

 [image: First Edition]

 Basic Sensors in iOS

Alasdair Allan

Editor
Brian Jepson

Copyright © 2011 Alasdair Allan

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Basic Sensors
 in iOS, the image of a Malay fox-bat, and related trade dress
 are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Over the last few years the new generation of smart phones, such as
 Apple’s iPhone, has finally started to live up to their name and have become
 the primary interface device for geographically tagged data. However not
 only do these devices know where they are, they can tell you how they’re
 being held, they are sufficiently powerful to overlay data layers on the
 camera view, and record and interpret audio data, and they can do all this
 in real time. These are not just smart phones, these are computers that just
 happen to be able to make phone calls.
This book should provide a solid introduction to using the hardware
 features in the iPhone, iPod touch, and iPad.
Who Should Read This Book?

This book provides an introduction to the hot topic of
 location-enabled sensors on the iPhone. If you are a programmer who has
 had some experience with the iPhone before, this book will help you push
 your knowledge further. If you are an experienced Mac programmer, already
 familiar with Objective-C as a language, this book will give you an
 introduction to the hardware specific parts of iPhone programming.

What You Should Already Know?

The book assumes some previous experience with the Objective-C
 language. Additionally some familiarity with the iPhone platform would be
 helpful. If you’re new to the iPhone platform you may be interested in
 Learning
 iPhone Programming, also by Alasdair Allan
 (O’Reilly).

What Will You Learn?

This book will guide you through guide you through developing
 applications for the iPhone platform that make use of the onboard sensors:
 the three-axis accelerometer, the magnetometer (digital compass), the
 gyroscope, the camera and the global positioning system

What’s In This Book?

	Chapter 1, The Hardware
	This chapter summarizes the available sensors on the iPhone
 and iPad platforms and how they have, or could be, used in
 applications. It talks about the differences between the hardware
 platforms.

	Chapter 2, Using the Camera
	Walkthrough of how to use the iPhone’s camera for still and
 video. How to create video thumbnails and customise video.

	Chapter 3, Using Audio
	Walkthrough of how to playback iPod media, as well as how to
 play and record audio on your device.

	Chapter 4, Using the Accelerometer
	Walkthrough of how to use the accelerometer, discussion of
 what is implied with respect to the orientation of the device by the
 raw readings.

	Chapter 5, Using the Magnetometer
	Walkthrough of how to use the magnetometer, discussion of
 combining the magnetometer and accelerometer to get the yaw, pitch
 and roll of the device.

	Chapter 6, Using Core Motion
	This paragraph discusses the new Core Motion framework; this
 new framework allows your application to receive motion data from
 both the accelerometer and (on the latest generation of devices) the
 gyroscope.

	Chapter 7, Going Further
	Provides a collection of pointers to more advanced material on
 the topics we covered in the book, and material covering some of
 those topics that we didn’t manage to talk about in this
 book.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon signifies a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Basic Sensors in iOS, by Alasdair Allan. Copyright
 2011 O’Reilly Media, Inc., 978-1-4493-0846-9.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.
Warning
A lot of the examples won’t work completely in the simulator, so
 you’ll need to deploy them to your device to test the code.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449308469

Supplementary materials are also available at:
	http://www.programmingiphonesensors.com

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Everyone has one book in them. This is my second, or depending how
 you want to look at it, my Platform 9¾, since this book, along with the
 other three forthcoming short books on iOS and sensor technology, will
 form the bulk of Programming iOS4 Sensors, which
 would probably be classed by most as my second real book for
 O’Reilly.
At which point, I’d like to thank my editor at O’Reilly, Brian
 Jepson, for holding my hand just one more time. As ever his hard work made
 my hard work much better than it otherwise would have been. I also very
 much want to thank my wife Gemma Hobson for her continued support and
 encouragement. Those small, and sometimes larger, sacrifices an author’s
 spouse routinely has to make don’t get any less inconvenient the second
 time around. I’m not sure why she let me write another, perhaps because I
 claimed to enjoy writing the first one so much. Thank you Gemma. Finally
 to my son Alex, still too young to read what his daddy has written,
 hopefully this volume will keep you in books to chew on just a little
 longer.

Chapter 1. The Hardware

The arrival of the iPhone changed the whole direction of software
 development for mobile platforms, and has had a profound impact on the
 hardware design of the smart phones that have followed it. The arrival of
 the iPad has turned what was a single class of device into a
 platform.
Available Sensor Hardware

While the iPhone is almost unique amongst mobile platforms in
 guaranteeing that your application will run on all of the current devices
 (see Figure 1-1), however
 there is an increasing amount of variation in available hardware between
 the various models, as shown in Table 1-1.
[image: Timeline showing the availability of iPhone, iPod Touch, iPad modelsComment [AA2]: Can we get this redrawn by the art department (and not include the Apple TV (2G)? This is the Wikipedia timeline from,]

Figure 1-1. Timeline showing the availability of iPhone, iPod Touch, iPad
 models

Table 1-1. Hardware support in various iPhone, iPod touch, and iPad
	Hardware Feature
	iPhone
	iPod
 touch
	iPad
	iPad 2

	
 Original
	
 3G
	
 3GS
	
 4
	
 1st Gen
	
 2nd Gen
	
 3rd Gen
	
 4th Gen
	
 WiFi
	
 3G
	
 WiFi
	
 3G

	Cellular
	☑
	☑
	☑
	☑
	☐
	☐
	☐
	☐
	☐
	☑
	☐
	☑

	WiFi
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑

	Bluetooth
	☑
	☑
	☑
	☑
	☐
	☑
	☑
	☑
	☑
	☑
	☑
	☑

	Speaker
	☑
	☑
	☑
	☑
	☐
	☑
	☑
	☑
	☑
	☑
	☑
	☑

	Audio In
	☑
	☑
	☑
	☑
	☐
	☑
	☑
	☑
	☑
	☑
	☑
	☑

	Accelerometer
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑
	☑

	Magnetometer
	☐
	☐
	☑
	☑
	☐
	☐
	☐
	☐
	☑
	☑
	☑
	☑

	Gyroscope
	☐
	☐
	☐
	☑
	☐
	☐
	☐
	☑
	☐
	☐
	☑
	☑

	GPS
	☐
	☑
	☑
	☑
	☐
	☐
	☐
	☐
	☐
	☑
	☐
	☑

	Proximity
 Sensor
	☑
	☑
	☑
	☑
	☐
	☐
	☐
	☐
	☐
	☐
	☐
	☐

	Camera
	☑
	☑
	☑
	☑
	☐
	☐
	☐
	☑
	☐
	☐
	☑
	☑

	Video
	☐
	☐
	☑
	☑
	☐
	☐
	☐
	☑
	☐
	☐
	☑
	☑

	Vibration
	☑
	☑
	☑
	☑
	☐
	☐
	☐
	☐
	☐
	☐
	☐
	☐

Most of the examples in this book will be built as iPhone however
 depending on the availability of hardware the examples will run equally
 well on the iPod touch and iPad; the underlying code is equally applicable
 as we’re dealing for the most part directly with that hardware.

Differences Between iPhone and iPad

The most striking, and obvious, difference between the iPhone and
 the iPad is screen size. The original iPhone screen has 480×320 pixel
 resolution at 163 pixels per inch. The iPhone 4 and 4th generation iPod
 touch Retina Displays have a resolution of 960×640 pixel at 326 pixels per
 inch. Meanwhile both generations of the iPad screen have 1024×768 pixel
 resolution at 132 pixels per inch. This difference will be the single most
 fundamental thing to affect the way you design your user interface on the
 two platforms. Attempting to treat the iPad as simply a rather oversized
 iPod touch or iPhone will lead to badly designed applications. The
 metaphors you use on the two different platforms
The increased screen size of the device means that you can develop
 desktop-sized applications, not just phone-sized applications, for the
 iPad platform. Although in doing so, a rethink of the user interface to
 adapt to multi-touch is needed. What works for the iPhone or the desktop,
 won’t automatically work on an iPad. For example, Apple totally redesigned
 the user interface of the iWork suite when they moved it to the iPad. If
 you’re intending to port a Mac OS X desktop application to the iPad you
 should do something similar.
Note
Interestingly there is now an option for iOS developers to port
 their iPhone and iPad projects directly to Mac OS X. The Chameleon
 Project http://chameleonproject.org is a drop in
 replacement for UIKit that runs on
 Mac OS X, allowing iOS applications to be run on the desktop with little
 modification, in some cases none.

Due to its size and function the iPad is immediately associated in
 our minds with other more familiar objects like a legal pad or a book.
 Holding the device triggers powerful associations with these items, and
 we’re mentally willing to accept the iPad has a successor to these
 objects. This is simply not true for the iPhone; the device is physically
 too small.
The Human Interface Guidelines
Apple has become almost infamous for strict adherence to its Human
 Interface Guidelines. Designed to present users with “a consistent
 visual and behavioral experience across applications and the operating
 system” the interface guidelines mean that (most) applications running
 on the Mac OS X desktop have a consistent look and feel. With the
 arrival of the iPhone and the iPad, Apple had to draw up new sets of
 guidelines for their mobile platforms, radically different from the
 traditional desktop.
Even for developers who are skeptical about whether they really
 needed to strictly adhere to the guidelines (especially when Apple
 periodically steps outside them) the Human Interface Guidelines have remained a
 benchmark against which the user experience can be measured.
Copies of the Human Interface Guidelines for both the iPhone and
 the iPad are available for download from the App Store Resource
 Center.
I would recommend that you read the mobile Human Interface
 Guidelines carefully, if only because violating them could lead to your
 application being rejected by the review team during the App Store
 approval process.

However this book is not about how to design your user interface or
 manage your user experience. For the most part the examples I present in
 this book are simple view-based applications that could be equally written
 for the iPhone and iPod touch or the iPad. The user interface is only
 there to illustrate how to use the underlying hardware. This book is about
 how to use the collection of sensors in these mobile devices.
Device Orientation and the iPad

The slider button on the side of the iPad can, optionally, be used
 to lock the device’s orientation. This means that if you want the screen
 to stay in portrait mode, it won’t move when you turn it sideways if
 locked. However despite the presence of the rotation lock (and unlike
 the iPhone where many applications only supported Portrait mode) an iPad
 application is expected to support all orientations equally.
Note
Apple has this to say about iPad applications: “An application’s
 interface should support all landscape and portrait orientations. This
 behavior differs slightly from the iPhone, where running in both
 portrait and landscape modes is not required.”

To implement basic support for all interface orientations, you
 should implement the shouldAutorotateToInterfaceOrientation: method
 in all of your application’s view controllers, returning YES for all orientations. Additionally, you
 should configure the auto-resizing mark property of your views inside
 Interface Builder so that they correctly respond to layout changes (i.e.
 rotation of the device).
Going beyond basic support

If you want to go beyond basic support for alternative
 orientations there is more work involved. Firstly for custom views,
 where the placement of subviews is critical to the UI and need to be
 precisely located, you should override the layoutSubviews method to add your custom
 layout code. However, you should override this method only if the
 autoresizing behaviors of the subviews are not what you desire.
When an orientation event occurs, the UIWindow class will work with the front-most
 UIViewController to adjust the
 current view. Therefore if you need to perform tasks before, during,
 or after completing device rotation you should use the relevant
 rotation UIViewController
 notification methods. Specifically the view controller’s willRotateToInterfaceOrientation:duration:,
 willAnimateRotationToInterfaceOrientation:duration:,
 and didRotateFromInterfaceOrientation: methods
 are called at relevant points during rotation allowing you to perform
 tasks relevant to the orientation change in progress. For instance you
 might make use of these callbacks to allow you to add or remove
 specific views and reload your data in those views.

Detecting Hardware Differences

Because your application will likely support multiple devices,
 you’ll need to write code to check which features are supported and adjust
 your application’s behavior as appropriate.
Camera Availability

We cover the camera in detail in Chapter 2, however it is simple matter to determine
 whether a camera is present in the device:
BOOL available = [UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];
Once you have determined that a camera is present you can enquire
 whether it supports video by making a call to determine the available
 media types the camera supports:
NSArray *media = [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];
If the kUTTypeMovie media type
 is returned as part of the array, then the camera will support video
 recording:
if ([media containsObject:(NSString *)kUTTypeMovie]){
 NSLog(@"Camera supports movie capture.");
}

Audio Input Availability

An initial poll of whether audio input is available can be done
 using the AVAudioSession class by
 checking the inputIsAvailable class
 property:
AVAudioSession *audioSession = [AVAudioSession sharedInstance];
BOOL audioAvailable = audioSession.inputIsAvailable;
Note
You will need to add the
 AVFoundation.Framework (right-click/Control-click
 on the Frameworks folder in Xcode, then choose Add→Existing Frameworks). You’ll also need
 to import the header (put this in your declaration if you plan to
 implement the AVAudioSessionDelegate protocol discussed
 later):
#import <AVFoundation/AVFoundation.h>

You can also be notified of any changes in the availability of
 audio input, e.g., if a second generation iPod touch user has plugged in
 headphones with microphone capabilities. First, nominate your class as a
 delegate:
audioSession.delegate = self;
And then declare it as implementing the AVAudioSessionDelegate protocol in the declaration:
@interface YourAppDelegate : NSObject <UIApplicationDelegate,
 AVAudioSessionDelegate >
Then implement the inputIsAvailableChanged: in the
 implementation:
- (void)inputIsAvailableChanged:(BOOL)audioAvailable {
 NSLog(@"Audio availability has changed");
}

GPS Availability

The short answer to a commonly asked question is that the Core
 Location framework does not provide any way to get direct information
 about the availability of specific hardware such as the GPS at
 application run time, although you can check whether location services
 are enabled:
BOOL locationAvailable = [CLLocationManager locationServicesEnabled];
However, you can require the presence of GPS hardware for your
 application to load (see).

Magnetometer Availability

Fortunately Core Location does allow you to check for the presence
 of the magnetometer (digital compass) fairly simply:
BOOL magnetometerAvailable = [[CLLocationManager headingAvailable];

Setting Required Hardware Capabilities

If your application requires specific hardware features in order to
 run you can add a list of required capabilities to your application’s
 Info.plist file. Your application
 will not start unless those capabilities are present on the device.
To do this, open the project and click on the application’s
 Info.plist file to open it in the
 Xcode editor. Click on the bottommost entry in the list. A plus button
 will appear to the right-hand side of the key-value pair table.
Click on this button to add a new row to the table, and scroll down
 the list of possible options and select “Required device capabilities”
 (the UIRequiredDeviceCapabilities key).
 This will add an (empty) array to the plist file.
The allowed values for the keys are:
	telephony

	wifi

	sms

	still-camera

	auto-focus-camera

	front-facing-camera

	camera-flash

	video-camera

	accelerometer

	gyroscope

	location-services

	gps

	magnetometer

	gamekit

	microphone

	opengles-1

	opengles-2

	armv6

	armv7

	peer-peer

A full description of the possible keys is given in the Device
 Support section of the iPhone Application Programming Guide available from
 the iPhone Development Center.
Persistent WiFi

If your application requires a persistent WiFi connection you can
 set the Boolean UIRequiresPersistentWiFi key in the
 Application’s Info.plist file to
 ensure that WiFi is available. If set to YES the operating system will open a WiFi
 connection when your application is launched and keep it open while the
 application is running. If this key is not present, or is set to
 NO, the Operating System will close
 the active WiFi connection after 30 minutes.

Background Modes

Setting the UIBackgroundModes
 key in the Application’s Info.plist
 file notifies the operating systems that the application should continue
 to run in the background, after the user closes it, since it provides
 specific background services.
Note
Apple has this to say about background modes, “These keys should
 be used sparingly and only by applications providing the indicated
 services. Where alternatives for running in the background exist,
 those alternatives should be used instead. For example, applications
 can use the significant location change interface to receive location
 events instead of registering as a background location
 application.”

There are three possible key values: audio,
 location, and voip. The
 audio key indicates that after closing the
 application will continue to play audible content. The
 location key indicates that the application provides
 location-based information for the user using the standard Core Location
 services, rather than the newer significant location change service.
 Finally, the voip key indicates that the application
 provides Voice-over-IP services. Applications marked with this key are
 automatically launched after system boot so that the application can
 attempt to re-establish VoIP services.

Chapter 2. Using the Camera

Phones with cameras only started appearing on the market in late 2001;
 now they’re everywhere. By the end of 2003 more camera phones were sold
 worldwide than standalone digital cameras, and by 2006 half of the world’s
 mobile phones had a built-in camera.
The social impact of this phenomenon should not be underestimated; the
 ubiquity of these devices has had a profound affect on society and on the
 way that news and information propagate. Mobile phones are constantly
 carried, which means their camera is always available. This constant
 availability has led to some innovative third party applications, especially
 with the new generation of smart phones. The iPhone has been designed with
 always-on connectivity in mind.
The Hardware

Until recently, only the iPhone has featured a camera in all of the
 available models. However the latest generation of both the iPod touch and
 iPad now also have cameras.
The original iPhone and iPhone 3G feature a fixed-focus
 2.0-megapixel camera, while the iPhone 3GS features a 3.2-megapixel camera
 with auto-focus, auto-white balance and auto-macro focus (up to 10cm). The
 iPhone 3GS camera is also able of capturing 640×480 pixel video at 30
 frames per second. Although the earlier models are physically capable of
 capturing video, they are limited in software and this feature is not
 available at the user level. The latest iPhone 4 features a 5-megapixel
 camera with better low-light sensitivity and backside illuminated sensor.
 The camera has an LED flash and is capable of capturing 720p HD video at
 30 frames per second. The iPhone 4 also has a lower-resolution
 front-facing camera, which is capable of capturing 360p HD video at 30
 frames per second.
Warning
The iPhone 3GS and iPhone 4 cameras are known to suffer from
 rolling shutter effect when used to take video.
 This effect is a form of aliasing that may result in distortion of fast
 moving objects, or image effects due to lighting levels that change as a
 frame is captured. At the time of writing it’s not clear whether the 4th
 generation iPod touch and iPad 2 cameras suffer the same problem.

The latest generation of iPod touch and iPad also have both rear-
 and front-facing cameras, both of which are far lower resolution than the
 camera fitted to the iPhone 4, see Table 2-1 for details. You’ll
 notice the difference in sizes between still and video images on the iPod
 touch and the iPad 2. It’s unclear whether Apple is using a 1280×720
 sensor and cropping off the left and right sides of the video image for
 still images, or whether it is using a 960×720 sensor and up-scaling it on
 the sides for video. The later would be an unusual approach for Apple, but
 is not inconceivable.
Table 2-1. Camera hardware support in various iPhone models
	Model
	Focus
	Flash
	Megapixels
	Size
	Video

	Original
 iPhone
	Fixed
	No
	2.0
	1600×1200
	No

	iPhone 3G
	Fixed
	No
	2.0
	1600×1200
	No

	iPhone 3GS
	Autofocus
	No
	3.2
	2048×1536
	VGA at 30fps

	iPhone
 4
	Autofocus
	LED
 flash
	5.0 for
 still
	2592×1944
	720p at
 30fps

	1.4 for
 video
	1280×1024

	Fixed
	No
	1.4
	1280×1024
	360p at
 30fps

	iPod touch
 (4th Gen)
	Fixed
	No
	0.69 for
 still
	960×720
	720p at
 30fps

	0.92 for
 video
	1280×720

	Fixed
	No
	1.4
	1280×1024
	VGA at 30fps

	iPad
 2
	Fixed
	No
	0.69 for
 still
	960×720
	720p at
 30fps

	0.92 for
 video
	1280×720

	Fixed
	No
	1.4
	1280×1024
	VGA at 30fps

All models produce geocoded images by default.

Capturing Stills and Video

The UIImagePickerViewController
 is an Apple-supplied interface for choosing images and movies, and taking
 new images or movies (on supported devices). This class handles all of the
 required interaction with the user and is very simple to use. All you need
 to do is tell it to start, then dismiss it after the user selects an image
 or movie.
Let’s go ahead and build a simple application to illustrate how to
 use the image picker controller. Open Xcode and start a new project.
 Select a View-based Application for the iPhone, and name it Media when requested.
The first thing to do is set up the main view. This is going to
 consist of a single button that is pressed to bring up the Image Picker
 controller. An UIImageView will display
 the image, or thumbnail of the video, that is captured.
Select the MediaViewController.h interface file to open it
 in the editor and add a UIButton and an
 associated method to the interface file. Flag these as an IBOutletand IBAction
 respectively. You also need to add a UIImageView to display that image returned by
 the image picker, which also needs to be flagged as an IBOutlet. Finally, add a UIImagePickerController, and flag the view
 controller as both UIImagePickerControllerDelegate and UINavigationControllerDelegate. The code to add
 to the default template is shown in bold:
#import <UIKit/UIKit.h>

@interface MediaViewController : UIViewController
 <UIImagePickerControllerDelegate, UINavigationControllerDelegate> {[image: 1]

 IBOutlet UIButton *pickButton;
 IBOutlet UIImageView *imageView;
 UIImagePickerController *pickerController;
}

-(IBAction) pickImage:(id) sender;

@end
	[image: 1]
	Both UIImagePickerControllerDelegate and UINavigationControllerDelegate declarations
 are necessary for the class to interact with the UIImagePickerController.

Next, open the MediaViewController.m implementation file and
 add a stub for the pickImage: method.
 As always, remember to release the pickButton, imageView and the pickerController in the dealloc method:
-(IBAction) pickImage:(id) sender {
 // Code goes here later
}

- (void)dealloc {
 [pickButton release];
 [imageView release];
 [pickerController release];
 [super dealloc];
}
After saving your changes (⌘-S) single click on the MediaViewController.xib NIB file to open it in
 Interface Builder. Drag and drop a UIButton and a UIImageView into the main View window. Go ahead
 and change the button text to something appropriate, and in the
 Attributes Inspector of the Utilities panel set the
 UIImageView’s view mode to be
 Aspect Fit. Use the Size inspector resize the UIImageView to a 4:3 ratio. I used 280×210
 points which fits nicely in a Portrait-mode iPhone screen.
Next click on “File’s Owner” in the main panel. In the Connections
 inspector of the Utilities panel, connect both the pickButton outlet and the pickImage: received action to the button you
 just dropped into the View choosing Touch Up Inside as the action, see
 Figure 2-1.
[image: Connecting the UIButton to File’s Owner]

Figure 2-1. Connecting the UIButton to File’s Owner

Then connect the imageView outlet
 to the UIImageView in our user
 interface.
Click on the MediaViewController.m implementation file and
 uncomment the viewDidLoad: method.
 You’re going to use this to initialize the UIImagePickerController. Make the changes shown
 in bold:
- (void)viewDidLoad {
 [super viewDidLoad];
 pickerController = [[UIImagePickerController alloc] init];[image: 1]
 pickerController.allowsEditing = NO;[image: 2]
 pickerController.delegate = self;[image: 3]
}
	[image: 1]
	This allocates and initializes the UIImagePickerController; don’t forget to
 release it inside the dealloc
 method.

	[image: 2]
	This line prevents the picker controller from displaying the
 crop and resize tools. If enabled, the “crop and resize” stage is
 shown after capturing a still. For video, the trimming interface is
 presented.

	[image: 3]
	This line sets the delegate class to be the current class, the
 MediaViewController.

The UIImagePickerController can
 be directed to select an image (or video) from three image sources:
 UIImagePickerControllerSourceTypeCamera,
 UIImagePickerControllerSourceTypePhotoLibrary
 and UIImagePickerControllerSourceTypeSavedPhotosAlbum.
 Each presents a different view to the user allowing her to take an image
 (or a video) with the camera, from the image library, or from the saved
 photo album.
Now write the pickImage: method
 that will present the image picker controller to the user. There are a few
 good ways to do that, depending on the interface you want to present. The
 first method, makes use of a UIActionSheet to choose the source type,
 presenting the user with a list to decide whether they will take a still
 image or a video:
-(void)pickImage: (id)sender {
 UIActionSheet *popupQuery = [[UIActionSheet alloc]
 initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Photo",@"Video",nil];

 popupQuery.actionSheetStyle = UIActionSheetStyleBlackOpaque;
 [popupQuery showInView:self.view];
 [popupQuery release];
}
If we’re going to use this method we must specify that the view
 controller supports the UIActionSheetDelegate protocol in the interface
 file:
@interface MediaViewController : UIViewController
 <UIImagePickerControllerDelegate, UINavigationControllerDelegate,
 UIActionSheetDelegate> {
In the implementation file, provide an actionSheet:clickedButtonAtIndex: delegate
 method to handle presenting the image picker interface. If there is no
 camera present the source will be set to the saved photos album:
- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex {

 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {[image: 1]

 pickerController.sourceType = UIImagePickerControllerSourceTypeCamera;
 } else {[image: 2]
 pickerController.sourceType =
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;
 }

 if (buttonIndex == 0) {
 pickerController.mediaTypes = [NSArray arrayWithObject: kUTTypeImage];
 } else if (buttonIndex == 1) {
 pickerController.mediaTypes = [NSArray arrayWithObject: kUTTypeMovie];
 }
 [self presentModalViewController:pickerController animated:YES];
}
	[image: 1]
	Here we check whether the camera is available; if it is we set
 the sourceType to be the
 camera.

	[image: 2]
	If the camera is not available, we set the sourceType to be the Saved Photo
 Album.

Since we’ve made use of the kUTTypeImage and kUTTypeMovie type codes in this method we have
 to add the Mobile Core Services framework to our project.
Warning
For those of you used to working in Xcode 3, the way you add
 frameworks to your project has changed. In the past you were able to
 right-click on the Framework’s group and then select Add→Existing Frameworks. Unfortunately this is no
 longer possible and adding frameworks has become a more laborious
 process.

To add the framework, select the Media project file in the Project
 navigator window. You should see a panel as in see Figure 2-2. Select the Target
 and click on the Build Phases tab. Select the Link with Libraries drop
 down and use the + button to add the MobileCoreServices.framework from the list of
 available frameworks.
Add the following to the view controller interface file:
#import <MobileCoreServices/MobileCoreServices.h>
After saving the changes you can click on the Build and Run button.
 You should be presented with an interface much like Figure 2-3 (left). Clicking on
 the “Go” button you should be presented with the UIActionSheet that prompts the user to choose
 between still image and video capture.
Note
If you do go ahead and test the application in the iPhone
 Simulator you’ll notice that there aren’t any images in the Saved Photos
 folder, see Figure 2-3
 (right). However there is a way around this problem. In the Simulator,
 tap on the Safari Icon and drag and drop a picture from your computer
 (you can drag it from the Finder or iPhoto) into the browser. From the
 browser you can save the image to the Saved Photos folder.

Instead of explicitly choosing an image or video via the action
 sheet, you could instead allow the user to pick the source. The following
 alternative code determines whether your device supports a camera and adds
 all of the available media types to an array. If there is no camera
 present the source will again be set to the saved photos album:
-(void)pickImage: (id)sender {
 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
 pickerController.sourceType = UIImagePickerControllerSourceTypeCamera;
 NSArray* mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];
 pickerController.mediaTypes = mediaTypes;
 } else {
 pickerController.sourceType =
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;
 }
 [self presentModalViewController:pickerController animated:YES];
}
[image: Adding the MobileCoreServices.framework to the project]

Figure 2-2. Adding the MobileCoreServices.framework to the project

Here instead of presenting an action sheet and allowing the user to
 choose which source type they wish to use we interrogate the hardware and
 decide which source types are available. We can see the different
 interfaces these two methods generate in Figure 2-4. The left interface
 is the still camera interface, the middle image is the video camera
 interface and the final (right-hand) image is the joint interface, which
 allows the user to either take still image or video.
[image: The initial Media application interface (left), the UIActionSheet that pops up when the button is pressed (middle), and the Saved Photos folder that appears when the camera is unavailable (right)]

Figure 2-3. The initial Media application interface (left), the UIActionSheet
 that pops up when the button is pressed (middle), and the Saved Photos
 folder that appears when the camera is unavailable (right)

[image: The three different UIImagePickerController interfaces]

Figure 2-4. The three different UIImagePickerController interfaces

The final interface, where the user may choose to return either a
 still image or a video, is the one presented by the second version of the
 pickImage: method. This code is also
 more flexible as it will run unmodified on any of the iPhone models that
 have a camera device. If your application requires either a still image or
 a video (and can not handle both) you should be careful to specify either
 kUTTypeImage or kUTTypeMovie media type as you did in the first
 version of the method.
You can choose either of the two different methods I’ve talked about
 above to present the image picker controller to the user. In either case
 when the user has finished picking an image (or video) the following
 delegate method will be called in the view controller:
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 if([info objectForKey:@"UIImagePickerControllerMediaType"] ==
 kUTTypeMovie) {

 // add code here

 } else {
 imageView.image =
 [info objectForKey:@"UIImagePickerControllerOriginalImage"];

 }
 [self dismissModalViewControllerAnimated:YES];[image: 1]
}
	[image: 1]
	We must dismiss the image picker interface in all cases.

When the UIImagePickerController
 returns it passes an NSDictionary
 containing a number of keys, listed in Table 2-2. Use the UIImagePickerControllerMediaType key to decide
 whether the image picker is returning a still image or a movie to its
 delegate method.
Table 2-2. Keys from the NSDictionary returned by the image picker
 controller
	Key
	Object
 type

	UIImagePickerControllerMediaType
	kUTTypeImage or kUTypeMovie

	UIImagePickerControllerOriginalImage
	UIImage

	UIImagePickerControllerEditedImage
	UIImage

	UIImagePickerControllerCropRect
	CGRect

	UIImagePickerControllerMediaURL
	NSURL

We can retrieve the original image (or cropped version if editing is
 enabled) directly from the NSDictionary
 that was passed into the delegate method. This image reference can be
 passed directly to the UIImageView and
 displayed, as shown in the code in the next section and Figure 2-5.
[image: A thumbnail of a single frame of video displayed in a UIImageView]

Figure 2-5. A thumbnail of a single frame of video displayed in a
 UIImageView

Video Thumbnails

There is no easy way to retrieve a thumbnail of a video, unlike
 still photos. This section illustrates two methods of grabbing raw image
 data from an image picker.
Video Thumbnails Using the UIImagePicker

One way to grab a video frame for creating a thumbnail is to drop
 down to the underlying Quartz framework to capture an image of the
 picker itself. To do so, add the following highlighted code to the image
 picker delegate described previously in this chapter:
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 if([info objectForKey:@"UIImagePickerControllerMediaType"] ==
 kUTTypeMovie) {
 CGSize pickerSize = CGSizeMake(picker.view.bounds.size.width,
 picker.view.bounds.size.height-100);
 UIGraphicsBeginImageContext(pickerSize);
 [picker.view.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *thumbnail = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 imageView.image = thumbnail;

 } else {
 imageView.image = image;

 }
 [self dismissModalViewControllerAnimated:YES];
}
Since picker.view.layer is part
 of the UIView parent class and is of
 type CALayer, the compiler doesn’t
 know about renderInContext: method
 unless you import the QuartzCore header file. Add the following to the
 implementation file:
#import <QuartzCore/QuartzCore.h>

Video Thumbnails Using AVFoundation

Another method to obtain a thumbnail that will result in a better
 image is to use the AVFoundation
 framework. First replace the code you added in the previous section with
 the highlighted code below:
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 if([info objectForKey:@"UIImagePickerControllerMediaType"] ==
 kUTTypeMovie) {

 AVURLAsset *asset=[[AVURLAsset alloc]
 initWithURL:[info objectForKey:UIImagePickerControllerMediaURL]
 options:nil];
 AVAssetImageGenerator *generator =
 [[AVAssetImageGenerator alloc] initWithAsset:asset];
 generator.appliesPreferredTrackTransform=TRUE;
 [asset release];
 CMTime thumbTime = CMTimeMakeWithSeconds(0,30);

 AVAssetImageGeneratorCompletionHandler handler =
 ^(CMTime requestedTime, CGImageRef im, CMTime actualTime,
 AVAssetImageGeneratorResult result, NSError *error) {
 if (result != AVAssetImageGeneratorSucceeded) {
 NSLog(@"Error:%@", error);
 }
 imageView.image = [[UIImage imageWithCGImage:im] retain];
 [generator release];
 };

 CGSize maxSize = CGSizeMake(320, 180);
 generator.maximumSize = maxSize;
 [generator generateCGImagesAsynchronouslyForTimes:
 [NSArray arrayWithObject:[NSValue valueWithCMTime:thumbTime]]
 completionHandler:handler];

 } else {
 imageView.image = image;

 }
 [self dismissModalViewControllerAnimated:YES];
}
Then make sure to add the AVFoundation and CoreMedia frameworks to
 the project by importing the header files at the top of the
 implementation:
#import <AVFoundation/AVFoundation.h>
#import <CoreMedia/CoreMedia.h>
The only real downside of this method is that AVAssetImageGenerator makes use of key frames,
 which are typically spaced at one second intervals. Hopefully the key
 frame will make a good thumbnail image.

Saving Media to the Photo Album

You can save both images and videos to the Photo Album using the
 UIImageWriteToSavedPhotosAlbum and
 UISaveVideoAtPathToSavedPhotosAlbum
 methods. The method will also obtain a thumbnail image for the video if
 desired.
The saving functions in this example are asynchronous; if the
 application is interrupted (e.g., takes a phone call) or terminated, the
 image or video will be lost. You need to ensure that your user is aware
 that processing is happening in the background as part of your application
 interface.
The following example save the image to the Photo Album by adding a
 call to UIImageWriteToSavedPhotosAlbum
 to the image picker delegate. The example will then provide feedback when
 the image has been successfully saved or an error occurs. Add the
 following highlighted lines to the image picker controller presented
 earlier in the chapter:
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 if([info objectForKey:@"UIImagePickerControllerMediaType"] ==
 kUTTypeMovie) {

 CGSize pickerSize = CGSizeMake(picker.view.bounds.size.width,
 picker.view.bounds.size.height-100);
 UIGraphicsBeginImageContext(pickerSize);
 [picker.view.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *thumbnail = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 imageView.image = thumbnail;

 } else {
 UIImage *image =
 [info objectForKey:@"UIImagePickerControllerOriginalImage"];
 UIImageWriteToSavedPhotosAlbum(
 image,
 self,
 @selector(
 imageSavedToPhotosAlbum:didFinishSavingWithError:contextInfo:),
 nil);

 imageView.image = image;
 }
 [self dismissModalViewControllerAnimated:YES];
}
Then add the following method, which presents a UIAlertView notifying the user that the save has
 occurred:
- (void)imageSavedToPhotosAlbum:(UIImage *)image
 didFinishSavingWithError:(NSError *)error
 contextInfo:(void *)contextInfo {

 NSString *title;
 NSString *message;
 if (!error) {
 title = @"Photo Saved";
 message = @"The photo has been saved to your Photo Album";
 } else {
 title = NSLocalizedString(@"Error Saving Photo", @"");
 message = [error description];
 }
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}
Warning
The call to UIImageWriteToSavedPhotosAlbum can typically
 take up to 4 seconds to complete in the background. If the application
 is interrupted or terminated during this time then the image may not
 have been saved.

You can similarly add the following highlighted lines to the
 delegate method to save captured video:
-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 if([info objectForKey:@"UIImagePickerControllerMediaType"] == kUTTypeMovie) {
 NSString *tempFilePath =
 [[info objectForKey:UIImagePickerControllerMediaURL] path];
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(tempFilePath)) {
 UISaveVideoAtPathToSavedPhotosAlbum(tempFilePath, self,
 @selector(video:didFinishSavingWithError:contextInfo:),
 tempFilePath);
 }

 CGSize pickerSize = CGSizeMake(picker.view.bounds.size.width,
 picker.view.bounds.size.height-100);
 UIGraphicsBeginImageContext(pickerSize);
 [picker.view.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *thumbnail = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 imageView.image = thumbnail;

 } else {
 UIImage *image =
 [info objectForKey:@"UIImagePickerControllerOriginalImage"];
 UIImageWriteToSavedPhotosAlbum(image, self,
 @selector(
 imageSavedToPhotosAlbum:didFinishSavingWithError:contextInfo:), nil);

 imageView.image = image;
 }
 [self dismissModalViewControllerAnimated:YES];
}
Next add the following method to report whether the video has been
 successfully saved to the device’s Photo Album, or an error
 occurred:
- (void)video:(NSString *)videoPath
 didFinishSavingWithError:(NSError *)error
 contextInfo:(NSString *)contextInfo {

 NSString *title;
 NSString *message;
 if (!error) {
 title = @"Video Saved";
 message = @"The video has been saved to your Photo Album";
 } else {
 title = NSLocalizedString(@"Error Saving Video", @"");
 message = [error description];
 }
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}
Make sure you’ve saved your changes, and click on the Run button in
 the Xcode toolbar to compile and deploy the application to your device. If
 everything is working, you will see a thumbnail after you take a photo or
 video. After a few seconds a confirmation dialog will appear reporting
 success or an error. See Figure 2-6.
[image: Saving images (or video) to the Photo Album]

Figure 2-6. Saving images (or video) to the Photo Album

Video Customization

If you are capturing video you can make some video-specific
 customizations using the videoQuality
 and videoMaximumDuration properties of
 the UIImagePickerController
 class:
pickerController.videoQuality = UIImagePickerControllerQualityTypeLow;
pickerController.videoMaximumDuration = 90; // Maximum 90 seconds duration
Table 2-3 illustrates
 the expected sizes of a typical 90 second movie file for the three
 possible image quality levels, which defaults to UIImagePickerControllerQualityTypeMedium.
Table 2-3. Size of 90 seconds duration video for different quality
 settings
	Quality
	Size

	UIImagePickerControllerQualityTypeLow
	1.8 MB

	UIImagePickerControllerQualityTypeMedium
	8.4 MB

	UIImagePickerControllerQualityTypeHigh
	32 MB

The maximum, and default, value for the videoMaximumDuration property is 10 minutes.
 Users are forced to trim longer video to match the duration you
 request.

Chapter 3. Using Audio

The main classes for handling audio in the SDK are in the AVFoundation
 and Media Player frameworks. This chapter will provide a brief overview of
 how to play and record audio using these frameworks.
The Hardware

Whilst most phones have only one microphone, iPhone 4 has two. The
 main microphone is located normally on the bottom next to the dock
 connector, while the second microphone is built into the top near the
 headphone jack. This second microphone is intended for video-calling, but
 is also used in conjunction with the main microphone to suppress
 background noise.
In comparison the iPad 2 has a single microphone, but there is a
 difference between the two models which could lead to a difference in
 audio recording quality between the 3G and WiFi-only models. On the
 WiFi-only model, the microphone hole is built-into the back of the device,
 whereas on 3G models, it’s built into the antenna casing. There are
 suggestions that this difference may lead to cleaner audio recordings with
 the WiFi model, with the 3G model sounding muffled and echo-prone by
 comparison.
Both the iPhone 4 and the iPad use an Apple branded Cirrus Logic
 338S0589 for their audio DAC, with a frequency response of 20Hz to 20kHz,
 and audio sampling of 16-bit at 44.1kHz.
All of the current iPhone, iPad and iPod touch models use a 2.5mm
 4-pole TRRS (tip, ring, ring, sleeve) connector which has a somewhat
 unorthodox mapping to the standard RCA connector as shown in Table 3-1.
Table 3-1. Mapping between the iPhone’s 4-pole jack and the standard RCA
 connector colors
	Apple
	RCA

	Tip
	RCA White

	1st Ring
	RCA Yellow

	2nd Ring
	RCA Ground

	Sleeve
	RCA Red

Media Playback

Let’s first look at playing back existing media stored in the iPod
 library. Apple has provided convenience classes that allow you to select
 and play back iPod media inside your own application as part of the Media
 Player framework.
Warning
The following examples make use of the iPod library; this is not
 present in the iPhone Simulator and will only work correctly on the
 device itself.

The approach uses picker controllers and delegates as in the
 previous chapter. In this example I use an MPMediaPickerController that, via the MPMediaPickerControllerDelegate protocol,
 returns an MPMediaItemCollection object
 containing the media items the user has selected. The collection of items
 can be played using an MPMusicPlayerController object.
Lets go ahead and build a simple media player application to
 illustrate how to use the media picker controller. Open Xcode and start a
 new View-based Application project, naming it “Audio” when requested.
 Click on the Audio project file in the Project navigator window, select
 the Target and click on the Build Phases tab. Click on the Link with
 Libraries drop down and click on the + button to add the MediaPlayer
 framework.
Edit the AudioViewController.h
 interface file to import the MediaPlayer framework and declare the class
 as an MPMediaPickerControllerDelegate.
 Then add the IBOutlet instance
 variables and IBAction methods for the
 buttons we will create in Interface Builder:
#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface AudioViewController : UIViewController
 <MPMediaPickerControllerDelegate> {

 IBOutlet UIButton *pickButton;
 IBOutlet UIButton *playButton;
 IBOutlet UIButton *pauseButton;
 IBOutlet UIButton *stopButton;

 MPMusicPlayerController *musicPlayer;

}

- (IBAction)pushedPick:(id)sender;
- (IBAction)pushedPlay:(id)sender;
- (IBAction)pushedPause:(id)sender;
- (IBAction)pushedStop:(id)sender;

@end
Save your changes, and open the AudioViewController.m implementation file. In
 the pushedPick: method, instantiate an
 MPMediaPickerController object. The
 view will be modal, which means that the user must make a selection to
 leave picking mode. We’ll link this method directly to a button in the
 user interface:
-(IBAction) pushedPick:(id)sender {
 MPMediaPickerController *mediaPicker =
 [[MPMediaPickerController alloc]
 initWithMediaTypes: MPMediaTypeAnyAudio];
 mediaPicker.delegate = self;
 mediaPicker.allowsPickingMultipleItems = YES;
 [self presentModalViewController:mediaPicker animated:YES];
 [mediaPicker release];
}
You must now implement the following two delegate methods, which are
 used to dismiss the view controller and handle the returned items:
- (void) mediaPicker:(MPMediaPickerController *)
 mediaPicker didPickMediaItems:(MPMediaItemCollection *)
 userMediaItemCollection {

 [self dismissModalViewControllerAnimated: YES];

 musicPlayer = [MPMusicPlayerController applicationMusicPlayer];[image: 1]
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
}

- (void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker {
 [self dismissModalViewControllerAnimated: YES];
}
	[image: 1]
	The MPMusicPlayerController responds to all the messages you
 might expect, e.g., play, pause, stop, volume, etc. These can be
 linked to buttons in the user interface if you want to give users
 direct control over these functions.

You’ll link the remaining methods directly to buttons in the user
 interface:
-(IBAction) pushedPlay:(id)sender {
 [musicPlayer play];
}

-(IBAction) pushedPause:(id)sender {
 [musicPlayer pause];
}

-(IBAction) pushedStop:(id)sender {
 [musicPlayer stop];
}
Remember to release the instance objects in the dealloc method:
- (void)dealloc {
 [pickButton release];
 [playButton release];
 [pauseButton release];
 [stopButton release];
 [musicPlayer release];
 [super dealloc];
}
Save your changes, and click on the AudioViewController.xib NIB file to open it in
 Interface Builder. Drag four UIButton
 elements from the Library window into the View window. Double click on
 each of them and change the default text to be “Pick”, “Play”, “Pause” and
 “Stop”. Then open the Assistant Editor (View→Assistant Editor→Show Assistant Editor) and Control-Click and drag
 to associate the buttons with their respective IBOutlet and IBAction outlets and actions in the AudioViewController.h interface file, see Figure 3-1.
[image: Connecting the application’s user interface in Interface Builder]

Figure 3-1. Connecting the application’s user interface in Interface
 Builder

Save your changes and click on the Run button in the Xcode toolbar
 to build and deploy the code to your device.
Note
Remember that you’ll need to test the application on your
 device.

Once the application loads, tap on the “Pick” button to bring up the
 picker controller, select some songs, and tap the Done button.(see Figure 3-2). Press the “Play”
 button and the music you selected should start playing.
[image: The initial main view (left), the MPMediaPickerController (middle), and the main interface while a song is being played (right)]

Figure 3-2. The initial main view (left), the MPMediaPickerController
 (middle), and the main interface while a song is being played
 (right)

Once playback has begun you need to keep track of the currently
 playing item and display that to the user. At the very least you must
 provide some way for the user to pause or stop playback, and perhaps to
 change their selection. The MPMusicPlayerController class provides two
 methods: the beginGeneratingPlaybackNotifications: method,
 and a corresponding endGeneratingPlaybackNotifications:. Add the
 highlighted line below to your mediaPicker:didPickMediaItems: delegate
 method:
- (void) mediaPicker:(MPMediaPickerController *) mediaPicker
 didPickMediaItems:(MPMediaItemCollection *) userMediaItemCollection {

 [self dismissModalViewControllerAnimated: YES];

 musicPlayer = [MPMusicPlayerController applicationMusicPlayer];
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
 [musicPlayer beginGeneratingPlaybackNotifications];
}
When the begin method is invoked the class will start to generate
 notifications when the player state changes and when the current playback
 item changes. Your application can access this information by adding
 itself as an observer using the NSNotificationCenter class:
- (void) mediaPicker:(MPMediaPickerController *) mediaPicker
 didPickMediaItems:(MPMediaItemCollection *) userMediaItemCollection {

 [self dismissModalViewControllerAnimated: YES];

 musicPlayer = [MPMusicPlayerController applicationMusicPlayer];
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
 [musicPlayer beginGeneratingPlaybackNotifications];

 NSNotificationCenter *notificationCenter =
 [NSNotificationCenter defaultCenter];
 [notificationCenter addObserver:self
 selector:@selector(handleNowPlayingItemChanged:)
 name:@"MPMusicPlayerControllerNowPlayingItemDidChangeNotification"
 object:musicPlayer];

 [notificationCenter addObserver:self
 selector:@selector(handlePlaybackStateChanged:)
 name:@"MPMusicPlayerControllerPlaybackStateDidChangeNotification"
 object:musicPlayer];
}
This will invoke the selector methods in the class when the
 appropriate notification arrives. You could, for example, use the first to
 update a UILabel in the view telling
 the user the name of the currently playing song.
For now let’s just go ahead and implement these methods to print
 messages to the console log. In the AudioViewController.m implementation file, add
 the method below. This will be called when the current item being played
 changes:
- (void)handleNowPlayingItemChanged:(id)notification {
 MPMediaItem *currentItem = [musicPlayer nowPlayingItem];[image: 1]
 NSString *title = [currentItem valueForProperty:MPMediaItemPropertyTitle];
 NSLog(@"Song title = %@", title);
}
	[image: 1]
	Unusually, the MPMediaItem class only has one instance method,
 the valueForProperty: method. This
 is because the class can wrap a number of media types, and each type
 can have a fairly wide range of metadata associated with it. A full
 list of possible keys can be found in the MPMediaItem class reference,
 but keys include MPMediaItemPropertyTitle,
 MPMediaItemPropertyArtwork, etc.

You can use this to update the user interface, e.g., changing the
 state of the play and stop buttons when the music ends:
- (void)handlePlaybackStateChanged:(id)notification {
 MPMusicPlaybackState playbackState = [musicPlayer playbackState];
 if (playbackState == MPMusicPlaybackStatePaused) {
 NSLog(@"Paused");

 } else if (playbackState == MPMusicPlaybackStatePlaying) {
 NSLog(@"Playing");

 } else if (playbackState == MPMusicPlaybackStateStopped) {
 NSLog(@"Stopped");

 }
}
Save your changes, and click on the Run button in the Xcode toolbar
 to build and deploy your code onto your device. Once your application
 loads, press the “Pick” button to bring up the pick controller again,
 select some songs, and press the “Done” button. Press “Play” and the music
 should start playing. You should also see something similar to the log
 messages below in the Debugger Console:
2011-06-01 19:23:07.602 Audio[2844:707] Song title = Affirmation
2011-06-01 19:23:07.617 Audio[2844:707] Playing
You could go on to develop the application by displaying information
 about the currently playing and queued songs. Let’s move on from playing
 existing media and look at how to play and record your own audio on the
 device.

Recording and Playing Audio

The AVAudioRecorder class is part
 of the AVFoundation framework and provides audio recording capabilities
 for an application. The framework allows you to:
	Record until the user stops the recording

	Record for a specified duration

	Pause and resume a recording

The corresponding AVAudioPlayer
 class (also part of the AVFoundation framework) provides some fairly
 sophisticated functionality allowing you to play sound in your
 application. It can:
	Play sounds of any duration

	Play sounds from files or memory buffers

	Loop sounds

	Play multiple sounds simultaneously (one sound per audio player)
 with precise synchronization

	Control relative playback level and stereo positioning for each
 sound you are playing

	Seek to a particular point in a sound file, which supports such
 application features as fast forward and rewind

Recording Audio

Lets build a simple application to record some audio to a file and
 play it back later. Open Xcode and start a new View-based Application,
 naming it Recorder when requested.
When the Xcode project opens, add both the
 AVFoundation and CoreAudio frameworks to the project in a similar manner
 as we added the MediaPlayer framework to the Audio application earlier
 in the chapter.
Click on the RecorderViewController.h interface file to
 open it in the Standard Editor and make the following changes to the
 template file generated for you by Xcode:
#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>

@interface RecorderViewController : UIViewController
 <AVAudioRecorderDelegate> {

 IBOutlet UIButton *startStopButton;
 NSURL *tmpFile;
 AVAudioRecorder *recorder;
 BOOL recording;
}

- (IBAction)startStopButtonPressed;

@end
Save your changes and open the corresponding RecorderViewController.xib file in Interface
 Builder. Drag and drop a UIButton
 from the Object Library in the Utilities pane into the View and change
 the title text to “Start Recording”. Then connect it to the IBOutlet and IBAction in your interface file using the
 Assistant Editor, as in Figure 3-3.
[image: Connecting the user interface in Interface Builder]

Figure 3-3. Connecting the user interface in Interface Builder

Save your changes and open the RecorderViewController.m implementation file
 in the Standard Editor, making the following changes to the default
 template generated by Xcode:
#import "RecorderViewController.h"
#import <CoreAudio/CoreAudioTypes.h>

@implementation RecorderViewController

- (IBAction)startStopButtonPressed {

 AVAudioSession * audioSession = [AVAudioSession sharedInstance];

 if (!recording) {

 // Add code here...

 } else {

 // Add code here...

 }

}

- (void)dealloc {
 [startStopButton release];
 [tmpFile release];
 [recorder release];
 [super dealloc];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];

}

#pragma mark - View lifecycle

- (void)viewDidLoad {
 [super viewDidLoad];
 recording = NO;
}

- (void)viewDidUnload {
 [super viewDidUnload];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation {

 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

@end
Then make the following changes to the startStopButtonPressed method:
- (IBAction)startStopButtonPressed {

 AVAudioSession * audioSession = [AVAudioSession sharedInstance];

 if (!recording) {

 recording = YES;

 [audioSession setCategory:AVAudioSessionCategoryRecord error:nil];
 [audioSession setActive:YES error:nil];
 [startStopButton setTitle:@"Stop Recording"
 forState:UIControlStateNormal];

 NSMutableDictionary* recordSetting =
 [[NSMutableDictionary alloc] init];
 [recordSetting setValue:
 [NSNumber numberWithInt:kAudioFormatAppleIMA4]
 forKey:AVFormatIDKey];
 [recordSetting setValue:[NSNumber numberWithFloat:44100.0]
 forKey:AVSampleRateKey];
 [recordSetting setValue:[NSNumber numberWithInt: 2]
 forKey:AVNumberOfChannelsKey];

 tmpFile = [NSURL fileURLWithPath:
 [NSTemporaryDirectory() stringByAppendingPathComponent:
 [NSString stringWithFormat: @"%.0f.%@",
 [NSDate timeIntervalSinceReferenceDate] * 1000.0,
 @"caf"]]];

 recorder = [[AVAudioRecorder alloc] initWithURL:tmpFile
 settings:recordSetting
 error:nil];
 [recorder setDelegate:self];
 [recorder prepareToRecord];
 [recorder record];

 } else {

 recording = NO;
 [audioSession setActive:NO error:nil];
 [startStopButton setTitle:@"Start Recording"
 forState:UIControlStateNormal];
 [recorder stop];

 }

}
If you save your changes and click on the Run button to build and
 deploy the application to your device you should see the “Start
 Recording” button changes to “Stop Recording” when pressed. Pressing the
 button again should change the text back to “Start Recording”. In the
 next section I’ll show you a way to check that the device is actually
 recording audio.
[image: Adding the “Play Recording” button to the user interface]

Figure 3-4. Adding the “Play Recording” button to the user
 interface

Playing Audio

Open up the RecorderViewController.h interface file and
 add the following IBOutlet instance
 variable:
IBOutlet UIButton *playButton;
along with the following IBAction method:
- (IBAction)playButtonPressed;
Then single click on the RecorderViewController.xib file to open it in
 Interface Builder. Drag and drop and new UIButton into the view and
 change the title text to be “Play Recording”. Use the Assistant Editor
 to connect the new button to the recently added IBOutlet and IBAction in the interface file, see Figure 3-4.
Save your changes, return to the RecorderViewController.m implementation file
 and add the following method implementation:
- (IBAction)playButtonPressed {
 AVAudioSession * audioSession = [AVAudioSession sharedInstance];
 [audioSession setCategory:AVAudioSessionCategoryPlayback error:nil];
 [audioSession setActive:YES error:nil];

 AVAudioPlayer * player =
 [[AVAudioPlayer alloc] initWithContentsOfURL:tmpFile error:nil];
 [player prepareToPlay];
 [player play];

}
Save your changes and click on the Run button in the Xcode toolbar
 to build and deploy the application to your device. You should see
 something like Figure 3-5.
[image: The finished Recorder application]

Figure 3-5. The finished Recorder application

If you now tap on the “Start Recording” button the title of the
 button should change to “Stop Recording”; speak into the iPhone’s
 microphone for few seconds and tap the button again. Then tap on the
 “Play Recording” button and you should hear yourself speaking.

Chapter 4. Using the Accelerometer

An accelerometer measures the linear acceleration of the device. The
 original iPhone, and first generation iPod touch, use the LIS302DL 3-axis
 MEMS based accelerometer produced by STMicroelectronics. Later iPhone and
 iPod touch models use a similar LIS331DL chip, also manufactured by
 STMicroelectronics.
Both of these accelerometers can operate in two modes, allowing the
 chip to measure either ±2g and ±8g. In both modes the chip can sample at
 either 100 Mhz or 400 Mhz. Apple operates the accelerometer in the ±2g mode
 (presumably at 100 Mhz) with a nominal resolution of 0.018g. In the ±8g mode
 the resolution would be four times coarser, and the presumption must be that
 Apple decided better resolution would be more useful than a wider range.
 Under normal conditions the device will actually measure g-forces to
 approximately ±2.3g however measurements above a 2g are uncalibrated.
Note
While it should in theory be possible to change the operating mode
 of the accelerometer, there is currently no published API that allows you
 to do so within the SDK.

About the Accelerometer

The iPhone’s accelerometer measures the linear acceleration of the
 device so it can report the device’s roll and pitch, but not its yaw. If
 you are dealing with a device that has a digital compass you can combine
 the accelerometer and magnetometer readings to have roll, pitch, and yaw
 measurements (see Chapter 5 for details on
 how to access the magnetometer).
Note
Yaw, pitch, and
 roll refer to the rotation of the device in three
 axes. If you think about an aircraft in the sky, pushing the nose down
 or pulling it up modifies the pitch angle of the aircraft. However, if
 you keep the nose straight ahead you can also modify the roll of the
 aircraft using the flaps; one wing will come up, the other will go down.
 By keeping the wings level you can use the tail flap to change the
 heading (or yaw) of the aircraft, rotating it in a 2D plane.

The accelerometer reports three figures: X, Y, and Z (see Figure 4-1). Acceleration values for each
 axis are reported directly by the hardware as G-force values. Therefore, a
 value of 1.0 represents a load of approximately 1-gravity (Earth’s
 gravity). X corresponds to roll, Y to pitch, and Z to whether the device
 is front side up or front side down, with a value of 0.0 being reported
 when the iPhone is edge-on.
[image: The iPhone accelerometer axes]

Figure 4-1. The iPhone accelerometer axes

When dealing with acceleration measurements you must keep in mind
 that the accelerometer is measuring just that: the linear acceleration of
 the device. When at rest (in whatever orientation) the figures represent
 the force of gravity acting on the device, and correspond to the roll and
 pitch of the device (in the X and Y directions at least). But while in
 motion, the figures represent the acceleration due to gravity, plus the
 acceleration of the device itself relative to its rest frame.

Writing an Accelerometer Application

Let’s go ahead and implement a simple application to illustrate how
 to approach the accelerometer. Open Xcode and start a new View-based
 application for the iPhone, and name the project “Accelerometer” when
 prompted for a filename.
Warning
The raw accelerometer data can also be accessed using the Core
 Motion framework, which was new in iOS 4.0. I talk about how to do this
 in Chapter 6. It is
 therefore possible, even likely, that the UIAccelerometer class discussed in this
 chapter my be deprecated in a future iOS release.

Click on the AccelerometerViewController.xib file to open it
 into Interface Builder. Since you want to both report the raw figures from
 the accelerometer and also display them using a progress bar, go ahead and
 drag and drop three UIProgressView
 controls from the Object Library into the View window. Then add two
 UILabel elements for each progress bar:
 one to hold the X, Y, or Z label and the other to hold the accelerometer
 measurements. After you do that, the view should look something a lot like
 Figure 4-2.
[image: The Accelerometer application UI]

Figure 4-2. The Accelerometer application UI

Go ahead and close the Utilities panel and click to open the
 Assistant Editor. Then Control-Click and drag from the three UIProgressView elements, and the three UILabel elements to the AcclerometerViewController.h header file. The
 header file should be displayed in the Assistant Editor on the right-hand
 side of the Xcode 4 interface (see Figure 4-3).
[image: Connecting the UI elements to your code in Interface Builder]

Figure 4-3. Connecting the UI elements to your code in Interface
 Builder

This will automatically create and declare three UILabel and three UIProgressView variables as IBOutlet objects. Since they aren’t going to be
 used outside the class, there isn’t much point in declaring them as class
 properties, which you’d do by Control-click and drag from the element to
 outside the curly brace. After doing this the code should look like
 this:
#import <UIKit/UIKit.h>

@interface AccelerometerViewController : UIViewController {

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;
}

@end
Close the Assistant Editor, return to the Standard Editor and click
 on the AccelerometerViewController.h
 interface file. Now go ahead and set up a UIAccelerometer instance. Also declare the class
 as a UIAccelerometerDelegate. Here’s
 how the should look when you are done:
#import <UIKit/UIKit.h>

@interface AccelerometerViewController :
 UIViewController <UIAccelerometerDelegate> { [image: 1]

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 UIAccelerometer *accelerometer;
}

@end
	[image: 1]
	Here we declare that the class implements the UIAccelerometer delegate protocol.

Make sure you’ve saved your changes and click on the corresponding
 AccelerometerViewController.m
 implementation file to open it in the Xcode editor. You don’t actually
 have to do very much here, as Interface Builder handled most of the heavy
 lifting by adding code to properly handle the user interface elements.
 Here’s what the file should look like when you are done:
#import "AccelerometerViewController.h"

@implementation AccelerometerViewController

- (void)viewDidLoad {
 accelerometer = [UIAccelerometer sharedAccelerometer];[image: 1]
 accelerometer.updateInterval = 0.1;[image: 2]
 accelerometer.delegate = self;[image: 3]
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload
{
 [xBar release];
 xBar = nil;
 [yBar release];
 yBar = nil;
 [zBar release];
 zBar = nil;
 [xLabel release];
 xLabel = nil;
 [yLabel release];
 yLabel = nil;
 [zLabel release];
 zLabel = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 [xLabel release];
 [yLabel release];
 [zLabel release];
 [xBar release];
 [yBar release];
 [zBar release];

 accelerometer.delegate = nil;
 [accelerometer release];

 [super dealloc];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {

 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

#pragma mark UIAccelerometerDelegate Methods

- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration [image: 4]
{
 xLabel.text = [NSString stringWithFormat:@"%f", acceleration.x];
 xBar.progress = ABS(acceleration.x);

 yLabel.text = [NSString stringWithFormat:@"%f", acceleration.y];
 yBar.progress = ABS(acceleration.y);

 zLabel.text = [NSString stringWithFormat:@"%f", acceleration.z];
 zBar.progress = ABS(acceleration.z);
}

@end
	[image: 1]
	The UIAccelerometer is a
 singleton object, so we grab a reference to the singleton rather than
 allocate and initialize a new instance of the class.

	[image: 2]
	We set the update interval to 0.1, hence the accelerometer:didAccelerate: method will be
 called 10 times every second.

	[image: 3]
	We declare that this class is the delegate for the UIAccelerometer.

	[image: 4]
	We implement the accelerometer:didAccelerate: delegate method
 and use it to set the X, Y, and Z labels to the raw accelerometer
 readings each time it is called. The progress bar values are set to
 the absolute value (the value without regard to sign) of the
 accelerometer reading.

OK, you’re done. Before you click the Run button, make sure you’ve
 configured the project to deploy onto your iPhone or iPod touch to test
 it. Since this application makes use of the accelerometer, and iPhone
 Simulator doesn’t have one, you’re going to have to test it directly on
 the device.
If all goes well, you should see something that looks a lot like
 Figure 4-4.
[image: The Accelerometer application running on an iPhone 4 sitting face-up on my desk, measuring a 1-gravity acceleration straight down]

Figure 4-4. The Accelerometer application running on an iPhone 4 sitting
 face-up on my desk, measuring a 1-gravity acceleration straight
 down

Determining Device Orientation

Apple provide an easy way of determining the device orientation, a
 call to UIDevice will return the
 current orientation of the device:
UIDevice *device = [UIDevice currentDevice];
UIDeviceOrientation orientation = device.orientation;
This call will return a UIDeviceOrientation that can be: UIDeviceOrientationUnknown, UIDeviceOrientationPortrait, UIDeviceOrientationPortraitUpsideDown, UIDeviceOrientationLandscapeLeft, UIDeviceOrientationLandscapeRight or UIDeviceOrientationFaceUp. The sensor underlying
 this call is the accelerometer, and you’ll see later in this chapter how
 to retrieve the device orientation directly from the raw accelerometer
 readings.
Warning
As of the time of writing under iOS 4.3 the device does not
 correctly report a proper orientation when your application is first
 launched, with UIDevice returning
 null when queried.

Lets go ahead and modify the Accelerometer application to display
 the device orientation. Click on the AccelerometerViewController.h interface file to
 open it in the Standard Editor and add the following code, highlighted
 below, to the class interface:
@interface AccelerometerViewController :
 UIViewController <UIAccelerometerDelegate> {

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;
 IBOutlet UILabel *orientationLabel;

 UIAccelerometer *accelerometer;
}

- (NSString *)stringFromOrientation:(UIDeviceOrientation) orientation;

@end
We’re going to display the current orientation using in a UILabel, so we’re going to have to write a
 convenience method stringFromOrienation: to convert the UIDeviceOrientation type returned by the
 UIDevice to an NSString to display in that label.
Make sure you’ve saved your changes, and click on the corresponding
 AccelerometerViewController.m
 implementation file and add the following method:
- (NSString *)stringFromOrientation:(UIDeviceOrientation) orientation {

 NSString *orientationString;
 switch (orientation) {
 case UIDeviceOrientationPortrait:
 orientationString = @"Portrait";
 break;
 case UIDeviceOrientationPortraitUpsideDown:
 orientationString = @"Portrait Upside Down";
 break;
 case UIDeviceOrientationLandscapeLeft:
 orientationString = @"Landscape Left";
 break;
 case UIDeviceOrientationLandscapeRight:
 orientationString = @"Landscape Right";
 break;
 case UIDeviceOrientationFaceUp:
 orientationString = @"Face Up";
 break;
 case UIDeviceOrientationFaceDown:
 orientationString = @"Face Down";
 break;
 case UIDeviceOrientationUnknown:
 orientationString = @"Unknown";
 break;
 default:
 orientationString = @"Not Known";
 break;
 }
 return orientationString;
}
Once you have added the stringFromOrienation: method, add the following
 code, highlighted below, to the existing accelerometer:didAccelerate: method in the same
 class:
- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration {

 xLabel.text = [NSString stringWithFormat:@"%f", acceleration.x];
 xBar.progress = ABS(acceleration.x);

 yLabel.text = [NSString stringWithFormat:@"%f", acceleration.y];
 yBar.progress = ABS(acceleration.y);

 zLabel.text = [NSString stringWithFormat:@"%f", acceleration.z];
 zBar.progress = ABS(acceleration.z);

 UIDevice *device = [UIDevice currentDevice];
 orientationLabel.text = [self stringFromOrientation:device.orientation];
}
Make sure you’ve saved your changes, and click on the AccelerometerViewController.xib file to open it
 in Interface Builder. Drag and drop a UILabel from the Object Library into the View.
 Go ahead and resize and center up the text using the Attributes inspector
 from the Utilities panel.
Close the Utilities panel and open the Assistant Editor, which
 should show the corresponding interface file for the view controller.
 Control-click and drag and connect the UILabel element to the orientationLabel outlet in your code, as in
 Figure 4-5.
[image: Connecting the orientation outlet to the UI]

Figure 4-5. Connecting the orientation outlet to the UI

Save your changes, and click Run button in the Xcode toolbar to
 compile and deploy your application to your device. If all goes well you
 should see something much like Figure 4-6. As you move the
 device around, the label will update itself to reflect the current device
 orientation.
[image: The Accelerometer application reporting the device orientation]

Figure 4-6. The Accelerometer application reporting the device
 orientation

Determining Device Orientation Directly Using the
 Accelerometer

Instead of querying UIDevice
 you can use the raw accelerometer readings to determine the device
 orientation directly using the atan2
 function as shown below:
float x = -[acceleration x];
float y = [acceleration y];
float angle = atan2(y, x);
Note
For any real arguments x and y that are not both equal to zero,
 atan2(y, x) is the angle in radians between the positive x-axis of a
 plane and the point given by the specified coordinates on it. The
 angle is positive for counter-clockwise angles, and negative for
 clockwise angles.

Let’s go ahead and modify the accelerometer:didAccelerate: method to
 calculate the orientation. Click on the AccelerometerViewController.m implementation
 file to open it in the Standard Editor and replace these lines:
 UIDevice *device = [UIDevice currentDevice];
 orientationLabel.text = [self stringFromOrientation:device.orientation];
with the code highlighted below:
- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration {

 xLabel.text = [NSString stringWithFormat:@"%f", acceleration.x];
 xBar.progress = ABS(acceleration.x);

 yLabel.text = [NSString stringWithFormat:@"%f", acceleration.y];
 yBar.progress = ABS(acceleration.y);

 zLabel.text = [NSString stringWithFormat:@"%f", acceleration.z];
 zBar.progress = ABS(acceleration.z);

 float x = -[acceleration x];
 float y = [acceleration y];
 float angle = atan2(y, x);

 if(angle >= −2.25 && angle <= −0.75) {
 orientationLabel.text =
 [self stringFromOrientation:UIInterfaceOrientationPortrait];
 } else if(angle >= −0.75 && angle <= 0.75){
 orientationLabel.text =
 [self stringFromOrientation:UIInterfaceOrientationLandscapeRight];
 } else if(angle >= 0.75 && angle <= 2.25) {
 orientationLabel.text =
 [self
 stringFromOrientation:UIInterfaceOrientationPortraitUpsideDown];
 } else if(angle <= −2.25 || angle >= 2.25) {
 orientationLabel.text =
 [self stringFromOrientation:UIInterfaceOrientationLandscapeLeft];
 }

}
If you save your changes, and click on the Run button to rebuild
 and deploy your application onto your device, there should see little or
 no change in the application’s operation. However, having access to each
 component of the orientation opens up many opportunities for creating
 tilt-based controls.

Obtaining Notifications when Device Orientation Changes

In addition to directly querying the UIDevice object for the current orientation, a
 program can request to be notified of changes in the device’s
 orientation by registering itself as an observer.
We can once again modify the Accelerometer application to make use
 of this feature. Open the AccelerometerViewController.m file in the
 Standard Editor and delete the code added in the previous section from
 the accelerometer:didAccelerate:
 method.
If you quickly rebuild the application at this point and deploy it
 to your device you will see that the UILabel now reads “Label” and will no longer
 be updated as the device orientation changes.
Once you’ve confirmed that, add the following method:
-(void) viewWillAppear:(BOOL) animated{
 [super viewWillAppear:animated];
 [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(receivedRotation:)
 name:UIDeviceOrientationDidChangeNotification
 object:nil];

}
Here we ask the UIDevice class
 to start generating orientation notifications, and we register the view
 controller as an observer. Next add the selector method, shown
 below:
-(void) receivedRotatation:(NSNotification*) notification {
 UIDevice *device = [UIDevice currentDevice];
 orientationLabel.text = [self stringFromOrientation:device.orientation];
}
Here we simply update the UILabel with the device orientation every time
 a UIDeviceOrientationDidChangeNotification event
 is received.
Finally we need to remember to remove the program as an observer
 to stop the generation of messages during the tear down of our view
 controller. Add the following method to your code:
-(void) viewWillDisappear:(BOOL) animated{
 [super viewWillDisappear:animated];
 [[NSNotificationCenter defaultCenter] removeObserver: self];
 [[UIDevice currentDevice] endGeneratingDeviceOrientationNotifications];
}
If you once again save your changes and click on the Run button to
 rebuild and deploy the application to your device, you will again see
 little or no change in the application’s operation.

Which Way Is Up?

A useful thing to know a lot of the time is the answer to the
 question “which way is up?” You can use the same method used earlier to
 determine the device orientation and graphically show this in the
 View.
First you’re going to need an image of an arrow. Download, or draw
 in the graphics package of your choice, an image of an arrow pointing to
 the left on a transparent background. Save it as, or convert it to, a
 PNG format file. Drag-and-drop this into your Xcode Project remembering
 to tick the “Copy items into destination group’s folder (if needed)”
 check box in the pop up dialog that appears when you drop the files into
 Xcode (see Figure 4-7).
[image: Adding an arrow image to the Accelerometer project]

Figure 4-7. Adding an arrow image to the Accelerometer project

Click on the AccelerometerViewController.xib file to open
 it, and drag-and-drop a UIImageView
 from the Object Library onto your View. Position it below the three
 UIProgressBar elements, and resize
 the bounding box to be a square using the Size inspector of the Utility
 Pane. In the Attributes inspector of the Utility Pane, change the Image
 property to be the arrow image that you added to your project. Set the
 View mode to be “Aspect Fit”. Uncheck the “Opaque” box in the Drawing
 section so that the arrow is rendered correctly with a transparent
 background. Finally, use the “Image” drop-down to select the arrow.png
 image to be displayed in the UIImageView (see Figure 4-8).
[image: Adding the UIImageView to your interface]

Figure 4-8. Adding the UIImageView to your interface

Close the Utility Pane and open the Assistant Editor.
 Control-click and drag from the UIImageView in your View to the arrowImage outlet in the Assistant Editor, as
 in Figure 4-9, and add an arrrowImage outlet.
[image: Adding a outlet to your code]

Figure 4-9. Adding a outlet to your code

After doing so your interface file should look as below:
@interface AccelerometerViewController :
 UIViewController <UIAccelerometerDelegate> {

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 IBOutlet UIImageView *arrowImage;
 IBOutlet UILabel *orientationLabel;

 UIAccelerometer *accelerometer;

}
Close the Assistant Editor and switch to the Standard Editor. Go
 ahead and click on the AccelerometerViewController.m implementation
 file. Add the code highlighted below to the accelerometer:didAccelerate: method:
- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration {

 xLabel.text = [NSString stringWithFormat:@"%f", acceleration.x];
 xBar.progress = ABS(acceleration.x);

 yLabel.text = [NSString stringWithFormat:@"%f", acceleration.y];
 yBar.progress = ABS(acceleration.y);

 zLabel.text = [NSString stringWithFormat:@"%f", acceleration.z];
 zBar.progress = ABS(acceleration.z);

 float x = -[acceleration x];
 float y = [acceleration y];
 float angle = atan2(y, x);
 [arrowImage setTransform:CGAffineTransformMakeRotation(angle)];
}
That’s it. Save your changes again and click on the Run button to
 compile and deploy the application to your device. Keep the device face
 towards you and rotate it in flat plane, you should see that the arrow
 moves as you do so, keeping its orientation pointing upwards (see Figure 4-9).
[image: The arrow points upwards (device held vertically in front of the user)]

Figure 4-10. The arrow points upwards (device held vertically in front of
 the user)

Convenience Methods for Orientation

Apple provides convenience methods to determine whether the
 current device orientation is portrait:
UIDevice *device = [UIDevice currentDevice];
UIDeviceOrientation orientation = device.orientation;
BOOL portrait = UIDeviceOrientationIsPortrait(orientation);
or landscape:
BOOL landscape = UIDeviceOrientationIsLandscape(orientation);
These methods return YES if the
 device is in portrait or landscape mode respectively; otherwise they
 return NO.

Detecting Shaking

Apple’s shake-detection algorithm analyses eight to ten successive
 pairs of raw accelerometer triplet values and determines the angle between
 these readings. If the change in angular velocity between successive data
 points is large then the algorithm determines that a UIEventSubtypeMotionShake has occurred, and the
 motionBegan:withEvent: delegate method
 is called. Conversely, if the change in angular velocity is small and a
 shake event has been triggered, the motionEnded:withEvent: delegate method is
 called.
Note
The iPhone is better at detecting side-to-side rather than
 front-to-back or up-and-down motions. Take this into account in the
 design of your application.

There are three motion delegate methods, mirroring the methods for
 gesture handling: motionBegin:withEvent:, motionEnded:withEvent: and motionCancelled:withEvent:. The first indicates
 the start of a motion event, the second the end of this event. You cannot
 generate a new motion event for a second (or two) following the first
 event. The final delegate method is called when a motion is interrupted by
 a system event, such as an incoming phone call.
Let’s go ahead and add shake detection to our Accelerometer
 application. You’ll need to add another UILabel to the UI that will change depending on
 the motion event status. Click on the AccelerometerViewController.h interface file to
 open it in the Standard Editor and add another UILabel marked as an IBOutlet to the class definition:
@interface AccelerometerViewController : UIViewController <UIAccelerometerDelegate> {

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;
 IBOutlet UILabel *orientationLabel;
 IBOutlet UILabel *shakeLabel;
 IBOutlet UIImageView *arrowImage;

 UIAccelerometer *accelerometer;

}
Save your changes and click on the AccelerometerViewController.m implementation
 file to open it in the Xcode editor.
The easiest way to ensure that the view controller receives motion
 events is to promote it to First Responder in the viewDidAppear: method. Remember to make the
 controller resign as first responder when the view goes away. Add the
 viewDidAppear: method and modify the
 existing viewWillDisappear: method as
 highlighted below. Use the canBecomeFirstResponder
 method to indicate that the view controller can indeed become the First
 Responder:
- (BOOL)canBecomeFirstResponder {
 return YES;
}

- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 [self becomeFirstResponder];
}

-(void) viewWillDisappear: (BOOL) animated{
 [super viewWillDisappear:animated];
 [[NSNotificationCenter defaultCenter] removeObserver: self];
 [[UIDevice currentDevice] endGeneratingDeviceOrientationNotifications];
 [self resignFirstResponder];
}
Save your changes and click on the AccelerometerViewController.xib file for the
 last time. Drag-and-drop a UILabel into
 the View from the Object Library and connect it to the shakeLabel outlet as in Figure 4-11.
[image: Connecting the shakeLabel outlet]

Figure 4-11. Connecting the shakeLabel outlet

Save your changes and return to the AccelerometerViewController.m file in the
 editor, and add the following delegate methods to the
 implementation:
- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if (motion == UIEventSubtypeMotionShake) {
 shakeLabel.text = @"SHAKE";
 shakeLabel.textColor = [UIColor redColor];
 }
 return;
}

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if (motion == UIEventSubtypeMotionShake) {
 shakeLabel.text = @"NO SHAKE";
 shakeLabel.textColor = [UIColor greenColor];
 }
 return;
}

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if (motion == UIEventSubtypeMotionShake) {
 shakeLabel.text = @"SHAKE CANCELLED";
 shakeLabel.textColor = [UIColor blackColor];
 }
 return;
}
Save your changes and click on the Run button in the Xcode toolbar.
 After the application is built and deployed to your device, try shaking
 the phone. You should see something very much like Figure 4-12.
[image: Shake detection on the iPhone]

Figure 4-12. Shake detection on the iPhone

Chapter 5. Using the Magnetometer

The magnetometer is a magnetoresistive permalloy sensor found in the
 iPhone 3GS, iPhone 4 and iPad 2, in addition to the accelerometer. The
 iPhone 3GS uses the AN-203 integrated circuit produced by Honeywell, while
 the iPhone 4 and iPad 2 make use of the newer AKM8975 produced by AKM
 Semiconductor. The sensor is located towards the top right hand corner of
 the device, and measures fields within a ±2 gauss (200 microtesla) range,
 and is sensitive to magnetic fields of less than 100 microgauss (0.01
 microtesla).
Note
The Earth’s magnetic field is roughly 0.6 gauss (60 microtesla). The
 field around a rare earth magnet can be 14,000 gauss or more.

The magnetometer measures the strength of the magnetic field
 surrounding the device. In the absence of any strong local fields, these
 measurements will be of the ambient magnetic field of the Earth, allowing
 the device to determine its “heading” with respect to the geomagnetic North
 Pole and act as a digital compass. The geomagnetic heading and true heading
 relative to the geographical North Pole can vary widely, by several tens of
 degrees depending on your location.
About the Magnetometer

Combining the heading (yaw) information (see Figure 5-1) returned by this
 device with the roll and pitch information returned by the accelerometer
 will let you determine the true orientation of the device in real
 time.
[image: Using the magnetometer (a.k.a. the digital compass) in the iPhone 3GS you can determine the heading (yaw) of the device]

Figure 5-1. Using the magnetometer (a.k.a. the digital compass) in the iPhone
 3GS you can determine the heading (yaw) of the device

As well as reporting the current location, the CLLocationManager class can, in the case where
 the hardware supports it, report the current heading of the device. If
 location updates are also enabled, the location manager returns both true
 heading and magnetic heading values. If location updates are not enabled,
 the location manager returns only the magnetic heading value.
Note
Magnetic heading updates are available even if the user has
 switched off location updates in the Settings application. Additionally,
 users are not prompted to give
 permission to use heading data, as it is assumed that magnetic heading
 information cannot compromise user privacy. On an enabled device the
 magnetic heading data should therefore always be available to your
 application.

As mentioned previously, the magnetometer readings will be affected
 by local magnetic fields, so the CLLocationManager may attempt to calibrate its
 heading readings by displaying a heading calibration panel (see Figure 5-2) before it starts to issue
 update messages.
[image: The Heading Calibration Panel]

Figure 5-2. The Heading Calibration Panel

However, before it does so it will call the locationManagerShouldDisplayHeadingCalibration:
 delegate method:
- (BOOL)locationManagerShouldDisplayHeadingCalibration:
 (CLLocationManager *)manager {
 return YES;
}
If you return YES from this
 method, the CLLocationManager will pop
 up the calibration panel on top of the current window. The calibration
 panel prompts the user to move the device in a figure-eight pattern so
 that Core Location can distinguish between the Earth’s magnetic field and
 any local magnetic fields. The panel will remain visible until calibration
 is complete or until you dismiss it by calling the dismissHeadingCalibrationDisplay: method in the
 CLLocationManager class.

Writing a Magnetometer Application

Let’s go ahead and implement a simple view-based application to
 illustrate how to use the magnetometer. Open Xcode and start a new iPhone
 project, select a View-based Application template, and name the project
 “Compass” when prompted for a filename.
Since you’ll be making use of the Core Location framework, the first
 thing you need to do is add it to our new project. Click on the Compass
 project file in the Project navigator window on the right in Xcode, select
 the Target and click on the Build Phases tab, click on the Link with
 Libraries drop down and click on the + button to open the file pop-up
 window. Select CoreLocation.framework
 from the list of available frameworks and click the Add button.
You’re going to build an application that will act as a compass, so
 you’re going to need an image of an arrow to act as the compass needle.
 Download or draw in the graphics package of your choice, an image of an
 arrow pointing upwards on a transparent background. Save or convert it to,
 a PNG format file. Drag-and-drop this into the Xcode Project, remembering
 to tick the “Copy items into destination group’s folder (if needed)” check
 box in the pop up dialog that appears when you drop the files into
 Xcode.
Click on CompassViewController.xib file to open it in
 Interface Builder. Drag and drop a UIImageView from the Object Library into the
 View, positioning it roughly in the center of your window, resizing the
 bounding box to be a square, as in Figure 5-3. In the Attributes
 inspector of the Utilities pane set the View mode to be “Aspect Fit”,
 uncheck the “Opaque” checkbox in the Drawing section, and select the arrow
 image that you added to your project in the Image drop down.
Next drag-and-drop four UILabel
 elements from the Object Library into the View, position the four labels
 as in Figure 5-3, and
 change the text in the left most two to read “Magnetic Heading:” and “True
 Heading:”.
Close the Utility pane and switch from the Standard to the Assistant
 Editor. Control-Click and drag from the two right most UILabel elements to the assistant editor to
 create a magneticHeadingLabel and
 trueHeadingLabel outlet, and then again
 for the UIImageView to create an
 arrowImage outlet, see Figure 5-3.
[image: Connecting the outlets to the UI elements in Interface Builder]

Figure 5-3. Connecting the outlets to the UI elements in Interface
 Builder

Then click on the CompassViewController.h interface file and go
 ahead and declare the class as a CLLocationManagerDelegate, remembering to import
 the CoreLocation.h header file. After
 doing so the interface should look like this:
#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface CompassViewController : UIViewController
 <CLLocationManagerDelegate> {

 IBOutlet UIImageView *arrowImage;
 IBOutlet UILabel *magneticHeadingLabel;
 IBOutlet UILabel *trueHeadingLabel;
}

@end
Save your changes, and click on the corresponding CompassViewController.m implementation file.
 Uncomment the viewDidLoad method and
 the following code to the implementation. This will create an instance of
 the CLLocationManager class, and will
 send both location and heading update messages to the designated delegate
 class:
- (void)viewDidLoad {
 [super viewDidLoad];
 CLLocationManager *locationManager = [[CLLocationManager alloc] init];
 locationManager.delegate = self;
 if([CLLocationManager locationServicesEnabled] &&
 [CLLocationManager headingAvailable]) {[image: 1]
 [locationManager startUpdatingLocation];
 [locationManager startUpdatingHeading];
 } else {
 NSLog(@"Can't report heading");
 }
}
	[image: 1]
	It is more important to check whether heading information is
 available than it is to check whether location services are available.
 The availability of heading information is restricted to the latest
 generation of devices.

You can (optionally) filter the heading update messages using an
 angular filter. Changes in heading of less than this amount will not
 generate an update message to the delegate, for example:
locationManager.headingFilter = 5; // 5 degrees
The default value of this property is kCLHeadingFilterNone. You should use this value
 if you want to be notified of all heading updates. In this example, leave
 the filter set to the default value. However if you want to filter
 messages from Core Location this way, add the above line to your viewDidLoad method inside the if-block:
 if([CLLocationManager locationServicesEnabled] &&
 [CLLocationManager headingAvailable]) {
 [locationManager startUpdatingLocation];
 [locationManager startUpdatingHeading];
 locationManager.headingFilter = 5; // 5 degrees
 } else {
 ... code ...
 }
The CLLocationManagerDelegate
 protocol calls the locationManager:didUpdateHeading: delegate
 method when the heading is updated. You’re going to use this method to
 update the user interface. Add the following code to your view
 controller:
- (void)locationManager:(CLLocationManager*)manager
 didUpdateHeading:(CLHeading*)newHeading {

 if (newHeading.headingAccuracy > 0) {
 float magneticHeading = newHeading.magneticHeading;
 float trueHeading = newHeading.trueHeading;[image: 1]

 magneticHeadingLabel.text =
 [NSString stringWithFormat:@"%f", magneticHeading];
 trueHeadingLabel.text =
 [NSString stringWithFormat:@"%f", trueHeading];

 float heading = −1.0f * M_PI * newHeading.magneticHeading / 180.0f;
 arrowImage.transform = CGAffineTransformMakeRotation(heading);
 }
}
	[image: 1]
	If location updates are also enabled, the location manager
 returns both true heading and magnetic heading values. If location
 updates are not enabled, or the location of the device is not yet
 known, the location manager returns only the magnetic heading value
 and the value returned by this call will be −1.

Save your changes, then click on the Run button in the Xcode toolbar
 to deploy your new application to your device. If you hold the device in
 “Face Up” or “Portrait” mode you should see something very similar to
 Figure 5-4 below.
[image: The Compass application running on the iPhone 3GS]

Figure 5-4. The Compass application running on the iPhone 3GS

As it stands our application has a critical flaw. If the user
 orientates the device into Landscape Mode, the reported headings will be
 incorrect, or at least look incorrect to the user.
Determining the Heading in Landscape Mode

The magnetic and true headings are correct when the iPhone device
 is held like a traditional compass, in portrait mode, if the user
 rotates the device, the heading readings will still be in the original
 frame of reference. Even though the user has not changed the direction
 they are facing the heading values reported by the device will have
 changed. You’re going to have to correct for orientation before
 reporting headings back to the user, see Figure 5-5.
[image: The “real” heading of the user when they are holding the device in Landscape mode is the reported heading + 90 degrees]

Figure 5-5. The “real” heading of the user when they are holding the device
 in Landscape mode is the reported heading + 90 degrees

In the Project navigator, click on the CompassViewController.xib file to open it in
 Interface Builder, then drag-and-drop another UILabel from the Object Library in the Utility
 pane into the View window. Use the Assistant Editor connect the label to
 a new outlet in the CompassViewController.h interface file, as in
 Figure 5-6.
[image: Connecting the orientation label in Interface Builder]

Figure 5-6. Connecting the orientation label in Interface Builder

After doing so, the interface file should look as below:
@interface CompassViewController :
 UIViewController <CLLocationManagerDelegate> {

 IBOutlet UILabel *trueHeadingLabel;
 IBOutlet UILabel *magneticHeadingLabel;
 IBOutlet UILabel *orientationLabel;
 IBOutlet UIImageView *arrowImage;

}
We’re going to use this to report the current device orientation
 as we did in the Accelerometer application in Chapter 4.
Close the Assistant Editor and reopen the CompassViewController.h interface file in the
 Standard Editor. Go ahead and add the following convenience methods to
 the class definition:
- (float)magneticHeading:(float)heading
 fromOrientation:(UIDeviceOrientation) orientation;
- (float)trueHeading:(float)heading
 fromOrientation:(UIDeviceOrientation) orientation;
- (NSString *)stringFromOrientation:(UIDeviceOrientation) orientation;
Save your changes, and open the CompassViewController.m implementation file.
 Since the CLHeading object is read
 only and you can’t modify it directly, you’l need to add the following
 method to correct the magnetic heading for the device
 orientation:
- (float)magneticHeading:(float)heading
 fromOrientation:(UIDeviceOrientation) orientation {

 float realHeading = heading;
 switch (orientation) {[image: 1]
 case UIDeviceOrientationPortrait:
 break;
 case UIDeviceOrientationPortraitUpsideDown:
 realHeading = realHeading + 180.0f;
 break;
 case UIDeviceOrientationLandscapeLeft:
 realHeading = realHeading + 90.0f;
 break;
 case UIDeviceOrientationLandscapeRight:
 realHeading = realHeading - 90.0f;
 break;
 default:
 break;
 }
 while (realHeading > 360.0f) {
 realHeading = realHeading - 360;
 }
 return realHeading;
}
	[image: 1]
	The UIDeviceOrientationFaceUp and UIDeviceOrientationFaceDown
 orientation cases are undefined and the user is presumed to be
 holding the device in UIDeviceOrientationPortrait mode.

You will also need to add a corresponding method to correct the
 true heading:
- (float)trueHeading:(float)heading
 fromOrientation:(UIDeviceOrientation) orientation {

 float realHeading = heading;
 switch (orientation) {
 case UIDeviceOrientationPortrait:
 break;
 case UIDeviceOrientationPortraitUpsideDown:
 realHeading = realHeading + 180.0f;
 break;
 case UIDeviceOrientationLandscapeLeft:
 realHeading = realHeading + 90.0f;
 break;
 case UIDeviceOrientationLandscapeRight:
 realHeading = realHeading - 90.0f;
 break;
 default:
 break;
 }
 while (realHeading > 360.0f) {
 realHeading = realHeading - 360;
 }
 return realHeading;
}
Finally, add the stringFromOrientation: method from the
 previous section Chapter 5. We’ll use
 this to update the orientationLabel
 outlet:
- (NSString *)stringFromOrientation:(UIDeviceOrientation) orientation {

 NSString *orientationString;
 switch (orientation) {
 case UIDeviceOrientationPortrait:
 orientationString = @"Portrait";
 break;
 case UIDeviceOrientationPortraitUpsideDown:
 orientationString = @"Portrait Upside Down";
 break;
 case UIDeviceOrientationLandscapeLeft:
 orientationString = @"Landscape Left";
 break;
 case UIDeviceOrientationLandscapeRight:
 orientationString = @"Landscape Right";
 break;
 case UIDeviceOrientationFaceUp:
 orientationString = @"Face Up";
 break;
 case UIDeviceOrientationFaceDown:
 orientationString = @"Face Down";
 break;
 case UIDeviceOrientationUnknown:
 orientationString = @"Unknown";
 break;
 default:
 orientationString = @"Not Known";
 break;
 }
 return orientationString;
}
Return to the locationManager:didUpdateHeading: delegate
 method and modify the lines highlighted below to use the new methods and
 update the headings depending on the device orientation:
- (void)locationManager:(CLLocationManager*)manager
 didUpdateHeading:(CLHeading*)newHeading {

 UIDevice *device = [UIDevice currentDevice];
 orientationLabel.text = [self stringFromOrientation:device.orientation];

 if (newHeading.headingAccuracy > 0) {
 float magneticHeading = [self magneticHeading:newHeading.magneticHeading
 fromOrientation:device.orientation];
 float trueHeading = [self trueHeading:newHeading.trueHeading
 fromOrientation:device.orientation];

 magneticHeadingLabel.text =
 [NSString stringWithFormat:@"%f", magneticHeading];
 trueHeadingLabel.text = [NSString stringWithFormat:@"%f", trueHeading];

 float heading = −1.0f * M_PI * newHeading.magneticHeading / 180.0f;[image: 1]
 arrowImage.transform = CGAffineTransformMakeRotation(heading);
 }
}
	[image: 1]
	You should still use the directly reported newHeading.magneticHeading for the compass
 needle rather than the adjusted heading. Otherwise the compass will
 not point correctly.

Make sure you’ve saved all the changes to the implementation file
 and click on the Run button in the Xcode toolbar to deploy the
 application onto the device. If all goes well you should see the same
 compass display as before. However this time if you rotate the display,
 sees Figure 5-7, the
 heading values should be the same irrespective of the device
 orientation.
[image: Heading values are now the same irrespective of orientation]

Figure 5-7. Heading values are now the same irrespective of
 orientation

Although I have not discussed or implemented it here, if the
 CLLocationManager object encounters
 an error, it will call the locationManager:didFailWithError: delegate
 method:
- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {

 if ([error code] == kCLErrorDenied) {
 // User has denied the application's request to use location services.
 [manager stopUpdatingHeading];

 } else if ([error code] == kCLErrorHeadingFailure) {
 // Heading could not be determined
 }
}

Measuring a Magnetic Field

To use the device to measure a magnetic field—for instance that of a
 small bar magnet, or the field generated by an electric current in a
 wire—you should first make a zero-point measurement of the ambient
 magnetic field of the Earth. Further readings should subtract this
 zero-point measurement.
When measuring, move the magnet to the device rather than moving the
 device to the magnet. Moving the device will cause the magnetic field of
 the Earth across the measuring sensor to change, which will spoil the zero
 point calibration you took earlier. If the device must be moved, only
 small movements should be attempted.
You can retrieve the raw magnetic field measurements along the X, Y
 and Z-axes by querying the CLHeading
 object passed to the locationManager:didUpdateHeading: method:
- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)heading {

 double x = heading.x;
 double y = heading.y;
 double z = heading.z;

 double magnitude = sqrt(x*x + y*y + z*z);

 ... code ...
}
The values returned are normalized into a ±128 range, measured in
 microtesla (µT), representing the offset from the magnetic field lines
 measured by the magnetometer.
Note
Apple provides sample code that displays the raw x, y, and z
 magnetometer values, a plotted history of those values, and a computed
 magnitude (size or strength) of
 the magnetic field. The code can be downloaded from the iPhone developer
 website at http://developer.apple.com/library/ios/#samplecode/Teslameter.

Chapter 6. Using Core Motion

The iPhone 4, latest generation iPod touch, and the iPad have a
 vibrational gyroscope in addition to an accelerometer and a magnetometer.
 The MicroElectroMechanical (MEMs) gyroscope inside the iPhone 4 and the 4th
 generation iPod touch is the AGD8 2032, nearly identical to an off-the-shelf
 STMicroelectronics L3G4200D device The iPad 2 uses an AGD8 2103 sensor, also
 from STMicroelectronics. These models operate by making use of a plate
 called a “proof mass” that oscillates when a drive signal is applied to
 capacitor plates. When the user rotates the phone, the proof mass is
 displaced in the X, Y and Z directions and an ASIC processor measures the
 capacitance change of the plates. The capacitance variation is used to
 detect the angular rate applied to the package.
An accelerometer provides measurement of forces in the X, Y and Z-axes
 but it cannot measure rotation. On the other hand, since a gyroscope is a
 rate of change device, you are able to measure the change in rotations
 around an axis. By using both sensors in combination you can measure the
 movement of the device in a six degrees-of-freedom inertial system, allowing
 you to use dead reckoning to find the physical location (and orientation of
 the device) relative to an initial starting position.
Warning
All inertial systems have an inherent drift, so dead reckoning
 should not be regarded as being stable over the long term.

Core Motion

The arrival of iOS 4 brought with it the new Core Motion framework;
 this new framework allows your application to receive motion data from
 both the accelerometer and (on the latest generation of devices) the
 gyroscope.
Note
There is no support for Core Motion in the iOS Simulator,
 therefore all testing of your Core Motion related code must be done on
 the device. The code in this chapter will only work on devices that have
 a gyroscope, see Chapter 1 for more
 information.

With the CMMotionManager class
 you can start receiving accelerometer, gyroscope, and combined device
 motion events at a regular interval, or you can poll them
 periodically:
CMMotionManager *motionManager = [[CMMotionManager alloc] init];
if (!motionManager.isDeviceMotionAvailable) {
 NSLog(@"Device supports motion capture.");
}
Remember to release the manager after you’re done with it:
 [motionManager release];
The CMMotionManager class offers
 both the raw accelerometer and gyroscope data separately as well a
 combined CMDeviceMotion object that
 encapsulates the processed device motion data from both the accelerometer
 and the gyroscope. With this combined motion measurement Core Motion
 provides highly accurate measurements of device attitude, the (unbiased)
 rotation rate of a device, the direction of gravity on a device, and the
 acceleration that the user is giving to a device.
Note
The rotation rate reported by the CMDeviceMotion object is different than that
 reported directly by the gyroscope. Even if the device is sitting flat
 on the table the gyro will not read zero. It will read some non-zero
 value that differs from device to device and over time due to changes in
 things like device temperature. Core Motion actively tracks and removes
 this bias from the gyro data.

Pulling Motion Data

The CMMotionManager class
 offers two approaches to obtaining motion data. The simplest way is to
 pull the motion data. Your application will start an instance of the
 manager class and periodically ask for measurements of the combined
 device motion:
[motionManager startDeviceMotionUpdates];
CMDeviceMotion *motion = motionManager.deviceMotion;
Although if you are only interested in the raw gyroscope data (or
 accelerometer data) you can also ask for those directly:
CMGyroData *gyro = motionManager.gyroData;
CMAccelerometerData *accel = motionManager.accelerometerData;
This is the most efficient method of obtaining motion data.
 However, if there isn’t a natural timer in your application—such as a
 periodic update of your main view—then you may need an additional timer
 to trigger your update requests. Remember to stop the updates and
 release the motion manager after you’re done with them:
[motionManager stopDeviceMotionUpdates];
[motionManager release];
Warning
Your application should create only a single instance of the
 CMMotionManager class. Multiple
 instances of this class can affect the rate at which an application
 receives data from the accelerometer and gyroscope.

Pushing Motion Data

Instead of using this simple pull methodology, you can specify an
 update interval and implement a block of code for handling the motion
 data. The manager class can then be asked to deliver updates using the
 NSOperationsQueue, which allows the
 handler to push the measurements to the application. For example:
motionManager.deviceMotionUpdateInterval = 1.0/60.0;
[motionManager startDeviceMotionUpdatesToQueue: queue withHandler: handler];
or similarly for the individual accelerometer and gyroscope
 data:
[motionManager startAccelerometerUpdatesToQueue:queue withHandler: handler];
[motionManager startGyroUpdatesToQueue:queue withHandler:handler];
With this second methodology you’ll get a continuous stream of
 motion data, but there is a large increased overhead associated with
 implementing it (see Table 6-1). Your application
 may not be able to keep up with the associated data rate especially if
 the device is in rapid motion.
Table 6-1. Example CPU usage for Core Motion push updates at 100 and
 20Hz[1]
	 	At 100Hz
	At 20Hz

	Total
	Application
	Total
	Application

	DeviceMotion
	65%
	20%
	65%
	10%

	Accelerometer
	50%
	15%
	46%
	5%

	Accel + Gyro
	51%
	10%
	50%
	5%

	[1] Figures for an application running on an iPhone 4 running
 iOS 4.0 (Reproduced with permission. Credit: Jeffrey Powers,
 Occipital)

Using Core Motion’s combined CMDeviceMotion object, as opposed to accessing
 the raw CMAccelerometer or CMGyroData objects, consumes roughly 15% more
 total CPU regardless of the update rate. The good news is that is not
 because of the gyroscope itself; reading both the accelerometer and
 gyroscope directly is not noticeably slower than reading the
 accelerometer on its own.
Because of this associated CPU overheads push is really only
 recommended for data collection applications where the point of the
 application is to obtain the motion data itself. However if your
 application needs to be rapidly updated as to device motion you can do
 this easily:
CMMotionManager *motionManager = [[CMMotionManager alloc] init];
motionManager.deviceMotionUpdateInterval = 1.0/60.0;

if (motionManager.deviceMotionAvailable) {
 queue = [[NSOperationQueue currentQueue] retain];
 [motionManager startDeviceMotionUpdatesToQueue:queue
 withHandler:^ (CMDeviceMotion *motionData, NSError *error) {

 CMAttitude *attitude = motionData.attitude;
 CMAcceleration gravity = motionData.gravity;
 CMAcceleration userAcceleration = motionData.userAcceleration;
 CMRotationRate rotate = motionData.rotationRate;
 // handle data here......
 }];
} else {
 [motionManager release];
}
If we were interested solely in the raw gyroscope data we could do
 the following:
CMMotionManager *motionManager = [[CMMotionManager alloc] init];
motionManager.gyroUpdateInterval = 1.0/60.0;

if (motionManager.gyroAvailable) {
 queue = [[NSOperationQueue currentQueue] retain];
 [motionManager startGyroUpdatesToQueue:queue
 withHandler: ^ (CMGyroData *gyroData, NSError *error) {

 CMRotationRate rotate = gyroData.rotationRate;
 NSLog(@"rotate x = %f, y = %f, z = %f", rotate.x, rotate.y, rotate.z);
 // handle rotation-rate data here......
 }];

} else {
 [motionManager release];
}
If we want both the raw and gyroscope and accelerometer readings
 outside of the CMDeviceMotion object,
 we could modify the above code as highlighted:
CMMotionManager *motionManager = [[CMMotionManager alloc] init];
motionManager.gyroUpdateInterval = 1.0/60.0;
motionManager.accelerometerUpdateInterval = 1.0/60.0;

if (motionManager.gyroAvailable && motionManager.accelerometerAvailable) {
 queue = [[NSOperationQueue currentQueue] retain];
 [motionManager startGyroUpdatesToQueue:queue
 withHandler: ^ (CMGyroData *gyroData, NSError *error) {
 CMRotationRate rotate = gyroData.rotationRate;
 NSLog(@"rotate x = %f, y = %f, z = %f", rotate.x, rotate.y, rotate.z);
 // handle rotation-rate data here......
 }];
 [motionManager startAccelerometerUpdatesToQueue:queue
 withHandler: ^ (CMAccelerometerData *accelData,
 NSError *error) {
 CMAcceleration accel = accelData.acceleration;
 NSLog(@"accel x = %f, y = %f, z = %f", accel.x, accel.y, accel.z);
 // handle acceleration data here......
 }];
} else {
 [motionManager release];
}

Accessing the Gyroscope

Let’s go ahead and implement a simple view-based application to
 illustrate how to use the gyroscope on its own before looking again at
 Core Motion and CMDeviceMotion. Open
 Xcode and start a new View-based Application iPhone project and name it
 “Gyroscope” when prompted for a filename.
Since we’ll be making use of the Core Motion framework, the first
 thing we need to do is add it to our new project. Click on the project
 file at the top of the Project navigator window on the right in Xcode,
 select the Target and click on the Build Phases tab, click on the Link
 with Libraries drop down and click on the + button to open the file pop-up
 window. Select CoreMotion.framework
 from the list of available frameworks and click the Add button.
Now go ahead and click on the GyroscopeViewController.xib file to open it in
 Interface Builder. As you did for the accelerometer back in Chapter 4, you’re going to build a simple
 interface to report the raw gyroscope readings. Go ahead and drag and drop
 three UIProgressView from the Object
 Library into the View window, then add two UILabel elements for each progress bar: one to
 hold the X, Y, or Z label and the other to hold the rotation measurements.
 After you do that, the view should look something a lot like Figure 6-1.
[image: The Gyroscope UI]

Figure 6-1. The Gyroscope UI

Go ahead and close the Utilities panel and click to open the
 Assistant Editor. Then Control-Click and drag from the three UIProgressView elements, and the three UILabel elements that will hold the measured
 values, to the GyroscopeViewController.h header file which
 should be displayed in the Assistant Editor on the right-hand side of the
 interface (see Figure 6-2).
[image: Connecting the UI elements to your code in Interface Builder]

Figure 6-2. Connecting the UI elements to your code in Interface
 Builder

This will automatically create and declare three UILabel and three UIProgressView variables as an IBOutlet. Since they aren’t going to be used
 outside the class, there isn’t much point in declaring them as class
 properties, which you’d do with a Control-click and drag from the element
 to outside the curly brace. After doing this, the code should look like
 this:
#import <UIKit/UIKit.h>

@interface GyroscopeViewController : UIViewController {

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;
}

@end
Close the Assistant Editor, return to the Standard Editor and click
 on the GyroscopeViewController.h
 interface file. Go ahead and import the Core Motion header file, and
 declare a CMMotionManager and NSOperationQueue instance variables. Here’s how
 the should look when you are done:
#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface GyroscopeViewController : UIViewController {

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 CMMotionManager *motionManager;
 NSOperationQueue *queue;
}

@end
Make sure you’ve saved your changes and click on the corresponding
 GyroscopeViewController.m
 implementation file to open it in the Xcode editor. You don’t actually
 have to do very much here, as Interface Builder handled most of the heavy
 lifting with respect to the UI, you just need to go ahead an implement the
 guts of the application to monitor the gyroscope updates:
@implementation GyroscopeViewController

- (void)dealloc {
 [xBar release];
 [yBar release];
 [zBar release];
 [xLabel release];
 [yLabel release];
 [zLabel release];
 [queue release];
 [super dealloc];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

#pragma mark - View lifecycle

- (void)viewDidLoad {
 [super viewDidLoad];
 motionManager = [[CMMotionManager alloc] init];
 motionManager.gyroUpdateInterval = 1.0/2.0; // Update every 1/2 second.

 if (motionManager.gyroAvailable) {
 NSLog(@"Gyroscope avaliable");
 queue = [[NSOperationQueue currentQueue] retain];
 [motionManager startGyroUpdatesToQueue:queue
 withHandler: ^ (CMGyroData *gyroData,
 NSError *error) {
 CMRotationRate rotate = gyroData.rotationRate;
 xLabel.text = [NSString stringWithFormat:@"%f", rotate.x];
 xBar.progress = ABS(rotate.x);

 yLabel.text = [NSString stringWithFormat:@"%f", rotate.y];
 yBar.progress = ABS(rotate.y);

 zLabel.text = [NSString stringWithFormat:@"%f", rotate.z];
 zBar.progress = ABS(rotate.z);

 }];

 } else {
 NSLog(@"Gyroscope not available");
 [motionManager release];
 }
}

- (void)viewDidUnload {
 [motionManager stopGyroUpdates];
 [motionManager release];

 [xBar release];
 xBar = nil;
 [yBar release];
 yBar = nil;
 [zBar release];
 zBar = nil;
 [xLabel release];
 xLabel = nil;
 [yLabel release];
 yLabel = nil;
 [zLabel release];
 zLabel = nil;
 [super viewDidUnload];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {

 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

@end
The CMRotationRate
 data structure provides the rate of rotations around X-, Y-, and Z-axes in
 units of radians per second. When inspecting the structure remember the
 right-hand rule to determine the direction of positive rotation. With your
 thumb in the positive direction on an axis, your fingers curl will give
 the positive rotation direction around that axis (see Figure 6-3). A negative rotation goes away
 from the tips of those fingers.
[image: The iPhone gyroscope axes]

Figure 6-3. The iPhone gyroscope axes

Let’s test that: click on the Run button in the Xcode toolbar to
 build and deploy the application to your device (remember you can’t test
 this code in the iOS Simulator). If all goes well you should see something
 much like Figure 6-4 as
 you roll the device around the Y-axis.
[image: Measuring rotation on the iPhone 4 whilst rolling it around the Y-axis]

Figure 6-4. Measuring rotation on the iPhone 4 whilst rolling it around the
 Y-axis

Warning
As mentioned before the measurement of rotation rate encapsulated
 by a CMGyroData object is biased by
 various factors. You can obtain a much more accurate (unbiased)
 measurement by accessing the rotationRate
 property of CMDeviceMotion
 if that is needed by your application.

Measuring Device Motion

Let’s go ahead and build a similar application to the one above, but
 this time reporting the data exposed by the CMDeviceMotion object:
CMAttitude *attitude = motionData.attitude;
CMAcceleration gravity = motionData.gravity;
CMAcceleration userAcceleration = motionData.userAcceleration;
CMRotationRate rotate = motionData.rotationRate;
Open Xcode and start a new iPhone project, select a View-based
 Application template, and name the project “Motion” when prompted for a
 filename. As before, import the Core Motion framework into the project and
 then click on the MotionViewController.xib file to open it in
 Interface Builder, and then proceed to drag-and-drop UIProgressBar and UILabel elements into your View in a similar
 manner as you did for the Gyroscope application earlier in the chapter.
 You’ll need labels for the yaw, pitch and roll values, along with progress
 bars and labels for the user acceleration, gravity and rotation
 values.
Once you’ve done this, go ahead and connect the various bars and
 labels as IBOutlet using the Assistant
 Editor into the MotionViewController.h interface file as in
 Figure 6-5.
[image: The Motion application UI with the IBOutlet connected in Interface Builder to the MotionViewController.h interface file]

Figure 6-5. The Motion application UI with the IBOutlet connected in
 Interface Builder to the MotionViewController.h interface file

Once you’ve done this, save your changes and open up the MotionViewController.h interface file in the
 Standard Editor. Go ahead and import the Core Motion framework:
#import <CoreMotion/CoreMotion.h>
For this example you’re going to pull the device motion updates
 rather than push them using the NSOperationQueue and a handler block. Add the
 following instance variables to the view controller class:
CMMotionManager *motionManager;
NSTimer *timer;
Then in the corresponding MotionViewController.m implementation file,
 modify the viewDidLoad method as
 follows:
- (void)viewDidLoad {
 [super viewDidLoad];

 motionManager = [[CMMotionManager alloc] init];
 motionManager.deviceMotionUpdateInterval = 1.0 / 10.0;
 [motionManager startDeviceMotionUpdates];
 if (motionManager.deviceMotionAvailable) {
 timer = [NSTimer scheduledTimerWithTimeInterval:0.2f
 target:self
 selector:@selector(updateView:)
 userInfo:nil
 repeats:YES];
 } else {
 [motionManager stopDeviceMotionUpdates];
 [motionManager release];
 }
}
This will start the motion manager and begin polling for device
 motion updates. Add the following lines to the viewDidUnload method to corresponding stop the
 timer and updates:
 [timer invalidate];
 [motionManager stopDeviceMotionUpdates];
 [motionManager release];
Once you have done this you should go ahead and implement the
 updateView: method that will be called
 by the NSTimer object:
-(void) updateView:(NSTimer *)timer {

 CMDeviceMotion *motionData = motionManager.deviceMotion;

 CMAttitude *attitude = motionData.attitude;
 CMAcceleration gravity = motionData.gravity;
 CMAcceleration userAcceleration = motionData.userAcceleration;
 CMRotationRate rotate = motionData.rotationRate;

 yawLabel.text = [NSString stringWithFormat:@"%2.2f", attitude.yaw];
 pitchLabel.text = [NSString stringWithFormat:@"%2.2f", attitude.pitch];
 rollLabel.text = [NSString stringWithFormat:@"%2.2f", attitude.roll];

 accelIndicatorX.progress = ABS(userAcceleration.x);
 accelIndicatorY.progress = ABS(userAcceleration.y);
 accelIndicatorZ.progress = ABS(userAcceleration.z);
 accelLabelX.text = [NSString stringWithFormat:@"%2.2f",userAcceleration.x];
 accelLabelY.text = [NSString stringWithFormat:@"%2.2f",userAcceleration.y];
 accelLabelZ.text = [NSString stringWithFormat:@"%2.2f",userAcceleration.z];

 gravityIndicatorX.progress = ABS(gravity.x);
 gravityIndicatorY.progress = ABS(gravity.y);
 gravityIndicatorZ.progress = ABS(gravity.z);
 gravityLabelX.text = [NSString stringWithFormat:@"%2.2f",gravity.x];
 gravityLabelY.text = [NSString stringWithFormat:@"%2.2f",gravity.y];
 gravityLabelZ.text = [NSString stringWithFormat:@"%2.2f",gravity.z];

 rotIndicatorX.progress = ABS(rotate.x);
 rotIndicatorY.progress = ABS(rotate.y);
 rotIndicatorZ.progress = ABS(rotate.z);
 rotLabelX.text = [NSString stringWithFormat:@"%2.2f",rotate.x];
 rotLabelY.text = [NSString stringWithFormat:@"%2.2f",rotate.y];
 rotLabelZ.text = [NSString stringWithFormat:@"%2.2f",rotate.z];

}
Save your changes and hit the Run button in the Xcode toolbar to
 build and deploy the application to your device. If all goes well you
 should see something much like Figure 6-6.
[image: The Motion application running on an iPhone 4 sitting flat on the desk, with gravity in the negative Z-direction without any rotation or user acceleration]

Figure 6-6. The Motion application running on an iPhone 4 sitting flat on the
 desk, with gravity in the negative Z-direction without any rotation or
 user acceleration

Comparing Device Motion with the Accelerometer

At this stage we can illustrate the difference between gravity and
 user-contributed acceleration values reported by Core Motion to the raw
 acceleration values reported by the UIAccelerometer, discussed back in Chapter 4.
Re-open the MotionViewController.xib file in Interface
 Builder and add another section to the UI, which will report the raw
 readings from the UIAccelerometer
 object. Go ahead and connect these three bars to IBOutlet instance
 variables in the MotionViewController.h interface file using
 the Assistant Editor as before, see Figure 6-7.
[image: The additional UIProgressView and UILabel elements to report the raw UIAccelerometer readings to the user]

Figure 6-7. The additional UIProgressView and UILabel elements to report
 the raw UIAccelerometer readings to the user

As you can see from Figure 6-7, I’ve changed the
 UIProgressView style from “Default”
 to “Bar” using the Attributes inspector in the Utility pane. This will
 help differentiate this section—data reported from the UIAccelerometer—from the other sections whose
 values are reported by the CMMotionManager.
Once that is done, close the Assistant Editor and open the
 MotionViewController.h interface
 file using the Standard Editor. Go ahead and declare the view controller
 as a UIAccelerometerDelegate and add
 a UIAccelerometer instance variable
 as shown here:
@interface MotionViewController : UIViewController <UIAccelerometerDelegate> {

 ...

 UIAccelerometer *accelerometer;
}

@end
before opening the corresponding implementation file. In the
 viewDidLoad method, add the following
 code to initialize the UIAccelerometer object. You should see Chapter 4 for more details on the UIAccelerometer class and associated
 methods:
- (void)viewDidLoad {
 [super viewDidLoad];

 motionManager = [[CMMotionManager alloc] init];
 motionManager.deviceMotionUpdateInterval = 1.0 / 10.0;
 [motionManager startDeviceMotionUpdates];
 if (motionManager.deviceMotionAvailable) {
 timer = [NSTimer scheduledTimerWithTimeInterval:0.2f
 target:self
 selector:@selector(updateView:)
 userInfo:nil
 repeats:YES];
 } else {
 [motionManager stopDeviceMotionUpdates];
 [motionManager release];
 }

 accelerometer = [UIAccelerometer sharedAccelerometer];
 accelerometer.updateInterval = 0.2f;
 accelerometer.delegate = self;
}
After doing this all you need to do is add the accelerometer:didAccelerate: delegate
 method:
- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration {

 rawAccelLabelX.text =
 [NSString stringWithFormat:@"%2.2f", acceleration.x];
 rawAccelIndicatorX.progress = ABS(acceleration.x);

 rawAccelLabelY.text =
 [NSString stringWithFormat:@"%2.2f", acceleration.y];
 rawAccelIndicatorY.progress = ABS(acceleration.y);

 rawAccelLabelZ.text =
 [NSString stringWithFormat:@"%2.2f", acceleration.z];
 rawAccelIndicatorZ.progress = ABS(acceleration.z);
}
Click on the Run button in the Xcode toolbar to build and deploy
 the application to the device as before. If all goes well you should see
 something much like Figure 6-8.
[image: The Motion application running on an iPhone 4 sitting flat on the desk]

Figure 6-8. The Motion application running on an iPhone 4 sitting flat on
 the desk

Move the device around and you can see how the raw accelerometer
 values and the derived gravity and user acceleration values correspond
 to each other.

Chapter 7. Going Further

I’ve covered a fair amount of ground in the last few chapters, and you
 should now have a solid grasp of the basics of handling the sensor data
 produced by the hardware.
The iPhone SDK

Predictably in a book talking about sensors I’ve focused on the
 parts of the SDK that will be most helpful, and allow you to use the basic
 sensor hardware in your own applications. But even there I’ve left out a
 lot in an attempt to simplify and get you started quickly, especially when
 it comes to audio. A more in-depth look at the iPhone SDK is available in
 Programming iOS
 4, by Matt Neuburg (O’Reilly).

Geolocation and Maps

The iPhone is one of the most popular devices for geolocation: users
 use it for everything from driving directions to finding a restaurant
 close to them. As a developer, you can get in on the geolocation game by
 using the Core Location framework, one of the most powerful and
 interesting frameworks in the iPhone SDK. It abstracts the details of
 determining a user’s location, and does all the heavy lifting for you
 behind the scenes. From there you can use the MapKit framework to embed
 maps directly into your views, and then go ahead and annotate those maps.
 I’ll deep-dive into both these topics in upcoming title Geolocation in
 iOS, by Alasdair Allan (O’Reilly).
Third-Party SDKs

The same book will investigate third-party geo-SDKs such as the
 Skyhook Wireless
 Local Faves and Spot Rank SDKs,
 along with coverage of SimpleGeo and SG Context and
 Places.

Speech Recognition

I covered basic manipulation of the audio hardware, but moving on
 from this you might be thinking about integrating speech recognition into
 your application. At least until Apple gets round to adding this to the
 official iOS SDK, the best way to do this is probably using the CMU
 Pocketsphinx and CMU Flite libraries. There are actually two fairly good
 Objective-C wrappers to the libraries, these are VocalKit and OpenEars. Of the two, at
 least at the time of writing, OpenEars probably has is the best
 documentation which may be a deciding factor if you’re not a expert in
 speech recognition.

Computer Vision

The Open Source Computer Vision (OpenCV)
 Library is a collection of routines intended for real-time
 computer vision, released under the BSD License, free for both private and
 commercial use. The library has a number of different possible
 applications including object recognition and tracking. We delve into
 computer vision and face recognition in the upcoming title Augmented Reality
 in iOS, by Alasdair Allan (O’Reilly).
While you wait you might want to take a look at some of the sample
 code from this title which is already on the web at http://programmingiphonesensors.com/pages/oscon.html.
Augmented Reality

Unsurprisingly perhaps, the same title will also take a close look
 at Augmented Reality, which has become one of the killer applications
 for the iOS platform. The book walks you through building a simple
 location-aware AR toolkit, and some of the sample code is already online
 at http://programmingiphonesensors.com/masterclass/theclass.html.
If you’re interested in AR you might also want to take a look at
 the associated video masterclass on iOS Sensors which features me,
 amongst other things, walking you through the AR toolkit
 code.
Warning
The video masterclass Making use of iPhone and iPad
 Location Sensors was filmed using Xcode 3 and iOS 4.0.
 While the code is still fine, the step-by-step walkthroughs in Xcode
 are somewhat out of date.

External Accessories

While the iOS platform comes with a growing range of sensors; GPS,
 accelerometers, magnetometers and most recently gyroscopes. They also have
 a (near-)ubiquitous data connection, whether via a local wireless hotspot
 or via carrier data, and user positioning via multiple methods including
 GPS. The device makes an excellent hub for a distributed sensor
 network.
However until recently it was actually quite difficult to interface
 these otherwise interesting devices into a standard serial interface, as
 the iPhone’s proprietary dock connector is a major stumbling block.
All this has changed. In the upcoming title iOS and Sensor
 Networks by Alasdair Allan (O’Reilly) we’ll discuss
 using the MFi approved Redpark Serial Cable. This is an officially Apple
 approved route, and makes use of Apple’s own External Accessory Framework
 to connect your device to any standard serial (RS-232) capable device. In
 addition to this we will go on to discuss other methods to use the phone
 as the hub of a sensor network, and part of the Internet of Things.

About the Author
Alasdair Allan is a senior research fellow in Astronomy at the University of Exeter, where he is building an autonomous, distributed peer-to-peer network of telescopes that reactively schedule observations of time-critical events. He also runs a small technology consulting business writing bespoke software and building open hardware, and is currently developing a series of iPhone applications to monitor and manage cloud-based services and distributed sensor networks.

Colophon
The animal on the cover of Basic Sensors in iOS
 is a Malay fox-bat.
The cover image is from Lydekker’s Royal Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages873935.png.jpg
TN e
B8 680 560

OEBPS/httpatomoreillycomsourceoreillyimages873917.png
> | EiA..) R CompssvienConvolesh) (3 @inertce CompasvienControler | © &

Compsstiencontrotter.h
=t

Creates by Alasésic Allan on 10/8572011,
Covrione 20 Tniversiy OF Ereter: ALL rights reserved.

siaport UK/ N
Part SCorelacation/Coretacation-hs

intertace CompasiienContratier + Uikieontrotier <
e s roeteaste

I80utict Urtesgevion sarrodssges
Ihoatict Uilseet sesonet

OEBPS/httpatomoreillycomsourceoreillyimages873865.png
iPhone 4 GB |

8B
1668
Touch (16)8GB
1668
68

2008

2009

Original Phone
iPhone 36
iPhone 365

W iPhone 4

2010

iPod Touch 1st Generation

iPod Touch 2nd Generation
iPod Touch 3rd Generation
‘M iPod Touch 4th Generation

= iPad
o iPad2
Still Produced

M

OEBPS/httpatomoreillycomsourceoreillyimages873869.png
Craover) (Gl Chiy

OEBPS/httpatomoreillycomsourceoreillyimages873911.png
Portralt

001181

0909148

0184972

SHAKE

Landscape Right

2072144

085780

0272720

SHAKE CANCELLED

Portralt

0259040

1145554

0521185

OEBPS/callouts/10.png

OEBPS/callouts/11.png

OEBPS/httpatomoreillycomsourceoreillyimages873925.png.jpg
Mgt g 130810052

OEBPS/httpatomoreillycomsourceoreillyimages873919.png.jpg
Magnetic Heading: 118.905426
True Heading: 116.267014

OEBPS/httpatomoreillycomsourceoreillyimages873887.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873907.png.jpg
\ Portrait

-0.009842

-1.006134

-0.122345

OEBPS/httpatomoreillycomsourceoreillyimages873921.png.jpg
Heading = X degrees

Heading = X + 90 degrees

OEBPS/httpatomoreillycomsourceoreillyimages873860.jpg
Programming the Accelerometer, Gyroscope, and More

Basic Sensors
in 108

O’REILLY*® Alasdair Allan

OEBPS/httpatomoreillycomsourceoreillyimages873941.png.jpg
02-UK

Yaw -0.01
Pitch 0.04
Roll -0.04

User Acceleration

Gravity

Rotation

UlAccelerometer

X
i
Z

X
i
s

X
i
2

C—
—
—_—"

0.00
-0.00
-0.01

-0.04
-0.04
-1.00

-0.00
-0.00
0.00

-0.04
-0.04
=10

OEBPS/httpatomoreillycomsourceoreillyimages873879.png
e :

Crestes by alasase Attan on euerzeLs.
Conriont 2 irersity of Biever: AL rions reserve

IR SR Rt yer.an

eintertoce Ausioviercontrolte : UiviexControtter <
TR

1 Let Uisution wpiavdutior
ELLCL LiBiALEn Sautebution
TEGUALEL UiBukton “SRepRuttons

Mot cPayercontrolier smaicaloyers

OEBPS/httpatomoreillycomsourceoreillyimages873875.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873891.png
B
e
< 3 Accleromeer
caerometeropdsegsien
caeromeerppOsesstem
= sindow xs

© Paceholders:
s owner
@ First Responder

ot

+ ona®

NETCY)

+ Gustom Cass.

s et

iy

et KcodeSpecie aoel
xesussu

Notes O Show Wi seecion

(ton |

Round Rect Buton - s
e s cion
et 03 e st

Seqmented Control - Osgars
R egmens, ko
Tnctoes 52 st .

Toxt il - Daps et e
s onmesisetos
e v e s &

OEBPS/httpatomoreillycomsourceoreillyimages873899.png.jpg
-0.041626

-0.037216

-1.011398

OEBPS/httpatomoreillycomsourceoreillyimages873901.png.jpg
Frished running Accelerometer

Choose options for adding these flles:

) AceterometevinContaer
AccserometernContoler

et Oestination © Capy e nt desinaton grous's flder f esded)

Folders @ Create groups for any added folders
O Create folder references for any added folders N —

At roess @, Aeciomeer

image

e

Reuna Dy

P T O g Targer

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/callouts/14.png

OEBPS/callouts/15.png

OEBPS/callouts/12.png

OEBPS/callouts/13.png

OEBPS/httpatomoreillycomsourceoreillyimages873873.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873867.png
Y Clsorrios s

- B U ramenork
B Foundston amenork
6 Coreraphics amevork

G¢ DidEnd onexe

Edting Cranged.
g 0 besin
Eding Did End
Touch Cance
Touch Down
Toueh Down Repet
Touch rag Ener
Touch Dag vt
Touch rag e
Touch Drag Outside

“Toueh Up Outsice

licwe W
| Table view cel - Demes e
s 20 Seaor ol o)

Image View - Ol 3 sigle

Tex View - it mitipe s
b ot e 3 st
s 03 et oo when

Web View Dipas embedes
o a0 e caten

Map View - Ospas s 50
e n et s o
Ao i conen.

OEBPS/httpatomoreillycomsourceoreillyimages873885.png
RecordertienContratter.h
R

Grested by Alasdsie Aitan on sueETL
Coomrian i lersiiy oF Baeters AL rigns reserves,

stmpert i

SRR RRarenation. s

intertace Recorderviscontrolter + UivieiControtter <
Ak oRecorderDevagaten ¢

I80utiet Uutton sstorsstoptution;
Ienitict Uiesian Slaen
e

OEBPS/httpatomoreillycomsourceoreillyimages873923.png
Bl o =) O EiENE)

[—
st

Crestes by atssgnie Ation on /052031
R it g T —

import /v e

S et oretacstion

interfoce Compusshieatontrolley + UivieuControtier <
et

puttet ultesgerien sarroch

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages873927.png
B3 Gyroscope - GyroscopeViewControllerxib

| 4 > | Elorouoes) Glonouoes) = Orotepeienconobera) 5 OnoscopienComyolr Enleh)) | ew D8 aweo

D Ule =

) el Al s amo o

ﬂ

Round Rect Buton - s
e 30 s o s
et o s oo e

Seqmented Convel - Disgars
1 2) AR e S
+ oaa® =)

OEBPS/callouts/5.png

OEBPS/callouts/4.png

OEBPS/callouts/3.png

OEBPS/callouts/2.png

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages873881.png.jpg
Add All Songs

Adeste Fideles (0 come, all.
Affirmation

AllIn A Day

All The Love In The World

Almost Hera (Duet With Bria

‘Along With The Girls

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages873931.png.jpg

OEBPS/callouts/8.png

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages873933.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873905.png
151 & =) O =ENE)

00 WA (3 @mertace cceeometevencontoter | 6

seceteroretortiexcontrotter-h

Creoted by Alasdate Allan on 267857281
Copuriant 2011 University of Exeters ALl rights reserved.

inpore UTKit/UIKEE

intertoce Accelerameteryiencantroller ¢ UiviexController <
Uhcceteronetarbetopsten 1

I80ut1et UIProgressview exta
T8Ut1EE Ulprogressvics syda
TROULeE Ulbrogressvien +iBari

I80utet UILabel wxtobel:
frmi e
T80Ut1CE UIlabet vatobel:

~ (SString +)stringFrosdrientation: (VIoevicedrientation)
rientation;

OEBPS/httpatomoreillycomsourceoreillyimages873883.png
tecarserviedantrotier.n

Crestes by Atssanie Alton on a1/06/2011
Conariont 201 Unbversity of Exeter: ALL righs reserved.

stmgort anmstsuTese e
S SR reunsstion. s

Qintertace Recardertiescontratler + Uiviescontrotler <
ittt Sy

spnuctes Uiserton sxtortstoptutton;
A Seprile

iR s —

oLt ckarainar

OEBPS/httpatomoreillycomsourceoreillyimages873889.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873939.png
(EEIE)

o)

[T

Grentes by Atasdte At o ey

Earir it R 5 BRI s reseren.

I S S eerion s

eintertace Ntiontieentratlr ¢ Ul¥iecontroler {

e s
R

ibrogreiavies saccsineheate
s

G et
UL e

OEBPS/httpatomoreillycomsourceoreillyimages873877.png.jpg
H| e phota has been saved to your

Proto Album

OEBPS/httpatomoreillycomsourceoreillyimages873871.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873929.png
EFD) @EO) (=)

Grrascopeviencantrolter.h
] G

Greated by Alasanir Allan on 3178572051,
Cayriant'amn Tailers ity 8F Ereterl AL rights reserves.

inpore wIKL /UK b
TR Caramotionstoretotion. b

intertace Gyroscopeviencontroller ¢ UiviexControler {

P T TT T I

OEBPS/httpatomoreillycomsourceoreillyimages873897.png
> 1M B)
i Aesleromater

Vi 0550k 43 Accelerameteriioontratior.h

e 8D Aeceteronater

Accrometerappblegaen Creoted by Alasdatr Allan on 1678572011
AccrometerAgpoeiegse Copyriant 2011 University of Exeter: ALl rights reserved.

stapore kit /UIKEE b

eineriace ccsteromterviecaptroter Ubiexcontroler <

180uttet UTProgressie wado

I80ut1et Ulbrogressvics syl
T80uttet Ulbrogrersvies +3or}

I80utlet uTLobel sxLabel
Stlet UlLavel sylabel

~ (iSString +)stringFrosdrientation: (VIoevicedricntation)
rientation;

=

OEBPS/httpatomoreillycomsourceoreillyimages873913.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873937.png.jpg
i1.02-UK %

Yaw 0.19
Pitch 0.04
Roll -0.04

User Acceleration

Gravity

Rotation

OEBPS/httpatomoreillycomsourceoreillyimages873895.png.jpg
-0.045410

-0.037003

-1.005173

OEBPS/httpatomoreillycomsourceoreillyimages873903.png
nescion O ser nracionEntied.
5wt Toueh

Taie View Gel-ctics ne
Siras s bhor o et o)
et

| mag ien Oma e
i s s 1
| g

Texs View - Dssis mtit s
i et nd s 3 o
st ot ovc hen

Web View - itays enbested

e g rsr ot 4

OEBPS/httpatomoreillycomsourceoreillyimages873915.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages873909.png
nfoplssings
Acceromeer i pch
manm

[EEo@EoO) (@)

>0 B) WA-.) [0 eimeace AceeromeservienContoler | G 6

Acceleroneterviecontroller.h
Aeceteroneter

iversity of Breter: ALL rights reserved.

sinpore <Kt/

finteroce Acceleroseteruiencontroller UViewCantroller <
cceteronsterostepmtes 1

Ia0utter
it
T80uttet

Iauttet
Sagutiet

Thoiet

Uibrogressvie sxdar;
Uibrograsavics swiart
Ulbrogrersiio st

uttabel
Uitaie!

e o

Uniceeleroneter vacceteroseter:

»

= (isString e)stringFromarientstion: (Ioeviceorientotion)
rientacion;

OEBPS/httpatomoreillycomsourceoreillyimages873893.png
) MA..) (3 @netace cceeometeievContoler | 5

Acceterossterviecontrolter.h
Aeceteromster

Created by Algsdai Allan on 1678572011,
Copariont 2011 Unliersity of Exeters ALL rights reserved.

simport UKt UK

interfoce Accelerametertientontroller ¢ UlVieucontroller {
130uttet utbrogrssuien sars

