

 [image: Second Edition]

 PHP & MySQL: The Missing Manual, Second Edition

Brett McLaughlin

Published by Pogue Press

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/0636920024927/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

The Missing Credits

About the Author

[image: image with no caption]

Brett McLaughlin is a senior-level technologist and
 strategist, active especially in web programming and data-driven, customer-facing systems.
 Rarely focused on only one component of a system, he architects, designs, manages, and
 implements large-scale applications from start to finish with mission-critical
 implementations and deadlines.
Of course, that’s all fancy-talk for saying that Brett’s a geek, spending most of his
 day in front of a computer with his hands flying across a keyboard. Currently, he spends
 most of his time working on NASA projects, which sounds much cooler than it actually is. But
 hey, maybe that satellite overhead really is controlled by PHP and MySQL…

About the Creative Team

Nan Barber (editor) has been working on the Missing
 Manual series since its inception. She lives in Boston with her husband and various
 electronic devices. Email: nanbarber@oreilly.com.
Holly Bauer (production editor) lives in Ye Olde
 Cambridge, Massachusetts, where she is an avid home cook, prolific DIYer, and mid-century
 modern furniture design enthusiast. Email: holly@oreilly.com.
Bob Russell (copyeditor) is a documentation specialist
 and President of Octal Publishing, Inc., in Salem, New Hampshire (www.octalpub.com). Email:
 bob.russell@octalpub.com.
Bob Pfahler (indexer) is a freelance indexer. For the
 past five years, he has indexed many computer books as well as biographies, history, and
 business books. When he is not working, he likes to take bike rides in the foothills outside
 of Denver. He indexed this book as an associate for Potomac Indexing (www.potomacindexing.com).
Roger House (technical reviewer) is a freelance software
 developer living in northern California. He has written code in many languages for various
 kinds of applications. He enjoys algorithm design, use of data structures, and applications
 of mathematics. Web: www.rogerfhouse.com.
 Email: rhouse@sonic.net.
Steve Suehring (technical reviewer) is a technical
 architect with an extensive background finding simple solutions to complex problems. Steve
 plays several musical instruments (not at the same time) and can be reached through his
 website www.braingia.org.

Acknowledgments

Acknowledgments are nearly impossible to do well. Before you can thank anyone of
 substance, the music swells and they’re shuffling you off stage. Seriously, apart from the
 writing, there’s my wife, Leigh, and my kids, Dean, Robbie, and Addie. Any energy or joy or
 relaxation that happens during the long writing process filters through those four, and
 there are never enough royalties to cover the time lost with them. I suppose it’s a
 reflection of their love and support for me that they’re OK with me writing anyway.
There’s certainly the writing. Brian Sawyer was the first guy to call me when I became
 available to write, and he called when I was really in need of just what he gave me:
 excitement about me writing and encouragement that I could write for the Missing Manual
 series. I won’t forget that call anytime soon. And, there’s Nan Barber, who IM’ed and
 emailed me throughout the entire process. She showed a really unhealthy level of trust that
 wasn’t earned, and I’m quite thankful…especially in the dark days of early August, when I
 had hundreds of pages left to write, in just a few short weeks.
Roger House and Steve Suehring, my technical reviewers, were both picky and gentle.
 That’s about all you can ask. And Steve filled out my PHP holes. He caught one particularly
 nasty issue that I think vastly improved the book. You don’t realize this, but you owe him a
 real debt of thanks if this book helps you.
—Brett McLaughlin

The Missing Manual Series

Missing Manuals are witty, superbly written guides to computer products that don’t come
 with printed manuals (which is just about all of them). Each book features a handcrafted
 index and cross-references to specific pages (not just chapters).
Recent and upcoming titles include:
Access 2010: The Missing Manual by Matthew MacDonald
Adobe Edge Animate: The Missing Manual by Chris Grover
Buying a Home: The Missing Manual by Nancy Conner
CSS3: The Missing Manual, Third Edition, by David Sawyer
 McFarland
Creating a Website: The Missing Manual, Third Edition, by Matthew
 MacDonald
David Pogue’s Digital Photography: The Missing Manual by David
 Pogue
Dreamweaver CS5.5: The Missing Manual by David Sawyer
 McFarland
Droid 2: The Missing Manual by Preston Gralla
Droid X2: The Missing Manual by Preston Gralla
Excel 2010: The Missing Manual by Matthew MacDonald
Facebook: The Missing Manual, Third Edition by E.A. Vander
 Veer
FileMaker Pro 12: The Missing Manual by Susan Prosser and Stuart
 Gripman
Flash CS5.5: The Missing Manual by Chris Grover
Galaxy S II: The Missing Manual by Preston Gralla
Galaxy Tab: The Missing Manual by Preston Gralla
Google Apps: The Missing Manual by Nancy Conner
Google SketchUp: The Missing Manual by Chris Grover
HTML5: The Missing Manual by Matthew MacDonald
iMovie ’11 & iDVD: The Missing Manual by David Pogue and
 Aaron Miller
iPad: The Missing Manual, Fifth Edition by J.D.
 Biersdorfer
iPhone: The Missing Manual, Sixth Edition by David Pogue
iPhone App Development: The Missing Manual by Craig
 Hockenberry
iPhoto ’11: The Missing Manual by David Pogue and Lesa
 Snider
iPod: The Missing Manual, Eleventh Edition by J.D. Biersdorfer
 and David Pogue
JavaScript & jQuery: The Missing Manual by David Sawyer
 McFarland
Kindle Fire: The Missing Manual, Second Edition by Peter
 Meyers
Living Green: The Missing Manual by Nancy Conner
Mac OS X Snow Leopard: The Missing Manual by David Pogue
Mac OS X Lion: The Missing Manual by David Pogue
Microsoft Project 2010: The Missing Manual by Bonnie
 Biafore
Motorola Xoom: The Missing Manual by Preston Gralla
Netbooks: The Missing Manual by J.D. Biersdorfer
NOOK Tablet: The Missing Manual by Preston Gralla
Office 2010: The Missing Manual by Nancy Connor, Chris Grover,
 and Matthew MacDonald
Office 2011 for Macintosh: The Missing Manual by Chris
 Grover
Palm Pre: The Missing Manual by Ed Baig
Personal Investing: The Missing Manual by Bonnie Biafore
Photoshop CS6: The Missing Manual by Lesa Snider
Photoshop Elements 11: The Missing Manual by Barbara
 Brundage
PowerPoint 2007: The Missing Manual by E.A. Vander Veer
Premiere Elements 8: The Missing Manual by Chris Grover
QuickBase: The Missing Manual by Nancy Conner
QuickBooks 2013: The Missing Manual by Bonnie Biafore
Quicken 2009: The Missing Manual by Bonnie Biafore
Switching to the Mac: The Missing Manual, Snow Leopard Edition by
 David Pogue
Switching to the Mac: The Missing Manual, Lion Edition by David
 Pogue
Wikipedia: The Missing Manual by John Broughton
Windows Vista: The Missing Manual by David Pogue
Windows 7: The Missing Manual by David Pogue
Windows 8: The Missing Manual by David Pogue
Word 2007: The Missing Manual by Chris Grover
WordPress: The Missing Manual by Matthew MacDonald
Your Body: The Missing Manual by Matthew MacDonald
Your Brain: The Missing Manual by Matthew MacDonald
Your Money: The Missing Manual by J.D. Roth

Introduction

Given that you’re reading this book, the chances are good that you’ve built a web page in
 HTML. You’ve styled it by using Cascading Style Sheets (CSS) and maybe written a little
 JavaScript to validate your custom-built web forms. If that wasn’t enough, you’ve learned a
 lot more JavaScript, threw in some jQuery, and constructed a whole lot of web pages. Maybe
 you’ve even moved your JavaScript into external files, shared your CSS across your entire
 site, and validated your HTML with the latest standards.
But now you want more.
Perhaps you’ve become frustrated with your website’s inability to store user information
 in anything beyond cookies. Maybe you want a full-blown online store, complete with PayPal
 integration and details about what items are in stock. Or maybe you’ve simply caught the
 programming bug and want to go beyond what HTML, CSS, and JavaScript can easily give
 you.
If any of these are the case—and you may find that all of these are
 the case—learning PHP and MySQL is a great way to take a giant programming step forward. Even
 if you’ve never heard of PHP, you’ll find it’s the best way to go from building web pages to
 creating full-fledged web applications that store all sorts of information in databases. This
 book shows you how to do just that.
What PHP and MySQL Can Do

PHP can handle payment processing on its own, and it can connect with services like
 PayPal and Google Checkout. PHP can store and load images from a database or a file system
 and give you the ability to log users in and out as well as control what they see throughout
 your application.
Add in MySQL, and you can store your users’ names, addresses, billing data, and even
 their preferences regarding the color of their own personal landing page. MySQL can store
 just a few bits of data, a few thousand lines of data, or every page access by every user
 who ever logs into your application.
And, of course, PHP can easily connect to MySQL. PHP can do everything from grabbing a
 user name based on a user ID to storing the details about financial transactions to actually creating tables and updating their
 structures, and MySQL can back-end all that work and store that data. Ultimately, this is
 the stuff of web applications; it’s what a web application is.
Obviously, web applications like this aren’t simple. They have a lot of complexity, and
 that complexity has to be managed and ultimately tamed into a usable, sensible web
 application that you can maintain and your users can enjoy. That’s what this book is about:
 building web applications, and doing it with an understanding of what you’re doing, and why
 you’re doing it.

What Is PHP?

PHP started out as a set of tools for doing simple web-related tasks. It appeared on the
 Web scene way back in 1994. Initially, PHP did nothing more than just track visits to a
 particular web page (the online resume of Rasmus Lerdorf—the inventor of PHP). It was then
 expanded to interact with databases, as well as provide a tool set for online guest books
 and HTML form processing. The next thing you know, it was hugely popular as an alternative
 to less web-friendly languages like C.
New versions of PHP started coming out, and an increasing number of web programmers
 adopted it as their scripting language of choice for web tasks. PHP 3, 4, and now 5 are now
 mainstays on the Web. PHP has become fast while remaining lightweight. And, of course, its
 ability to easily interact with databases such as MySQL remains one of its most attractive
 features.
What Is PHP Like?

PHP is a programming language. It’s like JavaScript in that you spend most of your
 time dealing with values and making decisions about which path through your code should be
 followed at any given time. But it’s like HTML in that you deal with output—tags that your
 users view through the lens of their web browsers. In fact, PHP in the context of web
 programming is a bit of a mutt; it does lots of things pretty well, rather than just doing
 one single thing. (And, if you’ve ever wondered why it’s called PHP,
 see the box on the following page.)
FREQUENTLY ASKED QUESTION: Personal Home Page, Indeed
What does PHP stand for?
PHP is an acronym. Originally, it stood for Personal Home Page
 Construction Kit, because lots of programmers used it to build their
 websites, going much further than what was possible with HTML, CSS, and JavaScript. But
 in the last few years, “personal home page” tends to sound more like something that
 happens on one of those really cheap hosting sites, rather than a high-powered
 programming language.
So now, PHP stands for PHP: Hypertext Preprocessor. If that
 sounds geeky, it is. In fact, it’s a bit of a programmer joke: PHP stands for something
 that actually contains PHP within itself. That makes it a recursive
 acronym, meaning that it references itself. You don’t have to know what a recursive
 acronym is; that won’t be on the quiz. Just be warned that PHP’s recursive acronym won’t
 be the last weird and slightly funny thing you’ll run across in the PHP language.

PHP Is All About the Web

If you came here for web programming, you’re in the right place. Although you can
 write PHP programs that run from a command line (check out Figure 1 for an example), that’s not really
 where it excels. The PHP programs you write run within your website, part and parcel with
 your HTML forms, web sessions, and browser cookies. For example, PHP is great at
 integrating with your website’s existing authentication system, or letting you create one
 of your own.
[image: Sure, you can run PHP programs from a Terminal window or a command shell in Windows. But most of the time, you won’t. PHP is perfectly suited to the Web, and that’s where you’ll spend most of your time.]

Figure 1. Sure, you can run PHP programs from a Terminal window or a command shell in
 Windows. But most of the time, you won’t. PHP is perfectly suited to the Web, and that’s
 where you’ll spend most of your time.

You’ll spend a lot of time not just handing off control to an HTML page, but actually
 writing the HTML you’re already familiar with right into your PHP scripts. Lots of times,
 you’ll actually write some PHP and then write some HTML, all in the same PHP file, as in
 the following example:
<?php
require '../../scripts/database_connection.php';
// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

// Build the SELECT statement
$select_query = "SELECT * FROM users WHERE user_id = " . $user_id;
// Run the query
$result = mysql_query($select_query);

// Assign values to variables
?>

<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>
 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="show_image.php?image_id=<?php echo $image_id; ?>"
class="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>
:</p>

 <!-- And so on... lots more HTML here. -->
</html>
This script references another script, database_connection.php,
 and then extracts a user’s ID from the request parameters sent by a web browser. The
 script uses that ID to search a database for the rest of the user’s information. Then, it
 builds the data into a web page that’s created on the fly.
The result? Pages that are both full of HTML and have dynamic content, like Figure 2.
[image: This page is as much PHP as HTML. It looks up your visitor’s name in the database and displays it dynamically. The menu creates a Show Profile option specific to this user. But there’s still lots and lots of HTML. This is PHP at its best: combining the HTML (and even JavaScript) that you know with the PHP you’re about to learn.]

Figure 2. This page is as much PHP as HTML. It looks up your visitor’s name in the database
 and displays it dynamically. The menu creates a Show Profile option specific to this
 user. But there’s still lots and lots of HTML. This is PHP at its best: combining the
 HTML (and even JavaScript) that you know with the PHP you’re about to learn.

JavaScript Is Loose, PHP Is…Less So

If you’ve written some JavaScript—and if you’re checking out this book, that’s
 probably the case—you know that JavaScript lets you get away with just about anything. You
 can occasionally leave out semicolons; you can use brackets, or not; you can use the
 var keyword, or not. That sort of looseness is great for getting
 things working quickly, but at the same time, it’s frustrating. It makes finding bugs
 tricky at times, and working across browsers can be a nightmare.
PHP is not quite as loose as JavaScript, so it makes you learn a little more structure
 and tighten up your understanding of what’s going on as your program is constructed and
 then run. That’s a good thing, because it will end up making you tighten up your
 JavaScript skills, too. And, perhaps best of all, PHP’s stodgy consistency makes it easier
 to learn. It gives you firm rules to hang on to, rather than lots of “You can do this…or
 this…or this…”
So get ready. There is a lot to learn, but everything you learn gives you something on
 which to build. And PHP, lets you know right away when there’s a problem. You won’t need
 to pop open an error console or keep an eye out for the tiny yellow warning triangle in
 Internet Explorer as you do with JavaScript. More often, you’ll get a nasty error that
 stops you in your tracks and screams, “Fix me!” And, over the next couple of hundred
 pages, you’ll be able to do just that: fix the problems you’ll run across in typical PHP
 programs, whether you’ve written those programs or someone else has.

PHP Is Interpreted

PHP code comes in the form of scripts, which are plain-text files
 that you create and fill with code. Whereas HTML uses lots of angle brackets and keywords
 like html, head, and
 ul, PHP uses lots of dollar signs ($) and keywords
 like mysql_query and echo. So, HTML and PHP don’t look at all alike. But where they are alike is
 in the basic underlying format: they’re both just text. You can open up an HTML document
 not just in a web browser, but in Notepad or an integrated development environment (IDE)
 like Eclipse or even a command-line editor like vi or emacs. The same is true for PHP:
 it’s just text. So, get ready; throughout this book, you’ll be typing words—albeit strange
 ones, with lots of underscores—and saving those words into text files called
 scripts.
Once you’ve got a script, you let a PHP program interpret that script. The PHP
 interpreter is a piece of software on your web server that reads
 your script and makes sense of it, giving the web server output and directions about where
 to go next or how to handle a user’s form field entries. Your script—remember, just a text
 file—is interpreted, one line at a time, every time it is accessed.
This is a bit different from languages like Java or C++, which are
 compiled. In those languages, you also write your code in text
 files, but then run a command that turns those text files into something else: class
 files, binary files, pieces of unreadable code that your computer uses.
The beauty of an interpreted language like PHP—and JavaScript, for that matter—is that
 you write your code and go. You don’t need a bunch of tools or subsequent steps. You write
 PHP, test it out in the browser, and then write some more. It’s fast, and that usually means it’s
 pretty fun.

PHP Doesn’t Run in the Browser

There’s one other big difference between PHP and what you may be used to with HTML,
 CSS, and JavaScript. It’s a big difference, too; in fact, this difference is such a big
 deal that it’s going to affect everything you do when it comes to writing PHP scripts,
 getting those PHP scripts to run, and checking them out in a web browser.
So what’s the difference? It’s this: PHP, unlike HTML or CSS or JavaScript, doesn’t
 run entirely in a browser.
What does that mean? Chapter 1 begins to get into the
 details, but for now, you just need to know that HTML, JavaScript, and CSS are entirely
 handled by your web browser software. Whether you use Internet Explorer, Apple Safari,
 Google Chrome, Mozilla Firefox, or Opera, once you have a browser, you have everything you
 need. That’s why you can write an HTML document, save it with an extension like .html,
 double-click that file, and voilà: your browser opens (assuming you’ve got things set up
 on your computer the right way) and you’re looking at HTML. You can reference CSS in that
 HTML file as well as JavaScript, and the same thing happens. Write code, save, and open.
 Pretty easy stuff.
With PHP, you’ll need a bit more than that. The PHP interpreter interacts with your browser but doesn’t run in the browser
 automatically. In other words, you cannot simply double-click a PHP script and expect a
 browser to pop up and handle things. HTML forms that submit to a PHP script won’t “just
 work” the way that HTML and JavaScript do.
Right now, then, you just need to know two things:
	It’s going to take a little more work to get your PHP programs working. You can’t
 just write and save a script and then open it the way you can HTML. Don’t worry;
 you’ll learn exactly how to get PHP working both locally—on your computer—and
 remotely—on a web hosting company’s servers. But it’s going to take a little more
 effort.

	It’s not trivial to set up everything you need to run PHP programs on your own
 computer—especially once you involve MySQL, too (more on this in just a moment).
 That’s why Internet Service Providers (ISPs) and web hosting companies exist! They
 take care of that sort of thing. So, although it’s possible to do all your PHP coding
 on your own machine, it’s a lot more common to write your scripts and then send them
 to a remote web server. Sound scary? It’s not…but it’s important. You’ll spend a good
 bit of time in this book writing code and uploading it to a server.

PHP is different from JavaScript and HTML in some important ways. You’ll get used to
 those differences, but you’ll be a lot less frustrated and confused if you go in knowing
 that you’ll have to do some things differently when it comes to PHP.

What Is MySQL?

MySQL is a database. It stores your information, your users’ information, and anything
 else you want to stuff into it. But, beyond its ability to store information, MySQL is
 popular. In fact, it’s the most popular open-source database system in the world. It has
 literally millions of users working with it, finding and reporting problems, and testing its
 limits. And, it has thousands of developers that at some point have helped improved its code
 base.
MySQL is essentially a warehouse in which you can store things to be looked up later.
 Not only that, MySQL provides you with a really fast mechanism to find all that stuff you
 stuck in the warehouse whenever it’s needed. By the time you’re through this book, you’ll
 love MySQL. It will do work that you could never do on your own, and it will do that work
 tirelessly and quickly.
It’s also the perfect companion to PHP. It’s easy to install on any system; it doesn’t
 take up huge resources like larger commercial offerings such as Oracle’s or IBM’s products;
 and its easy to connect to. In fact, you’ll find that PHP and MySQL are perfectly matched,
 with a ton of easy-to-use functions that let PHP scripts to do just about anything you can imagine with a MySQL database.
Note
There’s actually a lot more nuance to MySQL—and SQL, the language in which you’ll
 interact with MySQL—but it’s better to save that for Chapter 4, when you’ve got a little PHP under your
 belt.

About This Book

PHP is a web-based language, not a program that comes in a box. Tens of thousands (maybe
 even hundreds of thousands) of websites have bits of PHP tutorial or instruction on them.
 That’s great, right? Well, not so much. Those websites aren’t all current. Some are full of
 bugs. Some have more information in the comment trails—scattered amongst gripes, complaints,
 and lambasting from other programmers—as they do in the main page. It’s no easy matter to
 find what you’re looking for.
The purpose of this book, therefore, is to serve as the manual that should have been
 included when you download PHP. It’s the missing PDF, if you will (or maybe the missing
 eBook, if you’re a Kindle or Nook or iPad person). In this book’s pages, you’ll find
 step-by-step instructions for getting PHP running, writing your first program… and your
 second program…and eventually building a web application from scratch. In addition, you’ll
 find clear evaluations of the absolutely critical parts of PHP that you’ll use every day,
 whether you’re building a personal blog or a corporate intranet.
Note
This book periodically recommends other books, covering topics
 that are too specialized or tangential for a manual about PHP and MySQL. Careful readers
 may notice that not every one of these titles is published by Missing Manual parent
 company O’Reilly Media. If there’s a great book out there that doesn’t happen to be
 published by O’Reilly, this book will still let you know about it.

PHP & MySQL: The Missing Manual is designed to accommodate
 readers at every technical level. The primary discussions are written for advanced-beginner
 or intermediate web authors and programmers. Hopefully, you’re comfortable with HTML and
 CSS, and maybe even know a bit of JavaScript. But, if you’re new to all this Web stuff, take
 heart: special boxes called “Up to Speed” provide the introductory information you need to
 understand the topic at hand. If you’re an advanced user, on the other hand, keep your eye
 out for similar boxes called “Power Users’ Clinic.” They offer more technical tips, tricks,
 and shortcuts for the experienced computer fan.
Macintosh and Windows

PHP and MySQL work almost precisely the same in their Macintosh and Windows versions.
 Even more important, you’ll do most of your work by uploading your scripts and running
 your database code against a web server. That means that your hosting provider has to deal
 with operating system issues; you get to focus on your code and information.
In the first few chapters, you get your system set up to write code and deal with PHP
 scripts. Thereafter, you will soon forget about whether you’re on a Macintosh or using a
 Windows-based computer. You’ll just be writing code, the same way you write HTML and CSS.
 And remember, you’ll soon be uploading your scripts to remote web servers, so your own
 computer is only part of the solution.

FTP: It’s Critical

One piece of software that’s absolutely critical is a good FTP client. No matter how
 awesome your scripting skills become—and they’re gonna be formidable!—you have to actually
 get your scripts to your web hosting server. That’s where FTP comes in: it’s the means by
 which a file on your computer gets placed in just the right location on a remote
 server.
Note
From the author: Typing in a command-line editor is
 actually exactly how I work. But then, I’m a dinosaur, a throwback to days when you had
 to watch commercials to see primetime TV, and you’d miss emails because your pocket
 didn’t buzz every time your boss whisked you a command through the ether.
Today, for most of you, a good text editor and a good graphical FTP client are much
 better choices. Seriously, my addiction owns me, and I so badly want to
 :wq! it.

Chapter 1 points you to several great editors, and the
 fancier ones will have FTP built right in. If you don’t opt for an integrated solution, a
 dedicated FTP program like Cyberduck (www.cyberduck.ch) is
 great, too. You can write a script, throw it online, and test it all with a few mouse
 clicks. So, go ahead and get that FTP program downloaded, configured for your web hosting
 service (which might also be called your ISP), and fired up. You’re gonna need it.

About the Outline

PHP & MySQL: The Missing Manual is divided into five parts,
 each containing several chapters:
	Part 1. In the first four chapters, you install
 PHP, get it running on your computer, write your first few PHP programs, and learn to
 do a few basic things like collect user information via a web form and work with text.
 You also install MySQL and become thoroughly acquainted with the structure of a
 database.

	Part 2. These are the chapters in which you start to
 build the basics of a solid web application. You add a table in which you can store
 users and their information, and get a grasp of how easily you can manipulate text.
 From URLs and emails to Twitter handles, you use regular expressions and string
 handling to bend letters, numbers, and slashes to your will.

	Part 3. With a solid foundation,
 you’re ready to connect your web pages into a more cohesive unit. You add custom error
 handling so that your users won’t become confused when things go wrong. You also add
 your own debugging to help you find problems. You also learn how to store references
 to users’ images of themselves, store the images themselves in a database, and learn
 which approach is best in which situations.

	Part 4. In even the simplest of
 applications, logging in and logging out is critical. In this section, you build an
 authentication system and then deal with passwords (which are important, but a bit of
 a pain). You then work with cookies and sessions, and use both to create a group-based
 authorization system for your web application.

	Part 5. Although the first several chapters show you how to
 get PHP and MySQL onto your own Macintosh or Windows-based computer the easy way,
 using the WampServer software package or the Mac’s built-in installation, the two
 appendixes in this section show you how to install the software manually for full
 control of all the details.

At the Missing Manual website (www.missingmanuals.com/cds/phpmysqlmm2e), you can find every single code
 example, from every chapter, in the state it is shown for that chapter.

About the Online Resources

As the owner of a Missing Manual, you’ve got more than just a book to read. Online, you
 can find example files so that you can get some hands-on experience, as well as tips,
 articles, and maybe even a video or two. You can also communicate with the Missing Manual
 team and tell us what you love (or hate) about the book. Head over to www.missingmanuals.com, or go directly to one
 of the following sections.
Missing CD

This book doesn’t have a CD pasted inside the back cover, but you’re not missing out
 on anything. Go to www.missingmanuals.com/cds/phpmysqlmm2e to download code samples, code samples,
 and also, some code samples. Yup, there are a lot of them. Every chapter has a section of
 code for that chapter. And, you don’t just get completed versions of the book’s scripts:
 You get a version that matches up with each chapter, so you’ll never get too confused
 about exactly how your version of a script or web page should look.
And so you don’t wear down your fingers typing long web addresses, the Missing CD page
 also offers a list of links that you can click to bring you to the websites mentioned in
 this book.

Registration

If you register this book at Oreilly.com (http://oreilly.com), you’ll
 be eligible for special offers—like discounts on future editions of PHP &
 MySQL: The Missing Manual. Registering takes only a few clicks. To get
 started, type www.oreilly.com/register into your browser to hop directly to the Registration
 page.

Feedback

Got questions? Need more information? Fancy yourself a book reviewer? On the Feedback
 page, you can get expert answers to questions that come to you while reading, share your
 thoughts on this Missing Manual, and find groups for folks who share your interest in PHP,
 MySQL, and web applications in general. To have your say, go to www.missingmanuals.com/feedback.

Errata

In an effort to keep this book as up-to-date and accurate as possible, each time we
 print more copies, we’ll make any confirmed corrections you’ve suggested. We also note
 such changes on the book’s website, so you can mark important corrections into your own
 copy of the book, if you like. Go to http://tinyurl.com/phpmysql2e-mm to
 report an error and view existing corrections.

Safari® Books Online

Safari® Books Online is an on-demand digital library that lets you easily search over
 24,000 technology and creative reference books and videos to find the answers you need
 quickly.
With a subscription, you can read any page and watch any video from the library online.
 You can read books on your cell phone and mobile devices; access new titles before they are
 available for print; and get exclusive access to manuscripts in development and post
 feedback for the authors. You can copy and paste code samples, organize your favorites,
 download chapters, bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and others
 on similar topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

Part 1. PHP and MySQL Basics

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 1. PHP: What, Why, and Where?

PHP is ultimately just text that is taken by your web server and turned into a set of
 commands and information for your web browser. And because you’re just working in text,
 there’s not a lot you have to do to get going as a PHP programmer. You need to become
 familiar with PHP itself, and the best way to do that is to install PHP on your own computer
 as well as becoming familiar with how PHP runs on a remote web server.
Then, you need to run an actual script. Don’t worry; it’s amazingly easy to write your
 first program in PHP. Not only that, you’ll run your script, upload it to your web server,
 and access your script with a web browser…and that’s all in the first two chapters!
Throughout the process, you’ll begin taking control. With PHP, you become an active
 participant in your web pages. PHP lets you listen carefully to your users and say something
 back. So get going; there’s no reason to leave your users with passive HTML pages any
 longer.
PHP Comes in Two Flavors: Local and Remote

One of the most difficult things to get a handle on when it comes to PHP programming
 doesn’t have much to do with programming at all. It’s figuring out just how PHP runs, how
 it interacts with your web browser and web server, and why it’s not possible to just
 double-click a PHP file on your hard drive and see the script in that file run.
HTML and CSS Run Within a Web Browser

First, it’s worth thinking back to when you were a wee programmer, writing your
 first HTML page. You could save that page in a file, name that file with a
 .html extension, and boom—you had a web page. Double-click that
 file, and on most computers, you see that page open up in a web browser. That’s because
 just as a .doc file is connected to the Microsoft Word program, a
 .html file is connected to a web browser (specifically, the
 browser you’ve chosen as the default on your computer). Figure 1-1 should give you an
 idea.
[image: Web browsers know all they need to know in order to load and display an HTML page. No extra software or configuration is necessary.]

Figure 1-1. Web browsers know all they need to know in order to load and display an HTML
 page. No extra software or configuration is necessary.

If you keep thinking back, you probably added some styling to your HTML pages. Using
 the style attribute and <style></style> tags in your HTML document, you could change
 fonts, add striping to your table rows, and generally spice up otherwise boring
 text.
Then, at some point, some well-meaning web designer slapped your hand and insisted
 that you start writing all your CSS in external style sheets, and referencing those files in the head of
 your HTML, like this:
<link rel="stylesheet" href="styles/mysite.css" type="text/css" />
You might even have a few style sheets for the benefit of people viewing your
 website on mobile devices or printing out a page:
<link rel="stylesheet" href="styles/mysite.css" type="text/css" media="all" />
<link rel="stylesheet" href="styles/print.css" type="text/css" media="print"
/>
But you can still double-click that HTML file, and your browser knows what to do
 (see Figure 1-2). That’s because, once
 again, the web browser is completely capable of not just rendering HTML, but applying
 all those CSS styles to the page, too. Again, no extra software needed.
At this point, even though you’re using only two technologies—HTML and CSS—you need
 only a single program to handle those technologies: the web browser.
[image: As was the case with HTML, web browsers don’t need any extra help or plug-ins to turn your textual CSS descriptions into styles and apply those styles to your HTML elements.]

Figure 1-2. As was the case with HTML, web browsers don’t need any extra help or plug-ins to
 turn your textual CSS descriptions into styles and apply those styles to your HTML
 elements.

JavaScript Adds Complexity, but Not Software

Next up in the pantheon of web technologies that every designer and fledgling
 programmer needs to learn: JavaScript. Suddenly, you weren’t limited to elements that
 never moved and text that never changed. Whether it was simple phone number validation,
 more advanced jQuery functions that turned boring gray boxes into animated buttons and
 <div> elements into tabs, or even the new
 HTML5 canvas object, within which you could build entire JavaScript-based 3D games, your
 pages suddenly had new life with JavaScript.
But just as with HTML and CSS, JavaScript is at heart a web technology, and even
 more specifically, a browser-based technology. In other words,
 support for JavaScript is part and parcel of your web browser. In fact, if a new version
 of JavaScript were to appear—something that rarely happens these days—you’d need to
 download a new version of your browser to get that version of
 JavaScript. Just as you can’t upgrade your HTML installation outside of your browser,
 you can’t upgrade your JavaScript installation outside of your browser.
UNDER THE HOOD: You Probably Have Multiple Versions of JavaScript Already!
Think about it: if JavaScript is built in to your browser, and you have more than
 one browser, you actually have multiple installations of JavaScript on your computer. Suppose that you have Internet Explorer
 and Firefox; you’ve got the JavaScript installation that came with Internet Explorer
 and the one that came with Firefox. Add Chrome or Opera to the
 mix, and you’ve got a few more installations. And, if you have multiple versions of a
 single browser—like Firefox 3.6.3 for testing with older Linux-based systems and the
 most current version (14something-or-other as of late), they each have a different
 JavaScript installation.
Even though JavaScript doesn’t get updated very often, those multiple
 installations usually translate into multiple versions of JavaScript, because JavaScript isn’t a product that is
 distributed by a central organization to browser developers. Rather, it’s a
 specification: a document that defines how things should work
 to be considered as JavaScript. That means that each browser has to write code that
 matches that specification so that they can say, “Yes, you can run JavaScript in our
 browser!”
Furthermore, each browser does things a bit differently, and that’s why a website
 feature that works perfectly in Firefox might not quite work perfectly in Internet
 Explorer, and vice versa. So, even if you have two browsers that implement the same
 version of the JavaScript specification, the code in that implementation isn’t
 identical; there are usually differences.
What does all this mean to you? Test your code—JavaScript, PHP, or otherwise—in as
 many browsers as you can. Things aren’t always the same in every browser, and it’s up
 to you—not your users—to handle inconsistencies.

Figure 1-3 shows you how JavaScript
 fits in (hint: just as HTML and CSS do).
[image: The web browser can handle your JavaScript, too. That browser is doing a lot behind the scenes.]

Figure 1-3. The web browser can handle your JavaScript, too. That browser is doing a lot
 behind the scenes.

Note
The code that handles your HTML and CSS isn’t quite as disconnected as it might
 appear from Figure 1-2 and Figure 1-3. In other words, there are no
 individual components in your web browser that render HTML or CSS. But you get the
 idea; your browser can handle all these different tasks and technologies and turn them
 into a web page.

PHP Is Not Part of Your Browser

And here’s where things change from the easy, browser-centric view of the world.
 When you download a web browser, you get HTML, CSS, and JavaScript, but you do
 not get PHP. PHP scripts—which you’ll soon be writing—have to be
 interpreted by the PHP interpreter program, called php. And, you
 can’t just add a PHP interpreter to your browser. It doesn’t know what to do with
 scripts and isn’t built to interpret PHP.
Instead, you need PHP on a web server. It’s the web server—not the web
 browser—that can interact with a PHP interpreter. Your browser
 can handle HTML on its own, but it has to make a request to a web server to deal
 with PHP scripts. That server can take your PHP scripts and run them, and
 then take the response and send it back to your browser. Your browser can then
 understand and handle the response.
So, Figure 1-4 adds a couple of new
 wrinkles: the PHP interpreter, the magical thing that takes the PHP scripts you’ll be
 writing and does something useful with them; and a web server to communicate with that
 interpreter. These both live outside of your web browser. In this scenario, the browser
 now makes a request to the server and then takes the response and shows it to
 you.
[image: Web browsers handle HTML, CSS, and JavaScript using the browser’s own code. But PHP scripts have to be handed off to another program, and that program deals with the scripts, returning something useful (hopefully!) to a web server, which then can pass a response back to the web browser. (As was the case with earlier diagrams, this is a bit of an over-simplification. The PHP interpreter interacts closely with your web server, and so doesn’t stand quite so far outside the server as it might appear.)]

Figure 1-4. Web browsers handle HTML, CSS, and JavaScript using the browser’s own code. But
 PHP scripts have to be handed off to another program, and that program deals with the
 scripts, returning something useful (hopefully!) to a web server, which then can pass
 a response back to the web browser. (As was the case with earlier diagrams, this is a
 bit of an over-simplification. The PHP interpreter interacts closely with your web
 server, and so doesn’t stand quite so far outside the server as it might
 appear.)

Here’s the basic process:
	A web browser makes a request for some page. That
 page might be a URL on a remote web server, or a local file on your computer.
Warning
Right away, there’s potential for trouble here. If the browser requests a
 local HTML, CSS, or JavaScript file, there’s no problem. That’s because, as you
 now know, browsers can handle those file types. But if it requests a PHP file without going through a web server you’re not going to get a
 response that the browser can handle on its own.

	Assuming that the request goes to a web server, the web
 server returns HTML (and CSS and JavaScript) or, in the case of PHP, passes the
 PHP request on to the PHP interpreter.

	The PHP interpreter does what it’s supposed to: it
 interprets, or runs, the PHP. The result of that should be something that
 a browser can understand, like HTML. It passes this result, or
 response, back to the web server.

	The web server gives the browser back something that the
 browser can understand: the HTML result of interpreting a PHP script, or CSS, or
 JavaScript, or a combination of all of the above.

Understanding this difference in how PHP works, as opposed to HTML, CSS, and
 JavaScript, is important because it determines the approach you’ll take to writing PHP scripts and getting those scripts to run.

Write Anywhere, Run Where There’s PHP

The cool thing about HTML, CSS, and JavaScript is that because they’re built in to
 browsers and you can download browsers so easily, those technologies become instantly
 available. It’s tough to even find a computer without a browser
 preinstalled. So, you turn on your computer for the first time, and boom, you can start
 creating web pages immediately. Double-click the HTML file, your browser fires up, and
 you’re good to go.
But PHP isn’t part of that browser. It’s
 not always preinstalled. If you write a PHP script and then
 double-click it, you’ll probably see a code editor launch, but not something that will
 actually run that script. Even worse, if your browser does open up your PHP script, it’s
 not a web server. It doesn’t have a PHP interpreter. It will just show you your code,
 rather than run it, and what good is that to anyone?
This long prelude is just a big warning: although it’s easy enough to start writing
 PHP scripts, you can’t just open them in Dreamweaver or Firefox and expect them to run.
 You’ll end up frustrated and annoyed, and that’s no good for anyone.
The bottom line is this: You can write PHP on your own local computer, but you’ve
 got two choices for actually running that PHP:
	You can go through the lengthy process detailed in the
 next section and install PHP on your local computer. This process will
 take some time, and you’ll have to monkey around a bit with your computer at a
 system and network level. You’ll also need a local web server to handle the PHP
 interpreting part of the gig. This way, you’ll not only have a browser that can
 handle HTML, CSS, and JavaScript, but a complete setup that can take on PHP without
 a problem, too—right on your own computer.

	You can write your scripts locally and always upload them
 to an Internet Service Provider (ISP) or web hosting company. Every ISP
 and web hosting company supports PHP, and you usually don’t have to do anything more
 than name your scripts with a .php extension. This option
 involves less initial setup, but it means that every time you edit your script, you
 need to upload it again to your ISP. It also means that double-clicking your PHP
 script won’t do anything more than, at best, open your editor. You can’t test your
 scripts on your own computer.

Both choices are equally good, and which one you choose depends largely on your
 circumstances. Even though it might seem perfectly natural to jump right into uploading your scripts, you aren’t always going to have a network
 connection. (The sound you just heard was the cheering of all the programmers who have
 an hour-long commute into work on their local metro or subway!) For those unwired
 situations, it’s nice to be able to keep developing on your own computer without the
 need to access your hosting provider. Note only that, installing PHP on your own computer is great for understanding what the PHP
 interpreter actually does.
So, before you start writing scripts that you can’t even run, it’s time to get PHP
 working on your own computer (if you want to), and then talk about getting scripts
 running out there in the wild, as well.
Note
In the long run, you probably want to have both a way to use of PHP and MySQL
 without an Internet connection and a hosting provider or ISP set up. That way, you can
 work on your own computer whenever you want, and then upload your scripts when they’re
 ready to see the light of day.

PHP: Going Local

It’s not difficult to install PHP on your own computer. This is typically called a
 local installation, which just means that all your programs are
 running on your own local machine. (For more detail on how the whole thing works, see the
 box on Local Software Runs on localhost.)
Although PHP isn’t preloaded on every computer like web browsers are, it’s still easy
 to download PHP from the Internet, get it working on your computer, and get up and running
 fast…all without spending a dime. On top of that, most of the easiest and best tools for
 writing PHP code are also free. You just have to know where to find them.
POWER USERS’ CLINIC: Local Software Runs on localhost
The term local has a lot of meanings in computer programming,
 especially when you start interacting with networks. Every computer is capable of
 sending information to itself, through a loopback network
 interface. This interface usually has the IP address 127.0.0.1 and a hostname of
 localhost.
This scenario becomes pretty handy when you want to run a web server on your own
 computer, and that’s what you’ll be doing later when you get a local installation of PHP up and going. When you want to access that web server,
 you need to type something into your browser, and that’s where
 localhost comes in. You can enter either the IP address http://127.0.0.1, or http://localhost, and your computer will
 send your request to itself…and any software you’ve got installed and running that’s
 capable of receiving that request.

Note
The next section explains how to install PHP on computers running Microsoft Windows. If you have a Macintosh, flip to
 PHP on the Mac (Default Installation).

PHP on the Windows-Based Computers (WampServer Installation)

Open your favorite web browser and head to www.wampserver.com. This is the online home of WAMP, which stands for
 Windows, Apache, MySQL, PHP. The site is shown in Figure 1-5.
Note
Although the website is called WampServer—and describes the grouping of software
 “Apache, PHP, MySQL on Windows”—the WAMP acronym lives on.

Select the relevant Download link for your version of Windows. If you’re not sure,
 you can go to your Control Panel, select System, and then poke around. You’ll see either
 “32-bit Operating System” or “64-bit Operating System,” and that tells you what you want. Just select
 the first link on the top-left of the page that matches your system.
When downloading starts, you see a warning—actually, a couple of them—about needing some C++ extensions. Click the link for your system (see Figure 1-6), download the extensions (see
 Figure 1-7), and then run the downloaded
 file. You’ll need to allow the downloaded program to update your system, accept a
 license agreement, and install the extensions. When that’s complete, a screen appears
 like the one in Figure 1-8.
[image: Wampserver.com brings together everything you need for getting PHP and MySQL going and behaving on your Windows PC.]

Figure 1-5. Wampserver.com brings together everything you need for getting PHP and MySQL
 going and behaving on your Windows PC.

[image: WampServer requires some extra work on your part before it can install, most notably, you need to download some C++ extensions to get everything in the PHP interpreter behaving.]

Figure 1-6. WampServer requires some extra work on your part before it can install, most
 notably, you need to download some C++ extensions to get everything in the PHP
 interpreter behaving.

[image: Microsoft hosts the C++ libraries that WampServer depends on to install.]

Figure 1-7. Microsoft hosts the C++ libraries that WampServer depends on to install.

[image: Finally! The C++ extensions are installed. Now you can get back to actually installing WampServer.]

Figure 1-8. Finally! The C++ extensions are installed. Now you can get back to actually
 installing WampServer.

Once you’ve installed the C++ extensions, go back to Wampserver.com, select Downloads again, and then
 click the download link. This time, you can ignore the warning. Click the words “you can
 download it directly.”
The ad-heavy site you’re taken to will trigger a download in a few seconds. Then,
 save and run that file; you’re finally installing WampServer. Figure 1-9 is what you’re aiming for.
[image: All that work for the little pink “W” logo. It’s worth it, though. Installing PHP manually (as detailed in the appendixes) makes this look like a walk in the park.]

Figure 1-9. All that work for the little pink “W” logo. It’s worth it, though. Installing PHP
 manually (as detailed in the appendixes) makes this look like a walk in the
 park.

Accept the license and default installation directory (typically C:\wamp). You might
 want to create a quick link icon, or at least a desktop shortcut, and then let
 installation take off. Select your default browser. You’ll then be asked about allowing
 Apache to access public networks (Figure 1-10). The best option here is usually
 the default supplied by the WampServer installer.
[image: Unless your computer is directly connected to the Internet and has its own dedicated, publicly available IP address, the default options are just fine here.]

Figure 1-10. Unless your computer is directly connected to the Internet and has its own
 dedicated, publicly available IP address, the default options are just fine
 here.

You then have a few other options for PHP mail, and then you’re finished. Launch WampServer, and you should see…nothing! Well, almost nothing. On the right
 side of the taskbar, notice there is now a little green “W” (check out Figure 1-11).
[image: Now you’ve got WampServer running happily in the background. For your troubles, though, it appears you’ve only got this little green “W” icon.]

Figure 1-11. Now you’ve got WampServer running happily in the background. For your troubles,
 though, it appears you’ve only got this little green “W” icon.

Click the green W icon to see all of the things you’ve been reading about, like PHP,
 MySQL, and Localhost, as shown in Figure 1-12.
[image: You can do a lot from the WampServer icon: start and stop the new programs you’ve installed, use the handy-dandy phpMyAdmin tool (which you’ll see more of in Chapter 7), and more. You’ll use almost everything here before you’re done.]

Figure 1-12. You can do a lot from the WampServer icon: start and stop the new programs you’ve
 installed, use the handy-dandy phpMyAdmin tool (which you’ll see more of in Chapter
 7), and more. You’ll use almost everything here before you’re done.

You’re almost done. Select the top option, Localhost. (If you don’t remember what
 localhost means, see the box on Local Software Runs on localhost.) A
 new web browser window or tab opens with an address that references your own locally
 installed web server. This Server Configuration page presents information about your own web server
 setup (see Figure 1-13). It isn’t
 particularly impressive to look at, but it ’s proof that your Windows computer can now
 serve up web pages.
While on the Server Configuration page, in the Tools section (about halfway down the
 page), click the phpinfo() link. A page opens that looks something
 like Figure 1-14, which is everything
 you’ll ever need to know about your local PHP installation.
More important, it means that your browser made a request to a web server, and that
 web server processed some PHP (the phpinfo function) and handed
 back a response to your browser. Not only can you run PHP on your computer, you just did.
[image: Having a web server running on your local computer isn’t necessary for developing HTML, CSS, or most JavaScript applications. But because a browser can’t interpret PHP, a local web server is essential if you want to write PHP scripts on that computer and run them without uploading them to a server somewhere.]

Figure 1-13. Having a web server running on your local computer isn’t necessary for developing
 HTML, CSS, or most JavaScript applications. But because a browser can’t interpret PHP,
 a local web server is essential if you want to write PHP scripts on that computer and
 run them without uploading them to a server somewhere.

[image: And the big win: PHP is running! Actually, your browser made a request to your local web server, your local web server executed some PHP, and then it responded to your browser with the response from that PHP command.]

Figure 1-14. And the big win: PHP is running! Actually, your browser made a request to your
 local web server, your local web server executed some PHP, and then it responded to
 your browser with the response from that PHP command.

You’ve got PHP! Now it’s time to get scripting.

PHP on the Mac (Default Installation)

If you’ve got a Mac, you’ve got more than just a sleek, shiny machine and way too
 many ways to spend even more money with Apple, you’ve already got PHP installed. To
 prove it, open the Terminal application on your Mac. If you’ve never used Terminal, don’t
 worry; you’ll get used to it quickly and find it’s one of your best friends for working
 with PHP. Go to Applications→Utilities→Terminal.
Note
You can also get to the Applications folder in a flash by pressing Shift-⌘-A. However, this
 keyboard shortcut works only in the Finder. If you’re currently viewing this book in
 an e-reader or online, for example, click your desktop and then
 press Shift-⌘-A. Shift-⌘-A is a little-known shortcut, but if you’re the programming
 type, you’re probably all about keyboard shortcuts.

Once you’ve found the Applications folder, open it and find the Terminal
 application. It looks like a computer monitor with a black screen and a little white
 arrow, as shown in Figure 1-15.
[image: The Terminal program lets you use a command line on Macintosh computers. A lot of your PHP coding will be done by using Terminal, so you’ll get used to this application quickly.Open it, and you see a barebones screen like the one in Figure 1-16.]

Figure 1-15. The Terminal program lets you use a command line on Macintosh computers. A lot of
 your PHP coding will be done by using Terminal, so you’ll get used to this application
 quickly. Open it, and you see a barebones screen like the one in Figure
 1-16.

Tip
You’ll often use Terminal for testing your PHP programs before you upload them to
 your server. To make it easier to launch Terminal, drag the icon onto your
 dock.

[image: When you first open Terminal, you won’t be too impressed. You’ll get a line that probably matches your computer’s name and then a weird dollar sign. Don’t worry…this will all soon be old hat.]

Figure 1-16. When you first open Terminal, you won’t be too impressed. You’ll get a line that
 probably matches your computer’s name and then a weird dollar sign. Don’t worry…this
 will all soon be old hat.

To ensure that PHP is installed on your system, type php (all in lowercase letters) and press Enter. Unfortunately, the way to
 know things are working is if you don’t see anything but that blank
 cursor, a little further down in Terminal. It won’t even blink at you anymore; it’s just
 a boring, dark gray square.
Press Control-C to stop that single eye from hanging around and to display the
 blinking cursor again. This time, type which
 php. The which
 command lets you know where on your computer the program you type is located. In this
 case, you’re asking where the php program is located.
 You’ll probably get something back that looks like Figure 1-17; for the computer in this
 example, php is in the /usr/bin
 directory. You’ll probably get a similar result.
[image: Lots of the programs you’ll use in Terminal are scattered around your Mac’s hard drive. The which command lets you know exactly where a program resides on your machine.]

Figure 1-17. Lots of the programs you’ll use in Terminal are scattered around your Mac’s hard
 drive. The which command lets you know exactly where a program resides on your
 machine.

Once you’ve seen where php is, you’re ready to
 go. It was installed all along.
POWER USERS’ CLINIC: Take Control of Your PHP Installation
Like most of the programs on your computer, the PHP software package (which
 includes the php program you’ve been running) is
 updated fairly often. Most of the time, if you’re keeping your computer updated with
 Apple’s Software Update, this isn’t something to worry about. But if you want to see what version of PHP you’re running, you can type php
 –version into your Terminal window. You’ll get back something like
 this:
Bretts-MacBook-Pro:~ bdm0509$ php -version
PHP 5.3.4 (cli) (built: Dec 15 2010
12:15:07)
Copyright (c) 1997-2010 The PHP Group
Zend Engine v2.3.0, Copyright (c) 1998-
2010 Zend Technologies
Look at the very first line that PHP displays: this tells you that you’re running
 version 5.3.4.
If you want to get the very latest version of PHP, you can visit www.php.net and download the PHP source code.
 That’s a little trickier than just using the preinstalled version on your Mac, though,
 so unless you’re into commands like unzip and
 tar, you can stick with what’s already on your
 computer.
By the way, this is a great time to remind you that if you’re
 not using your Mac’s Software Update frequently, you might want
 to do that now. It keeps your software current without all the hassle of downloading
 programs on your own.

PHP on the Mac (MAMP Installation)

Although it’s nice that Macs come with PHP already installed, there might just be a better option—one worth doing a bit of
 downloading and installing for yourself. That better option is MAMP, which stands for Mac,
 Apache, MySQL, PHP. This is the Mac counterpart to WAMP, the easy Windows PHP
 installation (PHP on the Windows-Based Computers (WampServer Installation)) that you, as a
 Mac user, probably skipped.
MAMP doesn’t improve on the PHP installation that came on your Macs; it does
 integrate MySQL—which you’ll need before you know it—as well as the Apache web server
 and several helpful tools for working with PHP scripts and MySQL databases. You even get
 a simple control panel for starting up your local web server and MySQL database. Those
 additions are a nice perk, and coupled with how easy it is to install MAMP, you might
 just want to ditch the default PHP installation and get MAMP going.
First, using your favorite web browser, visit www.mamp.info. A site like the one shown in Figure 1-18.
[image: The MAMP site is a PHP developer’s best friend. The free MAMP download gives you almost everything you could want for developing great PHP scripts and the databases with which they work.]

Figure 1-18. The MAMP site is a PHP developer’s best friend. The free MAMP download gives you
 almost everything you could want for developing great PHP scripts and the databases
 with which they work.

Simply click the “Download now” button under MAMP and then grab a coffee and wait
 for the installer to download.
Now, launch the installer. Click Next a few times to select your hard drive and
 agree to the license. Keep going until the installer informs you that MAMP is ready to
 install, as shown in Figure 1-19.
Note
Some versions of MAMP don’t have a correctly signed security certificate. This results in a
 nasty message popping up when you try to launch the installer: “MAMP_2.1.1.pkg can’t
 be opened because it is from an unidentified developer.”
Fortunately, you can safely ignore this for MAMP. Just Control-click the
 installer, and then in the popup menu that appears, you can click “Open.” This will in
 turn give you a dialog box, and you can click “Open” yet again. Finally, you’ll have
 your program ready to run. Fortunately, you should only have to do this once.

[image: MAMP is simple to install but it eats up about half a gigabyte of disk space. That’s ok; you’re getting a full-blown web server, PHP interpreter, MySQL database, and a suite of tools.]

Figure 1-19. MAMP is simple to install but it eats up about half a gigabyte of disk space.
 That’s ok; you’re getting a full-blown web server, PHP interpreter, MySQL database,
 and a suite of tools.

Once the installation is complete, go to Applications → MAMP. You’ll see a nifty control panel, a la Figure 1-20.
[image: This control panel is MAMP’s home base. You can start and stop software components and make all your configuration changes here. While you’re getting your PHP feet wet, you may want to move the MAMP icon into your dock; you’ll be using it a ton.]

Figure 1-20. This control panel is MAMP’s home base. You can start and stop software
 components and make all your configuration changes here. While you’re getting your PHP
 feet wet, you may want to move the MAMP icon into your dock; you’ll be using it a
 ton.

Your installation might try to automatically start both an Apache server and the
 database. Still, you can configure these easily by clicking the Preferences button. You
 should probably check the Ports tab and ensure that there aren’t any issues with any
 other software on your computer. You can do this all within MAMP, as shown in Figure 1-21.
[image: MAMP lets you change both the port that Apache (the web server) runs on, as well as the port that MySQL runs on. Be especially careful with the MySQL port. Most programs that use MySQL will need to be updated to the value you use here.]

Figure 1-21. MAMP lets you change both the port that Apache (the web server) runs on, as well
 as the port that MySQL runs on. Be especially careful with the MySQL port. Most
 programs that use MySQL will need to be updated to the value you use here.

Note
If all this talk of ports is starting to give you a headache, that’s okay. It probably just means that your machine is set up without
 any software running on weird ports, and that makes things easy here: just accept the
 defaults. These are pretty standard ports, and will almost always work perfectly with
 a system.

You can also click the PHP Preferences option and see a few things that, honestly, probably don’t
 matter much to you (see Figure 1-22).
 Just leave these alone. In fact, there’s almost never a reason to mess with these
 selections. Mostly, it’s good to know that yes, MAMP did indeed install PHP (along with
 a web server and MySQL) with just a few mouse clicks.
[image: There are some reasons you might one day want to jump back from PHP 5.3 to 5.2, but that’s far down the line. For now, just accept these options as they are and get ready to start scripting.]

Figure 1-22. There are some reasons you might one day want to jump back from PHP 5.3 to 5.2,
 but that’s far down the line. For now, just accept these options as they are and get
 ready to start scripting.

There’s not much else to do now, so you can close Preferences and click the “Open
 start page” option to get a nice browser page like the one shown in Figure 1-23. Here’s where you’ll spend lots
 of your troubleshooting time as well as digging into databases once you’ve mastered the
 command line tools for MySQL that you’ll learn about in Chapter 4.
[image: Here’s where you’ll do most of the work once you have your MAMP software running. Think of the MAMP control panel as the place you’ll control the programs, and this start page as where you’ll interact with those programs.]

Figure 1-23. Here’s where you’ll do most of the work once you have your MAMP software running.
 Think of the MAMP control panel as the place you’ll control the programs, and this
 start page as where you’ll interact with those programs.

Before moving on, you can verify that this is all doing what it should. At the top
 of the MAMP start page, click the “phpInfo” tab. A screen appears, similar to that in
 Figure 1-24. What ’s significant here
 isn’t all the information listed; you needn’t concern yourself with that just yet. What
 is cool, though, is that you’re looking at a PHP script that’s been interpreted by a PHP interpreter (installed as part
 of MAMP). The interpreter then fed the output of that script to your new MAMP-installed
 web server, which in turn handed that response to your web browser. Proof that you’re
 already running PHP.
[image: This page is actually the output of the phpinfo function in PHP. Here’s the proof that you’ve got what you need to run PHP scripts on your local machine. In fact, you just ran one.]

Figure 1-24. This page is actually the output of the phpinfo function in PHP. Here’s the proof
 that you’ve got what you need to run PHP scripts on your local machine. In fact, you
 just ran one.

Get Out Your Text Editor

All the programs you’re going to write in PHP are plain, old text files. Writing PHP isn’t a lot different than writing HTML or CSS or JavaScript.
 You’ll type different things, of course, but these are all just text files saved with a
 special extension. You use .html for HTML,
 .css for CSS, .js for JavaScript, and now
 you’ll use .php for PHP files.
Because PHP is just text, you’ll want a good text editor in which to work. If you’re
 in Windows, you can use Notepad. As simple as that program is, it’s perfect for coding
 in PHP. If you’re on a Mac, TextEdit is a great choice. The good news is that each of
 these programs comes preinstalled on your computer, so you don’t have to download or buy
 anything. The bad news is that none of these programs know you’re
 writing PHP, so you don’t get much help if you type something wrong or want
 to organize your files without resorting to Windows Explorer or the Finder. These
 programs are simple, but limited.
On the other hand, there are quite a few editors out there that are built
 specifically to handle PHP. For instance, for Windows, you can download NuSphere PhpED
 (nusphere.com/products/phped.htm), which is shown in Figure 1-25. You’ll pay a bit for a program
 like NuSphere—usually between $50 and $100—but you’ll get fancy color coding, help with
 special language features, and in a lot of cases, some nifty file organization features
 and the ability to upload your PHP directly to your web server.
[image: NuSphere PhpED gives you a ton of features and supports JavaScript, CSS, and HTML, as well as PHP. It also has great documentation for most of the PHP functions and libraries.]

Figure 1-25. NuSphere PhpED gives you a ton of features and supports JavaScript, CSS, and
 HTML, as well as PHP. It also has great documentation for most of the PHP functions
 and libraries.

If you’re on a Mac, the two leading candidates for editors that do text plus lots of other cool things are BBEdit (www.barebones.com/products/bbedit/index.html) and TextMate (www.macromates.com). Both are Mac-only
 programs, and both offer similar features on the Mac as does PhpED for Windows:
 color-coding, file management, help documentation, and support for HTML, CSS,
 JavaScript, and a lot more. You can see BBEdit in action in Figure 1-26; you’ll need to drop $100 to get
 your own copy, though.
[image: BBEdit is supposed to be bare bones, but you’ll find it has more than adequate PHP support. It’s tuned primarily for HTML, so there are a few oddities, but it’s a great choice for PHP work on the Mac.]

Figure 1-26. BBEdit is supposed to be bare bones, but you’ll find it has more than adequate
 PHP support. It’s tuned primarily for HTML, so there are a few oddities, but it’s a
 great choice for PHP work on the Mac.

You can see what TextMate looks like in Figure 1-27. It ’s a little simpler than
 BBEdit, so if you’ve never used a programming editor, this might be easier to begin with. TextMate costs around $60,
 slightly less than BBEdit.
[image: TextMate is an editor that seeks to provide color-coded editing and not much else. It does offer file management and FTP support, but it’s best at letting you type code and staying out of the way.]

Figure 1-27. TextMate is an editor that seeks to provide color-coded editing and not much
 else. It does offer file management and FTP support, but it’s best at letting you type
 code and staying out of the way.

UNDER THE HOOD: Text Editors: Mashing Up Programs
Although programs like PhpED, BBEdit, and TextMate are billed as text editors,
 they’re actually lots of programs rolled into one. Imagine having a text editor, a
 file management tool like Windows Explorer or Finder, a telnet or terminal program, an
 FTP client, and some glue to hold them all together. That’s more or less what these
 programs give you: a bunch of things all rolled into one single software
 package.
What’s great about these “text editors plus” is that they offer you all sorts of
 features, and you don’t need five or six icons in your Mac’s Dock or shortcuts on your
 Windows desktop. You have access to almost everything you’ll typically need to build
 web pages or program in PHP, right at your fingertips.
What’s not so great, though, is that generalized tools aren’t often as fully
 featured as specific tools. In other words, a program that tries to do everything
 usually does lots of things decently, as opposed to lots of programs that only do one
 thing, but do that one thing really well.
Much of the time, you’re making a choice between convenience and features. If you
 only use FTP to upload files to a server on occasion, you almost never work with your
 computer’s command line, and you get a kick out of colored editors, the bundled text
 editors with lots of extra features might be a good fit.
Whether you use a more full-featured text editor or not, though, at some point you
 might need to ditch the editor and use an actual FTP or telnet program. As long as
 you’re comfortable diving into those programs without the use of
 an editor from time to time, by all means, go forth in code in TextMate or PhpED
 without worry.

Once you’re comfortable writing PHP code, you can spend some time playing with all these different
 enhanced editors. You can see what you like, discover whether an editor is perfect for
 you, or realize you’re a Notepad or TextEdit programmer at heart. There’s no one right
 option for PHP; all of these choices work just fine.
If you’re just starting out, though, try to use a simple text editor—Notepad on
 Windows or TextEdit on the Mac. You’ll learn a lot more about PHP this way, even if you
 don’t get all the bells and whistles of one of the full-featured editors. Besides, once
 you understand PHP and have learned to work with it manually, you’ll appreciate and be
 able to use the features of the other editors a lot more effectively.
Note
Once you’ve become familiar with PHP, you can also check out Eclipse PHP (www.eclipse.org).
 The Eclipse IDE has long been a favorite for Java developers, and there are now enough
 plug-ins for PHP that it’s a legitimate option for PHP programmers, too. However,
 there’s a lot going on in Eclipse—tons of tools and gadgets—so you might want to wait
 a bit before you dive head first into it. Come back to it later, though; it’s well worth checking
 out.

Write Your First Program

You’ve got PHP installed locally and you’ve got a text editor. Now all you need is an actual program. Start your text editor and
 type the following code, exactly as shown here:
<?php

 echo "Hello there. So I hear you're learning to be a PHP programmer!\n";
 echo "Why don't you type in your name for me:\n";
 $name = trim(fgets(STDIN));

 echo "\nThanks, " . $name . ", it's really nice to meet you.\n\n";

?>
Note
You can find a copy of this script on this book’s Missing CD page at www.missingmanuals.com/cds/phpmysqlmm2e.

A lot of this probably looks weird, and that’s OK. You’ll soon understand every bit of
 this code. Right now, just get used to looking at PHP, which is quite different from HTML
 or JavaScript.
Warning
Some of the editors you might use, like TextEdit, will try to save the document as
 rich text. Rich text lets you use formatting, like bolding and
 underlining. You don’t want that in your PHP code, so look for the option to use
 plain text, which doesn’t provide formatting.
If you’re using TextEdit, choose Format→Make
 Plain Text. (You won’t see that option if you’re already working in plain text.) If
 you’re using Notepad, rich text isn’t an option, so you’ve got nothing to worry
 about.

Once you’re done, your editor should look similar to Figure 1-28.
[image: PHP is just text, but it uses several weird characters. Start getting used to typing the dollar sign ($), angle brackets (< and >, just like in HTML), and the backslash (\). You’ll be using those characters a lot.]

Figure 1-28. PHP is just text, but it uses several weird characters. Start getting used to
 typing the dollar sign ($), angle brackets (< and >, just like in HTML), and the
 backslash (\). You’ll be using those characters a lot.

Note
You won’t see the nice color-highlighted syntax until you save your file with a .php
 extension.

This program does just a few simple things:
	Identifies itself as PHP by using <?php.

	Prints out a welcome message by using the echo
 command.

	Asks the user for her name, again by using echo.

	Gets the user’s name and stores it in something called $name.

	Says hello to the user by printing out a message that includes the information
 stored in $name.

	Finishes up with the ?> characters.

It’s okay if not much on this list makes sense yet, especially the weird line
 beginning with $name
 =. There are also some strange characters like \n and STDIN that you’ll
 learn about soon. But see if you can follow the plain-English words through the basic
 path: the opening <?php, the printing, the request
 for the user’s name, another bit of printing, and the closing ?>.
Now, save this program. Name it sayHello.php, and ensure that you
 add that .php extension! Otherwise, you’ll have a lot of problems
 down the line. Save the file some place handy, like on your desktop, your home directory,
 or a folder you’re using to keep all your PHP programs in as you’re learning.
Warning
Most programs in Windows and on the Mac append a default extension, like
 .txt. Make sure you replace this with .php.
 Windows especially tends to hide extensions, so verify that your full filename is
 sayHello. php, not something like
 sayHello.php.txt.

That’s it; you’ve written your first PHP program!
POWER USERS’ CLINIC: Default to Plain Text
Most of the popular text editors let you change from rich text to plain text on a
 per-file basis, but they automatically start out in rich text mode. That can become a
 pain, so you might want to change the setup of your editor to always start out in
 plain-text mode.
For TextEdit on the Mac, open the Preferences menu. At the very top, under Format,
 select “Plain text” (as shown in Figure 1-29).
In Windows, if you use Notepad, you avoid this entire issue, so you’ve got nothing
 to worry about.

[image: You can get to the TextEdit preferences via the Preferences menu, or by using the shortcut combination ⌘-period. In the Preferences box, you’ve got lots of options, but the text format and font used for plain text are the most important for now.]

Figure 1-29. You can get to the TextEdit preferences via the Preferences menu, or by using the
 shortcut combination ⌘-period. In the Preferences box, you’ve got lots of options, but
 the text format and font used for plain text are the most important for now.

Run Your First Program

What good is it to get all this code typed in if you can’t see if it works? This
 particular program isn’t ready to run on the Web yet; first you need to add something to it in your command-line terminal program,
 so go ahead and fire that up. If you’re on the Mac, you should open up Terminal. In
 Windows 7 or earlier, go to Windows Start →Run and then
 run command or cmd
 from the menu to get a command line. In Windows 8, at the start screen, press Windows key
 + R and then type cmd (as shown in Figure 1-30).
[image: In Windows 7 (left) and earlier, you can get to the command line via the Start menu. Since Windows 8 doesn’t have a Start menu, just go to the Start screen and press Windows key+R. That opens the Run box where you can type cmd.]

Figure 1-30. In Windows 7 (left) and earlier, you can get to the command line via the Start
 menu. Since Windows 8 doesn’t have a Start menu, just go to the Start screen and press
 Windows key+R. That opens the Run box where you can type cmd.

Now, go to the directory in which you saved your program,
 sayHello.php. You can do a directory listing with dir (in Windows) or ls (on
 the Mac) to ensure that you’re in the right directory. Once you’re in the right directory,
 type this into your command line:
php sayHello.php
This instructs the php program to run and gives it
 your program, sayHello.php, as the script to run. In short order, you
 should see the welcome message you typed, and then the program asks you for your name.
 Type your name and press Enter. The program should then greet you, just as shown in Figure 1-31.
[image: Eventually, you’ll run most of your PHP scripts through a web browser. For now, though, the command line lets you take control of the php command and give it a particular script to run so that you can see the output on the command line.]

Figure 1-31. Eventually, you’ll run most of your PHP scripts through a web browser. For now,
 though, the command line lets you take control of the php command and give it a
 particular script to run so that you can see the output on the command line.

That’s it! Your first program works, and you’re ready to go deeper into PHP.

But Where’s That Web Server?

Before you take that well-deserved break, there’s one question left to answer.
 Remember way back to the discussion about a PHP interpreter interacting with a web server?
 All that business about PHP running locally or running remotely? Uploading files, web hosting providers; remember all that
 stuff? If not, Figure 1-32 should be a
 helpful refresher as to how PHP usually functions.
[image: Remember this diagram from earlier? Even though it hasn’t applied to your first PHP program, it still holds true. As soon as you start writing scripts that interact with web pages, you’re going to need a web server.]

Figure 1-32. Remember this diagram from earlier? Even though it hasn’t applied to your first PHP
 program, it still holds true. As soon as you start writing scripts that interact with
 web pages, you’re going to need a web server.

So what gives? You installed PHP locally and ran your script without problem, but a
 web browser wasn’t involved
The PHP Interpreter Is a Program You Can Run

The PHP interpreter that’s shown in Figure 1-32 is just a program, like dir or ls or which or anything else you can type into a command-line or
 terminal window. And just like those other programs, you can run it on your scripts
 manually. In fact, that’s just what you did. You ran the PHP interpreter (php) on your script, because you installed WampServer or, if
 you’re on a Mac, because php is already
 installed.
But, this sort of script—where all it does is output some text—is not the typical
 PHP script. It’s more of a “blow bubbles in the kiddie pool” script: helpful to get
 started, but just the tiniest taste of what’s coming.
So, you don’t need a web browser or a web server. You just needed the PHP
 interpreter. Because of that, there’s no sense uploading your script and trying to find
 the PHP interpreter on your hosting provider, which requires shell access, which in turn
 might require calling up tech support and spending 20 minutes on the phone giving out
 maiden names and birthdates…in other words, it’s just not worth it.

But, the HTML Is Coming…

Keep those credentials handy, though, because in the next chapter, you
 will start uploading your scripts. You’ll move beyond simply
 outputting text and begin to output HTML. You’ll take input from an HTML form and churn
 back out styled, web-friendly responses. And, you’ll move from using just a local PHP
 installation to using a remote one.
Buckle up, take that break, and head on over to Chapter 2.

Chapter 2. PHP Meets HTML

With your first PHP script under your belt, you’ve made some real progress. But that PHP
 script might not have been what you expected. Most web developers don’t fall asleep at night
 dreaming of seeing this in a terminal window:
Hello there. So I hear you're learning to be a PHP programmer!
Why don't you type in your name for me:
Brett

Thanks, Brett, it's really nice to meet you.
Even less impressive than its complexity (or lack thereof) is the script’s format. It’s
 just plain text. There’s no formatting; in other words, no HTML.
In this chapter, you’re going to inject HTML into your scripts. No command-line prompts
 and boring text. By the time you’re through, your script will be speaking the language of
 the Web—HTML. In addition, you’ll see how PHP does one of its core tasks: respond to an HTML
 form.
Script or HTML?

Before you can start doing fancy party tricks with PHP, you’ve got to get over a bit
 of a conceptual hurdle. So far in your web programming journey, you’re probably used to
 thinking about the technologies you’ve learned in strict categories: HTML is markup,
 the structure of your page; CSS applies style to that structure; and JavaScript adds some
 interaction, with everything from alert boxes to validation, redirection, and
 widgets.
In the process, you probably also built some syntax categories. Your HTML is angle
 brackets, <title> and <head> and , and the like.
 CSS is curly braces and style keywords like p.warning
 and {} and border-style:
 dotted. The same is true with JavaScript: you’ve got
 alert and strings in quotes like “Please enter a valid phone number.” And those categories are
 distinct. Your HTML is separate from your CSS, which is separate from your JavaScript,
 even though they all interact with one another.
But with PHP, you’re going to have to abandon some of those categories. PHP
 happily—and sometimes confusingly—mixes these categories. You can write a PHP script that
 does programming tasks and then outputs HTML, CSS, and even JavaScript.
Determination by Extension

PHP scripts are identified by the extension .php. Accordingly,
 web servers that supports PHP see a file with a .php extension and
 hand that file off to the PHP interpreter for processing. The interpreter does its thing
 and hands the result of the interpreted script back to the web server, which in turn
 passes that response along to a user’s web browser. Another look at this process, which
 is shown in Figure 2-1, might
 help.
[image: Unlike HTML, CSS, and JavaScript, which are handled by the browser using the browser’s own code, PHP scripts must be handed off to another program—the PHP interpreter. As discussed on page 19, that program deals with the scripts, returning the results to a web server, which then can pass a response back to your web browser.]

Figure 2-1. Unlike HTML, CSS, and JavaScript, which are handled by the browser using the
 browser’s own code, PHP scripts must be handed off to another program—the PHP
 interpreter. As discussed on page 19, that program deals with the scripts, returning
 the results to a web server, which then can pass a response back to your web
 browser.

But what’s inside that script can be…well, all sorts of things. Remember, it’s the
 output of a PHP script that is ultimately handed off to a browser, so that response can’t be PHP. It must be some combination of
 HTML, CSS, and JavaScript—the things that a web browser knows how to handle.
In other words, a PHP script might be made up of PHP commands, but it also must be
 able to output more than just text, like sayHello.php from Chapter 1 does. It must be able to output HTML, CSS, and
 JavaScript. Fortunately, this isn’t as difficult or tricky as it might sound.

HTML Is Treated as HTML

You might be thinking, “Ok, I get it. I can use that echo command from Chapter 1 to output HTML,
 right?” Or maybe if you’ve used jQuery, you’re already a step beyond that: “Maybe
 there’s some cool PHP toolkit that makes building up an HTML and CSS response easy.”
 Although both of those thoughts are true, as you’ll see in this section, they’re
 actually not the simplest way to have a PHP script generate an HTML response.
For example, here’s some HTML for a simple web form, sort of like the program you
 already built in Chapter 1.
<html>
 <head>
 <link href="css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 2-1</div>

 <div id="content">
 <h1>Welcome!</h1>
 <p>Hello there. So I hear you're learning to be a PHP programmer!</p>
 <p>Why don't you type in your name for me:</p>
 <form action="scripts/sayHelloWeb.php" method="POST">
 <p><i>Enter your name:</i> <input type="text" name="name" s
ize="20" /></p>
 <p><input type="submit" value="Say Hello" /></p>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
Type this code into a text editor (for a refresher on text editors, see Get Out Your Text Editor) and save it as
 sayHelloWeb.html. For advice on where to save your files, see the
 box below.
UP TO SPEED: Directory Assistance
If you open sayHelloWeb.html locally, you should also put the
 CSS and images referenced in the page alongside the file in the correct directory
 structure. So, if your HTML is in phpMM/, you should have
 scripts/, css/, and images/ subdirectories
 inside phpMM/. Your HTML files go directly in phpMM/,
 sayHelloWeb. php goes in scripts/, and your CSS and
 images go in css/ and images/,
 respectively.
If you download the book’s examples, things are organized even a little more
 tightly. You have a core folder like ch01/, and then
 subdirectories for each chapter’s major headings: 01/, 02/, and
 so on. Then, in each of those directories, you see the HTML alongside
 scripts/, css/, and images/. You can use
 that layout, or just drop all the downloaded files as-is into your own location, and
 things should work just fine.
Or, you can put those files somewhere else and update the paths in the HTML and
 CSS to point to that location. Either way, you need to realize that if you just
 double-click this file on your desktop, you might not see the correct images and
 styles.

Note
You can download this HTML, along with the rest of the book’s sample files, from www.missingmanuals.com/cds/phpmysqlmm2e. Along with the HTML, you also get
 the CSS and images used by the samples, which will give your programs a little extra
 visual pizzazz. Still, especially as you’re just getting started, you’ll learn a lot
 more if you’ll type the PHP code for these programs yourself.

Nothing new here other than the form’s target:
 scripts/sayHelloWeb.php. Don’t worry about that for now, though;
 you’ll deal with that shortly.
Open the page locally on your own computer. (Check out the box on Local Software Runs on localhost for more on getting your local web server going.)
If you get things in the right place, you’ll see something like Figure 2-2.
Your web browser sees all the HTML here and knows what to do: show a web
 page.
FREQUENTLY ASKED QUESTION: How do I access my local web server?
Even though you can count on your computer’s web browser to know what to do with
 an HTML file, like sayHelloWeb.html, you’ll want more than that
 before you go much further. If you’ve followed along from Chapter 1, you should have MAMP or WampServer installed.
 That means you’ve got a web server ready to go on your local machine.
In Windows, WampServer serves HTML by default out of C:\
 wamp\www\. You can also click the small, green “W” icon in the taskbar at
 the bottom right of your screen and select “www directory” to go directly to this
 location. Then, you can access your files in a web browser by visiting http://localhost.
In Mac OS X, the default directory for your web files is
 /Applications/MAMP/htdocs. You can drop
 sayHelloWeb.html in that directory and access it through
 http://localhost:8888/sayHelloWeb.html. That also gives you a
 place to drop in the downloaded CSS and images you should have by now.

[image: If there’s anything confusing here, you might want to take a look at HTML5: The Missing Manual by Matthew MacDonald (O’Reilly) to regain your bearings. Hopefully, though, this HTML is straightforward for you, and the biggest challenge is making sure that it’s in your working directory alongside css/, images/, and so on, or that your path in your HTML matches your own directory structure choices.]

Figure 2-2. If there’s anything confusing here, you might want to take a look at HTML5: The
 Missing Manual by Matthew MacDonald (O’Reilly) to regain your bearings. Hopefully,
 though, this HTML is straightforward for you, and the biggest challenge is making sure
 that it’s in your working directory alongside css/, images/, and so on, or that your
 path in your HTML matches your own directory structure choices.

PHP Is Not HTML (by Extension)

Just for the sake of experience, do something that might seem utterly bizarre to
 you: rename sayHelloWeb.html with a .php
 extension, to sayHelloWeb.php. If you then double-click this file,
 a number of things might happen—none of which you want. If you have a code editor like
 Dreamweaver, XCode, or Eclipse, those editors might launch and show you your file. Or,
 you might get an error because your computer doesn’t know how to open the
 file.
Even worse, if you open the file in your web browser (using the browser’s Open
 command, for example), the browser won’t know what to do with it. It will probably ask
 you if you want to save the file (as demonstrated in Figure 2-3).
[image: Web browsers don’t know what to do with files ending in .php. A web server could hand that file off to a PHP interpreter, but your browser? No clue. It just dumbly suggests you save the file.]

Figure 2-3. Web browsers don’t know what to do with files ending in .php. A web server could
 hand that file off to a PHP interpreter, but your browser? No clue. It just dumbly
 suggests you save the file.

The sayHelloWeb.php file is definitely not HTML in terms of the
 file type. But the file contains HTML, so there must be some way to display that HTML.
 This time, instead of double-clicking the file or opening it with the browser’s Open command, type the file’s URL directly
 into the browser’s address bar. (If you’re not sure what this URL is, refer back to the
 box on Directory Assistance.)
This time, you should see something that might surprise you; check out Figure 2-4 for the details.
[image: Your web browser couldn’t open sayHelloWeb.php, and you know it’s not an HTML file, based on the .php extension. But this sure looks like HTML. In fact, it looks exactly like the HTML file sayHelloWeb.html from Figure 2-2, as it well should: it contains the exact same HTML.]

Figure 2-4. Your web browser couldn’t open sayHelloWeb.php, and you know it’s not an HTML
 file, based on the .php extension. But this sure looks like HTML. In fact, it looks
 exactly like the HTML file sayHelloWeb.html from Figure 2-2, as it well should: it
 contains the exact same HTML.

PHP Can Be HTML—by Response

As you learned in the previous section, the browser can’t handle reading a PHP
 script, but when you access the page through a locally running web server, things just
 work. That’s because the PHP interpreter is perfectly happy to take the HTML in the PHP
 script and push that HTML out as a response. The web server sends that HTML on to a
 browser, and this time—because the browser is getting HTML, not a file with a
 .php extension—it displays the HTML as a web page.
Now you’ve seen how a PHP script can return a full-blown HTML web page that any
 browser can display. Well, that’s actually what you’re going to be doing a lot in this
 book, starting in the next section: you’ll do some programming in your scripts, and return HTML as a response.
But first, rename sayHelloWeb.php back to
 sayHelloWeb.html. Then, look back at the form line in the HTML file:
<form action="scripts/sayHelloWeb.php" method="POST">
This means that your form is going to submit its information to a program called
 sayHelloWeb.php, a new PHP program you’re just about to write.
 (This time it will do more than just crank out HTML without any programming at all!)
 Once the form is submitted, sayHelloWeb.php takes over, the PHP
 interpreter runs the code, sends out the response from
 sayHelloWeb.php, and hopefully that response is something a
 user’s web browser can understand and display.

PHP Talks Back

Now that you have an HTML page sending information to
 sayHelloWeb.php, you need to write some PHP. The PHP that you’re
 about to write to run on the Web is not that much different than the program from Chapter 1 that you’ve already written. You have to get
 information a little differently because there’s no command line that a user can use to
 enter information. But other than that, things stay pretty much the same.
Write Another PHP Script

Open a new text editor and type the PHP shown here; it should look sort of like an
 HTML-ized version of the sayHello.php program you’ve already
 written:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 2-1</div>
 <div id="content">
 <h1>Hello, <?php echo $_REQUEST['name']; ?></h1>

 <p>Great to meet you. Welcome to the beginning of your
 PHP programming odyssey.</p>
 </div>

 <div id="footer"></div>
 </body>
</html>
Save this program as sayHelloWeb.php within the
 scripts/ subdirectory, and be sure that your file is in plain
 text and is using the right extension, .php.
Note
You can download the example files for this section from this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Once you realize that a lot of this script is just HTML, you can probably already
 guess what most of this program does. Here’s a section-by-section breakdown:
	The page starts out with a normal <html> element and head
 section.

	The body section begins and sets up the page
 heading and example number, just like the regular HTML page,
 sayHelloWeb.html.

	The page defines a heading with <h1>
 and prints “Hello,”.

	The <?php tells the browser some PHP code
 is coming. Then, the $_REQUEST variable is
 accessed, and a property called name within that
 variable is printed by using echo.

	The end of the PHP code is indicated with ?>.

	The rest of the HTML is output, just as in
 sayHelloWeb.html.

Warning
To be extra clear, you should now have sayHelloWeb.html, an
 HTML page with a form, and sayHelloWeb.php, a PHP script that
 outputs HTML.

This program, like most PHP programs you’ll write, accepts its input from a web
 page, either from one built in HTML like the pages you’ve created before, or from
 another PHP program. It’s the job of that web page—sayHelloWeb.html
 in your case—to let the user enter information, and then send that information on to
 this program. The information from that HTML page is stored in $_REQUEST, which is a special variable in PHP.

Variables Vary

A variable in PHP (or any other programming language) is simply
 a piece of code that stores a value. Variables have names, and in PHP, those names can
 be almost anything you want. You can tell that something is a variable in PHP because
 its name begins with a $. So, $myHeight is a variable called “myHeight,” and $_REQUEST is a variable called “_REQUEST.”
Note
Technically, the name of a PHP variable does not include the $, but most PHP programmers consider that $ a part of the variable itself. Therefore, you’ll hear
 PHP programmers say things like “dollar-sign my height” instead of just “myHeight” to
 refer to the variable $myHeight.

Variables are not just names, either. They also have a value. So the value
 of $myHeight might be the number 68 (for 68 inches)
 or the text “68 inches.” In PHP, though, you’re not stuck with that value forever. You
 can change the value of a variable, which is where the word “variables” comes from: a
 variable varies, or changes.
In sayHelloWeb.php, you’re using the special PHP variable
 $_REQUEST to get the user’s name, which she entered
 into the form you built in sayHelloWeb.html. PHP gives you the
 ability to get to anything a user entered into a form by using $_REQUEST and the name of the form entry field—in this case, “name.” So,
 $_REQUEST[‘name’] returns the information a user
 put into a web form, specifically into an input field called “name.” If the user also
 entered in her phone number, say into a form field called “phoneNumber,” you could get
 that value in PHP with $_REQUEST['phoneNumber'].
Note
It’s okay if you’re still a little fuzzy on the details of how variables and
 $_REQUEST work. You’ll learn a lot more about
 variables and, in particular, special variables in PHP like $_REQUEST in the next few chapters.

Once your PHP program grabs the value from the “name” form field, it prints out that
 value by using echo, something you’ve already used in
 your first PHP program (Write Your First Program). That value is
 dropped right into the HTML that’s sent back to the browser—something you’ll want to
 check out for yourself by running your new program.

Check Things Out Locally

Because you should have MAMP or WampServer installed, you can check the files you’ve
 created so far on your own computer, although you’ll need to go through your local web
 server. Start a browser and visit sayHelloWeb.html on http://localhost:8888 (in Mac OS X, using the default MAMP Apache port) or
 localhost (in Windows, using the default installation).
Warning
Do not just double-click
 sayHelloWeb.html. As discussed in the box on Directory Assistance, even though your browser will open up the HTML
 file, it won’t know what to do when that file submits to a PHP script.

Enter a name, click Say Hello, and you should get a response similar to that shown
 in Figure 2-5.
[image: Now this looks more like web programming. Your PHP script output some HTML, inserted the the name that the user entered into an HTML form, and then output some more HTML.]

Figure 2-5. Now this looks more like web programming. Your PHP script output some HTML,
 inserted the the name that the user entered into an HTML form, and then output some
 more HTML.

So far, you’ve got an HTML page, a PHP script, and some CSS and images that are used
 by both. But, unless you plan on parading your user base through your office or den and
 letting them use your computer, things are pretty limited. This script only works on
 your local machine, and that’s got to change.

Run PHP Scripts Remotely

It’s time to get your programs out to the masses (or at least your buddy a few cubes
 down who doesn’t believe you’re a real programmer). That means you need a
 hosting provider, often called an Internet Service
 Provider (ISP) or web hosting company. All a hosting provider does is provide
 you with server space to house your web sites and applications; software to serve up your
 HTML and CSS and JavaScript—and now your PHP and MySQL; and some connection with the
 domain name service (DNS) so that people can access your site with a name like
 coolPhpSites.com instead of 98.234.1.23.
Note
You don’t need to understand everything you just read to keep going. The basic idea
 is what’s important: you need a place to put your files that makes them available on the
 Internet rather than just on your local computer.

Once you’ve got a hosting provider, it’s just a matter of getting the right connection
 information, and getting your files online. Finding a hosting provider that fits what
 you’re looking for is probably the hardest task; for some help on that tricky problem,
 check out the box below.
Once you’ve selected a provider, there are a couple of key bits of information that you’ll need: the
 hostname to which you can FTP (Macintosh and Windows) and connect via
 SSH or telnet, and the directories into which your web files should go. If you’re unfamiliar with
 connecting by using FTP or SSH, your hosting provider probably has some helpful tutorials
 on how to do all of this.
FREQUENTLY ASKED QUESTION: The Host with the Most
How do I choose a good hosting provider?
This is one of the toughest questions in the entire book. There are so many factors
 to consider, and everyone reading this has different priorities. Are you looking for an
 inexpensive solution or is stability and support at the top of your wish list? Will you
 use a gamut of technologies from PHP to Ruby on Rails to MySQL and PostgreSQL to
 WordPress to CoffeeScript—or is HTML, CSS, JavaScript, and PHP and MySQL enough? Do you
 want upgradeable server software and mailed-out logs and the ability to configure CPUs
 and online backups, or is a simple SSH/telnet session enough for you?
In the long run, only you know the answers to those questions.
 But, to work through this book, here’s what you absolutely will
 need:
	PHP support (version 5 or higher)

	MySQL support (version 5 or higher, preferably 5.5 or higher)

	Some type of terminal access to your account, like telnet or SSH.

	Some type of FTP access to your account.

These are going to be the bare minimum. And if you can, you’d probably also like a
 few other things, too:
	The ability to drop a PHP script anywhere in your web directories and have them
 be treated as PHP (no configuration or special directories).

	phpMyAdmin setup to access your MySQL databases and tables.

	Email support (often better than phone support, because you have a record of
 communications!) that gets a response with 24 hours.

Now, that might seem like a lot, but you can find a ton of hosting providers that
 give you all this for a reasonable price. You could check out Bluehost (www.bluehost.com) or
 Kattare (www.kattare.com), or if
 you want to get a littler higher-end, try Engine Yard (www.engineyard.com) or Heroku (www.heroku.com).

Once have your hosting provider set up, it’s time to upload some files.
Upload your HTML, CSS, and PHP

When you’re building a web page, you have to upload your HTML, CSS, and any
 JavaScript you’ve written to your own web server. Then, you access those files with a
 browser, through a web address like
 yellowtagmedia.com/phpMM/sayHello.html. Typing that web address
 into your browser causes your server to supply your HTML to whatever web browser
 requested the page.
PHP works the same way. Once you’ve written your PHP programs, you upload them to
 your web server along with your HTML and CSS. Typically, you’ll end up with files and
 directories like this:
	Root or Home Directory (/). This is your web root in which you put all of your HTML. This usually
 is the location referenced by a URL like yellowtagmedia.com/,
 without any specific file after the web server name.

	CSS Directory (css/). This is the directory in which all of your site’s CSS is
 stored.

	JavaScript Directory (js/). Your JavaScript files go here. You’ll often see this directory also
 called scripts/, but because PHP programs are also called
 scripts, it’s a good idea to be more explicit in your naming.

	PHP Directory (scripts/). Here’s where you’ll put all of your PHP programs. Again, you could
 call this something more specific like php/ or
 phpScripts/, but more often than not, websites use
 scripts/ for this directory, so following that lead is a good
 habit to get into.

	Examples Directory (ch01/, ch02/, and so
 forth). As you’re working through the examples, you’re going to end up with a
 lot of PHP programs, and fast. To keep everything organized, you should have a
 separate directory for each chapter. For example, when you upload
 sayHello.html and sayHelloWeb.php,
 upload them into ch02/sayHello.html and
 ch02/scripts/sayHelloWeb.php.

Note
You don’t have to organize things this way, but if you do, all the examples you
 download for this book will work without any changes. If you do change this directory
 structure, you’ll need to change all the references in your HTML and PHP to CSS,
 JavaScript, and other PHP programs to reflect that change.

Now that you have your HTML and PHP ready, you need to upload those files to the
 appropriate directories on your web server. You should also download
 phpMM.css as well as the accompanying images from the book’s
 website at www.missingmanuals.com/cds/phpmysqlmm2e.
Once you have everything in place, your web server directory structure should look
 something like Figure 2-6.
[image: The HTML and PHP files you created are specific to this chapter, so they belong in ch02/. But phpMM.css is for all the book’s examples you’ll be building, so put it in css/ under the root of your web server.]

Figure 2-6. The HTML and PHP files you created are specific to this chapter, so they belong
 in ch02/. But phpMM.css is for all the book’s examples you’ll be building, so put it
 in css/ under the root of your web server.

Run Your Second Program

If you followed along in the previous section, you’ve got your HTML and CSS in their
 proper places, and your HTML form has your PHP program set as its action. You also
 should have sayHelloWeb.php in your
 ch02/scripts/ directory. All that’s left is to take your PHP for
 a spin. Start a web browser, go to your web server, and then add
 ch02/sayHelloWeb.html to your server name.
Note
You might need to add a prefix, like phpMM/, if you added a
 subdirectory under your web root. So, if your examples are in [WEB
 ROOT]/phpMM/ch02/, your URL would be
 http://[your-host-name]/phpMM/ch02/ sayHelloWeb.html.

You should see the HTML you created in sayHelloWeb.html, just
 like in Figure 2-7.
[image: More often than not, you’ll access an HTML page rather than a PHP program directly. But those HTML pages will use your PHP programs to generate responses to your users’ requests.]

Figure 2-7. More often than not, you’ll access an HTML page rather than a PHP program
 directly. But those HTML pages will use your PHP programs to generate responses to
 your users’ requests.

Type your name and then click the Say Hello button. This cleverly labeled submit
 button sends your name as part of the form to the form’s action, which is your
 sayHelloWeb.php program. That program then runs on your web
 server. You should get a response back, similar to Figure 2-8.
This is the same form and response you saw back in Figure 2-5. Whether it’s on your own
 computer or a remote server, the web page looks the same.
[image: The web browser doesn’t actually run your program. Instead, it asks your server to run the program, and that server then gives the result of running sayHelloWeb.php back to the browser, which shows you a personalized welcome message.]

Figure 2-8. The web browser doesn’t actually run your program. Instead, it asks your server
 to run the program, and that server then gives the result of running sayHelloWeb.php
 back to the browser, which shows you a personalized welcome message.

Welcome to Programming!

It might seem like you’ve done a lot of work just to have a web browser tell you
 your name. In fact, you could probably write the same program in JavaScript if you
 wanted. But now that you’ve created a few PHP programs, you can see how easy it is to
 write this sort of code.
And before you know it, you’ll be doing a lot more than telling users their names.
 You’ll be talking to a database, doing advanced calculations, making decisions based on
 information the user gave you and what you have stored in a database, and more. But it
 all begins with a little HTML, a PHP program like the ones you’ve just written, and the
 directory structure you’ve put in place.
FREQUENTLY ASKED QUESTION: PHP and Your Provider
Where do all my files go?
As you’ve probably already realized, when it comes to running your scripts, the
 hardest part often isn’t the PHP. Instead, it’s figuring out where things go for your
 particular hosting provider.
Where do your web files go? A public_html/ directory, or
 somewhere else altogether? Usually, you’ll see either a www/ or
 public_html/ directory. Or, to be even safer, just call or
 email your hosting provider and ask them. They’ll have an easy, definitive answer to
 this question.
Where do scripts go? In a special directory, or anywhere, as long as they have a
 .php extension? Most hosting providers let you drop PHP scripts
 anywhere you want, and the host’s web server will serve anything with a
 .php extension via the PHP interpreter. But this is another
 question for which your hosting provider should supply a clear answer.
How can you organize things on your local computer so that it’s easy to upload
 your HTML and images and scripts directly to your hosting provider? This one is up to
 you. You should spend some time coming up with your own ideas and preferences, and
 then just try your best to be consistent.
Fortunately, these are all issues that once you figure them out the first time,
 you usually don’t have to figure them out again. So, take the time now to ensure that
 you can run your PHP on your hosting provider. Even though it’s nice to have PHP
 running locally, it’s online that PHP really shines, and the same will be true for
 MySQL soon.
Going forward, it will be assumed you’re running things online, as well. So,
 although you can use a tool like Dreamweaver, NuSphere, or Eclipse to edit your
 scripts locally, all the examples and instructions expect that you’re uploading and
 running things remotely, on a hosting provider.

Chapter 3. PHP Syntax: Weird and Wonderful

You’ve got a couple of PHP programs running, and have a handle on how PHP can interact
 with an HTML form. Still, although you’re a little more comfortable with how PHP as a whole
 interacts with web servers and web browsers, what’s actually going on
 in those PHP scripts? It’s time to dig a good deal deeper and start
 to understand what’s going on in the code you’re writing. In this
 chapter, you’re going to get comfortable with a lot of the PHP syntax. That means learning
 what special words—usually called keywords—you type into your programs
 and what each one of those keywords instructs PHP to do.
Fortunately, this learning doesn’t mean you can’t still build interesting programs that
 run in a web browser. In fact, because almost everything that’s done with PHP involves web
 pages, all of your scripts in this chapter will accept information from a web form and work
 with that information. So, you’re not just learning PHP; you’re learning to write web
 applications.
Get Information from a Web Form

In sayHelloWeb.php, you used the following line to get the value
 of a variable called “name” from the sayHello.html web
 form:
echo $_REQUEST['name'];
You might remember that $_REQUEST is a special PHP
 variable that lets you get information from a web request (Check Things Out Locally). You used it to get one particular piece of
 information—the user’s name—but it can do a lot more.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Accessing Request Parameters Directly

In fact, to see just how handy $_REQUEST really
 is, go ahead and start your text editor. Enter the code that follows, which lets your
 user enter in his name and several other important bits of contact information, like his
 Twitter handle, Facebook page URL, and email address.
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example -1</div>

 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form action="scripts/getFormInfo.php" method="POST">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="50" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Join the Club" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
POWER USERS’ CLINIC: HTML Should Be Semantically Meaningful
You might have noticed some pretty big changes in this HTML from the simple form
 in Chapter 2. In that chapter, the form used <p>
 tags to break up the form labels and input boxes, and manually formatted
 the form labels with <i> tags. That got the
 job done, but it’s not a good use of HTML.
Whenever you’re writing HTML, you’re actually structuring your page. So a form tag
 doesn’t really do anything visually; it just lets a browser know, “Hey, here’s a
 form.” When you use tags like <i>, though,
 you’re not describing structure; you’re telling the browser how something should
 look. That’s really not what HTML is for, though—it’s a job for
 CSS.
In this form, however, all the formatting has been pulled out. Instead, all the
 labels are identified with the <label>
 element and a for attribute. That identifies the labels as
 labels—regardless of how those labels end up looking—and also connects each label with
 the specific input field to which it matches. There’s also a <fieldset> element that surrounds the different blocks within the
 form: one for the labels and text fields, and a second for the form buttons. This also
 provides semantic information; in other words, it provides
 information that has meaning.
By making the HTML mean something, a browser (and other HTML authors) knows
 what things actually are in your form: labels are meant
 for…well…labeling things. Fields are grouped together with <fieldset>. And italic and boldface formatting are left to your
 CSS, as they should be.
What’s really cool here is that now your CSS can do an even
 better job of styling your form. Because you’ve eliminated
 formatting in the HTML itself, you can style all your form labels the same way—perhaps
 by bolding them, right-aligning them, and adding a right margin of 5 pixels. The same
 is true of your sets of fields; you might put a border around related fields, which is
 exactly what’s going on in the CSS applied to this form. In fact, to see how the CSS
 affects these HTML elements, check out Figure 3-1.
In truth, if you’re new to making your pages semantically meaningful, it might
 take time to get used to using HTML just for structure and keeping all your style in CSS. But,
 stick with it; your pages will look better, and anyone who has to update your pages
 down the line will thank you.

Save this file as socialEntryForm.html. To ensure that your
 HTML is just the way you want, go ahead and upload it to your server, in the
 ch03/ directory. Make sure you’ve got the book’s CSS in the right
 place—under css/ in your server’s root—and then open a browser and
 head over to your HTML form. You should see something like Figure 3-1.
[image: This web form is a typical entry page for a user to fill in. But, what happens when this form is submitted? You’re about to find out (see page 65), and, in fact, take control of all this entered information.]

Figure 3-1. This web form is a typical entry page for a user to fill in. But, what happens
 when this form is submitted? You’re about to find out (see page 65), and, in fact,
 take control of all this entered information.

In sayHelloWeb.php, you used $_REQUEST to extract submitted form information and asked specifically for
 the “name” value. With this new form, however, there’s a lot more information contained
 in the form.
To get all that information, you need to create a new script called
 getFormInfo.php, and enter the following code:
<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 3-1</div>

 <div id="content">
 <p>Here's a record of what information you submitted:</p>
 <p>
 First Name: <?php echo $_REQUEST['first_name']; ?>

 Last Name: <?php echo $_REQUEST['last_name']; ?>

 E-Mail Address: <?php echo $_REQUEST['email']; ?>

 Facebook URL: <?php echo $_REQUEST['facebook_url']; ?>

 Twitter Handle: <?php echo $_REQUEST['twitter_handle']; ?>

 </p>
 </div>

 <div id="footer"></div>
 </body>
</html>
Note
If you want to start taking a little more control of your scripts, you can name
 this program something other than getFormInfo.php. Just be sure
 that you also update socialEntryForm.html and change the form’s
 action attribute value to match that custom script name.

By examining this code, you can already see what’s going on here. In addition to
 grabbing the value of the “first_name” and “last_name” fields—similar to getting the value of the “name” field in
 sayHelloWeb.php (Check Things Out Locally)—the
 code uses $_REQUEST to pull in the values the user
 entered into the other form fields.
Go back to your socialEntryForm.html web form, enter your
 information, and then submit the form. You should see the result of
 getFormInfo.php running, and your browser should show you
 something similar to Figure 3-2.
[image: Almost everything in PHP begins with some piece of information submitted via either an HTML web form or another PHP script.]

Figure 3-2. Almost everything in PHP begins with some piece of information submitted via
 either an HTML web form or another PHP script.

In fact, the following line is the way you’ll use the $_REQUEST variable in most of your PHP programs:
echo $_REQUEST['FORM_INPUT_FIELD_NAME'];

Create Your Own Variables

Of course, there might be times when you don’t want to just display out the value of
 a field. Think back to your first program, sayHello.php (the
 version from HTML Is Treated as HTML that didn’t run on the web). In
 that program, you created your own variable:
$name = trim(fgets(STDIN));
PHP lets you create all the variables you want. Just give each one a descriptive name (as described in the box below) and put a dollar sign
 before that name, like this:
$numberSix = 6;
$thisIsMyName = "Brett";
$carMake = "Honda";
WORD TO THE WISE: What’s in a Name? A Whole Lot!
PHP doesn’t actually require you to use descriptive names. In fact, there are
 thousands of PHP programs on the Web with code that looks like this:
$x = $_REQUEST['username'];
$y = $_REQUEST['password'];
This code runs just as well as similar code that uses much more descriptive
 names:
$username = $_REQUEST['username'];
$password = $_REQUEST['password'];
So, what’s the big deal? Many programmers will try to convince you that it’s a lot
 of extra work to type in these longer descriptive names. That’s true, too.
Then again, how much work is it when you’ve got to track down the username
 variable in a piece of code you didn’t write, or code that you did write, but many
 months ago? Suppose you’ve got a line much later in a script like this:
echo "Welcome back to the site, " . $y;
Suddenly, it’s not so clear what $x is and what
 $y is. Was $x
 the user name? Or was it $y? Be careful: Nobody
 wants his password printed out instead of his user name!
Using descriptive names, even if they’re longer and take a little extra time to
 type, will make your code easier to read, for you and anyone else who might need to
 look at it down the road.

Now that you know the basic code for creating a variable, go back to your new
 program, getFormInfo.php. Instead of just using echo to print out the submitted information, store each piece of information in a variable. By doing so, you
 can use that information however you want, and as many times as you want. Here’s what
 your variables might look like:
<?php

$first_name = $_REQUEST['first_name'];
$last_name = $_REQUEST['last_name'];
$email = $_REQUEST['email'];
$facebook_url = $_REQUEST['facebook_url'];
$twitter_handle = $_REQUEST['twitter_handle'];

?>

<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <!-- Existing HTML code -->
 </body>
</html>
Notice that you can create blocks of PHP code—beginning with <?php and ending with ?>—anywhere
 you want. In this script, there’s now a block of PHP before any HTML and then several
 small blocks of PHP within the big chunk of HTML. It’s up to you when and where your PHP
 goes, as long as it gets the job done. You could have put this block of PHP between the
 page’s opening html and head element or between the head and the
 body elements; that choice is up to you.
Warning
Sometimes, just because you can do something doesn’t mean you
 should. It’s usually best to do as much of your PHP work as you can before you output
 any HTML and then output as much of your HTML as you can in a single place. That keeps
 most of your code in one place and most of your HTML in another place.
Of course, you’ll still have lots of times when you insert PHP into your HTML, as
 in getFormInfo.php, and that’s okay. Those little bits of PHP fit
 into the HTML, and they certainly don’t mix things up as much as 20 or 30 lines of PHP
 stuck in the middle of your HTML.

You can check out your form in a browser, but you shouldn’t see anything different
 from what you already saw (take a look back to Figure 3-2). That’s because your HTML—the
 part of the script that the browser displays to a user—hasn’t changed at all.
But now there’s a little bit of wasteful programming going on. You’re getting the value of each form field through the $_REQUEST variable once, in the PHP block before all your HTML, and then
 you’re getting all those variable values again in the HTML itself. Anytime you’re
 doing something twice, you’re wasting valuable web server resources.
Fortunately, it’s easy to do away with this redundancy. That’s because you have all
 the values you want, stored in your variables, $first_name, $last_name, and so on. So,
 in the HTML part of getFormInfo.php, you can just echo
 out those variables; you don’t need to deal with $_REQUEST anymore. Here’s how to update the “content” <div>:
<div id="content">
 <p>Here's a record of what information you submitted:</p>
 <p>
 First Name: <?php echo $first_name; ?>

 Last Name: <?php echo $last_name; ?>

 E-Mail Address: <?php echo $email; ?>

 Facebook URL: <?php echo $facebook_url; ?>

 Twitter Handle: <?php echo $twitter_handle; ?><br /
>
 </p>
</div>
Take a moment to submit values into your socialEntryForm.html
 again to ensure that your updated script works. You should see the exact same result as
 before (compare your results to Figure 3-2 again). It might surprise you that you’ve done all this work just to get the same
 result, but that’s actually a big part of good programming. To learn more about this
 approach to programming, see the box that follows. This version has all the submitted
 values in variables, though, and that’s an improvement.
WORD TO THE WISE: Refactor as You Go
Whenever you rearrange code, especially to organize it better or to divide your
 code’s behavior into separate chunks, you’re refactoring. For
 example, when you created a PHP block at the beginning of
 getFormInfo.php to grab all the information from the submitted form and then just echoed out each variable
 within the HTML, you actually were refactoring your script.
When you’re writing code, you want to refactor constantly. Anytime you can better
 organize your script—or, as you’ll do later, better organize lots of scripts that all
 work together—you should do it. Even if you’re not sure how your better organization
 might help your program, it’s worth the effort. When you come back to your code a week
 from now, a month from now, or even a year from now, it’s going to be a lot harder to
 remember what everything does. Even worse, it’s going to be tough to remember
 where things are in your script. (Your scripts are going to get
 a lot longer soon, too.)
By refactoring as you go, you’re ensuring that it’s easy to see what a script does
 from a quick look. It also means that when you need to make changes, you can jump
 right to the spot within your script where those changes need to be made, get your
 work done, and go back to living the high life of a PHP programmer.
But be warned: refactoring isn’t usually the most fun way to spend a Friday night.
 A lot of the time, the goal in refactoring is to not change how
 your code works, and especially to not change what it outputs in a browser. Because
 you’re rearranging—and sometimes optimizing, which is just making things run as
 smoothly as possible—your goal is keep things looking just the same.
That’s the case with your refactoring of getFormInfo.php. You
 added some PHP, created a bunch of variables, and then used those variables in your
 HTML. The result? Exactly the same as your original version. But now your code is a
 lot easier to understand, and you’re actually going to get some nice benefits by
 having those variables available shortly.

But, why put values into a variable? Right now, it’s a little silly: all you’re
 doing is changing the place within your script where you grab information
 from the $_REQUEST variable. That’s not doing you any
 real good. So, what can you do with these variables once you’ve placed information in
 them? PHP gives you a lot of options, particularly when you have variables that contain
 text.

Working with Text in PHP

PHP sees all text the same: a meaningless collection of characters. Those characters
 can be letters, numbers, spaces, punctuation marks, or just about anything else. In PHP, an English word like “caterpillar” is just as
 ordinary a piece of text as is something nonsensical like “!(gUHa8@m.@.” To you,
 “caterpillar” looks like a word. That second group of letters, however, looks like
 something QBert might have said. To PHP, though, both of them are just text. In fact,
 because it’s such an important part of the language, PHP and most programming languages
 have a special word to refer to text: a string. So, a piece of text can also be referred
 to as a string; thus instead of text searching or text matching,
 you’ll often hear programmers talk about string searching or
 string matching.
Note
If you have no idea what QBert is, take a moment to Google it. Then take another
 moment to weep for your lost youth.

Combine Text

The good thing about PHP seeing all text the same way is that you can do all sorts
 of interesting things with it, regardless of what that text is. So, going back to your
 script, getFormInfo.php you have five variables, all of which
 contain text:
$first_name = $_REQUEST['first_name'];
$last_name = $_REQUEST['last_name'];
$email = $_REQUEST['email'];
$facebook_url = $_REQUEST['facebook_url'];
$twitter_handle = $_REQUEST['twitter_handle'];
Two of these are related: $first_name and
 $last_name. It’s pretty common to take in
 information this way—with the names separated—but it’s just as
 uncommon to print them out separately. Imagine walking into your
 local Pier 1 Imports and being greeted by an old friend like this: “Hey there, First
 Name Brett, Last Name McLaughlin!” That’s pretty awkward; and it’s just as awkward on
 the Web.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

There’s no reason to settle for this separation, though. You can easily combine
 these two strings by using a technique called concatenation. That’s
 a fancy word that just means “combine,” and in the case of strings in particular,
 combining two pieces of text end-to-end. So, if you concatenate “my” and
 “girl,” you get a new string, “mygirl.”
In PHP, you concatenate with the period (.). For
 getFormInfo.php, therefore, find the two lines of HTML that print
 out the first and last name:
First Name: <?php echo $first_name; ?>

Last Name: <?php echo $last_name; ?>

Now, change these to a single line, and concatenate the first and last names:
Name: <?php echo $first_name . $last_name; ?>

Go back to socialEntryForm.html, enter some information, and then submit your form. You should see something like Figure 3-3: the first name Brett and last
 name McLaughlin are successfully concatenated. However, if you look closely, you’ll see
 that the first name and last name are smashed together. What you need is a space between
 those two bits of text.
[image: One of the easiest ways to get your users comfortable with your web applications is to use plain English whenever possible. Even something as simple as combining first and last names adds a lot of familiarity to an otherwise cold, impersonal web form. All that’s missing in this example is a space between the first and last names, which you’ll learn how to do in just a moment.]

Figure 3-3. One of the easiest ways to get your users comfortable with your web applications
 is to use plain English whenever possible. Even something as simple as combining first
 and last names adds a lot of familiarity to an otherwise cold, impersonal web form.
 All that’s missing in this example is a space between the first and last names, which
 you’ll learn how to do in just a moment.

This is a situation for which PHP treating all text the same really helps. To add a
 space, all you have to do is put it in quotes, like this: “ ”. PHP doesn’t see that text as any
 different from the text in your variables. You can just concatenate that string—the
 empty space—to $first_name, and then concatenate
 $last_name to the space, like this:
Name: <?php echo $first_name . " " . $last_name; ?>

Try your form out again, and you should see a proper space between the first and
 last names. Check out Figure 3-4, which
 should match what your page now looks like.
[image: PHP doesn’t care if text is in a variable like $_REQUEST, a variable you’ve created yourself, or in quotes. It treats all text exactly the same. So, to add a blank space to your text, just surround the space with quotes.]

Figure 3-4. PHP doesn’t care if text is in a variable like $_REQUEST, a variable you’ve
 created yourself, or in quotes. It treats all text exactly the same. So, to add a
 blank space to your text, just surround the space with quotes.

Searching Within Text

Of course, if all you could do with strings was smash them together, that would be
 pretty boring. Thankfully, PHP offers a lot more options. One of the most common things
 you’ll do with PHP text is search it. For example, take the $facebook_url variable in getFormInfo.php. Suppose you
 want to turn that into a live, clickable link. First, add the HTML <a> tag, like so:
<p>
 Name: <?php echo $first_name . " " . $last_name; ?>

 E-Mail Address: <?php echo $email; ?>

 <a href="<?php echo $facebook_url; ?>">Your Faceboo
k page

 Twitter Handle: <?php echo $twitter_handle; ?>

</p>
Now, instead of just showing the text of the URL, your web page shows a link that
 people can click, as demonstrated in Figure 3-5.
[image: Remember that your PHP is not just a place for programming. It’s also a place to create parts of web pages. So, when you get a URL or an email link, try and turn those into HTML links whenever possible, like the “Your Facebook page” link in this example.]

Figure 3-5. Remember that your PHP is not just a place for programming. It’s also a place to
 create parts of web pages. So, when you get a URL or an email link, try and turn those
 into HTML links whenever possible, like the “Your Facebook page” link in this
 example.

But, what happens if someone forgets to put the facebook.com
 part of the URL in? Maybe he didn’t read carefully, and he just threw in the part of the
 URL after facebook.com, like ryan.geyer or
 profile.php?id=699186223. In this case, the link you create won’t
 be of any use.
What you need, then, is a way to see whether the text that was entered in your $facebook_url variable contains “facebook.com”. If so, it’s probably safe
 to turn the text into a URL link. If not, the link probably needs to have “http://www.facebook.com” added to the beginning of the variable’s value. In
 other words, your PHP needs to search for the text “facebook.com”.
The easiest way to do this in PHP is to look for the position of a piece of text inside a bigger piece of text to determine what
 the position of “facebook.com” is inside of $facebook_url, like this:
$first_name = $_REQUEST['first_name'];
$last_name = $_REQUEST['last_name'];
$email = $_REQUEST['email'];
$facebook_url = $_REQUEST['facebook_url'];
$position = strpos($facebook_url, "facebook.com");
$twitter_handle = $_REQUEST['twitter_handle'];
The strpos() function, which just stands for
 “string position,” returns a number that indicates where in the string the searched-for
 text exists. So, if $position was 5, that would mean
 that “facebook.com” appeared at position 5 within $facebook_url. (For more information on how these position numbers work,
 see the box on Programming Languages Like Zeroes.)
However, it’s not enough to just determine a position. You need to do something with it. Better still, you need to figure
 out whether it indicates a position within $facebook_url—which would mean that $facebook_url contains “facebook.com”—or if $facebook_url doesn’t have “facebook.com” within it at all. You can do this
 by seeing if $position is false, something PHP
 defines for you by using the keyword false.
 Otherwise, strpos() returns the position within
 $facebook_url at which the searched-for string
 appears.
Note
The strpos() function, like most functions in
 PHP, can return two totally different things: a number indicating a position within
 the search string, or the value false.

$first_name = $_REQUEST['first_name'];
$last_name = $_REQUEST['last_name'];
$email = $_REQUEST['email'];
$facebook_url = $_REQUEST['facebook_url'];
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/". $facebook_url;
}
$twitter_handle = $_REQUEST['twitter_handle'];
At first glance, it probably looks like there’s a lot of new stuff going on here,
 but don’t sweat it. You already understand almost all of this code.
	First, strpos() checks to see if $facebook_url has the text “facebook.com” within
 it. The value returned from strpos() is
 stuffed into a new variable, $position.

	$position is compared
 to the special PHP value false by using an
 if statement. You’ll learn a lot
 more about if statements soon, but it does just
 what it looks like: if $position is false, then execute the code within the curly brackets,
 { and }.

	The code that’s within { and } only runs if the statement
 above is true—in this case, if $position ===
 false. If that’s true, then “http://www.facebook.com” is inserted before the string in $facebook_url, to make a real link to Facebook.

	There’s also a hidden step in this if statement: if $position is not false, then
 nothing happens. The line of code within { and } is completely skipped
 over.

Now that you’ve made these changes to your script, save it and go back to your web
 form, socialEntryForm.html. This time, enter a Facebook link
 without the “facebook. com” part of the URL; for example, profile.php?id=100000039185327. Then, submit your form and see what your
 result looks like.
At first glance, nothing might look different. The web page generated from your PHP
 probably still resembles Figure 3-5.
 But, look at the source of your page (see Figure 3-6) or click the link itself (see
 Figure 3-7). In both cases, you can
 see that profile. php?id=100000039185327 was turned into an actual
 URL, http://www.facebook.com/profile.php?id=100000039185327.
UNDER THE HOOD: Programming Languages Like Zeroes
The more you program in languages like PHP, Java, C, or Perl, the more you’ll see
 some unusual uses of the number 0. In almost all of these languages—and certainly in
 PHP—counting begins at 0, rather than 1. So, if you were counting the length
 of the text “That’s weird,” the first letter—the capital “T”—would be at position 0,
 not position 1.
This gets particularly tricky when you’re searching for text within text, such as
 in getFormInfo.php. Suppose that someone typed
 “facebook.com/michael.greenfield” into the Facebook URL text box. Then, in your code,
 you did something like this to see if the form value was a real URL:
if (strpos($facebook_url, "facebook.com")
> 0) {
 $facebook_url = "http://www.facebook.
com/" .
 $facebook_url;
}
On the surface, this statement looks good: if “facebook.com” doesn’t appear in the
 first position or greater of $facebook_url, add “http://www.facebook.com/” to the beginning of $face-book_url.
However, the result would not be good. You’d actually have a value like this in
 $facebook_url: “http://www.facebook.com/facebook.com/michael.greenfield.” So, what
 happened?
Remember, PHP starts counting at 0, not 1. Therefore, position 0 is actually the
 first position in $facebook_url. And that position
 has an “f” in it. Position 1 has an “a,” position 2 a “c,” and so on. It turns out
 that the entire first part of $face-book_url is
 actually “facebook.com,” the string for which your code is searching. As a result,
 strpos() returns a 0 to indicate that the
 searched-for string is in the first position of $facebook_url.
What this all means—besides the fact that programming languages count differently
 than humans—is that you need to be a zero-based thinker when you’re writing code. So,
 if you’re searching for something within a string, a position of 0 or greater means
 the string was found, rather than 1 or greater. Remember that, and you’ll save
 yourself a ton of bug hunting.

[image: If you’ve not done a lot of web development, you might not be used to looking at your web page’s source code. But you’ll want to get comfortable viewing the source; it’s one of your best ways to see what’s really in the HTML your scripts generate. This code creates the web page you see in Figure 3-5.]

Figure 3-6. If you’ve not done a lot of web development, you might not be used to looking at
 your web page’s source code. But you’ll want to get comfortable viewing the source;
 it’s one of your best ways to see what’s really in the HTML your scripts generate.
 This code creates the web page you see in Figure 3-5.

[image: Taking a partial URL and making it into a clickable link might seem like a lot of work for such a minor feature, as in the Facebook link example (page 71). But users are forgetful, and the more you can protect them from making a mistake without telling them about their problems, the better it is.]

Figure 3-7. Taking a partial URL and making it into a clickable link might seem like a lot of
 work for such a minor feature, as in the Facebook link example (page 71). But users
 are forgetful, and the more you can protect them from making a mistake without telling
 them about their problems, the better it is.

Changing Text

You’ve combined two pieces of text, you’ve searched within text, so what’s left?
 Well, changing text, of course. And it turns out that you’ve already got a lot of
 the information you need to do it.
Consider the Twitter handle people are entering into your web form. Most people put an @
 before their Twitter handle, like so: @bdmclaughlin. But to see someone’s Twitter
 profile on the twitter.com website, you actually don’t want that @. So if the Twitter
 handle is @phpGuy, the Twitter URL to see that profile would be http://www.twitter.com/phpGuy.
Turning a Twitter handle into an active link requires a few steps. Here they are in
 plain English:
	Create a new variable, $twitter_url, and start by giving it a value of “http://www.twitter.com/”.

	Determine if the Twitter handle has an @ sign in it.

	If there’s no @ in
 $twitter_handle, add the handle to the
 beginning of $twitter_url.

	If there is an @ in $twitter_handle, remove the @ from
 the handle and add the handle to the end of $twitter_url.

	Display the Twitter handle as part of an <a> link element in your script’s HTML
 output.

You’ve done something similar to all of these steps except for step 4, so this
 shouldn’t be a big problem for you.
First, create a new variable to hold the Twitter URL that you’re building, and give
 it the first part of the Twitter URL:
$twitter_handle = $_REQUEST['twitter_handle'];
$twitter_url = "http://www.twitter.com/";
Then, you need to determine whether the Twitter handle—which you’ve got in the $twitter_handle variable—has the @
 character anywhere in it. You can use strpos() again
 for this step:
$twitter_handle = $_REQUEST['twitter_handle'];
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
In this example, you need to do something whether there’s an @ in $twitter_handle or
 not. So you’ll have an if, but you’ll also have an
 else:
$twitter_handle = $_REQUEST['twitter_handle'];
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 // Do something to remove the @ from the Twitter handle
}
If there’s no @, this code simply adds the handle
 to the end of $twitter_url. If there is an @, you have more work to do to get rid of it and create the
 URL.
You’ve already seen that strpos() takes a string
 as a target in which to look, and then it takes another string, which is the item for
 which you’re searching. PHP has a similar way to get just part of a string: the substr() function. substr() is short for for “substring,” which, as its name implies, means a
 part of a string. You provide substr() with a string
 to search for and then a position at which to begin gathering the substring of the
 search text.
For example, substr(“Hello”, 2) would give you
 “llo”. That’s because the “H” is at position 0, the “e” is at position 1, and the first
 “l” is at position 2. Because you instructed substr()
 to start at position 2, you get the letters from that position to the end of the string,
 in this example, “llo”.
Warning
Remember, most PHP functions like substr() and strpos() start counting at zero. If you’re still unsure about how that works, check out
 the box on Programming Languages Like Zeroes.

In the case of the Twitter handle, you can use substr() in a similar way. But you want to cut off everything up to and
 including the @ sign, which
 you already know is at the position stored in the $position variable. So, you can use substr() and start your new string at the position after $position, or
 $position + 1.
$twitter_handle = $_REQUEST['twitter_handle'];
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $positio
n + 1);
}
Note
You’re starting to see a lot of new code quickly, but don’t worry if something
 confuses you at first glance. Just take a moment and look at each piece of the new
 code, bit by bit. As you understand each individual piece, you’ll find the overall
 picture quickly becomes clear.

All that’s left to do at this point is to update the part of your script that
 outputs HTML:
<p>
 Name: <?php echo $first_name . " " . $last_name; ?>

 E-Mail Address: <?php echo $email; ?>

 <a href="<?php echo $facebook_url; ?>">Your Facebook page

 <a href="<?php echo $twitter_url; ?>">Check out you
r Twitter feed

</p>
Hop back to your entry page, fill it up with information, and then submit the form
 to your updated script. Try it with and without an @
 character in your Twitter handle, and the results should be the same: an output page with
 links to your Facebook and Twitter page, with the @
 correctly removed, as illustrated in Figure 3-8.
[image: You might want to update your PHP script even further to add some additional style and formatting. You might want to change things to read from your user’s perspective, such as “My name,” and “Check out my Twitter page.” Don’t be afraid to experiment, particularly now that you’re getting comfortable with your PHP script.]

Figure 3-8. You might want to update your PHP script even further to add some additional
 style and formatting. You might want to change things to read from your user’s
 perspective, such as “My name,” and “Check out my Twitter page.” Don’t be afraid to
 experiment, particularly now that you’re getting comfortable with your PHP
 script.

FREQUENTLY ASKED QUESTION: PHP’s Angle on Brackets
What’s with all the angle brackets?
When you’re using PHP to show a lot of HTML and then dropping little bits of PHP
 into that HTML, things can get pretty confusing. Take a look at one of the lines
 that’s in getFormInfo.php:
<a href="<?php echo $facebook_url; ?>">
 Your Facebook page

Some of this code looks strange, to say the least: there are two opening brackets
 before a single closing bracket, and then there’s another
 closing bracket at the end of that first line. On top of that, you’ve got all the PHP
 within quotation marks.
Unfortunately, this is one of the downsides to inserting PHP into HTML. It’s a
 necessary evil, and it’s something you’ll get used to, but it can still trip you up.
 Anytime you have PHP code, you really should surround it in
 <?php and ?>. (You don’t have to, though; you can leave off ?> if you’re
 ending your script with PHP, but that’s generally considered a pretty lazy practice.)
 If you’re using PHP to insert something into an element that’s already in brackets,
 you’ll get this strange double-bracketed code.
It’s also pretty common to use PHP to generate a link, which in the case of an
 <a> element becomes the value of an
 attribute.
That means your entire PHP block will be surrounded by quotation marks. That’s
 okay—as long as your PHP doesn’t also have quotation marks. If
 you have a case for which you need quotation marks within your PHP, and that PHP is
 already within quotes, you can alternate single-and
 double-quote marks, like this:
<a href="<?php echo 'http://www.twitter.
 com/' .$twitter_handle; ?>">
 Your Twitter page

You can flip these around without a problem, too:
<a href='<?php echo "http://www.twitter.
 com/" .$twitter_handle; ?>'>
 Your Twitter page

Just be sure you don’t open something with single quotes and then close it with
 double quotes, or vice versa. Mismatching quotes cause things to break, and nobody
 wants that.
There actually are some differences in how PHP handles double-quoted strings and
 single-quoted strings, but it’s nothing you need to worry about right now.

Trim and Replace Text

Once you start trying to help your users by correcting possible errors in their form
 entry, the world of PHP strings becomes a big toolkit at your disposal. Take two other
 common problems in web forms, especially web forms in which users enter URLs:
	Users enter extra spaces around words, like “ http://www.facebook.com/ryan.geyer ” instead of “http://www.facebook.com/ryan.geyer” (note
 the spaces between the quotes and the text).

	Users mix up .com and .org URLs by putting in something like “http://www.facebook.org/profile.php?id=534643138” instead of “http://www.facebook.com/profile.php?id=534643138”.

Note
You’d be surprised how often people mix up .com and .org. In fact, lots of companies that own
 domain-name.com will also buy
 domain-name.org and redirect anyone that goes to
 domain-name.org to domain-name .com for
 that very reason.

You know how PHP strings work, and you’ve already used several PHP functions. You
 just need to learn two more functions to handle these common problems.
Removing Extra Whitespace by Using Trim()

PHP has a trim() function that eliminates any
 empty characters—what PHP calls whitespace—around a string. For
 example, trimming “ I love my space bar. ” gives you “I love my space bar.” So, with
 just a couple of simple additions to your script, you can make sure that extra spaces
 around your users’ entries is a thing of the past:
Note
PHP also gives you rtrim(), which trims just
 whitespace after a string (on its right side), and ltrim(), which trims whitespace before a string (on its left
 side).

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$facebook_url = trim($_REQUEST['facebook_url']);
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}
This change is simple to implement: every time you get a value from $_REQUEST, just wrap the value in trim(). You’ll never have to worry about whitespace around your text
 again.
Warning
trim() (as well as rtrim() and ltrim()) only remove
 whitespace on the outside of your text. Thus, trim() is great for dealing with something like “ Way
 too much whitespace. ” but won’t help you at all with “Way too much
 whitespace.”

Replacing Characters in Text by Using Str_replace()

It’s also easy to replace text in a string. You use str_replace(), and give it three things:
	The text to search for, in quotes. For example,
 “facebook.org”.

	The replacement text. If you want to replace
 every occurrence of facebook.org with facebook.com, your replacement text would be
 “facebook.com”.

	The string in which to search; that is the value that
 the user typed into your web form.

In PHP, you can put all this together on one line (see the box on Chain Your Methods (Or Not!)). You get something like this:
$facebook_url = str_replace("facebook.org", "facebook.com",
 trim($_REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}
Make these changes, and then visit your web form again. Enter some information
 that might have been a problem for a less-skilled PHP programmer, with lots of spaces
 and a bad facebook.org URL, as shown in Figure 3-9.
[image: You’d be amazed at how often people fill out forms in a hurry. That usually means one of two things will happen: either all that problematic information will cause errors in a server-side script, or—if the programmer is a little more advanced—the script happily fixes those errors and keeps on chugging. It’s good to be in the second category!]

Figure 3-9. You’d be amazed at how often people fill out forms in a hurry. That usually
 means one of two things will happen: either all that problematic information will
 cause errors in a server-side script, or—if the programmer is a little more
 advanced—the script happily fixes those errors and keeps on chugging. It’s good to
 be in the second category!

Submit this data. As you can see in Figure 3-10,
 getFormInfo.php doesn’t miss a beat. It gets rid of all that
 extra space, and it even fixes the bad Facebook URL (see Figure 3-11).
[image: Using trim() and str_replace() and even strpos() is part of being a responsible PHP programmer. In fact, you might eventually build your own standard blocks of code through which you run all your web form entries, just to ensure that they’re formatted exactly the way you like.]

Figure 3-10. Using trim() and str_replace() and even strpos() is part of being a responsible
 PHP programmer. In fact, you might eventually build your own standard blocks of code
 through which you run all your web form entries, just to ensure that they’re
 formatted exactly the way you like.

POWER USERS’ CLINIC: Chain Your Methods (Or Not!)
You might have noticed that PHP lets you do in a single step what might
 otherwise take several steps. For example, look at this line in your PHP
 script:
$facebook_url = str_replace("facebook.
org", "facebook.com", trim($_
REQUEST['facebook_url']));
This code actually combines several different things. You could rewrite this
 code like the following example, to make all those separate things a little
 clearer:
$facebook_url = $_REQUEST['facebook_url'];
$facebook_url = trim($facebook_url);
$facebook_url = str_replace("facebook.
org", "facebook.com", $facebook_url);
Both of these code examples carry out the same task, and from a performance and
 technical point of view, one isn’t better than the other. That means it’s up to you
 which version you prefer. So, how do you decide?
There are two basic schools of thought here. The first is common in programmer
 circles. It’s the “brevity is the soul of wit” approach to programming. The concept
 is pretty simple: “Why do in multiple lines what you can get done in one
 line?”
Using this approach, anytime you can combine steps, you should. The code is a
 lot shorter, and you don’t have a lot of those in-between steps. The result is
 called method chaining: you do one thing to a piece of text,
 for example, and then the result of that one thing is sent to another thing. In
 other words, each step is a link in a chain, and the entire line is the chain,
 complete and ready to use.
The other school of thought is a little less popular among programmers…unless
 those programmers have to teach what they’re doing to someone else. This school of
 thought tries to make code really easy to understand. Of course, the more you can
 break down that chain of actions, the easier it is to quickly figure out
 what’s going on. This takes a lot more code, but all that extra code is easier to
 understand, and (at least in theory) to fix if something goes wrong.
Realistically, you’ll probably want to end up somewhere in the middle of these
 two approaches. For instance, your code in getFormInfo.php is
 nice and clear, even though a few things are chained together. But if you end up
 with lines that have 6, 7, or even 10 things attached to one another, it might be
 time to split things up (and lay off the triple ventis from Starbucks!).

[image: Once again, View Source is your friend. In most browsers, this option is under the View menu, the Page menu, or available by right-clicking the page. Be sure to view your page’s source; it’s what’s really getting sent to the browser, no matter how things actually look on your screen.]

Figure 3-11. Once again, View Source is your friend. In most browsers, this option is under
 the View menu, the Page menu, or available by right-clicking the page. Be sure to
 view your page’s source; it’s what’s really getting sent to the browser, no matter
 how things actually look on your screen.

TAKE IT FURTHER: PHP Offers a Slew of String Functions
Believe it or not, you’ve only just scratched the surface of what PHP has to
 offer in dealing with strings and text. Visit php.net/
 manual/en/ref.strings.php to see a complete list of what you can do with text in PHP. But get your high-resolution
 monitor out; this is a long list that won’t even fit on a single screen for most web
 browsers.
So, what do you do? Freak out about how much you don’t yet
 know? Print out this web page and start memorizing a few functions every night? No,
 not at all. Just bookmark the page—and while you’re at it, the PHP manual at
 php.net/ manual—and know that it’s there when you need it. If
 you run across a string you need to manipulate, just pull up your bookmarked PHP
 manual and search through it until you find what you want.
The real surprise here is that everyone does it. Sure,
 there might be some Dustin Hoffman lookalike out there rattling off all the PHP
 numerical functions in a monotone voice, all Rain-Manned up in his gray suit. But
 that guy is the exception. Refer often to the online PHP manual—and books like this
 one—and when you forget something, just look it up.
Instead of worrying about memorizing the odds and ends of every function in the
 PHP language, work on understanding the patterns of PHP and how
 those patterns work. For instance, you now know that most string manipulation
 involves calling some function, passing it a few pieces of information, and
 assigning the result to a variable. That’s what’s important,
 and now, every time you do look up a string function in the PHP manual, you know
 exactly how to use that function correctly.

The $_REQUEST Variable Is an Array

It’s probably no surprise to you that PHP is a lot more than a tool to work with text.
 You’ve been working with strings non-stop, but there are a lot more types of information
 you’ll need to work with in your PHP scripts. As you might expect, there are all kinds of
 ways to work with numbers, and you’ll work with them quite a bit before long.
But there’s another important type of information you need to understand. In fact,
 you’ve already been working with this type as much as you’ve worked with text. This
 mystery type is an array, which is a sort of container that holds
 other values within it.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Arrays Can Hold Multiple Values

An array is a data structure, which is an organization of data
 that can be referenced all at once. It’s another one of those terms that will gain you
 respect at a local Google get together (but might get you some odd looks if you’re
 having cocktails at a political fundraiser). But, arrays aren’t hard to understand.
 Think of an array as a file cabinet of information, and you’ve got the idea.
As an example, if you have a variable called $file_cabinet that’s an array, it can store other information within it.
 You might stuff URLs, and first names, and last names, and emails into that $file_cabinet. You can fill up the file cabinet by telling
 PHP where you want your information by using numbers surrounded by square brackets,
 right after the array variable name, like this:
<?php

$file_cabinet[0] = "Derek";
$file_cabinet[1] = "Trucks";
$file_cabinet[2] = "derek@DerekTrucks.com";
$file_cabinet[3] = "http://www.facebook.com/DerekTrucks";
$file_cabinet[4] = "@derekandsusan";

?>
Think of these numbers as drawers in the file cabinet, or if you like things a
 little more compact, labels on file folders within the cabinet.
Note
Anytime you see a code example like this, you can type it, save it (using a name
 like file_cabinet .php), and run it with the php command. Go ahead and try it; you’ll be changing things and making up
 your own programs in no time.

Then, you can get information out of $file_cabinet by using those same numbers within brackets:
$first_name = $file_cabinet[0];
$last_name = $file_cabinet[1];
$email = $file_cabinet[2];
$facebook_url = $file_cabinet[3];
$twitter_handle = $file_cabinet[4];
Warning
It’s probably old hat to you by now, but remember from the box on Programming Languages Like Zeroes that most things in PHP start
 counting at 0. Arrays are no different. This means that the first item in $file_cabinet is $file_cabinet[0], not $file_cabinet[1].

From this point, you can do whatever you want with those values, including print
 them out. Here’s a complete program that isn’t very useful, but certainly puts an
 array through its paces. It fills an array, pulls information out of the
 array, and then does a little printing.
<?php

$file_cabinet[0] = "Derek";
$file_cabinet[1] = "Trucks";
$file_cabinet[2] = "derek@DerekTrucks.com";
$file_cabinet[3] = "http://www.facebook.com/DerekTrucks";
$file_cabinet[4] = "@derekandsusan";

$first_name = $file_cabinet[0];
$last_name = $file_cabinet[1];
$email = $file_cabinet[2];
$facebook_url = $file_cabinet[3];
$twitter_handle = $file_cabinet[4];

echo $first_name . " " . $last_name;
echo "\nEmail: " . $email;
echo "\nFacebook URL: " . $facebook_url;
echo "\nTwitter Handle: " . $twitter_handle;

?>
This program does a fine job filing pieces of information away for use later—but
 there’s a bit of a problem here. Are you really going to remember that you have a last
 name at position 2, and at position 4, you stored the Facebook URL? That’s a disaster
 waiting to happen.
Fortunately, the wise folks that came up with PHP thought this through. PHP arrays
 are associative, which means simply that you can associate labels
 with each item in the array. Going back to the idea of each number being a folder in a file
 cabinet, you can use an actual label on the folder. Better yet, that label can be
 anything you want.
Following is that same simple program; this time it uses associative labels. You
 should make these changes to your own copy of this script if you’re following
 along.
<?php

$file_cabinet['first_name'] = "Derek";
$file_cabinet['last_name'] = "Trucks";
$file_cabinet['email'] = "derek@DerekTrucks.com";
$file_cabinet['facebook_url'] = "http://www.facebook.com/
DerekTrucks";
$file_cabinet['twitter_handle'] = "@derekandsusan";

$first_name = $file_cabinet['first_name'];
$last_name = $file_cabinet['last_name'];
$email = $file_cabinet['email'];
$facebook_url = $file_cabinet['facebook_url'];
$twitter_handle = $file_cabinet['twitter_handle'];

echo $first_name . " " . $last_name;
echo "\nEmail: " . $email;
echo "\nFacebook URL: " . $facebook_url;
echo "\nTwitter Handle: " . $twitter_handle;
?>
By now, though, this $file_cabinet should be
 looking a bit familiar. You’ve seen something that looks awfully similar…read on for the
 full story.

PHP Gives You An Array of Request Information

Yes, you guessed it: $_REQUEST—that special
 variable PHP gave you to gather all the information from a web form—is an array! And
 when you’ve written code like $_REQUEST['first_name'], you’ve been grabbing a particular piece of
 information out of that array.
In fact, you’ve already seen that the most powerful way you use arrays is really
 behind the scenes. You (or a web browser) stick information into the array and then pull
 it back out and work with that information. The array just serves as a convenient way to
 hold things, like when a browser is sending a request to your PHP script.
You’ve seen that not only can you retrieve information in an array by a name—the
 label on a file folder—but also by number. This means that you can use $file_cabinet['first_name'], but you can also use $file_cabinet[0]. The same is true of $_REQUEST; it’s just an array, therefore, using $_REQUEST[0] is perfectly fine with PHP.
What exactly is in $_REQUEST? Go ahead and create
 the following new program, and you can see for yourself.
<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 3-2</div>

 <div id="content">
 <p>Here's a record of everything in the $_REQUEST array:</p>
 <?php
 foreach($_REQUEST as $value) {
 echo "<p>" . $value . "</p>";
 }
 ?>
 </div>

 <div id="footer"></div>
 </body>
</html>
This is another one of those scripts that can look intimidating at first, but it’s
 really not bad at all. In fact, the only thing you’ve not seen before is the line with
 the foreach construct. Take a closer look at this
 line, which begins a PHP loop:
foreach($_REQUEST as $value) {
The foreach construct is a nifty PHP element that
 lets you quickly get at the values of an array (you’ll learn a lot more later, on Iterating Over Each Group). In this case, foreach takes an array ($_REQUEST) and
 then pulls each value out of that array, one at a time. Each time it pulls out a single
 value, it assigns that value to a new variable called $value; that’s the as $value part of the
 foreach line. Inside the foreach loop, a $value variable is
 assigned a single value from within the array. This is repeated until there are no more
 values from left in the array.
Just as with the if statement you’ve used a few
 times, the curly braces ({ and }) tell PHP where the beginning and the end of this loop
 are:
foreach($_REQUEST as $value) {
 echo "<p>" . $value . "</p>";
}
Everything between the { and } runs once for each time through the loop. This means that
 for every item in $_REQUEST, this line is going to
 run one time:
echo "<p>" . $value . "</p>";
This echo line prints out $value with some HTML formatting. Every time foreach loops around, $value picks up the next value from $_REQUEST, which makes this statement is a quick way to print out every
 value in $_REQUEST.
Now, suppose that $_REQUEST has values within it
 like “Derek”, “Trucks”, and “@ DerekAndSusan”. When PHP runs your code, it does
 something like this:
echo "<p>" . "Derek" . "</p>";
echo "<p>" . "Trucks" . "</p>";
echo "<p>" . "@DerekAndSusan" . "</p>";
Save this script as showRequestInfo.php. You’ll also need to
 change where your socialEntryForm.php web form submits its
 information to the following:
<form action="scripts/showRequestInfo.php" method="POST">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="50" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Join the Club" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>
</form>
Note
You may want to create a copy of socialEntryForm.html, and
 call it something else, like socialEntryForm-2.html or
 enterInformation.html. This will give you two versions: one
 that sends information to showRequestInfo.php, and one that sends
 information to getFormInfo.php.

Visit your new web form, fill it out, and then submit it. The web form you get back
 is the result of running your new showRequestInfo.php script. This
 form finally gives you an idea of what’s being sent between your web browser and a web
 server, and you can see it all in Figure 3-12.
[image: The showRequestInfo.php script shows you some things you expected here, like the information entered into your web form.]

Figure 3-12. The showRequestInfo.php script shows you some things you expected here, like the
 information entered into your web form.

At this point, you have the raw information, but what does it all mean? The web page
 in Figure 3-12 is like seeing all the
 files on a computer, but having none of the names of those files. Or, if you like the
 file cabinet analogy, imagine having a cabinet of folders with all the labels torn off.
 It makes knowing what’s going on a little trickier.
With the form data, you already know the labels: “first_name”, and “last_name”,
 “email”, and so on. In an associative array such as what PHP uses, these are called the keys.
 You can get the value of a particular “folder” in an array with code like this:
$value = $file_cabinet[$key];
This line of code gets the value from the array that’s attached to whatever label
 the $key variable holds. Thus, if $key were “first_name”, the code would basically be the same
 as this:
$value = $file_cabinet['first_name'];
Therefore, in showRequestInfo.php, you just need to also get
 the keys from the $_REQUEST array, instead of just
 the values. Then, you can print out both the key and the value.
 And, wouldn’t you know it, PHP makes that easy, again by using foreach:
<div id="content">
 <p>Here's a record of everything in the $_REQUEST array:</p>
 <?php
 foreach($_REQUEST as $key => $value) {
 echo "<p>For " . $key . ", the value is '" . $value . "
'.</p>";
 }
 ?>
</div>
This time, you’re instructing foreach to get both
 the key, as $key, and the value, as $value. That special => sign tells PHP you want the $key
 and then the $value attached to the key. In other
 words, you’re grabbing a label and the folder that label is attached to, which is just
 what you want.
Fill out your form again and check out the results of your updated PHP script, as
 shown in Figure 3-13.
[image: Now that you’ve added the explanatory text and the foreach statement shown in the code above, you can see not just the values for each key, but the key name itself. These names are none other than the form input names from your HTML.]

Figure 3-13. Now that you’ve added the explanatory text and the foreach statement shown in the
 code above, you can see not just the values for each key, but the key name itself.
 These names are none other than the form input names from your HTML.

What Do You Do with User Information?

At this point, you’ve got a lot of information stuffed into a lot of variables. In
 fact, your earlier web form, socialEntryForm.html, looks a lot like
 the signup forms you’ve probably filled out hundreds (or thousands) of times online. But
 there’s a problem, isn’t there? In fact, you might have already run across it as you
 worked through all the changes to your getFormInfo.php script: none
 of that information was ever saved! You had to enter in your name and social information,
 over and over and over.
Good PHP programmers are able to solve just about any technical problem you
 throw at them. They know all the PHP string functions, arrays, and a lot more, to boot.
 But great PHP programmers can solve a whole set of problems that
 those good PHP programmers never think about: user expectation problems. These are
 problems that really aren’t technical—although you might need to be a good programmer to
 work around users.
Here’s the million-dollar question: What does your user expect
 your pages and scripts to do? For instance, does your user expect to have to come back to
 your page and enter in the same information, each time? Absolutely not. You’d probably
 stop visiting a site like that yourself. What you have is a user expectation problem—and
 if you want users to hang around and use your site, you’d better solve this
 problem.
In fact, one of the best things you can do is actually use your
 own pages and programs. Get a cup of coffee, a notepad, and just sit down at your
 computer. Close all your text editors and programming tools, and think, “I’m a user!”
 Then, try out your web form, submit the form, enter weird information in it, and just see
 what happens. Take a few notes about things that bug you, but remember: you’re just a user
 here.
Warning
You might be tempted to make all your notes in a text editor, or just start fixing
 things. Resist this urge! As soon as you start fixing things, or even getting immersed
 in your computer, you’re not thinking like a user anymore, and you’ll miss
 things.

You’ll probably find all sorts of things you didn’t even think about. So, now what?
 Well, you’ve got to start fixing those things. And first up is this pesky issue of having
 to enter the same information into your page, over and over.

Chapter 4. MySQL and SQL: Database and Language

Where is this supposed to go?
It’s a question you ask every day. Where do these shoes go? Where does this new box of
 books go? Where do these receipts go? Because that’s such a common question, it shouldn’t
 surprise you too much that when you’re building web applications, you need to ask the same
 thing:
Where does my information go?
For the kinds of web applications you’ve been building with web pages and PHP, the
 answer to this question is simple: in a database. But what do you get out of a database that
 makes it worth the effort of installing another tool and learning another language? And, why
 does everyone seem to agree that if you’re writing PHP code, you need a database, too? Sit
 tight, because this chapter is about to reveal all.
What Is a Database?

A database is just a repository in which you can store information, add some layer of
 organization to the stored information, and grab that information when it’s needed. In a
 literal sense, a file cabinet is a database. You can throw things into it, pull those
 things back out, and even use files and labels to keep your files organized.
Databases Are Persistent

You’ve already seen that PHP gives you arrays (The $_REQUEST Variable Is an Array) that serve as a sort of programmer’s
 file cabinet. An array might function as a database in a simplistic sense, but it won’t
 serve your needs for long. For one thing, arrays and their contents in PHP are lost
 every time your program stops and starts again. That’s not very helpful.
A good database provides long-term storage for your information. If your program
 stops running, or your entire web server has to be restarted, a database doesn’t lose
 your information. Imagine if every time your web server had to be shut down for an
 upgrade, your database lost every user’s first name, last name, and email address. Do
 you think your users would come back to your site if they repeatedly had to type
 everything in again? Not a chance.
Therefore, a good database needs to store information more permanently. In
 programmer jargon, this is called persisting your information. (At
 times, though, even permanent information can be lost; see the box that follows for advice on
 backing up your information in such cases.)
UNDER THE HOOD: Permanent Data Is Really Semi-Permanent
Even though databases store your information, and that storage lasts beyond your
 computer or even a database starting up and shutting down, your information is still
 not really permanent. Think about it: even if you write in ink instead of pencil, you can still throw
 away the piece of paper you wrote on. That’s how databases work: they store
 information in a form that’s harder to destroy, but that information still
 can be destroyed.
At some point, databases have to store information somewhere, usually on
 hard drives. If one of those hard drives crashes or becomes defective,
 your information is lost, no matter how good your database is. Additionally, threats
 to computers like overheating or natural disasters can wipe out your data by
 destroying the hard drives on which it exists.
That’s why most databases offer some form of backup and replication. Backup is just creating a copy of your
 database so that if something goes wrong, you can restore the database from the backup
 and recover all (or at least most) of the information that’s been lost.
Replication is when an entire database is duplicated (the
 duplicated version might be running simultaneously). This means that in addition to
 having the main database and possibly a backup, you have an entirely different copy of
 the database running, as well. With replication, an entire database could fail, but
 all your applications keep running because they can switch to the replicated
 version.
Replication is expensive because you basically need another server with another
 copy of your database software running. Still, if you use an application extensively
 and it earns money as long as it’s running, replication is a really important way to
 ensure that information isn’t lost in a disaster.

If you think about it, you’re constantly working with something like this on your
 computer: a system that stores your information over a long term. It’s your hard drive and file system. The files on your computer are basically pieces
 of information; such as addresses, emails, your finances, or maybe what level you’ve
 made it to in Angry Birds. You can shut down your computer and start it back up, or even
 upgrade to a new computer, and all those files with all your information will still load
 up.
In other words, a file system is really a sort of database. In fact, lots of
 databases actually use files much like your computer does to persist information. So,
 why doesn’t PHP just store information in files? It actually has an entire set of tools
 for working with files, including creating, writing, and reading files. Isn’t that
 enough?
Note
You learn about how to use PHP to work with files in Chapter 5.

Databases Are All about Structure

If you think about it, there’s something pretty clunky about your computer’s file
 system. Have you ever tried to remember the last time you sent an email to someone? Your
 email program might not know that person’s email address. And, if you go to that
 person’s card in your address book program, that address book program might not be
 connected to your email program.
Even if you actually find the email address, you might need to reference some
 documents related to the email message. Where are those documents? In another folder
 somewhere, probably in some highly-organized structure about which you’ve long
 forgotten.
That’s why your computer gives you one or more ways to search for information. In
 Mac OS X, you can use Spotlight (see Figure 4-1)
 or a program like Quicksilver (http://quicksilver.en.softonic.com/mac). If you
 have Windows, you can download Google’s Desktop Search (http://www.google.com/quicksearchbox, see
 Figure 4-2). These programs find all
 occurrences of a certain word or topic across your entire system.
[image: Spotlight in Mac OS X tries to relate files in different places by their name, the folder they’re in, or their content. In other words, Spotlight tries to determine the relationships between different files and folders.]

Figure 4-1. Spotlight in Mac OS X tries to relate files in different places by their name,
 the folder they’re in, or their content. In other words, Spotlight tries to determine
 the relationships between different files and folders.

In fact, these search programs attempt to do what databases do by nature: locate and
 organize information. If you’ve ever tried to make these sort of connections on your
 computer—whether you’re using Spotlight or Google Search or doing it by hand—you know it’s a hassle and
 inconsistent, at best. What you need is a better way to connect two, three, or ten
 pieces of information together.
[image: Google Desktop Search works in both Windows and Mac OS. It indexes and connects files on both your computer and in the cloud in Google Documents and Gmail. It actually builds its own database to make and remember these connections.]

Figure 4-2. Google Desktop Search works in both Windows and Mac OS. It indexes and connects
 files on both your computer and in the cloud in Google Documents and Gmail. It
 actually builds its own database to make and remember these connections.

Good Databases Are Relational

There is one task for which a file system and your hard drive are lacking, but a
 database excels: creating relationships between different pieces of
 information. For example, you might have a person, and that person has several email
 addresses, phone numbers, and mailing addresses. This isn’t anything new; your address
 book program already handles these sorts of relationships.
But a good database goes further. An email message is related to the email address
 of the sender, and that email is related back to the person’s name and phone numbers and
 mailing address. A map with streets connects those streets to the streets used in a
 person’s mailing address. The creator’s name in a file description relates to that
 person, and their email, and their phone, and so on.
In a lot of ways, these relationships are really a giant web of connections. A good
 database both creates and manages all these relationships. In fact, relationships are so
 integral to MySQL, FileMaker, Oracle, and other big-time databases that they’re called
 relational databases. (For a technical journey into how these
 databases operate, see the box on Objects and Relations in Databases, Oh My!.)
This means that in addition to instructing a database what information you want it
 to store for you and your programs, you also define how that information is
 connected to other pieces of information. Not only do you get to
 use this web of connections, but you specify to the database exactly how the web should
 be constructed. That’s a lot of power, which is why you’ll have to learn an entirely new
 language to work with these relational databases.
ALTERNATE REALITIES: Objects and Relations in Databases, Oh My!
For decades, the relational database has been the de facto standard for high-end
 applications, whether those applications run on the Web or on an internal company
 network. These database programs—often called an RDBMS, which stands for relational database management
 system—are the best understood, and most data naturally fits into an
 RDBMS model. Not only that, but there are more stable and professional RDBMS’s than
 any other type of database.
However, there are some competitors to the RDBMS model these days. Most of these
 are object-oriented database management systems, or OODBMS for short. Although the OODBMS has been around since the 1970s,
 it’s really just in the past 10 years that these have gained popularity.
An RDBMS stores information in tables, rows, and columns. For example, you might
 have a table of users that has columns for their first name, last name, and email.
 This means that anything that’s stored in the RDBMS involves some kind of mapping.
 This means that the information in your PHP script has to be mapped to particular
 tables and columns. You’d say, for example, the information in $_REQUEST['first_name'] needs to be stored in the
 Users table, and then in the first_name column. This isn’t a big deal, but it is an extra step in
 working with relational databases.
In an OODBMS, you’d create an object in your code. (You don’t
 need to worry about the details of objects and how they work for now.) So, you might
 create a new User object, and assign it’s first
 name the value in $_REQUEST['first_name']. Then,
 when you want to store that user’s information, you just hand the OODBMS your entire
 User object. In other words, the database figures
 out how to deal with an object instead of you specifying where individual pieces of
 information go.
Of course, with an OODBMS, this means you have to have lots of objects in your
 code, so you’re going to end up writing some code whether you’re working with an RDBMS
 or an OODBMS. Still, the RDBMS is far, far more common in web applications than the
 OODBMS, which is why it’s definitely the one you want to focus on learning.

Installing MySQL

Before you can tackle the new language of databases, you’ve got to get a database
 installed on your computer. In this book, you’ll be working with the MySQL database, which
 is one of the most common databases used in web applications. The reason for this is
 because it’s easy to get, easy to install, and easy to use.
Note
Like most things in life, ease-of-use comes with some tradeoffs. There are some
 database programs that cost a lot of money and are really complicated to use, such as
 Oracle. But these programs typically offer features that programs like MySQL don’t:
 higher-end tools for maintenance, and a whole slew of professional support options that
 go beyond what you can get with MySQL.
Don’t worry, though. Almost every single command, technique, and tool you’ll learn
 for working with MySQL will work with any relational database, so
 even if you end up at a company or in a situation where Oracle (or an IBM product, or
 PostgreSQL, or something else entirely) is in use, you’ll have no problems getting your
 PHP working with a database other than MySQL.

If you installed MAMP on your Mac or WampServer on your Windows-based PC (see Chapter 1, PHP on the Windows-Based Computers (WampServer Installation)), then you already have a local
 installation of MySQL. Pretty sweet, right? (And, if you didn’t—you masochist, you!—check out
 Appendix B for detailed, step-by-step
 instructions on installing MySQL without MAMP or WampServer.)
Just as Chapter 1 deals with a local installation of
 PHP, this chapter starts out by focusing on a local installation of MySQL. Of course, just
 as your PHP work in Chapter 1 progressed into working with
 a remote installation of PHP in Chapter 2, the same applies here,
 so if you don’t want to mess with WampServer or MAMP, you can jump on your hosting
 provider, fire up the mysql program, and get to typing.
 Of course, this assumes that your hosting provider lets you have shell access and lets you
 run the mysql console program—neither of which is a
 sure thing. If those become an issue, you can always resort to the already-installed
 MAMP/WampServer version on your local computer.
The mysql Console Program: Your New Best Friend

Regardless of how you install MySQL, your first step toward database mastery is to
 begin using the mysql console program. Although MySQL
 is a database, mysql is a program that lets you
 interact with that database from a command line. Every installation of MySQL comes with
 the mysql tool; you just have to know how to get at
 it.
But first you have to start the MySQL service. Otherwise,
 you’ll get errors because the mysql program has
 nothing to which it can connect. For WampServer, on the right side of the taskbar, click
 the green “W” icon and choose Put Online or Start All Services and read on. For MAMP,
 start the program, select Start Servers, and then go to Run the mysql Tool on MAMP.
Warning
Many budding web developers have had their careers crashed against the rocks of
 their MySQL server not being started. You can bang your head against the MySQL console
 all day and get nowhere if you don’t have MySQL started up on your computer.

Run the mysql Tool on WampServer

WampServer installs mysql along with the MySQL
 database. However, it doesn’t set up your PATH to
 access that program, so you’ll have to do a little digging around.
Find the MySQL Command-Line Program

Once you’ve started up MySQL, change into the wamp/ directory
 on the drive on which you installed WampServer. For example, if you put WampServer on
 the c:\ drive, go to a command prompt (Start→Run and then type
 command on Windows 7 and earlier; Windows key+R
 on Windows 8) and then type the following:
C:\Users\bdm0509> cd c:\wamp\bin\mysql\
Now, you’ll have to do a little investigation, because things change based upon
 the version of MySQL your copy of WampServer installed. Do a directory listing:
C:\wamp\bin\mysql>dir
 Volume in drive C has no label.
 Volume Serial Number is 7C78-FE01

 Directory of C:\wamp\bin\mysql

08/01/2012 02:32 PM <DIR> .
08/01/2012 02:32 PM <DIR> ..
08/01/2012 02:32 PM <DIR> mysql5.5.24
 0 File(s) 0 bytes
 3 Dir(s) 52,739,547,136 bytes free
You should see just one directory, specific to the version of MySQL installed by
 WampServer. Change into that directory. For MySQL 5.5.24, use the following:
C:\wamp\bin\mysql> cd mysql5.5.24
Now, you can go into yet another bin directory and finally
 run the mysql command:
C:\wamp\bin\mysql\mysql5.5.24> cd bin

C:\wamp\bin\mysql\mysql5.5.24\bin>mysql
ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)

Give mysql the Right User and Password

You have the right program, but the error message tells you that things aren’t
 working yet. That’s because you haven’t told mysql
 what user to use for logging in. You must specify the user with the -u option and then tell it to log in as “root”. Here’s how
 it looks:
C:\wamp\bin\mysql\mysql5.5.24\bin>mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.5.24-log MySQL Community Server (GPL)

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>
And there you have it! Somewhat surprising, you don’t need to provide a password
 to WampServer. Of course, because this is all running on your own local installation, security isn’t the concern it will
 be when you start connecting to a MySQL database on your web host out on the Internet.
 For now, you’re ready to start interacting with your database.

Run the mysql Tool on MAMP

If you’re on Mac OS X, MAMP came with a mysql tool, available
 through the Terminal. It’s stored in
 /Applications/MAMP/Library/bin, so you can run it like
 this:
$ /Applications/MAMP/Library/bin/mysql
Set Up mysql for Your User Profile

You can make this easier with a few quick edits to your profile and
 setup:
	Create a directory called bin in
 your home directory:
mkdir ~/bin

	Go to that directory:
cd ~/bin

	Create a symbolic link to the mysql program in that directory:
ln -s /Applications/MAMP/Library/bin/mysql mysql

	Add your new ~/bin directory to
 your path. Edit your ~/.bash_profile:
vi ~/.bash_profile

	Find or add a line to update your PATH variable. For example:
export PATH=$PATH:~/bin

	Now save your .bash_profile, and
 restart Terminal.

Note
If you’re comfortable with the Mac OS X command line and see things here that
 don’t apply to your system—such as bash needing
 to be replaced by a custom shell you’ve installed—then feel free to make those
 changes. You’re probably a few steps ahead already, anyway, so if you know what to
 do, go on and make the changes for your system.

If you can power through this setup, all you have to do in the future is start a
 new Terminal and type the following:
$ mysql
If you don’t want to go through that rigamarole, just type the full path to
 mysql every time:
$ /Applications/MAMP/Library/bin/mysql

Give mysql the Right User and Password

For MAMP installations, just as with WampServer installations, using the mysql tool log in to MySQL as the root user. You specify
 that by using the -u option and then the username
 root, like this:
$ mysql -u root
Running this command as is doesn’t quite give you what you were hoping
 for. In fact, you’ll probably see an error similar to this:
$ /Applications/MAMP/Library/bin/mysql -uroot
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password:
NO)
That’s because users have passwords, and you haven’t supplied one. On top of that,
 for reasons too confusing to mention, the mysql
 program doesn’t ask you for a password, unless you instruct it to. Add the -p option, and you’ll be prompted for a password:
$ /Applications/MAMP/Library/bin/mysql -uroot -p
Enter password:
To find your root user password, go to the MAMP start page. That’s the web page that fires up every time you start MAMP.
 If MAMP is already running, you can click “Open start page.” You’ll see something like
 Figure 4-3, and there, clear as can
 be, is your password.
[image: The MAMP start page is your first and best source for all things PHP, MySQL, and web server on your local installation of these programs. In this case, it displays the MySQL root password, which you’ll need…a lot!]

Figure 4-3. The MAMP start page is your first and best source for all things PHP, MySQL,
 and web server on your local installation of these programs. In this case, it
 displays the MySQL root password, which you’ll need…a lot!

A root user password of “root” isn’t particularly secure, but again, you’re on
 your local computer, not the NASA user store. Now, you can give that password to the
 mysql prompt. You should see something like this
 in return:
$ /Applications/MAMP/Library/bin/mysql -uroot -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 6
Server version: 5.5.9 Source distribution

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
Once you're logged in, you can type exit to quit:
mysql> exit
Bye
$
That’s all there is to it! Now you’re ready to start talking to MySQL.

Run Your First SQL Query

MySQL has installed a number of pre-created databases on your system. To see them, all you have to do is ask. Fire up
 the mysql command line tool again, and type this
 command:
show databases;
Warning
Be sure you end your line with a semicolon, or you’ll get unexpected results. All
 your MySQL commands must end with a semicolon, just like most of your PHP
 commands.

You should get a text response from MySQL that looks a bit like this:
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| development |
| eiat_testbed |
| mysql |
| nagios |
| ops_dashboard |
| performance_schema |
| test |
+--------------------+
8 rows in set (0.25 sec)
You might not have as many databases that come back, or you might have different
 databases. That’s OK.
The show command does just what you might expect:
 it shows you everything for a particular keyword; in this case, databases. To sum it up, show databases
 is just a way you can ask MySQL to show you all the databases installed on your
 machine.
On top of that, now you know something really important: MySQL really isn’t so much
 a database, but a piece of software that can store and create databases. In this
 example, there are eight rows returned as a result of running the show
 databases command, which means there are eight
 databases on the system, not just one. Before you’re done, you’ll have created several
 databases, all running within MySQL.
For now, tell MySQL you want to work with the mysql database, which you have on your system even if you’ve only installed
 MySQL. You do that with the use command, like
 so:
use mysql;
Now, you’re in the mysql
 database. This means that any commands you give to MySQL are run against just the
 mysql database.
At the beginning of this section, you asked MySQL to show you all the databases it
 has; now tell it to show you all the tables in the database you’re currently
 using:
show tables;
You should get a nice long list, as illustrated here:
mysql> show tables;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
24 rows in set (0.00 sec)
A lot of these table names appear odd, but that’s mostly because these are internal
 tables used by MySQL. As you create new tables and users and set up your database, all
 of that information is stored within another database: the mysql database.
To see some of this information, you must use the select
 command to access information from a specific table—for example, the
 user table. Type this command at your MySQL command
 prompt:
mysql> select * from user;
The asterisk (*) means “select everything.” Then,
 from specifies to MySQL where to get the
 information: in this example, user, which is a table in your
 database.
Don’t be surprised when you get a confusing stream of information back. In fact, it
 might look like something out of the Matrix; check out Figure 4-4 for an example.
[image: As you become more comfortable with MySQL and PHP, you’ll learn to select just the information you want and clean up this messy response, which was the result of using the from user command. There are also ways to format the response from MySQL, although you won’t need to worry about formatting much, because you’ll mostly be grabbing information from MySQL in a PHP script, where formatting isn’t a big deal.]

Figure 4-4. As you become more comfortable with MySQL and PHP, you’ll learn to select just
 the information you want and clean up this messy response, which was the result of
 using the from user command. There are also ways to format the response from MySQL,
 although you won’t need to worry about formatting much, because you’ll mostly be
 grabbing information from MySQL in a PHP script, where formatting isn’t a big
 deal.

The problem here isn’t in anything you typed. It’s just that you instructed MySQL to
 select everything from the user table, and in
 this case, everything is a lot of information. In fact, it’s so
 much information that it won’t all nicely fit into your command-line client, which is
 why you got all the strange looking lines in your response.
To tame this beast a bit, you can select just a little information from a table. You
 do this be replacing the * in the command with the specific column names you want, separated by commas:
mysql> select Host, User, Password from user;
You get back just the three columns for which you asked:
mysql> select Host, User, Password from user;
+--------------------------+-------+---
--+
| Host | User | Password
|
+--------------------------+-------+---
--+
| localhost | root | *62425DC34224DAABF6995B46CDCC63D92B03D7E9
|
+--------------------------+-------+---
--+
1 row in set (0.00 sec)
This example shows that for your local computer (localhost),
 you have a single user named “root.” The password is encrypted, so it isn’t very
 helpful, but you can see that MySQL definitely has an entry for you. Because you only
 asked for three columns, this response is a lot more readable and actually makes a
 little sense.
So, what’s a column? A column is a single category of
 information in your table. For example, in a table that stores users, you
 might have a first_name and a last_name column.
Note
If you’re starting to get a little dizzy or your nose is bleeding from the rush of
 new terms, don’t worry. You’ll be working with tables, columns, and these MySQL
 statements over and over and over again as you build your PHP programs. Just get what
 you can now, and you’ll have all this new MySQL lingo under control in no
 time.

Now that you’ve dipped your feet into the MySQL pool, it’s time to start to create
 your own tables and columns, and fill those tables and columns with your own
 information.
FREQUENTLY ASKED QUESTION: Going Local
My website is going to run on a server out there on the Internet. Why
 should I install MySQL on my own desktop?
You saw it already in the first few chapters on PHP, and now you’re about to see it again: most of your programming is meant to be run on a
 web server. You might pay a monthly fee for hosting to a service like
 kattare.com for your own domain, you might own your own server
 that is connected to the Internet, or you might deploy your code to your company’s
 servers, housed in a room that’s kept too cold for normal human beings and requires a
 key card to even make it through the door. In all these cases, though, your code ends
 up somewhere other than your own desktop or laptop.
But, if that’s the case, why go through the trouble of installing PHP and MySQL on
 your own computer? Truth be told, you could ask a lot of PHP developers and they’d
 admit that they don’t even have PHP (let alone MySQL) on their own devices. Their
 programming lives are lived through telnet and
 sshsessions, writing code on a distant server,
 somewhere out on the Web.
Although your code rarely will ultimately run from your own computer, there are
 some really good reasons to install your entire development setup on it. First, you’re
 not always in a place where you can connect to the Internet. You might be on a plane,
 in the back of a taxi, or lost in West Texas with nothing but an old leather-covered
 compass and a MacBook Pro. In all these cases, if you’ve got PHP and MySQL on your
 laptop, you can code away, testing your code against a real database, and never miss a
 beat.
Second, it’s common to write a lot of code, run it, find out you messed up
 something (or a lot of somethings), rewrite code, try again, and again, and again. The
 same is true when you start accessing a database. Although you could do this on the
 server on which your code will ultimately reside, that’s a lot of time spent on a
 network connection, using that machine’s resources, and potentially adding and
 deleting and adding data to a database. It’s a lot simpler to work on your own
 computer, and then at certain milestones, upload all your working code to your
 server.
And finally, you learn a ton by installing these programs from scratch. You get a
 better handle not just on your own device, but how these programs work. If someone is
 getting a particular error, you might recognize that same error as something you got
 when a Windows service wasn’t running, or the MySQL instance on a Mac OS X computer
 didn’t have the right table permissions set up. Your installation is a way to learn
 more about the tools you use, and that’s always a good thing.
You can run the examples in this book on your own computer and on your web server.
 Just make sure that if you’re working on your own machine you can either get to its
 code with a web browser or you upload your code every time you’re ready to make sure
 things are working correctly. That way, you can follow along with all the examples.
 Beyond that, it’s up to you where you develop your code, test it, and run it.

SQL Is a Language for Talking to Databases

So far you’ve been using a program called MySQL, and you’ve been talking to that
 program using SQL, the Structured Query Language. And you’ve already
 written a couple of SQL queries:
mysql> select * from user;
...
mysql> select Host, User, Password from user;
...
Both of those commands are SQL queries, or expressed more accurately, SQL. The
 Structured in SQL comes from the idea that you’re accessing a relational database,
 something with a lot of structure, and you’re using a language that itself is very
 structured. You’ll soon see that SQL is very easy to learn, mostly because it’s very
 predictable. That’s why you can look at a command like the following and probably figure
 out what it does:
mysql> select User, Password
 from users
 where first_name = 'Dirk'
 and country = 'Germany';
Even though you’ve never seen the where keyword,
 it’s obvious what it does: this returns only the User
 and Password column from the users
 table, where the user’s first_name field is “Dirk” and
 the country field is “Germany.”
Warning
The pronunciation of SQL is more hotly contested than most presidential elections.
 Some folks say “sequel” while others insist on “S-Q-L,” saying each letter individually.
 Although you probably want to stick what with the folks around you are using, both are
 perfectly fine. (By the way, this book goes with the “sequel” pronunciation.)

You could buy a SQL book and start memorizing all the keywords, but it’s a much better
 idea to simply begin building your own tables and learn as you go. To do that, though, you
 need to get connected to the database with which all your PHP programs will talk
 to.
Logging In to Your Web Server’s Database

Now that you’ve got a basic lay of the land for how MySQL behaves, it’s time to get
 things set up on the database your web server uses. You’ll probably need to use a tool
 like telnet or ssh
 to log in to your web server.
Note
If you’ve never used telnet or ssh before, you should Google either program’s name;
 you’ll find a ton of resources. You might also want to call whoever hosts your domain
 and ask how you can best access your server. Many web providers now have a graphical
 version of SSH that you can use right from their
 control panel. Most good hosting providers also have detailed online instructions to
 help you get logged in and started, usually applicable to both Windows and Mac OS
 X.

Once you’re logged in, you should be able to use the MySQL command-line client,
 mysql. Almost every hosting provider that supports
 PHP also supports MySQL, which means that just typing mysql is usually the way to get started.
Unfortunately, you’re likely to get an error like the following, right out of the
 gate:
bmclaugh@akila:~$ mysql
ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/tmp/
mysql.sock' (2)
This usually means that MySQL isn’t installed on your server, or at least that it’s
 not been configured correctly. But that’s probably by intention: most hosting providers
 keep their MySQL installation either on a different machine, or they at least limit
 accessibility by using a different domain name, like
 mysql.kattare.com. That adds some protection, isolation, and
 security to the MySQL databases they host, all of which are good things.
Note
If running mysql doesn’t work, you might
 also try mysql
 --host=localhost. Some MySQL installations are
 configured to only answer to localhost rather than what’s called
 the local socket. That adds a bit of security to a MySQL
 installation, but isn’t something you need to worry much about at this point. Just
 ensure that you can get mysql running, one way or
 another.

No matter where MySQL is installed, your task is simple. Run mysql and instruct it exactly where to connect. The --host= option lets you give mysql the hostname of your MySQL database server, and --user= lets you give it your own user name.
Note
You’ll almost certainly have a user name other than “admin” or “root” for your
 domain provider’s MySQL installation. You can ask what it is when you ask about
 telnet or ssh
 access. Or, if you want to try something out on your own, start with the user name and
 password you use for logging in to your web server itself. Be cautious, though: good database
 systems will have different user names and passwords than the web servers that talk to
 them.

Put all this together on the command line, and you’ get something like this:
bmclaugh@akila:~$ mysql --host=dc2-mysql-02.kattare.com
 --user=bmclaugh --password
Enter password:
That last option, --password, instructs MySQL to
 ask you for a password. You could put your password on the command itself, like --password=this_is_not_very_secure, but then that slightly
 nosy cube-mate would be able to log in to your MySQL server. And, if you’re wondering
 what happened to the -u and -p options for mysql, you
 might want to check out the box that follows.
POWER USERS’ CLINIC: You Say Potato, I Say P
Back on Run the mysql Tool on MAMP, you used the -u option for a username, and the -p option to instruct MySQL to prompt you for a password. And, as you
 might guess, there’s a -h option you can use for
 specifying the host; it works like --host.
In fact, there’s no difference between using -u brett and --user=brett. The same is true for --password and -p, and --host and -h. There’s
 no subtle variation; each pair is identical.
Why two options?
Well, it’s really about brevity and convenience. You’ve probably heard it before,
 and it remains true: programmers are lazy typists. Given the choice between typing six
 characters (--user) and two (-u), programmers will choose the smaller amount every
 time. So the -p and -u and -h options are sort of a
 programmer-friendly shorthand.
There’s no right or wrong way to do it, which is a good thing. For clarity, this
 book uses the longer, easier-to-read versions most of the time. But now that you know
 the shortcuts, feel free to use them anytime you like.

Once you type your password, you should see the standard MySQL welcome screen, as
 demonstrated in Figure 4-5.
[image: Once you’re logged in to MySQL, it really doesn’t matter whether you’re in Windows, Mac OS X, or a Linux or Unix machine on a hosting provider’s network. It’s all the same: you just enter SQL and get back responses.]

Figure 4-5. Once you’re logged in to MySQL, it really doesn’t matter whether you’re in
 Windows, Mac OS X, or a Linux or Unix machine on a hosting provider’s network. It’s
 all the same: you just enter SQL and get back responses.

Now, you’re ready to actually do something with this new SQL you’ve been
 learning.

Selecting a Database with USE

On most MySQL installations that hosting providers give you, you don’t have nearly
 as much freedom as you do on your own installation. For example, on a remote server,
 suppose that you type the SQL show command you used on Run Your First SQL Query:
myqsl> show databases;
If you ran this earlier on your own computer, you probably saw a lot of databases
 listed here. But now, on your hosting provider, you’ll probably only see one:
myqsl> show databases;

+----------+
| Database |
+----------+
| bmclaugh |
+----------+
1 row in set (0.09 sec)
That’s because your privileges on your hosting provider’s server are limited, and as such, the
 company certainly isn’t going to let you log in to the mysql system databases and see what users are in the system’s
 user table. What you probably see is a single entry: a database
 named something similar to your login name. So, if you log in to your system with the
 user name “ljuber”, you might see a database named ljuber or perhaps db-ljuber or something
 similar.
In fact, you’re probably already set up within the database that’s named after you.
 Go ahead and inform MySQL that’s the database in which you want to work:
mysql> use bmclaugh;
Database changed
Warning
On some systems, you’re automatically set up to use your user’s database when you
 log in to MySQL. Still, the use command won’t give
 you any problems if you point it to the current database, so it’s always a good idea
 to begin your MySQL sessions with use
 [your-database-name].

While you’re acclimating yourself to your new MySQL environment, you also want to
 get used to seeing and typing SQL commands in all capital letters. So if you get an
 email from your database buddy and she suggests that you use a WHERE clause or tells you that your SELECT query is goofy, she’s not
 actually yelling at you. She’s saying (or more accurately, writing) SQL commands in all
 uppercase letters, which is the way most database jockeys do it.
In fact, the commands you’ve seen thus far are more commonly written and typed like
 this:
mysql> SELECT * FROM user;
...
mysql> SELECT Host, User, Password FROM user;
...
mysql> SELECT User, Password
 FROM users
 WHERE first_name = 'Dirk'
 AND country = 'Germany';
This creates a nice clear distinction between the SQL keywords like SELECT, FROM,
 WHERE, and AND, and the column and table names. As you’ve guessed, though, MySQL accepts
 keywords in either uppercase or lowercase letters. They all work the same way.
Note
In this book, an all-capitals word like SELECT means the same thing as select written in code font.
Again, though, you don’t have to use capital letters in MySQL
 for keywords like SELECT and WHERE. Although it makes the code easier to decipher,
 lots of programmers get tired of all-caps and just go straight for the lowercase
 letters.

Using CREATE to Make Tables

When you could get to and USE the mysql database,
 you had some tables ready for you to SELECT from: the users table,
 for example. However, now you’re on a database server from which you can’t get to those
 tables. So, before you can get back to working on your SELECT skills, you
 need to create a table.
As you might have already guessed, you can do that with another handy-dandy SQL
 keyword: CREATE. The objective is to create a table, put data in it, get
 data out, and generally have all kinds of database fun.
Type this command into your MySQL command line:
CREATE TABLE users (
This time, don’t add the usual semicolon at the end. When you press Enter, you’ll see something a little
 weird:
mysql> CREATE TABLE users (
 ->
As you know, MySQL commands should end in a semicolon, so when you leave it off,
 you’re telling MySQL, “Hey, I’m writing a command, but I’m not done yet.” What this
 demonstrates is that, you don’t have to jam a lot of SQL onto one line; you can split it
 up over several lines by pressing Enter. As long as you don’t type that semicolon, MySQL
 won’t try to do anything with your command. And that little arrow, ->, lets you know that MySQL is waiting for you to
 continue typing.
So be obliging! Keep typing the following lines, each of which sets up a different
 column of information in your table:
mysql> CREATE TABLE users (
 -> user_id int,
 -> first_name varchar(20),
 -> last_name varchar(30),
 -> email varchar(50),
 -> facebook_url varchar(100),
 -> twitter_handle varchar(20)
 ->);
Press Enter after this last semicolon, and you get a very unimpressive
 response:
mysql> CREATE TABLE users (
 -> user_id int,
 -> first_name varchar(20),
 -> last_name varchar(30),
 -> email varchar(50),
 -> facebook_url varchar(100),
 -> twitter_handle varchar(20)
 ->);
Query OK, 0 rows affected (0.18 sec)
This last line is MySQL’s very modest way of saying, “I did what you asked.” If you
 get an error message instead, see the following box for advice on handling typos.
FREQUENTLY ASKED QUESTION: How to Fix a SQL Typo
I got an error message because I mistyped something in one line of my
 command. Now what do I do?
Even for PHP and MySQL wizards, typos are a problem. In fact, because programmers tend to type way too
 fast, typos are a real source of frustration in MySQL.
In some cases, MySQL will simply display an error and let you try again:
mysql> use
ERROR:
USE must be followed by a database name
mysql>
No big deal. Other times, though, you’ll make a mistake in the middle of a
 command, and even worse, press Enter:
mysql> SELECT *,
 -> FROM
 ->
 ->
There’s an extraneous comma after the * in your SELECT line here. But MySQL is
 just giving you extra -> prompts every time you
 press Enter. What do you do?
The problem is that from the perspective of MySQL, you haven’t ended the SQL
 command. So, it isn’t processing your command—including your mistake—and isn’t giving
 you a chance to start over.
When you get into a situation like this, your best bet is to enter a semicolon,
 and then press Enter. This ends your current command—however broken that command might
 be—and instructs MySQL to process that command. This will usually cause an error, but
 then you’re back in control and can make fixes.

Without even thinking very hard, you probably know at least a bit about what’s going
 on in your CREATE command:
	CREATE informs MySQL
 you want to create a new structure in the database.

	TABLE specifies to
 MySQL what kind of structure. In this case, you want a table.

	“users” is the name of the table you’re
 creating.

	The opening parenthesis (() indicates to MySQL that you’re about to describe the table to
 create, one line at a time.

	Each line has a column name, such as user_id, and a type, such as int or varchar(20).

	When you’re done describing the table, you use a closing
 parenthesis ()) to let MySQL know you’re done
 describing the table, and then end the whole enchilada with a
 semicolon.

You’ll learn a ton more about all the different types of columns as you go, but for
 now, there are just two to worry about. The first is int, which is short for integer. An
 integer, as you recall from math class, is any whole number; 1, 890, and 239402 are
 ints, but 1.293 and 3.1456 are not.
Note
MySQL is just as happy to accept integer as
 int. In fact, ’it considers them
 identical.

The second type to which you need to pay some attention is a little less obvious:
 varchar. The varchar type stands for variable character, which
 means that it holds character data—strings—of variable lengths. Referring back to our
 example, a varchar(20) can hold a string as short as
 the length of 0 all the way up to a length of 20 characters. For advice on deciding on
 how big to make your columns, see the box below.
DESIGN TIME: The Size of Your Columns Really Does Matter
When most people are creating their tables, they spend a lot of time thinking about what they want to store in
 their database, and very little time thinking about things like how big the maximum
 length of a varchar field can get. So you’ll see
 lots of tables that have 10 or 20 varchar(100)
 columns, even though those columns hold totally different pieces of
 information.
But it’s better to stop and think about these things when you’re designing your
 tables. Make your columns as long as they need to be—but not longer. Yes, it may seem
 “safe” to just come up with crazy, overly long lengths, but then you’re not really
 doing a very good job of making your database really look like the information it’s going to
 store.
If you’re storing a first name, there’s really no way the maximum length of that
 first name is as long as, for example, a Facebook URL. A really, really long first
 name might be 15 characters (and that would be really long!). But
 you can barely fit “www.facebook.com”
 into a 20-character column. So your columns should have different maximum
 lengths.
But this is about good design, not making your database hum. Your database only
 uses space for the information it holds; you don’t get penalized by wasted disk space
 or bad performance if all your varchar fields are
 super-long. What you do get, though, is a database that looks sloppy, making
 you look like you didn’t spend much time thinking about your
 information.
Take the time to do good design now, and it will pay off later. Make your varchar columns as long as they need to be, and maybe even
 a little bit longer, but always remember what information will go
 in those columns.

The upshot of all these new terms is you’ve directed MySQL to create a table comprising several new columns, one that’s an int (user_id), and
 several that are varchars of various maximum
 lengths.
Did this command work? Well, look for yourself by using the SHOW command:
mysql> SHOW tables;
+------------------------------------+
| Tables_in_bmclaugh |
+------------------------------------+
| users |
+------------------------------------+
1 row in set (0.06 sec)
No doubt about it, you definitely created a table. But, what’s actually in the
 table? For that, you need a new command: DESCRIBE. Try it out on your users table:
mysql> DESCRIBE users;
+----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+-------+
user_id	int(11)	YES		NULL	
first_name	varchar(20)	YES		NULL	
last_name	varchar(30)	YES		NULL	
email	varchar(50)	YES		NULL	
facebook_url	varchar(100)	YES		NULL	
twitter_handle	varchar(20)	YES		NULL	
+----------------+--------------+------+-----+---------+-------+
6 rows in set (0.04 sec)
Note
You can also use DESC (or desc) for DESCRIBE.
 Thus, DESC
 users; is a perfectly acceptable SQL command,
 too.

Now, you can see that MySQL did what you commanded it to: It created a table called
 users with all the columns you specified, using the types you
 gave it. There’s a lot more information there, too, but you don’t need to worry about
 that just yet.

Using DROP to Delete Tables

What goes up must come down, or so the saying goes. For everything MySQL and SQL let
 you do, there’s a way to undo those things. You’ve created a table, but now you need to
 delete that table. However, DELETE isn’t the command you want; instead, it’s
 DROP.
Suppose that you decide you no longer like that users table, or
 you want to practice that fancy CREATE command again, you can ditch
 users with a simple line of SQL:
mysql> DROP TABLE users;
Query OK, 0 rows affected (0.10 sec)
Boom! It’s gone. But, just to be sure, confirm it:.
mysql> SHOW tables;
+------------------------------------+
| Tables_in_bmclaugh |
+------------------------------------+
0 rows in set (0.06 sec)
How simple is that? But wait…now you have no tables again, and nothing from which to
 SELECT. It’s back to creating tables again. Type that CREATE SQL statement into your MySQL tool one
 more time and create the users table again.
Note
On many systems, you can press the up arrow key and you’ll see the last command you ran. Press the up arrow key a few times, and it will cycle
 back through your command history. This is a great way to quickly reuse a command
 you’ve already run.

INSERT a Few Rows

At this point, you’ve created and dropped, and created the
 users table. But it’s still empty, and that’s no good. What do
 you do? Easy: INSERT some data.
Try entering this command into your command-line tool:
mysql> INSERT INTO users
 -> VALUES (1, "Mike", "Greenfield", "mike@greenfieldguitars.com",
 -> "http://www.facebook.com/profile.php?id=699186223",
 -> "@greenfieldguitars");
Query OK, 1 row affected (0.00 sec)
What a mouthful! Still, you can probably just look at this SQL and figure out what’s
 going on. You’re inserting information into the users table and then
 you’re giving it that information (VALUES), piece by piece.
You can actually trace each value and connect it to a column in your table. You
 might want to DESCRIBE your table again:
mysql> DESCRIBE users;
+----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+-------+
user_id	int(11)	YES		NULL	
first_name	varchar(20)	YES		NULL	
last_name	varchar(30)	YES		NULL	
email	varchar(50)	YES		NULL	
facebook_url	varchar(100)	YES		NULL	
twitter_handle	varchar(20)	YES		NULL	
+----------------+--------------+------+-----+---------+-------+
6 rows in set (0.29 sec)
The first value, 1, is assigned to user_id; the
 second, “Mike”, to first_name; and so on.
And really, that’s all there is to it. You can insert as much into your table as you
 want, anytime you want. There are lots of ways to fancy up INSERT, and you’ll learn
 about most of them as you start to work with INSERT in PHP.

Using SELECT for the Grand Finale

Finally, you’re back to where you can use good-old SELECT. By now, that command
 should seem like ancient history, given that you’ve used DROP and CREATE and INSERT and
 a few others since that first SELECT * FROM users.
 But, now you’ve got your own users table, so try it out
 again:
mysql> SELECT * FROM users;
+---------+------------+------------+----------------------------+--
--+-------------------
-+
| user_Id | first_name | last_name | email |
facebook_url | twitter_handle
 |
+---------+------------+------------+----------------------------+--
--+-------------------
-+
| 1 | Mike | Greenfield | mike@greenfieldguitars.com |
http://www.facebook.com/profile.php?id=699186223 | @greenfieldguitars
|
+---------+------------+------------+----------------------------+-
---+-----------------
---+
1 row in set (0.00 sec)
No big surprises here; you got back the row you just inserted. However, just like
 earlier, the screen is a bit of a mess. Too many columns make the results hard to
 read.
To simplify things, grab just a few columns. For example, let’s assume that you
 don’t really need to see Mike’s entire Facebook page URL right now. From the code on
 Run Your First SQL Query, you know how to select specific columns of
 information:
mysql> SELECT first_name, last_name, twitter_handle FROM users;
+------------+------------+--------------------+
| first_name | last_name | twitter_handle |
+------------+------------+--------------------+
| Mike | Greenfield | @greenfieldguitars |
+------------+------------+--------------------+
1 row in set (0.00 sec)
That’s a lot more readable. And once you’re writing PHP to talk to MySQL, this
 formatting won’t be such a problem. PHP doesn’t care about fitting everything into a
 nice line or two. It’s happy to take a big messy set of results and handle them.
If you’d like, take some time to insert a few more rows of users and then play with
 SELECT. If you want to get really fancy, try using a WHERE clause, like this:
mysql> SELECT facebook_url
 -> FROM users
 -> WHERE first_name = 'Mike';
+--+
| facebook_url |
+--+
| http://www.facebook.com/profile.php?id=699186223 |
+--+
1 row in set (0.00 sec)
As you can see, WHERE lets you choose a specific person or record of information.
 You’ll see that again on Avoid Changing User Input Whenever Possible. Try
 creating tables with more columns, selecting different columns, choosing records with
 WHERE, and see how far you can get with all the SQL you’ve already picked up.
POWER USERS’ CLINIC: SQL or MySQL? They’re Not the Same
It’s one thing to know what SQL stands for, and how to install MySQL. But it’s
 something else altogether to know what the difference is between SQL and MySQL. In
 fact, ask around at your local water cooler. You’d be surprised how many novice
 programmers are not sure what the difference is between SQL the language and MySQL the
 database program.
SQL is in fact a language. It’s something that exists separately from MySQL or any
 other database program, like PostgreSQL or Oracle. That means that SQL can change, or
 be updated, without your database automatically changing. In fact, the way it usually
 works is that SQL gets a new keyword or instruction, and then all the database
 programs release new versions to support that new keyword. Of course, SQL has been
 around for a long time, so this sort of thing doesn’t happen very often
 anymore.
MySQL is a database program. It lets you work with and administrate databases, and
 you do that with SQL. In other words, MySQL is really just a tool that lets you use
 SQL. That makes the name—MySQL—either terribly helpful or terribly confusing. Either
 way, in this book, you’ll be executing SQL commands against your MySQL
 database.
If you can keep the difference between SQL and MySQL in your mind, you’re going to
 be ahead of the game. That’s because when you work with your PHP, you’ll be connecting
 to a MySQL database, but you’ll be writing SQL commands and queries. Why does that
 matter? Because you can change to another database, and almost all of your SQL will
 work, as long as your new database accepts SQL. That’s the beauty of separating SQL
 from the database that you use, in this case MySQL. You can change one—moving to
 PostgreSQL or Oracle—without having to rewrite all your code.
Now, notice that almost all of your SQL will keep working.
 Each database adds its own twists to how it implements the SQL standard. And most
 databases add some database-specific features to “add value.” (You can read that as
 “to sell their product over another product.”) So, you can run into some problems
 moving from one database to another. But, your understanding of SQL helps there, too,
 because you’ll be able to diagnose any issues and quickly solve them.
The takeaway here is to learn SQL, use MySQL, and end up with code that works on
 just about any SQL database.

Part 2. Dynamic Web Pages

Chapter 5
Chapter 6
Chapter 7

Chapter 5. Connecting PHP to MySQL

Now that you’ve seen a bit of the power of PHP and MySQL, it’s time to bring these two
 juggernauts together. With many programming languages, any time you want to interact with a
 database, you have to download and install extra code or small plug-ins. PHP isn’t like
 that, though; it comes ready to connect to MySQL from the moment you run the php command.
Even though you’ve only recently begun your journey to PHP mastery, you’re ready to use
 a database from within your scripts. You’ll just need to learn a few new commands and how to
 deal with the problems that can come up when you’re working with a database. In fact, you’re
 going to build a simple form with which you can enter SQL and run it against your MySQL
 database. Who needs the mysql command-line tool when
 you’re a PHP programmer?
Then, to put a cherry on top of your towering sundae of PHP and MySQL goodness, you’ll
 write another script. This one takes all the information from the forms you’ve already been
 building, adds that information into a database, and then adds one more form to with which
 your users can search for another user by name. All that in one chapter? Yes indeed.
Writing a Simple PHP Connection Script

No matter how simple or advanced your PHP scripts, if they communicate with a
 database, they’ll begin with the same few steps:
	Connect to a MySQL installation.

	USE the correct MySQL database.

	Send SQL to the database.

	Get the results back.

	Do something with the results.

Depending on the application you’re writing, steps 3, 4, and 5 will change a bit based
 on what you’re doing. A script that creates tables looks different than a script that
 searches through existing tables.
But, those first couple of steps—connecting to MySQL and using the right database—are always the same, no matter how fancy
 your script is. Just think, then: the code you’re about to write is the same code that
 programmers making $150 or $200 an hour are writing somewhere. (They’re just writing that
 code in expensive houses with robots serving them ice tea as they lounge by the
 pool.)
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Connect to a MySQL Database

Because your form is going to take in SQL and run it against your MySQL database,
 first you’ve got to instruct your PHP script how to connect to a database. Essentially,
 you’re directing PHP to do the same thing you did when you started up your MySQL
 command-line client (Logging In to Your Web Server’s Database). When
 you connected to your web server’s database, you probably used a command like
 this:
bmclaugh@akila:~$ mysql --host=dc2-mysql-02.kattare.com
 --user=bmclaugh --password
You’ll need to give PHP the same pieces of information (database host, your user
 name, and a password) so that it can connect.
Fire up your text editor and create a new script. Call it
 connect.php. This script is going to be as simple as you’ll ever
 see because all you need it to do is connect to your database, USE the right database,
 and then run a sample SQL query to ensure that things are working correctly.
In your script, type the following lines:
<?php
 mysql_connect("your.database.host",
 "your-username", "your-password")
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";
?>
Note
Be sure to change “your.database.host”, “your-username”, and “your-password” to
 the values for your own database.
If you’re running your database on the same computer as your PHP and web-serving
 files, your database host name is usually localhost. Remember,
 localhost is just a way to say “the local machine.”

Yes, it’s really that simple! And, like most of the other PHP scripts you’ve been
 writing, although there are some new commands, you probably already know almost exactly
 what’s going on here.
First, there’s a new command: mysql_connect. No
 surprises here; this just takes in a database host, a user name, and a password, and
 makes a connection. It’s just as if you’re running your mysql tool and connecting to a remote database.
That’s pretty self-explanatory. But what about the die bit? Sounds a little gruesome (like Lord of the
 Flies gruesome, not Twilight teen-angst gruesome). In
 fact, it is a bit nasty: you use die when something
 might go wrong in your script. Think about die as
 saying, “If my code dies, then do something less nasty than throwing an error code on my
 user.” In this case, die prints out an error message
 that won’t scare off your users. (If you’re not sure why that’s so important, see the
 box on Everybody Dies at Some Point.)
But before you can understand die, you need know
 a little bit about the inner workings of mysql_connect. When mysql_connect runs,
 it either creates or reuses an existing connection to your database. It then returns
 that connection to your PHP program and makes all the other PHP-to-MySQL commands you’ll
 learn about soon available. But, if mysql_connect
 can’t create that connection—for example, if your database isn’t running or you have a
 bad host or user name—mysql_connect returns a very
 different value: false.
What’s really happening in your script is something like this:
<?php
 // This isn't working code, but you get the idea
 if (i_can_connect_to_mysql_with("my.database.host",
 "my-username", "my-password"))
 go_do_cool_database_stuff();
 else
 send_error_to_user_using_die
?>
That’s a lot of typing, though, so PHP lets you shorten it to this:
<?php

 mysql_connect("your.database.host",
 "your-username", "your-password")
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";
?>
Not only is this shorter, but it flips things around a bit. It’s saying, “try to
 connect (using mysql_connect), and if the result
 isn’t true (the or part of the code), implement
 die.” Now, die prints out an error message,
 but it also “dies.” In other words, it ends your script. So, if mysql_connect returns false, and die
 runs, your script will exit. Your users won’t ever see the “Connected to MySQL!” line
 because the script will have stopped running. It’s dead on the server room floor, in
 search of a working database connection.
Not only that, but mysql_connect sets up another
 function when it can’t connect. It makes available the errors it ran into while trying
 to connect by using another command, mysql_error.
 Thus, you can call mysql_error as part of your
 die statement to show what really happened.
Note
Technically, mysql_connect, mysql_error, and
 die are all examples of
 functions. A function is a block of code, usually with a name
 assigned to it, that you can call from your own code anytime you need to carry out the
 task that the block of is designed to do. It’s a lot quicker and neater to call a
 function by name than rewrite the block of code that function represents, over and
 over again.
Don’t worry about functions for now, though. Just use them like any old PHP command.
 Before long, not only will you understand functions better, but you’ll be writing your
 own.

If mysql_connect does connect without any
 problems, it will return that connection. That means the die line is skipped, and the next thing PHP does is execute this
 line:
echo "<p>Connected to MySQL!</p>";
To see this script in action, create a simple HTML form and call it
 connect.html. You can use this HTML to get started:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 5-1</div>

 <div id="content">
 <h1>SQL Connection test</h1>
 <form action="scripts/connect.php" method="POST">
 <fieldset class="center">
 <input type="submit" value="Connect to MySQL" />
 </fieldset>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
This form is about as simple as it gets: build the form, drop a single button into
 place, and attach that button to your new connect.php script. Load
 up your form in a browser (see Figure 5-1), and click “Connect to MySQL.”
[image: Sure, you could have made connect.html even simpler. You could have ditched all the structure and CSS referencing. But who wants to connect to a database without showing off a little? Besides, customers like a nice, clean site. You don’t have to spend hours on CSS, but if you make even your most basic demos look professional, your clients will love you for it.]

Figure 5-1. Sure, you could have made connect.html even simpler. You could have ditched all
 the structure and CSS referencing. But who wants to connect to a database without
 showing off a little? Besides, customers like a nice, clean site. You don’t have to
 spend hours on CSS, but if you make even your most basic demos look professional, your
 clients will love you for it.

Hopefully, you see one of the simplest, happiest messages of your burgeoning PHP and
 MySQL programming career: you’re connected! Check out Figure 5-2 to see the triumphant, if simple,
 result.
[image: These three words mean that your PHP script now can do virtually anything you can imagine with your database. But there’s something missing: how does MySQL know which database is yours? You still need to direct PHP toward which database to USE.]

Figure 5-2. These three words mean that your PHP script now can do virtually anything you can
 imagine with your database. But there’s something missing: how does MySQL know which
 database is yours? You still need to direct PHP toward which database to USE.

POWER USERS’ CLINIC: Everybody Dies at Some Point
It’s really, really, really easy to forget to add those die statements to your PHP scripts. PHP doesn’t require them, so it’s
 perfectly happy to take in something like this:
mysql_connect("database.host.com", "user-
name", "password");
That’s the same code you’ve already written, except it leaves off the die part.
But, here’s the thing: leave off that die, and
 when something goes wrong, your script is going to crash and provide something that’s
 either a really useless error or something so cryptic that you can’t even tell
 what it is. For example, drop off your die and enter in a wrong password, run your script, and you’ll get
 something like this as an error:
Can't connect to local MySQL server
through socket '/tmp/mysql.sock' (2)
Believe it or not, this is actually a pretty good error message, as messages go
 when you don’t use die statements. So, adding that
 one line of error handling can make a huge difference for a user when things go
 wrong.
In fact, as you begin to build much bigger, full-blown web applications, you might
 redirect your user to a nicely formatted error page, complete with contact information
 for an administrator and a CSS-styled error report. Of course, none of that is
 possible without die.
Now, at this point, some of you—already flush with PHP power—are already thinking
 about how few errors you’re making. You’re thinking that die is for rank amateurs who don’t write flawless code. Unfortunately,
 when you’re up at 2 a.m. trying to hit a deadline so that you can get paid, your brain
 starts to resemble a rank amateur. Everyone makes mistakes, and die (and other error handling techniques) is one of those
 lifesavers that helps you look prepared and professional when those inevitable
 mistakes do occur.
In fact, the slickest, highest-paid programmers in the world are error-handling
 gurus. At the same time, they’re probably not
 using die. They’re more likely to use a
 more robust error-handling system; something like the error handling in Chapter 8. For now, though, a healthy and
 liberal use of die will get you used to adding in a
 form of error handling. You can come back and improve upon it later.

Select the Database with PHP

There’s something wonderful waiting around the programming corner now. Almost all of
 the mysql_ family of functions works the same: you
 give them some values, and they give back something useful. If something bad happens,
 you usually get back either false or a non-existent
 object (something most programmers call null or
 nil).
Now, you need to instruct MySQL which database your PHP script wants to use. There’s
 a function for that: mysql_select_db.
Note
The family of mysql_ functions is quite
 extensive. You might want to bookmark this documentation page: www.php.net/manual/en/ref.mysql.php. If you ever get stuck, head over there
 and see if a function might do what you need.

You give mysql_select_db a database name, and it
 uses that database—or returns false. Update
 connect.php to use the right database:
<?php
 mysql_connect("your.database.host",
 "your-username", "your-password")
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db("your-database-name")
 or die("<p>Error selecting the database your-database
-name: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database your-database-
name.</p>";
?>
Note
If you’re unsure of what database name to use, flip back to Run Your First SQL Query in Chapter 4. You can use SHOW DATABASES; in a
 MySQL terminal to see what databases you have available on your hosting provider.
 Failing that, you could also just call up your hosting provider, and they should be
 able to help you out with the name of the database you can use.

You should already see the pattern. The die
 command ensures that if bad things happen, an error displays, your users can actually
 read that error, and then the script exits. If things do go well, another happy message
 should print.
Try this new version out. Visit connect.html again and try to
 connect (and now USE) your database. You should see something similar to Figure 5-3.
[image: Once again, a few simple words, and major things are going on behind the scenes. Your script (shown on page 125) now has a connection to MySQL, and is USEing the correct database. Next up: talking SQL to your database.]

Figure 5-3. Once again, a few simple words, and major things are going on behind the scenes.
 Your script (shown on page 125) now has a connection to MySQL, and is USEing the
 correct database. Next up: talking SQL to your database.

Viewing Your Database’s Tables by Using SHOW

Now that you have a connection, and you’re tied in to the right database, you need
 to see which tables are available on your hosting provider. When you were working
 directly with the MySQL command-line tool, one of the first things you did was to see
 what tables existed and then start creating tables of your own (Run Your First SQL Query). You can do that same thing now with a PHP
 script and a little bit of simple output.
But before diving into that, you can easily have your script reveal which tables are
 available in your database. Open connect.php again, and add in this
 line:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOW TABLES;");
?>
Here’s another new PHP-to-MySQL function: mysql_query. You’ll become very
 familiar and friendly with this one; it’s the key to passing SQL in to your database.
 This function takes in SQL, and you’ve given it some really simple SQL:
SHOW TABLES;
This command does exactly the same thing as when you type the
 SQL SHOW TABLES command into your command-line tool.
Handling Errors by Determining If Your Results are Not

But what about die? What about error handling?
 There’s none of that yet, and by now, you know there should be. But there’s something
 different about this line: whatever comes back from mysql_query is stuffed into a variable called $result.
It’s really $result that you want to examine.
 The result should either have a list of tables, from SHOW TABLES, or report an error of some sort. If it’s reporting an error,
 $result is false because the mysql_ functions return false when there’s a
 problem.
You know how to check for a false value, though (Searching Within Text), so you can add the following code to handle
 problems:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOW TABLES;");

 if ($result === false) {
 die("<p>Error in listing tables: " . mysql_error() . "
</p>");
 }
?>
This code works, but it’s really not how most PHP programmers do things. The three
 equal signs (===) is an unusual thing to use in
 PHP, at least for checking to see whether a variable is false. What’s a lot more
 common—and the way it’s usually done in PHP—is to use the bang or
 negation operator, which is an exclamation mark (!). So, if you want to see whether a variable called $some-variable is false, you could say if (!$some-variable). By adding that exclamation mark,
 you’re saying something like, “see if $some-variable is false.”
Even better, think of ! as meaning
 not. So, what you really want to say in your code is, “If
 not
 $result, then die.” That means you could rewrite
 your code to look like this:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOW TABLES;");

 if (!$result) {
 die("<p>Error in listing tables: " . mysql_error() . "</p>");
 }
?>
This example shows much better PHP, and now you have any problems covered.
Note
It might seem weird to hear about “the way it’s done in PHP.” If code works, then it works, right? Well, yes…but have you ever heard
 someone who’s just learning English speak? Often, the words are correct, but the
 order, usage, and idiom are all wrong. It sounds awkward, and you can have trouble
 figuring out what the person means.
Programming languages are the same. There’s writing code that works, and there’s
 writing code in a way that shows you really know the language. Sometimes, this is
 called being eloquent. It’s worth learning not just how to
 write working PHP, but to write PHP that looks natural. (There are even books
 devoted to “speaking properly” in JavaScript and Ruby called Eloquent JavaScript by Marijn
 Haverbeke [No Starch Press] and Eloquent Ruby by
 Russ Olsen [Addison-Wesley].)

In fact, to ensure that your code deals with errors, change your SQL query to
 include a typo:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOWN TABLES;");

 if (!$result) {
 die("<p>Error in listing tables: " . mysql_error() . "</p>");
 }
?>
Load connect.html in a browser and run your connection test.
 Figure 5-4 is similar to what you
 should see: still a little cryptic, but clearly your code realized there was a problem
 and handled it with an error message rather than a massive meltdown.
[image: Every step along the way, deal with errors, as in this example from the code on page above. The better you handle errors and the more specific your messages are, the easier it is to figure out what’s gone wrong with your code. That results in code that your users enjoy and that you can easily fix when bugs crop up.]

Figure 5-4. Every step along the way, deal with errors, as in this example from the code on
 page above. The better you handle errors and the more specific your messages are,
 the easier it is to figure out what’s gone wrong with your code. That results in
 code that your users enjoy and that you can easily fix when bugs crop up.

Print Out Your SQL Results

So far, the PHP script you’ve created in this chapter handles errors, reports
 problems, and lets you deal with what’s in $result
 when things don’t go wrong. Unfortunately, that’s where things get trickier. $result is actually not a PHP type that you’ve used, or
 even one that you’ll need to learn how to work with directly. It’s something called a
 resource, which is PHP-speak for a special variable that’s
 related to something outside of PHP.
Think about it this way: In the case of mysql_query, you’ve asked for the SQL results from running the query SHOW
 TABLES. But, although PHP can talk to MySQL, it doesn’t know how to
 interpret SQL. Therefore, it can’t know that $result should hold a list of rows, each of which containing one value: a
 table name. All it knows is that something else—your MySQL database—is getting a query
 through the mysql_query
 function. Think about it for a moment. Depending on what query you pass
 mysql_query, $result might hold rows with multiple pieces of information, like a first
 name and Facebook URL, or just an indication of whether a CREATE TABLE statement
 worked or not.
In these cases, you usually end up with a PHP resource. That resource means something; it’s just that PHP doesn’t really
 know what that something is. So, your PHP needs help. What it needs is something that
 knows about MySQL and can figure out how to work with $result. That’s exactly what you get with another MySQL function, mysql_fetch_row. You pass
 this function in a resource returned from mysql_query, and it lets you cycle through each row in the results
 returned from your SQL query.
Here’s the basic pattern:
	Write your SQL query and store it in a string or a
 variable.

	Pass your query into mysql_query and get back a PHP resource.

	Pass that resource into mysql_fetch_row to get back rows of results, one at a
 time.

	Cycle through those rows and pull out the information
 you need.

	Buy a really nice musical instrument with all the cash
 you’re making.

Note
That last step is optional, but highly recommended.

You’ve got a resource in $result, now pass it in to
 mysql_fetch_row, like this:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOW TABLES;");

 if (!$result) {
 die("<p>Error in listing tables: " . mysql_error() . "</p>");
 }

 echo "<p>Tables in database:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 // Do something with $row
 }
 echo "";

?>
Warning
If you changed your SQL to SHOWN TABLES to produce an error earlier, be sure to
 change it back to SHOW TABLES.

Even though PHP doesn’t know what to do with the resource returned from mysql_query, mysql_fetch_row does. It takes in your $result resource and starts creating rows, one at a time, in an
 array.
And then there’s that while loop, something
 else that’s new, but not tough to grasp. A while
 loop continues to loop for as long as a specified test condition is true. In this
 case, it keeps looping while $row—which is the next
 row of results from your SQL query—is getting a value from mysql_fetch_row($result). When there are no more result rows, mysql_fetch_row doesn’t return anything, so $row is empty, and the while loop says, “Ok, I’m done. I’ll stop looping now.”
Finally, you’ve got a nice unordered list () ready to
 emerge from each row. There’s just one thing left to add:
<?php
 // All your existing database connection code

 $result = mysql_query("SHOW TABLES;");

 if (!$result) {
 die("<p>Error in listing tables: " . mysql_error() . "</p>");
 }

 echo "<p>Tables in database:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "Table: {$row[0]}";
 }
 echo "";

?>
Each time mysql_fetch_row returns $row, it’s actually returning an array, something with
 which you’ve already worked (The $_REQUEST Variable Is an Array). That
 array has all the different pieces of information from your SQL query. For SHOW
 TABLES, that’s just one thing, at $row[0]: the
 table name. Pretty soon, you’ll write some more complex queries, and you might need to
 grab the value in $row[1], $row[2], or even $row[10].
In this case, you get back $row, you grab the
 table name by getting the first item in the array (index 0), and then you print that
 out by using echo. There’s just one
 other wrinkle here: those curly braces inside the string that’s passed to echo. What’s
 up with those?
Well, you could rewrite this line like this:
while ($row = mysql_fetch_row($result)) {
 echo "Table: " . $row[0] . "";
}
Nothing wrong there, except for all the extra quotation marks and periods to stick
 strings together.
Note
Major bonus points if you nerded out and remembered that mashing strings
 together is called concatenation.

But PHP is pretty savvy, and the folks that wrote the language are programmers,
 too. They realized, like you do, that you constantly need to drop variables into the
 middle of strings. So, instead of constantly ending a string and adding a variable,
 you can just wrap a variable inside of { and
 }, and PHP will print the value of that variable
 instead of “$row[0]”. It makes for a lot simpler code, and that’s a good
 thing.
At this point, save connect.php, revisit
 connect.html in your browser, and see what tables are in your database. Figure 5-5 shows
 connect.php running against a database with a lot of tables.
 You might have only one or two, or none at all, and that’s fine. Just so long as you
 get a list of the tables that you do have or an empty response. What you
 don’t want here is an error.
[image: The SHOW TABLES command, as used in the connect.php script on page 130, is a bit clunky, and took quite a few lines to do something relatively simple. And, you might not even see any tables! Still, now you know how to run a SQL query. And for now, this kind of code is a really easy way to ensure that your PHP scripts are talking to your MySQL databases.]

Figure 5-5. The SHOW TABLES command, as used in the connect.php script on page 130, is a
 bit clunky, and took quite a few lines to do something relatively simple. And, you
 might not even see any tables! Still, now you know how to run a SQL query. And for
 now, this kind of code is a really easy way to ensure that your PHP scripts are
 talking to your MySQL databases.

Cleaning Up Your Code with Multiple Files

Even if you don’t realize it yet, there’s something problematic about the
 connect.php script you created in the previous section. Look at the
 first few MySQL calls you make:
<?php
 mysql_connect("your.database.host",
 "your-username", "your-password")
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db("your-database-name")
 or die("<p>Error selecting the database your-database-name: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database your-database-name.</p>";

 // And so on...
?>
You’re manually typing your database host, your user name, your password, and your
 database name into your script. Suppose that you have 10 scripts; you’re typing that 10
 times. The chances for misspelling something are pretty high.
Not only that, what happens when you change your password? Or if you upgrade to a
 better hosting plan to handle all the web traffic your apps are generating and need to
 change your database host? You’ve got to track down every place you used that information,
 in every PHP script. That’s not only a nightmare, it also keeps you from writing new code
 and making more cash. Not good.
What you need is a way to store those pieces of information where you can keep them up
 to date, and where your code can refer to them correctly every time. Programmers call that
 abstracting out the information. Abstraction
 is a way of hiding the implementation—the way something works—from programs that use that
 something. You basically have a symbol, or a name, and that name refers to some bit of
 information with a lot more detail. And even if that detail changes, the name still points
 to the right information.
It’s like saying “Bob” and meaning your friend, instead of calling him “that
 29-year-old guy with the full head of hair.” That way, every year you can call the same
 friend “Bob,” without changing your (and his) description.
In PHP, abstraction uses variables, and you’ll see how that works in the next
 section.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Replacing Hand-Typed Values with Variables

Instead of including your actual host name, user name, and password as in the code
 on Cleaning Up Your Code with Multiple Files, you want your code to
 look more like the following:
<?php
 mysql_connect($database_host, $username, $password)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db($database_name)
 or die("<p>Error selecting the database your-database-name: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database your-database-name.</p>";

 // And so on...
?>
You’re really just writing something that looks a bit like a variable in place of
 hand-typing the user name or database name. Now, you can define those variables above
 your connection code:
<?php
 $database_host = "your.database.host";
 $username = "your-username";
 $password = "your-password";
 $database_name = "your-database-name";

 // Database connection code
?>
But is this really that much better? You’re still entering these hand-typed values
 into your script. You haven’t solved the problem; you’ve just moved it to a different
 part of the script. What you need to do is to store your values in a separate
 file.

Abstracting Important Values into a Separate File

To avoid typing values such as your database name and user name into every
 script—and keep them up to date—you need to put them some place where all your PHP scripts,
 including connect.php, can access them. Open a new file, and call
 it app_config.php. Now, drop your variables into this new
 file:
<?php
// Database connection constants
$database_host = "your.database.host";
$username = "your-username";
$password = "your-password";
$database_name = "your-database-name";

?>
Note
Be sure to save app_config.php somewhere that makes sense for
 all your application’s scripts to access it. In this book’s examples,
 app_config.php is in the root of the site, under
 scripts/. So, if you’re in the ch05/02/
 scripts/ directory, you’d access this file at
 ../../../scripts/app_config.php or
 [site_root]/scripts/app_config.php. You can save the file
 wherever you want, as long as you get the path right in your PHP scripts that
 reference it.
When you move to a production version of your application, you definitely want to
 place this file outside of the site root. That way, hackers can’t
 simply type the path to your configuration script and gain access to all your
 passwords. Alternatively, you could add security to this directory; however, simply
 getting it out of the web serving directories altogether is usually easiest.

Now, you can have all your different PHP scripts use these shared variables. If you
 change a variable here, in app_config.php, that change affects all
 your PHP scripts that use these shared variables.
But how do you actually access these variables? Go back to
 connect.php and remove where you defined these variables
 manually. If you try to access connect.php through
 connect.html now, though, you’ll get a nasty error, as
 demonstrated in Figure 5-6.
[image: You defined your variables in app_config.php, but connect.php doesn’t know that; that’s why it can’t connect to your database and you get the error shown here. You need to instruct your connection script to not run until it loads app_config.php. Then, things will behave because the variables connect.php uses will be set properly.]

Figure 5-6. You defined your variables in app_config.php, but connect.php doesn’t know that;
 that’s why it can’t connect to your database and you get the error shown here. You
 need to instruct your connection script to not run until it loads app_config.php.
 Then, things will behave because the variables connect.php uses will be set
 properly.

Note
You can see the user name yellowta in screenshot in Figure 5-6. That user name will be
 different for you, and that’s good! You’ll see your own user name, rather than
 yellowta.

This error is thrown because connect.php now has no idea what
 $username or $password refer to. You need to instruct PHP that before it tries to do
 anything in connect. php, it needs to load
 app_config.php. In fact, this is a requirement for
 connect.php. That’s (almost) exactly what you type in your
 script:
<?php

 require '../../scripts/app_config.php';

 // Database connection code
?>
Now, PHP loads ../../scripts/app_config.php before it runs your
 mysql_connect
 function. In fact, require says, “Hey
 PHP, if you can’t load the file I’m telling you to load, throw a nasty error, because
 nothing else is going to work.”
Warning
Ensure that the path and file name that you give to require matches where you actually put
 app_config.php, or you’ll get to see the error that require produces, up close and personal.

Try to run your connection script again; you should see your table listing, exactly
 as in Figure 5-5, which means things are
 working again.
UNDER THE HOOD: Require or Include?
There’s another command in PHP that’s very similar to require: include. include does exactly what require does in that it says to PHP to load another file. The difference
 is that if that file can’t be loaded, include just
 issues a warning, and lets PHP continue to run the later commands in your script.
 require completely shuts things down, but
 include allows your script to keep
 going.
But here’s the thing. Are you really going to bother
 including a file if you don’t need that file? In most cases, probably not. You’re
 including that file because you need it; you really require that
 file to run. So, in almost every situation, you should use require to grab another file, not include. If something goes wrong, you want to know about it. You don’t
 want the rest of your code running, because it’s probably going to error out
 anyway.

Variables Vary, but Constants Stay Constant

There’s just one more nagging little problem with your code: you’re still using variables for your user name and password, along with the database
 host and database name. And what’s a variable? Something that
 varies or changes. So, PHP will happily let
 you do this in connect.php:
mysql_connect($database_host, $username, $password)
 or die("<p>Error connecting to database: " . mysql_error() . "</p>");

// This is allowed, but some bad mojo
$password = "hijinks"
What happens when some other script—one which also requires
 app_config.php—tries to connect with mysql_connect? It’s going to use $password, but now $password is no
 longer correct. It’s set to “hijinks,” and chaos ensues.
What you really want is for those values in app_config.php to
 be constant and never change. You can do this with the special define function. Open up app_config.php and change your code:
<?php
// Database connection constants
define("DATABASE_HOST", "your.database.host");
define("DATABASE_USERNAME", "your-username");
define("DATABASE_PASSWORD", "your-password");
define("DATABASE_NAME", "your-database-name");
?>
You define the name of a constant and the value for that constant, and PHP creates a
 new constant. Now, you can type DATABASE_HOST into
 your code, and PHP really sees your.database.host, which is the name of your database’s host server.
 Perfect! In addition, because this is a constant, not a variable, your scripts can’t
 change it anywhere along the line.
Note that the constants are also in all-uppercase letters. That’s not required, but
 it’s another one of those “speak like a PHP programmer” things, as described in the note
 on Note. You want constants to look different than variables, and
 using all uppercase names is one way to do that. Constants also don’t have
 the $ character before their names.
At this point, you need to make some quick changes to
 connect.php to use these new capitalized constant names:
<?php
 require '../../scripts/app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_
PASSWORD)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db(DATABASE_NAME)
 or die("<p>Error selecting the database " . DATABASE_NAME
 .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database " . DATABASE_NA
ME . "</p>";

 // SQL query-running goodness proceeds...
?>
Warning
You can’t use the { and } inside your quotes to print out constants. It’s only
 when you surround a variable (which starts with $)
 with { and }
 that PHP will print out the value of that variable. Instead, use the normal string
 concatenation approach by which you end your string and add the constants using the
 dot (.).

Go ahead and try out connect.php again. You should get a
 perfectly good list of table names. But this time, you have constants for your important
 information, safely tucked away in a file separated out of
 connect.php.
Note
It’s also a good idea to add some additional security to
 app_config.php, and any other scripts that contain special
 values like this. You can set the permissions on the file to be more restrictive or
 move the file to some place your PHP script can access, but your web users can’t. Ask
 your web or server administrator for help if you’re not sure how to do that.

DESIGN TIME: Start Small, Add Small, Finish Small
You might be wondering why you couldn’t have just started with
 app_config.php and the completed, working version of
 connect.php. Or, at a minimum, you could have just dropped all
 the database connection code into connect.php at once and then handled the
 printing code all at once. Isn’t that how real developers write code?
Well, yes and no. Lots of developers do write code like that. They type anywhere
 from 10 to 50 lines of code into their script and then try it out. Lots of things will
 break because developers type too fast and make mistakes. But then, they’ll fix each
 problem, one by one by one. And for lots of developers, that’s just fine.
But, that’s not very efficient. On top of that, you’re usually focused on the last
 step (like printing out the tables), and so you might not spend much time figuring
 out the best way to handle the in-between steps. You might not use { and } to simplify the
 statement that prints $row[0], or you might skip a
 die because you’re thinking about HTML output, not handling the case in which the database password
 isn’t right.
The reality is that the best developers work on really, really small chunks of
 code at a time. They test that code, and then they move on to something else. In
 fact—and this goes a bit beyond this book, but it’s still important—a lot of really
 elite developers actually write tests before they write anything
 else. They write those tests, and the tests obviously fail, because they haven’t
 written any code. Then they write just enough code to pass their test, and then they
 write another test.
Now, this rigmarole probably sounds insane. Write tests for code that doesn’t exist? Here’s what’s really nuts: often, this
 approach results in more test code than actual application code! It’s a lot of work, and it’s all
 based on the idea that you should write just enough code to get one thing working at a
 time.
But, here’s the big reveal, and why these elite developers are elite: this results
 in better code. Working small, from start to finish, means that you’re focusing on one
 thing and doing that one thing really well. You aren’t rushing to something else. And
 that means what you’re working on is solid and works. This approach does take more
 time in the beginning, but results in rock-solid code that breaks far less
 often.
So take your time, and work small. Your code will be better, and your customers
 will love you because your code is still running while they’re on the phone trying to
 get help with a broken app from “the other guys.”

Building a Basic SQL Query Runner

Now that you can connect to SQL, you’re ready to take on something more ambitious:
 building your own version of a MySQL command-line tool. Of course, you’re a PHP developer
 and programmer now, so mentally scratch out “command-line” and replace it with
 “web-based.”
It turns out that you already have most of the tools you need. You can easily build an
 HTML form with which you and your users can enter in a SQL query; you know how to connect
 to MySQL and select a database; and you can run a query. All that’s left is to figure out
 how to interpret that PHP resource that mysql_query
 returns when it’s not a list of table names.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Creating an HTML Form with a Big Empty Box

Before getting to mysql_query and its results,
 though, start with what you know: an HTML form. Keep things simple for now by creating a form with a few basic buttons and a single text area into which
 you can type queries.
Start your text editor and create queryRunner.html with the
 following code:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 5-2</div>

 <div id="content">
 <h1>SQL Query Runner</h1>
 <p>Enter your SQL query in the box below:</p>
 <form action="scripts/run_query.php" method="POST">
 <fieldset>
 <textarea id="query_text" name="query"
 cols="65" rows="8"></textarea>
 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Run Query" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
Fire up your favorite browser and ensure that things look like Figure 5-7.
[image: Whoever said you wouldn’t spend plenty of time writing HTML and CSS when you became a full-fledged web programmer? Even with a basic SQL query runner, good structure and style make a huge difference in presentation and how easy your code is to update.]

Figure 5-7. Whoever said you wouldn’t spend plenty of time writing HTML and CSS when you
 became a full-fledged web programmer? Even with a basic SQL query runner, good
 structure and style make a huge difference in presentation and how easy your code is
 to update.

Connecting to Your Database (Again)

Now that you have your HTML form, exactly as with the connect.html page you created
 on Connect to a MySQL Database, you need to write a script that
 connects to MySQL and then USEs your database. This code should be pretty familiar by
 now; create a new script in your scripts/ directory called
 run_query.php and go to work:
<?php
 require '../../scripts/app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db(DATABASE_NAME)
 or die("<p>Error selecting the database " . DATABASE_NAME .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database " . DATABASE_NAME . "</p>";
?>
You’ve already written this code before (Replacing Hand-Typed Values with Variables), and in fact, you have to write
 it every single time you connect to MySQL. That sort of duplication isn’t good for the
 same reason why you moved your database constants into
 app_config.php: you wanted to be able to keep code that’s always
 the same in a single place rather than ten or a hundred.
You’ve seen how easy it is to require a file, and
 pull in some constant values. And you can do the same thing with your database
 connection code. Open a new file and call it
 database_connection.php. Save this new script right alongside
 app_config.php (in your entire site’s
 scripts/ directory, not alongside your chapter-specific examples)
 and enter the following code:
<?php
 require 'app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db(DATABASE_NAME)
 or die("<p>Error selecting the database " .
 DATABASE_NAME . mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database " .
 DATABASE_NAME . ".</p>";
?>
Note
Ensure that your path to app_config.php matches where you
 stored that file. If you’re saving database_connection.php in the
 same directory as app_config.php, you just need the file name,
 without any directory paths.

You now have all your database code tucked nicely away, so you can radically
 overhaul run_query.php. Instead of all the code at the top of this
 section, you just need the following:
<?php
 require '../../scripts/database_connection.php';
?>
How’s that for short code? More important, notice that there’s no longer a reason to
 require app_config.php. Your script requires
 database_connection.php, and it’s
 database_connection.php that handles bringing in
 app_config.php. Things are much neater now.
To verify that this works, visit your queryRunner.html page and
 click the “Run Query” button. You should see something like Figure 5-8, all without anything but a
 single require in your main script.
[image: In queryRunner.html, clicking “Run Query” produces this page. The script run_query.php requires database_connection.php (which connects to the server and selects the database), which in turn requires app_config. php (which contains your password and other constants you need to connect). It might seem strange to write a script that appears to do nothing more than require another script. Actually, the more comfortable you get coding, the more you’ll favor this sort of reuse. You want to write just enough new code to get the job done. If you can reuse lines of existing code, you should do so.]

Figure 5-8. In queryRunner.html, clicking “Run Query” produces this page. The script
 run_query.php requires database_connection.php (which connects to the server and
 selects the database), which in turn requires app_config. php (which contains your
 password and other constants you need to connect). It might seem strange to write a
 script that appears to do nothing more than require another script. Actually, the more
 comfortable you get coding, the more you’ll favor this sort of reuse. You want to
 write just enough new code to get the job done. If you can reuse lines of existing
 code, you should do so.

Running Your User’s SQL Query (Again)

You’re finally ready to combine what you know about PHP and what you know about SQL.
 You’ve already captured anything the user puts into the big text area on your form
 through the $REQUEST variable (which, as explained on
 The $_REQUEST Variable Is an Array in Chapter 3, is an array), and you also can use
 mysql_query to run a query.
In run_query.php, here’s how you put those two things
 together:
<?php
 require '../../scripts/database_connection.php';

 $query_text = $_REQUEST['query'];
 $result = mysql_query($query_text);

 if (!$result) {
 die("<p>Error in executing the SQL query " . $query_
text . ": " .
 mysql_error() . "</p>");
 }

 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
?>
In other words, grab the correct field from the input from your HTML form, pass it
 to mysql_query, and you’re good to go. You can then
 pass in the returned PHP resource, $result, to an
 error-handling if statement, and finally to mysql_fetch_row to print out the results from the
 query.
This looks pretty good, so now you’re ready to actually try things out.
FREQUENTLY ASKED QUESTION: When Not to Abstract Out
The
 mysql_query
 function seems like something I’m going to be using a lot. Why not just
 abstract it out in the same manner as
 mysql_select_db
 and the defined constants?
Good question! You’ve correctly noticed that just as you’re constantly connecting
 to MySQL—with the same user name and password, repeatedly—and selecting a
 database—often the same database, repeatedly—you’ll be calling mysql_query, over and over and over. At first glance, it
 seems to make sense to place that in another file and then require that file.
Well, the reason is actually in the code you wrote on Running Your User’s SQL Query (Again): what you pass to mysql_query is going to change almost every time you call
 it. Earlier, in connect.php, you passed the SHOW TABLES query to
 it; now you’re passing it a query from the form field in
 queryRunner.html. So, even though you’re calling mysql_query over and over, what you’re giving that
 function is changing. It’s not going to help you to pull out that function from your
 main scripts.
You could move mysql_query out of your main
 script, and pass to it the part of the statement that keeps changing: the SQL query.
 You’d need to create a custom function that takes in your query from your main script
 and hand that query to mysql_query. Then, when mysql_query finished running, the custom function would need to pass back
 anything it returned to your main script.
That might sound like a mouthful, and a lot of work. It’s actually pretty easy,
 though, and once you start writing your own functions—something you’ll be doing in
 Chapter 8 quite a bit—you’ll have no
 problem doing just this. But, what would you gain? You’d still have to pass in a query
 and get back a response. you wouldn’t actually gain anything from building your own function; it would basically replace mysql_query, but you wouldn’t get any extra functionality,
 and it wouldn’t add any protection from changes or anything like that to your
 code.
However, before you go thinking that you shouldn’t worry about this sort of thing,
 take a minute. Asking yourself, “Could I pull this code out into another general file?
 Should I make this a custom function?” is a very good thing! You want to think like
 that, even if you decide—as is the case here—that it’s not a good
 thing. The more you roll around new ideas and ways to approach your code, the better a
 programmer you’ll be. So, keep asking yourself these questions; just don’t be afraid
 to answer your own questions with “No, that’s not such a great idea…in
 this case.”

Entering Your First Web-Based Query

In run_query.php, you’re connecting to a database and you have
 a way to run a query, but you probably don’t have much in your
 database yet, so start by creating a new table. Call the table urls
 (it’s going to contain web addresses). Here’s the SQL you’ll need:
CREATE TABLE urls (id int, url varchar(100), description varchar(100));
Of course, because you have a nice big text area on
 queryRunner.html, you could also spread that out:
CREATE TABLE urls (
 id int,
 url varchar(100),
 description varchar(100)
);
Either way, you want a form that looks something like Figure 5-9.
[image: Using a <textarea> tag in queryRunner.html lets your users enter SQL however they like. It’s a small thing, but these little bits of flexibility and user-centric design make your web forms a lot more enjoyable to use. You wouldn’t want to write a long SQL statement in a giant input box on one line, so why would your users?]

Figure 5-9. Using a <textarea> tag in queryRunner.html lets your users enter SQL
 however they like. It’s a small thing, but these little bits of flexibility and
 user-centric design make your web forms a lot more enjoyable to use. You wouldn’t want
 to write a long SQL statement in a giant input box on one line, so why would your
 users?

Go ahead and click Run Query. What did you get?
Not so good, right? You’re probably staring at a surprising screen, sort of like the
 one shown in Figure 5-10.
[image: Here’s what you get when you run the query shown in Figure 5-9. Sometimes the worst possible error message is not an error message. You’ve got nothing apparently wrong in your script, so what happened? In cases like this, an error message would help to avoid frustration.]

Figure 5-10. Here’s what you get when you run the query shown in Figure 5-9. Sometimes the
 worst possible error message is not an error message. You’ve got nothing apparently
 wrong in your script, so what happened? In cases like this, an error message would
 help to avoid frustration.

If you want to really become confused, press the Back button on your browser and run
 your CREATE query again. You’ll see a message like the one shown in Figure 5-11.
[image: Huh? First, you got nothing (Figure 5-10). But now, you’re being told that something did happen, and trying to make that (invisible) thing happen again has caused an error. Your script couldn’t create the urls table, because you already created it the first time you ran the query.]

Figure 5-11. Huh? First, you got nothing (Figure 5-10). But now, you’re being told that
 something did happen, and trying to make that (invisible) thing happen again has
 caused an error. Your script couldn’t create the urls table, because you already
 created it the first time you ran the query.

First, nothing happened—no results at all (Figure 5-10). Now, MySQL is reporting that
 the urls table already exists (Figure 5-11). In fact, if you hop out to your
 command-line tool, you’d see that, yes, the table does exist in
 your database:
mysql> describe urls;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
id	int(11)	YES		NULL	
url	varchar(100)	YES		NULL	
description	varchar(100)	YES		NULL	
+-------------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)
Look carefully at your code again:
<?php
 require '../../scripts/database_connection.php';

 $query_text = $_REQUEST['query'];
 $result = mysql_query($query_text);

 if (!$result) {
 die("<p>Error in executing the SQL query " . $query_text . ": " .
 mysql_error() . "</p>");
 }

 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
?>
The if (!$result) code block is not running; clearly $result came back as
 something other than false. However, the while loop
 never ran, so you never saw any results.
Wait a second, though. Your query was a CREATE query. What rows would be returned
 from that sort of query? There wouldn’t be any rows, because you weren’t asking for
 rows. You were just asking MySQL to create a table; in fact, a place to
 put rows.

Handling Queries That Don’t SELECT Information

The important point demonstrated in the previous section is that mysql_query is happy to take in a CREATE statement. It even
 did what you asked, which is why the second time you entered that query in Figure 5-11, MySQL returned an error, saying
 that the urls table was already created. When mysql_query receives a CREATE statement, it returns false if there was an error—which your script handles—but
 true if there’s not an error. If there’s not an error, it will not return any
 rows. You get a true value in $result, but nothing else. And that’s where things went
 wrong.
In fact, that’s what mysql_query does when it
 gets most of the SQL statements that don’t select data, such as CREATE, INSERT, UPDATE,
 DELETE, DROP, and a few others. For each of these, you just get back true (if things worked) or false (if they didn’t).
Note
A few of those SQL commands (for example, UPDATE and DELETE) might look new to
 you. Don’t worry, though. First, they do just what it appears they do: UPDATE updates
 information in a table, and DELETE removes it. Second, when you need to use those
 functions, you’ll get a lot more detail about exactly how to use each of them.

Fortunately, now that you know this is going on, it’s not too hard to deal with the
 problem. You just need to see whether the SQL query string that the user supplied has
 one of these special words. If so, it must be handled differently. But, it just so
 happens you’re plenty comfortable with searching through strings (Searching Within Text).
Take a moment to think this through; what you really want is something like
 this:
	Grab the user’s query from the HTML form.

	Pass the query into mysql_query and store the result in a variable.

	See if the result is false, which is bad no matter what
 type of SQL was passed in.

	If the result is not false, see if the query has one of
 the special keywords in it: CREATE, INSERT, UPDATE, DELETE, or DROP.
 (There are others, but this covers the most common ones.)

	If the query has one of these special words, just see
 whether the result of running the query was true, and let the user know that
 things went well.

	If the query does not have one of these words, try to
 print out the result rows as you’ve already been doing.

You know how to do all of these things individually; all you need to do is put them
 together. Start out with a variable that indicates whether the user’s SQL will return
 anything and set it to false:
$return_rows = false;
Now you can search the user’s query by using strpos, looking for one of the SQL keywords that tells you, “No, rows will
 not be returned by this query.”
$return_rows = false;
$location = strpos($query_text, "CREATE");
If nothing was found, check the next keyword…and the next…and so on:
$return_rows = false;
$location = strpos($query_text, "CREATE");
if ($location === false) {
 $location = strpos($query_text, "INSERT");
 if ($location === false) {
 $location = strpos($query_text, "UPDATE");
 if ($location === false) {
 $location = strpos($query_text, "DELETE");
 if ($location === false) {
 $location = strpos($query_text, "DROP");
 if ($location === false) {
 // If we got here, it's not a CREATE, INSERT, UPDATE,
 // DELETE, or DROP query. it should return rows.
 $return_rows = true;
 }
 }
 }
 }
}
Warning
Be sure to use that triple-equal sign (===) in your if statements to check whether $location is false.

That code might look complicated, but it’s clear when you walk through it, line by
 line. Basically, you have the same if statement,
 repeated over and over, with each of those statements containing another nested if statement:
$location = strpos($query_text, "SEARCH_STRING");
if ($location === false) {
 // Try again with another SEARCH_STRING
}
Finally, if all of the if statements fail,
 CREATE, INSERT, UPDATE, DELETE, or DROP are not in the query string:
// This is the innermost if statement
if ($location === false) {
 // If we got here, it's not a CREATE, INSERT, UPDATE,
 // DELETE, or DROP query. It should return rows.
 $return_rows = true;
}
The challenge here is that you really want to search the user’s query string not
 just for a single matching word, like CREATE or INSERT, but for several matching words.
 That’s a little tricky, so you’ve got to do it with one call to strpos at a time.
Note
Make sure that you understand this code, but don’t get too attached to it. It’s
 really ugly, and in the next chapter, you’re going to add an extremely new tool to
 your PHP programming kit and rework this code to be a lot slimmer
 and sleeker.

At each step, if the search string is found, it means that the user has entered one of
 those special SQL keywords that does not return rows, so the variable $return_rows is set to false, which is
 different from its original value, true.
Finally, at the end of this curly-brace love fest, the if statements unwind back to the main program, and either $returns_rows has a value of true because none of the searches matched, or it’s false because one of them did.
You’re ready to use $returns_rows to print out a
 result:
<?php
 // require and database connection code

 // run the query

 // handle errors in the result

 $return_rows = false;
 $location = strpos($query_text, "CREATE");
 if ($location === false) {
 $location = strpos($query_text, "INSERT");
 if ($location === false) {
 $location = strpos($query_text, "UPDATE");
 if ($location === false) {
 $location = strpos($query_text, "DELETE");
 if ($location === false) {
 $location = strpos($query_text, "DROP");
 if ($location === false) {
 // If we got here, it's not a CREATE, INSERT, UPDATE,
 // DELETE, or DROP query. It should return rows.
 $return_rows = true;
 }
 }
 }
 }
 }

 if ($return_rows) {
 // We have rows to show from the query
 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
 } else {
 // No rows. Just report if the query ran or not
 if ($result) {
 echo "<p>Your query was processed successfully.
</p>"
 echo "<p>{$query_text}</p>";
 }
 }
?>
Note
Remember that if ($return_rows) is the same as
 if ($return_rows === true). The same goes for
 if ($result).

Most of this is familiar. All of the code you’ve been using to print out rows stays
 the same. That code just moves inside the if
 ($return_rows) block, because it only applies if the user entered something
 like a SELECT that returns (potentially) lots of results.
Then, in the else branch of that if, your script reports whether things went OK. As an
 additional aid, this branch of the if statement
 prints out the original query so that the user can know what was executed.
Technically, you don’t really need that if
 ($result). Because you tested earlier to see if $result is false, if your script gets to
 this last bit, you know that $result is true, so you can simplify things at the end a bit:
if ($return_rows) {
 // We have rows to show from the query
 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
} else {
 // No rows. Just report if the query ran or not
 echo "<p>Your query was processed successfully.</p>";
 echo "<p>{$query_text}</p>";
}
This script is getting to be long, but you now know what every single line is doing
 at this point. Go ahead and try it out.
You probably created the urls table earlier—even though your
 PHP script didn’t let you know that. Try entering DROP TABLE
 urls; as your SQL query. Then, run your query, and this time, you should get
 a helpful message back, specific to your rowless query, as you can see in Figure 5-12.
[image: Now, run_query.php determines whether it’s been passed a query with one of the keywords that indicates there aren’t any return rows. The message when things go well is still a little terse, but at least there’s no blank space from trying to show result rows when there aren’t any result rows to show.]

Figure 5-12. Now, run_query.php determines whether it’s been passed a query with one of the
 keywords that indicates there aren’t any return rows. The message when things go well
 is still a little terse, but at least there’s no blank space from trying to show
 result rows when there aren’t any result rows to show.

Dealing with Humans

Unfortunately, there’s still a problem in one of those lines. Right now, if your
 user types the query DROP TABLE urls;, your set of
 if statements catches that DROP is part of the
 query, realizes it has no return rows, and does the right thing: reports that the query
 either ran without problems or that an error occurred.
But what about this query?
drop table urls;
Do you see a problem? Here’s the if statement
 that should indicate a match:
$location = strpos($query_text, "DROP");
if ($location === false) {
 // this should return true, and so there are no return rows
}
But that line searches for “DROP”, which will not match “drop” at all. strpos searches
 for strings, but it sees a lowercase letter, like “d,” as a different letter than an
 uppercase “D.” Thus, that search will find “DROP” but not “drop” or “dRoP.”
And, as always, it’s humans who are using your app, not robots. You can’t simply
 assume that those humans will be good SQL citizens and always use capital letters. You
 could even put a little message on the form: Please type your SQL in all
 capital letters. But, humans will be humans, and they tend to ignore
 instructions like that.
In fact, you’ll spend at least as much of your time dealing with the human factor in your code as writing code that handles the
 normal flow of operation. In fact, once you add real people to your line of thinking,
 you’ll realize that “normal” isn’t a useful term. Instead, your code simply has to deal
 with what’s possible.
So, how do you fix the issue of lowercase and uppercase? It turns out to be fairly
 simple: you convert $query_string to all CAPITAL
 letters before starting to search through it:
$return_rows = false;
$query_text = strtoupper($query_text);
$location = strpos($query_text, "CREATE");
// All the nested if blocks.
Now, if a user enters “drop table urls” or “DROP table UrLS,” the search string
 becomes “DROP TABLE URLS,” and searching for “DROP” will return a match.
But there’s another problem! Do you see what it is?
Note
Yes, there really are this many wrinkles and problems with just a single simple
 program. That’s why there are lots of programmers, but so few really great
 programmers: the difference is handling all these little details without throwing your
 iPhone through a nearby wall.

Avoid Changing User Input Whenever Possible

This one is a bit trickier, and it really is a potential problem, as opposed to
 something creates havoc right now. Here’s the last bit of your code that’s run if the
 user enters a rowless query like DROP or INSERT:
// No rows. Just report if the query ran or not
echo "<p>Your query was processed successfully.</p>"
echo "<p>{$query_text}</p>";
To see this in action, again, load queryRunner.html and then
 enter DROP TABLE urls; again. You’ll get something
 like Figure 5-13.
[image: Sometimes, the best problem you can solve is the problem that hasn’t yet occurred. Look closely at the SQL query here and compare it to the query in Figure 5-12. The code on page 151 processed the query successfully (it deleted the urls table), but it also changed the original capitalization of your user’s query, which is not always what you want to do.]

Figure 5-13. Sometimes, the best problem you can solve is the problem that hasn’t yet
 occurred. Look closely at the SQL query here and compare it to the query in Figure
 5-12. The code on page 151 processed the query successfully (it deleted the urls
 table), but it also changed the original capitalization of your user’s query, which is
 not always what you want to do.

Note
If you’re following along, you might need to CREATE the urls
 table before you can DROP it. You can flip back to Figure 5-9 for that SQL if you don’t
 recall it off the top of your head.

What’s the big deal? Look closely, and then flip back to Figure 5-12. Do you see the problem? In the
 latter version, in Figure 5-13,
 everything is in uppercase. That makes sense, because to make searching easier, you
 added this line to your script:
$query_text = strtoupper($query_text);
Then, when you output $query_text at the end, the
 output is shown in all uppercase letters. Is this a big deal? Well, it doesn’t seem to
 be, at least not here. However, it does reveal something: after that $query_text string is converted to uppercase, any time it’s
 used, it’s coming back with all uppercase letters.
Suppose that the original query was something like this:
SELECT *
 FROM users
 WHERE last_name = "MacLachlan";
Now, consider this same query, converted to all uppercase letters:
SELECT *
 FROM USERS
 WHERE LAST_NAME = "MACLACHLAN";
Believe it or not, these are not the same query. SELECT—and
 most of the other SQL queries—are going to treat a last name of “MacLachlan” as totally
 different than “MACLACHLAN”. As a result, those two queries are not identical at
 all.
Right at this juncture, this doesn’t create any trouble. Your script never reruns
 the query, and mysql_query runs with $query_text before its turned into its uppercase version.
 But, this is a problem waiting to happen.
In general, you want to try and avoid directly changing input from a user to steer clear of exactly this
 sort of problem: you might need to use that input again, and once you’ve changed it, you
 can’t go back.
Luckily, this is a really easy fix: you just don’t change the user’s input. Instead,
 you use a new variable to store the uppercase version of the query:
$return_rows = false;
$uppercase_query_text = strtoupper($query_text);
$location = strpos($query_text, "CREATE");
Now, you should use this new variable in all your string comparisons:
$return_rows = false;
$uppercase_query_text = strtoupper($query_text);
$location = strpos($uppercase_query_text, "CREATE");
if ($location === false) {
 $location = strpos($uppercase_query_text, "INSERT");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "UPDATE");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "DELETE");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "DROP");
 if ($location === false) {
 // If we got here, it's not a CREATE, INSERT, UPDATE,
 // DELETE, or DROP query. It should return rows.
 $return_rows = true;
 }
 }
 }
 }
}
As small a change as that is, it protects you in case you ever need to use that
 query string again.
And just like that, you’ve got a tool that will execute any SQL query you throw at
 it. But there’s work still to do. All that search code clutters up your script, and
 there’s just no getting around it: your script is pretty hard to understand at first
 glance (and even at second glance). In the next chapter, you’ll tackle all of this,
 transforming your handy little form to a really nice exercise of your PHP muscle.
POWER USERS’ CLINIC: Get Specific with Position and Whitespace Trimming
You’re definitely making run_query.php a lot better, but
 there are still problems. Suppose that someone wrote SQL like this:
SELECT *
 FROM registrar_activities
 WHERE name = 'Update GPA'
 OR name = 'Drop a class'
This is a SELECT statement, so run_query.php should run the
 SQL and print out all the rows returned from this query. But there’s a nasty little
 problem, isn’t there?
Yup. Your code that searches for “update” and “drop” will report that this query
 has both words in it, and simply return “Your SQL was run without any problems.” But
 that is a problem!
What can you do? Well, think about the structure of SQL. Those special
 keywords—CREATE, INSERT, and their friends—all are the first word
 in the query. Thus, you’d need to get the position of the match and check whether that
 position is position 0. You can do that by adding to your if conditions and using the logical or || operator in PHP:
if ($location === false || $location > 0)
{
The double-pipe (||) means “or” to PHP. So,
 this line says if there’s no match at all ($location ===
 false) or the match isn’t starting at the first position (position 0),
 then look for the next keyword. Of course, you’d have to change all your if statements, which is even messier. Clearly, this is an
 improvement, although it’s one that clutters up your code even further.
Wait; it gets worse! You’re dealing with real humans, and humans do funny things. Suppose that someone
 enters this SQL into your form:
 CREATE TABLE urls (id int, url var-
char(100),
 description var-
char(100));
Here, you have a new problem: this isn’t a SELECT, but your search code won’t find
 one of those special words at the beginning. The first character is just a space: “
 ”.
You can solve this problem, too, by using another familiar function: trim. trim gets rid of whitespace, and if you do that before you
 search, you should be in good shape:
$uppercase_query_text =
trim(strtoupper($query_text))
That probably seems like a ton of work for a really simple form with one text
 area. But, when you’re working with user input, this is exactly how you want to think: what would users do? What
 might they type to screw things up, and can I help keep them from seeing something
 weird or making a mistake? Think like that, and you’re going to build better, more
 stable, more enjoyable web applications.
And, as something to look forward to, you’re just about to learn some handy
 techniques to make all this messy code a lot simpler. So keep going, dealing with
 human-type input, and know that your code is only going to get cleaner and
 simpler.

Chapter 6. Regular Expressions

In the example in the last chapter example—a web form that lets users run SQL against a
 MySQL database—you did one of the most common things programmers do. You wrote code that
 solves a problem, but it’s ugly, messy, and a little hard to understand. Unfortunately, most
 programmers leave code in that state. That’s something you want to
 avoid.
Bad code is like sloppy plumbing or a poorly constructed house frame. At some point,
 things are going to go bad, and someone is going to have to fix problems. And, if you’ve
 ever had an electrician tell you what he has to charge you because the guy who did the work
 initially did it wrong before, you know how expensive it is to fix
 someone else’s mistakes.
But here’s the thing: Even good code is going to fail at some point. Any time you have a
 system that involves humans, at some point, someone will do something unexpected, or maybe
 just something you never thought about dealing with when you wrote your code. And that’s when
 you’re the electrician, trying to fix things when the customer’s
 unhappy—but in this scenario, there’s nobody else to blame.
So, writing ugly code that works really isn’t an option. At the moment, the code in
 run_query.php right now is very ugly. It’s all those if statements that are trying to figure out whether the user
 entered a CREATE or an UPDATE or an INSERT, or maybe a SELECT…or who knows what else? What
 you really need is a way to search the incoming query for all those keywords all
 at once. And then there’s converting text to uppercase, and dealing with
 whitespace, and making sure the SQL keyword you want is at the beginning of the
 query.
Unfortunately, there’s no way to solve this problem elegantly by using strpos and the string manipulation you’ve done so far.
 Fortunately, though, you have another option: regular expressions.
 Regular expressions (also know in programmer-ese as regexes) are like a
 keg of gunpowder: extremely powerful, but perfectly capable of blowing up your program and
 creating hours of frustration. That’s okay, though, because you’re not running off to battle
 just yet.
Before you’re done with run_query.php, you’ll have learned how to
 use regular expressions, cut out all but one of those annoying if statements for searching through $query_text, and made your
 program easier to troubleshoot when problems occur down the line.
Warning
It’s pretty common knowledge that most people—and even most programmers—see regular
 expressions in particular as a complicated, difficult programming art. That’s okay; you’re
 more than ready to tackle them. Once you understand how they work, you’ll wonder why
 anyone wouldn’t want to use them all over the place.

String Matching, Double-Time

So far, you’ve been using strpos to perform string
 searching, and you’ve been passing into that function your string and then some additional characters or a string for which
 to look. The problem is that using strpos in this way
 limits you to a single search string at a time; you can search for UPDATE and you can
 search for DROP, but not at the same time.
Here’s where regular expressions come into the picture. A regular expression is just
 what it sounds like: a regular sequence of characters or numbers or some other pattern—an
 expression—for which you want to search. If you had a string like
 “abcdefghijklmnopqrstuvwxyz,” you could search for the pattern, or regular expression,
 “abc”. It would show up once, of course, which isn’t very “regular.”
However, suppose that you had an entire web page, and you wanted to search for links.
 You might use an expression like “<a” to find all the link elements. You might find
 none, or one, or ten; with a regular expression, you can search for practically anything
 you want. It does get a bit murky though, so the best place to start is at the
 beginning.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

A Simple String Searcher

Just about the simplest regular expression you can come up with is a single
 simple letter, like “a” or “m”. Thus, the regular expression “a” will match any “a”.
 Simple, right?
In PHP, if you want to search by using regular expressions, you use the preg_match
 function. Even though that sounds like something related to childbirth, it
 actually stands for “p-reg,” as in “PHP regular (expressions).” However, no matter how
 you say it (and what thoughts it conjures up), it’s used like this:
<?php
$string_to_search = "Martin OMC-28LJ";
$regex = "/OM/";
$num_matches = preg_match($regex, $string_to_search);

if ($num_matches > 0) {
 echo "Found a match!";
} else {
 echo "No match. Sorry.";
}
?>
Warning
Be sure that the first thing you give to preg_match is the regular expression, not the string
 in which you want to search. This might seem backward compared to how you’ve been
 working, but you’ll soon be using the preg_match
 and related functions so often, putting the search string first will feel odd.

Save that program as regex.php and run it from the command
 line. You should get a result like this:
--(08:25 $)-> php regex.php
Found a match!
Admittedly, this isn’t very exciting. Before you can walk, though, you gotta crawl.
 And part of crawling is understanding just how you write a regular expression.
First, regular expressions are just strings, so you wrap them in quotes. You’ll
 typically use double quotes (”) rather than single
 quotes (’) because PHP doesn’t do as much helpful
 processing on single-quoted strings as double-quoted ones. (For more advice on how to
 use quotes in PHP, see the box on Which Quote Is the Best Quote?.)
Additionally, regular expressions begin and end with a forward slash. It’s everything between those slashes that makes up the meat
 of the expression. For example, “/OM/” is a regular
 expression that searches for OM.
More specifically, “/OM/” searches for exactly
 OM; it won’t match “om” or “Om” or “OhM”. It has to be an uppercase O followed by an
 uppercase M. So far, this is just like the string matching you’ve already done.
Of course, preg_match has some wrinkles, too.
 First, as you’ve seen, it takes a regular expression as the first argument, and then the
 string in which to search as the second. Then, it returns the number of matches, rather
 than the position at which a match was found. Here’s the first real wrinkle: preg_match will never return anything other than 0
 or 1. It returns 0 if there are no matches, and 1 upon the first match, and
 then it simply stops searching.
If you want to find all the matches, you can use preg_match_all. Thus, preg_match(“/ Mr/”, “;Mr.
 Mranity”) will return 1, but preg_match_all(“/Mr/”,
 “Mr. Mranity”) will return 2.
UNDER THE HOOD: Which Quote Is the Best Quote?
Almost every programming language seemingly treats single-quoted strings (‘My name is Bob’) and double-quoted strings (“I am a carpenter.”)
 the same way. However, also in almost every programming language, there’s a lot more
 going on than you might realize, all based upon which quotation mark you use.
In general, there is less processing performed on
 single-quoted strings. But, what processing occurs in the first place? Take the
 statement I'm going to the bank. If you put that in
 a single-quoted string, you get ‘I’m going to the bank.’ But PHP is going to bark at
 you, because the single-quote in I’m looks like it’s ending the simple string 'I', and all the rest—m going to
 the bank—must just be something else. Of course, that’s not what you mean,
 so you do one of two things: you either switch to double quotes and move on, or you escape the single
 quote.
Escaping a character is when you instruct the programming language to
 not treat this as part of the language; it’s just part of my
 string. Typically, you escape characters by typing a backslash (\) in front of the
 potentially problematic character. In the string I'm going to
 the bank., you’d write it in single quotes like this: ‘I\’m going to the
 bank.’ That backslash directs PHP to ignore both the backslash and the
 character that follows it.
Now, what if you want to actually write a backslash? Suppose you’re writing a
 program for your great-great-great granddad, the one that still runs DOS on his PC/AT?
 You might want to say, 'Never, ever, ever type \'del C:*.*\'
 and hit Return!' Well, you handled the single-quotes handily, but now PHP
 is trying to escape the character following that in-string backslash: *. That just confuses PHP. * isn’t a special character, so what is going on? Well, in this case, you
 need to escape the backslash itself. To do that, you just put in the escape
 character—the backslash—and then the character to be escaped; in this case, another
 backslash. The result is 'Never, ever, ever type in \'del
 C:*.*\'
So, what does all this have to do with single and double-quotes? Well, other than
 the single quote (') and the backslash (\), PHP doesn’t do any other processing to your
 single-quoted strings. But there are lots of other things you might need processing
 for: a new line (\n), a tab (\t), or that slick way of inserting variables right into a
 string with {$variable} or just using $variable.
With a single-quoted string, you get very little. With a double-quoted string, you
 get all the extra processing. As a result, most programmers tend to use double quotes.
 That way, they don’t have to stop to think, “Now do I need extra processing on this
 string? Or can I use single quotes?”
One last note: in 99 percent of the applications you write, the type of quotes you
 use doesn’t matter. The processing involved in handling those extra escape characters
 and variables isn’t going to frustrate your customers or send server hard drives or
 RAM chips into a frenzy. You can happily use double-quoted strings all the time, and
 you’ll probably never notice any issues at all.

Note
There are also several additional things you can pass into—and get out of—preg_match and preg_match_all. You can find out about all of this online at
 php.net/manual/en/function.preg-match.php. For now, though,
 just get comfortable with regular expressions.

Search for One String…Or Another

So far, there’s not a lot that preg_match seems
 to offer that you don’t already have with strpos. But there’s a lot more that you can do, and one of the coolest is
 searching for one string or another. To do this, you
 use a special character called the pipe. The pipe looks like a vertical line: |. It’s
 usually above the backslash character, over on the right side of your keyboard.
Anytime you want to search for one string or another, you put those two strings
 together surrounded by parentheses, separated by the pipe, as shown here:
/(Mr|Dr)\. Smith/
First, though, notice the wrinkle: the backslash (\). This is escaping the period, because that period usually means in a regular expression, “match any single character.”
 But in this case, you want to match an actual period. So, \. will match a period, and nothing but a period.
Note
You can read more about back slashes and the escape character in the box on Which Quote Is the Best Quote?.

/Mr\. Smith/ matches “Mr. Smith” but will skip
 right over “Dr. Smith.” However, /(Mr|Dr)\. Smith/
 matches either “Mr. Smith” or “Dr. Smith.”
That means that this little code snippet would find a match in both cases:
// This will match
echo "Matches: " . preg_match("/(Mr|Dr)\. Smith/", "Mr. Smith");

// So will this
echo "Matches: " . preg_match("/(Mr|Dr)\. Smith/", "Dr. Smith");
With this new wrinkle, you should be able to make some pretty massive changes to
 run_query.php from the last chapter. Open that file and take a
 look. As a reminder, here’s the old version:
<?php
 require '../../scripts/database_connection.php';

 $query_text = $_REQUEST['query'];
 $result = mysql_query($query_text);

 if (!$result) {
 die("<p>Error in executing the SQL query " . $query_text . ": " .
 mysql_error() . "</p>");
 }

 $return_rows = false;
 $uppercase_query_text = strtoupper($query_text);
 $location = strpos($uppercase_query_text, "CREATE");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "INSERT");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "UPDATE");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "DELETE");
 if ($location === false) {
 $location = strpos($uppercase_query_text, "DROP");
 if ($location === false) {
 // If we got here, it's not a CREATE, INSERT, UPDATE,
 // DELETE, or DROP query. It should return rows.
 $return_rows = true;
 }
 }
 }
 }
 }

 if ($return_rows) {
 // We have rows to show from the query
 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
 } else {
 // No rows. Just report if the query ran or not
 echo "<p>Your query was processed successfully.</p>";
 echo "<p>{$query_text}</p>";
 }
?>
It’s all that if stuff that really is messy. But
 with regular expressions, you can make some pretty spectacular changes:
<?php
 // require and database connection code

 $return_rows = true;
 if (preg_match("/(CREATE|INSERT|UPDATE|DELETE|DROP)/",
 strtoupper($query_text))) {
 $return_rows = false;
 }

 if ($return_rows) {
 // display code
 }
?>
Note
You might want to save this version as another file, or in another directory, so
 you can always see what you started with. In the book’s examples, you’ll find the
 original version of run_query.php in the example
 scripts/ directory as run_query.orig.php,
 and this new version in the example scripts/ directory as simply
 run_query.php.

Take a close look here, especially at the fairly long condition for the if statement. Here’s the breakdown of what’s going
 on:
	You start by setting $return_rows to true, instead of
 false.
This is because your regular expression search is determining whether you have
 return rows. This is easier to read than the older version, in which you’re
 constantly doing a comparison, and then if there’s not a match,
 setting $return_rows to true.

	Then, the if condition:
 it begins with preg_match.
There’s no need to use preg_match_all,
 because you only care if the search strings are found at all, not if they’re found more than once.

	The regular expression is actually pretty simple: it’s
 each keyword for a SQL statement that doesn’t return any rows, all separated by
 that pipe symbol.
So, it’s basically an expression for matching a string that contains CREATE
 or INSERT or UPDATE
 or DELETE or DROP.

	This expression is evaluated against the uppercase version
 of $query_text.
Not only do you not change the value of $query_text, but you don’t even really need to save the uppercase
 version. If you need an uppercase version again later, you can call strtoupper again.

	You know that preg_match returns 0 if there’s no match, and PHP sees 0 as false. preg_match returns 1 if there’s a match, which PHP sees as true. Therefore, you can drop the whole preg_match in as your if statement’s condition and know that if there’s a match, the if statement code will run; if there’s not a match, it
 won’t.

	Inside the if, $return_rows is set to false, because a match means this is a query that doesn’t have return
 rows.

Not only is this code easier to read and makes more sense to a human brain, but you
 cut 20 lines of code down to 4.
Warning
It’s not always good to have less lines of code. Sometimes
 you can sacrifice readability and clarity to save a few lines, and that’s not helpful. But,
 if you can condense four or five conditions into one or two, that usually
 is a good thing.

Getting into Position

One of the problems with even this streamlined version of
 run_query.php is that it looks for a match anywhere within the
 input query. If you read the box about whitespace trimming on Avoid Changing User Input Whenever Possible, you know there are still
 problems. You need to trim your user’s query string, which is pretty simple:
if (preg_match("/(CREATE|INSERT|UPDATE|DELETE|DROP)/",
 trim(strtoupper($query_text)))) {
 $return_rows = false;
}
But there’s another, trickier problem: you really only want to search for those
 special keywords at the beginning of the query string. That prevents a query like the
 following from being mistaken as an UPDATE or DROP query:
SELECT *
 FROM registrar_activities
 WHERE name = 'Update GPA'
 OR name = 'Drop a class'
This query, a SELECT, returns rows, but if it’s interpreted as an UPDATE or DROP,
 your script will not show return rows.
It took some additional if conditions to get this
 to work before, but that was before you were taking over the world one regular
 expression at a time. With regular expressions, it’s easy to tell PHP, “I want this
 expression, but only at the beginning of the search string.”
To accomplish this feat of wizardry, just add the carat (^) to the beginning of your search
 string, which basically says, “at the beginning.”
// Matches
echo "Matches: " . preg_match("/^(Mr|Dr). Smith/",
 "Dr. Smith") . "\n";
// Does NOT match
echo "Matches: " . preg_match("/^(Mr|Dr). Smith/",
 " Dr. Smith") . "\n";
Looking back in the first case, /^(Mr|Dr). Smith/
 matches “Dr. Smith” because the string begins with “Dr. Smith” (“Mr. Smith” would be
 okay, too). But the second string does not match, because the ^ rejects the leading spaces.
Taking this back to your query runner, you’d do something like this:
if (preg_match("/^(CREATE|INSERT|UPDATE|DELETE|DROP)/",
 trim(strtoupper($query_text)))) {
 $return_rows = false;
}
That one little carat character makes all the difference. You can do the same thing at the
 end of the search string by using the $ character, as demonstrated here:
// Does NOT match
echo "Matches: " . preg_match("/^(Mr|Dr). Smith$/",
 "Dr. Smith ") . "\n";
// Matches
echo "Matches: " . preg_match("/^(Mr|Dr). Smith$/",
 "Dr. Smith") . "\n";
Warning
Ensure that your ^ and $ are inside the opening / and closing
 /. If you were to put, for example, /^(Mr|Dr). Smith/$, PHP would complain about that last
 $, alerting you that $ is an unknown modifier. This is an easy error to make, and it can be
 pretty frustrating to track down.

In the first case, there’s no match because the regular expression, which uses
 $, doesn’t allow for the trailing spaces in “Dr.
 Smith ”. The second check does match, though, because there’s no leading space (which
 matches the ^(Mr|Dr) part) and no trailing space
 (which matches the Smith$ part).
In fact, when you have a ^ at the beginning of
 your expression and a $ at the end, you’re requiring
 an exact match not just within the search string but to the string itself. It’s like
 you’re saying that the search string should equal the regular expression. Of course if
 you were doing a real equivalency in PHP (with == or
 ===), you couldn’t have those nifty or statements with |, or
 any of the other cool things regular expressions offer.

Ditch trim and strtoupper

As long as you’re simplifying your code with some regular expression goodness, try
 taking things further. Right now, you’re converting $query_text to all uppercase characters by using strtoupper and then searching for “CREATE”, “INSERT”, and the like within
 that uppercase version of the query.
But, regular expressions are happy to be case-insensitive, meaning that they don’t
 care whether they match uppercase or lowercase versions of a word. Just add an “i” to
 the end of your expression, after the closing forward slash:
// Matches
echo "Matches: " . preg_match("/^(MR|DR). sMiTH$/i",
 "Dr. Smith") . "\n";
This expression produces a match, irrespective of the case of the expression and the
 search string not matching. You can change your search in
 run_query.php to take advantage of that fact:
$return_rows = true;
if (preg_match("/^(CREATE|INSERT|UPDATE|DELETE|DROP)/i",
 trim($query_text))) {
 $return_rows = false;
}
No more strtoupper, and a new “i” at the end of
 the expression. With this change, the sort of query shown in Figure 6-1 will still happily be recognized
 as DROP, which returns no result rows.
[image: Even though you’re not really adding functionality with these regular expressions, you’re definitely improving your code. You’re searching for what you want in the original $query_text, instead of changing $query_text to work with your search. That’s the way it should be: Always search an unchanged input string whenever possible.]

Figure 6-1. Even though you’re not really adding functionality with these regular
 expressions, you’re definitely improving your code. You’re searching for what you want
 in the original $query_text, instead of changing $query_text to work with your search.
 That’s the way it should be: Always search an unchanged input string whenever
 possible.

What about trimming whitespace? Well, you really don’t need to trim $query_string; instead, in your regular expression, you just want to ignore
 leading spaces. At least, that’s the result you want. In PHP, you have to
 think of it this way:
	Begin by matching any number of spaces—including when
 there are no spaces.

	Then, after some indeterminate number of spaces, look for
 (CREATE|INSERT|UPDATE|DELETE|DROP).

This means that while you’re ignoring those spaces in your particular
 situation—figuring out whether the query is a CREATE, or UPDATE, or whatever—you’re
 really just doing another type of matching.
Now, you know how to match a space: you just include it in your regular expression.
 For example, /^ Mr. Smith/ requires an opening space.
 “Mr. Smith” would not match, but “ Mr. Smith” would.
Warning
Ebook readers beware: line breaks can occur in odd places. In the preceding
 example, be sure to notice that the first “Mr. Smith” has no leading space, the second
 “ Mr. Smith” did have a space; and the regular expression, /^
 Mr. Smith/ also had a space after the ^.

But, that requires a space. How can you say that more than one space is okay? That’s
 when you need + (plus) character. The + character says, “The thing that came just before me
 can appear any number of times.”
// Matches
echo "Matches: " . preg_match("/^ (MR|DR). sMiTH$/i",
 " Dr. Smith") . "\n";
// Does NOT match
echo "Matches: " . preg_match("/^ (MR|DR). sMiTH$/i",
 " Dr. Smith") . "\n";
// Matches
echo "Matches: " . preg_match("/^ +(MR|DR). sMiTH$/i",
 " Dr. Smith") . "\n";
The first and second expressions look for exactly one space, and so the first entry
 matches, but the second—with multiple leading spaces—doesn’t. However, the third expression accepts any number of
 spaces, so once again, it matches.
Wait, though, try this:
// Does NOT match
echo "Matches: " . preg_match("/^ +(MR|DR). sMiTH$/i",
 "Dr. Smith") . "\n";
Uh oh! Apparently “any number of spaces” for +
 really means “any non-zero number of spaces.” If you are okay with nothing
 or any number of characters, use *.
// Matches
echo "Matches: " . preg_match("/^ *(MR|DR). sMiTH$/i",
 "Dr. Smith") . "\n";
Now you can look for spaces within your $query_text in run_query.php and avoid touching the
 input string at all, even temporarily:
$return_rows = true;
if (preg_match("/^ *(CREATE|INSERT|UPDATE|DELETE|DROP)/i",
 $query_text)) {
 $return_rows = false;
}
FREQUENTLY ASKED QUESTION: Back to Square One?
If I’m ignoring all the leading spaces, isn’t that just the same
 as
 $location = strpos($query_text, “CREATE”);
 and all its if-based brethren?
It might seem like all this regular expression work has brought you back to where
 you began: a search for CREATE or INSERT or UPDATE anywhere within $query_text, but you’re worlds away from all those
 if statements. First, to restate the obvious, you
 have a script that you should be happy to show any of your programmer friends. You’ve
 used regular expressions, and used them well, so you don’t have a shoebox of
 conditions to sort through.
Second, your code is more sensible. It starts with the presumption that you’ll
 return rows. Then, based on a condition, it might change that presumption. This is
 natural human logic: start one way, if something else is going on, go another way.
 That’s a lot better than the sort of backward-logic of your earlier version of
 run_query.php.
Most important, you’re still not searching anywhere within $query_text
 for those SQL keywords. You’re searching anywhere within the string beginning with
 the first non-space character. For example, the following query
 still comes across as a SELECT and isn’t mistaken for a DROP:
SELECT *
 FROM registrar_activities
 WHERE name = 'Update GPA'
 OR name = 'Drop a class'
And you did it without a lot of messy and obscure hard-to-read code. (Well, it
 might be a little tricky for your friends still scared off by regular expressions.
 But, now you can teach them what’s up, and that’s a good thing, too.)

Searching for Sets of Characters

Now that you’ve taken care of leading spaces, you need to handle what your user
 types regardless of case and extra line breaks, like the example in Figure 6-2. Not only is there questionable
 use of the Shift key, there might also be leading spaces. But even if there isn’t
 leading space, there’s something else here: a return. Your clever, endearing users have
 done something you’d probably never think about: They pressed Enter a few times before
 typing in their SQL.
Your regular expression might not handle the query in Figure 6-2 as a DROP, despite you handling
 leading spaces and issues with capitalization. That’s because Enter produces some
 special characters, usually either \n, or in some
 situations, \r\n, or, just to keep things
 interesting, occasionally just \r.
Note
These are all just varying flavors of new lines. \n is called the line feed character, and \r is called a carriage return. In
 general, Windows uses \r\n, Unix and Linux use
 \n, and Macs (in particular, older, pre-OS X
 Macs) use \r.
Fortunately, there aren’t nearly as many cross-system problems with these
 characters as there were just a few years ago. You can pretty safely use \n to create a new line, but when you search, you need to
 account for all the variations.

[image: This innocent-looking query has some lurking problems, at least with your regular expression as it currently stands. Can you see what they are? There might be leading spaces—you can’t tell by looking at this screen image, or even if you were looking at an actual browser. There also might be leading line breaks, as with this case in which the SQL starts below the top of the text field.]

Figure 6-2. This innocent-looking query has some lurking problems, at least with your regular
 expression as it currently stands. Can you see what they are? There might be leading
 spaces—you can’t tell by looking at this screen image, or even if you were looking at
 an actual browser. There also might be leading line breaks, as with this case in which
 the SQL starts below the top of the text field.

So, what can you do? Well, it’s easy to account for multiple characters like this: the regular expression \n* will match any number of new lines, and \r* will match any number of carriage returns. But what about \r\n?
 \r*\n* would match that, but what about spaces? You
 could do \r*\n* * and match Enter followed by spaces,
 but if you start to think about spaces and then Enters and then more spaces…and more
 Enters…(you get the idea).
Of course, the whole point of regular expressions is to get away from that sort of
 thing. To do so, you search for any of a set of characters. That’s really what you want: accept any number (including
 zero) of any of a set of characters, a \r, a \n, or a space. You don’t care how many appear, or in what
 order, either.
You could do something like (\r|\n|)*, which is
 using the | to represent “or” again, and
 then the * applies to the entire group. But when you’re dealing with just single
 characters, you can skip the | and just put all the
 allowed characters into a set, which is indicated by square brackets ([and]), as demonstrated
 here:
$return_rows = true;
if (preg_match("/^[\t\r\n]*(CREATE|INSERT|UPDATE|DELETE|DROP)/i",
 $query_text)) {
 $return_rows = false;
}
This code handles spaces, the two flavors of new lines, and tosses in \t for tab characters. No matter how many leading spaces, tabs, or new lines there are, your regular expression is
 happy to handle them. In fact, this sort of whitespace matching is so common that
 regular expressions can use \s as an abbreviation for
 [\t\r\n]. And, you can simplify things even
 further:
$return_rows = true;
if (preg_match("/^\s*(CREATE|INSERT|UPDATE|DELETE|DROP)/i",
 $query_text)) {
 $return_rows = false;
}
Try this out. Enter the SQL shown back in Figure 6-2 and submit your query. You’ll
 probably get something similar to Figure 6-3, which means you’re not done yet.
 The problem here isn’t your regular expression. It’s really that you’re trying to pass
 into mysql_query some queries that haven’t been
 screened much for problems—like all those extra \r\n
 s at the beginning.
[image: Just as you’re getting your regular expression and search code bulletproof, there’s a new error to deal with. This error occurs before your search ever runs. But it definitely shows a problem: mysql_query did not seem to like those leading \r\n sequences.]

Figure 6-3. Just as you’re getting your regular expression and search code bulletproof,
 there’s a new error to deal with. This error occurs before your search ever runs. But
 it definitely shows a problem: mysql_query did not seem to like those leading \r\n
 sequences.

In fact, there are lots of queries that will create problems
 for run_query.php, regardless of how clean your regular expression
 code is. Try entering this query:
SELECT *
 FROM urls
 WHERE description = 'home page'
That might seem simple enough, but it’s still going to break your script. It doesn’t
 matter whether you have anything in the urls table; you’ll still
 get an error, as shown in Figure 6-4.
[image: Don’t be misled by this error. You do not have an error in your SQL; you have some overly-simplistic code in your script. No worries, though, with a good base of regular expressions under your belt, you’re ready to tackle more robust PHP and MySQL integration.]

Figure 6-4. Don’t be misled by this error. You do not have an error in your SQL; you have
 some overly-simplistic code in your script. No worries, though, with a good base of
 regular expressions under your belt, you’re ready to tackle more robust PHP and MySQL
 integration.

Frankly, you could spend weeks writing all the code required to handle every
 possible SQL query, make sure the right things are accepted and the wrong ones aren’t,
 and to handle all the various types of queries.
But that’s not a good idea. Just taking in any old SQL query is, in fact, a
 very bad idea. What’s a much better idea is to take a step back
 and think about what your users really need. It’s probably not a blank form, and so in
 the next chapter, you’ll give them what they need: a normal web form that just happens
 to talk to MySQL on the back end.

Regular Expressions: To Infinity and Beyond

It’s not an over-exaggeration to say you’ve just barely scratched the surface of
 regular expressions. Although you have a strong grasp of the basics—from matching to
 ^ and $ and the
 various flavors of preg_match, from position and
 whitespace to + and * and sets—there are more than a few trees that have sacrificed themselves to
 produce all the paper out there with text on regular expressions.
But don’t be freaked out or daunted, and don’t think you have to stop working your
 PHP and MySQL skills until you’ve mastered regular expressions. First, mastery is
 elusive, and even the best regular expression programmers use Google to refresh their
 memories on how to get just the right sequence of characters within their slashes. Just be on the lookout for chances to use
 regular expressions. And, as you get better at PHP, you’ll use them more often, and
 they’ll slowly become as familiar to you as PHP, or HTML, or any of the other things
 you’ve been doing over and over.
POWER USERS’ CLINIC: Regular Expressions Aren’t Just for PHP
As you’re probably seeing, it does take some work to get very far with regular
 expressions. There are lots of weird characters both to find on your keyboard, and to
 work into your expressions. Without a doubt, it doesn’t take long for a regular
 expression to start to look like something QBert might say: *SD)!!@8#.
But, the work rewards you in more ways than you might realize. For instance,
 JavaScript has complete support for regular expressions, too. Methods like replace() in JavaScript take in regular expressions, as do
 the match() methods on strings. So, everything
 you’ve learned in PHP translates over, perfectly.
You also get some nice benefits in HTML5. You can use regular expressions in an HTML5 form to provide
 patterns against which data is validated. Take heart; this work in PHP is helping you
 out in almost every aspect of web programming.
In fact, there’s hardly a serious programming language that doesn’t support
 regular expressions. If you decide to learn Ruby and Ruby on Rails, you’ll be swimming
 in regular expressions, and they’re also hugely helpful as you move into using testing
 frameworks like Cucumber or Capybara or TestUnit. If all that sounds intimidating,
 relax! You’ve got regular expressions down, even before you’ve learned what lots of
 these languages are.
The moral of this story? What you’re learning about SQL applies to more than
 MySQL, and what you’re learning about regular expressions applies to more than PHP.
 Your skills are growing; use them!

A Little Cleanup: Remove the echo Statements

Before moving on, there’s just one last thing you need to take care of. Right now,
 your database_connection.php script should look like
 this:
<?php
 require 'app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 echo "<p>Connected to MySQL!</p>";

 mysql_select_db(DATABASE_NAME)
 or die("<p>Error selecting the database " .
 DATABASE_NAME . mysql_error() . "</p>");

 echo "<p>Connected to MySQL, using database " .
 DATABASE_NAME . ".</p>";
?>
There’s nothing wrong here, and it’s quite informative with those echo statements. But, in the next chapter and beyond, you’re
 going to start responding in your PHP scripts by using HTML rather than plain old text.
 As you’ll soon see, your PHP will usually send back HTML when its
 called and interpreted.
Now, when your scripts respond with HTML, and they require or include
 database_connection.php, you really don’t want those echo statements. They’ll show up before your script’s HTML,
 and generally look like either debugging information or a programming error. So, go
 ahead and get rid of those. When you’re done,
 database_connection.php should look like this:
<?php
 require 'app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 mysql_select_db(DATABASE_NAME)
 or die("<p>Error selecting the database " .
 DATABASE_NAME . mysql_error() . "</p>");
?>
Note
To keep things clear, the examples for this chapter use the older version of
 database_connection. php, which has all the echo statements. That way, if you’re following along, your
 response will look like the figures in this chapter.
Beginning in Chapter 7, though, these changes
 will be in database_connection.php, both within the chapter and
 in the downloadable examples. You’ll need to make these changes in your own version so
 that your output matches the book’s going forward.

Chapter 7. Generating Dynamic Web Pages

You’ve been building up quite a robust set of tools. You have PHP scripts to receive
 requests from your HTML forms. You have MySQL to store information from your users. You have
 regular expressions to massage information into just the formats you need, and some basic
 flow controls in PHP like if and for to let you build scripts that make decisions based on what information your
 users give you.
But, at the end of the day, your goal in learning PHP and MySQL was probably to make
 dynamic and interesting web applications. Unfortunately, you’ve not done much of that yet.
 You do have a few interesting forms, but even those are simple: take in some information;
 print it back out; accept a SQL query (and do that quite imperfectly). So, where are the web
 applications? Heck, where are the pages that are built dynamically using your user’s
 information?
Thankfully, you have everything you need to start building these kinds of web pages. You
 can get information from your users, store it in a database, and even do some basic data
 manipulation. All you need to do now is put it all together and create the basic web pages
 that most users expect: a place to enter their information, a place to look at their
 information, and in most cases, a place to look at all the related user’s
 information.
Revisiting a User’s Information

In Chapter 3, on Get Information from a Web Form, you built a form in which users can enter
 their basic social media profile: a Twitter handle, a Facebook URL, and some basic contact
 information. As shown in Figure 7-1, it’s
 a perfectly good form: simple and easy to use.
[image: You can design forms that interact and submit to PHP scripts the same way you create any other web page: you use HTML and CSS to create a clean, easy-to-understand page. Then, get users to visit your page, fill out fields, and click buttons. It’s the behind-the-scenes work that brings PHP and MySQL into the picture.]

Figure 7-1. You can design forms that interact and submit to PHP scripts the same way you
 create any other web page: you use HTML and CSS to create a clean, easy-to-understand
 page. Then, get users to visit your page, fill out fields, and click buttons. It’s the
 behind-the-scenes work that brings PHP and MySQL into the picture.

There’s really no reason to change this form. However, the script that accepts its
 information is pretty lame. It does nothing more than manipulate some text and then send
 that text back (see Figure 7-2). It
 doesn’t even save the form’s information for later use. That’s where the work is: making
 the script do something with the user’s information.
Getting from a simple form on the Web to a script that interacts with a
 database involves a surprising amount of work. You need to figure out, design, and create
 tables, interact with those tables, potentially deal with errors from your database, and
 so on.
Note
If you haven’t done so already, copy the HTML web form (Get Information from a Web Form) to the directory in which you’re working.
 You can leave the file named as it is, but you might want to rename it as create_user.html. For reasons you’ll see soon, this little change can
 really pay off as your site grows more complex.

[image: This HTML is generated by your old getFormInfo.php script (page 64). It’s uninspiring, and you can do a lot better. Even more frustrating, this information is never stored anywhere. Once your user moves on, his information is lost.]

Figure 7-2. This HTML is generated by your old getFormInfo.php script (page 64). It’s
 uninspiring, and you can do a lot better. Even more frustrating, this information is
 never stored anywhere. Once your user moves on, his information is lost.

Planning Your Database Tables

Building web applications is a lot like working a tricky maze: Sometimes the hardest
 part is figuring out where to start. Usually a web form needs a script to which it can
 submit data. That script needs a table into which it can insert and store information.
 But, where’s the table? In a MySQL database, you need to create or set up tables for web
 access. Of course, the table itself needs structure. That’s the way almost every form of
 every application goes: What starts out as a page that users see often ends up at a
 back-end structure that’s invisible to everyone but you, the programmer.
It’s always easiest to start with the information you want to store. You’ve actually
 already done some of this when you created your entry form (look back at Figure 7-1). Here’s basically what you’re
 collecting from your users right now:
	First name

	Last name

	Email address

	Facebook URL

	Twitter handle

Each of these items are individual components that when combined describe a single
 “entity”—a user. What you need, therefore, is a table to store users, and for each user,
 you need to store a first name, last name, e-mail address, a Facebook URL, and a Twitter
 handle.
All you need to do now is to translate this into a SQL CREATE statement:
CREATE TABLE users (
 user_id int,
 first_name varchar(20),
 last_name varchar(30),
 email varchar(50),
 facebook_url varchar(100),
 twitter_handle varchar(20)
);
Warning
You might not want to dive into your MySQL command-line tool or your web form and
 run this command just yet. There are some important additions still to be made before
 it’s ready for prime time.

You might remember this SQL from Chapter 4, but that was ages ago, when you had but a fragile understanding of databases. Now, you
 know exactly what is going to be dropped into this table: information from the web form
 that you already have.
UP TO SPEED: One of These Things Is Like the Other
You’ll quickly find that when you start talking with database people, there are a
 lot of interchangeable terms.
A table has rows, and each entry in that table is a row. But you’ll also hear a row
 called an entry in the table as well as a
 record. These are really all the same thing, and even though it
 might be technically better to say a table has rows rather than entries or records, you can’t guarantee that people will actually use those
 terms.
In the same vein, the fields in a table, like first_name or last_name,
 are also called columns. In those fields (or columns), you have
 values, or information, or for the technically stodgy,
 data. Lots of different terms, all with identical
 meaning.
Although you’ll have to identify all these different terms, you can help matters a
 bit by not mixing and matching if you don’t have to. Thus, a table that has rows usually
 has columns; a table with records usually has fields. Rows and columns go together; so
 do records and fields.
That said, even though you might want to try to be completely consistent—always
 using rows instead of records, and columns instead of fields—you’ll invariably find
 yourself using all these same terms yourself.
Perhaps the best thing to remember here is that like any other bit of language,
 context is king. It’s more important that you know what’s an int and what’s not than to be sure you say row instead of record. And, you
 need to not get mixed up on a complete entry (see; there’s another term for record or
 row) and the individual parts of that entry. Just remember that a
 single entry, record, or row in the users table has multiple fields, columns, or pieces
 of information. Get that right, and you can solve the rest by listening carefully and
 asking the occasional question to clarify.

Good Database Tables Have ID Columns

Take a look at the first column created for this table: the user_id field. What exactly is that? Well, think about the most common thing you’ll do with databases. Is it creating new
 entries in the table? Probably not. Honestly, if you think about how often you create a
 user ID or profile on the Web versus the number of times you log in to a site, you log
 in many, many more times.
In other words, you’re creating information once for every ten, or twenty, or maybe
 one hundred times that you’re accessing that information. That’s a
 case where you’re looking up information; you’re searching for a user (usually
 yourself).
Of course, that then begs the question: How do you search for something? You can
 look things up by a last name and then find matching entries. Or, you can search by an
 email address or Twitter handle, which are supposed to be unique for each user. In fact,
 you’ve probably often had to create a user name that is unique (typically at great pain;
 who really takes all those normal user names and leaves you stuck with
 m97f-ss0, anyhow?).
Databases are no different in that they need something for which to look. Moreover,
 databases work best when they can identify every individual row in a table by a unique
 piece of information. Putting it more accurately still, databases function better with
 numbers than with text. The absolute preferred type of unique identifier—or ID—for a row in a table is a unique number.
That, then, is what user_id is about. It’s a
 numerical value for each row that uniquely, identifies that row. It identifies each user
 as separate from all others, so your database can locate it, every time.

Auto Increment Is Your Friend

There’s a bit of a problem lurking in the SQL bushes here, though. If the point of
 the user_id field is to provide a unique identifier
 for each user, whose job is it to keep up with that unique ID? How do all the scripts
 (and there will be more than one or two before you’re done with any large web
 application) ensure that no two users are entered into the users
 table with the same user_id? Do you need yet another
 table just to keep up with the current count of users?
This isn’t a trivial problem, because if you lose the ability to uniquely identify a
 user, things can go south from there quickly. On the other hand, nobody wants to spend
 hours writing number generators for every table or every web application.
The solution is not in your code, but in your database. Most databases, MySQL
 included, give you the ability to use an attribute called AUTO_INCREMENT. You specify this on a field in a table, and every time you
 add a row to that table, the field automatically creates a new number, incremented from
 the last row that was added to the table. For example, if one script adds a new user and
 MySQL sets the user_id to 1029, and another script
 later adds a new user, MySQL increments the previous number and assigns 1030 as the ID
 of the new user.
You can add this to your table CREATE statement like this:
CREATE TABLE users (
 user_id int AUTO_INCREMENT,
 first_name varchar(20),
 last_name varchar(30),
 email varchar(50),
 facebook_url varchar(100),
 twitter_handle varchar(20)
);
Much better. Now, you don’t have to worry about IDs. In fact, you don’t have to do
 anything special to let MySQL know to fill in the user_id column. Every time you add a new row, just trust that MySQL will
 also add a new value to user_id.
IDs and Primary Keys are Good Bedfellows

In addition to setting user_id to increment
 automatically, you’ve actually done something else subtly in MySQL: you’ve basically
 defined user_id as the primary
 key in the users table. The primary key is a database term for that special, unique value assigned to a particular row
 in a table.
Note
In some rather special cases, you might create a primary key out of multiple
 columns instead of just one. That’s somewhat unusual, though, and it’s not covered
 in this book.

Primary keys are important because databases typically create an
 index using a table’s primary key. An index is a database-level
 mechanism by which a database can find rows based on that index quickly. With the
 user_id column indexed, you can find a row with a
 user_id of 2048 much faster than looking for a
 row with that same user_id, but on a table where
 user_id is not
 indexed.
Basically, an indexed field is like having a highly organized set of values. An
 unindexed field can still be searched, but in that case your database has to go
 through each value, one by one, until it finds the exact value for which you’re
 searching. It’s the difference between looking for a book in a well-organized library
 and looking for one in your great-great-grandfather’s deserted attic.
When you instruct MySQL to automatically increment user_id, you identify that field as special. In fact, MySQL won’t let you
 set more than one field to AUTO_INCREMENT, because it assumes that you put that on a field to use as
 a primary key.
There’s just a little hitch, though: you have to instruct MySQL that you want
 user_id to be the primary key, by including the
 following:
CREATE TABLE users (
 user_id int AUTO_INCREMENT PRIMARY KEY,
 first_name varchar(20),
 last_name varchar(30),
 email varchar(50),
 facebook_url varchar(100),
 twitter_handle varchar(20)
);
This makes explicit what is implicit with AUTO_INCREMENT: user_id uniquely identifies each user entry in your table. In fact, if
 you don’t do this, MySQL gives you an error. As an example, suppose that you have the
 following SQL, without the PRIMARY KEY keyword:
CREATE TABLE users (
 user_id int AUTO_INCREMENT,
 first_name varchar(20),
 last_name varchar(30),
 email varchar(50),
 facebook_url varchar(100),
 twitter_handle varchar(20)
);
If you were to run this query, MySQL would give you a bit of a weird error in the phpMyAdmin console, as illustrated in; Figure 7-3.
[image: phpMyAdmin is a great tool for running queries. It clearly indicates where you’re going wrong, as with this example, in which you left out the primary key in your CREATE statement. You can avoid spending lots of time in a text-based tool, you can browse your tables visually, and best of all, most web hosting companies that provide MySQL and database services offer phpMyAdmin. That means if you learn it on one host, you’ll still (most likely) be able to use the same tool on another host.]

Figure 7-3. phpMyAdmin is a great tool for running queries. It clearly indicates where
 you’re going wrong, as with this example, in which you left out the primary key in
 your CREATE statement. You can avoid spending lots of time in a text-based tool, you
 can browse your tables visually, and best of all, most web hosting companies that
 provide MySQL and database services offer phpMyAdmin. That means if you learn it on
 one host, you’ll still (most likely) be able to use the same tool on another
 host.

This error—the infamous #1075 if you’ve been around MySQL for long—informs you that since you have
 an AUTO_INCREMENT column that you need to mark as PRIMARY KEY. It would be nice if MySQL would take care of that for you,
 but alas, it’s up to you, so be sure to include PRIMARY KEY. At this point, you’re
 almost ready to create this table for real.

Adding Constraints to Your Database

Remember that the purpose of a field like user_id
 is to facilitate easy searching. Adding AUTO_INCREMENT (and setting the field as a
 primary key) helps in that, but there’s something subtle that also happens behind the
 scenes when you create an AUTO_INCREMENT column. You are also saying, “No matter what,
 this column will have a value.” That’s because MySQL is filling in that value.
More than likely, there are additional fields that you almost always want to be
 filled in. For example, there’s really never a good time to let a user not put in her
 first or last name. And you should probably require an email address, too. Twitter
 handles and Facebook URLs are not always going to be attached to a user, so those can be
 left off, but the rest is mandatory.
Of course, could just decide to have your PHP scripts and web pages deal with
 requiring this information. But is that really safe? What if someone else forgets to add
 validation on a web page? What if you forget, writing code on a
 coffee-high one day, typing away at 2 a.m.? It’s never a good idea to
 not validate when you can validate.
Again, MySQL has what you need. You can require a value on a field by instructing
 MySQL that field can’t be null (which is programmer-talk for “not a
 value”):
CREATE TABLE users (
 user_id int NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name varchar(20) NOT NULL,
 last_name varchar(30) NOT NULL,
 email varchar(50) NOT NULL,
 facebook_url varchar(100),
 twitter_handle varchar(20)
);
DESIGN TIME: To Null or Not to Null
Although the users table makes figuring out which columns
 should be NOT NULL fairly easy, that’s not always (or often) the case. In fact, even
 with users, there’s ambiguity: are you sure you want to require
 an email address? It is possible that someone might not have one (it still happens,
 although why email-less folks would be surfing the Internet might be quite a mystery),
 or you might have users concerned with you spamming them, and they don’t want to enter
 an email. Are you sure that you want to require that as part of a
 user’s information?
It might surprise you, but making a column NOT NULL is one of the most important
 decisions you make with regard to an individual table. This is particularly true if
 you decide not to make a column NOT NULL. Every record added
 might have a null value there, and if you decide down the line, “Oops, I really did
 need that value,” you’re stuck for all the old entries that don’t have it. You can’t
 ever un-ring that bell.
However, don’t get too trigger-happy with NOT NULL, thinking that it’s just safer
 to use it frequently and grab more data rather than less. Users can become upset if
 they’re forced to fill out 28 fields just to use your site. Even mega-sites like
 Facebook and Twitter require only minimal information: usually a name, email, user
 name, and password. Everything else can be added later.
In general, the rule of thumb is to require only what you absolutely need; but to
 absolutely require that information. That’s a tongue-twister, but a useful one. Think
 carefully, make a decision, and then realize that you’ll always upset someone. Your
 goal is to please most of your users, most of the time; if you can pull that off while
 still getting the information from them that you need, you’re well on your way to Web
 stardom and Internet fame.
And one last subtle bit of advice: you’re working at the table level with NOT
 NULL, not the application level. In other words, you’re essentially saying, “This
 column can’t be null if (and only if) there’s an entry in this
 table.” You might decide that users don’t have to enter an address (so
 it’s not required they have an entry in a mythical addresses table), but
 if they enter an address, it should also be required that they
 enter the street, city, and country. Thinking along these lines—what data is essential
 for this particular table, rather than your entire app—will help you lock down your
 database with good, useful data, and still not go crazy with NOT
 NULL.

Note
Even though MySQL handles auto incrementing and inserting values into user_id, it’s still a good idea to make it NOT NULL. That
 makes it clear that the value in that column is required, regardless of how MySQL or
 any other code actually fills that value. For more detail, see the box on To Null or Not to Null.

Like AUTO_INCREMENT, this change is quick, easy,
 and goes a long way toward protecting the integrity of your information (or, to be more
 accurate, your user’s information).
You should have a useful SQL statement, so go ahead and create your
 users table. Log in to MySQL by using your command-line tool, the web form you built earlier, or another web tool like phpMyAdmin, and create the table. You’re about to need it.
Warning
You might need to DROP a previous version of the table. You can simply use DROP TABLE users;
 if you get an error trying to create the table. That should clear out any existing
 version of the table that might exist. Also, remember to ensure that you’re in the
 right database when you run your CREATE statement!

If you’re using a tool like phpMyAdmin, you can now view your created table. It
 should look something like Figure 7-4.
[image: Ask your web hosting provider if it provides access to phpMyAdmin. Its GUI is a lot friendlier than the mysql console tool, and it lets you view tables, like the users table you should by now have created.]

Figure 7-4. Ask your web hosting provider if it provides access to phpMyAdmin. Its GUI is a
 lot friendlier than the mysql console tool, and it lets you view tables, like the
 users table you should by now have created.

Saving a User’s Information

You’ve had a table before, and now you’ve got a version of the
 users table that’s a little sturdier, with AUTO_INCREMENT and
 validation of values in a few key fields. Plus, your web form grabs just the information
 you need to stuff into that table. All that’s left is tying these things together via PHP,
 and you actually have almost everything you need for that, too.
You can start with a new script or use your old version of
 getFormInfo.php as a starting point. Either way, your first task is
 to capture the user’s entered information and do a little text manipulation to get the
 values just the way you want them:
<?php

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$facebook_url = str_replace("facebook.org", "facebook.com", trim($_
REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

?>
Call this script create_user.php and save it in your
 scripts/ directory, either in your site root or under your
 ch07/ examples directory. You should also update the action the
 form for create_user.html
 form to submit this newly named script. (For more
 information on naming, see the box on Name Follows Function.)
This is the kind of code you’ve written before, and because you haven’t changed your
 form, it still works perfectly well. Now, you just need to update it so it stores this
 information in your new users table.
Note
For some extra credit, see if you can convert create_user.php
 to use regular expressions instead of the strpos
 function to update these variables. If you think you’ve whipped things into great shape, tweet a link to your code to
 @missingmanuals and see what cool swag you might win.

POWER USERS’ CLINIC: Name Follows Function
When you have a few web pages here and there, names are really not that big of a deal. Whether
 you name a page get-FormInfo.html or
 create_user.html is almost irrelevant; you can see all your files
 in a single directory listing or window of your FTP client.
But, even with medium-sized web apps, you’ll have a lot more files than that. In
 fact, if you start to do the testing that you absolutely should be doing, you can easily
 have hundreds of files. At that point, your names really need to be meaningful.
But there’s more to meaning than just description. Many of your forms and scripts
 are going to map and work directly with a single table in your database, and do one
 particular thing with regard to that table, such as creating a user via the
 users table. In these cases, you make it really easy on yourself
 and others who’ll work on your code by naming your files after that functionality. This means that even though your
 form might get a user’s social information, it ultimately creates a user; thus,
 create_user.php is a descriptive, simple, clear name.
On top of all that, you’ll soon be learning about the three basic actions you can
 take on information: create it, update it, and delete it. Mapping your HTML pages and
 scripts to those basic actions (create_user, update_user, and so
 on) really helps you see what you have and what you don’t.

Building Your SQL Query

Your goal with the create_user.php script for it to collect
 contact information from visitors to your site and store that information in the
 users table. First, you can use your existing database connection
 script to make connecting easy:
<?php

require '../../scripts/database_connection.php';

// Get the user's information from the request into variables

?>
Warning
You might have some echo statements left in
 database_connection.php from an earlier version of the
 examples. If you do, go ahead and remove those now so that they won’t disrupt the
 seamless experience you’ll be giving your users.

With a database connection ready for use, you need to turn all that information into
 the INSERT statement so that you can drop the information into your database.
Rather than just diving into your code, though, start with a sample statement. For
 example, pick a set of random values (maybe your own), and build up the SQL you
 want.
INSERT INTO users (first_name,
 last_name,
 email,
 facebook_url,
 twitter_handle)
 VALUES ("Brett",
 "McLaughlin",
 "brett.m@me.com",
 "http://www.facebook.com/bdmclaughlin",
 "@bdmclaughlin");
Note
You can even use your MySQL tools (Adding Constraints to Your Database) to test this SQL out until it works
 and is formatted just as you need it.

This statement now becomes sort of a template in the respect that you want to use
 this statement, but you need to replace your sample values with your user’s request information. Given that you already have those values, this
 actually isn’t too hard:
$insert_sql = "INSERT INTO users (first_name, last_name, " .
 "email, facebook_url, twitter_handle) " .

 "VALUES ('{$first_name}', '{$last_name}', '{$email}', " .
 "'{$facebook_url}', '{$twitter_handle}');";
Warning
There is some real danger in your code at this point. The data you’re sending in
 your INSERT statement is not being escaped. (For a refresher on what escape characters
 are and how to use them see the box on Which Quote Is the Best Quote?.) This means that some nasty things could get into your database. You’ll clean that
 up in a few chapters using mysql_real_escape_string, but for now, it’s not the greatest and most
 secure code.
Getting into mysql_real_escape_string at this
 point is just going to cloud things up. So, use this code, but don’t go putting it
 into your million-user ordering system just yet. Just keep working through the
 chapters, and you’ll lock this code down a lot better really soon.

The one gotcha here is that you must ensure that each value you’re sending to the
 database—which will eventually go into a text field in the users
 table—must be surrounded by quotes. Using single quotes lets you use double quotes
 around the entire query. It also lets you use curly braces ({ and }) to drop your variables right
 into the query string.

Inserting a User

In the previous section, you created a new string that includes the SQL query. Now,
 you can pass the $insert_sql query to mysql_query and run it against your database. This is the
 easiest (and often the most fun) line of SQL-invoking PHP to write:
<?php

// Handle user request

$insert_sql = "INSERT INTO users (first_name, last_name, email, " .
 "facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email
}', " .
 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql);

?>
Unfortunately, this code doesn’t do anything in the event of an error—and there are
 a lot of things that can go wrong. What if the database reports an error? What if you
 forgot to add the users table first? What if you have a
 users table, but without a facebook_url column, or it has a misnamed or misspelled column?
There’s really a lot of work to do when it comes to error reporting, but for now,
 take a really simple (and probably way too simple) approach. Add a die statement, like the one you saw in Chapter 5, on Select the Database with PHP:
<?php

// Handle user request

$insert_sql = "INSERT INTO users (first_name, last_name, email, facebook_url,
twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', " .
 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

?>
Warning
Don’t forget to remove the semicolon at the end of the mysql_query line when you add your die
 statement.

This solution is far from perfect, but it works, and it gives you some kind of
 report in case of error.
At this point, you can actually try out your page, albeit a little clumsily. Go
 ahead and visit your web page and fill out some sample values, as in Figure 7-5.
[image: By now, you’re probably getting tired of entering users. That’s good—your create_user.html form is finally almost to the point where once you enter a user, that user is saved in the database. In fact, that happens here; now you just need a way to show that something happened, and deal with errors when they occur.]

Figure 7-5. By now, you’re probably getting tired of entering users. That’s good—your
 create_user.html form is finally almost to the point where once you enter a user, that
 user is saved in the database. In fact, that happens here; now you just need a way to
 show that something happened, and deal with errors when they occur.

Submit your page to run the new code. It constructs a SQL statement using your
 values, connects to the database, and inserts the data by using mysql_query. Hopefully, your die
 statement won’t run.
Assuming that you don’t get an error, you’ll get almost nothing back. That’s rather
 disappointing, but something did happen—especially if you didn’t
 get an error message.
Note
If you still have the HTML section of getFormInfo.php copied
 into create_user.php, you might get back some output
 from your form submission.

The interest here is in what happened in your database. So, fire up a SQL tool and
 enter this query:
SELECT user_id, first_name, last_name
 FROM users;
Hopefully you get back something like this:
+---------+------------+-----------+
| user_id | first_name | last_name |
+---------+------------+-----------+
| 1 | Yu | Darvish |
+---------+------------+-----------+
1 row in set (0.00 sec)
If you want to use phpMyAdmin (Upload your HTML, CSS, and PHP), you
 can browse to your users table and check out any data that might be
 inside of it, as shown in Figure 7-6.
[image: Checking phpMyAdmin, you can see that the entry in the users table contains not only the data pulled from the web form, but also an auto-generated (and auto incremented) ID: in this case, it’s 1. As you have more and more users, that number will continue to increase incrementally, although you can’t count on it being sequential.]

Figure 7-6. Checking phpMyAdmin, you can see that the entry in the users table contains not
 only the data pulled from the web form, but also an auto-generated (and auto
 incremented) ID: in this case, it’s 1. As you have more and more users, that number
 will continue to increase incrementally, although you can’t count on it being
 sequential.

A First Pass at Confirmation

So far, you’ve got your create_user.html page and a user (or many of them if you get cranking on your web form and enter more
 users) in your database, but your user—the person using your web application—sees nothing but a blank screen. That’s not very
 helpful.
As a starting point, you can go back to the code from your older script,
 get FormInfo.php:
<?php

// Get the user's information from the request array

// Connect to the database and insert the user

?>

<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Example 6-1</div>
 <div id="content">
 <p>Here's a record of what information you submitted:</p>
 <p>
 Name: <?php echo $first_name . " " . $last_name; ?>

 E-Mail Address: <?php echo $email; ?>

 <a href="<?php echo $facebook_url; ?>">Your Facebook page

 <a href="<?php echo $twitter_url; ?>">Check out your Twitter feed

 </p>
 </div>

 <div id="footer"></div>
 </body>
</html>
This is better than nothing, but there are some things you need to fix right off the
 bat. First, you’re not printing out the user’s Twitter handle; you’re printing out the URL to his handle. Although
 that’s probably more usable for clicking, it doesn’t actually represent what was entered
 into the database. That leaves you with a tough choice:
	You can print out what was entered into the database, which is the value in
 $twitter_handle. That’s what was actually
 inserted, but it doesn’t have as much value in a web page, and it really is letting
 your users know what’s in your database. But, is that what your users care about?
 Your database structure?

	You can print out the actual URL, which is better for clicking, but doesn’t
 directly connect to what’s in the database. It’s a modification of the database
 value, which is OK, but might not be appropriate right on the heels of a form that
 is explicitly focused upon adding a user to the database.

All this may seem like a lot of fuss just for a Twitter handle. But the same issue
 comes up whether you show the first and last names or combine them together as this code
 does now:
Name: <?php echo $first_name . " " . $last_name; ?>

There’s a deeper, bigger issue here: what exactly do you show your users with regard
 to data entered in the database? Do you show them the literal values as they’re stored
 in the database, or do you show them values that are a little more massaged, a little
 more human-readable?

Users are Users, Not Programmers

The answer to that question is fairly simple: you always want
 to show your users things that make sense to them. Very rarely will someone care about
 the columns in your database, or what value is a primary key, or whether you store their
 Twitter handle with the @ sign, or without it.
 Therefore, you should always focus on what your users want to see, not what’s literally and technically in your
 database. (Yes, that’s two always-es in one paragraph.)
But, there’s something else going on here: what is the source
 of the information you’re showing? Implied in this idea of showing a user what makes
 sense to him is the idea that you, the wise programmer, take information from the
 database, work with it to get it into the right format, and then show that massaged
 information to the user.
In this first pass at a confirmation, are you showing what’s in the database? Not at
 all; you’re just sending back out what the user gave you. What if something did happen
 when that information was inserted into your database table? You’d never know it. By
 showing the user his own information, you could be masking what really was dropped into
 the database.
So, what do you do? You want to show users something that makes sense to them
 (there’s that double-always again), but you also want to show those values based on the
 database, rather than just repeating a form, because that doesn’t show any problems in
 the database.
Hopefully, you do both! How, though? Well, suppose you had a way to pull the user’s
 information from the database, perhaps by using a SQL SELECT, and then based upon that
 information—information from the database, problems or not—construct something the user
 can see and read and that makes sense.
Here’s one solution: After inserting the user, reload that same information, a bit
 like this:
<?php

// Get the user's information from the request array

// Connect to the database and insert the user

$get_user_query = "SELECT * FROM USERS WHERE ..."
mysql_query($get_user_query)
 or die(mysql_error());

// Load this information and ready it for display in the HTML o
utput

?>

<!-- HTML output -->
Warning
In the preceding example, $get_user_query is
 intentionally incomplete. Those three dots won’t really work; you’d need to put a
 WHERE piece in that locates the user who was just inserted.

That query gets you the user from the database and it still lets you modify those
 values as needed for good, human-readable display. You’d have to figure out how to find
 the particular user who was just inserted, but that’s something you’ll soon be able to
 handle.
The issue is that you’re doing a bunch of text manipulation on the request
 information, and then you need to do some of that again with the response from the
 database. Think about your application as a whole: Is there anywhere else you might want
 to display a user? Yes, absolutely. Every good application has a place where you can
 check out your own profile. If that’s the case, you’d need to take the code in the back
 part of create_user.php and then copy it into a
 show_user.php script later. That’s not good; remember, you
 really, really don’t want the same code in more than one place.
 That’s why you have the database_connection.php script that you can
 use over and over.
What you need is another script, one that shows user information. Then, you can
 simply throw users from create_user.php, which creates users, to
 this new script, and let it figure out what to do in terms of a response. So, leave
 create_user.php somewhat incomplete for now; you can come back
 and fix it later.

Show Me the User

You need a page that shows a user’s information in a way that makes sense to the user.
 This means that this page is going to pull information from the users
 table, but it’s not a form; there’s no need (at least, not yet) to do anything but display
 information. Most of the work here isn’t code; it’s getting a good user profile page
 built. You’ll want to start with HTML.
Luckily, most web servers are configured to take a request for a file ending in
 .php and create HTML output, which is handed to a user’s browser.
 As a result, you can create HTML, drop it into a file ending in .php,
 and when you start adding actual PHP, you’re ready to go. Your web server will send the
 HTML in that file to a requesting web browser, and your user’s (or you) see HTML
 output.
Creating a Mockup of a User Profile Page

Figure 7-7 shows a solid-looking
 profile page. It shows the basics of each user’s contact information as well as a short
 bio and a picture of the user.
[image: Sometimes, the best PHP doesn’t begin with PHP at all. Creating HTML pages is work, and it often involves lots of tweaking, not to mention all the rules in your CSS that you need to create. By starting with a plain, old HTML page, like this one, you can get the look and feel of things just right. Then, when you’re ready to start writing your PHP, you don’t have much HTML work left; you can just drop your database values in the right spots, knowing your page will turn out great.]

Figure 7-7. Sometimes, the best PHP doesn’t begin with PHP at all. Creating HTML pages is
 work, and it often involves lots of tweaking, not to mention all the rules in your CSS
 that you need to create. By starting with a plain, old HTML page, like this one, you
 can get the look and feel of things just right. Then, when you’re ready to start
 writing your PHP, you don’t have much HTML work left; you can just drop your database
 values in the right spots, knowing your page will turn out great.

Here’s the HTML for the page in Figure 7-7. Because of CSS, it stays pretty
 simple.
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1>Yu Darvish</h1>
 <p>

 Attended Tohoku High School in northern Sendai, a school
which also produced major league pitchers Kazuhiro Sasaki and Takashi
Saito...he had a 1.10 ERA in his high school career, and pitched a
no-hitter against Kumamoto Technical High School in the first round
of the National High School Baseball Invitational Tournament on
March 26, 2004...he was drafted by the Fighters in the first round
on November 17, 2004 and signed on December 17.</p>
 <p>Went 18-6 with a 1.44 ERA (37 ER/232.0 IP) for Hokkaido
in his final season in Japan...the 1.44 ERA was the lowest of his
career, as he also posted career highs in wins (18), strikeouts (276),
innings (232.0), starts (28), and shutouts (6)...matched career
low with 5 HR allowed (also 2010)...led NPB in strikeouts, innings,
opponents average (.190), shutouts (tied), home runs per 9
innings (0.19), opponents OBP (.229), and opponents
slugging (.241)...the opponents OBP and slugging figures were
career lows...ranked among circuit leaders in ERA (2nd), complete
games (2nd), strikeout/walk ratio (3rd, 7.67), and wins (T3rd)...
tossed at least 7.0 innings in every outing last season, with his
lone outing of more than 3 runs coming in his first start...his
career-low run support average of 3.10 runs per 9 innings ranked
23rd out of NPB's 33 qualifying pitchers...received one or zero
runs of support in 4 of his 6 defeats.</p>
 <p class="contact_info">Get in touch with Yu:</p>

 ...by emailing them at yu@texasrang-
ers.com
 ...by <a href="http://www.facebook.com/pages/Yu-
Darvish/55933782070">checking them out on Facebook
 ...by following
them on Twitter

 </div>
 </div>

 <div id="footer"></div>
 </body>
</html>
Note
The bio and picture here are new, and not things that you would already have in
 your users table. They’re just examples of what you might see on
 a user’s profile page. Just a name and a few links for email and Twitter for this
 example was rather sparse.
Don’t worry, though. You’ll be adding a profile picture and bio to your database
 soon, and then this page really will be something your app can display.

Even though this example is straightforward, what you need is really even simpler.
 Imagine (or type) this page without the placeholder text, but instead with variables in
 the place of the dummy text. For example, wherever the user’s first name goes, envision
 $first_name, and then $last_name, $email, and so on. The
 result is clean:
Warning
The HTML that follows is helpful to think through, but it’s not valid
 HTML or PHP. Therefore, don’t try to view this in a browser. Still, this
 example lets you see that almost everything on the page really just represents
 information in the database, all in a user-friendly format.

<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1>$first_name $last_name</h1>
 <p>
 $bio</p>
 <p class="contact_info">Get in touch with $first_name:</p>

 ...by emailing them at
 $email
 ...by
 checking them out on Facebook
 ...by following them on Twitter

 </div>
 </div>

 <div id="footer"></div>
 </body>
</html>
But, wait a second…your users table doesn’t have a bio
 ($bio), or a picture ($user_image)! In fact, that’s exactly why it’s a good idea to focus on your
 HTML first, rather than diving right into PHP. When you begin designing your page, you
 think about what you need.
Imagine this page with nothing more than a name and some contact links. What a bore
 for your users, as well as you. With this simple mockup, you’ve figured out several
 important things:
	You’re missing some key information in your
 users table. You’d like to have a bio, which is
 just a long chunk of text, and a way to load an image of the user.

	Once you update your table, you need to update your
 create_user.html and create_user.php
 form and code to let users enter that information, and then save the new
 information to your database.

	Finally—and this is great news—with those changes, you can
 build a pretty nice-looking user profile page.

The question now is, what do you do first? Well, the database is usually the
 centerpiece of things, so you have to update your users
 table.

Changing a Table’s Structure by Using ALTER

There are two pieces of information missing from users: a bio
 and an image. For now, leave the image thing alone. That takes a little bit of work, and
 you can always drop a placeholder in and come back to that. The bio, however, is
 easy.
First, you need to change your table’s structure by adding a new column. That’s not
 hard at all; the SQL ALTER command lets you do just that:
ALTER TABLE users
 ADD bio varchar(1000);
Warning
Be sure you type ALTER and not ALTAR; the first is a SQL command, and the second
 is where you sacrifice things, if you’re so inclined. Either way, ALTAR will
 definitely not get your table in the shape you want.

This statement is as simple as it looks. You provide SQL with the name of the table
 to ALTER, and then specify how you want to alter it. In this case, you want to add a
 column, so you use ADD to give it the new column name and a type.
Of course, there are implications here:
	Is it okay for a user to leave a biography blank, or
 should the bio column be NOT NULL? It’s probably okay if it’s left blank, so NOT NULL really isn’t
 required.

	How in the world does information get into this column for
 new users? For that, you need to update your
 create_user HTML web form as well as the script that does the
 database work. That’s up next.

	Can you alter a table any time you want? Yes!
 That’s the beauty of databases. They’re pretty flexible.

FREQUENTLY ASKED QUESTION: Slugging in a Column
What happens to the old rows in a table when a new column is
 added?
Although it’s easy to add a column to a database by using ALTER, and it’s simple
 to update your forms to let your users get information into those columns (and show
 the results, if you’ve got a show_user script), there’s something
 left that can be a pain: dealing with old data that suddenly has a new
 column.
Consider the users table. Imagine that it didn’t have just
 one or two recent entries, but thousands of users from the past five years. As a
 result of your alteration, every one of those users has a glaring empty spot: the bio.
 Most databases happily leave the column blank, meaning you’ll get NULL every time you
 try and pull something out of the new bio
 column.
In this case, adding the bio column isn’t a big deal. In fact, you could probably call
 user bios a “new feature,” throw together a press release, and tout the oversight as a
 brand new version, improved and usable by a whole new generation of bio-loving
 potential users. Existing users can log in and add a bio; this is exciting
 stuff!
What’s not exciting is when you’re adding a column that’s required. Remember when your favorite site realized
 that using an email address as a user name wasn’t always a great idea? They probably altered
 their tables, adding a user name column, but had to make it NOT NULL. After all, the whole point of a user name is that each user has
 one.
In that case, you really do have a legitimate problem: you now have tons of rows
 that are missing required data. What do you do? Well, you can simply lock those
 users out, and the next time they try to access your site, build a mechanism that
 forces them to select a user name. That’s typical, and even expected in these
 security-conscious days of the Web. But, what if that’s not tenable? You’re letting
 all those rows be in an invalid state until a user logs in.
If that’s a problem—and it often is—you might need to insert some sort of
 placeholder data into your table, like “NEEDS_USERNAME”, and then query the user to
 check whether that’s her user name value when she does come back to your site. It’s
 not the most elegant solution, but it keeps your data valid. Ultimately, the big issue
 with using ALTER is that you potentially end up with data in an invalid state for some
 amount of time, or you have to insert placeholder data to keep things running,
 although you know that data can’t ultimately stay put. Neither solution is perfect, so
 you have to choose the lesser of these two evils. (Or, come up with something else
 altogether, and let us know by tweeting us at @missingmanuals.
 We’d love to hear what you come up with.)

Note
You’ll deal with the user image later in this chapter. There’s a lot to be said
 about image handling, and where to store images, so for now you can plan on having an
 image—and leave a spot for it in your web page and script—and just know that you’ll
 add that later.

Building Your Script: First Pass

With the bio column in users, and an HTML mockup complete,
 you’re ready to get down to the business of PHP. Create a new script and call it
 show_user.php. This goes along nicely with
 create_user.php, and you can probably already imagine you’ll
 later add scripts like delete_user.php and
 update_user.php to complete the package.
At the outset, you don’t need any PHP in this script at all. Instead, just drop in
 your HTML. Then, as you did earlier, you can replace all the instances where there will
 be information from the database with PHP variable names. What you end up with is shown
 in the code that follows.
<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1>$first_name $last_name</h1>
 <p>
 $bio</p>
 <p class="contact_info">Get in touch with $first_name:</p>

 ...by emailing them at
 $email
 ...by
 checking them out on Facebook
 ...by following them on Twitter

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
Note
Remember, save this with a .php extension in your
 scripts/ directory. That might be
 ch07/scripts/ if you’re using the book’s structure, or just
 your website’s scripts/ directory if you’re putting all your PHP
 from all the chapters in a single place.

Some things here are a bit odd:
	Where’s the PHP? There’s no <?php or
 ?> yet, and certainly no code.

	Those variables are PHP, not HTML. An HTML page won’t know what to do with
 them.

	Where does the database interaction occur? There’s no SQL, no SELECT from the
 database, or anything like that.

	How does the script know which user to load?

These are all the right questions to be asking. If you came up with a few of these,
 you’re really getting your head around the big issues in PHP and web programming. First,
 as to where the <?php and ?> tags are: they’re coming later, but that’s really incidental. You can
 give a file the .php extension and still put nothing but HTML
 within that file. Type the URL to your script into your browser and see what happens;
 Figure 7-8 is about right.
[image: Looking at your HTML separately is another good testing technique. At this stage, you don’t have any values, so you can focus on how your page looks. Once you add in PHP code, it’s easy to get focused on your database interaction and formatting the actual strings and values in your variables. When you do a prototype before you get to your database interaction, you can verify that things look right and then tweak things after more once you drop in a real value for each variable.]

Figure 7-8. Looking at your HTML separately is another good testing technique. At this stage,
 you don’t have any values, so you can focus on how your page looks. Once you add in
 PHP code, it’s easy to get focused on your database interaction and formatting the
 actual strings and values in your variables. When you do a prototype before you get to
 your database interaction, you can verify that things look right and then tweak things
 after more once you drop in a real value for each variable.

Warning
If you get a page without any styling when you view your HTML, you might need to
 update the link element in your page’s head section. Because you moved this page into your
 scripts/ directory, the CSS is in a different relative location
 than when this was just an HTML page under your web root, or your
 ch07/ examples.

There’s nothing but HTML in show_user.php, so your web server
 supplies that HTML to a user’s web browser. The result is a nice-looking web page. Of
 course, there’s still a handful of issues to deal with, like those variable names that
 are coming across as plain, old text.
That’s easy, though. Simply surround each variable with <?php and ?>, which signals to the
 browser, “Hey, treat this little bit as PHP.” Then, you’ll have to add an echo because you want to output the value of the
 variable:
<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>
 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?
></h1>
 <p><img src="<?php echo $user_image; ?>" class
="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>:
</p>

 ...by emailing them at
 <a href="<?php echo $email; ?>"><?php echo
 $email; ?>
 ...by
 <a href="<?php echo $facebook_url; ?>">checki
ng them out
 on Facebook
 ...by <a href="<?php echo $twitter_url; ?
>">following them
 on Twitter

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
There’s still an obvious issue here: These variables have no values. You haven’t
 defined them, and if you try to access this page now, you’re going to get some strange
 results (see Figure 7-9). But you’re
 slowly moving toward a useful script, and that’s a good thing.
The biggest problem here is that you don’t know if this code works. For example, are
 there typos? Are there problems in the minimal PHP you have? It’s a pain to move on to
 your database code when you’re not sure that they’ll work properly, even if you have the
 right values from the database.
[image: The state of show_user.php as shown on page 198 is one of those situations in which it’s a little hard to tell what’s going on. Look closely, though: Every time your PHP ran, it echoed out the value of a variable that didn’t exist. The PHP is a little loose here, and simply throws out nothing. In other words, PHP does echo a nothing string, which is just whitespace. Once you put values in those variables, things will look much better.]

Figure 7-9. The state of show_user.php as shown on page 198 is one of those situations in
 which it’s a little hard to tell what’s going on. Look closely, though: Every time
 your PHP ran, it echoed out the value of a variable that didn’t exist. The PHP is a
 little loose here, and simply throws out nothing. In other words, PHP does echo a
 nothing string, which is just whitespace. Once you put values in those variables,
 things will look much better.

One easy way to test before getting much further is to create a small section of PHP
 before the HTML. In that section, assign to each variable the sort of value you’d get
 from the database:
<?php
$first_name = "Yu";
$last_name = "Darvish";
$user_image = "/not/yet/implemented.jpg";
$email = "yu@texasrangers.com";
$bio = "Attended Tohoku High School in northern Sendai, a school
which also produced major league pitchers Kazuhiro Sasaki and Takashi
Saito...he had a 1.10 ERA in his high school career, and pitched a
no-hitter against Kumamoto Technical High School in the first round
of the National High School Baseball Invitational Tournament on
March 26, 2004...he was drafted by the Fighters in the first round
on November 17, 2004 and signed on December 17.</p>
 <p>Went 18-6 with a 1.44 ERA (37 ER/232.0 IP) for Hokkaido
in his final season in Japan...the 1.44 ERA was the lowest of his
career, as he also posted career highs in wins (18), strikeouts (276),
innings (232.0), starts (28), and shutouts (6)...matched career
low with 5 HR allowed (also 2010)...led NPB in strikeouts, innings,
opponents average (.190), shutouts (tied), home runs per 9
innings (0.19), opponents OBP (.229), and opponents
slugging (.241)...the opponents OBP and slugging figures were
career lows...ranked among circuit leaders in ERA (2nd), complete
games (2nd), strikeout/walk ratio (3rd, 7.67), and wins (T3rd)...
tossed at least 7.0 innings in every outing last season, with his
lone outing of more than 3 runs coming in his first start...his
career-low run support average of 3.10 runs per 9 innings ranked
23rd out of NPB's 33 qualifying pitchers...received one or zero
runs of support in 4 of his 6 defeats. ";
$facebook_url = "http://www.facebook.com/pages/Yu-Darvish/55933782070";
$twitter_url = "http://www.twitter.com/YuDarTranslated";
?>

<html>
 <!-- All your HTML and inline PHP -->
</html>
Now, you can view your page in a browser and get some useful results, like you see
 in Figure 7-10. This way, you can verify
 that your code is actually working; all that’s left is to fill those variables with real
 values, and then figure out which user to look up in the first place.
[image: Your user profile page is still as much prototype and mockup as it is working code. All the same, testing a little PHP at a time is a good way to work up to a full script, piece by piece, making sure each step works independently of everything else that is going to be added later.]

Figure 7-10. Your user profile page is still as much prototype and mockup as it is working
 code. All the same, testing a little PHP at a time is a good way to work up to a full
 script, piece by piece, making sure each step works independently of everything else
 that is going to be added later.

Using SELECT to Retrieve a User from Your Database

You’ve got your variables, and you’ve got your HTML. Now, you need to get your user.
 But, you know just what to do because you’ve already used SELECT a few times:
SELECT *
 FROM users;
In fact, you can run that command now on your database. What you get back are all
 the rows you have:
+---------+------------+-----------+----------------+--------------
---+----------------+------+
| user_id | first_name | last_name | email | facebook_url
| twitter_handle | bio |
+---------+------------+-----------+----------------+--------------
---+----------------+------+
| 1 | Yu | Darvish | yu@texasrangers.com | http://www.face-
book.com/pages/Yu-Darvish/55933782070 | @ YuDarTranslated
 | NULL |
+---------+------------+-----------+----------------+-------------------
--------------------------------------+----------------+------+
1 row in set (0.03 sec)
Note
This output is intentionally left as a bit of a mess because it’s probably just
 what you see in your console window, too. The output of your SELECT is all the rows in
 the table, which won’t fit in a normal command-line prompt, let alone the limited
 width of a book page.

In this case, there’s just a single user. Once you retrieve this user, you can pull
 out the values for first_name and last_name, email, and so
 on and stuff them in $first_name, $last_name, and the rest of your variables.
There’s still one big question lurking about: how do you know
 which user to get? Obviously, in the table output here, there’s
 only one user. But, what about when your new app is a hit and you have hundreds, or
 thousands, or even hundreds of thousands of users? You need to be able to select just
 one of those users for show_user.php to display.
Think about the ways that users will end up at show_user.php.
 Here are a few:
	They are sent to this page after they’ve created a new user with
 create_user.html and
 create_user.php.

	They log in to your application and click a link such as My Profile or Update My
 Information.

	They select a particular user from a list of users, maybe all the users in the
 system, or all their friends, or all the users they’re watching or following.

These situations all have one thing in common: Nobody ever goes to
 show_user.php directly by typing in a URL. In each case, someone
 selects a user, or creates a user, or logs in as a user, and then some link takes her to
 show_user.php.
The point is that in every reasonable situation, your code sends the user to
 show_user.php; therefore, so your code is really in control. If,
 for example, you need to send some information to show_user.php,
 that’s possible. What might your code want to send to
 show_user.php? You want to send the unique ID of the user that
 show_user.php should load from the database and display.
Take a moment to revisit those same scenarios again:
	The create_user.php script creates a user, and the ID of
 that new user is handed off, along with your application user, to
 show_user.php.

	Clicking My Profile or Update My Information passes along the current logged-in
 user’s ID to show_user.php.

	Selecting a user from a list—regardless of what’s in that list—results
 in a link to show_user.php being followed, and the selected
 user’s ID being passed to show_user.php at the same
 time.

In each case, your show_user.php script can use the ID that it
 received to look up the user and then display that user.
The beauty of this solution is not just that it’s possible, because you have control
 over all the ways your users might get to show_user.php, but it’s
 also perfect because you can pass in the ID of the user to show as part of the request,
 and you’ve already pulled information out of the request before, by using $_REQUEST.
Add the code highlighted in bold to show_user.php:
<?php

$user_id = $_REQUEST['user_id'];

// Code to assign values to the page variables
?>

<html>
 <!-- All your HTML and inline PHP -->
</html>
Nothing new here; the only thing that’s different from what you’ve done before is
 that you’re pulling a request parameter with a new name: user_id.
Now, you can add a WHERE clause to your SELECT:
SELECT *
 FROM users
 WHERE user_id = $user_id;
So far, you’ve seen a few WHERE clauses (like the one on Using SELECT for the Grand Finale), and they do just what you might
 expect. The WHERE clause narrows a set of results by applying an additional condition or
 restriction to the item you’re looking for. In this case, you’re saying, “Give me
 everything (*) from the users
 table, but only for the records (rows) that have a user_id of the value in $user_id.”
Thus, if your sample user has a user_id of 1, and
 $user_id is 1, you’ll get that sample user. If you
 don’t have any rows that have a user_id of 1, you’ll
 get nothing back from the SELECT. Here’s what’s really cool: you made user_id a primary key (with PRIMARY KEY), which means that
 you’ll never have more than one result returned. This means that you don’t have to see
 how many values are returned, or do anything special to handle one row or multiple rows.
 You’ll either get nothing back because there was no match, or you’ll get just a single
 row back.
When you put all this together, you can make some really important additions to
 show_user.php:
<?php

require '../../scripts/database_connection.php';

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

// Build the SELECT statement
$select_query = "SELECT * FROM users WHERE user_id = " . $user_id;

// Run the query
$result = mysql_query($select_query);

// Assign values to variables

?>

<html>
 <!-- All your HTML and inline PHP -->
</html>
This script now connects to your database, builds the SELECT statement from the
 user_id request parameter that was passed to it,
 and then runs the query. All that’s left is the one entirely new piece to this script:
 running through the actual result from a query, and pulling information from that
 result.

Pulling Values from a SQL Query Result

The $result variable is a resource, a special
 type of variable that holds a reference to more information, as explained in Chapter 5, on Handling Errors by Determining If Your Results are Not. You can pass that resource to
 other PHP functions, and use it to get more information.
In the case of a SELECT query, what you really want is all the actual rows that the
 query returned, and then for each row, you want the different values. That’s exactly what you can use a resource for, so you’re all set to
 finish off show_user.php and start accepting requests.
You begin by ensuring that $result has a value.
 That’s equivalent to ensuring that $result is not
 false, which is returned when there’s a problem with your SQL:
// Run the query
$result = mysql_query($select_query);

if ($result) {
 // Get the query result rows using $result
} else {
 die("Error locating user with ID {$user_id}");
}
This if statement also (marginally) handles
 errors. If $result is false, something went wrong,
 which presumably means the user for whom you were searching by using $user_id doesn’t exist, or there was a problem finding that
 user. So far, it doesn’t format the error nicely, providing you with little information
 about what actually happened that caused the problem. For the time being that’s OK;
 you’ll beef up your error handling soon, so this if
 is a decent short-term solution.
Now, you need a new PHP function: mysql_fetch_array. This
 function takes a resource from a previously run SQL query. That’s exactly
 what you have in $result:
if ($result) {
 $row = mysql_fetch_array($result);

 // Break up the row into its different fields and assign to variables
} else {
 die("Error locating user with ID {$user_id}");
}
Here’s where things get a little odd. Take note of how the preceding script stores
 the result from mysql_fetch_array in $row. This implies that mysql_fetch_array returns a single row from your SQL query—and that’s
 correct.
But, the function’s name suggests something else: It leads you to believe that an
 array is returned—mysql_fetch_array, not
 mysql_fetch_row. So, is it a row or is
 it an array? Well, it’s both. The mysql_fetch_array
 function does return an array, but it returns an array for a single
 row of the query associated with the result you pass into
 it.
This means that for mysql_fetch_array($result),
 you’re going to get back a single row of results, but that the way
 that row is returned is in the form of an array.
Note
If you’re already wondering, you can certainly get every row
 of results returned from a query, not just the first result row. You just keep calling
 mysql_fetch_array, over and over, and it keeps
 returning the next row from the results. Eventually, mysql_fetch_array will return false,
 which means there are no more results.
Don’t worry if this seems a little sketchy. Before long, you’ll use mysql_fetch_array like this yourself, and it will all make
 perfect sense. For now, be aware that every time you call this function, you’ll get one row of results (or false if there are no rows left to return), and that row is an array of
 values.

Because you know how to work with arrays, getting back an array in $row is good news. In fact, $row is just like another array you know, the $_REQUEST array. And just like $_REQUEST, you have not only a list of values, but values that are keyed
 based on a name.
When a request came in with a parameter named “first_name,” you pulled the value for
 that parameter with $_REQUEST['first_name']. The same
 principle applies to $row. You can give it the name
 of a column returned in your SQL query, and you’ll get the value for that column, in the
 specific row you’re examining.
Once you have $row, you can just grab all the
 columns you want, and then stuff them into some variables:
// Run the query
$result = mysql_query($select_query);
if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = $row['bio'];
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);

 // To be added later
 $user_image = "/not/yet/implemented.jpg";
} else {
 die("Error locating user with ID {$user_id}");
}
Note
At the end of this if statement, you should add
 the code preceding that creates a URL for the Twitter handle. You’ll probably remember
 this code, because it’s the same code you used in earlier chapters to build this URL,
 although back then you weren’t getting the user’s Twitter handle from a database.
Also add the code that fills in $user_image
 with a dummy value until you come back later to fix the user’s image for real. You
 could also use a stock image for when there’s no picture, like this:
$user_image = "../../images/missing_user.png";
There’s a sample of an image like this in the downloadable examples at www.missingmanuals.com/cds/phpmysqlmm2e if you want to go this route for
 now.

At this point, you have a fully functional script! In fact, other than figuring out
 how to use the $result resource with mysql_fetch_array, all of this should be no problem for
 you.

Passing a User ID into show_user.php

At this point, you need to get a user ID into your script so that it can use that ID
 to look up a user, get her information, and display it. But, before you spend a bunch of
 time on other scripts, it’s a good idea to ensure that
 show_user.php works.
Fortunately, there’s a very easy way to test your script. The $_REQUEST array has all the information passed into your
 script through its request, including extra information passed through the request URL
 itself. Remember, this isn’t the ordinary way you’d either pass information into
 show_user.php or even access show_user.php
 in the first place. Instead, scripts like create_user.php, or maybe
 a My Profile button, would direct your users to this script.
But for now, you’re just testing. So, go directly to the page by using a URL like
 yellowtagmedia.com/phpMM/ch07/scripts/show_user.php. As long as
 you’re there, you can feed that script request data with request parameters on the URL
 itself. You can simply add these to the URL, after a ? (question mark) character. (For more information on using a
 /scripts directory, see the box on Is a scripts/Directory a Good Idea?.)
The format is basically as follows:
[scheme]://[domain-name]/[location-of-file]?[request-paramaters]
For example, you might use
 mysite.com/scripts/show_user.php?first_name=Mario. Now, you could
 grab $_REQUEST['first_name'], and you’d get back
 “Lance.” You can stack these up, too; just separate the parameters with an & (ampersand) character. You could go further and do
 mysite.com/scripts/show_user.php?first_name=Mario&last_name=Beauregard.
Note
More formally, the file name (show_user.php)
 is the path. The information after that
 (?first_name=Mario&last_name=Beauregard) is the
 query string.

To do so, add the user ID of the user you created much earlier (or one of the users,
 if you inserted more than one) and try out show_user.php, with a
 URL like
 yellowtagmedia.com/phpMM/ch07/scripts/show_user.php?user_id=1.
 You’ll get something back similar to Figure 7-11, which is a validation of all the
 work you’ve been putting into SQL and show_user.php.
[image: There’s always room for error when a form or web page sends information to another page or a script. Anytime you can test just a single script in isolation, you’re going a long way toward removing potential errors and hard-to-find bugs that only pop up when two web pages talk to one another, as compared to when each is operating in isolation.]

Figure 7-11. There’s always room for error when a form or web page sends information to
 another page or a script. Anytime you can test just a single script in isolation,
 you’re going a long way toward removing potential errors and hard-to-find bugs that
 only pop up when two web pages talk to one another, as compared to when each is
 operating in isolation.

Warning
Request parameters are case-sensitive, as is PHP. Therefore, asking for $_REQUEST['user_id'] won’t match a request parameter named
 USER_ID or user_Id. Be careful to ensure that your uppercase and lowercase letters
 all match up.

At this point, you’ve done just about everything you can to ensure that
 show_user.php is going to behave. It’s missing some information,
 like the user’s pic and bio, but you can deal with the picture later, and you can take
 care of the bio by updating create_user.php. Other than that, it’s
 time to leave show_user.php alone and revisit the script that
 actually gets users to show_user.php in the first place.
Note
There is probably one more thing you could do: manually INSERT a user with a bio
 into your users table and then try out show_user.php again. You
 might want to do that now and verify that show_user.php is just
 as you want it. You’ll test that same bit of functionality in a little while once you
 update create_user.php, but there’s no such thing as too much
 testing.

DESIGN TIME: Is a scripts/Directory a Good Idea?
Storing all your scripts in a directory (or, technically, a subdirectory) called
 scripts/ is a practice that largely dates back to older
 programming languages like Perl and CGI (Common Gateway
 Interface, a way of calling external programs like server-side scripts). In
 those days, programmers maintained a really firm separation between client-side
 programs, or views, and server-side programs. Thus, a script never really did anything
 that resulted directly in a web page being displayed; they were just programs called
 by other processes.
But PHP really blurs the line between what’s a script, and what’s a viewable page.
 The show_user.php script is actually a lot more HTML than it is
 PHP, and it’s going to be common for a user to actually go to
 show_user.php directly. In other words, PHP is more than just a
 way to write scripts to which your forms submit behind the scenes. There will be lots
 of times when users click a link to a PHP page rather than an HTML page, or even type
 in a URL for the PHP script in his browser.
In fact, there are some popular pieces of software that essentially handle
 all HTML within PHP. WordPress (www.wordpress.org) is a hugely popular blogging and content management system
 that’s built on PHP. In that system, your site’s home page is actually
 index.php, not index.html.
At that point, a scripts/ directory doesn’t make sense. Your
 users don’t care whether they’re getting a page from an HTML file or a PHP script, as
 long as it looks and acts the way they expect. And adding a
 scripts/ directory actually increases what your users have to
 know about your system rather than making things more transparent.
Therefore, beginning in Chapter 8, this
 change will kick into gear. It’s good that you’ve been thinking about the difference
 between what you’ve been doing as a web page creator with HTML, CSS, and JavaScript,
 and your new PHP skills. But, now that you’ve moved beyond just submitting forms to
 PHP, it’s time to blur the lines even further and let your PHP scripts live alongside
 your HTML.

Revisiting (and Redirecting) the Create User Script

The changes you made in the previous section are great, but there’s more to do. For
 example, you have a new bio column, but no place to enter that information when users sign
 up. You need create_user.php to deal with that information when it
 comes in from your signup form. And then there’s getting a user from the signup form to
 show_user.php—and passing along the newly created user’s ID, as
 well. It seems like a lot, but with what you know, this change will be a breeze.
Updating Your User Signup Form

The first change—the bio—is one of the easiest. Open your
 create_user.html page and add a new form field so that your users
 can enter a biography. Leave plenty of space: Have you seen how much information people
 write about themselves on Facebook these days? Here’s the updated version of
 create_user.html:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Signup</div>

 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form action="scripts/create_user.php" method="POST">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="50" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 <label for="bio">Bio:</label>
 <textarea name="bio" cols="40" rows="10"></textare
a>
 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Join the Club" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
While you’re at it, you might as well let your users pick an image for their
 profile. You won’t write any code in create_user.php to handle
 this, but it’s coming soon, and you’ll save a trip back to
 create_user.html when you’re ready to add images.
<html>
 <!-- head section -->
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Signup</div>

 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form action="scripts/create_user.php" method="POST"
 enctype="multipart/form-data">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="50" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 <label for="user_pic">Upload a picture:</label>
 <input type="file" name="user_pic" size="30" />
 <label for="bio">Bio:</label>
 <textarea name="bio" cols="40" rows="10"></textarea>
 </fieldset>
 <!-- Buttons for submission and resetting the form -->

 </body>
</html>
You need to change the form tag a bit, because
 now you’re actually uploading a file to a server from your user’s machine. To do this,
 add the new enctype attribute with the value
 “multipart/form-data”. That alerts any scripts
 receiving this form’s input to expect more than just the values in the input fields,
 like the name of the file. A form like this also submits the data associated with those
 fields; in this case, that’s the actual file that the user selects to upload.
Then, you add a new input of type “file” which lets the user browse his hard drive,
 select a file, and upload that file. By the way, this code is almost boilerplate. Every
 time you give your users the opportunity to upload a file, this is the set of changes
 you’ll need to make.
Note
If you want to start thinking ahead, the million-dollar question is, “Where do you
 store this image?” You have to set up to let the user upload the image; that’s
 required for your scripts and code to work with it. However, do you save the image on
 your server’s file system and reference it by using a field in your
 users table? Or, do you actually store it in your database?
 You’ll develop your own answer to this question in just a few chapters.

Save your changes here and then open your form in a browser. You should see your
 updated form, similar to Figure 7-12.
[image: Except for the new Choose File button, your form doesn’t look much different when you add a new file input element or change your form to submit multipart data. Behind the scenes, though, your form is sending not just the name that ends up in each form field, but anything that’s connected to that name—like the file that your user selects when he clicks that button.]

Figure 7-12. Except for the new Choose File button, your form doesn’t look much different when
 you add a new file input element or change your form to submit multipart data. Behind
 the scenes, though, your form is sending not just the name that ends up in each form
 field, but anything that’s connected to that name—like the file that your user selects
 when he clicks that button.

If you fill in some values now, without changes to
 create_user.php, you’ll create a new user without a
 bio.

Updating Your User Creation Script

The next change to create_user.php grabs the new bio request
 variable and adds it to your INSERT statement:
<?php

require '../../scripts/database_connection.php';

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
// And other request variables follow...
$insert_sql = "INSERT INTO users (first_name, last_name, email
, bio," .
 "facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}'
, '{$bio}' ".
 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql);
?>
Submit your new form. Notice that there’s a new column—bio—with values happily dropped into your database.
Warning
Be sure you’ve run the ALTER TABLE statement that adds the bio column to your users table (Changing a Table’s Structure by Using ALTER) before trying this out.

In fact, you can try this out by filling out create_user.html
 and clicking Submit. Then, try this SELECT statement:
SELECT first_name, last_name, bio
 FROM users;
Your result should speak for itself:
| first_name | last_name | bio
| Yu | Darvish |NULL |
| David | Ramirez |By breaking through heartache,
David Ramirez has gone on a search for understanding. The
Austin resident and frequent traveler to clubs, theaters
and listening rooms all over the country, has come to a
phase in his creative life where the tears have dried and
moving on looks like the best option.
You can also see that old users—in this case, the Yu Darvish entry—shows NULL for
 the bio, because that user was created before a
 bio column existed.
Next, you need to redirect your user over to the show_user.php
 script and then get the ID of the user you just created into that script, as
 well.
The first of these is easy:
<?php

// Everything else you've already done

// Insert the user into the database
mysql_query($insert_sql);

// Redirect the user to the page that displays user information
header("Location: show_user.php");
exit();
?>
The header function sends a raw hypertext transfer protocol (HTTP) header to your user’s browser. (HTTP is the language of web traffic.
 It’s the same http:// you put at the beginning of most of your URLs
 in your browser’s address bar.) This function directly manipulates the location of your user’s page.
In this case, you’re changing the location from the current one to a new one: the
 show_user.php script. There are a couple things that are critical
 to get this working correctly, though:
	The header must be
 called before any other output in your script. You
 can’t echo out anything. Nor can you print out an
 <html> tag or anything else. The header is first, or problems arise.

	The location reference must be a URL, either relative or
 absolute. This means that you could put http://www.google.com as the location, or
 ../../scripts/database_connection.php, or in this case, a
 script in the same directory as this one, show_user.php.

These are simple rules but they’re also really important ones. Get them right, or
 expect header to fail miserably.
All that’s left now is getting that pesky user ID. To do that, you need something
 that’s one step removed from your current PHP knowledge: an incredibly handy PHP
 function called mysql_insert_id. This isn’t the sort
 of function you’ll easily find unless you’re looking for, say, a function to get the ID
 of the last row INSERTed into a database table with an AUTO_INCREMENT column.
Yes, that’s the exact definition of mysql_insert_id! It’s built exactly to do what you want to do: get an ID
 without any additional SELECTs or work.
Note
To be fair, mysql_insert_id was always there,
 and it’s a certain way of coding that makes it so useful. But, because you’re coding
 that way—using tried-and-true PHP best practices—you get to use a function like
 mysql_insert_id just as it was intended, which
 makes your life a lot easier.

Even though you can pass a resource into mysql_insert_id, it will automatically use the last opened resource, which
 is perfect. Just add this after your INSERT is called via mysql_query, and it will automatically reference the resource returned from
 that call.
What does it return for a value? Just the ID of the user you want. You can actually
 tag that onto the URL, just as when you were typing in your URL manually:
<?php

// Everything else you've already done

// Insert the user into the database
mysql_query($insert_sql);

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
?>
That’s it. Add this to create_user.php, and you’re ready to try
 things out.
Note
You might be tempted to try something like this:
("Location: show_user.php?user_id={mysql_insert_id()}");
Unfortunately, it won’t work. PHP is happy to insert variable values for variable
 names in curly braces, such as this:
("Location: show_user.php?user_id={$user_id}");
However, it won’t do the same for function calls.

Go ahead and visit your user creation form, fill out some data, and then submit it. You should be
 rewarded not by the output of create_user.php, but by
 show_user.php, loading the user that was just created. Figure 7-13 shows why this should be a
 fist-pumping moment.
[image: Think about all that’s going on here. Your user enters data and clicks, but behind the scenes, that form is submitted to your script on the server. That script inserts data into a database. Then, it directs the user’s browser to go visit another script, which asks the database for everything about a particular user. Finally, your user gets to see all this, mere instants later. This is a far cry from just HTML, CSS, and JavaScript. Welcome to web programming!]

Figure 7-13. Think about all that’s going on here. Your user enters data and clicks, but
 behind the scenes, that form is submitted to your script on the server. That script
 inserts data into a database. Then, it directs the user’s browser to go visit another
 script, which asks the database for everything about a particular user. Finally, your
 user gets to see all this, mere instants later. This is a far cry from just HTML, CSS,
 and JavaScript. Welcome to web programming!

Note
Here’s something to look forward to. It’s really not great that you’re dropping
 the user’s ID right into the browser bar (see Figure 7-13). Any mildly inventive hacker
 would see that and start trying different IDs to see what they get. Never fear,
 though; before long, you’ll not only remove that user ID from the URL, but also use
 sessions to enhance security, along with requiring passwords for seeing this sort of
 data.

Rounding Things Out by Using Regular Expressions (Again)

Your profile page (Figure 7-13) is
 almost perfect. But, that output looks awful with all that text
 run together. The user probably pressed Enter a few times to separate the bio into
 neat-looking paragraphs, but those paragraphs don’t show up in HTML. What you really need is a quick and easy way to replace those
 Enter key presses with <p></p>
 tags.
You need a way to find certain specific characters and replace them with other
 characters. You know that each occurrence of Enter is represented by \r or \n or some
 combination of the two (Chapter 6, Searching for Sets of Characters), which means that you can use regular
 expressions to find them and then replace them.
Using preg_match, update show_user.php to change occurrences of Enter into HTML <p> tags:
<?php

// Database connection code

// SELECT the correct user

if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>
", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];

 // Build the Twitter URL
}
?>

// HTML output
Note
Be sure you use [\r\n]+, and not [\r\n]*. The * would
 match no occurrence, and you’d end up with </p><p> between every character in the user’s
 bio. Not so good! The + ensures that \r or \n (or both)
 appear at least once before replacing them with </p><p>.

Clearly, you can see why regular expressions are so powerful. You didn’t need lots
 of looping and searching, and you don’t have to figure out whether the user entered
 \r or \n or
 \r\n based on her platform. You just plug in the
 right regular expression, and you’re off to the races.
All of this put together should give you a version of
 show_user.php like the following:
<?php

require '../../scripts/app_config.php';
require '../../scripts/database_connection.php';

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

// Build the SELECT statement
$select_query = "SELECT * FROM users WHERE user_id = " . $user_id;

// Run the query
$result = mysql_query($select_query);

if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);

 // To be added later
 $user_image = "../../images/missing_user.png";
} else {
 die("Error locating user with ID {$user_id}");
}
?>

<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="<?php echo $user_image; ?>" class="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>:
</p>

 ...by emailing them at
 <a href="<?php echo $email; ?>"><?php echo $email; ?>

 ...by
 <a href="<?php echo $facebook_url; ?>">checking them out
 on Facebook
 ...by <a href="<?php echo $twitter_url; ?>">following them
 on Twitter

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
When you take this for a test spin, you’ll finally see not just your user’s
 information, but a nicely formatted biography, as presented in Figure 7-14.
[image: Ensuring that your user’s paragraph breaks are maintained is another classic case of thinking about your user. Is it functionally correct to pull the user’s bio from the database and show it? Sure. Is it functionally correct to not insert weird HTML into his bio when you store it? Again, sure. But when you actually display that value to the user, he doesn’t care what’s in your database. He only cares that it looks good.]

Figure 7-14. Ensuring that your user’s paragraph breaks are maintained is another classic case
 of thinking about your user. Is it functionally correct to pull the user’s bio from
 the database and show it? Sure. Is it functionally correct to not insert weird HTML
 into his bio when you store it? Again, sure. But when you actually display that value
 to the user, he doesn’t care what’s in your database. He only cares that it looks
 good.

FREQUENTLY ASKED QUESTION: The Match Name
Do my field names, variable names, and table column names have to
 match?
You may have noticed that there’s a continuous line from the name of a field in
 your HTML in create_user.html to your
 create_user.php script, into other scripts like
 show_user.php, and then into your database table itself.
 first_name is consistent in your HTML, PHP, and
 MySQL (and therefore your SQL, too). That’s not required; you can call a field
 firstName and call a variable user_firstName and call a column first_name, and as long as you keep things straight, all your code will
 work just fine. So no, your names don’t all have to match.
But being consistent in your naming makes your life easier. You never have to
 think, “I know what I called that variable in my PHP, but what was the database column
 name again?”
Here’s the flipside, though: There are some standard conventions for naming
 variables in different programming languages and database structures. The Java
 language favors less underscores, and more capitalization. Thus, firstName would be preferred over first_name; the same is true in C++, although PHP and languages like Ruby
 prefer underscores over capitalization. SQL definitely favors underscores.
What this boils down to is a sort of conditional rule of thumb:
 if you can be consistent without messing up the conventions of
 the language within which you’re programing, do it! Your code is easier to read, from
 the outermost HTML page to the innermost database table. Because PHP is one of the
 languages that likes underscores, use them, and keep things simple and consistent
 across your different pieces of your application.

Part 3. From Web Pages to Web Applications

Chapter 8
Chapter 9
Chapter 10
Chapter 11

Chapter 8. When Things Go Wrong (and They Will)

You have a growing set of functional scripts. You have some web pages that interact with
 them, CSS to style both your HTML static pages and the HTML that your scripts dish out, and
 you could (and should) go in and add some client-side JavaScript validation. Things are
 looking pretty good.
But there’s a monster lurking in the deep. Even though you’ve occasionally added a
 die or a conditional to ensure that your queries return
 a result row, your code really assumes the perfect user: one who always types exactly what
 you expect, never enters a phone number in the email field or spaces in the Facebook URL
 field; someone who never needs to go back—and in fact never clicks her browser’s Back button
 at an inopportune time—and never enters her information into the same form twice by
 furiously clicking “Add my information” instead of waiting on her lousy Internet
 connection.
Of course, if you start thinking about your friends and family, you probably don’t know
 a lot of those types of users. And that’s a problem…a big problem. The
 reality of web software—and in fact any type of software—is that people will always find
 ways to break your best-intended pages, forms, and scripts. They’ll supply you bad
 information, leave out required fields, and make a general mess of anything and
 everything.
Note
Again, client-side JavaScript is worth a strong mention here. You can reduce a lot of
 this sort of problem by validating your user’s information before
 it’s sent to your scripts. For a lot more on how to do that, check out
 JavaScript: The Missing Manual by David Sawyer McFarland
 (O’Reilly).

Suppose you’ve typed something wrong in your database connection script. Will your users
 see a helpful error message? Or even an email to which they can report the problem? No,
 they’ll get the rather disappointing screen shown in Figure 8-1.
[image: There’s very little that turns a user off more than an error message like this. It’s cryptic, it reveals information about your system that it shouldn’t, and perhaps worst of all to your user, it’s ugly! As silly as that sounds, looks matter on the Web, and consistent looks matter a lot. Your errors should be reported as cleanly as possible, and in a format that’s consistent with the look and feel of the rest of your site.]

Figure 8-1. There’s very little that turns a user off more than an error message like this. It’s
 cryptic, it reveals information about your system that it shouldn’t, and perhaps worst of
 all to your user, it’s ugly! As silly as that sounds, looks matter on the Web, and
 consistent looks matter a lot. Your errors should be reported as cleanly as possible, and
 in a format that’s consistent with the look and feel of the rest of your site.

A cryptic error message might be fine when it’s only you using your system, testing
 things out, making sure your code is right. But this is a poor excuse for handling errors in
 any kind of system that’s going to make it out there in the wilds of the Internet.
It gets even worse; try to visit the show_user.php URL again and
 supply a user ID that you know doesn’t exist. Figure 8-2 shows that, instead of generating an
 error, the invalid user ID is being swallowed up by your script. You get an “empty” user
 profile, but otherwise it looks like nothing’s wrong.
There’s a lot of work to do here. First things first, though: What exactly should an
 error page have on it?
[image: The problem with this web form is that it looks like there’s no problem when in fact there’s actually a big problem—someone entered an invalid user ID. The show_user.php script loads up its HTML, regardless of whether a SQL error occurred. Because PHP is happy to simply echo out empty strings for variables without values, this page looks almost normal…except for all the missing information.]

Figure 8-2. The problem with this web form is that it looks like there’s no problem when in fact
 there’s actually a big problem—someone entered an invalid user ID. The show_user.php
 script loads up its HTML, regardless of whether a SQL error occurred. Because PHP is happy
 to simply echo out empty strings for variables without values, this page looks almost
 normal…except for all the missing information.

Planning Your Error Pages

When you were creating the page that shows user profiles (Building Your Script: First Pass), you began with HTML. You created a mock-up
 of a simple page and then added PHP as you needed it. There’s no reason to abandon that
 approach here, because you’re basically trying to do the same thing. You want a
 nice-looking page for displaying errors, so before you start digging into PHP, get the
 page looking just right.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Create a new HTML page and call it show_error.html. You can begin
 with the same structure you’ve been using for all your other pages:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Error Page</div>

 <div id="content">
 <h1>Error Page</h1>
 <p>Error</p>
 </div>

 <div id="footer"></div>
 </body>

</html>
At this point, you have an empty shell (see Figure 8-3), and it’s time to get to
 work.
[image: No matter how good a designer and coder you are, it’s almost impossible to do good design and good coding simultaneously. By working on a mock-up, and then dealing with code, you can focus on one concern at a time. And once you’ve made that adjustment, it’s almost always easier to mock up at least a general idea of your front-end before digging into code.]

Figure 8-3. No matter how good a designer and coder you are, it’s almost impossible to do good
 design and good coding simultaneously. By working on a mock-up, and then dealing with
 code, you can focus on one concern at a time. And once you’ve made that adjustment, it’s
 almost always easier to mock up at least a general idea of your front-end before digging
 into code.

What Should Users See?

Here’s your first question: what goes on this page that helps your users? To answer
 that, you really need to think about two things:
	What information does your user need when an error has
 occurred?

	In what tone does that information need to be
 communicated?

Tell Your Users that a Problem has Occurred

The should be pretty obvious. Something has gone wrong; your user needs an
 explanation. But even in that, there’s nuance. Should you print out an error that looks like the one here (which is the sort of thing MySQL might
 kick back to one of your scripts)?
#1054 - Unknown column 'firstname' in 'field list'
Certainly not. Unless the user is a MySQL or PHP programmer, this isn’t helpful at
 all. Ideally, you want to translate that into normal human language, like the
 following:
We're sorry, we couldn't locate the user's first name.
That’s much more readable, although it still doesn’t give the user much to go on.
 “Why couldn’t they fine me?” he might ask. “Is my record missing? Is my first name in
 the system? Uh oh, has my record been deleted? What’s going on?!?”
Note
Does that seem overly dramatic? Watch users who aren’t particularly comfortable
 with computers and the Internet use a web application, especially if that
 application contains any of their personal information. It doesn’t take much to
 create a lot of worry.

Maybe that error needs to be just as readable, but a lot less specific:
We're sorry! There's been an error processing your request.
Now, that’s something most people can understand. Things can go wrong, and
 something has. The details aren’t really relevant for your users; your job is simply
 to communicate a problem.

Bring Down the Panic Level in the Process

By now, you’ve figured out that, in terms of information, your user really just
 needs to know that a problem has occurred. Details are probably irrelevant and could
 even potentially create more worry rather than less. But what about that second
 item:
In what tone does that information need to be communicated? This sounds pretty
 touchy-feely, and in fact, it is. You’re dealing with human users, and that means
 human emotions. People become annoyed when the web application they’re using throws up
 errors, and although you can reduce the stress and frustration, you can’t get rid of
 it altogether.
Regardless of what you say when problems occur, you need to think about
 how you say it. A stern, bland error message isn’t as
 comforting as a casual, conversational one. Sometimes you can even add in a little
 humor. Take a look at Figure 8-4 for
 one way to turn a problem into a conversation point. You can almost bet that a user
 who lands on this page—error or not—is going to come back to the site.
[image: This page is worth a few laughs. Unfortunately, it has some problems, too: it assumes that a “404 error” makes sense to a common user. Some geekier folks might get it, but even when using humor, always try to be accessible to your users.]

Figure 8-4. This page is worth a few laughs. Unfortunately, it has some problems, too: it
 assumes that a “404 error” makes sense to a common user. Some geekier folks might
 get it, but even when using humor, always try to be accessible to your
 users.

Going full on with humor might be a little strong for your example site, but at
 least ensure that you use conversational language. Just getting away from the
 stern-sounding, “Error 1282: An exception has occurred” goes a long way.
For example, make a few conversational improvements to your error page mockup, as
 in the following example, and notice how quickly this becomes a little more palatable
 when the inevitable error occurs:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Uh oh... sorry!</div>

 <div id="content">
 <h1>We're really sorry...</h1>
 <p>
...but something's
gone wrong. Don't worry, though, we've been notified that there's a
problem, and we take these things seriously. In fact, if you want
 to
contact us to find out more about what's happened, or you have any
concerns, just email
 us
and we'll be happy to get right back to you.</p>
 <p>In the meantime, if you want to go back to the page th
at caused
the problem, you can do that <a href="javascript:history.go(-1);
">by
clicking here. If the same problem occurs, though, you m
ay
want to come back a bit later. We bet we'll have things figured
out by then. Thanks again... we'll see you soon. And again, we're
really sorry for the inconvenience.</p>

 </div>

 <div id="footer"></div>

 </body>

</html>
This text doesn’t say much more than “Yes, we know a problem has occurred, and
 we’re working on it.” Everything else is about presentation: conversational words, an
 image to break up the cold page (which at the end of the day still
 does say, “Hey, sorry, something’s broken”), a contact link for
 email, and another link to revisit the offending page. (If you do invite users to
 contact you with problems, be sure to follow through. See the box on Over-Promise at Your Own Risk.)
The error page in Figure 8-5
 is a heck of a lot less annoying than that in Figure 8-3, and it took no more work to
 produce.
[image: Simple things like error pages and testing are often what separate casual and mid-level programmers from high-end consultants and senior-level developers. Small things like this helpful error page keep systems running and users happy, which ultimately keeps the lights on and the bills paid.]

Figure 8-5. Simple things like error pages and testing are often what separate casual and
 mid-level programmers from high-end consultants and senior-level developers. Small
 things like this helpful error page keep systems running and users happy, which
 ultimately keeps the lights on and the bills paid.

POWER USERS’ CLINIC: Over-Promise at Your Own Risk
Nowhere other than error pages is it easier to over-promise and under-deliver. If you tell
 a user that you’re looking into his problem, you’d better be looking into it. If
 you’re going to supply a contact email address, ensure that it’s real (yes, lots of
 times error pages have old, outdated addresses) and that the email actually gets to
 someone who will take care of the problem.
If your user thinks you’re dealing with her issue, and she comes back in a few
 hours only to get the same error, all the clever images and language in the world
 won’t keep her invested in your site. On top of that, she’ll be annoyed not just
 that something went wrong, but that you lied (well, at least in her eyes) about
 working on her issue.
If you’re just getting started or have limited resources, you might do well to
 simply state that you get notified when errors occur, and you usually fix problems
 within, say, 24 or 36 hours, or within some time period to which you can really
 commit. You might also give him an email address to use if things are urgent—but
 only if you watch your email! Another option is to preformat the email with
 something in the subject line to look for, like “URGENT” or “ERROR.” You could even
 set a rule up on your email client to highlight such messages.
Whatever you do, make sure that your responsiveness matches what your error page
 promises, or you’re going to have a lot more than a programming problem from which
 you’ll need to recover.
One more bit of advice as you begin working in large companies: never let the
 marketing team write the error page text without supervision. The job of marketing
 people is to sell and promote, and if error pages are the easiest place to
 over-promise, marketing is the easiest place to over-sell capability. Get someone
 who is good with words to help you in crafting your error page, but ultimately,
 you’re probably the person fixing problems; be certain that you can back up what
 ends up on your error pages.

Know When to Say When

You are now a capable PHP programmer, and you might have some other clever ideas as
 to what could go on this error page. You could grab the user’s information from the
 database and personalize the page. You could set up a table that contains error codes,
 and associated with each error code, a helpful error message that’s easy to read. Then
 when an error occurs, you could look up the error code and print out the corresponding
 error message from the database.
It’s true that all this (and anything else you might come up with) would make for a
 pretty slick error page. But these are ideas that require fairly complex programming in
 and of themselves. There’s a database to connect to and queries to execute. And every
 time you write a query, or connect to a database, you introduce the possibility of
 another error. Where do your users go when your error pages have errors?
As a rule of thumb, you want your error pages free from as much programming as
 possible; they shouldn’t interact with databases, and they shouldn’t be fancy. To put it
 simply; if your error page can cause an error, you’re in trouble.

Finding a Middle Ground for Error Pages with PHP

On one hand, you want pages that are dead simple: some text, an image or two, and
 static content. Nothing can go wrong, which means your users get some level of reassurance
 and comfort. On the other hand, the error page in Figure 8-5 is awfully generic. It just doesn’t
 say very much. It would be nice to see something about what actually went wrong, maybe like the following:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Uh oh... sorry!</div>

 <div id="content">
 <h1>We're really sorry...</h1>
 <p>...but something's
gone wrong. the username you entered couldn't
be found in our database.</p>
 <p>Don't worry, though, we've been notified that there's a
problem, and we take these things seriously. In fact, if you want to
contact us to find out more about what's happened, or you have any
concerns, just email us
and we'll be happy to get right back to you.</p>
 <p>In the meantime, if you want to go back to the page that caused
the problem, you can do that by
clicking here. If the same problem occurs, though, you may
want to come back a bit later. We bet we'll have things figured
out by then. Thanks again... we'll see you soon. And again, we're
really sorry for the inconvenience.</p>

 </div>

 <div id="footer"></div>

 </body>

</html>
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

The result, Figure 8-6 seems to be a
 good compromise between a truly generic error page and one that is so tricked-out with
 user-specific information that it becomes prone to error itself.
[image: You get two benefits from this minor change. First, you’re now showing the user a message related to her actual problem. That little bit of personalization gives her hope you know what’s going on. Second, by attaching a CSS class to this message, you can easily change and update how this message looks.]

Figure 8-6. You get two benefits from this minor change. First, you’re now showing the user a
 message related to her actual problem. That little bit of personalization gives her hope
 you know what’s going on. Second, by attaching a CSS class to this message, you can
 easily change and update how this message looks.

In the next section, you’ll put this personalized error message in place and still
 keep the programming minimal.
Creating a PHP Error Page

Almost everything on your template is straight HTML. The only thing that’s
 dynamic—that would change from request to request—is the error message, so your task is
 relatively simple from a programming standpoint. Begin by putting in a variable for the
 error message; you’ll come back and assign a value to that variable a little
 later.
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Uh oh... sorry!</div>

 <div id="content">
 <h1>We're really sorry...</h1>
 <p>
 <?php echo $error_message; ?>
 </p>
 <p>Don't worry, though, we've been notified that there's a
problem, and we take these things seriously. In fact, if you want to
contact us to find out more about what's happened, or you have any
concerns, just email us
and we'll be happy to get right back to you.</p>
 <p>In the meantime, if you want to go back to the page that caused
the problem, you can do that by
clicking here. If the same problem occurs, though, you may
want to come back a bit later. We bet we'll have things figured
out by then. Thanks again... we'll see you soon. And again, we're
really sorry for the inconvenience.</p>

 </div>

 <div id="footer"></div>

 </body>

</html>
Save this file as show_error.php. But, before you do, keep in
 mind that this error page is for all your scripts and HTML pages. So, don’t save it in a chapter08/ directory; put
 it in a scripts/ directory in your site’s root to ensure that it’s
 easily accessible.
Note
If you want to follow along exactly with the book’s structure, save this file in
 phpMM2/scripts/ (where phpMM/ is the root
 directory in the examples you can download from online) or
 phpMM2/ch08/scripts/, depending on your directory
 structure.

Next, you need to get the error message. The least error-prone way to do that is by
 using request parameters and the $_REQUEST
 array.
<?php
 $error_message = $_REQUEST['error_message'];
?>

<html>
 <!-- Existing HTML and PHP -->
</html>
What’s so good about this approach? First, it’s about as basic as your PHP
 programming can be. You’re not using a calculation, per se, you’re just pulling a value
 out of an array, instead. Better still, it’s not your own custom array, but one that PHP
 provides for you, and even fills for you, using information supplied in the request to
 show_error.php.
FREQUENTLY ASKED QUESTION: There’s That scripts/ Directory Again
I thought scripts/ directories were an outdated practice. Why is
 show_error.php still in a scripts/ directory?
In Chapter 7—specifically in the box on Is a scripts/Directory a Good Idea?—you learned about the benefits of
 moving your scripts from nested scripts/ directories into the
 main parts of your site. This means that you probably started placing web forms like
 create_user.html directly alongside
 create_user.php and show_user.php. That’s
 because your HTML pages and your PHP pages are starting to be a lot more alike than
 they are different.
However, show_error.php isn’t just another HTML page. It’s
 something special—something used across your application. In fact, it’s just like
 database_connection.php, which you should
 also keep in your main scripts/ directory.
 These scripts are really utilities, not pages that should live alongside other HTML
 pages.
The best practice is to move to organizing your files by function. Thus, you might
 have a directory called users/ that contains all your
 user-related files: show_user.php, create_user.php, and
 create_user.html. You might have other similar directories,
 like groups/ and social/ and the
 like.
When you begin to organize by function, your organization system becomes
 meaningful. It tells you what things do, rather than what they are (HTML, CSS, PHP, or
 whatever). Your PHP scripts live alongside your HTML pages because they
 work together. In fact, down the line, you might even break
 things up further, separating code that’s for creating and displaying a web page from code that interacts with your
 database. That will come later, but for now, keep thinking function over
 format. It’s more important to group user-related files together than to
 have all your PHP scripts together.
So, store your utility scripts in scripts/ for now. And yes,
 you could look at renaming scripts/ to something like
 utilities/, if you like. Organize wisely now; when you have 20,
 50, or 100 files, you’ll be grateful for the structure.

Testing Your Solution

With your request parameter now in place, it’s time to test it out in a browser.
 Visit your script’s URL and add a request parameter. For example, you might use
 something like this in your URL:
http://www.yellowtagmedia.com/phpMM2/ch08/scripts/show_error.php
?error_message=There%27s%20been%20a%20problem%20connecting%20to
%20the%20database.
Note
That URL should all be on one line in your browser bar. Additionally, many
 browsers will convert spaces to the web-safe equivalent, that strange %20. That’s a way of telling a browser “insert a
 space.”

You should see something like Figure 8-7, which is a nice-looking
 error page that didn’t take lot of work to produce.
This simplicity—using request parameters that are just plain text, passed from one
 page or script to another—is the beauty of show_error.php. There’s
 very little that can go wrong. That’s what you want in an error page: elegance and simplicity.
[image: One of the nicest things about any script that uses request parameters and $_REQUEST is that you can easily test these scripts with a little command-line magic. Just name your parameters on the command line, separate the first one from your script with ?, and then separate multiple request parameters from one another with &.]

Figure 8-7. One of the nicest things about any script that uses request parameters and
 $_REQUEST is that you can easily test these scripts with a little command-line magic.
 Just name your parameters on the command line, separate the first one from your script
 with ?, and then separate multiple request parameters from one another with
 &.

You do need to make one fix, though: that backslash showing up before a single
 apostrophe ("There\'s" in the first sentence) is no
 good. You can get rid of that with a little regular expression magic. Replace all
 occurrences of a backslash with…well, with nothing:
$error_message = preg_replace("/\\\\/", '',
 $_REQUEST['error_message']);
PHP has an oddity in that you need to actually use four back slashes to match a
 single backslash. So, \\\\ matches \, oddly enough. That’s because you’re sort of “fighting”
 the PHP escape mechanism—which uses a backslash (For a refresher see the box on Which Quote Is the Best Quote?).

Expect the Unexpected

Things are looking good. But once again, you’re assuming that things go just the way
 you want. In fact, that’s exactly the sort of thinking that leads people to ignore error
 pages. If you need to deal with problems to the point that you’re
 creating an error page, you’d better believe that problems can also occur when you’re
 actually on the error page.
Thankfully, you’ve cut down on most of that by keeping your error page simple (read:
 less error prone). But what if there’s no error_message request parameter? In that case, you get something like Figure 8-8.
[image: The kind of error page you’ve created in the previous section is still a bit incomplete. There’s no information about what went wrong, and not even an acknowledgement that there’s been an error; look at Figure 8-6 for a comparison. Thankfully, that’s easy enough to fix.]

Figure 8-8. The kind of error page you’ve created in the previous section is still a bit
 incomplete. There’s no information about what went wrong, and not even an
 acknowledgement that there’s been an error; look at Figure 8-6 for a comparison.
 Thankfully, that’s easy enough to fix.

You’re back to instilling your visitors with possible confusion, and that’s no good.
 There’s an easy solution, though: just deal with the situation when there’s no request
 parameter:
<?php
 if (isset($_REQUEST['error_message'])) {
 $error_message = preg_replace("/\\\\/", '',
 $_REQUEST['error_message']);
 } else {
 $error_message = "Something went wrong, and that's " .
 "how you ended up here.";
 }
?>

<html>
 <!-- Existing HTML and PHP -->
</html>
You haven’t seen isset before, but here’s how it
 works: if the error_message $_REQUEST parameter is
 set—which just means that it has a value—things are fine. Go ahead and set the $error_message variable. If there’s not a request parameter
 for error_message, set the $error_message variable to a conversational, albeit generic, message.
 isset returns true if a variable has been assigned something and is not null.
Go to your error page again, without anything on the URL, and you’ll get a
 nice-looking page once again. Check out Figure 8-9 for what you should
 expect.
[image: You could probably tweak the style on this page a bit. Although the italics worked well for the explicit error message in Figure 8-6, it’s not quite effective here. If you want to get a little more fancy, you could set the CSS class on the span within which the error message prints, based on whether you have a generic error message, like the one shown here, or a specific one.]

Figure 8-9. You could probably tweak the style on this page a bit. Although the italics
 worked well for the explicit error message in Figure 8-6, it’s not quite effective
 here. If you want to get a little more fancy, you could set the CSS class on the span
 within which the error message prints, based on whether you have a generic error
 message, like the one shown here, or a specific one.

Welcome to Security and Phishing

And now, welcome to a big, fat, ugly problem. The way your page is set up at this
 juncture, anyone with a bit of programming prowess could supply his own error message to
 your web page, simply by adding it to any URL that points to your application:
 ?error_message=your custom error message. That’s one way to
 employ a technique of Internet vandalism called phishing.
Phishing and Subtle Redirection

Phishing is a technique by which someone receives what
 appears to be a trusted URL that in fact sends that user to an untrusted website. Suppose
 you get an email with a link to a site that looks like this:
http://yellowtagmedia.com/phpMM2/ch08/scripts/show_error.php?error_message=%3Ca%20href=%22http://www.amctv.com/shows/breaking-bad%22%3EClick%20Here%20To%20Report%20Your%20Error%3C/a%3E
It has lots of gibberish at the end, but you recognize the important part, the
 host name: yellowtagmedia.com. Throughout this book, you’ve been
 seeing yellowtagmedia.com as a domain name. (It’s the author’s
 domain, so this is a perfectly fine site to visit.) So, you go ahead and click the
 link, and you see something like Figure 8-10.
[image: The long, tortured URL on page 235 brings up a customized error page, just like the one you’ve built yourself. It has an error message, and you can even apparently click through to report details about your problem. Looks like great customer service, right? But click that link and see what happens.]

Figure 8-10. The long, tortured URL on page 235 brings up a customized error page, just like
 the one you’ve built yourself. It has an error message, and you can even apparently
 click through to report details about your problem. Looks like great customer
 service, right? But click that link and see what happens.

It’s an error page, just like the one you’ve been creating. And, look, it has a
 link on it. Might as well trust the link, too. It appears on a trusted page. You click the link…and you end up on a completely different
 site—probably one you didn’t expect (see Figure 8-11).
[image: Inserting a variable into a vulnerable URL is classic phishing: you visit a site you trust and end up on a site that you don’t trust.]

Figure 8-11. Inserting a variable into a vulnerable URL is classic phishing: you visit a
 site you trust and end up on a site that you don’t trust.

Now, the AMC page for Breaking Bad is hardly anything to lose
 sleep over…and let’s face it, Breaking Bad really is a great
 show. Suppose, though, that same link took you to a site that asks for your credit
 card or that is full of illicit material that could get you fired when you
 accidentally land on that site at work, or even just a simple site that asks you to
 “reconfirm” your user name and password: these are potential disasters.
A clever and not-so-well-meaning coder could easily use the same CSS that’s used
 on yellowtagmedia.com to ensure that site looks just like the
 initial error page, and most users would never know the difference.

The Dangers of Request Parameters

The problem is that anyone can actually type a request parameter in a URL. Look
 back at the URL that started all of this:
http://yellowtagmedia.com/phpMM2/ch08/scripts/show_error.php?error_message=%3Ca%20href=%22http://www.amctv.com/shows/breaking-bad%22%3EClick%20Here%20To%20Report%20Your%20Error%3C/a%3E
It’s the error_message parameter that creates
 all the trouble, because it accepts just about anything as a value. When you take away
 all the escaping, the URL really amounts to this:
http://yellowtagmedia.com/phpMM/ch07/show_error.php?error_message= Click Here To Report Your
 Error
Suddenly, a link to a non-trusted site is dropped right into your trusted page. That’s a big problem, and it can create massive headaches
 for your users.
Unfortunately, fixing this is going to take a lot of PHP wizardry that you don’t
 have quite yet. Fortunately, it’s coming…in about six chapters. For now, use this
 method of passing an error along via request parameters, but know that it’s not quite
 ready for primetime. You’ll need to use something called
 sessions, which is detailed in Chapter 14, to avoid ever becoming part of a phishing scam.
Note
Just so you know, this is a pretty subtle problem. It took a clever tech
 reviewer pointing it out to ever make it into print. But this is the price of coding
 on the big bad Internet: you always need to be aware of what a malicious, bored
 teenager can do to your site if you’re not careful. Thankfully, though, you’re
 learning everything you need to combat and prevent those attacks. Just hang tight
 until Chapter 14 on error handling, and then you
 can make some small changes that completely shut down any phishing attempts.

Add Debugging to Your Application

You’ve got some error pages that are very helpful to your readers. But what about you?
 Certainly, you’re going to need to use your system, too. Although you want to have error
 pages that don’t scare off your users, there are times when you need
 to figure out what’s going on, not just in your code, but also on your front end. But, the
 error pages you’ve put in place are designed to shield users from
 seeing what’s going on at the script level. What you need is to figure out a way to show
 the real errors that occurred—in a way that only you can see.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Who’s Using This App, Anyway?

Remember that this chapter started out by talking about the kinds of errors that
 your users see. The idea was to avoid unappealing, cryptic-looking errors like
 this:
#1054 - Unknown column 'firstname' in 'field list'
Sounds good…except when you’re developing the application. In fact, if you’re writing code, that’s
 exactly the type of error you want to see. It’s specific,
 helpful, and unlike your users, you aren’t intimated (certainly not any more) by some
 techy details.
Put another way, you need a method to distinguish between debugging—when you’re writing and fixing code—and production. You could have
 a way to set your application’s mode. You could run in debug mode and see all the errors
 your script puts out, or you could run in production mode, in which error reporting
 isn’t turned on. Then, you could simply run in debug mode until it’s time to go
 live.
Note
You might even take this further: You could copy your code to a server, switch it
 to run in production mode, and then still run another copy in debug mode that you are
 working on and improving.

This arrangement is easy to set up; with app_config.php, you
 already have a nice central place to configure this sort of thing:
<?php

// Set up debug mode
define("DEBUG_MODE", true);

// Database connection constants

?>
This gives you the ability to make a single change to DEBUG_MODE, and you get (or don’t get) error reporting across your
 application. Now that you have a way to set your mode, it’s time to make this new mode
 work.

Now You See Me, Now You Don’t

Unfortunately, you’ve done a lot of work, but you still haven’t solved one core
 problem: You need a way to display more information about an error to you and your
 programmer buddies without terrifying your users. Fortunately, you’ve laid some
 groundwork; the app_config.php file you created has a DEBUG_MODE, and that’s the key ingredient.
What you need is a way to print out additional error information if you’re in debug mode. To do this, you need to define a
 new function—call it debug_print—that only prints
 information if you’re in debugging mode. Add the following code to
 app_config.php:
<?php

// Set up debug mode
define("DEBUG_MODE", true);

// Database connection constants

function debug_print($message) {
 if (DEBUG_MODE) {
 echo $message;
 }
}
?>
With this function in app_config.php, it’s available anywhere
 in your own code. All it does is selectively print a message; if debugging is enabled,
 it prints, and if it’s not, $message never sees the
 light of day.
Note
You’ve just created your first custom function! Nice work. Although there’s much more to learn about
 custom functions, notice how easy it is to create your own customized behavior for the
 rest of your application to use.

Next, you can add some additional information to your
 show_error.php page:
<?php
 require 'app_config.php';

 if (isset($_REQUEST['error_message'])) {
 $error_message = preg_replace("/\\\\/", '',
 $_REQUEST['error_message']);
 } else {
 $error_message = "something went wrong, and that's how you ended up
here.";
 }
 if (isset($_REQUEST['system_error_message'])) {
 $system_error_message = preg_replace("/\\\\/", '',
 $_REQUEST['system_error_message'])
;
 } else {
 $system_error_message = "No system-level error message was r
eported.";
 }
?>
Note
There are other ways to obtain this same result, but this one will avoid setting
 off any errors if you have error_reporting turned
 on.

Then, down in your HTML, selectively print out this additional information:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Uh oh... sorry!</div>

 <div id="content">
 <h1>We're really sorry...</h1>
 <p>
 <?php echo $error_message; ?>
 </p>
 <p>Don't worry, though, we've been notified that there's a
problem, and we take these things seriously. In fact, if you want to
contact us to find out more about what's happened, or you have any
concerns, just email us
and we'll be happy to get right back to you.</p>
 <p>In the meantime, if you want to go back to the page that caused
the problem, you can do that by
clicking here. If the same problem occurs, though, you may
want to come back a bit later. We bet we'll have things figured
out by then. Thanks again... we'll see you soon. And again, we're
really sorry for the inconvenience.</p>
 <?php
 debug_print("<hr />");
 debug_print("<p>The following system-level message wa
s received:
{$system_error_message}</p>");
 ?>
 </div>

 <div id="footer"></div>
 </body>
</html>
Finally, you can put all this together: You have an error page, you have a means of
 printing information only if debugging is enabled, and you have app_config.php to
 tie everything together.
Before you’re ready to conquer and selectively debug the world, though, there’s
 something else to take care of. It’s not quite error handling, but just plain, good
 coding.

Moving from require to require_once

If you look carefully at database_connection.php, you’ll see
 this line at the top:
require 'app_config.php';
This means that any script such as the one that follows here, in turn requires
 app_config.php, as well.
require '../../scripts/database_connection.php';
So, if you wanted to get the setup from app_config.php in a
 script that already requires database_connection.php, you
 technically don’t need to explicitly require app_config.php.
But—and this a big but—you’ve now hidden what’s called a
 dependency in your code. Even though you’re not requiring
 app_config.php explicitly, you’re writing code assuming that
 app_config.php has been loaded. Suppose that you change a script
 to not use a database; the natural next step would be to remove the require for database_connection.php.
 Because your script no longer uses a database, requiring
 database_connection.php wouldn’t make sense. With that removal,
 however, you also lose app_config.php, which causes a hidden
 problem that wouldn’t show up until you realized none of your helpful constants and
 error messages are defined.
For this reason alone, it’s a good idea to always be explicit in your requirements.
 To be sure, there’s an obvious concern here: app_config.php will
 end up being required twice in database-driven scripts. You’ll
 require app_config.php as well as
 database_connection.php, which in turn requires
 app_config.php again.
To get around this, you can use require_once
 instead of require in all your utility scripts.
 Therefore, in your main script—in whatever script your main code exists—use the normal
 require:
// main script you're writing code
require '../scripts/app_config.php';
Then, in any utility scripts that also need app_config.php, you
 would use require_once:
// database_connection.php and any other utility scripts
require_once '../scripts/app_config.php';
The require_once line checks whether the
 specified script has already been included (through include or require). It only includes
 the script if hasn’t already been loaded. This ensures that
 app_config.php is only loaded once.
But, there’s yet another problem: sometimes you have one script—like
 create_user. php—call another script—like
 show_user.php. In this case, you have two scripts that probably
 both use require, which will result in errors about
 constants being redefined. Is this a problem? Should you rethink and refactor
 app_config.php? Should you abstract out those constants into
 another file or move them into database_connection.php?
Honestly, you can just get around all of this by using require_once in all of your scripts. This rule of
 thumb is a good way to ensure that app_config.php is never loaded
 more than once. It also has another side effect: you’re no longer trying to figure out
 which version of require to use. Just use require_once, unless you have a specific need to require
 something multiple times. That’s something that rarely happens, so going with require_once as your standard is a good idea.
Note
In fact, you could have just started by using require_once right from the beginning. But, then you’d have no real idea
 why you’re using that over require. By running through this process of actually seeing how some of
 your scripts call some of your other scripts multiple times (like the example on A Little Cleanup: Remove the echo Statements), you can now explain to your
 coworkers why they too should almost always use require_once in their PHP scripts.

Redirecting On Error

You now have a complex mechanism in place to deal with error messages as they crop up,
 and you even have a way of printing out errors for your programming edification (with
 debug_print). Now, it’s time to see how to use the
 error information.
Take a look at one of your simplest page/script combinations:
 connect.html and connect.php, from Chapter 5.
Note
For this exercise, copy these scripts into a new directory so that you can make
 changes to them. You should then change connect.html to submit to
 connect.php, without using a scripts/
 directory, and ensure that connect.php resides directly alongside
 connect.html. You should also be sure to require_once
 app_config.php, and ensure that your path to
 app_config.php reflects the new location of
 connect.php.
Also, you can find the finished example code for this section on this book’s Missing
 CD page at www.missingmanuals.com/cds/phpmysqlmm2e.

Update connect.php to show_user.php

Right now, connect.php just uses die to report problems in connecting to your database:
<?php

 require_once '../scripts/app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD
)
 or die("<p>Error connecting to database: " .
 mysql_error() . "</p>");

 // And so on...
?>
Right now, if mysql_connect fails, the entire
 script just goes down in a ball of flames. Not so great. One way you could fix the
 problem would be to do something like this:
if (!mysql_connect(DATABASE_HOST,
 DATABASE_USERNAME, DATABASE_PASSWORD)) {

 $user_error_message = "there was a problem connecting to the " .
 "database that holds the information we need " .
 "to get you connected.";
 $system_error_message = mysql_error();
 header("Location: ../scripts/show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
 exit();
}
Note
This is one of those sections of code that involves long lines that are ill-suited
 for print. You certainly don’t need to break up these lines into multiple lines,
 although you can if you like. The downloadable code uses a single line for defining
 $user_error_message as well as for passing a URL
 to header.

This example uses your new error page in conjunction with PHP’s redirect. In
 addition, it supplies both a friendly and system-level error, so it should work pretty
 well. For the sake of testing, type in a bad database host, like this one:
if (!mysql_connect(DATABASE_HOST, DATABASE_USERNAME, "foo")) {
 // handle error
}
Next, go to connect.html in your browser, submit the form to
 connect.php, and you should be rewarded with your error page, as
 in Figure 8-12. In terms of seeing
 errors, you have your users—and yourself—covered.
[image: This page has just about all you could ask for in terms of handling errors. You get to see exactly what the user sees, plus you get error reporting at a programming level. Now you can say goodbye to die—show_error. php is a much better solution.]

Figure 8-12. This page has just about all you could ask for in terms of handling errors. You
 get to see exactly what the user sees, plus you get error reporting at a programming
 level. Now you can say goodbye to die—show_error. php is a much better
 solution.

Note
Ensure that you have DEBUG_MODE set to true in app_config.php before you try
 this out (Who’s Using This App, Anyway?) so that you’ll see both the
 user-friendly and developer-friendly errors.

Now, set DEBUG_MODE to false in
 app_config.php:
// Set up debug mode

define("DEBUG_MODE", false);
Try going to connect.html and connect.php
 again; this time, you should only see the user-facing error (check out Figure 8-13).
[image: What a difference some error-handling work makes. Remember back in the old days when a database error resulted in a blank page with a cryptic error message? This is a pretty massive upgrade. By now, you know that errors are going to happen, but now they happen in style, and that counts for quite a bit with the typical user.]

Figure 8-13. What a difference some error-handling work makes. Remember back in the old days
 when a database error resulted in a blank page with a cryptic error message? This is a
 pretty massive upgrade. By now, you know that errors are going to happen, but now they
 happen in style, and that counts for quite a bit with the typical user.

Simplifying and Abstracting Your Code

Are you done yet? Well, almost. The error printing is great, but take another look
 at the code in your main script, connect.php:
if (!mysql_connect(DATABASE_HOST,
 DATABASE_USERNAME, DATABASE_PASSWORD)) {
 $user_error_message = "there was a problem connecting to the " .
 "database that holds the information we need " .
 "to get you connected.";
 $system_error_message = mysql_error();
 header("Location: ../scripts/show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
 exit();
}
That’s a lot of code to handle the problem. In fact, you have a good bit more code
 dealing with the error than you do dealing with things that go right. That’s not always
 a bad thing, but in this case, it’s just not necessary. Do you remember how this code
 originally looked?
mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or die("<p>Error connecting to database: " . mysql_error() . "</p>");
This code has a line that does what you want. It also has a line if there are
 problems. Now multiply that by all the different places your code can fail; that’s a lot
 of error handling code.
So, can you get your error handling to be that elegant? It’s worth at try. Look
 closely at the code again and notice how regardless of what the error is, parts of the
 code will always be the same:
if (!mysql_connect(DATABASE_HOST,
 DATABASE_USERNAME, DATABASE_PASSWORD)) {
 $user_error_message = "there was a problem connecting to the " .
 "database that holds the information we need " .
 "to get you connected.";
 $system_error_message = mysql_error();
 header("Location: ../scripts/show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
 exit();
}
The only things that ever change here are the actual error messages. The rest—the
 variable names, the header call, and the building of
 the URL—are always the same. This seems like it would be a good time create another
 function, a lot like debug_print, to handle the
 messages.
Add this function to app_config.php, further expanding your
 utility script:
<?php

// Set up debug mode
define("DEBUG_MODE", true);

// Database connection constants

function debug_print($message) {
 if (DEBUG_MODE) {
 echo $message;
 }
}

function handle_error($user_error_message, $system_error_message) {
 header("Location: show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
 exit();
}
?>
This bit of code is really just a variation on what you did with debug_print (Now You See Me, Now You Don’t).
 You’ve taken something that’s essentially the same code, over and over, and put it into
 a nice, handy, easy-to-reference custom function. The only change is the addition of
 exit. This line ensures that regardless of how the
 calling script is structured, once the header redirects the browser to your error page,
 nothing else happens. The error page displays, and PHP stops whatever else it might have
 planned to do.
Now, you can simplify connect.php by quite a bit:
if (!mysql_connect(DATABASE_HOST, DATABASE_USERNAME, "foo")) {
 handle_error("There was a problem connecting to the database " .
 "that holds the information we need to get you connected.",
 mysql_error());
}
This code is a lot neater, especially when you realize that it
 can fit into a single line in a terminal or editor. But, you can take this yet
 further:
mysql_connect(DATABASE_HOST, DATABASE_USERNAME, "foo")
 or handle_error("There was a problem connecting to the database " .
 "that holds the information we need to get you connected.",
 mysql_error());
Here, you’ve dropped the if statement and
 returned to the simple elegance of the or die you
 used to have, but with a much nicer function: your own handle_error.

redirect Is Path-Insensitive

There’s just one problem with the current incarnation of
 connect_php, and it looks like Figure 8-14. You might see just this when you
 try out connect.php for yourself. You see a page indicating that
 something has gone wrong, but it’s sure not the show_error.php page
 you were expecting.
This error is well known in PHP. Most web servers are set to treat any URL request
 that ends in .php as a PHP request. That’s good, because it means
 that you don’t have to stash all your PHP scripts in one directory. But it’s bad,
 because the web server doesn’t see whether the URL that ends in .php matches an actual
 file. It just hands the URL over to the PHP program. But if that URL isn’t a pointer to
 a real file, PHP says, “I don’t have anything to run.” Or, more accurately, it says “no
 input file specified.”
[image: Sometimes PHP is its own worst enemy. Here, your script somehow made a request for a file that isn’t there. In this case, the web server (running WordPress) responded with a standard “page missing” error. You might see something different, but the basic idea is the same: no file was found where it was expected.]

Figure 8-14. Sometimes PHP is its own worst enemy. Here, your script somehow made a request
 for a file that isn’t there. In this case, the web server (running WordPress)
 responded with a standard “page missing” error. You might see something different, but
 the basic idea is the same: no file was found where it was expected.

Yet the question remains: Why are you getting this? It has to
 do with this little bit of code in app_config.php:
function handle_error($user_error_message, $system_error_message) {
 header("Location: show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
}
In this code, the path to show_error.php is relative to
 app_config.php. Because app_config.php is in
 the same directory as show_error.php, there’s nothing before the
 file name.
But this code is executed from your connect.php script, in (at
 least in the examples in this book) ch07/. Therefore, the path from
 that location to show_error.php is
 ../ scripts/show_error.php. Even though the handle_error function is defined in
 app_config.php, it’s run from the
 connect.php script’s context. The result? You’re looking for
 show_error.php in the wrong place.
But, if you change the path in app_config.php to work with
 connect.php, and you later have a different script in a different
 location, you’re going to get this same issue all over again. This begs the question:
 How is handle_error very useful anymore?
What you need, once again, is a way to indicate a common property—the root of your
 site—and then relate the path of show_error.php to that with an
 absolute path rather than using a relative path. (And if you need a
 refresher on the difference between the two, see the box below.)
UP TO SPEED: Relative and Absolute Paths
A relative path is a path that references a file relative to
 the location of the current file. This usually means that the path begins with either
 the file itself, like show_error.php, or it moves back a
 directory using the .. indicator. So, relative paths look like
 show_error.php or
 ../scripts/show_error.php. In both cases, your starting point
 is the current file indicating the path.
An absolute path is one that is not related to the current
 file; instead, it’s related to the root of your site. You can always spot absolute
 paths because they start with a /, meaning that
 they begin looking for the file at the root, or “base,” of your website. Thus, an
 absolute path would be something like
 /scripts/show_error.php.

You can define your site root in app_config.php with a new
 constant:
// Site root
define("SITE_ROOT", "/phpMM2/");
Now, you can use that constant in handle_error.
 Here’s the final version of app_config.php, with all of the new
 constants, the completed handle_error
 function, and debug_print
 function:
<?php

// Set up debug mode
define("DEBUG_MODE", false);

// Site root
define("SITE_ROOT", "/phpMM/");

// Database connection constants
define("DATABASE_HOST", "database.host.com");
define("DATABASE_USERNAME", "username");
define("DATABASE_PASSWORD", "super.secret.password");
define("DATABASE_NAME", "database-name");

function debug_print($message) {
 if (DEBUG_MODE) {
 echo $message;
 }
}
function handle_error($user_error_message, $system_error_message) {
 header("Location: " . SITE_ROOT . "scripts/show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
}

?>
Note
You can’t use the curly braces trick to insert constants into a string; instead,
 you need to concatenate SITE_ROOT to your URL
 string in the call to header by using the dot (.)
 operator.

Now, you should finally be able to see show_error.php via an
 error in connect.php, in all its glory. Check out Figure 8-15 for the result of all this
 work.
[image: Who said error handling was easy? But now, it’s done, and you and your users get to reap the benefits.]

Figure 8-15. Who said error handling was easy? But now, it’s done, and you and your users get
 to reap the benefits.

To finish up, take a blazing trip through all of your scripts and replace every bit
 of die and other error handling with calls to
 handle_error. Don’t forget to update
 database_connection.php to use handle_error, too:
<?php
 require 'app_config.php';

 mysql_connect(DATABASE_HOST, DATABASE_USERNAME, DATABASE_PASSWORD)
 or handle_error("There was a problem connecting to the database " .
 "that holds the information we need to get you connected.",
 mysql_error());

 mysql_select_db(DATABASE_NAME)
 or handle_error("There's a configuration problem with our database.",
 mysql_error());
?>
FREQUENTLY ASKED QUESTION: To Err Is PHP
A 20-plus–page chapter on error handling? Seriously?
It seems hard to believe, doesn’t it? You’ve not added any real new functionality
 to your web app. Of course, you’ve learned a bit more about constants, you’ve defined two custom functions, you’ve added a
 utility class, and you’ve even managed to get a handle on require and require_once.
Still, error handling is usually something that books stick in the last chapter,
 figuring people won’t mind if it’s near the end where it can be ignored. Why spend all
 this time on something that (hopefully) your users never see? Well, mostly because an
 application that doesn’t handle errors simply isn’t complete.
And, like it or not, when you’re just starting out programming, or programming in
 a new language, you’re going to make more mistakes.
Tests and error handling are absolutely the best two ways to catch mistakes early
 and then provide the simplest path toward fixing those mistakes. Now that you have
 robust error handling, you’ll be surprised how often a big problem is turned into a
 small problem because you spotted an error right away and could track it down without
 wading through all your code, hopelessly wondering what really went wrong.

Chapter 9. Handling Images and Complexity

You’ve come to a watershed moment in your programming career, however brief you feel
 that career has been. Up until this point in the book, you’ve been using a lot of PHP
 constructs—from if statements to some basic functions to
 constants and even error handling. You’ve also become familiar with the basic MySQL
 interactions you’ll need in most PHP scripts. With what you already know, you’re ready to
 take on most of the basic programming problems you’ll run across in a typical web
 application—as long as you’re thinking on a single-page level.
In other words, if you have a form that gathers information, you can handle that. You
 can grab information from a table, and you can put information into a table. You can respond
 to errors, redirect users, and even distinguish between a good user experience and a bad
 one.
In spite of all that, you know that web applications are greater than the sum of their
 single-page interactions. Ten different pages that interact with ten different tables is a
 much simpler situation than a complete web application that has ten pages, particularly when
 those ten tables connect and interact with one another, and even relate information in one
 table to information in another. Add to that image handling (something you started to dig
 into in order to finish your user form), some interaction with Facebook and Twitter, and
 allowing users to actually log in, and things get a lot trickier.
And that’s what’s next: the jump from thinking about single forms and single scripts to
 thinking about entire systems. You’re ready to begin interacting with the file system—the
 place where your scripts, files, and images live. You’re ready to start thinking not just
 about a single table like users but working with multiple tables. And,
 custom functions? You’ve already built two—debug_print
 and handle_error—so you’ve got a foundation upon which to
 build.
Note
At this point, the changes to your code are coming fast and furious. In fact, you
 might be a little unsure as to whether you have everything right. If that’s the case, you
 can always hop online and visit www.missingmanuals.com/cds/phpmysqlmm2e to get the chapter-by-chapter examples
 and make sure you’re caught up and ready to keep programming.

Along the way, though, the decisions become trickier. Complexity brings with it not just
 the question, “What do I do next?” but also, “Of the two or three ways I
 could solve this problem, which one is the best
 way?” So, get ready: you’re diving into deeper programming waters, which tend to comprise as
 much critical thinking and philosophy as they do new PHP and MySQL language features.
Images Are Just Files

The big glaring omission in your work with users is that pesky profile image that you
 worked with in Chapter 7 on page 208. You probably
 remember that the user’s profile is pretty incomplete right now. The difference between
 your mock-up from that chapter (shown in Figure 9-1) and where your actual code is
 (shown in Figure 9-2) is easy to spot:
 it’s all in that image.
[image: Here’s where a mock-up comes in handy. You’ve got a visual example of exactly what you want and it’s easy to compare your goal to your current progress. In this mock-up the user image is the most important design feature. It’s also the area where users can truly personalize their profile page. (Have you seen some of the nutty avatar images on Facebook and Twitter?)]

Figure 9-1. Here’s where a mock-up comes in handy. You’ve got a visual example of exactly what
 you want and it’s easy to compare your goal to your current progress. In this mock-up
 the user image is the most important design feature. It’s also the area where users can
 truly personalize their profile page. (Have you seen some of the nutty avatar images on
 Facebook and Twitter?)

[image: Take away the image, and what a change. Now, that long bio looks even more boring, making the absence of any imagery more noticeable.]

Figure 9-2. Take away the image, and what a change. Now, that long bio looks even more boring,
 making the absence of any imagery more noticeable.

To place a user image on the page, turn to the good old HTML tag:

The value of the src attribute is a reference to a
 file, although you don’t have any image files yet. You have the user’s name and
 information in your users table, but there’s no image on your web
 server to which you can point. You need both a file and then a reference to that
 file.
It’s a new PHP challenge: how do you get something other than text information from a
 user, and then what do you do with that information once you have it? (For more
 information on how files appear to PHP, see the box on Files, File Systems, and Client Versus Server.)
UP TO SPEED: Files, File Systems, and Client Versus Server
This might be the first time you’ve needed to get a clear understanding of the
 difference between what’s on your user’s computer and what’s on the web server. You know
 what a file is: it’s just a collection of bits and bytes that your computer knows how to
 handle. Your scripts, HTML, CSS, and JavaScript are ultimately just text: characters
 strung together and interpreted by a web browser or the PHP program. In the case of PHP,
 your web server (and specifically, the PHP interpreter interacting with your web server)
 interprets that PHP, turns it into HTML, CSS, and JavaScript for your browser, and then
 lets the browser take over. For the browser, it takes HTML, CSS, and JavaScript—whether
 in a static file or returned by a web server that’s processed a PHP script—and renders
 those to your user’s screen.
Images, on the other hand, are binary data. The same bits and bytes that make up your text files are used to indicate location and color of pixels. You
 need a different type of interpreter to read a binary file. Fortunately, web browsers
 are perfectly capable of taking an image file—be it a JPEG (.jpg),
 GIF (.gif), or PNG (.png)—and displaying it.
 Still, the process of getting a binary file is a bit different.
When users type the URL of your web application into their browser, they’re
 running your program, which resides on a web server, somewhere, and is available via the
 Internet. They’re running that program by using their web browser, which is a program
 that resides on their computer. There’s a big difference between
 what’s on their computer, and what’s on your web server. Your web server can’t reach
 into their computer and grab images, for example. The users—if they want to see one of their images in your program—have to upload
 that image to your web server. Your web server stores that image and can display it to
 whomever needs to see it.
Of course, most users don’t know how to upload a file by using a program like FTP.
 It’s up to you to get their file from their computer onto your file system. A file system is just a fancy word for the
 collection of files on your web server. It can also refer to the files on a user’s
 computer.
Put another way, the user’s computer is a client—a computer
 that’s accessing your program. Your program runs on the server.
 This relationship is called a client-server interaction. Your job
 is to get an image file from the client to the server. Then, your server can give your
 PHP scripts access to that image file to be used in your programs (and, most important,
 in the user profile page).

HTML Forms Can Set the Stage

In this situation, your HTML is critically important to your PHP program. You need
 to ensure that the HTML form with which your user is working is set up correctly. Not only does that form need to give the user a place to
 select an image, but it needs to set up the process by which that image is uploaded
 correctly.
Copy your create_user.html page from your Chapter 8 examples into the directory in which
 you’re working now. Here’s where you left things; several steps are in place for
 uploading an image:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Signup</div>

 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form action="create_user.php" method="POST"
 enctype="multipart/form-data">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="50" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 <label for="user_pic">Upload a picture:</label>
 <input type="file" name="user_pic" size="30" />
 <label for="bio">Bio:</label>
 <textarea name="bio" cols="40" rows="10"></textarea>
 </fieldset>

 <fieldset class="center">

 <input type="submit" value="Join the Club" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>

 </form>

 </div>

 <div id="footer"></div>

 </body>

</html>
Note
You also should change the action of the form to reflect that you’re no longer
 using a scripts/ directory. This HTML is in the
 ch09/ example directory in this chapter’s downloadable examples
 (www.missingmanuals.com/cds/phpmysqlmm2e).

The key parts here are the enctype attribute on
 the <form> tag, and input type="file" for the user_pic. This
 code configures the form to upload not just text but also a binary image file.
Figure 9-3 shows that the user can
 already select an image now. But, there’s something else this HTML needs: a size limit on the image. At one time or another, you’ve probably received
 that email from a friend that has a 22 MB picture of a cat blown up to 100 times its normal size, right? You want to avoid that in your
 forms. No 22 MB cat images; a single MB or two is plenty for any reasonable profile
 picture.
Note
MB stands for megabyte, which is one million bytes. That’s
 what the mega prefix represents: 1,000,000 of something. To get
 an idea of sizes, a Microsoft Word document of 20 or 30 pages is only about 1 MB. So,
 a 20 MB image is a large image.
In general, the only reason you’d want image files that big is for high-end
 photography sites or image-sharing sites like Flickr (www.flickr.com) for which detail is important.
 You don’t need anything like that for a simple profile picture.

You can limit the size of an uploaded file by adding a hidden input element, and give it the name “MAX_FILE_SIZE.” For the value, set it to the maximum size of the uploaded image you’ll allow, in bytes. If you want to allow a 1
 MB image, that’s 1,000,000 bytes. Here’s the HTML to permit a 2 MB image:
<input type="hidden" name="MAX_FILE_SIZE" value="2000000" />
<label for="user_pic">Upload a picture:</label>
<input type="file" name="user_pic" size="30" />
Warning
Ensure that you put this input
 before the “file” type
 input. You should also avoid any comments in the
 value attribute. Count those zeroes carefully, or
 you’ll be back to shockingly large cats again. And no, for those concerned, no felines
 were harmed in the making of this book. Shrunk down to manageable sizes?
 Perhaps.

The form doesn’t look any different with this input element, but now you’re ready to let users upload an image, and do
 something with it (see Figure 9-3).
[image: With much of your HTML in place, many of the changes you’re starting to make are not noticeable when you look at the web page. Nothing looks different about this form, but with the addition of the code on page 258, it imposes limits on what your users can do—limits that you’ve set.]

Figure 9-3. With much of your HTML in place, many of the changes you’re starting to make are
 not noticeable when you look at the web page. Nothing looks different about this form,
 but with the addition of the code on page 258, it imposes limits on what your users
 can do—limits that you’ve set.

Try this out: select an image and then click Join the Club. Even though there’s no
 PHP script waiting to receive this information, you’ll see your browser slowly uploading
 something. Take a look at Figure 9-4 to
 see how Google’s Chrome responds: a bit-by-bit indication of how the upload is
 progressing.
[image: Sometimes, it’s difficult to appreciate how much the web browser does for you. Just by using the input file type, you get a progress indicator, network connections, and an image upload, all for free. Now you’ve got time to write great PHP.]

Figure 9-4. Sometimes, it’s difficult to appreciate how much the web browser does for you.
 Just by using the input file type, you get a progress indicator, network connections,
 and an image upload, all for free. Now you’ve got time to write great PHP.

Uploading a User’s Image to Your Server

It’s time to grab that image and do something with it. Start by copying your old
 version of create_user.php into your current directory. Your script
 should look like this:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com",
 trim($_REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

$insert_sql = "INSERT INTO users (first_name, last_name, email, bio," .
 "facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', '{$bio}',
" .
 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
Note
You need to make a few changes to get your script to this point. Update the path
 to app_config .php and
 database_connection.php if you need to, and ensure that you’re
 using require_once instead of require.

Set Up Some Helper Variables

First, you need to add some basic information that you’ll use for getting at the
 file, and for storing it. Add these variables to the top of your page:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = HOST_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

$first_name = trim($_REQUEST['first_name']);
// Other variables

// Get request information

// Insert into MySQL
?>
One new element is HOST_WWW_ROOT. It looks a
 bit like the SITE_ROOT you defined in
 app_config.php in Chapter 8, on redirect Is Path-Insensitive:
// Site root
define("SITE_ROOT", "/phpMM2/");
HOST_WWW_ROOT hasn’t been defined yet. Right
 now, you have a SITE_ROOT, which is the
 web-specific path to your site’s root, so if your website is hosted without any
 directory prefix, your SITE_ROOT is probably just
 /. If you’re running within a phpMM2/
 directory, for example, your site root might be /phpMM/. The
 takeaway here is that the SITE_ROOT is defined in
 terms of what a web server and a browser connected to that server see.
But what the browser sees isn’t the complete (or absolute) path to that file on
 your host’s server. A hosting server has tons of directories and subdirectories. Your
 directory, for example, might be /home/username, and then within
 there, you might have a www/ or public_html/
 directory. It’s in that directory that your web files reside.
What this means is that your SITE_ROOT maps to
 a different path—one in terms of what your host’s file server looks like—that
 represents the absolute path of a file. Here, you’re calling this new constant
 HOST_WWW_ROOT. Add that path to
 app_config.php:
<?php

// Set up debug mode
define("DEBUG_MODE", true);

// Site root
define("SITE_ROOT", "/phpMM2/");

// Location of web files on host
define("HOST_WWW_ROOT", "/home/bdmclaughlin/public_html/phpMM2/");

// Database connection constants

// Custom functions
?>
Of course, your HOST_WWW_ROOT will look
 different than the one in this example. If you’re unsure how to get this path, see the
 box on What’s my Host WWW Root?. You’re using this root—and not
 SITE_ROOT—because the process of uploading and moving around files is going to involve
 your host’s file server, not the browser. The uploaded user file is going to be stored
 on the host’s file system, so you must deal with paths with respect to your host’s
 file system. The browser will eventually show the file, at which point SITE_ROOT will come back into play. However, the upload
 process has nothing to do with what the browser sees. You need to look at things from
 the file system’s perspective, which is just the sort of base path that HOST_WWW_ROOT provides.
Create that directory on your web server by using a terminal shell, command-line
 tool, or your FTP client. If your HOST_WWW_ROOT is
 /home/bdmclaughlin/public_html/ phpMM2/, you need to create
 /home/bdmclaughlin/public_html/phpMM2/uploads/
 profile_pics.
Just as users can type the wrong information into your text fields, they can mess
 things up when uploading an image. Time for some error handling. The next
 variable—$php_errors—adds an array of potential
 errors:
$upload_dir = HOST_WWW_ROOT . "uploads/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded'
,
 2 => 'Maximum file size in HTML form exceede
d',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');
You’ve used arrays before, but there’s something new about this one. You’re
 creating a new array by using the array keyword and
 then defining the values that go in that array.
UNDER THE HOOD: What’s my Host WWW Root?
It’s not always easy to figure out the root of your website on your hosting
 provider’s server, especially if you’re not familiar with lots of Unix commands. The
 easiest approach here would be to telnet or SSH in to your hosting provider. (That’s
 opening a command-line or terminal shell on your hosting provider’s system.)
If you can do that—and lots of times, all you have to do is ask your hosting
 provider for access—you can determine your site’s absolute path from the perspective
 of the file system by using the pwd command:
bdmclaughlin@yellowtagmedia.com [~]# pwd
/home/bdmclaughlin
Now, before you turn this into HOST_WWW_ROOT,
 realize that you might not actually be in your web root. Much of the time, when you
 telnet or SSH in to a web host, you’re in your account’s home directory. It’s within
 that account that you’ll find the web directory. In the following example, the
 public_html/ directory is the one you want:
bdmclaughlin@yellowtagmedia.com [~]# ls
-d */
access-logs/
BackupNow/
etc/
mail/
perl5/
public_ftp/
public_html/
tmp/
www/
You can either tack that on to what you saw from the pwd command or change into that directory and run pwd again:
bdmclaughlin@yellowtagmedia.com [~]# cd
public_html/
bdmclaughlin@yellowtagmedia.com [~/pub-
lic_html]# pwd
/home/bdmclaughlin/public_html
Then, you can take the result of that pwd
 command and drop it right in as your HOST_WWW_ROOT:
// Location of web files on host
define("HOST_WWW_ROOT",
 "/home/bdmclaughlin/public_html/
phpMM2/");
In this case, the site files are within a subdirectory of the web root, called
 phpMM2/, so you append that to the result of running pwd.
Failing all of this, you could just call your hosting provider and explain that
 you need the actual path on its file system for your web files. That might seem
 easier, but if you can get into your system via SSH or telnet, you might find it fun
 to find it yourself.

Because an array is basically a list of values, you could do something like this
 just as easily:
// Potential PHP upload errors
$php_errors = array('Maximum file size in php.ini exceeded',
 'Maximum file size in HTML form exceeded',
 'Only part of the file was uploaded',
 'No file was selected to upload.');
In this array, each value is automatically numbered, starting at 0. Thus, $php_errors[0] has the value “Maximum file size in php.ini
 exceeded”, for instance.
Note
Remember from the box in Chapter 3, on
 Searching Within Text, PHP, like most every programming
 language, starts counting at 0, rather than 1.

So, what are those numbers and funny arrows (=>)? They’re there because
 PHP arrays are associative arrays. That’s why you can say, for
 example, $_REQUEST[‘user_pic’]. The $_REQUEST array doesn’t just have values, it also has an
 association between those values (the information in an HTML
 form, usually) and the name of the fields in which those values appeared.
You can think of the mapping between the field name user_pic and the value of that field—something like
 profile_pic.jpg, for example—as being defined like this:
$_REQUEST = array('user_pic' => 'profile_pic.jpg');
Note
PHP is actually doing things in a much trickier way—that’s how it lets you
 define any form field you want, of any type you want, with any name you want, and
 PHP handles it. Still, it all boils down to the creation of an associative array, with field names associated with, or mapped
 to, field values.

Going back to your array of PHP errors:
// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');
In this case, you’re taking numbering into your own hands, rather than letting PHP
 define its own numbers. As such, $php_errors[1] is
 now “‘Maximum file size in php.ini exceeded’,” rather than letting PHP’s zero-based
 numbering assign that string’s value to $php_errors[0].
Tampering with PHP’s numbering is generally a bad idea because you’re changing
 behavior that all PHP programmers expect. In this case, though, it’s for a worthy
 cause.
That’s because PHP does more than give you a $_REQUEST array. When there are files involved, it gives you a $_FILES array. That array, just like $_REQUEST, is keyed to your field. Thus, $_FILES[$image_fieldname] is associated with the image
 uploaded (hopefully) from your form. (Remember, you defined $image_fieldname nearer the top of
 create_user.php.)
Furthermore, $_FILES[$image_fieldname] is
 itself an array, with information about the uploaded file, and any errors that might
 have occurred in the process. One of those pieces of information is $_FILES[$image_fieldname]['error']. This field returns a
 number: 0 for “Everything went OK,” and non-zero for problems. Those non-zero numbers
 are none other than:
1 => 'Maximum file size in php.ini exceeded'
2 => 'Maximum file size in HTML form exceeded'
3 => 'Only part of the file was uploaded'
4 => 'No file was selected to upload.'
You can see why renumbering the $php_errors
 array makes sense: you’ve got a map of error codes that $_FILES[$image_fieldname]['error'] might return, and the human-readable
 errors that go with them.
At this juncture, you’ve got all the information you need; time to start using
 it.

Did the File Upload with Any Errors?

Next, you need to check that $_FILES[$image_fieldname]['error'] piece of the $_FILES array and see whether any errors occurred. If the value is
 non-zero, something went wrong, and you need to handle the problem. Luckily, you have
 a handy-dandy function for just that: handle_error.
<?php
// Require utility scripts

// Set up variables

// Get everything from the form aside from the image... down to...
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selecte
d.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

$insert_sql = "INSERT INTO users (first_name, last_name, email, bio," .
 "facebook_url, twitter_handle) " .

 "VALUES ('{$first_name}', '{$last_name}', '{$email}', '{$bio}',
" .

 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
If the error field ($_FILES[$image_fieldname]['error']) is
 zero, things are great; just keep going. If it’s non-zero, you want to show your user
 an error, using the error code to look up the exact problem in your $php_errors associative array—and display that, too, if
 debugging is on (Who’s Using This App, Anyway?).
Note
Now would be a good time to check app_config.php, and
 verify that you have DEBUG_MODE set to
 true.

There’s also a new wrinkle in here that you might have just skipped right over:
 This line is basically an if statement without the if. PHP will evaluate the
 following line:
($_FILES[$image_fieldname]['error'] == 0)
If that line is true, it will continue. If the
 line isn’t true, it runs the or part of the code on
 the next line; in this case, that’s handle_error.
Essentially, the preceding example does the same thing as the following
 code:
if ($_FILES[$image_fieldname]['error'] != 0) {
 handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);
}
Warning
Watch your square brackets ([and]) and parentheses carefully here; it’s easy to get them mixed up and cause a
 hard-to-find error.

But the code without the if is shorter and
 cleaner. Every bit helps. This is a nice trick to add to your growing PHP
 toolkit.
You can check your code out in action at this point. Visit
 create_user.html and find an image file that’s bigger than 2
 MB. Photos that come straight from your camera are likely to be large. (If you’re on a
 Mac, you can export a full-size photo from iPhoto.) Select that image and then try and
 submit your form. You should see something like Figure 9-5. This page is the result of
 your code finding an error code, and that error code being matched up to an error in
 $php_errors—in this case, your image was larger
 than your HTML file allowed.
Note
You might have noticed that even though the image was rejected, your browser
 still uploads the image—regardless of how big the image is, or what your maximum
 file size is. That’s because it’s only after the image is
 uploaded that the size comparison is made. That’s sort of a bummer, but
 it’s a browser thing, and not something you can fix with PHP.

[image: Here’s one of those beautiful situations where the hard work you did earlier pays off. Rather than wading through your code or even writing custom PHP, you can quickly hand off an error to your handle_error function and get a nice response. Now multiply that by the hundreds (thousands?) of times you’ll use handle_error, and you’ll start to see the value of learning that utility function early in your PHP life (Chapter 8, page 246).]

Figure 9-5. Here’s one of those beautiful situations where the hard work you did earlier
 pays off. Rather than wading through your code or even writing custom PHP, you can
 quickly hand off an error to your handle_error function and get a nice response. Now
 multiply that by the hundreds (thousands?) of times you’ll use handle_error, and
 you’ll start to see the value of learning that utility function early in your PHP
 life (Chapter 8, page 246).

POWER USERS’ CLINIC: Breathing and Sleeping Matter
Any good programmer will tell you stories of at least a few all-night hacking
 sessions. And odds are, those stories will be tinged rosy, full of victories and
 excitement. But the truth of the matter is that fatigue slows the brain down, and no programmer is as effective on two
 hours of sleep as he is on six.
Why is this relevant? Because a tired brain isn’t as useful as a rested one.
 And, because if you’ve been swimming in the pool of PHP programming for eight
 chapters before this one, by now you’re well into the deep end. Chances are that
 you’re having to read at least a few things twice, and some of this new code
 introduces not just one or two new things, but three, or four, or five.
There’s nothing at all wrong with this, but if you’re getting worn out, nobody
 wins by you plowing ahead. Take a few hours off, ride your bike, jog a mile, or just
 set PHP aside for the night. You’ll be stunned at how much clearer things seem after
 a bit of rest from programming. Don’t think that rest and taking a few moments to
 breathe out of sight of the keyboard are a sign of weakness; in fact, it’s just the
 opposite.

Is this Really an Uploaded File?

At this point, despite whether you have a real file, what your program needs to
 work with is a file name. That name is controlled entirely by
 what your users put into their file input box. This means that if a user is tricky,
 malicious, and thoroughly dishonest, he might try to put in a file name that does
 upload a file on the host provider’s system, but also just so happens to match one of
 the special files on web servers that control things like, say, the user passwords
 (that file is usually /etc/passwd). You need a way to stop that
 from happening. (More PHP books and tutorials than you can imagine leave this step
 out, but it’s critical.)
You might think you’re about to use regular expressions and check for all kinds of
 fancy file name characters, but there’s an easier way. PHP gives you a function called is_uploaded_file whose
 purpose it is to ensure that for a given name, that name references a file uploaded
 with HTTP (the language of web browsers and HTML forms). In other words, if the
 supplied name targets a file on your web server, this function will return false, and
 you know that something’s fishy.
Here’s what you want to do:
// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Sham
e on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'");

// Interact with MySQL
This code uses another property of $_FILES[$image_fieldname]: the temporary name of the file. This gives you
 the name of the file as it currently stands and lets you make sure it’s an uploaded
 file.
But, there’s a problem here: is_uploaded_file
 fires off an error if the file isn’t uploaded. That sounds good, except that you’ve
 done a lot of work to handle errors your own way. You don’t want is_uploaded_file to generate an error; you just want its
 return value, even if there’s a problem.
You can instruct PHP to run a function but suppress errors by inserting the
 @ character directly before the function, and
 that’s exactly what you need here:
// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Shame on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'");
If there’s a problem when the function runs, handle_error takes over, rather than your script throwing out some
 unintelligible error of its own. You’ve avoided a nasty security hole. One more hacker
 thwarted. (For more on that @ character, see the
 box on Suppress Errors at Your Own Peril.)
POWER USERS’ CLINIC: Suppress Errors at Your Own Peril
There’s perhaps no more intriguing operator in PHP than @. With one keystroke, all the problems that might come about from a
 user entering invalid data, or a SQL query having an incorrect column, or even just
 a poorly formed URL can be banished. Your code can continue without having to check
 for every possible mistake your users, you, and your code might make…and that’s a
 lot of potential mistakes.
But @ is an atomic bomb waiting to turn your
 code into a smoldering slag heap. Use it frequently, and you’ll quickly find that
 your code is riddled with potential problems. You’ll never be sure if your problem is something your user did, something you did, or a
 legitimate bug you need to fix.
Regardless of what’s causing the error, if you snuck around it with @, you have a legitimate bug. Make a rule for
 yourself:
when you use @ (as in the very next line),
 pair it with an or and explicit error handling.
 You’ll be much better off for the discipline.
But—there’s always a but, isn’t there?—high-volume, production websites often
 use @ because they simply
 can’t crash or stop working. In those cases, you should
 usually go with some sort of hybrid solution. On the one hand, use @, but then pair it with or that is triggered by a flag, like your debugging mode flag (Who’s Using This App, Anyway?). Thus, in “normal” mode, things run
 without spewing tons of errors (or perhaps by only logging those errors). Then, by
 flipping on debugging mode, you can see what’s really going on and track down
 problems and fix them.

Is the Uploaded File Really an Image?

You have a file uploaded, and you know it’s not some fake file that has a name
 that points at a protected file on your server’s file system. It’s finally time to
 move on and show the image, right? Well, unfortunately, not quite. You have a file,
 but is it an image? There’s nothing preventing a user from accidentally uploading a
 Word document, or a malicious user uploading some JavaScript or an executable
 file.
Remember, you can’t assume that your users are going to do the right thing.
 Thankfully, PHP offers the getimagesize function,
 which checks the size of a given image file. And, best of all, this function kicks out
 an error if what it’s evaluating is a non-image file. Add the following function to
 your script:
// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selecte
d.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Sham
e on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'")
;
// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture " .
 "that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Interact with MySQL

Move the File to a Permanent Location

You’re almost to the big finish. You have a valid HTTP upload that’s an image. All
 that’s left is to move this image from the temporary location that browsers use for
 uploaded files to someplace permanent. Here’s where your image_fieldname variable from Set Up Some Helper Variables comes into use; remember this?
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = HOST_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// and so on...
Note
Create the uploads/profile_pics/ directory if you haven’t done so already.

At this point, it’s important to understand what’s happened to your user’s
 uploaded file. When the server uploads this file, it uses a preconfigured
 location. It’s also likely to use a name that isn’t identical to what the user’s file
 was originally called. Sometimes the name is completely changed; other times something
 is prepended (added before it) or appended to it.
Additionally, the file isn’t in a place you want to leave it. It’ll often be stuck
 into some sort of temporary storage, and that storage is probably cleared out every so
 often. You need to not only assign the file a name, but you also need to move it
 somewhere more permanent—for that, you can use $upload_dir.
There are lots of different approaches to naming a file. You could come up with
 something related to the user who uploaded the file, but often, it’s just easiest to
 give the file a unique numeric name. And the easiest way to do this is to create the
 name based on the current time—a near surefire way to end up with a unique file
 name.
Note
Take a look at the image names on a site like Flickr or Facebook. Unless users
 have renamed their images, the names are often just a string of letters and
 numbers—often indicating a time.

Once you create a unique name, you can finally move the file from its current location to a permanent one.
First, figure out a name for the soon-to-be permanent image:
// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture " .
 "that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['na
me'])) {
 $now++;
}
Here’s the step-by-step breakdown:
	Create a new variable called $now and assign it the current time by using PHP’s time function.

	Start a loop by using while. This instructs PHP that while a certain condition is true, keep doing the loop. As soon as
 that condition isn’t true, stop looping.

	As part of the while
 condition, assign a value to $upload_filename: the $upload_dir
 plus the current time, a dash (-), and then
 finally the name of the original file. This is a combination of a part
 that will be unique (the time) and the original name of the user’s file (which is
 in $_FILES[$image_fieldname] ['name']).

	Complete the while
 condition by passing that calculated filename to
 file_exists. If that file exists, the while loop runs. If not, you have a unique file name,
 so the loop will not run (or, run anymore, if it’s already been looping).

	Within the loop, you need to change the
 filename. Because the while loop is
 only going to run if you have a filename that’s already in use, just add to
 $now and try again.

Here’s the beauty of PHP: you can do all of that in just a few lines of code, and
 when this code completes, you’ll have a unique file name for the user’s file.
Now, move the file from its old temporary location to the permanent one:
// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture " .
 "that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {
 $now++;
}

// Finally, move the file to its permanent location
@move_uploaded_file($_FILES[$image_fieldname]['tmp_name'], $uploa
d_filename)
 or handle_error("we had a problem saving your image to " .
 "its permanent location.",
 "permissions or related error moving " .
 "file to {$upload_filename}");

// Interact with MySQL
It’s been a lot of work, but you should finally have your file in a permanent
 location—and you know that the file is a valid image. Your code should look something
 like this:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = HOST_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com",
 trim($_REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}
$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Shame on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'");

// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture " .
 "that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {
 $now++;
}

// Finally, move the file to its permanent location
@move_uploaded_file($_FILES[$image_fieldname]['tmp_name'], $upload_filename)
 or handle_error("we had a problem saving your image to " .
 "its permanent location.",
 "permissions or related error moving " .
 "file to {$upload_filename}");

$insert_sql = "INSERT INTO users (first_name, last_name, email, bio," .
 "facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', '{$bio}', " .
 "'{$facebook_url}', '{$twitter_handle}');";
// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
But, don’t trust flawless coding. Try things out for yourself. Visit
 create_user.php, select an image from your hard drive (one
 that’s within your size limit), and then upload it. Next, navigate to the
 uploads/profile_pics/ directory in your web browser. If you
 have permissions set to view directories on your server, you’ll see something like
 Figure 9-6.
[image: If you don’t see a listing like this, or you get a message indicating that directory listings are denied, you can contact your web server provider or hosting company and ask it to turn on directory listings through the Internet. It’s handy to be able to type a URL and look at a directory listing in your browser, but it’s not the safest setup. It means that anyone with a web browser can navigate your site’s directory structure. So although it’s great for debugging, it’s not something you want to leave on forever.]

Figure 9-6. If you don’t see a listing like this, or you get a message indicating that
 directory listings are denied, you can contact your web server provider or hosting
 company and ask it to turn on directory listings through the Internet. It’s handy to
 be able to type a URL and look at a directory listing in your browser, but it’s not
 the safest setup. It means that anyone with a web browser can navigate your site’s
 directory structure. So although it’s great for debugging, it’s not something you
 want to leave on forever.

Now (finally!), you can click one of those file names, and you should get a glorious image uploaded from your computer to your web server, as demonstrated in Figure 9-7.
[image: The image has landed! It’s taken some work, but think about the best web applications out there: they all let users upload custom images. This is core functionality these days, and now you can do it, too. Nice work.]

Figure 9-7. The image has landed! It’s taken some work, but think about the best web
 applications out there: they all let users upload custom images. This is core
 functionality these days, and now you can do it, too. Nice work.

Storing the Image Location in the Database

It’s taken some time, but you’re finally ready to save this image—or at least its
 location—in your database table. You already have a query built:
$insert_sql = "INSERT INTO users (first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', " .
 " '{$bio}', " . '{$facebook_url}', " .
 "'{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql);
Create a New Database Column

All you need to do, then, is add a column in which you can store the image
 location. This is a matter of using the ALTER command (Chapter 7, Changing a Table’s Structure by Using ALTER), something with which you’re
 already comfortable:
ALTER TABLE users
 ADD user_pic_path varchar(200);
Run this statement to test it, and then DESCRIBE your users table (Chapter 4, INSERT a Few Rows) just to make sure the change was applied:
mysql> describe users;
+----------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+---------------+------+-----+---------+----------------+
user_id	int(11)	NO	PRI	NULL	auto_increment
first_name	varchar(20)	NO		NULL	
last_name	varchar(30)	NO		NULL	
email	varchar(50)	NO		NULL	
facebook_url	varchar(100)	YES		NULL	
twitter_handle	varchar(20)	YES		NULL	
bio	varchar(1000)	YES		NULL	
user_pic_path	varchar(200)	YES		NULL	
+----------------+---------------+------+-----+---------+----------------+
8 rows in set (0.00 sec)
This user_pic_path field is just a text
 column. This is because all you’re storing is the path to the image rather than the image itself.
Note
If you’re starting to become curious about what it would look like to store the actual image in your database rather than just the path,
 sit tight. In the next section, that’s exactly what you’ll do.

Insert the Image Path Into Your Table

The update to the INSERT query isn’t difficult at all, now:
$insert_sql = "INSERT INTO users (first_name, last_name, email, bio
," .
 "facebook_url, twitter_handle," .
 "user_pic_path) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}'
, '{$bio}', " .
 "'{$facebook_url}', '{$twitter_handle}', " .
 "'{$upload_filename}');";

// Insert the user into the database
mysql_query($insert_sql);
Things are definitely starting to flow quickly. With all your existing work
 already in place, adding a new column is simple. But, before you dive back into your
 HTML, there’s one more thing that remains to be done.

Check Your Work

Before you go any further, verify that things work. If you were just a PHP
 programmer, you’d have to try this code out and then either write a new script to
 select data from the users table, or jump right back into
 show_user.php. But why go to all that trouble? You know SQL and
 how to interact with MySQL.
First, create a new user, and use a name you haven’t used before. Then, jump back
 into your SQL command-line tool and check the results of your work for yourself. Just
 SELECT the user you just inserted, focusing on the picture path:
SELECT user_pic_path
 FROM users
 WHERE last_name = 'Geyer';
You should see something like this:
mysql> select user_pic_path from users where last_name = 'Geyer';
+------------------------------------+
| user_pic_path |
+------------------------------------+
| /home/bdmclaughlin/public_html/phpMM2/uploads/profile_pics/1346084332-
370584_8323673_927214073_n.jpg |
+------------------------------------+
1 row in set (0.00 sec)
As you can see, the image is on your server, and now you’ve got the path to that image stored
 in your database. Now, you’re ready to show your users their
 glorious images.
If you’ve had any issues, you might want to check out the completed version of
 create_user.php that follows. There have been a ton of
 additions, so check that everything is right where it belongs:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = HOST_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com",
 trim($_REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;

}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Shame on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'");

// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture " .
 "that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {
 $now++;
}

// Finally, move the file to its permanent location
@move_uploaded_file($_FILES[$image_fieldname]['tmp_name'], $upload_filename)
 or handle_error("we had a problem saving your image to " .
 "its permanent location.",
 "permissions or related error moving " .
 "file to {$upload_filename}");

$insert_sql = "INSERT INTO users (first_name, last_name, email, bio," .
 "facebook_url, twitter_handle," .
 "user_pic_path) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', '{$bio}', " .
 "'{$facebook_url}', '{$twitter_handle}', " .
 "'{$upload_filename}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
Note
You can find this chapter’s finished example code on this book’s Missing CD page
 at www.missingmanuals.com/cds/phpmysqlmm2e.

Images Are for Viewing

Finally! It’s time to show your users the fruits of all your hard work. They’ll
 probably never realize how long you slaved to get one single image showing up—and protecting all their other information in the
 process.
Ensure that you have a copy of show_user.php alongside
 create_user.html and create_user.php. You need
 to update show_user.php to select the user’s picture path from the
 users table and then display that picture.
Note
As with all scripts that you’re updating, be sure to change require to require_once, include a reference to
 app_config.php, and update your paths such that you’re not
 using chapter-specific scripts/ directories. In any
 scripts that have HTML—like show_user.php—you should also check
 paths for things like the CSS files and external JavaScript references.

SELECTing the Image and Displaying It

This step turns out to be easy. First, you already have a SELECT that grabs
 everything for a particular user:
// Build the SELECT statement
$select_query = "SELECT * FROM users WHERE user_id = " . $user_id;
Next, you can just add a line that grabs the image path in the code that you already
 have pulling information out of the result of running this SQL INSERT:
if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];
 $user_image = $row['user_pic_path'];

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);

} else {
 handle_error("There was a problem finding your " .
 "information in our system.",
 "Error locating user with ID {$user_id}");
}
Note
Take this opportunity to move from using die in the else block of your if
 statement to the much cooler handle_error function
 (redirect Is Path-Insensitive).

Be sure to remove this old code entirely:
// To be added later
$user_image = "../../images/missing_user.png";
Finally, you already have a place in this script’s HTML that references the $user_image variable:
<div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="<?php echo $user_image; ?>" class="
user_pic" />
 <!-- and so on... -->
Time to try things out again. Go to your show_user.php page
 with an existing user’s ID in the URL bar of your browser, or create a new user with a
 picture and let create_user.php redirect you. You should see
 something similar to Figure 9-8.
To figure out why you can’t see the image you uploaded, view the source for this
 page, and see what path was used for the image. You’ll probably see something like Figure 9-9.
[image: What happened to the picture you uploaded? When you get an unexpected result like this, start out by either viewing the source (under the View menu, or by right-clicking the page and selecting View Source) or use a plug-in like the Firebug debugger tool (www.getfirebug.com) to inspect the offending element. That’s always a good first step toward tracking down a problem.]

Figure 9-8. What happened to the picture you uploaded? When you get an unexpected result like
 this, start out by either viewing the source (under the View menu, or by
 right-clicking the page and selecting View Source) or use a plug-in like the Firebug
 debugger tool (www.getfirebug.com) to
 inspect the offending element. That’s always a good first step toward tracking down a
 problem.

[image: According to this HTML source code, the element has the correct absolute path to the image. But, is that what a path in HTML pages should look like? How does the absolute path on a file system relate to the path on a web server?]

Figure 9-9. According to this HTML source code, the element has the correct
 absolute path to the image. But, is that what a path in HTML pages should look like?
 How does the absolute path on a file system relate to the path on a web
 server?

You checked earlier to ensure that this is a valid image (Is the Uploaded File Really an Image?). This time, check to see if the path
 to the image is causing the problem.

Converting File System Paths to URLs

Currently, you have a path on your web server’s file system (Check Your Work) but what you need is a path that a web server recognizes.
 Remember the difference between SITE_ROOT—which is a
 path from a web server’s perspective—and HOST_WWW_ROOT—which is from the perspective of a server’s file system.
 That’s exactly the issue here: your script provides a path on the file system to the web
 server.
Every web server has something called a document root. That’s
 the directory into which you place files so that a web server and a browser can see
 them. That’s also the directory you’ve already identified in
 app_config.php with HOST_WWW_ROOT (Set Up Some Helper Variables).
Note
Old school programmers and HTML geeks will remember that
 public_html/ used to be the almost universal standard for a
 document root. You’ll still often see that, along with the newer
 www/.

To establish what your document root is, close show_user.php
 and create a new script called test.php. Type a single command
 between the opening and closing PHP syntax:
<?php
echo "DOCUMENT ROOT: {$_SERVER['DOCUMENT_ROOT']}";
?>
$_SERVER is another one of those helpful
 associative arrays that PHP provides. The DOCUMENT_ROOT key reveals your web server’s document root.
Note
Visit www.php.net/manual/en/reserved.variables.server.php to see all the various
 things you can discover by using $_SERVER.

Using a browser, go to this script. You’ll get something like Figure 9-10: that’s your document root. In
 this example, the root is /home1/b/bmclaugh/yellowtagmedia_com.
 Therefore, the web path / is mapping to the file system path
 /home1/b/bmclaugh/ yellowtagmedia_com.
[image: When you run your test.php script above, you should see the path on your hosting provider’s file system. That’s where your web files are located.]

Figure 9-10. When you run your test.php script above, you should see the path on your hosting
 provider’s file system. That’s where your web files are located.

Now, you have the sort of hook you need: a mapping that relates a file system path to an actual web path. It’s a pretty easy mapping, too. For
 any file path, you want to strip away everything from the beginning of the path
 up to and including yellowtagmedia_com (or whatever the end of your
 document root is).
To put that into action, start by adding a sample image path that you’re currently
 storing in your database to your test.php script:
<?php
echo "DOCUMENT ROOT: {$_SERVER['DOCUMENT_ROOT']}";
$image_sample_path =
 "/home1/b/bmclaugh/yellowtagmedia_com/phpMM2/" .
 "uploads/profile_pics/1346084332-370584_8323673_927214073_n.jpg
";
?>
Next, use str_replace, a handy function you know
 quite well by now. You simply want to replace the file path equivalent of the document
 root with…well, nothing. You want to remove it:
<?php
echo "DOCUMENT ROOT: {$_SERVER['DOCUMENT_ROOT']}";
$image_sample_path =
 "/home1/b/bmclaugh/yellowtagmedia_com/phpMM2/" .
 "uploads/profile_pics/1312128274-james_roday.jpg";
$web_image_path = str_replace($_SERVER['DOCUMENT_ROOT'],
 '', $image_sample_path);
?>
Finally, echo the result back out:
<?php
echo "DOCUMENT ROOT: {$_SERVER['DOCUMENT_ROOT']}";
$image_sample_path =
 "/home1/b/bmclaugh/yellowtagmedia_com/phpMMs/" .
 "uploads/profile_pics/1312128274-james_roday.jpg";
$web_image_path = str_replace($_SERVER['DOCUMENT_ROOT'],
 '', $image_sample_path);

echo "

CONVERTED PATH: {$web_image_path}";
?>
Go to your test.php again. Hopefully it will look like Figure 9-11.
Note
As the name suggests, this script is for nothing other than testing purposes. For
 more on test scripts in PHP, see the box on Prototype with Simple Scripts.

[image: Adding the code on page 283 does exactly the conversion you want. It changes the image’s path from the file system path that you need when working with the image directly, to the web path that your user’s browser needs. In real life, though, don’t display your file system path where everybody can see it (like, say, publishing it in a book?).]

Figure 9-11. Adding the code on page 283 does exactly the conversion you want. It changes the
 image’s path from the file system path that you need when working with the image
 directly, to the web path that your user’s browser needs. In real life, though, don’t
 display your file system path where everybody can see it (like, say, publishing it in
 a book?).

Take this path and drop it directly into your browser, following the slash after
 your domain name, and then press Enter. If all is well, you’ll see that image you’ve
 been after for so long. Figure 9-12 shows
 the magic in action.
[image: Finally! Just as it took a lot of work to get robust error handling in place, image uploading is a common but ultimately tricky exercise. Just think how much has to go on to get one image into the right place and easily viewable by your thousands (millions?) of users.]

Figure 9-12. Finally! Just as it took a lot of work to get robust error handling in place,
 image uploading is a common but ultimately tricky exercise. Just think how much has to
 go on to get one image into the right place and easily viewable by your thousands
 (millions?) of users.

At this stage, you can turn the code in test.php into yet
 another helpful utility function. Open up your old friend app_config.php and
 create a generic version of the code from test.php:
function get_web_path($file_system_path) {

 return str_replace($_SERVER['DOCUMENT_ROOT'], '', $file_system_path);

}
Pretty streamlined, isn’t it? Here’s what this short bit of code does:
	Defines a new function by using function that you can call from any script that requires or includes
 app_config.php.

	Names the function get_web_path.

	Defines a single piece of information that the function
 gets from whatever script calls it: $file_system_path. This will be the complete path on the web
 server’s file system to the file that needs to be converted into a web-accessible
 path.

	Takes $file_system_path
 and replaces the document root in the path with nothing (' ').

	Returns the result of running str_replace by using return.

The only thing new here is return. return is a part of the PHP language, and it does just what
 you’d expect: it returns something to the program or script that called this function.
 So, if you passed in /usr/bbentley/web/images/profile.jpg, and your document root was
 /usr/bbentley/web, the string /images/profile.jpg would be returned from a call to get_web_path.
POWER USERS’ CLINIC: Prototype with Simple Scripts
Some languages and frameworks—Ruby on Rails, in particular—offer a means to run
 commands within the context of your programming or web environment. This is sort of
 like a command-line-plus, where you get all the benefits of a running web server,
 logging, your scripts loaded, and even a few additional bells and whistles.
Unfortunately, PHP isn’t one of those languages. When it comes to testing out a
 bit of new functionality, your choices are typically to either just start coding
 in one of your existing scripts or to create a simple script like
 test.php and work with it until you get your functionality
 figured out.
Although using a simple command-line script can seem like a bit of a drag compared
 to a nice CSS-styled web environment, it’s often the better choice. You can test
 things and get your code just right without having to worry about HTML or interactions
 across scripts. Then, once you have your code the way you want it, it’s an easy
 drop-in to your full-blown web scripting environment.

Warning
There is one gotcha to this function: it assumes that you’re sending it an
 absolute path, not a relative path. Thus,
 ../../../web/images/profile.jpg won’t match your document root
 in any form or fashion. Fortunately, your code that actually generates the path to an
 image uses absolute paths. This means that at least for your particular needs, this
 function works just fine.

Displaying Your User’s Image: Take Two

It’s time to turn back to show_user.php. This time, though,
 you’re armed with a utility function. Use that function to convert the absolute path
 stored in your database into a web-safe path for viewing:
if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];
 $user_image = get_web_path($row['user_pic_path']);

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);

} else {
 handle_error("there was a problem finding your " .
 "information in our system.",
 "Error locating user with ID {$user_id}");
}
It doesn’t get much easier than that. Fire up your browser and try either creating a
 user again (with create_user.php) or visiting
 show_user.php and supplying a user_id parameter as part of the URL string. You should see
 show_user.php the way it’s always been intended: resplendent with
 imagery, as shown in Figure 9-13.
[image: This chapter has been a bit of a never-ending story, hasn’t it? Still, there’s simply no doubt that you’ve got the most secure, well-built image-handling script around. (Well, okay, those guys from Facebook and Google+ might have a few additional tricks, but you’re close.) Enjoy profile pictures for a moment, and then get ready for the next stage in your evolution.]

Figure 9-13. This chapter has been a bit of a never-ending story, hasn’t it? Still, there’s
 simply no doubt that you’ve got the most secure, well-built image-handling script
 around. (Well, okay, those guys from Facebook and Google+ might have a few additional
 tricks, but you’re close.) Enjoy profile pictures for a moment, and then get ready for
 the next stage in your evolution.

FREQUENTLY ASKED QUESTION: Don’t Store Paths in Your Database
Why not store a web path in the database?
Every single time you load an image from the database, you’ll have to call get_web_path on that image path—at least if you want to show the image on
 the Web. Given that you’re writing web applications, isn’t that sort of the point? It
 might seem as though you could just cut that conversion step out and simply store the
 image in the database as a web path from the beginning.
There are a couple of reasons that’s not a great idea, though. First, an absolute
 path is just that: it’s absolute. Your web server software can change; your home
 directory can change; you can switch from PHP to Ruby to Perl and back to PHP; but
 short of you actually moving an image, its absolute path remains unchanged. Most
 importantly, you can change the entire document root of your site, and an absolute
 path will still work.
Why is that so significant? Because you might need to change the document root of
 your site at some point. If you stored a web path in the database—a path related to
 your document root—and then your document root changed, all of your image paths would
 be invalid. You’d have to change every single one of them from being relative to your
 old document root to relative to your new document root. What a mess.
On top of that, a web path is a relative path, even if it begins with a /. That’s because it’s relative to your document root. An
 absolute path is fixed in relation to a specific computer, regardless of that
 computer’s software. And as a general rule, you want to store things in a database
 that are as absolute and fixed as possible. Given the choice between a piece of
 information in an absolute form and one in a relative form, always go for the absolute
 form. It’s usually easy to change from one form to the other, so store the more
 “reliable” one. You won’t regret it.

And Now for Something Completely Different

Everything works now. Your users can upload images. You can get those images securely
 into a permanent location of your choice. You have a way to store the location in a
 database and to convert that location into a URL that works with your website and your
 personal document root. And then, to top it all off, you can show your users their images
 when they visit show_user.php.
So, what’s next?
Suppose that you’re using multiple web servers that share a single database. Are you
 really going to store the same image on each of those web servers?
Or suppose you’re using a temporary computer for a web server, or think you might
 change to a higher-end hosting solution as your business expands. Do you want to have to
 copy not just your site—which might only be 10 or 20 MB zipped up—but all of your user’s
 images, each one perhaps 1 or 2 MB in size?
These are just a few reasons why the solution you have in place might not be the best
 one for your particular web application. And there is another option, equally complex, but
 just as useful: you can store images not on the file system, but directly in your
 database.
This is one of the most common things you’ll encounter in programming: you’ve got a
 solution that works, but there might be a better solution around the corner. In this case,
 there’s a different solution, and it’s in the next chapter. So turn the page, and see why
 you might just want your entire image stored in the database rather than just the path to
 that image.

Chapter 10. Binary Objects and Image Loading

At this point, you have images on a file system, and the paths to those images stored in
 a database. In your PHP scripts, you convert that file system path to a web path, and then
 display the image. This works, and it works pretty well. In fact, you could run with that
 solution and likely never have any issues…but, then again, you might have a huge issue that
 crops up next week.
The downside of this approach is that you don’t have a self-contained solution. Images
 are on the file system, paths are in the database, and then you need some PHP to convert
 from the location of the image on your server to a path that users’ browsers can interpret
 correctly. To put it all together, you’ve created a real connection—sometimes called a
 tight coupling—between your file system, your PHP, and your
 database.
Taking all this into consideration, how do you make things more self-contained? You’d
 have to take these pieces of information and put them all in one place. Obviously, you’re
 committed to a database, so that becomes the logical place to consolidate your information.
 Instead of some of your information going into your database, it
 all goes into your database.
In this approach, you take a user’s uploaded image and put it in your database rather
 than just storing a reference to your image. Unfortunately, to do that, there’s a lot more
 work to be done: you need not just a new column in your users table,
 but an entirely new table; you need a new data type; and you need more than just the SELECT
 and INSERT queries you’ve been using so far. If you need this type of solution, this chapter
 will show you how to do it.
Storing Different Objects in Different Tables

Up until now, you’ve been working with one table: users. That’s because you’ve been working with a
 single entity: a representation of one of your users. Everything in that table—the first
 and last name, the email address, and the Facebook URL and Twitter handle—are parts of
 that user. Put another way, everything in the users table
 describes a user.
But, when you store an entire image within the database, you’re no longer dealing with
 something that describes a user. In fact, although an image is
 related to a user—it’s the image that a user wants to display when
 his profile is viewed—it’s an object in its own right. Just like a user, it’s a unique
 entity that might have other information describing it. And also like a user, an image
 should go into its own table.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

You’re going to create a new table called images that’s going to
 store not only a user’s image, but several key details about that image:
	An image ID This will uniquely identify the image,
 similar to a user_id in the
 users table. It will also let you associate an image to the
 users table a bit later.

	The image name Even though you’re storing the
 image’s data, you still need a name by which you can refer to that image.

	The image’s MIME type This information is important
 for instructing a web server whether it needs to display a JPG, GIF, PNG, or something
 else entirely.

	The file size This is more information that you
 supply to the browser for displaying the image.

	The image data itself The raw bits and bytes that are turned into pixels and colors.

Translate this into SQL and you get a new CREATE statement:
CREATE TABLE images (
 image_id int AUTO_INCREMENT PRIMARY KEY,
 filename varchar(200) NOT NULL,
 mime_type varchar(50) NOT NULL,
 file_size int NOT NULL,
 image_data mediumblob NOT NULL
);
You’ve seen all of this before, with the exception of a new column type: mediumblob. As you might expect, this implies there are a few
 other blob types, which are:
	tinyblob This type stores objects up to 256 bytes.

	blob You can store objects up to 65 KB (kilobytes) in a blob column.

	mediumblob This has a capacity for up to 16
 MB of data.

	longblob This is the big one. You can store 4 GB of data in a longblob column.

The term blob stands for binary large
 object. It’s a column designed for the very type of information that makes up
 an image; in other words, information that’s neither a number nor a string, but is instead
 binary data. (For more detail on which type of blob to use and when, see the box that
 follows.)
DESIGN TIME: Planning for Growth and Describing Your Data
In the PHP world, there’s a fair bit of disagreement about which blob type you should use for a given column. Some argue that
 you should always use longblob, whereas others argue
 that you should know exactly what size file you’re dealing with, and use the blob that covers that size, and nothing more.
With those who argue for always using longblob,
 the thinking is that you’re planning ahead. Because your database uses space as your
 actual data needs—and not the column’s maximum size—a longblob holding a 2 MB image takes up just as much space, or more
 accurately, no more space than a mediumblob holding a
 2 MB image. Then, why not use longblob all the time,
 and never have to change your column type as your storage needs change?
On the other hand, if you’re allowing only images that are 2 MB or smaller, mediumblob best describes your data. You’re doing more than
 just choosing an arbitrary type; you’re providing information about what goes in the
 column.
For example, it’s not a good idea to make everything a varchar(255) if you are only storing a first name because there’s no first name that long (see the box on
 The Size of Your Columns Really Does Matter). You lose a chance to say
 something about your data with that approach. The same is true for using a longblob
 if (and this is an important if) you’ve clearly decided that you’re
 only accepting images up to a size that would fit in a mediumblob.

Go ahead and create this table. Ensure that it’s in the same database as users.
 You should now be able to see both of these tables in your database:
mysql> USE phpmm2;
Database changed
mysql> SHOW tables;
+------------------------------------+
| Tables_in_phpmm2 |
+------------------------------------+
| images |
| users |
+------------------------------------+
2 rows in set (0.00 sec)

Inserting a Raw Image into a Table

It’s time to revisit create_user.php. You’re going to use a lot
 of your existing code, but there are also some changes to make. All of the checks you’ve
 put in place to ensure that your user uploaded a valid image, that no errors were
 generated by the server or PHP, and that the file is an image via getimagesize are just fine.
Note
Make a backup of create_user.php before you start making
 changes. Consider copying it to create_user.php.bak or something
 similar so that if you want to go back to storing just an image’s path, you can.

Where things change is in the section of code that you used to move the temporary
 image into a final location (Displaying Your User’s Image: Take Two). In
 this approach, the final location is the images table, so you must
 replace that code.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Here’s the create_user.php script with the path code
 removed.
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

// The errors array and variables related to images stay the same
$upload_dir = HOST_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com", trim($_
REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}
$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url .
 substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. " .
 "Shame on you!",
 "Uploaded request: file named " .
 "'{$_FILES[$image_fieldname]['tmp_name']}'");

// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture that " .
 "isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} " .
 "isn't a valid image file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {

 $now++;
}

// Remove the code that used move_uploaded_file to move the tem
porary image

// Remove the column name and value for user pics.
$insert_sql = "INSERT INTO users (first_name, last_name, email, bio," .
 "facebook_url, twitter_handle)" .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', '{$bio}', " .
 "'{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
Your code remains substantially the same. The big change is that now you need a new
 INSERT statement, and this statement doesn’t insert into users, but
 into images.
Here’s the beauty of this solution, though: you can get every bit of the information
 you need to put into images from the $_FILES array
 (which is actually an array of arrays):
$insert_sql = "INSERT INTO users (first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('{$first_name}', '{$last_name}', '{$email}', " .
 "'{$bio}', '{$facebook_url}', '{$twitter_handle}');";

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Insert the image into the images table
$image = $_FILES[$image_fieldname];
$image_filename = $image['name'];
$image_info = getimagesize($image['tmp_name']);
$image_mime_type = $image_info['mime'];
$image_size = $image['size'];
$image_data = file_get_contents($image['tmp_name']);

$insert_image_sql = "INSERT INTO images " .
 "(filename, mime_type, file_size, ima
ge_data) " .
 "VALUES ('{$image_filename}', '{$image_mime_ty
pe}', " .
 "'{$image_size}', '{$image_data}');";

mysql_query($insert_image_sql);

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
There’s a lot going on here, and some of it is flat-out confusing, so take this code
 piece by piece.
First, this code creates a new $image variable
 that’s actually just for convenience:
$image = $_FILES[$image_fieldname];
This variable makes it easier to deal with all the properties of an image at once. You
 don’t have to continually type $_FILES[$image_fieldname], over and over. This step isn’t necessary, but it
 does make things much more convenient.
Next, you can get the name of the image from this array:
$image_filename = $image['name'];
Beware: getimagesize Doesn’t Return a File Size

Here’s where things start to get a little weird. Despite its name, getimagesize does not
 return a numeric file size of the uploaded image. Rather, it returns an
 array of information about the image such as its MIME type (which you need) and the
 height and width of the image that you might use to display the image in an HTML page
 (which you don’t currently need).
This might lead you to believe that you should do something like this:
$image_size = getimagesize($image['tmp_name']);
In fact, that’s a problem on two counts: getimagesize returns an array, not a size, and the sizes that getimagesize returns in that array are height and width, not
 file size.
What you do need from the returned array, though, is the MIME type:
$image_info = getimagesize($image['tmp_name']);
$image_mime_type = $image_info['mime'];
You also still need the actual file size of the uploaded image. You can get that
 from a property on the original image-related array:
$image_size = $image['size'];

The file_get_contents Function Does What You Think It Does

Sometimes a function’s name is a bit misleading, such as you just learned with getimagesize. Other times, a function is perfectly named;
 that’s the case with file_get_contents. This function
 retrieves an object’s data in binary form, which is just what you want for the image_data column in your images
 table:
$image_data = file_get_contents($image['tmp_name']);

INSERTing the Image

Last but not least, you need to build the INSERT query and run it:
$insert_image_sql = "INSERT INTO images " .
 "(filename, mime_type, file_size, image_data) " .
 "VALUES ('{$image_filename}', '{$image_mime_type}', " .
 "'{$image_size}', '{$image_data}');";

mysql_query($insert_image_sql);
Warning
Hold off on running this code! Or, if you do, get ready for some weird errors.
 There are problems here, lurking in the dark corners of how MySQL handles data. So, get your code to this point, but keep reading before you end up
 assuming you’ve done something wrong.

Your Binary Data Isn’t Safe to Insert…Yet

The code you built in the previous section looks good, but if you run this code,
 you’re likely to see some errors. First, that binary data has all sorts of weird characters on which PHP and MySQL are going
 to choke. There’s always the possibility of running into characters that are a problem, but it’s especially true when you’re
 dealing with binary data.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Once again, though, there’s a utility function for that.
Note
You’ve probably noticed that at nearly every turn, there’s a PHP utility function.
 That’s one of the advantages of a language that’s fairly mature. Well into versions 4
 and 5, PHP has settled, and a robust library exists that contains handy functions like
 getimagesize and the one you’re about to use:
 mysql_real_escape_string.

The mysql_real_escape_string function escapes any
 special characters in the string you hand it. This means that you can pass in your
 $image_data, and then pass the result of mysql_real_escape_string to mysql_query through your INSERT statement. In fact, it’s not a bad idea to
 use this function on any string data you pass in to MySQL:
$insert_sql = "INSERT INTO users (first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('{mysql_real_escape_string($first_name)}',
 " .
 "'{mysql_real_escape_string($last_name)}',
 " .
 "'{mysql_real_escape_string($email)}', " .
 "'{mysql_real_escape_string($bio)}', " .
 "'{mysql_real_escape_string($facebook_url)}'
, " .
 "'{mysql_real_escape_string($twitter_handle)}
');";

// Insert the user into the database
mysql_query($insert_sql);

// Insert the image into the images table
$image = $_FILES[$image_fieldname];
$image_filename = $image['name'];
$image_info = getimagesize($image['tmp_name']);
$image_mime_type = $image_info['mime'];
$image_size = $image['size'];
$image_data = file_get_contents($image['tmp_name']);

$insert_image_sql = "INSERT INTO images " .
 "(filename, mime_type, file_size, image_data) " .
 "VALUES ('{mysql_real_escape_string($image_fi
lename)}', ".
 "'{mysql_real_escape_string($image_mime
_type)}', " .
 "'{mysql_real_escape_string($image_size
)}', " .
 "'{mysql_real_escape_string($image_da
ta)}');";

mysql_query($insert_image_sql);
Note
You don’t need mysql_real_escape_string for the
 $image_size, because it’s a numeric value. However,
 if you’re constantly trying to remember whether input data is a string or a number,
 you’re eventually going to make a mistake and not escape something you should.
To be safe, just escape everything. It’s more consistent, and it’s another layer of
 protection. The time it takes PHP to escape that one bit of data is trivial compared to
 the problems if malicious data goes unescaped.

Printing a String to a Variable

As natural as this code looks, it’s got a serious problem. Even though the curly
 braces surrounding a variable will allow that variable to be printed inside a string
 (for example, “{$variable}” prints the value of
 $variable), PHP draws the line at doing actual work
 inside the curly braces. As such, it won’t interpret the call to mysql_real_escape_string.
You have two ways to get around this. The first is the easiest: you could just move
 the calls to mysql_real_escape_string up into the
 variable assignments, sort of like this:
// Insert the image into the images table
$image = $_FILES[$image_fieldname];
$image_filename = mysql_real_escape_string($image['name']);
$image_info = getimagesize($image['tmp_name']);
$image_mime_type = mysql_real_escape_string($image_info['mime']);
// and so on...
This also looks OK, but it’s not a good idea. Do you see why?
Think about the function you’re calling: it’s specifically for getting values set up to work
 with MySQL. However, what if you want to use $image_filename somewhere else in your script? You’ve turned this variable
 into a MySQL-specific version of the file name.
It seems like the original approach—converting the variable by using mysql_real_escape_string as it’s going into the actual SQL
 INSERT statement—is the right one. It allows the variable to just be the image file
 name, or the image MIME type, and then you convert that into a MySQL-friendly value when
 that’s required.
That seems to indicate there’s a need for a way to perform calculations or run
 functions on values when you’re constructing your SQL string—and there is. You usually
 do so by using sprintf, which is a PHP function that prints to a string. In other words, you construct a string by
 using any calculations you need and pass all the required information to sprintf. The sprintf
 function puts everything together and returns a string, which you can then assign to
 your variable, and boom, you’re then ready to pass that variable in to mysql_query.
How does this work? Well, it’s a little different than anything you’ve done so far.
 Instead of just building the string up via concatenation, you indicate the entire string
 that you want to create, but every time you come to a spot in the string where you want
 to include the value of a variable, you put in a special type
 specifier. For example, you use %s for a
 string type:
$hello = sprintf("Hello there, %s %s", $first_name, $last_name);
echo $hello;
Suppose $first_name is “John” and $last_name is “Wayne.” Running a script with these two lines
 would give you:
Hello there, John Wayne
The sprintf function replaces the first %s with the first value after the string, which is $first_name. Then, it replaces the second %s with the second value after the string, $last_name. Finally, the entire string with the values
 inserted—is assigned to $hello.
What’s great about sprintf is that you can
 perform calculations on variables before you pass them to sprintf. The following example might be a bit silly, but the
 code is perfectly legal:
$hello = sprintf("Hello there, %s", $first_name . ' ' . $last_name);
echo $hello;
Of course, there are much better ways to use sprintf, like creating a query string and using mysql_real_escape_string in the process:
// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle
) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s'
);",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle))
;

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());
This code doesn’t do anything noticeably different than your older version. This is
 because the data being inserted into users was probably not a
 problem in the first place. But now, you can take this same approach and apply it to
 your insertion into images.
$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filenam
e),
 mysql_real_escape_string($image_mime_ty
pe),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());
You can guess what %d means to sprintf: replace that type specifier with a decimal number,
 like 1024 or 92048. Thus, this code builds up an INSERT, executes it, and escapes your
 values in the process.
POWER USERS’ CLINIC: sprintf Is Your New Best Friend
Most PHP programmers use sprintf initially
 because it lets them do things like use mysql_real_escape_string on variables before they’re inserted into a
 query string. But those same programmers discover something else, just as you will:
 using sprintf lets you write a lot more robust and
 flexible code.
Using sprintf, you can do calculations on your
 data, escape values, and do just about anything else you want to your data, as you’re
 inserting into or selecting from your database. You no longer need to
 calculate things and then assign the results of those calculations to a variable (or,
 even worse, a new variable, based upon some old variable) and then—and only then—use
 those variables as part of a SQL construction.
sprintf lets you do all that in a single step.
 In general, you should use sprintf as your default
 means of creating SQL strings that are executed as queries against your database.

Now, try this out. Head over to create_user.php once again,
 find a new friend to fill out the form, let her choose an image, and then submit the
 form. Your new version of create_user.php should run, and you’ll
 get to show_user.php.
This time you won’t see the user’s profile, because that’s not
 code you’ve written. In fact, you might see an entirely incorrect user being loaded.
 You’ll fix that soon.
You should, however, be able to dig into your new images
 table and see an entry for the uploaded image:
mysql> SELECT image_id, filename FROM images;
+----------+---+
| image_id | filename |
+----------+---+
| 1 | 7829_1204001948285_1475710666_1190173_2526636_n.jpg |
+----------+---+
1 row in set (0.43 sec)
Warning
You most definitely do not want to do a SELECT * here,
 because you’ll get MySQL’s attempt to load your actual image data, which might be a
 few hundred (or a few thousand) kilobytes. But, at least you can see that an image is
 indeed in your table.

You can also access your table by using phpMyAdmin (see the box on The Host with the Most)
 if you’ve got that running, and extract a little extra information about your entries in
 images. Figure 10-1 shows you what to expect.
[image: PhpMyAdmin reports BLOB columns—regardless of what type of BLOB you used—as BLOB and a size. In this case, you can see that the file size, at 27500 bytes, matches up with the size of the data in the BLOB column, which is 26.9 KB. This is a good way to verify that things are working: your script is correctly getting the size of the image it’s inserting into your database table.]

Figure 10-1. PhpMyAdmin reports BLOB columns—regardless of what type of BLOB you used—as BLOB
 and a size. In this case, you can see that the file size, at 27500 bytes, matches up
 with the size of the data in the BLOB column, which is 26.9 KB. This is a good way to
 verify that things are working: your script is correctly getting the size of the image
 it’s inserting into your database table.

Getting the Correct ID Before Redirecting

Unfortunately, there’s still a problem. You might have noticed something like Figure 10-2 when you got your image insertion
 working. You could see a blank screen, or even a totally different user, as in this
 scenario.
[image: This screen is hardly what you want to see after all that work on getting images into your database. So, what gives?]

Figure 10-2. This screen is hardly what you want to see after all that work on getting images
 into your database. So, what gives?

This isn’t as much of a mystery as it first seems. Here’s the last bit of your code
 from create_user.php:
// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle));

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
What’s the problem? It’s in that second-to-last line. Remember, mysql_insert_id returns the ID of the
 last INSERT query, which is no longer the INSERT for your
 users table; it’s your new INSERT for
 images. The redirect to show_user.php is in
 fact working, but it’s sending the ID of the image inserted rather than the user.
 Fortunately, you can easily fix that:
// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle));

// Insert the user into the database
mysql_query($insert_sql);

$user_id = mysql_insert_id();

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql);

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . $user_id);
exit();
?>
Try this out again, and you should be back to what you expect: a slightly broken
 version of show_user.php, but broken in the way that you expect
 (see Figure 10-3).
[image: As odd as it seems, you sometimes want things to be broken. In this case, you want to see a missing image because you haven’t written any code to display the image just INSERTed. What you don’t want to see—and what you just fixed—is the missing user information other than the image.]

Figure 10-3. As odd as it seems, you sometimes want things to be broken. In this case, you
 want to see a missing image because you haven’t written any code to display the image
 just INSERTed. What you don’t want to see—and what you just fixed—is the missing user
 information other than the image.

Connecting Users and Images

At this point, you have two tables—users and
 images—but no connection between them. That’s your next challenge.
 When you load a user from the users table and display his profile by
 using show_user.php, how do you determine which image in the
 images table you should display?
Clearly, you need some linkage between those two tables. You already have a unique ID
 for each entry in users (user_id)
 and in images (image_id), which is
 a good starting place. The question becomes, does a user reference an image, or does an
 image reference a user?
Here’s the fundamental question you’ll ask over and over when you’re connecting two tables in a database: how are the two tables related? Better
 still, how are the two objects that your tables represent related?
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

For example, does a user have an image? Does a user have lots of
 images? In this case, a single user has a single profile image. In database terms, that’s
 called a one-to-one (or 1-1)
 relationship. One user is related to one image. As a result, you
 can create a new column in your users table, and in that column you
 can store the image_id of that user’s profile image.
 You can make that change to your database like this:
mysql> ALTER TABLE users
 -> ADD profile_pic_id int;
Query OK, 6 rows affected (0.11 sec)
Records: 6 Duplicates: 0 Warnings: 0
DESIGN TIME: Foreign Keys and Column Names
The profile_pic_id column in the code above is
 setting up what’s called a foreign key relationship. This column is
 a foreign key because it relates to the key in a different, “foreign” table:
 images.
In most databases, you not only define a column in your table that relates to the
 referenced table’s primary key, you also define a FOREIGN KEY at the database level.
 That way, your database knows that profile_pic_id is
 storing IDs that are in the images table’s image_id column.
You can use foreign keys in MySQL, but you have to use the MySQL InnoDB table engine, which you haven’t seen yet. This requires some extra
 setup, and not all hosting providers support InnoDB. Besides, programmers have been
 using MySQL without foreign key support for years, so if you write your code properly,
 you can work around this limitation. If you want to use InnoDB and foreign key support
 at the database level, start with this command on your tables:
ALTER TABLE [table-name]
 ENGINE = InnoDB;
Then Google “MySQL foreign keys” and you’ll find a wealth of information at your
 fingertips.
Regardless of whether you use foreign keys through your programming or add support
 at the database level by using InnoDB, naming your foreign key columns is a big deal.
 The typical practice here is to name the foreign key [singular-table-name]_id. For example, for a foreign key connecting users to images, you’d
 typically take the singular name of the table you’re connecting to—“image” from
 images—and append “_id”. This results in get image_id for your foreign key column name.
Why use profile_pic_id in
 users? Because you could very well store more than just profile
 pictures in images. You might store several images for a user, only
 one of which is a profile picture. You might keep up with user’s candid photos, or icons
 for logging in, or images for companies to which your users connect.
In all of these cases, then, image_id in
 users doesn’t provide enough specificity. In these cases—where
 you’re not just setting up a foreign key, but setting up both a foreign key
 and indicating a particular type of usage—using a different name
 makes sense. For instance, you could end up with a profile_pic_id column in users, and then perhaps a
 company_logo_id in a potential
 companies table, and who knows what other images you’ll use? By
 using profile_pic_id now, you’re indicating that
 you’re relating to an image and the specific purpose for which that image is being
 used.

Warning
You’ve already made changes to your scripts to accommodate storing images in your database, rather than on your file system. With the ALTER in
 the preceding example, you’re now making the same sort of changes to your database.
 These changes reflect a deviation in how your application works. To be safe, you want to
 back things up at this point in your database.
Of course, backing up a script is a lot easier than backing up a database. You might
 want to give your hosting company a call and see if and how you can backup your
 database. Or, you can just figure out how to undo these changes if you decide that you
 want to go back to storing images on your file system.
Either way, you’re going to get some PHP and MySQL practice switching between the
 two approaches. That’s a good thing no matter what solution you end up using.

Inserting an Image and then Inserting a User

Once an image is in images, you need to get that image’s ID and
 insert it into a user’s profile_pic_id column. At the
 moment, though, your script inserts into users before inserting
 into images:
// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle));

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

$user_id = mysql_insert_id();

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . $user_id);
exit();
?>
At this point, you could look up the ID of the user you inserted using mysql_insert_id and store that in a variable. Then, you
 could get the image ID by using mysql_insert_id
 again. Finally, you could update the profile_pic_id
 column of the new user’s row in users. That would work, and you’d
 end up with three different database interactions:
	An INSERT to put the user’s information into
 users.

	An INSERT to put the image information into
 images.

	An UPDATE to drop the new image’s ID into
 users.

These three steps might not seem like much, but every interaction with your database
 consumes time and resources. As a general principle, you want to interact with your
 database as little as possible. That’s not to say you don’t work with a database; you
 just don’t make three or four calls if you can pull off the same task with one or
 two.
In this case, you can reduce the number of MySQL interactions from three to
 two:
	INSERT the image into the Images
 table (and get the ID of that image in the process).

	INSERT the new user into users, and
 use the image ID you just grabbed as part of the data you put into that
 INSERT.

Going from three MySQL interactions to two might sound like a minor issue. Then
 again, you just cut your database interactions by a third. If you can make fewer calls,
 do it.
Go ahead and wire up your INSERT statements accordingly:
// Get image data

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());

// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle));

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . $user_id);
exit();
?>
Note
There’s no additional code here. It’s just a wholesale move of the insertion
 creation and mysql_query call related to a user
 from before the image-related code to after
 that code.
But you can remove some code. Now that you have the insertion into
 users coming second, you can go back to using mysql_insert_id in your redirection.

From here, it’s just a matter of getting the ID from your
 images INSERT and using it in the users
 INSERT. But you know how to do that: you can use mysql_insert_id to grab the ID of the row inserted into
 images and then add that to your INSERT for
 users:
// Get image data

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, " .
 "file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());

// This replaces the older assignment to $insert_sql
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handl
e, " .
 "profile_pic_id) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s'
, %d);",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle),
 mysql_insert_id());

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
Note
Remember, because the ID of the image you’re inserting into profile_pic_id is an int, not a string, you need to use %d
 as your type specifier for sprintf. You don’t need
 to include that value in single quotes.

Put everything together, and your updated version of
 create_user.php should look like this:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = HTTP_WWW_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com", trim($_
REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Shame on you!",
 "Uploaded request: file named '{$_FILES[$image_fieldname]
 ['tmp_name']}'");

// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} isn't a valid image
 file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {
 $now++;
}

// Insert the image into the images table
$image = $_FILES[$image_fieldname];
$image_filename = $image['name'];
$image_info = getimagesize($image['tmp_name']);
$image_mime_type = $image_info['mime'];
$image_size = $image['size'];
$image_data = file_get_contents($image['tmp_name']);

$insert_image_sql = sprintf("INSERT INTO images " .
 "(filename, mime_type, file_size, image_data) " .
 "VALUES ('%s', '%s', %d, '%s');",
 mysql_real_escape_string($image_filename),
 mysql_real_escape_string($image_mime_type),
 mysql_real_escape_string($image_size),
 mysql_real_escape_string($image_data));

mysql_query($insert_image_sql)
 or die(mysql_error());

$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, email, " .
 "bio, facebook_url, twitter_handle, " .
 "profile_pic_id) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s', '%s', %d);",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle),
 mysql_insert_id());

// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
exit();
?>
Try your code out by creating another user. Then, check to see what the last and
 highest inserted image ID is from your images table:
mysql> select image_id from images;
+----------+
| image_id |
+----------+
| 2 |
| 3 |
| 4 |
+----------+
2 rows in set (0.45 sec)
This ID should be the same one that was inserted into your last inserted user in
 users:
mysql> select user_id, first_name, last_name, profile_pic_id from users;
+---------+------------+-----------+----------------+
| user_id | first_name | last_name | profile_pic_id |
+---------+------------+-----------+----------------+
1	Yu	Darvish	NULL
10	David	Ramirez	NULL
19	Ryan	Geyer	NULL
21	Jason	Wadley	NULL
24	Robert	Powell	4
+---------+------------+-----------+----------------+
5 rows in set (0.00 sec)
You can see that when an image is inserted, the ID of that image is dropped into
 users, which demonstrates that you have a connection between a
 user and an image.

Joining Tables by Using WHERE

Now that you have a connection between and image and a user, you need a way to get
 an image for that user. First, utilize the user ID to select the user you
 want:
// Build the SELECT statement
$select_query = sprintf("SELECT * FROM users WHERE user_id = %d",
 $user_id);
This variable is just a sprintf version of code
 from show_user.php. Make this change in your own version of
 show_user.php.
Notice that you get more than just user information, now. You also get the profile_pic_id for that user. This means that you can use
 this ID to get the image for that user:
// Run the query
$result = mysql_query($select_query);
if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];
 $profile_pic_id = $row['profile_pic_id'];

 $image_query = sprintf("SELECT * FROM images WHERE image_id = %
d",
 $profile_pic_id);
 $image_result = mysql_query($image_query);

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);
} else {
 handle_error("There was a problem finding your " .
 "information in our system.",
 "Error locating user with ID {$user_id}");
}
Note
You can remove any code in show_user.php that involves the
 profile image’s file path because you’re not longer using that approach for dealing
 with images.

This code works, but it’s actually turning what is potentially one step into two.
 What you’re doing here is joining two tables: you have a piece of information—profile_pic_id in users and image_id in images—that connects the two
 tables.
Connect Your Tables Through Common Columns

You also have a way to get only certain rows from a table: the WHERE clause.
 Putting this all together, you can get a user from users and an
 image from images where the user’s profile_pic_id matches the image’s image_id:
SELECT first_name, last_name, filename
 FROM users, images
 WHERE profile_pic_id = image_id;
Run this in MySQL, and you should see a result like the following example:
mysql> SELECT first_name, last_name, filename
 -> FROM users, images
 -> WHERE profile_pic_id = image_id;
+------------+-----------+--------------------+
| first_name | last_name | filename |
+------------+-----------+--------------------+
| Robert | Powell | powell-kicking.png |
+------------+-----------+--------------------+
1 row in set (0.44 sec)
For the first time, you’re connecting your tables together. In a single query, you’ve
 joined information in one table to corresponding information in
 another table. That’s a big deal!

Alias Your Tables (and Columns)

As cool as this query is, it’s a bit confusing. Take a look again:
SELECT first_name, last_name, filename
 FROM users, images
 WHERE profile_pic_id = image_id;
It’s obvious that first_name and last_name are columns from users.
 But, unless you really know your database structure, it’s not immediately clear where
 filename comes from. (Of course, you
 are intimately familiar with your database, so you know that
 filename is a column in
 images.)
The same is true with profile_pic_id and
 image_id. Both are column names, but which column
 belongs to which table?
You can make this clear, though, by using table prefixes on your columns. For example, you can convert this
 query to something a bit more descriptive:
SELECT users.first_name, users.last_name, images.filename
 FROM users, images
 WHERE users.profile_pic_id = images.image_id;
You’ll get the same result, but the query itself is a lot less ambiguous. Still,
 there’s another important fact to keep in mind here: programmers are lazy. Yup, it’s
 true; most programmers would rather type a single character—or at most two—if they can
 avoid typing five or ten. And SQL is happy to accommodate. You can alias a table by providing a letter or two after the table name and then
 using that letter as your prefix in the rest of the query:
SELECT u.first_name, u.last_name, i.filename
 FROM users u, images i
 WHERE u.profile_pic_id = i.image_id;
Once again, there’s nothing functionally different about this query, but it’s now
 both clear and succinct: a programmer’s best-case situation.

Show Me the Image!

At this point, you have all your data, and you can even get the image for a particular
 user. All that’s left is to actually show the image, right?
Yes, but you have an entirely different situation than when you had the image on a
 file system and just needed to point at that file. In this case, you must load the actual
 raw image data from your database and then somehow let the browser know, “Hey, this is an
 image, not just text. Display it like an image.” That’s not particularly difficult, but
 it’s different from what you’ve been doing.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Displaying an Image

First, you need a script that can load and display an image. Once that’s done, it’s
 easy to reference that display script in show_user.php. Therefore,
 the script is the important piece, with all the new code.
Create a new script, and call it show_image.php. You can start
 out with the basic script shell that all your scripts now have:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

?>
Make a Game Plan for Your Script

Map out the exact steps that need to happen:
	Get an image ID from the request.

	Build a SELECT query from the
 images table by using that image ID.

	Run the SELECT query and get the
 results.

	Grab what should be the only row from those
 results.

	Inform the browser that it’s about to receive an
 image.

	Inform the browser what kind of image it’s about to
 receive.

	Give the browser the image data.

With the exception of these last few steps, you’re probably already whirring away,
 figuring out exactly what sort of code you need to write. But, there’s a lot of error
 handling that has to happen along the way, too:
	Ensure that an image ID was sent to the
 script.

	Ensure that the ID maps to an image in the
 images table.

	Deal with general problems that occur while loading or
 displaying the image data.

Again, though, none of this is particularly hard. Time to get to work.

Get the Image ID

First up, you need to get an ID to use for loading the image from the database.
 This step is also where you can do some initial error handling: if no ID comes in as
 part of the request, something’s gone wrong.
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

if (!isset($_REQUEST['image_id'])) {
 handle_error("No image to load was specified.");
}

$image_id = $_REQUEST['image_id'];

?>
Simple enough, and a lot like code you’ve written before in
 show_user.php. Once again, handle_error makes dealing with problems, if they do occur, a piece of
 cake.

Build and Run a Select Query

Next, you can use your new friend, sprintf, to
 construct a SQL query, and an older friend, mysql_query, to get a result set:
<?php

// require statements

// Get the image ID

// Build the SELECT statement
$select_query = sprintf("SELECT * FROM images WHERE image_id = %d",
 $image_id);
// Run the query
$result = mysql_query($select_query);

?>
Nothing new here, either.

Get the Results, Get the Image, and Deal with Potential Errors

Now, you can grab the data from $result. In the
 past, you’ve done that in a few ways. Early on, you looped over all of the rows
 returned from a query:
if ($return_rows) {
 // We have rows to show from the query
 echo "<p>Results from your query:</p>";
 echo "";
 while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
 }
 echo "";
 } else {
 // No rows. Just report if the query ran or not
 echo "<p>The following query was processed successfully:</p>";
 echo "<p>{$query_text}</p>";
 }
Note
This code is from way back in Chapter 6 (Search for One String…Or Another). Hard to believe how much more
 advanced your PHP scripts have become in a few short chapters, isn’t it?

You also used an if statement if you expected
 only a single result:
if ($result) {
 $row = mysql_fetch_array($result);

 // Deal with the single result
} else {
 handle_error("there was a problem finding your information in our system.",
 "Error locating user with ID {$user_id}");
}
This statement assumes that as long as $result
 is valid, you have a row. Further, it ignores any rows other than the first one,
 knowing that the SQL query that generated these results can only return a single
 row.
In show_image.php, you want something similar to this latter
 approach. But it’s possible to check and ensure that you have a result without
 encasing everything in an if:
<?php

// require statements
// Get the image ID
// Build and run the query

// Get the result and handle errors from getting no result
if (mysql_num_rows($result) == 0) {
 handle_error("we couldn't find the requested image.",
 "No image found with an ID of " . $image_id . ".");
}

$image = mysql_fetch_array($result);

?>
This approach is cleaner because it keeps your code moving along once the error
 has been dealt with. (For more on why this sequence is more natural, read the box on
 Sequential Code Is Usually Clearer Code.)
DESIGN TIME: Sequential Code Is Usually Clearer Code
There’s almost always more than one way to accomplish any task in programming.
 In fact, there are usually multiple good ways to get a job done. But, there’s
 usually a clearest way, and that’s what you want to work toward. You want good,
 working code that’s also clear and easy to understand.
Writing clear code becomes harder as your code grows more complex. You often
 have multiple decision points (with if
 statements), error handling, loops, and all sorts of other constructs that take your
 code all over the place. Because of all this complexity, you want to make as much of
 your code as you can sequential. In other words, you want to be
 able to read that code more or less from beginning to end and be able to follow the
 flow.
With that in mind, take a look again at the earlier code from
 show_user.php:
if ($result) {
 $row = mysql_fetch_array($result);

 // Deal with the single result
} else {
 handle_error("there was a problem finding your " .
 "information in our system.",
 "Error locating user with " .
 "ID {$user_id}");
}
This code works, and it’s even pretty solid. But, is it sequential? Well…sort
 of. If there’s a result, get that result, and work with it. If there’s no result,
 deal with errors. But, what’s the real sequence of the
 process?
First, you want to see if there’s a result, and if not, handle the error.
 Then—and only after you’re sure it’s safe to carry on—you want to work with the
 results and continue with the script. Thinking along that line, the else at the end handling the error is out of sequence.
 It’s something you want to deal with before going on to work
 with the row.
That’s why the newer sequence in show_image.php on Get the Results, Get the Image, and Deal with Potential Errors, in which errors are handled
 and then the results are used, is a better solution for your
 code’s readability. Same functionality, but easier to understand and
 maintain.

Tell the Browser What’s Coming

You have the information you want from images, but you can’t
 just toss that to the browser. Well, you could, but the browser
 would become confused. It’s used to dealing with HTML; but raw binary data is
 something else altogether.
There are a couple of things about which you need to apprise the browser:
	What kind of content is coming? This information is passed to the browser
 through a MIME type. It is usually something like text/html
 or text/xml, or in the case of images, image/jpeg or
 image/gif or image/png.

	If that type is binary—as images are—what amount or size of information is
 coming? The browser needs to know so it can figure out when it’s done receiving
 information.

You already have the tools you need to communicate with the browser. Remember this
 line from redirect Is Path-Insensitive?
header("Location: " . HTTP_WWW_ROOT . "scripts/show_error.php?" .
 error_message={$user_error_message}&" .
 system_error_message={$system_error_message}");
This line communicates directly to the browser. It’s sending a header called
 Location to the browser. The value of that header
 is a location, a URL, and the browser knows that when it gets a Location header, go to the URL specified by the header’s
 value.
The PHP header function is the mechanism by
 which you can speak directly to the browser. As for the two pieces of information you
 need to send—the content type and the size of that content—browsers have specific
 headers for both:
	Content-type Use this to alert a browser to what the MIME type is of the content
 you’re about to send.

	Content-length Use this to provide the size (the “length” in bytes) of the
 information you’re about to send.

At this point, you have both of these pieces of information in your
 images table, in the mime_type column and the file_size
 column.
Put all this together, and you have two lines of code to add to
 show_image.php:
<?php

// require statements
// Get the image ID
// Build and run the query
// Get the result and handle errors from getting no result

// Tell the browser what's coming with headers
header('Content-type: ' . $image['mime_type']);
header('Content-length: ' . $image['file_size']);

?>
That’s it. The browser expects a certain type of information (in your case,
 image/jpeg or image/gif in most cases), it
 knows the size of the information and now it just needs the actual information
 itself.
Warning
As with other headers you’ve sent (such as the Location header, which causes a redirect), you must send headers before
 any other output. Therefore, ensure that show_image.php doesn’t
 echo or spit out any HTML before it calls header.

Send the Image Data

All that’s left is one easy step. You need to set up an echo statement to send the image to the browser:
<?php

// require statements
// Get the image ID
// Build and run the query
// Get the result and handle errors from getting no result
// Tell the browser what's coming with headers

echo $image['image_data'];

?>
That’s it. This data is not a string of text; it’s the raw binary information
 pulled from a BLOB column in your images table, sent out bit by
 bit. But the magic isn’t in this line. The magic is you telling the browser that this
 is a certain kind of information and a certain size. Those details let the browser
 know, “This is an image coming. Treat it like one.”

Handling Errors with try and catch

At this point, you’ve knocked out your list of things to do to show an image:
	Get an image ID from the request.

	Build a SELECT query from the images
 table using that image ID.

	Run the SELECT query and get the results.

	Grab what should be the only row from those
 results.

	Inform the browser that it’s about to receive an
 image.

	Tell the browser what kind of image it’s about to
 receive.

	Give the browser the image data.

All done; excellent. And, the script is short, too; clean and easy to follow. That’s
 a win by every account.
You’ve also taken care of most of your error handling:
	Ensure that an image ID was sent to the
 script.

	Ensure that the ID maps to an image in the
 images table.

	Deal with general problems that occur while loading or
 displaying the image data.

The first two are done, but what about those so-called general problems? What
 happens if, for example, there’s an error sending the Content-type header? Or perhaps sending the Content-length header? And what about echoing out the image data? Doesn’t that seem like something that can go
 bad? What if the image data is corrupt, or something happens in pulling data from the
 result set, or if the browser can’t handle a particular type of image that your script
 tries to send?
In all of these cases, you receive an error that’s unaccounted for. And when you
 have these general sort of errors—errors that don’t fit into the black-and-white, “I can
 check ahead of time and make sure there’s no problem” mold—you need a way to deal with
 them.
The rub here is that you can’t pin these things down. You need a way to say, “While
 this entire chunk of code is running, if a general problem happens, do this…” The good
 news is that you have a “do this” in handle_error.
 PHP provides a way to do just this with something called a try/catch block.
The try part of a try/catch block defines a segment (a block) of your error-prone code to
 which you would like to pay special attention. Essentially, you’re saying, “Try this
 code.” The catch path of the try/catch block is run only if an error occurs. If anything goes wrong
 within the try block, the catch part of the block runs.
Not only that, but in the catch, an object is
 handed off: an Exception. This Exception has information about what went wrong, so you can
 report on that—say to a custom function such as handle_error.
To put this into place in show_image.php, first, surround all
 your error-prone code with a try and curly braces,
 like this:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

try {
 if (!isset($_REQUEST['image_id'])) {
 handle_error("No image to load was specified.");
 }

 $image_id = $_REQUEST['image_id'];

 // Build the SELECT statement
 $select_query = sprintf("SELECT * FROM images WHERE image_id = %d",
 $image_id);

 // Run the query
 $result = mysql_query($select_query);

 // Get the result and handle errors from getting no result
 if (mysql_num_rows($result) == 0) {
 handle_error("we couldn't find the requested image.",
 "No image found with an ID of " . $image_id . ".");
 }

 $image = mysql_fetch_array($result);

 // Tell the browser what's coming with headers
 header('Content-type: ' . $image['mime_type']);
 header('Content-length: ' . $image['file_size']);

 echo $image['image_data'];
}
?>
Whenever anything goes wrong, the PHP interpreter will throw out an Exception object, reporting the problem, and then go to the
 catch
 block:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

try {
 // code that may cause an error
} catch (Exception $exc) {
}
?>
You can see that this line almost looks like a function: the catch code takes control,
 and it receives an Exception object. $exc is the variable name of the exception, so you can
 reference that exception if you need to.
Finally, you should do something useful in this catch
 block:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

try {
 // code that may cause an error
} catch (Exception $exc) {
 handle_error("something went wrong loading your image.",
 "Error loading image: " . $exc->getMessage());

}
?>
With this code, anytime there’s an error, handle_error comes to the rescue. As usual, you pass handle_error a friendly string as well as some extra
 information for the programmers who might be looking on. In this case, that message
 comes from exc, and the getMessage method. An object in PHP doesn’t have functions; it has methods.
 You reference a method by using ->, that weird
 arrow character you first met on Using CREATE to Make Tables.
When this code runs, it reports any error that might have occurred and stops PHP
 from trying to continue on in the try
 block.
Here’s what you should have for show_image.php:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

try {
 if (!isset($_REQUEST['image_id'])) {
 handle_error("No image to load was specified.");
 }

 $image_id = $_REQUEST['image_id'];

 // Build the SELECT statement
 $select_query = sprintf("SELECT * FROM images WHERE image_id = %d",
 $image_id);

 // Run the query
 $result = mysql_query($select_query);

 // Get the result and handle errors from getting no result
 if (mysql_num_rows($result) == 0) {
 handle_error("we couldn't find the requested image.",
 "No image found with an ID of " . $image_id . ".");

 }

 $image = mysql_fetch_array($result);

 // Tell the browser what's coming with headers
 header('Content-type: ' . $image['mime_type']);
 header('Content-length: ' . $image['file_size']);

 echo $image['image_data'];
} catch (Exception $exc) {
 handle_error("something went wrong loading your image.",
 "Error loading image: " . $exc->getMessage());
}
?>
All that’s left is some testing to verify that things work.

Test, Test, Always Test

First, start MySQL and find an image that’s been inserted. Make a note of that
 image’s ID.
mysql> select image_id, filename from images;
+----------+---+
| image_id | filename |
+----------+---+
| 2 | 7829_1204001948285_1475710666_1190173_2526636_n.jpg |
| 4 | powell-kicking.png |
+----------+---+
2 rows in set (0.00 sec)
Next, open your browser and type the URL for show_image.php,
 but don’t press Enter; if you do, you should get the error shown in Figure 10-4 because you didn’t supply an
 ID.
[image: It’s not completely necessary, but it’s probably a good idea to even test your errors. In this case, by not specifying an image ID, you’re verifying that errors are handled properly, and in particular that the case where no image ID is provided is handled.]

Figure 10-4. It’s not completely necessary, but it’s probably a good idea to even test your
 errors. In this case, by not specifying an image ID, you’re verifying that errors are
 handled properly, and in particular that the case where no image ID is provided is
 handled.

Now, add the image ID to the URL like this:
 show_image.php?image_id=4. Put that in your browser’s address bar
 (along with the rest of your domain name and path), and you should see something similar
 to Figure 10-5.
[image: This is what all this work is about: getting a browser to show an image. In fact, this is a lot like right-clicking an image on another web page, and selecting View Image. It shows you just the image, without any other text.]

Figure 10-5. This is what all this work is about: getting a browser to show an image. In fact,
 this is a lot like right-clicking an image on another web page, and selecting View
 Image. It shows you just the image, without any other text.

Embedding an Image Is Just Viewing an Image

Finally, it’s back to show_user.php. Remember,
 show_image.php was actually a bit of a diversion. It’s a necessary
 one, but the point isn’t a script that displays an image. Instead, it’s a script that
 displays a user, and that just happens to mean you have to show that user’s image. But,
 you have all the work done now to make this happen, so show_user.php
 is back into the fold, ready for you to piece it all together.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

All You Need Is an Image ID

Your first thought might be to rewrite that SQL query that grabs an entry from
 images based on a user from users:
SELECT u.first_name, u.last_name, i.filename
 FROM users u, images i
 WHERE u.profile_pic_id = i.image_id;
But, do you need to do this? No, because all that
 show_image.php requires is an image ID, and you have that in the users table, in profile_pic_id. You don’t need to do a join on
 users and images.
As a result, when you’re getting the results from your SQL query, you just need to
 grab the profile image ID:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

// Get the user ID of the user to show
// Build the SELECT statement
// Run the query

if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];
 $image_id = $row['profile_pic_id'];

 // Turn $twitter_handle into a URL
} else {
 handle_error("there was a problem finding your information in our system.",
 "Error locating user with ID {$user_id}");
}
?>

<!-- HTML -->
Note
This line of new code replaces the older line with which you grabbed the URL to
 the image, in the version that stored just a path to the image in your
 users table.

A Script Can Be an Image src

With this ID, you’re ready to deal with the missing image. However, what’s about to
 happen might seem a bit odd, so some explanation is in order.
Think about your typical HTML
 element:

What’s really happening here? The tag
 itself informs the browser to expect an image, and the src attribute provides the browser with the location of that image. But,
 that location will just trigger another browser request—in this case, to
 /images/ powell_kicking.jpg. And, what does the browser get from
 that location? A bunch of bits that makes up the image
 powell_kicking.jpg.
Yet, there’s nothing magical about powell_kicking.jpg, or that
 URL. It’s just a location, and as long as that location returns an image to the browser,
 the image is displayed. Thus, it’s perfectly okay to supply anything to the src, as long as that anything returns an image. You might
 supply it, for example, a script that displays an image. You might just hand it
 something like this:

Because show_image.php with a valid ID returns an image, the
 browser happily displays that image in place of the tag in your web page.
From here, it’s a breeze to change your HTML in show_user.php
 to do just this:
<?php
 // Lots of PHP goodness
?>
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="show_image.php?image_id=<?php echo $
image_id; ?>"
 class="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>:
</p>

 <!-- Connect links -->

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
That’s all there is to it! The src attribute of
 your tag is now a link to your script,
 with the correct ID. When you take all of show_user.php together,
 you should have something like this:
<?php

require_once '../scripts/database_connection.php';

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

// Build the SELECT statement
$select_query = sprintf("SELECT * FROM users WHERE user_id = %d",
 $user_id);

// Run the query
$result = mysql_query($select_query);
if ($result) {
 $row = mysql_fetch_array($result);
 $first_name = $row['first_name'];
 $last_name = $row['last_name'];
 $bio = preg_replace("/[\r\n]+/", "</p><p>", $row['bio']);
 $email = $row['email'];
 $facebook_url = $row['facebook_url'];
 $twitter_handle = $row['twitter_handle'];
 $image_id = $row['profile_pic_id'];

 $image_query = sprintf("SELECT * FROM images WHERE image_id = %d",
 $profile_pic_id);
 $image_result = mysql_query($image_query);

 // Turn $twitter_handle into a URL
 $twitter_url = "http://www.twitter.com/" .
 substr($twitter_handle, $position + 1);

} else {
 handle_error("There was a problem finding your " .
 "information in our system.",
 "Error locating user with ID {$user_id}");
}

?>
<html>
 <head>
 <link href="../../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Profile</div>

 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="show_image.php?image_id=<?php echo $image_id; ?>"
 class="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>:
</p>

 ...by emailing them at
 <a href="<?php echo $email; ?>"><?php echo $email; ?>

 ...by
 <a href="<?php echo $facebook_url; ?>">checking them out
 on Facebook
 ...by <a href="<?php echo $twitter_url; ?>">following them
 on Twitter

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
You can see the final result in Figure 10-6.
Nice work! Whoever thought before you closed this chapter that you’d be manually
 loading bits and bytes from a database and displaying them as an image on demand?
[image: This reward has been a long time coming. Just a few hundred lines of code ago, you were referencing an image on a file system. Cool, yes; but loading an image from a database? That’s something else altogether. Now, you have a new script, a new approach, and yet another way to show a user’s smiling face (or perhaps, his cat’s face) in full color.]

Figure 10-6. This reward has been a long time coming. Just a few hundred lines of code ago,
 you were referencing an image on a file system. Cool, yes; but loading an image from a
 database? That’s something else altogether. Now, you have a new script, a new
 approach, and yet another way to show a user’s smiling face (or perhaps, his cat’s
 face) in full color.

FREQUENTLY ASKED QUESTION: Knowledge Is Power
Couldn’t I have learned this code in, say, a quick online
 tutorial?
If you’ve spent much time on the Internet, you know what a force Google is. Spend just a few minutes on its search engine and you’ll find
 at least 20 or 30 tutorials on image uploads, in PHP, for both storing paths to the
 image in your database and for storing the images themselves in your database. Heck, there are even frameworks that
 take care of all this programming for you!
So, why is it worth plowing through some of the trickiest PHP material you’ve run
 across yet, just to do this yourself? There are two important reasons why this sort of
 code—and in fact this exact code—is important not for you to just type into your
 editor, but to actually understand.
First, you can do lots of things using frameworks floating
 around on the Internet. And, truth be told, many of the frameworks, especially when
 you get them from reputable sources, do what your code would do, better, faster, and
 with greater efficiency. But that doesn’t mean it’s not important to understand what’s
 going on. In fact, once you understand how this code works, you’re
 much better prepared to make good choices about which
 frameworks to use, and why those frameworks might be better than writing your
 own…after you’ve written your own and are ready to move to a
 more advanced usage.
Second, as you write more and more web applications, you’ll often find your needs
 are more and more specific. Sure, you need image uploading, but you need it with some
 particular wrinkle or tweak specific to your application. Maybe you only want to
 accept JPGs and not GIFs; or you want to impose a server-side restriction on size,
 rather than relying on the HTML input field that sets a maximum size.
If you have no idea how this sort of code works, you’re not equipped to make
 adjustments like this. Whether it’s your code or someone else’s, you need to be able
 to make those sort of adjustments that personalize a piece of code. That requires
 knowledge, and knowledge comes from trying things out for yourself.

So, Which Approach Is Best?

Here you are, with two totally different approaches to getting users’ images into your
 database (or at least the paths to those images). In fact, you’ve probably spent as much
 time working through this code as any other code you’ve run across in your PHP journey.
 Now, one question begs to be answered: which approach is best?
The most accurate answer to that is, “It depends.” Or maybe, “It’s up to you.” Those
 are frustrating answers and probably completely dissatisfying. That’s because the sort of
 questions you’re getting into—storing images or handling errors or interacting with other
 frameworks and other people’s code—you’re not always going to have clear “right”
 answers.
For example, you have to consider questions like the following: Do you have a
 particularly small file system with which to work? Are you charged based on the space your
 web server’s files take up? Is that charge greater or lesser than the charges you’re
 assessed for the size of your database? Is your database locally accessible and blistering
 fast? Or, is it a slow connection to another machine?
Yet, at the end of the day, you sometimes have to say, “I’m not sure…I just like this
 approach better…or that approach better.” That’s okay. You might just need to pick
 something, try it out, and get moving. There are plenty of cases in which the only real
 wrong solution is to wait around analyzing the options for hours
 (days! weeks!) instead of moving forward.
OK, If You Insist on an Answer…

If you’re not sure, store your images on a file server, and store just the path to
 that image in your database. The fact is, although you can write good code that both
 stores an image in a database and displays that image, it’s a lot tougher to do things
 right. Every time a SELECT runs against your images table and grabs
 the contents of the image_data column, you’re
 selecting the entire size of that image’s data. You might have 100 rows each with an
 image of an average size of 1 MB and 100 MB of image data clogging up your network and
 database traffic. When in doubt, you’ll probably stick with a path in your database,
 like the example in Chapter 9. But now, you have
 a firm handle on just what goes on with images, whether they’re stored in the database
 or not.
FREQUENTLY ASKED QUESTION: Back on the Path
So how do I get my database back in order?
All things being equal, going with images stored on the file system is the better
 solution. (To be clear, though, all things are never equal!)
 Because that’s a good default option, the examples in the rest of this book will
 assume that’s your setup. So how do you get back to that solution?
First, you should have backed up your scripts. If you didn’t, you might want to
 redownload the sample files again from the Missing CD page (www.missingmanuals.com/cds/phpmysqlmm2e), and use the versions that don’t
 store images in the database.
Second, you need to remove the profile_pic_id
 column in your users table. Here’s the SQL to make that
 change:
ALTER TABLE users
 DROP COLUMN profile_pic_id;
You can then delete the images table easily enough:
DROP TABLE images;
That’s it. You’re back in action.

Chapter 11. Listing, Iterating, and Administrating

For quite a while now, you’ve been focusing on some basic details: a user, the user’s
 information, and as an extension of that information, the user’s profile picture. You’ve
 become familiar with PHP and MySQL, figured out not just one but two ways to deal with one
 of the most common PHP issues—image loading—and you’ve managed to keep things looking good
 throughout. These aren’t small accomplishments; they’re very much big ones.
As a user, you can set up a profile and specify some basic information. If you’re an
 administrator, you might want to see how many users are in your system, delete a malicious
 user, or update a picture because it’s not quite socially palatable. You can do all that
 through your MySQL command line, but in the real world of web applications, most
 administrators aren’t keeping a MySQL terminal running in the corner of their
 monitor.
Instead, they have administrative interfaces. They can list all the users in a system;
 check some boxes here and there and mass delete users; and see any user they want, all
 through a nice, clean web interface. You can give your web application the same nice
 features.
When you start thinking about an administrative interface, you run into all sorts of interesting
 problems. You need to use different types of SQL queries. You have to mix together a lot
 more PHP and MySQL with your HTML because you’ll have to list every user from the database,
 one at a time. You have to deal with DELETE statements and a lot more WHERE
 statements.
In this chapter, you’ll take everything you know and push further. There are not many
 radically new techniques to learn, but there are lots of important variations on what you
 already do know. So why wait any longer, or settle for MySQL as your admin interface? Time
 to set up a better, more visual way to keep up with your users.
Note
If you are just salivating for something completely new and different, work through
 this chapter in anticipation of the next. There, you’ll secure all these nice
 administrative pages, and then you will need—and learn—a whole new bag of tricks.

Thinking about What You Need as an Admin

As usual, the first step is to lay out what you need and rough out the broad strokes
 of how things look and interact. You can start with a few bullet points, figure out the
 screens you’re going to need, and throw together some mock-ups, either in HTML or even a
 tool such as Photoshop.
Because your app is straightforward, all you’ll need for the moment is the
 following:
	A form that lists all the users in the system

	A link to each user’s profile page

	The ability to delete a user

	The ability to update or change a user’s information

	A means of giving other users administrative privileges

That last one is going to take quite a bit of work and create some unique headaches
 with which you’ll have to deal, so let’s save it for a bit later (that is, the next
 chapter). But you can get started on the rest, right now.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

(User Interface) Brevity Is Still the Soul of Wit

You could build up a complex system of pages that let you manage all these
 interactions. show_user.php could figure out if you’re an admin and
 selectively show a Delete button; you could build up an entire administrative menu, in
 fact. Then again, sometimes the simple things are the best things. On top of that, the
 Web rewards fewer clicks as a general rule. If you can provide a
 single page that accommodates the major required functionality, you probably should
 keep things to just that single page.
In this case, you keep it concise. You can list users in a simple sequence, turn the
 name of each user into a link to her profile page, and even add a delete button after
 each user. You’ll still have to deal with changing a user’s information, but three items
 on one form is a good start.
Figure 11-1 shows an example of what
 your admin page might look like.
[image: This design isn’t going to win any awards. The delete image needs to be better aligned, the little default bullets look cheesy, and as a whole, this page is in need of some serious help. But you can handle that later. Right now, this mock-up gives you some idea of what you need to get started, and that’s all you need at this stage: a starting point and a blueprint.]

Figure 11-1. This design isn’t going to win any awards. The delete image needs to be better
 aligned, the little default bullets look cheesy, and as a whole, this page is in need
 of some serious help. But you can handle that later. Right now, this mock-up gives you
 some idea of what you need to get started, and that’s all you need at this stage: a
 starting point and a blueprint.

Looking at the HTML for this page is instructive. You can immediately see that
 there’s a lot of duplication, and PHP is good at reducing duplication:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>

 <div id="content">

 Yu Darvish
 (yu@texasrangers.com)

 David Ramirez
 (shane@77mgmt.com)

 Ryan Geyer
 (ryan.geyer@facebook.com)

 Jason Wadley
 (jason.wadley@facebook.com)

 Robert Powell
 (info@rockwallbba.com)

 </div>
 <div id="footer"></div>
 </body>
</html>

Wish Lists Are Good, Too

So far, you’ve gone directly from a mock-up to code. That’s not altogether bad, but
 it does mean that when you bring that mock-up to life in code, anything you want to add
 is a bit of a mystery. Will it work well with the way you’ve built your pages and
 scripts? Or, will you have to do some redesign to get your new ideas into your existing
 framework?
Obviously, you could spend some serious time with your mock-ups. You could get those
 little red Xs just right, and you could nail down spacing; you could basically spend
 significant time in Photoshop. Of course, nothing in HTML and CSS ever looks just like a
 Photoshop mock-up, but you could get things close. However, you don’t want to spend a
 lot of time on the front end before you’ve done any code.
 Decisions you make as you work on your code might affect future decisions and
 functionality.
The answer? Create a short list of features you hope to implement in the future.
 This doesn’t need to be anything fancy; a text document or even something on your iPad
 or iPhone sitting next to your workstation are all fine. Then, add to or update that list as you go and as features and
 functionality change. Hopefully, just having these “next version” features handy will
 help you think clearly about how decisions you make today might help you—or hurt
 you—when you get around to writing more code tomorrow, next week, or next month.
For now, here are just a few things that might be nice to add once the basic
 functionality is in place:
	Improve the user interface, setting up the different “columns” of data in a more
 intuitive fashion and getting those delete “X” buttons to align.

	Add user profile pictures so that you can get a little better graphical view of
 each user in the admin interface.

	Allow for multiple user selection and deletion on one screen.

	Add a confirmation dialog box or pop-up message when a user is selected for
 deletion to avoid accidental deletions.

You can add your own ideas to this list, but this is certainly a good starting
 point. Maybe you’ll code these up, and maybe you won’t, but now at least you can make
 decisions that will help allow for these features, rather than get in the way of
 them.
Note
Sometimes, no matter how well you plan ahead, current features require you to make
 decisions that are going to make wish list features harder down the road. That’s okay.
 It’s much more important you get the things you need to get done
 now completed on time.

Listing All Your Users

First things first: before you can add delete buttons and profile pictures and worry
 about alignment, you need a list of all your users. This isn’t too hard; all you need is a
 simple SQL query. You could do something like this:
SELECT *
 FROM users;
Of course, that’s a bit of a brute force approach. There’s some refinement you can
 make to improve performance, make your code clearer, and generally be a good PHP and MySQL
 citizen. Again, first things first: you should get that query into shape.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

SELECTing What You Need (Now)

The thing about SELECT * is that it retrieves everything in a table. Even worse, if you’re joining tables, it retrieves everything in
 all the tables that are joined. In the case of the
 users table, that’s not a particular problem, because there’s not
 much to it. Here are all the columns you’re going to grab with a SELECT *.
mysql> describe users;
+----------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key |Default | Extra |
+----------------+---------------+------+-----+---------+----------------+
user_id	int(11)	NO	PRI	NULL	auto_increment
first_name	varchar(20)	NO		NULL	
last_name	varchar(30)	NO		NULL	
email	varchar(50)	NO		NULL	
facebook_url	varchar(100)	YES		NULL	
twitter_handle	varchar(20)	YES		NULL	
bio	varchar(1000)	YES		NULL	
user_pic_path	varchar(200)	YES		NULL	
profile_pic_id	int(11)	YES		NULL	
+----------------+---------------+------+-----+---------+----------------+
9 rows in set (0.10 sec)
Note
Depending on how closely you’ve been following along, you might have the user_pic_path column, but not the profile_pic_id. In fact, that’s probably where you want your database to
 be, so you don’t have to worry about a foreign key with an images
 table that you’re no longer using.
You can get rid of that column with this:
ALTER TABLE users
 DROP COLUMN profile_pic_id;

Before moving on, take a look back again at Figure 11-1. You don’t need all this
 information. Realistically, you need first_name,
 last_name, the user_id for a hyperlink to show_user.php, and the
 user’s email. That SELECT * is grabbing several
 unnecessary columns: facebook_url, twitter_handle, bio, and
 user_pic_path.
Why is this a big deal? Every time you select all the entries from the
 users table, you’re getting one more row. And every column in
 that row is space, bandwidth on your network, and resources. Suppose that you have 100
 users, or 1,000 users, or 10,000 users, each with 20-paragraph bios. Just by
 not selecting * (and thereby
 not selecting bio) from
 users, you’re saving a lot of traffic and resource consumption.
 Getting only the information you need saves time and resources, especially over the life
 of your application. (For more detail on deciding what to select, see the box on Look Ahead (But Not Too Far).)
All you need is a few of the columns from users:
SELECT user_id, first_name, last_name, email
 FROM users;
FREQUENTLY ASKED QUESTION: Look Ahead (But Not Too Far)
What if I know I eventually want to use more columns from my table, just
 not in the current incarnation of my admin page. Should I SELECT what I’ll need
 later, too?
Here’s one of those situations for which looking ahead creates a dilemma. It would be nice to add profile pictures
 of users to the admin page, and you already know there’s a column with the path to
 those pictures in users: user_pic_path. Because you’re going to want that down the line, you might
 be tempted to SELECT that column now.
On the one hand, it would be nice to have a SELECT that’s already set up for a
 future feature that you know you’ll want. On the other hand, you’re not implementing
 that feature yet; it’s just that you’d have the data available when you
 do write that code.
In general, you should think about the implications of what you’re doing on future
 features, but focus on writing code that solves current problems,
 not future ones. Think about how slippery a slope this can become. You might start
 selecting the bio because one day you want to excerpt that on the admin page; you
 might go ahead and select social information to build more links to contact the user.
 Before you know it, you’re back to a SELECT * and
 grabbing far more information than you’re actually using.
The good news is that you know it will be easy to add functionality (such as
 grabbing a user’s picture) when the time comes. It’s a simple change to your SELECT.
 So, stop there, and focus on writing code for existing work. Leave future work for the
 future.
If at some point in your programming career you want to start charging for your
 work, you’ll have to start quoting estimates. You’ll have to consider how long (in
 hours or days) will it take you to implement each feature that your customer wants.
 You typically bill at least partly based on these estimates, so this is important
 stuff. If you start calculating based on current and future functionality, those
 estimates stop making much sense. You end up overcharging, or worse, undercharging
 because you’re not doing one thing at a time.

Building a Simple Admin Page

Now that you’ve configured a good SELECT statement, it’s time to create another
 script. Before you do that, though, there’s another important decision to make: what to
 call this script. The name admin.php might seem like a good idea
 because it’s for your admin page, but take a moment to think through the implications of
 that choice.
Look back at the other script names you’ve used:
	create_user.php creates a new user

	show_user.php shows a user for a given user ID

	app_config.php configures your application

	database_connection.php connects to your database

Each of these names describes what the script does. That’s very helpful because it’s
 immediately clear how to use these scripts and even how they might interact. For
 example, if you were looking at these scripts for the first time, you would probably conclude
 that create_user.php creates a user and then likely hands over
 control to show_user.php.
What does this script do? Well, it lists all the users. Using the same naming logic as other scripts,
 show_users.php (note the plural “users” here) is a better, more
 descriptive name. Remember, listing and deleting users isn’t the only administrative function you’re going to have. What if you eventually need to add a form and
 script so that an admin can change a user’s password? You’ll need to come up with a name
 for that script, and admin.php still won’t be specific
 enough.
Start a new file, call it show_users.php, and begin by
 selecting all the users, with just the information you need:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

// Build the SELECT statement
$select_users =
 "SELECT user_id, first_name, last_name, email " .
 " FROM users";

// Run the query
$result = mysql_query($select_users);
?>
Note
Because you’re not inserting anything into the SELECT query, there’s no reason to
 use sprintf. You can just create the query directly
 with a string.

You should also go ahead and set up the shell of the HTML page (the parts that you
 know won’t be generated by your script):
<?php
// Get all the users
?>

<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>

 <div id="content">

 <!-- All the users will go here, in tags. -->

 </div>
 <div id="footer"></div>
 </body>
</html>
There’s not much to see yet, but you can still test to verify that you don’t have
 any errors in your PHP or HTML. Figure 11-2 shows the empty—but errorless—show_users.php in action.
[image: Even when there’s nothing to see on a page, there might be things you don’t want to see. Here, you can ensure that no errors occurred while connecting to your database or executing your SELECT statement. It’s worth a few minutes to test at every stage of development. When you’re creating a new script, test even more.]

Figure 11-2. Even when there’s nothing to see on a page, there might be things you don’t want
 to see. Here, you can ensure that no errors occurred while connecting to your database
 or executing your SELECT statement. It’s worth a few minutes to test at every stage of
 development. When you’re creating a new script, test even more.

Iterating Over Your Array

Now, you need to fill in a list item ()
 for every user. You can build up the entire HTML string by using sprintf again:
$user_row = sprintf(
 "%s %s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 // information to fill in the values);
Note
There’s not a significant advantage here to using sprintf over a string via quotation marks and curly braces with variables
 within those braces. Still, once you start using sprintf, you’ll often find you use it almost everywhere you need to
 insert variables within strings. It becomes a default tool, and it’s quite a handy
 tool at that.

That’s a big string, but ultimately, it should result in something like this:
Jason Wadley
 (jason.wadley@facebook.com
)

All you need to do now is to loop over each result from your query. But
 that’s easy; you’ve done that before with code like this:
while ($row = mysql_fetch_row($result)) {
 echo "{$row[0]}";
}
Then, of course, you can get each piece of data in the returned query with
 this:
while ($row = mysql_fetch_row($result)) {
 echo "{$row['col_name']}";
}
This statement gets a specific value—whatever is associated with col_name—from $row.
If you make that specific to your users table and the columns
 that you know are being returned and then insert that into your
 HTML, you end up with this:
Note
The following HTML refers to a script that’s not yet been written:
 delete_user.php, which is coming up soon. You’re working in
 anticipation of what other work you know you have to complete.

<?php
 // Get all the users
?>
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>

 <div id="content">

 <?php
 while ($user = mysql_fetch_array($result)) {
 $user_row = sprintf(
 "%s %
s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'
],
 $user['email'], $user['email'], $user['user_id']);
 echo $user_row;
 }
 ?>

 </div>
 <div id="footer"></div>
 </body>
</html>
That’s a long sprintf, but take a second look.
 You’re simply putting a lot of things together; there’s nothing here particularly tricky
 or difficult.
POWER USERS’ CLINIC: Your HTML Is Getting Dangerously Cluttered
Something is subtly happening as you write more and more complex PHP. Early on,
 you had scripts that were all PHP and perhaps used echo to throw
 out a few lines of text. Then, you started writing scripts that had a block of PHP at
 the beginning and a bunch of PHP at the end. Then, there were scripts that inserted a
 little PHP here and there into the HTML at the end of the script.
Now, you have show_users.php. There’s a block of PHP, some
 HTML, and then it gets messy. You have PHP that does a good bit of HTML printing. Now,
 you could probably write that same bit of output that churns out HTML and then has
 lots of tiny PHP bits inserted here and there, but it’s basically the same issue. No
 matter how you cut it, you’re going to end up with a real mixture of HTML and
 PHP.
You’ve just found one of the real dangers of PHP: you’re going to end up mixing
 your code and your markup frequently. As you start this sort of mixing, the separation
 between your code and your view—the markup that displays
 something to your user—becomes thin, if not non-existent. It’s easy to just drop a big
 block of PHP in the middle of some HTML, but in this case, easy isn’t good. As much as
 you can, keep the bulk of your PHP at the beginning of your script, and then just
 insert data as you need it.

You’re ready to see how things look. Pull up show_users.php and
 verify that everything is where it belongs. Figure 11-3 shows you what you’re going for.
 Granted, your page is still not a work of art, but it’s a significant step forward.
 Click any of the users, and ensure that you’re taken to the correct
 show_user.php for that user, as shown in Figure 11-4.
[image: One of the things you’ll do over and over in PHP apps is list things. Whether it’s users, groups, or products, listing is just one of those common tasks. This means that you really need to understand how to iterate, or loop, over a list of results from SQL. Master that, and you’ve got the core to about a third of all the common things you’ll ever do in PHP web apps.]

Figure 11-3. One of the things you’ll do over and over in PHP apps is list things. Whether
 it’s users, groups, or products, listing is just one of those common tasks. This means
 that you really need to understand how to iterate, or loop, over a list of results
 from SQL. Master that, and you’ve got the core to about a third of all the common
 things you’ll ever do in PHP web apps.

[image: You’re probably still getting used to scripts calling scripts, which in turn build links to other scripts. Take your time because you’re going to be doing this a lot in your PHP programming career. Believe it or not, there are large-scale PHP apps that don’t use any straight HTML files at all. WordPress, for example, is 100 percent PHP.]

Figure 11-4. You’re probably still getting used to scripts calling scripts, which in turn
 build links to other scripts. Take your time because you’re going to be doing this a
 lot in your PHP programming career. Believe it or not, there are large-scale PHP apps
 that don’t use any straight HTML files at all. WordPress, for example, is 100 percent
 PHP.

Deleting a User

In programming, a new problem often presents new challenges; new techniques that must
 be grasped; new language features that must be absorbed. Those are fun times, but they can
 also be frustrating. Your pace slows to a crawl, and it’s often at least a few hours—and
 sometimes a few days—before it seems like you make real progress. Then, there are times
 that your accumulated pile of tricks, knowledge, and experience stand higher than the new
 task, which is where you are now. This is one of those easy tasks: deleting a
 user.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Surveying the Individual Components

You already know the query for deleting a user from the users
 table:
DELETE FROM users;
Add to this a WHERE clause to target a particular user:
DELETE FROM users

 WHERE user_id = [some_user_id];
Nothing new here. But, how do you get that user_id? Well, you can get it from whatever script calls your script. And
 you already have that in place in show_users.php:
<?php
 while ($user = mysql_fetch_array($result)) {
 $user_row = sprintf(
 "%s %s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'],
 $user['email'], $user['email'], $user['user_id']);
 echo $user_row;
 }
?>
Once this code is converted to HTML, you’ll get this:
...
This should look similar to something you’ve done before, when you sent a user_id to the show_user.php
 script:
// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
Note
This code was in create_user.php (Updating Your User Creation Script). The user was redirected after her
 information was stored in the database.

Once you’ve grabbed a user_id and deleted the
 user, you can just redirect back to your show_users.php script,
 which will re-SELECT from users, but this time, the deleted user
 will simply be gone. Perfect!

Putting It All Together

At this point, it’s just a matter of retyping various bits from your other scripts
 and changing a few things here and there. The result?
 delete_user.php, shown here:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

// Get the user ID of the user to delete
$user_id = $_REQUEST['user_id'];

// Build the DELETE statement
$delete_query = sprintf("DELETE FROM users WHERE user_id = %d",
 $user_id);

// Delete the user from the database
mysql_query($delete_query);

// Redirect to show_users to re-show users (without this deleted one)
header("Location: show_users.php");
exit();
?>
[image: If you have the screen real estate, there’s nothing better than being able to see two pieces of code side by side when you’re cutting, copying, and pasting. You don’t have to remember anything; it’s all right there in front of you. And an editor like TextMate even gives you some nice visual clues like syntax highlighting. Your chances of making a mistake in this setup go way, way down.]

Figure 11-5. If you have the screen real estate, there’s nothing better than being able to see
 two pieces of code side by side when you’re cutting, copying, and pasting. You don’t
 have to remember anything; it’s all right there in front of you. And an editor like
 TextMate even gives you some nice visual clues like syntax highlighting. Your chances
 of making a mistake in this setup go way, way down.

POWER USERS’ CLINIC: Real Programmers Cut and Paste All the Time
In delete_user.php, you’ve written your first script that
 involves almost a complete reuse of code that you’ve already written. But this code
 doesn’t really belong in app_config.php, so it’s not a case where
 you need to abstract out bits of code here and there and put them into utility
 functions, as was the case with handling errors or setting up database
 connections.
At this point, if you’ve read many programming books, you’re ready for a
 tongue-lashing, or at least some mild finger-wagging: don’t cut and paste! Cutting and pasting code is evil; cutting and pasting code will lead to annoying, difficult-to-find
 mistakes; cutting and pasting will cause you to gain 10 pounds and hamper your sex
 life. (Well, maybe not that last one.)
Despite all the warnings, every programmer who spends more than a few hours a day
 writing code knows the shortcut keys to copy, cut, and paste and uses them liberally.
 If they’re making their living coding, they probably know the shortcuts not just on a
 Mac or in Windows, but in emacs and vi and any other editor they might use.
So, why all the dire warnings? It’s true, some of the hardest bugs to track down
 are the ones caused by cutting, copying, and pasting code and the little
 inconsistencies introduced as a result. For example, in one bit of copied code a
 variable might be called $insert_sql and in another
 it’s called $insert_query.
Things go haywire, PHP doesn’t always do a great job reporting what the problem
 is, and you’re left to sort out the mess. Realistically, though, that’s not a copying
 and pasting problem; that’s an inconsistency-in-naming-variables problem.
So, here come the common-sense warnings:
	Know that you’re adding risk when you copy, cut, or paste. Be careful and take
 your time.

	When possible, cut and copy from as few sources as possible. You’re less
 likely to end up with mismatches between variable names and the like.

	Consider having two windows open (see Figure 11-5 on preceding page) or two
 tabs open (Figure 11-6) and moving
 between them, rather than copying, closing a file, opening the new file, and
 pasting. This arrangement makes it easier to compare code; you can simply move
 back and forth between open windows.

	Immediately test your code after you’ve pasted something. That way, you catch potential
 errors quickly and can track them down while you still remember which code you
 just dropped in.

That’s it! Keep those things in mind, and don’t be afraid to cut and paste.
 They’re important tools in your arsenal.

[image: If you’re pressed for screen space or just like things a little more compact, using tabs in your editor (Terminal on the Mac is shown here) is a poor man’s version of keeping two windows open. You still have to keep a bit more context in your head, but it’s far better than closing one file, opening another, and so on. You can copy in one window, tab to the second window, and then paste.]

Figure 11-6. If you’re pressed for screen space or just like things a little more compact,
 using tabs in your editor (Terminal on the Mac is shown here) is a poor man’s version
 of keeping two windows open. You still have to keep a bit more context in your head,
 but it’s far better than closing one file, opening another, and so on. You can copy in
 one window, tab to the second window, and then paste.

So try it out. You already have show_users.php with the correct
 links; open it, and pick an unlucky user to delete. Click the “X” icon, and you should
 get back something like Figure 11-7—which
 looks just like Figure 11-3, minus poor
 David Ramirez. (Don’t worry, he’ll write another heart-breaking sad song about his deletion if he finds out.)
[image: Poof! The deleted user is no more. And, with show_users.php, you don’t need to resort to digging out your MySQL command-line tool. It shows, clearly, that you’re one man down.]

Figure 11-7. Poof! The deleted user is no more. And, with show_users.php, you don’t need to
 resort to digging out your MySQL command-line tool. It shows, clearly, that you’re one
 man down.

Deleting Users Shouldn’t Be Magical

The functionality that you have in place for deleting users is perfect. There are no
 hitches, no pauses, nothing but a quick request to delete_user.php,
 a deletion in your database, and a return to show_users.php. And
 that perfection—that minimal pause and nothing else—is exactly why you’re not at all
 done with deleting users.
Deletion is a big deal. You’re trashing information, never to be heard from again.
 What’s really concerning is that you’re doing it based on one mouse click, with no
 further warning or second thought. That’s a problem.
In fact, think about your own web usage. Have you ever managed to delete anything
 with one click? Most of the time, you’re inundated by pop-up windows asking, “Are you
 sure?” and “You’ll never get to use this file again” and even “Be careful! Your
 information will be gone forever!” All these warnings are a nuisance, but they’re there
 to prevent you from accidentally deleting something that you can never get back.
With that in mind, you need to add a little more to the deletion process. You must
 give the user a chance to rethink her decision before you pass things on to
 delete_user. php. So, it’s back to
 show_users.php.
Start with a Little Javascript

When it comes to things like confirmation boxes, you’re firmly in the world of browsers and clients.
 Although you could build some sort of confirmation in PHP, it wouldn’t be pretty. You’d essentially need to send
 a request to the server for deletion; the server would run a PHP script that creates a
 new HTML form and asks for confirmation; the browser would return that to the user,
 and the user would click “OK.” Then, another request would go to the browser, at which
 point you’d finally get to perform deletion.
Even if you used Ajax to avoid lots of page refreshing, this is way too much
 server interaction for a simple confirmation. That’s especially true because
 JavaScript offers you a built-in, all-client means of doing this by using confirm.
Open show_users.php and add some JavaScript:
<?php

// SELECT all users
?>

<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript">
 function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user?" +
 "\nThere's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
 }
 </script>
 </head>
 <body>
 <!-- HTML body -->
 </body>
</html>
In a nutshell, you’re simply creating a function that asks for user confirmation
 before passing control over to delete_user.php. There’s a little
 extra work involved here because the user_id has to
 be passed to this function, which then shuffles it along to
 delete_user.php by using the JavaScript version of a redirect:
 window.location.
Note
If this code freaks you out a bit, or if you’re rusty on your JavaScript, check out JavaScript: The Missing
 Manual by David Sawyer McFarland (O’Reilly Media). It’s a really solid
 JavaScript book that will break this and a lot more JavaScript down. In fact, it
 might be the perfect complement to a PHP book: it covers what you need on the client
 side to let your server-side scripts run smoothly and without error.
For now, if you feel unsettled by the use of JavaScript in this page—rather than
 it being referenced through an external JavaScript file—read the box on In or Out JavaScript.

FREQUENTLY ASKED QUESTION: In or Out JavaScript
Isn’t it evil not to use an external file for JavaScript functions
 ?
Almost as common as the scolding you’ll get for copying and pasting is the
 admonition to never, ever use JavaScript in the head of your page such as this code
 from Start with a Little Javascript:
<head>
 <link href="../css/phpMM.css"
 rel="stylesheet" type="text/css"
/>
 <script type="text/javascript">
 function delete_user(user_id) {
// code for confirmation
// and redirection
 }
 </script>
 </head>
In fact, most books deal with the problem a bit like this:
	Learn how to write a little JavaScript.

	Learn how to write some cool JavaScript.

	Now that you’re “advanced,” set up that JavaScript as external files.

	Teach all your beginner JavaScript friends to do the same.

Sounds reasonable, but take a look at the source for pages like Amazon.com,
 Google, or Apple. Every one of these Web giants has <script> tags that have code in the head of the page! Surely, the high-paid folks at powerhouses such as
 these know what they’re doing. The truth is that there are plenty of times when you
 want some well-placed JavaScript in the head of your page. Most notably, this is
 true for JavaScript that is specific to that page on which you’re
 working.
If you have utility functions, such as creating generic dialogs in jQuery (stay
 tuned for more on that) or handling validation for certain data types, put those
 things in a script file and reference it in all your pages. That’s the same sort of
 thing that you’ve done with a site-wide CSS file as well as on the server, with
 app_config.php and
 database_connection.php.
But, delete_user, the JavaScript function you
 just wrote, is only useful for this one page. It doesn’t belong in a site-wide
 utility script, and only adds to the clutter if that’s where you put it. You could
 create external scripts for every page on your site, but that would be way too much
 of a mess.
That’s not to say you should have lots of JavaScript littering your page, stuck
 between <p> elements and in the crevices
 between adjacent <td> tags. Just don’t be
 scared to write some JavaScript in your page. Just like copy-and-paste, it’s a tool
 for you to use wisely and judiciously.

Finish with a Change in Linking

You have your JavaScript in place, and now it’s
 time for the big finish: just change the link that previously went directly to
 delete_user.php in your page to call your new JavaScript function:
<?php
 while ($user = mysql_fetch_array($result)) {
 $user_row = sprintf(
 "%s %s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'],
 $user['email'], $user['email'], $user['user_id']);
 echo $user_row;
 }
?>
Try it out, and you’ll finally get a handy warning before you push Master Jason
 Wadley down the deletion black hole, as shown in Figure 11-8.
[image: The confirm function is right up there with alert as part of the grab bag of user intervention dialogs you get from JavaScript. In this case, it gives the user that extra opportunity to think about what he’s doing.]

Figure 11-8. The confirm function is right up there with alert as part of the grab bag of
 user intervention dialogs you get from JavaScript. In this case, it gives the user
 that extra opportunity to think about what he’s doing.

Talking Back to Your Users

The addition of an alert confirmation box goes a long way on the front end of
 deletion. It lets a user think twice about removing data and provides a mechanism to
 cancel the operation if she’s dissatisfied or concerned. Yet, that’s only half of the
 equation; not only do you need to confirm that deletion is indeed the intent, but then you
 need to verify that deletion was in fact accomplished.
Obviously, for you, the programmer, you’ve written code, you’ve run the code, and you
 might have even gone back to the database and done your own manual SELECT to ensure that
 results were deleted in delete_user.php. And, as expected, the user
 is gone from show_users.php.
For a user, that’s not enough. Just as she will often want to confirm a deletion
 before the deletion goes through, she usually wants to know—beyond
 any shadow of doubt—that the deletion has gone through. This means
 that at the end of the process, she gets some sort of message that confirms what just
 transpired. Your flow should look something like this:
	A user selects another user to delete by clicking the red
 “X” in show_users.php next to that user.

	The user confirms that the deletion is
 intended.

	delete_user.php handles the deletion of
 the selected user.

	A message something like, “Yup, they’re gone, gone, gone.”
 is supplied to the user.

	show_users.php displays the users list
 again, minus the deletion.

It’s step 4 here that’s new and requires a little thought.
redirect Has Some Limitations

Just looking at this flow, it seems like the natural place to handle
 confirmation—and display a post-deletion confirmation pop-up window—is within
 delete_user.php. That’s the script that handles deletion, and it
 also comes before show_users.php lists all the users again.
For example, you might present a status message or display an alert pop-up window
 once deletion is complete. But, take a look at the last line from
 delete_user.php:
header("Location: show_users.php");
Redirection in PHP is done by using HTTP headers, which means that this line sends
 the browser a raw Location header. The browser gets
 the Location header and moves the HTTP response to
 the URL specified. No big deal, and it works great.
But (and this is a big but), header can only be
 called before PHP sends any output. You can’t use echo or HTML, blank lines, or anything
 else in a file. The browser can only get the headers, and then it shifts the request. So
 in reality, you can’t send anything before calling header, and once you’ve called header,
 you’re not supposed to send anything after that. Of course, bugs are made when things
 that shouldn’t happen do happen, and that’s
 why every call to a Location header is followed by
 that little exit() statement to ensure that nothing
 else tries to execute.
In other words, a script like delete_user.php can do work on
 the database and other PHP objects, but it can’t do any output. It just deletes a user
 and then redirects output to a view script, like show_users.php.
 Therefore, you have to figure out a way to interact with
 show_users.php and let that script handle letting the user know
 that a deletion’s gone down.
DESIGN TIME: Model-View-Controller (Well, Sort Of…)
You’re starting to see an important web application pattern. This pattern is
 called the MVC pattern, which stands for “model-view-controller.” In this pattern,
 you have three categories of operation: models, views, and controllers. In a strict MVC pattern, these three categories never
 overlap.
First, there’s the model, which interacts with the database.
 The model represents—or models—your app’s information. In your
 application, a script like delete_user.php uses MySQL directly.
 In a more formal MVC approach, you’d have PHP objects like
 User.php with methods such as delete() or remove(). So you might
 write code like this:
User user_to_delete = User.find_by_
id($user_id);

user_to_delete.delete();
This example is a little beyond what you’re doing. Still, you can see that the
 model part of MVC is what interacts with the database. For your code, you don’t have a
 clear model, but you’re doing plenty of database interaction.
Second, there’s the view; this is what displays the
 information to the user. In your app, scripts like show_user.php
 and show_users.php are, to some degree, views. They’re full of
 HTML and information. The reason they’re only views “to some degree” is that they also
 share some controller behavior.
Controllers are the third category in an MVC architecture. A
 controller directs traffic. It uses the model to get information from the database or
 data store, and it passes that information along to view classes or scripts that
 display that information. Your delete_user.php script is a lot
 like a controller. Even though it directly accesses the database rather than using a
 model, it does something and then hands off control to a view,
 show_users.php.
In most PHP web applications, you won’t have a strict MVC setup. In fact, it’s
 quite a lot of work to go full-on MVC with PHP. You usually have a more hybrid
 approach, where controller-oriented scripts like delete_user.php
 hand off information to view-oriented scripts like
 show_users.php. But delete_user. php also
 has aspects of a model, in that it talks directly to the database. Additionally,
 show_users.php has aspects of a controller and a model, because
 it figures out what to show, and it grabs information directly from the
 database.
So, if you can’t do pure MVC in PHP, why present this entire box about it? Two
 good reasons. First, you’ll hear about MVC all the time, and you’ll be a lot more
 popular at the geeky water cooler or your buddy’s Lord of the
 Rings costume party if you can relate what you’re doing on the Web to MVC
 and what your friends might be doing. And second (and possibly a bit more useful), if
 you can identify what your scripts do, you’ll often be able to figure out more quickly
 how to do those things.
In the case of delete_user.php, you see that it’s mostly a
 controller. Thus, makes perfect sense to hand some information to a script that’s
 mostly a view, like show_users.php, and let that script handle
 display of that information to the user.

So, delete_user.php needs to provide a message (because it
 knows that deletion has occurred) but it must let something else handle the actual
 display. Therefore, you can add a message to your redirect. Go ahead and connect this
 new message to a new request parameter, success_message, at the end of delete_user.php:
<?php

// require code
// Get the user ID of the user to delete
// Build the DELETE statement
// Delete the user from the database

// Redirect to show_users to re-show users (without this deleted one)
$msg = "The user you specified has been deleted.";
header("Location: show_users.php?success_message={$msg}");
exit();
?>
Note
If you’re already thinking that it might be nice to have an error_message parameter, too, you’re on the right
 track.

Even before you go back to working on your view code in
 show_users.php, you can test this out. Visit
 show_users.php, delete a user, and then look closely at the
 browser bar when you’re taken back to show_users.php. You should
 see the success_message request parameter with the
 value set to your message, as shown in Figure 11-9.
[image: The message that delete_user.php appended to the URL sent to the browser contains a handy value: the exact text you’d want to see in a nice alert or status message. That’s perfect; now you can have your view code handle displaying that message to your user, and you’re in great shape.]

Figure 11-9. The message that delete_user.php appended to the URL sent to the browser contains
 a handy value: the exact text you’d want to see in a nice alert or status message.
 That’s perfect; now you can have your view code handle displaying that message to your
 user, and you’re in great shape.

JavaScript alert Redux

Here you are, back to show_users.php, and you have an incoming
 message.
Note
Actually, you potentially have an incoming message. When
 show_users.php is called normally, it does not have a message. It’s only when it’s the target of a
 redirect after deletion (or some similar operation) that it has information coming via
 request parameters.

What needs to happen when that message is received? Probably the easiest option is
 to go back to JavaScript and use an alert dialog box. This is the equivalent of the
 confirmation dialog box you used before deletion (Start with a Little Javascript), so it’s a nice symmetry.
An All-Javascript Approach

One approach would be to write a JavaScript function that you can add to show_users.php.
 JavaScript doesn’t directly support reading request parameters, so you’d have to do a
 little parsing to get at them. You’d need something that uses regular expressions to
 pick apart the window.location.href property, which
 is the URL the browser has:
function get_request_param_value(param_name) {
 param_name = param_name.replace(/[\[]/,"\\\[").replace(/[\]]/,"\\\]");
 var regexS = "[\\?&]" + param_name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(unescape(window.location.href));
 if (results == null)
 return "";
 else
 return results[1];
}
Note
This code might not make much sense to you right now, and that’s OK. But if you
 take a few minutes to work through it line by line, you’ll step up your JavaScript
 game significantly. It also demonstrates once again that although regular
 expressions can look weird at first, they’re an essential part of your programming
 toolkit. And just think, every bit of what you learned about regular expressions in
 this PHP book translates over to JavaScript.

You could then call this function in the following way to get at the success_message parameter (probably in another JavaScript
 function):
msg = get_request_param_value("success_message");
if (msg.length > 0) {
 // let the user know
}
Then (after uncrossing your eyes from all the forward and backslashes in get_request_param_value), you could issue an alert:
msg = get_request_param_value("success_message")
if (msg.length > 0) {
 alert(msg);
}
There’s certainly nothing wrong with that approach. It works fine, and you’ll see
 something similar to the message shown in Figure 11-10 if you add this code in to the
 head section between script tags in show_users.php.
[image: The gray background you see here is an artifact of where alert is called. You’d probably want to improve the user experience further by not running the alert until the document loads. You can use the window.onload property, the onload event on body, or jQuery’s various ways to run code on document load and achieve a much better user experience.]

Figure 11-10. The gray background you see here is an artifact of where alert is called. You’d
 probably want to improve the user experience further by not running the alert until
 the document loads. You can use the window.onload property, the onload event on
 body, or jQuery’s various ways to run code on document load and achieve a much
 better user experience.

Before you start wondering how to piece all this together, though, there might
 just be a better way.

Your PHP Controls your Output

The all-JavaScript approach discussed in the previous section makes a subtle but
 important assumption: the page—the HTML, CSS, and JavaScript delivered to the user via
 his browser—has to make all the decisions about what to do, what to show, and how to
 act. This means that there’s JavaScript that must figure out whether the success_message parameter was passed along, JavaScript to
 parse the request URL and find the value of that parameter, and JavaScript that
 conditionally displays an alert.
Here’s the thing: show_users.php isn’t limited in the same
 way that the page it outputs is. Just because the HTML and JavaScript that’s
 ultimately output is unaware of whether there’s a request parameter doesn’t mean that
 your script that generates that output is unaware. In fact, it’s
 simple to get a request parameter in show_users.php; you’ve done
 it tons of times:
$msg = $_REQUEST['success_message'];
In that one line, you’ve eliminated all of this JavaScript:
function get_request_param_value(param_name) {
 param_name = param_name.replace(/[\[]/,"\\\[").replace(/[\]]/,"\\\]");
 var regexS = "[\\?&]" + param_name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(unescape(window.location.href));
 if (results == null)
 return "";
 else
 return results[1];
}
That’s a win by any measure of accounting.
Note
On the other hand, it’s not a bad idea to add a function like get_request_param_value
 to your basic JavaScript utilities and have it around for situations in which you
 don’t have PHP generating your output.

Here’s something big to sink your teeth into: you’re in control of what goes to
 the client. Your script can make decisions about what to output. As a result, in your
 PHP, you can do something like this:
// See if there's a message to display
if (isset($_REQUEST['success_message'])) {
 $msg = $_REQUEST['success_message'];
}
That’s all taking place on the server, before you’ve done any output. Then, if you
 have a message to show—and only if you have a message to show—you can simply add a few
 lines of JavaScript into your HTML output:
<script type="text/javascript">
 function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user?" +
 "\nThere's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
 }

<?php if (isset($msg)) { ?>
 window.onload = function() {
 alert("<?php echo $msg ?>");
 }
<?php } ?>
</script>
Put all this together, and here’s the new, improved
 show_users.php:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

// Build the SELECT statement
$select_users =
 "SELECT user_id, first_name, last_name, email " .
 " FROM users";

// Run the query
$result = mysql_query($select_users);

// See if there's a message to display
if (isset($_REQUEST['success_message'])) {
 $msg = $_REQUEST['success_message'];
}
?>

<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript">
 function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user?" +
 "\nThere's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
 }

<?php if (isset($msg)) { ?>
 window.onload = function() {
 alert("<?php echo $msg ?>");
 }
<?php } ?>
 </script>
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>

 <div id="content">

 <?php
 while ($user = mysql_fetch_array($result)) {
 $user_row = sprintf(
 "%s %s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'],
 $user['email'], $user['email'], $user['user_id']);
 echo $user_row;
 }
 ?>

 </div>
 <div id="footer"></div>
 </body>
</html>
Note
At this point, it might be getting hard to keep up with all the changes to
 show_user.php and show_users.php as well
 as app_config.php. If you find yourself getting some weird
 errors or unusual results, you might want to hop over to www.missingmanuals.com/cds/phpmysqlmm2e and download this chapter’s
 examples. That will get you a clean, current set of files that are up to date, and
 you can focus on new changes, rather than old debugging.

What you’ve done here is a big accomplishment in PHP programming. Instead of
 relying on your output to make complicated decisions, you’re making most of the
 decisions in your PHP and then tailoring your output as a result. Thus, one
 script—depending on the decisions it makes—might push out two, three, four, or even
 more variations of the same output.
First, then, take your script out for a test drive. If you still have a browser up
 with a URL like
 yellowtagmedia.com/phpMM/ch11/show_users.php?success_message=The%20
 user%20you%20specified%20has%20been%20deleted, just reload that page to
 get the new changes to show_users.php. You should see a nice
 pop-up window with the message passed through the URL, as shown in Figure 11-11.
[image: With the code on page 358, the output is fixed, it shows an alert message, and that alert is exactly equal to the specific message passed to this script, this one time it’s being executed. Of course, that’s all fixed because your PHP isn’t fixed. It is running each time and creating slightly different versions of the output. You’re now accomplishing truly dynamic programming.]

Figure 11-11. With the code on page 358, the output is fixed, it shows an alert message, and
 that alert is exactly equal to the specific message passed to this script, this one
 time it’s being executed. Of course, that’s all fixed because your PHP isn’t fixed.
 It is running each time and creating slightly different versions of the output.
 You’re now accomplishing truly dynamic programming.

Take a look at this page’s source code to see what’s so cool about it. Figure 11-12 shows that there’s a hard-coded
 alert for the message passed along. Change the message in the request URL, and you’ll
 see the HTML change to match.
[image: You’d never know that this source is perfectly matched to this particular message. It simply looks like there’s an alert that triggers every time you access show_users.php. However, that’s not true; what is true is that every time you access show_users.php, you actually get a different variant of this basic HTML page.]

Figure 11-12. You’d never know that this source is perfectly matched to this particular
 message. It simply looks like there’s an alert that triggers every time you access
 show_users.php. However, that’s not true; what is true is that every time you access
 show_users.php, you actually get a different variant of this basic HTML
 page.

Now, delete all of the request parameters from show_users.php
 in your URL bar and then go to the page again. The alert box should go away, and so
 should the JavaScript in the HTML page that show_users.php
 generates. Figure 11-13 shows the
 resulting source code: the window.onload
 function has vanished.
[image: Here’s something to think about with your current approach: how does bookmarking work? Because the request parameter for the message is part of the URL (or in this case, not part of the URL), the browser’s bookmarking feature will attach a certain variant of that message to the bookmarked URL. This means that you’ve got to think through what would happen if, say, someone bookmarks this page on a pass when a message was shown. Every time he pulls up the bookmark, he would see a message again…and an inaccurate one at that.]

Figure 11-13. Here’s something to think about with your current approach: how does
 bookmarking work? Because the request parameter for the message is part of the URL
 (or in this case, not part of the URL), the browser’s bookmarking feature will
 attach a certain variant of that message to the bookmarked URL. This means that
 you’ve got to think through what would happen if, say, someone bookmarks this page
 on a pass when a message was shown. Every time he pulls up the bookmark, he would
 see a message again…and an inaccurate one at that.

alert Is Interruptive

You have a nice bookend of notifications now. A confirmation box requires a
 user’s OK before deleting a user, and another alert informs her once that
 deletion’s done. So, from a functional point of view, you’re ready to move on.
This is one of those moments when you have to move a bit beyond web programming and
 start thinking about web design, or better, web usability.
 Usability is just a high-end way of saying, “What’s the user experience like?”
Note
You’ll also often hear terms like UX (for user experience) and UI (user interface) in this discussion. To some degree, the two terms
 aren’t that different, although a UX designer might get ruffled if you confused her
 with a UI designer. Still, the basic goal is the same: create a natural, compelling
 online experience for a user. You’re taking into account not just functionality, but
 aesthetics, accessibility, and overall feel of a website or web application.

With regard to deleting a user deleting a user, you’re doing well. Although you
 might use something like jQuery to present a better looking dialog box, you’re doing all
 the right things: interrupting the user to ensure that she truly wants to delete a user, and
 you’re requiring a double-action (click once to select delete; and click once more to
 ensure that’s the intention).
Note
If you’d like a prettier jQuery-style dialog and confirmation box, check out jQuery UI and its dialog boxes at
 www.jqueryui.com/demos/dialog. In particular, look at the option for a
 Modal confirmation window. It’ll take you 10 minutes to
 download and install jQuery UI and another 5 to move from your confirm call to a call to the jQuery confirmation dialog.
 But those 15 minutes are worth it.

What about after deletion? Yes, you need to let the user know
 that the deletion has occurred. But, do you need to effectively shut them down until she
 clicks OK? Ideally, you’d let her know about deletion, but make it a little less
 interruptive.
And that’s a general principle for web usability: if you’re going to make your user
 take her hands off the keyboard and click a button, make sure it’s worth her while. In
 this case, there’s a risk you’re being annoying. “Why do I have to click again? I just
 clicked twice to delete the user in the first place!”

Standardizing on Messaging

There’s another issue to consider: Is a success message the only type of message you
 might need to display? What if you have an error that doesn’t rise to the level of
 requiring handle_error? What if you need a status
 message, perhaps something like “Please log in before attempting to delete a
 user.”
Note
Logging in before deleting a user? Hmmm…that does sound like a good idea. You’ll get
 to that in Chapter 13.

These are all similar cases: you want to present a message to the user, but you don’t
 want to interrupt his flow. You want to add content to the page, but JavaScript’s alert and confirm aren’t
 the best choices.
Additionally, you’d ideally make this a generic functionality. You don’t want every
 script to have to output 5 or 10 lines of code. It would be nice to have your output do
 something like this:
<body>
 <?php display_messages($_REQUEST); ?>

 <!-- All the rest of the HTML output you want -->
</body>
Then, this function would simply “take care of things,” whatever that ends up being.
 For example, for a success message, you might get a banner message across the top of a
 page, as shown in Figure 11-14.
[image: This page won’t win any design awards, but that’s what you have designers for. They take rough ideas from programmers and give them subtle style and grace. The advancement here is in how non-intrusive this message is. It communicates with the user without making him click or confirm anything.]

Figure 11-14. This page won’t win any design awards, but that’s what you have designers for. They
 take rough ideas from programmers and give them subtle style and grace. The advancement
 here is in how non-intrusive this message is. It communicates with the user without
 making him click or confirm anything.

The HTML for success messages is simple:
<div id="messages">
 <div class="success">
 <p>The user you specified has been deleted.</p>
 </div>
</div>
Errors could be shown in similar fashion, à la Figure 11-15.
[image: Here’s an error message that certainly doesn’t cross the threshold of needing its own error page. It lets the user know something he’ll probably need to correct. You could see a similar style error used for validation—although most good JavaScript validation frameworks will take care of that for you. Still, it’s nice to know that you now have multiple ways to report errors, depending upon the severity of the individual error.]

Figure 11-15. Here’s an error message that certainly doesn’t cross the threshold of needing its
 own error page. It lets the user know something he’ll probably need to correct. You
 could see a similar style error used for validation—although most good JavaScript
 validation frameworks will take care of that for you. Still, it’s nice to know that you
 now have multiple ways to report errors, depending upon the severity of the individual
 error.

Note
You might have noticed that these rough mock-ups are done with
 create_user.html and show_users.php. Those
 were simply the handiest pieces of HTML and PHP when it came to trying out a look for
 these messages. It’s not relevant what page you use for testing these things out.
 Remember, the goal is to have every page automatically display, or not display, messages
 sent to it.

Here’s the HTML for the error. It’s identical to the success message with a different
 class on the inner <div>:
<div id="messages">
 <div class="error">
 <p>The name you entered is already registered.</p>
 </div>
</div>
Building a New Utility Function for Display

Once again, it’s back to thinking generic. Rather than worrying about the specific
 success message passed into show_users.php by
 delete_user.php, what’s the more general form of a success
 message?
It’s something like this:
<div id="messages">
 <div class="success">
 <p>$msg</p>
 </div>
</div>
That’s not real PHP, of course; you’d really want to do this:
<div id="messages">
 <div class="success">
 <p><?php echo $msg; ?></p>
 </div>
</div>
That’s easy! You just need a new function that takes in the message:
function display_success_message($msg) {
 echo "<div id='messages'>\n";
 echo " <div class='success'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
 echo "</div>\n\n";
}
FREQUENTLY ASKED QUESTION: The Right to Readability
What about sprintf? And, why the
 \n’s?
There are about as many ways to write a function like display_success_message
 as there are letters in the alphabet. You could use sprintf to insert the message. You could combine the multiple echo calls into a single line (using echo or sprintf). You
 could output raw HTML and interrupt that HTML with PHP by using <?php and ?>. In
 each case, your solution would be just fine.
The \n’s are another curiosity. They’re just to
 make the viewed source a little cleaner. Without them, the output would look something
 like this:
<div id='messages'> <div class='success'>
<p>{$msg}</p> </div></div>
It would be just one big line of HTML. With the line feeds, the user sees nothing
 different. HTML doesn’t care a bit about those feeds. But if you viewed the source,
 you’d see a much nicer bit of HTML:
<div id='messages'>
 <div class='success'>
 <p>{$msg}</p>
 </div>
</div>
Are the \n’s necessary? Not at all. Do they
 help the user? Nope. But, they definitely do make debugging and readability a bit
 simpler. So, should you use them or not, and do they go with echo, or sprintf, or both?
You’re at the place in your PHP journey where style and personal preference are
 more important than right and wrong. You can use sprintf everywhere, for queries and output and everything in between. You
 can use echo for output and sprintf for queries. Or, more likely, you’ll use whatever
 comes to mind when you’re writing the particular script you’re writing.
The same is true with \n and line feeds.
 Sometimes you’ll work hard so that the HTML output is nice and clean and easy to read.
 Other times, you’ll realize that you could spend hours trying to get things to look
 good for that rare person who Views Source. (Then again, you’re that rare person, so
 sometimes the effort makes perfect sense.)

As it stands, this function works well. How about error messages? You could use
 something similar:
function display_error_message($msg) {
 echo "<div id='messages'>\n";
 echo " <div class=error>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
 echo "</div>\n\n";
}
Look closely: both of these are outputting the messages <div>. That’s no good. You need something that can handle
 both error types. Then, that sort of “parent” function can pass
 the individual messages to smaller functions, each of which handles success and
 errors:
function display_messages($success_msg, $error_msg) {
 echo "<div id='messages'>\n";
 display_success_message($success_msg);
 display_error_message($error_msg);
 echo "</div>\n\n";
}

function display_success_message($msg) {
 echo " <div class='success'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}

function display_error_message($msg) {
 echo " <div class='error'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}
That looks better. But again, look closely. Does it seem like you might be seeing
 double?

Duplicate Code Is a Problem Waiting to Happen

The problem with the code you just completed is a bit subtle, which is why it can be
 so nasty. Look how close these two functions are to each other:
function display_success_message($msg) {
 echo " <div class='success'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}

function display_error_message($msg) {
 echo " <div class='error'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}
That’s a lot of identical code all for just one change—in this
 case, the class of the <div> in each. Anytime
 you see code that’s this similar, you should immediately be thinking “Uh oh. That’s
 fragile code.” That’s something you want to avoid. For a much more stern lecture on why
 this is important, see the box on Writing DRY Code.
POWER USERS’ CLINIC: Writing DRY Code
As you progress further into programming, you’ll hear people talking about “dry
 code,” or “drying up your code.” Both of these expressions are using DRY as an
 acronym, which stands for “Don’t Repeat Yourself.” So far in this book, you’ve been
 doing a good job of that. Remember back in Chapter 5
 (Replacing Hand-Typed Values with Variables) when you moved some
 basic application-wide constants into app_config.php? You avoided
 repeating those constants (or yourself) in multiple files. You put them in a single
 place, and then all your other scripts referenced that single place.
The same was true of database_connection.php (Connecting to Your Database (Again)). Again, instead of repeating your
 connection code over and over, you pulled that code out of multiple places and located
 it in a single place. That’s DRYing up your code: making it DRY, and removing
 duplicate code whenever and wherever possible.
With display_success_message and display_error_message, you’re at a more microscopic level.
 It’s just three lines of code, right? Still, if you can write those three lines of
 code in one place and reference them in two, you’ve improved your overall project.
 You’ve ensured that if you need to change how messages are output, you have just one
 place to investigate rather than two. This is good programming, it results in DRY
 code, and all your peers will think you’re cool. (Well, maybe not that last bit, but
 you will be cool…even if they don’t realize it.)

Because there’s so much repeated code, you can consolidate these functions:
function display_message($msg, $msg_type) {
 echo " <div class='{$msg_type}'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}
That’s much better. It’s clear, succinct, and very DRY. In fact, you can take things
 even further and define the allowed message types as constants to make your code even
 neater:
define("SUCCESS_MESSAGE", "success");
define("ERROR_MESSAGE", "error");

function display_messages($success_msg, $error_msg) {
 echo "<div id='messages'>\n";
 display_message($success_msg, SUCCESS_MESSAGE);
 display_message($error_msg, ERROR_MESSAGE);
 echo "</div>\n\n";
}

function display_message($msg, $msg_type) {
 echo " <div class='{$msg_type}'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}
Using this, you don’t have to remember whether the message type for an error was
 “ERROR” or “error” or “errors” or something else altogether. The constant handles that
 mapping for you.
You can start to put this all together. Create a new script and call it
 view.php in your scripts/ directory,
 alongside app_config.php and
 database_connection.php. Then, drop in all of the following code,
 along with a require_once for the obligatory
 app_config.php:
<?php

require_once 'app_config.php';

define("SUCCESS_MESSAGE", "success");
define("ERROR_MESSAGE", "error");

function display_messages($success_msg, $error_msg) {
 echo "<div id='messages'>\n";
 display_message($success_msg, SUCCESS_MESSAGE);
 display_message($error_msg, ERROR_MESSAGE);
 echo "</div>\n\n";
}

function display_message($msg, $msg_type) {
 echo " <div class='{$msg_type}'>\n";
 echo " <p>{$msg}</p>\n";
 echo " </div>\n";
}

?>
Note
You’re not actually using anything from app_config.php in
 view.php. Still, because that’s where all your core information
 resides, it’s probably a good bet that you’ll need information from it sooner or
 later. Might as well require_once it now so that
 it’s available.

View and Display Code Belongs Together

You now have another script: view.php. Remember, you’re
 creating not just utility code but nicely organized code. Even though you could put
 display_messages and display_message in app_config.php, that’s not good
 organization.
Taking time now to build groups of functions in scripts that are usefully named is
 well worth your while. When you’re writing a script like
 show_users.php that handles display, you immediately know you can
 include view.php and get helpful functions. On the other hand, in a
 script like delete_user.php that doesn’t do any display, you can
 skip view.php.
Note
Of course, this same principle is true of
 database_connection.php. If you don’t need a database
 connection, you don’t need to require_once
 database_connection.php. If you do, well, then you do. It becomes
 simple when you have scripts that are organized and named according to their
 function.

Integrating Utilities, Views, and Messages

You’re finally ready to put all of this together. Let’s revisit
 show_users.php and the less refined messaging that started the
 entire journey that led to view.php:
<head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript">
 function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user?" +
 "\nThere's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
 }

<?php if (isset($msg)) { ?>
 window.onload = function() {
 alert("<?php echo $msg ?>");
 }
<?php } ?>
 </script>
 </head>
This code is no longer needed, so you can remove it, now and forever. Time to get a
 lot more elegant.
Calling Repeated Code from a View Script

First, add in the require_once for your new
 view-related function script:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// and so on...

?>
Warning
Be sure to delete the PHP code interjected into the head section of the HTML output by show_users.php
 that pops up an alert message. You might not have even noticed that it’s been deleted
 from the preceding because…well, it’s been deleted.

Next, add a call to the display_messages
 function in your HTML:
<body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>
 <?php display_messages($msg); ?>
There’s a bit of a problem here. display_messages
 takes two parameters: a success message and an error message. Therefore, you need some
 way to pass in an empty message, and then display_messages needs to handle an empty message on the receiving
 end.
By whatever means the issue with errors is resolved, this structure should become a
 standard part of all your HTML. Anytime you’re displaying HTML, you want to allow for
 message handling. That means you’re back to repeat code: every single view-related
 script has started out with the same basic HTML (although occasionally you’ve needed to
 insert some JavaScript, as in show_users.php):
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript">
 function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user?" +
 "\nThere's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
 }
 </script>
 </head>
Now, you have your body tag, the same header—more repeated code—and then a page title. Also, you have messages to display.
 Here’s another chance to take code that you’ve been typing into your scripts, over and
 over, pull that repeated code out, and then drop it into yet more utility functions.
 Your view.php script is about to get a lot bigger and a lot more
 useful.

Flexible Functions Are Better Functions

You now have a list of interrelated things with which you must manage, most of which
 involve updates to view.php:
	display_messages should handle empty or
 non-existent messages for the success and the error message. If either message isn’t
 set, the <div> related to that message
 shouldn’t be output.

	You need a new function—call it display_header—that
 handles outputting the head section of each page’s HTML. This function should take in JavaScript that can be added to the document’s
 head, but should also handle the case in which there’s no extra JavaScript
 needed.

	You need another new function—call this one display_title—that prints out the page title; the page’s subtitle,
 which is passed in by each script; and any message, which also should be passed in
 by the calling script.

None of these functions are particularly difficult, so it’s time to get back to
 work.
Use Default Argument Values in Display_Messages

Returning to view.php, display_messages needs to be able to accept a non-value for a message.
 Recall from Chapter 5, on Select the Database with PHP, that in PHP, this is handled by the
 special keyword NULL, which means
 “non-value.”
Note
You’ll see NULL in nearly every programming
 language, although usually with slight variations. For example, in Ruby, it’s
 nil; In Java, it’s null; PHP uses NULL, as does C++.
 They always mean the same thing, though: the absence of a value.

Now, because NULL is a non-value, you can’t
 compare it to a value. So, this code doesn’t make sense in PHP:
if ($value == NULL) // do something
What you need to use is another PHP helper, is_null. You pass a value to is_null,
 and PHP informs you about what you have.
Now, it’s possible to make an update to display_messages. If a message passed in is NULL, there’s no need to call the individual display_message for that type of message:
function display_messages($success_msg, $error_msg) {
 echo "<div id='messages'>\n";
 if (!is_null($success_msg)) {
 display_message($success_msg, SUCCESS_MESSAGE);
 }
 if (!is_null($error_msg)) {
 display_message($error_msg, ERROR_MESSAGE);
 }
 echo "</div>\n\n";
}
There’s just one thing missing: what if a script—like
 show_users.php—doesn’t have a value to pass in for $error_msg or $success_msg? In these cases, you want display_messages to have a default value. This is a
 value that’s used if nothing else is passed in.
You can assign the default value for function’s argument like this:
function do_something(this_value = "default value") {
 // do something with this_value
}
Thus, for display_messages, the default values
 should be NULL (no value):
function display_messages($success_msg = NULL, $error_msg = NULL) {
 echo "<div id='messages'>\n";
 if (!is_null($success_msg)) {
 display_message($success_msg, SUCCESS_MESSAGE);
 }
 if (!is_null($error_msg)) {
 display_message($error_msg, ERROR_MESSAGE);
 }
 echo "</div>\n\n";
}
Your display_messages
 function is finally ready for use by the other functions you need to add
 to view.php.

Output a Standard Header with Heredoc

Next, you need to deal with the standard HTML output for a page in your app. That’s basically the opening <HTML>, the <title>, the <head>, and
 any page-specific JavaScript that needs to be added. Of course, with
 view.php in place, your knowledge of functions, default
 arguments, and everything else you’ve already done, this step should be a piece of
 cake.
You can create a new function, and because it’s possible that some scripts need to
 pass in JavaScript to add to the <head>
 section, but others might not, using a default value for a function argument is again
 the way to go:
function display_head($page_title = "", $embedded_javascript = NULL) {
This function, by the way, sets a default value for the $page_title, too. That’s not completely necessary, but again, it’s a bit
 of extra protection. This way, if someone calling this function forgets to send in the
 title, the HTML output can be constructed regardless.
The body of this function is just some echo
 work and a conditional for the potential JavaScript:
function display_head($page_title = "", $embedded_javascript = NULL) {
 echo "<html>";
 echo " <head>";
 echo " <title>{$page_title}</title>";
 echo ' <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />';
 if (!is_null($embedded_javascript)) {
 echo "<script type='text/javascript'>" .
 $embedded_javascript .
 "</script>";
 }
 echo " </head>";
}
Notice that the link line uses single quotes around the HTML. This is so you can use double-quotes for the href, rel, and type attributes. Unfortunately, you’re going to have to
 either use multiple quote styles like this or escape a lot of your quotes with
 \“ and \’.
 Neither solution is particularly pretty, so pick your own poison (see the box on Which Quote Is the Best Quote?).
Of course, programmers aren’t used to limitations like this, and you should
 immediately be thinking, “Wait a second. I’m a programmer. Why am I stuck with two bad
 solutions?” Well, you’re not. What you need is a way to deal with multiline strings,
 and PHP doesn’t disappoint. In fact, multiline strings are such a common issue in PHP
 that it gives you a couple of ways to deal with them.
The most common solution is to use something called heredoc.
 The heredoc method gives you a way to mark the beginning and the end of a
 piece of text. Everything between those beginning and end markers is treated as text,
 without you needing to surround things in quotation marks.
You start a string of heredoc by inserting three less-than signs (<). You then
 add a sequence that you’ll use to mark the end of the string:
$some_text = <<<EOD
In this example, you’re saying, “I’m starting some text and the text will end when
 you run across EOD.”
Note
You can use any ending sequence you want. The most typical choices are EOD and
 EOT, though, so it’s best to stick with these unless you have a good reason for
 going with a different sequence.

Having done this, you can put as much text as you want in the string. You can use
 multiple lines, single quotes, double quotes, and even the {$var_name} syntax. It’s all fair game:
<html>
 <head>
 <title>{$page_title}</title>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
Finally, you end the text with your end sequence:
EOD;
All together, you get this:
$some_text = <<<EOD
<html>
 <head>
 <title>{$page_title}</title>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>
EOD;
Warning
You cannot indent the ending sequence. It must be the first thing on a line, all by itself,
 with no spacing before it. Thus, this code will not be treated as an ending sequence:
EOD;
Just as dangerous is having whitespace after the ending sequence. There’s no way
 to illustrate that in a book, or course, but even a single space after the closing
 semicolon will do you in.
The best way to recognize these things is to watch out for the dreaded
 “unexpected T_SL” error. That’s usually PHP’s ultra-cryptic way of letting you know
 that you have whitespace where it doesn’t belong, either before or after the ending
 sequence, in most cases.

Put all of this together, and you can clean up the look of display_head quite a bit:
function display_head($page_title = "", $embedded_javascript = NULL) {
 echo <<<EOD
<html>
 <head>
 <title>{$page_title}</title>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css
" />
EOD;
 if (!is_null($embedded_javascript)) {
 echo "<script type='text/javascript'>" .
 $embedded_javascript .
 "</script>";
 }
 echo " </head>";
}
Go ahead and add this into your view.php script now.
You probably noticed that in this version of display_head, there was no need to assign the string created by using
 heredoc to a variable. You can directly output the multiline string and
 save a step. The result is actually a hodgepodge of echo, heredoc, conditional logic, and potentially some JavaScript.
 Nonetheless, it’s becoming increasingly easy to read, and that’s a good
 thing.

Update Your Script(s) to Use Display_Head

Now, you can head back to show_users.php (and
 show_user.php if you like) and remove lots of HTML. Replace the
 HTML for the head of your document with a call to display_head. While you’re at it, you might want to use a little more
 heredoc in the process, particularly in show_users.php, which
 sends some JavaScript to be embedded:
<?php
// code to get all the user data
?>

<?php
 $delete_user_script = <<<EOD
function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user? " +
 "There's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
}
EOD;
 display_head("Current Users", $delete_user_script);
?>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">Current Users</div>
 <?php display_messages($msg); ?>

 <!-- Remaining HTML markup -->
 </body>
</html>
Note
You could just as easily keep all of the PHP that gets the users in the same
 <?php ?> block as the code that calls
 display_head. That’s up to you. Some
 programmers prefer to keep the data gathering and the actual view display separate,
 and some prefer to avoid duplicating <?php.
 The choice is yours.

This code uses heredoc, so creating a string of JavaScript to pass to display_head doesn’t involve lots of escaping single or
 double quotes. In fact, you’ll find that heredoc is almost as handy to have around as
 sprintf (Printing a String to a Variable), and you’ll use both liberally for
 outputting HTML or other long stretches of text.
There’s still the issue of displaying messages, but before you get to that, try
 out your changes to show_users.php. You should see something like
 Figure 11-16.
[image: Here’s another one of those cases for which you do a lot of work and then hope that things look the way they always have. You want show_users.php to look like it always has. However, it’s now using functions in view .php rather than outputting HTML itself. The result is that this header is going to look exactly like every other page header because they’re all using display_head now.]

Figure 11-16. Here’s another one of those cases for which you do a lot of work and then hope
 that things look the way they always have. You want show_users.php to look like it
 always has. However, it’s now using functions in view .php rather than outputting
 HTML itself. The result is that this header is going to look exactly like every
 other page header because they’re all using display_head now.

Standardizing and Consolidating Messaging in the View

All that’s left is messaging. You have a display_messages
 function, but it’s not integrated into the HTML that’s typically around
 those messages. Just as display_head output HTML with
 some potential embedded JavaScript, the first part of your page should output some
 standard HTML, the page title (again), and potentially success and error messages. The
 final output should look a bit like this:
<html>
 <head>
 <title>Current Users</title>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <script type='text/javascript'>function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user? " +
 "There's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
}</script>
</head>
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing M
anual</h1>
</div>

 <div id="example">Current Users</div>
 <div id='messages'>
 <div class='success'>
 <p>The user you specified has been deleted.</p>
 </div>
 </div>

 <div id="content">
 <!-- HTML content -->
 </div>
 </body>
</html>
This is a piece of cake now. Go ahead and create display_title in view.php:
function display_title($title, $success_msg = NULL, $error_msg = NULL) {
echo <<<EOD
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">$title</div>
EOD;
 display_messages($success_msg, $error_msg); ?>
}
How easy is that? You’d call this like so, say in
 show_users.php:
display_title("Current Users", $msg);
But, you already know how messages come across: through request parameters,
 accessible via $_REQUEST. So, why worry about whether
 they’re set in your view? Just pass them in to display_title, even if the values are NULL:
display_title("Current Users",
 $_REQUEST['success_message'], $_REQUEST['error_message']);
Note
You can also remove the code in show_users.php that gets the
 success_message request parameter from $_REQUEST explicitly, because that’s now handled by this
 new call to display_title.

Things are looking good: display_head and
 display_title are both great, and you already have
 calls to display_head in place. However, before you
 go adding in a call to display_title in all your
 scripts, take a moment to think about what you’ve done (and read the box on Don’t Call Display Title).
FREQUENTLY ASKED QUESTION: Don’t Call Display Title
Why not pass
 $_REQUEST
 into
 display_title?
It might have occurred to you that you could actually pass the $_REQUEST variable wholesale into display_title. Then, display_title
 could pull out $_REQUEST['success_message'] and
 $_REQUEST['error_message']. That’s not a bad
 idea. It certainly would mean that your view scripts would not need to worry about which request parameter was
 which, or even if those particular request parameters came across.
The potential downside is that it does begin to tie your view code—the functions
 in view.php that basically churn out HTML—to how the data for
 that view is received. Now, your view is interacting with the user’s request itself
 rather than letting a controller handle that and pass along information, as
 needed.
As you can see yet again, trying to pull off a clean MVC architecture in PHP just
 isn’t possible. You’re going to constantly make choices that represent tradeoffs
 between a clean separation between view and controller, and ease of coding. In this
 case, you can leave things the way they are—and let view.php just
 output information—or let view.php do a little more work and pass
 it $_REQUEST.

Building a Function to Call Two Functions

Remember, the idea here was to create another function, display_title, to handle
 outputting the starting portion of every HTML page’s body. But now that you have that
 function, there are a few things to think about:
	The HTML from display_title will
 always directly follow the HTML output from display_head.

	The title used in display_head should
 typically match the title used in display_title.

So, if this HTML always follows the HTML from display_head, and the title in both is the same, why are there two calls?
 In your scripts, you’d always have something like this:
<?php

// Code like crazy

?>

<?php display_head($title, $javascript); ?>
<?php display_title($title,
 $_REQUEST['success_message'], $_REQUEST['
error_message']);
?>

 <!-- More HTML -->
</html>
But are two calls necessary? Wouldn’t the following be cleaner:
<?php

// Code like crazy

?>

<?php page_start($title, $javascript,
 $_REQUEST['success_message'], $_REQUEST['
error_message']) ?>

 <!-- More HTML -->
</html>
Not only is this a simpler call, but now you don’t need to pass in $title twice. It goes in a single time and is applied across
 all the opening HTML.
Doing it this way, you don’t need to start messing around with display_title, display_head, or display_messages.
 Instead, just build a function for your script to call that handles all the smaller
 functions:
function page_start($title, $javascript = NULL,
 $success_message = NULL, $error_message = NULL) {

 display_head($title, $javascript);
 display_title($title, $success_message, $error_message);
}
Note
Put this function in view.php, along with all your other
 display functions.

Just Pass That Information Along

What’s left? Removing calls to display_head;
 avoiding another call to display_title; and finally,
 one call to rule them all. In fact, take a look at the new, improved
 show_users.php. This script is shorter and a lot clearer. Even
 with the bit of indentation clutter that heredoc introduces, this is a pretty sleek
 script:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// Build the SELECT statement
$select_users =
 "SELECT user_id, first_name, last_name, email " .
 " FROM users";

// Run the query
$result = mysql_query($select_users);

// Display the view to users
 $delete_user_script = <<<EOD
function delete_user(user_id) {
 if (confirm("Are you sure you want to delete this user? " +
 "There's really no going back!")) {
 window.location = "delete_user.php?user_id=" + user_id;
 }
}
EOD;
 page_start("Current Users", $delete_user_script,
 $_REQUEST['success_message'], $_REQUEST['error_message']);
?>
 <div id="content">

 <?php
 while ($user = mysql_fetch_array($result)) {
 $user_row = sprintf(
 "%s %s " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'],
 $user['email'], $user['email'], $user['user_id']);
 echo $user_row;
 }
 ?>

 </div>
 <div id="footer"></div>
 </body>
</html>
At this point, take it out for a spin. Verify that error messages work. Confirm that
 success messages work. Change your other scripts to also use page_start. You can even add more functions to
 view.php. Maybe you want a page_end that outputs the closing <div>, the footer, and some contact text. You could add a sidebar
 function.
With this modular approach, you can do anything you want. Well, except for
 controlling just who gets to delete users. That’s a problem for the next chapter.
DESIGN TIME: Two Functions Are Better Than One…Kinda
One of the things you’ve seen over and over is this idea of moving smaller and
 smaller bits of code into their own functions. This means that you have a little bit
 of HTML in a function in view.php. You have
 database_connection.php doing database connection, and even
 though it doesn’t define a custom function, it’s basically called like a function
 through require_once. The same has been true a
 number of times: take small pieces of behavior or functionality and put them into
 small, easy-to-call functions.
It might be easy to think that the goal is lots of individual function calls.
 That’s partially true. What is true is that you want lots of building blocks that you
 can assemble into bigger useful pieces. But, when it comes to using those functions,
 do you really want to make 20 or 30 individual calls?
Probably not.
Instead, you’ll likely want to make as few function calls as you need in your
 scripts…at least in the ones with which the user interacts. Therefore, it’s preferable
 to call something like this:
display_page($title, $javascript, $content); .
than this:
display_head($title, $javascript);

display_messages($msg);

display_content($content);

display_footer();
Of course, the way you get around this isn’t to reverse field and throw all your
 code across ten functions into one. But it might be that you want one function that
 then calls these functions for you. That’s still using building blocks, but it’s
 reducing the number of things your top-level scripts need to do to get things working
 properly.
Just think about it: is it easier to remember to call display_page, and then have to look up the arguments to pass, or is it
 easier to remember to call display_head, and then
 display_messages, and then display_content, and then…what was that next one again? Of
 course, it’s easier to make the one function call.
That’s why you want to move toward a hybrid of small functions with groupings or
 higher-level functions that assemble those small functions in useful ways. Your
 scripts should make simple calls rather than lots of calls. And then, those simple
 calls can do whatever is needed, even if that means calling lots of smaller functions
 behind the scenes.
The result should be simpler, easier-to-read code. As a bonus, you’ll also get a
 nice set of functions that you can combine in a variety of useful ways.

Part 4. Security and the Real World

Chapter 12
Chapter 13
Chapter 14

Chapter 12. Authentication and Authorization

Something important arises at just about this point in your application design and creation. You have four, five,
 maybe more core pieces of functionality in place to add users, upload photos, and so on. You
 have a few tables set up in which to store data. You have most of your application’s central
 components built, and even though it’s still a simple application, you have a sense of where
 you’re going. And then, in the previous chapter, you added a new piece of functionality: the
 ability to delete users. It seems like just another feature; just another user requirement
 to tick off the list. But, wait a second…deleting users? Is that something that you want to
 offer to all of your users? Of course not. That’s an administrative feature. (You might even
 remember from Building a Simple Admin Page that an early candidate for the
 name of delete_user.php was admin.php.)
An administrator, of course, is someone who has the responsibility—and more importantly,
 the capability (and authority)—to manage user accounts and take care of the application on
 an overarching level. Unfortunately, your application doesn’t know that yet. As far as it’s
 concerned, there’s no such thing as an administrator. Right now, anyone can hop over to
 delete_user.php and nuke poor Ryan Geyer, or Robert Powell, or
 whoever else has signed up through create_user.html, with nothing more
 than a confirmation box standing between them and digital oblivion. What’s worse, that
 tempting little red “X” is visible to anyone who goes to
 show_users.php.
With the addition of this one piece of functionality, you to realize you need several
 other things, and you need them soon. Here’s the quick list of problems that you need to
 solve:
	Viewing all users (done)

	Deleting users (you have this, with way too much freedom)

	A way to identify users on your system (you kind of have this, through
 create_user.html, but there’s no way for users to log in and out
 right now)

	A way to indicate that a user is an administrator

	A way that users can log in and verify who they are (for example, with a
 password)

	A way to only show certain functionality—like deleting a user—if the person who is
 viewing the functionality is an administrator

Your system needs authentication—a way to let it know who’s who.
 Users should be required to log in, and then your system should know whether the user is a
 certain type, like an administrator. Based on that type, the user sees (or doesn’t see)
 certain things. This selective display of resources is authentication’s bed fellow,
 authorization. These two terms are often confused for one another, or
 even casually used interchangeably.
Note
There are people that would rather be tarred and feathered than mistake authentication
 for authorization, or vice versa. Then again, those people probably have separate sock
 drawers for each color they own. It’s good to know the difference, but you don’t have to
 sweat the details.

It’s certainly not surprising that you need to add these features. Logging in is common
 to almost every site you regularly visit online, not just Twitter and Facebook. Even YouTube
 and Google give you more sophisticated options when you create and log in to a user account.
 All of them use authentication to establish who is who. It’s time that your application
 joined the party.
Basic Authentication

Authentication, like everything else, can be done simply or with tremendous
 complexity. Also, like nearly everything else, it’s best to start with the basics and add
 complexity as needed. For a simple application, you don’t need thumbprint readers and
 lasers scanning a user’s face. (Granted, it might be fun, but it’s not necessary. James
 Bond almost certainly isn’t going to fill out your create_user.html
 form.)
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Using HTTP Headers for Basic Authentication

Basic authentication, also known as HTTP
 authentication, is a means of supplying a user name and password in a web
 application through HTTP headers. You’ve already worked with headers a bit. Remember
 this bit of code from scripts/app_config.php (redirect Is Path-Insensitive)?
function handle_error($user_error_message, $system_error_message) {
 header("Location: " . get_web_path(SITE_ROOT) .
 "scripts/show_error.php" .
 "?error_message={$user_error_message}" .
 "&system_error_message={$system_error_message}");
}
This handle_error function is using an HTTP header—the Location
 header—to send a redirect to the browser. You’ve also used the Content-type and Content-length headers
 in displaying an image in show_image.php (Send the Image Data):
header('Content-type: ' . $image['mime_type']);
header('Content-length: ' . $image['file_size']);
With basic authentication, there are a couple of other HTTP headers you can send. The
 first doesn’t have a key value such as Content-type
 or Location. You simply send this:
HTTP/1.1 401 Unauthorized
When a browser receives this header, it knows that a requested page requires
 authentication to be displayed. 401 is a special status code, along with lots of others,
 that informs the browser about the request. 200 is the code used to indicate “Everything
 is OK,” for example, and 404 is the HTTP error code for “Not Found.”
Note
You can read up on all the HTTP status codes at
 w3.org/Protocols/rfc2616/rfc2616-sec10.html. Anything from 400
 up indicates an error of some kind.

It’s one thing to tell the browser that access to a page is restricted, but at some
 point you’ll want to make that page unrestricted. The answer is to
 send a second header:
WWW-Authenticate: Basic realm="The Social Site"
This header WWW-Authenticate alerts the browser
 that authentication needs to happen. Specifically, the browser should pop up a dialog
 box and ask for some credentials.
You specify what type of authentication to require; in this example, it’s Basic. Then, you identify a realm to which that
 authentication should be applied. In this case, it’s "The
 Social Site". As long as different pages use this same realm, authentication
 to one of those pages applies to other pages in that same realm.

Basic Authentication Is…Well, Basic

It’s time to apply authentication to your own application. Open your
 show_users .php script.
Note
As usual, you might want to think about making a backup of this script, or copying
 all your scripts into a new ch12/ directory. That way you have
 all your older, working scripts to fall back on in case something goes wrong.

Enter these two header lines near the top of the script:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="The Social Site"');

// Build the SELECT statement
$select_users =
 "SELECT user_id, first_name, last_name, email " .
 " FROM users";

// Remaining PHP

?>
Navigate over to show_users.php. You should see a nice pop-up
 window asking you to log in, like Figure 12-1. Well, it’s not
 that nice, but it does the trick. Basic authentication, pure and simple.
[image: It’s battleship gray, it’s forbidding, it’s terse. In other words, it’s everything you could want a fence around your application to be. However, you almost never see forbidding and terse these days in web applications, so this is just the first in a series of steps toward the current professional standard in authentication.]

Figure 12-1. It’s battleship gray, it’s forbidding, it’s terse. In other words, it’s
 everything you could want a fence around your application to be. However, you almost
 never see forbidding and terse these days in web applications, so this is just the
 first in a series of steps toward the current professional standard in
 authentication.

Warning
If your web server is using a .htaccess file (popular particularly on
 Apache web servers) to restrict certain directories from web access, you could have
 problems here. .htaccess doesn’t always play nicely with PHP’s
 basic authentication. Your best bet would be to call your provider and ask it to not
 use any .htaccess files on the directories in which you’re
 working.

The Worst Authentication Ever

With the addition of the two headers on Basic Authentication Is…Well, Basic, there’s still a gaping hole in
 your security. Navigate to show_users.php if you’re not there
 already, and leave both the Name and Password fields blank. Then, simply click Cancel.
 Figure 12-2 shows the result.
[image: Of all things you might have expected to see when you canceled out of a login dialog box, the secure page probably wasn’t one of them. So far, you’re triggering a login request, but you’re not actually doing anything with that request.]

Figure 12-2. Of all things you might have expected to see when you canceled out of a login
 dialog box, the secure page probably wasn’t one of them. So far, you’re triggering a
 login request, but you’re not actually doing anything with that request.

As if that’s not enough, enter any user name and password and
 then click Log In. There you go: Figure 12-2 again. In fact, spend some time
 trying to get anything other than the normal show_users.php page.
 You won’t be able to.
Pretty poor security, isn’t it? Canceling should not take you
 on to the supposedly secure page. What you need to do is get the user name and password,
 check them against acceptable values, and then show the page. In
 every other case, the user should not see show_users.php.

Getting Your User’s Credentials

To check the user name and password against any values, you need to make some
 changes to your script. Your current code doesn’t extract those values, let alone
 compare them against any other values. There’s clearly some work to do here.
Fortunately, because HTTP authentication is defined in a standard way, it’s easy for PHP to interact
 with users who enter their credentials into a basic authentication pop-up dialog box. In fact, PHP gives you access to
 both the user name and password entered via two special values in a superglobal variable
 you’ve used before, $_SERVER:
	$_SERVER['PHP_AUTH_USER'] gives you the
 entered user name.

	$_SERVER['PHP_AUTH_PW'] gives you the entered
 password.

Note
$_SERVER is used in
 app_config.php to define the SITE_ROOT constant as well as in the get_web_path utility function.

You might expect your flow to proceed something like this:
	At the beginning of a script, send the HTTP headers that
 trigger authentication.

	Once the authentication code is complete, check $_SERVER[‘PHP_AUTH_USER’] and $_SERVER[‘PHP_AUTH_PW’] for values and compare those
 values to some constants or a database.

	Decide whether to let the user see the content your script
 normally outputs.

That makes a lot of sense, but turns out to be wrong. Here’s what really
 happens:
	Your script is called.

	Authentication headers (actually, a header that says a
 user is unauthorized and should be allowed to sign in) are sent.

	Once the user enters in a user name and password, the
 browser recalls your script from the top once
 again.

Clearly, you need to determine if there are any available credentials before authentication headers are sent. If
 there are credentials, check them against allowed values. Finally, if the credentials
 don’t match or don’t exist, that’s when you send the authentication
 headers.
Once again, then, isset (Welcome to Security and Phishing) becomes your friend. Start with code
 like this:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
}
Yet, all this does is pop up the login box if the user name and password haven’t previously been set. It
 still allows access to your page through a couple different avenues. So you need to not
 only pop up a login box, but also ensure that any preset user names and passwords match
 an allowed set of values.

Cancel Is Not a Valid Means of Authentication

Before you deal with checking user names and passwords, though, there’s something
 more pressing to deal with. Even worse than accepting any credentials is accepting a
 click of the Cancel button.
This situation is easy to deal with, albeit not intuitively. Here’s your code right
 now:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
}
The login dialog box is prompted by the two calls to the header:
header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="The Social Site"');
When a user clicks Cancel, your PHP continues to run, directly from after the second header
 line:
header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="The Social Site"');
// This line is run if Cancel is clicked
Taking the simplest possible path, you could simply bail out of the
 script:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
That way, if a user clicks Cancel, the script runs the exit command—which is a lot like die—and
 bails out with an error message, as shown in Figure 12-3.
[image: With the exit code above, if a user tries the ever-so-clever Cancel-without-signing-in trick, your script handles the situation. Then again, this method is rather crude, and doesn’t exactly live up to your application’s standard in user-friendly views and web pages. You’ll be able to improve this, but not until the next chapter.]

Figure 12-3. With the exit code above, if a user tries the ever-so-clever
 Cancel-without-signing-in trick, your script handles the situation. Then again, this
 method is rather crude, and doesn’t exactly live up to your application’s standard in
 user-friendly views and web pages. You’ll be able to improve this, but not until the
 next chapter.

Getting Your User’s Credentials

Let’s get back to seeing what your user actually supplies to the login dialog box.
 Remember, the flow here isn’t what you might expect. Once the user has entered a user
 name and password, your script is basically recalled. It’s almost as though the server
 is giving you a free while loop, similar to
 this:
while (username_and_password_are_wrong) {
 ask_for_username_and_password_again();
}
Note
This isn’t actually running, working PHP. It’s something called
 pseudocode. For more on what pseudocode is—and why it’s your friend—check out the following
 box.

UP TO SPEED: Pseudocode: The Code Before You Write Code
Lots of times you’ll find that you need a happy medium before writing full-on
 working code—syntactically accurate, debugged, ready to run—and scribbling a list of
 steps to follow in a notebook. You want to think about the details of how things will
 work without getting bogged down by minutiae of syntax. As a bonus, pseudocode is
 language-neutral, so you can write pseudocode and later implement that code in any
 programming language you choose.
That said, when you write pseudocode, you usually know which language you have in
 mind and use that syntax. For example, if you’re writing pseudocode that you’ll
 eventually turn into PHP, you might use an if, a
 while, an else, and throw in curly braces or angle brackets. That’s why this
while (username_and_password_are_wrong) {
 ask_for_username_and_password_again();
}
is a great example of pseudocode that will later become PHP. But, in the case
 below, it’s not helpful to type out all the $_SERVER stuff, because it’s long, full of little commas and apostrophes,
 and you already know the basic idea. So, whether you’re explaining to a coworker what you’re doing
 or just planning out your code, this is a perfectly good stand-in:
while (username_and_password_are_wrong) {
In your head, you might be translating that to something like this:
if (($_SERVER['PHP_AUTH_USER'] != VALID_
USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_
PASSWORD)) {
What will you do once you make that determination? Something…you’re not sure what
 yet. You know basically what has to happen, but the details are still up in the air.
 That leaves you with this:
ask_for_username_and_password_again();
It’s clear, it’s understandable, but it’s not bogged down by PHP semantics. It’s
 pseudocode. It’s great for getting an idea going, or communicating about code. It’s
 also great for a situation like this in which something tells you the way you’re doing
 things might need to change. And, if change is coming, the less work you put into a
 solution that isn’t permanent, the better.

Right now, you have an if statement that confirms
 whether the user name and password have been set. If not, send the headers, and if
 Cancel is clicked, bail out.
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
In an else part of this script (yet to be
 written) you could check the user name and password against the acceptable values. If
 they match, display the output from show_users.php. If not, you
 want to resend the headers that cause the browser to prompt the user to log in again.
 Therefore, you want something like this:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
} else {
 if (($_SERVER['PHP_AUTH_USER'] != VALID_USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_PASSWORD)) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
 }
}
Note
Technically, the if block is supplying an
 incorrect message to exit. That exit deals with the case in which the user pressed Cancel
 rather than entering a wrong user name and password. As a rule, though, you want to
 provide minimal information to users on security failures, so a generic “one size fits
 all” message is the better approach here.

Given that, you can actually consolidate things a bit. Whether the user has never
 attempted to log in, or incorrectly entered her user name or password, the script needs
 to send HTTP headers to force authentication. It’s only if the user has entered information and it matches
 the appropriate values that the rest of the page’s action should be taken and the output
 should be displayed. Thus, what you really want is this:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||
 ($_SERVER['PHP_AUTH_USER'] != VALID_USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_PASSWORD)) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
Go ahead and add this code to your version of show_users.php.
 Then, go up to the top of show_users.php—make sure it’s before your
 new if statement—and add a few new constants:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

define(VALID_USERNAME, "admin");
define(VALID_PASSWORD, "super_secret");

if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||
 ($_SERVER['PHP_AUTH_USER'] != VALID_USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_PASSWORD)) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
Try visiting show_users.php again and typing
 admin and super_secret for the user name and
 password, respectively, as shown in Figure 12-4. You should be greeted by the
 normal show_users.php view (see Figure 12-5). Otherwise, you’ll just get the
 authentication pop-up over and over. (If that “over and over” bothers you,
 you’ve got the right idea; see the box on Infinity and Beyond.)
[image: Finally, entering a user name and password actually matters. The browser responds to your headers with a login dialog box, and reports the values to PHP through the $_SERVER superglobal variable.]

Figure 12-4. Finally, entering a user name and password actually matters. The browser responds
 to your headers with a login dialog box, and reports the values to PHP through the
 $_SERVER superglobal variable.

[image: Once you’ve made it through security, you’re back to seeing users again. And that’s the point: authentication is separate from the core content of your pages.]

Figure 12-5. Once you’ve made it through security, you’re back to seeing users again. And
 that’s the point: authentication is separate from the core content of your
 pages.

FREQUENTLY ASKED QUESTION: Infinity and Beyond
Isn’t an infinite number of login attempts bad?
Yes. Absolutely. Alas, at the moment, that’s exactly what you’re providing in
 show_users.php: the opportunity to try, over and over and over,
 to get a valid user name and password. Truth be told, the sample code and patterns
 you’ll see all over the Web for using basic authentication look just like what you have in
 show_users.php.
There certainly are ways to get around this, but they’re not as easy as you might
 hope. Because the browser is making multiple requests to your script, you’d have to
 figure out a way to pass the number of requests that have been made to your script
 from your script. If that sounds tricky, it is.
There are ways to handle multiple requests, and you’ll learn about them (although
 for a much better purpose) in the next chapter on sessions. For now, realize that the
 basic authentication approach is temporary anyway, and all of this code is a starting
 point, not an end point.

Abstracting What’s the Same

Once again, you find yourself with some code in show_users.php
 that probably doesn’t belong in show_users.php. Why is that? Because
 the same authorization and authentication you have in show_users.php
 belongs in every other script that should require logging in, such as
 delete_user.php. You don’t want to write that code over and over;
 it becomes just like other repeated code you now have in app_config.
 php and database_connection.php. You should take it out
 of individual scripts and place it somewhere that all your scripts can use.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Another Utility Script: authorize.php

Fire up your editor once more; this time, create a file called
 authorize.php. You can start by adding that valid user
 name/password combination:
<?php

define(VALID_USERNAME, "admin");
define(VALID_PASSWORD, "super_secret");

?>
At this point, you’d usually write a function: maybe authorize or get_credentials or
 something like that. But is that really what you want? Do you want to have to require_once authorize.php, and then explicitly call a
 function?
More likely, you want to identify scripts that require authorization with a single line:
require_once "../scripts/authorize.php;"
Then, ideally, the authorization would all just magically happen for you.
Given that, you don’t want a function that has to be called.
 You just want some PHP code in the main part of authorize.php. That
 way, by requiring authorize.php, that code runs and handles
 authentication, and your script doesn’t have to do anything to get the benefits of authentication and
 authorization.
In a lot of ways, authorization here is like having JavaScript inside a set of
 <script> tags with no function:
<script type="text/javascript">
 dashboard_alert("#hits_count_dialog");
 $("#hits_count_dialog").dialog("open");
 query_results_tables();
</script>
As soon as a browser encounters that JavaScript, it runs it. The same is true of PHP
 outside of a function, so you can drop your authorization code right into
 authorize.php:
<?php

define(VALID_USERNAME, "admin");
define(VALID_PASSWORD, "super_secret");
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||
 ($_SERVER['PHP_AUTH_USER'] != VALID_USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_PASSWORD)) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}

?>
Now, any script that has a require_once for
 authorize.php will cause authorize.php to be
 processed, which in turn will run the authorization code. That, in turn, will ensure that users are either logged
 in or are forced to log in. So, things look quite nice.
Remove this code from show_users.php and add a require_once for authorize.php:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/authorize.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// Authorization code is no longer in this script

// Build the SELECT statement
$select_users =
 "SELECT user_id, first_name, last_name, email " .
 " FROM users";

// and so on...
?>
The next time you go to show_users.php, you get a nice login
 dialog box. But, that’s not all this change buys you. Add a similar line into
 delete_user.php:
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/authorize.php';
require_once '../scripts/database_connection.php';

// and so on...
To test it out, close out your browser so that any passwords are lost. Then, open
 your browser again and navigate directly to delete_user.php. You’ll
 be greeted with a login dialog box (see Figure 12-6). What’s significant about this?
 Most obviously, all it took was a single line of PHP to add security to another
 page.
[image: Once you’ve made it through security, you’re back to seeing users again. That, of course, is the point: authentication is separate from the core content of your pages.]

Figure 12-6. Once you’ve made it through security, you’re back to seeing users again. That, of
 course, is the point: authentication is separate from the core content of your
 pages.

But there’s more! If you’ve logged in, close out your browser again and head over to
 show_users.php. As you’d expect, you need to log in. After you’ve
 logged in, click the Delete icon on one of your users. This will take you to
 delete_user.php, and the PHP in
 authorize.php will be triggered. However, because you’ve already
 logged in to the realm identified as “The Social Site,” you’re not prompted to log in
 again. Remember your code that specifies a realm (Basic Authentication Is…Well, Basic):
header('WWW-Authenticate: Basic realm="The Social Site"');
Any page that uses this realm, in effect, shares credentials with other pages in the
 same realm. Because you logged in to access show_users.php, and
 that realm is identical to the realm for delete_user.php, your
 delete request goes through without a problem. Figure 12-7 shows the result—no login dialog
 box in sight.
There’s still a glaring problem, though. At this point, it’s easy to forget that
 behind every good script lies a great database. It’s a horrible idea to have a PHP script—even a utility script like app_config.php or
 authorize.php—contain a few constants defining allowable user
 names and passwords. Storing bits of information like this is the job of the database;
 hence the title of the next section.
[image: Sharing credentials works only if the realm is the same for these two pages. That’s yet another reason to pull authentication and authorization code out of individual scripts and put it in one single place that’s referenced by your other scripts. Your realm will be identical across all those referencing scripts.]

Figure 12-7. Sharing credentials works only if the realm is the same for these two pages.
 That’s yet another reason to pull authentication and authorization code out of
 individual scripts and put it in one single place that’s referenced by your other
 scripts. Your realm will be identical across all those referencing scripts.

Passwords Don’t Belong in PHP Scripts

Databases are better for storing passwords because, among other reasons, they’re typically more
 difficult to access than your scripts, which are to some degree web-accessible. Your
 database, on the other hand, is generally at least a layer further removed from the
 typical web user. Additionally, your database and SQL require structural knowledge to be
 useful. Scripts are just files that can be browsed, and often the information in those
 files is just text. Clearly, a database is a safer place for passwords than
 authorize.php.
Note
You can do a few things to make your scripts—especially utility ones—less accessible
 from the Web. To be certain, you can also make bad decisions that make your database
 more accessible from the Web. But in their default states,
 scripts are meant to be accessed by a browser, and raw database columns and rows are
 not, apart from a healthy authentication system.

There’s yet another reason to place your passwords into a database: You’re already
 storing user information there. You can connect that information to a password
 by adding a column. Moreover, as you’ll see soon, groups of users aren’t far away, either.
 Before you get too comfortable, though, you need to dig back into MySQL and improve that
 authentication situation.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Updating the users Table

The first thing you need to do is update users. It’s been a
 while since you’ve been poking around in there, so here’s a refresher as to what you
 should have at this point (Insert the Image Path Into Your Table):
mysql> describe users;
+----------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+---------------+------+-----+---------+----------------+
| user_id | int(11) | NO | PRI | NULL | auto_increment |
| first_name | varchar(20) | NO | | NULL | |
| last_name | varchar(30) | NO | | NULL | |
| email | varchar(50) | NO | | NULL | |
| facebook_url | varchar(100) | YES | | NULL | |
| twitter_handle | varchar(20) | YES | | NULL | |
| bio | varchar(1000) | YES | | NULL | |
| user_pic_path | varchar(200) | YES | | NULL | |
+----------------+---------------+------+-----+---------+----------------+
8 rows in set (0.02 sec)
There’s nothing wrong here, but there are some omissions: notably a user name and a
 password. Those are the two essential pieces of information that your basic
 authentication requires.
Use the following to add two columns to your table:
mysql> ALTER TABLE users
 -> ADD username VARCHAR(32) NOT NULL
 -> AFTER user_id,
 -> ADD password VARCHAR(16) NOT NULL
 -> AFTER username;
Note
The AFTER keyword specifies to MySQL exactly where to add a column. This helps
 to prevent important columns—and username and
 password are certainly important columns—from
 becoming stuck at the end of a table’s structure. You can leave this off, but it tends
 to make for more organized tables, especially when you’re using DESCRIBE.

Take a moment to verify that these changes are in place now:
mysql> describe users;
+----------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+---------------+------+-----+---------+----------------+
| user_id | int(11) | NO | PRI | NULL | auto_increment |
| username | varchar(32) | NO | | NULL | |
| password | varchar(16) | NO | | NULL | |
| first_name | varchar(20) | NO | | NULL | |
| last_name | varchar(30) | NO | | NULL | |
| email | varchar(50) | NO | | NULL | |
| facebook_url | varchar(100) | YES | | NULL | |
| twitter_handle | varchar(20) | YES | | NULL | |
| bio | varchar(1000) | YES | | NULL | |
| user_pic_path | varchar(200) | YES | | NULL | |
+----------------+---------------+------+-----+---------+----------------+
10 rows in set (0.03 sec)

Dealing with Newly Invalid Data

As was the case when you added columns before, you now have a table full of invalid
 rows. Because both user name and password are required (NOT NULL), and none of the
 existing rows have values in those columns, all of your table’s rows are in violation of
 that table’s rules.
You can fix this by using some more SQL. For example, to update Jason Wadley, you’d
 use something like this:
mysql> UPDATE users
 -> SET username = "jwadley",
 -> password = "chung_moo"
 -> WHERE user_id = 21;
You can confirm that these changes were made, as well:
mysql> SELECT user_id, username, password, first_name, last_name
 -> FROM users
 -> WHERE user_id = 21;
+---------+----------+-----------+------------+-----------+
| user_id | username | password | first_name | last_name |
+---------+----------+-----------+------------+-----------+
| 21 | jwadley | chung_moo | Jason | Wadley |
+---------+----------+-----------+------------+-----------+
1 row in set (0.00 sec)
You should make similar changes to your own users table so all
 the users you’ve added have a user name and password.
FREQUENTLY ASKED QUESTION: What’s in a (User) Name?
Why not just let people use an email address as the user name? It’s
 easier for them, and it eliminates the need for an additional, new
 column.
It seems like every time you turn around, a new social website is popping up—a
 site that you simply must join. More and more of those sites are
 using email addresses as your login name. There’s a lot to like about this
 approach:
	Most people remember their email address more readily than one of 50 different
 user names floating around.

	Email addresses like tommy.n@dbc.org are a lot more readable
 (and typeable) than a user name like tn1954a.

	It’s one less piece of information to store in your database.

So, if that’s the way the wind is blowing, why create a user name column in
 users? Why not just use the email address?
First, a lot of people have just as many email addresses as they have user names
 these days. With GMail, Apple’s iCloud, at least one business email, and perhaps a
 personal domain or two, individuals can still have a hard time remembering which email
 address to use for login.
Second, plenty of people don’t like using their email addresses as their user
 name. A user name seems more anonymous, whereas your email address is a way to get
 something into your inbox. It might seem odd, but lots of people are fine with
 supplying an email as part of signup, but they’re not comfortable typing it into a lot
 of login boxes.
Perhaps the most important reason is that, if an email is the user name, how do
 you retrieve a user’s password? Typically, with a user name system, you require a user
 to supply his user name when a password is lost as some sort of verification. When the
 user’s email is his user name, you need to come up with a
 different method of verification.
Even though there’s nothing wrong with using an email address, it’s still a bit
 better to require a dedicated user name. Besides, fantastic programs like 1Password (www.agilebits.com/products/1Password) make it easy for your users (and you)
 to manage multiple logins. (Seriously, although it might seem a bit pricey at
 $59.99, go buy 1Password today. It’s a web-life changer.)

Note
If something at the back of your neck tickles as you look at the user passwords,
 that’s a good thing. It’s a bad idea to store passwords in this way, where anyone with
 access to your database can see everyone’s passwords. Don’t worry, though, you’re
 going to fix that before much longer.

Getting an Initial User Name and Password

At this juncture, you’ve got to go back…way back. Remember
 create_user.html? That was the rather simple HTML form that
 gathers the user’s initial information. To be able to go forward, it needs some
 improvement: a user name and password field, for starters.
Here’s a significantly updated version of create_user.html,
 which adds—among a lot of other things—a field in which new users can enter a user name
 and two fields that combine to get a password.
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <link href="../css/jquery.validate.password.css" rel="stylesheet"
 type="text/css" />
 <script type="text/javascript" src="../js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript" src="../js/jquery.validate.min.js"></script>
 <script type="text/javascript"
 src="../js/jquery.validate.password.js"></script>

 <script type="text/javascript">
 $(document).ready(function() {
 $("#signup_form").validate({
 rules: {
 password: {
 minlength: 6
 },
 confirm_password: {
 minlength: 6,
 equalTo: "#password"
 }
 },
 messages: {
 password: {
 minlength: "Passwords must be at least 6 characters"
 },
 confirm_password: {
 minlength: "Passwords must be at least 6 characters",
 equalTo: "Your passwords do not match."
 }
 }
 });
 });
 </script>
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">User Signup</div>
 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form id="signup_form" action="create_user.php"
 method="POST" enctype="multipart/form-data">
 <fieldset>
 <label for="first_name">First Name:</label>
 <input type="text" name="first_name" size="20" class="required" />

 <label for="last_name">Last Name:</label>
 <input type="text" name="last_name" size="20" class="required" />

 <label for="username">Username:</label>
 <input type="text" name="username" size="20" class="required" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="password"
 size="20" class="required password" />
 <div class="password-meter">
 <div class="password-meter-message"> </div>
 <div class="password-meter-bg">
 <div class="password-meter-bar"></div>
 </div>
 </div>

 <label for="confirm_password">Confirm Password:</label>
 <input type="password" id="confirm_password" name="confirm_password"
 size="20" class="required" />

 <label for="email">E-Mail Address:</label>
 <input type="text" name="email" size="30" class="required email" />

 <label for="facebook_url">Facebook URL:</label>
 <input type="text" name="facebook_url" size="50" class="url" />

 <label for="twitter_handle">Twitter Handle:</label>
 <input type="text" name="twitter_handle" size="20" />

 <input type="hidden" name="MAX_FILE_SIZE" value="2000000" />
 <label for="user_pic">Upload a picture:</label>
 <input type="file" name="user_pic" size="30" />

 <label for="bio">Bio:</label>
 <textarea name="bio" cols="40" rows="10"></textarea>
 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Join the Club" />
 <input type="reset" value="Clear and Restart" />
 </fieldset>
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
In addition to the two new fields, this version of the form adds in some jQuery,
 which is available from www.jquery.com.
 jQuery is a free, downloadable JavaScript library that makes almost everything in
 JavaScript a lot easier. In addition to the core jQuery library, there are two jQuery
 plug-ins, which you can see near the top of the code: one for general validation (jquery.validate.min.js) and another
 specifically for password validation (jquery.validate.password.js).
 You can download both of these plug-ins from www.jquery.bassistance.de.
Save this updated version of create_user.html and check it out.
 The initial page looks the same (see Figure 12-8), but now you get validation of most of the form fields (Figure 12-9) and a nifty password-strength
 indicator, too (Figure 12-10).
[image: The new version of create_user.html looks largely the same. It adds a password strength bar, although that’s not apparent until the user tries to enter a password. Most important, this form adds in a user name and two places to enter a password: an initial entry, and a place to confirm that entry. Make sure these fields are the “password” type to hide the user’s typing, too.]

Figure 12-8. The new version of create_user.html looks largely the same. It adds a password
 strength bar, although that’s not apparent until the user tries to enter a password.
 Most important, this form adds in a user name and two places to enter a password: an
 initial entry, and a place to confirm that entry. Make sure these fields are the
 “password” type to hide the user’s typing, too.

Note
If you’re completely new to jQuery, pick up JavaScript and jQuery: The Missing Manual by David Sawyer
 McFarland (O’Reilly Media). You’ll get up to speed on how to use jQuery, and a whole
 host of reasons—besides the nifty validation plug-ins now used by
 create_user.html—that’s why it’s worth your time to
 learn.

[image: jQuery and the jQuery validation plug-in makes field validation a piece of cake. With minimal work, you get type validation, length validation, optionally customized error messages, and more. You can also validate emails, zip codes, and phone numbers. All that for a quick download and a few lines of JavaScript.]

Figure 12-9. jQuery and the jQuery validation plug-in makes field validation a piece of cake.
 With minimal work, you get type validation, length validation, optionally customized
 error messages, and more. You can also validate emails, zip codes, and phone numbers.
 All that for a quick download and a few lines of JavaScript.

[image: The password validator is an add-on for the jQuery validation plug-in. It adds a strength indicator that requires “strong” passwords. It’s a nice feature, and best of all, it doesn’t increase your work load at all. You get all this for free, before data ever makes it to your PHP scripts.]

Figure 12-10. The password validator is an add-on for the jQuery validation plug-in. It adds a
 strength indicator that requires “strong” passwords. It’s a nice feature, and best of
 all, it doesn’t increase your work load at all. You get all this for free, before data
 ever makes it to your PHP scripts.

Now, you’re getting the right information from your users. It’s time to update your
 PHP to do something with this.

Inserting the User Name and Password

At this point, you can update create_user.php, as well. This
 update is straightforward and certainly requires a lot less work, although the result of
 these changes is significant.
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/database_connection.php';

$upload_dir = SITE_ROOT . "uploads/profile_pics/";
$image_fieldname = "user_pic";

// Potential PHP upload errors
$php_errors = array(1 => 'Maximum file size in php.ini exceeded',
 2 => 'Maximum file size in HTML form exceeded',
 3 => 'Only part of the file was uploaded',
 4 => 'No file was selected to upload.');

$first_name = trim($_REQUEST['first_name']);
$last_name = trim($_REQUEST['last_name']);
$username = trim($_REQUEST['username']);
$password = trim($_REQUEST['password']);
$email = trim($_REQUEST['email']);
$bio = trim($_REQUEST['bio']);
$facebook_url = str_replace("facebook.org", "facebook.com", trim($_
REQUEST['facebook_url']));
$position = strpos($facebook_url, "facebook.com");
if ($position === false) {
 $facebook_url = "http://www.facebook.com/" . $facebook_url;
}

$twitter_handle = trim($_REQUEST['twitter_handle']);
$twitter_url = "http://www.twitter.com/";
$position = strpos($twitter_handle, "@");
if ($position === false) {
 $twitter_url = $twitter_url . $twitter_handle;
} else {
 $twitter_url = $twitter_url . substr($twitter_handle, $position + 1);
}

// Make sure we didn't have an error uploading the image
($_FILES[$image_fieldname]['error'] == 0)
 or handle_error("the server couldn't upload the image you selected.",
 $php_errors[$_FILES[$image_fieldname]['error']]);

// Is this file the result of a valid upload?
@is_uploaded_file($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you were trying to do something naughty. Shame on you!",
 "Uploaded request: file named '{$_FILES[$image_fieldname]
['tmp_name']}'");

// Is this actually an image?
@getimagesize($_FILES[$image_fieldname]['tmp_name'])
 or handle_error("you selected a file for your picture that isn't an image.",
 "{$_FILES[$image_fieldname]['tmp_name']} isn't a valid image
file.");

// Name the file uniquely
$now = time();
while (file_exists($upload_filename = $upload_dir . $now .
 '-' .
 $_FILES[$image_fieldname]['name'])) {
 $now++;
}

// Finally, move the file to its permanent location
@move_uploaded_file($_FILES[$image_fieldname]['tmp_name'],
 $upload_filename)
 or handle_error(
 "we had a problem saving your image to its permanent location.",
 "permissions or related error moving file to {$upload_filename}");

$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, username, " .
 "password, email, " .
 "bio, facebook_url, twitter_handle, " .
 "user_pic_path) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s',
 '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($username),
 mysql_real_escape_string($password),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle),
 mysql_real_escape_string($upload_filename));
// Insert the user into the database
mysql_query($insert_sql)
 or die(mysql_error());

// Redirect the user to the page that displays user information
header("Location: show_user.php?user_id=" . mysql_insert_id());
?>
Note
Even though only a few lines have changed, this is a good chance for you to check
 your current version of create_user.php (along with
 create_user.html). Make sure they’re current, especially with
 respect to all the changes from Chapters Chapter 9 and Chapter 10 related to image handling. If you feel
 your code is hopelessly out of date, you can always download these scripts again from
 this book’s Missing CD page (www.missingmanuals.com/cds/phpmysqlmm2e).

As usual, try entering some sample data and confirm that you get a normal
 show_user.php response as a validation that all your changes
 work. Also, ensure that you do not add authorize.php to your
 scripts list of require_once statements. You can
 hardly require users to log in to the form with which they tell your application about
 the user name and password they want to use for those logins.
FREQUENTLY ASKED QUESTION: There’s No One Quite Like You
Shouldn’t create_user.php verify that no one’s already using the
 requested user name?
Yes. You should put the book down and write that code, right now.
In the current version of create_user.php, users are inserted
 into the database without checking whether their user names are unique. Certainly, you could enforce
 that at the database level, but then you’d just get a nasty error.
In its simplest form, you could do a SELECT on the desired user name, and if any
 users are returned, redirect the user to an error page by using handle_error. That’s pretty primitive, though. It
 completely shuts down any flow, and the user—if she doesn’t bail from your application
 completely—will have to enter all of her information into the user sign-in form
 again.
A better approach would be to convert create_user.html to a
 script, or even roll it into the current version of
 create_user.php. In either case, if the user name is already
 taken, the user should be redirected back to the sign-in form, with all her previous
 information filled in, and a message should tell her to try another user name. Then,
 if you want to move into the deep end of the pool, do everything above, but do it with
 Ajax so that the sign-in page never reloads.
So, where’s the code for this? It’s in your head and at your fingertips. At this
 stage of your PHP journey, you’re increasingly ready to tackle problems like this
 yourself. Use a book or the Web as a resource for new techniques—like authentication
 in this chapter or sessions in Chapter 14—but you’re
 plenty capable of working out new uses for things you already know on your own.
In fact, tweet a link to your solution to preventing multiple user names to
 @missingmanuals on Twitter or post it on the Missing Manuals
 Facebook page at www.facebook.com/MissingManuals. Free books, videos, and swag are always
 available for clever and elegant solutions.

Connect authorize.php to Your users Table

At this point, there’s just one glaring hole to plug:
 authorize.php. Right now, there is only one user name and one
 password accepted, and they’re here in this rather silly bit of constant work:
define(VALID_USERNAME, "admin");
define(VALID_PASSWORD, "super_secret");
Now, however, authorize.php has a users
 table from which to pull user names and passwords. Fortunately, fixing up
 authorize.php requires simply stringing together things you’ve
 already done. First, remove those two constants and add in require_once for database_connection.php, which you’ll
 need for interacting with the users table.
<?php

require_once 'database_connection.php';

// define(VALID_USERNAME, "admin"); DELETE THIS LINE
// define(VALID_PASSWORD, "super_secret"); DELETE THIS LINE

if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||
 ($_SERVER['PHP_AUTH_USER'] != VALID_USERNAME) ||
 ($_SERVER['PHP_AUTH_PW'] != VALID_PASSWORD)) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}

?>
That big, burly if statement needs to be trimmed
 some. The first portion still works; if the $_SERVER
 superglobal has no value for PHP_AUTH_USER or
 PHP_AUTH_PW, headers should still be sent to the
 browser, instructing it to pop up a login dialog box. But now, there’s no VALID_USERNAME or VALID_PASSWORD constant to which the user’s values should be compared, so
 that part of the if statement has to go. Here’s what
 should be left:
if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
Note
Everything after the if is effectively an
 else, even though there’s no else keyword. If the body of the if executes, it will call exit, ending
 the script. As a result, it’s only if there is a value for PHP_AUTH_USER and PHP_AUTH_PW in
 $_SERVER that the rest of the script runs.

The next thing the script needs to do is to get anything the user entered—and if the
 script gets this far, the user did enter something—and compare it
 to values in the database. This is something you’ve done a number of times. It’s just
 more sprintf and mysql_real_escape_string, both of which you’ve used before:
<?php

require_once 'database_connection.php';

if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}

// Look up the user-provided credentials
$query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_USER'
])),
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_PW']
)));

$results = mysql_query($query);

?>
There’s nothing particularly new here; you know how to get the results. But this
 time, before worrying about the actual values from the response, the biggest concern is
 seeing whether there are any results. If a row matches the user
 name and password provided, the user is legitimate. (Or, he’s borrowed someone else’s
 credentials. And “borrowed” is being used loosely here.)
The first thing to do is to see whether there are any results. If there are none,
 the script has reached the same point as the earlier version, when the user name and
 password weren’t valid. This means sending those headers again:
if (mysql_num_rows($results) == 1) {
 // Everything's ok! Let this user through
} else {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
Note
Move to the head of the class if it bothers you that the code that sends these
 headers here is identical to the code earlier in the script. Go ahead and do the right
 thing before moving on: create a function that outputs those headers, takes in a
 message to pass to exit, and then call that
 function twice in authorize.php.

There’s just one more thing to do, and it’s a bit of a nicety. Because the user has
 just logged in, go ahead and let any script that calls
 authorize.php have access to that newly logged-in user:
if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $current_user_id = $result['user_id'];
 $current_username = $result['username'];

} else {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
The entire script, new and certainly improved, looks like this:
<?php

require_once 'database_connection.php';

if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}

// Look up the user-provided credentials
$query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_USER'])),
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_PW'])));

$results = mysql_query($query);
if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $current_user_id = $result['user_id'];
 $current_username = $result['username'];
} else {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}

?>
Test it out. Create a user (or add a user name and password to an existing user in
 your database), and then close and re-open your browser to reset any saved credentials.
 Go to show_users.php or any other page in which you’ve required
 authorize. php. You should get a login dialog box, be able to
 enter database values, and see the page you requested.

Passwords Create Security, But Should Be Secure

With your new database-driven login facility, you have lots of new possibilities.
 First and foremost, you can create groups in the database, and grant users access to
 certain parts of your application based on their group membership. For example, instead of
 letting just anyone into show_users.php, you can grant access only
 to users that are members of an administrator’s group.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Before you do all of that, take a second look at a sample SQL statement and its
 results:
mysql> SELECT user_id, username, password, first_name, last_name
 -> FROM users
 -> WHERE user_id = 45;
+---------+----------+-------------+------------+-----------+
| user_id | username | password | first_name | last_name |
+---------+----------+-------------+------------+-----------+
| 45 | jroday | psych_rules | James | Roday |
+---------+----------+-------------+------------+-----------+
1 row in set (0.00 sec)
Anything odd there? Well, other than James Roday’s lousy choice of password. (Sure,
 Psych is a good show, but it’s not exactly a hard-to-crack password.)
All the same, the more glaring issue is that the password just sits there in the
 database. It’s plain-old text. Even if you’re new to the world of authentication and
 authorization, you probably have heard the term encryption.
 Encryption is simply taking a piece of information, usually something valuable like a
 password, and making it unreadable for the normal mortal. The idea is that other than the
 user who “owns” a password, nobody—even you, the all-wise, all-knowing programmer—should
 see a user’s password in normal text. What you need is a means of encrypting that password into something unreadable. And, you know what’s
 coming: PHP has a function for that.
Encrypting Text by Using the crypt Function

First, you need to convert the password to something that’s non-readable. You can do
 that using PHP’s crypt function. This function takes a string (and an optional second parameter
 you’ll need shortly) and produces what looks like gibberish:
$encrypted_password = crypt($password);
To see this in action, make this change to
 create_user.php:
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, username, " .
 "password, email, " .
 "bio, facebook_url, twitter_handle, " .
 "user_pic_path) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s',
 '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($username),
 mysql_real_escape_string(crypt($password)),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle),
 mysql_real_escape_string($upload_filename));
Create a new user, allow create_user.php to save that user, and
 then check out that user in your users table:
mysql> SELECT user_id, username, password, last_name
 -> FROM users
 -> WHERE user_id = 51;
+---------+----------+------------------+-----------+
| user_id | username | password | last_name |
+---------+----------+------------------+-----------+
| 51 | traugott | 1qzifqLu4$0C88 | Traugott |
+---------+----------+------------------+-----------+
1 row in set (0.00 sec)
That’s quite an improvement. In fact, you should probably increase the size of the
 password field because crypt adds a good bit of
 length to the originally entered password.
ALTER TABLE users
 CHANGE password
 password VARCHAR(50) NOT NULL;
Note
That doubled password field name is
 intentional. When you’re changing a column, you first give the original name of the
 column. Then, you provide the new column name, the new column type, and any modifiers
 (like NOT NULL). In this instance, because the
 original name and new name are identical, you simply double password.

That gets the password into your database…but what about
 getting it out?

crypt Is One-Way Encryption

The crypt
 function, by definition, is one-way encryption. This means that once a
 password has been encrypted, it can’t be unencrypted. While that presents you some
 problems as a programmer, it’s a good thing for your users. It means that even the
 administrators of the applications they use can’t go digging into databases and pulling
 out their passwords.
Well, to be accurate, they can, but they’ll only get an
 encrypted version. And there’s no special formula or magical command that lets them get
 at the original password. Users are protected. And, ultimately, you, as an
 administrator, are protected. If you can’t get at an encrypted password, for example,
 you can’t very well be blamed for identity fraud.
But, how do you see whether a user has entered a valid password if you can’t decrypt
 their password value in the database?
Easy: you can encrypt his supplied password, and compare that encrypted value to the
 encrypted value in the database. If the encrypted values match, things are good—and you
 still haven’t seen that user’s real password. You want something like this in
 authorize.php, in which passwords are checked:
// Look up the user-provided credentials
$query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_USER'])),
 mysql_real_escape_string(
 crypt(trim($_SERVER['PHP_AUTH_PW']))));
Warning
Take your time with all of those closing parentheses. It can get hairy, and the
 last thing you want is a nasty, hard-to-find bug because you’re one parenthesis
 shy.

At this point, you should be able to try things out. You’re encrypting passwords on user creation, and you’re encrypting the value to
 compare with that password on user login.
Unfortunately, try as you might, you’re going to be stuck with Figure 12-11—a failed login because the
 password doesn’t match.
So, what gives? Remember that briefly-mentioned second argument to crypt (crypt Is One-Way Encryption)? It’s
 called a salt. A salt is a key—usually a few characters—that’s used
 in generating the one-way encryption used by functions like crypt.
 The salt helps ensure the randomness and security of a password, and unless the salt
 matches, the encrypted password values won’t match.
[image: No, it’s not groundhog day. It seems that no matter how many users you create, you’ll never get past this forbidding login dialog box. There’s one thing missing, and it has to do with the inner workings of crypt.]

Figure 12-11. No, it’s not groundhog day. It seems that no matter how many users you create,
 you’ll never get past this forbidding login dialog box. There’s one thing missing, and
 it has to do with the inner workings of crypt.

Encryption Uses Salt

So far, by not providing a salt, you’ve been letting crypt figure one out on its own. But unless the salt provided in two
 different calls to crypt is identical, the resulting
 encryption will not match. In other words, calling crypt on the
 same string two times without providing a salt will give you two different
 results.
To see it in action, create a simple script called
 test_salt.php:
<?php

$input = "secret_string";
$first_output = crypt($input);
$second_output = crypt($input);
echo "First output is {$first_output}\n\n";
echo "Second output is {$second_output}\n\n";

?>
Run this script in your command-line terminal:
yellowta@yellowtagmedia.com [~/www/phpMM/ch11]# php test_salt.php
Content-type: text/html

First output is $1$9Jp.b9bG$6rLQRuAkG34msBkO9MoN51

Second output is 1n845Ptys$Mv9s11qzZJj/xjSPSj20S0
Run it again, and you’ll get two different results from those two.
With one change, though, things get back to what you’d expect:
<?php

$input = "secret_string";
$salt = "salt";
$first_output = crypt($input, $salt);
$second_output = crypt($input, $salt);

echo "First output is {$first_output}\n\n";
echo "Second output is {$second_output}\n\n";

?>
Now, run this updated version and smile at the results:
yellowta@yellowtagmedia.com [~/www/phpMM/ch11]# php test_salt.php
Content-type: text/html

First output is sazmIw2D3KJ/M

Second output is sazmIw2D3KJ/M
As you can see, you need to ensure that both calls to crypt in your application’s scripts use the same salt. Of course, you could
 just create a new constant, but there’s an even better solution: use the user’s user
 name itself as the salt! This actually means you could completely lose your scripts and
 any constant that defines a salt, and your authentication would still work.
The user name always stays with the password, so you’re essentially ensuring that
 they are truly a united combination.
First, update create_user.php (yes, one more time!) to utilize
 the supplied user name as a salt:
$insert_sql = sprintf("INSERT INTO users " .
 "(first_name, last_name, username, " .
 "password, email, " .
 "bio, facebook_url, twitter_handle, " .
 "user_pic_path) " .
 "VALUES ('%s', '%s', '%s', '%s', '%s',
 '%s', '%s', '%s', '%s');",
 mysql_real_escape_string($first_name),
 mysql_real_escape_string($last_name),
 mysql_real_escape_string($username),
 mysql_real_escape_string(crypt($password, $
username)),
 mysql_real_escape_string($email),
 mysql_real_escape_string($bio),
 mysql_real_escape_string($facebook_url),
 mysql_real_escape_string($twitter_handle),
 mysql_real_escape_string($upload_filename));
Now, make the exact same change in authorize.php. Remember in
 this script, the user name comes in through the $_SERVER superglobal:
// Look up the user-provided credentials
$query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_USER'])),
 mysql_real_escape_string(
 crypt(trim($_SERVER['PHP_AUTH_PW']),
 $_SERVER['PHP_AUTH_USER'])));
Finally, create a new user (hopefully you’re not running out of friends yet!). Then,
 try to log in by using that user’s user name and password.
And voilà! Getting that same old show_users.php screen means
 you’ve got a lot more than the ability to delete users. It means you’ve got a solid,
 working authentication system. Congratulations. You’ve got one more big hurdle left to
 overcome—controlling user login with cookies.

Chapter 13. Cookies, Sign-Ins, and Ditching Crummy Pop-Ups

It’s time to start winding down. You’ve gone from seeing PHP as some strange, cryptic
 arrangement of angle brackets and dollar signs to building your own application, including
 integration with a MySQL database, authentication, redirection, and a decent set of utility
 functions. You might not be able to sell your modest application for a million dollars. But
 you should have a good sense of how to think in PHP, and how scripts are structured to solve
 problems.
Before you can twist and bend this application and your new skills to other purposes,
 there are still some lingering issues that you need to handle. A few of these are
 nice-to-haves; and some are downright necessities if you’re going to spend your career
 writing web applications.
Here are just a few things that you could give your application needs to round out both
 its usefulness and your skills:
	A better login screen. Nobody likes a bland, gray pop-up dialog box; they want a
 branded, styled login form.

	Better messaging to indicate whether a user is logged in.

	A way to log out.

	Two levels of authentication: one to get to the main application, and then
 administrator-level authentication to get to a page like
 show_users.php or delete_user.php.

	Some basic navigation. That navigation should change based on a user’s login and the
 groups to which that user belongs.

These are mostly related to the idea of logging in, and that’s no accident. Whether it’s
 a good-looking login screen or the ability to group users, you’ll probably spend as much time
 on the authentication and authorization of your web applications as you do on anything else.
 Even if you have boilerplate code to get a user name and password, most web pages are
 structured as components that are only selectively accessible. In other words, a web
 application shows users different things and gives users different functionality based upon
 their login.
It’s time to get a handle on how to store user credentials, move users around your site,
 and the issues that underlie keeping up with a user’s information. You’re ready to take
 your programming into the real world.
Moving Beyond Basic Authentication

Right now, your authentication uses the browser’s built-in HTTP capabilities.
 Unfortunately, as useful as HTTP authentication is, it leaves you with a lame visual;
 check out Figure 13-1 for the sad
 reminder.
[image: The biggest issue with this HTTP login feature isn’t its awful look and feel. It’s that you don’t have as much control as you’ll ultimately want. For example, you can’t provide a customized message if the user login fails: you have to cause the user to request a page to fire the login headers off. And ultimately, that’s way too little control for someone who’s comfortable with PHP—and that’s definitely you by now.]

Figure 13-1. The biggest issue with this HTTP login feature isn’t its awful look and feel. It’s
 that you don’t have as much control as you’ll ultimately want. For example, you can’t
 provide a customized message if the user login fails: you have to cause the user to
 request a page to fire the login headers off. And ultimately, that’s way too little
 control for someone who’s comfortable with PHP—and that’s definitely you by now.

Keep in mind: other than signing up initially or seeing a generic home page, this HTTP
 login dialog box is the doorway to much of your application. So any work you do with a
 top-tier designer; any nice CSS and color scheming; any clever HTML5 and SVG is all lost
 because it’s hidden behind that annoying, gray dialog box. Even worse, when the user
 doesn’t get in, it keeps popping up.
But changing that takes more than changing one thing. It’s going to require a complete
 rework of how users access your site.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Starting with a Landing Page

Any site that requires a login has to give users somewhere to land before they hit
 the login page. To build out your site, you need something simple and effective as a
 central location for your users to begin. From this starting point they should be able
 to log in or create a new login.
Here’s a simple version of just that. Call it index.html so
 that it can eventually be your site’s default landing page:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="content">
 <div id="home_banner"></div>
 <div id="signup">

 </div>
 </div>

 <div id="footer"></div>
 </body>
</html>
You can see what the page looks like in Figure 13-2.
Signing up users is easy: just point them over to
 create_user.html and let the work you’ve already done take
 effect. But that link to signin.html creates a new set of questions
 to answer, first and foremost among them: What exactly needs to happen there to sign a
 user in?
[image: No, you probably shouldn’t submit this site to any web design contests. Still, it gets the basic point across: you want users to either sign up or log in. You have a sign-in page, but logging in is going to require a new page or two, some PHP, and the demise of that HTTP authentication login dialog box.]

Figure 13-2. No, you probably shouldn’t submit this site to any web design contests. Still, it
 gets the basic point across: you want users to either sign up or log in. You have a
 sign-in page, but logging in is going to require a new page or two, some PHP, and the
 demise of that HTTP authentication login dialog box.

Taking Control of User Sign Ins

Obviously, there needs to be a form into which users can enter information. And the way things have been going,
 that form should submit to a script, which checks the user name and password. Already, that’s different
 from what you have: currently, authentication happens as a sort of side effect of
 requesting a page that requires authorize.php. So far, there’s no
 explicit login form, but now there needs to be one.
Then, this script that receives information from the form login has to check the user’s
 credentials. That’s easy; authorize.php already does
 that, and even though it currently uses $_SERVER,
 it’s easy to change to accept input from a sign-in form. Wait, though, here’s another
 wrinkle: if the credentials aren’t good, then you need to display the sign-in form
 again, preferably with the user’s original input for user name, or at a minimum, a
 message stating that there was an error logging in.
Note
There’s nothing as frustrating as a login form that sits staring blank-faced at
 you, never telling you that it’s received your credentials and that they were
 rejected. User feedback is critical in any good login system.

So here’s the basic flow:
	Sign-in form (HTML): Takes in the user name and
 password. Submits to…

	Authentication script (PHP): Verifies the user name and
 password against the database.If there’s a match take the user to a secure page, like the user’s
 profile (show_user.php), and let her know that she’s logged in.
 If her credentials are not valid, take her back to…

	Sign-in form (HTML)

Here’s a problem: How can an HTML form display an error message on a particular
 condition or pre-insert the contents of a user name field?
Having that sign-in form as HTML limits you, not on its initial display, but for the
 situation in which there’s a login failure. It’s then that you want PHP on your
 side.
The obvious solution is to convert the sign-in page to PHP, and you’d end up with a
 flow like the following (the changes are highlighted in bold Italic):
	Sign-in form (PHP): Takes in the user name and
 password.Submits to…

	Authentication script (PHP): Verifies the user name and
 password against the database.If there’s a match take her to a secure page, like the user’s profile
 (show_user.php), and let her know that she’s logged in. If
 her credentials are not valid, take her back to…

	Sign-in form (PHP): Now this form displays a customized
 error and reloads the user name.

Why not take this even further? What if instead of two scripts, you had a single
 script that submitted to itself, and either redirected the user on successful login, or
 displayed itself again if the login was unsuccessful? (If the idea of a script
 submitting to itself sounds like something you’d see in the movie
 Inception, see the box on PHP Loves to Self-Reference.)
By the way, you’ll need to make a quick change to your site’s new home page before
 you forget. Because you’re using a script not just for processing logins, but for
 creating the login page itself, do that now before you’re neck deep into PHP:
<html>
 <head>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="content">
 <div id="home_banner"></div>
 <div id="signup">

 <img src="../images/sign_me_in.
png" />
 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
POWER USERS’ CLINIC: PHP Loves to Self-Reference
Up until now, you’ve had a strong distinction between forms—created in HTML files—and the scripts to which they submit—PHP. But, you’ve torn down
 that distinction in view pages. You have lots of scripts that do some
 programming—logging in a user; getting all the current users; or looking up a particular user—and
 then outputting a bunch of HTML.
Why not blow that distinction away in forms, too?
A script could output a form and set the action of that form as itself.
 Then, when the form is recalled, it would determine whether there’s any submitted
 data. If so, this means that it’s receiving a form submission and can do what it needs
 to programmatically. There’s no real magic here; all you need is an if statement that
 directs traffic. Inside that if, you could even output a completely different page,
 perhaps letting the user know that his data has been accepted.
What if there’s no submission data? Well, then it’s just a normal initial request
 for the form, so the form should be shown. But you get some nice benefits here, too.
 You can check whether there might be error messages or existing data from a previous
 submission, and drop those values right into your form.
This technique is extremely common in PHP. It’s something with which you want to
 become comfortable. Even though it’s a bit of heavy lifting the first few times,
 you’ll soon find that in a PHP-driven application, there are very few times when
 you’re not going to use a PHP script. Forms, error pages, login pages, even welcome pages…you’ll get
 hooked on having the ability to use PHP and be hard-pressed to go back.
At this point, you might be dying inside—well, that is if you love or have bought
 into the Model-View-Controller (MVC) pattern, that is. HTML inside a script that submits to itself means
 you’ve completely eradicated a wall (or even a large overgrown hedge) between the
 model, the view, and the controller. But as you’ve already seen, you’re not going to
 get a true MVC pattern working well in PHP, anyway. You can get an approximation (and
 don’t shy away from that approximation), but you’re just not going to get the really
 clean separation that’s possible in languages like Ruby or Java (and you can still
 make just as big a mess in those languages, in case you were wondering).
Given that, you might need to simply accept that PHP is often going to cause you
 to sacrifice really clean MVC at the altar of getting things done.

From HTTP Authentication to Cookies

Before you can dive into writing this sign-in script—call it
 signin.php—there’s another glaring issue to work out. How do you
 actually let the user log in? By abandoning that HTTP login dialog box, you’re taking
 logging into your own hands.
Getting the user name and password and checking them against the database is not a big deal. You can do that; and
 you will do that in signin.php. The big problem, however, is
 keeping that information around. With HTTP authentication, the browser kept up with all
 your pages being in one realm and whether the user was logged into that realm. As a
 result, after logging in and accessing show_users.php, a user did
 not have to log in to get to delete_user.php; she would already
 have done that for another page in the same realm.
This is where cookies come into play.
Note
Here’s where you usually get the obligatory baked-goods joke.
 Cookies is a strange term, one that refers back to something
 called magic cookies. That was a term old-school Unix hackers
 used for little bits of data passed back and forth between programs.
Well, it stuck, so if you’re new to cookies in the programming world, feel free to
 snicker as you read the rest of this chapter.

What is a Cookie?

A cookie is nothing magical at all. It’s simply a means by which you can store a
 single piece of information on your user’s computer. A cookie has a name, a value—that
 single piece of information—and a date on which the cookie expires. When the cookie
 expires, it’s gone; you can no longer retrieve the value.
You can have a cookie with a name “username” and a value “my_username,” and
 perhaps another cookie named “user_id” with a value of “52.” Then, your scripts can
 check whether there’s a “username” cookie, and if so, assume the user’s logged in. In
 the same manner, your login script can set a “username” cookie.
In other words, other than setting the cookie in the first place, you get the same
 sort of effect as you were getting with basic authentication. Of course, creation of cookies is within your
 control, so you can create them with your own form, delete them with your scripts
 (say, on a user logout), and issue messages based on the status of cookies.
Warning
Although you can control the creation of cookies, your users can easily modify
 them, delete them, and even create cookies of their own. Because of that, cookies
 aren’t ideal for the sort of information you’re storing in them for our purposes
 here: secure user name and passwords.
That’s why there’s a Chapter 14. Have no fear;
 even though you’ll change the manner in which you use cookies, everything you’re
 learning here will be important in your final authentication solution. Besides,
 there are plenty of times when cookies are helpful, and they’ll be a staple of your
 programming toolkit.

Create and Retrieve Cookies

You’re almost ready to jump into scripting again, and that’s where all the fun is.
 (It’s certainly not as much fun reading about code as it is writing code.) All that’s left is to learn how to
 write cookies and then look them up and get their values. Thankfully, PHP makes this
 as simple as working with the superglobals with which you’ve already become
 accustomed: $_SERVER and $_REQUEST.
To set a cookie, you simply call setcookie and
 supply the cookie’s name and value:
setcookie("username", "my_username");
Once a cookie is set, you retrieve the value you just set with the $_COOKIE superglobal:
echo "You are signed in as " . $_COOKIE['username'] . ".";
It’s that simple. Sure, there are some wrinkles here and there, and you’ll add a
 bit of nuance to your cookie creation, but if you have setcookie and $_COOKIE down, you’re
 ready to roll.
Note
One of those nuances that you might already be thinking about is the cookie’s expiration value. You can pass that as a third
 value to setcookie, but for now, don’t concern
 yourself with it.

Logging In with Cookies

You know what cookies are, and you know the flow of the sign-in form. Now, it’s time
 to write some code. Create signin.php and start with the basic outline:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {

 // See if a login form was submitted with a username for login
 if (isset($_REQUEST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // Look up the user

 // If user not found, issue an error
 }

 // Still in the "not signed in" part of the if
 // Start the page, and we know there's no success or error message
 // since they're just logging in
 page_start("Sign In");
?>

<html>
 <div id="content">
 <h1>Sign In to the Club</h1>
 <form id="signin_form" action="signin.php" method="POST">
 <fieldset>
 <label for="username">Username:</label>
 <input type="text" name="username" id="username" size="20" />

 <label for="password">Password:</label>
 <input type="password" name="password" id="password" size="20" />
 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Sign In" />
 </fieldset>
 </form>
 </div>
 <div id="footer"></div>
 </body>
</html>

<?php
} else {
 // Now handle the case where they're logged in
 // redirect to another page, most likely show_user.php
}
?>
Note
Did you notice that database_connection.php is required for
 logging the user in but app_config.php isn’t? You can include
 app_config.php because there’s a good chance that you’ll need it
 at some point, but you might also remember that
 database_connection.php actually requires
 app_config.php itself. So, if you require
 database_connection.php, you really get a require_once for app_config.php for
 free.

This script is far from complete and has several problems, but it’s still a lot of
 code. Let’s take it piece by piece.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Determining Whether the User Is Already Signed In

Even if a user comes to your sign-in page explicitly, you shouldn’t make him sign in
 if he’s already in. So the first thing to do (other than a few require_once lines) is establish whether the “user_id” cookie is set. If
 it’s not, the user is not logged in, and everything flows from there.
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {
Here’s your first clue that cookies aren’t much different than what you’ve already
 been using: you can use isset to see if it’s already created and then you just pass in the cookie name. Piece of
 cake.

Is the User Trying to Sign In?

If the “user_id” cookie isn’t set, the user is not logged in. The next thing to
 check, then, is whether he’s trying to log in. This would mean that
 you have some request information. In fact, the user might have filled out the HTML form
 already (later in this script) and submitted that form back to this script.
However, that’s not the same as trying to access this script without any
 information. In that case, the user should just get the regular HTML sign-in form. As a
 result you can see whether there’s a submission by checking if there’s anything in the
 $_REQUEST superglobal for “username,” a field from
 the sign in form:
// See if a login form was submitted with a username for login
if (isset($_REQUEST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // Look up the user

 // If user not found, issue an error
}
If there’s request data, you can get the user name and password that have been
 submitted, and (in a moment) look up the user and deal with any problems.
Before you do that, though, there’s a nice change you can make. So far, you’ve been
 using $_REQUEST for everything. It takes in GET
 requests—which are requests where information is passed through the URL—and POST
 requests, like the ones that most of your forms have issued. But, you already know that
 the only way information should get to this stage is by a submission from your own form,
 which will use a POST request.
It would probably be better to replace $_REQUEST
 with a more specific superglobal: $_POST, which only
 has request data from a POST request.
Note
As you’ve probably already guessed, $_POST has
 a counterpart for GET requests: $_GET. For more
 detail on the differences, see the box on Post It or Get It?.

It’s a good idea to begin moving toward the more specific $_POST when possible. POST
 data prohibits parameters on the request URL, and it’s generally a bit more
 secure.
Warning
The emphasis here is on “bit.” POST data is a little harder to get at than GET
 data, but not by much. Never think that a form that POSTs data is secure in and of
 itself. That’s by no means the case.

Make that small change to your script:
// See if a login form was submitted with a username for login
if (isset($_POST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // Look up the user

 // If user not found, issue an error
}
FREQUENTLY ASKED QUESTION: Post It or Get It?
$_REQUEST, $_POST, and $_GET all seem to do the same thing: take in a value.
 How do I know which one to use?
Ahh, yes, another quibble over which programmers can argue, demonize, and distort.
 No matter what you hear, there’s just no functional difference between $_REQUEST, $_GET, and $_POST in terms of getting request information. $_REQUEST will always have what’s in both $_GET and $_POST, but if you know
 you’ve got a POST request, you don’t gain or lose anything by using $_REQUEST over $_POST.
In fact, not only does $_REQUEST have the
 combined values from $_GET and $_POST, it has the contents of $_COOKIE in it too (at least by default). Technically, you could do this
 in signin.php:
// If the user is logged in, the
// user_id cookie will be set

if (!isset($_REQUEST['user_id'])) {
In other words, you could use $_REQUEST and
 totally ditch $_GET, $_REQUEST, and $_COOKIE. But, think back to all the programming
 principles you’ve been learning: make your code clear and readable; be specific over
 being just generic; and think about what those who have to work with your code after
 you will see. For all of those reasons, although $_REQUEST isn’t bad, it’s often helpful to use $_GET and $_POST and $_COOKIE when that’s what you’re dealing with.
In the case of signin.php, you know you’re getting a POST
 request. Given that, use $_POST when you can. If
 you know you’re getting a GET request, use $_GET.
 And if you’re looking for a cookie, use $_COOKIE.
 Your code will be clearer and more specific, and most of all, you’ll know exactly what
 it’s intended to do.

Displaying the Page

Whether the user got to this page by submitting incorrect credentials or by
 submitting no credentials at all, she should see a form. You’re now ready to display
 some HTML.
Note
If the user logs in successfully, your code will need to redirect her elsewhere.
 Therefore, that code block that checks user names and passwords needs to eventually
 forward the user on to another location if her login is successful.

 // Still in the "not signed in" part of the if
 // Start the page, and we know there's no success or error message
 // since they're just logging in
 page_start("Sign In");
?>

<html>
 <div id="content">
 <h1>Sign In to the Club</h1>
 <form id="signin_form" action="signin.php" method="POST">
 <fieldset>
 <label for="username">Username:</label>
 <input type="text" name="username" id="username" size="20" />

 <label for="password">Password:</label>
 <input type="password" name="password" id="password" size="20" />
 </fieldset>

 <fieldset class="center">
 <input type="submit" value="Sign In" />
 </fieldset>
 </form>
 </div>
 <div id="footer"></div>
 </body>
</html>
Don’t miss that opening comment block; it’s an important one. This code, including
 the HTML, is all still part of the opening if
 block:
// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {
In other words, all of this HTML is shown if, and only if, the user is not logged
 in.
There’s another small improvement you can make here, in the same vein as using
 $_POST instead of $_REQUEST. Take a look at this line:
<form id="signin_form" action="signin.php" method="POST">
This line instructs the form to submit to the same script that’s generating the
 form. There’s nothing wrong with it, but what if you were to rename
 signin.php? It might be a remote possibility, but all the same,
 it’s not unrealistic. (It wasn’t that long ago that you moved away from calling a script
 admin.php and instead went with the more functionally named
 delete_user.php and show_users.php.)
Remember that PHP loves this script-submitting-to-script paradigm. In fact, just to
 make it a bit easier, there’s a property in $_SERVER
 that furnishes the current script name. No, it’s not there just for self-referential
 scripts, but it sure does help. Update signin.php to take advantage
 of $_SERVER[‘PHP_SELF’]:
<form id="signin_form"
 action="<?php echo $_SERVER['PHP_SELF']; ?>"
 method="POST">
With this addition, the form submits, literally, to itself. A small change, but a
 good one, and one you’ll find yourself coming back to over and over again.

Redirecting as Needed

The only thing left, at least in this pseudocode version, is to redirect the user if she’s logged in:
<?php
} else {
 // Now handle the case where they're logged in
 // redirect to another page, most likely show_user.php
}
?>
You have the basic flow, but there’s loads of stuff missing. Time to dig in and
 start piecing this code into a usable form. (For more advice on how to get started, see
 the following box.)
POWER USERS’ CLINIC: Pseudocode with Comments and Real Code
It might seem strange to think of signin.php as it currently
 exists as pseudocode, but that’s just what it is. It’s certainly not a complete
 working script; there are numerous holes through which you could drive a truck.
 Fortunately, those holes are generally indicated with a helpful, clear comment.
 Although those comments don’t do anything programmatically, they do remind you of
 what you need to do and where you need to
 do it.
Truth be told, pseudocode is often best done in just this way. You’re not wasting
 time writing non-existent function names like check_the_user_credentials(). But you’re accomplishing the same goal with
 comments like:
// Look up the user

// If user not found, issue an error
Those comments are just as useful, and they can stay put as you write code
 under each comment that fills out the script’s
 functionality.

Before you begin, though, you can already get a good idea of this flow. Right now, a
 non-logged-in user will get the HTML output, without all the PHP that runs when there’s
 a user name coming in through a POST request. As a result, Figure 13-3 is the default view, so to
 speak.
When you try to submit the form—with a good or bad user name—you get the same form over again. Not so great, but it’s a place
 to start, and you can begin to tackle each individual piece of functionality.
[image: It might seem a bit odd, but the same PHP script that checks login credentials now grabs them from your users. This is just a simple HTML form, because there’s no user_id cookie and no user name in the POST data.]

Figure 13-3. It might seem a bit odd, but the same PHP script that checks login credentials
 now grabs them from your users. This is just a simple HTML form, because there’s no
 user_id cookie and no user name in the POST data.

Logging In the User

The next bit of code is nothing more than a copy-paste-and-modify job from
 authorize.php. Here’s where that script left off:
// Look up the user-provided credentials
$query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 mysql_real_escape_string(trim($_SERVER['PHP_AUTH_USER'])),
 mysql_real_escape_string(
 crypt(trim($_SERVER['PHP_AUTH_PW']),
 $_SERVER['PHP_AUTH_USER'])));

$results = mysql_query($query);

if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $current_user_id = $result['user_id'];
 $current_username = $result['username'];
} else {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="The Social Site"');
 exit("You need a valid username and password to be here. " .
 "Move along, nothing to see.");
}
Pretty good, although it all depends on HTTP authentication. Now, you can drop that
 into signin.php, change the successful block to set some cookies,
 and redirect somewhere useful:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {

 // See if a login form was submitted with a username for login
 if (isset($_POST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // Look up the user
 $query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 $username, crypt($password, $username));

 $results = mysql_query($query);

 if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $user_id = $result['user_id'];
 setcookie('user_id', $user_id);
 setcookie('username', $result['username']);
 header("Location: show_user.php");
 exit();
 } else {
 // If user not found, issue an error
 }
 }

 // Still in the "not signed in" part of the if
 // Start the page, and we know there's no success or error message
 // since they're just logging in
 page_start("Sign In");
?>
Open up signin.php, and you should see the login form (refer
 back to Figure 13-3 to ensure that you’re
 on the right page with the right HTML). Use some valid credentials, and you should
 successfully log in, have a cookie set, and be passed over to
 show_user.php (see Figure 13-4).
[image: Once again, victory is signified by getting to a page you’ve long since completed. Here, it’s getting to show_user.php with the user who just logged in. There’s no browser magic here (well, not in the authentication bit), and no HTTP authentication. Just good old-fashioned PHP, MySQL, and some help from cookies.]

Figure 13-4. Once again, victory is signified by getting to a page you’ve long since
 completed. Here, it’s getting to show_user.php with the user who just logged in.
 There’s no browser magic here (well, not in the authentication bit), and no HTTP
 authentication. Just good old-fashioned PHP, MySQL, and some help from
 cookies.

Did you notice anything odd in that last bit of redirection? Here’s the line where
 the redirect is sent to the browser:
if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $user_id = $result['user_id'];
 setcookie('user_id', $user_id);
 setcookie('username', $result['username']);
 header("Location: show_user.php");
 exit();
} else {
 // If user not found, issue an error
}
If no bells are ringing, check out create_user.php (Updating Your User Creation Script). That script creates a user and
 redirects her to show_user.php. Here’s the relevant line:
header("Location: show_user.php?user_id=" . mysql_insert_id());
Here, additional information is sent: the user_id
 of the user to display, sent as a GET parameter within the request URL. However, in
 signin.php, there’s no user_id
 parameter. Figure 13-4 confirms that
 things work.
All the same, show_user.php expects that information:
// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];
So, how does this work in signin.php? The answer lies in how
 $_REQUEST works and what information it contains.
 For starters, read the box on Post It or Get It? if you haven’t
 already. You’re setting a cookie in signin.php, and that cookie is
 accessible through the $_COOKIE superglobal. But,
 $_REQUEST also contains what’s in $_COOKIE—along with what’s in $_POST and $_GET. As a result,
 this
$user_id = $_REQUEST['user_id'];
is actually just as good as the following for getting the value in a cookie:
$user_id = $_COOKIE['user_id'];
Note
The obvious question is, “Which should you use: $_COOKIE or $_REQUEST? As usual, it
 depends. Here, if you switch to $_COOKIE, you’ll
 need to update create_user.php. It might be best to leave this as
 $_REQUEST, at least for now, because it makes
 show_user.php a little more flexible. It accepts request
 parameters and cookies, and that’s a nice thing. Later, if you move to using only
 cookies, you can update show_user.php to use $_COOKIE and be more specific.

Blank Pages and Expiring Cookies

At some point as you’re trying things out, you might get a strange response. You
 enter in signin.php in your URL bar, you press enter, and you end
 up with a blank page, like the one in Figure 13-5.
[image: Nobody said that testing authentication wasn’t a hassle. This blank screen actually means that your login and cookie setting are working. Clearly, this can’t be right. The answer lies in the fact that you’re once again stuck in a loop, as you’ll see on the next few pages.]

Figure 13-5. Nobody said that testing authentication wasn’t a hassle. This blank screen
 actually means that your login and cookie setting are working. Clearly, this can’t be
 right. The answer lies in the fact that you’re once again stuck in a loop, as you’ll
 see on the next few pages.

You try it again. You try to reload. You try to clear your cache. Nothing! Finally,
 you restart your browser, and things start to behave. But no sooner have you signed in
 through signin.php than it’s happening again. What’s up?
Actually, this is a sign that things are working correctly.
 Remember that in your script, the first conditional checks for a cookie:
// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {
If this cookie is set, the script jumps all the way down to this bit at the bottom
 of your file:
<?php
} else {
 // Now handle the case where they're logged in
 // redirect to another page, most likely show_user.php
}
?>
There’s nothing there, so you get a blank browser. You can fix this (kind of) by
 setting up a default action for users who are sent to signin.php
 and yet are already logged in. In fact, it’s the same thing you did earlier for a login:
 redirect them to show_user.php:
} else {
 // Now handle the case where they're logged in
 header("Location: show_user.php");
 exit();
}
Now, there’s no more blank screen. Your show_user.php script
 picks up on the “user_id” cookie and shows the currently logged-in user. Good, right?
Well, sort of. It still leaves you in an endless loop. It’s just that now you’re
 looping on the nice looking show_user.php rather than a
 crummy-looking blank page. You’ll need to completely close out your browser to stop the
 madness—which is exactly as it should be. Just as when you logged in via HTTP
 authentication, logging in and setting a cookie sets that cookie to exist until the
 browser is closed.
Note
The default value for the third parameter of setcookie is “0”. This means that the cookie expires at the end of the
 user’s session, which is when the user closes his browser.

If you need to get out of this loop, just close your browser. Be sure to close the
 program, not just the current tab or window. This will cause a cookie that has a default
 expiration value to expire.
To set the cookie to last longer (or shorter), just pass a third parameter to
 setcookie. That third parameter should be expressed
 in the number of seconds from what Unix and Linux systems call the
 epoch, January 1, 1970, at 0:00 GMT. You usually pass in time, which gives the current time—also in seconds since the
 epoch—and then add to that. Thus, time() + 10 would
 be 10 seconds in the future, as reckoned from the epoch.
Here are just a few examples of setcookie with a
 set expiration time:
// Expire in an hour (60 seconds * 60 minutes = 3600)
setcookie('user_id', $user_id, time() + 3600);

// This actually deletes the cookie, since it indicates an
// expiration in the past
setcookie('user_id', $user_id, time() - 3600);

// The default: expire on browser close
setcookie('user_id', $user_id, 0);
You can also supply a time via mktime, which
 takes an hour, date, second, month, day, and year, and returns the number of seconds
 since the epoch (again); therefore
setcookie('user_id', $user_id, mktime(0, 0, 0, 2, 1, 2021);
sets a cookie to expire on February 1, 2021, GMT. That’s a little far away, wouldn’t
 you say? In general, the default value is perfectly reasonable. Most users are
 comfortable signing in again when their browser closes. In fact, many users would
 not be comfortable with their login lasting on and on,
 potentially in perpetuity.
Note
The notable exceptions here are sites like Facebook and Twitter that don’t contain
 a lot of valuable user information. By contrast, most financial sites like banks don’t
 even wait for your browser to close; they’ll force your session to expire every 10
 minutes or so.

Close your browser, which will terminate your cookies, and open signin.php again for some more
 improvement.

Errors Aren’t Always Interruptive

At this juncture, you have a potential error with which you must deal: the else that’s run when the user’s user name and password don’t
 match that which is in the database:
if (mysql_num_rows($results) == 1) {
 // set a cookie and redirect to show_user.php
} else {
 // If user not found, issue an error
}
Your typical error handling so far has been via handle_error. But that’s no good; you don’t want to short-circuit the login
 process by throwing the user out to an error page. She would have to get back to the
 login page, try again, and potentially go to the error page yet again.
What you need is a means by which you can show any errors without interrupting the application’s overall flow. When something
 goes badly wrong, handle_error makes perfect sense; a
 major error deserves to interrupt your application. But here, you need a
 non-interruptive way to show errors.
You do in fact have another way to show errors: the page_start
 function in view.php. Right now, you’re calling this
 function in signin.php, but without anything apart from the page
 title:
page_start("Sign In");
Back in view.php (Just Pass That Information Along), you can see the complete set of
 arguments this method takes:
function page_start($title, $javascript = NULL,
 $success_message = NULL, $error_message = NULL) {
Normally, you’ve been passing in any request parameters as the values for $success_message and $error_message, but that’s not a requirement. You can create a new variable
 called $error_message, fill it with text as your
 script progresses, and then hand it off to page_start
 as the HTML output commences.
Here’s what you need to add:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

$error_message = "";

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {

 // See if a login form was submitted with a username for login
 if (isset($_POST['username'])) {
 // Try and log the user in

 // Look up the user

 if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $user_id = $result['user_id'];
 setcookie('user_id', $user_id);
 setcookie('username', $result['username']);
 header("Location: show_user.php");
 exit();
 } else {
 // If user not found, issue an error
 $error_message = "Your username/password combination was in
valid.";
 }
 }

 // Still in the "not signed in" part of the if
 // Start the page, and pass along any error message set earlier
 page_start("Sign In", NULL, NULL, $error_message);
?>

<!-- Rest of HTML output -->

<?php
} else {
 // Now handle the case where they're logged in
 // redirect to another page, most likely show_user.php
 header("Location: show_user.php");
 exit();
}
?>
Warning
Remember, this cookie-based solution is a step toward a final solution, but it is
 not the final solution itself. In the next chapter, you’ll add support for sessions
 and move information like a user name and user ID out of a user’s cookie and onto the
 server.
Whatever you do, keep reading! You’ll need the cookie skills you’re learning here,
 but you’ll add session support to those skills in the next chapter. Woe be the PHP
 programmer who uses cookies, and only cookies, for authentication.

Now visit signin.php (or index.html and
 click the Sign Up button). Uh oh! Figure 13-6 reveals there’s still a problem
 somewhere.
[image: That’s a strange sight: an error-less error. But, because this is probably the second screen all of your users will ever see, it’s a big issue. Still, by now, you’re probably already thinking about what the problem is and how you’ll fix it quickly.]

Figure 13-6. That’s a strange sight: an error-less error. But, because this is probably the
 second screen all of your users will ever see, it’s a big issue. Still, by now, you’re
 probably already thinking about what the problem is and how you’ll fix it
 quickly.

This predicament is typical of application work. You take a function you wrote ages
 ago—the code in view.php that shows an error, in this case—and then
 use it in a different way later. That’s when the bugs appear.
In this case, the problem is that you’re calling page_start with $error_message, but in
 some cases, $error_message is blank. It’s an empty
 string, "", so nothing should be shown. Check out
 view.php, and find display_message:
function display_messages($success_msg = NULL, $error_msg = NULL) {
 echo "<div id='messages'>\n";
 if (!is_null($success_msg)) {
 display_message($success_msg, SUCCESS_MESSAGE);
 }
 if (!is_null($error_msg)) {
 display_message($error_msg, ERROR_MESSAGE);
 }
 echo "</div>\n\n";
}
In this case, $error_message
 isn’t null. It’s an empty string that the if block lets pass, causing a blank error message to appear in a red box:
 not so good.
The fix is no problem, though. Simply determine whether $error_message is not null, and whether it has a length greater than 0.
 While you’re at it, make the same improvement to the handling of success messages:
function display_messages($success_msg = NULL, $error_msg = NULL) {
 echo "<div id='messages'>\n";
 if (!is_null($success_msg) && (strlen($error_msg) > 0)
) {
 display_message($success_msg, SUCCESS_MESSAGE);
 }
 if (!is_null($error_msg) && (strlen($error_msg) > 0)
) {
 display_message($error_msg, ERROR_MESSAGE);
 }
 echo "</div>\n\n";
}
Now you should see a proper sign in form, as demonstrated in Figure 13-7.
Try to enter an incorrect user name or password, and you should see a nice, clear
 error that doesn’t pull you out of the login process. Figure 13-8 shows this message. Better still,
 your user can immediately re-enter her information.
[image: It makes no sense to present a user with an error the first time she sees the sign in form. But after she’s tried an incorrect user name or password, that’s when you want to let her know there’s a problem.]

Figure 13-7. It makes no sense to present a user with an error the first time she sees the
 sign in form. But after she’s tried an incorrect user name or password, that’s when
 you want to let her know there’s a problem.

[image: Now this is a solid non-interruptive error. It’s impossible to miss, it creates a change that lets the user know something needs her attention, but it’s not over the top. The user can try again…and again…and again.]

Figure 13-8. Now this is a solid non-interruptive error. It’s impossible to miss, it creates a
 change that lets the user know something needs her attention, but it’s not over the
 top. The user can try again…and again…and again.

An Option for Repeat Attempts

At this point, your sign-in page is functionally complete. However, there’s one more
 option that you can provide to your users: reloading their user name on login failure. Some sites do this, and some
 don’t. It’s a matter of opinion, but even if you choose not to implement this feature,
 you should know how to implement it.
If you need to display a user name, this means that the user has already submitted
 the form at least once before. That places you squarely in this portion of
 signin.php:
if (isset($_POST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // and so on...
}
The user name has been sent, but the login failed. However, you still have the
 $username variable ready to display.
Now, move into the HTML. You can set the value of a form field with the value attribute, and you’ve got the attribute value in
 $username. Put that together, and you’ll end up
 with something like this:
<label for="username">Username:</label>
<input type="text" name="username" id="username" size="20"
 value="<?php if (isset($username)) echo $username; ?>
" />
That’s all there is to it. Enter a user name, submit the sign-in page, and you
 should see an error, but now you’ll also see the previously entered user name. Take a
 look at Figure 13-9 for the
 details.
[image: You’ll have to decide for yourself whether you want to reshow previously entered user names. On the one hand, it’s a nice feature. On the other hand, though, the user name might be part of the problem. By displaying it again, you might be implying that the user name is correct when it’s not.]

Figure 13-9. You’ll have to decide for yourself whether you want to reshow previously entered
 user names. On the one hand, it’s a nice feature. On the other hand, though, the user
 name might be part of the problem. By displaying it again, you might be implying that
 the user name is correct when it’s not.

Adding Context-Specific Menus

Menus and navigation deserve a lot more than a brief mention in a chapter. There’s a
 ton of user interface design and usability to discuss; there are the considerations
 regarding; and there’s the ever-raging argument over horizontal versus vertical menus.
 Still, these are all non-PHP issues. For you, PHP programmer extraordinaire, the concern
 is building out links and options that change based upon whether a user is logged
 in.
You already have a sense of this. You can just check the “user_id” cookie:
if (isset($_COOKIE['user_id'])) {
 // show options for logged in users
} else {
 // show options for non-logged in users
}
That’s all there is to it.
Note
You can find the finished example code for this section on this book’s Missing CD
 page at www.missingmanuals.com/cds/phpmysqlmm2e.

Putting a Menu into Place

Go back to view.php, which is where all the code that controls
 the header of your page resides. Having some of your core view code tucked away in
 scripts that the rest of your pages can reference makes a huge difference. The display_title
 function handles the first bits of a displayable page right now.
Find that function, and you can add a simple if:
 if the “user_id” cookie exists, show a profile link to
 show_user.php and a signout.php link (more
 on that in a bit). If he’s not signed in, show him a Sign In link. Of course, you can
 add a Home link that appears regardless:
function display_title($title, $success_message = NULL, $error_message = NULL)
{
echo <<<EOD
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">$title</div>
 <div id="menu">

 Home

EOD;
 if (isset($_COOKIE['user_id'])) {
 echo "My Profile
";
 echo "Sign Out
";
 } else {
 echo "Sign In
";*
 }
echo <<<EOD

 </div>
EOD;
 display_messages($success_message, $error_message);
}
There’s a twofold beauty to this. First, this menu is now available to all scripts
 via view.php. This means that you don’t need to go rooting through
 all your files and insert new HTML and if statements
 to get a site-wide menu. Second, because you dropped this code into display_title, any of your scripts
 that already call display_title automatically get the
 menu code. Nothing to change in those at all.
Also, once again, the fact that $_REQUEST will
 return anything in $_COOKIE makes this script
 simple:
if (isset($_COOKIE['user_id'])) {
 echo "My Profile
";
 echo "Sign Out";
} else {
 echo "Sign In";
}
You’re not worried about passing a user’s ID into
 show_user.php, because there’s a cookie set, and you’ve already
 seen that show_user.php is happy to grab that value through
 $_REQUEST['user_id'], just as though you’d
 explicitly passed in a user ID through a request parameter.
FREQUENTLY ASKED QUESTION: Signing Out
Does anyone actually sign out these days?
It’s true: unless people are on a financial site—their bank or perhaps a stock
 trading site—logging and signing out is largely never touched. Most Internet users are
 not very security conscious, and there’s also an expectation that a website will
 simply remember them when they return later. Signing out would prevent that, so why do
 it?
There are good reasons to add sign-out capabilities to any app. First, if users
 are accessing your app on a public computer or shared laptop, you want to ensure that
 they can protect their credentials by signing out before letting
 anyone else use the computer. Second, just because most users aren’t security
 conscious doesn’t mean that none are. Give someone the option to sign out, and if he
 doesn’t avail himself of it, no big deal. If he does, he’ll be glad your app gives him
 that control.
And last but not least, you know how to create cookies. It would be a good thing
 to know how to delete them, as well. Thus, adding a sign-out link forces you to get a handle on that, too.

To test this out, open your various scripts that display HTML:
 show_user.php, show_users.php, and
 signin.php. Each should call page_start rather than display HTML explicitly. Otherwise, you’ll lose the
 menu code that you just added to page_start in
 view.php. Here, for example, is what
 show_user.php should look like:
<?php

require '../scripts/database_connection.php';
require '../scripts/view.php';

// Lots of PHP to load the user ID from a request parameter or
// a cookie, look up that user, and set some values.

page_start("User Profile");
?>

 <div id="content">
 <div class="user_profile">
 <h1><?php echo "{$first_name} {$last_name}"; ?></h1>
 <p><img src="<?php echo $user_image; ?>" class="user_pic" />
 <?php echo $bio; ?></p>
 <p class="contact_info">Get in touch with <?php echo $first_name; ?>
:</p>

 ...by emailing him at
 <a href="<?php echo $email; ?>"><?php echo $email; ?>

 ...by
 <a href="<?php echo $facebook_url; ?>">checking him out on
 Facebook
 ...by <a href="<?php echo $twitter_url; ?>">following him
 on Twitter

 </div>
 </div>
 <div id="footer"></div>
 </body>
</html>
Now, sign in. You should automatically land on show_user.php
 and see something like Figure 13-10.
 There’s a nice, simple menu on the right that appears, thanks to start_page, display_title, view.php,
 and the cookies you set in signin.php.
[image: The menu at the upper right gives you only three basic options. Still, it’s easy to build this script now that you have a basic mechanism for displaying the page for authenticated users, and hiding it for others. You can add all the links and sublinks that your application needs; and as long as they’re in the portion of the if block in display_title that requires a cookie, you’re good to go.]

Figure 13-10. The menu at the upper right gives you only three basic options. Still, it’s easy
 to build this script now that you have a basic mechanism for displaying the page for
 authenticated users, and hiding it for others. You can add all the links and sublinks
 that your application needs; and as long as they’re in the portion of the if block in
 display_title that requires a cookie, you’re good to go.

From HTML to Scripts

You might have noticed that even once you’ve fixed up show_user.php,
 show_users.php, and signin.php, there are still HTML
 web pages left in your application. There’s index.html, the initial
 page, as well as create_user.html. But, these pages don’t get the
 benefit of start_page and
 view.php, because they’re HTML, not PHP. For
 index.html, that probably makes sense. The only two places you
 want users to go is the sign-in page or the sign-up page; both are clearly accessible
 through those big green buttons.
However, that’s not the case with create_user.html. Suppose
 that someone clicks through to that form and then wants to return to the main page. Or,
 more likely, she might want to sign in rather than sign up. This becomes even more the
 case as you add other options to the menu, such as an About page. Clearly,
 create_user.html needs that menu.
Any HTML File Can Be Converted to PHP

In essence, all you have to do is convert create_user.html to
 PHP. You could call it create_user.php—apart from the fact that
 create_user.php already exists. So, as a starting point, rename
 create_user.html to signup.php. After all,
 it’s a form for signing up users, and the name doesn’t clash with any other file
 names.
[~/www/phpMM/ch13]# cp create_user.html create_user.html.orig
[~/www/phpMM/ch13]# mv create_user.html signup.php
Note
There’s never a bad time to back things up, create copies of original files, and
 ensure that you can reverse any change you make. You can accomplish that through a
 full-fledged, site-wide backup strategy, or just a duplicate of a file with a clear
 backup-related name.

Then, you can simply cut out the opening HTML and replace it with a PHP-driven
 call to page_start. You’ll have to pass through all
 that inline validation JavaScript, but that’s easy now; you can just use
 heredoc.
<?php

require_once "../scripts/view.php";

$inline_javascript = <<<EOD
 $(document).ready(function() {
 $("#signup_form").validate({
 rules: {
 password: {
 minlength: 6
 },
 confirm_password: {
 minlength: 6,
 equalTo: "#password"
 }
 },
 messages: {
 password: {
 minlength: "Passwords must be at least 6 characters"
 },
 confirm_password: {
 minlength: "Passwords must be at least 6 characters",
 equalTo: "Your passwords do not match."
 }
 }
 });
 });
EOD;
page_start("User Signup", $inline_javascript);
?>

 <div id="content">
 <h1>Join the Missing Manual (Digital) Social Club</h1>
 <p>Please enter your online connections below:</p>
 <form id="signup_form" action="create_user.php"
 method="POST" enctype="multipart/form-data">
 <!-- Form content -->
 </form>
 </div>

 <div id="footer"></div>
 </body>
</html>
This is also a good time to update view.php to include the
 jQuery, validation scripts, and CSS that signin.php needs. There’s no
 reason to not make those available to all your site’s pages:
function display_head($page_title = "", $embedded_javascript = NULL) {
echo <<<EOD
<html>
 <head>
 <title>{$page_title}</title>
 <link href="../css/phpMM.css" rel="stylesheet" type="text/css" />
 <link href="../css/jquery.validate.password.css" rel="
stylesheet"
 type="text/css" />
 <script type="text/javascript" src="../js/jquery-1.8.1.min.js"
></script>
 <script type="text/javascript" src="../js/jquery.validate.min
.js"></script>
 <script type="text/javascript"
 src="../js/jquery.validate.password.js"></script
>
EOD;
 if (!is_null($embedded_javascript)) {
 echo "<script type='text/javascript'>" .
 $embedded_javascript .
 "</script>";
 }
 echo " </head>";
}
Update your links in index.html to reference
 signup.php rather than
 create_user.html:
<div id="content">
 <div id="home_banner"></div>
 <div id="signup">
 <img src="../images/sign_me_up.pn
g" />

 </div>
</div>
Take a break to check out the new page—and what should be a new menu. The results
 are shown in Figure 13-11. This is the
 “not logged in” version of the menu, so now you’ve tested both versions.
[image: The menu in its current state doesn’t offer a ton of new functionality. Still, lots of users forget they’re signed up for a site and need a simple way to get to the sign-in page rather than the sign-up page. In addition, you can add About information, Contact information, and anything else you want that might not require authentication, and it all becomes available to this form now.]

Figure 13-11. The menu in its current state doesn’t offer a ton of new functionality. Still,
 lots of users forget they’re signed up for a site and need a simple way to get to
 the sign-in page rather than the sign-up page. In addition, you can add About
 information, Contact information, and anything else you want that might not require
 authentication, and it all becomes available to this form now.

Challenge: Be Self-Referential with User Creation

By now, you realize that you don’t need two scripts to handle user creation. You could create a single script that
 submits to itself. That lets you not only do the client-side validation already in
 place with jQuery and JavaScript, but also check user names and emails against the
 database and return errors if there are duplicates.
At this stage, though, you don’t need to see another painfully long code listing.
 You have all you need to do it yourself. Set this book down and start combining
 signin.php and create_user.php. As always,
 there’s swag to be had by tweeting your solution to
 @missingmanuals or hopping on Facebook at http://www.facebook.com/MissingManuals.

Logging Users Out

Your login now works, but don’t forget to add logging out. Whether you set your cookie’s expiration value to a short few
 minutes or a long one, always let users control their own authentication. They should be
 able to log in and log out when they want.
Logging in involves setting a cookie name, value, and optionally, a time for
 expiration:
setcookie('user_id', $user_id); // Defaut expiration:
setcookie('username', $result['username']); // Log out on browser close
Logging out is much the same, but inverted. Just set the cookie’s value to
 an empty value, and set the expiration to a point in the past:
// Expire the user_id cookie with a date a year in the past
setcookie('user_id', '', time()-(60*60*24*365));
In this case, the value of the cookie’s user_id
 is set to nothing (an empty string), and the expiration date is set to a year in the
 past.
Note
Be sure to set the expiration well into the past. That way, if the system time on
 your server is off by a few minutes or even days, it doesn’t affect your code. (Then
 again, if the system time is more than a year off, well, you have much bigger
 issues.)

Turning this into a script is awfully simple. Just expire the two cookies your app
 uses (user_id and username) and redirect the user back to a home page or sign-in page. Create
 this script and save it as signout.php.
<?php

setcookie('user_id', '', time()-(365*24*60*60));
setcookie('username', '', time()-(365*24*60*60));

header('Location: signin.php');
?>
Try it out. Visit your app (after closing your browser and clearing any cookies) and
 sign in as a known user. You should be able to visit show_user.php,
 show_users.php, and delete users. That’s all working as it should.
Note
Well, it’s kind of working. Any old user shouldn’t be able to see all the users
 and delete users, but you’ll fix that shortly.

Now, click the Sign Out link on the menu. You should be redirected to the sign-in
 page. You also can visit pages that require a user ID, and you’ll not see your user’s
 profile. That’s good—but the result isn’t. Check out Figure 13-12.
Signing out appears to be working, but it’s revealed a nasty hole in the app: pages
 that shouldn’t be accessible at all are accessible. They just error
 out, which is arguably worse than just letting unauthorized users see them. No matter
 how you cut it, there’s an issue to be resolved.
[image: Well, there’s definitely no value in the user_id cookie. But, this error page is no help to the users seeing it. Instead, they should see some sort of error about not being logged in. Or, even better, the sign-in page should be displayed so that users can sign in and access your system.]

Figure 13-12. Well, there’s definitely no value in the user_id cookie. But, this error page is
 no help to the users seeing it. Instead, they should see some sort of error about not
 being logged in. Or, even better, the sign-in page should be displayed so that users
 can sign in and access your system.

Requiring the Cookie to Be Set

Fortunately, the issue of error pages showing up at the wrong time isn’t hard to fix. Earlier,
 show_user.php and other restricted scripts required
 authorize.php (Another Utility Script: authorize.php), which did all sorts of database work
 to determine whether a user could log in, all using basic HTTP authentication. As a
 result, you got a nice wall around your scripts.
By removing authorize.php, it became possible to have
 signin.php handle logins. In the process, though, you knocked
 down that wall around your other scripts. You need the wall, but you still need to let
 signin.php handle authentication. That’s not hard.
First, you can drastically simplify authorize.php. Chop it down
 to do little more than check for a valid cookie:
<?php

if ((!isset($_COOKIE['user_id'])) ||
 (!strlen($_COOKIE['user_id']) > 0)) {
}
?>
If there’s no cookie, or if the cookie has an empty value, just redirect the user to the
 sign-in page with a message that explains what’s going on:
<?php

if ((!isset($_COOKIE['user_id'])) ||
 (!strlen($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit();
}
?>
Warning
The exit here is important. Because this code
 will run and then pass control back to the calling script—show_user.php,
 delete_user.php, or whatever else—you need to ensure that those scripts
 don’t continue to try to run. Send the redirect headers and bail out of any further
 action.

Next, you can add the require_once back in to
 show_user.php, show_users.php, and
 delete_user.php.
Test it. Make sure that you’re signed out (signout.php via the
 menu link makes that a breeze now). Then, try to access
 show_user.php. You see signs of progress, although things aren’t
 perfect yet. Figure 13-13 is a good start,
 though.
[image: Attempts to access secure pages are sent to the sign-in page. That’s good, but where’s the helpful message? Notice that it’s in the request URL, but doesn’t show up on the page.]

Figure 13-13. Attempts to access secure pages are sent to the sign-in page. That’s good, but
 where’s the helpful message? Notice that it’s in the request URL, but doesn’t show up
 on the page.

The missing message in Figure 13-13 is
 due to the fact that there’s nothing in signin.php that deals with
 a potential message on the request URL. Happily, you actually have the mechanics for
 this in place. Open signin.php and check out the opening
 section:
require_once '../scripts/view.php';

$error_message = "";

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {
This is great! You have a variable to hold the error message in place. And, you
 already have code to display $error_message as an
 error:
// Still in the "not signed in" part of the if
// Start the page, and pass along any error message set earlier
page_start("Sign In", NULL, NULL, $error_message);
Now, you just need to see whether there’s a request parameter back up at the top rather than automatically assigning $error_message an empty string:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

$error_message = $_REQUEST['error_message'];

// If the user is logged in, the user_id cookie will be set
if (!isset($_COOKIE['user_id'])) {
Go ahead and try things one more time. Go to show_user.php
 without having a cookie, and you should see something like Figure 13-14.
[image: Perfect! Blocked access, a helpful error message, and an immediate chance to sign in. That’s just what you want. Things are looking good.]

Figure 13-14. Perfect! Blocked access, a helpful error message, and an immediate chance to sign
 in. That’s just what you want. Things are looking good.

So, what’s left? Take a look back at your original list:
	A better login screen. Folks don’t like a bland, gray pop-up dialog box; they
 want a branded, styled login form. (Done!)

	Better messaging to indicate whether a user is logged in. (Done!)

	A way to log out. (Done!)

	Two levels of authentication: one to get to the main application, and then
 admin-level authentication to get to a page like show_users.php
 and delete_user.php. (Hmmm, nothing here
 yet at all.)

	Some basic navigation. That navigation should change based on a user’s login and
 the groups to which the user belongs. (Sort of
 done…)

Take a quick breath and get ready for the home stretch: group-based authentication
 and the reason that cookies are cool, but maybe not your final authentication
 destination.

Chapter 14. Authorization and Sessions

It’s time to add some refinement to the authentication and navigation systems you built
 in the last couple of chapters. You’ve created an attractive login screen as well as added
 authentication to let users into and out of your application. It’s time to go further:
 authorize.php needs to be improved. It should take in a group (or,
 better, a list of groups) for the user and only allow access if the user is in the permitted
 group, such as an administrator group.
You also have basic navigation, but again, there are some needed improvements: users in
 certain groups should see an option to administrate users and get a link to
 show_users.php (in addition to the standard link to
 show_user.php).
And then…there’s a problem with cookies. In Chapter 13, you learned how to go beyond basic
 authentication by using cookies, and that’s a good thing. But, there are some very real
 concerns surrounding a high-end application using cookies, and only cookies, for
 authentication. In this chapter, you’ll do all of the above and more.
Modeling Groups in Your Database

Before you can look up the groups to which a user belongs, you need to have some
 groups in your database. You need a table to store groups and some means by which you can
 connect a user to a group. Also, you need to be able to connect one user to multiple
 groups.
There are a few distinct steps here:
	Create a table in the database to store
 groups.

	Map a user to zero, one, or more groups.

	Build PHP to look up that mapping.

	Restrict pages based on any login, or a particular set of
 groups.

First things first: It all begins with a database table.
Adding a Groups Table

Creating a new table is a trifling thing for you as a PHP and MySQL
 programmer. You can easily create a new table, name it (groups),
 give MySQL a few columns, specify which are NOT NULL, and bang; you’re quickly past database table creation.
mysql> CREATE TABLE groups (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30) NOT NULL,
 -> description VARCHAR(200)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE groups;
+-------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(30) | NO | | NULL | |
| description | varchar(200) | YES | | NULL | |
+-------------+--------------+------+-----+---------+----------------+
3 rows in set (0.03 sec)
As usual, each group needs an ID and a name. The description column is optional—it’s
 not NOT NULL, which is bad grammar but good database design—and that’s all you
 need.
It’s hard to do much testing without some group information, so go ahead and add a
 few groups into your new groups table:
mysql> INSERT INTO groups
 -> (name, description)
 -> VALUES ("Administrators",
 -> "Users who administrate the entire application.");
Query OK, 1 row affected (0.04 sec)

mysql> INSERT INTO groups
 -> (name, description)
 -> VALUES ("Luthiers",
 -> "Guitar builders. They make the instrument that makes the music.");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO groups
 -> (name, description)
 -> VALUES ("Musicians",
 -> "Play what you feel, they say. And they feel it.");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO groups
 -> (name, description)
 -> VALUES ("Martial Artists",
 -> "Friendship with these folks is like a kick in the head.");
Query OK, 1 row affected (0.00 sec)
Note
Create whichever groups that pertain to your own users. Just be sure to create an
 Administrators group. If you call that group something else, swap that group name in
 whenever this chapter refers to “Administrators.”

As usual, test before moving on:
mysql> SELECT id, name FROM groups;
+----+----------------+
| id | name |
+----+----------------+
| 1 | Administrators |
| 2 | Luthiers |
| 3 | Musicians |
| 4 | Martial Artists |
+----+----------------+
4 rows in set (0.01 sec)

The Many-to-Many Relationship

Next, establish how you’re going to connect users to groups. Before you can start
 worrying about SQL, you need to think clearly about how these two tables are related.
 Relationships help you to determine in what manner tables are linked.
One-to-One, One-to-Many, Many-to-Many

You’ve already seen an example of a one-to-one relationship. For example, when you
 were storing images in your database (Connecting Users and Images),
 you had a single entry in users that was related to a single
 entry in images. This is a one-to-one
 relationship between users and
 images.
With groups, that’s not the case. You’ve already seen that a single user can be in
 zero groups, one group, or many groups. Certainly Michael Greenfield can be a luthier,
 musician, and administrator. You might have another user who is in none of those
 groups.
From that perspective, you have a one-to-many relationship:
 one user can be related to many groups. “Many” doesn’t have a strict literal meaning here, either. It
 means more like “as many as you want.” So, “many” can mean 0, 1, 1,000, or anything in
 between or above.
However, that’s only part of the story. You must also consider the point of view
 of the groups table. A group can have many users. For example,
 the Administrators group might have 4, 5, or 20 users. This means that there’s a
 one-to-many relationship on the groups-to-users side of things as well as on the
 users-to-groups side.
What you have here is a many-to-many relationship between
 users and groups (or, if you like, between groups and users). One user can be in many
 groups; one group can have many users. It’s a multi-sided relationship, which is a bit
 more complex to model at the database level but just as important in the real world of
 data as a one-to-one relationship or a one-to-many relationship.
Note
A good example of a true one-to-many relationship is a user who might have a
 gallery of images. A user can have many images, but that user’s images can’t be
 related to multiple users. It’s a one (user)-to-many (images) relationship.

POWER USERS’ CLINIC: Lots of Programmers Are Secretly Math Geeks
It’s true: most programmers have at least a little love for math, often buried
 somewhere deep down. One proof of this is that many programming concepts share
 naming ideas from math.
For example, you might hear about one-to-one (1-to-1, or even, sometimes,
 1:1) relationships. You’ll also hear about one-to-many relationships.
 But, just as often, you’ll hear about a 1-to-N relationship. N is a mathematical
 term; it’s usually written as lowercase n in math, but it’s more often capital N in
 programming. That N is just a stand-in for a variable number. So N could be 0, or 1,
 or some large number.
In that light, then, a one-to-many relationship is the same as a 1:N
 relationship. It’s just that 1:N is a shorter, more concise way to say the same
 thing. You know that programmers—like you—tend to favor short and concise. So, on
 database diagrams you’ll often see 1:N, which just tells you that relationship
 between two tables is one-to-many.
And then, of course, you have N:N, which is just saying that many items in one table are related to
 many items in another. That said, an N:N relationship (and the many-to-many relationship that it represents) is a conceptual or virtual
 idea. It takes two relationships at the database level in most systems to model an
 N:N relationship, as you’ll see on Use a Join Table to Connect Users with Groups.

Joins are Best Done with IDS

When you related a user to a profile image, you used an ID. Each image had its own ID, uniquely identifying it. It also had a
 user_id, which connected the image to a
 particular user in the users table. That made it easy to grab an
 image for a user by using something like this:
SELECT *
 FROM images
 WHERE user_id = $user_id;
Or, you can join the two tables like this:
SELECT u.username, u.first_name, u.last_name, i.filename, i.image_data
 FROM users u, images i
 WHERE u.id = i.user_id;
In both cases, the IDs are the connectors. That works fine in a one-to-one
 relationship, as it does in a one-to-many relationship. The “many” side just adds a
 column that references the ID of the “one” side. Therefore, many images all have a
 user_id column that references a user with the ID
 51 (or 2931 or whatever else you have in users).
But with users and groups, you don’t have a one-to-one or a one-to-many relationship. You
 have a many-to-many. How do you handle that?

Use a Join Table to Connect Users with Groups

It’s easy to model a one-to-many relationship by using the ID as a connector. When you’re modeling a many-to-many relationship, connecting the IDs is more complex. You need a sort of matrix: a set of
 user IDs and group IDs that are connected.
Think about the many-to-many relationship. In its simplest form, it’s two one-to-many
 relationships; users and groups have a many-to-many relationship going in each
 direction. You started with one side: users. Then you figured out it was oneto-many.
 Then, the other side: groups. Also one-to-many.
You construct a many-to-many relationship at the database level the same way. You
 have a table like users that connects to an intermediary table.
 Call it user_groups, and assume that it has a user_id and a group_id.
 A user_id might appear in two rows: in the first
 row along with the ID for the “Administrators” group, and again with the ID of the
 “Musicians” group. That gives you the one-to-many from users to
 groups.
But then you also have the one-to-many from groups to users. The ID for
 “Administrators” might appear in five different rows within
 user_groups, once for each of the five users to which that
 group relates.
To give this idea a concrete form, create the following table:
mysql> CREATE TABLE user_groups (
 -> user_id INT NOT NULL,
 -> group_id INT NOT NULL
 ->);
Query OK, 0 rows affected (0.03 sec)
This table becomes a bridge: each row connects one user to one group. So, for
 “Jeff Traugott” with an ID of 29, and a group “Luthiers” with an ID of 2, you’d add
 this row to user_groups.
mysql> INSERT INTO user_groups
 -> (user_id, group_id)
 -> VALUES (29, 2);
Query OK, 1 row affected (0.02 sec)

mysql> select * from user_groups;
+---------+----------+
| user_id | group_id |
+---------+----------+
| 29 | 2 |
+---------+----------+
1 row in set (0.00 sec)
On their own, the users and groups
 tables aren’t connected. But this additional table establishes the many-to-many relationship.

Testing Group Membership

To see whether a user is in a group, you need to determine whether there’s an entry
 in user_groups with both the ID of the ID you want, and the ID of
 the group you want.
mysql> SELECT COUNT(*)
 -> FROM users u, groups g, user_groups ug
 -> WHERE u.username = "traugott"
 -> AND g.name = "Luthiers"
 -> AND u.user_id = ug.user_id
 -> AND g.id = ug.group_id;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)
Bingo! This query looks a little complex at first blush, but it’s straightforward if
 you walk through it step by step.
First, you use COUNT(*) to return a count on the rows returned from the query. And
 then there are the three tables involved: users, groups, and
 user_groups.
SELECT COUNT(*)
 FROM users u, groups g, user_groups ug
Next, you indicate the name of the user you want (using any column you want; first
 name, last name, or user name), and the name of the group you want. This will cause
 exactly one (or zero, if there’s no match) row in both users and
 groups to be isolated.
SELECT COUNT(*)
 FROM users u, groups g, user_groups ug
 WHERE u.username = "traugott"
 AND g.name = "Luthiers"
Now, you need to connect those individual rows—each with an ID—to
 user_groups. This is just a regular join. You use the IDs in each
 table to match up with the ID columns in user_groups:
SELECT COUNT(*)
 FROM users u, groups g, user_groups ug
 WHERE u.username = "traugott"
 AND g.name = "Luthiers"
 AND u.user_id = ug.user_id
 AND g.id = ug.group_id;
This query connects zero or one row in users to
 user_groups, which is also connected to zero or one row in
 groups. The result? Either a single row with a COUNT value of 1,
 meaning that there’s a connection from a user in users to the group
 in groups you indicated
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
or a row with a COUNT value of 0, meaning there’s no connection:
mysql> SELECT COUNT(*)
 -> FROM users u, groups g, user_groups ug
 -> WHERE u.username = "traugott"
 -> AND g.name = "Administrators"
 -> AND u.user_id = ug.user_id
 -> AND g.id = ug.group_id;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
1 row in set (0.05 sec)
Warning
Watch out! With this particular expression (using COUNT) you do get a single row
 each time. The important information is the value in the row, not
 that there is a row.

The task now is to turn this into PHP code.

Checking for Group Membership

By replacing basic authentication with your own authentication scheme, you have the
 makings of good, solid authentication. Authentication simply lets users into your
 application when they log in. They authenticate in some manner that confirms to your
 system that they are who they say they are.
But now, it’s time to add authorization: the ability to give
 access only to certain pages, based on more specific criteria. At its simplest, you do
 have some level of authorization through authorize.php in that you
 only authorize users who are authenticated. Typically, authorization goes a lot further
 than that. It’s more detailed; you can control access based on, say, group membership.
At this point, you have the users, you have the groups, and you have the connection
 between the two. You need to enhance authorize.php to work these
 groups into your authorization scheme.
authorize.php Needs a Function

At the moment, authorize.php runs automatically when it’s
 required by a script. The code in authorize.php isn’t in a
 function; it’s just dropped into the body of the PHP file:
<?php

if ((!isset($_COOKIE['user_id'])) || (!strlen($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit;
}
?>
That’s worked fine up until now. But now, you need a means by which you can pass in
 a group, or a list of groups, to authorize.php, and then
 authorize.php has to run through those groups and see whether
 there’s a connection with the current user. That situation—a block of code that should
 take in a piece of information with which to work—screams “function.” There are some
 other options, but they’re less easy to understand and maintain. (If you’re curious
 about those options, check out the box on On Functions and Non-Functions.)
Create that new function in authorize.php. Eventually, it
 should take an array of groups that allow access. For now, you can set a default value
 for the parameter the function takes and use that default value to keep the current
 functionality: allowing access to any authorized user.
<?php

function authorize_user($groups = NULL) {
 // No need to check groups if there aren't cookies set
 if ((!isset($_COOKIE['user_id'])) ||
 (!strlen($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit;
 }
}
?>
Jump back into show_user.php and add an explicit call to this
 function. You don’t need to pass in any group names. show_user.php should be open to any
 logged-in user.
<?php

require_once '../scripts/authorize.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// Authorize any user, as long as they're logged in
authorize_user();

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

// Build the SELECT statement

// and so on...
Take a moment to test this script. Because the default functionality should be just
 what you already have, verify that you can’t access show_user.php
 without first logging in. Enter the URL into your browser, and you should see your
 sign-in page, as shown in Figure 14-1.
[image: One of the first steps to any new bit of functionality is to ensure that old functionality still works. It’s no good to code for an hour or two adding new features if you end up breaking all the old features in the process. Test the new stuff, but start by testing the old stuff first.]

Figure 14-1. One of the first steps to any new bit of functionality is to ensure that old
 functionality still works. It’s no good to code for an hour or two adding new features
 if you end up breaking all the old features in the process. Test the new stuff, but
 start by testing the old stuff first.

DESIGN TIME: On Functions and Non-Functions
In authorize.php, you’ve got a function that takes in zero or
 more groups via a parameter. Yet, that’s just one way to handle the issue. There are
 other approaches: you could, for example, set a variable and then use that variable in
 the required file.
Take, for example, a simple script like this:
<?php

$message = "hello\n\n";

require_once "print.php";
?>
You can call this script test.php. Suppose, then, that
 print.php, the referenced script, looks like this:
<?php

echo $message;

?>
When print.php is required, it’s like the code in
 print.php is inserted in place of the require_once line. When you run this script, PHP essentially sees
 this:
<?php

$message = "hello\n\n";

echo $message;
?>
Run test.php, and you’d get this result:
yellowta@yellowtagmedia.com [../ch14]# php
test.php
Content-type: text/html

hello
You can “pass” information into a required script in this manner.
This approach is perfectly easy to implement, but it’s not terribly clear.
Here’s what the authorization code would look like:
$allowed_groups = array("Musicians",
"Luthiers");
require_once "../scripts/authorize.php";
Again, there’s nothing overtly wrong here. It’s just really unclear that the
 $groups variable is required before the require_once to authorize.php, and
 that in fact authorize.php makes use of that variable. So,
 although an authorize_user function is a bit
 clumsy, it’s clear and better than the alternative: code that’s difficult to
 understand unless you already know what it does.

Take in a List of Groups

It’s time to get to the point of all this work. Start by sending a list of
 groups—through a PHP array—to authorize_user. You can
 do this in show_users.php and delete_user.php,
 both of which should require the Administrators group for access.
<?php

require_once '../scripts/app_config.php';
require_once '../scripts/authorize.php';
require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

// Only Administrators can access this page
authorize_user(array("Administrators"));

// Rest of the PHP code and HTML output
Note
The preceding change is shown in show_users.php. Make the
 same change in delete_user.php so that it can’t be directly
 accessed.

Using an array is about the simplest means in PHP of getting a list to a function. Currently, in
 authorize.php, you’re getting either nothing or a list of allowed group names. So you can start to do some work with those groups.
First, though, if the parameter passed to authorize_user is either an empty list or NULL, you should have the function bail out. There’s no need
 to do any database searching in those two cases.
<?php

function authorize_user($groups = NULL) {
 // No need to check groups if there aren't cookies set
 if ((!isset($_COOKIE['user_id'])) ||
 (!strlen($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit;
 }

 // If no groups passed in, the authorization above is enough
 if ((is_null($groups)) || (empty($groups))) {
 return;
 }
}
?>
Note
The empty function takes just about any PHP
 type and figures out what “empty” means, and then returns either true or false. For an
 array, empty returns true if there aren’t any items in the array.

When you use return, you’re instructing PHP to
 give control back to the calling script. It lets the script run, which means letting the
 user see the page he requested.

Iterating Over Each Group

Take a step back to the case in which you do get a list of
 groups, as in show_users.php and
 delete_user.php. In those cases,
 authorize.php should loop over each group, and for each group,
 build a SQL query.
Start out by just looping over the $groups array.
 You can use a for loop, but in this case, there’s a
 better choice: foreach. foreach lets you loop over an array and automatically assign a variable to
 the current item in the array:
$my_array = array("first", "second", "third");
foreach ($my_array as $item) {
 echo $item;
}
For $groups, you could set the loop up like
 this:
foreach ($groups as $group) {
 // do a SQL search for the current $group
}
Think through what happens inside the loop. You want something similar to the
 original SQL you used to connect users to groups:
SELECT COUNT(*)
 FROM users u, groups g, user_groups ug
 WHERE u.username = "traugott"
 AND g.name = "Luthiers"
 AND u.user_id = ug.user_id
 AND g.id = ug.group_id;
This query is actually more complex than what you need in
 authorize.php. First, you don’t need the
 users table at all. That table is only part of the query to
 connect a username to a user_id. However, your app already has the user’s user_id, so things simplify to this:
SELECT COUNT(*)
 FROM user_groups ug, groups g
 WHERE g.name = mysql_real_escape_string($group)
 AND g.id = ug.group_id
 AND ug.user_id = mysql_real_escape_string($_COOKIE['user_id']);
Note
As usual, you’ll want to use mysql_real_escape_string to ensure that your database gets clean values.
 In fact, you might as well get into the habit now: use mysql_real_escape_string on anything that originates in your scripts and
 is sent to MySQL.

There’s another improvement you can make, too. In the preceding query, you’d need to
 get the result row and see if the value is 0 (no membership) or 1 (membership). But,
 that’s an additional step. Better to just check and see whether there’s a result at all.
 In other words, you want a query that returns a result row only if there’s a match;
 therefore, make another change:
SELECT ug.user_id
 FROM user_groups ug, groups g
 WHERE g.name = mysql_real_escape_string($group)
 AND g.id = ug.group_id
 AND ug.user_id = mysql_real_escape_string($_COOKIE['user_id']);
The particular column you select from user_groups doesn’t
 matter; you could use ug.group_id, as well. You
 either get a result when there’s a match or you get no result, so that’s one less step
 your code needs to take.
Put this together, and you end up with something like this in your foreach loop:
foreach ($groups as $group) {
 // do a SQL search for the current $group
 $query = "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '" . mysql_real_escape_string($group) . "'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " .
 mysql_real_escape_string($COOKIE['user_id']) . "';";
 mysql_query($query);

 // Deal with results
}
This query works, and it doesn’t require the users table. The
 downside is that you’re constructing this string, over and over again. For every group,
 this string is recreated, and that’s wasteful.
Here’s where you rekindle your friendship with sprintf (Printing a String to a Variable). With sprintf, you can construct a single string, give it an
 escape character or two, and insert values for each escape character into the string.
 The string remains unchanged; you’re modifying only the data within that string that’s
 variable.
As a result, you can construct the query string outside of the foreach, like this:
// Set up the query string
$query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " . mysql_real_escape_string($_COOKIE['user
_id']);

foreach ($groups as $group) {
 // do a SQL search for the current $group

 // Deal with results
}
Then, within the foreach, use sprintf to supply the values to drop into the string for a
 particular group:
// Set up the query string
$query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " . mysql_real_escape_string($_COOKIE['user_id']);

foreach ($groups as $group) {
 // do a SQL search for the current $group
 $query = sprintf($query_string, mysql_real_escape_string($group
));
 $result = mysql_query($query);

 // Deal with results
}
In addition to using sprintf, this code assigns
 the current user ID—from $_COOKIE—to the string
 assembled outside of the loop. There’s no need to feed that to sprintf, because it won’t change as you loop.

Allow, Deny, Redirect

With a solid query in place, it’s time to deal with the results. You can check the
 number of rows to know all you need: if no rows were returned, the user isn’t a member
 of the group indicated by $group, and your loop
 should continue, going to the next $group in $groups.
If there is a row returned from a query, not only is the user in an allowed group,
 but authorize_user needs to stop. There’s no need to
 continue looping over $groups; just return control to
 the calling script so that the PHP and HTML of that script can take over.
And then, the final case: all the groups have been checked, and there’s never been a
 result row. This is the case when the foreach loop
 ends. If that’s the case, it’s not okay to send control back to the calling script,
 because that would be letting the user “in,” and that’s exactly the
 opposite of what should happen. It’s also not appropriate to
 redirect the user back to the sign-in page. He is signed in, at
 least in most cases; he just doesn’t have the right level of permissions to access the
 current page.
So, what’s left? In the simplest case, just use handle_error one more time. You might want to build this out yourself,
 though. Perhaps you could redirect the user to the last page he viewed and set an error
 message. Or, you could build a customized page to let the user request permissions for a
 certain page. No matter how you cut it, though, you’re going to be sending him somewhere
 else; the current page is never shown.
FREQUENTLY ASKED QUESTION: Better, Faster, Easier
Don’t all of the queries on Iterating Over Each Group
 match up a user with the groups she belongs to? Why keep finding different ways to
 do the same thing?
Yes, they indeed all get the job done. As you’ve come to realize, though, there
 are solutions to problems and then there are better solutions to
 problems. When you’re working with databases, “better” usually means “faster,” and
 “faster” usually means “less work for the database to do.”
In the case of looking up a group and establishing whether a user is a member, there’s nothing
 functionally wrong with the following query:
SELECT COUNT(*)

 FROM users u, groups g, user_groups ug

 WHERE u.username =

 mysql_real_escape_string(
 $_COOKIE['username'])

AND g.name = mysql_real_escape_
string($group)

 AND u.user_id = ug.user_id

 AND g.id = ug.group_id;
You’re doing a lot more work than you need to. There’s an
 entire extra table involved (users) that you can cut out because
 you already have the user’s ID in a cookie.
You can cut down on dealing with results by moving from a COUNT in the
 SELECT—which will require you to always examine the results in a row—for a column in
 user_groups. With that done, you only need to see if there are
 rows returned; the values in those result rows become irrelevant.
And, you can improve on general execution time by creating a string only once and
 using sprintf to modify just a small part of that
 string every time you go to a new group. Again, this is a small improvement, but an
 important one that’s easy to make.
All of these small changes can add up to noticeable improvements in your app. It
 will simply “feel” more responsive. This is even more important because the authorization script is going to run every time a user visits your page.
 This means that a script that’s sloppy or slower than it needs to be creates a lag in
 every single page access.
Most users don’t like—and many won’t put up with—slow-loading sites. This isn’t a
 pause while you secure your user concert tickets or look up shipping information. It’s
 simply them navigating to a new page. A little work on your script to keep things
 peppy makes a huge difference in your users’ experience, especially as you have more
 and more users accessing your site, which means more and more hits against your
 database to verify group membership.

Here’s a version of authorize.php that takes all of this into
 account:
<?php

require_once 'database_connection.php';
require_once 'app_config.php';

function authorize_user($groups = NULL) {

 // No need to check groups if there aren't cookies set
 if ((!isset($_COOKIE['user_id'])) || (!strlen($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit;
 }

 // If no groups passed in, the authorization above is enough
 if ((is_null($groups)) || (empty($groups))) {
 return;
 }

 // Set up the query string
 $query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " . mysql_real_escape_string($_COOKIE['user_id']);

 // Run through each group and check membership
 foreach ($groups as $group) {
 $query = sprintf($query_string, mysql_real_escape_string($group));
 $result = mysql_query($query);

 if (mysql_num_rows($result) == 1) {
 // If we got a result, the user should be allowed access
 // Just return so the script will continue to run
 return;
 }
 }

 // If we got here, no matches were found for any group
 // The user isn't allowed access
 handle_error("You are not authorized to see this page.");
 exit;
}
?>
It’s been a long time coming, but you can finally try this out. Ensure that you’ve
 got a user in users who is a member of Administrators (through
 user_groups) and one who’s not. The former should be able to
 navigate to show_users.php without any problems; the latter should
 be kicked to the error page, as shown in Figure 14-2.
[image: You should see this page as a first step toward authorization rather than a last one. Full-page errors should be serious things, rarely shown without a lot of thought, and in this case you can come up with a better, less interruptive way to let users know that they’ve ended up somewhere they shouldn’t be. Take them back to a page they can access, if possible.]

Figure 14-2. You should see this page as a first step toward authorization rather than a last
 one. Full-page errors should be serious things, rarely shown without a lot of thought,
 and in this case you can come up with a better, less interruptive way to let users
 know that they’ve ended up somewhere they shouldn’t be. Take them back to a page they
 can access, if possible.

Group-Specific Menus

Right now, you can use authorize_user to check a
 user against a list of groups and either reject access to a page or allow the user to see
 a page. That means you have the logic to handle group-specific menus, but the actual
 implementation might take a bit of refactoring.
Take a look at your menu system as it stands, in
 view.php:
function display_title($title, $success_msg = NULL, $error_msg = NULL) {
echo <<<EOD
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">$title</div>
 <div id="menu">

 Home
EOD;
 if (isset($_COOKIE['user_id'])) {
 echo "My Profile";
 echo "Sign Out";
 } else {
 echo "Sign In";
 }
echo <<<EOD

 </div>
EOD;
 display_messages($success_msg, $error_msg);
}
You can’t just drop the authorize_user function in
 here; it either gives a user access a page or disallows it. It’s not a fine-grained tool
 with which you can check group membership and get back a true or false value.
What you want is something like this:
function display_title($title, $success_msg = NULL, $error_msg = NULL) {
echo <<<EOD
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">$title</div>
 <div id="menu">

 Home
EOD;
 if (isset($_COOKIE['user_id'])) {
 echo "My Profile";
 if (user_in_group($_COOKiE['user_id'], "Administrators")) {
 echo "Manage Users
";
 }
 echo "Sign Out";
 } else {
 echo "Sign In";
 }
echo <<<EOD

 </div>
EOD;
 display_messages($success_msg, $error_msg);
}
Note
You’ll also need to add a require_once for
 authorize.php to view.php for this to
 eventually work.

Then, that function would check group memberships and show the Manage Users link to
 Administrators. In fact, you have all the relevant code already in
 authorize_user.php:
// Set up the query string
$query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " . mysql_real_escape_string($_COOKIE['user_id']);

// Run through each group and check membership
foreach ($groups as $group) {
 $query = sprintf($query_string, mysql_real_escape_string($group));
 $result = mysql_query($query);

 if (mysql_num_rows($result) == 1) {
 // If we got a result, the user should be allowed access
 // Just return so the script will continue to run
 return;
 }
}
This code just needs to be adapted to a new function that takes in a user’s ID and a
 group. First, add the following function to authorize.php in your
 scripts/ directory:
function user_in_group($user_id, $group) {
 $query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = %d";
 $query = sprintf($query_string, mysql_real_escape_string($group),
 mysql_real_escape_string($user_id));
 $result = mysql_query($query);

 if (mysql_num_rows($result) == 1) {
 return true;
 } else {
 return false;
 }
}
Nothing here is new. This is just a new riff on an old hit: the code you’ve already
 got in authorize.php, in the authorize_user function.
Get this code in place and then try it out. First, log in as a user who’s not in
 Administrators. Visit a page like show_user.php, and your menu
 options should not have a Manage Users options, as shown in Figure 14-3.
Now, sign out and do exactly the same thing again, this time with an administrative
 user. Magically—at least from the non-PHP programmer’s point of view—a new menu option
 appears. You can see the Manage Users link in Figure 14-4.
[image: Ahh, pity the users who aren’t Administrators. They see no Manage Users option—but, that’s a good thing. You don’t want users to see options they can’t access. That’s the heart of good authorization: as important as it is to control access, it’s equally important to avoid letting people see options that they can’t use anyway. Out of sight, out of mind.]

Figure 14-3. Ahh, pity the users who aren’t Administrators. They see no Manage Users option—but,
 that’s a good thing. You don’t want users to see options they can’t access. That’s the
 heart of good authorization: as important as it is to control access, it’s equally
 important to avoid letting people see options that they can’t use anyway. Out of sight,
 out of mind.

[image: Administrators get additional menu options, such as Manage Users, so you have to ensure that they can see those options. One thing to think about, though: you’re repeating the “Administrators” group in several places in your script. You might want to think about a constant or even an is_admin function to make remembering how to spell “Administrators” unnecessary.]

Figure 14-4. Administrators get additional menu options, such as Manage Users, so you have to
 ensure that they can see those options. One thing to think about, though: you’re
 repeating the “Administrators” group in several places in your script. You might want to
 think about a constant or even an is_admin function to make remembering how to spell
 “Administrators” unnecessary.

FREQUENTLY ASKED QUESTION: Refactoring Redux
In the code on Group-Specific Menus,
 shouldn’t
 authorize_user
 call
 user_in_group, because it’s using that same
 code?
Major refactoring points if you thought of this question, or if it felt a bit like
 you might be duplicating code in user_in_group, and
 that bothered you. It’s true; there’s a lot similar (but not quite
 the same) about the code in user_in_group and the
 code that iterates over $groups and looks up each
 group within authorize_user.
One way to take advantage of user_in_group and
 remove this similar code would be to rework the foreach in authorize_user:
// Remove the initial query string before
the loop

// Run through each group and check mem-
bership
foreach ($groups as $group) {
 if (user_in_group($_COOKIE['user_id'],
$group) {
 // Just return so the script will con-
tinue to run
 return;
 }
}
It’s true, there’s a lot less code, and you’ve done some nice refactoring.
 Unfortunately you’ve actually gone back toward the original code in authorize_user (Group-Specific Menus) from
 which you were trying to move away. Now, there’s a query string created every time
 through the loop (hidden away within user_in_group).
 That string is being created over and over, and continually assigned the same user ID
 with each group in $groups. By moving away from that
 approach, you (if only in some small ways) sped up the performance of authorize_user.
Here’s where you have to make a tough decision. Is the clean, refactored approach
 here worth the loss in speed that requires some nearly-duplicate code? In the case of a
 bit of code that’s potentially called on most, if not every page—authorize_user—it might be worth not refactoring. That
 little bit of improved speed times one hundred page views (or one thousand or one
 million) it starts to seriously add up.

Entering Browser Sessions

So far, cookies have been the secret to much of your authentication and authorization
 success. But, there are many programmers who really, really hate a cookie-only solution to
 storing a user’s information. The biggest issue with cookies is that they are entirely
 client-side entities. This means that anything you store in a
 cookie resides in that cookie, on the user’s computer (the client device).
In your case, the user’s ID and user name are stored on your computer. In fact, on
 most web browsers, you can easily look at your cookies. In Firefox, for example, you can click Preferences, select the Privacy tab, and
 then click “Remove individual cookies.” Figure 14-5 shows the cookies related to your
 social networking app.
[image: You can see the user_id and the user name cookies as well as (in most cases) several others, usually related to codes the browser uses for keeping up with your app’s cookies. This data is stored on every client’s personal computer.]

Figure 14-5. You can see the user_id and the user name cookies as well as (in most cases)
 several others, usually related to codes the browser uses for keeping up with your app’s
 cookies. This data is stored on every client’s personal computer.

Note
In Safari for the Mac, cookies are under Safari→Preferences. Click the Privacy
 tab and then click the Details button. In Chrome, go to Preferences→Under the Hood→Content Settings→All Cookies and
 Site Data. In Internet Explorer, go to View→Internet Options→General tab, and then under
 Browser History, select Settings. Then, under Temporary Internet Files And History
 Settings, select View Files. All of these options get you the same information, although
 in each case it looks a bit different.

This client-side storage is the main reason some developers don’t like cookies. Whether the
 client computer is a public device in a library in a home there’s just something that
 seems unsafe about leaving what amounts to a system-level value like a user ID on any old
 computer. After all, that user ID uniquely identifies a user in your database. On top of
 that, most applications that use cookies add additional information to a client’s
 computer, rather than lessening it. You might speed up user and group searches by storing
 cookies with the user’s groups (or the IDs of those groups) in cookies; you might store
 personal information you don’t want to constantly look up in cookies.
All of this information ends up residing on your users’ computers until those cookies
 expire. So, what’s a security-conscious programmer to do? Keep user IDs and similar
 information on the server, not the client side.
Sessions Are Server-Side

Sessions are generally considered the answer to the vulnerability of cookies.
 Sessions are similar to cookies in that they can store information. However, sessions
 have two big differences:
	Sessions are stored on the server rather than the client computer. People can’t
 view session data in a browser because there’s nothing to view, except perhaps a non-readable
 ID that connects a particular browser with a session.

	Because sessions are stored on the server, you can use them to store much bigger
 chunks of data than cookies. You can store a user’s profile picture on the server in
 a session, for example, and not worry about taking up space on a user’s computer.

Because you’re not storing potentially sensitive information on the user’s computer,
 many programmers prefer sessions.

Sessions Must Be Started

The biggest change in dealing with sessions isn’t lots of new syntax. In fact,
 you’ll quickly see that changing from using cookies to sessions is pretty simple. But
 there’s one significant difference: before you can do any work with sessions, you must
 call session_start:
// Start/resume sessions
session_start();

// Now do work with session information
If you’re already thinking you can call session_start in signin.php, you’re right. That’s
 exactly where you should first call session_start:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

$error_message = $_REQUEST['error_message'];

session_start();

// Rest of PHP and HTML...
Calling session_start here kicks off the PHP
 machinery that makes sessions available.

From $_COOKIE to $_SESSION

This is where it gets easy: instead of using the superglobal $_COOKIE, you use the superglobal $_SESSION. Yes, it’s that easy; simply make this change in
 signin.php:
<?php

require_once '../scripts/database_connection.php';
require_once '../scripts/view.php';

$error_message = $_REQUEST['error_message'];

session_start();

// If the user is logged in, the user_id in the session will be set
if (!isset($_SESSION['user_id'])) {
 // and so on...
Then, there’s one other small change. With sessions, you don’t use setcookie.
 Instead, you directly set values in $_SESSION,
 providing a key and a value:
if (!isset($_SESSION['user_id'])) {

 // See if a login form was submitted with a username for login
 if (isset($_POST['username'])) {
 // Try and log the user in
 $username = mysql_real_escape_string(trim($_REQUEST['username']));
 $password = mysql_real_escape_string(trim($_REQUEST['password']));

 // Look up the user
 $query = sprintf("SELECT user_id, username FROM users " .
 " WHERE username = '%s' AND " .
 " password = '%s';",
 $username, crypt($password, $username));

 $results = mysql_query($query);

 if (mysql_num_rows($results) == 1) {
 $result = mysql_fetch_array($results);
 $user_id = $result['user_id'];
 // No more setcookie
 $_SESSION['user_id'] = $user_id;
 $_SESSION['username'] = $username;
 header("Location: show_user.php");
 } else {
 // If user not found, issue an error
 $error_message = "Your username/password combination was invalid.";
 }
}
Now you use $_SESSION to both retrieve values
 from the session and insert values into the session. All the while, behind the scenes,
 all this information is stored on the server, rather than the client.

Sessions Must Be Restarted, Too

Here’s something a little strange. Try to sign in by using a good user name/password
 combination. You’re not going to see what you expect. Instead, you’ll get the error
 about not being logged in that’s illustrated in Figure 14-6.
[image: It looks like changing to sessions wasn’t quite as painless as it might have first appeared. Where is this error coming from? Does it mean that sessions don’t work?]

Figure 14-6. It looks like changing to sessions wasn’t quite as painless as it might have
 first appeared. Where is this error coming from? Does it mean that sessions don’t
 work?

What’s going on? Think carefully; you might even want to search through
 signin.php. Is this an error related to sessions as well as the
 obvious cookie-related issue? Well, kind of, but it’s generated by
 show_user.php, not signin.php. In fact, it’s
 actually an issue in authorize_user, which resides in
 authorize.php; that function is called at the beginning of
 show_user.php:
<?php

require '../scripts/authorize.php';
require '../scripts/database_connection.php';
require '../scripts/view.php';

// Authorize any user, as long as they're logged in
authorize_user();
When you think about it, it makes perfect sense that things aren’t behaving.
 authorize_user (in
 authorize.php) is expecting to find a user ID in $_COOKIE:
<?php

require_once 'database_connection.php';
require_once 'app_config.php';

function authorize_user($groups = NULL) {

 // No need to check groups if there aren't cookies set
 if ((!isset($_COOKIE['user_id'])) || (!strlen
($_COOKIE['user_id']) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit();
 }

// And so on...
This is another easy change. $_COOKIE just has to
 become $_SESSION:
<?php

require_once 'database_connection.php';
require_once 'app_config.php';

function authorize_user($groups = NULL) {

 // No need to check groups if there aren't cookies set
 if ((!isset($_SESSION['user_id'])) || (!strlen($_SESSION['user_id'
]) > 0)) {
 header('Location: signin.php?' .
 'error_message=You must login to see this page.');
 exit;
 }

// And so on...
Don’t forget to make a similar change later in the function, when the query string
 used for group searching is constructed:
// Set up the query string
$query_string =
 "SELECT ug.user_id" .
 " FROM user_groups ug, groups g" .
 " WHERE g.name = '%s'" .
 " AND g.id = ug.group_id" .
 " AND ug.user_id = " . mysql_real_escape_string($_SESSION['us
er_id']);
This looks better. Unfortunately, you’re going to get the exact same result. Sign in
 again, and you’ll get Figure 14-7, yet
 another error. What’s going on now?
[image: You changed out $_COOKIE for $_SESSION, but obviously, there’s still a big problem here.]

Figure 14-7. You changed out $_COOKIE for $_SESSION, but obviously, there’s still a big
 problem here.

Note
You might see a different response, depending on your browser. You might see a timeout, or your browser just might hang. In all
 these cases, it’s not good.

The secret is in the rather poorly named session_start function. That function sounds like it starts a new session.
 In that case, you should call it once—as you did—in signin.php.
 However, PHP scripts each run on their own, without connection to any other script. As a
 result, when show_user.php is called, it has no idea that a session
 was started back in signin.php.
In fact, there’s no connection at all between two scripts; they’re just two calls
 from a browser out there somewhere, hooked to the Internet via Wi-Fi or an Ethernet
 cable. So, how do two scripts—or an entire application’s worth of scripts—share this
 session data? The truth is a bit surprising: calling start_session actually creates a cookie on the client. Yes, you’re back to
 cookies!
Unlike other cookies you’ve seen so far, though, this one holds a fairly cryptic
 value (see Figure 14-8). This value
 refers to where a particular user’s data is stored on the server. It’s a way to say,
 “Look up this code in all the server’s session data. Whatever’s there… that’s
 mine.”
[image: All the work you’ve been doing in this section to move away from cookies actually requires cookies. Still, you’re avoiding any valuable information being stored on the client. The unique key isn’t useful to anyone who doesn’t have access to your server, and that’s a good, secure thing.]

Figure 14-8. All the work you’ve been doing in this section to move away from cookies actually
 requires cookies. Still, you’re avoiding any valuable information being stored on the
 client. The unique key isn’t useful to anyone who doesn’t have access to your server,
 and that’s a good, secure thing.

What all of this means is that session_start does
 a lot more than start a one-time session. It looks up a user’s cookie, and if it’s
 there, restarts the session that ID references, so every script
 that wants to use $_SESSION has to call session_start.
Fixing the problem in show_user.php means two things: first,
 you need to call session_start in
 authorize.php, to ensure that session data is available to
 authorize_user and the other functions in
 authorize.php.
<?php

require_once 'database_connection.php';
require_once 'app_config.php';

session_start();

function authorize_user($groups = NULL) {
 // an so on...
}
?>
Try this out, and you’ll see an error pointing you to the second thing you’ve got to
 do. That error is a familiar one, and you can see it in Figure 14-9.
[image: You’ve seen this a few times, such as on page 244. What’s going on in this particular case? For some reason, the code that looks up the user’s ID isn’t working, and it’s kicking the user out with this error about his information not being found.]

Figure 14-9. You’ve seen this a few times, such as on page 244. What’s going on in this
 particular case? For some reason, the code that looks up the user’s ID isn’t working,
 and it’s kicking the user out with this error about his information not being
 found.

$_REQUEST Doesn’t Include $_SESSION

Here’s the line in show_user.php that’s causing the
 problem:
// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];
This worked when you were using cookies for authorization (From HTTP Authentication to Cookies) because whether the user’s ID was in
 $_REQUEST, $_GET, $_POST, or $_COOKIE didn’t matter. All of these bubble up to $_REQUEST. Now, however, you’re passing the user ID in a different
 superglobal, one not included in $_REQUEST: $_SESSION.
Not only that, you still have code in show_users.php that
 passes the user ID in a request parameter:
$user_row = sprintf(
 "%s %s
 " .
 "(%s) " .
 "<img " .
 "class='delete_user' src='../images/delete.png' " .
 "width='15' />",
 $user['user_id'], $user['first_name'], $user['last_name'],
 $user['email'], $user['email'], $user['user_id']);
echo $user_row;
Note
This code is deep into the middle of show_users.php. Look for
 the while loop within the HTML and you’ll find
 it.

Clearly, you can’t just switch $_REQUEST to
 $_SESSION and call it a day. Instead, you need to
 check both $_SESSION and $_REQUEST to cover all your bases:
<?php

require '../scripts/authorize.php';
require '../scripts/database_connection.php';
require '../scripts/view.php';

// Authorize any user, as long as they're logged in
authorize_user();

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

if (!isset($user_id)) {
 $user_id = $_SESSION['user_id'];
}

// Look up user using $user_id
Now, if there’s no user ID found in $_REQUEST,
 the $_SESSION is checked. And then, last but not
 least, you need to call session_start before you can
 do any work with the session:
<?php

require '../scripts/authorize.php';
require '../scripts/database_connection.php';
require '../scripts/view.php';

session_start();

// Authorize any user, as long as they're logged in
authorize_user();

// Get the user ID of the user to show
$user_id = $_REQUEST['user_id'];

if (!isset($user_id)) {
 $user_id = $_SESSION['user_id'];
}

// Look up user using $user_id
Finally, you can get back to viewing user profiles.
Note
You’re actually now calling session_start twice
 in the show_user.php flow: once in
 authorize.php, pulled in through require_once; and a second time, in the body of
 show_user.php.
Still, that extra call doesn’t do much beyond causing PHP to issue a notice, and
 there’s no guarantee that other scripts that bring in
 authorize.php will also call session_start. Thus, the duplicate in show_user.php
 won’t always happen. It’s a better bet to treat each script as self-contained. Use
 session_start
 every time you’re working with sessions, even if it might have been called somewhere else.

Menu, Anyone?

All that’s left is the menu that’s created in view.php. It
 still uses $_COOKIE, but you know exactly what to do
 now. First, add the all-important call to session_start:
<?php

require_once 'app_config.php';
require_once 'authorize.php';

define("SUCCESS_MESSAGE", "success");
define("ERROR_MESSAGE", "error");

session_start();

// And then functions follow...

?>
Then, replace $_COOKIE with $_SESSION in display_title:
unction display_title($title, $success_msg = NULL, $error_msg = NULL) {
echo <<<EOD
 <body>
 <div id="header"><h1>PHP & MySQL: The Missing Manual</h1>
</div>
 <div id="example">$title</div>
 <div id="menu">

 Home
EOD;
 if (isset($_SESSION['user_id'])) {
 echo "My Profile";
 if (user_in_group($_SESSION['user_id'], "Administrators")) {
 echo "Manage Users";
 }
 echo "Sign Out";
 } else {
 echo "Sign In";
 }
echo <<<EOD

 </div>
EOD;
 display_messages($success_msg, $error_msg);
}
Be sure to check your menu; when you’re logged in, you should see Sign Out and My Profile. When you’re signed out, you shouldn’t.

And Then, Sign Out…

That leads you back to signing out. With cookies, you set the expiration value to a time in the
 past. With $_SESSION, you need to call unset on the session variable.
And, as odd as it might seem, you can’t work with $_SESSION—even if that work is to unset values—without calling session_start. Here’s what signout.php
 should look like:
<?php

session_start();

unset($_SESSION['user_id']);
unset($_SESSION['username']);

header('Location: signin.php');
?>
The cookies are gone, and once signout.php runs, so will your
 user’s sessions variables.
And just like that, with less than 20 lines of code changed, you’ve moved out of cookies and into sessions. Nice work! Your security-conscious users
 will thank you for it.

Memory Lane: Remember That Phishing Problem?

There’s just one little annoyance left to which you should attend. Remember the
 phishing problem back in Chapter 8
 on page 236? It had to do with your use of error_message as a request parameter to show_error.php.
 show_error.php takes in the error message it displays from a request
 parameter:
if (isset($_REQUEST['error_message'])) {
 $error_message = preg_replace("/\\\\/", '', $_REQUEST['error_message']);
} else {
 $error_message = "something went wrong, and that's how you ended up here.";
}
Note
This code is in scripts/show_error.php.

And you saw that a URL like this:
http://yellowtagmedia.com/phpMM2/ch08/scripts/show_error.php?error_message=%3Ca%20href=%22http://www.amctv.com/shows/breaking-bad%22%3EClick%20Here%20To%20Report%20Your%20Error%3C/a%3E
could create a page that looks like Figure 14-10. It seems safe, but it’s
 not.
[image: Remember this example of a phishing scam? Click the innocent-looking link, and you end up on a totally different website. All a bad guy has to do is write some CSS to match your site and a form to take in information, and your users are going to get scammed.]

Figure 14-10. Remember this example of a phishing scam? Click the innocent-looking link, and you
 end up on a totally different website. All a bad guy has to do is write some CSS to
 match your site and a form to take in information, and your users are going to get
 scammed.

With sessions, you don’t have to settle for this security hole. The security problem
 stemmed from the fact that you were letting a request parameter handle the error message
 payload. But now, with sessions, you can remove those errors from view. This way, a hacker
 can’t possibly force-feed in a bad request parameter because you’re no longer using those
 parameters for that purpose.
Hop back over to scripts/app_config.php, and look at handle_error:
function handle_error($user_error_message, $system_error_message) {
 header("Location: " . SITE_ROOT . "scripts/show_error.php?" .
 "error_message={$user_error_message}&" .
 "system_error_message={$system_error_message}");
 exit();
}
That’s the code that turns a PHP-supplied error into a request parameter. But now, you
 can rework this code using sessions:
function handle_error($user_error_message, $system_error_message) {
 session_start();
 $_SESSION['error_message'] = $user_error_message;
 $_SESSION['system_error_message'] = $system_error_message;
 header("Location: " . SITE_ROOT . "scripts/show_error.php");
 exit();
}
It’s a simple change. In fact, it makes handle_error a lot clearer.
Open show_error.php and make the accompanying change to pull
 values from the session:
<?php
 require 'app_config.php';

 session_start();

 if (isset($_SESSION['error_message'])) {
 $error_message = preg_replace("/\\\\/", '', $_SESSION['error_
message']);
 } else {
 $error_message = "something went wrong, and that's how you ended up here.";
 }

 if (isset($_SESSION['system_error_message'])) {
 $system_error_message = preg_replace("/\\\\/", '',
 $_SESSION['system_error_message']);
 } else {
 $system_error_message = "No system-level error message was reported.";
 }
?>
Note
The HTML portion below the PHP stays exactly the same.

Next, update the problematic URL to reflect the new location of
 show_user.php (in your scripts/ directory). So
 it might look something like this:
http://yellowtagmedia.com/phpMM2/ch14/scripts/show_error.php?error_message=%3Ca%20href=%22http://www.amctv.com/shows/breaking-bad%22%3EClick%20Here%20To%20Report%20Your%20Error%3C/a%3E
Note
You should be able to replace the domain name and update the path but leave the file
 name and request parameters the same.

Now, visit that page in your browser. You should see a response like that shown in
 Figure 14-11.
[image: Sessions protect you, and in many cases, actually simplify your code. A session is often a better choice for passing data between scripts, and it certainly beats using request parameters in most cases.]

Figure 14-11. Sessions protect you, and in many cases, actually simplify your code. A session is
 often a better choice for passing data between scripts, and it certainly beats using
 request parameters in most cases.

This time, that phishing message is gone. Because the error message is stored in the
 session, it’s resistant to someone coming along and controlling the message via the URL.
 It’s a tiny change with huge implications for your users.

Why Would You Ever Use Cookies?

It’s easy to think that sessions are the answer for everything. They’re not, though.
 Probably the biggest limitation with sessions is that when the browser closes, the
 session’s over. There’s no way to get around that limitation. If you want to offer users
 the ability to remain logged in across browser closings, sessions aren’t an option. You’ve
 got to use cookies.
Second, just because cookies can be used poorly doesn’t mean you
 have to use them poorly. You can expire your cookies more
 frequently. You can store only very small bits of information in your cookies. In
 addition, you can avoid storing much meaningful data in cookies. In fact, you might choose
 to do a few extra database lookups—even causing your app to run a little slower—to avoid
 storing much useful information on your users’ computers.
Of course, like almost everything at this stage of the game, you’re going to have to
 make a good decision for your application. But, that’s no problem.
 You know what you’re doing now, and you know the tools at your disposal. Use them wisely,
 play around…and most important, learn.

Part 5. Appendixes

Appendix A
Appendix B

Appendix A. Installing PHP on Windows Without WAMP

In Chapter 1, you installed 7 either MAMP for Mac OS X or
 WAMP for Windows. That collection of programs, all conveniently bundled together, gave you
 not just PHP but also MySQL, plus an Apache web server and a few other goodies like
 phpMyAdmin and SQLiteManager. It’s easy to install and lets you control all your programs
 from a centralized manager.
On the other hand, convenience almost always costs you control. In the case of WAMP, you
 lose the ability to pick a specific version of PHP. In fact, you’re often going to end up
 with a version of PHP that’s several months behind the latest stable release, simply because
 that’s the amount of time it takes the good folks at WAMP to update their bundle to that
 release. (For more information on releases, see the box on Take Control of Your PHP Installation.)
Most of the time, none of this is an issue. But, as you become more familiar with PHP
 (and more advanced) you might want to take back some of the control you gave up for the
 convenience of WAMP. If that’s the case, then you’ll want to install PHP manually, and this
 appendix instructs you how.
UP TO SPEED: Release the Version Within
If you’ve never worked with software that comes in versions or releases, don’t worry; it’s easy. A
 software version or release is
 simply a program (or, more often than not, a package of programs that work together)
 that’s ready to install on your computer.
Because software changes frequently, though, the folks that make software need a way
 to say, “Hey, our software has some new cool bells and whistles! There’s a new package
 available!” Software companies use version numbers (or
 release numbers) to do that. Generally, software starts out at
 version 1.0, and that number increments higher as the software adds new features. Thus,
 version 2.2 of PHP is newer than version 1.1, and probably will have some cool new features,
 too.
Sometimes, as on the PHP website, you’ll see several different packages or downloads, each with a
 different version number. Most of the time, you want to download the most recent version.
 Most important, ensure that you’re downloading the correct version for the operating
 system you’re using.

Installing PHP from www.php.net

Open your favorite web browser and head to www.php.net. This website is the online home of PHP, and it’s where you’ll
 download your own version of the PHP language, along with all the tools you need to write
 and run PHP programs. Look along the right side of the PHP home page for the Stable
 Releases heading; you can see it on the right of Figure A-1.
[image: If you ever want to download a new version of PHP or update the version you already have, www.php.net is the place to visit. To download the most recent version, look for it under the Stable Releases heading on the right of the screen (5.4.6 in this example).]

Figure A-1. If you ever want to download a new version of PHP or update the version you already
 have, www.php.net is the place to visit. To
 download the most recent version, look for it under the Stable Releases heading on the
 right of the screen (5.4.6 in this example).

Click the link for the version with the highest number.
Once you’ve chosen a PHP version link, you’ll see a screen similar to Figure A-2, with links for the current version
 of PHP as well as at least one older version (which you can identify by the lower
 version number).
[image: The PHP site always has at least the latest stable version and the previous stable version available for download. Unless you’ve got a good reason to do otherwise, always go with the latest stable version, which is the one listed at the top.]

Figure A-2. The PHP site always has at least the latest stable version and the previous stable
 version available for download. Unless you’ve got a good reason to do otherwise, always
 go with the latest stable version, which is the one listed at the top.

Before you download PHP, though, look for a link called Windows Binaries; that’s your
 ticket to getting PHP up and running on your Windows-based computer. Clicking this link
 takes you to another site, http://windows.php.net/download/, which should
 look something like Figure A-3.
[image: PHP has a page dedicated to downloads for Windows-based computers. There are still a lot of options, but don’t get distracted by all the choices. You’re looking for a single word: Installer.]

Figure A-3. PHP has a page dedicated to downloads for Windows-based computers. There are still
 a lot of options, but don’t get distracted by all the choices. You’re looking for a
 single word: Installer.

This page has options for the latest version and well as several older versions. For
 the newest version, there will be two big, gray blocks: the first for the Non Thread Safe version, and the second for the Thread Safe version. You want to
 download the Non Thread Safe version. To learn why, read the following box.
UNDER THE HOOD: PHP on Windows: Fast or Safe?
PHP first appeared in a Windows-friendly version back in 2000. In those early
 releases, PHP came in only one flavor: Thread Safe. Whereas Mac OS X and Unix/Linux
 systems use something called processes to run multiple things at
 one time, Windows systems use threads. Those Windows threads can
 interact with each other. To prevent them from messing one another up, PHP came in a
 version that was thread safe.
Unfortunately, keeping those threads out of each other’s way takes a lot of time.
 Yes, thread-safe PHP on Windows is slow, and PHP programmers flocked away from Windows
 whenever possible. A few clever PHP programmers figured out ways to recycle threads, and
 a lot of web servers that run on Windows now come preinstalled with a PHP version that
 can recycle threads right from the start.
Still, not everyone likes installing PHP and then having to install a tweaked web server or make
 manual changes to PHP to get it running at tip-top speed. As a result, there’s now a
 non–thread safe option. This option doesn’t worry about other
 threads, and the result is a pretty significant performance increase, ranging anywhere
 from 10 to 40 percent, depending on your applications.
Chances are that if you don’t have a strong opinion or idea about which version of
 the PHP binaries you need, you’ll do great with the non–thread safe binaries, and you’ll
 get a nice snappy performance. If you have real concerns about the non–thread safe
 version, you can certainly choose the thread-safe binaries and tweak your own
 installation as you see fit.

Just look for the Installer option and click the link. The download is usually large,
 but includes a nice Windows installer that will make getting PHP running a breeze. Click
 this link and then grab a cup of coffee while you’re waiting for your download to
 complete.
Note
If you’re wondering whether you could have just gone directly to http://windows.php.net/download—you’re right. You could have. Six months from
 now, you might forget that longer URL, but remember www.php.net. On top of that, a good old-fashioned Google search for PHP takes
 you to www.php.net, so it’s a good idea to know
 how to get to the Windows installer from the main PHP home page.

Once your download is done, find the downloaded file and double-click it. Let Windows
 run the installer and then click Next on the pop-up screen to start the
 installation.
You have to accept a license agreement and then select an installation directory.
 Going with the suggested directory, C:\Program Files\PHP\, is a good
 idea unless you have a specific reason not to. Next, the installer asks you about
 configuring a web server, as shown in Figure A-4. For now, you’ll be using PHP on
 your computer to test programs and then upload those programs to a web server, so you can
 select “Do not setup a web server.” If you want to add a web server later, you can always
 come back and add or change this option.
[image: If you want to install a local web server to test your entire web applications on your computer, in the Web Server Setup window, select the IIS FastCGI or Other CGI option. But for getting started, “Do not setup a web server” is the simplest option.]

Figure A-4. If you want to install a local web server to test your entire web applications on
 your computer, in the Web Server Setup window, select the IIS FastCGI or Other CGI
 option. But for getting started, “Do not setup a web server” is the simplest
 option.

Next, you’ll be prompted about which items to install. The default options shown in
 Figure A-5 are fine for now. Just click
 Next to go to the next screen.
[image: The Windows installer comes with the basic PHP installation, but you can also add several extra by clicking the white + box next to Extras and selecting individual features.]

Figure A-5. The Windows installer comes with the basic PHP installation, but you can also add
 several extra by clicking the white + box next to Extras and selecting individual
 features.

Finally, click Install and then let your progress indicator march to full. That’s it!
 You’ve got PHP running on your computer.
To check out PHP, open a command prompt and type php_version, as you see in Figure A-6.
Even though it doesn’t look like much, that blank line and empty command prompt means
 PHP is installed correctly. Now, you’re ready to get into your first program—or if you’ve
 already worked through this book, your twentieth…or your hundredth! And anytime you want
 to update your PHP installation, just revisit www.php.net and download a new version.
[image: You won’t spend a lot of time running PHP from the command prompt, but it’s a great, quick way to test things out. The Windows installer makes sure you can run PHP from anywhere on the command line, from any directory.]

Figure A-6. You won’t spend a lot of time running PHP from the command prompt, but it’s a
 great, quick way to test things out. The Windows installer makes sure you can run PHP
 from anywhere on the command line, from any directory.

Appendix B. Installing MySQL Without MAMP or WAMP

Just as you might find it useful to install PHP apart from the WAMP stack on a
 Windows-based computer as described in Appendix A, you might similarly find it useful to
 install MySQL without using WAMP (Windows) or MAMP (Mac OS X). By installing MySQL manually, you can control the versions you’re using, the paths
 MySQL and related programs use, and all the MySQL-specific environment variables.
Of course, manual installation isn’t for everyone. Avoiding MAMP or WAMP doesn’t make
 MySQL work any better, per se; installing MySQL yourself is mostly an exercise in getting a
 better handle on what’s going on with your system. On the other hand, that’s a good goal in
 and of itself and can actually help you become a better programmer.
Installing MySQL

The MySQL database is easy to get, easy to install, and easy to use, even without the
 convenience of WAMP and MAMP. The process is slightly different for Windows and Mac OS X,
 but the end result is the same: an installation of MySQL that’s separate from the web
 server and from your computer’s copy of PHP.
MySQL on Windows

Installing MySQL on Windows is straightforward. You just need to know one
 thing: whether your computer is running the 32-bit or 64-bit version of Windows. For example, in Windows 7 you can
 determine this by clicking your Start menu, right-clicking Computer, and then selecting
 Properties from the pop-up menu. You should see something like Figure B-1.
[image: The computer shown here is a 64-bit system, running Windows 7 Home Premium. Whether you have 32-bit or 64-bit is determined partly by the Windows version you have installed, but also by what your computer is capable of. Both 32-bit and 64-bit systems can run MySQL with no problems, so either works great.]

Figure B-1. The computer shown here is a 64-bit system, running Windows 7 Home Premium.
 Whether you have 32-bit or 64-bit is determined partly by the Windows version you have
 installed, but also by what your computer is capable of. Both 32-bit and 64-bit
 systems can run MySQL with no problems, so either works great.

Under the System section, Look for “System type.” It will be either “32-bit
 Operating System” or “64-bit Operating System.” Remember which one it is, because you’ll
 need this information in a minute.
Next, start your web browser and visit www.mysql.com. A page opens, similar to in Figure B-2, showing you lots of introductory
 information about MySQL. You can skip all that and click the big “Downloads (GA)” tab to
 get right to the software. A page appears that presents information about a few
 different versions of MySQL. You want the first one—MySQL Community Server—so click the
 DOWNLOAD link under that option.
This page auto-detects that you’re running Windows and presents you several choices
 (see Figure B-3). You want the version
 that offers you an MSI installer and matches your system type (32-bit or 64-bit). Select
 the correct version. You’re then asked to register on the MySQL website. If you’re
 worried that the MySQL folks might one day use your street address to stage a government
 coup, you can skip this option and go straight to the download servers.
[image: A few years back, MySQL moved from a completely open-source project to a company-backed project. The database is still free, but now there’s a much more professional support system behind it. That’s much of what www.mysql.com website offers: professional support and documentation.]

Figure B-2. A few years back, MySQL moved from a completely open-source project to a
 company-backed project. The database is still free, but now there’s a much more
 professional support system behind it. That’s much of what www.mysql.com website offers: professional
 support and documentation.

[image: Just as with PHP, you have lots of choices about which version and release of MySQL to download. Generally, the best option is the MSI Installer that matches your system. The Zip archive options aren’t packed up nearly so nicely.]

Figure B-3. Just as with PHP, you have lots of choices about which version and release of
 MySQL to download. Generally, the best option is the MSI Installer that matches your
 system. The Zip archive options aren’t packed up nearly so nicely.

Once your download is complete, you have a file called something like
 mysql-5.5.27.2.msi. Double-click this file to run the installer.
 The installation wizard prompts you to select “Install MySQL Products”; requires you to accept a license agreement; gives you a chance to fetch
 the latest components from the Internet, which you should do; and finally, lets you
 choose the setup type. Select Developer Default, and then let the installation process
 whir along.
Next, you must click through the installation of a secondary set of programs and
 then the installation will finish. When it’s done, you see several Server Configuration
 options (Figure B-4). Take this
 opportunity to get your computer and MySQL playing nicely together.
[image: MySQL is worth a thick book on its own. There are literally hundreds of options you can tweak to make it run better, faster, and with less strain on your system. For your purposes, though, these aren’t the issue; you just want a local database in which you can store information.]

Figure B-4. MySQL is worth a thick book on its own. There are literally hundreds of options
 you can tweak to make it run better, faster, and with less strain on your system. For
 your purposes, though, these aren’t the issue; you just want a local database in which
 you can store information.

In the configuration wizard, unless there’s something specific about your system to
 change, accept the standard configuration. For the Config Type, though, choose
 Development Machine and then click Next.
Next, you must enter a root password, which is basically a
 master password. If this were a real database running on a server for, say, Amazon or
 Zappos, here’s where you’d come up with some wild, 22-character password that the most
 powerful computer couldn’t crack. Of course, you’re just running MySQL on your own
 computer, so something a little less intimidating is fine; try myqsl_root if you’re stumped.
You should also create at least one user who has MySQL access privileges. Figure B-5 shows a user called bdm0509, with
 a password and administrative privileges.
Then, be sure to let MySQL set itself up as a Windows service. This simply means that your
 Windows installation can access and control MySQL directly. Configure your setup so that
 MySQL starts automatically when your computer is turned on. Also, turn on the checkbox
 to add the MySQL bin directory to your Windows path (see Figure B-6), which means that when you start
 up a command prompt, you can run MySQL programs.
[image: The users you create when you set up MySQL are not the same as the users on your Windows system. These user accounts are purely for the connection to MySQL.]

Figure B-5. The users you create when you set up MySQL are not the same as the users on your
 Windows system. These user accounts are purely for the connection to MySQL.

[image: MySQL comes ready to run as a Windows service. One benefit is that MySQL automatically starts up every time you start Windows. Also, your MySQL settings are right there in your Windows Control Panel.]

Figure B-6. MySQL comes ready to run as a Windows service. One benefit is that MySQL
 automatically starts up every time you start Windows. Also, your MySQL settings are
 right there in your Windows Control Panel.

At last, the MySQL installer is ready to execute your setup. Click Next and let the
 installer spin away.
Note
You’re starting to get a handle on why most of the programmers you might have met
 are impatient, a bit jittery, and drink a lot of coffee. There’s a lot of waiting
 around when it comes to installing software, and a lot more waiting when it comes to running your
 programs and making sure they behave the way they’re supposed to.

When the wizard closes, your MySQL database is installed. When you click the Start
 menu, you see a new program available, the MySQL Command Line Client, as shown in Figure B-7.
[image: If you ever lose track of the MySQL command-line client, you can just open up a command prompt and type mysql. This command starts the command-line client, as long as you were careful to add the MySQL bin directory to your Windows PATH during installation of MySQL.]

Figure B-7. If you ever lose track of the MySQL command-line client, you can just open up a
 command prompt and type mysql. This command starts the command-line client, as long as
 you were careful to add the MySQL bin directory to your Windows PATH during
 installation of MySQL.

Start the command-line client and enter your super-secret password. You should see
 something similar to Figure B-8.
That’s it: if you can log into MySQL, you’ve got a running database, and you’re
 ready to start working with that database and shoving information into it.
[image: The command-line program always starts by asking you for your password. That’s not trivial; you can do everything from creating and deleting structures to messing around with MySQL’s data from this command line. It’s like a direct line of access to MySQL, which is exactly what you’ll need for testing out the PHP code you’ll be writing soon.]

Figure B-8. The command-line program always starts by asking you for your password. That’s
 not trivial; you can do everything from creating and deleting structures to messing
 around with MySQL’s data from this command line. It’s like a direct line of access to
 MySQL, which is exactly what you’ll need for testing out the PHP code you’ll be
 writing soon.

MySQL on Mac OS X

The MySQL installation process on Mac OS X is similar to the installation on Windows. Visit www.mysql.com
 and select the Downloads (GA) tab near the top of the page. Then, select the “MySQL
 Community Server” link to get to the downloads. The site should autodetect that you’re
 on Mac OS X and present options like those shown in Figure B-9.
[image: As with the Windows versions, you have plenty of options from which to choose for Mac OS X. The developers that work on MySQL tend to favor the Compressed TAR Archive options, because those give you the actual MySQL code. Because you’re not planning on working on the actual MySQL code, that’s a lot more than you need.]

Figure B-9. As with the Windows versions, you have plenty of options from which to choose for
 Mac OS X. The developers that work on MySQL tend to favor the Compressed TAR Archive
 options, because those give you the actual MySQL code. Because you’re not planning on
 working on the actual MySQL code, that’s a lot more than you need.

Scroll down and find the DMG links. These are easy-to-install versions of MySQL that provide a (graphic user interface) and a nice setup. First,
 though, you must determine whether you have a 32-bit or 64-bit system. This is a multistep process on Macs.
First, choose [image:]→About This Mac. Click the “More Info” button, which opens a window
 like the one in Figure B-10. Look for the
 line that reads “Processor” or “Processor Name”.
[image: There’s no one-step process for figuring out whether your system is 32-bit or 64-bit on Macs. That’s because that decision is based on your computer’s processor, so you need to establish which type of processor your computer is using.]

Figure B-10. There’s no one-step process for figuring out whether your system is 32-bit or
 64-bit on Macs. That’s because that decision is based on your computer’s processor, so
 you need to establish which type of processor your computer is using.

Look up your processor in Table B-1; this will let you know whether your Mac is 32-bit or 64-bit.
Table B-1. Fortunately, you don’t have to worry about tons of options. Macs have one choice
 (32-bit or 64-bit) for each processor.
	PROCESSOR NAME
	32-BIT OR 64-BIT

	Intel Core Solo
	32-bit

	Intel Core Duo
	32-bit

	Intel Core 2 Duo
	64-bit

	Intel Quad-Core Xeon
	64-bit

	Dual-Core Intel Xeon
	64-bit

	Quad-Core Intel Xeon
	64-bit

	Core i3
	64-bit

	Core i5
	64-bit

	Core i7
	64-bit

Note
Macs, PCs, are constantly coming out with new hardware. If you can’t find your
 processor in Table B-1, visit http://support.apple.com/kb/HT3696, which usually has an updated list of
 processor names and whether they’re 32-bit or 64-bit.

Now, select the DMG download for MySQL that matches your processor. You can then register (or skip
 registration), select a download site, and start your download.
Once the DMG is downloaded, it opens automatically. You should see several files, as
 shown in Figure B-11.
[image: Most DMGs have a single file and, if you’re lucky, some poorly written instructions. MySQL is a little more heavyweight, though, so you get the core installation, a preference pane (which you’ll install in a few minutes), a program to handle automatic startup, and a helpful ReadMe.txt file.]

Figure B-11. Most DMGs have a single file and, if you’re lucky, some poorly written
 instructions. MySQL is a little more heavyweight, though, so you get the core
 installation, a preference pane (which you’ll install in a few minutes), a program to
 handle automatic startup, and a helpful ReadMe.txt file.

Select the main file, which is called something like
 mysql-5.5.27-osx10.6-x86_64.pkg.
Note
On Mac OSX Mountain Lion, you must Control-click, click Open, and then click Open
 again in the resulting warning box. This procedure gets you past Mountain Lion’s
 restrictions on opening files from an unidentified developer.

Double-click this file to begin installation. You’ll have to agree to a license and
 select an installation location. You then must type an administrator password for your
 computer to launch the installation itself.
Note
If you’re on your own Mac, this password is most likely the password you normally
 use for login. Macs with only a single user set that user up as an administrator.
 Otherwise, go make some cookies and bribe the computer’s owner to give you an admin
 account and let you turn her Mac OS X computer into a PHP and MySQL powerhouse.

Installation doesn’t take long. While it’s proceeding, you see a screen like the one
 in Figure B-12.
Don’t get too excited, though. There are a few steps left. Go back to the DMG,
 double-click it to reopen it if necessary so that you can see its contents again (which
 you saw back in Figure B-11).
[image: MySQL is installed not just as a program, but at a system level. It must to be able to not just write to your files, but allow access to your Mac’s command line, grab system resources, and a lot more.]

Figure B-12. MySQL is installed not just as a program, but at a system level. It must to be
 able to not just write to your files, but allow access to your Mac’s command line,
 grab system resources, and a lot more.

Double-click the file named MySQL.prefPane. System Preferences opens, showing you a new
 pane just for controlling MySQL. It also asks you whether you want to install this pane for you alone,
 or all users. (You can probably keep the pane to yourself, unless there’s a line behind
 you of other database-hungry users.)
Once the pane is installed, it’s automatically opened, as shown in Figure B-13. Turn on the checkbox to have
 MySQL startup automatically and then enter your password one more time. When you’re
 done, start up MySQL to verify that things are working as they should.
And with that, you have an installed, running database on your Mac. Now, start a new
 Terminal window (Applications→Utilities→Terminal). (If you haven’t done so already, drag
 that Terminal icon into your dock where you can get to it easily.) In the Terminal
 window, type the following command:
$ /usr/local/mysql/bin/mysql
This command is a bit long, unfortunately. That’s because one thing the installation
 doesn’t do is set up your path so that you can easily call the
 MySQL tools and programs. Still, you’ll probably do most of your MySQL work on your web
 server, so it isn’t a huge deal.
This command starts the MySQL command prompt. You should see output like that shown in Figure B-14.
[image: The Preferences Pane is a feature of MySQL on Mac OS X. You can start and stop the database, and if you have problems, this is a quick convenient place to go figure out why something is going wrong: it can be as simple as your MySQL installation isn’t running.]

Figure B-13. The Preferences Pane is a feature of MySQL on Mac OS X. You can start and stop
 the database, and if you have problems, this is a quick convenient place to go figure
 out why something is going wrong: it can be as simple as your MySQL installation isn’t
 running.

[image: There are graphical tools to let you work with your database, and you’ll want to check those out. But for getting to the root of a tricky problem, or learning how to work with MySQL from PHP, nothing beats learning the commands that you can use from a MySQL command prompt in Terminal to interact directly with your database.]

Figure B-14. There are graphical tools to let you work with your database, and you’ll want to
 check those out. But for getting to the root of a tricky problem, or learning how to
 work with MySQL from PHP, nothing beats learning the commands that you can use from a
 MySQL command prompt in Terminal to interact directly with your database.

If you’re seeing something similar on your Mac, you have a running installation of
 MySQL, and you’re ready to start working with your database.
POWER USERS’ CLINIC: Update Your PATH to Include the MySQL Programs
It’s a bit disappointing that after you went to all the trouble of downloading
 MySQL and installing it—including a handy Preferences pane—you still can’t just type
 mysql at a Terminal window and get off to the
 races. Still, if you’re not afraid of a little work, you can fix this problem
 yourself.
The secret to all these programs that run—and don’t run—in your Terminal is your
 computer’s PATH. That’s a special variable (just like the variables discussed on Variables Vary) that tells your computer where to look when you enter a
 command. When you type mysql, if your PATH includes
 /usr/local/mysql/bin, your computer looks in that directory,
 sees a program called mysql, and runs it.
 Perfect!
But, what about when your PATH doesn’t include a directory you want? You can
 update the PATH, but it involves editing a file that’s normally hidden. First, go back
 to Terminal and enter these two commands:
$ defaults write com.apple.finder Apple-
ShowAllFiles TRUE
$ killall Finder
The first line instructs the Finder—the program that shows you directories on a
 Mac—to show hidden files, including the one you need to edit. The second line restarts
 Finder and puts this change into action. Next, open a Finder window and go to your
 home directory. You’ll see a bit of a weird view of your normal directory window; it
 probably looks something like Figure B-15. You’ll see tons of files that are light gray, and seem faded or nearly invisible.
 These files are normally hidden from your view, and you might notice that most of them
 begin with a dot (•), which is why they’re hidden.
Scroll until you find a file called .profile, and open that
 file in a text editor like Mac OS X’s TextEdit. If you’ve never worked with PATHs
 before, you might not have this file at all, and that’s okay, too. Just open TextEdit
 to a new file.
You want to add two lines to this file:
MYSQL_HOME=/usr/local/mysql
export PATH=$MYSQL_HOME/bin:$PATH
If you’re creating a new file, just make these the first lines. If you already
 have a .profile, add these lines at the very bottom of whatever
 else is in the file.
The first line creates a new variable called MYSQL_HOME, and sets it to where you installed MySQL. This way, if you
 ever change your MySQL installation location, you can just update this variable, just
 like you updated the $facebook_url variable in your
 PHP script. The second line then sets the PATH variable to be the current PATH, but it
 adds the bin directory under MYSQL_HOME to the beginning of that path. The export keyword instructs Mac OS X to make this updated PATH variable
 available to all the programs on your computer.
Finally, save your file. If you’re creating a new file, be careful to name it
 correctly, beginning the file name with a dot (•). You also need to ensure that the
 file doesn’t have an extension. If you accidentally save the file with an extension,
 just remove that extension in Finder.
When you’re done, you should have a file in your home directory called
 .profile. It should be grayed out, too, because it’s hidden.
 Now, you can open up a new Terminal window and type mysql.
 You should see the MySQL command line program open right up.
Finally, before you hang up your new system-editing ninja skills, set Finder to
 hide all those files again:
$ defaults write com.apple.finder Apple-
ShowAllFiles FALSE
$ killall Finder
You can always unhide them if you need to access them later.

[image: Most programs that update and work on your system itself create hidden files, all starting with a dot (.). So, git, a version control system, creates .gitconfig, and DropBox, a popular file-sharing system, creates .dropbox.]

Figure B-15. Most programs that update and work on your system itself create hidden files, all
 starting with a dot (.). So, git, a version control system, creates .gitconfig, and
 DropBox, a popular file-sharing system, creates .dropbox.

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	! (exclamation point), bang (negation) operator, Handling Errors by Determining If Your Results are Not–Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not
	$ (dollar sign), Variables Vary
		in variables, Variables Vary

	$_REQUEST variable, Accessing Request Parameters Directly–Create Your Own Variables, Create Your Own Variables, The $_REQUEST Variable Is an Array, Arrays Can Hold Multiple Values, Arrays Can Hold Multiple Values, PHP Gives You An Array of Request Information, PHP Gives You An Array of Request Information, PHP Gives You An Array of Request Information, Pulling Values from a SQL Query Result, Passing a User ID into show_user.php–Passing a User ID into show_user.php, Passing a User ID into show_user.php, Passing a User ID into show_user.php, Creating a PHP Error Page, Expect the Unexpected, Set Up Some Helper Variables, Standardizing and Consolidating Messaging in the View, Is the User Trying to Sign In?
		accessing parameters directly, Accessing Request Parameters Directly–Create Your Own Variables, Create Your Own Variables
	as array, The $_REQUEST Variable Is an Array, Arrays Can Hold Multiple Values, Arrays Can Hold Multiple Values, PHP Gives You An Array of Request Information, PHP Gives You An Array of Request Information, PHP Gives You An Array of Request Information, Pulling Values from a SQL Query Result, Set Up Some Helper Variables
	determining if user is trying to sign in using, Is the User Trying to Sign In?
	in creating error pages, Creating a PHP Error Page, Expect the Unexpected
	passing into display_title(), Standardizing and Consolidating Messaging in the View
	testing script using, Passing a User ID into show_user.php–Passing a User ID into show_user.php, Passing a User ID into show_user.php, Passing a User ID into show_user.php

	() parentheses, mixing up square brackets ([]) and, Did the File Upload with Any Errors?
	. (dot), adding constants using, Variables Vary, but Constants Stay Constant
	. (period), in regular
 expressions, Search for One String…Or Another
	* (asterisk), Searching for Sets of Characters
		using with \r and \n characters, Searching for Sets of Characters

	+ (plus) sign, in regular expressions, Ditch trim and strtoupper
	--host option vs. -h option, Logging In to Your Web Server’s Database
	--password option vs. -p option, Logging In to Your Web Server’s Database, Logging In to Your Web Server’s Database
	0 (zero), Searching Within Text, Changing Text, Arrays Can Hold Multiple Values
		arrays counting from, Arrays Can Hold Multiple Values
	functions counting from, Changing Text
	using in programming languages, Searching Within Text

	1:1 relationships, One-to-One, One-to-Many, Many-to-Many
	1Password, Dealing with Newly Invalid Data
	; (semicolon), in MySQL, Selecting a Database with USE
	< > (angle brackets), Changing Text
	<i> tags, HTML, Accessing Request Parameters Directly
	<p> tags, HTML, Accessing Request Parameters Directly
	=-p option, Give mysql the Right User and Password
		in MAMP, Give mysql the Right User and Password

	=-u option, Run the mysql Tool on MAMP, Logging In to Your Web Server’s Database
		in MySQL command-line program, Run the mysql Tool on MAMP
		in MAMP, Run the mysql Tool on MAMP

	vs. --user option, Logging In to Your Web Server’s Database

	== (double-equals sign), regular expressions and, Getting into Position
	=== (triple-equals sign), Handling Queries That Don’t SELECT Information
		in If statements, Handling Queries That Don’t SELECT Information

	=> (arrows), in arrays, Set Up Some Helper Variables
	@ operator, suppressing errors using, Is this Really an Uploaded File?–Is the Uploaded File Really an Image?, Is the Uploaded File Really an Image?
	[] (square brackets), mixing up parentheses () and, Did the File Upload with Any Errors?
	\ (backslash), in escaping characters, A Simple String Searcher–Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another
	\n (line feed character), Searching for Sets of Characters, Searching for Sets of Characters, Building a New Utility Function for Display
	\r (carriage return), Searching for Sets of Characters, Searching for Sets of Characters, Rounding Things Out by Using Regular Expressions (Again)
	\t (tab characters), Searching for Sets of Characters
	^ (carat), in regular expressions, Getting into Position–Ditch trim and strtoupper, Getting into Position, Ditch trim and strtoupper
	{ } (curly braces), Variables Vary, but Constants Stay Constant, Printing a String to a Variable
		in printing out constants, Variables Vary, but Constants Stay Constant
	printing to strings inside, Printing a String to a Variable

	| (pipe), in regular expressions, Search for One String…Or Another
	|| (double-pipe), Avoid Changing User Input Whenever Possible
	’ (single quotes), Trim and Replace Text, A Simple String Searcher
		alternating double and, Trim and Replace Text
	vs. double quotes (“ ”), A Simple String Searcher

	“ (double quotes), Combine Text–Searching Within Text, Searching Within Text, Changing Text, Replacing Characters in Text by Using Str_replace(), A Simple String Searcher
		alternating single and, Changing Text
	using in searching text, Replacing Characters in Text by Using Str_replace()
	using in web form, Combine Text–Searching Within Text, Searching Within Text
	vs. single quotes (’), A Simple String Searcher

 A
	absolute path, relative and, redirect Is Path-Insensitive
	administrative interfaces, Listing, Iterating, and Administrating, Thinking about What You Need as an Admin–Wish Lists Are Good, Too, Wish Lists Are Good, Too, Listing All Your Users–Iterating Over Your Array, SELECTing What You Need (Now), SELECTing What You Need (Now), Building a Simple Admin Page, Iterating Over Your Array, Iterating Over Your Array, Iterating Over Your Array, Deleting a User, Putting It All Together, Talking Back to Your Users–redirect Has Some Limitations, Talking Back to Your Users, Talking Back to Your Users, redirect Has Some Limitations, alert Is Interruptive, Standardizing on Messaging, Standardizing on Messaging
		about, Listing, Iterating, and Administrating
	about talking back to users, Talking Back to Your Users–redirect Has Some Limitations, Talking Back to Your Users, redirect Has Some Limitations
	deleting users, Deleting a User, Putting It All Together, Talking Back to Your Users, alert Is Interruptive, Standardizing on Messaging
		about, Deleting a User, Putting It All Together
	interrupting user during delete, Talking Back to Your Users, alert Is Interruptive, Standardizing on Messaging

	listing all users, Listing All Your Users–Iterating Over Your Array, SELECTing What You Need (Now), Building a Simple Admin Page, Iterating Over Your Array, Iterating Over Your Array, Iterating Over Your Array
	looking ahead at needs, SELECTing What You Need (Now)
	standardizing on messaging, Standardizing on Messaging
	thinking about need for, Thinking about What You Need as an Admin–Wish Lists Are Good, Too, Wish Lists Are Good, Too

	AFTER keyword, Updating the users Table
	alert() function, An All-Javascript Approach, Your PHP Controls your Output, Your PHP Controls your Output, Your PHP Controls your Output, Your PHP Controls your Output
	alias, tables, Alias Your Tables (and Columns)–Get the Image ID, Get the Image ID
	ALTER command, Changing a Table’s Structure by Using ALTER
	AND keyword, Using CREATE to Make Tables
	angle brackets (< >), Changing Text
	Apache, allowing access to public networks, PHP on the Windows-Based Computers (WampServer Installation)
	application, creating, Deleting a User–Talking Back to Your Users, Surveying the Individual Components, Deleting Users Shouldn’t Be Magical, Talking Back to Your Users, Talking Back to Your Users, Using HTTP Headers for Basic Authentication–Getting Your User’s Credentials, Basic Authentication Is…Well, Basic, The Worst Authentication Ever, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials
		applying authentication in, Using HTTP Headers for Basic Authentication–Getting Your User’s Credentials, Basic Authentication Is…Well, Basic, The Worst Authentication Ever, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials
	deleting users, Deleting a User–Talking Back to Your Users, Surveying the Individual Components, Deleting Users Shouldn’t Be Magical, Talking Back to Your Users, Talking Back to Your Users

	Applications folder (Mac OS X), finding, PHP on the Mac (Default Installation)–PHP on the Mac (Default Installation), PHP on the Mac (Default Installation)
	arrays, Arrays Can Hold Multiple Values, Set Up Some Helper Variables, Set Up Some Helper Variables, Take in a List of Groups
		associative, Set Up Some Helper Variables
	counting from zero (0), Arrays Can Hold Multiple Values
	getting lists to functions using, Take in a List of Groups
	using to handle PHP uploading errors, Set Up Some Helper Variables

	arrows (=>), in arrays, Set Up Some Helper Variables
	associative arrays, Set Up Some Helper Variables
	authentication, Cancel Is Not a Valid Means of Authentication–Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication, Getting Your User’s Credentials–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Moving Beyond Basic Authentication–Logging In with Cookies, Taking Control of User Sign Ins, From HTTP Authentication to Cookies–Logging In with Cookies, From HTTP Authentication to Cookies, What is a Cookie?, Logging In with Cookies, Logging In with Cookies, Logging In with Cookies, Logging In with Cookies, Blank Pages and Expiring Cookies
		beyond basic, Moving Beyond Basic Authentication–Logging In with Cookies, Taking Control of User Sign Ins, What is a Cookie?, Logging In with Cookies, Logging In with Cookies
	Cancel button and, Cancel Is Not a Valid Means of Authentication–Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication
	show_users script in, Getting Your User’s Credentials–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php
	testing, Blank Pages and Expiring Cookies
	using cookies, From HTTP Authentication to Cookies–Logging In with Cookies, From HTTP Authentication to Cookies, Logging In with Cookies, Logging In with Cookies

	authorization, Another Utility Script: authorize.php–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Connect authorize.php to Your users Table–Passwords Create Security, But Should Be Secure, Connect authorize.php to Your users Table–Passwords Create Security, But Should Be Secure, Connect authorize.php to Your users Table, Connect authorize.php to Your users Table, Passwords Create Security, But Should Be Secure, Passwords Create Security, But Should Be Secure, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies, From HTTP Authentication to Cookies, Checking for Group Membership–Group-Specific Menus, Checking for Group Membership, authorize.php Needs a Function, Take in a List of Groups, Take in a List of Groups, Iterating Over Each Group, Iterating Over Each Group, Iterating Over Each Group, Allow, Deny, Redirect, Allow, Deny, Redirect, Group-Specific Menus–Entering Browser Sessions, Group-Specific Menus, Entering Browser Sessions–Menu, Anyone?, Entering Browser Sessions, Entering Browser Sessions, Sessions Are Server-Side, From $_COOKIE to $_SESSION, Sessions Must Be Restarted, Too, Sessions Must Be Restarted, Too, $_REQUEST Doesn’t Include $_SESSION, Menu, Anyone?
		changing script for checking users credentials, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies
	changing script for checking users’ credentials, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies
	checking group membership, Checking for Group Membership–Group-Specific Menus, Checking for Group Membership, authorize.php Needs a Function, Take in a List of Groups, Take in a List of Groups, Iterating Over Each Group, Iterating Over Each Group, Iterating Over Each Group, Allow, Deny, Redirect, Allow, Deny, Redirect, Group-Specific Menus
	connecting authorize script to users table, Connect authorize.php to Your users Table–Passwords Create Security, But Should Be Secure, Passwords Create Security, But Should Be Secure
	connecting authorize script to users’ table, Connect authorize.php to Your users Table–Passwords Create Security, But Should Be Secure, Connect authorize.php to Your users Table, Connect authorize.php to Your users Table, Passwords Create Security, But Should Be Secure
	entering browser sessions, Entering Browser Sessions–Menu, Anyone?, Entering Browser Sessions, Sessions Are Server-Side, From $_COOKIE to $_SESSION, Sessions Must Be Restarted, Too, Sessions Must Be Restarted, Too, $_REQUEST Doesn’t Include $_SESSION, Menu, Anyone?
	group-specific menus, Group-Specific Menus–Entering Browser Sessions, Entering Browser Sessions
	writing script, Another Utility Script: authorize.php–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php

	authorize_user() function, authorize.php Needs a Function–authorize.php Needs a Function, authorize.php Needs a Function, authorize.php Needs a Function
	AUTO_INCREMENT column, Auto Increment Is Your Friend–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database

 B
	backslash (\), in escaping characters, A Simple String Searcher–Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another
	backups, hard drive, Databases Are Persistent
	bang (negation) operator (!), Handling Errors by Determining If Your Results are Not–Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not
	BBEdit, as text editor, Write Your First Program
		syntax colored highlighting in, Write Your First Program

	binary objects, Inserting a Raw Image into a Table–Your Binary Data Isn’t Safe to Insert…Yet, Inserting a Raw Image into a Table, Inserting a Raw Image into a Table, INSERTing the Image, INSERTing the Image–Connecting Users and Images, Your Binary Data Isn’t Safe to Insert…Yet, Your Binary Data Isn’t Safe to Insert…Yet, Your Binary Data Isn’t Safe to Insert…Yet, Printing a String to a Variable, Getting the Correct ID Before Redirecting, Getting the Correct ID Before Redirecting, Connecting Users and Images–Show Me the Image!, Connecting Users and Images, Connecting Users and Images, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Connect Your Tables Through Common Columns, Alias Your Tables (and Columns), Show Me the Image!, Displaying an Image–Test, Test, Always Test, Build and Run a Select Query, Tell the Browser What’s Coming, Handling Errors with try and catch, Handling Errors with try and catch, Handling Errors with try and catch, Test, Test, Always Test, Test, Test, Always Test, So, Which Approach Is Best?–OK, If You Insist on an Answer…, OK, If You Insist on an Answer…
		best approach for loading, So, Which Approach Is Best?–OK, If You Insist on an Answer…, OK, If You Insist on an Answer…
	connecting users and images, Connecting Users and Images–Show Me the Image!, Connecting Users and Images, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Connect Your Tables Through Common Columns, Alias Your Tables (and Columns), Show Me the Image!
	displaying images, Displaying an Image–Test, Test, Always Test, Build and Run a Select Query, Tell the Browser What’s Coming, Handling Errors with try and catch, Handling Errors with try and catch, Handling Errors with try and catch, Test, Test, Always Test, Test, Test, Always Test
	inserting data into table, INSERTing the Image–Connecting Users and Images, Your Binary Data Isn’t Safe to Insert…Yet, Printing a String to a Variable, Getting the Correct ID Before Redirecting, Getting the Correct ID Before Redirecting, Connecting Users and Images
	inserting into table raw images, Inserting a Raw Image into a Table–Your Binary Data Isn’t Safe to Insert…Yet, Inserting a Raw Image into a Table, Inserting a Raw Image into a Table, INSERTing the Image, Your Binary Data Isn’t Safe to Insert…Yet, Your Binary Data Isn’t Safe to Insert…Yet

	blank screen, in testing cookies login script, Blank Pages and Expiring Cookies
	blob (binary large object) column types, Storing Different Objects in Different Tables
	blocks of PHP code, creating, Create Your Own Variables
	Bluehost hosting provider, Run PHP Scripts Remotely
	browsers, PHP Doesn’t Run in the Browser, HTML and CSS Run Within a Web Browser–JavaScript Adds Complexity, but Not Software, HTML and CSS Run Within a Web Browser, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software–JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, PHP Is Not Part of Your Browser–Write Anywhere, Run Where There’s PHP, PHP Is Not Part of Your Browser, Write Anywhere, Run Where There’s PHP, PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Is Not HTML (by Extension), PHP Can Be HTML—by Response, Write Another PHP Script, Run Your Second Program, Replacing Characters in Text by Using Str_replace(), Tell the Browser What’s Coming, Start with a Little Javascript, Entering Browser Sessions–Menu, Anyone?, Entering Browser Sessions, Sessions Are Server-Side, Sessions Must Be Restarted, Too, Sessions Must Be Restarted, Too, $_REQUEST Doesn’t Include $_SESSION, $_REQUEST Doesn’t Include $_SESSION, Menu, Anyone?, Menu, Anyone?, Installing PHP from www.php.net–Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, MySQL on Windows, MySQL on Mac OS X
		confirmation boxes in, Start with a Little Javascript
	displaying .html pages, HTML and CSS Run Within a Web Browser–JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software
	entering sessions using, Entering Browser Sessions–Menu, Anyone?, Sessions Are Server-Side, Sessions Must Be Restarted, Too, Sessions Must Be Restarted, Too, $_REQUEST Doesn’t Include $_SESSION, $_REQUEST Doesn’t Include $_SESSION, Menu, Anyone?, Menu, Anyone?
		restarting sessions, Sessions Must Be Restarted, Too
	signing out of sessions, Menu, Anyone?

	installing MySQL in Mac OS X from website using, MySQL on Mac OS X
	installing MySQL in Windows from website using, MySQL on Windows
	installing PHP from website, Installing PHP from www.php.net–Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net
	interacting with PHP, PHP Is Not Part of Your Browser–Write Anywhere, Run Where There’s PHP, PHP Is Not Part of Your Browser, Write Anywhere, Run Where There’s PHP
	JavaScript as browser-based technology, JavaScript Adds Complexity, but Not Software–JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software, JavaScript Adds Complexity, but Not Software
	opening PHP files in, PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Is Not HTML (by Extension), PHP Can Be HTML—by Response, Write Another PHP Script
	PHP interpreter and, PHP Doesn’t Run in the Browser
	preparing for images, Tell the Browser What’s Coming
	referencing CSS stylesheets, HTML and CSS Run Within a Web Browser
	relationship to PHP program, Run Your Second Program
	storage of cookies in, Entering Browser Sessions
	versions of JavaScript in, JavaScript Adds Complexity, but Not Software
	viewing source code from, Replacing Characters in Text by Using Str_replace()

 C
	C++ extensions, WampServer requiring, PHP on the Windows-Based Computers (WampServer Installation)–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation)
	Cancel button, in login box and authentication, Cancel Is Not a Valid Means of Authentication–Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication, Cancel Is Not a Valid Means of Authentication
	capitalization, Selecting a Database with USE–Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Variables Vary, but Constants Stay Constant
		of constants, Variables Vary, but Constants Stay Constant
	using in SQL, Selecting a Database with USE–Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables

	carat (^), in regular expressions, Getting into Position–Ditch trim and strtoupper, Ditch trim and strtoupper
	carriage return (\r), Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters
	chaining, method, Replacing Characters in Text by Using Str_replace()
	changing, text, Changing Text–Changing Text, Changing Text, Changing Text
	characters, searching sets of, Searching for Sets of Characters–Regular Expressions: To Infinity and Beyond, Searching for Sets of Characters, Searching for Sets of Characters, Regular Expressions: To Infinity and Beyond, Regular Expressions: To Infinity and Beyond
	Chrome, managing cookies in, Entering Browser Sessions
	client-server interaction, Images Are Just Files
	code, PHP, Create Your Own Variables–Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Replacing Characters in Text by Using Str_replace(), Print Out Your SQL Results, Cleaning Up Your Code with Multiple Files–Variables Vary, but Constants Stay Constant, Abstracting Important Values into a Separate File, Abstracting Important Values into a Separate File, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Avoid Changing User Input Whenever Possible, Search for One String…Or Another, Finding a Middle Ground for Error Pages with PHP, Get the Results, Get the Image, and Deal with Potential Errors, Putting It All Together, Building a New Utility Function for Display, Duplicate Code Is a Problem Waiting to Happen, Duplicate Code Is a Problem Waiting to Happen–Calling Repeated Code from a View Script, Integrating Utilities, Views, and Messages, Calling Repeated Code from a View Script, Output a Standard Header with Heredoc, Group-Specific Menus
		about writing, Variables Vary, but Constants Stay Constant
	breaking down chains of action in, Replacing Characters in Text by Using Str_replace()
	cleaning up, Cleaning Up Your Code with Multiple Files–Variables Vary, but Constants Stay Constant, Abstracting Important Values into a Separate File, Abstracting Important Values into a Separate File, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant
	cutting and pasting, Putting It All Together
	display and view code, Duplicate Code Is a Problem Waiting to Happen–Calling Repeated Code from a View Script, Integrating Utilities, Views, and Messages, Calling Repeated Code from a View Script
	doing away with redundancy in, Create Your Own Variables–Create Your Own Variables, Create Your Own Variables, Create Your Own Variables
	double-pipe (||), Avoid Changing User Input Whenever Possible
	DRY, Duplicate Code Is a Problem Waiting to Happen
	ending sequence, Output a Standard Header with Heredoc
	error pages, Finding a Middle Ground for Error Pages with PHP
		about, Finding a Middle Ground for Error Pages with PHP

	readability of, Search for One String…Or Another, Building a New Utility Function for Display
	refactoring, Create Your Own Variables, Group-Specific Menus
	resource in, Print Out Your SQL Results
	sequential, Get the Results, Get the Image, and Deal with Potential Errors
	writing tests for, Variables Vary, but Constants Stay Constant

	columns, table, Using CREATE to Make Tables, Good Database Tables Have ID Columns, Auto Increment Is Your Friend–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database, Adding Constraints to Your Database, Changing a Table’s Structure by Using ALTER, Changing a Table’s Structure by Using ALTER, Storing the Image Location in the Database–SELECTing the Image and Displaying It, Create a New Database Column, Check Your Work, Check Your Work, SELECTing the Image and Displaying It, Storing Different Objects in Different Tables, Getting the Correct ID Before Redirecting, Connecting Users and Images, Connecting Users and Images, Alias Your Tables (and Columns)–Get the Image ID, Alias Your Tables (and Columns)–Get the Image ID, Make a Game Plan for Your Script, Get the Image ID, Get the Image ID, All You Need Is an Image ID, OK, If You Insist on an Answer…, Building a Simple Admin Page
		about, Good Database Tables Have ID Columns
	alias, Alias Your Tables (and Columns)–Get the Image ID, Get the Image ID
	AUTO_INCREMENT, Auto Increment Is Your Friend–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database
	blob types in, Storing Different Objects in Different Tables, Getting the Correct ID Before Redirecting
	creating to store image location, Storing the Image Location in the Database–SELECTing the Image and Displaying It, Create a New Database Column, Check Your Work, Check Your Work, SELECTing the Image and Displaying It
	foreign keys and, Connecting Users and Images
	impact on old rows in adding, Changing a Table’s Structure by Using ALTER
	looking ahead at needs for, Building a Simple Admin Page
	NOT NULL, Adding Constraints to Your Database
	profile_pic_id, Connecting Users and Images, All You Need Is an Image ID, OK, If You Insist on an Answer…
	size of, Using CREATE to Make Tables
	using ALTER command for adding, Changing a Table’s Structure by Using ALTER
	using table prefixes in, Alias Your Tables (and Columns)–Get the Image ID, Make a Game Plan for Your Script, Get the Image ID

	.com and .org, mixing up
 in domain names, Trim and Replace Text
	command line (Windows), What Is PHP Like?, Putting It All Together, Installing MySQL Without MAMP or WAMP, MySQL on Windows
		finding MySQL command line client, MySQL on Windows
	running PHP from, What Is PHP Like?, Installing MySQL Without MAMP or WAMP
	using tabs, Putting It All Together

	compiled languages, PHP Is Interpreted
	concatenation, Combine Text
	confirmation boxes, Start with a Little Javascript
	constants, Variables Vary, but Constants Stay Constant–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant
		using, Variables Vary, but Constants Stay Constant–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant

	content-length, Tell the Browser What’s Coming
	content-type, Tell the Browser What’s Coming
	context-specific menus, Adding Context-Specific Menus–Requiring the Cookie to Be Set, Putting a Menu into Place–Any HTML File Can Be Converted to PHP, Putting a Menu into Place, From HTML to Scripts–Logging Users Out, Any HTML File Can Be Converted to PHP, Any HTML File Can Be Converted to PHP, Any HTML File Can Be Converted to PHP, Challenge: Be Self-Referential with User Creation, Logging Users Out–Logging Users Out, Logging Users Out, Logging Users Out, Logging Users Out, Requiring the Cookie to Be Set–Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set
		converting from HTML to PHP scripts, From HTML to Scripts–Logging Users Out, Any HTML File Can Be Converted to PHP, Any HTML File Can Be Converted to PHP, Challenge: Be Self-Referential with User Creation, Logging Users Out
	logging out users, Logging Users Out–Logging Users Out, Logging Users Out, Logging Users Out
	putting into place, Putting a Menu into Place–Any HTML File Can Be Converted to PHP, Putting a Menu into Place, Any HTML File Can Be Converted to PHP
	requiring cookie to be set, Requiring the Cookie to Be Set–Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set

	controllers, redirect Has Some Limitations
	cookies, From HTTP Authentication to Cookies–Logging In with Cookies, Create and Retrieve Cookies, Create and Retrieve Cookies–Determining Whether the User Is Already Signed In, Logging In with Cookies, Determining Whether the User Is Already Signed In–Is the User Trying to Sign In?, Determining Whether the User Is Already Signed In, Determining Whether the User Is Already Signed In, Is the User Trying to Sign In?, Is the User Trying to Sign In?, Displaying the Page, Displaying the Page, Redirecting as Needed–Logging In the User, Redirecting as Needed, Redirecting as Needed, Logging In the User–Blank Pages and Expiring Cookies, Logging In the User, Logging In the User, Logging In the User, Blank Pages and Expiring Cookies, Blank Pages and Expiring Cookies, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, An Option for Repeat Attempts, Adding Context-Specific Menus–Requiring the Cookie to Be Set, Putting a Menu into Place, Requiring the Cookie to Be Set, Entering Browser Sessions–Entering Browser Sessions, Entering Browser Sessions, Entering Browser Sessions, Memory Lane: Remember That Phishing Problem?
		about, Create and Retrieve Cookies
	about signin script for logging in with, Create and Retrieve Cookies–Determining Whether the User Is Already Signed In, Determining Whether the User Is Already Signed In
	about using, Memory Lane: Remember That Phishing Problem?
	adding context-specific menus, Adding Context-Specific Menus–Requiring the Cookie to Be Set, Putting a Menu into Place, Requiring the Cookie to Be Set
	client-side storage of, Entering Browser Sessions–Entering Browser Sessions, Entering Browser Sessions, Entering Browser Sessions
	determining if user is already signed in, Determining Whether the User Is Already Signed In–Is the User Trying to Sign In?, Determining Whether the User Is Already Signed In, Is the User Trying to Sign In?
	determining if user is trying to sign in, Is the User Trying to Sign In?
	displaying page after login, Displaying the Page, Displaying the Page, Redirecting as Needed
	from HTTP authentication to, From HTTP Authentication to Cookies–Logging In with Cookies, Logging In with Cookies
	handling errors in script, Blank Pages and Expiring Cookies, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive
	logging user in, Logging In the User–Blank Pages and Expiring Cookies, Logging In the User, Logging In the User, Blank Pages and Expiring Cookies
	redirecting user if logged in, Redirecting as Needed–Logging In the User, Redirecting as Needed, Logging In the User
	reloading page on failed login, An Option for Repeat Attempts

	COUNT(*), Testing Group Membership–Checking for Group Membership, Testing Group Membership, Checking for Group Membership
	CREATE statement, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using DROP to Delete Tables, Storing Different Objects in Different Tables
		making tables using, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using DROP to Delete Tables
	translating image data into table, Storing Different Objects in Different Tables

	creating, PHP: Going Local–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Connecting to Your Database (Again), Connecting to Your Database (Again), Create a New Database Column–SELECTing the Image and Displaying It, Create a New Database Column, SELECTing the Image and Displaying It, Storing Different Objects in Different Tables, Flexible Functions Are Better Functions, MySQL on Windows
		column to store image location, Create a New Database Column–SELECTing the Image and Displaying It, Create a New Database Column, SELECTing the Image and Displaying It
	empty box in HTML form, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Connecting to Your Database (Again), Connecting to Your Database (Again)
	flexible functions, Flexible Functions Are Better Functions
	local web server, PHP: Going Local–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation)
	tables using CREATE statement, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Storing Different Objects in Different Tables
	users in in MySQL, MySQL on Windows

	credentials, getting user, Getting Your User’s Credentials, Getting Your User’s Credentials
	crypt() function, Passwords Create Security, But Should Be Secure–crypt Is One-Way Encryption, crypt Is One-Way Encryption, crypt Is One-Way Encryption
	CSS Directory (css/), Upload your HTML, CSS, and PHP
	CSS stylesheets, Accessing Request Parameters Directly
		using on web form, Accessing Request Parameters Directly

	cutting and pasting code, Putting It All Together
	Cyberduck, FTP: It’s Critical

 D
	data, INSERT a Few Rows, Dealing with Humans–Avoid Changing User Input Whenever Possible, Dealing with Humans, Avoid Changing User Input Whenever Possible
		dealing with humans entering, Dealing with Humans–Avoid Changing User Input Whenever Possible, Dealing with Humans, Avoid Changing User Input Whenever Possible
	inserting into table, INSERT a Few Rows

	data structures, Arrays Can Hold Multiple Values
	data, as permanent, Databases Are Persistent
	database, MySQL and SQL: Database and Language–Good Databases Are Relational, Databases Are Persistent, Databases Are Persistent, Databases Are Persistent, Good Databases Are Relational–Installing MySQL, Good Databases Are Relational, Good Databases Are Relational, Installing MySQL, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Selecting a Database with USE, IDs and Primary Keys are Good Bedfellows–Adding Constraints to Your Database, Adding Constraints to Your Database–Adding Constraints to Your Database, Adding Constraints to Your Database, Adding Constraints to Your Database, Passwords Don’t Belong in PHP Scripts–Dealing with Newly Invalid Data, Dealing with Newly Invalid Data, Modeling Groups in Your Database–Checking for Group Membership, Modeling Groups in Your Database, Adding a Groups Table, One-to-One, One-to-Many, Many-to-Many, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Testing Group Membership, Checking for Group Membership
		about, MySQL and SQL: Database and Language–Good Databases Are Relational, Databases Are Persistent, Databases Are Persistent, Good Databases Are Relational
	adding constraints in, Adding Constraints to Your Database–Adding Constraints to Your Database, Adding Constraints to Your Database
	modeling groups in, Modeling Groups in Your Database–Checking for Group Membership, Modeling Groups in Your Database, Adding a Groups Table, One-to-One, One-to-Many, Many-to-Many, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Testing Group Membership, Checking for Group Membership
	primary keys, IDs and Primary Keys are Good Bedfellows–Adding Constraints to Your Database, Adding Constraints to Your Database
	relational, Good Databases Are Relational–Installing MySQL, Good Databases Are Relational, Installing MySQL
	replication of, Databases Are Persistent
	selecting with use command, Selecting a Database with USE
	show command for, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query
	storing passwords in, Passwords Don’t Belong in PHP Scripts–Dealing with Newly Invalid Data, Dealing with Newly Invalid Data
	use command for, Run Your First SQL Query

	database administrator, Standardizing on Messaging, Authentication and Authorization
		about, Authentication and Authorization
	standardizing on messaging, Standardizing on Messaging

	debugging, Add Debugging to Your Application, Who’s Using This App, Anyway?, Now You See Me, Now You Don’t
		adding to application, Add Debugging to Your Application, Who’s Using This App, Anyway?, Now You See Me, Now You Don’t

	DEBUG_MODE, Now You See Me, Now You Don’t
	debug_print, Now You See Me, Now You Don’t
	deleting, Using DROP to Delete Tables–INSERT a Few Rows, Using DROP to Delete Tables, INSERT a Few Rows, Deleting a User–Talking Back to Your Users, Talking Back to Your Users
		tables, Using DROP to Delete Tables–INSERT a Few Rows, Using DROP to Delete Tables, INSERT a Few Rows
	task of, Deleting a User–Talking Back to Your Users, Talking Back to Your Users

	dependency in code, Moving from require to require_once
	DESCRIBE (DESC) command, Using CREATE to Make Tables
	descriptive variable names, using on web form, Create Your Own Variables
	Desktop Search, Google, Databases Are All about Structure
	die statements, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Select the Database with PHP
	dir command (Windows), Run Your First Program
	directories, Run PHP Scripts Remotely–Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP, Passing a User ID into show_user.php, Creating a PHP Error Page
		organizing on hosting provider, Run PHP Scripts Remotely–Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP
	scripts/, Passing a User ID into show_user.php, Creating a PHP Error Page

	display_error_message() function, Building a New Utility Function for Display–View and Display Code Belongs Together, Duplicate Code Is a Problem Waiting to Happen, Duplicate Code Is a Problem Waiting to Happen, View and Display Code Belongs Together
	display_head() function, Use Default Argument Values in Display_Messages, Output a Standard Header with Heredoc, Update Your Script(s) to Use Display_Head, Standardizing and Consolidating Messaging in the View, Building a Function to Call Two Functions, Building a Function to Call Two Functions
	display_messages() function, Calling Repeated Code from a View Script–Output a Standard Header with Heredoc, Flexible Functions Are Better Functions, Use Default Argument Values in Display_Messages, Output a Standard Header with Heredoc
	display_success_message() function, Building a New Utility Function for Display–View and Display Code Belongs Together, Duplicate Code Is a Problem Waiting to Happen, Duplicate Code Is a Problem Waiting to Happen, View and Display Code Belongs Together
	display_title() function, Flexible Functions Are Better Functions, Standardizing and Consolidating Messaging in the View, Building a Function to Call Two Functions, Building a Function to Call Two Functions, Just Pass That Information Along, Putting a Menu into Place
	DNS (Domain Name Service), Run PHP Scripts Remotely
	Domain Name Service (DNS), Run PHP Scripts Remotely
	dot (.), adding constants using, Variables Vary, but Constants Stay Constant
	DROP command, Using DROP to Delete Tables, Using DROP to Delete Tables, Adding Constraints to Your Database
	dropping, table columns, SELECTing What You Need (Now)
	DRY code, Duplicate Code Is a Problem Waiting to Happen

 E
	echo statements, removing, A Little Cleanup: Remove the echo Statements–A Little Cleanup: Remove the echo Statements, A Little Cleanup: Remove the echo Statements, A Little Cleanup: Remove the echo Statements
	Eclipse PHP, as text editor, Get Out Your Text Editor
	Eloquent JavaScript (Haverbeke), Handling Errors by Determining If Your Results are Not
	Eloquent Ruby (Olsen), Handling Errors by Determining If Your Results are Not
	else statements, Errors Aren’t Always Interruptive–Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive
		error handling using, Errors Aren’t Always Interruptive–Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive

	email addresses, using as user name, Dealing with Newly Invalid Data
	embedding images, Embedding an Image Is Just Viewing an Image–A Script Can Be an Image src, All You Need Is an Image ID, A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
	empty functions, Take in a List of Groups
	encryption, Passwords Create Security, But Should Be Secure, crypt Is One-Way Encryption, crypt Is One-Way Encryption
	ending sequence, Output a Standard Header with Heredoc
	Engine Yard hosting provider, Run PHP Scripts Remotely
	entries, table, Planning Your Database Tables
	error handling, IDs and Primary Keys are Good Bedfellows, redirect Is Path-Insensitive, Handling Errors with try and catch, Handling Errors with try and catch, Blank Pages and Expiring Cookies, Blank Pages and Expiring Cookies, Errors Aren’t Always Interruptive–Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive
		#1075 MySQL error, IDs and Primary Keys are Good Bedfellows
	about, redirect Is Path-Insensitive
	expiring cookies and blank pages, Blank Pages and Expiring Cookies, Blank Pages and Expiring Cookies, Errors Aren’t Always Interruptive
	try/catch block in, Handling Errors with try and catch, Handling Errors with try and catch
	using else statements, Errors Aren’t Always Interruptive–Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive, Errors Aren’t Always Interruptive

	error pages, Planning Your Error Pages–Know When to Say When, Know When to Say When, Creating a PHP Error Page, Creating a PHP Error Page, Testing Your Solution–Expect the Unexpected, Testing Your Solution–Phishing and Subtle Redirection, Testing Your Solution, Expect the Unexpected, Expect the Unexpected, Phishing and Subtle Redirection, The Dangers of Request Parameters, Add Debugging to Your Application, Who’s Using This App, Anyway?, Now You See Me, Now You Don’t, Now You See Me, Now You Don’t, Redirecting On Error–Simplifying and Abstracting Your Code, Update connect.php to show_user.php, Update connect.php to show_user.php, Simplifying and Abstracting Your Code, Simplifying and Abstracting Your Code–redirect Is Path-Insensitive, Simplifying and Abstracting Your Code, Simplifying and Abstracting Your Code, Simplifying and Abstracting Your Code, redirect Is Path-Insensitive–redirect Is Path-Insensitive, redirect Is Path-Insensitive, redirect Is Path-Insensitive, Requiring the Cookie to Be Set–Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set
		adding debugging to, Add Debugging to Your Application, Who’s Using This App, Anyway?, Now You See Me, Now You Don’t, Now You See Me, Now You Don’t
	creating, Creating a PHP Error Page, Creating a PHP Error Page
	making assumptions about, Testing Your Solution–Phishing and Subtle Redirection, Expect the Unexpected, Phishing and Subtle Redirection
	phishing scams in, The Dangers of Request Parameters
	planning, Planning Your Error Pages–Know When to Say When, Know When to Say When
	redirect as path-insensitive, redirect Is Path-Insensitive–redirect Is Path-Insensitive, redirect Is Path-Insensitive
	redirecting on error, Redirecting On Error–Simplifying and Abstracting Your Code, Update connect.php to show_user.php, Update connect.php to show_user.php, Simplifying and Abstracting Your Code, Simplifying and Abstracting Your Code
	showing up at wrong time, Requiring the Cookie to Be Set–Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set, Requiring the Cookie to Be Set
	simplifying code, Simplifying and Abstracting Your Code–redirect Is Path-Insensitive, Simplifying and Abstracting Your Code, Simplifying and Abstracting Your Code, redirect Is Path-Insensitive
	testing scripts, Testing Your Solution–Expect the Unexpected, Testing Your Solution, Expect the Unexpected

	escaping, A Simple String Searcher
	Examples Directory (ch01/, ch02/, etc.), Upload your HTML, CSS, and PHP
	exclamation point (!), bang (negation) operator, Handling Errors by Determining If Your Results are Not–Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not

 F
	fatigue and impact on programmer, Did the File Upload with Any Errors?
	field names, matching names to variable names, Rounding Things Out by Using Regular Expressions (Again)
	field validation, Getting an Initial User Name and Password
	fields, table, Planning Your Database Tables
	file extensions, Write Your First Program
		in text editors, Write Your First Program

	file system, Images Are Just Files
	files, Welcome to Programming!, Did the File Upload with Any Errors?–Is this Really an Uploaded File?, Is this Really an Uploaded File?, Is this Really an Uploaded File?, Is this Really an Uploaded File?–Move the File to a Permanent Location, Move the File to a Permanent Location–Create a New Database Column, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Storing the Image Location in the Database, Create a New Database Column, Beware: getimagesize Doesn’t Return a File Size
		determining if file is image, Is this Really an Uploaded File?–Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location
	getimagesize() return on image, Beware: getimagesize Doesn’t Return a File Size
	identifying uploaded files, Did the File Upload with Any Errors?–Is this Really an Uploaded File?, Is this Really an Uploaded File?, Is this Really an Uploaded File?
	moving uploaded files to permanent location, Move the File to a Permanent Location–Create a New Database Column, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Storing the Image Location in the Database, Create a New Database Column
	on hosting provider, Welcome to Programming!

	file_get_contents() function, The file_get_contents Function Does What You Think It Does
	Firefox, managing cookies in, Entering Browser Sessions
	foreach loops, Iterating Over Each Group–Allow, Deny, Redirect, Iterating Over Each Group, Allow, Deny, Redirect
	foreign keys, column names and, Connecting Users and Images
	forward slash (/), in regular expressions, A Simple String Searcher
	FTP programs, FTP: It’s Critical
	functions, Searching Within Text, Searching Within Text, Changing Text, Changing Text, Removing Extra Whitespace by Using Trim(), Removing Extra Whitespace by Using Trim(), Removing Extra Whitespace by Using Trim(), Replacing Characters in Text by Using Str_replace(), Replacing Characters in Text by Using Str_replace(), Connect to a MySQL Database, Updating Your User Creation Script, Now You See Me, Now You Don’t, Getting the Correct ID Before Redirecting, Start with a Little Javascript, Building a New Utility Function for Display, Flexible Functions Are Better Functions, Just Pass That Information Along, Take in a List of Groups
		about, Connect to a MySQL Database
	about writing, Building a New Utility Function for Display, Just Pass That Information Along
	counting from zero, Searching Within Text, Changing Text
	custom, Now You See Me, Now You Don’t
	empty, Take in a List of Groups
	flexible, Flexible Functions Are Better Functions
	JavaScript, Start with a Little Javascript
	list of what can be done with text using, Replacing Characters in Text by Using Str_replace()
	ltrim(), Removing Extra Whitespace by Using Trim()
	mysql_insert_id(), Updating Your User Creation Script, Getting the Correct ID Before Redirecting
	rtrim(), Removing Extra Whitespace by Using Trim()
	strpos(), Searching Within Text
	str_replace(), Replacing Characters in Text by Using Str_replace()
	substr(), Changing Text
	trim(), Removing Extra Whitespace by Using Trim()

 G
	getimagesize() function, The file_get_contents Function Does What You Think It Does
	get_request_param_value() function, An All-Javascript Approach–Your PHP Controls your Output, Your PHP Controls your Output, Your PHP Controls your Output
	get_web_path() function, Converting File System Paths to URLs
	Google Desktop Search, Databases Are All about Structure–Good Databases Are Relational, Good Databases Are Relational, Good Databases Are Relational
	Google search engine, tutorials on, A Script Can Be an Image src
	groups, Modeling Groups in Your Database–Checking for Group Membership, Adding a Groups Table–One-to-One, One-to-Many, Many-to-Many, One-to-One, One-to-Many, Many-to-Many, Use a Join Table to Connect Users with Groups–Testing Group Membership, Use a Join Table to Connect Users with Groups, Testing Group Membership–Checking for Group Membership, Testing Group Membership, Checking for Group Membership, Checking for Group Membership, Checking for Group Membership, Checking for Group Membership, authorize.php Needs a Function, Take in a List of Groups, Allow, Deny, Redirect, Allow, Deny, Redirect, Group-Specific Menus–Entering Browser Sessions, Group-Specific Menus, Entering Browser Sessions
		authorization group-specific menus, Group-Specific Menus–Entering Browser Sessions, Group-Specific Menus, Entering Browser Sessions
	checking authorization of membership in, Checking for Group Membership, authorize.php Needs a Function, Take in a List of Groups, Allow, Deny, Redirect, Allow, Deny, Redirect
	connecting users and, Use a Join Table to Connect Users with Groups–Testing Group Membership, Use a Join Table to Connect Users with Groups, Testing Group Membership
	creating table for, Adding a Groups Table–One-to-One, One-to-Many, Many-to-Many, One-to-One, One-to-Many, Many-to-Many
	modeling in database, Modeling Groups in Your Database–Checking for Group Membership, Checking for Group Membership
	testing membership in, Testing Group Membership–Checking for Group Membership, Checking for Group Membership, Checking for Group Membership

 H
	-h option vs. --host option, Logging In to Your Web Server’s Database
	handle_error() function, redirect Is Path-Insensitive, redirect Is Path-Insensitive, redirect Is Path-Insensitive, Did the File Upload with Any Errors?, Did the File Upload with Any Errors?, Handling Errors with try and catch, Handling Errors with try and catch, Errors Aren’t Always Interruptive
	handling errors, redirect Is Path-Insensitive
		about, redirect Is Path-Insensitive

	hard drive backups, Databases Are Persistent
	Haverbeke, Marijn, Eloquent JavaScript, Handling Errors by Determining If Your Results are Not
	header() function, Updating Your User Creation Script
	helper variables, setting up, Set Up Some Helper Variables–Did the File Upload with Any Errors?, Did the File Upload with Any Errors?, Did the File Upload with Any Errors?
	heredoc method, Output a Standard Header with Heredoc–Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Output a Standard Header with Heredoc
	Heroku hosting provider, Run PHP Scripts Remotely
	Home (Root) Directory (/), Upload your HTML, CSS, and PHP
	hosting provider, Adding Constraints to Your Database
		granting phpMyAdmin access, Adding Constraints to Your Database

	HOST_WWW_ROOT, Set Up Some Helper Variables
		setting up, Set Up Some Helper Variables

	.htaccess file, web server
 using, Basic Authentication Is…Well, Basic
	HTML, Determination by Extension–PHP Is Not HTML (by Extension), HTML Is Treated as HTML, PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Is Not HTML (by Extension), PHP Is Not HTML (by Extension), PHP Can Be HTML—by Response, PHP Can Be HTML—by Response–Write Another PHP Script, Write Another PHP Script, Write Another PHP Script, Write Another PHP Script, Check Things Out Locally–Run PHP Scripts Remotely, Run PHP Scripts Remotely, Run PHP Scripts Remotely, Accessing Request Parameters Directly, Accessing Request Parameters Directly, A Little Cleanup: Remove the echo Statements, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src, Output a Standard Header with Heredoc–Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Building a Function to Call Two Functions–Just Pass That Information Along, Just Pass That Information Along, Just Pass That Information Along, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies, Any HTML File Can Be Converted to PHP–Logging Users Out, Logging Users Out
		checking scripts locally, Check Things Out Locally–Run PHP Scripts Remotely, Run PHP Scripts Remotely, Run PHP Scripts Remotely
	converting to PHP scripts, Any HTML File Can Be Converted to PHP–Logging Users Out, Logging Users Out
	echo statements and, A Little Cleanup: Remove the echo Statements
	from display_title() and display_head(), Building a Function to Call Two Functions–Just Pass That Information Along, Just Pass That Information Along, Just Pass That Information Along
	img element, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
	making semantically meaningful, Accessing Request Parameters Directly
	opening PHP files as, PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Is Not HTML (by Extension), PHP Can Be HTML—by Response, Write Another PHP Script
	outputting standard header, Output a Standard Header with Heredoc–Output a Standard Header with Heredoc, Output a Standard Header with Heredoc
	response in PHP scripts, Determination by Extension–PHP Is Not HTML (by Extension), HTML Is Treated as HTML, PHP Is Not HTML (by Extension)
	signing into, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies
	tags, Accessing Request Parameters Directly
	writing scripts, PHP Can Be HTML—by Response–Write Another PHP Script, Write Another PHP Script, Write Another PHP Script

	HTML forms, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Connecting to Your Database (Again), Images Are Just Files–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage, HTML Forms Can Set the Stage
		creating empty box in, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Connecting to Your Database (Again)
	setting up for images, Images Are Just Files–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage, HTML Forms Can Set the Stage

	HTML scripts vs. PHP scripts, Taking Control of User Sign Ins
	HTML5, support for regular expressions, Regular Expressions: To Infinity and Beyond
	HTML5: The Missing Manual (MacDonald), PHP Is Not HTML (by Extension)
	HTTP (Hypertext Transfer Protocol), Updating Your User Creation Script, Using HTTP Headers for Basic Authentication, Using HTTP Headers for Basic Authentication, Getting Your User’s Credentials–Cancel Is Not a Valid Means of Authentication, Getting Your User’s Credentials, Cancel Is Not a Valid Means of Authentication, Cookies, Sign-Ins, and Ditching Crummy Pop-Ups–Starting with a Landing Page, Starting with a Landing Page
		authentication, Getting Your User’s Credentials–Cancel Is Not a Valid Means of Authentication, Getting Your User’s Credentials, Cancel Is Not a Valid Means of Authentication
	issues with login feature, Cookies, Sign-Ins, and Ditching Crummy Pop-Ups–Starting with a Landing Page, Starting with a Landing Page
	using HTTP headers in authentication, Using HTTP Headers for Basic Authentication, Using HTTP Headers for Basic Authentication

 I
	icons, PHP on the Windows-Based Computers (WampServer Installation), PHP on the Mac (Default Installation)
		Terminal, PHP on the Mac (Default Installation)
	WampServer, PHP on the Windows-Based Computers (WampServer Installation)

	ID columns, Good Database Tables Have ID Columns, Good Database Tables Have ID Columns, Auto Increment Is Your Friend, IDs and Primary Keys are Good Bedfellows, Printing a String to a Variable, Getting the Correct ID Before Redirecting, Getting the Correct ID Before Redirecting, Inserting an Image and then Inserting a User, All You Need Is an Image ID, All You Need Is an Image ID, Joins are Best Done with IDS, Joins are Best Done with IDS
	if statements, Running Your User’s SQL Query (Again), Handling Queries That Don’t SELECT Information, Did the File Upload with Any Errors?
		error handling, Running Your User’s SQL Query (Again)
	triple-equals sign (===) in, Handling Queries That Don’t SELECT Information
	without using if, Did the File Upload with Any Errors?

	IIs FastCGI option, for installing local web server, Installing PHP from www.php.net
	images, Updating Your User Signup Form, Updating Your User Signup Form, Images Are Just Files, Images Are Just Files–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage, HTML Forms Can Set the Stage, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Storing the Image Location in the Database, Create a New Database Column, Check Your Work, Check Your Work, Images Are for Viewing, Storing Different Objects in Different Tables–Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Beware: getimagesize Doesn’t Return a File Size, Your Binary Data Isn’t Safe to Insert…Yet, All You Need Is an Image ID–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
		as binary data, Images Are Just Files
	creating table for, Storing Different Objects in Different Tables–Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables
	limiting size of file, HTML Forms Can Set the Stage
	loading, Beware: getimagesize Doesn’t Return a File Size, Your Binary Data Isn’t Safe to Insert…Yet
		inserting binary data into tables, Your Binary Data Isn’t Safe to Insert…Yet
	return on getimagesize(), Beware: getimagesize Doesn’t Return a File Size

	scripts as, All You Need Is an Image ID–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
	setting up HTML forms for, Images Are Just Files–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage
	uploading users image to web server, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Storing the Image Location in the Database, Create a New Database Column, Check Your Work, Check Your Work, Images Are for Viewing
		moving file to permanent location uploaded, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location
	storing image location in, Storing the Image Location in the Database, Create a New Database Column, Check Your Work, Check Your Work, Images Are for Viewing

	user profile, Updating Your User Signup Form, Updating Your User Signup Form

	img src, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
	include command, Abstracting Important Values into a Separate File
	index, database, IDs and Primary Keys are Good Bedfellows
	InnoDB, using with foreign keys, Connecting Users and Images
	input type, HTML Forms Can Set the Stage–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage
	INSERT statement, Using DROP to Delete Tables, Updating Your User Creation Script–Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script, Your Binary Data Isn’t Safe to Insert…Yet, Connecting Users and Images–Joining Tables by Using WHERE, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Joining Tables by Using WHERE
		connecting images to users, Connecting Users and Images–Joining Tables by Using WHERE, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Joining Tables by Using WHERE
	inserting, Using DROP to Delete Tables, Your Binary Data Isn’t Safe to Insert…Yet
		binary data, Your Binary Data Isn’t Safe to Insert…Yet
	rows, Using DROP to Delete Tables

	updating user creation using, Updating Your User Creation Script–Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script

	integer (int) keyword, Using CREATE to Make Tables
	Internet Explorer, managing cookies in, Entering Browser Sessions
	interpreter, PHP, PHP Is Interpreted
	ISP (Internet Service Provider), Write Anywhere, Run Where There’s PHP
		uploading PHP scripts to, Write Anywhere, Run Where There’s PHP

	is_uploaded_file() function, Is this Really an Uploaded File?

 J
	JavaScript, JavaScript Is Loose, PHP Is…Less So, JavaScript Adds Complexity, but Not Software, Regular Expressions: To Infinity and Beyond, Start with a Little Javascript, Start with a Little Javascript
		functions, Start with a Little Javascript
	support for regular expressions, Regular Expressions: To Infinity and Beyond
	using for confirmation boxes, Start with a Little Javascript
	versions of, JavaScript Adds Complexity, but Not Software
	vs. PHP, JavaScript Is Loose, PHP Is…Less So

	JavaScript and jQuery: The Missing Manual (McFarland), Getting an Initial User Name and Password
	JavaScript Directory (js/), Upload your HTML, CSS, and PHP
	JavaScript: The Missing Manual (McFarland), Start with a Little Javascript
	join tables, Joining Tables by Using WHERE, One-to-One, One-to-Many, Many-to-Many, Joins are Best Done with IDS–Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups
		many-to-many relationship, One-to-One, One-to-Many, Many-to-Many, Use a Join Table to Connect Users with Groups
	using IDs, Joins are Best Done with IDS–Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups
	with WHERE clause, Joining Tables by Using WHERE

	jQuery, alert Is Interruptive
		dialog and confirmation box, alert Is Interruptive

 K
	Kattare hosting provider, Run PHP Scripts Remotely

 L
	landing page, Starting with a Landing Page–Taking Control of User Sign Ins, Taking Control of User Sign Ins, Taking Control of User Sign Ins
	leading spaces, Getting into Position, Ditch trim and strtoupper, Ditch trim and strtoupper, Ditch trim and strtoupper, Searching for Sets of Characters, Searching for Sets of Characters
	limiting size of uploaded files, HTML Forms Can Set the Stage
	line feed character (\n), Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters
	Linux system, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters
		\n (line feed character) in, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters

	local installation of PHP, PHP: Going Local
	local, meaning in computer programming, PHP: Going Local
	localhost, PHP: Going Local, Connect to a MySQL Database
	logging out, Putting a Menu into Place, Menu, Anyone?
	login box, Getting Your User’s Credentials, Another Utility Script: authorize.php, crypt Is One-Way Encryption, Cookies, Sign-Ins, and Ditching Crummy Pop-Ups
	logins, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies, Logging In with Cookies
		controlling user signins, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, Taking Control of User Sign Ins, From HTTP Authentication to Cookies
	using cookies for, Logging In with Cookies
		determining if user is already signed in, Logging In with Cookies

	longblob type, Storing Different Objects in Different Tables
	loopback network interfaces, PHP: Going Local
	loops, PHP Gives You An Array of Request Information, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Iterating Over Each Group–Allow, Deny, Redirect, Allow, Deny, Redirect, Allow, Deny, Redirect
		curly braces ({ }) in, PHP Gives You An Array of Request Information
	foreach, Iterating Over Each Group–Allow, Deny, Redirect, Allow, Deny, Redirect, Allow, Deny, Redirect
	while, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results

	ls command (Mac OS X), Run Your First Program
	ltrim() function, Removing Extra Whitespace by Using Trim()

 M
	Mac OS X, PHP on the Mac (Default Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters, MySQL on Mac OS X–MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X–MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
		determining 32-bit or 64-bit version of, MySQL on Mac OS X–MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
	installing MySQL without MAMP, MySQL on Mac OS X–MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
	PHP on, PHP on the Mac (Default Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation)
		default installation, PHP on the Mac (Default Installation), PHP on the Mac (MAMP Installation)
	MAMP installation, PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation)
	seeing installed version, PHP on the Mac (MAMP Installation)

	starting MySQL automatically, MySQL on Mac OS X
	\r (carriage return) in pre-, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters

	MacDonald, Matthew, HTML5: The Missing Manual, PHP Is Not HTML (by Extension)
	MAMP (Mac OS X), PHP on the Mac (Default Installation), PHP on the Mac (MAMP Installation)–PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), Installing MySQL, Set Up mysql for Your User Profile, Give mysql the Right User and Password, Run Your First SQL Query
		about, PHP on the Mac (Default Installation)
	about installing local server, Run Your First SQL Query
	control panel for, PHP on the Mac (MAMP Installation)
	installing PHP with, PHP on the Mac (MAMP Installation)–PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation), PHP on the Mac (MAMP Installation)
	setting up MySQL user profile, Set Up mysql for Your User Profile
	space needed for installation of, PHP on the Mac (MAMP Installation)
	start page, Give mysql the Right User and Password
	starting MySQL on, Installing MySQL

	many-to-many relationship, The Many-to-Many Relationship–Testing Group Membership, One-to-One, One-to-Many, Many-to-Many, Use a Join Table to Connect Users with Groups, Use a Join Table to Connect Users with Groups, Testing Group Membership
	mediumblob type, Storing Different Objects in Different Tables
	megabyte (MB), HTML Forms Can Set the Stage
	messaging, Standardizing on Messaging, Standardizing and Consolidating Messaging in the View–Building a Function to Call Two Functions, Standardizing and Consolidating Messaging in the View, Standardizing and Consolidating Messaging in the View, Building a Function to Call Two Functions
		standardizing, Standardizing on Messaging
	standardizing and consolidating in view, Standardizing and Consolidating Messaging in the View–Building a Function to Call Two Functions, Standardizing and Consolidating Messaging in the View, Standardizing and Consolidating Messaging in the View, Building a Function to Call Two Functions

	method chaining, Replacing Characters in Text by Using Str_replace()
	Microsoft Windows, PHP: Going Local–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters, Installing PHP on Windows Without WAMP–Installing PHP from www.php.net, Installing PHP on Windows Without WAMP, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing MySQL Without MAMP or WAMP–MySQL on Mac OS X, Installing MySQL Without MAMP or WAMP, MySQL on Windows, MySQL on Windows–MySQL on Mac OS X, MySQL on Windows, MySQL on Windows, MySQL on Windows, MySQL on Windows, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
		determining 32-bit or 64-bit version of, PHP on the Windows-Based Computers (WampServer Installation), MySQL on Windows
	installing MySQL without WampServer, Installing MySQL Without MAMP or WAMP–MySQL on Mac OS X, MySQL on Windows–MySQL on Mac OS X, MySQL on Windows, MySQL on Windows, MySQL on Windows, MySQL on Windows, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
	installing PHP on PC, PHP: Going Local–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation)
	installing PHP without Wampserver, Installing PHP on Windows Without WAMP–Installing PHP from www.php.net, Installing PHP on Windows Without WAMP, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing MySQL Without MAMP or WAMP
	threads in, Installing PHP from www.php.net
	\r (carriage return) and \n (line feed character) in, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters

	mismatching quotes, Trim and Replace Text
	Missing Manual Twitter address, Changing a Table’s Structure by Using ALTER
	Missing Manual website, About the Outline
	mock up page for user profile, Changing a Table’s Structure by Using ALTER, Handling Images and Complexity
	models, redirect Has Some Limitations
	multiple logins, managing, Dealing with Newly Invalid Data
	MVC (Model-View-Controller) pattern, redirect Has Some Limitations, Taking Control of User Sign Ins
	MySQL, What Is MySQL?, Good Databases Are Relational, Installing MySQL–Run Your First SQL Query, Installing MySQL, Run Your First SQL Query, Using SELECT for the Grand Finale, Cleaning Up Your Code with Multiple Files, Building a Basic SQL Query Runner, Connecting to Your Database (Again), Running Your User’s SQL Query (Again), Running Your User’s SQL Query (Again), Avoid Changing User Input Whenever Possible, IDs and Primary Keys are Good Bedfellows, Connecting Users and Images, MySQL on Windows–MySQL on Mac OS X, MySQL on Windows, MySQL on Mac OS X, MySQL on Mac OS X
		about, What Is MySQL?
	connecting PHP to, Cleaning Up Your Code with Multiple Files, Building a Basic SQL Query Runner, Connecting to Your Database (Again), Running Your User’s SQL Query (Again), Running Your User’s SQL Query (Again), Avoid Changing User Input Whenever Possible
		building SQL query runner, Building a Basic SQL Query Runner, Connecting to Your Database (Again), Running Your User’s SQL Query (Again), Running Your User’s SQL Query (Again)
	cleaning up code, Cleaning Up Your Code with Multiple Files
	dealing with humans entering data, Avoid Changing User Input Whenever Possible

	creating users in, MySQL on Windows
	error #1075, IDs and Primary Keys are Good Bedfellows
	foreign key relationship in, Connecting Users and Images
	installing, Installing MySQL–Run Your First SQL Query, Installing MySQL, Run Your First SQL Query
	installing on Windows without WampServer, MySQL on Windows–MySQL on Mac OS X, MySQL on Mac OS X, MySQL on Mac OS X
	vs. expensive databases, Good Databases Are Relational
	vs. SQL, Using SELECT for the Grand Finale

	MySQL command line client, MySQL on Windows
	MySQL command-line program finding in WampServer, Find the MySQL Command-Line Program–Give mysql the Right User and Password, Find the MySQL Command-Line Program, Give mysql the Right User and Password, Give mysql the Right User and Password
		-u option in, Give mysql the Right User and Password

	mysql console program, The mysql Console Program: Your New Best Friend
	mysql tool, Run the mysql Tool on WampServer–Give mysql the Right User and Password, Give mysql the Right User and Password, Give mysql the Right User and Password, Run the mysql Tool on MAMP–Run Your First SQL Query, Give mysql the Right User and Password, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Logging In to Your Web Server’s Database
		running, Logging In to Your Web Server’s Database
	running first SQL query, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query
	running on MAMP, Run the mysql Tool on MAMP–Run Your First SQL Query, Give mysql the Right User and Password, Run Your First SQL Query
	running on WampServer, Run the mysql Tool on WampServer–Give mysql the Right User and Password, Give mysql the Right User and Password, Give mysql the Right User and Password

	mysql_connect command, Connect to a MySQL Database–Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database
	mysql_connect() function, Abstracting Important Values into a Separate File
	mysql_fetch_array() function, Pulling Values from a SQL Query Result–Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result
	mysql_fetch_row() function, Print Out Your SQL Results, Pulling Values from a SQL Query Result
	mysql_insert_id() function, Updating Your User Creation Script, Updating Your User Creation Script, Getting the Correct ID Before Redirecting
	mysql_query, Updating Your User Creation Script–Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script
	mysql_query() function, Viewing Your Database’s Tables by Using SHOW, Print Out Your SQL Results, Running Your User’s SQL Query (Again)
	mysql_real_escape_string() function, Your Binary Data Isn’t Safe to Insert…Yet, Printing a String to a Variable
	mysql_select_db() function, Select the Database with PHP

 N
	N:N relationships, One-to-One, One-to-Many, Many-to-Many
	naming, Create Your Own Variables, Saving a User’s Information
		variables, Create Your Own Variables
	web pages, Saving a User’s Information

	negation (bang) operator (!), Handling Errors by Determining If Your Results are Not–Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not
	NIL (NULL) keyword, Select the Database with PHP, Use Default Argument Values in Display_Messages
	non-functions, functions and, authorize.php Needs a Function
	NOT NULL keyword, Adding Constraints to Your Database, Changing a Table’s Structure by Using ALTER, Adding a Groups Table
	Notepad, as text editor, Get Out Your Text Editor, Write Your First Program
		about, Get Out Your Text Editor
	defaulting to plain text, Write Your First Program

	NULL (NIL) keyword, Select the Database with PHP, Use Default Argument Values in Display_Messages, Use Default Argument Values in Display_Messages

 O
	Object-Oriented Database Management Systems (OODBMS), Good Databases Are Relational
	Olsen, Russ, Eloquent Ruby, Handling Errors by Determining If Your Results are Not
	one-to-one relationships vs. many-tomany relationships, One-to-One, One-to-Many, Many-to-Many–Joins are Best Done with IDS, One-to-One, One-to-Many, Many-to-Many, Joins are Best Done with IDS
	OODBMS (Object-Oriented Database Management Systems), Good Databases Are Relational
	operators, Is this Really an Uploaded File?
		using @ sign to suppress errors, Is this Really an Uploaded File?

	.org and .com, mixing up
 in domain names, Trim and Replace Text
	organizing, Run PHP Scripts Remotely–Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP
		directories on hosting provider, Run PHP Scripts Remotely–Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP, Upload your HTML, CSS, and PHP

 P
	parentheses (), mixing up square brackets ([]) and, Did the File Upload with Any Errors?
	partial URLs, making clickable, Changing Text
	passwords, Passwords Don’t Belong in PHP Scripts–Dealing with Newly Invalid Data, Dealing with Newly Invalid Data, Getting an Initial User Name and Password–Getting an Initial User Name and Password, Getting an Initial User Name and Password, Getting an Initial User Name and Password, Inserting the User Name and Password–Inserting the User Name and Password, Inserting the User Name and Password, Inserting the User Name and Password, Passwords Create Security, But Should Be Secure–Encryption Uses Salt, Passwords Create Security, But Should Be Secure–Encryption Uses Salt, crypt Is One-Way Encryption, crypt Is One-Way Encryption, Encryption Uses Salt, Encryption Uses Salt
		encrypting, Passwords Create Security, But Should Be Secure–Encryption Uses Salt, Passwords Create Security, But Should Be Secure–Encryption Uses Salt, crypt Is One-Way Encryption, crypt Is One-Way Encryption, Encryption Uses Salt, Encryption Uses Salt
	field validation of, Getting an Initial User Name and Password
	getting initial user name and, Getting an Initial User Name and Password–Getting an Initial User Name and Password, Getting an Initial User Name and Password
	inserting into create script user name and, Inserting the User Name and Password–Inserting the User Name and Password, Inserting the User Name and Password, Inserting the User Name and Password
	storing in database, Passwords Don’t Belong in PHP Scripts–Dealing with Newly Invalid Data, Dealing with Newly Invalid Data

	pasting and cutting code, Putting It All Together
	paths, redirect Is Path-Insensitive, MySQL on Mac OS X
		relative and absolute, redirect Is Path-Insensitive
	setting up MySQL, MySQL on Mac OS X

	PC installation of PHP, PHP: Going Local–PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation)
	period (.), in regular expressions, Search for One String…Or Another
	permanent data, Databases Are Persistent
	phishing scams, Welcome to Security and Phishing, Phishing and Subtle Redirection, The Dangers of Request Parameters, Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?
	Photoshop, administrator using, Wish Lists Are Good, Too–Listing All Your Users, Listing All Your Users
	PHP code, Create Your Own Variables, Print Out Your SQL Results, Cleaning Up Your Code with Multiple Files–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Get the Results, Get the Image, and Deal with Potential Errors, Putting It All Together, Duplicate Code Is a Problem Waiting to Happen, Output a Standard Header with Heredoc, Group-Specific Menus
		cleaning up, Cleaning Up Your Code with Multiple Files–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant
	cutting and pasting, Putting It All Together
	DRY, Duplicate Code Is a Problem Waiting to Happen
	ending sequence, Output a Standard Header with Heredoc
	refactoring, Create Your Own Variables, Group-Specific Menus
	resource in, Print Out Your SQL Results
	sequential, Get the Results, Get the Image, and Deal with Potential Errors

	php command, Run Your First Program, Arrays Can Hold Multiple Values
	PHP Directory (scripts/), Upload your HTML, CSS, and PHP
	.php file extension, Script or HTML?–HTML Is Treated as HTML, HTML Is Treated as HTML, PHP Is Not HTML (by Extension)
		about, Script or HTML?–HTML Is Treated as HTML, HTML Is Treated as HTML
	opening files in browsers, PHP Is Not HTML (by Extension)

	PHP interpreter, JavaScript Is Loose, PHP Is…Less So, PHP Is Interpreted, PHP Is Not Part of Your Browser–Write Anywhere, Run Where There’s PHP, PHP Is Not Part of Your Browser, Write Anywhere, Run Where There’s PHP, But Where’s That Web Server?
		about, JavaScript Is Loose, PHP Is…Less So
	browser and, PHP Is Interpreted
	running programs using, But Where’s That Web Server?
	web server interacting with, PHP Is Not Part of Your Browser–Write Anywhere, Run Where There’s PHP, PHP Is Not Part of Your Browser, Write Anywhere, Run Where There’s PHP

	PHP programmers, What Do You Do with User Information?
		good vs. great, What Do You Do with User Information?

	PHP programs, Get Out Your Text Editor–Write Your First Program, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor–Write Your First Program, Write Your First Program, Write Your First Program, Write Your First Program, Run Your First Program, Run Your First Program, Run Your First Program
		running first, Run Your First Program, Run Your First Program
	writing first, Get Out Your Text Editor–Write Your First Program, Write Your First Program, Write Your First Program, Run Your First Program
	writing on text editor, Get Out Your Text Editor–Write Your First Program, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program

	PHPa, What PHP and MySQL Can Do–PHP Doesn’t Run in the Browser, PHP Is All About the Web, JavaScript Is Loose, PHP Is…Less So, PHP Doesn’t Run in the Browser, Write Anywhere, Run Where There’s PHP, Print Out Your SQL Results, Installing PHP on Windows Without WAMP–Installing PHP from www.php.net, Installing PHP from www.php.net, Installing PHP from www.php.net, Installing MySQL Without MAMP or WAMP
		about, What PHP and MySQL Can Do–PHP Doesn’t Run in the Browser, PHP Is All About the Web, JavaScript Is Loose, PHP Is…Less So, PHP Doesn’t Run in the Browser
	installing on PC, Write Anywhere, Run Where There’s PHP
	installing without WampServer, Installing MySQL Without MAMP or WAMP
	resource, Print Out Your SQL Results
	running from command prompt, Installing PHP from www.php.net
	website for installing, Installing PHP on Windows Without WAMP–Installing PHP from www.php.net, Installing PHP from www.php.net

	phpinfo() function, PHP on the Windows-Based Computers (WampServer Installation)
	phpMyAdmin, Adding Constraints to Your Database, A First Pass at Confirmation, Printing a String to a Variable
		accessing table using, Printing a String to a Variable
	using, A First Pass at Confirmation
	web hosting provider granting access, Adding Constraints to Your Database

	pipe (|), in regular expressions, Search for One String…Or Another
	plain text, Write Your First Program
		saving program files in, Write Your First Program

	plus (+) signe, in regular expressions, Ditch trim and strtoupper
	position markers, Searching Within Text–Searching Within Text, Searching Within Text, Searching Within Text
	Preferences Pane, on Mac OS X for MYSQL, MySQL on Mac OS X
	preg_match() function, String Matching, Double-Time
	preg_match_all() function, A Simple String Searcher
	primary keys, columns IDs and, IDs and Primary Keys are Good Bedfellows–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database
	printing, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results, Now You See Me, Now You Don’t, Printing a String to a Variable, Printing a String to a Variable
		error messages, Now You See Me, Now You Don’t
	SQL results, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results
	strings to variables, Printing a String to a Variable, Printing a String to a Variable

	privileges on hosting provider, Selecting a Database with USE
	processes, in Mac OS X and Unix/Linux systems, Installing PHP from www.php.net
	profile_pic_id column, Connecting Users and Images, All You Need Is an Image ID, SELECTing What You Need (Now)
	pseudocode, Getting Your User’s Credentials, Redirecting as Needed

 Q
	queries, Entering Your First Web-Based Query–Dealing with Humans, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Dealing with Humans, Dealing with Humans, Allow, Deny, Redirect
		not selecting data, Entering Your First Web-Based Query–Dealing with Humans, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Dealing with Humans, Dealing with Humans
	speeding up, Allow, Deny, Redirect

	query runner, building, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Creating an HTML Form with a Big Empty Box, Connecting to Your Database (Again), Connecting to Your Database (Again)–Running Your User’s SQL Query (Again), Connecting to Your Database (Again), Connecting to Your Database (Again), Running Your User’s SQL Query (Again), Entering Your First Web-Based Query–Entering Your First Web-Based Query, Entering Your First Web-Based Query, Entering Your First Web-Based Query, Entering Your First Web-Based Query, Handling Queries That Don’t SELECT Information, Avoid Changing User Input Whenever Possible–Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible
		avoid changing user input, Avoid Changing User Input Whenever Possible–Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible, Avoid Changing User Input Whenever Possible
	connecting to database, Connecting to Your Database (Again)–Running Your User’s SQL Query (Again), Connecting to Your Database (Again), Connecting to Your Database (Again), Running Your User’s SQL Query (Again)
	creating HTML form of big empty box, Creating an HTML Form with a Big Empty Box–Connecting to Your Database (Again), Creating an HTML Form with a Big Empty Box, Connecting to Your Database (Again)
	entering first web-based query, Entering Your First Web-Based Query–Entering Your First Web-Based Query, Entering Your First Web-Based Query, Entering Your First Web-Based Query, Entering Your First Web-Based Query
	handling queries not selecting data, Handling Queries That Don’t SELECT Information

	Quicksilver, Databases Are All about Structure

 R
	raw images, inserting into table, Inserting a Raw Image into a Table–Your Binary Data Isn’t Safe to Insert…Yet, Inserting a Raw Image into a Table, Your Binary Data Isn’t Safe to Insert…Yet, Your Binary Data Isn’t Safe to Insert…Yet
	RDBMS (Relational Database Management System) model, Good Databases Are Relational
	readability, Search for One String…Or Another, Planning Your Error Pages–Know When to Say When, Tell Your Users that a Problem has Occurred, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Know When to Say When
		of code, Search for One String…Or Another
	of error messages, Planning Your Error Pages–Know When to Say When, Tell Your Users that a Problem has Occurred, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Know When to Say When

	records, table, Planning Your Database Tables
	redirection, Start with a Little Javascript
		JavaScript code for, Start with a Little Javascript

	refactoring code, Create Your Own Variables, Group-Specific Menus
	regular expressions (regex), Regular Expressions–A Simple String Searcher, Regular Expressions–Search for One String…Or Another, A Simple String Searcher, A Simple String Searcher, A Simple String Searcher, A Simple String Searcher, A Simple String Searcher, Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another, Getting into Position, Getting into Position–Ditch trim and strtoupper, Ditch trim and strtoupper, Ditch trim and strtoupper–Regular Expressions: To Infinity and Beyond, Regular Expressions: To Infinity and Beyond, Regular Expressions: To Infinity and Beyond, Rounding Things Out by Using Regular Expressions (Again)–Rounding Things Out by Using Regular Expressions (Again), Rounding Things Out by Using Regular Expressions (Again)
		about, Regular Expressions–A Simple String Searcher, A Simple String Searcher, A Simple String Searcher
	carat (^) in, Getting into Position–Ditch trim and strtoupper, Ditch trim and strtoupper
	cleaning up output using, Rounding Things Out by Using Regular Expressions (Again)–Rounding Things Out by Using Regular Expressions (Again), Rounding Things Out by Using Regular Expressions (Again)
	dollar sign (, Getting into Position
	double quotes (“) in, A Simple String Searcher
	period (.) in, Search for One String…Or Another
	pipe (|) in, Search for One String…Or Another
	searching sets of characters, Ditch trim and strtoupper–Regular Expressions: To Infinity and Beyond, Regular Expressions: To Infinity and Beyond, Regular Expressions: To Infinity and Beyond
	searching strings, Regular Expressions–Search for One String…Or Another, A Simple String Searcher, A Simple String Searcher, Search for One String…Or Another, Search for One String…Or Another, Search for One String…Or Another

	relational databases, Good Databases Are Relational–Installing MySQL, Good Databases Are Relational, Installing MySQL
	relative path, redirect Is Path-Insensitive, Displaying Your User’s Image: Take Two
		absolute and, redirect Is Path-Insensitive
	web path as, Displaying Your User’s Image: Take Two

	releases (versions), JavaScript Adds Complexity, but Not Software, PHP on the Mac (Default Installation), PHP on the Mac (MAMP Installation), Installing PHP on Windows Without WAMP
		going to previous releases of PHP on Mac OS X, PHP on the Mac (MAMP Installation)
	of JavaScript, JavaScript Adds Complexity, but Not Software
	of PHP for Mac OS X, PHP on the Mac (Default Installation)
	of software, Installing PHP on Windows Without WAMP

	replacing characters in text, Replacing Characters in Text by Using Str_replace()
	replication, database, Databases Are Persistent
	reporting problems, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Select the Database with PHP, Running Your User’s SQL Query (Again), Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information, Inserting a User
		If statements for, Running Your User’s SQL Query (Again), Handling Queries That Don’t SELECT Information, Handling Queries That Don’t SELECT Information
	using die statements, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Select the Database with PHP, Inserting a User

	request parameters, The Dangers of Request Parameters
		dangers of, The Dangers of Request Parameters

	require command, Abstracting Important Values into a Separate File
	require_once, Moving from require to require_once, Moving from require to require_once
	resource, in PHP, Print Out Your SQL Results
	Root (Home) Directory (/), Upload your HTML, CSS, and PHP
	rows, table, Good Database Tables Have ID Columns, Saving a User’s Information–A First Pass at Confirmation, Inserting a User, Inserting a User, Inserting a User, A First Pass at Confirmation, A First Pass at Confirmation, Changing a Table’s Structure by Using ALTER
		about, Good Database Tables Have ID Columns
	adding columns and impact on old, Changing a Table’s Structure by Using ALTER
	inserting user information, Saving a User’s Information–A First Pass at Confirmation, Inserting a User, Inserting a User, Inserting a User, A First Pass at Confirmation, A First Pass at Confirmation

	rtrim() function, Removing Extra Whitespace by Using Trim()
	Ruby, about writing, Handling Errors by Determining If Your Results are Not

 S
	Safari Books Online, Safari® Books Online
	Safari, managing cookies in, Entering Browser Sessions
	sample files, downloading, HTML Is Treated as HTML
	scripts, PHP, JavaScript Is Loose, PHP Is…Less So, PHP Is Not Part of Your Browser, Write Anywhere, Run Where There’s PHP, Script or HTML?–HTML Is Treated as HTML, HTML Is Treated as HTML, HTML Is Treated as HTML, HTML Is Treated as HTML, PHP Is Not HTML (by Extension), PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Can Be HTML—by Response, Write Another PHP Script, Run PHP Scripts Remotely–Run Your Second Program, Run Your Second Program, Writing a Simple PHP Connection Script, Writing a Simple PHP Connection Script, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Select the Database with PHP, Viewing Your Database’s Tables by Using SHOW, Handling Errors by Determining If Your Results are Not, Print Out Your SQL Results, Print Out Your SQL Results, Changing a Table’s Structure by Using ALTER–Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database, Pulling Values from a SQL Query Result, Passing a User ID into show_user.php, Updating Your User Signup Form, Updating Your User Signup Form, Updating Your User Signup Form, Updating Your User Creation Script, Updating Your User Creation Script, Testing Your Solution–Expect the Unexpected, Testing Your Solution, Expect the Unexpected, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src, Calling Repeated Code from a View Script–Flexible Functions Are Better Functions, Calling Repeated Code from a View Script, Flexible Functions Are Better Functions, Getting Your User’s Credentials–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Passwords Create Security, But Should Be Secure, Taking Control of User Sign Ins
		about, JavaScript Is Loose, PHP Is…Less So, Script or HTML?–HTML Is Treated as HTML, HTML Is Treated as HTML
	as images, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src
	authorize, Passwords Create Security, But Should Be Secure
		connecting to users table, Passwords Create Security, But Should Be Secure

	calling repeated code from view, Calling Repeated Code from a View Script–Flexible Functions Are Better Functions, Calling Repeated Code from a View Script, Flexible Functions Are Better Functions
	HTML scripts, HTML Is Treated as HTML, HTML Is Treated as HTML, PHP Is Not HTML (by Extension)
		generating HTML response, HTML Is Treated as HTML, HTML Is Treated as HTML, PHP Is Not HTML (by Extension)

	opening PHP files in browsers, PHP Is Not HTML (by Extension)–Write Another PHP Script, PHP Can Be HTML—by Response, Write Another PHP Script
	running, Write Anywhere, Run Where There’s PHP
	running remotely, Run PHP Scripts Remotely–Run Your Second Program, Run Your Second Program
	showing user information building script, Changing a Table’s Structure by Using ALTER–Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Building Your Script: First Pass, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database, Pulling Values from a SQL Query Result, Passing a User ID into show_user.php
		getting user ID into script, Pulling Values from a SQL Query Result, Passing a User ID into show_user.php
	selecting user from database, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database, Using SELECT to Retrieve a User from Your Database

	show_users script in authorization and authentication, Getting Your User’s Credentials–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php
	testing error page, Testing Your Solution–Expect the Unexpected, Testing Your Solution, Expect the Unexpected
	updating user creation, Updating Your User Creation Script, Updating Your User Creation Script
	updating user signup form, Updating Your User Signup Form, Updating Your User Signup Form, Updating Your User Signup Form
	vs. HTML form, Taking Control of User Sign Ins
	writing, PHP Is Not Part of Your Browser
	writing connection about, Writing a Simple PHP Connection Script, Writing a Simple PHP Connection Script, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Select the Database with PHP, Viewing Your Database’s Tables by Using SHOW, Handling Errors by Determining If Your Results are Not, Print Out Your SQL Results, Print Out Your SQL Results
		for selecting database, Select the Database with PHP
	to MySQL, Writing a Simple PHP Connection Script, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database, Connect to a MySQL Database
	to show tables, Viewing Your Database’s Tables by Using SHOW, Handling Errors by Determining If Your Results are Not, Print Out Your SQL Results, Print Out Your SQL Results

	scripts/ (PHP Directory), Upload your HTML, CSS, and PHP
	scripts/ directories, Passing a User ID into show_user.php, Creating a PHP Error Page
	searching, Searching Within Text, Searching Within Text, Searching Within Text, Regular Expressions, Search for One String…Or Another, Search for One String…Or Another, Searching for Sets of Characters
		sets of characters, Searching for Sets of Characters
	text (strings), Searching Within Text, Searching Within Text, Searching Within Text, Regular Expressions, Search for One String…Or Another, Search for One String…Or Another

	security, Authentication and Authorization, Basic Authentication–Getting Your User’s Credentials, Using HTTP Headers for Basic Authentication, Basic Authentication Is…Well, Basic, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Cancel Is Not a Valid Means of Authentication, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Moving Beyond Basic Authentication–Logging In with Cookies, Logging In with Cookies
		applying to application, Getting Your User’s Credentials
	authentication about, Authentication and Authorization
	basic, Basic Authentication–Getting Your User’s Credentials, Using HTTP Headers for Basic Authentication, Basic Authentication Is…Well, Basic, Getting Your User’s Credentials, Getting Your User’s Credentials, Cancel Is Not a Valid Means of Authentication, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials, Getting Your User’s Credentials
	beyond basic, Moving Beyond Basic Authentication–Logging In with Cookies, Logging In with Cookies
	using HTTP headers, Getting Your User’s Credentials, Getting Your User’s Credentials

	SELECT statement, Images Are for Viewing–SELECTing the Image and Displaying It, SELECTing the Image and Displaying It, SELECTing the Image and Displaying It, Wish Lists Are Good, Too–Iterating Over Your Array, SELECTing What You Need (Now), Building a Simple Admin Page, Iterating Over Your Array, Iterating Over Your Array
		listing all users in, Wish Lists Are Good, Too–Iterating Over Your Array, SELECTing What You Need (Now), Building a Simple Admin Page, Iterating Over Your Array, Iterating Over Your Array
	using to get all information for user, Images Are for Viewing–SELECTing the Image and Displaying It, SELECTing the Image and Displaying It, SELECTing the Image and Displaying It

	semicolon (;), in MySQL, Using CREATE to Make Tables
	sequential code, Get the Results, Get the Image, and Deal with Potential Errors
	Server Configuration page, phpinfo() link on, PHP on the Windows-Based Computers (WampServer Installation)
	sessions, Sessions Are Server-Side–From $_COOKIE to $_SESSION, From $_COOKIE to $_SESSION, Menu, Anyone?–Memory Lane: Remember That Phishing Problem?, Menu, Anyone?, And Then, Sign Out…, Memory Lane: Remember That Phishing Problem?–Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?
		about, Sessions Are Server-Side–From $_COOKIE to $_SESSION, From $_COOKIE to $_SESSION
	creating menu, Menu, Anyone?–Memory Lane: Remember That Phishing Problem?, Menu, Anyone?, Memory Lane: Remember That Phishing Problem?
	signing out of, And Then, Sign Out…
	solving phishing problem using, Memory Lane: Remember That Phishing Problem?–Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?, Memory Lane: Remember That Phishing Problem?

	SHOW command, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query, Viewing Your Database’s Tables by Using SHOW–Print Out Your SQL Results, Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not, Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results
		for databases, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Run Your First SQL Query
	for tables, Viewing Your Database’s Tables by Using SHOW–Print Out Your SQL Results, Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not, Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results

	signing out, Putting a Menu into Place, And Then, Sign Out…
	single quotes (’), A Simple String Searcher
		vs. double quotes (“), A Simple String Searcher

	sleep and impact on programmer, Did the File Upload with Any Errors?
	software releases (versions), Installing PHP on Windows Without WAMP
	source code, viewing web page, Searching Within Text, Replacing Characters in Text by Using Str_replace()
	Spotlight, Databases Are All about Structure–Good Databases Are Relational, Databases Are All about Structure, Good Databases Are Relational
	sprintf() function, Printing a String to a Variable, Building a Simple Admin Page, Building a New Utility Function for Display
	SQL, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query, Selecting a Database with USE–Using CREATE to Make Tables, Selecting a Database with USE, Selecting a Database with USE, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using DROP to Delete Tables, Using DROP to Delete Tables, Using DROP to Delete Tables, Using SELECT for the Grand Finale, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results, Allow, Deny, Redirect
		CREATE keyword in, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using DROP to Delete Tables
	creating tables, Using CREATE to Make Tables–Using DROP to Delete Tables, Using CREATE to Make Tables, Using DROP to Delete Tables, Using DROP to Delete Tables
	fixing typos in, Using CREATE to Make Tables
	FROM keyword capitalizing, Selecting a Database with USE
	printing out results, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results
	running first query, Run Your First SQL Query–Run Your First SQL Query, Run Your First SQL Query
	speeding up queries, Allow, Deny, Redirect
	vs. MySQL, Using SELECT for the Grand Finale
	WHERE clause, Selecting a Database with USE–Using CREATE to Make Tables, Selecting a Database with USE, Using CREATE to Make Tables

	square brackets ([]), mixing up parentheses () and, Did the File Upload with Any Errors?
	src, img, A Script Can Be an Image src–A Script Can Be an Image src, A Script Can Be an Image src, A Script Can Be an Image src
	ssh programs, Logging In to Your Web Server’s Database
	strings (text), Working with Text in PHP, Combine Text–Searching Within Text, Combine Text, Combine Text, Searching Within Text, Searching Within Text, Changing Text–Changing Text, Changing Text, Removing Extra Whitespace by Using Trim(), Using CREATE to Make Tables, String Matching, Double-Time, Passwords Create Security, But Should Be Secure, crypt Is One-Way Encryption
		about working with, Working with Text in PHP
	changing, Changing Text–Changing Text, Changing Text
	combining, Combine Text–Searching Within Text, Combine Text, Searching Within Text
	encrypting, Passwords Create Security, But Should Be Secure, crypt Is One-Way Encryption
	removing extra whitespace, Removing Extra Whitespace by Using Trim()
	searching, Searching Within Text, String Matching, Double-Time
	using plain language in web forms, Combine Text
	varchar keyword and, Using CREATE to Make Tables

	strpos() function, Searching Within Text, Replacing Characters in Text by Using Str_replace(), A Simple String Searcher
	str_replace() function, Replacing Characters in Text by Using Str_replace()
	substr() function, Changing Text

 T
	tab characters (\t), Searching for Sets of Characters
	tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Planning Your Database Tables–Adding Constraints to Your Database, Good Database Tables Have ID Columns, IDs and Primary Keys are Good Bedfellows–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database, Adding Constraints to Your Database, Adding Constraints to Your Database, A First Pass at Confirmation, Insert the Image Path Into Your Table, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Your Binary Data Isn’t Safe to Insert…Yet–Connecting Users and Images, Printing a String to a Variable, Printing a String to a Variable, Getting the Correct ID Before Redirecting, Getting the Correct ID Before Redirecting, Connecting Users and Images, Joining Tables by Using WHERE, Joining Tables by Using WHERE, Alias Your Tables (and Columns), Alias Your Tables (and Columns)–Get the Image ID, Get the Image ID, Modeling Groups in Your Database–One-to-One, One-to-Many, Many-to-Many, Adding a Groups Table, One-to-One, One-to-Many, Many-to-Many
		about, Good Database Tables Have ID Columns
	accessing using phpMyAdmin, Adding Constraints to Your Database, A First Pass at Confirmation, Printing a String to a Variable
	alias, Alias Your Tables (and Columns)–Get the Image ID, Get the Image ID
	columns, Storing Different Objects in Different Tables, Getting the Correct ID Before Redirecting
		blob types used in, Storing Different Objects in Different Tables, Getting the Correct ID Before Redirecting

	creating groups, Modeling Groups in Your Database–One-to-One, One-to-Many, Many-to-Many, Adding a Groups Table, One-to-One, One-to-Many, Many-to-Many
	inserting binary data into, Your Binary Data Isn’t Safe to Insert…Yet–Connecting Users and Images, Printing a String to a Variable, Getting the Correct ID Before Redirecting, Connecting Users and Images
	inserting image path into, Insert the Image Path Into Your Table
	join, Joining Tables by Using WHERE, Joining Tables by Using WHERE, Alias Your Tables (and Columns)
		with WHERE clausee, Joining Tables by Using WHERE, Joining Tables by Using WHERE, Alias Your Tables (and Columns)

	planning, Planning Your Database Tables–Adding Constraints to Your Database, Adding Constraints to Your Database
	primary keys in, IDs and Primary Keys are Good Bedfellows–Adding Constraints to Your Database, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database
	rows, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables
		users, storing objects in different tables about, Storing Different Objects in Different Tables
	using CREATE statement to create, Using CREATE to Make Tables, Using CREATE to Make Tables, Using CREATE to Make Tables, Storing Different Objects in Different Tables

	telnet, Logging In to Your Web Server’s Database
	Terminal (Mac OS X), Putting It All Together, Installing MySQL Without MAMP or WAMP, MySQL on Mac OS X
		running PHP from, Installing MySQL Without MAMP or WAMP
	setting up MySQL path, MySQL on Mac OS X
	using tabs, Putting It All Together

	testing, Variables Vary, but Constants Stay Constant, Passing a User ID into show_user.php, Creating a PHP Error Page–Expect the Unexpected, Expect the Unexpected, Expect the Unexpected, Converting File System Paths to URLs, Test, Test, Always Test–All You Need Is an Image ID, Embedding an Image Is Just Viewing an Image, All You Need Is an Image ID, Putting It All Together, Blank Pages and Expiring Cookies, Testing Group Membership–Checking for Group Membership, Checking for Group Membership
		authentication, Blank Pages and Expiring Cookies
	code after cutting and pasting, Putting It All Together
	error page scripts, Creating a PHP Error Page–Expect the Unexpected, Expect the Unexpected, Expect the Unexpected
	group membership, Testing Group Membership–Checking for Group Membership, Checking for Group Membership
	new functionality, Converting File System Paths to URLs
	scripts, Passing a User ID into show_user.php
	show images scripts, Test, Test, Always Test–All You Need Is an Image ID, Embedding an Image Is Just Viewing an Image, All You Need Is an Image ID
	writing code for, Variables Vary, but Constants Stay Constant

	text (strings), Combine Text–Searching Within Text, Combine Text, Searching Within Text, Searching Within Text, Changing Text–Changing Text, Changing Text, String Matching, Double-Time, Passwords Create Security, But Should Be Secure, crypt Is One-Way Encryption
		changing, Changing Text–Changing Text, Changing Text
	combining, Combine Text–Searching Within Text, Combine Text, Searching Within Text
	encrypting, Passwords Create Security, But Should Be Secure, crypt Is One-Way Encryption
	searching, Searching Within Text, String Matching, Double-Time

	text editors, Get Out Your Text Editor–Write Your First Program, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program
		about, Get Out Your Text Editor
	writing PHP on, Get Out Your Text Editor–Write Your First Program, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program

	TextEdit, as text editor, Get Out Your Text Editor
		about, Get Out Your Text Editor

	Thread Safe, in Windows systems, Installing PHP from www.php.net
	tight coupling, Binary Objects and Image Loading
	tinyblob type, Storing Different Objects in Different Tables
	trim() function, Replacing Characters in Text by Using Str_replace(), Avoid Changing User Input Whenever Possible
	troubleshooting, Logging In to Your Web Server’s Database–Logging In to Your Web Server’s Database, Logging In to Your Web Server’s Database, Logging In to Your Web Server’s Database, Using CREATE to Make Tables
		logging into web server, Logging In to Your Web Server’s Database–Logging In to Your Web Server’s Database, Logging In to Your Web Server’s Database, Logging In to Your Web Server’s Database
	typos in SQL command, Using CREATE to Make Tables

	trusted URLs, phishing scams using, Phishing and Subtle Redirection–The Dangers of Request Parameters, Phishing and Subtle Redirection, The Dangers of Request Parameters, The Dangers of Request Parameters
	try/catch block, in error handling, Handling Errors with try and catch, Handling Errors with try and catch, Handling Errors with try and catch
	trying things out, value of, A Script Can Be an Image src
	Twitter address, for Missing Manual, Changing a Table’s Structure by Using ALTER
	Twitter handle, turning into clickable link, Changing Text–Changing Text, Changing Text, Changing Text, Changing Text
	typos, fixing MySQL, Using CREATE to Make Tables

 U
	UI (User Interface) vs. UX (User Experience), alert Is Interruptive
	ul (unordered list), Print Out Your SQL Results
	unordered list (ul), Print Out Your SQL Results
	Up arrow key on keyboard using in on command line, Using DROP to Delete Tables
	uploading files, HTML Forms Can Set the Stage, Set Up Some Helper Variables–Did the File Upload with Any Errors?, Did the File Upload with Any Errors?
		limiting size of files, HTML Forms Can Set the Stage
	of images to web server checking for errors, Set Up Some Helper Variables–Did the File Upload with Any Errors?, Did the File Upload with Any Errors?

	URLs, Changing Text, Welcome to Security and Phishing, Converting File System Paths to URLs–Displaying Your User’s Image: Take Two, Converting File System Paths to URLs, Converting File System Paths to URLs, Converting File System Paths to URLs, Displaying Your User’s Image: Take Two
		converting file system paths to, Converting File System Paths to URLs–Displaying Your User’s Image: Take Two, Converting File System Paths to URLs, Converting File System Paths to URLs, Converting File System Paths to URLs, Displaying Your User’s Image: Take Two
	making clickable partial, Changing Text
	phishing scams using trusted, Welcome to Security and Phishing

	use command, Selecting a Database with USE
		on hosting provider server, Selecting a Database with USE

	User Experience (UX) vs. User Interface (UI), alert Is Interruptive
	user information, PHP Gives You An Array of Request Information, Revisiting a User’s Information–Planning Your Database Tables, Planning Your Database Tables, Saving a User’s Information–A First Pass at Confirmation, Saving a User’s Information–A First Pass at Confirmation, Building Your SQL Query, Inserting a User, Inserting a User, A First Pass at Confirmation, A First Pass at Confirmation, Users are Users, Not Programmers, Changing a Table’s Structure by Using ALTER, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script, Storing Different Objects in Different Tables–Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables
		focusing on what users want to see, Users are Users, Not Programmers
	getting, Revisiting a User’s Information–Planning Your Database Tables, Planning Your Database Tables
	inserting into table, Saving a User’s Information–A First Pass at Confirmation, Building Your SQL Query, Inserting a User, Inserting a User, A First Pass at Confirmation
	saving, Saving a User’s Information–A First Pass at Confirmation, A First Pass at Confirmation
	showing, Changing a Table’s Structure by Using ALTER, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script
		pulling values, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result, Pulling Values from a SQL Query Result
	updating user creation script, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script, Updating Your User Creation Script
	using ALTER command for adding columns, Changing a Table’s Structure by Using ALTER

	storing objects in different tables, Storing Different Objects in Different Tables–Storing Different Objects in Different Tables, Storing Different Objects in Different Tables, Storing Different Objects in Different Tables
	using, PHP Gives You An Array of Request Information

	User Interface (UI) vs. User Experience (UX), alert Is Interruptive
	user interface, for administrator, (User Interface) Brevity Is Still the Soul of Wit–Wish Lists Are Good, Too, (User Interface) Brevity Is Still the Soul of Wit, (User Interface) Brevity Is Still the Soul of Wit, Wish Lists Are Good, Too
	user name, Dealing with Newly Invalid Data, Getting an Initial User Name and Password–Getting an Initial User Name and Password, Getting an Initial User Name and Password, Inserting the User Name and Password
		checking in create user script for duplicate, Inserting the User Name and Password
	getting initial password and, Getting an Initial User Name and Password–Getting an Initial User Name and Password, Getting an Initial User Name and Password
	using email addresses as, Dealing with Newly Invalid Data

	user profile, Updating Your User Signup Form–Updating Your User Signup Form, Updating Your User Signup Form, HTML Forms Can Set the Stage–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage
		images, Updating Your User Signup Form–Updating Your User Signup Form, Updating Your User Signup Form
	setting up HTML forms for images, HTML Forms Can Set the Stage–HTML Forms Can Set the Stage, HTML Forms Can Set the Stage

	user signup form, updating, Updating Your User Signup Form, Updating Your User Signup Form, Updating Your User Signup Form, Updating Your User Signup Form
	users, Planning Your Error Pages–Know When to Say When, Planning Your Error Pages, Tell Your Users that a Problem has Occurred, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Know When to Say When, Connecting Users and Images–Show Me the Image!, Connecting Users and Images, Connecting Users and Images, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Joining Tables by Using WHERE, Alias Your Tables (and Columns), Show Me the Image!, Getting Your User’s Credentials, Getting Your User’s Credentials, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, From HTTP Authentication to Cookies, From HTTP Authentication to Cookies, Joins are Best Done with IDS–Testing Group Membership, Use a Join Table to Connect Users with Groups, Testing Group Membership, Take in a List of Groups
		checking credentials of, Taking Control of User Sign Ins–From HTTP Authentication to Cookies, Taking Control of User Sign Ins, From HTTP Authentication to Cookies, From HTTP Authentication to Cookies
	connecting groups and, Joins are Best Done with IDS–Testing Group Membership, Use a Join Table to Connect Users with Groups, Testing Group Membership
	connecting images and, Connecting Users and Images–Show Me the Image!, Connecting Users and Images, Connecting Users and Images, Inserting an Image and then Inserting a User, Inserting an Image and then Inserting a User, Joining Tables by Using WHERE, Alias Your Tables (and Columns), Show Me the Image!
	getting credentials for, Getting Your User’s Credentials, Getting Your User’s Credentials
	getting to function list of, Take in a List of Groups
	planning error pages for, Planning Your Error Pages–Know When to Say When, Planning Your Error Pages, Tell Your Users that a Problem has Occurred, Bring Down the Panic Level in the Process, Bring Down the Panic Level in the Process, Know When to Say When

	users machine vs. web server, Images Are Just Files
	users table, connecting authorize script to, Connect authorize.php to Your users Table–Passwords Create Security, But Should Be Secure, Connect authorize.php to Your users Table, Connect authorize.php to Your users Table, Connect authorize.php to Your users Table, Passwords Create Security, But Should Be Secure
	user_id, Planning Your Database Tables, Good Database Tables Have ID Columns
	user_pic, HTML Forms Can Set the Stage
	UX (User Experience) vs. UI (User Interface), alert Is Interruptive

 V
	varchar keyword, Using CREATE to Make Tables
	variables, Replacing Hand-Typed Values with Variables, Variables Vary, but Constants Stay Constant–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Rounding Things Out by Using Regular Expressions (Again), Set Up Some Helper Variables–Did the File Upload with Any Errors?, Set Up Some Helper Variables, Did the File Upload with Any Errors?, Did the File Upload with Any Errors?, Your Binary Data Isn’t Safe to Insert…Yet, authorize.php Needs a Function
		image_size, Your Binary Data Isn’t Safe to Insert…Yet
	matching names to column names, Rounding Things Out by Using Regular Expressions (Again)
	replacing hand-typed values with, Replacing Hand-Typed Values with Variables
	setting up helper, Set Up Some Helper Variables–Did the File Upload with Any Errors?, Set Up Some Helper Variables, Did the File Upload with Any Errors?, Did the File Upload with Any Errors?
	using constants instead of, Variables Vary, but Constants Stay Constant–Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant, Variables Vary, but Constants Stay Constant
	vs. functions, authorize.php Needs a Function

	versions (releases), JavaScript Adds Complexity, but Not Software
		of JavaScript, JavaScript Adds Complexity, but Not Software

	View Source, Replacing Characters in Text by Using Str_replace()
	viewing images, SELECTing the Image and Displaying It–SELECTing the Image and Displaying It, SELECTing the Image and Displaying It, Converting File System Paths to URLs–Displaying Your User’s Image: Take Two, Converting File System Paths to URLs, Converting File System Paths to URLs, Converting File System Paths to URLs, Displaying Your User’s Image: Take Two–Displaying Your User’s Image: Take Two, Displaying Your User’s Image: Take Two, Displaying Your User’s Image: Take Two, Displaying Your User’s Image: Take Two, All You Need Is an Image ID–A Script Can Be an Image src, A Script Can Be an Image src
		converting file system paths to URLs, Converting File System Paths to URLs–Displaying Your User’s Image: Take Two, Converting File System Paths to URLs, Converting File System Paths to URLs, Converting File System Paths to URLs, Displaying Your User’s Image: Take Two
	displaying user image, Displaying Your User’s Image: Take Two–Displaying Your User’s Image: Take Two, Displaying Your User’s Image: Take Two, Displaying Your User’s Image: Take Two
	embedding images and, All You Need Is an Image ID–A Script Can Be an Image src, A Script Can Be an Image src
	using SELECT statement to get all information for user, SELECTing the Image and Displaying It–SELECTing the Image and Displaying It, SELECTing the Image and Displaying It

	views, redirect Has Some Limitations

 W
	WampServer (WAMP), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), PHP on the Windows-Based Computers (WampServer Installation), Run the mysql Tool on WampServer–Give mysql the Right User and Password, Find the MySQL Command-Line Program, Give mysql the Right User and Password
		about, PHP on the Windows-Based Computers (WampServer Installation)
	icon, PHP on the Windows-Based Computers (WampServer Installation)
	installation of PHP, PHP on the Windows-Based Computers (WampServer Installation)
	options, PHP on the Windows-Based Computers (WampServer Installation)
	requiring C++ extensions, PHP on the Windows-Based Computers (WampServer Installation)
	running mysql tool on, Run the mysql Tool on WampServer–Give mysql the Right User and Password, Find the MySQL Command-Line Program, Give mysql the Right User and Password

	web applications, about building, Planning Your Database Tables
	web forms, Get Information from a Web Form–Create Your Own Variables, Accessing Request Parameters Directly, Accessing Request Parameters Directly, Accessing Request Parameters Directly, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Combine Text–Searching Within Text, Searching Within Text, Searching Within Text, Changing Text, Replacing Characters in Text by Using Str_replace(), What Do You Do with User Information?
		adding space in, Combine Text–Searching Within Text, Searching Within Text, Searching Within Text
	getting information from, Get Information from a Web Form–Create Your Own Variables, Accessing Request Parameters Directly, Accessing Request Parameters Directly, Accessing Request Parameters Directly, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables, Create Your Own Variables
	issues in people filling out, Changing Text, Replacing Characters in Text by Using Str_replace()
	naming variables, Create Your Own Variables
	using user information in, What Do You Do with User Information?

	web pages, Revisiting a User’s Information–Planning Your Database Tables, Revisiting a User’s Information, Planning Your Database Tables–Adding Constraints to Your Database, Planning Your Database Tables, Good Database Tables Have ID Columns, Good Database Tables Have ID Columns, IDs and Primary Keys are Good Bedfellows, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database, Adding Constraints to Your Database, Adding Constraints to Your Database, Saving a User’s Information–A First Pass at Confirmation, Saving a User’s Information, Saving a User’s Information, Building Your SQL Query, Inserting a User, Inserting a User, A First Pass at Confirmation, A First Pass at Confirmation, A First Pass at Confirmation, Output a Standard Header with Heredoc–Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Starting with a Landing Page–Taking Control of User Sign Ins, Taking Control of User Sign Ins, Taking Control of User Sign Ins
		getting user information, Revisiting a User’s Information–Planning Your Database Tables, Revisiting a User’s Information, Planning Your Database Tables
	HTML output for, Output a Standard Header with Heredoc–Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Output a Standard Header with Heredoc, Output a Standard Header with Heredoc
	landing page for login, Starting with a Landing Page–Taking Control of User Sign Ins, Taking Control of User Sign Ins, Taking Control of User Sign Ins
	naming web pages, Saving a User’s Information
	planning database tables, Planning Your Database Tables–Adding Constraints to Your Database, Good Database Tables Have ID Columns, Good Database Tables Have ID Columns, IDs and Primary Keys are Good Bedfellows, IDs and Primary Keys are Good Bedfellows, Adding Constraints to Your Database, Adding Constraints to Your Database, Adding Constraints to Your Database
	saving user information, Saving a User’s Information–A First Pass at Confirmation, Saving a User’s Information, Building Your SQL Query, Inserting a User, Inserting a User, A First Pass at Confirmation, A First Pass at Confirmation, A First Pass at Confirmation

	web paths, storing in database, Displaying Your User’s Image: Take Two
	web server, PHP: Going Local, PHP on the Windows-Based Computers (WampServer Installation), But Where’s That Web Server?–But, the HTML Is Coming…, But, the HTML Is Coming…, HTML Is Treated as HTML, Upload your HTML, CSS, and PHP, Run Your Second Program, Create Your Own Variables–Create Your Own Variables, Create Your Own Variables, Images Are Just Files, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location, Basic Authentication Is…Well, Basic
		accessing local, PHP: Going Local, HTML Is Treated as HTML
	creating local, PHP on the Windows-Based Computers (WampServer Installation)
	running programs without, But Where’s That Web Server?–But, the HTML Is Coming…, But, the HTML Is Coming…
	running scripts on remote, Upload your HTML, CSS, and PHP, Run Your Second Program
	uploading users image to, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location
		moving uploaded file to permanent location, Move the File to a Permanent Location, Move the File to a Permanent Location, Move the File to a Permanent Location

	using .htaccess file, Basic Authentication Is…Well, Basic
	vs. users machine, Images Are Just Files
	wasting resources on, Create Your Own Variables–Create Your Own Variables, Create Your Own Variables

	Web Server Setup window, for installing local web server, Installing PHP from www.php.net
	website, About the Outline, PHP on the Mac (MAMP Installation), Installing PHP from www.php.net, Installing MySQL Without MAMP or WAMP
		installing PHP from, Installing PHP from www.php.net, Installing MySQL Without MAMP or WAMP
	MAMP, PHP on the Mac (MAMP Installation)
	Missing Manual, About the Outline

	WHERE clause, Joining Tables by Using WHERE–Show Me the Image!, Joining Tables by Using WHERE, Alias Your Tables (and Columns), Show Me the Image!
		joining tables with, Joining Tables by Using WHERE–Show Me the Image!, Joining Tables by Using WHERE, Alias Your Tables (and Columns), Show Me the Image!

	while loop, Print Out Your SQL Results–Print Out Your SQL Results, Print Out Your SQL Results, Print Out Your SQL Results
	while statements, in writing pseudocode, Getting Your User’s Credentials
	whitespace, removing extra, Removing Extra Whitespace by Using Trim(), Avoid Changing User Input Whenever Possible, Ditch trim and strtoupper
	Windows, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters
		\r and \n characters in, Searching for Sets of Characters–Searching for Sets of Characters, Searching for Sets of Characters, Searching for Sets of Characters

	WordPress, Passing a User ID into show_user.php
	writing, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program, Write Your First Program–Write Your First Program, Write Your First Program, Write Your First Program, PHP Can Be HTML—by Response–Write Another PHP Script, Write Another PHP Script, Write Another PHP Script, Handling Errors by Determining If Your Results are Not, Handling Errors by Determining If Your Results are Not, Variables Vary, but Constants Stay Constant, Building a New Utility Function for Display, Just Pass That Information Along, Getting Your User’s Credentials, Another Utility Script: authorize.php–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php
		authorization script, Another Utility Script: authorize.php–Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php, Another Utility Script: authorize.php
	first PHP program, Write Your First Program–Write Your First Program, Write Your First Program, Write Your First Program
	functions, Building a New Utility Function for Display, Just Pass That Information Along
	HTML scripts, PHP Can Be HTML—by Response–Write Another PHP Script, Write Another PHP Script, Write Another PHP Script
	JavaScript, Handling Errors by Determining If Your Results are Not
	PHP, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program, Handling Errors by Determining If Your Results are Not
		code, Handling Errors by Determining If Your Results are Not
	on text editors, Get Out Your Text Editor, Get Out Your Text Editor, Get Out Your Text Editor, Write Your First Program

	pseudocode, Getting Your User’s Credentials
	test code, Variables Vary, but Constants Stay Constant

 About the Author
Brett McLaughlin is a bestselling and award-winning non-fiction author. His books on computer programming, home theater, and analysis and design have sold in excess of 100,000 copies. He has been writing, editing, and producing technical books for nearly a decade, and is as comfortable in front of a word processor as he is behind a guitar, chasing his two sons and his daughter around the house, or laughing at reruns of Arrested Development with his wife.

Brett spends most of his time these days on cognitive theory, codifying and expanding on the learning principles that shaped the Head First series into a bestselling phenomenon. He's curious about how humans best learn, why Star Wars was so formulaic and still so successful, and is adamant that a good video game is the most effective learning paradigm we have.

PHP & MySQL: The Missing Manual, Second Edition

Brett McLaughlin

Editor
Brian Sawyer

	Revision History
	2012-11-5	

Copyright © 2012 Brett McLaughlin

O’Reilly books may be purchased for educational, business, or sales promotional use.
 Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
 corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing Manual
 logo, and “The book that should have been in the box” are trademarks of O’Reilly Media, Inc.
 Many of the designations used by manufacturers and sellers to distinguish their products are
 claimed as trademarks. Where those designations appear in this book, and O’Reilly Media is
 aware of a trademark claim, the designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher
 assumes no responsibility for errors or omissions, or for damages resulting from the use of
 the information contained in it.

Pogue Press
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-11-21T08:13:12-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1416267.png
86006 T sayHello.php — PHP and MySQL (The Mi

Project

ing Manual) o

Last Saved: 5/17/11 7:16:30 M

v [PHP and MySQL (The. File Path v : /Volumes/Bellerophon)Writing/PHP and MySQL (..sing Manual)/ch01/chO1_examples/sayHello.php
> i choo
< oL3 sayheliophp % (1o symbol slected) £ CELIE
v B (1 saykellopho % (no sym N

v | lezphp

<D

v chot_examples

sayHello.h echo "Hello there. So I hear you're learning to be a PHP programmer!\n";
° T saybel. echo "khy don't you type in your name for me:\n";
> (o scripts Snane = trin(fgets(STOIN);
= united

» G chor. igs echo “\nTharks, " . $nane . *, it's really nice to meet you.\nin
> (i choL_figs-gray
> i cnoz

BN

OEBPS/httpatomoreillycomsourceoreillyimages1416440.png
www.yellowtagmedia.com/phpMM2/ch09/02/show_user.phpZuser_
[8 www.yellowtagmedia.com /pho i ch09 /02 shos AT 3

o2 ch09/02 show.

{ PHP & MYSQL The Missing Manual}

Ryan Geyer

n provi ic vision and i ight for Vass
Ventures initatives. Ryan has years of experience in business
development and medical technology. He has worked with dozens.
of entrepreneurs in both the technical and medical space and has
had the privilege of speaking at South by Southwest Interactive.
Ryan holds a Bachelor's of Science degree from Texas ASM
University.

Get in touch with Ryan:

« ...by emailing them at ryan.geyer@facebook.com
by checking them out on Facebook
« ...by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416291.png
806

& bdmclaughlin.com

(— N > N o |

Open Connection Quick Connect

Action Refresh Edit

j\Get 2 donation keyl)

a

Disconnect

(o] [« » | [/nfs/ank/home1/b/bml...lowtagmedia_com/phpMM +| [4 | (Q)
Filename < size Vodifed
v [cho1 4.0KB 5/13/11 3:45 PM
@ sayHello.html 6338 5/17/117:56 PM
v [scripts 4.0KB 5/13/11
sayHelloWeb.php
» [choz 4.0KB 6/4/11 4:38 PM
» [chos 4.0KB 6/25/11 11:04 AM
» [chos 4.0K8 7/2/11 9:13 AM
» [chos 4.0KB 7/14/11 6:40 PM
» [cho7 4.0KB 7/29/11 8:51 AM
» [chog 4.0KB 8/6/11 9:10 AM
» [chos 4.0KB 8/7/11 8:37 AM
» [ch10 4.0KB 8/19/113:17 PM
» (3 ch11 4.0KB 8/22/11 1:31 PM
Vil s 4.0KB 5/13/113:16 PM
< phpvM.css 2.6K8 8/16/11 11:52 AM
v [images 4.0KB 8/8/11 8:38 AM
% delete.png 143K 8/8/118:38 AM
* ermoripg 5.2K8 7/26/117:28 PM
¥ missing_user.png 5.1KB 7/18/11 11:15 AM
¥ tmm_php-mysal_background.png 2.8K8 5/17/117:44 PM
% tmm_php-mysql_banner.png 9.7K8 5/17/117:59 PM
* tmm_php-mysql_example-arrow.png 3.0K8 5/17/11 8:10 PM
% tmm_php-mysal_footer.png 4.2K8 5/17/11 8:26 PM
26 Files. a8

OEBPS/httpatomoreillycomsourceoreillyimages1416432.png

OEBPS/httpatomoreillycomsourceoreillyimages1416263.png
41>][2) (0] (2] (& rocanost:ssss v c B
b 2
Try MAMP PRO MAMP & MAMP PRO powered by appsolte Gmbi

System Darwin bdm-imac-homelocal 12.0.0 Darwin Kernel Version 12.0.0: Sun Jun 24 23:00:16 PDT |
2012; rootxnu-2050.7.9~1/RELEASE_X86_64 x86_64

GuldDate _[Sep 152011 111857

Configure | ongure" —with-mysal=/ApplicalionsMAMPLibrary Wi~

Command |apxs2=/Applications/MAMPILibrary/bin/apxs' with-gd' with-jpeg-
di=/ApplicationsMAMP/Library ith-png-dir=/ApplicatonsMAMP Library “-with-zib -
 with-freetype-dir=/Applications MAMPLibrary' --prefix=/ApplicationsMAMP/bin/php/php5.3.6'
~execprefx=/ApplcationsMAMPRIN/PN/ppS 36")
 sysconfdir=/Applications/MAMP/bin/php/phps.3.6/conf' ‘-with-soap' -with-config-file-
 patn~/AppicationsMAMPbin/php/phpS 3.6 cont”enable-rack-vars'-—enable-bemath'
enable-fip' -enable-gd-native-ttf -with-bz2=/usr' -with-ldap' -with-
mysali/Applications MAMPL brarybin/mysal-config’ ~withsali wih-f with-
t1lib=/Applications/MAMP/Library' -enable-mbstring=all' -with-
url-/ApplcatonsMAMPLibrary enable-dbx” enable-sockets'-enable-bomath' wih-
imap=shared /ApplicationsMAMP/Librarylib/imap-2007e' --enable-soap' -with-kerberos'
nable-calendar with-pgsal=shared,ApplicationsMAMPLibrery/pg' - enable-dbase' -
onalot otk pleon NP Ay Lokt

| gettext=shared /ApplicationsMAMP/Library' -with-xs|=/ApplicationsMAMP/Library' “-with-

 pdo-mysql=shared /Applications/MAMPiLibrary' -with-pdo-
 pasal=shared, Applications MAMP Librarypg" —with-
| merypt=shared /ApplicationsMAMP/Library' with-openssl' *-enable-zip' with-
iconv=/ApplicationsMAMP/Library

Server AP | Apache 2.0 Handler

Virual [disabled

Directory

Support

Configuration| IApplicatons MAMPINBha/pNp5 3 6ot

File (phpini)

Path

Loaded /ApplicationsMAMP/bin/php/php5.3.6/contiphp.ini

Configuration|

Fie

Scanths dir_|(one)

for acltional

nifles.

| Additional .ini | (none)

fles parsed

PHPAP__[20030626

PHP 20090626

Extension

OEBPS/httpatomoreillycomsourceoreillyimages1416497.png
006 Index of /phpMM2/ch12/01 P
dia.com/phpMM2/ch12/01/shoy

users.php

on yellowtagmedia.com:80:
The Socil Site

Index of /php @ To view this page, you must log in to this area

 Parent Directory

o admin.html Your password will be sent unencrypted.

e create userhtml

; it Y —
:

show_userphp
show uwg.u () Remember this password in my keychain

(Ctogin]

Apache Server at yellowtagmedia.com

OEBPS/httpatomoreillycomsourceoreillyimages1416489.png
eo0o JBRES) B en-source ~

com/phpMM2/ch11/04/show_users.php PP IS

€ € [view-source:yellowtagmedi

[Element 84

<htnl>
<head>
<link href="../css/phpMM.css"

4 el="stylesheet type="text/css" />
5| <script type-"text/javascript'>
.

function delete_user (user id) {

it (confirm("Are you sufe you want to delete this user?” +
“\nThere's really no going back!")) {

window. location = "delete user.php?user_id=" + user_id;

o 3
woy

| </seript>

i </heas> N
15| <body>

“header”><h1>PHP & MySQL: The Mi:
"example’>Current Users</div>

6| <div id: ing Manual</h1></div>

| <div id:

hrefe'javascript:delete_user(1); '><ing cla _user' src='../inages/delete.pna’
width="15' /></1i><1i><a href-'show_user.php?user_id=26'>Bob Dylan (<a
mailto:'>) <a hre: elote_user(26); ><ing class='delete_user’
./inaces/delete.png’ width='15' /><a hrefe'show_user.php?user_id=19'>Ryan
Geyer (<a href-'mailto:ryan.geyeréfacebook.con'>ryan.geyeréfacebook.con) <a
*javascript:delete_user(19);'><ing class= delete_user' src-'../images/delete.png’

15" /></1i><Ii><a href-'show_user.php?user_id=21'>Jason Wadley (<a
mailto:jason.wadley@facebook.con'>jason.wadley@Eacebook.com) <a
javascript:delete_user(21);'><img class-'delete user' src-'../inages/delete.pna’

715" /></a»</1i><Ii>Robert Powell (<a
mailto:infofrockwallbba.con'>infolrockwallbba.con) <a
avascript:delete_user(24);'><img class='delete_user' src
150 /> |

./inages/delete.pna’

OEBPS/httpatomoreillycomsourceoreillyimages1416453.png
€ @ hitps//boi767 bluehost.com2083/rdparty phpMyAdminindes phpdb=yelovts_phprmm2itoken=BLbadsedTEdET2T6s613508be0bA0. 17

4 boxT67 bluchost.com / localhost/ yel.. X

(8- Googie

L >
phpMyAdmin
oEze0 e
_phpmm2 &
] images.

) users
(© Create table)

[ISQL 4 Search 3¢ Insert [Export i) Import J* Operations

(] Browse 4 Structure.

SELECT*

FROM “images”
o 3
Proing[nine] [E6t] Explan SQL [Crete PHP Code {Refiesh |
(Show:) (30 | row(s) starting fom row # [0 in horzonal [3| mode and repeat headers after [100
+ Optons
mime_type file sizo image data

image_id filename.

T

N
1_ (Check All/ Uncheck Al With selscted: ¢ Change @ Delete’

owts)sating fom row # [0 in| horizonal]| moce and epeat eacers ser cals

OEBPS/httpatomoreillycomsourceoreillyimages1416321.png
eoeoe yellowtagmedia.com/phpMM2/ch03/03/scripts/showRequestinfo.php
(B yellowtagmedia.com/phphM2/ch03/03 /scripts/showRequestinfo.php.

{ PHP & MySQL The Missing Manual}

Here's a record of everything in the $_REQUEST amray:

For first_name, the value is ‘Brett'.

For last_name, the value is 'McLaughlin'.

For email, the value is 'brett.m@me.com'.
For facebook_url, the value is 'http://www facebook.com/bdmclaughlin'.

For twitter_handle, the value is'@bdmclaughlin'.

OEBPS/httpatomoreillycomsourceoreillyimages1416418.png
|28 coogte

{ PHP & MYSQL The Missing Manual}

‘We're really sorry.

there was a problem ing to the that holds the i
we need to get you connected.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things figured out by then. Thasks again.
we'll see you soon. And again, we're really sorry for the inconvenience.

The following system-level message was received: Access denied for user 'yellowta_brett'@'localhost'
(using password: YES)

OEBPS/httpatomoreillycomsourceoreillyimages1416600.png

OEBPS/httpatomoreillycomsourceoreillyimages1416449.png.jpg
© O 0 13121282 s_rodaypg (PEG Image, 15&& els)
| 1312128274-james rodayipg (.. | + |
@EER () (@) g el

@ oisable - - Infr

@ trassword Use e atches) ©

OEBPS/httpatomoreillycomsourceoreillyimages1416345.png
{ PHP & MYSQL The Missing Manual}

Example 5-2

SQL Query Runner

Enter your SQL query in the box below:

OEBPS/httpatomoreillycomsourceoreillyimages1416313.png
TN roemmpp—

€« € [1 yellowtagmedia.com/phpMM2/ch03/02/socialEntryForm.html bV N

The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

Firs Name:
Last Name: Thompson

E-Mail Address: [ttomson@aol.com

Facebook URL: http:/weww.facebook.com/ g thompson. 90;

Twitter Handle:

OEBPS/httpatomoreillycomsourceoreillyimages1416396.png
B itpyellowtagmed. asesphpuser =1
((: @ yellowtagmedia com/phpMM2/ch07/05/scripts/show, user phpTuser d=1 R 5 & B

Error connecting to database: Access denied for user 'yellowta_brett]'@'ocalhost' (using password: YES)

OEBPS/httpatomoreillycomsourceoreillyimages1416552.png
806 User Profile

=) [yellowtagmedia.com ¢
{ PHP & MYSQL The Missing Manual}
| Home | My Profile | SignOut
Jeff Traugott

While studying music at Evergreen State College in Olympia,

Washington, Jeff Traugott became fascinated with the art of

lutherie. He moved to Santa Cruz, California, and opened a small

music store catering to acoustic string players in 1984. He began

working for the Santa Cruz Guitar Co. in 1986 and remained there

until 1991. At that time he decided to open his own shop, which is

located in an old industrial complex housing a diverse community

of artisans and craftspeople. From this humble location, Mr. -
Traugott has generated a global reputation. (S

Getin touch with Jeff:

« ..by emailing them at jeff@traugotiguitars.com
by checking them out on Facebook
« by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416467.png
[yellowtagmedia.com/phpMM2/ch11/02/show_users.php

{ PHP & MYSQL The Missing Manual}

Current Users.

OEBPS/httpatomoreillycomsourceoreillyimages1416582.png
Seeao
Acton Center
Windows Updte.

Performance Information and
Tools

View basic information about your computer

Windows ediion
Windows 7 Home Premium
Copyight & 2009 Mictosoft Corporation. Alrights reserved.

Serice Pack1
et more features with a new edition of Windows 7

Sytem.
Rating: System ating s not aaisble
Processor: Intl(R) Core(TM) 7-2600 CPU @ 340GHz 340 Ghiz
Installed memory (RAM): 10068
Sytemtype: 4.6t Operaing System
Penend Touch: or Touch Input i available for ths Display

Computername, domsin,and workgroup settings

Computername: BRETTMCLAUGCEED
Full computername: BRETTMCLAUGCESD
Computerdesciption:

Workgroup: WORKGROUP

Windows actvation
Windows s sctvated

ProductID: 00359-114-2231607-85222 Change product key

@ Change setings

Learn more oniine.

OEBPS/httpatomoreillycomsourceoreillyimages1416541.png
-:-El-g
[|6\ Ty Ty YT [-Te——

{ PHP & MYSQL The Missing Manual}

‘We're really sorry...

There was a problem finding your information in our system.

Don't worry, though, we've been notified that there's problem, and
we take these things seriously. In fact,if you want to contact us to find.
‘out more about what's happened, or you have any concerns, just email
us and we'll be happy to gt right back to you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,

though, you may want to come back a bi later. We bet we'll have

things figured out by then. Thanks again... we'll see you soon. And again, we're really sorry for the
h N

The following system-level message was received: Error locating user with ID

I

i »

OEBPS/httpatomoreillycomsourceoreillyimages1416392.png
b box767.blueh Jloc:
-

eoe .
€« €[] www.yellowtagmedia.com/phpMM2/ch07/05 /scripts/show_user.phpZuser

[Element 84

{ PHP & MYSQL The Missing Manual}

User Profile
hi

David Ramirez

By breaking through heartache, David Ramirez has gone on a
search for understanding. The Austin resident and frequent
traveler to clubs, theaters and listening rooms all over the country,
has come to a phase in his creative life where the tears have dried
and moving on looks like the best option. That change in
perspective hasn't erased the weary searching that has
characterized Ramirez's sparse Americana songwriting for more
than a decade. It just means the questions he's asking on his new

album Apologies have changed.

Getin touch with David:

by emailing them at shane@77mgmt.com
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416543.png
| B b
& signin * [@0 %

m (@ http://wwow yellowtagmedia.com/phpMM2/chi3/03/signin.phperrormes: O v B & X

{ PHP & MySQL The Missing Manual}

| Home | SignIn

Sign In to the Club

OEBPS/httpatomoreillycomsourceoreillyimages1416451.png
806 www.yellowtagmedia.com/phpMM2/ch09/02/show_user.php?user_id=19 e

] D)

{ PHP & MYSQL The Missing Manual}

User Profile

| [www.yellowtagmedia.

Ryan Geyer

Ryan vision and for Vass.
Ventures initiatives. Ryan has years of experience in business
development and medical technology. He has worked with dozens
of entrepreneurs in both the technical and medical space and has
had the privilege of speaking at South by Southwest Interactive.
Ryan holds a Bachelor's of Science degree from Texas A&M
University.

Get in touch with Ryan:

« ...by emailing them at ryan.geyer@facebook.com
by checking them out on Facebook
« ...by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416570.png
[Sl

[ESHESE_X_}

p-REX He PHP: Hypertext Prepro... X

What is PHP?

PHP is a widely-used
general-purpose scripting
language that is especially
suited for Web
development and can be
embedded into HTML. If
Yyou are new to PHP and
want to get some idea of
how it works, try the
introductory tutorial. After
that, check out the online
manual.

Ever wondered how
popular PHP is? See the
Netcraft Survey.

Thanks To

05U Open Source Lab
Yahoo! Inc.
NEXCESS.NET

P function it

) 2's &8

PHPBenelux Conference 2013
ConFoo 2013 PHPNW12 - PHP North
West 2012 ZendCon 2012 Symfony.
Live London

calling for papers:
Upcoming conferenc

Stable Releases
Current PHP 5.4 Stabl

Current PHP 5.3 Stabl
6

PHP 5.4.6 and PHP 5. 6 released

16-Aug-2012 The PHP development team announces the
immediate availability of PHP 5.4.6 and PHP 5.3.16. These
releases fix over 20 bugs. All users of PHP are encouraged to
upgrade to PHP 5.4.6, or at least 5.3.16.

For source downloads of PHP 5.4.6 and PHP 5.3.16 please visit
our downloads page, Windows binaries can be found on
windows.php.net/download/. The list of changes are recorded
in the Changelog.

PHP 5.4.5 and PHP 5.3.15 released

19-7u1-2012 The PHP development team would like to
announce the immediate availability of PHP 5.4.5 and PHP
5.3.15. This release fixes over 30 bugs and includes a fix for a
security related overflow issue in the stream implementation.
Al users of PHP are encouraged to upgrade to PHP 5.4.5 or
PHP 5.3.15.

Release Candidates

5.4.7RC1 (30 Aug 2012)

Upcoming Events [add]

September
Conferences

13. Symfony Live London
2012

15. PECongres by PFZ.nl
15. PHP Conference 2012
Japan

26. Symfony Live San
Francisco 2012

User Group Events

04. SW Florida
Users Group il

OEBPS/httpatomoreillycomsourceoreillyimages1416295.png
8 0 6 Mozilla Firefox
https/ /yellowta...ayHelloWeb.php " " " -

au yellowtagmedia.com/ phpMM2//ch02 /03 /scripts sayHelloWeb.php 7~ & J (38 Google

{ PHP & MYSQL The Missing Manual}

Hello, Brett

Great to meet you. Welcome to the beginning of your PHP programming odyssey.

OEBPS/httpatomoreillycomsourceoreillyimages1416323.png
M D < = 4) E= (=P (Charged) Sat 9:33 AM [Re¥

[show All

“The Traugott Project — Things

Documents [node_updated.zip

‘The Traugott Project — Things
‘The Traugott Project — Things

Folders (1] Jeff Traugott Guitars

Messages () Re: Quick request
(- Re: Quick request
(- Re: Hey man |
(- Re: Hey man
() What goes around...
[#) Mark Reese on 2011-06-01

Contacts | [1] Jeff Traugott

images | IMG_1778.JPG — Mail Downl
1 IMG_1780,JPG — Mail Downl
B MG_17544pg
I traugott_mockup pg
I IMG_1778.J°G — 3
1 IMG_1780J7G — 2

POF Documents) mclaughlin.pdf
2 McLaughRept.pdf
7] McLaughOF. pdf

Spotlight Preferences....

OEBPS/httpatomoreillycomsourceoreillyimages1416224.png.jpg
mpServer, the web devel

‘\ WampServer
\ ’ Apache, PHP, MySQL on Windows

S STRBUTION T
WAY!
L
WampServer is a Windows web development environment. It allows you to
create web applications with Apache2, PHP and a MySQL database

Alongside, PhpMyAdmin allows you to manage easily your databases

START USING WAMPSERVER

wiweet (575 Rl 1| (2o

Bsame 3

~ START WITH WAMPSERVER

WampServer installs automatically all you need to start developing web applications and is very intuitive to use. You
will be able to tune your server without even touching the setting files,

INSTALLING % FUNCTIONALITIES

Wampserver's functionalities are very complete and easy to use so we
won't expiain here how to use them.
With a left click on WampServers icon, you will be able fo: =

© Double click on the downloaded file and just follow the instructions.
Everyihing is automatic. The WampServer package is delivered
whith the fatest refeases of Apache, MySQL and PHP.

OEBPS/httpatomoreillycomsourceoreillyimages1416485.png
- =TT

000 /) yellowtagmedia.com/php

€ X [J yellowtagmedia.com/phpMM2/ch11/]

(3 Element 84

{PHP & My

[Walting for yellowsagmedia.com,

The page at yellowtagmedia.com says:
The useryou specified has been delete. ifecx20nasx20beer20deleted. 77| S X

The Missing Manual }

OEBPS/httpatomoreillycomsourceoreillyimages1416359.png
B OE osommssomoroinzscss aesumes i

{ PHP & MYSQL The Missing Manual}

SQL Query Runner

Enter your SQL query in the box below:

dROp TABLE urls:

OEBPS/httpatomoreillycomsourceoreillyimages1416537.png
(el S

@ nttp:/fwww yellowtagmedia.com/ phphM2/ch13/02/show_user.php p-BEX He User Profile x i xd

{ PHP & MYSQL The Missing Manual}

| Home | My Profile | Sign Out

~
2

Jeff Traugott

While studying music at Evergreen State College in Olympia,
Washington, Jeff Traugott became fascinated with the art of
lutherie- He moved to Santa Cruz, California, and opened a
‘small music store catering to acoustic string players in 1984.
He began working for the Santa Cruz Guitar Co. in 1986 and
remained there until 1991. At that time he decided to open his
‘own shop, which is located in an old industrial complex housing
 diverse community of artisans and craftspeople. From this
humble location, Mr. Traugott has generated a global
reputation.

Get in touch with Jef:

by emailing them at jeff@traugotiguitars com
by checking them out on Facebook

ity /v yeowtagmediacom/ phEMM2/ch13/02how.userphp |1

OEBPS/httpatomoreillycomsourceoreillyimages1416333.png
a@ @ to:yellowtagmesi.com/phpMM2/cha5/T1/connect il 0~ B0 X @ yelowtsgmedincom %

{ PHP & MySQL The Missing Manual}

SQL Connection test

OEBPS/httpatomoreillycomsourceoreillyimages1416363.png.jpg
XX Mozilla Firefox

[L) b pwwwyell.frun_queryohp | + |

@ Disable + & Cookies v CSS v = Forms

images + @ nformaton «

@ 1assword + (8 Usewaller + [8 Use dentity + &) Fill (8 matches) + 8 Save.
Connected to MySQL!
Connected to MySQL, using database bmclaugh.

Error in executing the SQL query dROp TABLE urls;: You have an error in your SQL syntax; check the manual that corresponds to
‘your MySQL server version for the right syntax to use near \\n\\ndROp TABLE urls' at line 1

OEBPS/httpatomoreillycomsourceoreillyimages1416535.png
{ PHP & MySQL The Missing Manual}

Your usemame password combination was invaic.

Sign In to the Club

m

Usemame: raugott T

Password:

i 5

OEBPS/httpatomoreillycomsourceoreillyimages1416299.png
0006 yellowtagmedia.com/phpMM2/ch03/01/scripts/getForminfo.php

(B yellowtagmedia.com/phphM2 /ch03/01/scripts/getForminfo.php.

{PHP & MySQL

Example 3

Here's a record of what information you submitted:

The Missing Manual}

First Name: Brett

Last Name: McLaughlin

E-Mail Address: brettm@me.com

Facebook URL: hitp://www facebook com/bdmelaughlin

OEBPS/httpatomoreillycomsourceoreillyimages1416410.png
hitp//wawyellowta..pts/show_error.php
€)@ oyelowtagmetiacom/phpMM2ch08/scripts/show_crorphp |8 Gogie

{ PHP & MYSQL The Missing Manual}

‘We're really sorry... 5

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things
figared out by then. Thanks again... we'llsee you soon. And again, we're
really sorry for the inconvenience.

OEBPS/httpatomoreillycomsourceoreillyimages1416240.png
2 o~ s
faplldll © nitp://localhost/ pL-BCEX S Sl © WAMPSERVER Homepage > |l

WampServer

Server Configuration

Apache ersion: 2222
PHP Version -

Loaded Extensions: g core

Tools
 phpinfo()
& phpmyadmin

Your Projects
Your Virtual Hosts

Your Aliases
(9 phpmyadmin
& sqlbuddy

5 webgrind

OEBPS/httpatomoreillycomsourceoreillyimages1416273.png.jpg
800 Preferences

e

Use the Formt menu to choose settings for indiidual decuments.
O Richtexe Cwrap to page

@ Phintext

Window i

e P

Heght: (30 lines

Font
Plain text font: [Change... | Monaco 10
Rich text font. | Change... | Helvetica 12

Properties
Document properties can only be used In ich text fles. Choose

OEBPS/httpatomoreillycomsourceoreillyimages1416265.png
[© o - o Wt IO bt MO R DO R el Do e et N e-e (u pap
| B Edt Seach Vew Project Bun ook Wndow Heb
BAMG|B. IPoDrondBooaa.
Ol8. 16 -3 12RO @B . ImwOB L.
@ savhello.php X apex =]
x fene A g
S ‘cho "Hello there. So I hear you're learning to be a PHP programmer!\n": =
Bls | ocho rimy don's you tipe in sour mase for merv H
[| oo - imizsetsistomns o
7 | acoo mvmmani, = . smame . =, 15vs zeatiy nice vo meet youmwrs g
[H
e | 2
: s
o
@ &
el
H
2|
o]
d 1
L [« el L 3]
B wotspuce [Expoer | | souece preven] [pHe | HTML 55)5
(i 3]
= =
8 10g [i | o0 st | R Prdlrs |
[F1 (wwoowsmz | o [[|

OEBPS/httpatomoreillycomsourceoreillyimages1416604.png
mysql-5.5.27-05x10.6- MySQLStartupitem.pkg ReadMe.txt
X86_64.pkg

OEBPS/httpatomoreillycomsourceoreillyimages1416271.png
6006 Untitled
E

echo
echo "Wy don’t you type in your nane for nes\n’;
$nane = trin(fget

echo "\iTharks, * . §nane . ", it's really nice to mest you.\nn’";

OEBPS/httpatomoreillycomsourceoreillyimages1416584.png.jpg
I hitp://wwwmysql.com/ £ - 20 X || @pHpror. | W Mysa- v 8
Contact a MySQL Representative Search

MySQL' The world's most popular open source database
MySQL-com Downloads (GA) Ll

How to Buy

Products Services Partners Customers WhyMySQL? News & Events

GET STARTED t
2
MySQL Clust
s y. uster 7.
MySQL Enterprise Edition 4
£ s E 1 Billion Queries per Minut
o
MySQL Enterprise Resource Kit
7 GA Now!
White Papers
1SVs and OEMs £
MySQL Training MySQL Connect
B Register Now for the MySQL Connect Conference »
Contact Us Free Webinars &
The Value of MySQL for SaaS Vendors
Thu, Sep 20 i

< i 3

OEBPS/httpatomoreillycomsourceoreillyimages1416293.png
Mozilla Firefox

{ PHP & MYSQL The Missing Manual}

Example 2-1

Welcome!

Hello there. So T hear you're learning to be a PHP programmer!

Why don't you type in your name for me:
B I —

[Say Hello |

OEBPS/httpatomoreillycomsourceoreillyimages1416493.png
[S=sien

hitp://yellowtagmed..05/create_userhtmi| +

(€) @ yellowtagmedia.com/phphM2/ch11/05/create_user.html 77 v e |[$8- Googie sla B

{ PHP & MYSQL The Missing Manual}

The name you entered s abesdy regstered.

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name: Brett

Last Name: McLaughlin

E-Mail Address: brettm@me.com

OEBPS/httpatomoreillycomsourceoreillyimages1416469.png
REuS By Wt * —

[yellowtagmedia.com/phpMM2/ch11/02/show_users.php

{ PHP & MYSQL The Missing Manual}

Current Users.

* Yu Darvish (yu@texasrangers.com) X
avid Ramirez (shane@77mgmt.com) X

* Ryan Geyer (ryan geyer@facebook.com) X
« Jason Wadley (jason.wadley@facebook.com) X
« Robert Powell (i rockwallbba.com) X

mailto:jason.wadley@facebook.com

OEBPS/httpatomoreillycomsourceoreillyimages1416234.png
‘Windows Security Alert

networks.

Neme:
Publsher: Apache Software Foundation
Path: C:\wamp inlapache lapache2.2.22 binthtipd.exe

Allow Apache HTTP Server to commuricate on these netiorks:
Private networks, such as my home or work network.

[F]Publc networks, such a5 those in sirports and coffee shops (notrecommended
because these networks often have lite o no seauity) |

What are the riss of alowing 2 proqram throuch a frewall

OEBPS/httpatomoreillycomsourceoreillyimages1416511.png
yellowtagmedia.com/phpMM2/ch12/03/create_user.htm|
(B yellowtagmedia.com/phphM2 /ch12/03 create_user.him|

{ PHP & MySQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

FineName: [
Last Name:

Usemname:

: o e slected

Jan e i

OEBPS/httpatomoreillycomsourceoreillyimages1416515.png
yellowtagmedia.com/phpMM2/ch12/03/create_user.html

(B yellowtagmedia.com/phphM2 /ch12/03 create_user.him|

{ PHP & MySQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name: This feld is required.
Last Name: This feld is required.
Usemanme: This feld is required.

R a—

Confirm Password: This field is required.
E-Mail Address: This field is required.
FaccbookURL: [

TwiterHandle: |
Upload a picture: o file selected
Bio:

Jan e i

OEBPS/httpatomoreillycomsourceoreillyimages1416212.png
806 Untitled

e

echo
echo "Wy don’t you type in your nane for nes\n’;
$nane = trin(fget

echo "\iTharks, * . §nane . ", it's really nice to mest you.\nn’";

OEBPS/httpatomoreillycomsourceoreillyimages1416420.png
ttp//www.yellowt.. 20password:20VES)

€)@ v yellowtagmedia.com/phpMM2/ch08/scripts/show_error phpZerror_message=there ;U\-z]- Google. Ll B~

{ PHP & MYSQL The Missing Manual}

‘We're really sorry...

there was a problem ing to the that holds the i
we need to get you connected.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things figured out by then. Thasks again.
we'll see you soon. And again, we're really sorry for the inconvenience.

OEBPS/httpatomoreillycomsourceoreillyimages1416325.png
Google
Sec ol 9 deskiop esuts i browser

(] php_pdo_mysaldl - C:\Program Fies\...\ext

) mysal_home_page_windows1f - Deskicp

2] mysal_dowrioads_windows1f - Deskiop

{8) mysak55 13un22ms - Deskiop

@ Search Destop:mysa

OEBPS/httpatomoreillycomsourceoreillyimages1416529.png
m ﬁe:e:i
{ PHP & MySQL The Missing Manual}

1

Sign In to the Club

a@ (@ http://wwow yellowtagmedia.com/phpMM2/ch13/02/signin.php. S-BoX

Username:

Password:

OEBPS/httpatomoreillycomsourceoreillyimages1416386.png
800 [%\ i box767 biuehost.com / loc: €3
€« C' [www.yellowtagmedia.com/phpMM2/ch07/04 /scripts/show_user.php

[Element 84

{ PHP & MYSQL The Missing Manual}

User Profile

Yu Darvish

Attended Tohoku High School in northern Sendai, a school which
also produced major league pitchers Kazuhiro Sasaki and Takashi
Saito...he had a 1.10 ERA in his high school career, and pitched a
no-hitter against Kumamoto Technical High School in the first
round of the National High School Baseball Invitational
Tournament on March 26, 2004...he was drafted by the Fighters
in the first round on November 17, 2004 and signed on December
17.

Went 18-6 with a 1.44 ERA (37 ER/232.0 IP) for Hokkaido in his.
final season in Japan...the 1.4 ERA was the lowest of his career,

as he also posted career highs in wins (18), strikeouts (276), innings (232.0), starts (28), and
shutouts (6)...matched career low with 5 HR allowed (also 2010)...led NPB in strikeouts,
innings, opponents average (.190), shutouts (tied), home runs per 9 innings (0.19), opponents
OBP (:229), and (241)..the 0BP and figures were
career lows...ranked among circuit leaders in ERA (2nd), complete games (2nd), strikeoutiwalk
ratio (3rd, 7.67), and wins (T3rd)... tossed at least 7.0 innings in every outing last season, with
his lone outing of more than 3 runs coming in his first start...his career-low run support
average of 3.10 runs per 9 innings ranked 23rd out of NPB's 33 qualifying pitchers. ..received
one or zero runs of support in 4 of his 6 defeats.

Getin touch with Yu:

+ ..by emailing them at yu@texasrangers.com
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416521.png
=l 51

O 6 vty comisrpviziiao £- 80 x| @y »|Sasianaalil i %7 5

{ PHP & MYSQL The Missing Manual}

Why be the last to know?
Sign up today for updates,
special tutorials, and to get
involved in the PHP and
Missing Manuals online

community...
so what are you waiting for?

hitp://yellowtagmedia.com/phpMM2/chi3/01/create_user-html | =

OEBPS/httpatomoreillycomsourceoreillyimages1416422.png
| EPage notfound Yelow Tag Media | + |

€)@ v yelowtagmedia.com/phpM2/ch08/04show_erorphpTerror_mes

Yellow Tag Media N

Just another WordPress site

This is somewhat embarrassing, isn’t it?

It seems we can'tfind what you're looking for. Perhaps searching, or one of the links
below, can help.

10ST USED CATEGORIES ARcHives
= No categories “Try looking in the monthly
archives. ©

SelectMonth +

OEBPS/httpatomoreillycomsourceoreillyimages1416394.png
eo0o + % ubox767.bluehost.com / loc
€« €' [www.yellowtagmedia.com/phpMM2/ch07/05 /scripts/show_user.php?uses

VRN

[Element 84

{ PHP & MYSQL The Missing Manual}

User Profile

David Ramirez

“I'm a wandering man, got no money in the bank, got no wife at
home watching children".

Nothing could more accurately depict the adventurous, carefree
spirit of singer-songwriter David Ramirez. Uneasy with being in
one place for too long, David repeatedly finds himseif on the road
playing his brand of modern Americana that fans have coined
“Folk-brewed Pop".

He's been writing and performing for over 10 years. From his teen
years songs with friends in to the struggles of

making a name for himself in Nashville, David's songwriting journey has spanned multiple EP's
and a full-length, American Soil which karnered over 1,200 downloads in a 48-hr. period on
Noisetrade. In 2010, David played 150 shows on numerous, independently booked tours.
Feeling truly at home on the road, he calls his second home Austin, Texas. Its here where he
wrote and recorded his latest release, Strangetown EP .

Getin touch with David:

+ ..by emailing them at shane@77mgmt.com
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416408.png
g/ /oyl 20the3:20database.|

€)@ o.yelowtagmetia com/phpMIMR) <h08/scipts/show.crorphprenor message=There 77 = C | [8+ Googie 5 & B-

{ PHP & MYSQL The Missing Manual}

‘We're really sorry... &

There!'s been a problem connecting to the database.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things
figured out by then. Thaks again... we'll see you soon. And again, we're really sorry for the inconvenience.

OEBPS/httpatomoreillycomsourceoreillyimages1416436.png
606 Index of /phpMM/uploads/profile_pics Ce
m/phpMM/uploads /profile_pics/

Index of /phpMM/uploads/profile_pics

‘Parent Directory

1312124718-City 2 0 by pincel3d jpg
1312127661-City 2 0 by pincel3d jpg
1312128274-james roday.jpg
1313444774-set jpeg

1313447274-set.jpeg

1313447286-set.jpeg
1314133752-brett-headshot-(1024 _1067).jpg
1314134283-200px-William Shatner.jpeg
1314134369-james roday.jpg

1314134459-imgres jpeg

1314134508-set.jpeg

1314566295-211868 699186223 3443368 njpg
1314566444-211868 699186223 3443368 n.jpg
1314572847-48972 100000214269631 2581 njpg
1314578519-69rvin.jpg
1329301648-lassisg @gmail com 0380231 jpg
1339572413-1023-original46a256d935Teade jog

Apache Server at www yellowtagmedia.com Port 80 L3

OEBPS/httpatomoreillycomsourceoreillyimages1416473.png.jpg
T create_user.php

e N U AN R

10
i
12
13
14
150
16
17
18
19
20
21
2
23
2
B

Line: 1

<zphp
require
require

./scripts/app_config.php;
. ./scripts/database_connection. php" ;

// Get the user ID of the user to show
Suser_id = S_REQUEST['user_id'];

// Build the SELECT statement
Sselect_query = sprintFC’SELECT FROM users WHERE user id = %d"_

8600 T delete_user.php.
1 <2
2/ Run the query | 2
Sresult = mysql_quél 3 | require_once '../scripts/app_config.php’;
4 | require_once *../scripts/database_connection.php';
if (sresult) { 5
Srow = mysql_f¢ 6 |// Get the user ID of the user to delete
Sfirst_name 7 |Suser_id = S_REQUEST['user_id'];
Slast_name 8
Sbio 9 |// Build the DELETE statement
Semail 10 |Sdelete_query = sprintf("DELETE FROM users WHERE user_id = %d",
Sfacebook_url 1 Suser_id);
Stwitter_handle d 1o
Simage_id 13 |// Delete the user from the database
14 |mysql_query(Sdelete_query);
7/ Turn Stwitterd| 15
o ron 16 |// Redirect to show_users to re-show users (without this deleted one)
17 | header("Location: show_users.php™);
18 |7

ITE———— O HTML 3O v | SoftTabs: 2 5| —

OEBPS/httpatomoreillycomsourceoreillyimages1416590.png
[Z] MySQL Installer (=lell =)

MySQL Server Configuration 2/3

] MySQL User Detais

Please specify the username, password, and database role

EditUser
Delete User

N

OEBPS/httpatomoreillycomsourceoreillyimages1416222.png
(I’Hl’ & MysQL

Web Browser

HTML
renderer
ss
renderer
JavaScript
interpreter

Could be for HTML, (55,
PHI? or a combination.

PHP JavaScript
Web interpreter
Server

PHP

Scripts

!
Response is not PHP,
but the result of
interpreting PHP, usually
more HTMI and (SS.

OEBPS/httpatomoreillycomsourceoreillyimages1416319.png
eoeoe yellowtagmedia.com/phpMM2/ch03/03/scripts/showRequestinfo.php
(£ yellowtagmedia.com/phpMM2/ch03/03/scripts/showRequestinfo.phpl 1

{ PHP & MYSQL The Missing Manual}

Example 3-2

Here's a record of everything in the $_REQUEST amray:

Brett

McLaughlin

‘brett.n@me.com
hitp://www facebook combdmelaughlin
@bdmelavghlin

OEBPS/httpatomoreillycomsourceoreillyimages1416517.png
User Profile

x
The user name or password you entered for
this area on yellowtagmedia.com:80 was
PHP ncorret, Make sure you're entering ther
correctly, and then try again. iing Manu al
The Social Site

Your password will be sent unencrypted.

Name: [traugott
Jeff Traug -

() Remember this password in my keychain
While studyin
Washington, [_cancel | [[Login |
lutherie. He 3 v

music store carermgr g praye e vegan -
working for the Santa Cruz Guitar Co. in 1986 and remained there.

until 1991. At that time he decided to open his own shop, which is

located in an old industrial complex housing a diverse community

of artisans and craftspeople. From this humble location, Mr. >
Traugott has generated a global reputation.

Getin touch with Jeff:

« ..by emailing them at jeff@traugotiguitars.com
by checking them out on Facebook
« by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416372.png
o

DAJW RN

© 00 [Hyellowtagmedia.com/phpvi /() MAMP
€ & C | [localhost:8888/MAMP/?language=English

[Element 84

4 by appsolute GmbH

phpMyAdmin 5 localbost» b phommz
Operations

Structure JSOL | Search (Query @Export Jalmport

gPrivileges (K Drop
| @ #1075 - Incorrect table definition; there can be only one auto column and it must be defined as a key

[phpmm2

phpmm2 (0) Lo e v 30
No tables found in database. e it v 30')

»”
[Edit] [Create PHP Code |

No tables found in database.

- % Create new table on phpmm2.
Number of fields:

Name:

OEBPS/httpatomoreillycomsourceoreillyimages1416380.png
eo0o o % { dh box767.blueh e -
€ € [www.yellowtagmedia.com/phpMM2/ch07/04/show_user_mockup.html w5
(] Element 84

{ PHP & MYSQL The Missing Manual}

User Profile

Yu Darvish

Attended Tohoku High School in northern Sendai, a school which
also produced major league pitchers Kazuhiro Sasaki and Takashi
Saito...he had a 1.10 ERA in his high school career, and pitched a
no-hitter against Kumamoto Technical High School in the first
round of the National High School Baseball Invitational
Tournament on March 26, 2004...he was drafted by the Fighters
in the first round on November 17, 2004 and signed on December
17.

Went 18-6 with a 1.44 ERA (37 ER/232.0 IP) for Hokkaido in his
final season in Japan...the 1.44 ERA was the lowest of his career,

as he also posted career highs in wins (18), strikeouts (276),

innings (232.0), starts (28), and shutouts (6)...matched career low

with 5 HR allowed (also 2010)...led NPB in strikeouts, innings,

opponents average (.190), shutouts (tied), home runs per §

innings (0.19), OBP (.229), and (:241)...the oBP
and slugging figures were career lows...ranked among circuit leaders in ERA (2nd), complete
games (2nd), strikeoutiwalk ratio (3rd, 7.67), and wins (T3rd)... tossed at least 7.0 innings in
every outing last season, with his lone outing of more than 3 runs coming in his first start...his
career-low run support average of 3.10 runs per 9 innings ranked 23rd out of NPB's 33
qualifying pitchers...received one or zero runs of support in 4 of his 6 defeats.

Getin touch with Yu:

+ ..by emailing them at yu@texasrangers.com
by checking them out on Facebook
+ by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416303.png
yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php.
(B yellowtagmedia.com/phphM2 /ch03/02 /scripts/getForminfo.php.

{PHP & MySQL

Example 3

The Missing Manual}

Here's a record of what information you submitted:
Name: Brett McLaughlin
E-Mail Address: brett n@me.com

Facebook URL: hitp://www facebook com/bdmclaughlin
Twitter Handle: @bdmclaughlin

OEBPS/httpatomoreillycomsourceoreillyimages1416398.png
I (28 Gogie sl a @-

{ PHP & MYSQL The Missing Manual}

Getin touch with

« by emailing them at
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416349.png
{ PHP & MYSQL The Missing Manual}

QL Query Runner

Enter your SQL query in the box below:

CREATE TABLE urls (
1d int,
url varchar(100),
description varchar (100)

OEBPS/httpatomoreillycomsourceoreillyimages1416374.png
o
© 00O [Eyeliowagmedia.com/phpy » | [BBluchost cPanel - yellowtag 4, box767.bluchost.com / loce % _|

€ © C | [https://box767.bluehost.com:2083/ 3rdparty/phpMyAdmin/index.php?db=yellowta_phpmm2&token=fd889180a75af545b0dc... 77| & X
(5 Element 84
phpMyAdmin

28300 ¢

[_phpmm2
SELECT *
FROM “users'
LIMITO, 30
) Profling [inine] [Eit] { Explain SQL] { Create PHP Code] { Refresh |
Column Type Collation Attributes Null Default Extra Action

) 1 user id int(11) No None AUTO_INCREMENT o Change @ Drop More w
() 2first name varchar(20) latin1_swedish_ci No None & Change @ Drop More v
() 3 last_name varchar(30) latin1_swedish_ci No None & Change @ Drop More v
() 4 email varchar(50) latin1_swedish_ci No None & Change @ Drop More v

[() 5 facebook_url varchar(100) latin1_swedish_ci Yes NULL & Change @ Drop More v
() 6 twitter_handle varchar(20) latin1_swedish_ci Yes NULL & Change @ Drop More v

4t Check All/ Uncheck All With selected: || Browse ¢’ Change @ Drop 2 Primary (U Unique 1] Index
(7 Fulitext

& Print view &% Propose table structure ¢
Add [1 | column(s)@ At End of Table O At Beginning of Table) After ["use

Indexes: .

Action Keyname Type Unique Packed Column Cardinality Collation Null Comment
& Edit © Drop PRIMARY BTREE Yes No userid 0 A

OEBPS/httpatomoreillycomsourceoreillyimages1416503.png
+

o|B] X

(€)@ yellowtagmedia.com/prpMI2/ch12/01/ x| |8+ Googie

A & B-

Index of /phpMM2/ch12/01

© Parent Directory

Waiting for

Authentication Required

A usermame and password are being requested by htp://yellowtagmedia.com. The site says: "The
Social Site”

admin

OEBPS/httpatomoreillycomsourceoreillyimages1416253.png.jpg
6006 jostalMAMER L

Standard Install on “Macintosh HD"

© Introduction

© Read Me This will take 517.1 MB of space on your
computer.

© License

D Click Install to perform a standard installation of
this software for all users of this computer. All

© Installation Type users of this computer will be able to use this

5 software.
@ Installation

® Summary

GoBack | [Install

OEBPS/httpatomoreillycomsourceoreillyimages1416572.png
a’@ @ hitp bt/ downloads php £+ B0 X|[@rhpDownionss x |] (0 5 5

Binaries for other
ey PHP 5.4.6 (Current stable)

We do not distribute
UNIX/Linux binaries. Most

Complete Source Code

Linux distributions come = PHP 5.4.6 (tar.bz2) [10,768Kb] - 16 Aug 2012
with PHP these days, so if mds: c9aa0f4996d1b91eegedSafcfaebsdze
you do not want to compile | u PHP 5.4.6 (tar.z) [13,638Kb] - 16 Aug 2012
your own, go to your mds: efe59afb73190c9bd6d50614998ffceb

distribution’s download
site. Binaries available on
external servers:

= Windows 5.4.6 binaries and source

) PHP 5.3.16 (Old stable)

o Mac OS X (AMPPS)

= Mac 05 X (MAMP) Complete Source Code

o Novell NetWare

=052 = PHP 5.3.16 (tar.bz2) [11,049Kb] - 16 Aug 2012
o RISC 05 mds: 99cfd78531643027f60c900e792d21be

© SGIIRIX 6.5.x = PHP 5.3.16 (tar.gz) [14,464Kb] - 16 Aug 2012
© S (B, T mds: 59b776edeac2897ebe3712dcco4b6706

= Solars OpenCSW packages
= Redhat/CentOS Binaries
Devel and

archive versions GPG Keys

= Windows 5.3.16 binaries and source

Regular source and binary | The releases are tagged and signed in the PHP Git Repository. The follwing official GnuPG
snapshots are available keys of the current PHP Release Manager can be used to verify the tags:
from snaps.php.net. These -

OEBPS/httpatomoreillycomsourceoreillyimages1416455.png
hitp://yellowtagmed...

€ @ yellowtagmedia.com/p

c | |28~ Google Pl A B

{PHP & MySQL

The Missing Manual}

Get in touch with Yu:

o __by emailing them at yu@texasrangers com
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416341.png
B3 ()[@ nrtpyellowtagmedia.com/phpMM2/ch0S/01 scripts/connect.php ~ B0 X || @ yellowtagmediacom x

Connected to MySQL!
Connected to MySQL, using database php_mysql_mm. I
Tables in database:
« Table: groups
« Table: images

« Table: user_groups
« Table: users

OEBPS/httpatomoreillycomsourceoreillyimages1416311.png
yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php
(B yellowtagmedia.com/phphM2 /ch03/02 /scripts/getForminfo.php.

{PHP & MySQL

Example 3

The Missing Manual}

Here's a record of what information you submitted:

Name: Brett McLaughlin
E-Mail Address: brett n@me.com

Your Facebook page
Check out your Twitter feed

OEBPS/httpatomoreillycomsourceoreillyimages1416376.png
T /o | 4l box767.bluehost.com / loca 5\

€ 3 C [www.yellowtagmedia.com/phpMM2/ch07/03 create_user.html w5
[Element 84.

{ PHP & MYSQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name: v
LastName: [Darvish

E-Mail Address: yu@texasrangers.com

Facebook URL: |http:/ /www.facebook.com/pages,Yu-Darvish/55¢

Twitter Handle: [@vubarTransiated

[Join the Club | [Clear and Restart |

OEBPS/httpatomoreillycomsourceoreillyimages1416550.png
© O O yellowtagmedia.com/phpMM2/scripts/show_error.php?err.

(2i>] () [[yellowtagmedia.com o112 /scriots <ot

{ PHP & MYSQL The Missing Manual}

We're really sorry..

You are not authorized to see this page.

Don't worry, though, we've been notified that there's a problem, and we.
take these things seriously. In fact,if you want to contact us to find out
‘more about what's happened, or you have any concerns, just email us
and we'll be happy to get right back to you.

In the meantime, if you want to go back to the page that caused the
problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bit later. We bet we'll have things

figured out by then. Thanks again... we'll see you soon. And again,
we're really sorry for the inconvenience.

d%20to%20see¥%20this%20page. &system_error_message=
0autho ¢ |yReadery

0are%20n

error. php?error_message=Yous

The following system-level message was received:

OEBPS/httpatomoreillycomsourceoreillyimages1416495.png
(€ @ yellowtagmeedincom/phpl 2/ chLL 06 show.usersphy 77 v e |[$8- Googie

{ PHP & MYSQL The Missing Manual}

© Yu Darvish (yu@texasrangers.com) X

 Ryan Geyer (rvan geyer@facebook com) X

 Jason Wadley (jason. wadley@facebook.com) X
© Robert Powell (info@rockwallbba.com) X

DY

OEBPS/httpatomoreillycomsourceoreillyimages1416261.png
phpinfo | XCache = phpMyAdmin = SQLiteManager = FAQ Try MAMP PRO 'MAMP & MAMP PRO powered by appsolute Gmblt
Welcome to MAMP
. L]
If you can see this page, MAMP stalled Q

PHP.

To see the PHP configuration, you can watch the output of phoinfo.
MysQL
‘The MySQL Database can be administrated with phoMyAdmin.

To connect to the MySQL Server from your own scripts use the following connection
parameters:

Host localhost
Port 8889
user root
Password root
Example:

Slink = mysal_connect("localnost", “root”, "root');

or you can connect using an UNIX Socket:

Socket /Applications/MAMP/tmp/mysql/mysql.sock
user root

Password root

Example:

Stink = mysql_connect(
+1/Applications/MAHP/trp/mysal/mysal..sock' ,
“root’

*root:

on your Mac and everything is working!

MAMP PRO: Configure an unlimited number
of Virtual Hosts, DynDNS, E-Mail...

Buy now

Updates
MAMP & MAMP PRO 2.1.1 released
MAMP & MAMP PRO 2.1, released
MAMP & MAMP PRO 2,05 released
MAMP & MAMP PRO 2,02 released
MAMP & MAMP PRO 2.0.1 released
MAMP & MAMP PRO 2.0 released
News

First Moments with MAMP

‘There is a great screencast by Chris Coyier on "First
Morments with MAMP. Check it out!

HowTo: Create a local environment using MAMP
‘The team of drupal.org wrote a great step by step.

tutorial “Create a local environment using MAMP”. Many
thanks! Check it out!

New Online Documentation for MAMP & MAMP PRO

We have just finished the transition of the MAMP PRO
PDF-based documentation into an online version. Some
entries have been updated others have been added. We

OEBPS/httpatomoreillycomsourceoreillyimages1416220.png.jpg
HTML Files

Web Browser

N

<head> P
HTdML </head>
‘ renderer P
(&)
(SS Files

JavaScript
interpreter

JavaScript Files

OEBPS/httpatomoreillycomsourceoreillyimages1416275.png.jpg
Programs (1)

/g Typethe name of s rogram, folder, document,orntemet
resource, and Windows will open it for you.

Open: |EH

S See more results

OEBPS/httpatomoreillycomsourceoreillyimages1416509.png
606 Current Users o
SN2][L[yellomagmedia.com phpmh2/ ch12/02/show_users. php?success_message=Thex20userk20youk20specified? ¢ |yReader

{ PHP & MYSQL The Missing Manual}

[The user you specified has been deleted. |
3

Yu Darvish (yu@texasrangers.com) X

Ryan Geyer (ryan.geyer@facebook com) X
Jason Wadley (jason.wadley@facebook.com) X
Robert Powell (info@rockwallbba.com) X

OEBPS/httpatomoreillycomsourceoreillyimages1416365.png.jpg
oo Mozilla

J L) nutpss pwwwyel...jrun_query:php | + |

fox

(€)2] (38 [i fwonwyelomagmediacom/phowcnde serprsj - v |

@ pisable + 3 Cookies + 2 CS + = Forms +

images + @ information ~
@ wassword + 8 Usewaller + [B Use dentity + O Fil (8 matches) + S\ Save...
Connected to MySQL!

Connected to MySQL, using database bmclaugh.

Error in executing the SQL query SELECT * FROM urls WHERE description = \home page\' You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version for the right syntax to use near Whome page\\" at line 1

OEBPS/httpatomoreillycomsourceoreillyimages1416483.png.jpg
Mozilla Firefox

Connecting.

‘The user you specified has been deleted.

llowtagmedia.com

* Find: (O len) (Next | Previous) ighlight all) [] Match case

OEBPS/httpatomoreillycomsourceoreillyimages1416434.png
O 00 www.yellowtagmedia.com/phpMM2/scripts/show_error...imum%20file%20size%20in%20HTML%20form%20exceeded

[1x] () www.yellowtagmedia.com/ po'

thex20serv

{ PHP & MYSQL The Missing Manual}

We're really sorry.

the server couldn't upload the image you selected.

Don't worry, though, we've been notified that there's a problem, and we.
take these things seriously. In fact,if you want to contact us to find out
‘more about what's happened, or you have any concerns, just email us
and we'll be happy to get right back to you.

In the meantime, if you want to go back to the page that caused the
problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bit later. We bet we'll have things
figured out by then. Thanks again... we'll see you soon. And again,
we're really sorry for the inconvenience.

The following system-level message was received: Maximum file size in HTML form exceeded
3

OEBPS/httpatomoreillycomsourceoreillyimages1416426.png
yellowtagmedia.com/phpMM2/ch07/04/show_user_mockup.htm|

| [yellowtagmedia.com

{ PHP & MYSQL The Missing Manual}

User Profile

Yu Darvish

Attended Tohoku High School in northern Sendai, a school which
also produced major league pitchers Kazuhiro Sasaki and Takashi
Saito...he had a 1.10 ERA in his high school career, and pitched a
no-hitter against Kumamoto Technical High School in the first
round of the National High School Baseball Invitational
Tournament on March 26, 2004...he was drafted by the Fighters.
in the first round on November 17, 2004 and signed on December
17.

Went 18-6 with a 1.44 ERA (37 ER/232.0 IP) for Hokkaido in his
final season in Japan...the 1.44 ERA was the lowest of his career,

as he also posted career highs in wins (18), strikeouts (276),

innings (232.0), starts (28), and shutouts (6)...matched career low

with 5 HR allowed (also 2010)...led NPB in strikeouts, innings,

opponents average (.190), shutouts (tied), home runs per 9

innings (0.19), OBP (:229), and (.241)...th o8P
and slugging figures were career lows...ranked among circuit leaders in ERA (2nd), complete
games (2nd), strikeoutiwalk ratio (3rd, 7.67), and wins (T3rd)... tossed at least 7.0 innings in
every outing last season, with his lone outing of more than 3 runs coming in his first start...his.
career-low run support average of 3.10 runs per 9 innings ranked 23rd out of NPB's 33
qualifying pitchers...received one or zero runs of support in 4 of his 6 defeats.

Getin touch with Yu:

« ...by emailing them at yu@texasrangers.com
by checking them out on Facebook.
« ...by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416269.png
806 ‘7] sayHello.php — PHP and MySQL (The Missing Manual)

¥ 5P and MySal. (The Missing Manua) | x sayhello.php |
£ author_guice 3.9.1.doc T [<tphe
2 author_guide v3.9.3.pdf 2
'tvlg‘"hm . 3 |echo "Hello there. So T hear you're learning to be a PHP programmeri\n";
‘Hs—i:‘:;f,‘il:"’ll 4 |echo "Why don't you type in your name for me:\n'
@:"_m"nphn 5 |Sname = trim(fgets(STDIN));
» 5 saripts 0 . .
S imtiied.oxt 7 |echo "\nThanks, " . Sname . ", it's really nice to meet you.\m\n";

> ua.m figs. 8

2 tmm_php-mysal_chol-postiwdoc | 9 |7

2 tmm_php-mysal_cho1.doc
» [cnoz
> cnos

OEBPS/httpatomoreillycomsourceoreillyimages1416214.png.jpg
800y Wyt \@

€« C i | © www.yellowtagmedia.com/phpMM/ch13/show_user.php &P A
{PHP & Mys Q L The Missing Manual}
= | Home | My Profile | Sign Out
Jeff Traugott
Acoustic guitar builder based in Santa Cruz, CA.

For info:

www.traugottguitars.com

OEBPS/httpatomoreillycomsourceoreillyimages1416226.png
R s ot comiene 0 = & X | bl st il [l

Sgnin

Download Center

Products Categories Secuity Support

Microsoft Visual C++ 2010 SP1 Redistributable
Package (x64)

Quick links The Microsoft Visual C++ 2010 SP1 Redistributable Package (x64) installs runtime
components of Visual C++ Libraries required to run 64-bit applications developed with

¥ Overview
Visual C++ 2010 SP1 on a computer that does not have Visual C++ 2010 SP1 installed.

& System requirements
 Instructions
& Additional information

Quick details

Version: 20105P1 Date published: 3572011
Change language: [English

Looking for support? Fle name

@ s -

Windows Overview

“The Microsoft Visual C++ 2010 5P1 Redistributable Package (x64) insalls untime companents o Visual C++ Libaries required to
fun 64-bit applications developed with Visual C+.+ 2010 SPL on a computer that does not have Visual C++ 2010 SP1 installed. This
Biisoney package installs runtime components of C Runtime (CRT), Standard C+, ATL, MEC, OpenMP and MSDIA lirries Fr fbaries
ERENIORE Now that support side-by-side deployment model (CRT, SCL, ATL, MFC, OpenMP) they are nstaled ino the native assembly cache, also
called WinSS folder, on versions of Windows operating system that supportside-by-side assemblies. For more information on
supported ways of deployment for Visual C++ applications, ik here.

Tim ey!

Microsoft

4+ Topof page

System requirements

OEBPS/httpatomoreillycomsourceoreillyimages1416327.png
06 MAMP.
& localhost:8888/ MAMP/7language=English

phpinfo ' XCache | phpMyAdmin | SQliteManager | FAQ powered by appsolute Gmbit

Welcome to MAMP

\ ‘ If you can see this page, MAMP is installed
on your Mac and everything is working!

Version 2

PHP MAMP PRO: Configure an unlimited
To see the PHP configuration, you can watch the output of phpinfo. of Virtual Hosts, DynDNS, E-Ma

MysaL Eo—
The MySQL Database can be administrated with phpMyAdmin.

To connect to the MySQL Server from your own scripts use the following connection
parameters:

localhost

8889

root
Password root

Example:

Slink = mysql_connect(‘localhost’, ‘root’, 'root’

OEBPS/httpatomoreillycomsourceoreillyimages1416390.png
o
800 /®E ¢ box7s7 duehostcom flec: — — :

€ C | [wwwyellowtagmedia.com/phpMM2/ch07/05 /create_user.html oA A
(G Element 84
{ PHP & MySQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

FirstName: [| |
LastName: |
EMail Address: [|
Facebook URL: [|
Twitter Handle: |
Upload a picture: | Choose File | No file chosen
Bio:

Join the Club | [Clear and Restart

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1416301.png
yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php
(B yellowtagmedia.com/phphM2 /ch03/02 /scripts/getForminfo.php.

{PHP & MySQL

Example 2

The Missing Manual}

Here's a record of what information you submitted:
Name: BrettMcLaughlin
E-Mail Address: brett n@me.com

Facebook URL: hitp://www facebook com/bdmclaughlin
Twitter Handle: @bdmclaughlin

OEBPS/httpatomoreillycomsourceoreillyimages1416257.png
0.6.0 MAMP

{ start/Stop [NZEEH] PHP | Apache |

‘ Apache Port (8888 | (1-65535)

MySQL Port (8889 | (1024 - 65535)

| Set to default Apache and MySQL ports.
Reset MAMP ports]

OEBPS/httpatomoreillycomsourceoreillyimages1416491.png
(€ @ yellowtagmeediacom/phpl 2/ chLL 05/ show.usersphy 77 v e |[$8- Googie

{ PHP & MYSQL The Missing Manual}

The user you specifed has been deleted.

s
© Yu Darvish (yu@texasrangers.com) X
* Ryan Geyer (ryan geyer @facebook.com) X
 Jason Wadley (jason. wadley@facebook.com) X
© Robert Powell (info@rockwallbba.com) X

OEBPS/httpatomoreillycomsourceoreillyimages1416562.png
Cookies and site data x

e oy stre

yellowtagmedia.com 3 cookies

OEBPS/httpatomoreillycomsourceoreillyimages1416406.png
ttp//yellowtagmed.02/show.error tmi
€)@ yelowtagmedia.com/phpMM/ch08/02/show,ror ! [+ Googte s & B

{ PHP & MYSQL The Missing Manual}

‘We're really sorry...

“but something's gone wrong. the username you entered couldn't be
found in our database.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things figured out by then. Thasks again.
we'll see you soon. And again, we're really sorry for the inconvenience.

OEBPS/httpatomoreillycomsourceoreillyimages1416477.png
2.0y Wimiemmmetscomiriot i —

[yellowtagmedia.com/phpMM2/ch11/03/show_users.php

{ PHP & MYSQL The Missing Manual}

Current Users.

Yu Darvish (yu@texasrangers.com) X

Ryan Geyer (ryan.geyer@facebook com) X
Jason Wadley (jason.wadley@facebook.com) X
Robert Powell (info@rockwallbba.com) %

vellowtagmedia.com/phpMM2/./delete_user.php?.

OEBPS/httpatomoreillycomsourceoreillyimages1416564.png
1806/ Wyelowasmediacomipnin >

€ & C | [yellowtagmedia.com/phpMM2/scripts/show_error.php?error_message=There¥%20was%20a%20problem%20finding%20you... 7| & X,

(3 Hement 54

{ PHP & MYSQL The Missing Manual}

We're really sorry...

‘There was a problem finding your information in our system.

Don't worry, though, we've been nofified that there's a problem, and we
take these thins seriously. In fact,if you want to contact us to find out
more about what's happened, or you have any concems, just email us
and we'll be happy to get right back to you.

In the meantime, if you want to go back to the page that caused the
problem, you can do that by clicking here. If the same problem occurs,

though, you may want to come back a bit later. We bet we'll have things 2
figured out by then. Thanks again... we'll see you soon. And again,

we're really sorry for the inconvenience.

The following system-level message was received: Error locating user with ID

OEBPS/httpatomoreillycomsourceoreillyimages1416574.png
@‘ @ http://windows php.net/download/#php-5.4 p-REX H © PHP For Windows: Bin \
ing PHP with PHP 5.3 (5.3.16)

|Apache? from

oucediioies Download source code [20.83MB]

ions of PHP

ing PHP with VC9 x86 Non Thread Safe (2012-Aug-15 21:24:29)
lid use the VC9

i = 7ip [14.98M8]

shal: 87fb7b4b00a82cd0f05e536c09081bfc637¢1824

are compiled

< Visual ' Installer [44.49M8]

piler

shal: 090487c467a2ae6f73b3fafcf4400948fcfc0e3a

are compiled

EI ST ATID = Debug Pack [8.04MB]

have
s in shat: 12ebd235e841ea8f6cd74875646292233224bb2f
and stability.

jons require

he Microsoft VCO x86 Thread Safe (2012-Aug-15 21:24:36)

Zip [15.11MB]
shal: 9d123a3afcc6cf6c7easfc00d7617f420bb54af

VC9 version
= Installer [44.61M8]
lorg binaries
shal: 74e4e6ed83b6b14c3c7af6b10281885d77196e75
of Apache can
- = Debug Pack [8.37MB]
|use their

luild the Apache shat: 771ec9ad1d0d7b1ca0a0dc18C777a4b562907348 B

i r

OEBPS/httpatomoreillycomsourceoreillyimages1416606.png.jpg
Installing MySQL 5.5.27-community for Mac OS X

© Introduction
© Read Me

© License

Writing files...
——

OEBPS/httpatomoreillycomsourceoreillyimages1416259.png.jpg
0.6.0 MAMP

——{_Start/Stop | Ports Apache |

PHP Version PHP Extensions

5.2.17 |
85 e Cache | XCache &

OEBPS/httpatomoreillycomsourceoreillyimages1416414.png
it/ v yellowt..%20ETorE3C/a%E

€)@ .yelowtagmetia comphpMIMR) <h08/scripts/show.crorphpreror message=<a hre 77+ C | [8+ Googic

‘We're really sorry...

Click Here To Your Error

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things
figured out by then. Thaks again... we'll see you soon. And again, we're really sorry for the inconvenience.

www.ametv.com/shows/breaking-bad

{ PHP & MYSQL The Missing Manual}

OEBPS/httpatomoreillycomsourceoreillyimages1416218.png.jpg
HTML Files

head> [

HTML = I
renderer Aligad
<p></p

s
renderer

(SS Files

OEBPS/httpatomoreillycomsourceoreillyimages1416539.png
{ PHP & MySQL The Missing Manual}

g
Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name:

Last Name:
Username:
Password:
Confirm Password:

E-Mail Address:

phpMM2/chi3/03/: . =
e e e e —

OEBPS/httpatomoreillycomsourceoreillyimages1416576.png
b e 3.0 scvr S, e s

Web Server Setup
Select the Web Server you wish to setup.

© TS Fastcal
© Other cal
© Do not setup a web server

s

OEBPS/orm_front_cover.jpg
“The Missing Manual series is simply the most intelligent and usable series of guidebooks...”
—KEVIN KELLY, CO-FOUNDER OF WIRED

PHP &
MySQL

the missing manual

The book that should have been in the box

OEBPS/httpatomoreillycomsourceoreillyimages1416329.png
wsql> select * from user;

User | Passuord i Select_priv
Update_priv | Delete priv i Create priv ! Drop priv i Reload priv
Shutdoun_priv | Process_priv 1 File priv'i Granc priv i References_priv
Tter_priv | Shou-db_priv | Super priv | Create_tnp.
[plos priv i Execute_priv T Repl_slave-briv.i heplclient priv
Shou_yicu_priv i Greate routine priv | Alter routine priv
Event_priv | Trigger priv | Create_tablecpace priv | 55l _tore
= X589 _subject { max_questions | max_updates
se¥_connections 1 plugin ! authentication_string

rou in set <0.02 sec)

wsql>

OEBPS/httpatomoreillycomsourceoreillyimages1416612.png.jpg
» DEVICES Al Date Modifed

.adobe May 7, 2010 3:48 PM m
= K- .autotest May 24, 2011 8:50 AM
s oy Toda 164
e ar 252011509
p— Ao 16,2010826 7 s
> @ s on30, 000531
» [cups Apr 18, 2010 3:52 PM
+ @ Somexianager o7, 7010 315
e Toda 2007
o5 Sre Todu, 203 |
@ o 17, 2001855
S w2 200 4210 |
» 1 e ar 21 2001 42500
o ory Ve, 508 A |
> i s 22,2010 355 M
e isory o 26,2001 340 |
o Var 16,2011 35
> vm May 21, 2011 11:15 AM [
ey er 21, 2011 1115 A
.spring_r00_pgp.bpa May 16, 2011 12:06 PM ::

OEBPS/httpatomoreillycomsourceoreillyimages1416438.png.jpg
© O O 1346082390-370584...pg 180x234 pixels

www.yellowtagmedia.com [3 >3

1346082390-37...

OEBPS/httpatomoreillycomsourceoreillyimages1416545.png
e D e

m @ nitpy/ s yellowtagmedia.com/ phpMM2/ch13/03/signin phperror.mes: © ~ B & X |[@ signin x ; o e &5

{ PHP & MySQL The Missing Manual}

| Home | Sisnta

I Vot e o |

Sign In to the Club

OEBPS/httpatomoreillycomsourceoreillyimages1416505.png
(€ P @ yelowtagmedin.com/phpIVL/ch1 /01 o, vers 71 v [Google

{ PHP & MYSQI The Missing Manual}

© Yu Darvish (yu@texasrangers.com) X

* Ryan Geyer (ryan geyer @facebook.com) X

 Jason Wadley (jason. wadley@facebook.com) X
© Robert Powell (info@rockwallbba.com) X

OEBPS/httpatomoreillycomsourceoreillyimages1416602.png.jpg
® 00 About This Mac
|Overview| Displays Storage Memory Support_Service

iMac

27-inch, Mid 2011

Processor 3.4 GH Intel Core 7

Memory 16 GB 1333 Mz DDR3

Graphics AMD Radeon HD 6970M 2048 M
Serial Number D25CFOB4DHMW

Software 05X 10.8.1(12819)

['System Report... | [Software Update... |

OEBPS/httpatomoreillycomsourceoreillyimages1416461.png.jpg
Limagephp (PNG Image,

tagmedia.com

OEBPS/httpatomoreillycomsourceoreillyimages1416216.png.jpg
Web Browser

|) ATiny HTML Document [y
‘ \(-/ k. /Chapter 01/SuperSimpleHTMLS html - C'| | L
Let's rock the browser, HTMLS style. renderer

HTML Files

@oegee

OEBPS/httpatomoreillycomsourceoreillyimages1416289.png
© locathost:8888/scripts/sayt %\ o

€ — €[] localhost:8888/scripts/sayHelloWeb.php e A

{ PHP & MYSQL The Missing Manual}

Hello, Brett

Great to meet you. Welcome to the beginning of your PHP programming odyssey.

OEBPS/httpatomoreillycomsourceoreillyimages1416554.png
806 User Profile

=) yellowtagmedia.com

{ PHP & MYSQL The Missing Manual}

| Home | My Profile | Manag&ﬂsm’s | Sign Out
Robert Powell

Robert Powell started his Martial Arts training in December of
1993 in Little Rock, Arkansas. The Taekwondo lessons were a gift
from his parents for Christmas. He enjoyed the kicking and
punching of Taekwondo, while his parents enjoyed the discipline,
self control, and perseverance. He eamned his 1\st dan in August
of 1995. He eared his 5th dan in June of 2010, He graduated
from Hendrix College in 2006 with a degree in Kinesiology with an
is in Sports Mr. Powell’s other i
include Boy Scouts and baseball. He reached the rank of Eagle
Scout and was a 4 year letterman in baseball in both high school
and college. Mr. Powell is the owner and chief instructor of
Rockwall Black Belt Academy.

Mr. Powell fel in love with competing at his first competition as a yellow belt. He has traveled
and competed extensively at the local, national, and international level through the USTF,
GTF, UTA, ICTF and WTA. He has been a member of the past six USA men’s teams. He is o

Get in touch with Robert:

« ..by emailing them at info@rockwallbba.com
T T s

OEBPS/httpatomoreillycomsourceoreillyimages1416246.png
8096 £ bdm0509 — bash — 80x24

Last login: Wed Sep 28 14:50:38 on ttys001
bdm-imac-home:~ bdm@5098

OEBPS/httpatomoreillycomsourceoreillyimages1416355.png
© hitpyellowtagmedin.com/phpI/ ch/03/sripts/run_queryphy. R [T —

Connected to MySQL!
Connected to MySQL, using database yellowta_phpmm2.
Your query was processed successfilly.

DROP TABLE us;

OEBPS/httpatomoreillycomsourceoreillyimages1416556.png
Privacy

5 oA RSO @

General Tabs Content Applications Privacy Security Syn Advanced

Tracking

[Tell websites | do not want to be tracked

History
Firefox will: [Rememberhistory %
|e00 Cookies.
Search: (O]

The following cookies are stored on your computer:

x [Site ~ &iCookieName |

Yol * LSsofcom
> 184.73.166.115
> 247realme
> 207.net
» 33across.com
» 3btech.net
Name: <no cookie selected>
Content: <no cookie selected>
Host: <no cookie selected>

Path: <no cookie selected>
@ Send For: <no cookie selected>
Expires: <no cookie selected>

Remove Cookie | [Remove All Cookies

OEBPS/httpatomoreillycomsourceoreillyimages1416475.png
Eeehe

require_once
require_once

+/scripts/app_config.php' s
/scripts/dat abase_connect fon. php'; !

// Get the user 1D of the user to delete
$user_id = $_REQUEST['user_id'];

// Build the DELETE statemen
$delete_query = sprint{(*DELETE FRON users WHERE user_id = %d"
Suser_id);

// Delete the user fron the databose
nysal_query($delete_auery);

// Redirect to shou_users to re-shou users (uithout this deleted one
Locatian: show_users. php

OEBPS/httpatomoreillycomsourceoreillyimages1416307.png
2
2
3

<htal>
<head>

<Uink hrefs
</head

ext/ess” />

header"><h1>PHP & MySQL: The Missing Manual</hiz</div>

<div id="example">Exanple 3-1</div>
content”>
<psHere's a record of what information you submitted:</p>
Py

Name: Brett McLaughlinebr />
brett.nene. con

Your Facebook page</as

Twitter Handle: @bdnclaughtin<or />
<rp>
</div>

<div id="footer"></div>
</body>
</htat>

(&

OEBPS/httpatomoreillycomsourceoreillyimages1416471.png
.0 0/ [H etomagmedta.com/phpv
€« €' [7 yellowtagmedia.com/phpMM2/ch11/02/show_user.php?user_id=21 ’/’3
0 tement 84

{ PHP & MYSQL The Missing Manual

User Profile

Jason Wadley

Master Wadley has been training in the Martial Arts for over thirty
years. He and his family began training under the direction of the.
Lee brother's who were the founders of the American Taekwondo
Association in Little Rock, Arkansas. In 1990 Master Wadley
switched and began training under Grand Master Scott McNeely,
Grand Master Robert Hardin and Grand Master Jung Tae Park.
Master Wadley is now a seventh degree black belt in Taekwondo
and holds the title of president and senior technical adviser to the
United Taekwondo Alliance. He currently trains with Grand Master
J. Pat Burleson, Grand Master Robert Hardin, Grand Master Clint
Robinson, Grand Master Robert Dunn and Grand Master Young Il
Kong.

Master Wadley has become known in the Martial Arts community
as a rising leader of Taekwondo. His pupils and colleagues follow
him because of his loyalty, humilty, quality of instruction, technique and Taekwondo spirit
Wwhich he shares with all. His motto s “Practice what you preach’’.

Getin touch with Jason:

« ...by emailing them at jason wadley@facebook.com
by checking them out on Facebook
by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416250.png.jpg
& www.mamp.info

Version

2.0

out now!

Support |

MAMP: One-click-solution for

MAMP PRO: Configure an unlimited number
setting up your personal webserver of Virtual Hosts, DynDNS, E-Mail, ..

Download now

Buy now

Customers of MAMP PRO 1.x can uparade to MAMP PRO 2 at very reasonable rate.
System Requirements of the latest MAMP & MAMP PRO: Mac OS X 10.6.6 incl. OS X 10.7 Lion.

OEBPS/httpatomoreillycomsourceoreillyimages1416568.png
oo
) B yellowtsgmecia.com/phov

€« € [yellowtagmedia.com/phpMM2/ch14/scripts/show_error.php?error_message=<a%20href="http:/ /www.amctv.com/shows... 7.7 | & &

[Element 84

{ PHP & MYSQL The Missing Manual}

We're really sorry..

Something went wrong, and that's how ydu ended up here.

Don't worry, though, we've been notified that there's a problem, and we.
take these things seriously. In fact,if you want to contact us to find out
‘more about what's happened, or you have any concerns, just email us
and we'l be happy to getright back to you.

In the meantime, if you want to go back to the page that caused the
problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bit later. We bet we'll have things
figured out by then. Thanks again... we'll see you soon. And again,
we're really sorry for the inconvenience.

The following system-level message was received: No system-level error message was reported.

OEBPS/httpatomoreillycomsourceoreillyimages1416424.png
eronphpteror message=Ther | - g

{ PHP & MYSQL The Missing Manual}

‘We're really sorry.

There was a problem ing to the
we need to get you connected.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things figured out by then. Thasks again.
we'll see you soon. And again, we're really sorry for the inconvenience.

The following system-level message was received: Access denied for user 'yellowta_brett'@'localhost'
(using password: YES)

OEBPS/httpatomoreillycomsourceoreillyimages1416596.png
JEnter passuor
jelcone to the MySQL monitor. Commands end with 3 or \g.
our MySQL connection id is

Jserver version: 5.5.27 MySQL Community Server (GPL)

opyright (c) 2000, 2611, Oracle and/or its affiliates. A1l rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

ype “helpi’ or ’\h’ for help. Type *\c¢’ to clear the current input statement.

wsql> o

OEBPS/httpatomoreillycomsourceoreillyimages1416353.png
‘Ee http://yellowtagmedia.com/phpMM2/ch05/03/scripts/ run_query.php p-BEX Ie yellowtagmedia.com hi; w5 i

Connected to MySQL!
Connected to MySQL, using database yellowta_phpmm2.

Error in exccuting the SQL query CREATE TABLE urls (id int, url varchar(100), description varchar(100)) : Table ‘urls' already exists

OEBPS/httpatomoreillycomsourceoreillyimages1416465.png
L8y Erimmmeiremin * \ ——

{ PHP & MYSQL The Missing Manual}

Current Users.

* Yu Darvish (yu@texasrangers.com) X
+ David Ramirez (shane@77mgmt.com) X

* Ryan Geyer (ryan geyer@facebook.com) X
Jason Wadley (jason.wadley @ facebook.com) X'
« Robert Powell (info@rockwallbba.com) X

]

OEBPS/httpatomoreillycomsourceoreillyimages1416361.png
B OE osommssomoroinzscss aesumes i

{ PHP & MYSQL The Missing Manual}

SQL Query Runner

Enter your SQL query in the box below:

dROp TABLE urls:

[RunQuery | [ClearandRestart

OEBPS/httpatomoreillycomsourceoreillyimages1416412.png
hitp//wawyellowta..pts/show_error.php

€) @ wyelowtagmetiacom/phpMM2ch08/scripts/show_erorphp] [28- Google 5 & B-

{ PHP & MYSQL The Missing Manual}

‘We're really sorry... N

Something went wrong, and that's how you ended up here.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things
figured out by then. Thaks again... we'll see you soon. And again, we're really sorry for the inconvenience.

OEBPS/httpatomoreillycomsourceoreillyimages1416481.png
—_— o
©.0 0/ Eelomagmedicomiohon

« C | [J yellowtagmedia.com/phpMM2/ch11/04/show_users.php?success_message=The%20user¥%20you%20specified¥20has%20been%20deleted. 77| S X
(0 Etement 84

OEBPS/httpatomoreillycomsourceoreillyimages1416588.png
MySQL Installer e -

MySQL Server Configuration 1/3

Server Configuration Type

‘Choosa the correct server configuraton type for tis HySQL Server
nstalaton. Thi sting il defne hov, much system resources sré sssgned

e tothe MySQL Server nstance.

Config Type: -
Findlatestproducts
Setup Type.
o nable TCP/IP Networking
Check Requirements Enable s to sl TCP/1P networking. Only locahost connectons
through named ipesare slovied vihen thisoption s skinped
Instelltion =

PortNumber: 3306
‘Open Firewall port for network access

Advanced Configuration
v ‘Select the checkbox below to get additional configuration page where:
Y 7o o et cprs o s o

‘Show Advanced Options

OEBPS/httpatomoreillycomsourceoreillyimages1416305.png
yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php.
(B yellowtagmedia.com/phphM2 /ch03/02 /scripts/getForminfo.php.

{PHP & MySQL

Example 3

Here's a record of what information you submitted:

The Missing Manual}

Name: Brett McLaughlin
E-Mail Address: brett n@me.com

Your Fmeboo§ Egg
Twitter bdmelaughli

OEBPS/httpatomoreillycomsourceoreillyimages1416236.png.jpg
23em [

RO

OEBPS/httpatomoreillycomsourceoreillyimages1416428.png
806 www.yellowtagmedia.com/phpMM2 /ch07/05 /scripts/show_user.php?user_

]S

{ PHP & MYSQL The Missing Manual}

User Profile

| [www.yellowtagmedia.com/ oy

David Ramirez

“I'm a wandering man, got no money in the bank, got no wife at
home watching children".

Nothing could more accurately depict the adventurous, carefree
spirit of singer-songwriter David Ramirez. Uneasy with being in
one place for too long, David repeatedly finds himself on the road
playing his brand of modern Americana that fans have coined
“Folk-brewed Pop’.

He's been writing and performing for over 10 years. From his teen
years swapping songs with friends in Houston to the struggles of

making a name for himself in Nashville, David's songwriting journey has spanned multiple EP's
and a full-length, American Soil which garnered over 1,200 downloads in a 48-hr. period on
Noisetrade. In 2010, David played 150 shows on numerous, independently booked tours.
Feeling truly at home on the road, he calls his second home Austin, Texas. It's here where he-
wrote and recorded his latest release, Strangetown EP .

Get in touch with David:
« ..by emailing them at shane@77mgmt.com

by checking them out on Facebook
« by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416281.png
Web Browser

HTML
renderer
(&)
renderer
JavaScript
interpreter

Coula be for HTML, G55,
PHP or a combination.

Server

1
Response is not PHP,
but the result of
interpreting PHP, usually
more HTMI and (SS.

PHP
Scripts

OEBPS/httpatomoreillycomsourceoreillyimages1416560.png
806 Failed to open page P
=S EPE /phpMM2/ch14/04/ hpzerror_r -You20must20login320to%2(& M

Safari can’t open the page (7)

Too many redirects occurred trying to open

“http://yellowtagmedia.com/phpMMz2/ch14/04/signin.php?

error_message=You%20must%20i0gin%20to%20see %20this%20page.”.
“This might occur If you open a page that Is redirected to open another page
‘which then Is redirected to open the original page.

OEBPS/httpatomoreillycomsourceoreillyimages1416279.png
Could be for HTML, (55,
PHP or a combination.

[}

|

HTML i
renderer !
v

Request
ss
renderer

JavaScript
interpreter

Web Browser

{PHP & MySQL

R A4 .
ionse PHP JavaScript
interpreter

Web
Server

PHP

Scripts

!
Response is not PHP,
but the result of
interpreting PHP, usually
more HTMI and (SS.

OEBPS/httpatomoreillycomsourceoreillyimages1416210.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1416610.png
ban-inac-hoe: 2ed bdnd589 /usr/ local/mysal/bin/aysal
Helcome to the MySOL monitor. Commands end with ; or \g.
Your MySQL cennect ion id is 28

Server versian: 5.5.1¢ Source distribut o

Copyright (c) 2088, 2011, Oracle and/or its affiliates. ALL rights reserved
Oracle is a registered trademark of Oracle Corporation and/or its
affiliotes. Other names may be trademarks of their respective

Type ‘help;' or *\h' for help. Type "\’ to clear the current input statement

mysal> |

OEBPS/httpatomoreillycomsourceoreillyimages1416331.png
buclaugh@ak i la: " mysal ~-hos
Enter passuord:

Helcome to the MySOL monitor. Commands end with ; or \g

Your MySOL connection id is 2515764 to server version: +.1.22-max-lo

Type ‘help;' or ‘\h' for help. Type "\’ to clear the buffer.

mysal> |

OEBPS/httpatomoreillycomsourceoreillyimages1416501.png
vellowtagmedia.com/phpMM2/ch12/01/show_users.php

W yellowtagmedia.com/ phpiVi2/ch12/01/show_users.php

You need a valid username and password to be here. Move along, nothing to see.

OEBPS/httpatomoreillycomsourceoreillyimages1416523.png
(SRS)
(S Il € ©

{ PHP & MySQL The Missing Manual}

a@ @ hitp://yellowtagmedia.com/phpMM2/ch13/02/signin.php. S-BoX

Sign In to the Club
Usemname: | |
Password:

OEBPS/httpatomoreillycomsourceoreillyimages1416594.png.jpg
‘:], Geting Started

bdm0s09.
Documents

Pictures
Calculator

Music
Sticky Notes

QR swiping ool

mputer
Command Prompt
ntrol Panel

Devices and Printers

Defautt Programs

155 Command Line llrt
& v bty S

> AllPrograms

OEBPS/httpatomoreillycomsourceoreillyimages1416586.png.jpg
|

J/ursnn.mysql.com/downloads P-BEX ‘ELPHP Fm___lMySQ x‘ ‘ A

\\ Contact 2 MySQL Representative Search

MysSQL. Login | Register

The world's most popular open source database

| MysQL.com

— MySQL Downloads (Generally Available)

MySQL Community Server
MySQL Enterprise Edition
MySQL Cluster

MySQL Cluster CGE

MySQL Workbench (GUI Tool)

MySQL Connectors

Download

)

+ MySQL Community

55
MySQL Community Server (5.5.27 GA)
(Current Generally Available Release: 5.5.27)

+ MySQL Installer 5.
E"“ oy o el | uSOL Community Server is 3 reely (5.5.27 GA) =

] v

OEBPS/httpatomoreillycomsourceoreillyimages1416525.png
[ESHESE_X_]
\g\e http://yellowtagmedia.com/phpMM2/ch13/02/show_user.php p-BeX He User Profile x u i xd

{ PHP & MYSQL) The Missing Manual}

User Profile

Jeff Traugott

While studying music at Evergreen State College in Olympia,
Washington, Jeff Traugott became fascinated with the art of
lutherie- He moved to Santa Cruz, California, and opened a
‘small music store catering to acoustic string players in 1984.
He began working for the Santa Cruz Guitar Co. in 1986 and
remained there until 1991. At that time he decided to open his
‘own shop, which is located in an old industrial complex housing
 diverse community of artisans and craftspeople. From this
humble location, Mr. Traugott has generated a global
reputation.

Get in touch with Jef:

by emailing them at jeff@traugotiguitars com
by checking them out on Facebook
« by following them on Twitter

i »

OEBPS/httpatomoreillycomsourceoreillyimages1416343.png
gyl is.cor ch0S/02/scrpts/conne
© it yellowtagmedi.com/php I/ ch0S/02/=crpts/connect php. £ - 20| @ yellowtagmedincom x

‘Error connecting to database: Access denied for user 'yellowta'@localhost (using password: NO)

OEBPS/httpatomoreillycomsourceoreillyimages1416285.png
8.00 Opening sayHelloWeb.php,

You have chosen to open
] sayHelloWeb.php

which is a: php File (630 bytes)
from: /Applications/MAMP/htdocs

What should Firefox do with this file?

(O Open with | Choose
(+)Save File

[Do this automatically for files like this from now on.

[cancel | [ok]

OEBPS/httpatomoreillycomsourceoreillyimages1416447.png.jpg
e 06 Mo;

refox
| () bttps//wwwyell._/choBtestohp | i B

(@)2] [3e] [0 hup pwwyeliomag v e

3- php i) (4] (B2
@ oisable + 3 Cookies + ' CSs v =] Mmmm
@ thassword + @ sewaller + 1] Use ches) +

DOCUMENT ROOT: /home1/b/bmelaugh/yellowtagmedia_com

CCONVERTED PATH: /phpMM/uploads/profile_pics/1312128274-james_roday.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1416457.png
€ @ yellowtagmedia.com/phpMM2/ch10/03/show_user.phpluser_id=21 ¢

{ PHP & MYSQL The Missing Manual}

Jason Wadley

Master Wadley has been training in the Martial Arts for over thirty
years. He and his family began training under the direction of the.
Lee brother's who were the founders of the American Taekwondo
Association in Little Rock, Arkansas_ In 1990 Master Wadley
switched and began training under Grand Master Scott McNeely,
Grand Master Robert Hardin and Grand Master Jung Tae Park
Master Wadley is now a seventh degree black belt in Taekwondo
and holds the titie of president and senior technical adviser to the
United Taekwondo Alliance. He currently trains with Grand Master
J. Pat Burleson, Grand Master Robert Hardin, Grand Master Clint
Robinson, Grand Master Robert Dunn and Grand Master Young Il
Kong.

Master Wadley has become known in the Martial Arts community as a rising leader of N
His puplls and Tollow him of his loyalty, humiity, qualty of

instruction, technique and Taekwondo spiritwhich he shares with al. His motto is “Practice what

you preach”

Get in touch with Jason:

o __by emailing them at jason wadley@facebook com
e __by checking them out on Facebook
o __by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416244.png.jpg
AVORITES
Dropbox
All My Files
AirDrop
Applications
Desktop
Documents
Downloads
Movies
Music
Pictures
SHARED
bdm-mbp-home
000fff12fbc0-ho
000fff12feff-ho
1 bdm-mbp-nasa
DEVICES
Bellerophon
Pegasus
iDisk
Personal
Backup Drive
Media

»

»on

»

32 Utilities

RIER

(@][]

Name
= DIk DUy

¥ Grab

Grapher

121 Java Preferences
Keychain Access

& Migration Assistant

@ Newwork Utility

@ Podcast Capture

Podcast Publisher

4 RAID Utility

& System Information
]
VoiceOver tility

Date Modified

JUT L1, LT Lxg P

Jul 11, 2011 1:12 PM
Jul 11, 2011 1:12 PM

Sep 20, 2011 10:40 AM

Jul
Jul
Jul
Jul
Jul
Jul
Jul

Jul

11,2011
11,2011
11,2011
11,2011
11,2011
11,2011
11,2011

11,2011

112 PM
L12PM
L12PM
112 PM
L12PM
L12PM
1:12 PM

112 PM

2.7MB
25 M8
570 KB
11 M8
5 MB
21MB
13.9M8
17 M8
7.6 MB
5.3 MB

17.7 MB

Kind
AppiCatOn

Application
Application
Application
Application
Application
Application
Application
Application
Application
Application

Application

OEBPS/httpatomoreillycomsourceoreillyimages1416337.png
© nitp//yellowtagmedia.com/ phpMIM2/ch05/01scripts/connect php £ - B¢ X @ yelomtagmedia.com x

Connected to MySQL!

Connected to MySQL, using database php_mysql_mm.

OEBPS/httpatomoreillycomsourceoreillyimages1416382.png
i %\ 4l box767.bluehe 1 loc:

€ € | [) www.yellowtagmedia.com/phpMM2/ch07/04/scripts/show_user.php w5

[Element 84

{ PHP & MYSQL The Missing Manual}

$first_name $last_name
Sbio

Get in touch with $first_name:

+ ..by emailing them at Semail
by checking them out on Facebook
+ by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416513.png
yellowtagmedia.com/phpMM2/ch12/03/create_user.htm|

(B yellowtagmedia.com/phphM2 /ch12/03 create_user.him|

{ PHP & MySQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

FirstName: [} Thisfield is required.

Last Name: This field is required.

Usemanme: This field is required.

Password: This field is required.

Confirm Password: This
field is required.

E-Mail Address: This field is required.

FaccbookURL: [

TwiterHandle: |
Upload a picture: o file selected

Bio:

Jan e i

OEBPS/httpatomoreillycomsourceoreillyimages1416479.png
[Evellomagmedia.com/phpMi

The page at yellowtagmedia.com says:

Are you sure you want to delete this user?
There's really no going back!

(e | 06

Current Users.

Yu Darvish (yu@texasrangers.com) X

Ryan Geyer (ryan.geyer@facebook com) X
Jason Wadley (jason.wadley@facebook.com))‘
Robert Powell (info@rockwallbba.com) X

OEBPS/httpatomoreillycomsourceoreillyimages1416442.png.jpg
8086 Web Inspector — www.yellowtagmedia.com — show_user.php

B Bl < » o show_userphp) - Source Code

® @

o/..Jcss/phpM.css" rel="stylesheet” types"text/css" />

“header"><h1>PHP & MySQL: The Missing Manual</his</div>
<div iga"example">User Profile</div>

<div ig="content">

5| <div classs"user_profile"
1| <p class="contact_info">Get in touch with Ryan:</p>
s ws

o <Ui>...by emailing then at
2 ryan. geyer@facebook, con</ax</ 11>
by
checking thes out
on Facebook</ax</1i>
by following them
on Twitter</as</1i>

</ut>
</aiv>

</div>

<div ida"footer"></div>

nl_<Ihoen

Tul

OEBPS/httpatomoreillycomsourceoreillyimages1416487.png
eo0o JBRES) B en-source ~

€ | [view-source:yellowtagmedia.com/phpMM2/ch11/04/show_users.php?success_message... 57| &

[Element 84

<htnl>
<head>
<link href="../css/phpMM.css"

5| <script type-"text/javascript'>
.

ol-"stylesheet” type="text/css" />

function delete_user (user id) {
if (confirm("Are you sure you want to delete this user?" +
“\nThere's really no going backl®)) {
window. location = "delete_user.php?user_id=" + user_id;
o 3
w0y

| Ywindow.onload - function() {

1 alert("The user you specified has been deleted.
s)

| </seript>

17| </head>

19| <body>

<div id-"header"><h1>PHP & MySQL: The Missing Manual</h1></div>
<div id-"example">Current Users</div>

=
2 <div id="content”>
2

show_user .php?user_id=1'>Yu Darvish (<a
mailto:yultexasrangers.con'>yultexasrangers.com) <a
javascript:delete_user(1); '><img cla 3 -./inages/delete.pna’
715" /></1i><a href-'show_user.php?user_id=19'>Ryan Geyer (<a
nailto:ryan.geyer@facebook.com'>ryan.geyer@facebook.con) <a
javascript:delete_user(19); '><ing class-'delete_user' src-'../imaces/delete.pna’
715’ /><Ii><a href-'show_user.php?user_id=21'>Jason Wadley (<a
jason.wadley@ facebook.con' >jason.wadley@facebook.con) <a
elete_user(21);'><ing class-'delete_user' src='../imaces/delete.pna’
show_user .php?user_id=24'>Robert Powell (<a
nfofrockwallbba.com'>infolrockwallbba.com) <a

OEBPS/httpatomoreillycomsourceoreillyimages1416255.png
MAMP

MAMP

manage your website locally

[TestMAMPPRO |

Status
Stop Servers
@@ Apache Server

@@ MysQL Server

Open start page

Preference:

Q

OEBPS/httpatomoreillycomsourceoreillyimages1416384.png
Jp % jls box767.blueh Jlocs %

€ € [www.yellowtagmedia.com/phpMM2/ch07/04 scripts/show_user.php w5
(X Element 84

{PHP & MySQL

The Missing Manual}
— "
Get in touch with :

« ...by emailing them at
by checking them out on Facebook
« ...by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416592.png
[Z] MySQL Installer ESRESEC)

MySQL Server Configuration 3/3

Windows Service Details
s spechy = Vindows Sarvic e o be e fr th QL
., e ance, & uriausname s eaied o aach iance

Windows Service Name:

Run Windows Service as ..
The My SQL Server nesds t run under 3 gven user scesunt

sced i the scurty requirements of your system you need o
pick on of the options beow.

© Standard System Account
Recommended for most scensric,

© Custom User
‘A existing user account can be selected for advanced scenario.

OEBPS/httpatomoreillycomsourceoreillyimages1416339.png
© hitpyyellowtagmedi.com/php I/ ch0S/ 01 crpts/connect php - 20 X[@ yellowtagmedincom x

Connected to MySQL!

Connected to MySQL, using database php_mysql_mm.

Error in lsting tables: You have an error in your SQL syntax; check the mamal that corresponds to your MySQL server version for the right
Syntax to use near 'SHOWN TABLES' at line 1

OEBPS/httpatomoreillycomsourceoreillyimages1416228.png.jpg
5 EET T [

DOWNLOAD WAMPSERVER (64 BITS & PHP 5.3) 2.2E

il in this form in order to receive training news from Alter Way

try to install Wamps
on your compute you ete the WAMPS d erver 2

f i
& been made

OEBPS/httpatomoreillycomsourceoreillyimages1416248.png
806

4 bdm0509 — bash — 80x24

Last login: Wed Sep 28 14:50:50 on ttys002
bdm-imac-home:~ bdnd50% php

Ac

bdm-imac-home:~ bdnd50%$ which php
Jusr/bin/php
bdn-imac-home:

banososs |

OEBPS/httpatomoreillycomsourceoreillyimages1416238.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1416347.png
© hitpyellowtagmedin.com/phpI/ ch/03/sripts/run_queryphy. R [T —

Connected to MySQL!

Connected to MySQL, using database yellowta_phpmm2.

OEBPS/httpatomoreillycomsourceoreillyimages1416445.png.jpg
@006

la Fisefox \
Ju s/ fwwweyell..[choB, T
)= [ar] [neep:www

@ oisable + 2. Cookies

@ trassword « i Usews

{
¢ (- 0o Q) (] (B2

- el

& Miscel

DOCUMENT ROOT: /houml/b/bmclﬂugh/yd.lomgnmdu com

OEBPS/httpatomoreillycomsourceoreillyimages1416547.png
806 User Profile

=) [yellowtagmedia.com

{ PHP & MYSQL The Missing Manual}

| Home | My Profile | Sign Out

Robert Powell

Robert Powell started his Martial Arts training in December of
1993 in Little Rock, Arkansas. The Taekwondo lessons were a gift
from his parents for Christmas. He enjoyed the kicking and
punching of Taekwondo, while his parents enjoyed the discipline,
self control, and perseverance. He eamned his 1\st dan in August
of 1995. He eared his 5th dan in June of 2010, He graduated
from Hendrix College in 2006 with a degree in Kinesiology with an
is in Sports Mr. Powell’s other i
include Boy Scouts and baseball. He reached the rank of Eagle
Scout and was a 4 year letterman in baseball in both high school
and college. Mr. Powell is the owner and chief instructor of
Rockwall Black Belt Academy. N

Mr. Powell fel in love with competing at his first competition as a yellow belt. He has traveled
and competed extensively at the local, national, and international level through the USTF,
GTF, UTA, ICTF and WTA. He has been a member of the past six USA men’s teams. He is o

Get in touch with Robert:
« ..by emailing them at info@rockwallbba.com

OEBPS/httpatomoreillycomsourceoreillyimages1416416.png.jpg
Sundays 10/9¢c
Available on Cable and Satellite
Not Available on DISH

about blog&talk cast episodes games newslefter photos schedule video extras shop

e %

< ;
Explore Episode 6)

« Episode 6 Photos

« Episode 6 Story Sync ‘Q‘\t'% 3 n
« Episode 6 Trivia Game "“ - ” ==

« Episode 6 Recap

«Video: Inside Episode 6 and a Sneak Peek}otw
= |

IDEO &

)/ > B - "i P
! -__ Q 7 | '.is.ﬁ-

—

OEBPS/httpatomoreillycomsourceoreillyimages1416357.png
© hitpyellowtagmedin.com/phpI/ chS)03/sripts/run_queryphp. £+ 8¢ X | @ yellowtagmedincom x

Connected to MySQL!
Connected to MySQL, using database yellowta_phpmm2.
Your query was processed successfilly.

DROP TABLE URLS;

OEBPS/httpatomoreillycomsourceoreillyimages1416242.png
[Windows NT BRETTMCLAUGCEBD 6.1 buld 7601 (Windows 7 Home Premium Ediion
Service Pack 1) AMD54

May 142012 02:46:11

MSVCS (Visual G+ 2008)

Server API

[Apache 2.0 Handler

Virtual Directory.
Support

[enabled

Configuration File
(php.ini) Path

Loaded
Configuration File

Scan this dirfor.
additional it
fles.

[Additional ini
files parsed

PHP API

[PHP Extension

[Zend Extension

[Zend Extension
Buila

[PHP Extension
Builg

[Debug Build

[Thread safety

[Zend Memory
Manager

[Zend muttibyte.
Support

1PvS Support

[enabled

Registered PHP
streams

[P, i, g, data, hitp, tp, Zip, compress 21, phar

Registered
Stream Socket
Transports.

tcp, udp

OEBPS/httpatomoreillycomsourceoreillyimages1416317.png
© 0 O | [Hyellowtagmesia.com/phpii ./ [Eview-sourceryellowtagmedc % _|

€ | [} view-source:yellowtagmedia.com/phpMM2/ch03/02 /scripts/getForminfo.php.

<htnl>
<head>

<link href="../../css/phplM.css’ rel-"stylesheet” type="text/css" />
</head>

<body>
<div id-"header"><h1>PHP & MySQL: The Missing Manual</h1></div>
<div id-"example">Example 3-1</div>

<div id="content">
<p>Here's a record of what information you submitted:</p>
<p>
Name: T J Thompson

E-Mail Address: tjtomsonfaol.com

/wina. £acebook..com/t] . .9026">Your F: page

/wwa. twitter.com/">Check out your Twitter feed

</div>

<div id="footer"></div>
</body>
</html>

OEBPS/httpatomoreillycomsourceoreillyimages1416351.png
© hitpyellowtagmedin.com/phpI/ ch/03/sripts/run_queryphy. £~ 8¢ X @ yellowtagmedincom x

Connected to MySQL!
Connected to MySQL, using database yellowta_phpmm2.

Results from your query:

OEBPS/httpatomoreillycomsourceoreillyimages1416230.png.jpg
% Microsoft Visual C++ 2010 x64 Redistributable Setup. [E=HEET_X_}

Installation Is Complete

n D osof Vil G-+ 2010 x4 Rt hs een

Visual Studio ™"

You can check for more recent versions of tis package on
the ficrosoft Vistal Stud website.

|

OEBPS/httpatomoreillycomsourceoreillyimages1416232.png
G\ Welcome to the WampServer 2
W

Setup Wizard
WampServer This il instal WampServer 2.2 on your computer.
It recommended that you dose al other applications before
Powered by contiving.
Alter Way Clck Next to contnue, or Cancel to et Se
The French " e

Open Source
Service Provider
http:liwww.alterway.ir

ipache ¢ 2

nysaL

B
PHPHyAduin
Sqlbuddy
XDebug

OEBPS/httpatomoreillycomsourceoreillyimages1416283.png
)& localhost:8888/sayHelloWeb.htm|

{ PHP & MYSQL The Missing Manual}

Example 2-1

Welcome!

Hello there. So T hear you're learning to be a PHP programmer!

Why don't you type in your name for me:
B I —

| say Hello |

OEBPS/httpatomoreillycomsourceoreillyimages1416430.png
606 www.yellowtagmedia.com/phpMM2/ch09/01 /create_user.htm!
(8 www.yellowtagmedia.com/phpMM2/ch09/01 /create_user.himl

{ PHP & MySQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name:
LostNeme: [

EMailAdbss [

FaccbookURL: [

TwiterHandle: |

Upload a picture: @nnmznlumd

Bio:

Jan e i

OEBPS/httpatomoreillycomsourceoreillyimages1416378.png
¢) 4 box767.bluehbst.com / loc: * \| |

€ © C | @ https://box767.bluehost.com:2083/3rdparty/phpMyAdmin/index.php?db=yellowta_phpmm2&token=... 7¢| & A
(] Element 84
phpMyAdmin

S8l 300 ¢

] users

(© Create table

[_phpmm2 3)

¥¢ Insert [Export

SELECT user_id, first_name, last_name
FROM users
LIMIT 0, 30

() Profiling [iniine] [Edit] [Explain SQL] [Create PHP Code] [Refresh]

(Show:) [30 | rows) stating from row #

) mode

and repeat headers after ‘mn | cetls

+ Options.
T user_id first_name last name
O & Edit | Inline Edit $¢ Copy @ Delete I‘Yu ‘Duvish ‘

1 Check All/ Uncheck All With selected: 7 Change @ Delete ik Export

[30 | rowts) starting from row # [0 | in [horizontal

and repeat headers after ‘mn | cetls

| Query resu

(& Print view () Print view (with full texts) [Export ills Display chart =] Create view

OEBPS/httpatomoreillycomsourceoreillyimages1416578.png
1) PHP 5.3.16 Setup

Choose Items to Install
Select the way you want features to be installed.

Clckthe icons n the tree below to change the way festures wil be nstalled.

ER=tig
¥ | sooteccarabe
)
a0

Location: C:\Program Files (x86)\PHP\

Installs PHP with al server modues:
and al extensions enabled. Itis
recommended to only select the
extensions and modues you need
belon,

This feature requires 7727K8 on
your hard dive. Ithas 10f 3
subfeatures selected, The
subfeatures require 7853 on your
hard drive.

OEBPS/httpatomoreillycomsourceoreillyimages1416580.png
icrosoft Yindows LUersion 6.1.76011
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

2 \Users bandSaYphp “version
PE <

OEBPS/httpatomoreillycomsourceoreillyimages1416598.png
MySQL :: Download MySQL Community Server

o mysalcomdownloads/mysa

Download MySQL Community Server

MYSQL Community Server
MySQL Community Editon i a freely downloadabie version of the world's most popular

HrSQE Enbepren Sl open source catabase that is supported by an active commurity of open source CESrs
- o penedty o sftware is provided uncer
R developers and enthusiasts. et v

MYSQL Cluster Community Editon is avallable 35 3 separate download. The reason for th geys 15y, and vaRs can
change is 5o that MySQL Cluster can provide more frequent updates and SUpPOTE using the ourentce commercial
MySQL Workbench (GUI Tool) latest sources of MYSQL Cluster Carrier Grade Edition. censes.

MySQL Cluster CGE

QL Conneciors
@ imporantpatorm Susport Ucates

Generally Available (GA) Releases

Contact Sales MySQL Community Server 5.5.27
Usk/Canada - ol ree: Looking for previous GA
+1866-221.0634 Select ltform: Versions?
USi - From abroe: e —
12083309100 MaGASY) [sekea |
USk/Canads - Subscrption
Renewas: +1-866-221-0624
© Mac 05 X ver. 10.6 (x86, 64-bit), Compressed 5527 13
Latin America: +1 512 535 7751 WIULETD
el 55 11 51691097 P HOS: 338matecadtotessesoentheis01sae | Sgnaes
South Al +27 119194408
Mac 05 X ver. 10.6 (xB6, 32-bit), Compressed 5527 1109m
UK: +44 207 553 9447) ¢) Compr ==
Treland: +353 1 8031050 TAR Archive
ey +49 88143 01280 LT p— vos: smesmseastassisrasa s ||
France: 433157 608357
Mac 05 X ver. 10.6 (x86, 32-bit), DMG Archive 5527 110w Downiosd
tay: 43902249 59120 (s s52-0m1051853m0 405: cotesabestacotossseavsasries | Sgroure

e e e e

OEBPS/httpatomoreillycomsourceoreillyimages1416566.png
it/ v yellowt..%20ETorE3C/a%E

€) @ wwwyellowtagmedia.com/phpMM2/ch08/scripts/show_error.phpZerror_message=<3 hre (48~ Google

y!

‘We're really sorry...

Click Here To 14:% Your Error

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,
though, you may want to come back a bi later. We bet we'll have things
figured out by then. Thaks again... we'll see you soon. And again, we're really sorry for the inconvenience.

www.ametv.com/shows/breaking-bad

{ PHP & MYSQL The Missing Manual}

OEBPS/httpatomoreillycomsourceoreillyimages1416533.png
a@ @ bitp/ oo yellowtagmedin.com/ phpMM2 ch13/02/signin.php £- 80X @sgnin

{ PHP & MySQL The Missing Manual}

[Your usemame password combinaton was nvaid,]
Sign In to the Club I

Username:

Password:

OEBPS/httpatomoreillycomsourceoreillyimages1416558.png
806 Problem loading page
Proble

A A yellowtagmedia.com/phpMM2/ch14/04/signin.phprerror_message=You mus 77 ~ C | (3§~ Google Q

. The page isn't redirecting properly

Firefox has detected that the server is redirecting the request for this
address in a way that will never complete.

= This problem can sometimes be caused by disabling or refusing to accept

OEBPS/httpatomoreillycomsourceoreillyimages1416369.png
{ PHP & MYSQL The Missing Manual}

Example 7-1

Here's a record of what information you submitted:

Name: Yu Darvish
E-Mail Address: yu@texasrangers.com
Your Facebook page

Check out your Twitter feed

OEBPS/httpatomoreillycomsourceoreillyimages1416404.png
ttp//yellowtagmed..01/show.error tmi
€)@ yellowtagmedia.com/phpMM2/ch08/0L show,ror !

|28 coogte A & B-

{PHP & MySQL

‘We're really sorry...

‘but something's gone wrong. Don't worry, though, we've been noified.
that there's a problem, and we take these things seriously. In fact, if you
want to contact us to find out more about what's happened, or you have
‘any concerns, fust cmail us and we'l be happy to get right back to you

In the meantime, i you want to go back to the page that cansed the
‘problem, you can do that by clicking here. If the same problem occurs,

though, you may want to come back a bi later. We bet we'll have things
figared out by then. Thanks again... we'llsee you soon. And again, we're
really sorry for the inconvenience.

The Missing Manual}

OEBPS/httpatomoreillycomsourceoreillyimages1416507.png
0086 Index of /phpMM2/ch12/02 s
dia.com/phpMM2/ch12/02/shoy

Index of /php @

Parent Directory
elete user.php.swp Your password will be sent unencrypted.

admin.html
e ez S
o sy i

dle‘E user.php
sho® userphp (7] Remember this password in my keychain
show users php

users.php?succes:

The Social Site

Apache Server at yellowtagmedia.com

OEBPS/httpatomoreillycomsourceoreillyimages1416527.png
© it yellowtagmedin.com/php I/ chi/02 Signin php £~ 20 x| @ yeloutagmedincom *

DY

OEBPS/httpatomoreillycomsourceoreillyimages1416608.png
Show All

MysQL

MySQL Server Status

The MySQL Database Server i started and ready for client connections.
To shut the Server down, use the *Stop MySQL Server” button.

The MySQL Server Instance is running [Stop MySQL Server

1f you stop the server, you and your applications will not
be able to use MySQL and all current connections will be closed.

(¥ Automatically Start MySQL Server on Startup

el o S eniy e e NS
MysaL:

OEBPS/httpatomoreillycomsourceoreillyimages1416335.png
L3 ()[@ niep/syellowtagmedia.com/phpMM2/chdS/01 scripts/connect.php. £+ 20 X @ yellowtagmediacom x

Connected to MySQL!

OEBPS/httpatomoreillycomsourceoreillyimages1416402.png.jpg
© 00 Erhis s Not Tne Page You're /I Adham Dannaway

C ff © www.adhamdannaway.com/meh

ﬂadh mdaﬂnavvay portfolio projects blog

Occured, a 404 error has ..

Lost a page | have. How embarrassing ...

Trust in the force, clear your mind, unleam what you have leamed, and find your missing
page you will. Remember, a Jedi's strength flows from the Force. But beware. Anger, fear,
aggression. The dark side are they. Once you start down the dark path, forever wil it
dominate your destiny.

OEBPS/httpatomoreillycomsourceoreillyimages1416519.png
‘Windows Security =]

‘The server yellowtagmedia.com at The Social Ste requires 2 username
and password.

Warning: This server i requesting that your username and password be
sentin an insecure manner (basic authentication without 2 secure
connection).

[Deerrome

Paseword

) Remember my credentils

OEBPS/httpatomoreillycomsourceoreillyimages1416277.png
806

[ch01_examples — bash — 80x24
bdn-imac-home: chd1_examples bdnd509S php sayHello.php
Hello there. So I hear you're learning to be a PHP programmer!

Why don't you type in your name for me:
Brett

Thanks, Brett, it's really nice to meet you.

bdm-imac-home: chel_examples bdma589s Il

OEBPS/httpatomoreillycomsourceoreillyimages1416287.png
8 0 6 Mozilla Firefox

& hup flocalhos...sayHelloweb.php.

) @ localhost:8888/sayHelloweb.php 77~ & J(28~ Google Q

{ PHP & MYSQL The Missing Manual}

Welcome!

Hello there. So T hear you're learning to be a PHP programmer!

Why don't you type in your name for me:

B I —

OEBPS/httpatomoreillycomsourceoreillyimages1416499.png
Current Users e

llowtagmedia.com/ phplM2/ch12/01/show_users.php ¢ [yReadeq

F T —
o) (2] [#]

{ PHP & MYSQL The Missing Manual}

* Yu Darvish (yu@texasrangers.com) X

* Ryan Geyer (ryan geyer@facebook.com) X

* Jason Wadley (jason.wadley@facebook.com) X
 Robert Powell (info@rockwallbba.com) X

OEBPS/httpatomoreillycomsourceoreillyimages1416400.png
((i)@ yellowtagmedia.com/phpMM2/ch08/01,show_eror i 777 |8 Google

The Missing Manual}

Error Page

Error

OEBPS/httpatomoreillycomsourceoreillyimages1416459.png
ttp//yellowtagme. tem_error_message=
€ | @ yellowtagmedia.com/phpMM2/scripts/show_error.phplerror_message=No image to load (48~ Google

{ PHP & MYSQL The Missing Manual}

‘We're really sorry...

No image to load was specified.

Don't worry, though, we've been noified that there's a problem, and we
take these things seriously. In fact, if you want to contact us to find out more
about what's happened, or you have any concerns, just email us and we'll
‘be happy to get right back fo you.

In the meantime, i you want to go back to the page that cansed the

‘problem, you can do that by clicking here. If the same problem occurs,

though, you may want to come back a bi later. We bet we'll have things

figured out by then. Thaks again... we'll see you soon. And again, we're really sorry for the inconvenience.

The following system-level message was received:

OEBPS/httpatomoreillycomsourceoreillyimages1416297.png
0006 yellowtagmedia.com/phpMM2/ch03/01/socialEntryForm.html L3
(B yellowtagmedia.com/phphM2 /ch03/01/socialEntryForm.him|

{ PHP & MYSQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name:

LosName: [|
EMailAddress [
FacebookURL: []
Twiter Handie: [

Jan e i

OEBPS/httpatomoreillycomsourceoreillyimages1416309.png
yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php
(B yellowtagmedia.com/phphM2 /ch03/02 /scripts/getForminfo.php.

{PHP & MySQL

Example 3

The Missing Manual}

Here's a record of what information you submitted:

Name: Brett McLaughlin
E-Mail Address: brett n@me.com

Your Facebook page
Twitter Handle: @bdmelaughlin

OEBPS/httpatomoreillycomsourceoreillyimages1416531.png
a@ @ bitp/ oo yellowtagmedin.com/ phpMM2 ch13/02/signin.php £- 80X @sgnin

{ PHP & MySQL The Missing Manual}

Sign In to the Club

I

Username:

Password:

OEBPS/httpatomoreillycomsourceoreillyimages1416315.png
[Eyeliomagmea

€ © C | [J yellowtagmedia.com/phpMM2/ch03/02/scripts/getForminfo.php AN

{ PHP & MYSQL The Missing Manual}

Example 3-1

Here's a record of what information you submitted:

/phpMI

Name: T] Thompson
E-Mail Address: ttomson@aol.com

Your Facebook
Check out your s foca

\www.facebook.com/tj.thompson.9026

OEBPS/httpatomoreillycomsourceoreillyimages1416367.png
©.0 0 /[ellowtagmedia.com/phow
€ 3 C [yellowtagmedia.com/phpMM2/ch07/01/socialEntryForm.html

(] Element 84

{ PHP & MYSQL The Missing Manual}

Join the Missing Manual (Digital) Social Club

Please enter your online connections below:

First Name:
Last Name:
E-Mail Address:
Facebook URL:

Twitter Handle:

[Join the Club | [Clear and Restart |

OEBPS/httpatomoreillycomsourceoreillyimages1416463.png
{ PHP & MYSQL The Missing Manual}

Robert Powell

Robert Powell started his Martial Arts training in December of 1993
in Little Rock, Arkansas. The Taekwondo lessons were a gift from
his parents for Christmas. He enjoyed the Kicking and punching of
‘Taekwondo, while his parents enjoyed the discipiine, self control,
and perseverance. He eamed his 1\'st dan in August of 1995. He
earned his 5th dan in June of 2010. He graduated from Hendrix
College in 2006 with a degree in Kinesiology with an emphasis in
‘Sports Management. Mr. Powell's other interests include Boy
‘Scouts and baseball. He reached the rank of Eagle Scout and was.
24 year letterman in baseball in both high school and college. I
Powell is the owner and chief instructor of Rockwall Black Belt
Academy.

Mr_ Powell fell in love with competing at his first competition as a yellow belt He has traveled
and competed extensively at the local, national, and interational level through the USTF, GTF,
UTA, ICTF and WTA. He has been a member of the past six USA men’s teams. He is 0

Get in touch with Robert

o __by emailing them at info@rockwallbba com
o __by checking them out on Facebook
o __by following them on Twitter

OEBPS/httpatomoreillycomsourceoreillyimages1416388.png
J1oca @\
el A X

oo Jbo767 Sueh
€« €' [www.yellowtagmedia.com/phpMM2/ch07/04/scripts/show_user.php?user_i
S eement s

{ PHP & MYSQL The Missing Manual}

Yu Darvish

Get in touch with Yu:
by emailing them at yu@texasrangers.com
by checking them out on Facebook
+ by following them on Twitter
3

