances.

public static class RedisLastAccessRecordWriter
        extends RecordWriter<RedisKey, Text> {

    private HashMap<Integer, Jedis> jedisMap = new HashMap<Integer, Jedis>();

    public RedisLastAccessRecordWriter() {
        // Create a connection to Redis for each host
        int i = 0;
        for (String host : MRDPUtils.REDIS_INSTANCES) {
            Jedis jedis = new Jedis(host);
            jedis.connect();
            jedisMap.put(i, jedis);
            jedisMap.put(i + 1, jedis);
            i += 2;
        }
    }

    public void write(RedisKey key, Text value) throws IOException,
            InterruptedException {
        // Get the Jedis instance that this key/value pair will be
        // written to -- (0,1)->0, (2-3)->1, ... , (10-11)->5
        Jedis j = jedisMap.get(key.getLastAccessMonth());

        // Write the key/value pair
        j.hset(MONTH_FROM_INT.get(key.getLastAccessMonth()), key
                .getField().toString(), value.toString());
    }

    public void close(TaskAttemptContext context) throws IOException,
            InterruptedException {
        // For each jedis instance, disconnect it
        for (Jedis jedis : jedisMap.values()) {
            jedis.disconnect();
        }
    }
}

Mapper code



The mapper code parses each input record and sets the values
          for the output RedisKey and the
          output value. The month of the last access data is parsed via the
          Calendar and SimpleDateFormat classes.

public static class RedisLastAccessOutputMapper extends
        Mapper<Object, Text, RedisKey, Text> {

    // This object will format the creation date string into a Date object
    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    private RedisKey outkey = new RedisKey();
    private Text outvalue = new Text();

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {

        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
                .toString());

        String userId = parsed.get("Id");
        String reputation = parsed.get("Reputation");

        // Grab the last access date
        String strDate = parsed.get("LastAccessDate");

        // Parse the string into a Calendar object
        Calendar cal = Calendar.getInstance();
        cal.setTime(frmt.parse(strDate));

        // Set our output key and values
        outkey.setLastAccessMonth(cal.get(Calendar.MONTH));
        outkey.setField(userId);
        outvalue.set(reputation);

        context.write(outkey, outvalue);
    }
}

Driver code



The driver looks very similar to a more basic job
          configuration. All the special configuration is entirely handled by
          the output format class and record writer. 

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    Path inputPath = new Path(args[0]);

    Job job = new Job(conf, "Redis Last Access Output");
    job.setJarByClass(PartitionPruningOutputDriver.class);

    job.setMapperClass(RedisLastAccessOutputMapper.class);
    job.setNumReduceTasks(0);

    job.setInputFormatClass(TextInputFormat.class);
    TextInputFormat.setInputPaths(job, inputPath);

    job.setOutputFormatClass(RedisHashSetOutputFormat.class);

    job.setOutputKeyClass(RedisKey.class);
    job.setOutputValueClass(Text.class);

    int code = job.waitForCompletion(true) ? 0 : 2;

    System.exit(code);
}


Querying for user reputation by last access date



This example demonstrates how to query for the information we just stored in
        Redis. Unlike most examples, where you provide some path to files in
        HDFS, we instead just pass in the months of data we want. Figuring out
        where to get the data is entirely handled intelligently by the input
        format.
The heart of partition pruning is to avoid reading data that you
        don’t have to read. By storing the user-to-reputation mappings across
        six different Redis servers, we need to connect only to the instances
        that are hosting the requested month’s data. Even better, we need to
        read only from the hashes that are holding the specific month. For
        instance, passing in “JAN,FEB,MAR,NOV” on the command line will create
        three input splits, one for each Redis instance hosting the data (0,
        1, and 5). All the data on Redis instance 0 will be read, but only the
        first months on Redis instances 1 and 5 will be pulled. This is much
        better than having to connect to all the desired instances and read
        all the data, only to throw most of it away!
The sections below with its corresponding code explain the
        following problem.
Problem: Given a query for user to reputation mappings by
        months, read only the data required to satisfy the query in
        parallel.
InputSplit code



The input split shown here is very similar to the input split in External Source Input Example. Instead of storing one hash
          key, we are going to store multiple hash keys. This is because the
          data is partitioned based on month, instead of all the data being
          randomly distributed in one hash.

public static class RedisLastAccessInputSplit
        extends InputSplit implements Writable {

    private String location = null;
    private List<String> hashKeys = new ArrayList<String>();

    public RedisLastAccessInputSplit() {
        // Default constructor for reflection
    }

    public RedisLastAccessInputSplit(String redisHost) {
        this.location = redisHost;
    }

    public void addHashKey(String key) {
        hashKeys.add(key);
    }

    public void removeHashKey(String key) {
        hashKeys.remove(key);
    }

    public List<String> getHashKeys() {
        return hashKeys;
    }

    public void readFields(DataInput in) throws IOException {
        location = in.readUTF();
        int numKeys = in.readInt();
        hashKeys.clear();
        for (int i = 0; i < numKeys; ++i) {
            hashKeys.add(in.readUTF());
        }
    }

    public void write(DataOutput out) throws IOException {
        out.writeUTF(location);
        out.writeInt(hashKeys.size());
        for (String key : hashKeys) {
            out.writeUTF(key);
        }
    }

    public long getLength() throws IOException, InterruptedException {
        return 0;
    }

    public String[] getLocations() throws IOException, InterruptedException {
        return new String[] { location };
    }
}

InputFormat code



This input format class intelligently creates RedisLastAccessInputSplit objects from the selected months of data. Much
            like the output format we showed earlier in OutputFormat code,
            this output format writes RedisKey objects, this
            input format reads the same objects and is templated to enforce this on mapper
            implementations. It initially creates a hash map of host-to-input splits in order to add
            the hash keys to the input split, rather than adding both months of data to the same
            split. If a split has not been created for a particular month, a new one is created and
            the month hash key is added. Otherwise, the hash key is added to the split that has
            already been created. A List is then created out of
            the values stored in the map. This will create a number of input splits equivalent to
            the number of Redis instances required to satisfy the query.
There are a number of helpful hash maps to help convert a
          month string to an integer, as well as figure out which Redis
          instance hosts which month of data. The initialization of these hash
          maps are ommitted from the static
          block for brevity.

public static class RedisLastAccessInputFormat
        extends InputFormat<RedisKey, Text> {

    public static final String REDIS_SELECTED_MONTHS_CONF =
            "mapred.redilastaccessinputformat.months";
    private static final HashMap<String, Integer> MONTH_FROM_STRING =
            new HashMap<String, Integer>();
    private static final HashMap<String, String> MONTH_TO_INST_MAP =
            new HashMap<String, String>();
    private static final Logger LOG = Logger
            .getLogger(RedisLastAccessInputFormat.class);

    static {
        // Initialize month to Redis instance map
        // Initialize month 3 character code to integer
    }

    public static void setRedisLastAccessMonths(Job job, String months) {
        job.getConfiguration().set(REDIS_SELECTED_MONTHS_CONF, months);
    }

    public List<InputSplit> getSplits(JobContext job) throws IOException {

        String months = job.getConfiguration().get(
                REDIS_SELECTED_MONTHS_CONF);

        if (months == null || months.isEmpty()) {
            throw new IOException(REDIS_SELECTED_MONTHS_CONF
                    + " is null or empty.");
        }

        // Create input splits from the input months
        HashMap<String, RedisLastAccessInputSplit> instanceToSplitMap =
                    new HashMap<String, RedisLastAccessInputSplit>();

        for (String month : months.split(",")) {
            String host = MONTH_TO_INST_MAP.get(month);
            RedisLastAccessInputSplit split = instanceToSplitMap.get(host);
            if (split == null) {
                split = new RedisLastAccessInputSplit(host);
                split.addHashKey(month);
                instanceToSplitMap.put(host, split);
            } else {
                split.addHashKey(month);
            }
        }

        LOG.info("Input splits to process: " +
                instanceToSplitMap.values().size());
        return new ArrayList<InputSplit>(instanceToSplitMap.values());
    }

    public RecordReader<RedisKey, Text> createRecordReader(
            InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        return new RedisLastAccessRecordReader();
    }

    public static class RedisLastAccessRecordReader
            extends RecordReader<RedisKey, Text> {
            // Code in next section
    }
}

RecordReader code



The RedisLastAccessRecordReader is a
          bit more complicated than the other record readers we
          have seen. It needs to read from multiple hashes, rather than just
          reading everything at once in the initialize method. Here, the configuration
          is simply read in this method.
In nextKeyValue, a new
          connection to Redis is created if the iterator through the hash is
          null, or if we have reached the end of all the hashes to read. If
          the iterator through the hashes does not have a next value, we
          immediately return false, as
          there is no more data for the map task. Otherwise, we connect to
          Redis and pull all the data from the specific hash. The hash
          iterator is then used to exhaust all the field value pairs from
          Redis. A do-while loop is used to ensure that once a hash iterator
          is complete, it will loop back around to get data from the next hash
          or inform the task there is no more data to be read.
The implementation of the remaining methods are identical to
          that of the RedisHashRecordReader
          and are omitted.

public static class RedisLastAccessRecordReader
        extends RecordReader<RedisKey, Text> {

    private static final Logger LOG = Logger
            .getLogger(RedisLastAccessRecordReader.class);
    private Entry<String, String> currentEntry = null;
    private float processedKVs = 0, totalKVs = 0;
    private int currentHashMonth = 0;
    private Iterator<Entry<String, String>> hashIterator = null;
    private Iterator<String> hashKeys = null;
    private RedisKey key = new RedisKey();
    private String host = null;
    private Text value = new Text();

    public void initialize(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {

        // Get the host location from the InputSplit
        host = split.getLocations()[0];

        // Get an iterator of all the hash keys we want to read
        hashKeys = ((RedisLastAccessInputSplit) split)
                .getHashKeys().iterator();

        LOG.info("Connecting to " + host);
    }
    public boolean nextKeyValue() throws IOException,
            InterruptedException {

        boolean nextHashKey = false;
        do {
            // if this is the first call or the iterator does not have a
            // next
            if (hashIterator == null || !hashIterator.hasNext()) {
                // if we have reached the end of our hash keys, return
                // false
                if (!hashKeys.hasNext()) {
                    // ultimate end condition, return false
                    return false;
                } else {
                    // Otherwise, connect to Redis and get all
                    // the name/value pairs for this hash key
                    Jedis jedis = new Jedis(host);
                    jedis.connect();
                    String strKey = hashKeys.next();
                    currentHashMonth = MONTH_FROM_STRING.get(strKey);
                    hashIterator = jedis.hgetAll(strKey).entrySet()
                            .iterator();
                    jedis.disconnect();
                }
            }

            // If the key/value map still has values
            if (hashIterator.hasNext()) {
                // Get the current entry and set 
                // the Text objects to the entry
                currentEntry = hashIterator.next();
                key.setLastAccessMonth(currentHashMonth);
                key.setField(currentEntry.getKey());
                value.set(currentEntry.getValue());
            } else {
                nextHashKey = true;
            }
        } while (nextHashKey);

        return true;
    }

    ...
}

Driver code



The driver code sets the months most recently accessed passed
          in via the command line. This configuration parameter is used by the
          input format to determine which Redis instances to read from, rather
          than reading from every Redis instance. It also sets the output
          directory for the job. Again, it uses the identity mapper rather
          than performing any analysis on the data retrieved.

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    String lastAccessMonths = args[0];
    Path outputDir = new Path(args[1]);

    Job job = new Job(conf, "Redis Input");
    job.setJarByClass(PartitionPruningInputDriver.class);

    // Use the identity mapper
    job.setNumReduceTasks(0);

    job.setInputFormatClass(RedisLastAccessInputFormat.class);
    RedisLastAccessInputFormat.setRedisLastAccessMonths(job,
            lastAccessMonths);

    job.setOutputFormatClass(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(job, outputDir);

    job.setOutputKeyClass(RedisKey.class);
    job.setOutputValueClass(Text.class);

    System.exit(job.waitForCompletion(true) ? 0 : 2);
}





Chapter 8. Final Thoughts and the Future of Design
    Patterns



At the time of this book’s writing, MapReduce is moving quickly. New
  features and new systems are popping up every day and new users are out in
  droves. More importantly for the subject of MapReduce Design
  Patterns, a growing number of users brings along a growing number
  of experts. These experts are the ones that will drive the community’s
  documentation of design patterns not only by sharing new ones, but also by
  maturing the already existing ones.
In this chapter, we’ll discuss and speculate what the future holds for
  MapReduce design patterns. Where will they come from? What systems will
  benefit from design patterns? How will today’s design patterns change with
  the technology? What trends in data will affect the design patterns of
  today?
Trends in the Nature of Data



MapReduce systems such as Hadoop aren’t being used just for text analysis
    anymore. Increasing number of users are deploying MapReduce jobs that
    analyze data once thought to be too hard for the paradigm. New design
    patterns are surely to arise to deal with this to transform a solution
    from pushing the limits of the system to making it daily practice.
Images, Audio, and Video



One of the most obvious trends in the nature of data is the rise
      of image, audio, and video analysis. This form of data is a
      good candidate for a distributed system using MapReduce because these
      files are typically very large. Retailers want to analyze their security
      video to detect what stores are busiest. Medical imaging analysis is
      becoming harder with the astronomical resolutions of the pictures.
      Unfortunately, as a text processing platform, some artifacts remain in
      MapReduce that make this type of analysis challenging. Since this is a
      MapReduce book, we’ll acknowledge the fact that analyzing this type of
      data is really hard, even on a single node with not much data, but we
      will not go into more detail.
One place we may see a surge in design patterns is dealing with
      multidimensional data. Videos have colored pixels that
      change over time, laid out on a two-dimensional grid. To top it off,
      they also may have an audio track. MapReduce follows a very
      straightforward, one-dimensional tape paradigm. The data is in order
      from front to back and that is how it is analyzed. Therefore, it’s
      challenging to take a look at 10-pixel by 10-pixel by 5-second section
      of video and audio as a “record.” As multidimensional data increases in
      popularity, we’ll see more patterns showing how to logically split the
      data into records and input splits properly. Or, it is possible that new
      systems will fill this niche. For example, SciDB, an open-source analytical database, is specifically
      built to deal with multi-dimensional data.

Streaming Data



MapReduce is traditionally a batch analytics system, but streaming analytics feels like
      a natural progression. In many production MapReduce systems, data is
      constantly streaming in and then gets processed in batch on an interval.
      For example, data from web server logs are streaming in, but the
      MapReduce job is only executed every hour.
This is inconvenient for a few reasons. First, processing an
      hour’s worth of data at once can strain resources. Because it’s coming
      in gradually, processing it as it arrives will spread out the
      computational resources of the cluster better. Second, MapReduce systems
      typically depend on a relatively large block size to reduce the overhead
      of distributed computation. When data is streaming in, it comes in
      record by record. These hurdles make processing streaming data difficult
      with MapReduce.
As in the previous section about large media files, this gap is
      likely to be filled by a combination of two things: new patterns and new
      systems. Some new operational patterns for storing data of this nature
      might crop up as users take this problem more seriously in production.
      New patterns for doing streaming-like analysis in the framework of batch
      MapReduce will mature. Novel systems that deal with streaming data in
      Hadoop have cropped up, most notably the commercial product HStreaming and the open-source Storm platform, recently
      released by Twitter.
Note
The authors actually considered some “streaming patterns” to be
        put into this book, but none of them were anywhere near mature enough
        or vetted enough to be officially documented.
The first is an exotic RecordReader. The map task starts up and
        streams data into the RecordReader
        instead of loading already existing data from a file. This has
        significant operational concerns that make it difficult to
        implement.
The second is splitting up the job into several one-map task
        jobs that get fired off every time some data comes in. The output is
        partitioned into k bins for future “reducers.”
        Every now and then, a map-only job with k mappers
        starts up and plays the role of the reducer.



The Effects of YARN



YARN (Yet Another Resource Negotiator) is a high-visibility advancement of Hadoop MapReduce that is currently in version
      2.0.x and will eventually make it into the current stable release. Many in the Hadoop
      community cannot wait for it to mature, as it fills a number of gaps. At a high level, YARN
      splits the responsibilities of the JobTracker and TaskTrackers into a single ResourceManager,
      one NodeManager per node, and one ApplicationMaster per application or job. The
      ResourceManager and NodeManagers abstract away computational resources from the current
      map-and-reduce slot paradigm and allow arbitrary computation. Each ApplicationMaster handles a
      framework-specific model of computation that breaks down a job into resource allocation
      requests, which is in turn handled by the ResourceManager and the NodeManagers.
What this does is separate the computation framework from the
    resource management. In this model, MapReduce is just another framework
    and doesn’t look any more special than a custom frameworks such as MPI,
    streaming, commercial products, or who knows what.
MapReduce design patterns will not change in and of themselves, because MapReduce will
      still exist. However, now that users can build their own distributed application frameworks or
      use other frameworks with YARN, some of the more intricate solutions to problems may be more
      natural to solve in another framework. We’ll see some design patterns that will still exist
      but just aren’t used very much anymore, since the natural solution lies in another distributed
      framework. We will likely eventually see ApplicationMaster patterns for building completely
      new frameworks for solving a type of problem.

Patterns as a Library or Component



Over time, as patterns get more and more use, someone may decide to
    componentize that pattern as a built-in utility class in a library. This
    type of progression is seen in traditional design patterns, as well, in
    which the library parameterizes the pattern and you just interact with it,
    instead of reimplementing the pattern. This is seen with several of the
    custom Hadoop MapReduce pieces that exist in the core Hadoop libraries, such as TotalOrderPartitioner, ChainReducer, and MultipleOutputs.
This is very natural from a standpoint of code reuse. The patterns
    in this book are presented to help you start solving a problem from
    scratch. By adding a layer of indirection, modules that set up the job for
    you and offer several parameters as points of customization can be helpful
    in the long run.

How You Can Help



If you think you’ve developed a novel MapReduce pattern that you haven’t
    seen before and you are feeling generous, you should definitely go through
    the motions of documenting it and sharing it with the world.
There are a number of questions you should try to answer. These were
    some of the questions we considered when choosing the patterns for this
    book.
	Is the problem you are trying to solve similar to another
        pattern’s target problem?
	Identifying this is important for preventing any sort of
          confusion. Chapter 5, in particular, takes this question
          seriously.

	What is at the root of this pattern?
	You probably developed the pattern to solve a very specific
          problem and have custom code interspersed throughout. Developers
          will be smart enough to tailor a pattern to their own problem or mix
          patterns to solve their more complicated problems. Tear down the
          code and only have the pattern left.

	What is the performance profile?
	Understanding what kinds of resources a pattern will use is
          important for gauging how many reducers will be needed and in
          general how expensive this operation will be. For example, some
          people may be surprised how resource intensive sorting is in a
          distributed system.

	How might have you solved this problem otherwise?
	Finding some examples outside of a MapReduce context (such as
          we did with SQL and Pig) is useful as a metaphor that helps
          conceptually bridge to a MapReduce-specific solution.





Appendix A. Bloom Filters



Overview



Conceived by Burton Howard Bloom in 1970, a Bloom filter is a
    probabilistic data structure used to test whether a member is an element
    of a set. Bloom filters have a strong space advantage over other data
    structures such as a Java Set, in that
    each element uses the same amount of space, no matter its actual size. For
    example, a string of 32 characters takes up the same amount of memory in a
    Bloom filter as a string of 1024 characters, which is drastically
    different than other data structures. Bloom filters are introduced as part
    of a pattern in Bloom Filtering.
While the data structure itself has vast memory advantages, it is
    not always 100% accurate. While false positives are possible, false
    negatives are not. This means the result of each test is either a
    definitive “no” or “maybe.” You will never get a definitive “yes.” With a
    traditional Bloom filter, elements can be added to the set, but not
    removed. There are a number of Bloom filter implementations that address
    this limitation, such as a Counting Bloom Filter, but they typically
    require more memory. As more elements are added to the set, the
    probability of false positives increases. Bloom filters cannot be resized
    like other data structures. Once they have been sized and trained, they
    cannot be reverse-engineered to achieve the original set nor resized and
    still maintain the same data set representation.
The following variables are used in the more detailed explanation of
    a Bloom filter below:
	m
	The number of bits in the filter

	n
	The number of members in the set

	p
	The desired false positive rate

	k
	The number of different hash functions used to map some
          element to one of the m bits with a uniform
          random distribution.



A Bloom filter is represented by a continuous string of
    m bits initialized to zero. For each element in
    n, k hash function values are
    taken modulo m to achieve an index from zero to
    m - 1. The bits of the Bloom filter at the resulting
    indices are set to one. This operation is often called
    training a Bloom filter. As elements are added to the
    Bloom filter, some bits may already be set to one from previous elements
    in the set. When testing whether a member is an element of the set, the
    same hash functions are used to check the bits of the array. If a single
    bit of all the hashes is set to zero, the test returns “no.” If all the
    bits are turned on, the test returns “maybe.” If the member was used to
    train the filter, the k hashs would have set all the
    bits to one.
The result of the test cannot be a definitive “yes” because the bits
    may have been turned on by a combination of other elements. If the test
    returns “maybe” but should have been “no,” this is known as a
    false positive. Thankfully, the false positive rate
    can be controlled if n is known ahead of time, or at
    least an approximation of n.
The following sections describe a number of common use cases for
    Bloom filters, the limitations of Bloom filters and a means to tweak your
    Bloom filter to get the lowest false positive rate. A code example of
    training and using a Hadoop Bloom filter can be found in Bloom filter training.

Use Cases



This section lists a number of common use cases for Bloom filters. In any
    application that can benefit from a Boolean test prior to some sort of
    expensive operation, a Bloom filter can most likely be utilized to reduce
    a large number of unneeded operations.
Representing a Data Set



One of the most basic uses of a Bloom filter is to represent very
      large data sets in applications. A data set with millions of elements
      can take up gigabytes of memory, as well as the expensive I/O required
      simply to pull the data set off disk. A Bloom filter can drastically
      reduce the number of bytes required to represent this data set, allowing
      it to fit in memory and decrease the amount of time required to read.
      The obvious downside to representing a large data set with a Bloom
      filter is the false positives. Whether or not this is a big deal varies
      from one use case to another, but there are ways to get a 100%
      validation of each test. A post-process join operation on the actual
      data set can be executed, or querying an external database is also a
      good option.

Reduce Queries to External Database



One very common use case of Bloom filters is to reduce the number
      of queries to databases that are bound to return many empty or negative
      results. By doing an initial test using a Bloom filter, an application
      can throw away a large number of negative results before ever querying
      the database. If latency is not much of a concern, the positive Bloom
      filter tests can be stored into a temporary buffer. Once a certain limit
      is hit, the buffer can then be iterated through to perform a bulk query
      against the database. This will reduce the load on the system and keep
      it more stable. This method is exceptionally useful if a large number of
      the queries are bound to return negative results. If most results are
      positive answers, then a Bloom filter may just be a waste of precious
      memory.

Google BigTable



Google’s BigTable design uses Bloom filters to reduce the need to read a file for
      non-existent data. By keeping a Bloom filter for each block in memory,
      the service can do an initial check to determine whether it is
      worthwhile to read the file. If the test returns a negative value, the
      service can return immediately. Positive tests result in the service
      opening the file to validate whether the data exists or not. By
      filtering out negative queries, the performance of this database
      increases drastically.


Downsides



The false positive rate is the largest downside to using a Bloom
    filter. Even with a Bloom filter large enough to have a 1% false positive
    rate, if you have ten million tests that should result in a negative
    result, then about a hundred thousand of those tests are going to return
    positive results. Whether or not this is a real issue depends largely on
    the use case.
Traditionally, you cannot remove elements from a Bloom filter set
    after training the elements. Removing an element would require bits to be
    set to zero, but it is extremely likely that more than one element hashed
    to a particular bit. Setting it to zero would destroy any future tests of
    other elements. One way around this limitation is called a
    Counting Bloom Filter, which keeps an integer at each index of the array. When
    training a Bloom filter, instead of setting a bit to zero, the integers
    are increased by one. When an element is removed, the integer is decreased
    by one. This requires much more memory than using a string of bits, and
    also lends itself to having overflow errors with large data sets. That is,
    adding one to the maximum allowed integer will result in a negative value
    (or zero, if using unsigned integers) and cause problems when executing
    tests over the filter and removing elements.
When using a Bloom filter in a distributed application like
    MapReduce, it is difficult to actively train a Bloom filter in the sense
    of a database. After a Bloom filter is trained and serialized to HDFS, it
    can easily be read and used by other applications. However, further
    training of the Bloom filter would require expensive I/O operations,
    whether it be sending messages to every other process using the Bloom
    filter or implementing some sort of locking mechanism. At this point, an
    external database might as well be used.

Tweaking Your Bloom Filter



Before training a Bloom filter with the elements of a set, it can be very
    beneficial to know an approximation of the number of elements. If you know
    this ahead of time, a Bloom filter can be sized appropriately to have a
    hand-picked false positive rate. The lower the false positive rate, the
    more bits required for the Bloom filter’s array. Figure A-1 shows how to calculate the size of a Bloom
    filter with an optimal-k.
[image: Optimal size of a Bloom filter with an optimal-k]

Figure A-1. Optimal size of a Bloom filter with an optimal-k


The following Java helper function calculates the optimal
    m.

/**
 * Gets the optimal Bloom filter sized based on the input parameters and the
 * optimal number of hash functions.
 *
 * @param numElements
 *            The number of elements used to train the set.
 * @param falsePosRate
 *            The desired false positive rate.
 * @return The optimal Bloom filter size.
 */
public static int getOptimalBloomFilterSize(int numElements,
        float falsePosRate) {
    return (int) (-numElements * (float) Math.log(falsePosRate)
                / Math.pow(Math.log(2), 2));
}
The optimal-k is defined as the number of hash
    functions that should be used for the Bloom filter. With a Hadoop Bloom
    filter implementation, the size of the Bloom filter and the number of hash
    functions to use are given when the object is constructed. Using the
    previous formula to find the appropriate size of the Bloom filter assumes
    the optimal-k is used.
Figure A-2 shows how the
    optimal-k is based solely on the size of the Bloom
    filter and the number of elements used to train the filter.
[image: Optimal-k of a Bloom filter]

Figure A-2. Optimal-k of a Bloom filter


The following helper function calculates the
    optimal-k.

/**
 * Gets the optimal-k value based on the input parameters.
 *
 * @param numElements
 *            The number of elements used to train the set.
 * @param vectorSize
 *            The size of the Bloom filter.
 * @return The optimal-k value, rounded to the closest integer.
 */
public static int getOptimalK(float numElements, float vectorSize) {
    return (int) Math.round(vectorSize * Math.log(2) / numElements);
}
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