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Praise for Embedded Android



“This is the definitive book for anyone wanting to create a system
    based on Android. If you don’t work for Google and you are working with
    the low-level Android interfaces, you need
    this book.”
—Greg Kroah-Hartman, Core
    Linux Kernel Developer



“If you or your team works on creating custom Android images,
    devices, or ROM mods, you want this book! Other than the source code
    itself, this is the only place where you’ll find an explanation of how
    Android works, how the Android build system works, and an overall view of
    how Android is put together. I especially like the chapters on the build
    system and frameworks (4, 6, and 7), where there are many nuggets of
    information from the AOSP source that are hard to reverse-engineer. This
    book will save you and your team a lot of time. I wish we had it back when
    our teams were starting on the Frozen Yogurt version of Android two years
    ago. This book is likely to become required reading for new team members
    working on Intel Android stacks for the Intel reference phones.”
—Mark Gross, Android/Linux
    Kernel Architect, Platform System Integration/Mobile Communications
    Group/Intel Corporation



“Karim methodically knocks out the many mysteries Android poses to
    embedded system developers. This book is a practical treatment of working
    with the open source software project on all classes of devices, beyond
    just consumer phones and tablets. I’m personally pleased to see so many
    examples provided on affordable hardware, namely BeagleBone, not just on
    emulators.”
—Jason Kridner, Sitara
    Software Architecture Manager at Texas Instruments and cofounder of
    BeagleBoard.org



“This book contains information that previously took hundreds of
    hours for my engineers to discover. It is required reading for any new
    person that is working with Android on my
    team.”
—Dr. Mark Micire, Researcher
    in Space and Mobile Field Robotics, Carnegie Mellon
    University



“Thanks to this book, for the first time embedded system developers
    have access to an open and vertically integrated stack that contains
    everything they need to build robust and high-performing Linux-based
    products. Android’s revolutionary execution model transcends phones and
    tablets, and its application developer platform is unmatched in the
    industry for features and development speed. This book will give
    developers a valuable resource for understanding everything between the
    application layer and the kernel, and how to extend and change things to
    create an infinite variety of Androids.”
—Zach Pfeffer, Tech Lead for
    Linaro’s Android team



“Finally, a book on the Android platform from a systems perspective!
    There are plenty of books on creating Android applications, but for too
    long no single, comprehensive source for information on Android’s
    internals. In Embedded Android, Karim has collected a
    vast quantity of material that is essential and helpful for Android
    systems programmers and integrators (although, to be sure, application
    developers would benefit from a reading as well). Karim’s copious
    examples, references, and explanations are gleaned from his extensive
    experience with and analysis of Android. It’s the book I wish I had had
    when I walked my own trail of tears learning Android for work at Sony.
    With this book, I could have saved myself months learning the ins and outs
    of Android. No doubt this will be the canonical reference book for Android
    system developers for years to come.”
—Tim Bird, Senior Staff
    Engineer, Sony Network Entertainment, and Architecture Group Chair, CE
    Workgroup of the Linux Foundation



“Karim Yaghmour’s book is an excellent guide for those wishing to
    get into the burgeoning field of Android-based embedded projects and
    products. The book covers the full range from kernel support through
    licensing and trademark issues, including information on running Android
    systems in “headless” mode as well. This book deserves a place on every
    serious embedded Android developer’s bookshelf.”
—Paul E. McKenney, IBM
    Distinguished Engineer and Linux Kernel RCU Maintainer



“Although Android is officially designed for mobile and tablet
    segments, it’s unquestionably getting considered for many other product
    segments, like automotive, UI panels like HMI, wearable gadgets, and so
    on. This book is highly recommended, as it covers all the essential
    fundamentals and concepts that help developers port and develop
    Android-based solutions for both mobile and nonmobile product
    segments.”
—Khasim Syed Mohammed, Lead
    Engineer, Texas Instruments



“A great resource not only for embedded Android developers, but also
    for Android app developers to learn the wiring below the Java
    surface.”
—Lars Vogel, CEO, vogella
    GmbH



“Once again, Karim has hit the nail on the head. If you’re
    interested in porting Android to a new device or just interested in the
    guts of how Android runs on a piece of hardware, this is the book you’ve
    been searching for. This book leads you through all of the facets of
    build-environment setup, getting the AOSP sources, adding your hardware to
    the Android sources and deploying a new Android build to the hardware. It
    discusses the underpinnings of Android including the HAL and how to give
    your custom hardware support within the Android framework. In short, of
    all the books on Android, this is the one book that targets the Android
    device builder rather than Android application developer or end user. I
    just wish this book would have been available when I first got into
    Android porting. It could have saved me months of trial and error
    efforts.”
—Mike Anderson, Chief
    Scientist, The PTR Group, Inc.



“Embedded Android has been a great resource for
    our company. It is a must-have when porting Android to new hardware or
    integrating new features at a low level. Karim is a great instructor, and
    his writing captures his style well.”
—Jim Steele, VP of
    Engineering, Sensor Platforms



“Embedded Android is a must-read for anyone who
    wants to seriously work the Android internals and bring up Android on new
    platforms. It helps in navigating the extensive AOSP codebase, and
    understanding the overall architecture and design of the system.”
—Balwinder Kaur, Senior
    Member, Technical Staff, Aptina Imaging



“So you thought you knew about Android internals? Well, think again!
    Chapter after chapter, you’ll discover what’s behind the scenes and why
    Android is not just another embedded Linux distribution. Get yourself
    ready for stepping into a whirlpool, ’cause Embedded
    Android is a gold mine for anyone looking to do serious hacking
    on Google’s OS.”
—Benjamin Zores, Android
    Platform Architect, Alcatel-Lucent



“Definitely one of the most valuable and complete resources about
    the Android system stack. A must-have for every Android system
    engineer.”
—Maxime Ripard, Android Lead,
    Free Electrons



“When I was handed a development board running Linux, and was told
    to ‘get Android running on it,’ it was difficult to find much information
    about how to bring Android up on a new device. Luckily for me,
    Embedded Android became available about the same time
    that I was beginning development. What a lifesaver! Embedded
    Android gave me the kick-start I needed to understand the
    underpinnings of Android and what I would need to do to bring Android up
    on a new piece of hardware. I loved all the details and background, from
    the boot sequence to the build system. After having read
    Embedded Android, I felt I had a much better grasp of
    Android and how it interacted with the Linux kernel.”
—Casey Anderson, Embedded
    Systems Architect, Trendril
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If you purchased this ebook directly from oreilly.com, you have the following benefits:
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	Multiple formats—use on your laptop, tablet, or phone
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Preface



Android’s growth is phenomenal. In a very short time span, it has
  succeeded in becoming one of the top mobile platforms in the market.
  Clearly, the unique combination of open source licensing, aggressive
  go-to-market, and trendy interface is bearing fruit for Google’s Android
  team. Needless to say, the massive user uptake generated by Android has not
  gone unnoticed by handset manufacturers, mobile network operators, silicon
  manufacturers, and app developers. Products, apps, and devices “for,”
  “compatible with,” or “based on” Android seem to be coming out ever so
  fast.
Beyond its mobile success, however, Android is also attracting the
  attention of yet another, unintended crowd: embedded systems developers.
  While a large number of embedded devices have little to no human interface,
  a substantial number of devices that would traditionally be considered
  “embedded” do have user interfaces. For a goodly number of modern machines,
  in addition to pure technical functionality, developers creating user-facing
  devices must also contend with human-computer interaction (HCI) factors.
  Therefore, designers must either present users with an experience they are
  already familiar with or risk alienating users by requiring them to learn a
  lesser-known or entirely new user experience. Before Android, the user
  interface choices available to the developers of such devices were fairly
  limited and limiting.
Clearly, embedded developers prefer to offer users an interface they
  are already familiar with. Although that interface might have been
  window-based in the past—and hence a lot of embedded devices were based on
  classic window-centric, desktop-like, or desktop-based interfaces—Apple’s
  iOS and Google’s Android have forever democratized the use of touch-based,
  iPhone-like graphical interfaces. This shift in user paradigms and
  expectations, combined with Android’s open source licensing, have created a
  groundswell of interest about Android within the embedded world.
Unlike Android app developers, however, developers wanting to do any
  sort of platform work in Android, including porting or adapting Android to
  an embedded device, rapidly run into quite a significant problem: the almost
  total lack of documentation on how to do that. So, while Google provides app
  developers with a considerable amount of online documentation, and while
  there are a number of books on the topic, such as O’Reilly’s Learning
  Android, embedded developers have to contend with the
  minimalistic set of documents provided by Google at http://source.android.com. In sum, embedded developers
  seriously entertaining the use of Android in their systems were essentially
  reduced to starting with Android’s source code.
The purpose of this book is to remedy that situation and to enable you
  to embed Android in any device. You will, therefore, learn about Android’s
  architecture, how to navigate its source code, how to modify its various
  components, and how to create your own version for your particular device.
  In addition, you will learn how Android integrates into the Linux kernel and
  understand the commonalities and differences it has with its Linux roots.
  For instance, we will discuss how Android leverages Linux’s driver model to
  create its very own hardware layer and how to take “legacy” Linux components
  such as glibc and BusyBox and package them as part of Android. Along the
  way, you will learn day-to-day tips and tricks, such as how to use Android’s
  repo tool and how to integrate with or
  modify Android’s build system.
Learning How to Embed Android



I’ve been involved with open source software since the mid-’90s. I
    was fortunate enough to join in before it became recognized as the
    powerful software movement that it is today and, therefore, witness its
    rise firsthand in the early 2000s. I’ve also made my share of open source
    contributions and, yes, participated in a couple of, shall we say,
    colorful flame wars here and there. Among other things, I also wrote the
    first edition of O’Reilly’s Building
    Embedded Linux Systems.
So when Android—which I knew was Linux-based—started becoming
    popular, I knew enough about Linux’s history and embedded Linux to know
    that it was worth investigating. Then, I was naively thinking: “I know
    Linux fairly well and Android is based on Linux; how hard could it be?”
    That is, until I actually started to seriously look into and, most
    importantly, inside Android. That’s when I realized that Android was very
    foreign. Little of what I knew about Linux and the packages it’s commonly
    used with in embedded systems applied to Android. Not only that, but the
    abstractions built in Android were even weirder still.
So began a very long (and ongoing) quest to figure things out. How
    does Android work? How is it different from regular Linux? How can I
    customize it? How can I use it in an embedded system? How do I build it?
    How does its app development API translate into what I know about Linux’s
    user-space? etc. And the more I dug into Android, the more alien it felt
    and the more questions I had.
The first thing I did was to actually go to http://developer.android.com
    and http://source.android.com and
    print out everything I could get my hands on, save for the actual
    developer API reference. I ended up with a stack of about 8 to 10 inches
    of paper. I read through most of it, underlined a lot of the key passages
    I found, added plenty of notes in the margins, and created a whole list of
    questions I couldn’t find answers for. In parallel, I started exploring
    the sources made available by Google through the Android Open Source
    Project (AOSP). In all honesty, it took me about 6 to 12 months before I
    actually started feeling confident enough to navigate within the
    AOSP.
The book you presently hold is a result of the work I’ve done on
    Android since starting to explore it—including the various projects I’ve
    been involved in, such as helping different development teams customizing
    Android for use in their embedded designs. And I’ve learned enough about
    Android to say this: By no means is this book exhaustive. There are a lot
    of things about Android and its internals that this book doesn’t and can’t
    cover. This book should, nevertheless, allow you to jump-start your
    efforts in molding Android to fit your needs.

Audience for This Book



This book is primarily geared toward developers who intend to create
    embedded systems based on Android or who would like to take Android and
    customize it for specific uses. It’s assumed you know about embedded
    systems development and have at least a good handle on how Linux works and
    how to interact with its command line.
I don’t assume you have any knowledge of Java, and you can get away
    without knowing Java for quite a few of the tasks required to customize
    Android. However, as your work within Android progresses, you’ll find it
    necessary to start becoming familiar with Java to a certain degree.
    Indeed, many of Android’s key parts are written in Java, and you’ll
    therefore need to learn the language in order to properly integrate most
    additions to specific parts of the stack.
This book isn’t, however, about either app development or Java
    programming in any way. If these are the topics you are interested in, I
    recommend you look elsewhere. There are quite a few books on each of these
    topics already available. This book isn’t about embedded systems, either,
    and there are books on that topic, too. Finally, this book isn’t about
    embedded Linux, which also has its own books. Still, being familiar with
    Linux’s use in embedded systems is something of a plus when it comes to
    Android. Indeed, though Android is a departure from all things
    traditionally known as “embedded Linux,” many of the techniques typically
    used for creating embedded Linux systems can guide and help in the
    creation of embedded Android systems.
This book will also be helpful to you if you’re interested in
    understanding Android’s internals. Indeed, customizing Android for use in
    embedded systems requires knowing at least some basics about its
    internals. So while the discussion isn’t geared toward a thorough
    exploration of Android’s sources, the explanations do show how to interact
    with the various parts of the Android stack at a fairly intimate
    level.

Organization of the Material



Like many other titles, this book gradually builds in complexity as
    it goes, with the early chapters serving as background material for later
    chapters. If you’re a manager and just want to grab the essentials, or if
    you’re wondering which set of chapters you have to read through before you
    can start skipping chapters and read material selectively, I recommend you
    at least read through the first three chapters. That doesn’t mean that the
    rest isn’t relevant, but the content is much more modular after
    that.
Chapter 1, Introduction, covers the
    general things you should know about Android’s use in embedded systems,
    such as where it comes from, how its development model and licensing
    differ from conventional open source projects, and the type of hardware
    required to run Android.
Chapter 2, Internals Primer, digs into
    Android’s internals and exposes you to the main abstractions it comprises.
    We start by introducing the app development model that app developers are
    accustomed to. Then we dig into the Android-specific kernel modifications,
    how hardware support is added in Android, the Android native user-space,
    Dalvik, the system server, and the overall system startup.
Chapter 3, AOSP Jump-Start, explains how
    to get the Android sources from Google, how to compile them into a
    functional emulator image, and how to run that image and shell into it.
    Using the emulator is an easy way to explore Android’s underpinnings
    without requiring actual hardware.
Chapter 4, The Build System, provides a
    detailed explanation of Android’s build system. Indeed, unlike most open
    source projects out there, Android’s build system is nonrecursive. This
    chapter explains the architecture of Android’s build system, how it’s
    typically used within the AOSP, and how to add your own modifications to
    the AOSP.
Chapter 5, Hardware Primer, introduces
    you to the types of hardware for which Android is designed. This includes
    covering the System-on-Chips (SoCs) typically used with Android, the
    memory layout of typical Android systems, the typical development setup to
    use with Android, and a couple of evaluation boards you can easily use for
    prototyping embedded Android systems.
Chapter 6, Native User-Space, covers the
    root filesystem layout, the adb tool,
    Android’s command line, and its custom init.
Chapter 7, Android Framework, discusses how
    the Android Framework is kick-started, the utilities and commands used to
    interact with it, and the support daemons required for it to operate
    properly.
Appendix A, explains how
    to get a legacy stack of “embedded Linux” software to coexist with
    Android’s user-space.
Appendix B, shows you how
    to extend the Android stack to add support for new hardware. This includes
    showing you how to add a new system service and how to extend Android’s
    Hardware Abstraction Layer (HAL).
Appendix C, provides you
    with pointers to help you customize what’s included by default in
    AOSP-generated images.
Appendix D, contains a
    commented set of the default init.rc
    files used in version 2.3/Gingerbread and version 4.2/Jelly Bean.
Appendix E, lists a
    number of resources you may find useful, such as websites, mailing lists,
    books, and events.

Software Versions



If you hadn’t already guessed it when you picked up this book, the
    versions we cover here are likely way behind the current Android version.
    And that is likely to be the case forever forward. In fact, I don’t ever
    expect any version of this book to be able to apply to the latest release
    of Android. The reason is very simple: Android releases occur every six
    months. It took almost two years to write this book and, from past
    experience, it takes anywhere from six months to a year, if not more, to
    update an existing title to the latest version of the software it
    covers.
So either you stop reading right now and return this book right
    away, or you read on for a cogent explanation on how to best use this book
    despite its almost guaranteed obsolescence.
Despite its very rapid release cycle, Android’s internal
    architecture and the procedures for building it have remained almost
    unchanged since its introduction about five years ago. So while this book
    was first written with 2.3/Gingerbread in mind, it’s been relatively
    straightforward to update it to also cover 4.2/Jelly Bean with references
    included to other versions, including 4.0/Ice-Cream Sandwich and 4.1/Jelly
    Bean where relevant. Hence, while new versions add new features, and many
    of the software components we discuss here will be enriched with every new
    version, the underlying procedures and mechanisms are likely to remain
    applicable for quite some time still.
Therefore, while you can be assured that I am committed to
    continuing to monitor Android’s development and updating this title as
    often as I humanly can, you should still be able to benefit from the
    explanations contained in this book for quite a few more versions than the
    ones covered.
Note
Some actually expect 2.3/Gingerbread to be around for a very long
      time given that its hardware requirements are much more modest than
      later versions. At the AnDevCon IV conference in December 2012, for
      instance, the keynote speaker from Facebook explained that it expected
      to have to support its app on devices running 2.3/Gingerbread for a very
      long time, given that that version runs on cheaper hardware than more
      recent versions.


Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Embedded Android by Karim Yaghmour (O’Reilly).
    Copyright 2013 Karim Yaghmour, 978-1-449-30829-2.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at http://oreil.ly/embedded-android.
To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Introduction



Putting Android on an embedded device is a complex task involving an
  intricate understanding of its internals and a clever mix of modifications
  to the Android Open Source Project (AOSP) and the kernel on which it runs,
  Linux. Before we get into the details of embedding Android, however, let’s
  start by covering some essential background that embedded developers should
  factor in when dealing with Android, such as Android’s hardware
  requirements, as well as the legal framework surrounding Android and its
  implications within an embedded setting. First, let’s look at where Android
  comes from and how it was developed.
History



The story goes[2] that back in early 2002, Google’s Larry Page and Sergey Brin
    attended a talk at Stanford about the development of the then-new Sidekick
    phone by Danger Inc. The speaker was Andy Rubin, Danger’s CEO at the time,
    and the Sidekick was one of the first multifunction, Internet-enabled
    devices. After the talk, Larry went up to look at the device and was happy
    to see that Google was the default search engine. Soon after, both Larry
    and Sergey became Sidekick users.
Despite its novelty and enthusiastic users, however, the Sidekick
    didn’t achieve commercial success. By 2003, Rubin and Danger’s board
    agreed it was time for him to leave. After trying out a few things, Rubin
    decided he wanted to get back into the phone OS business. Using a domain
    name he owned, android.com, he set out to create an
    open OS for phone manufacturers. After investing most of his savings in
    the project and having received some additional seed money, he set out to
    get the company funded. Soon after, in August 2005, Google acquired
    Android Inc. with little fanfare.
Between its acquisition and its announcement to the world in
    November 2007, Google released little to no information about Android.
    Instead, the development team worked furiously on the OS while deals and
    prototypes were being worked on behind the scenes. The initial
    announcement was made by the Open Handset Alliance (OHA), a group of
    companies unveiled for the occasion with its stated mission being the
    development of open standards for mobile devices and Android being its
    first product. A year later, in September 2008, the first open source
    version of Android, 1.0, was made available.
Several Android versions have been released since then, and the OS’s
    progression and development is obviously more public. As we will see
    later, though, much of the work on Android continues to be done behind
    closed doors. Table 1-1 provides a summary of the
    various Android releases and the most notable features found in the
    corresponding AOSP.
Table 1-1. Android versions
	Version	Release date	Codename	Most notable feature(s)	Open source
	1.0	September 2008	Unknown	 	Yes
	1.1	February 2009	Unknown[a]	 	Yes
	1.5	April 2009	Cupcake	Onscreen soft keyboard	Yes
	1.6	September 2009	Donut	Battery usage screen and VPN support	Yes
	2.0, 2.0.1, 2.1	October 2009	Eclair	Exchange support	Yes
	2.2	May 2010	Froyo	Just-in-Time (JIT) compile	Yes
	2.3	December 2010	Gingerbread	SIP and NFC support	Yes
	3.0	January 2011	Honeycomb	Tablet form-factor support	No
	3.1	May 2011	Honeycomb	USB host support and APIs	No
	4.0	November 2011	Ice-Cream Sandwich	Merged phone and tablet form-factor support	Yes
	4.1	June 2012	Jelly Bean	Lots of performance optimizations	Yes
	4.2	November 2012	Jelly Bean	Multiuser support	Yes
	[a] This version is rumored to have been called “Petit
                Four.” Have a look at this Google+
                post for more information.






Features and Characteristics



Around the time 2.3.x/Gingerbread was released, Google used to
    advertise the following features about Android on its developer
    site:
	Application framework
	The application framework used by app developers to create
          what is commonly referred to as Android apps. The use of this
          framework is documented
          online and in books like O’Reilly’s Learning
          Android.

	Dalvik virtual machine
	The clean-room byte-code interpreter implementation used in
          Android as a replacement for the Sun Java virtual machine (VM).
          While the latter interprets .class files, Dalvik interprets .dex files. These files are generated by
          the dx utility using the
          .class files generated by the
          Java compiler part of the JDK.

	Integrated browser
	Android includes a WebKit-based browser as part of its
          standard list of applications. App developers can use the
          WebView class to use the WebKit engine within
          their own apps.

	Optimized graphics
	Android provides its own 2D graphics library but relies on
          OpenGL ES[3] for its 3D capabilities.

	SQLite
	This is the standard SQLite database found here and made available to app
          developers through the application framework.

	Media support
	Android provides support for a wide range of media formats
          through StageFright, its custom media framework. Prior to 2.2,
          Android used to rely on PacketVideo’s OpenCore framework.

	GSM telephony support[4]
	The telephony support is hardware dependent, and device
          manufacturers must provide a HAL module to enable Android to
          interface with their hardware. HAL modules will be discussed in the
          next chapter.

	Bluetooth, EDGE, 3G, and WiFi
	Android includes support for most wireless connection
          technologies. While some are implemented in Android-specific
          fashion, such as EDGE and 3G, others are provided in the same way as
          in plain Linux, as in the case of Bluetooth and WiFi.

	Camera, GPS, compass, and accelerometer
	Interfacing with the user’s environment is key to Android.
          APIs are made available in the application framework to access these
          devices, and some HAL modules are required to enable their
          support.

	Rich development environment
	This is likely one of Android’s greatest assets. The
          development environment available to developers makes it very easy
          to get started with Android. A full SDK is freely available to
          download, along with an emulator, an Eclipse plug-in, and a number
          of debugging and profiling tools.



There are of course a lot more features that could be listed for
    Android, such as USB support, multitasking, multitouch, SIP, tethering,
     voice-activated commands, etc., but the previous list should give you a
    good idea of what you’ll find in Android. Also note that every new Android
    release brings in its own new set of features. Check the Platform
    Highlights published with every version for more information on features
    and enhancements.
In addition to its basic feature set, the Android platform has a few
    characteristics that make it an especially interesting platform for
    embedded development. Here’s a quick summary:
	Broad app ecosystem
	At the time of this writing, there were 700,000 apps in Google
          Play, previously known as the Android Market. This compares quite
          favorably to the Apple App Store’s 700,000 apps and ensures that you
          have a large pool to  choose from should you want to prepackage applications with your embedded
          device. Bear in mind that you likely need to enter into some kind of
          agreement with an app’s publisher before you can package that app.
          The app’s availability in Google Play doesn’t imply the right for
          you as a third party to redistribute it.

	Consistent app APIs
	All APIs provided in the application framework are meant to be
          forward-compatible. Hence, custom apps that you develop for
          inclusion in your embedded system should continue working in future
          Android versions. In contrast, modifications you make to Android’s
          source code are not guaranteed to continue applying or even working
          in the next Android release.

	Replaceable components
	Because Android is open source, and as a benefit of its
          architecture, a lot of its components can be replaced outright. For
          instance, if you don’t like the default Launcher app (home screen),
          you can write your own. More fundamental changes can also be made to
          Android. The GStreamer[5] developers, for example, were able to replace
          StageFright, the default media framework in Android, with GStreamer
          without modifying the app API.

	Extendable
	Another benefit of Android’s openness and its architecture is
          that adding support for additional features and hardware is
          relatively straightforward. You just need to emulate what the
          platform is doing for other hardware or features of the same type.
          For instance, you can add support for custom hardware to the HAL by
          adding a handful of files, as is explained in Appendix B.

	Customizable
	If you’d rather use existing components, such as the existing
          Launcher app, you can still customize them to your liking. Whether
          it be tuning their behavior or changing their look and feel, you are
          again free to modify the AOSP as needed.




Development Model



When considering whether to use Android, it’s crucial that you
    understand the ramifications its development process may have on any
    modifications you make to it or to any dependencies you may have on its
    internals.
Differences From “Classic” Open Source Projects



Android’s open source nature is one of its most trumpeted
      features. Indeed, as we’ve just seen, many of the software engineering
      benefits that derive from being open source apply to Android.
Despite its licensing, however, Android is unlike most open source
      projects in that its development is done mostly behind closed doors. The
      vast majority of open source projects, for example, have public mailing
      lists and forums where the main developers can be found interacting with
      one another, and public source repositories providing access to the main
      development branch’s tip. No such thing can be found for Android.
This is best summarized by Andy Rubin himself: “Open source is
      different than a community-driven project. Android is light on
      community-driven, somewhat heavy on open source.”
Whether we like it or not, Android is mainly developed within
      Google by the Android development team, and the public is not privy to
      either internal discussions nor the tip of the development branch.
      Instead, Google makes code-drops every time a new version of Android
      ships on a new device, which is usually every six months. For instance,
      a few days after the Samsung Nexus S was released in December 2010, the
      code for the new version of the Android it was running, 2.3/Gingerbread,
      was made publicly available at http://android.googlesource.com/.
Obviously there is a certain amount of discomfort in the open
      source community with the continued use of the term “open source” in the
      context of a project whose development model contradicts the standard
      modus operandi of open source projects, especially given Android’s
      popularity. The open source community has not historically been well
      served by projects that have adopted a similar development model. Others
      fear this development model also makes them vulnerable to potential
      changes in Google’s business objectives.
Political issues aside, though, Android’s development model means
      that as a developer, your ability to make contributions to Android is
      limited. Indeed, unless you become part of the Android development team
      at Google, you will not be able to make contributions to the tip of the
      development branch. Also, save for a handful of exceptions, it’s
      unlikely you will be able to discuss your enhancements one-on-one with
      the core development team members. However, you are still free to submit
      enhancements and fixes to the AOSP code dumps made available at
      http://android.googlesource.com/.
The worst side effect of Google’s approach is that you have
      absolutely no way to get inside information about the platform decisions
      being made by the Android development team. If new features are added
      within the AOSP, for example, or if modifications are made to core
      components, you will find out how such changes are made and how they
      impact changes you might have made to a previous version only by
      analyzing the next code dump. Furthermore, you will have no way to learn
      about the underlying requirement, restriction, or issue that justified
      the modification or inclusion. Had this been a true open source project,
      a public mailing list archive would exist where all this information, or
      pointers to it, would be available.
That being said, it’s important to remember how significant a
      contribution Google is making by distributing Android under an open
      source license. Despite its awkward development model from an open
      source community perspective, it remains that Google’s work on Android
      is a godsend for a large number of developers. Plus, it has accomplished
       one thing no other open source project was ever able to: created a
      massively successful Linux distribution. It would, therefore, be hard to
      fault Android’s development team for its work.
Furthermore, it can easily be argued that from a business and
      go-to-market perspective that a community-driven process would
      definitely knock the wind out of any product announcements Google would
      attempt to release, making it impossible to create “buzz” around press
      announcements and the like, since every new feature would be developed
      in the open. That is to say nothing of the nondeterministic nature of
      community-driven processes that can see a group of people take years to
      agree on the best way to implement a given feature set. And, simply
      based on track record, Android’s success has definitely benefited from
      Google’s ability to rapidly move it forward and to generate press
      interest based on releases of cool new products.

Feature Inclusion, Roadmaps, and New Releases



In brief, there is no publicly available roadmap for features and
      capabilities in future Android releases. At best, Google will announce
      ahead of time the name and approximate release date of the next version.
      Usually you can expect a new Android release to be made in time for the
      Google I/O conference, which is typically held in May, and another
      release by year-end. What will be in that release, though, is anyone’s
      guess.
Typically, however, Google will choose a single manufacturer to
      work with on the next Android release. During that period, Google will
      work very closely with that single manufacturer’s engineers to ready the
      next Android version to work on a targeted upcoming lead (or flagship)
      device. During that period, the manufacturer’s team is reported to have
      access to the tip of the development branch. Once the device is put on
      the market, the corresponding source code dump is made to the public
      repositories. For the next release, it chooses another manufacturer and
      starts over.
There is one notable exception to that cycle: Android
      3.x/Honeycomb. In that specific case, Google didn’t release the source
      code to the corresponding lead device, the Motorola Xoom. The rationale
      seems to have been that the Android development team essentially forked
      the Android codebase at some point in time to start getting a
      tablet-ready version of Android out ASAP, in response to market timing
      prerogatives. Hence, in that version, very little regard was given to
      preserving backward compatibility with the phone form factor. And given
      that, Google did not wish to make the code available to avoid
      fragmentation of its platform. Instead, both phone and tablet form
      factor support were merged into the subsequent Android 4.0/Ice-Cream
      Sandwich release.


Ecosystem



As of January 2013:
	1.3 million Android phones are activated each day, up from
        400,000 in June 2011 and 200,000 in August 2010.

	Google Play contains around 700,000 apps. In comparison, the
        Apple App Store has about the same number of apps.[6]

	Android holds 72% of the global smartphone market.



Android is clearly on the upswing. In fact, Gartner predicted in October 2012 that
    Android would be the dominant OS, besting the venerable Windows, by 2016.
     Much as Linux disrupted the embedded market about a decade ago, Android is
    poised to make its mark. Not only will it flip the mobile market on its
    head, eliminating or sidelining even some of the strongest players, but in
    the embedded space it is likely going to become the de facto standard UI
    for a vast majority of user-centric embedded devices. There are even signs
    that it might displace classic “embedded Linux” in headless
    (non-user-centric) devices.
An entire ecosystem is therefore rapidly building around Android.
    Silicon and System-on-Chip (SoC) manufacturers such as ARM, TI, Qualcomm,
    Freescale, and Nvidia have added Android support for their products, and
    handset and tablet manufacturers such as Motorola, Samsung, HTC, Sony, LG,
    Archos, Dell, and ASUS ship an ever-increasing number of Android-equipped
    devices. This ecosystem also includes a growing number of diverse players,
    such as Amazon, Verizon, Sprint, and Barnes & Noble, creating their
    own application markets.
Grassroots communities and projects are also starting to sprout
    around Android, even though it is developed behind closed doors. Many of
    those efforts are done using public mailing lists and forums, like classic
    open source projects. Such community efforts typically start by forking
    the official Android source releases to create their own Android
    distributions with custom features and enhancements. Such is the case, for
    instance, with the CyanogenMod
    project, which provides aftermarket images for power users. There are also
    efforts by various silicon vendors to provide Android versions enabled or
    enhanced for their platforms. For example, Linaro—a nonprofit organization
    created by ARM SoC vendors to consolidate their platform-enablement
    work—provides its own optimized Android tree. Other efforts follow in the
    footsteps of phone modders, which essentially rely on hacking the binaries
    provided by the manufacturers to create their own modifications or
    variants. Have a look at Appendix E for a full list of
    AOSP forks and the communities developing them.
A Word on the Open Handset Alliance



As I mentioned earlier, the OHA was the initial vehicle through
      which Android was first announced. It describes itself on its website as
      “a group of 82 technology and mobile companies who have come together to
      accelerate innovation in mobile and offer consumers a richer, less
      expensive, and better mobile experience. Together we have developed
      Android, the first complete, open, and free mobile platform.”
Beyond the initial announcement, however, it is unclear what role
      the OHA plays. For example, an attendee at the “Fireside Chat with the
      Android Team” at Google I/O 2010 asked the panel what privileges were
      conferred to him as a developer for belonging to a company that is part
      of the OHA. After asking around the panel, the speaker essentially
      answered that the panel didn’t know because they aren’t the OHA. Hence,
      it would appear that OHA membership benefits are not clear to the
      Android development team itself.
The role of the OHA is further blurred by the fact that it does
      not seem to be a full-time organization with board members and permanent
      staff. Instead, it’s just an “alliance.” In addition, there is no
      mention of the OHA within any of Google’s Android announcements, nor do
      any new Android announcements emanate from the OHA. In sum, one would be
      tempted to speculate that Google likely put the OHA together mainly as a
      marketing front to show the industry’s support for Android, but that in
      practice it has little to no bearing on Android’s development.


Getting “Android”



There are two main pieces required to get Android working on your
    embedded system: an Android-compatible Linux kernel and the Android
    Platform.
For a very long time, getting an Android-compatible Linux kernel was
    a difficult task; it continues to be in some cases at the time of this
    writing. Instead of using a “vanilla” kernel from http://kernel.org to run the
    Platform, you needed either to use one of the kernels available within the
    AOSP or to patch a vanilla kernel to make it Android-compatible. The
    underlying issue was that many additions were made to the kernel by the
    Android developers in order to allow their custom Platform to work. In
    turn, these additions’ inclusion in the official mainline kernel were
    historically met with a lot of resistance.
While we’ll discuss kernel issues in greater detail in the next
    chapter, know that starting from the Kernel Summit of 2011 in Prague, the
    kernel developers decided to proactively seek to mainline the features
    required to run the Android Platform on top of the official Linux kernel
    releases. As such, many of the required features have since been merged,
    while others have been (or, at the time of this writing, are currently
    being) replaced or superseded by other mechanisms. At the time of this
    writing, the easiest way to get yourself an Android-ready kernel was to
    ask your SoC vendor. Indeed, given Android’s popularity, most major SoC
    vendors provide active support for all Android-required components for
    their products.
The Android Platform is essentially a custom Linux distribution
    containing the user-space packages that make up what is typically called
    “Android.” The releases listed in Table 1-1 are
    actually Platform releases. We will discuss the content and architecture
    of the Platform in the next chapter. For the time being, keep in mind that
    a Platform release has a role similar to that of standard Linux
    distributions such as Ubuntu or Fedora. It’s a self-coherent set of
    software packages that, once built, provides a specific user experience
    with specific tools, interfaces, and developer APIs.
Note
While the proper term to identify the source code corresponding to
      the Android distribution running on top of an Android-compatible kernel
      is “Android Platform,” it is commonly referred to as “the AOSP”—as is
      the case in fact throughout this book—even though the Android Open
      Source Project proper, which is hosted on this site, contains a
      few  more components in addition to the Platform, such as sample Linux kernel
      trees and additional packages that would not typically be downloaded
      when the Platform is fetched using the usual repo command.

Hacking Binaries
Lack of access to Android sources hasn’t discouraged passionate
      modders from actually hacking and customizing Android to their liking.
      For example, the fact that Android 3.x/Honeycomb wasn’t available didn’t
       preclude modders from getting it to run on the Barnes & Noble Nook.
      They achieved this by retrieving the executable binaries found in the
      emulator image provided as part of the Honeycomb SDK and used those as
      is on the Nook, albeit forfeiting hardware acceleration. The same type
      of hack has been used to “root” or update versions of various Android
      components on actual devices for which the manufacturer provides no
      source code.


Legal Framework



Like any other piece of software, Android’s use and distribution is
    limited by a set of licenses, intellectual property restrictions, and
    market realities. Let’s look at a few of these.
Warning
Obviously I’m not a lawyer and this isn’t legal advice. You should
      talk to competent legal counsel to see how any of the applicable terms
      or licenses apply to your specific case. Still, I’ve been around open
      source software long enough that you could consider what follows as an
      engineer’s educated point of view.

Code Licenses



As we discussed earlier, there are two parts to “Android”: an
      Android-compatible Linux kernel and an AOSP release. Even though it’s
      modified to run the AOSP, the Linux kernel continues to be subject to
      the same GNU GPLv2 license that it has always been under. As such,
      remember that you are not allowed to distribute any modifications you
      make to the kernel under any other license than the GPL. Hence, if you
      take a kernel version from http://android.googlesource.com or
      your SoC vendor and modify it to make it run on your system, you are
      allowed to distribute the resulting kernel image in your product only so
      long as you abide by the GPL. This means you must make the sources used
      to create the image, including your modifications, available to
      recipients under the terms of the GPL.
The COPYING file in the
      kernel’s sources includes a notice by Linus Torvalds that clearly
      identifies that only the kernel is subject to the GPL, and that
      applications running on top of it are not considered “derived works.” Hence, you are
      free to create applications that run on top of the Linux kernel and
      distribute them under the license of your choice.
These rules and their applicability are generally well understood
      and accepted within open source circles and by most companies that opt
      to support the Linux kernel or to use it as the basis for their
      products. In addition to the kernel, a large number of key components of
      Linux-based distributions are typically licensed under one form or
      another of the GPL. The GNU C library (glibc) and the GNU compiler
      (GCC), for example, are licensed under the LGPL and the GPL
      respectively. Important packages commonly used in embedded Linux systems
      such as uClibc and BusyBox are also licensed under the LGPL and the
      GPL.
Not everyone is comfortable with the GNU GPL, however. Indeed, the
      restrictions it imposes on the licensing of derived works can pose a
      serious challenge to large organizations, especially given geographic
      distribution, cultural differences among the various locations of
      development subunits, and the reliance on external subcontractors. A
      manufacturer selling a product in North America, for example, might have
      to deal with dozens, if not hundreds, of suppliers to get that product
      to the market. Each of these suppliers might deliver a piece that may or
      may not contain GPL’ed code. Yet the manufacturer whose name appears on
      the item sold to the customer will be bound to provide the sources to
      the GPL components regardless of which supplier originated them. In
      addition, processes must be put in place to ensure that engineers who
      work on GPL-based projects are abiding by the licenses.
When Google set out to work with manufacturers on its
      “open” phone OS, therefore, it appears that very rapidly it became clear
      that the GPL had to be avoided as much as possible. In fact, other
      kernels than Linux were apparently considered, but Linux was chosen
      because it already had strong industry support, particularly from ARM
      silicon manufacturers, and because it was fairly well isolated from the
      rest of the system, so that its GPL licensing would have little
      impact.[7]
It was decided, though, that every effort would be made to make
      sure that the vast majority of user-space components would be based on
      licenses that did not pose the same logistical issues as the GPL. That
      is why many of the common GPL- and LGPL-licensed components typically
      found in embedded Linux systems, such as glibc, uClibc, and BusyBox,
      aren’t included in the AOSP. Instead, the bulk of the components created
      by Google for the AOSP are published under the Apache License 2.0
      (a.k.a. ASL) with some key components, such as the Bionic library (a
      replacement for glibc and uClibc) and the Toolbox utility (a replacement
      for BusyBox), licensed under the BSD license. Some classic open source
       projects are also incorporated, mostly as is in source form under their
      original licensing, into the AOSP within the external/ directory. This means that parts of
      the AOSP are made of software that is neither ASL nor BSD. The AOSP
      does, in fact, still contain GPL and LGPL components. The distribution
      of the binaries resulting from the compiling of such components,  however, should not pose any problems since they aren’t meant to be
      typically customized by the OEM (i.e., no derived works are expected to
      be created) and the original sources of those components as used in the
      AOSP are readily available for all to download at http://android.googlesource.com, thereby complying, where
      necessary, with the GPL’s requirement that redistribution of derivative
      works continue being made under the GPL.
Unlike the GPL, the ASL does not require that derivative works be
      published under a specific license. In fact, you can choose whatever
      license best suits your needs for the modifications you make. Here are
      the relevant portions from the ASL (the full license is available from
      the Apache Software
      Foundation):
	“Subject to the terms and conditions of this License, each
          Contributor hereby grants to You a perpetual, worldwide,
          non-exclusive, no-charge, royalty-free, irrevocable copyright
          license to reproduce, prepare Derivative Works of, publicly display,
          publicly perform, sublicense, and distribute the Work and such
          Derivative Works in Source or Object form.”

	“You may add Your own copyright statement to Your
          modifications and may provide additional or different license terms
          and conditions for use, reproduction, or distribution of Your
          modifications, or for any such Derivative Works as a whole, provided
          Your use, reproduction, and distribution of the Work otherwise
          complies with the conditions stated in this License.”



Furthermore, the ASL explicitly provides a patent license grant,
      meaning that you do not require any patent license from Google for using
      the ASL-licensed Android code. It also imposes a few “administrative”
      requirements—such as the need to clearly mark modified files, to provide
      recipients with a copy of the ASL license, and to preserve NOTICE files as is.
      Essentially, though, you are free to license your modifications under
      the terms that fit your purpose. The BSD license that covers Bionic and
      Toolbox allows similar binary-only distribution.
Hence, manufacturers can take the AOSP and customize it to their
      needs while keeping those modifications proprietary if they wish, so
      long as they continue abiding by the rest of the provisions of the ASL.
      If nothing else, this diminishes the burden of having to implement a
      process to track all modifications in order to provide those
      modifications back to recipients who would be entitled to request them
      had the GPL been used instead.
Adding GPL-Licensed Components
Although every effort has been made to keep the GPL out of
        Android’s user-space as much as possible, there are cases where you
        may want to explicitly add GPL-licensed components to your Android
        distribution. For example, you want to include either glibc or uClibc,
        which are POSIX-compliant C libraries—in contrast to Android’s Bionic,
        which is not—because you would like to run preexisting Linux
        applications on Android without having to port them over to Bionic. Or
        you may want to use BusyBox in addition to Toolbox, since the latter
        is much more limited in functionality than the former.
These additions may be specific to your development environment
        and may be removed in the final product, or they may be permanent
        fixtures of your own customized Android. No matter which avenue you
        decide on, whether it be plain Android or Android with some additional
        GPL packages, remember that you must follow the licenses’
        requirements.


Branding Use



While being very generous with Android’s source code, Google
      controls most Android-related branding elements more strictly. Let’s
      take a look at some of those elements and their associated terms of use.
      For the official list, along with the official terms, have a look at this site.
	Android robot
	This is the familiar green robot seen everywhere around all
            things Android. Its role is similar to the Linux penguin, and the
            permissions for its use are similarly permissive. In fact, Google
            states that it “can be used, reproduced, and modified freely in
            marketing communications.” The only requirement is that proper
            attribution be made according to the terms of the Creative Commons
            Attribution license.

	Android logo
	This is the set of letters in custom typeface that spell out
            A-N-D-R-O-I-D and that appear during the device and emulator
            bootup, and on the Android
            website. You are not authorized to use that logo under any
            circumstance. Chapter 7 shows you how to replace
            the bootup logo.

	Android custom typeface
	This is the custom typeface used to render the Android logo,
            and its use is as restricted as the logo.

	“Android” in official names and messaging
	As Google states, “ ‘Android’ by itself cannot be used in
            the name of an application name or accessory product. Instead use
            ‘for Android.’ ” Therefore, you can’t say “Android MediaPlayer,”
            but you can say “MediaPlayer for Android.” Google also states that
            “Android may be used as a descriptor, as long as it is followed by
            a proper generic term” such as “Android™ application” for example.
            Of course, proper trademark attribution must always be made. In
            sum, you can’t name your product “Android Foo” without Google’s
            permission, though “Foo for Android” is fine.

	“Android”-branded devices
	As the FAQ for
            the Android Compatibility Program (ACP) states: “[I]f a
            manufacturer wishes to use the Android name with their
            product...they must first demonstrate that the device is
            compatible.” Branding your device as being “Android” is therefore
            a privilege that Google intends to police. In essence, you will
            have to make sure your device is compliant and then talk to Google
            and enter into some kind of agreement with it before you can
            advertise your device as being “Foo Android.” We will cover the
            Android Compatibility Program later in this chapter.

	“Droid” in official names
	You may not use “Droid” alone in a name, such as “Foo
            Droid,” for example. For some reason the I haven’t yet entirely
            figured out, “Droid” is a trademark of Lucasfilm. Achieve a Jedi
            rank, you likely must, before you can use it.



Word (and Brand) Play
While Google holds strict control over the use of the
        Android brand, the ASL used for licensing the bulk of the AOSP states
        the following: “This License does not grant permission to use the
        trade names, trademarks, service marks, or product names of the
        Licensor, except as required for reasonable and customary use in
        describing the origin of the Work and reproducing the content of the
        NOTICE file.”
While this clearly says you have no right to use the associated
        trademark, the “reasonable and customary use in describing the origin”
        exception is seen by many as allowing you to state that your device is
        “AOSP based.” Some push this further and simply state that their
        product is “based on Android” or “Android based.” You’ll even find
        some clever marketing material sporting the Android robot to advertise
        a product without mentioning the word “Android.”
Probably one of the sneakiest wordplays I’ve seen is when a
        product lists the following as part of one of its features: “Runs
        Android applications.” You can bet yourself a couple of green robots
        that if it runs Android applications, it’s almost guaranteed to
        contain the AOSP in some way, shape, or form.


Google’s Own Android Apps



While the AOSP contains a core set of applications that are
      available under the ASL, “Android”-branded phones usually contain an
      additional set of “Google” applications that are not part of the AOSP,
      such as Play Store (the “app market” app), YouTube, “Maps and
      Navigation,” Gmail, etc. Obviously, users expect to have these apps as
      part of Android, and you might therefore want to make them available on
      your device. If that is the case, you will need to abide by the ACP and
      enter into an agreement with Google, very much in line with what you
      need to do to be allowed to use “Android” in your product’s name. We
      will cover the ACP shortly.

Alternative App Markets



Though the main app market (i.e., Google Play) is the one hosted
      by Google and made available to users through the Play Store app
      installed on “Android”-branded devices, other players are leveraging
      Android’s open APIs and open source licensing to offer alternative app
      markets. Such is the case with online merchants such as Amazon and
      Barnes & Noble, as well as mobile network operators such as Verizon
      and Sprint. In fact, I know of nothing that would preclude you from
      creating your own app store. There is even at least one open source
      project, the Affero-licensed F-Droid Repository, that
      provides both an app market application and a corresponding server
      backend under the GPL.

Oracle versus Google



As part of acquiring Sun Microsystems, Oracle also
      acquired Sun’s intellectual property (IP) rights to the Java language
      and, according to Java creator James Gosling,[8] it was clear during the acquisition process that Oracle
      intended from the outset to go after Google with Sun’s Java IP
      portfolio. And in August 2010 it did just that, filing suit against
      Google, claiming that it infringed on several patents and committed
      copyright violations.
Without going into the merits of the case, it’s obvious that
      Android does indeed heavily rely on Java. And clearly Sun created Java
      and owned a lot of intellectual property around the language it created.
      In what appears to have been an effort to anticipate any claims Sun may
      put forward against Android, the Android development team went out of
      its way to use as little of Sun’s Java in the Android OS as possible.
      Java is in fact composed mainly of three things: the language and its
      semantics, the virtual machine that runs the Java byte-code generated by
      the Java compiler, and the class library that contains the packages used
      by Java applications at runtime.
The official versions of the Java components are provided by
      Oracle as part of the Java Development Kit (JDK) and the Java Runtime
      Environment (JRE). Android, on the other hand, relies only on the Java
      compiler found in the JDK for building parts of the AOSP; that compiler
      isn’t included as part of the images generated by the AOSP. Also,
      instead of using Oracle’s Java VM, Android relies on Dalvik, a VM custom
      built for Android, and instead of using the official class library,
      Android relies on Apache Harmony, a clean-room reimplementation of the
      class library. Hence, it would seem that Google made every reasonable
      effort to at least avoid any copyright and/or distribution
      issues.
Still, it remains to be seen where these legal proceedings will
      go. Although by May 2012 Google had prevailed on both the copyright and
      patent fronts of the initial trial, Oracle appealed the verdict in
      October of that same year. There is of course a lot at stake, and it
      will likely take many years for this saga to play itself out. If you
      want to follow the latest round of these proceedings or read up on past
      episodes, I suggest you have a look at the Groklaw website and consult the
      relevant Wikipedia
      entry.
Another indirectly related, yet very relevant, development is that
      IBM joined Oracle’s OpenJDK efforts in October 2010. IBM had been the
      driving force behind the Apache Harmony project, which is the class
      library used in Android, and its departure pretty much ensures that the
      project will become orphaned. How this development impacts Android is
      unknown at the time of this writing.
Incidentally, though he later left, James Gosling joined Google in
      March 2011.

Mobile Patent Warfare



The previous section is to some extent but the tip of the
      iceberg with regard to litigation and legal wranglings ongoing in the
      mobile world at the time of this writing. Sales of mobile phones have
      overtaken the sales of traditional PCs, and the mobile market’s growth
      has resulted in the majority of players being somehow involved in legal
      maneuvers against and/or because of its competitors. There’s even a
      Wikipedia entry entitled Smartphone
      wars dedicated to listing the ongoing battles.
It’s hard to say where any of this will go. There seems to be no
      end to the variety of strategies companies will employ or the lengths to
      which they’ll go to ensure they prevail. Apple and Samsung, for
      instance, are at the time of this writing involved in court cases against each other in
      quite a few countries. Microsoft is also rumored to be contacting
      various manufacturers to request royalties for the use of Android; as
      evidenced by some of the filings made by Barnes & Noble with the
      courts after it was sued by Microsoft for refusing to pay.
How any of this might affect your own product is difficult to say.
      As always, consult with competent legal counsel as needed. Usually it’s
      a question of volume. So if your product is for a niche market, you’re
      probably too small a fish to matter. If you’re creating a mass-market product, on the other hand,
      you’ll likely want to make sure you’ve covered all your bases.


Hardware and Compliance Requirements



In principle, Android should run on any hardware that runs Linux.
    Android has in fact been made to run on ARM, x86, MIPS, SuperH, and
    PowerPC—all architectures supported by Linux. A corollary to this is that
    if you want to port Android to your hardware, you must first port Linux to
     it. Beyond being able to run Linux, though, there are few other hardware
    requirements for running the AOSP, apart from the logical requirement of
    having some kind of display and pointer mechanism to allow users to
    interact with the interface. Obviously, you might have to modify  the AOSP to make it work on your hardware configuration, if you don’t
    support a peripheral it expects. For instance, if you don’t have a GPS
    unit in your product, you might want to provide a mock GPS HAL module, as
    the Android emulator does, to the AOSP. You will also need to make sure
    you have enough memory to store the Android images and a sufficiently
    powerful CPU to give the user a decent experience.
In sum, therefore, there are few restrictions if you just want to
    get the AOSP up and running on your hardware. If, however, you are working
    on a device that must carry “Android” branding or must include the
    standard Google-owned applications found in typical consumer Android
    devices—such as the Maps or Play Store applications—you need to go through
    the Android Compatibility Program (ACP) mentioned earlier. There are two
    separate yet complementary parts to the ACP: the Compliance Definition
    Document (CDD) and the Compliance Test Suite (CTS). Even if you don’t
    intend to participate in the ACP, you might still want to take a look at
    the CDD and the CTS, as they give a very good idea about the general
    mind-set that went into the design goals of the Android version you intend
    to use.
Warning
Every Android release has its own CDD and CTS. You must therefore
      use the CDD and CTS that match the version you intend to use for your
      final product. If you switch Android releases midway through your
      project—because, for instance, a new Android release comes out with cool
      new features you’d like to have—you will need to make sure you comply
      with that release’s CDD and CTS. Keep in mind also that you need to
      interact with Google to confirm compliance. Hence, switching may involve
      jumping through a few hoops and potential product delivery
      delays.

The overarching goal of the ACP, and therefore the CDD and the CTS,
    is to ensure a uniform ecosystem for users and application developers.
    Hence, before you are allowed to ship an “Android”-branded device, Google
    wants to make sure you aren’t fragmenting the Android ecosystem by
    introducing incompatible or crippled products. This, in turn, makes sense
    for manufacturers since they are benefiting from the compliance of others
    when they use the “Android” branding. Look at this site for
    more details about the ACP.
Warning
Note that Google reserves the right to decline your participation
      in the Android ecosystem, and therefore prevent your ability to ship the
      Play Store app with your device and use the “Android” branding. As
      stated on their site: “Unfortunately, for a variety of legal and
      business reasons, we aren’t able to automatically license Google Play to
      all compatible devices.”

Compliance Definition Document



The CDD is the policy part of the ACP and is available at the ACP
      URL above. It specifies the requirements that must be met for a device
      to be considered compatible. The language in the CDD is based on
      RFC2119, with a heavy use of “MUST,” “SHOULD,” “MAY,” etc. to describe
      the different attributes. Around 25 pages in length, it covers all
      aspects of the device’s hardware and software capabilities. Essentially,
      it goes over every aspect that cannot simply be automatically tested
      using the CTS. Let’s go over some of what the CDD requires.
Warning
This discussion is based on the Android 2.3/Gingerbread CDD. The
         specific version you use will likely have slightly different
        requirements.

Software



This section lists the Java and native APIs along with the web,
        virtual machine, and user interface compatibility requirements.
        Essentially, if you are using the AOSP, you should readily conform to
        this section of the CDD.

Application packaging compatibility



This section specifies that your device must be able to install
        and run .apk files. All Android
        apps developed using the Android SDK are compiled into .apk files, and these are the files that
        are distributed through Google Play and installed on users’
        devices.

Multimedia compatibility



Here the CDD describes the media codecs (decoders and encoders),
        audio recording, and audio latency requirements for the device. The
        AOSP includes the StageFright multimedia framework, and you can
        therefore conform to the CDD by using the AOSP. However, you should
        read the audio recording and latency sections, as they contain
        specific technical information that may impact the type of hardware or
        hardware configuration your device must be equipped with.

Developer tool compatibility



This section lists the Android-specific tools that must be
        supported on your device. Basically, these are the common tools used
        during app development and testing: adb, ddms, and monkey. Typically, developers don’t interact
        with these tools directly. Instead, they usually develop within the
        Eclipse development environment and use the Android Development Tool
        (ADT) plug-in, which takes care of interacting with the lower-level
        tools.

Hardware compatibility



This is probably the most important section for embedded
        developers, as it likely has profound ramifications on the design
        decisions made for the targeted device. Here’s a summary of what each
        subsection spells out.
	Display and graphics
		Your device’s screen must be at least 2.5 inches in
                  physical diagonal size.

	Its density must be at least 100dpi.

	Its aspect ratio must be between 4:3 and 16:9.

	It must support dynamic screen orientation from
                  portrait to landscape and vice versa. If orientation can’t
                  be changed, then it must support letterboxing, since apps
                  may force orientation changes.

	It must support OpenGL ES 1.0, though it may omit 2.0
                  support.




	Input devices
		Your device must support the Input Method Framework,
                  which allows developers to create custom onscreen, soft
                  keyboards.

	It must provide at least one soft keyboard.

	It can’t include a hardware keyboard that doesn’t
                  conform to the API.

	It must provide Home, Menu, and Back buttons.

	It must have a touch screen, whether it be capacitive
                  or resistive.

	It should support independent tracked points
                  (multitouch) if possible.




	Sensors
	While all sensors are qualified using “SHOULD,” meaning
              that they aren’t compulsory, your device must accurately report
              the presence or absence of sensors and must return an accurate
              list of supported sensors.

	Data connectivity
	The most important item here is an explicit statement that
              Android may be used on devices that don’t have telephony
              hardware. This was added to allow for Android-based tablet
              devices. Furthermore, your device should have hardware support
              for 802.11x, Bluetooth, and near field communication (NFC).
              Ultimately, your device must support some form of networking
              that permits a bandwidth of 200Kbps.

	Cameras
	Your device should include a rear-facing camera and may
              include a front-facing one as well.

	Memory and storage
		Your device must have at least 128MB for storing the
                  kernel and user-space.

	It must have at least 150MB for storing user
                  data.

	It must have at least 1GB of “shared storage.” This is
                  typically, though not always, the removable SD card.

	It must also provide a mechanism to access shared data
                  from a PC. In other words, when the device is connected
                  through USB, the content of the SD card must be accessible
                  on the PC.




	USB
	This requirement is likely the one that most heavily
              demonstrates how user-centric “Android”-branded devices must be,
              since it essentially assumes that the user owns the device and
              therefore requires you to allow users to fully control the
              device when it’s connected to a computer. In some cases this
              might be a showstopper for you, as you may not actually want or
              may not be able to have users connect your embedded device to a
              computer. Nevertheless, the CDD requires the following:
	Your device must implement a USB client, connectable
                  through USB-A.

	It must implement the Android Debug Bridge (ADB)
                  protocol as provided in the adb command over USB.

	It must implement USB mass storage, thereby allowing
                  the device’s SD card to be accessed on the host.






Newer CDDs obviously have evolved from this list. There’s no
        longer a need to have physical Home, Menu, and Back buttons since 3.0,
        since those can be displayed onscreen. OpenGL ES 2.0 support is also
        now mandatory. In addition to USB mass storage support, the device can
        also now provide Media Transfer Protocol (MTP) instead.

Performance compatibility



Although the CDD doesn’t specify CPU speed requirements, it does
        specify app-related time limitations that will impact your choice of
        CPU speed. For instance:
	The Browser app must launch in less than 1300ms.

	The MMS/SMS app must launch in less than 700ms.

	The AlarmClock app must launch in less than 650ms.

	Relaunching an already-running app must take less time than
            the original launch.




Security model compatibility



Your device must conform to the security environment enforced by
        the Android application framework, Dalvik, and the Linux kernel.
        Specifically, apps must have access and be submitted to the permission
        model described as part of the SDK’s documentation. Apps must also be
        constrained by the same sandboxing limitations they have by running as
        separate processes with distinct user IDs (UIDs) in Linux. The
        filesystem access rights must also conform to those described in the
        developer documentation. Finally, if you aren’t using Dalvik, whatever
        VM you use should impose the same security behavior as Dalvik.

Software compatibility testing



Your device must pass the CTS, including the human-operated CTS
        Verifier part. In addition, your device must be able to run specific
        reference applications from Google Play.

Updatable software



There has to be a mechanism for your device to be updated. This
        may be done over the air (OTA) with an offline update via reboot. It
        also may be done using a “tethered” update via a USB connection to a
        PC, or be done “offline” using removable storage.


Compliance Test Suite



The CTS comes as part of the AOSP, and we will discuss how to
      build and use it in Chapter 4. The  AOSP includes a special build target that generates the cts command-line tool, the main interface for
      controlling the test suite. The CTS relies on adb to push and run tests on the USB-connected
      target. The tests are based on the JUnit Java unit testing framework,
      and they exercise different parts of the framework, such as the APIs,
      Dalvik, Intents, Permissions, etc. Once the tests are done, they will
      generate a ZIP file containing XML files and screenshots that you need
      to submit to cts@android.com.


Development Setup and Tools



There are two separate sets of tools for Android development: those
    used for application development and those used for platform development.
    If you want to set up an application development environment, have a look
    at Learning Android or at Google’s online documentation. If  you want to do platform development, as we will do here, your tool needs
    will vary, as you will see later in this book.   
At the most basic level, though, you need to have a Linux-based
    workstation to build the AOSP. In fact, at the time of this writing,
    Google’s only supported build environment is 64-bit Ubuntu 10.04. That
    doesn’t mean that another Ubuntu version or even another Linux
    distribution won’t work or, in the case of Android versions up to
    Gingerbread, that you won’t be  able to build the AOSP on a 32-bit system,[9] but essentially that  configuration reflects Google’s own Android compile farms configuration.
    An easy way to get your hands dirty with AOSP work without changing your
    workstation OS is to create an Ubuntu virtual machine using your favorite
    virtualization tool. I typically use VirtualBox, since I’ve found that
    it makes it easy to access the host’s serial ports in the guest OS.
Note
In some cases, even though 32-bit build support wasn’t available
      for a given Android version, patches were created to make such compiling
      possible. This is especially true for Gingerbread. So even though the
      official tree may not support 32-bit builds, you may be able to find
      another tree that does or a mailing list posting that explains how to do
      it. Still, it remains that newer AOSP versions require more and more
      powerful machines to build in a reasonable amount of time, and most of
      these systems end up being 64 bit. Hence, the impetus for supporting
      builds on 32-bit systems diminishes with every new version of
      Android.

No matter what your setup is, keep in mind that the AOSP is several
    gigabytes in size before building, and its final size is much larger.
    Gingerbread, for example, is about 3GB in size uncompiled and grows to
    about 10GB once compiled, while 4.2/Jelly Bean is 6GB uncompiled and grows
    to about 24GB once compiled.[10] When you factor in that you are likely going to operate on a
    few separate versions—for testing purposes if for no other reason—you
    rapidly realize that you’ll need tens if not hundreds of gigabytes for
    serious AOSP work. Also note that during the period this book was written
    (2011 to 2013), build times for the latest AOSP on the highest-end
    machines have always hovered between
    30 minutes to an hour. Even minor modifications may result in a
    five-minute run to complete the build or regenerate output images. You
    will therefore also likely want to make sure you have a fairly powerful
    machine when developing Android-based embedded systems. We’ll discuss the
    AOSP build and its requirements in greater detail in Chapter 4.



[2] Coinciding with Android’s initial announcement in November 2007,
        The New York Times ran an article entitled “I,
        Robot: The Man Behind the Google Phone” by John Markoff, which
        gave an insightful background portrait of Andy Rubin and his career.
        By extension, it provided a lot of insight on the story behind
        Android. This section is partly based on that article.

[3] OpenGL ES is a version of the OpenGL
              standard aimed at embedded systems.

[4] Android obviously supports more than just GSM telephony.
            Nevertheless, this is the feature’s name as it was officially
            advertised.

[5] GStreamer is the default media framework used in most
              desktop Linux environments, including Gnome, KDE, and
              XFCE.

[6] At the time of this writing, it’s the first time ever that
            Google Play catches up to the number of apps in the App
            Store.

[7] See this LWN post
          by Brian Swetland, a member of Android’s kernel development
          team, for more information on the rationale behind these
          choices.

[8] See Gosling’s blog postings on the topic at http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the
          and http://nighthacks.com/roller/jag/entry/quite_the_firestorm
          for more details.

[9] More recent versions such as JellyBean 4.1 and 4.2 can be built
        only on 64-bit systems.

[10] These uncompiled numbers don’t count the space taken by the
        .git and .repo directories in the tree. The
        uncompiled size of 2.3.7/Gingerbread with those directories is 5.5GB
        and that of 4.2/Jelly Bean is 18GB.


Chapter 2. Internals Primer



As we’ve just seen, Android’s sources are freely available for you to
  download, modify, and install for any device you choose. In fact, it is
  fairly trivial to just grab the code, build it, and run it in the Android
  emulator. To customize the AOSP to your device and its hardware, however,
  you’ll need to first understand Android’s internals to a certain extent. So
  you’ll get a high-level view of Android internals in this chapter, and have
  the opportunity in later chapters to dig into parts of internals in greater
  detail, including tying said internals to the actual AOSP sources.
Note
As mentioned in the Preface, this book is
    mainly based on 2.3.x/Gingerbread. That said, Android’s internals had
    remained fairly stable over its lifetime up to that version of Android,
    and they’ve changed very little from that version to the current 4.2/Jelly
    Bean. Still, while the bulk of the internals remains relatively unchanged,
    critical changes can come unannounced thanks to Android’s closed
    development process. For instance, in 2.2/Froyo and previous versions, the
    Status Bar was an integral part of the System Server. In 2.3/Gingerbread,
    the Status Bar was moved out of the System Server and now runs
    independently from it.[11]

App Developer’s View



Given that Android’s development API is unlike any other existing
    API, including anything found in the Linux world, it’s important to spend
    some time understanding what “Android” looks like from the app developers’
    perspective, even though it’s very different from what Android looks like
    for anyone hacking the AOSP. As an embedded developer working on embedding
    Android on a device, you might not have to actually deal directly with the
    idiosyncrasies of Android’s app development API, but some of your
    colleagues might. If nothing else, you might as well share a common lingo
    with app developers. Of course, this section is merely a summary, and I
    recommend you read up on Android app development for more in-depth
    coverage.
Android Concepts



Application developers must take a few key concepts into account
      when developing Android apps. These concepts shape the architecture of
      all Android apps and dictate what developers can and cannot do. Overall,
      they make users’ lives better, but they can sometimes be challenging to
      deal with.
Components



Android applications consist of loosely tied
        components. Components of one app can invoke or
        use components of other apps. Most importantly, there is no single
        entry point to an Android app: no main() function or any equivalent. Instead,
        there are predefined events called intents that
        developers can tie their components to, thereby enabling their
        components to be activated on the occurrence of the corresponding
        events. A simple example is the component that handles the user’s
        contacts database, which is invoked when the user presses a Contacts
        button in the Dialer or another app. An app, therefore, can have as
        many entry points as it has components.
There are four main types of components:
	Activities
	Just as the “window” is the main building block of all
              visual interaction in window-based GUI systems, activities are
              the main building block in an Android app. Unlike a window,
              however, activities cannot be “maximized,” “minimized,” or
              “resized.” Instead, activities always take the entirety of the
              visual area and are made to be stacked on top of one another in
              the same way as a browser remembers web pages in the sequence
              they were accessed, allowing the user to go back to where he was
              previously. In fact, as described in the previous chapter, all
              Android devices have a Back button, whether it be a physical
              button on the device or a soft button displayed onscreen, to
              make this behavior  available to the user. In contrast to web browsing, though, there is no
              button corresponding to the “forward” browsing action; only
              “back” is possible.
One globally defined Android intent allows an activity to
              be displayed as an icon on the app launcher (the main app list
              on the device). Because the vast majority of apps want to appear
              on the main app list, they provide at least one activity that is
              defined as capable of responding to that intent. Typically, the
              user will start from a particular activity and move through
              several others and end up creating a stack of activities all
              related to the original one they launched; this stack of
              activities is called a task. The user can
              then switch to another task by clicking the Home button and
              starting another activity stack from the app launcher.

	Services
	Android services are akin to background processes or
              daemons in the Unix world. Essentially, a service is activated
              when another component requires its services and typically
              remains active for the duration required by its caller. Most
              importantly, though, services can be made available to
              components outside an app, thereby exposing some of that app’s
              core functionality to other apps. There is usually no visual
              sign of a service being active.

	Broadcast receivers
	Broadcast receivers are akin to interrupt handlers. When a
              key event occurs, a broadcast receiver is triggered to handle
              that event on the app’s behalf. For instance, an app might want
              to be notified when the battery level is low or when “airplane
              mode” (to shut down the wireless connections) has been
              activated. When not handling a specific event for which they are
              registered, broadcast receivers are otherwise inactive.

	Content providers
	Content providers are essentially databases. Usually, an
              app will include a content provider if it needs to make its data
              accessible to other apps. If you’re building a Twitter client
              app, for instance, you could give other apps on the device
              access to the tweet feed you’re presenting to the user through a
              content provider. All content providers present the same API to
              apps, regardless of how they are actually implemented
              internally. Most content providers rely on the SQLite
              functionality included in Android, but they can also use files
              or other types of storage.




Intents



Intents are one of the most important concepts in Android. They
        are the late-binding mechanisms that allow components to interact. An
        app developer could send an intent for an activity to “view” a web
        page or “view” a PDF, hence making it possible for the user to view a
        designated HTML or PDF document even if the requesting app itself
        doesn’t include the capabilities to do so. More fancy use of intents
        is also possible. An app developer could, for instance, send a
        specific intent to trigger a phone call.
Think of intents as polymorphic Unix signals that don’t
        necessarily have to be predefined or require a specific designated
        target component or app. If you are familiar with Qt, you can think of
        an intent as similar to, though not entirely the same as, a Qt signal.
        The intent itself is a passive object. The effects of its dispatching
        will depend on its content, the mechanism used to dispatch it, the
        system’s built-in rules, and the set of installed apps.  One of the system’s rules, for instance, is that intents are tied to the
        type of component they are sent
        to. An intent sent to a service, for example, can be received only by
        a service, not by an activity or a broadcast receiver.
Components can be declared as capable of dealing with given
        intent types using filters in the manifest file.
        The system will thereafter match intents to that filter and trigger
        the corresponding component at runtime. This is typically called an
        “implicit” intent. An intent can also be sent to a specific component
        in an “explicit” fashion, bypassing the need to declare that intent
        within the receiving component’s filter. The explicit invocation,
        though, requires the app to know about the designated component ahead
        of time, which typically applies only when intents are sent within
        components of the same app.

Component lifecycle



Another central tenet of Android is that the user shouldn’t have
        to manage task switching. While there are a number of ways to switch
        among tasks, including a built-in mechanism that’s typically accessed
        with a long press on the Home button, as well as a number of task
        manager apps available for Android, the user experience doesn’t rely
         on those. Instead, the user is expected to start as many apps as he wants
        and “switch” among them by clicking Home to go to the home screen and
        clicking any other app. The app he clicks may be an entirely new one,
        or one that he previously started and for which an activity stack
        (a.k.a. a “task”) already exists.
The corollary to, or consequence of, this design decision is
        that apps gradually use up more and more system resources as they are
        started, a process that can’t go on forever. At some point, the system
        will have to start reclaiming the resources of the least recently used
        or nonpriority components in order to make way for newly activated
        components. Still, this resource recycling should be entirely
        transparent to the user. In other words, when a component is taken
        down to make way for a new one, and then the user returns to the
        original component, it should start up at the point where it was taken
        down and act as if it had been waiting in memory all along.
To make this behavior possible, Android defines a standard
        lifecycle for each component type. An app
        developer must manage her components’ lifecycle by implementing a
        series of callbacks for each component. These callbacks are then
        triggered by events related to the component lifecycle. For instance,
        when an activity is no longer in the foreground (and therefore more
        likely to be destroyed than if it’s in the foreground), its onPause() callback is triggered. Google
        uses a state
        diagram to explain the activity’s lifecycle to app
        developers.
Managing component lifecycles is one of the greatest challenges
        faced by app developers, because they must carefully save and restore
        component states on key transitional events. The desired end result is
        that the user never needs to “task switch” between apps or be aware
        that components from previously used apps were destroyed to make way
        for new ones he started.

Manifest file



If there has to be a “main” entry point to an app, the
        manifest file is likely it. Basically, it informs the system of the
        app’s components, the capabilities required to run the app, the
        minimum level of the API required, any hardware requirements, etc. The
        manifest is formatted as an XML file and resides at the topmost
        directory of the app’s sources as AndroidManifest.xml. The apps’ components
        are typically all described statically in the manifest file. In fact,
        apart from broadcast receivers, which can be registered at runtime,
        all other components must be declared at build time in the manifest
        file.

Processes and threads



Whenever an app’s component is activated, whether it be by the
        system or by another app, a process will be started to house that
        app’s components. And unless the app developer does anything to
        override the system defaults, all other components of that app that
        start after the initial component is activated will run within the
        same process as that component. In other words, all components of an
        app are contained within a single Linux process. Hence, developers
        should avoid making long or blocking operations in standard components
        and use threads instead.
And because the user is essentially allowed to activate as many
        components as he wants, several Linux processes are typically active
        at any time to serve the many apps containing the user’s components.
        When there are too many processes running to allow for new ones to
        start, the Linux kernel’s out-of-memory (OOM) killing mechanisms will
        kick in. At that point, Android’s in-kernel OOM handler will get
        called, and it will determine which processes must be killed to make
        space.
Put simply, the entirety of Android’s behavior is predicated on
        low-memory conditions.
If the developer of the app whose process is killed by Android’s
        OOM handler has implemented his components’ lifecycles properly, the
        user shouldn’t see any adverse behavior. For all practical purposes,
        in fact, the user shouldn’t even notice that the process housing the
        app’s components went away and got re-created “automagically”
        later.

Remote procedure calls (RPCs)



Much like many other components of the system, Android defines
        its own RPC/IPC (remote procedure call/inter-process communication)
        mechanism: Binder. So communication across
        components is not typically done using the usual socket or System V
        IPC. Instead, components use the in-kernel Binder mechanism,
        accessible through /dev/binder, which will be
        covered later in this chapter.
App developers, however, do not use the Binder mechanism
        directly. Instead, they must define and interact with interfaces using
        Android’s Interface Definition Language (IDL). Interface definitions
        are usually stored in an .aidl
        file and are processed by the aidl
        tool to generate the proper stubs and marshaling/unmarshaling code
        required to transfer objects and data back and forth using the Binder
        mechanism.


Framework Intro



In addition to the concepts we just discussed, Android also
      defines its own development framework, which allows developers to access
      functionality typically found in other development frameworks. Let’s
      take a brief look at this framework and its capabilities.
	User interface
	UI elements in Android include traditional widgets such as
            buttons, text boxes, dialogs, menus, and event handlers. This part
            of the API is relatively straightforward, and developers usually
            find their way around it fairly easily if they’ve already coded
            for any other UI framework.
All UI objects in Android are built as descendants of the
            View class and are organized
            within a hierarchy of ViewGroups. An activity’s UI can
            actually be specified either statically in XML (which is the usual
            way) or declared dynamically in Java. The UI can also be modified
            at runtime in Java if need be. An activity’s UI is displayed when
            its content is set as the root of a ViewGroup hierarchy.

	Data storage
	Android presents developers with several storage options.
            For simple storage needs, Android provides shared
            preferences, which allow developers to store key-value
            pairs either in a data set shared by all components of the app or
            within a specific separate file. Developers can also manipulate
            files directly. These files may be stored privately by the app, so
            they are inaccessible to other apps, or they can be made readable
            and/or writable by other apps. App developers can also use the
            SQLite functionality included in Android to manage their own
            private databases. Such a database can then be made available to
            other apps by hosting it within a content provider
            component.

	Security and permissions
	Security in Android is enforced at the process level. In
            other words, Android relies on Linux’s existing process isolation
            mechanisms to implement its own policies. To that end, every app
            installed gets its own UID and group identifier (GID).
            Essentially, it’s as if every app is a separate “user” in the
            system. And as in any multiuser Unix system, these “users” cannot
            access one another’s resources unless permissions are explicitly
            granted to do so. In effect, each app lives in its own separate
            sandbox.
To exit the sandbox and access key system functionality or
            resources, apps must use Android’s permission mechanisms, which
            require developers to statically declare the permissions needed by
            an app in its manifest file. Some permissions, such as the right
            to access the Internet (i.e., use sockets), dial the phone, or use
            the camera, are predefined by Android. Other permissions can be
            declared by app developers and then be required for other apps to
            interact with a given app’s components. When an app is installed,
            the user is prompted to approve the permissions required to run an
            app.
Access enforcement is based on per-process operations and
            requests to access a specific URI (universal resource identifier),
            and the decision to grant access to a specific functionality or
            resource is based on certificates and user prompts. The
            certificates are the ones used by app developers to sign the apps
            they make available through Google Play. Hence, developers can
            restrict access to their apps’ functionality to other apps they
            themselves created in the past.



The Android development framework provides a lot more
      functionality, of course, than can be covered here. I invite you to read
      up on Android app development elsewhere or visit http://developer.android.com
      for more information on 2D and 3D graphics, multi-media, location and
      maps, Bluetooth, NFC, etc.

App Development Tools



The typical way to develop Android applications is to use the freely
      available Android Software
      Development Kit (SDK). This SDK—along with Eclipse, its
      corresponding Android Development Tools (ADT) plug-in, and the
      QEMU-based emulator in the SDK—allows developers to do the vast majority
      of development work straight from their workstations. Developers will
      also usually want to test their apps on real devices prior to making
      them available through Google Play, as there are usually runtime
      behavior differences between the emulator and actual devices. Some
      software publishers take this to the extreme and test their apps on
      several dozen devices before shipping a new release.
Testing on Several Hundred Devices
Obviously, app developers can’t be expected to have every
        possible device at their disposal for testing. A few companies have
        therefore sprung up to allow app developers to test their apps on
        several hundred devices by simply uploading their apps to these
        companies’ websites.
These companies typically have a web interface allowing
        developers to submit their app for execution on their device farm.
        Developers are then given detailed reports about failures and
        sometimes fairly explicit output from the failed devices’ logs. Have a
        look at Apkudo, Bitbar’s Testdroid products, and
        LessPainful if you
        need such functionality.
Interestingly, Apkudo also provides a service to allow you to
        test devices prior to their release by running several hundred popular
        apps on the device to ensure that the AOSP it runs performs
        correctly.

Even if you don’t plan to develop any apps for your embedded
      system, I highly suggest you set up the development environment on your
      workstation. If nothing else, this will allow you to validate the
      effects of modifications you make to the AOSP using basic test
      applications. It will also be essential if you plan to extend the AOSP’s
      API and create and distribute your own custom SDK.
To set up an app development environment, follow the instructions
      provided by Google for the SDK, or have a look at the book Learning
      Android by Marko Gargenta (O’Reilly).

Native Development



While the majority of apps are developed exclusively in Java using
      the development environment we just discussed, certain developers need
      to run natively compiled code. To this end, Google has made the Native  Development Kit (NDK) available. As advertised, this is mostly
      aimed at game developers needing to squeeze every last bit of
      performance out of the device their game is running on. As such, the
      APIs made available in the NDK are mostly geared toward graphics
      rendering and sensor input retrieval. The infamous Angry Birds game, for
      example, relies heavily on code running natively.
Another possible use of the NDK is obviously to port over an
      existing codebase to Android. If you’ve developed a lot of legacy C code
      over several years (a common situation for development houses that have
      created applications for other mobile devices), you won’t necessarily
      want to rewrite it in Java. Instead, you can use the NDK to compile it
      for Android and package it with some Java code to use some of the more
      Android-specific functionality made available by the SDK. The Firefox
      browser, for instance, relies heavily on the NDK to run some of its
      legacy code on Android.
As I just hinted, the nice thing about the NDK is that you can
      combine it with the SDK and therefore have parts of your app in Java and
      parts of your app in C. That said, it’s crucial to understand that the
      NDK gives you access only to a very limited subset of the Android API.
      There is, for instance, presently no API allowing you to send an intent
      from within C code compiled with the NDK; the SDK must be used to do it
      in Java instead. Again, the APIs made available through the NDK are
      mostly geared toward game development.
Sometimes embedded and system developers coming to Android expect
      to be able to use the NDK to do platform-level work. The word “native”
      in the NDK can be misleading in that regard, because the use of the NDK
      still involves all the limitations and requirements that apply to Java app
      developers. So, as an embedded developer, remember that the NDK is useful for app
      developers to run native code that they can call from their Java code.
      Apart from that, the NDK will be of little to no use for the type of
      work you are likely to undertake.


Overall Architecture



Figure 2-1 is probably one of the most
    important diagrams presented in this book, and I suggest you find a way to
    bookmark its location, as I will often refer back to it, if not explicitly
    then implicitly. Although it’s a simplified view—and we will get the
    chance to enrich it as we go—it gives a pretty good idea of Android’s
    architecture and how the various bits and pieces fit together.
[image: Android’s architecture]

Figure 2-1. Android’s architecture

If you are familiar with some form of Linux development, then the
    first thing that should strike you is that beyond the Linux kernel itself,
    there is little in that stack that resembles anything typically seen in
    the Linux or Unix world. There is no glibc, no X Window System, no GTK, no
    BusyBox, no bash shell,  and so on. Many veteran Linux and embedded Linux practitioners have indeed
    noted that Android feels very alien. Though the Android stack starts from
    a clean slate with regard to user-space, we will discuss how to get
    “legacy” or “classic” Linux applications and utilities to coexist side by
    side with the Android stack in Appendix A.
Note
The Google developer documentation presents a different architectural diagram from
      that shown in Figure 2-1. The former is likely
      well suited for app developers, but it omits key information that must
      be understood by embedded developers. For instance, Google’s diagram and
      developer documentation offer little to no reference at the time of this
      writing to the System Server. Yet, as an embedded developer, you need to
      know what that component is, because it’s one of the most important
      parts of Android, and you might need to extend or interact with it
      directly.
This is especially important to understand because you’ll see
      Google’s diagram presented and copied in several documents and
      presentations. If nothing else, remember that the internals and
      significance of the System Server are rarely if at all explained to app
      developers, and that the bulk of information out there is aimed at app
      developers, not developers doing platform work.

Let’s take a deeper look into each part of Android’s architecture,
    starting from the bottom of Figure 2-1 and going
    up. Once we are done covering the various components, we’ll end this
    chapter by going over the system’s startup process.

Linux Kernel



The Linux kernel is the centerpiece of all distributions
    traditionally labeled as “Linux,” including mainstream distributions such
    as Ubuntu, Fedora, and Debian. And while it’s available in “vanilla” form
    from the Linux Kernel Archives,
    most distributions apply their own patches to it to fix bugs and enhance
    the performance or customize the behavior of certain aspects before
    distributing it to their users. Android, as such, is no different in that
    the Android developers patch the “vanilla” kernel to meet their
    needs.
Historically, Android differed from standard practice, however, in
    relying on several custom functionalities that were significantly
    different from what was found in the “vanilla” kernel. In fact, whereas
    the kernel shipped by a Linux distribution can easily be replaced by a
    kernel from kernel.org with little to no impact on
    the rest of the distribution’s components, Android’s user-space components
    would simply not work unless they were running on an “Androidized” kernel.
    As I mentioned in the previous chapter, Android kernels were, up until
    recently, major forks from the mainline kernel. As I also mentioned, the
    situation has since progressed a lot, and many of the features required to
    run Android are finding their way into the mainline kernel.
Note
Hopefully things will have progressed enough by the time you read
      this that you can just grab a kernel straight from http://kernel.org and run the
      AOSP on top of it. However, if past is prelude and the history of
      embedded Linux is an indication of what’s to come, then your best source
      for getting a proper, Android-compatible kernel to run on your hardware
      is likely going to be the vendor of the SoC you’re using.

Although it’s beyond the scope of this book to discuss the Linux
    kernel’s internals, let’s go over the main “Androidisms” added to the
    kernel. You can get information about the kernel’s internals by having a
    look at Robert Love’s Linux Kernel Development, 3rd
    ed. (Addison-Wesley Professional, 2010) and starting to follow
    the Linux Weekly News (LWN) site. LWN
    contains several seminal articles on the kernel’s internals and provides
    the latest news regarding the Linux kernel’s development.
Note that the following subsections cover only the most important
    Androidisms. Androidized kernels typically contain several hundred patches
    over the standard kernel, often to provide device-specific functionality,
    fixes, and enhancements. You can use git[12]  to do an exhaustive analysis of the commit deltas between one of the
    kernels at http://android.googlesource.com and the mainline kernel it
    was forked from. Also, note that some of the functionality in some
    Androidized kernels, such as the PMEM driver, is device-specific and isn’t
    necessarily used in all Android devices.
Creating Your Own Androidized Kernel
If you’d like to know how to create Androidized kernels from
      scratch or if you’re tasked with this, say because you work for an SoC
      vendor, have a look at the Androidization of linux kernel blog
      post by Linaro engineer Vishal Bhoj, published in March 2012. In this
      post, Vishal explains how to create an Androidized kernel using the
      git rebase command. For more
      information about that specific command, have a look at the
      corresponding online git
      documentation.
Incidentally, Linaro, whose role is to assist its members with
      platform enablement, maintains an Androidized kernel that closely
      follows Linus’s HEAD. For more information on this work, have a look at
      this thread.

Wakelocks



Of all the Androidisms, this is likely the one that was
      most contentious. The discussion threads covering its inclusion in the
      mainline kernel generated close to 2,000 emails, and even then there was
      no clear path for merging the wakelock functionality. It was only after
      the 2011 Kernel Summit, where kernel developers agreed to merge most
      Androidisms into the mainline, that efforts were made to try to
      rehabilitate the wakelock mechanism or, as was ultimately decided, to
      create an equivalent that was more palatable to the rest of the kernel
      development community.
As of the end of May 2012, equivalents to the wakelocks and their
      correlated early suspend mechanisms have been
      merged into the mainline kernel. The early suspend replacement is called
      autosleep, and the wakelock mechanism has been
      replaced by a new epoll() flag
      called EPOLLWAKEUP. The API is also
      therefore different from the original functionality added by the Android
      team, but the resulting functionality is effectively the same. At the
      time of this writing, it’s expected that the new versions of the AOSP
      would start using the new mechanisms instead of the old ones.
To understand what wakelocks are and do, we must first discuss how
      power management is typically used in Linux. The most common use case of
      Linux’s power management is a laptop computer. When the lid is closed on
      a laptop running Linux, it will usually go into “suspend” or “sleep”
      mode. In that mode, the system’s state is preserved in RAM, but all
      other parts of the hardware are shut down. Hence, the computer uses as
      little battery power as possible. When the lid is raised, the laptop
      “wakes up,” and the user can resume using it almost
      instantaneously.
That modus operandi works fine for laptops and desktop-like
      devices, but it doesn’t fit mobile devices such as handsets as well.
      Hence, Android’s development team devised a mechanism that changes the
      rules slightly to make them more palatable for such use cases. Instead
      of letting the system be put to sleep at the user’s behest, an
      Androidized kernel is made to go to sleep as soon and as often as
      possible. And to keep the system from going to sleep while important
      processing is being done or while an app is waiting for the user’s
      input, wakelocks are provided to keep the system awake.
The wakelocks and early suspend functionality are actually built
      on top of Linux’s existing power management functionality. However, they
      introduce a different development model, since application and driver
      developers must explicitly grab wakelocks whenever they conduct critical
      operations or must wait for user input. Usually, app developers don’t
      need to deal with wakelocks directly, because the abstractions they use
      automatically take care of the required locking. They can, nonetheless,
      communicate with the Power Manager Service if they require explicit
      wakelocks. Driver developers, on the other hand, can call on the added
      in-kernel wakelock primitives to grab and release wakelocks. The
      downside of using wakelocks in a driver, however, used to be that it
      became  impossible to push that driver into the mainline kernel, because the
      mainline didn’t include wakelock support. Given the recent inclusion of
      equivalent functionality into the mainline, this is no longer an
      issue.
Note
The following LWN articles describe wakelocks in more detail and
        explain the various issues surrounding their inclusion in the mainline
        kernel:
	Wakelocks and
            the embedded problem

	From wakelocks
            to a real solution

	Suspend
            block

	Blocking
            suspend blockers

	What comes
            after suspend blockers

	An alternative
            to suspend blockers

	KS2011: Patch
            review

	Bringing
            Android closer to the mainline

	Autosleep and
            wake locks

	3.5 merge
            window part 2





Low-Memory Killer



As mentioned earlier, Android’s behavior is very much predicated
      on low-memory conditions. Hence, out-of-memory behavior is crucial. For
      this reason, the Android development team has added an additional
      low-memory killer to the kernel that kicks in before the default kernel
      OOM killer. Android’s low-memory killer applies the policies described
      in the app development documentation, weeding out processes hosting
      components that haven’t been used in a long time and are not high
      priority.
Android’s low-memory killer is based on the OOM adjustments
      mechanism available in Linux that enables the enforcement of different
      OOM kill priorities for different processes. Basically, the OOM
      adjustments allow the user-space to control part of the kernel’s OOM
      killing policies. The OOM adjustments range from −17 to 15, with a
      higher number meaning the associated process is a better candidate for
      being killed if the system is out of memory.
Android therefore attributes different OOM adjustment levels to
      different types of processes according to the components they are
      running and configures its own low-memory killer to apply different
      thresholds for each category of process. This effectively allows it to
      preempt the activation of the kernel’s own OOM killer—which kicks in
      only when the system has no memory left—by kicking in when the given
      thresholds are reached, not when the system runs out of memory.
The user-space policies are themselves applied by the init process
      at startup (see Init), and readjusted
      and partly enforced at runtime by the Activity Manager Service, which is
      part of the System Server. The Activity Manager is one of the most
      important services in the System Server and is responsible for, among
      many other things, carrying out the component lifecycle presented
      earlier.
Note
Have a look at the Taming the OOM killer
        LWN article if you’d like to get more information regarding the
        kernel’s OOM killer and how Android traditionally builds on
        it.

At the time of this writing, Android’s low-memory killer is found
      in the kernel’s staging tree along with many of the other
      Android-specific drivers. Work is currently under way to rewrite this
      functionality within a more general framework for low-memory conditions.
      Have a look at the Userspace low memory killer
      daemon post to the Linux Kernel Mailing List (LKML) and the
      linux-vmevent
      patch for a glimpse of what’s currently being worked on. Essentially,
      the goal is to move the decision process about what to do in low-memory
      conditions to a daemon in user-space.
Android and the Linux Staging Tree
At the time of this writing, many of the drivers required to run
        Android have been merged into the staging tree.
        While this means they are still found in mainline kernels available at
        http://kernel.org, it also means that kernel developers
        believe those drivers require work before being considered mature
        enough to be merged alongside the “clean” set of drivers found in the
        rest of the kernel tree.
Specifically, many Android drivers are currently found in the
        drivers/staging/android directory
        of the kernel. They should remain there until they have been
        refactored or rewritten to suit the criteria for them to be admitted
        as official Linux drivers into the relevant location within the
        drivers/ directory.
If you aren’t familiar with the staging tree, have a look at
        Greg Kroah-Hartman’s[13] The
        Linux Staging Tree, what it is and is not blog post from March
        2009: “The Linux Staging tree (or just ‘staging’ from now on) is used
        to hold standalone drivers and filesystems that are not ready to be
        merged into the main portion of the Linux kernel tree at this point in
        time for various technical reasons. It is contained within the main
        Linux kernel tree so that users can get access to the drivers much
        easier than before, and to provide a common place for the development
        to happen, resolving the ‘hundreds of different download sites’
        problem that most out-of-tree drivers have had in the past.”


Binder



Binder is an RPC/IPC mechanism akin to COM under Windows. Its
      roots actually date back to work done within BeOS prior to Be’s assets
      being bought by Palm. It continued life within Palm, and the fruits of
      that work were eventually released as the
      OpenBinder project. Though OpenBinder never
      survived as a standalone project, a few key developers who had worked on
      it, such as Dianne Hackborn and Arve Hjønnevåg, eventually ended up
      working on the Android development team.
Android’s Binder mechanism is therefore inspired by that previous
      work, but Android’s implementation does not derive from the OpenBinder
      code. Instead, it’s a clean-room rewrite of a subset of the OpenBinder
      functionality. The OpenBinder
      Documentation remains a must-read if you want to understand the
      mechanism’s underpinnings and its design philosophy, and so is Dianne
      Hackborn’s explanation on the LKML
      of how the Binder is used in Android.
In essence, Binder attempts to provide remote object invocation
      capabilities on top of a classic OS. In other words, instead of
      reengineering traditional OS concepts, Binder “attempts to embrace and
       transcend them.” Hence, developers get the benefits of dealing with remote
      services as objects without having to deal with a new OS. It therefore
      becomes very easy to extend a system’s functionality by adding remotely
      invocable objects instead of implementing new daemons for providing new
      services, as would usually be the case in the Unix philosophy. The
      remote object can therefore be implemented in any desired language and
      may share the same process space as other remote services or have its
      own separate process. All that is needed to invoke its methods is its
      interface definition and a reference to it.
And as you can see in Figure 2-1, Binder
      is a cornerstone of Android’s architecture. It’s what allows apps to
      talk the System Server, and it’s what apps use to talk to each others’
      service components, although, as I mentioned earlier, app developers
      don’t actually talk to the Binder directly. Instead, they use the
      interfaces and stubs generated by the aidl tool. Even when apps interface with the
      System Server, the android.* APIs
      abstract its services, and the developer never actually sees that Binder
      is being used.
Warning
Though they sound semantically similar, there is a very big
        difference between services running within the System Server and
        services exposed to other apps through the “service” component model I
        introduced in Components as being one
        of the components available to app developers. Most importantly,
        service components are subject to the same system mechanics as any
        other component. Hence, they are lifecycle-managed and run within the
        same privilege sandbox associated with the app they are part of.
        Services running within the System Server, on the other hand,
        typically run with system privileges and live from boot to reboot. The
        only things these two types of services share are: a) their name, and
        b) the use of Binder to interact with them.

The in-kernel driver part of the Binder mechanism is a character
      driver accessible through /dev/binder. It’s used to transmit parcels of
      data between the communicating parties using calls to ioctl(). It also allows one process to
      designate itself as the “Context Manager.” The importance of the Context
      Manager, along with the actual user-space use of the Binder driver, will
      be discussed in more detail later in this chapter.
Since the 3.3 release of the Linux kernel, the Binder driver has
      been merged into the staging tree. There is currently no project under
      way to clean this driver up or to rewrite it to make it applicable
      and/or useful for more general-purpose use in standard Linux desktop and
      server systems. It’s therefore likely to remain in drivers/staging/android/ for the foreseeable
      future.

Anonymous Shared Memory (ashmem)



Another IPC mechanism available in most OSes is shared memory. In
      Linux, this is usually provided by the POSIX SHM functionality, part of
      the System V IPC mechanisms. If you look at the bionic/libc/docs/SYSV-IPC.TXT file included
      in the AOSP, however, you’ll discover that the Android development team
      seems to have a dislike for SysV IPC. Indeed, the argument is made in
      that file that the use of SysV IPC mechanisms in Linux can lead to
      resource leakage within the kernel, opening the door for malicious or
      misbehaving software to cripple the system.
Though it isn’t stated as such by Android developers or any of the
      documentation within the ashmem code or surrounding its use, ashmem very
      likely owes part of its existence to SysV IPC’s shortcomings as seen by
      the Android development team. Ashmem is therefore described as being
      similar to POSIX SHM “but with different behavior.” For instance, it
      uses reference counting to destroy memory regions when all processes
      referring to them have exited, and will shrink mapped regions if the
      system is in need of memory. “Unpinning” a region allows it to be
      shrunk, whereas “pinning” a region disallows the shrinking.
Typically, a first process creates a shared memory region using
      ashmem, and uses Binder to share the corresponding file descriptor with
      other processes with which it wishes to share the region. Dalvik’s JIT
      code cache, for instance, is provided to Dalvik instances through
      ashmem. A lot of System Server components, such as the Surface Flinger
      and the Audio Flinger, rely on ashmem—through the IMemory interface, rather than
      directly.
Note
IMemory is an internal
        interface available only within the AOSP, not to app developers. The
        closest class exposed to app developers is MemoryFile.

At the time of this writing, the ashmem driver is included in the
      mainline’s drivers/staging/android/
      directory and is slated for rewriting.

Alarm



The alarm driver added to the kernel is another case where the
      default kernel functionality wasn’t sufficient for Android’s
      requirements. Android’s alarm driver is actually layered on top of the
      kernel’s existing Real-Time Clock (RTC) and High-Resolution Timers (HRT)
      functionalities. The kernel’s RTC functionality provides a framework for
      driver developers to create board-specific RTC functions, while the
      kernel exposes a single hardware-independent interface through the main
      RTC driver. The kernel HRT functionality, on the other hand, allows
      callers to get woken up at very specific points in time.
In “vanilla” Linux, application developers typically call the
      setitimer() system call to get a
      signal  when a given time value expires; for more information, see the setitimer()’s man page. The system call
      allows for a handful of types of timers, one of which, ITIMER_REAL, uses the kernel’s HRT. This
      functionality, however, doesn’t work when the system is suspended. In
      other words, if an application uses setitimer() to request being woken up at a
      given time and then in the interim the device is suspended, that
      application will get its signal only when the device is woken up
      again.
Separately from the setitimer() system call, the kernel’s RTC
      driver is accessible through /dev/rtc and enables its users to use an
      ioctl() to, among other things, set
      an alarm that will be activated by the RTC hardware device in the
      system. That alarm will fire off whether the system is suspended or not,
      since it’s predicated on the behavior of the RTC device, which remains
      active even when the rest of the system is suspended.
Android’s alarm driver cleverly combines the best of both worlds.
      By default, the driver uses the kernel’s HRT functionality to provide
      alarms to its users, much like the kernel’s own built-in timer
      functionality. However, if the system is about to suspend itself, it
      programs the RTC so that the system gets woken up at the appropriate
      time. Hence, whenever an application from user-space needs a specific
      alarm, it just needs to use Android’s alarm driver to be woken up at the
      appropriate time, regardless of whether the system is suspended in the
      interim.
From user-space, the alarm driver appears as the /dev/alarm character device and allows its
      users to set up alarms and adjust the system’s time (wall time) through
      ioctl() calls. There are a few key
      AOSP components that rely on /dev/alarm. For instance, Toolbox and the
      SystemClock class, available
      through the app development API, rely on it to set/get the system’s
      time. Most importantly, though, the Alarm Manager service part of the
      System Server uses it to provide alarm services to apps that are exposed
      to app developers through the AlarmManager class.
Both the driver and Alarm Manager use the wakelock mechanism
      wherever appropriate to maintain consistency between alarms and the rest
      of Android’s wakelock-related behavior. Hence, when an alarm is fired,
      its consuming app gets the chance to do whatever operation is required before the
      system is allowed to suspend itself again, if need be.
At the time of this writing, Android’s alarm driver is in the
      kernel’s staging tree with upstreaming work pending.

Logger



Logging is another essential component of any Linux system,
      embedded ones included. Being able to analyze a system’s logs for errors
      or warnings either postmortem or in real time can be vital to isolate
      fatal errors, especially transient ones. By default, most Linux
      distributions include two logging systems: the kernel’s own log,
      typically accessed through the dmesg
      command, and the system logs, typically stored in files in the /var/log directory. The kernel’s log usually
      contains the messages printed out by the various printk() calls made within the kernel, either
      by core kernel code or by device drivers. For their part, the system
      logs contain messages coming from various daemons and utilities running
      in the system. In fact, you can use the logger command to send your own messages to
      the system log.
With regard to Android, the kernel’s logging functionality is used
      as is. However, none of the usual system logging software packages
      typically found in most Linux distributions are found in Android.
      Instead, Android defines its own logging mechanisms based on the Android
      logger driver added to the kernel. The classic syslog relies on sending
      messages through sockets, and therefore generates a task switch. It also
      uses files to store its information, therefore generating writes to a
      storage device. In contrast, Android’s logging functionality manages a
      handful of separate kernel-hosted buffers for logging data coming from
      user-space. Hence, no task-switches or file-writes are required for each
      event being logged. Instead, the driver maintains circular buffers in
      RAM where it logs every incoming event and returns immediately back to
      the caller.
There are numerous benefits to avoiding file-writes in the
      settings in which Android is used. For example, unlike in a desktop or
      server environment, it isn’t necessarily desirable to have a log that
      grows indefinitely in an embedded system. It’s also desirable to have a
      system that enables logging even though the filesystem types used may be
      read-only. Furthermore, most Android devices rely on solid-state storage
      devices, which have a limited number of erase cycles. Avoiding
      superfluous writes is crucial in those cases.
Because of its lightweight, efficient, and
      embedded-system-friendly design, Android’s logger can actually be used
      by user-space components at runtime to regularly log events. In fact,
      the Log class available to app
      developers more or less directly invokes the logger driver to write to
      the main event buffer. Obviously, all good things can be abused, and
      it’s preferable to keep the logging light, but still the level of use
      made possible by exposing Log
      through the app API, along with the level of use of logging within the
      AOSP itself, likely would have been very difficult to sustain had
      Android’s logging been based on syslog.
Figure 2-2 describes Android’s
      logging framework in more detail. As you can see, the logger driver is
      the core building block on which all other logging-related functionality
      relies. Each buffer it manages is exposed as a separate entry within
      /dev/log/. However, no user-space
      component directly interacts with that driver. Instead, they all rely on
      liblog, which provides a number of different logging functions.
      Depending on the functions being used and the parameters being passed,
      events will get logged to different buffers. The liblog functions used
      by the Log and Slog classes, for instance, will test whether
      the event being dispatched comes from a radio-related module. If so, the
      event is sent to the “radio” buffer. If not, the Log class will send the event to the “main”
      buffer, whereas the Slog class will
      send it to the “system” buffer. The “main” buffer is the one whose
      events are shown by the logcat
      command when it’s issued without any parameters.
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Figure 2-2. Android’s logging framework

Both the Log and EventLog classes are exposed through the app
      development API, while Slog is for
      internal AOSP use only. Despite being available to app developers,
      though, EventLog is clearly
      identified in the documentation as mainly for system integrators, not
      app developers. In fact, the vast majority of code samples and examples
      provided as part of the developer documentation use the Log class. Typically, EventLog is used by system components to log
      binary events to the Android’s “events” buffer. Some system components,
      especially System Server−hosted services, will use a combination of
      Log, Slog, and EventLog to log different events. An event
      that might be relevant to app developers, for instance, might be logged
      using Log, while an event relevant
      to platform developers or system integrators might be logged using
      either Slog or EventLog.
Note that the logcat utility,
      which is commonly used by app developers to dump the Android logs, also
      relies on liblog. In addition to providing access functions to the
      logger driver, liblog also provides functionality for formatting events
      for pretty printing and filtering. Another feature of liblog is that it
      requires every event being logged to have a priority, a tag, and data.
      The priority is either verbose,
      debug, info, warn,
      or error. The tag is a unique string
      that identifies the component or module writing to the log, and the data
      is the actual information that needs to be logged. This description
      should in fact sound fairly familiar to anyone exposed to the app
      development API, as this is exactly what’s spelled out by the developer
      documentation for the Log
      class.
The final piece of the puzzle here is the adb command. As we’ll discuss later, the AOSP
      includes an Android Debug Bridge (ADB) daemon that runs on the Android
      device and that is accessed from the host using the adb command-line tool. When you type adb logcat on the host, the daemon actually
      launches the logcat command locally
      on the target to dump its “main” buffer and then transfers that back to
      the host to be shown on the terminal.
At the time of this writing, the logger driver has been merged
      into the kernel’s drivers/staging/android/ directory. Have a
      look at the Mainline Android
      logger project for more information regarding the state of this
      driver’s mainlining.

Other Notable Androidisms



A few other Androidisms, in addition to those already covered, are
      worth mentioning, even if I don’t cover them in much detail.
	Paranoid networking
	Usually in Linux, all processes are allowed to create
            sockets and interact with the network. Per Android’s security
            model, however, access to network capabilities has to be
            controlled. Hence, an option is added to the kernel to gate access
            to socket creation and network interface administration based on
            whether the current process belongs to a certain group of
            processes or possesses certain capabilities. This applies to IPv4,
            IPv6, and Bluetooth.
At the time of this writing, this functionality hasn’t been
            merged into the mainline, and the path for its inclusion is
            unclear. You could run an AOSP on a kernel that doesn’t have this
            functionality, but Android’s permission system, especially with
            regard to socket creation, would be broken.

	RAM console
	 As I mentioned earlier, the kernel manages its own
            log, which you can access using the dmesg command. The content of this log
            is very useful, as it often contains critical messages from
            drivers and kernel subsystems. On a crash or a kernel panic, its
            content can be instrumental for postmortem analysis. Since this
            information is typically lost on reboot, Android adds a driver
            that registers a RAM-based console that survives reboots and makes
            its content accessible through /proc/last_kmsg.
At the time of this writing, the RAM console’s functionality
            seems to have been merged into mainline within the pstore
            filesystem in the kernel’s fs/pstore/ directory.

	Physical memory (pmem)
	Like ashmem, the pmem driver allows for sharing
            memory between processes. However, unlike ashmem, it allows the
            sharing of large chunks of physically contiguous memory regions,
            not virtual memory. In addition, these memory regions may be
            shared between processes and drivers. For the G1 handset, for
            instance, pmem heaps are used for 2D hardware acceleration. Note,
            though, that pmem was used in very few devices. In fact, according
            to Brian Swetland, one of the Android kernel development team
            members, it was written to specifically address the MSM7201A’s
            limitations, the MSM7201A being the SoC in the G1.
At the time of this writing, this driver is considered
            obsolete and has been dropped. It isn’t found in the mainline
            kernel, and there are no plans to revive it. It appears that the
            ION memory
            allocator is poised to replace whatever uses pmem
            had.





Hardware Support



Android’s hardware support approach is significantly different from
    the classic approach typically found in the Linux kernel and Linux-based
    distributions. Specifically, the way hardware support is implemented, the
    abstractions built on that hardware support, and the mind-set surrounding
    the licensing and distribution of the resulting code are all
    different.
The Linux Approach



The usual way to provide support for new hardware in Linux is to
      create device drivers that are either built as part of the kernel or
      loaded dynamically at runtime through modules. The corresponding
      hardware is thereafter generally accessible in user-space through
      entries in /dev. Linux’s driver
      model defines three basic types of devices: character devices (devices
      that appear as a stream of bytes), block devices (essentially hard
      disks), and networking devices. Over the years, quite a few additional
      device and subsystem types have been added, such as for USB or Memory
      Technology Device (MTD) devices. Nevertheless, the APIs and methods for
      interfacing with the /dev entry
      corresponding to a given type of device have remained fairly
      standardized and stable.
This has allowed various software stacks to be built on top of
      /dev nodes either to interact with
      the hardware directly or to expose generic APIs that are used by user
      applications to provide access to the hardware. The vast majority of
      Linux distributions in fact ship with a similar set of core libraries
      and subsystems, such as the ALSA audio libraries and the X Window
      System, to interface with hardware devices exposed through /dev.
With regard to licensing and distribution, the general “Linux”
      approach has always been that drivers should be merged and maintained as
      part of the mainline kernel and distributed with it under the terms of
      the GPL. So, while some device drivers are developed and maintained
      independently and some are even distributed under other licenses, the
      consensus has been that this isn’t the preferred approach. In fact, with
      regard to licensing, non-GPL drivers have always been a contentious
      issue. Hence, the conventional wisdom is that users’ and distributors’
      best bet for getting the latest drivers is usually to get the latest
      mainline kernel from http://kernel.org. This has been true since the kernel’s
      early days and remains true despite some additions having been made to
      the kernel to allow the creation of user-space drivers.

Android’s General Approach



Although Android builds on the kernel’s hardware abstractions and
      capabilities, its approach is very different. On a purely technical
      level, the most glaring difference is that its subsystems and libraries
      don’t rely on standard /dev entries
      to function properly. Instead, the Android stack typically relies on
      shared libraries provided by manufacturers to interact with hardware. In
      effect, Android relies on what can be considered a Hardware Abstraction
      Layer (HAL), although, as we will see, the interface, behavior, and
      function of abstracted hardware components differ greatly from type to
      type.
In addition, most software stacks typically found in Linux
      distributions to interact with hardware are not found in Android. There
      is no X Window System, for instance, and while ALSA drivers are
      sometimes used—a decision left up to the hardware manufacturer who
      provides the shared library implementing audio support for the
      HAL—access to their functionality is different from that on standard
      Linux distributions. The ALSA libraries typically used in Linux desktop
      environments to interface with ALSA drivers, for example, aren’t used in
      the official AOSP tree. Instead, recent Android releases include a
      BSD-licensed tinyalsa library as a
      replacement.
Figure 2-3 presents the typical way in
      which hardware is abstracted and supported in Android, along with the
      corresponding distribution and licensing. As you can see, Android still
      ultimately relies on the kernel to access the hardware. However, this is
      done through shared libraries that are either implemented by the device
      manufacturer or provided as part of the AOSP. Generally speaking, you
      can consider the HAL layer as being the hardware library loader shown in
      the diagram, along with the header files defining the various hardware
      types, with those same header files being used as the API definitions
      for the hardware library .so
      files.
[image: Android’s “Hardware Abstraction Layer”]

Figure 2-3. Android’s “Hardware Abstraction Layer”

One of the main features of this approach is that the license
      under which the shared library is distributed is up to the hardware
      manufacturer. Hence, a device manufacturer can create a simplistic
      device driver that implements the most basic primitives to access a
      given piece of hardware and make that driver available under the GPL.
      Not much would be revealed about the hardware, since the driver wouldn’t
      do anything fancy. That driver would then expose the hardware to
      user-space through mmap() or
      ioctl(), and the bulk of the
      intelligence would be implemented within a proprietary shared library in
      user-space that uses those functions to drive the hardware.
Android does not in fact specify how the shared library and the
      driver or kernel subsystem should interact. Only the API provided by the
      shared library to the upper layers is specified by the HAL. Hence, it’s
      up to you to determine the specific driver interface that best fits your
      hardware, so long as the shared library you provide implements the
      appropriate API. Nevertheless, we will cover the typical methods used by
      Android to interface to hardware in the next section.
Where Android is relatively inconsistent is the way the
      hardware-supporting shared libraries are loaded by the upper layers.
      Remember for now that for most hardware types, there has to be a
      .so file that is either provided by
      the AOSP or that you must provide for Android to function
      properly.
No matter which mechanism is used to load a hardware-supporting
      shared library, a system service corresponding to the type of hardware
      is typically responsible for loading and interfacing with the shared
      library. That system service will be responsible for interacting and coordinating with the
      other system services to make the hardware behave coherently with the
      rest of the system and the APIs exposed to app developers. If you’re
      adding support for a given type of hardware, it’s therefore crucial that
      you try to understand in as much detail as possible the internals of the
      system service corresponding to your hardware. Usually, the system
      service will be split in two parts: one part in Java that implements
      most of the Android-specific intelligence, and another part in C/C++
      whose main job is to interact with the HAL, the hardware-supporting
      shared library and other low-level functions.

Loading and Interfacing Methods



As I mentioned earlier, there are various ways in which system
      services and Android in general interact with the shared libraries
      implementing hardware support and hardware devices in general. It’s
      difficult to fully understand why there is such a variety of methods,
      but I suspect that some of them evolved organically. Luckily, there
      seems to be a movement toward a more uniform way of doing things. Given
      that Android moves at a fairly rapid pace, this is one area that will
      require keeping an eye on for the foreseeable future, as it’s likely to
      evolve.
Note that the methods described here are not necessarily mutually
      exclusive. Often a combination of these is used within the Android stack
      to load and interface with a shared library or some software layer
      before or after it. I’ll cover specific hardware in the next
      section.
	dlopen()-loading through
          HAL
	 Applies to: GPS, Lights, Sensors, and Display.
            Also applies to Audio and Camera starting from 4.0/Ice-Cream
            Sandwich. 
Some hardware-supporting shared libraries are loaded by the
            libhardware library. This
            library is part of Android’s HAL and exposes hw_get_module(), which is used by some
            system services and subsystems to explicitly load a given specific
            hardware-supporting shared library (a.k.a. a “module” in HAL
            terminology). hw_get_module()
            in turn relies on the classic dlopen() to load libraries into the
            caller’s address space.
Warning
HAL “modules” shouldn’t be confused with loadable kernel
              modules, which are a completely different and unrelated software
              construct, even though they share some similar properties.




	Linker-loaded .so
          files
	 Applies to: Audio, Camera, Wifi, Vibrator, and
            Power Management 
In some cases, system services are simply linked against a
            given .so file at build time.
            Hence, when the corresponding binary is run, the dynamic linker
            automatically loads the shared library into the process’s address
            space.



	Hardcoded dlopen()s
	 Applies to: StageFright and Radio Interface Layer
            (RIL) 
In a few cases, the code invokes dlopen() directly instead of going
            through libhardware to fetch
            a hardware-enabling shared library. The rationale for using this
            method instead of the HAL is unclear.



	Sockets
	 Applies to: Bluetooth, Network Management, Disk
            Mounting, and Radio Interface Layer (RIL) 
Sockets are sometimes used by system services or framework
            components to talk to a remote daemon or service that actually
            interacts with the hardware.



	Sysfs entries
	 Applies to: Vibrator and Power Management
            
Some entries in sysfs (/sys) can be used to control the
            behavior of hardware and/or kernel subsystems. In some cases,
            Android uses this method instead of /dev entries to control the hardware.
            Use of sysfs entries instead of /dev nodes makes sense, for instance,
            when defaults need to be set during system initialization when no
            part of the framework is yet running.



	/dev nodes
	 Applies to: Almost every type of hardware
            
Arguably, any hardware abstraction must at some point
            communicate with an entry in /dev, because that’s how drivers are
            exposed to user-space. Some of this communication is likely hidden
            from Android itself because it interacts with a shared library
            instead, but in some corner cases AOSP components directly access
            device nodes. Such is the case of input libraries used by the
            Input Manager.



	D-Bus
	 Applies to: Bluetooth 
D-Bus is a classic messaging system found in most Linux
            distributions for facilitating communication between various
            desktop components. It’s included in Android because it’s the
            prescribed way for a non-GPL component to talk to the GPL-licensed
            BlueZ stack—Linux’s default Bluetooth stack and the one used in
            Android—without being subject to the GPL’s redistribution
            requirements; D-Bus itself being dual-licensed under the Academic
            Free License (AFL) and the GPL. Have a look at freedesktop.org’s D-Bus
            page for more information.
Given that BlueZ has been removed from the AOSP starting
            with 4.2/Jelly Bean, it’s unclear what uses D-Bus will have, if
            any, in future Android releases.




Device Support Details



Table 2-1 summarizes the way in which
      each type of hardware is supported in Android. As you’ll notice, there
      is a wide variety of combinations of mechanisms and interfaces. If you
      plan on implementing support for a specific type of hardware, the best
      way forward is to start from an existing sample implementation. The AOSP
      typically includes hardware support code for a few handsets, generally
      those that were used by Google to develop new Android releases and
      therefore served as lead devices. Sometimes the sources for hardware
      support are quite extensive, as was the case for the Samsung Nexus S (a.k.a. “Crespo,” its code name)
      in Gingerbread, and the Galaxy Nexus (a.k.a. “Maguro”) and the Nexus 7
      (a.k.a. “Grouper”) in Jelly Bean.
The only type of hardware for which you are unlikely to find
      publicly available implementations on which to base your own is the RIL.
      For various reasons, it’s best not to let everyone be able to play with
      the airwaves. Hence, manufacturers don’t make such implementations
      available. Instead, Google provides a reference RIL implementation in
      the AOSP should you want to implement a RIL.
Table 2-1. Android’s hardware support methods and interfaces
	Hardware	System Service	Interface to User-Space Hardware Support	Interface to Hardware
	Audio	Audio Flinger	Linker-loaded[a] libaudio.so	Up to hardware manufacturer, though ALSA is
              typical
	Bluetooth	Bluetooth Service	Socket/D-Bus to BlueZ[b]	BlueZ stack
	Camera	Camera Service	Linker-loaded[c] libcamera.so	Up to hardware manufacturer, sometimes
              Video4Linux
	Display	Surface Flinger	HAL-loaded gralloc
              module[d]	Up to hardware manufacturer, /dev/fb0 or /dev/graphics/fb0
	GPS	Location Manager	HAL-loaded gps
              module	Up to hardware manufacturer
	Input	Input Manager	Native libui.so
              library[e]	Entries in /dev/input/
	Lights	Lights Service	HAL-loaded lights
              module	Up to hardware manufacturer
	Media	N/A, StageFright framework within Media Service	dlopen on libstagefrighthw.so	Up to hardware manufacturer
	Network interfaces[f]	Network Management Service	Socket to netd	ioctl() on
              interfaces
	Power management	Power Manager Service	Linker-loaded
              libhardware_legacy.so	Entries in /sys/power/ or, in older days,
              /sys/android_power/
	Radio (Phone)	Phone Service	Socket to rild, which
              itself does a dlopen()on
              manufacturer-provided .so	Up to hardware manufacturer
	Storage	Mount Service	Socket to vold	System calls and /sys entries
	Sensors	Sensor Service	HAL-loaded sensors
              module	Up to hardware manufacturer
	Vibrator	Vibrator Service	Linker-loaded
              libhardware_legacy.so	Up to hardware manufacturer
	WiFi	Wifi Service	Linker-loaded
              libhardware_legacy.so	Classic wpa_supplicant[g] in most cases
	[a] This is HAL-loaded starting with 4.0/Ice-Cream
                  Sandwich.

[b] BlueZ has been removed starting with 4.2/Jelly Bean. A
                  Broadcom-supplied Bluetooth stack called
                  bluedroid has replaced it. The new
                  Bluetooth stack relies on HAL-loading like most other
                  hardware types.

[c] This is HAL-loaded starting with 4.0/Ice-Cream
                  Sandwich.

[d] The module used by the Surface Flinger is hwcomposer starting with
                  4.0/Ice-Cream Sandwich

[e] This has been replaced by the libinput.so library starting with
                  4.0/Ice-Cream Sandwich.

[f] This is for Tether, NAT, PPP, PAN, USB RNDIS
                  (Windows). It isn’t for WiFi.

[g] wpa_supplicant is
                  the same software package used on any Linux desktop to
                  manage WiFi networks and connections.







Native User-Space



Now that we’ve covered the low-level layers on which Android is built,
    let’s start going up the stack. First off, we’ll cover the native
    user-space environment in which Android operates. By “native user-space,”
    I mean all the user-space components that run outside the Dalvik virtual
    machine. This includes quite a few binaries that are compiled to run
    natively on the target’s CPU architecture. These are generally started
    either automatically or as needed by the init process according to its
    configuration files, or are available to be invoked from the command line
    once a developer shells into the device. Such binaries usually have direct
    access to the root filesystem and the native libraries included in the
    system. Their capabilities are restricted only by the filesystem rights
    granted to them and their effective UID and GID. They aren’t subject to
    any of the restrictions imposed on a typical Android app by the Android
    Framework because they are running outside it.
Note that Android’s user-space was designed pretty much from a blank
    slate and differs greatly from what you’d find in a standard Linux
    distribution. Hence, I will try as much as possible to explain where
    Android’s user-space is different from or similar to what you’d usually
    find in a Linux-based system.
Filesystem Layout



Like any other Linux-based distribution, Android uses a
      root filesystem to store applications, libraries, and data. Unlike the
      vast majority of Linux-based distributions, however, the layout of
      Android’s root filesystem does not adhere to the Filesystem Hierarchy
      Standard (FHS).[14] The kernel itself doesn’t enforce the FHS, but most
      software packages built for Linux assume that the root filesystem they
      are running on conforms to the FHS. Hence, if you intend to port a
      standard Linux application to Android, you’ll likely need to do some
      legwork to ensure that the filepaths it relies on are still valid, or
      use some form of “chroot jail” to isolate it and
      its supporting packages from the rest of the root filesystem (see
      chroot’s man page for details).
Given that most of the packages running in Android’s user-space
      were written from scratch specifically for Android, this lack of
      conformity is of little to no consequence to Android itself. In fact, it
      has some benefits, as we’ll see shortly. Still, it’s important to learn
      how to navigate Android’s root filesystem. If nothing else, you’ll
      likely have to spend quite some time inside it as you bring Android up
      on your hardware or customize it for that hardware.
The two main directories in which Android operates are /system and /data. These directories do not emanate from
      the FHS. In fact, I can’t think of any mainstream Linux distribution
      that uses either of these directories. Rather, they reflect the Android
      development team’s own design. This is one of the first signs hinting
      that it might be possible to host Android side by side with a common
      Linux distribution on the same root filesystem. Have a look at Appendix A for more information on how to create such a
      hybrid.
/system is the main Android
      directory for storing immutable components generated by the build of the
      AOSP. This includes native binaries, native libraries, framework
      packages, and stock apps. It’s usually mounted read-only from a separate
      image from the root filesystem, which is itself mounted from a RAM disk
      image. /data, on the other hand, is
      Android’s main directory for storing data and apps that change over
      time. This includes the data generated and stored by apps installed by
      the user alongside data generated by Android system components at
      runtime. It, too, is usually mounted from its own separate image, though
      in read-write mode.
Android also includes many directories commonly found in any Linux
      system, such as /dev, /proc, /sys, /sbin, /root, /mnt, and /etc. These directories often serve similar
      if not identical purposes to the ones they serve on any Linux system,
      although they are very often trimmed down, as is the case of /sbin and /etc, and in some cases are empty, such as
      /root.
Interestingly, Android doesn’t include any /bin or /lib directories. These directories are
      typically crucial in a Linux system, containing, respectively, essential
      binaries and essential libraries. This is yet another artifact that
      opens the door for making Android coexist with standard Linux
      components.
There is of course more to be said about Android’s root filesystem. The
      directories just mentioned, for instance, contain their own hierarchies.
      Also, Android’s root filesystem contains other directories I haven’t
      covered here. We will revisit the Android root filesystem and its makeup
      in more detail in Chapter 6.

Libraries



Android relies on about 100 dynamically loaded libraries, all  stored in the /system/lib directory. A certain
      number of these come from external projects that were merged into
      Android’s codebase to make their functionality available within the
      Android stack, but a large portion of the libraries in /system/lib are actually generated from
      within the AOSP itself. Table 2-2 lists
      the libraries included in the AOSP that come from external projects,
      whereas Table 2-3 summarizes the
      Android-specific libraries generated from within the AOSP.
Table 2-2. Libraries generated from external projects imported into the
        AOSP
	Library(ies)	External Project	Original Location	License
	audio.so, liba2dp, input.so, libbluetooth and libbluetoothd	BlueZ[a]	http://www.bluez.org	GPL
	libcrypto.so and
              libssl.so	OpenSSL	http://www.openssl.org	Custom, BSD-like
	libdbus.so	D-Bus	http://dbus.freedesktop.org	AFL and GPL
	libexif.so[b]	Exif JPEG header manipulation tool	http://www.sentex.net/~mwandel/jhead/	Public Domain
	libexpat.so	Expat XML Parser	http://expat.sourceforge.net	MIT
	libFFTEm.so	neven face recognition library	N/A	ASL
	libicui18n.so and
              libicuuc.so	International Components for Unicode	http://icu-project.org	MIT
	libiprouteutil.so
              and libnetlink.so	iproute2 TCP/IP networking and traffic control	http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2	GPL
	libjpeg.so	libjpeg	http://www.ijg.org	Custom, BSD-like
	libnfc_ndef.so	NXP Semiconductor’s NFC library	N/A	ASL
	libskia.so and, in
              2.3/Gingerbread, libskiagl.so	skia 2D graphics library	http://code.google.com/p/skia/	ASL
	libsonivox	Sonic Network’s Audio Synthesis library	N/A	ASL
	libsqlite.so	SQLite database	http://www.sqlite.org	Public domain
	libSR_AudioIn.so
              and, in 2.3/Gingerbread, libsrec_jni.so	Nuance Communications’ Speech Recognition engine	N/A	ASL
	libstlport.so	Implementation of the C++ Standard Template
              Library	http://stlport.sourceforge.net	Custom, BSD-like
	libttspico.so	SVOX’s Text-to-Speech speech synthesizer engine	N/A	ASL
	libvorbisidec.so	Tremolo ARM-optimized Ogg Vorbis decompression
              library	http://wss.co.uk/pinknoise/tremolo/	Custom, BSD-like
	libwebcore.so	WebKit Open Source Project	http://www.webkit.org	LGPL and BSD
	libwpa_client.so	Library used by legacy HAL to talk to wpa_supplicant
              daemon	http://hostap.epitest.fi/wpa_supplicant/	GPL and BSD
	libz.so	zlib compression library	http://zlib.net	Custom, BSD-like
	[a] BlueZ has been replaced by an ASL-licensed,
                  Broadcom-supplied Bluetooth stack called
                  bluedroid that is also found in
                  external/. The
                  libraries generated by bluedroid are different from those
                  listed here.

[b] Note that Android’s libexif.so’s API is very
                  different from that library’s API as available in
                  traditional Linux distributions.





Table 2-3. Android-specific libraries generated from within the
        AOSP
	Category	Library(ies)	Description
	Bionic	libc.so	C library
	libm.so	Math library
	libdl.so	Dynamic linking library
	libstdc++.so	C++ support library[a]
	libthread_db.so	Thread debugging library
	Core[b]	libbinder.so	The Binder library
	libutils.so,
              libcutils.so,  libnetutils.so, and libsysutils.so	Various utility libraries
	libsystem_server.so,
              libandroid_servers.so,
              libaudioflinger.so,
              libsurfaceflinger.so,
              libsensorservice.so, and
              libcameraservice.so	System-services-related libraries
	libcamera_client.so
              and, in 2.3/Gingerbread, libsurfaceflinger_client.so[c]	Client libraries for certain system services
	libpixelflinger.so	The PixelFlinger library
	libui.so	Low-level user-interface-related functionalities, such as
              user input events handling and dispatching and graphics buffer
              allocation and manipulation
	libgui.so	Library for functions related to sensors and, starting
              with 4.0/Ice-Cream Sandwich, client communication with the
              Surface Flinger
	liblog.so	The logging library
	libandroid_runtime.so	The Android Runtime library
	libandroid.so	C interface to lifecycle management, input events, window
              management, assets, and Storage Manager
	Dalvik	libdvm.so	The Dalvik VM library
	libnativehelper.so	JNI-related helper functions
	Hardware	libhardware.so	The HAL library that provides hw_get_module() and uses dlopen() to load hardware support
              modules (i.e., shared libraries that provide hardware support to
              the HAL) on demand
	libhardware_legacy.so	Legacy HAL library providing hardware support for WiFi,
              power-management, and vibrator
	Various hardware-supporting shared libraries	Libraries that provide support for various hardware
              components; some are loaded through the HAL, while others are
              loaded automatically by the linker
	Media	libmediaplayerservice.so	The Media Player service library
	libmedia.so	The low-level media functions used by the Media Player
              service
	libstagefright*.so	The many libraries that make up the StageFright media
              framework
	libeffects.so and
              the libraries in the soundfx/ directory	The sound effects libraries
	libdrm1.so and
              libdrm1_jni.so	The DRM (Digital Rights Management) framework
              libraries
	OpenGL	libEGL.so, libETC1.so, libGLESv1_CM.so, libGLESv2.so, and egl/ligGLES_android.so	Android’s OpenGL implementation
	[a] Some say that this library is similar in its role to
                  the libsupc++.a found
                  in standard Linux systems, while Android’s libstlport.so is closer to
                  traditional Linux systems’ libstdc++.so.

[b] I’m using this category as catchall for many core
                  Android functionalities.

[c] Starting with 4.0/Ice-Cream Sandwich, the
                  functionality corresponding to libsurfaceflinger_client.so has
                  been merged into libgui.so.





Since 2.3/Gingerbread, many libraries have been added to
      that AOSP. Tables 2-4 and 2-5
      list some of the most notable additions you’ll find in 4.1/Jelly
      Bean.
Table 2-4. Important libraries from external projects found in 4.1/Jelly
        Bean
	Library(ies)	External Project	Original Location	License
	libtinyalsa.so	tinyalsa	http://github.com/tinyalsa	ASL
	libmtp.so	libmtp	http://libmtp.sourceforge.net/	LGPL
	libchromium_net.so	WebKit	http://webkit.org/	LGPL and BSD
	libmdnssd.so	mDNSResponder	http://www.opensource.apple.com/tarballs/mDNSResponder/	ASL



Table 2-5. Important Android-specific libraries found in 4.1/Jelly
        Bean
	Category	Library(ies)	Description
	Core	libjnigraphics.so	C interface to the 2D graphics system
	libcorkscrew.so	Debugging library
	libRS.so	Interface to RenderScript
	Media	libOpenMAXAL.so	Native multimedia library, based on Khronos OpenMAX
              AL
	libOpenSLES.so	Khronos OpenSL EL compatible audio system
	libaudioutils.so	Echo cancellation and other audio tools




Init



One thing Android doesn’t change is the kernel’s boot process.
      Hence, whatever you know about the kernel’s startup continues to apply
      just the same to Android’s use of Linux. What changes in Android is what
      happens once the kernel finishes booting. Indeed, after it’s finished
      initializing itself and the drivers it contains, the kernel starts just
      one user-space process, the  init process. This process is then responsible for
      spawning all other processes and services in the system and for
      conducting critical operations such as reboots. Traditionally, Linux
      distributions have relied on SystemV init for the init process, although
      in recent years many distributions have created their own variants.
      Ubuntu, for instance, uses Upstart. In embedded Linux
      systems, the classic package that provides init is BusyBox.
Android introduces its own custom init, which brings with it a few
      novelties.
Configuration language



Unlike traditional inits, which are predicated on the use of
        scripts that run per the current run-levels’ configuration or on
        request, Android’s init defines its own configuration semantics and
        relies on changes to global properties to trigger the execution of
        specific instructions.
The main configuration file for init is usually stored as
        /init.rc, but there’s also
        usually a device-specific configuration file stored as /init.<device_name>.rc, where <device_name>
        is the name of the device. In some cases, such as the emulator, for
        example, there’s also a device-specific
        script stored as /system/etc/init.<device_name>.sh. You can get a high degree of control
        over the system’s startup and its behavior by modifying those
        files. For instance, you can disable the Zygote—a key system component
        that we’ll cover in greater detail later in this chapter and in Chapter 7—from starting up automatically and  then starting it manually yourself after having used adb to shell into the device.
We’ll discuss the init’s configuration language in depth in
        Chapter 6.

Global properties



A very interesting aspect of Android’s init is how it manages a
        global set of properties that can be accessed and set from many parts
        of the system, with the appropriate rights. Some of these properties
        are set at build time, while others are set in init’s configuration
        files, and still others are set at runtime. Some properties are also
        persisted to storage for permanent use. Since init manages the
        properties, it can detect any changes and therefore trigger the
        execution of a set of commands based on its configuration.
The OOM adjustments mentioned earlier, for instance, are set on
        startup by the init.rc file. So are
        network  properties. Some of the properties set at build time are stored in the
        /system/build.prop file and
        include the build  date and build system details. At runtime, the system will have over 100
        different properties, ranging from IP and GSM configuration parameters
        to the battery’s level. Use the getprop command to get the current list of
        properties and their values.
We’ll discuss the init’s global properties, the files used to
        provide its default values, and the relevant commands in greater
        detail in Chapter 6.

udev events



As I explained earlier, access to devices in Linux is done
        through nodes within the /dev
        directory. In the old  days, Linux distributions would ship with thousands of entries in that
        directory to accommodate all possible device configurations.
        Eventually, though, a few schemes were proposed to make the creation
        of such nodes dynamic. For some time now, the system in use has been
        udev, which relies on runtime events generated by
        the kernel every time hardware is added or removed from the
        system.
In most Linux distributions, the handling of udev hotplug events
        is done by the udevd daemon. In
        Android, these events are handled by the ueventd daemon built as part of Android’s
        init and accessed through a symbolic link from /sbin/ueventd to /init. To know which entries to create in
        /dev, ueventd relies on the /ueventd.rc and /ueventd.<device_name>.rc files.
We’ll discuss the ueventd and
        its configuration files in detail in Chapter 6.


Toolbox



Much like the root filesystem’s directory hierarchy, there are
      essential binaries on most Linux systems, listed by the FHS for the
      /bin and /sbin directories. In most Linux
      distributions, the binaries in those directories are built from separate
      packages coming from different projects available on the Internet. In an
      embedded system, it doesn’t make sense to have to deal with so many
      packages, nor necessarily to have that many separate binaries.
The approach taken by the classic BusyBox package is to build a
      single binary that essentially has what amounts to a huge switch-case, which checks for the first
      parameter on the command line and executes the corresponding
      functionality. All commands are then made to be symbolic links to the
      busybox command. So when you type
      ls, for example, you’re actually
      invoking BusyBox. But since BusyBox’s behavior is predicated on the
      first parameter on the command line and that parameter is ls, it will behave as if you had run that
      command from a standard Linux shell.
Android doesn’t use BusyBox but includes its own tool, Toolbox,
      that basically functions in the very same way, using symbolic links to
      the toolbox command. Unfortunately,
      Toolbox is nowhere as feature-rich as BusyBox. In fact, if you’ve ever
      used BusyBox, you’re likely going to be very disappointed when using
      Toolbox. The rationale for creating a tool from scratch in this case
      seems to be the licensing angle, BusyBox being GPL licensed. In
      addition, some Android developers have stated that their goal was to
      create a minimal tool for shell-based debugging and not to provide a
      full replacement for shell tools, as BusyBox is.  At any rate, Toolbox is BSD licensed, and manufacturers can therefore
      modify it and distribute it without having to track the modifications
      made by their developers or making any sources available to their
      customers.
You might still want to include BusyBox alongside Toolbox to
      benefit from its capabilities. If you don’t want to ship it as part of
      your final product because of its licensing, you could include it
      temporarily during development and strip it from the final production
      release. I’ll cover this in more detail in Appendix A.

Daemons



As part of the system startup, Android’s init starts a few key
      daemons that continue to run throughout the lifetime of the system. Some
      daemons, such as adbd, are started on
      demand, depending on build options and changes to global properties.
       Table 2-6 provides a list of some of the more
      prominent daemons that Android runs. Many of these are discussed in much
      greater detail in Chapters 6 and 7.
Table 2-6. Android daemons
	Daemon	Description
	ueventd	Android’s replacement for udev.
	servicemanager	The Binder Context Manager. Acts as an index of all
              Binder services running in the system.
	vold	The volume manager. Handles the mounting and formatting
              of mounted volumes and images.
	netd	The network manager. Handles tethering, NAT, PPP, PAN,
              and USB RNDIS.
	debuggerd	The debugger daemon. Invoked by Bionic’s linker when a
              process crashes to do a postmortem analysis. Allows gdb to connect from the host.
	rild	The RIL daemon. Mediates all communication between the
              Phone Service and the Baseband Processor.
	Zygote	The Zygote process. It’s responsible for warming up the
              system’s cache and starting the System Server. We’ll discuss it
              in more detail later in this chapter.
	mediaserver	The Media server. Hosts most media-related services.
              We’ll discuss it in more detail later in this chapter.
	dbus-daemon	The D-Bus message daemon. Acts as an intermediary between
              D-Bus users. Have a look at its man page for more
              information.
	bluetoothd	The Bluetooth daemon. Manages Bluetooth devices. Provides
              services through D-Bus. No longer in the AOSP as of 4.2/Jelly
              Bean, since the BlueZ stack has been removed.
	installd	The .apk
              installation daemon. Takes care of installing and uninstalling
              .apk files and managing the
              related filesystem entries.
	keystore	The KeyStore daemon. Manages an encrypted key-value pair
              store for cryptographic keys, SSL certs for instance.
	system_server	Android’s System Server. This daemon hosts the vast
              majority of system services that run in Android.
	adbd	The ADB daemon. Manages all aspects of the connection
              between the target and the host’s adb command.




Command-Line Utilities



More than 150 command-line utilities are scattered throughout
      Android’s root filesystem.
      /system/bin contains the majority
      of them, but some “extras” are in /system/xbin, and a handful are in /sbin. Around 50 of those in /system/bin are actually symbolic links to
      /system/bin/toolbox. The majority
      of the rest come from the Android base framework, from external projects
      merged into the AOSP, or from various other parts of the AOSP. We’ll get
      the chance to cover the various binaries found in the AOSP in more
      detail in Chapters 6 and 7.


Dalvik and Android’s Java



In a nutshell, Dalvik is Android’s Java virtual machine. It allows
    Android to run the byte-code generated from Java-based apps and Android’s
    own system components and provides both with the required hooks and
    environment to interface with the rest of the system, including native
    libraries and the rest of the native user-space. There’s more to be said
    about Dalvik and Android’s brand of Java, though. But before I can delve
    into that explanation, I must first cover some Java basics.
Without boring you with yet another history lesson on the Java
    language and its origins, suffice it to say that Java was created by James
    Gosling at Sun in the early ’90s, that it rapidly became very popular, and
    that it was, in sum, more than well established before Android came
    around. From a developer perspective, two aspects are important to keep in
    mind with regard to Java: its differences from a traditional language such
    as C and C++, and the components that make up what we commonly refer to as
    “Java.”
By design, Java is an interpreted language. Unlike C and C++, where
    the code you write gets compiled by a compiler into binary assembly
    instructions to be executed by a CPU matching the architecture targeted by
    the compiler, the code you write in Java gets compiled by a Java compiler
    into architecture-independent byte-code that is executed at runtime by a
    byte-code interpreter, also commonly referred to as a “virtual machine.”
    This modus operandi, along with Java’s semantics, enables the language to
    include quite a few features not traditionally found in previous
    languages, such as reflection and anonymous classes. Also, unlike C and
    C++, Java doesn’t require you to keep track of objects you allocate. In
    fact, it requires you to lose track of all unused objects, since it has an
    integrated garbage collector that will ensure that all such objects are
    destroyed when no active code holds a reference to them any
    longer.
At a practical level, Java is actually made up of a few distinct
    things: the Java compiler, the Java byte-code interpreter—more commonly
    known as the Java Virtual Machine (JVM)—and the Java libraries commonly
    used by Java developers. Together, these are usually obtained by
    developers through the Java Development Kit (JDK) provided free of charge
    by Oracle. Android actually relies on the JDK for the Java compiler at
    build time, but it doesn’t use the JVM or the libraries found in the JDK.
    Instead of the JVM it relies on Dalvik, and instead of the JDK libraries
    it relies on the Apache Harmony project, a clean-room implementation of
    the Java libraries hosted under the umbrella of the Apache project.
Note
None of the JDK components are found in the images generated by
      the build of the AOSP. Hence, none of the JDK’s components would be
      distributed by you when using Android for your embedded system.

Java Lingo
Java has its own specialized terminology. The following
      explanations should help you make sense of some of the terms being used
      in the text, if you aren’t already familiar with them:
	virtual machine
	This term was less ambiguous when Java came out, because
            “virtual machine” software products such as VMware and VirtualBox
            weren’t as common or as popular as they are today. Such virtual
            machines do far more than interpret byte-code, as Java virtual
            machines do.

	reflection
	The ability to ask an object whether it implements a certain
            method.

	anonymous classes
	Snippets of code that are passed as a parameter to a method
            being invoked. An anonymous class might be used, for instance, as
            a callback registration method, thereby enabling the developer to
            see the code handling an event at the same location in the source
            code where she invokes the callback registration method.

	.jar files
	.jar files are actually Java ARchives
            (JAR) containing many .class files, each of
            which contains only a single class.




According to its developer, Dan Bornstein, Dalvik distinguishes
    itself from the JVM by being specifically designed for embedded systems.
    Namely, it targets systems that have slow CPUs and relatively little RAM,
    run OSes that don’t use swap space, and are battery powered.
While the JVM munches on .class
    files, Dalvik prefers the .dex
    delicatessen. .dex files are actually
    generated by postprocessing the .class files generated by the Java compiler
    through Android’s dx utility. Among
    other things, an uncompressed .dex
    file is 50% smaller than its originating .jar file.
For more information about the features and internals of Dalvik, I
    strongly encourage you to take a look at Dan Bornstein’s Google I/O 2008
    presentation entitled “Dalvik Virtual Machine Internals.” It’s about one
    hour long and available on
    YouTube. You can also just go to YouTube and search for “Dan
    Bornstein Dalvik.”
Note
Another interesting factoid is that Dalvik is register-based,
      whereas the JVM is stack-based, though that is likely to have little to
      no meaning to you unless you’re an avid student of VM theory,
      architecture, and internals.
If you’d like to get the inside track on the benefits and
      trade-offs between stack-based VMs and register-based VMs, have a look
      at the paper entitled “Virtual Machine Showdown: Stack Versus Registers”
      by Shi et al. in proceedings of VEE’05, June 11−12, 2005, Chicago, p.
      153−163.

A feature of Dalvik very much worth highlighting, though, is that
    since 2.2/Froyo it has included a Just-in-Time (JIT) compiler for ARM,
    with x86 and MIPS having been added since. Historically, JIT has been a
    defining feature for many VMs, helping them close the gap with
    noninterpreted languages. Indeed, having a JIT  means that Dalvik converts apps’ byte-codes to binary assembly
    instructions that run natively on the target’s CPU instead of being
    interpreted one instruction at a time by the VM. The result of this
    conversion is then stored for future use. Hence, apps take longer to load
    the first time, but once they’ve been JIT’ed, they load and run much
    faster. The only caveat here is that JIT is available for a limited number
    of architectures only, namely ARM, x86, and MIPS.
As an embedded developer, you’re unlikely to need to do anything
    specific to get Dalvik to work on your system. Dalvik was written to be
    architecture-independent. It has been reported that some of the early
    ports of Dalvik suffered from some endian issues. However, these issues
    seem to have subsided since.
Java Native Interface (JNI)



Despite its power and benefits, Java can’t always operate in a
      vacuum, and code written in Java sometimes needs to interface with code
      coming from other languages. This is especially true in an embedded
      environment  such as Android, where low-level functionality is never too far away. To
      that end, the Java Native Interface (JNI) mechanism is provided. It’s
      essentially a call bridge to other languages such as C and C++. It’s an
      equivalent to P/Invoke in the .NET/C#
      world.
App developers sometimes use JNI to call the native code they
      compile with the NDK from their regular Java code built using the SDK.
      Internally, though, the AOSP relies massively on JNI to enable
      Java-coded services and components to interface with Android’s low-level
      functionality, which is mostly written in C and C++. Java-written system
      services, for instance, very often use JNI to communicate with matching
      native code that interfaces with a given service’s corresponding
      hardware.
A large part of the heavy lifting to allow Java to communicate
      with other languages through JNI is actually done by Dalvik. If you go
      back to Table 2-3 in the previous
      section, for instance, you’ll notice the libnativehelper.so library, which is provided
      as part of Dalvik for facilitating JNI calls.
Appendix B shows an example use of JNI to
      interface Java and C code. For the moment, keep in mind that JNI  is central to platform work in Android and that it can be a relatively
      complex mechanism to use, especially to ensure that you use the
      appropriate call semantics and function parameters.
Note
Unfortunately, JNI seems to be a dark art reserved for the
        initiated. In other words, it’s rather difficult to find good
        documentation on it. There is one authoritative book on the topic,
        The Java Native Interface Programmer’s Guide and
        Specification by Sheng Liang (Addison-Wesley, 1999).



System Services



System services are Android’s man behind the curtain. Even
    if they aren’t explicitly mentioned in Google’s app development
    documentation, anything remotely interesting in Android goes through one
    of about 50 to 70 system services. These services cooperate to
    collectively provide what essentially amounts to an object-oriented OS
    built on top of Linux, which is exactly what Binder—the mechanism on which
    all system services are built—was intended for. The native user-space we
    just covered is actually designed very much as a support environment for
    Android’s system services. It’s therefore crucial to understand what
    system services exist and how they interact with one another and with the
    rest of the system. We’ve already covered some of this as part of
    discussing Android’s hardware support.
Figure 2-4 illustrates in greater detail
    the system services first introduced in Figure 2-1. As you can see, there are in fact a  couple of major processes involved. Most prominent is the System Server,
    whose components all run under the same process, system_server, and which is mostly made up of
    Java-coded services with two services written in C/C++. The System Server
    also includes some native code access through JNI to allow some of the
    Java-based services to interface to Android’s lower layers. Another set of
    system services is housed within the Media Service, which runs as mediaserver. These services are all coded in
    C/C++ and are packaged alongside media-related components such as the
    StageFright multimedia framework and audio effects. Finally, the Phone
    application houses the Phone service separately from the rest. Since
    4.0/Ice-Cream Sandwich, note that the Surface Flinger has been forked off
    into a separate standalone process.
Warning
The terminology here isn’t my choosing, and it’s unfortunately
      confusing. The “System Server” process houses several system services within the same process.
      So does the “Media Service.” Both “System Server” and “Media Service”
      are spelled out as singular regardless
      of the number of system services they comprise. When this book refers to
      “system services,” plural, it refers to all system services available in
      the system regardless of the process they run under. So, in short,
      neither “System Server” nor “Media Service” are part of the “system
      services.” Instead, they are processes used to run the latter.

[image: System services]

Figure 2-4. System services

Note that despite there being only a handful of processes to house
    the entirety of  the Android’s system services, they all appear to operate independently to
    anyone connecting to their services through Binder. Here’s the output of
    the service utility on an Android
    2.3/Gingerbread emulator:
# service list
Found 50 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	diskstats: []
5	appwidget: [com.android.internal.appwidget.IAppWidgetService]
6	backup: [android.app.backup.IBackupManager]
7	uimode: [android.app.IUiModeManager]
8	usb: [android.hardware.usb.IUsbManager]
9	audio: [android.media.IAudioService]
10	wallpaper: [android.app.IWallpaperManager]
11	dropbox: [com.android.internal.os.IDropBoxManagerService]
12	search: [android.app.ISearchManager]
13	location: [android.location.ILocationManager]
14	devicestoragemonitor: []
15	notification: [android.app.INotificationManager]
16	mount: [IMountService]
17	accessibility: [android.view.accessibility.IAccessibilityManager]
18	throttle: [android.net.IThrottleManager]
19	connectivity: [android.net.IConnectivityManager]
20	wifi: [android.net.wifi.IWifiManager]
21	network_management: [android.os.INetworkManagementService]
22	netstat: [android.os.INetStatService]
23	input_method: [com.android.internal.view.IInputMethodManager]
24	clipboard: [android.text.IClipboard]
25	statusbar: [com.android.internal.statusbar.IStatusBarService]
26	device_policy: [android.app.admin.IDevicePolicyManager]
27	window: [android.view.IWindowManager]
28	alarm: [android.app.IAlarmManager]
29	vibrator: [android.os.IVibratorService]
30	hardware: [android.os.IHardwareService]
31	battery: []
32	content: [android.content.IContentService]
33	account: [android.accounts.IAccountManager]
34	permission: [android.os.IPermissionController]
35	cpuinfo: []
36	meminfo: []
37	activity: [android.app.IActivityManager]
38	package: [android.content.pm.IPackageManager]
39	telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
40	usagestats: [com.android.internal.app.IUsageStats]
41	batteryinfo: [com.android.internal.app.IBatteryStats]
42	power: [android.os.IPowerManager]
43	entropy: []
44	sensorservice: [android.gui.SensorServer]
45	SurfaceFlinger: [android.ui.ISurfaceComposer]
46	media.audio_policy: [android.media.IAudioPolicyService]
47	media.camera: [android.hardware.ICameraService]
48	media.player: [android.media.IMediaPlayerService]
49	media.audio_flinger: [android.media.IAudioFlinger]
Here’s the same output on a 4.2/Jelly Bean emulator:
root@android:/ # service list
Found 68 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	dreams: [android.service.dreams.IDreamManager]
5	commontime_management: []
6	samplingprofiler: []
7	diskstats: []
8	appwidget: [com.android.internal.appwidget.IAppWidgetService]
9	backup: [android.app.backup.IBackupManager]
10	uimode: [android.app.IUiModeManager]
11	serial: [android.hardware.ISerialManager]
12	usb: [android.hardware.usb.IUsbManager]
13	audio: [android.media.IAudioService]
14	wallpaper: [android.app.IWallpaperManager]
15	dropbox: [com.android.internal.os.IDropBoxManagerService]
16	search: [android.app.ISearchManager]
17	country_detector: [android.location.ICountryDetector]
18	location: [android.location.ILocationManager]
19	devicestoragemonitor: []
20	notification: [android.app.INotificationManager]
21	updatelock: [android.os.IUpdateLock]
22	throttle: [android.net.IThrottleManager]
23	servicediscovery: [android.net.nsd.INsdManager]
24	connectivity: [android.net.IConnectivityManager]
25	wifi: [android.net.wifi.IWifiManager]
26	wifip2p: [android.net.wifi.p2p.IWifiP2pManager]
27	netpolicy: [android.net.INetworkPolicyManager]
28	netstats: [android.net.INetworkStatsService]
29	textservices: [com.android.internal.textservice.ITextServicesManager]
30	network_management: [android.os.INetworkManagementService]
31	clipboard: [android.content.IClipboard]
32	statusbar: [com.android.internal.statusbar.IStatusBarService]
33	device_policy: [android.app.admin.IDevicePolicyManager]
34	lock_settings: [com.android.internal.widget.ILockSettings]
35	mount: [IMountService]
36	accessibility: [android.view.accessibility.IAccessibilityManager]
37	input_method: [com.android.internal.view.IInputMethodManager]
38	input: [android.hardware.input.IInputManager]
39	window: [android.view.IWindowManager]
40	alarm: [android.app.IAlarmManager]
41	vibrator: [android.os.IVibratorService]
42	battery: []
43	hardware: [android.os.IHardwareService]
44	content: [android.content.IContentService]
45	account: [android.accounts.IAccountManager]
46	user: [android.os.IUserManager]
47	permission: [android.os.IPermissionController]
48	cpuinfo: []
49	dbinfo: []
50	gfxinfo: []
51	meminfo: []
52	activity: [android.app.IActivityManager]
53	package: [android.content.pm.IPackageManager]
54	scheduling_policy: [android.os.ISchedulingPolicyService]
55	telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
56	display: [android.hardware.display.IDisplayManager]
57	usagestats: [com.android.internal.app.IUsageStats]
58	batteryinfo: [com.android.internal.app.IBatteryStats]
59	power: [android.os.IPowerManager]
60	entropy: []
61	sensorservice: [android.gui.SensorServer]
62	media.audio_policy: [android.media.IAudioPolicyService]
63	media.camera: [android.hardware.ICameraService]
64	media.player: [android.media.IMediaPlayerService]
65	media.audio_flinger: [android.media.IAudioFlinger]
66	drm.drmManager: [drm.IDrmManagerService]
67	SurfaceFlinger: [android.ui.ISurfaceComposer]
There is unfortunately not much documentation on how each of these
    services operates. You’ll have to look at each service’s source code to
    get a precise idea of how it works and how it interacts with other
    services.
Reverse-Engineering Source Code
Fully understanding the internals of Android’s system services is
      like trying to swallow a whale. In 2.3/Gingerbread there were about
      85,000 lines of Java code in the System Server alone, spread across 100
      different files. And that didn’t count any system service code written
      in C/C++. To add insult to injury, so to speak, the comments are few and
      far between and the design documents nonexistent. Arm yourself with a
      good dose of patience if you want to dig further here.
One trick is to create a new Java project in Eclipse and import
      the System Server’s code into that project. This won’t compile in any
      way, but it’ll allow you to benefit from Eclipse’s Java browsing
      capabilities in trying to understand the code. For instance, you can
      open a single Java file, right-click the source browsing scrollbar area,
      and select Folding → Collapse All. This
      will essentially collapse all methods into a single line next to a plus
      sign (+) and will allow you to see
      the trees (the method names lined up one after another) instead of the
      leaves (the actual content of each method.) You’ll very much still be in
      a forest, though.
You can also try using one of the commercial source code analysis
      tools on the market from vendors such as Imagix, Rationale, Lattix, or
      Scitools. Although there are some open source analysis tools out there,
      most seem geared toward locating bugs, not reverse-engineering the code
      being analyzed. Still, some have reported that they’ve found Ctags and
      the open source AndroidXRef
      projects helpful in their efforts.

Service Manager and Binder Interaction



As I explained earlier, the Binder mechanism used as system
      services’ underlying fabric enables object-oriented RPC/IPC. For   a process in the system to invoke a system service through Binder, though,
      it must first have a handle to it. For instance, Binder will enable an
      app developer to request a wakelock from the Power Manager by invoking
      the acquire() method of its
      WakeLock nested class. Before that
      call can be made, though, the developer must first get a handle to the
      Power Manager service. As we’ll see in the next section, the app
      development API actually hides the details of how it gets this handle in
      an abstraction to the developer, but under the hood all system service
      handle lookups are done through the Service Manager, as illustrated in
      Figure 2-5.
[image: Service Manager and Binder interaction]

Figure 2-5. Service Manager and Binder interaction

Think of the Service Manager as a Yellow Pages book of all
      services available in the system. If a system service isn’t registered
      with the Service Manager, then it’s effectively invisible to the rest of
      the system. To provide this indexing capability, the Service Manager is
      started by init before any other
      service. It then opens /dev/binder
      and uses a special ioctl() call to
      set itself as the Binder’s Context Manager (A1 in
      Figure 2-5.) Thereafter, any process
      in the system that attempts to communicate with Binder ID 0 (a.k.a. the
      “magic” Binder or “magic object” in various parts of the code) is
      actually communicating through Binder to the Service Manager.
When the System Server starts, for instance, it registers every
      single service it instantiates with the Service Manager (A2). Later,
      when an app tries to talk to a system service, such as the Power Manager
      service, it first asks the Service Manager for a handle to the service
      (B1) and then invokes that service’s methods (B2). In contrast, a call
      to a service component running
      within an app goes directly through Binder (C1) and is not looked up
      through the Service Manager.
The Service Manager is also used in a special way by a number of
      command-line utilities such as the dumpsys utility, which allows you to dump the
      status of a single or all system services. To get the list of all
      services, dumpsys loops around to get
      every system service (D1), requesting the
      nth plus one at every
      iteration until there aren’t any more. To get each service, dumpsys  just asks the Service Manager to
      locate that specific one (D2). With a service handle in hand, dumpsys invokes that service’s dump() function to dump its status (D3) and
      displays that on the terminal.

Calling on Services



All of what I just explained is, as I said earlier, almost
      invisible to regular app developers. Here’s a snippet, for instance,
      that allows us to grab a wakelock within an app using the regular
      application development API:
PowerManager pm = (PowerManager) getSystemService(POWER_SERVICE);
PowerManager.WakeLock wakeLock =
     pm.newWakeLock(PowerManager.FULL_WAKE_LOCK, "myPreciousWakeLock");
wakeLock.acquire(100);
Notice that we don’t see any hint of the Service Manager here.
      Instead, we’re using getSystemService() and passing it the
      POWER_SERVICE parameter. Internally,
      though, the code that implements getSystemService() does actually use the
      Service Manager to locate the Power Manager service so that we create a
      wakelock and acquire it. Appendix B shows you how to
      add a system service and make it available through getSystemService().

A Service Example: the Activity Manager



Although covering each and every system service is outside the
      scope of this book, let’s have a quick look at the Activity Manager, one
      of the key system services. In 2.3/Gingerbread, the Activity Manager’s
      sources actually span over 30 files and 20,000 lines of code. If there’s
      a core to Android’s internals, this service is very much near it. It
      takes care of the starting of new components, such as Activities and
      Services, along with the fetching of Content Providers and intent
      broadcasting. If you ever got the dreaded ANR (Application Not
      Responding) dialog box, know that the Activity Manager was behind it.
      It’s also involved in the maintenance of OOM adjustments used by the
      in-kernel low-memory handler, permissions, task management,
      etc.
For instance, when the user clicks an icon to start an app from
      his home screen, the first thing that happens is the Launcher’s
      onClick() callback is called (the Launcher being the
      default app packaged with the AOSP that takes care of the main interface
      with the user, the home screen). To deal with the event, the Launcher
      will then call, through Binder, the startActivity() method of the Activity
      Manager service. The service will then call the startViaZygote() method, which will open a
      socket to the Zygote and ask it to start the Activity. All this may make
      more sense after you read the final section of this chapter.
If you’re familiar with Linux’s internals, a good way to think of
      the Activity Manager is that it’s to Android what the content of the
      kernel/ directory in the kernel’s
      sources is to Linux. It’s that important.


Stock AOSP Packages



The AOSP ships with a certain number of default packages that are
    found in most Android devices. As I mentioned in the previous chapter,
    though, some apps such as Maps, YouTube, and Gmail aren’t part of the
    AOSP. Let’s take a look at some of the most notable packages included by
    default; as we’ll see below, the AOSP includes many more packages. Table 2-7 lists the most important stock apps included
    in the 2.3/Gingerbread AOSP; Table 2-8 lists
    that AOSP’s main content providers; and Table 2-9
    lists the corresponding IMEs (input method editors).
Warning
While stock apps are coded very much like standard apps, most
      won’t build outside the AOSP using the standard SDK. Hence, if you’d
      like to create your own version of one of these apps (i.e., fork it),
      you’ll either have to do it inside the AOSP or invest some time in
      getting the app to build outside the AOSP with the standard SDK. For one
      thing, these apps sometimes use APIs that are accessible within the AOSP
      but aren’t exported through the standard SDK.

Table 2-7. Stock AOSP apps
	App in AOSP	Name Displayed in Launcher	Description
	AccountsAndSyncSettings	N/A	Accounts management app
	Bluetooth	N/A	Bluetooth manager
	Browser	Browser	Default Android browser, includes bookmark widget
	Calculator	Calculator	Calculator app
	Calendar	Calendar	Calendar app
	Camera	Camera	Camera app
	CertInstaller	N/A	UI for installing certificates
	Contacts	Contacts	Contacts manager app
	DeskClock	Clock	Clock and alarm app, including the clock widget
	DownloadProviderUi	Downloads	UI for DownloadProvider
	Development	Dev Tools	Miscellaneous dev tools
	Email	Email	Default Android email app
	Gallery	Gallery	Default gallery app for viewing pictures
	Gallery3D	Gallery	Fancy gallery with “sexier” UI
	HTMLViewer	N/A	App for viewing HTML files
	Launcher2	N/A	Default home screen
	Mms	Messaging	SMS/MMS app
	Music	Music	Music player
	Nfc	N/A	NFC configuration UI and NFC system service
	PackageInstaller	N/A	App install/uninstall UI
	Phone	Phone	Default phone dialer/UI and phone system service
	Protips	N/A	Home screen tips
	Provision	N/A	App for setting a flag indicating whether a device was
            provisioned
	QuickSearchBox	Search	Search app and widget
	Settings	Settings	Settings app, also accessible through home screen
            menu
	SoundRecorder	N/A	Sound recording app; activated when recording intent is
            sent, not by user
	SpeechRecorder	Speech Recorder	Speech recording app
	SystemUI	N/A	Status bar



Table 2-8. Stock AOSP providers
	Provider	Description
	ApplicationsProvider	Provider to search installed apps
	CalendarProvider	Main Android calendar storage and provider
	ContactsProvider	Main Android contacts storage and provider
	DownloadProvider[a]	Download management, storage, and access
	DrmProvider	Management and access of DRM-protected storage
	MediaProvider	Media storage and provider
	TelephonyProvider	Carrier and SMS/MMS storage and provider
	UserDictionaryProvider	Storage and provider for user-defined words
            dictionary
	[a] Interestingly, this package’s source code includes a
                design document, a rarity in the AOSP.





Table 2-9. Stock AOSP input methods
	Input Method	Description
	LatinIME	Latin keyboard
	OpenWnn	Japanese keyboard
	PinyinIME	Chinese keyboard



The AOSP contains a lot more packages than those listed in the above
    tables. Indeed, if you search the sources, you’ll find that a 4.2/Jelly
    Bean release can generate about 500 apps. A large number of those are
    either tests or samples and aren’t worth focusing on in the current
    discussion. Roughly a quarter of these apps are worth putting into a final
    product, and they are mostly found in the following directories of the
    AOSP:
	packages/apps/

	packages/inputmethods/

	packages/providers/

	packages/screensavers/ (new
        to 4.2/Jelly Bean)

	packages/wallpapers/

	frameworks/base/packages/

	development/apps/



You’ll probably want to look at the content of those directories in
    conjunction with the above tables to determine which packages are worth
    further investigation in the context of your project. Like many other
    things in the AOSP, of course, the packages it contains change over time,
    as do their locations. Here’s a summary of some of the location changes
    that have occurred between 2.3.4/Gingerbread and 4.2/Jelly Bean:
	AccountAndSyncSettings and Gallery3D have been removed from
        packages/apps/, and the following
        packages have been added: CellBroadcastReceiver, SmartCardService,
        BasicSmsReceiver, Exchange, Gallery2, KeyChain, MusicFX, SpareParts,
        VideoEditor, and LegacyCamera.

	TtsService and VpnServices have been removed from frameworks/base/packages/, and the
        following packages have been added: BackupRestoreConfirmation, SharedStorageBackup, VpnDialogs,
        WAPPushManager, FakeOemFeatures, FusedLocation, and
        InputDevices.




System Startup



The best way to bring together everything we’ve discussed is
    to look at Android’s startup. As you can see in Figure 2-6, the first cog to turn is the CPU. It
    typically has a hardcoded address from which it fetches its first
    instructions. That address usually points to a chip that has the
    bootloader programmed on it. The bootloader then initializes the RAM, puts
    basic hardware in a quiescent state, loads the kernel and RAM disk, and
    jumps into the kernel. More recent SoC devices, which include a CPU and a
    slew of peripherals in a single chip, can actually boot straight from a
    properly formatted SD card or SD-card-like chip. The PandaBoard and recent
    editions of the BeagleBoard, for instance, don’t have any onboard flash
    chips because they boot straight from an SD card.
[image: Android’s boot sequence]

Figure 2-6. Android’s boot sequence

The initial kernel startup is very hardware dependent, but its
    purpose is to set things up so that the CPU can start executing C code as
    early as possible. Once that’s done, the kernel jumps to the
    architecture-independent start_kernel() function, initializes its
    various subsystems, and proceeds to call the “init” functions of all
    built-in drivers. The majority of messages printed out by the kernel at
    startup come from these steps. The kernel then mounts its root filesystem
    and starts the init process.
That’s when Android’s init kicks in and executes the instructions
    stored  in its /init.rc file to set up
    environment variables  such as the system path, create mount points, mount filesystems, set OOM
    adjustments, and start native daemons. We’ve already covered the various
    native daemons active in Android, but it’s worth focusing a little on the
    Zygote. The Zygote is a special daemon whose job is to launch apps. Its
    functionality is centralized here in
    order to unify the components shared by all apps and to shorten their
    start-up time. The init doesn’t actually start the Zygote directly;
    instead it uses the app_process command
    to get Zygote started by the Android Runtime. The runtime then starts the
    first Dalvik VM of the system and tells it to invoke the Zygote’s
    main().
Zygote is active only when a new app needs to be launched. To
    achieve a speedier app launch, the Zygote starts by preloading all Java
    classes and resources that an app may potentially need at runtime. This
    effectively loads those into the system’s RAM. The Zygote then listens for
    connections on its socket (/dev/socket/zygote) for requests to start new
    apps. When it gets a request to start an app, it forks itself and launches
    the new app. The beauty of having all apps fork from the Zygote is that
    it’s a “virgin” VM that has all the system classes and resources an app
    may need preloaded and ready to be used. In other words, new apps don’t
    have to wait until those are loaded to start executing.
All of this works because the Linux kernel implements a
    copy-on-write (COW) policy for forks. As you may know, forking in Unix
    involves creating a new process that is an exact copy of the parent
    process. With COW, Linux doesn’t actually copy anything. Instead, it maps
    the pages of the new process over to those of the parent process and makes
    copies only when the new process writes to a page. But in fact the classes
    and resources loaded are never written to, because they’re the default
    ones and are pretty much immutable within the lifetime of the system. So
    all processes directly forking from the Zygote are essentially using its
    own mapped copies. Therefore, regardless of the number of apps running on
    the system, only one copy of the system classes and the resources is ever
    loaded in RAM.
Although the Zygote is designed to listen to connections for
    requests to fork new apps, there is one “app” that the Zygote actually
    starts explicitly: the System Server. This is the first app started by the
    Zygote, and it continues to live on as an entirely separate process from
    its parent. The System Server then starts initializing each system service
    it houses and registering it with the previously started Service Manager.
    One of the services it starts, the Activity Manager, will end its
    initialization by sending an intent of type Intent.CATEGORY_HOME. This starts the Launcher
    app, which then displays the home screen familiar to all Android
    users.
When the user clicks an icon on the home screen, the process I
    described in A Service Example: the Activity Manager takes place. The
    Launcher asks the Activity Manager to start the process, which in turn
    “forwards” that request on to the Zygote, which itself forks and starts
    the new app, which is then displayed to the user.
Once the system has finished starting up, the process list will look
    something like this:
# ps
USER     PID   PPID  VSIZE  RSS     WCHAN    PC         NAME
root      1     0     268    180   c009b74c 0000875c S /init
root      2     0     0      0     c004e72c 00000000 S kthreadd
root      3     2     0      0     c003fdc8 00000000 S ksoftirqd/0
root      4     2     0      0     c004b2c4 00000000 S events/0
root      5     2     0      0     c004b2c4 00000000 S khelper
root      6     2     0      0     c004b2c4 00000000 S suspend
root      7     2     0      0     c004b2c4 00000000 S kblockd/0
root      8     2     0      0     c004b2c4 00000000 S cqueue
root      9     2     0      0     c018179c 00000000 S kseriod
root      10    2     0      0     c004b2c4 00000000 S kmmcd
root      11    2     0      0     c006fc74 00000000 S pdflush
root      12    2     0      0     c006fc74 00000000 S pdflush
root      13    2     0      0     c0079750 00000000 D kswapd0
root      14    2     0      0     c004b2c4 00000000 S aio/0
root      22    2     0      0     c017ef48 00000000 S mtdblockd
root      23    2     0      0     c004b2c4 00000000 S kstriped
root      24    2     0      0     c004b2c4 00000000 S hid_compat
root      25    2     0      0     c004b2c4 00000000 S rpciod/0
root      26    1     232    136   c009b74c 0000875c S /sbin/ueventd
system    27    1     804    216   c01a94a4 afd0b6fc S /system/bin/servicemanager
root      28    1     3864   308   ffffffff afd0bdac S /system/bin/vold
root      29    1     3836   304   ffffffff afd0bdac S /system/bin/netd
root      30    1     664    192   c01b52b4 afd0c0cc S /system/bin/debuggerd
radio     31    1     5396   440   ffffffff afd0bdac S /system/bin/rild
root      32    1     60832  16348 c009b74c afd0b844 S zygote
media     33    1     17976  1104  ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34    1     1256   280   c009b74c afd0c59c S /system/bin/dbus-daemon
root      35    1     812    232   c02181f4 afd0b45c S /system/bin/installd
keystore  36    1     1744   212   c01b52b4 afd0c0cc S /system/bin/keystore
root      38    1     824    272   c00b8fec afd0c51c S /system/bin/qemud
shell     40    1     732    204   c0158eb0 afd0b45c S /system/bin/sh
root      41    1     3368   172   ffffffff 00008294 S /sbin/adbd
system    65    32    123128 25232 ffffffff afd0b6fc S system_server
app_15    115   32    77232  17576 ffffffff afd0c51c S com.android.inputmethod.
                                                       latin
radio     120   32    86060  17952 ffffffff afd0c51c S com.android.phone
system    122   32    73160  17656 ffffffff afd0c51c S com.android.systemui
app_27    125   32    80664  22900 ffffffff afd0c51c S com.android.launcher
app_5     173   32    74404  18024 ffffffff afd0c51c S android.process.acore
app_2     212   32    73112  17032 ffffffff afd0c51c S android.process.media
app_19    284   32    70336  16672 ffffffff afd0c51c S com.android.bluetooth
app_22    292   32    72752  17844 ffffffff afd0c51c S com.android.email
app_23    320   32    70276  15792 ffffffff afd0c51c S com.android.music
app_28    328   32    70744  16444 ffffffff afd0c51c S com.android.quicksearchbox
app_14    345   32    69708  15404 ffffffff afd0c51c S com.android.protips
app_21    354   32    70912  17152 ffffffff afd0c51c S com.cooliris.media
root      366   41    2128   292   c003da38 00110c84 S /bin/sh
root      367   366   888    324   00000000 afd0b45c R /system/bin/ps
This output actually comes from a 2.3/Gingerbread Android emulator,
    so it contains some emulator-specific artifacts such as the qemud daemon. Notice that the apps running all
    bear their fully qualified package names despite being forked from the
    Zygote. This is a neat trick that can be pulled in Linux by using the
    prctl() system call with PR_SET_NAME to tell the kernel to change the
    calling process’s name. Have a look at prctl()’s man page if you’re interested in it.
    Note also that the first process started by init is actually ueventd. All processes prior to that are
    actually started from within the kernel by subsystems or drivers.
Most importantly, notice that the Zygote’s process identifier (PID)
    is 32 and the the parent PID (PPID) of all apps is 32. This illustrates
    the earlier explanations that the Zygote is the parent of all apps in the
    system.



[11] Some speculate that this change was triggered because some app
        developers were doing too many fancy tricks with notification that
        were having negative impacts on the System Server, and that the
        Android team hence decided to make the Status Bar a separate process
        from the System Server.

[12] Git is a distributed source code management tool created by
        Linus Torvalds to manage the kernel sources. You can find more
        information about it at http://git-scm.com/.

[13] Greg is one of the top kernel developers and
            maintainers.

[14] The FHS is a
          community standard that describes the contents and use of the
          various directories within a Linux root filesystem.


Chapter 3. AOSP Jump-Start



Now that you have a solid understanding of the basics, let’s start
  getting  our hands dirty with the Android Open Source Project (AOSP). We’ll start
  by covering how to get the AOSP  distribution from http://android.googlesource.com/. Before actually building
  and running the AOSP, we’ll spend some time exploring the AOSP’s contents
  and explain how the sources reflect what we just saw in the previous
  chapter. Finally, we’ll close the chapter by covering the use of adb and the emulator, two very important tools
  when doing any sort of platform work.
Above all, this chapter is meant to be fun. The AOSP is an exciting
  piece of software with a tremendous amount of innovation. OK, I’ll admit
  it’s not all rosy, and some parts do have rough edges. Still, other parts
  are pure genius. The most amazing thing of all, obviously, is that we can
  all download it, modify it, and ship our own custom products based on it. So
  roll up your sleeves and let’s get started.
Development Host Setup



As we discussed in Development Setup and Tools, you’ll
    need an Ubuntu-based desktop in order to work on the AOSP. Even though
    other systems can be made to work, that’s the one Google documents as
    being supported. I suggest you flip back and reread that section to review
    the basic host setup required for AOSP work. Also, I suggest you have a
    look at the Initializing a
    Build Environment section of Google’s http://source.android.com website for
    the latest information on how to set up your host for building Android’s
    sources. That page also covers configuring udev to ensure permissions are properly set to
    let you access an Android device connected to your host.

Getting the AOSP



As I mentioned earlier, the official AOSP is available at
    http://android.googlesource.com, which sports the Gitweb
     interface (git’s Web interface) shown in Figure 3-1.   When you visit the site, you will see a fairly large number of git
    repositories you can pull. Needless to say, pulling each and every one of
    these manually would be rather tedious; there are over 100. And, in fact,
    pulling them all would be quite useless because only a subset of these
    projects is needed. The right way to pull the AOSP is to use the repo tool, which is available at the very same
    location. First, though, you’ll need to get repo itself:
$ sudo apt-get install curl
$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
[image: The Android Git repositories web frontend]

Figure 3-1. The Android Git repositories web frontend

Warning
Under Ubuntu, ~/bin is
      automatically added to your path when you log in, if it
      already exists. So, if you don’t have a bin/ directory in your home directory, create
      it, and then log out and log back in to make it part of your path.
      Otherwise, the shell won’t be able to find repo, even if you fetch it as I just
      showed.
If this doesn’t work, either in Ubuntu or any other distribution
      you may be using, add a PATH=$PATH:~/bin to your ~/.profile manually, and then log out and log
      back in.

Note
You don’t have to put repo in
      ~/bin, but it has to be in your
      path. So regardless of where you put it, just make sure it’s available
      to you in all locations in the filesystem from the command line.

Despite its structure as a single shell script, repo is actually quite an intricate tool.  It can simultaneously pull from multiple git repositories to create an Android
    distribution. The repositories it pulls from are given to it through a
    manifest file, which is an XML file describing the
    projects that need to be pulled from and their location. repo is in fact layered on top of git, and each project it pulls from is an
    independent git repository. You can
    find out more about what pushed Google to create repo from the blog post Gerrit
    and Repo, the Android Source Management Tools, published in
    November 2008, soon after Android’s first open source release.
Warning
Confusing as it may be, note that repo’s “manifest” file has absolutely
      nothing to do with “manifest” files
      (AndroidManifest.xml) used by app
      developers to describe their apps to the system. Their formats and uses
      are completely different. Fortunately, they rarely have to be used
      within the same context, so while you should keep this fact in mind, we
      won’t need to worry too much about it in the coming
      explanations.

Before you can use repo, you’ll
    need to make sure that git is installed
    on your system, as it may not have been there by default:
$ sudo apt-get install git
Now that we’ve got repo and
    git, let’s get ourselves a copy of the
    AOSP:
$ mkdir -p ~/android/aosp-2.3.x
$ cd ~/android/aosp-2.3.x
$ repo init -u https://android.googlesource.com/platform/manifest.git -b gingerbread
$ repo sync

The last command should run for quite some time as it goes and
    fetches the sources of all the projects described in the manifest file.
    After all, the AOSP is several gigabytes in size uncompiled, as mentioned
    in Development Setup and Tools. Keep in mind that network
    bandwidth and latencies will play a big role in how long this takes. Note
    also that we are fetching a specific branch of the tree, Gingerbread.
    That’s the -b gingerbread part of the
    third command. If you omit that part, you will be getting the
    master branch. It’s been the experience of many
    people that the master branch doesn’t always build or run properly,
    because it contains the tip of the open development branch. Tagged
    branches, on the other hand, mostly work out of the box. If you’re
    planning to make contributions back to the AOSP, however, note that Google
    accepts contributions to the master branch only.
You can get more information about repo’s capabilities by using its online
    help:
$ repo help
usage: repo COMMAND [ARGS]

The most commonly used repo commands are:

  abandon      Permanently abandon a development branch
  branch       View current topic branches
  branches     View current topic branches
  checkout     Checkout a branch for development
  cherry-pick  Cherry-pick a change.
  diff         Show changes between commit and working tree
  download     Download and checkout a change
  grep         Print lines matching a pattern
  init         Initialize repo in the current directory
  list         List projects and their associated directories
  overview     Display overview of unmerged project branches
  prune        Prune (delete) already merged topics
  rebase       Rebase local branches on upstream branch
  smartsync    Update working tree to the latest known good revision
  stage        Stage file(s) for commit
  start        Start a new branch for development
  status       Show the working tree status
  sync         Update working tree to the latest revision
  upload       Upload changes for code review

See 'repo help <command>' for more information on a specific command.
See 'repo help --all' for a complete list of recognized commands.
As the above output indicates, you can also ask for more information
    about any of repo’s subcommands:
$ repo help init
Summary
-------
Initialize repo in the current directory

Usage: repo init [options]

Options:
  -h, --help            show this help message and exit

  Logging options:
    -q, --quiet         be quiet

  Manifest options:
    -u URL, --manifest-url=URL
                        manifest repository location
    -b REVISION, --manifest-branch=REVISION
                        manifest branch or revision
    -m NAME.xml, --manifest-name=NAME.xml
                        initial manifest file
    --mirror            create a replica of the remote repositories rather
                        than a client working directory
    --reference=DIR     location of mirror directory
    --depth=DEPTH       create a shallow clone with given depth; see git clone
    -g GROUP, --groups=GROUP
                        restrict manifest projects to ones with a specified
                        group
    -p PLATFORM, --platform=PLATFORM
                        restrict manifest projects to ones with a specified
                        platform group [auto|all|none|linux|darwin|...]

  repo Version options:
    --repo-url=URL      repo repository location
    --repo-branch=REVISION
                        repo branch or revision
    --no-repo-verify    do not verify repo source code

  Other options:
    --config-name       Always prompt for name/e-mail

Description
-----------
The 'repo init' command is run once to install and initialize repo. The
latest repo source code and manifest collection is downloaded from the
server and is installed in the .repo/ directory in the current working
directory.

The optional -b argument can be used to select the manifest branch to
checkout and use. If no branch is specified, master is assumed.

The optional -m argument can be used to specify an alternate manifest to
be used. If no manifest is specified, the manifest default.xml will be
used.

The --reference option can be used to point to a directory that has the
content of a --mirror sync. This will make the working directory use as
much data as possible from the local reference directory when fetching
from the server. This will make the sync go a lot faster by reducing
data traffic on the network.

Switching Manifest Branches
---------------------------
To switch to another manifest branch, `repo init -b otherbranch` may be
used in an existing client. However, as this only updates the manifest,
a subsequent `repo sync` (or `repo sync -d`) is necessary to update the
working directory files.
When you look at repo sync’s
    online help, for instance, one of the flags you will likely want to
    investigate further is -j, since it
    permits syncing several git trees in parallel. This is especially useful
    if you’ve got a generous corporate net connection and would like to speed
    up your downloading of the AOSP—by default, repo does
    four parallel downloads: 
$ repo sync -j8
Getting other branches and tags is also relatively simple. Here’s
    getting 4.2/Jelly Bean:
$ mkdir -p ~/android/aosp-4.2
$ cd ~/android/aosp-4.2
$ repo init -u https://android.googlesource.com/platform/manifest -b android-4.2_r1
$ repo sync
In contrast to the earlier command, I’m using a specific version
    number instead of a version name. Codenames, Tags,
    and Build Numbers provides a full list of the official tags and
    version numbers. You can find the available tags and branches for yourself
    by doing something like this:[15]
$ mkdir ~/android/aosp-branches-tags
$ cd ~/android/aosp-branches-tags
$ git clone https://android.googlesource.com/platform/manifest.git
$ cd manifest
$ git tag
android-1.6_r1.1_
android-1.6_r1.2_
android-1.6_r1.3_
android-1.6_r1.4_
android-1.6_r1.5_
android-1.6_r1_
android-1.6_r2_
android-2.0.1_r1_
android-2.0_r1_
android-2.1_r1_
android-2.1_r2.1p2_
android-2.1_r2.1p_
...
android-4.1.1_r6
android-4.1.1_r6.1
android-4.1.2_r1
android-4.2.1_r1__
android-4.2_r1___
android-cts-2.2_r8
android-cts-2.3_r10
android-cts-2.3_r11
...
$ git branch -a
* master
  remotes/origin/HEAD -> origin/master
  remotes/origin/android-1.6_r1
  remotes/origin/android-1.6_r1.1
  remotes/origin/android-1.6_r1.2
  remotes/origin/android-1.6_r1.3
  remotes/origin/android-1.6_r1.4
  remotes/origin/android-1.6_r1.5
  remotes/origin/android-1.6_r2
  remotes/origin/android-2.0.1_r1
  remotes/origin/android-2.0_r1
  remotes/origin/android-2.1_r1
  remotes/origin/android-2.1_r2
  remotes/origin/android-2.1_r2.1p
  remotes/origin/android-2.1_r2.1p2
...
  remotes/origin/android-4.1.1_r6.1
  remotes/origin/android-4.1.2_r1
  remotes/origin/android-4.2.1_r1
  remotes/origin/android-4.2_r1
  remotes/origin/android-cts-2.2_r8
  remotes/origin/android-cts-2.3_r10
  remotes/origin/android-cts-2.3_r11
...
  remotes/origin/android-sdk-support_r11
  remotes/origin/froyo
  remotes/origin/gingerbread
  remotes/origin/gingerbread-release
  remotes/origin/ics-mr0
  remotes/origin/ics-mr1
  remotes/origin/ics-plus-aosp
  remotes/origin/jb-dev
  remotes/origin/jb-mr1-dev
  remotes/origin/jumper-stable
  remotes/origin/master
  remotes/origin/master-dalvik
  remotes/origin/tools_r20
  remotes/origin/tools_r21
  remotes/origin/tools_r21.1
  remotes/origin/tradefed
All of the above is, of course, limited to the official AOSP. Have a
    look at Appendix E for a list of other AOSP trees that
    may be relevant to your work, such as those maintained by Linaro and
    CynogenMod. Interestingly, most of these alternative trees also rely on
    repo, which is all the more reason to
    learn how to master this tool.

Inside the AOSP



Now that we’ve got a copy of the AOSP, let’s start looking at what’s
    inside and, most importantly, connect that to what we just saw in the
    previous chapter. Feel free to skip over this section and come back to it
    after the next section if you’re too eager to get your own custom Android
    running. For those of you still reading, have a look at Table 3-1 for a summary of the AOSP’s top-level directory
    for 2.3.7/Gingerbread and 4.2/Jelly Bean. Where “N/A” is listed in one of
    the Size columns for a directory, that directory doesn’t exist in that
    version. Also, the sizes given don’t include the .git directories that might have been included
    underneath any of the given entries.
Table 3-1. AOSP content summary
	Directory	Content	Size (in MB) in 2.3.7	Size (in MB) in 4.2
	abi	Minimal C++ Run-Time Type Information support	N/A	0.1
	bionic	Android’s custom C library	14	18
	bootable	OTA, recovery mechanism and reference bootloader	4	4
	build	Build system	4	5
	cts	Comptability Test Suite	77	136
	dalvik	Dalvik VM	35	40
	development	Development tools	64	87
	device	Device-specific files and components	17	43
	docs	Content of http://source.android.com	N/A	6
	external	External projects imported into the AOSP	849	1,595
	frameworks	Core components such as system services	360	1,150
	gdk	Unknown[a]	N/A	5
	hardware	HAL and hardware support libraries	27	52
	libcore	Apache Harmony	54	40
	libnativehelper[b]	Helper functions for use with JNI	N/A	0.1
	ndk	Native Development Kit	13	31
	packages	Stock Android apps, providers, and IMEs	115	278
	pdk	Platform Development Kit	N/A	0.3
	prebuilt	Prebuilt binaries, including toolchains	1,389	N/A
	prebuilts	Replacement for prebuilt	N/A	2,387
	sdk	Software Development Kit	14	54
	system	“Embedded Linux” platform that houses Android	32	9
	tools	Various IDE tools	N/A	34
	[a] Despite several attempts, the author has been unable to
                identify what purpose this directory serves, apart from it
                having something to do with the NDK and LLVM. Even the git
                logs don’t hint at what the acronym stands for. It’s possibly
                experimental code for future use.

[b] This was a subdirectory of dalvik/ in 2.3.7.





As you can see, prebuilt
    (prebuilts in 4.2/Jelly Bean) and
    external are the two largest
    directories in the tree, accounting for close to 75% of its size in
    2.3.7/Gingerbread and above 65% of its size in 4.2/Jelly Bean.
    Interestingly, both of these directories are mostly made up of content
    from other open source projects and include things like various GNU
    toolchain versions, kernel images, common libraries, and frameworks such
    as OpenSSL and WebKit, etc. libcore
    is also from another open source project, Apache Harmony. In essence, this
    is further evidence of how much  Android relies on the rest of the open source ecosystem to exist. Still,
    Android contains a fair bit of “original” (or nearly) code: about 800 MB
    of it in 2.3.7/Gingerbread and about 2 GB in 4.2/Jelly Bean.
To best understand Android’s sources, it’s useful to refer back to
    Figure 2-1, which illustrated Android’s
    architecture. Figure 3-2 is a variant of that
    figure, which illustrates the location of each Android component in the
    AOSP sources. Obviously, a lot of key components come from frameworks/base/, which is where the bulk of
    Android’s “brains” are located. It’s in fact worth taking a closer look at
    that directory and at system/core/,
    in Tables 3-2 and 3-3 respectively, as they contain a large
    chunk of the moving parts you’ll likely be interested in interfacing with
    or modifying as an embedded developer.
[image: Android’s architecture]

Figure 3-2. Android’s architecture

Table 3-2. Content summary for frameworks/base/ in 2.3/Gingerbread
	Directory	Content
	cmds	Framework-related commands and daemons
	core	The android.* packages
	data	Fonts and sounds
	graphics	2D graphics and Renderscript
	include	C-language include files
	keystore	Security key store
	libs	C libraries
	location	Location provider
	media	Media Service, StageFright, codecs, etc.
	native	Native code for some framework components
	obex	Bluetooth Obex
	opengl	OpenGL library and Java code
	packages	A few core packages such as the Status Bar
	services	System services
	telephony	Telephony API, which talks to the rild radio layer interface
	tools	A few core tools such as aapt and aidl
	voip	RTP and SIP APIs
	vpn	VPN Manager
	wifi	Wifi Manager and API



In addition to base/, frameworks/ contained few other directories at
    the time of 2.3/Gingerbread. In between that version and 4.2/Jelly Bean,
    frameworks/base/ has gone through a
    number of cleanups, and several parts of it have been moved up a directory
    level and into frameworks/ (Table 3-4). frameworks/base/media/ for instance, is now
    frameworks/av/media/ instead. Also,
    frameworks/native/ now contains
    several native libraries and system services that were previously in
    frameworks/base/.
Table 3-3. Content summary for system/core/ in 2.3/Gingerbread
	Directory	Content
	adb[a]	The ADB daemon and client
	cpio	mkbootfs tool used to
            generate RAM disk images[b]
	debuggerd	debuggerd command
            mentioned in Chapter 2 and covered in Chapter 6
	fastboot	fastboot utility used to
            communicate with Android bootloaders using the “fastboot”
            protocol
	include	C-language headers for all things “system”
	init	Android’s init
	libacc	“Almost” C Compiler library for compiling C-like code; used
            by RenderScript in 2.3/Gingerbread[c]
	libcutils	Various C utility functions not part of the standard C
            library; used throughout the tree
	libdiskconfig	For reading and configuring disks; used by vold
	liblinenoise	BSD-licensed readline() replacement from
            http://github.com/antirez/linenoise; used by
            Android’s shell
	liblog	Logging library that interfaces with the Android kernel
            logger as seen in Figure 2-2; used
            throughout the tree
	libmincrypt	Basic RSA and SHA functions; used by the recovery mechanism
            and mkbootimg utility
	libnetutils	Network configuration library; used by netd
	libpixelflinger	Low-level graphic rendering functions
	libsysutils	Utility functions for talking with various components of
            the system, including the framework; used by netd and vold
	libzipfile	Wrapper around zlib for dealing with ZIP files
	logcat	The logcat
            utility
	logwrapper	Utility that forks and runs the command passed to it while
            redirecting stdout and stderr to Android’s logger
	mkbootimg	Utility for creating a boot image using a RAM disk and a
            kernel
	netcfg	Network configuration utility
	rootdir	Default Android root directory structure and
            content
	run-as	Utility for running a program as a given user ID
	sdcard	Emulates FAT using FUSE
	sh	Android shell
	toolbox	Android’s Toolbox (BusyBox replacement)
	[a] Some entries have been omitted because they aren’t
                currently used by any part of the AOSP. They are likely legacy
                components.

[b] This is used to create both the default RAM disk image
                used to boot Android and the recovery image.

[c] This description might not make any sense to you unless
                you know what RenderScript is. Have a look at Google’s
                documentation for RenderScript; the relevance of libacc in that context should be
                clearer.





Table 3-4. Major additions made to system/core/ between 2.3/Gingerbread and
      4.2/Jelly Bean.
	Directory	Content
	charger	Full-screen battery state display
	fs_mgr	Filesystem manager
	gpttool	Tool for dealing with GPT (UEFI) partition table
	libcorkscrew	Debugging/backtrace library
	libion	Library for interfacing with the ION driver
	libnl_2	Library for handling NetLink sockets
	libsuspend	Library for interfacing with the kernel’s power management
            functionality, including autosleep
	libsync	Library for interface with /dev/sw_sync
	libusbhost	Library for USB host mode handling



Apart from core/, system/ also includes a few more directories,
    such as netd/ and vold/, which contain the netd and vold daemons, respectively.
In addition to the top-level directories, the root directory also
    includes a single Makefile. That file is, however,
    mostly empty, its main use being to include the entry point to Android’s
    build system:
### DO NOT EDIT THIS FILE ###
include build/core/main.mk
### DO NOT EDIT THIS FILE ###
As you’ve likely figured out already, there’s far more to
    the AOSP than what I just presented to you. There are, after all, more
    than 14,000 directories and 100,000 files in 2.3.x/Gingerbread, and more
    than 40,000 directories and 265,000 files in 4.2/Jelly Bean. By most
    standards, it’s a fairly large project. In comparison, early 3.0.x
    releases of the Linux kernel have about 2,000 directories and 35,000
    files. We will certainly get the chance to explore more parts of the
    AOSP’s functionality and sources as we move forward. I highly recommend,
    though, that you start exploring and experimenting with the sources in
    earnest, as it will likely take several months before you can comfortably
    navigate your way through.  

Build Basics



So now we have an AOSP and a general idea of what’s inside, so let’s
    get it up and running. There’s one last thing we need to do before we can
    build it, though. We need to make sure we’ve got all the packages
    necessary on our Ubuntu install. Here are the instructions for 64-bit
    Ubuntu 11.04, assuming we’re building 2.3/Gingerbread. Even if you are
    using an older or newer version of some Debian-based  Linux distribution, the instructions will be fairly similar. (See also
    Building on Virtual Machines or Non-Linux Systems for other systems on which you can
    build the AOSP.) As I mentioned earlier, refer to Google’s Initializing a
    Build Environment for the latest version of packages required to
    build recent AOSPs on more recent Ubuntu versions.
Build System Setup



First, let’s get some of the basic packages installed on our
      development system. You might have some of these already installed as
      part of other development work you’ve been doing, and that’s fine.
      Ubuntu’s package management system will ignore your request to install
      those packages.
Note
Note that the following commands are broken down on several
        lines to fit this book’s width. The use of the \
        character at the end of a line on the shell forces it to start over on
        another line (the one starting with the >
        character) to give you the chance to continue entering your command.
        As such, you’re expected to type the \ characters
        at the end of the lines in the following commands, but the
        > at the beginning of the subsequent lines isn’t
        something you type; it’s inserted by the shell. Other commands in this
        book use the same trick for presentation purposes.

$ sudo apt-get install bison flex gperf git-core gnupg zip tofrodos \ 
> build-essential g++-multilib libc6-dev libc6-dev-i386 ia32-libs mingw32 \ 
> zlib1g-dev lib32z1-dev x11proto-core-dev libx11-dev \ 
> lib32readline5-dev libgl1-mesa-dev lib32ncurses5-dev

You might also need to fix a few symbolic links:
$ sudo ln -s /usr/lib32/libstdc++.so.6 /usr/lib32/libstdc++.so
$ sudo ln -s /usr/lib32/libz.so.1 /usr/lib32/libz.so
Finally, you need to install Sun’s JDK; it’s “officially”
      discouraged to use the OpenJDK with the AOSP (see this
      posting by Google’s Jean-Baptiste Queru), though some people are
      able to use it successfully (see sidebar below) and gcj won’t do. In Ubuntu, you used to be able
      to get the JDK by using the following sequence of commands:
$ sudo add-apt-repository "deb http://archive.canonical.com/ natty partner"
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk
Unfortunately there seems to have been some disagreement between
      Canonical (the company behind Ubuntu) and Oracle, and these instructions
      no longer work at the time of this writing. Instead, you should refer to
      Ubuntu’s instructions
      for getting the JDK version 6 working on your host. Note that version 7
      doesn’t work at the time of this writing for the AOSP. Essentially, the
      Ubuntu instructions explain that you need to get the JDK binary from
      
      Oracle’s site and install it. Here’s a slightly modified version
      of the currently published instructions, which you’re likely going to
      have to adapt to the latest version of the JDK:
$ chmod u+x jdk-6u38-linux-x64.bin
$ ./jdk-6u38-linux-x64.bin
$ sudo mkdir -p /usr/lib/jvm
$ sudo mv jdk1.6.0_38 /usr/lib/jvm/
$ sudo update-alternatives --install "/usr/bin/java" "java" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/java" 1
$ sudo update-alternatives --install "/usr/bin/javac" "javac" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javac" 1
$ sudo update-alternatives --install "/usr/bin/javah" "javah" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javah" 1
$ sudo update-alternatives --install "/usr/bin/javadoc" "javadoc" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javadoc" 1
$ sudo update-alternatives --install "/usr/bin/jar" "jar" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/jar" 1
You’ll then have to run the following commands and select the
      version you just installed:
$ sudo update-alternatives --config java
There are 2 choices for the alternative java (providing /usr/bin/java).

  Selection Path                                           Priority Status
---------------------------------------------------------
* 0         /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061     auto mode
  1         /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061     manual mode
  2         /usr/lib/jvm/jdk1.6.0_38/bin/java              1        manual mode

Press enter to keep the current choice[*], or type selection number: 2
$ sudo update-alternatives --display java
java - manual mode
  link currently points to /usr/lib/jvm/jdk1.6.0_38/bin/java
...
$ sudo update-alternatives --config javac
...
$ sudo update-alternatives --config javah
...
$ sudo update-alternatives --config javadoc
...
$ sudo update-alternatives --config jar
...
As you can see, Oracle’s JDK and the OpenJDK can coexist on the
      same Ubuntu installation. You just need to make sure the defaults point
      to the right JDK as needed. The above instructions have you installing
      Oracle’s JDK systemwide and changing the defaults of some commands to
      use the binaries in that package instead of whatever was installed by
      default in Ubuntu. Nothing precludes you from installing Oracle’s JDK
      somewhere into your home directory and changing the PATH variable to point to the bin/ directory extracted by the running of
      Oracle’s installation binary.
Using the OpenJDK instead of Oracle’s JDK
Following the rules can sometimes be boring. Despite the
        official recommendations to stick to Oracle’s JDK, many have actually
        successfully used the OpenJDK to build the AOSP. Here’s a patch from
        Linaro’s Bernhard Rosenkränzer that allows you to build the AOSP with
        the OpenJDK:
diff --git a/core/main.mk b/core/main.mk
index 87488f4..32e3aec 100644
--- a/core/main.mk
+++ b/core/main.mk
@@ -125,7 +125,14 @@ endif
 # Check for the correct version of java
 java_version := $(shell java -version 2>&1 | head -n 1 | grep '^java .*[
 "]1\.6[\. "$$]')
 ifneq ($(shell java -version 2>&1 | grep -i openjdk),)
-java_version :=
+$(warning ************************************************************)
+$(warning AOSP errors out when using OpenJDK, saying you need to use)
+$(warning Java SE 1.6 instead.)
+$(warning A build with OpenJDK seems to work fine though - if you)
+$(warning run into any Java errors, you may want to try using the)
+$(warning version required by AOSP though.)
+$(warning ************************************************************)
+#java_version :=
 endif
 ifeq ($(strip $(java_version)),)
 $(info ************************************************************)
A few Linaro engineers report they have no problems either
        compiling the AOSP this way or running the resulting images. Others
        seem to report javadoc issues, as Google’s
        Jean-Baptiste Queru hints. We can hope that future efforts
        will provide further evidence as to the viability of using the
        OpenJDK.

Your system is now ready to build Android. Obviously you don’t
      need to do this package installation process every time you build
      Android. You’ll need to do it only once for every Android development
      system you set up.

Building Android



We are now ready to build Android. Let’s go to the directory where
      we downloaded Android and configure the build system:
$ cd ~/android/aosp-2.3.x
$ . build/envsetup.sh
including device/acme/coyotepad/vendorsetup.sh
including device/htc/passion/vendorsetup.sh
including device/samsung/crespo4g/vendorsetup.sh
including device/samsung/crespo/vendorsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. generic-eng
     2. simulator
     3. full_passion-userdebug
     4. full_crespo4g-userdebug
     5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
============================================
For 4.2/Jelly Bean, the same operations on Ubuntu 12.04 would
      yield this instead:
$ cd ~/android/aosp-4.2
$ . build/envsetup.sh
including device/asus/grouper/vendorsetup.sh
including device/asus/tilapia/vendorsetup.sh
including device/generic/armv7-a-neon/vendorsetup.sh
including device/generic/armv7-a/vendorsetup.sh
including device/generic/mips/vendorsetup.sh
including device/generic/x86/vendorsetup.sh
including device/lge/mako/vendorsetup.sh
including device/samsung/maguro/vendorsetup.sh
including device/samsung/manta/vendorsetup.sh
including device/samsung/toroplus/vendorsetup.sh
including device/samsung/toro/vendorsetup.sh
including device/ti/panda/vendorsetup.sh
including sdk/bash_completion/adb.bash
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. full-eng
     2. full_x86-eng
     3. vbox_x86-eng
     4. full_mips-eng
     5. full_grouper-userdebug
     6. full_tilapia-userdebug
     7. mini_armv7a_neon-userdebug
     8. mini_armv7a-userdebug
     9. mini_mips-userdebug
     10. mini_x86-userdebug
     11. full_mako-userdebug
     12. full_maguro-userdebug
     13. full_manta-userdebug
     14. full_toroplus-userdebug
     15. full_toro-userdebug
     16. full_panda-userdebug

Which would you like? [full-eng] ENTER
============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.2
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-35-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JOP40C
OUT_DIR=out
============================================
In both cases, note that we typed a period, a space, and then
      build/envsetup.sh. This forces the
      shell to run the envsetup.sh script
      within the current shell. If we were to just run the script, the shell
      would spawn a new shell and run the script in that new shell. That would
      be useless since envsetup.sh defines
      new shell commands, such as lunch,
      and sets up environment variables required for the rest of the
      build.
We will explore envsetup.sh and
      lunch in more detail later. For the
      moment, though, note that the generic-eng combo in 2.3/Gingerbread and
      full-eng combo in 4.2/Jelly Bean
      means that we configured the build system to create images for running
      in the Android emulator. This is the same QEMU emulator software used by
      developers to test their apps when developing using the SDK on a
      workstation. Here it will be running our own custom images instead of
      the default ones shipped with the SDK. It’s also the same emulator that
      was used by the Android development team to develop Android while there
      were no devices for it yet. So while it’s not real hardware and is
      therefore by no means a perfect target, it’s still more than sufficient
      to cover most of the terrain we need to cover. Once you know your
      specific target, you should be able to adapt the instructions found in
      the rest of this book, possibly with some help from the book
      Building Embedded Linux Systems, to get your custom
      Android images loaded on your device and your hardware to boot
      them.
Now that the environment has been set up, we can actually build
      Android:
$ make -j16
============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
============================================
Checking build tools versions...
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c
lasses)
Header: out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
Header: out/target/product/generic/obj/include/libexpat/expat_external.h
Header: out/host/linux-x86/obj/include/libpng/png.h
Header: out/host/linux-x86/obj/include/libpng/pngconf.h
Header: out/host/linux-x86/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libpng/png.h
Header: out/target/product/generic/obj/include/libpng/pngconf.h
Header: out/target/product/generic/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libwpa_client/wpa_ctrl.h
Header: out/target/product/generic/obj/include/libsonivox/eas_types.h
Header: out/target/product/generic/obj/include/libsonivox/eas.h
Header: out/target/product/generic/obj/include/libsonivox/eas_reverb.h
Header: out/target/product/generic/obj/include/libsonivox/jet.h
Header: out/target/product/generic/obj/include/libsonivox/ARM_synth_constants_gn
u.inc
host Java: clearsilver (out/host/common/obj/JAVA_LIBRARIES/clearsilver_intermedi
ates/classes)
target Java: core (out/target/common/obj/JAVA_LIBRARIES/core_intermediates/class
es)
host Java: dx (out/host/common/obj/JAVA_LIBRARIES/dx_intermediates/classes)
Notice file: frameworks/base/libs/utils/NOTICE -- out/host/linux-x86/obj/NOTICE_
FILES/src//lib/libutils.a.txt
Notice file: system/core/libcutils/NOTICE -- out/host/linux-x86/obj/NOTICE_FILES
/src//lib/libcutils.a.txt
...
Warning
Note that several lines, especially at the end of the output,
        are wrapped around to the following line because they wouldn’t fit in
        the width permitted by this book’s pages. You will see this occurring
        in several of the output screens printed throughout this book. I’ve
        tried to keep the line-wrap at 80 characters, though sometimes I could
        get away with a little more without it being too obvious.
In sum, make sure you keep an eye out for wrapped lines in
        output in the rest of the book.

Now is a good time to go for a snack or to watch tonight’s hockey
      game—it’s a Canadian thing, I can’t help it. On a more serious note,
      your build time will obviously depend on your system’s capabilities. On
      a laptop with a quad-core CORE i7 Intel processor with hyperthreading
      enabled and  8GB of RAM, this actual command will take about 20 minutes to build
      2.3/Gingerbread and 80 minutes to build 4.2/Jelly Bean. On an older
      laptop with a dual-core Centrino 2 Intel processor and 2GB of RAM, a
      make -j4 would take about an hour to
       build 2.3/Gingerbread—I wouldn’t try building 4.2/Jelly Bean on such a
      machine. Note that the -j parameter of make allows you to specify how many jobs to
      run in parallel. Some say that it’s best to use your number of
      processors times 2, which is what I’m doing here. Others say it’s best
      to add 2 to the number of processors you have. Following that advice, I
      would have used 10 and 4 instead of 16 and 4.
Generally speaking, the AOSP is a very heavy piece of software to
      build. I highly recommend you use the most powerful system you can get
      your hands on, no holds barred. Having lots of RAM is also very highly
      recommended. In fact, if the entire AOSP tree can fit in the filesystem
      cache maintained by the kernel in RAM, then you’ll minimize your build
      times. You can also use solid-state drives instead of regular hard
      drives. They’ve been shown to significantly reduce the AOSP’s build
      times.
Building on Virtual Machines or Non-Linux Systems
I often get asked about building the AOSP in virtual machines;
        most often because the development team, or their IT department, is
        standardized on Windows. While I’ve seen this work and have put
        together images to do that myself, your results will vary. It’ll
        usually take more than twice as much time to build in a VM than
        building natively on the same system. So if you’re going to do a lot
        of work on the AOSP, I strongly suggest you build it natively. And,
        yes, this involves having a Linux machine at hand.
An increasing number of developers also prefer Mac OS X over
        Linux and Windows, including many at Google itself. Hence, the
        official instructions at http://source.android.com also
        describe how to build on a Mac. These instructions, though, tend to
        break after Mac OS updates. Fortunately for Mac-based developers, they
        are many and they are rather zealous. Hence, you’ll eventually find
        updated instructions on the web or on the various Google Groups about
        how to build the AOSP on your new version of OS X. Here’s one posting
        explaining how to build Gingerbread on OS X Lion: Building
        Gingerbread on OS X Lion. Bear in mind, though, that as I
        mentioned in Chapter 1, Google’s own Android build
        farms are Ubuntu based. If you choose to build on OS X, you’ll likely
        always be playing catch-up. At worst, you can use a VM as in the
        Windows case.
If you do choose to go the VM route, make sure you configure the
        VM to use as many CPUs as there are available in your system. Most
        BIOSes I’ve seen seem to disable by default the instruction sets that
        allow multiple-CPU virtualization. VirtualBox, for instance, will
        complain about some obscure error if you try to allocate more than one
        CPU to an image while those instruction sets are disabled. You must go
        to the BIOS and enable those options for your VM software to be able
        to grant the guest OS multiple CPUs.

There are a few other things to consider regarding the build.
      First, note that in between printing out the build configuration and the
      printing of the first output of the actual build (where it prints out:
      host Java: apicheck (out/host/common/o...), there
      will be a rather long delay where nothing will get printed out, save for
      the “No such file or directory” warnings. I’ll explain this delay in
      more detail later, but suffice it to say that the build system is taking
      that time to figure out the rules of how to build every part of the
      AOSP.
Note also that you’ll see plenty of warning statements. These are
      rather “normal,” not so much in terms of maintaining software quality,
      but in that they are pervasive in Android’s build. They usually won’t
      have an impact on the final product being compiled. So, contrary to the
      best of my software engineering instincts, I have to recommend you
      completely ignore warnings and stick to fixing errors only. Unless, of
      course, those warnings stem from software you added yourself. By all
      means, make sure you get rid of those
      warnings.


Running Android



With the build completed, all you need to do is start the emulator
    to run your own custom-built images:
$ emulator &
This will start the emulator window that will boot into a full
    Android environment as illustrated in Figure 3-3 (showing 2.3/Gingerbread).
[image: Android emulator running custom images]

Figure 3-3. Android emulator running custom images

You can then interact with the AOSP you just built as if it were
    running on a real device. Since your monitor is likely not a touch screen,
    however, you will need to use your mouse as if it were your finger. A
    single touch is a click, and swiping is done by holding down the mouse
    button, moving around, and letting go of the mouse button to signify that
    your finger has been removed from the touch screen. You also have a full
    keyboard at your disposal, with all the buttons you would find on a phone
    equipped with a QWERTY keyboard, although you can use your regular
    keyboard to input text in text boxes.
Despite its features and realism, the emulator does have its issues.
    For one thing, it takes some time to boot. It will take longest to boot
    the first time, because Dalvik is creating a JIT cache for the apps
    running on  the phone. Note that the creation of the Dalvik cache isn’t unique to the
    emulator. No matter what type of device you run Android on, modern Dalvik
    needs a JIT cache, whether it be created at boot time or, as we’ll see in
    Chapter 7, at build time.
Even after the first boot, though, you might find the emulator
    heavy, especially if you’re in a modify-compile-test loop. Also, it
    doesn’t perfectly emulate everything. For instance, it traditionally has a
    hard time firing off rotation change events when it’s made to rotate using
    F11 or F12. This, though, is mostly an issue for app developers.
If for any reason you close the shell where you had configured,
    built, and started Android—or if you need to start a new one and have
    access to all the tools and binaries created from the build, you must
    invoke the envsetup.sh script and the
    lunch commands again in order to set up
    environment variables. Here are commands from a new shell, for
    instance:
$ cd ~/android/aosp-2.3.x
$ emulator &
No command 'emulator' found, did you mean:
 Command 'qemulator' from package 'qemulator' (universe)
emulator: command not found
$ . build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. generic-eng
     2. simulator
     3. full_passion-userdebug
     4. full_crespo4g-userdebug
     5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
...
============================================
$ emulator &
$
Note that the second time we issued emulator, the shell didn’t complain that the
    command was missing anymore. The same goes for a lot of other Android
    tools, such as the adb command we’re
    about to look at. Note also that we didn’t need to issue any make commands, because we had already built
    Android. In this case, we just needed to make sure the environment
    variables were properly set in order for the results of the previous build
    to be available to us again.

Using the Android Debug Bridge (ADB)



One of the most interesting aspects of the development environment
    put together by the Android development team is that you can shell into
    the running emulator, or any real device connected through USB for that
    matter, using the adb tool:
$ adb shell  [image: 1]
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
# cat /proc/cpuinfo  [image: 2]
Processor       : ARM926EJ-S rev 5 (v5l)
BogoMIPS        : 405.50
Features        : swp half thumb fastmult vfp edsp java
CPU implementer : 0x41
CPU architecture: 5TEJ
CPU variant     : 0x0
CPU part        : 0x926
CPU revision    : 5

Hardware        : Goldfish
Revision        : 0000
Serial          : 0000000000000000
	[image: 1] 
	This is issued in the same shell where you started the
        emulator.

	[image: 2] 
	This is the target’s shell, and cat is actually running on the “target”
        (i.e., the emulator).



As you can see, the kernel running in the emulator reports that it’s
    seeing an ARM processor, which is in fact the predominant platform used
    with Android. Also, the kernel says it’s running on a platform called
    Goldfish. This is the code name for the emulator, and
    you will see it in quite a few places.
Now that you’ve got a shell into the emulator and you are root,
    which is the default in the emulator, you can run any command much as if
    you had shelled into a remote machine or a traditional, network-connected
    embedded Linux system. The Android Debug Bridge (ADB) is what makes this
    possible. To exit an ADB shell session, all you need to do is type
    Ctrl-D:
# CTRL-D [image: 1]
$  [image: 2]
	[image: 1] 
	This is in the target shell.

	[image: 2] 
	This is back on the host.



When you start adb for the first
    time on the host, it starts a server in the background whose job is to
    manage the connections to all Android devices connected to the host. That
    was the part of the earlier output that said a daemon was being started on
    port 5037. You can actually ask that daemon what devices it sees:
$ adb devices
List of devices attached
emulator-5554	device
0000021459584822	device
emulator-5556	offline
This is the output with one emulator instance running, one device
    connected through USB, and another emulator instance starting up. If there
    are multiple devices connected, you can tell it which device you want to
    talk to using the -s flag to identify
    the serial number of the device:
$ adb -s 0000021459584822 shell
$ id
uid=2000(shell) gid=2000(shell) groups=1003(graphics),1004(input), ...
$ su
su: permission denied
Note that in this case, I’m getting a $ for my shell prompt instead of a #. This means that contrary to the earlier
    interaction, I’m not running as root, as can also be seen from the output
    of the id command. This is actually a
    real commercial Android phone, and my inability above to gain root
    privileges using the su command is
    typical. Hence, my ability to make any modifications to this device will
    be fairly limited. Unless, of course, I find some way to “root” the phone
    (i.e., gain root access).
Historically, device manufacturers have been very reluctant for
    various reasons to give root access to their devices and have put in a
    number of provisions to make that as difficult as possible, if not
    impossible. That’s why “rooting” devices is held up as a holy grail by
    many power users and hackers. As of early 2013, some manufacturers,
    including Motorola, HTC, and Sony Mobile, have spelled out policy changes
    that seem to be aimed at making it easier for users to root their devices,
    with caveats of course. But this isn’t mainstream yet. And, unfortunately,
    it’s subject to the whims of network operators, who can still decide to
    lock down devices left unlocked by the handset manufacturer. 
Warning
You may be tempted to try to root a commercial phone or device for
      experimenting with Android platform development. I would suggest you
      think this through carefully. While there are plenty of instructions out
      there explaining how to replace your standard images with what is often
      referred to as “custom ROMs” such as CyanogenMod and others, you need to
      be aware that any false step could well result in “bricking” the device
      (i.e., rendering it unbootable or erasing critical boot-time code). You
      then have an expensive paperweight (hence the term “bricking”) instead
      of a phone.
If you want to experiment with running custom AOSP builds on real
      hardware, I suggest you get yourself something like a BeagleBoard xM or
      a PandaBoard. These boards are made for tinkering. If nothing else, they
      don’t have a built-in flash chip that you may risk damaging. Instead,
      the SoCs on those devices boot straight from SD cards. Hence, fixing a
      broken image is simply a matter of unplugging the SD card from the
      board, connecting it to your workstation, reprogramming it, and plugging
      it back into the board.
Some commercial phones and devices allow you to “unlock” the
      firmware, often with the fastboot oem
      unlock command, and therefore you can burn your own images
      with less risk of bricking your device. Still, the bootloader in those
      cases becomes the single point of failure; if you damage it for some
      reason, you could still end up with a bricked device. The best
      configuration is one where you can reprogram all storage devices no
      matter what commands you mistype.

adb can of course do a lot more
    than just give you a shell, and I encourage you to start it without any
    parameters to look at its usage output:
$ adb
Android Debug Bridge version 1.0.26

 -d                            - directs command to the only connected USB device
                                 returns an error if more than one USB device is 
                                 present.
 -e                            - directs command to the only running emulator.
                                 returns an error if more than one emulator is 
                                 running.
 -s <serial number>            - directs command to the USB device or emulator 
                                 with the given serial number. Overrides
                                 ANDROID_SERIAL
...
device commands:
  adb push <local> <remote>    - copy file/dir to device
  adb pull <remote> [<local>]  - copy file/dir from device
  adb sync [ <directory> ]     - copy host->device only if changed
                                 (-l means list but don't copy)
                                 (see 'adb help all')
  adb shell                    - run remote shell interactively
  adb shell <command>          - run remote shell command
  adb emu <command>            - run emulator console command
...
You can, for instance, use adb to
    dump the data contained in the main logger buffer:
$ adb logcat
I/DEBUG   (   30): debuggerd: Sep 10 2011 13:44:19
I/Netd    (   29): Netd 1.0 starting
I/Vold    (   28): Vold 2.1 (the revenge) firing up
D/qemud   (   38): entering main loop
D/Vold    (   28): USB mass storage support is not enabled in the kernel
D/Vold    (   28): usb_configuration switch is not enabled in the kernel
D/Vold    (   28): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/qemud   (   38): fdhandler_accept_event: accepting on fd 9
D/qemud   (   38): created client 0xe078 listening on fd 10
D/qemud   (   38): client_fd_receive: attempting registration for service 'boot-
properties'
D/qemud   (   38): client_fd_receive:    -> received channel id 1
D/qemud   (   38): client_registration: registration succeeded for client 1
I/qemu-props(   54): connected to 'boot-properties' qemud service.
I/qemu-props(   54): receiving..
I/qemu-props(   54): received: qemu.sf.lcd_density=160
I/qemu-props(   54): receiving..
I/qemu-props(   54): received: dalvik.vm.heapsize=16m
I/qemu-props(   54): receiving..
D/qemud   (   38): fdhandler_event: disconnect on fd 10
I/qemu-props(   54): exiting (2 properties set).
D/AndroidRuntime(   32):
D/AndroidRuntime(   32): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(   32): CheckJNI is ON
I/        (   33): ServiceManager: 0xad50
...
This is very useful for observing the runtime behavior of key system
    components, including services run by the System Server.
You can also copy files to and from the device:
$ adb push data.txt /data/local
1 KB/s (87 bytes in 0.043s)
$ adb pull /proc/config.gz
95 KB/s (7087 bytes in 0.072s)
Again, given its centrality to Android development, I invite you to
    read up on adb’s use. We will continue using it
    throughout the book and cover it in much greater detail in Chapter 6. Keep in mind, though, that adb
    can have its quirks. First and foremost, many have found its host-side
    daemon to be somewhat flaky. For some reason or another, it sometimes
    doesn’t correctly identify the state of connected devices and continues to
    state that they are offline while you try connecting to them. Or adb might just hang on the command line waiting
    for the device while the device is clearly active and able to receive ADB
    commands. The solution to those issues is almost invariably to kill the
    host-side daemon:[16]
$ adb kill-server
Not to worry—the next time you issue any adb command, the daemon will automatically be
    restarted. It’s unclear what causes this behavior, and maybe this problem
    will get resolved at some point in the future. In the meantime, keep in
    mind that if you see some odd behavior when using ADB, killing the
    host-side daemon is usually something you want to try before investigating
    other potential issues.
As I said above, we’ll discuss ADB in much greater detail in Chapter 6. Still, another source of information on adb is the Android Debug
    Bridge part of Google’s Android Developers Guide. As Tim
    Bird[17] recommends, you want to print a copy and put it under your
    pillow.

Mastering the Emulator



As I said earlier, you can go a long way in platform development by
    simply using the emulator. It effectively emulates an ARM target, and more
    recently an x86 target, too, with a minimal  set of hardware. We’ll spend some time here going through some more
    advanced aspects of dealing with the emulator. As with many Android
    pieces, the emulator is quite a complex piece of software in and of
    itself. Still, we can get a very good idea of its capabilities by
    surveying a few key features.
Earlier we started the emulator by simply typing:
$ emulator &
But the emulator command can also
    take quite a few parameters. You can see the online help by adding the
    -help flag on the command line:
$ emulator -help
Android Emulator usage: emulator [options] [-qemu args]
  options:
    -sysdir <dir>                  search for system disk images in <dir>
    -system <file>                 read initial system image from <file>
    -datadir <dir>                 write user data into <dir>
    -kernel <file>                 use specific emulated kernel
    -ramdisk <file>                ramdisk image (default <system>/ramdisk.img
    -image <file>                  obsolete, use -system <file> instead
    -init-data <file>              initial data image (default <system>/
                                   userdata.img
    -initdata <file>               same as '-init-data <file>'
    -data <file>                   data image (default <datadir>/userdata-
                                   qemu.img
    -partition-size <size>         system/data partition size in MBs
...
One especially useful flag is -kernel. It allows you to tell the emulator to
    use another kernel than the default prebuilt one found in prebuilt/android-arm/kernel/:
$ emulator -kernel path_to_your_kernel_image/zImage
If you want to use a kernel that has module support, for instance,
    you’ll need to build your own, because the prebuilt one doesn’t have
    module support enabled by default. Also, by default, the emulator won’t
    show you the kernel’s boot messages. You can, however, pass the -show-kernel flag to see them:
$ emulator -show-kernel
Uncompressing Linux.............................................................
................................ done, booting the kernel.
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC) ) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 24384
Kernel command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1
 android.ndns=3
Unknown boot option `android.checkjni=1': ignoring
Unknown boot option `android.qemud=ttyS1': ignoring
Unknown boot option `android.ndns=3': ignoring
PID hash table entries: 512 (order: 9, 2048 bytes)
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 96MB = 96MB total
Memory: 91548KB available (2616K code, 681K data, 104K init)
Calibrating delay loop... 403.04 BogoMIPS (lpj=2015232)
Mount-cache hash table entries: 512
Initializing cgroup subsys debug
Initializing cgroup subsys cpuacct
Initializing cgroup subsys freezer
CPU: Testing write buffer coherency: ok
...
You can also have the emulator print out information about its own
    execution using the -verbose flag,
    thereby allowing you to see, for example, which images files it’s
    using:
$ emulator -verbose
emulator: found Android build root: /home/karim/android/aosp-2.3.x
emulator: found Android build out:  /home/karim/android/aosp-2.3.x/out/target/pr
oduct/generic
emulator:     locking user data image at /home/karim/android/aosp-2.3.x/out/targ
et/product/generic/userdata-qemu.img
emulator: selecting default skin name 'HVGA'
emulator: found skin-specific hardware.ini: /home/karim/android/aosp-2.3.x/sdk/e
mulator/skins/HVGA/hardware.ini
emulator: autoconfig: -skin HVGA
emulator: autoconfig: -skindir /home/karim/android/aosp-2.3.x/sdk/emulator/skins
emulator: keyset loaded from: /home/karim/.android/default.keyset
emulator: trying to load skin file '/home/karim/android/aosp-2.3.x/sdk/emulator/
skins/HVGA/layout'
emulator: skin network speed: 'full'
emulator: skin network delay: 'none'
emulator: no SD Card image at '/home/karim/android/aosp-2.3.x/out/target/product
/generic/sdcard.img'
emulator: registered 'boot-properties' qemud service
emulator: registered 'boot-properties' qemud service
emulator: Adding boot property: 'qemu.sf.lcd_density' = '160'
emulator: Adding boot property: 'dalvik.vm.heapsize' = '16m'
emulator: argv[00] = "emulator"
emulator: argv[01] = "-kernel"
emulator: argv[02] = "/home/karim/android/aosp-2.3.x/prebuilt/android-arm/kernel
/kernel-qemu"
emulator: argv[03] = "-initrd"
emulator: argv[04] = "/home/karim/android/aosp-2.3.x/out/target/product/generic/
ramdisk.img"
emulator: argv[05] = "-nand"
emulator: argv[06] = "system,size=0x4200000,initfile=/home/karim/android/aosp-2.
3.x/out/target/product/generic/system.img"
emulator: argv[07] = "-nand"
emulator: argv[08] = "userdata,size=0x4200000,file=/home/karim/android/aosp-2.3.
x/out/target/product/generic/userdata-qemu.img"
emulator: argv[09] = "-nand"
...
Up to this point, I’ve used the terms QEMU and emulator
    interchangeably. The reality, though, is that the emulator command isn’t actually QEMU: It’s a
    custom wrapper around it created by the Android development team. You can,
    however, interact with the emulator’s QEMU by using the -qemu flag. Anything you pass after that flag is
    passed on to QEMU and not the emulator
    wrapper:
$ emulator -qemu -h
QEMU PC emulator version 0.10.50Android, Copyright (c) 2003-2008 Fabrice Bellard
usage: qemu [options] [disk_image]

'disk_image' is a raw hard image image for IDE hard disk 0

Standard options:
-h or -help     display this help and exit
-version        display version information and exit
-M machine      select emulated machine (-M ? for list)
-cpu cpu        select CPU (-cpu ? for list)
-smp n          set the number of CPUs to 'n' [default=1]
-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]
-fda/-fdb file  use 'file' as floppy disk 0/1 image
-hda/-hdb file  use 'file' as IDE hard disk 0/1 image
...
$ emulator -qemu -...
We saw earlier how we can use adb
    to interact with the AOSP running within the emulator, and we just saw how
    we can use various options to change the way the emulator is started.
    Interestingly, we can also control the emulator’s behavior at runtime by
    telneting into it. Every emulator
    instance that starts is assigned a port number on the host. Look again at
    Figure 3-3 and check the top-left corner of
    the emulator’s window. The number up there (5554 in this case) is the port
    number at which that emulator instance is listening. The next emulator
    that starts simultaneously will get 5556, the next 5558, and so on. To
    gain access to the emulator’s special console, you can use the regular
    telnet command:
$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

    help|h|?         print a list of commands
    event            simulate hardware events
    geo              Geo-location commands
    gsm              GSM related commands
    kill             kill the emulator instance
    network          manage network settings
    power            power related commands
    quit|exit        quit control session
    redir            manage port redirections
    sms              SMS related commands
    avd              manager virtual device state
    window           manage emulator window

try 'help <command>' for command-specific help
OK
Using that console, you can do some nifty tricks like redirecting a
    port from the host to the target:
redir add tcp:8080:80
OK
redir list
tcp:8080  => 80
OK
From here on, anything accessing 8080 on your host will actually be
    speaking to whatever is listening to port 80 on that emulated Android.
    Nothing listens to that port by default on Android, but you can, for
    example, have BusyBox’s httpd running
    on Android and connect to it in this way.
The emulator also exposes a few “magic” IPs to the emulated Android.
    IP address 10.0.2.2, for instance, is an alias to your workstation’s
    127.0.0.1. If you have Apache running on your workstation, you can open
    the emulator’s browser and type http://10.0.2.2 and you’ll be able to browse
    whatever content is served up by Apache.
For more information on how to operate the emulator and its various
    options, have a look at the Using the
    Android Emulator section of Google’s Android Developers Guide. It’s
    written for an app developer audience, but it will still be very useful to
    you even if you’re doing platform work.



[15] Thanks to Linaro’s Bernhard Rosenkränzer for pointing out this
        really useful trick.

[16] It’s actually somewhat interesting that the Android development
        team felt the need to build such functionality right into adb. Clearly they were encountering issues
        with that daemon themselves.

[17] Tim is the maintainer of http://elinux.org, the guy behind
        the Embedded Linux Conference, and the chair of the Linux Foundation’s
        CE Workgroup, and he’s been doing a lot of cool Android stuff at
        Sony.


Chapter 4. The Build System



The goal of the previous chapter was to get you up and running as
  quickly as possible with custom AOSP development. There’s nothing precluding
  you from closing this book at this point and starting to dig in and modify
  your AOSP tree to fit your needs. All you need to do to test your
  modifications is to rebuild the AOSP, start the emulator again, and, if need
  be, shell back into it using ADB. If you want to maximize your efforts,
  however, you’ll likely want some insight into Android’s build
  system.
Despite its modularity, Android’s build system is fairly complex and
  doesn’t resemble any of the mainstream build systems out there; none that
  are used for most open source projects, at least. Specifically, it uses
  make in a fairly unconventional way and
  doesn’t provide any sort of menuconfig-based
  configuration (or equivalent for that matter). Android very much has its own
  build paradigm that takes some time to get used to. So grab yourself a good
  coffee or two—things are about to get serious.
Warning
Like the rest of the AOSP, the build system is a moving target. So
    while the following information should remain valid for a long time, you
    should be on the lookout for changes in the AOSP version you’re
    using.

Comparison with Other Build Systems



Before I start explaining how Android’s build system works, allow me
    to begin by emphasizing how it differs from what you might already know.
    First and foremost, unlike most make-based build systems, the Android build
    system doesn’t rely on recursive makefiles. Unlike the Linux kernel, for
    instance, there isn’t a top-level makefile that will recursively invoke
    subdirectories’ makefiles. Instead, there is a script that explores all
    directories and subdirectories until it finds an Android.mk file, whereupon it stops and doesn’t
    explore the subdirectories underneath that file’s location—unless the
    Android.mk
    found instructs the build system otherwise. Note  that Android doesn’t rely on makefiles called Makefile. Instead, it’s the Android.mk files that specify how the local
    “module” is built.
Warning
Android build “modules” have nothing to do with kernel “modules.”
      Within the context of Android’s build system, a “module” is any
      component of the AOSP that needs to be built. This might be a binary, an
      app package, a library, etc., and it might have to be built for the
      target or the host, but it’s still a “module” with regards to the build
      system.

How Many Build Modules?
Just to give you an idea of how many modules can be built by the
      AOSP, try running this command in your tree:
$ find . -name Android.mk | wc -l
This will look for all Android.mk files and count how many there
      are. In 2.3.7/Gingerbread there are 1,143 and in 4.2/Jelly Bean,
      2,037.

Another Android specificity is the way the build system is
    configured. While most of us are used to systems based on kernel-style
    menuconfig or GNU autotools (i.e., autoconf, automake, etc.), Android
    relies on a set of variables  that are either set dynamically as part of the shell’s environment by way
    of envsetup.sh and lunch or are defined statically ahead of time in
    a buildspec.mk file. Also—always
    seeming to be a surprise to newcomers—the level of configurability made
    possible by Android’s build system is fairly limited. So while you can
    specify the properties of the target for which you want the AOSP to be
    built and, to a certain extent, which apps should be included by default
    in the resulting AOSP, there is no way for you to enable or disable most
    features, as is possible à la menuconfig. You can’t, for instance, decide
    that you don’t want power management support or that you don’t want the
    Location Service to start by default. 
Also, the build system doesn’t generate object files or any sort of
    intermediate output within the same location as the source files. You
    won’t find the .o files alongside
    their .c source files within the
    source tree, for instance. In fact, none of the existing AOSP directories
    are used in any of the output. Instead, the build system creates an
    out/ directory where it stores
    everything it generates. Hence, a make
    clean is very much the same thing as an rm -rf out/. In other words, removing the
    out/ directory wipes out anything
    that was built.
The last thing to say about the build system before we start
    exploring it in more detail is that it’s heavily tied to GNU
    make. And, more to the point, version 3.81; even the newer 3.82
    won’t work with many AOSP versions without patching. The  build system in fact heavily relies on many GNU
    make-specific features such as the define, include, and ifndef directives.
Some Background on the Design of Android’s Build System
If you would like to get more insight into the design
      choices that were made when Android’s build system was put together,
      have a look at the build/core/build-system.html file in the
      AOSP. It’s dated May 2006 and seems to have been the document that went
      around within the Android dev team to get consensus on a rework of the
      build system. Some of the information and the hypothesis are out of date
      or have been obsoleted, but most of the nuggets of the current build
      system are there. In general, I’ve found that the further back the
      document was created by the Android dev team, the more insightful it is
      regarding raw motivations and technical background. Newer documents tend
      to be “cleaned up” and abstract, if they exist at all.
If you want to understand the technical underpinnings of why
      Android’s build system doesn’t use recursive make, have a look at the paper entitled “Recursive Make Considered
      Harmful” by Peter Miller in AUUGN Journal of AUUG Inc., 19(1),
      pp. 14−25. The paper explores the issues surrounding the use of
      recursive makefiles and explains a different approach involving the use
      of a single global makefile for building the entire project based on
      module-provided .mk files, which is
      exactly what Android does.


Architecture



As illustrated in Figure 4-1, the entry
    point to making sense of the build system is the main.mk file found in the build/core/ directory, which is invoked through
    the top-level makefile, as we saw earlier. The build/core/ directory actually contains the
    bulk of the build system, and we’ll cover key files from there. Again,
    remember that Android’s build system pulls everything into a single
    makefile; it isn’t recursive. Hence, each .mk file you see eventually becomes part of a
    single huge makefile that contains the rules for building all the pieces
    in the system.
[image: Android’s build system]

Figure 4-1. Android’s build system

Why Does make Hang?
Every time you type make, you
      witness the aggregation of the .mk
      files into a single set through what might seem like an annoying build
      artifact: The build system prints out the build configuration and seems
      to hang for quite some time without printing anything to the screen.
      After these long moments of screen silence, it actually starts
      proceeding again and builds every part of the AOSP, at which point you
      see regular output to your screen as you’d expect from any regular build
      system. Anyone who’s built the AOSP has wondered what in the world the
      build system is doing during that time. What it’s doing is incorporating
      every Android.mk file it can find
      in the AOSP.
If you want to see this in action, edit build/core/main.mk and replace this
      line:
include $(subdir_makefiles)
with this:
$(foreach subdir_makefile, $(subdir_makefiles), \
  $(info Including $(subdir_makefile)) \
  $(eval include $(subdir_makefile)) \
 )
subdir_makefile :=
The next time you type make,
      you’ll actually see what’s happening:
$ make -j16
============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
============================================
Including ./bionic/Android.mk
Including ./development/samples/Snake/Android.mk
Including ./libcore/Android.mk
Including ./external/elfutils/Android.mk
Including ./packages/apps/Camera/Android.mk
Including ./device/htc/passion-common/Android.mk
...

Configuration



One of the first things the build system does is pull in the build
      configuration through the inclusion of config.mk. The build can be configured either
      by  the use of the envsetup.sh and lunch commands or by providing a buildspec.mk file at the top-level directory.
      In either case, some of the following variables need to be
      set.
	TARGET_PRODUCT
	Android flavor to be built. Each recipe can, for instance,
            include a different set of apps or locales or build different
            parts of the tree. Have a look at the various single product
            .mk files included by the
            AndroidProducts.mk files in
            build/target/product/,
            device/samsung/crespo/, and
            device/htc/passion/ for
            examples in 2.3/Gingerbread. In case of 4.2/Jelly Bean, look at
            device/asus/grouper/ and
            device/samsung/amgnuro/
            instead of Crespo and Passion. Values include the
            following:
	generic
	The “vanilla” kind, the most basic build of the AOSP
                  parts you can have.

	full
	The “all dressed” kind, with most apps and the major
                  locales enabled.

	full_crespo
	Same as full but
                  for Crespo (Samsung Nexus S).

	full_grouper
	Same as full but
                  for Grouper (Asus Nexus 7).

	sim
	Android simulator (see The Simulator: A Piece of Android’s History). Even though this is
                  available in 2.3/Gingerbread, this target has since been
                  removed and isn’t in 4.2/Jelly Bean.

	sdk
	The SDK; includes a vast number of locales.




	TARGET_BUILD_VARIANT
	Selects which modules to install. Each module is supposed to
            have a LOCAL_MODULE_TAGS
            variable set in its Android.mk to at least one of the
            following:[18] user, debug, eng, tests, optional, or samples. By selecting the variant, you
            will tell the build system which module subsets should be
            included—the only exception to this is packages (i.e., modules
            that generate .apk files) for
            which these rules don’t apply. Specifically:
	eng
	Includes all modules tagged as user, debug, or eng.

	userdebug
	Includes both modules tagged as user and debug.

	user
	Includes only modules tagged as user.




	TARGET_BUILD_TYPE
	Dictates whether or not special build flags are used or
            DEBUG variables are defined in
            the code. The possible values here are either release or debug. Most notably, the frameworks/base/Android.mk file chooses
            between either frameworks/base/core/config/debug or
            frameworks/base/core/config/ndebug,
            depending on whether or not this variable is set to debug. The former causes the ConfigBuildFlags.DEBUG Java constant to
            be set to true, whereas the
            latter causes it to be set to false. Some code in parts of the system
            services, for instance, is conditional on DEBUG. Typically, TARGET_BUILD_TYPE is set to release.

	TARGET_TOOLS_PREFIX
	By default, the build system will use one of the
            cross-development toolchains shipped with it underneath the
            prebuilt/ directory —
            prebuilts/ as of 4.2/Jelly
            Bean. However, if you’d like it to use another toolchain, you can
            set this value to point to its location.

	OUT_DIR
	By default, the build system will put all build output into
            the out/ directory. You can
            use this variable to provide an alternate output directory.

	BUILD_ENV_SEQUENCE_NUMBER
	If you use the template build/buildspec.mk.default to create
            your own buildspec.mk file,
            this value will be properly set. However, if you create a
            buildspec.mk with an older
            AOSP release and try to use it in a future AOSP release that
            contains important changes to its build system and, hence, a
            different value, this variable will act as a safety net. It will
            cause the build system to inform you that your buildspec.mk file doesn’t match your
            build system.



The Simulator: A Piece of Android’s History
If you go back to the menu printed by 2.3/Gingerbread’s lunch in Building Android,
        you’ll notice an entry called simulator. In fact you’ll find references to
        the simulator at a number of locations in 2.3/Gingerbread, including
        quite a few Android.mk files
        and subdirectories in the tree. The most important thing you need to
        know about the simulator is that it has nothing
        to do with the emulator. They are two completely different
        things.
That said, the simulator appears to be a remnant of the Android
        team’s early work to create Android. Since at the time they didn’t
        even have Android running in QEMU, they used their desktop OSes and
        the LD_PRELOAD mechanism to
        simulate an Android device, hence the term “simulator.” It appears
        that they stopped using it as soon as running Android on QEMU became
        possible. It continued being in the AOSP up until 4.0/Ice-Cream
        Sandwich, though, and was potentially useful for building parts of the
        AOSP for development and testing on developer workstations. 4.2/Jelly
        Bean, for instance, doesn’t have a simulator target.
The presence of the simulator build target in 2.3/Gingerbread
        and before didn’t mean that you could run the AOSP on your desktop. In
        fact you couldn’t, if only because you needed a kernel that had Binder
        included and you would’ve needed to be using Bionic instead of your
        system’s default C library. But, if you wanted to run parts of what’s
        built from the AOSP on your desktop, this product target allowed you
        to do so.
In 2.3/Gingerbread, various parts of the code build very
        differently if the target is the simulator. When browsing the code,
        for example, you’ll sometimes find conditional builds around the
        HAVE_ANDROID_OS C macro, which is
        only defined when compiling for the simulator. The code that talks to
        the Binder is one of these. If HAVE_ANDROID_OS is not defined, that code
        will return an error to its caller instead of trying to actually talk
        to the Binder driver.
For the full story behind the simulator, have a look at Android
        developer Andrew McFadden’s response
        to a post entitled “Android Simulator Environment” on the
        android-porting mailing list in April 2009.

In addition to selecting which parts of the AOSP to build and
      which options to build them with, the build system also needs to know
      about the target it’s building for. This is provided through a BoardConfig.mk file, which will specify
      things such as the command line to be provided to the kernel, the base
      address at which the kernel should be loaded, or the instruction set
      version most appropriate for the board’s CPU (TARGET_ARCH_VARIANT). Have a look at build/target/board/ for a set of per-target
      directories that each contain a BoardConfig.mk file. Also have a look at the
      various device/*/TARGET_DEVICE/BoardConfig.mk files included in the AOSP.
      The latter are much richer than the former because they contain a lot
      more hardware-specific information. The device name (i.e.,
      TARGET_DEVICE) is derived from the PRODUCT_DEVICE specified in the product
      .mk file provided for the TARGET_PRODUCT set in the configuration. In
      2.3/Gingerbread, for example, device/samsung/crespo/AndroidProducts.mk
      includes device/samsung/crespo/full_crespo.mk, which
      sets PRODUCT_DEVICE to crespo. Hence, the build system looks for a
      BoardConfig.mk in device/*/crespo/, and there happens to be one
      at that location. The same goes on in 4.2/Jelly Bean for the PRODUCT_DEVICE set in device/asus/grouper/full_grouper.mk to
      grouper, thereby pointing the build
      system to device/*/grouper/BoardConfig.mk.
The final piece of the puzzle with regard to configuration is the
      CPU-specific options used to build Android. For ARM, those are contained
      in build/core/combo/arch/arm/armv*.mk, with
      TARGET_ARCH_VARIANT determining the
      actual file to use. Each file lists CPU-specific cross-compiler and
      cross-linker flags used for building C/C++ files. They also contain a
      number of ARCH_ARM_HAVE_* variables
      that enable others parts of the AOSP to build code conditionally based
      on whether a given ARM feature is found in the target’s CPU.

envsetup.sh



Now that you understand the kinds of configuration input the build
      system needs, we can discuss the role of envsetup.sh in more detail. As its name
      implies, envsetup.sh actually is for
      setting up a build environment for Android. It does only part of the
      job, though. Mainly, it defines a series of shell commands that are
      useful to any sort of AOSP work:
$ cd ~/android/aosp-2.3.x
$ . build/envsetup.sh
$ help
Invoke ". build/envsetup.sh" from your shell to add the following functions to
your environment:
- croot:   Changes directory to the top of the tree.
- m:       Makes from the top of the tree.
- mm:      Builds all of the modules in the current directory.
- mmm:     Builds all of the modules in the supplied directories.
- cgrep:   Greps on all local C/C++ files.
- jgrep:   Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir:   Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
add_lunch_combo cgrep check_product check_variant choosecombo chooseproduct choo
setype choosevariant cproj croot findmakefile gdbclient get_abs_build_var getbug
reports get_build_var getprebuilt gettop godir help isviewserverstarted jgrep lu
nch m mm mmm pgrep pid printconfig print_lunch_menu resgrep runhat runtest set_j
ava_home setpaths set_sequence_number set_stuff_for_environment settitle smokete
st startviewserver stopviewserver systemstack tapas tracedmdump
In 4.2/Jelly Bean, hmm has
      replaced help, and the command set
      made available to you has been expanded:
$ cd ~/android/aosp-4.2
$ . build/envsetup.sh
$ hmm
Invoke ". build/envsetup.sh" from your shell to add the following functions to y
our environment:
- lunch:   lunch <product_name>-<build_variant>
- tapas:   tapas [<App1> <App2> ...] [arm|x86|mips] [eng|userdebug|user]
- croot:   Changes directory to the top of the tree.
- m:       Makes from the top of the tree.
- mm:      Builds all of the modules in the current directory.
- mmm:     Builds all of the modules in the supplied directories.
- cgrep:   Greps on all local C/C++ files.
- jgrep:   Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir:   Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
addcompletions add_lunch_combo cgrep check_product check_variant choosecombo cho
oseproduct choosetype choosevariant cproj croot findmakefile gdbclient get_abs_b
uild_var getbugreports get_build_var getlastscreenshot getprebuilt getscreenshot
path getsdcardpath gettargetarch gettop godir hmm isviewserverstarted jgrep key_
back key_home key_menu lunch _lunch m mm mmm pid printconfig print_lunch_menu re
sgrep runhat runtest set_java_home setpaths set_sequence_number set_stuff_for_en
vironment settitle smoketest startviewserver stopviewserver systemstack tapas tr
acedmdump
You’ll likely find the croot and godir commands quite useful for traversing the
      tree. Some parts of it are quite deep, given the use of Java and its
      requirement that packages be stored in directory trees bearing the same
      hierarchy as each subpart of the corresponding fully qualified package
      name. For instance, a file part of the com.foo.bar package must be stored under the
      com/foo/bar/ directory. Hence, it’s
      not rare to find yourself 7 to 10 directories underneath the AOSP’s
      top-level directory, and it rapidly becomes tedious to type something
      like cd ../../../ ... to return to an
      upper part of the tree.
m and mm are also quite useful since they allow you
      to, respectively, build from the top level regardless of where you are
      or just build the modules found in the current directory. For example,
      if you made a modification to the Launcher and are in packages/apps/Launcher2, you can rebuild just
      that module by typing mm instead of
      cd’ing back to the top level and
      typing make. Note that mm doesn’t rebuild the entire tree and,
      therefore, won’t regenerate AOSP images even if a dependent module has
      changed. m will do that, though.
      Still, mm can be useful to test
      whether your local changes break the build or not until you’re ready to
      regenerate the full AOSP.
Although the online help doesn’t mention lunch, it is one of the commands defined by
      envsetup.sh. When you run lunch without any parameters, it shows you a
      list of potential choices. This is the list from 2.3/Gingerbread:
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. generic-eng
     2. simulator
     3. full_passion-userdebug
     4. full_crespo4g-userdebug
     5. full_crespo-userdebug

Which would you like? [generic-eng]
This is the list from 4.2/Jelly Bean:
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. full-eng
     2. full_x86-eng
     3. vbox_x86-eng
     4. full_mips-eng
     5. full_grouper-userdebug
     6. full_tilapia-userdebug
     7. mini_armv7a_neon-userdebug
     8. mini_armv7a-userdebug
     9. mini_mips-userdebug
     10. mini_x86-userdebug
     11. full_mako-userdebug
     12. full_maguro-userdebug
     13. full_manta-userdebug
     14. full_toroplus-userdebug
     15. full_toro-userdebug
     16. full_panda-userdebug

Which would you like? [full-eng]
These choices are not static. Most depend on what’s in the
      AOSP at the time envsetup.sh runs.
      They’re in fact individually added using the add_lunch_combo() function that the script
      defines. In 2.3/Gingerbread, for instance, envsetup.sh adds generic-eng and simulator by default:
# add the default one here
add_lunch_combo generic-eng

# if we're on linux, add the simulator.  There is a special case
# in lunch to deal with the simulator
if [ "$(uname)" = "Linux" ] ; then
    add_lunch_combo simulator
fi
In 4.2/Jelly Bean, simulator is
      no longer a valid target and envsetup.sh does this instead:
# add the default one here
add_lunch_combo full-eng
add_lunch_combo full_x86-eng
add_lunch_combo vbox_x86-eng
add_lunch_combo full_mips-eng
envsetup.sh also includes all
      the vendor-supplied scripts it can find. Here’s how it’s done in
      2.3/Gingerbread:
# Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/build/vendorsetup.sh device/*
/*/vendorsetup.sh 2> /dev/null`
do
    echo "including $f"
    . $f
done
unset f
Here’s how it’s done in 4.2/Jelly Bean:
# Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/*/vendorsetup.sh device/*/*/v
endorsetup.sh 2> /dev/null`
do
    echo "including $f"
    . $f
done
unset f
In 2.3/Gingerbread the device/samsung/crespo/vendorsetup.sh file,
      for instance, does this:
add_lunch_combo full_crespo-userdebug
Similarly, in 4.2/Jelly Bean the device/asus/grouper/vendorsetup.sh file does
      this:
add_lunch_combo full_grouper-userdebug
So that’s how you end up with the menu we saw earlier.
      Note that the menu asks you to choose a combo.
      Essentially, this is a combination of a TARGET_PRODUCT and TARGET_BUILD_VARIANT, with the exception of
      the simulator in 2.3/Gingerbread. The
      menu provides the default combinations, but the others remain valid and
      can be passed to lunch as parameters
      on the command line. In 2.3/Gingerbread, for instance, you can do
      something like this:
$ lunch generic-user

============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=user
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
============================================

$ lunch full_crespo-eng

============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_crespo
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
============================================
Once lunch has finished running
      for a generic-eng combo, it will set
      up environment variables described in Table 4-1 in your current shell to provide the
      build system with the required configuration information.
Table 4-1. Environment variables set by lunch (in no particular order) for
        the default build target (i.e., generic-eng) in
        2.3/Gingerbread
	Variable	Value
	PATH	$ANDROID_JAVA_TOOLCHAIN:$PATH:$ANDROID_BUILD_PATHS
	ANDROID_EABI_TOOLCHAIN	aosp-root/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin
	ANDROID_TOOLCHAIN	$ANDROID_EABI_TOOLCHAIN
	ANDROID_QTOOLS	aosp-root/development/emulator/qtools
	ANDROID_BUILD_PATHS	aosp-root/out/host/linux-x86:$ANDROID_TOOLCHAIN:$ANDROID_QTOOLS:$ANDROID_TOOLCHAIN:$ANDROID_EABI_TOOLCHAIN
	ANDROID_BUILD_TOP	aosp-root
	ANDROID_JAVA_TOOLCHAIN	$JAVA_HOME/bin
	ANDROID_PRODUCT_OUT	aosp-root/out/target/product/generic
	OUT	ANDROID_PRODUCT_OUT
	BUILD_ENV_SEQUENCE_NUMBER	10
	OPROFILE_EVENTS_DIR	aosp-root/prebuilt/linux-x86/oprofile
	TARGET_BUILD_TYPE	release
	TARGET_PRODUCT	generic
	TARGET_BUILD_VARIANT	eng
	TARGET_BUILD_APPS	empty
	TARGET_SIMULATOR	false
	PROMPT_COMMAND	\"\033]0;[${TARGET_PRODUCT}-${TARGET_BUILD_VARIANT}]
              ${USER}@${HOSTNAME}: ${PWD}\007\"
	JAVA_HOME	/usr/lib/jvm/java-6-sun



Using ccache
If you’ve already done any AOSP building while reading these
        pages, you’ve noticed how long the process is. Obviously, unless you
        can construct yourself a bleeding-edge build farm, any sort of speedup
        on your current hardware would be greatly appreciated. As a sign that
        the Android development team might itself also feel the pain of the
        rather long builds, they’ve added support for ccache. ccache stands for Compiler
        Cache and is part of
        the Samba Project. It’s a mechanism that caches the object
        files generated by the compiler based on the preprocessor’s output.
        Hence, if under two separate builds the preprocessor’s output is
        identical, use of ccache will
        result in the second build not actually using the compiler to build
        the file. Instead, the cached object file will be copied to the
        destination where the compiler’s output would have been.
To enable the use of ccache,
        all you need to do is make sure that the USE_CCACHE environment variable is set to 1
        before you start your build:
$ export USE_CCACHE=1
You won’t gain any acceleration the first time you run, since
        the cache will be empty at that time. Every other time you build from
        scratch, though, the cache will help accelerate the build process. The
        only downside is that ccache is for
        C/C++ files only. Hence, it can’t accelerate the build of any Java
        file, I must add sadly. In 2.3/Gingerbread, there are about 15,000
        C/C++ files and 18,000 Java files in the AOSP. Those numbers are
        27,000 and 29,000 in 4.2/Jelly Bean. So, while the cache isn’t a
        panacea, it’s better than nothing.
If you’d like to learn more about ccache, have a look at the article titled
        “Improve
        collaborative build times with ccache” by Martin Brown on
        IBM’s developerWorks site. The article also explores the use of
        distcc, which allows you to
        distribute builds over several machines, so you can pool your team’s
        workstation caches together.
For all its benefits, some developers have reported weird errors
        in some cases when using ccache.
        For instance, I ran into such issues while maintaining my own AOSP
        fork. First, I got a version of the AOSP on my workstation and built
        it, creating a warm cache. I then proceeded to upload that tree to
        http://github.com. Finally, I did a repo sync on the tree I had just uploaded
        but from another directory on my workstation than the original one
        uploaded. Using diff to compare
        both trees showed both trees were identical. Yet, the original built
        fine with the warm cache while the second continued to fail building
        until the cache was erased.

Of course, if you get tired of always typing build/envsetup.sh and lunch, all you need to do is copy the
      build/buildspec.mk.default into the
      top-level directory, rename it to buildspec.mk, and edit it to match the
      configuration that would have otherwise been set by running those
      commands. The file already contains all the variables you need to
      provide; it’s just a matter of uncommenting the corresponding lines and
      setting the values appropriately. Once you’ve done that, all you have to
      do is go to the AOSP’s directory and invoke make directly. You can skip envsetup.sh and lunch.

Function Definitions



Because the build system is fairly large—there are more than 40
      .mk files in build/core/ alone—there are benefits in being
      able to reuse as much code as possible. This is why the build system
      defines a large number of functions  in the definitions.mk file. That file
      is actually the largest one in the build system at about 60KB, with
      about 140 functions on about 1,800 lines of makefile code in
      2.3/Gingerbread. It’s still the largest file in the build system in
      4.2/Jelly Bean at about 73KB, 170 functions, and about 2,100 lines of
      makefile code. Functions offer a variety of operations, including file
      lookup (e.g., all-makefiles-under and
      all-c-files-under), transformation
      (e.g., transform-c-to-o and transform-java-to-classes.jar), copying (e.g.,
      copy-file-to-target), and utility
      (e.g., my-dir.)
Not only are these functions used throughout the rest of the build
      system’s components, acting as its core library, but they’re sometimes
      also directly used in modules’ Android.mk files.
      Here’s an example snippet from the Calculator app’s Android.mk:
LOCAL_SRC_FILES := $(call all-java-files-under, src)
Although thoroughly describing definitions.mk is outside the scope of this
      book, it should be fairly easy for you to explore it on your own. If
      nothing else, most of the functions in it are preceded with a comment
      explaining what they do. Here’s an example from 2.3/Gingerbread:
###########################################################
## Find all of the java files under the named directories.
## Meant to be used like:
##    SRC_FILES := $(call all-java-files-under,src tests)
###########################################################

define all-java-files-under
$(patsubst ./%,%, \
  $(shell cd $(LOCAL_PATH) ; \
          find $(1) -name "*.java" -and -not -name ".*") \
 )
endef

Main Make Recipes



At this point you might be wondering where any of the goodies are
      actually generated. How are the various images such as RAM disk
      generated or how is the SDK put together, for example? Well, I hope you
      won’t hold a grudge, but I’ve been keeping the best for last. So without
      further ado, have a look at the Makefile in build/core/ (not the top-level one). The file
      starts with an innocuous-looking comment:
# Put some miscellaneous rules here
But don’t be fooled. This is where some of the best meat is.
      Here’s the snippet that takes care of generating the RAM disk, for
      example, in 2.3/Gingerbread:
# -----------------------------------------------------------------
# the ramdisk
INTERNAL_RAMDISK_FILES := $(filter $(TARGET_ROOT_OUT)/%, \
$(ALL_PREBUILT) \
$(ALL_COPIED_HEADERS) \
$(ALL_GENERATED_SOURCES) \
$(ALL_DEFAULT_INSTALLED_MODULES))

BUILT_RAMDISK_TARGET := $(PRODUCT_OUT)/ramdisk.img

# We just build this directly to the install location.
INSTALLED_RAMDISK_TARGET := $(BUILT_RAMDISK_TARGET)
$(INSTALLED_RAMDISK_TARGET): $(MKBOOTFS) $(INTERNAL_RAMDISK_FILES) | $(MINIGZIP)
$(call pretty,"Target ram disk: $@")
$(hide) $(MKBOOTFS) $(TARGET_ROOT_OUT) | $(MINIGZIP) > $@
And here’s the snippet that creates the certs packages for
      checking over-the-air (OTA) updates in the same AOSP version:
# -----------------------------------------------------------------
# Build a keystore with the authorized keys in it, used to verify the
# authenticity of downloaded OTA packages.
#
# This rule adds to ALL_DEFAULT_INSTALLED_MODULES, so it needs to come
# before the rules that use that variable to build the image.
ALL_DEFAULT_INSTALLED_MODULES += $(TARGET_OUT_ETC)/security/otacerts.zip
$(TARGET_OUT_ETC)/security/otacerts.zip: KEY_CERT_PAIR :=
$(DEFAULT_KEY_CERT_PAIR)
$(TARGET_OUT_ETC)/security/otacerts.zip: $(addsuffix .x509.pem,
$(DEFAULT_KEY_CERT_PAIR))
$(hide) rm -f $@
$(hide) mkdir -p $(dir $@)
$(hide) zip -qj $@ $<

.PHONY: otacerts
otacerts: $(TARGET_OUT_ETC)/security/otacerts.zip
Obviously there’s a lot more than I can fit here, but have a look
      at Makefile for information on how
      any of the following are created:
	Properties (including the target’s /default.prop and /system/build.prop).

	RAM disk.

	Boot image (combining the RAM disk and a kernel image).

	NOTICE files: These are
          files required by the AOSP’s use of the Apache Software License
          (ASL). Have a look at the ASL for more information about NOTICE files.

	OTA keystore.

	Recovery image.

	System image (the target’s /system directory).

	Data partition image (the target’s /data directory).

	OTA update package.

	SDK.



Nevertheless, some things aren’t
      in this file:
	Kernel images
	Don’t look for any rule to build these. There is no kernel
            part of the official AOSP releases—some of the third-party
            projects listed in Appendix E, however, actually
            do package kernel sources directly into the AOSPs they distribute.
            Instead, you need to find an Androidized kernel for your target,
            build it separately from the AOSP, and feed it to the AOSP. You
            can find a few examples of this in the devices in the device/ directory. In 2.3/Gingerbread,
            for example, device/samsung/crespo/ includes a
            kernel image (file called kernel) and a loadable module for the
            Crespo’s WiFi (bcm4329.ko
            file). Both of these are built outside the AOSP and copied in
            binary form into the tree for inclusion with the rest of the
            build.

	NDK
	While the code to build the NDK is in the AOSP, it’s
            entirely separate from the AOSP’s build system in build/. Instead, the NDK’s build system
            is in ndk/build/. We’ll
            discuss how to build the NDK shortly.

	CTS
	The rules for building the CTS are in build/core/tasks/cts.mk.




Cleaning



As I mentioned earlier, a make
      clean is very much the equivalent of wiping out the out/ directory. The clean target itself is defined in main.mk. There are, however, other cleanup
      targets. Most notably, installclean,
      which is defined in cleanbuild.mk,
      is automatically invoked whenever you change TARGET_PRODUCT, TARGET_BUILD_VARIANT or PRODUCT_LOCALES. For instance, if I had first
      built 2.3/Gingerbread for the generic-eng combo and then  used lunch to switch the combo to
      full-eng, the next time I started
      make, some of the build output would
      be automatically pruned using installclean:
$ make -j16
============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
...
============================================
*** Build configuration changed: "generic-eng-{mdpi,nodpi}" -> "full-eng-{en_US,
en_GB,fr_FR,it_IT,de_DE,es_ES,mdpi,nodpi}"
*** Forcing "make installclean"...
*** rm -rf out/target/product/generic/data/* out/target/product/generic/data-qem
u/* out/target/product/generic/userdata-qemu.img out/host/linux-x86/obj/NOTICE_F
ILES out/host/linux-x86/sdk out/target/product/generic/*.img out/target/product/
generic/*.txt out/target/product/generic/*.xlb out/target/product/generic/*.zip
out/target/product/generic/data out/target/product/generic/obj/APPS out/target/p
roduct/generic/obj/NOTICE_FILES out/target/product/generic/obj/PACKAGING out/tar
get/product/generic/recovery out/target/product/generic/root out/target/product/
generic/system out/target/product/generic/dex_bootjars out/target/product/generi
c/obj/JAVA_LIBRARIES
*** Done with the cleaning, now starting the real build.
In contrast to clean, installclean doesn’t wipe out the entirety of
      out/. Instead, it only nukes the
      parts that need rebuilding given the combo configuration change. There’s
      also a clobber target which is
      essentially the same thing as a clean.

Module Build Templates



What I just described is the build system’s architecture and the
      mechanics of its core components. Having read that, you should have a
      much better idea of how Android is built from a top-down perspective.
      Very little of that, however, permeates down to the level of AOSP
      modules’ Android.mk files. The
      system has in fact been architected so that module build recipes are
      pretty much independent from the build system’s internals. Instead,
      build templates are provided so that module authors can get their
      modules built appropriately. Each template is tailored for a specific
      type of module, and module authors can use a set of documented
      variables, all prefixed by LOCAL_, to
      modulate the templates’ behavior and output. Of course, the templates
      and underlying support files (mainly base_rules.mk) closely interact with the rest
      of the build system to deal properly with each module’s build output.
      But that’s invisible to the module’s author.
The templates are themselves found in the same location as the
      rest of the build system in build/core/. Android.mk gets access to them through the
      include directive. Here’s an
      example:
include $(BUILD_PACKAGE)
As you can see, Android.mk
      files don’t actually include the .mk templates by name. Instead, they include
      a variable that is set to the corresponding .mk file. Table 4-2 provides the full list of
      available module templates.
Table 4-2. Module build templates list
	Variable	Template	What It Builds	Most Notable Use
	BUILD_EXECUTABLE	executable.mk	Target binaries	Native commands and daemons
	BUILD_HOST_EXECUTABLE	host_executable.mk	Host binaries	Development tools
	BUILD_RAW_EXECUTABLE	raw_executable.mk	Target binaries that run on bare metal	Code in the bootloader/ directory
	BUILD_JAVA_LIBRARY	java_library.mk	Target Java libaries	Apache Harmony and Android Framework
	BUILD_STATIC_JAVA_LIBRARY	static_java_library.mk	Target static Java libraries	N/A, few modules use this
	BUILD_HOST_JAVA_LIBRARY	host_java_library.mk	Host Java libraries	Development tools
	BUILD_SHARED_LIBRARY	shared_library.mk	Target shared libraries	A vast number of modules, including many in external/ and frameworks/base/
	BUILD_STATIC_LIBRARY	static_library.mk	Target static libraries	A vast number of modules, including many in external/
	BUILD_HOST_SHARED_LIBRARY	host_shared_library.mk	Host shared libraries	Development tools
	BUILD_HOST_STATIC_LIBRARY	host_static_library.mk	Host static libraries	Development tools
	BUILD_RAW_STATIC_LIBRARY	raw_static_library.mk	Target static libraries that run on bare metal	Code in bootloader/
	BUILD_PREBUILT	prebuilt.mk	Copies prebuilt target files	Configuration files and binaries
	BUILD_HOST_PREBUILT	host_prebuilt.mk	Copies prebuilt host files	Tools in prebuilt/
              and configuration files
	BUILD_MULTI_PREBUILT	multi_prebuilt.mk	Copies prebuilt modules of multiple but known types, like
              Java libraries or executables	Rarely used
	BUILD_PACKAGE	package.mk	Built-in AOSP apps (i.e., anything that ends up being an
              .apk)	All apps in the AOSP
	BUILD_KEY_CHAR_MAP	key_char_map.mk	Device character maps	All device character maps in AOSP



These build templates allow Android.mk files to be usually fairly
      lightweight:
LOCAL_PATH := $(call my-dir) [image: 1]
include $(CLEAR_VARS) [image: 2]

LOCAL_VARIABLE_1 := value_1 [image: 3]

LOCAL_VARIABLE_2 := value_2

...

include $(BUILD_MODULE_TYPE) [image: 4]
	[image: 1] 
	Tells the build template where the current module is
          located.

	[image: 2] 
	Clears all previously set LOCAL_* variables that might have been set
          for other modules.

	[image: 3] 
	Sets various LOCAL_*
          variables to module-specific values.

	[image: 4] 
	Invokes the build template that corresponds to the current
          module’s type.



Note
Note that CLEAR_VARS, which
        is provided by clear_vars.mk,[19] is very important. Recall that the build system includes
        all Android.mk into what amounts
        to a single huge makefile. Including CLEAR_VARS ensures that the LOCAL_* values set for modules preceding
        yours are  zeroed out by the time your Android.mk is included. Also, a single
        Android.mk can describe multiple
        modules one after the other. Hence, CLEAR_VARS ensures that previous module
        recipes don’t pollute subsequent ones.

Here’s the Service Manager’s Android.mk in 2.3/Gingerbread, for instance
      (frameworks/base/cmds/servicemanager/):[20]
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SHARED_LIBRARIES := liblog
LOCAL_SRC_FILES := service_manager.c binder.c
LOCAL_MODULE := servicemanager
ifeq ($(BOARD_USE_LVMX),true)
    LOCAL_CFLAGS += -DLVMX
endif

include $(BUILD_EXECUTABLE)
And here’s the one[21] from 2.3/Gingerbread’s Desk Clock app (packages/app/DeskClock/):
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := DeskClock
LOCAL_OVERRIDES_PACKAGES := AlarmClock
LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

include $(call all-makefiles-under,$(LOCAL_PATH))
As you can see, essentially the same structure is used in both
      modules, even though they provide very different input and result in
      very different output. Notice also the last line from the Desk Clock’s
      Android.mk, which basically
      includes all subdirectories’ Android.mk files. As
      I said earlier, the build system looks for the first makefile in a
      hierarchy and doesn’t look in any subdirectories underneath the
      directory where one was found, hence the need to manually invoke those.
      Obviously, the code here just goes out and looks for all makefiles
      underneath. However, some parts of the AOSP either explicitly list
      subdirectories or conditionally select them based on
      configuration.
The documentation at http://source.android.com used to
      provide an exhaustive list of all the LOCAL_* variables with their meaning and use.
      Unfortunately, at the time of this writing, this list is no longer
      available. The build/core/build-system.html file, however,
      contains an earlier version of that list, and you should refer to that
      one until up-to-date lists become available again. Here are some of the
      most frequently encountered LOCAL_*
      variables:
	LOCAL_PATH
	The path of the current module’s sources, typically provided
            by invoking $(call
            my-dir).

	LOCAL_MODULE
	The name to attribute to this module’s build output. The
            actual filename or output and its location will depend on the
            build template you include. If this is set to foo, for example, and you build an
            executable, then the final executable will be a command called
            foo and it will be put in the
            target’s /system/bin/. If
            LOCAL_MODULE is set to libfoo and you include BUILD_SHARED_LIBRARY instead of BUILD_EXECUTABLE, the build system will
            generate libfoo.so and put it
            in /system/lib/.
Note that the name you provide here must be unique for the
            particular module class (i.e., build template type) you are
            building. There can’t be two libfoo.so libraries, for instance. It’s
            expected that the module name will have to be globally unique
            (i.e., across all module classes) at some point in the future.

	LOCAL_SRC_FILES
	The source files used to build the module. You may provide
            those by using one of the build system’s defined functions, as the
            Desk Clock uses all-java-files-under, or you may list
            the files explicitly, as the Service Manager does.

	LOCAL_PACKAGE_NAME
	Unlike all other modules, apps use this variable instead of
            LOCAL_MODULE to provide their
            names, as you can witness by comparing the two Android.mk files shown earlier.

	LOCAL_SHARED_LIBRARIES
	Use this to list all the libraries your module depends on.
            As mentioned earlier, the Service Manager’s dependency on liblog
            is specified using this variable.

	LOCAL_MODULE_TAGS
	As I mentioned earlier, this allows you to control under
            which TARGET_BUILD_VARIANT this
            module is built. Usually, this should just be set to optional.

	LOCAL_MODULE_PATH
	Use this to override the default install location for the
            type of module you’re building.



A good way to find out about more LOCAL_* variables is to look at existing
      Android.mk files in the AOSP. Also,
      clear_vars.mk contains the full
      list of variables that are cleared. So while it doesn’t give you the
      meaning of each, it certainly lists them all.
Also, in addition to the cleaning targets that affect the AOSP
      globally, each module can define its own cleaning rules by providing a
      CleanSpec.mk, much like modules
      provide Android.mk files. Unlike
      the latter, though, the former aren’t required. By default, the build
      system has cleaning rules for each type of module. But you can specify
      your own rules in a CleanSpec.mk in
      case your module’s build does something the build system doesn’t
      generate by default and, therefore, wouldn’t typically know how to clean
      up.

Output



Now that we’ve looked at how the build system works and how module
      build templates are used by modules, let’s look at the output it creates
      in out/. At a fairly high level,
      the build output operates in three stages and in two modes, one for the
      host and one for the target:
	Intermediates are generated using the
          module sources. These intermediates’ format and location depend on
          the module’s sources. They may be .o files for C/C++ code, for example, or
          .jar files for Java-based
          code.

	Intermediates are used by the build system to create actual
          binaries and packages: taking .o files, for example, and linking them
          into an actual binary.

	The binaries and packages are assembled together into the
          final output requested of the build system. Binaries, for instance,
          are copied into directories containing the root and /system filesystems, and images of those
          filesystems are generated for use on the actual device.



out/ is mainly separated into
      two directories, reflecting its operating modes: host/ and target/. In each directory, you will find a
      couple of obj/ directories that
      contain the various intermediates generated during the build. Most of
      these are stored in subdirectories named like the one that the BUILD_* macros presented earlier and serve a
      specific complementary purpose during the build system’s
      operation:
	 EXECUTABLES/ 

	 JAVA_LIBRARIES/ 

	 SHARED_LIBRARIES/
          

	 STATIC_LIBRARIES/
          

	 APPS/ 

	 DATA/ 

	 ETC/ 

	 KEYCHARS/ 

	 PACKAGING/ 

	 NOTICE_FILES/ 

	 include/ 

	 lib/ 



The directory you’ll likely be most interested in is out/target/product/PRODUCT_DEVICE/.
      That’s  where the output images will be located for the PRODUCT_DEVICE defined in the corresponding
      product configuration’s .mk. Table 4-3 explains the content of that
      directory.
Table 4-3. Product output
	Entry	Description
	android-info.txt	Contains the code name for the board for which this
              product is configured
	clean_steps.mk	Contains a list of steps that must be executed to clean
              the tree, as provided in CleanSpec.mk files by calling the
              add-clean-step
              function
	data/	The target’s /data
              directory
	installed-files.txt	A list of all the files installed in data/ and system/ directories
	obj/	The target product’s intermediaries
	previous_build_config.mk	The last build target; will be used on the next make to check if the config has
              changed, thereby forcing an installclean
	ramdisk.img	The RAM disk image generated based on the content of the
              root/ directory
	root/	The content of the target’s root filesystem
	symbols/	Unstripped versions of the binaries put in the root
              filesystem and /system
              directory
	system/	The target’s /system
              directory
	system.img	The /system image,
              based on the content of the system/ directory
	userdata.img	The /data image,
              based on the content of the data/ directory



Have a look back at Chapter 2 for a refresher on
      the root filesystem, /system, and
      /data. Essentially, though, when
      the kernel boots, it will mount the RAM disk image and execute the
      /init found inside. That binary, in
      turn, will run the /init.rc script
      that will mount both the /system
      and /data images at their
      respective locations. We’ll come back to the root filesystem layout and
      the system’s operation at boot time in Chapter 6.


Build Recipes



With the build system’s architecture and functioning in mind, let’s
    take a look at some of the most common, and some slightly uncommon, build
    recipes. We’ll only lightly touch on using the results of each recipe, but
    you should have enough  information to get started.
The Default droid Build



Earlier, we went through a number of plain make commands but never really explained the
      default target. When you run plain make, it’s as if you had typed:[22]
$ make droid
droid is in fact the default
      target as defined in main.mk. You
      don’t usually need to specify this target manually. I’m providing it
      here for completeness, so you know it exists.

Seeing the Build Commands



When you build the AOSP, you’ll notice that it doesn’t
      actually show you the commands it’s running. Instead, it prints out only
      a summary of each step it’s at. If you want to see everything it does,
      like the gcc command lines for
      example, add the showcommands target
      to the command line:
$ make showcommands
...
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c
lasses)
for f in ; do if [ ! -f $f ]; then echo Missing file $f; exit 1; fi; unzip -qo $
f -d  out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes; (cd  ou
t/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes && rm -rf META-I
NF); done
javac -J-Xmx512M -target 1.5 -Xmaxerrs 9999999 -encoding ascii -g    -extdirs ""
 -d out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes \@out/host
/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list-uniq || ( rm
-rf out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes ; exit 41
)
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
-uniq
jar -cfm out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/javalib.jar b
uild/tools/apicheck/src/MANIFEST.mf  -C out/host/common/obj/JAVA_LIBRARIES/apich
eck_intermediates/classes .
Header: out/host/linux-x86/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
cp -f external/expat/lib/expat_external.h out/host/linux-x86/obj/include/libexpa
t/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/target/product/generic/obj/include/libexpat
/expat.h
...
Illustrating what I explained in the previous section, this is the
      same as:
$ make droid showcommands
As you’ll rapidly notice when using this, it generates a lot of
      output and is therefore hard to follow. You may, however, want to save
      the standard output and standard error into files if you’d like to
      analyze the actual commands used to build the AOSP:
$ make showcommands > aosp-build-stdout 2> aosp-build-stderr
You can also do something like this to merge all output into a
      single file:
$ make showcommands 2>&1 | tell build.log
Some also report that they prefer using the nohup command instead:
$ nohup make showcommands

Building the SDK for Linux and Mac OS



 The official Android SDK is available at http://developer.android.com. You
      can, however, build your own SDK using the AOSP if, for instance, you
      extended the core APIs to expose new functionality and would like to
      distribute the result to developers so they can benefit from your new
      APIs. To do so, you’ll need to select a special combo:
$ . build/envsetup.sh
$ lunch sdk-eng
$ make sdk
Once this is done, the SDK will be in out/host/linux-x86/sdk/ when built on Linux
      and in out/host/darwin-x86/sdk/
      when built on a Mac. There will be two copies, one a ZIP file, much like
      the one distributed at http://developer.android.com, and one uncompressed and
      ready to use.
Assuming you had already configured Eclipse for Android
      development using the instructions at http://developer.android.com, you’ll
      need to carry out two additional steps to use your newly built SDK.
      First, you’ll need to tell Eclipse the location of the new SDK. To do
      so, go to Window→Preferences→Android, enter the path to the new SDK in the
      SDK Location box, and click OK. Also, for reasons that aren’t entirely
      clear to me at the time of this writing, you also need to go to
      Window→Android SDK Manager, deselect all
      the items that might be selected except the first two under Tools, and
      then click “Install 2 packages...” Once that is done, you’ll be able to
      create new projects using the new SDK and access any new APIs you expose
      in it. If you don’t do that second step, you’ll be able to create new
      Android projects, but none of them will resolve Java libraries properly
      and will, therefore, never build.

Building the SDK for Windows



The instructions for building the SDK for Windows are slightly
      different from Linux and Mac OS:
$ . build/envsetup.sh
$ lunch sdk-eng
$ make win_sdk
The resulting output will be in out/host/windows/sdk/.

Building the CTS



If you want to build the CTS, you don’t need to use envsetup.sh or lunch. You can go right ahead and
      type:
$ make cts
...
Generating test description for package android.sax
Generating test description for package android.performance
Generating test description for package android.graphics
Generating test description for package android.database
Generating test description for package android.text
Generating test description for package android.webkit
Generating test description for package android.gesture
Generating test plan CTS
Generating test plan Android
Generating test plan Java
Generating test plan VM
Generating test plan Signature
Generating test plan RefApp
Generating test plan Performance
Generating test plan AppSecurity
Package CTS: out/host/linux-x86/cts/android-cts.zip
Install: out/host/linux-x86/bin/adb
The cts command includes its
      own online help. Here’s the corresponding sample output from
      2.3/Gingerbread:
$ cd out/host/linux-x86/bin/
$ ./cts
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
$ cts_host > help
Usage: command options
Available commands and options:
  Host:
    help: show this message
    exit: exit cts command line
  Plan:
    ls --plan: list available plans
    ls --plan plan_name: list contents of the plan with specified name
    add --plan plan_name: add a new plan with specified name
    add --derivedplan plan_name -s/--session session_id -r/--result result_type:
 derive a plan from the given session
    rm --plan plan_name/all: remove a plan or all plans from repository
    start --plan test_plan_name: run a test plan
    start --plan test_plan_name -d/--device device_ID: run a test plan using the
 specified device
    start --plan test_plan_name -t/--test test_name: run a specific test
...
$ cts_host > ls --plan
List of plans (8 in total):
Signature
RefApp
VM
Performance
AppSecurity
Android
Java
CTS
Once you have a target up and running, such as the emulator, you
      can launch the test suite and it will use adb to run tests on the target:
$ ./cts start --plan CTS
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
Device(emulator-5554) connected
cts_host > start test plan CTS

CTS_INFO >>> Checking API...

CTS_INFO >>> This might take several minutes, please be patient...
...

Building the NDK



As I had mentioned earlier, the NDK has its own separate build
      system, with its own setup and help system, which you can invoke like
      this:
$ cd ndk/build/tools
$ export ANDROID_NDK_ROOT=aosp-root/ndk
$ ./make-release --help
Usage: make-release.sh [options]

Valid options (defaults are in brackets):

  --help                       Print this help.
  --verbose                    Enable verbose mode.
  --release=name               Specify release name [20110921]
  --prefix=name                Specify package prefix [android-ndk]
  --development=path           Path to development/ndk directory [/home/karim/
                               opersys-dev/android/aosp-2.3.4/development/ndk]
  --out-dir=path               Path to output directory [/tmp/ndk-release]
  --force                      Force build (do not ask initial question) [no]
  --incremental                Enable incremental packaging (debug only). [no]
  --darwin-ssh=hostname        Specify Darwin hostname to ssh to for the build.
  --systems=list               List of host systems to build for [linux-x86]
  --toolchain-src-dir=path     Use toolchain sources from path
When you are ready to build the NDK, you can invoke make-release as follows, and witness its
      rather emphatic warning:
$ ./make-release
IMPORTANT WARNING !!

This script is used to generate an NDK release package from scratch
for the following host platforms: linux-x86

This process is EXTREMELY LONG and may take SEVERAL HOURS on a dual-core
machine. If you plan to do that often, please read docs/DEVELOPMENT.TXT
that provides instructions on how to do that more easily.

Are you sure you want to do that [y/N]
y
Downloading toolchain sources...
...

Updating the API



The build systems has safeguards in case you modify the AOSP’s
      core API. If you do, the build will fail by default with a warning such
      as this:
******************************
You have tried to change the API from what has been previously approved.

To make these errors go away, you have two choices:
   1) You can add "@hide" javadoc comments to the methods, etc. listed in the
      errors above.

   2) You can update current.xml by executing the following command:
         make update-api

      To submit the revised current.xml to the main Android repository,
      you will need approval.
******************************


make: *** [out/target/common/obj/PACKAGING/checkapi-current-timestamp] Error 38
make: *** Waiting for unfinished jobs....
As the error message suggests, to get the build to continue,
      you’ll need to do something like this:
$ make update-api
...
Install: out/host/linux-x86/framework/apicheck.jar
Install: out/host/linux-x86/framework/clearsilver.jar
Install: out/host/linux-x86/framework/droiddoc.jar
Install: out/host/linux-x86/lib/libneo_util.so
Install: out/host/linux-x86/lib/libneo_cs.so
Install: out/host/linux-x86/lib/libneo_cgi.so
Install: out/host/linux-x86/lib/libclearsilver-jni.so
Copying: out/target/common/obj/JAVA_LIBRARIES/core_intermediates/emma_out/lib/cl
asses-jarjar.jar
Install: out/host/linux-x86/framework/dx.jar
Install: out/host/linux-x86/bin/dx
Install: out/host/linux-x86/bin/aapt
Copying: out/target/common/obj/JAVA_LIBRARIES/bouncycastle_intermediates/emma_ou
t/lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/ext_intermediates/emma_out/lib/cla
sses-jarjar.jar
Install: out/host/linux-x86/bin/aidl
Copying: out/target/common/obj/JAVA_LIBRARIES/core-junit_intermediates/emma_out/
lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/emma_out/l
ib/classes-jarjar.jar
Copying current.xml
The next time you start make,
      you won’t get any more errors regarding API changes. Obviously at this
      point you’re no longer compatible with the official APIs and are
      therefore unlikely to be able to get certified as an “Android” device by
      Google.

Building a Single Module



Up to now, we’ve looked at building the entire tree. You can also
      build individual modules. Here’s how you can ask the build system to
      build the Launcher2 module (i.e., the Home screen):
$ make Launcher2
You can also clean modules individually:
$ make clean-Launcher2
If you’d like to force the build system to regenerate the system
      image to include your updated module, you can add the snod target to the command line:
$ make Launcher2 snod
============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
target Package: Launcher2 (out/target/product/generic/obj/APPS/Launcher2_interme
diates/package.apk)
 'out/target/common/obj/APPS/Launcher2_intermediates//classes.dex' as 'classes.d
ex'...
Install: out/target/product/generic/system/app/Launcher2.apk
Install: out/host/linux-x86/bin/mkyaffs2image
make snod: ignoring dependencies
Target system fs image: out/target/product/generic/system.img

Building Out of Tree



If you’d ever like to build code against the AOSP and its
      Bionic library but don’t want to incorporate that into the AOSP, you can
      use a makefile such as the following to get the job done:[23]
# Paths and settings
TARGET_PRODUCT = generic
ANDROID_ROOT   = /home/karim/android/aosp-2.3.x
BIONIC_LIBC    = $(ANDROID_ROOT)/bionic/libc
PRODUCT_OUT    = $(ANDROID_ROOT)/out/target/product/$(TARGET_PRODUCT)
CROSS_COMPILE  = \
    $(ANDROID_ROOT)/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

# Tool names
AS            = $(CROSS_COMPILE)as
AR            = $(CROSS_COMPILE)ar
CC            = $(CROSS_COMPILE)gcc
CPP           = $(CC) -E
LD            = $(CROSS_COMPILE)ld
NM            = $(CROSS_COMPILE)nm
OBJCOPY       = $(CROSS_COMPILE)objcopy
OBJDUMP       = $(CROSS_COMPILE)objdump
RANLIB        = $(CROSS_COMPILE)ranlib
READELF       = $(CROSS_COMPILE)readelf
SIZE          = $(CROSS_COMPILE)size
STRINGS       = $(CROSS_COMPILE)strings
STRIP         = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF \
         SIZE STRINGS STRIP

# Build settings
CFLAGS        = -O2 -Wall -fno-short-enums
HEADER_OPS    = -I$(BIONIC_LIBC)/arch-arm/include \
                -I$(BIONIC_LIBC)/kernel/common \
                -I$(BIONIC_LIBC)/kernel/arch-arm
LDFLAGS       = -nostdlib -Wl,-dynamic-linker,/system/bin/linker \
                $(PRODUCT_OUT)/obj/lib/crtbegin_dynamic.o \
                $(PRODUCT_OUT)/obj/lib/crtend_android.o \
                -L$(PRODUCT_OUT)/obj/lib -lc -ldl

# Installation variables
EXEC_NAME     = example-app
INSTALL       = install
INSTALL_DIR   = $(PRODUCT_OUT)/system/bin

# Files needed for the build
OBJS          = example-app.o

# Make rules
all: example-app

.c.o:
        $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

example-app: ${OBJS}
        $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: example-app
        test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
        $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
        rm -f *.o $(EXEC_NAME) core

distclean:
        rm -f *~
        rm -f *.o $(EXEC_NAME) core
In this case, you don’t need to care about either envsetup.sh or lunch. You can just go ahead and type the
      magic incantation:
$ make
Obviously this won’t add your binary to any of the images
      generated by the AOSP. Even the install target here will be of value only if
      you’re mounting the target’s filesystem off NFS, and that’s valuable
      only during debugging, which is what this makefile is assumed to be
      useful for. To an extent, it could also be argued that using such a
      makefile is actually counterproductive, since it’s far more complicated
      than the equivalent Android.mk that
      would result if this code were added as a module part of the
      AOSP.
Still, this kind of hack can have its uses. Under certain
      circumstances, for instance, it might make sense to modify the
      conventional build system used by a rather large codebase to build that project against the
      AOSP yet outside of it; the alternative being to copy the project into
      the AOSP and create Android.mk
      files to reproduce the mechanics of its original conventional build
      system, which might turn out to be a substantial endeavor in and of
      itself.

Building Recursively, In-Tree



You can, if you really want to, hack yourself a makefile to build
      within the AOSP a component that is based on recursive makefiles instead
      of trying to reproduce the same functionality using Android.mk files, as was suggested in the
      last section. Several of the AOSP forks mentioned in Appendix E, for instance, include the kernel sources at the
      top level of the AOSP and modify the AOSP’s main makefile to invoke the
      kernel’s existing build system.
Here’s another example where an Android.mk was created by Linaro’s Bernhard
      Rosenkränzer in order to build
      ffmpeg—which relies on a GNU autotools-like script—using its original
      build files:
include $(CLEAR_VARS)
FFMPEG_TCDIR := $(realpath $(shell dirname $(TARGET_TOOLS_PREFIX)))
FFMPEG_TCPREFIX := $(shell basename $(TARGET_TOOLS_PREFIX))
# FIXME remove -fno-strict-aliasing once the aliasing violations are fixed
FFMPEG_COMPILER_FLAGS = $(subst -I ,-I../../,$(subst -include \
system/core/include/arch/linux-arm/AndroidConfig.h,,$(subst -include \
build/core/combo/include/arch/linux-arm/AndroidConfig.h,, \
$(TARGET_GLOBAL_CFLAGS)))) -fno-strict-aliasing -Wno-error=address \
 -Wno-error=format-security
ifneq ($(strip $(SHOW_COMMANDS)),)
FF_VERBOSE="V=1"
endif

.PHONY: ffmpeg

droidcore: ffmpeg

systemtarball: ffmpeg

REALTOP=$(realpath $(TOP))

ffmpeg: x264 $(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates/libvpx.a
mkdir -p $(PRODUCT_OUT)/obj/ffmpeg
cd $(PRODUCT_OUT)/obj/ffmpeg && \
export PATH=$(FFMPEG_TCDIR):$(PATH) && \
$(REALTOP)/external/ffmpeg/configure \
 --arch=arm \
 --target-os=linux \
 --prefix=/system \
 --bindir=/system/bin \
 --libdir=/system/lib \
 --enable-shared \
 --enable-gpl \
 --disable-avdevice \
 --enable-runtime-cpudetect \
 --disable-libvpx \
 --enable-libx264 \
 --enable-cross-compile \
 --cross-prefix=$(FFMPEG_TCPREFIX) \
 --extra-ldflags="-nostdlib -Wl,-dynamic-linker, \
/system/bin/linker,-z,muldefs$(shell if test $(PRODUCT_SDK_VERSION) -lt 16; \
then echo -n ',-T$(REALTOP)/$(BUILD_SYSTEM)/armelf.x'; fi),-z,nocopyreloc, \
--no-undefined -L$(REALTOP)/$(TARGET_OUT_STATIC_LIBRARIES) \
-L$(REALTOP)/$(PRODUCT_OUT)/system/lib \
-L$(REALTOP)/$(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates -ldl -lc" \
 --extra-cflags="$(FFMPEG_COMPILER_FLAGS) \
-I$(REALTOP)/bionic/libc/include -I$(REALTOP)/bionic/libc/kernel/common \
-I$(REALTOP)/bionic/libc/kernel/arch-arm \
-I$(REALTOP)/bionic/libc/arch-arm/include -I$(REALTOP)/bionic/libm/include \
-I$(REALTOP)/external/libvpx -I$(REALTOP)/external/x264" \
 --extra-libs="-lgcc" && \
$(MAKE) \
TARGET_CRTBEGIN_DYNAMIC_O=$(REALTOP)/$(TARGET_CRTBEGIN_DYNAMIC_O) \
TARGET_CRTEND_O=$(REALTOP)/$(TARGET_CRTEND_O) $(FF_VERBOSE) && \
$(MAKE) install DESTDIR=$(REALTOP)/$(PRODUCT_OUT)


Basic AOSP Hacks



You most likely bought this book with one thing in mind: to hack the
    AOSP to fit your needs. Over the next few pages, we’ll start looking into
    some of the most obvious hacks you’ll likely want to try. Of course we’re
    only setting the stage here with the parts that pertain to the build
    system, which is where you’ll likely want to start anyway. 
Note
While the following explanations are based on 2.3/Gingerbread,
      they’ll work just the same on 4.2/Jelly Bean, and likely many versions
      after that one, too. The fact is, these mechanisms have been constant
      for quite some time. Still, where relevant, changes in 4.2/Jelly Bean
      are highlighted.

Adding a Device



Adding a custom device is most likely one of the topmost items (if
      not the topmost) on your list of reasons for reading this book. I’m
      about to show you how to do just that, so you’ll likely want to bookmark
      this section. Of course I’m actually only showing you the build aspects
      of the work. There are a lot more steps involved in porting Android to
      new  hardware. Still, adding the new device to the build system will definitely
      be one of the first things you do. Fortunately, doing that is relatively
      straightforward.
For the purposes of the current exercise, assume you work for a
      company called ACME and that you’re tasked with delivering its latest
      gizmo: the CoyotePad, intended to be the best platform for playing all
      bird games. Let’s get started by creating an entry for our new device in
      device/:
$ cd ~/android/aosp-2.3.x
$ . build/envsetup.sh
$ mkdir -p device/acme/coyotepad
$ cd device/acme/coyotepad
The first thing we’ll need in here is an AndroidProducts.mk file to describe the
      various AOSP products that could be built for the CoyotePad:
PRODUCT_MAKEFILES := \
    $(LOCAL_DIR)/full_coyotepad.mk
While we could describe several products (see build/target/product/AndroidProducts.mk for
      an example), the typical case is to specify just one, as in this case,
      and it’s described in full_coyotepad.mk:
$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
# If you're using 4.2/Jelly Bean, use full_base.mk instead of full.mk
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES +=

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep
It’s worth taking a closer look at this makefile. First, we’re
      using the inherit-product function to
      tell the build system to pull in other product descriptions as the basis
      of ours. This allows us to build on other people’s work and not have to
      specify from scratch every bit and piece of the AOSP that we’d like to
      include. languages_full.mk will
      pull in a vast number of locales, and full.mk will make sure we get the same set of
      modules as if we had built using the full-eng combo.
With regard to the other variables:
	DEVICE_PACKAGE_OVERLAYS
	Allows us to specify a directory that will form the basis of
            an overlay that will be applied onto the AOSP’s sources, thereby
            allowing us to substitute default package resources with
            device-specific resources. You’ll find this useful if you’d like
            to set custom layouts or colors for Launcher2 or other apps, for
            instance. We’ll look at how to use this in the next
            section.

	PRODUCT_PACKAGES
	Allows us to specify packages we’d like to have this product
            include in addition to those specified in the products we’re
            already inheriting from. If you have custom apps, binaries, or
            libraries located within device/acme/coyotepad/, for instance,
            you’ll want to add them here so that they are included in the
            final images generated. Notice the use of the += sign. It allows us to append to the
            existing values in the variable instead of substituting its
            content.

	PRODUCT_COPY_FILES
	Allows us to list specific files we’d like to see copied to
            the target’s filesystem and the location where they need to be
            copied. Each source/destination pair is colon-separated, and pairs
            are space-separated among themselves. This is useful for
            configuration files and prebuilt binaries such as firmware images
            or kernel modules.

	PRODUCT_NAME
	The TARGET_PRODUCT, which
            you can set either by selecting a lunch combo or passing it as part of the
            combo parameter to lunch, as
            in:
$ lunch full_coyotepad-eng

	PRODUCT_DEVICE
	The name of the actual finished product shipped to the
            customer. TARGET_DEVICE derives
            from this variable. PRODUCT_DEVICE has to match an entry in
            device/acme/, since that’s
            where the build looks for the corresponding BoardConfig.mk. In this case, the
            variable is the same as the name of the directory we’re already
            in.

	PRODUCT_MODEL
	The name of this product as provided in the “Model number”
            in the “About the phone” section of the settings. This variable
            actually gets stored as the ro.product.model global property
            accessible on the device.



Version 4.2/Jelly Bean also includes a PRODUCT_BRAND that is typically set to
      Android. The value of this variable is then available as the ro.product.brand global property. The latter
      is used by some parts of the stack that take action based on the
      device’s vendor.
Now that we’ve described the product, we must also provide some
      information regarding the board the device is using through a BoardConfig.mk file:
TARGET_NO_KERNEL := true
TARGET_NO_BOOTLOADER := true
TARGET_CPU_ABI := armeabi
BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true
This is a very skinny BoardConfig.mk and ensures that we actually
      build successfully. For a real-life version of that file, have a look at
      device/samsung/crespo/BoardConfigCommon.mk in
      2.3/Gingerbread, and also at device/asus/grouper/BoardConfigCommon.mk in
      4.2/Jelly Bean.
You’ll also need to provide a conventional Android.mk in order to build all the modules
      that you might have included in this device’s directory:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

ifneq ($(filter coyotepad,$(TARGET_DEVICE)),)
include $(call all-makefiles-under,$(LOCAL_PATH))
endif
It’s in fact the preferred modus operandi to put all
      device-specific apps, binaries, and libraries within the device’s
      directory instead of globally within the rest of the AOSP. If you do add
       modules here, don’t forget to also add them to PRODUCT_PACKAGES as I explained earlier. If
      you just put them here and provide them valid Android.mk files, they’ll build, but they
      won’t be in the final images.
If you have several products sharing the same set of packages, you
      may want to create a device/acme/common/ directory containing the
      shared packages. You can see an example of this in 4.2/Jelly Bean’s
      device/generic/ directory. In that
      same version, you can also check how device/samsung/maguro/device.mk inherits from
      device/samsung/tuna/device.mk for
      an example of how one device can be based on another device.
Lastly, let’s close the loop by making the device we just added
      visible to envsetup.sh and lunch. To do so, you’ll need to add a
      vendorsetup.sh in your device’s
      directory:
add_lunch_combo full_coyotepad-eng
You also need to make sure that it’s executable if it’s to be
      operational:
$ chmod 755 vendorsetup.sh
We can now go back to the AOSP’s root and take our brand-new ACME
      CoyotePad for a runchase:
$ croot
$ . build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
     1. generic-eng
     2. simulator
     3. full_coyotepad-eng
     4. full_passion-userdebug
     5. full_crespo4g-userdebug
     6. full_crespo-userdebug

Which would you like? [generic-eng] 3

============================================
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_coyotepad
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
============================================

$ make -j16
As you can see, the AOSP now recognizes our new device and prints
      the information correspondingly. When the build is done, we’ll also have
      the same type of output provided in any other AOSP build, except that it
      will be a product-specific directory:
$ ls -al out/target/product/coyotepad/
total 89356
drwxr-xr-x  7 karim karim     4096 2011-09-21 19:20 .
drwxr-xr-x  4 karim karim     4096 2011-09-21 19:08 ..
-rw-r--r--  1 karim karim        7 2011-09-21 19:10 android-info.txt
-rw-r--r--  1 karim karim     4021 2011-09-21 19:41 clean_steps.mk
drwxr-xr-x  3 karim karim     4096 2011-09-21 19:11 data
-rw-r--r--  1 karim karim    20366 2011-09-21 19:20 installed-files.txt
drwxr-xr-x 14 karim karim     4096 2011-09-21 19:20 obj
-rw-r--r--  1 karim karim      327 2011-09-21 19:41 previous_build_config.mk
-rw-r--r--  1 karim karim  2649750 2011-09-21 19:43 ramdisk.img
drwxr-xr-x 11 karim karim     4096 2011-09-21 19:43 root
drwxr-xr-x  5 karim karim     4096 2011-09-21 19:19 symbols
drwxr-xr-x 12 karim karim     4096 2011-09-21 19:19 system
-rw-------  1 karim karim 87280512 2011-09-21 19:20 system.img
-rw-------  1 karim karim  1505856 2011-09-21 19:14 userdata.img
Also, have a look at the build.prop file in system/. It contains various global
      properties that will be available at runtime on the target and that
      relate to our configuration and build:
# begin build properties
# autogenerated by buildinfo.sh
ro.build.id=GINGERBREAD
ro.build.display.id=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.1908
49 test-keys
ro.build.version.incremental=eng.karim.20110921.190849
ro.build.version.sdk=10
ro.build.version.codename=REL
ro.build.version.release=2.3.4
ro.build.date=Wed Sep 21 19:10:04 EDT 2011
ro.build.date.utc=1316646604
ro.build.type=eng
ro.build.user=karim
ro.build.host=w520
ro.build.tags=test-keys
ro.product.model=Full Android on CoyotePad, meep-meep
ro.product.brand=generic
ro.product.name=full_coyotepad
ro.product.device=coyotepad
ro.product.board=
ro.product.cpu.abi=armeabi
ro.product.manufacturer=unknown
ro.product.locale.language=en
ro.product.locale.region=US
ro.wifi.channels=
ro.board.platform=
# ro.build.product is obsolete; use ro.product.device
ro.build.product=coyotepad
# Do not try to parse ro.build.description or .fingerprint
ro.build.description=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.190
849 test-keys
ro.build.fingerprint=generic/full_coyotepad/coyotepad:2.3.4/GINGERBREAD/eng.kari
m.20110921.190849:eng/test-keys
# end build properties
...
Warning
You may want to carefully vet the default properties before
        using the build on a real device. Some developers have encountered
        some severe issues due to default values. In both 2.3/Gingerbread and
        4.2/Jelly Bean, for instance, ro.com.android.dataroaming is set to
        true in some builds. Hence, if
        you’re doing development on a device connected to a live cell network,
        changing the value to false might
        save you some money.

As you can imagine, there’s a lot more to be done here to make
      sure the AOSP runs on our hardware. But the preceding steps give us the
      starting point. However, by isolating the board-specific changes in a
      single directory, this configuration will simplify adding support for
      the CoyotePad to the next version of the AOSP that gets released.
      Indeed, it’ll just be a matter of copying the corresponding directory to
      the new AOSP’s device/ directory
      and adjusting the code therein to use the new APIs.

Adding an App



Adding an app to your board is relatively straightforward. As a
      starter, try creating a HelloWorld! app with Eclipse and the default
      SDK; all new Android projects in Eclipse are a HelloWorld! by default.
      Then copy that app from the Eclipse workspace to its destination:
$ cp -a ~/workspace/HelloWorld ~/android/aosp-2.3.x/device/acme/coyotepad/
You’ll then have to create an Android.mk file in aosp-root/device/acme/coyotepad/HelloWorld/
      to build that app:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := HelloWorld

include $(BUILD_PACKAGE)
Given that we’re tagging this module as optional, it won’t be included by default in
      the AOSP build. To include it, you’ll need to add it to the PRODUCT_PACKAGES listed in the CoyotePad’s
      full_coyotepad.mk.
If, instead of adding your app for your board only, you would like
      to add a default app globally to all
      products generated by the AOSP alongside the existing stock apps, you’ll
      need to put it in packages/apps/
      instead of your board’s directory. You’ll also need to modify one of the
      built-in .mk files, such as
      aosp-root/build/target/product/core.mk, to
      have your app built by default. This is not recommended, though, as it’s
      not very portable since it will require you to make this modification to
      every new AOSP release. As I stated earlier, it’s best to keep your
      custom modifications in device/acme/coyotepad/ in as much as
      possible.

Adding an App Overlay



Sometimes you don’t actually want to add an app but would rather
      modify existing ones included by default in the AOSP. That’s what app
      overlays are for. Overlays are a mechanism included in the AOSP to allow
      device manufacturers to change the resources provided (such as for
      apps), without actually modifying the original resources included in the
      AOSP. To use this capability, you must create an overlay tree and tell
      the build system about it. The easiest location for an overlay is within
      a device-specific directory such as the one we created in the previous
      section:
$ cd device/acme/coyotepad/
$ mkdir overlay
To tell the build system to take this overlay into account, we
      need to modify our full_coyotepad.mk such that:
DEVICE_PACKAGE_OVERLAYS := device/acme/coyotepad/overlay
At this point, though, our overlay isn’t doing much. Let’s say we
      want to modify some of Launcher2’s default strings. We could then do
      something like this:
$ mkdir -p overlay/packages/apps/Launcher2/res/values
$ cp aosp-root/packages/apps/Launcher2/res/values/strings.xml \
> overlay/packages/apps/Launcher2/res/values/
You can then trim your local strings.xml to override only those strings
      that you need. Most importantly, your device will have a Launcher2 that
      has your custom strings, but the default Launcher2 will still have its
      original strings. So if someone relies on the same AOSP sources you’re
      using to build for another product, they’ll still get the original
      strings. You can, of course, replace most resources like this, including
      images and XML files. So long as you put the files in the same hierarchy
      as they are found in the AOSP but within device/acme/coyotepad/overlay/, they’ll be
      taken into account by the build system.
Warning
Overlays can be used only for resources. You can’t overlay
        source code. If you want to customize parts of Android’s internals,
        for instance, you’ll still have to make those modifications in situ.
        There’s no way, currently at least, to isolate those changes to your
        board.


Adding a Native Tool or Daemon



Like the example above of adding an app for your board, you can
      add your custom native tools and daemons as subdirectories of device/acme/coyotepad/. Obviously, you’ll
      need to provide an Android.mk in
      the directory containing the code to build that module:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := hello-world
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := hello-world.cpp
LOCAL_SHARED_LIBRARIES := liblog

include $(BUILD_EXECUTABLE)
As in the app’s case, you’ll also need to make sure hello-world is part of the CoyotePad’s
      PRODUCT_PACKAGES.
If you intend to add your binary globally for all product builds
      instead of just locally to your board, you need to know that there are a
      number of locations in the tree where native tools and daemons are
      located. Here are the most important ones:
	system/core/ and
          system/
	Custom Android binaries that are meant to be used outside
            the Android Framework or are standalone pieces.

	frameworks/base/cmds/
	Binaries that are tightly coupled to the Android Framework.
            This is where the Service Manager and installd are found, for example.

	external/
	Binaries that are generated by an external project that is
            imported into the AOSP. strace,
            for instance, is here.



Having identified from the list above where the code generating
      your binary should go, you’ll also need to add it as part of one of the
      global .mk files such as
      aosp-root/build/target/product/core.mk. As I said
      above, however, such global additions are not recommended since they
      can’t be transferred as easily to newer AOSP versions.

Adding a Native Library



Like apps and binaries, you can also add native libraries for your
      board. Assuming, as above, that the sources to build the library are in
      a subdirectory of device/acme/coyotepad/, you’ll need an
      Android.mk to build your
      library:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := libmylib
LOCAL_MODULE_TAGS := optional
LOCAL_PRELINK_MODULE := false
LOCAL_SRC_FILES := $(call all-c-files-under,.)

include $(BUILD_SHARED_LIBRARY)
Note
Note that LOCAL_PRELINK_MODULE has been removed and is
        no longer necessary as of 4.0/Ice-Cream Sandwich.

To use this library, you must add it to the libraries listed by
      the Android.mk file of whichever
      binaries depend on it:
LOCAL_SHARED_LIBRARIES := libmylib
You’ll also likely need to add relevant headers to an include/ directory located in about the same
      location as you put your library, so that the code that needs to link
      against your library can find those headers, such as device/acme/coyotepad/include/.
Should you want to make your library apply globally to all AOSP
      builds, not just your device, you’ll need a little bit more information
      regarding the various locations where libraries are typically found in
      the tree. First, you should know that, unlike binaries, a lot of
      libraries are used within a single module but nowhere else. Hence, these
      libraries will typically be placed within that module’s code and not in
      the usual locations where libraries used systemwide are found. The
      latter are typically in the following locations:
	system/core/
	Libraries used by many parts of the system, including some
            outside the Android Framework. This is where liblog is, for
            instance.

	frameworks/base/libs/
	Libraries intimately tied to the framework. This is where
            libbinder is.

	frameworks/native/libs/
	In 4.2/Jelly Bean, many libraries that were in frameworks/base/libs/ in
            2.3/Gingerbread have been moved out and into frameworks/native/libs/.

	external/
	Libraries generated by external projects imported into the
            AOSP. OpenSSL’s libssl is here.



Similarly, instead of using a CoyotePad-specific include
      directory, you’d use a global directory such as system/core/include/ or frameworks/base/include/ or, in 4.2/Jelly
      Bean, frameworks/base/include/.
      Again, as stated earlier, you should carefully review whether such
      global additions are truly required, as they’ll represent additional
      work when you try to port for your device to the next version of
      Android.
Library Prelinking
If you look closely at the example Android.mk we provide for the library,
        you’ll notice a LOCAL_PRELINK_MODULE variable. To reduce the
        time it takes to load libraries, Android versions up to
        2.3/Gingerbread used to prelink most of their
        libraries. Prelinking is done by specifying ahead of time the address
        location where the library will be loaded instead of letting it be
        figured out at runtime. The file where the addresses are specified in
        2.3/Gingerbread is build/core/prelink-linux-arm.map, and the
        tool that does the mapping is called apriori. It contains entries such as
        these:
# core system libraries
libdl.so                0xAFF00000 # [<64K]
libc.so                 0xAFD00000 # [~2M]
libstdc++.so            0xAFC00000 # [<64K]
libm.so                 0xAFB00000 # [~1M]
liblog.so               0xAFA00000 # [<64K]
libcutils.so            0xAF900000 # [~1M]
libthread_db.so         0xAF800000 # [<64K]
libz.so                 0xAF700000 # [~1M]
libevent.so             0xAF600000 # [???]
libssl.so               0xAF400000 # [~2M]
...
# assorted system libraries
libsqlite.so            0xA8B00000 # [~2M]
libexpat.so             0xA8A00000 # [~1M]
libwebcore.so           0xA8300000 # [~7M]
libbinder.so            0xA8200000 # [~1M]
libutils.so             0xA8100000 # [~1M]
libcameraservice.so     0xA8000000 # [~1M]
libhardware.so          0xA7F00000 # [<64K]
libhardware_legacy.so   0xA7E00000 # [~1M]
...
If you want to add a custom native library to 2.3/Gingerbread,
        you need to either add it to the list of libraries in prelink-linux-arm.map or set the LOCAL_PRELINK_MODULE to false. The build will fail if you forget to
        do one of these.
Library prelinking was dropped starting in 4.0/Ice-Cream
        Sandwich.





[18] If you do not provide a value, defaults will be used.
                For instance, all apps are set to optional by default. Also, some
                modules are part of GRANDFATHERED_USER_MODULES in
                user_tags.mk. No LOCAL_MODULE_TAGS need be specified
                for those; they’re always included.

[19] This file contains a set list of variables starting with the
            string LOCAL_. If a variable
            isn’t specifically listed in this file, it won’t be taken into
            account by CLEAR_VARS.

[20] This version is cleaned up a little (removed commented code,
          for instance) and slightly reformatted.

[21] Also slightly modified to remove white space and
          comments.

[22] This assumes you had already run envsetup.sh and lunch.

[23] This makefile is inspired by a blog
          post by Row Boat developer Amit Pundir and is based on the
          example makefile provided in Chapter 4 of Building
          Embedded Linux Systems, 2nd ed. (O’Reilly).


Chapter 5. Hardware Primer



Now that you have a good handle on Android’s build system, the next
  step is to incrementally explore how the built images are used on the
  target. To best accomplish that, we must step back and look at the hardware
  configurations Android is typically run on. Indeed, while Android can be
  made to run on a wide variety of embedded systems, it remains deeply rooted
  in the world of consumer electronics and, most notably, handsets.
We’re going to start by going over the typical system architecture of
  a hardware platform made for running Android. We’ll then discuss the
  architecture of a typical SoC and provide an overview of some of the more
  notable SoCs out there used to run Android. We’ll also cover the difference
  between virtual and physical address spaces, the typical host-target debug
  setup, and finish the chapter with a list of evaluation boards that you
  could use to prototype your embedded Android system and/or use to learn the
  trade.
Typical System Architecture



As we discussed in Chapter 1, Android should run on
    any hardware that runs Linux. Android, however, wasn’t built in a vacuum.
    It was originally designed for handsets, and its current architecture
    still reflects that. Figure 5-1
    illustrates the architecture block diagram of a prototypical embedded
    system made to run Android. Your actual target will likely differ,
    possibly greatly, from the one I illustrate. But for the sake of
    discussion, this diagram should be good enough.
[image: Typical system architecture block diagram]

Figure 5-1. Typical system architecture block diagram

The most important thing to note is that at the center of this
    system lies an SoC. We’ll discuss SoCs in greater detail in the next
    section. Suffice it to say for now that an SoC comprises a CPU and a bunch
    of peripheral controllers all on the same integrated circuit (IC) die. All
    other components on the target’s board are typically connected in one way
    or another to the SoC. Android essentially runs on that SoC and therefore
    controls and/or accesses everything on the board from that vantage
    point.
The Baseband Processor



The next component you want to pay attention to is the Baseband
      Processor. The majority of handsets on the market have separate
      processing units for running the user-facing software and managing the
      radio functions. These are typically known as the Application Processor
      (AP) and the Baseband Processor (BP), respectively.
You might wonder why there are two separate processors instead of
      just one. The reasons are both legal and technical. First, in the US,
      the law requires that software-defined radio (SDR) devices be certified
      by the Federal Communications Commission (FCC). Part of this
      certification is a requirement that the software controlling the radio
      may not be modified without authorization. Essentially, this means that
      under no circumstance should the end user of the device be allowed to
      change the way the radio operates or which frequencies it uses. In
      addition, there are hard real-time constraints on the operation of the
      radio functions. Hence, controlling the radio from the same CPU running
      the user-facing OS is not an option. There are also benefits in being
      able to put the AP to sleep while the BP continues operating.
Of course this is but a summary, and there is much more to say on
       this topic. However, for the purposes of our current discussion, assume
      that there’s no way to have a single processor running both Android and
      the software that controls the radio. Obviously if your embedded system
      isn’t a handset, or doesn’t have radio functions, just assume that the
      diagram doesn’t have a BP or any of the components attached to
      it.
Nevertheless, it’s worth understanding the BP and its interaction
      with the AP, since the architecture of Android’s RIL is tightly coupled
      to the underlying hardware. At a very simple level, the BP and AP talk
      to each other over some form of serial bus using AT commands. Notice
      that the BP has its own flash and RAM. This guarantees that the
      certified software running on the BP is isolated from the software
      running on the AP, and that the real-time OS (RTOS) running on the BP is
      focused on running a single thing: the radio’s operation. The BP, for
      instance, runs software implementing the GSM stack. Notice also that the
      SIM card and an RF  transceiver are connected to the BP. The transceiver takes care of the
      actual RF transmission and reception with the tower, while the SIM card
      is used to identify the handset user with the mobile network operator
      (MNO).
Note
Telephony and wireless radio technologies are a world of their
        own. There is definitely a lot more to this topic than I could cover
        here. In fact, I’m barely scratching the surface. Real-life designs
        are infinitely more subtle than my simplification. Modern AP-BP
        interaction, for instance, may not actually rely on either a serial
        line or AT commands, but rather use mapped memory and proprietary
        handshake protocols. For the sake of the current conversation, though,
        the simple explanation is again good enough.
If you’d like to get more information on the radio architecture
        of smartphones, I would suggest reading Harald Welte’s “Anatomy of contemporary GSM cellphone
        hardware” and visiting this
        xda-developers thread.


Core Components



Although many of the components we’ll discuss may or may not be
      present in your embedded system, a handful would most certainly be
      present in any embedded system, be it Android or another: RAM and
      storage. There isn’t much to be said about RAM, but the storage may come
      in different incarnations.
Traditionally, most embedded systems would be equipped with either
      NOR or NAND flash, and a flash filesystem would be used to manage those
      chips and implement wear-leveling. More recently, however, the trend has
      been toward using embedded MultiMediaCard (eMMC) chips. Essentially,
      these are chips that appear as SD cards and are managed by the Linux
      kernel as a traditional block device (i.e., the same as a conventional
      ATA hard drive). Hence, these systems don’t have any NOR or NAND flash,
      just an eMMC chip. Their SoC chips have the required modules to do basic
      reads and boot directly from a partition on the eMMC.
Also, there may be more than one storage device attached to the
      system. Android in fact distinguishes between “internal” and “external”
      storage. “Internal” storage typically designates the onboard eMMC, while
      “external” storage designates the user-removable SD card attached to the
      phone or tablet. The former hosts Android itself and is used for booting
      and regular filesystem operations. The latter stores pictures and other
      multimedia content. Of course, this distinction is of little use to you
      if your device isn’t a phone or a tablet, but the Android App
      Development API reflects Android’s phone heritage and makes a
      distinction between those two types of storage.
Note
Note that on some more recent devices, the “external” storage is
        nothing more than a FUSE (Filesystem in User SpacE)–mounted filesystem
        over a specific directory of the system’s “internal” storage. Such is
        the case of all modern Nexus devices, such as the Galaxy Nexus, Nexus
        4, 7, and 10.

Another component that you are likely to find in any
      battery-powered device is a Power Management IC (PMIC). The PMIC’s job
      is to manage all aspects of the battery, including regulating the
      voltage it provides and controlling its charging. The PMIC is typically
      connected to the battery and whatever DC power is used to feed the
      board. On most consumer devices, the external DC power comes from the
      USB On-the-Go (OTG) connector, which doubles as a plug for the power
      charger. In the case of nonmobile devices (and even in the case of some
      mobile devices), the external power isn’t provided through USB but
      through some other type of connector, such as a barrel connector.
The PMIC is connected to the SoC through SPI,
      I2C, and/or GPIO. It can generate interrupts
       for such things as low battery or the charger being attached. It can (and
      increasingly does) also include functionality other than just power
      management. For instance, it may include a real-time clock (RTC), an
      audio codec, and a USB transceiver.

Real-World Interaction



Android is of course mainly a user-facing system. As suggested by
      its Compatibility Definition Document (CDD), a system built with it
      should allow rich user interaction and comprise quite a few hardware
      components that allow tying in to the user’s immediate physical
      surroundings. This, in turn, means that there are quite a few hardware
      components dedicated to this task.
First and foremost, there are the parts tied to direct user
      interaction, such as the display, touch input, and the keyboard. While
      phones typically use the SoC’s integrated display capabilities directly,
      devices with larger displays, such as tablets, will typically have a
      display bridge for low-voltage differential signaling (LVDS)–driven LCD
      displays. There’s also typically a touch controller for handling the
      onscreen touch sensors and some form of circuitry for handling the use
      of a keyboard or any physical button on the device.
Second, there are parts that allow the user to have the device
      interact with the world around it. This includes things such as the
      camera (or cameras—e.g., some devices have both front- and rear-facing
      cameras, for video chatting), which is controlled by the SoC, and audio
      I/O, which is controlled by the audio codec IC. But hardware also
      includes a variety of components for sensing the physical properties of
      the device’s immediate environment and mechanically interacting with
      it.
A wide range of sensors, for example, may be found in an Android
      device, such as an accelerometer, a gyroscope, a thermometer, a
      barometer, a photometer, a magnetometer, and a proximity sensor. I’ve
      illustrated only a “Sensors” IC to simplify the diagram, but there can
      in fact be many sensor ICs on the board. There are also components for
      creating vibrations and/or providing haptic feedback to the user. Again,
      several components may be involved.

Connectivity



One of Android’s features is its connectivity, and the hardware
      used to run it reflects this with controllers, connectors, and antennas
      for a range of standards such as USB, WiFi, Bluetooth, GPS, and NFC.
      Again, these tend to increasingly be packaged together instead of being
      separate ICs.
Most consumer Android devices on the market provide only a USB OTG
      connector for connecting the device to a computer or plugging in another
      USB device, such as a camera or a USB stick. A very limited number of
      devices will also allow the USB OTG connector to be used as a USB host.
      Even fewer devices provide separate USB host connectors for plugging in
      peripherals, as you typically would to a USB host such as a PC or a
      Mac.

Expansion, Development, and Debugging



In addition to the typical components found in the mainstream
      Android devices I just covered, SoCs can also generally accommodate a
      slew of other components and peripherals. While most of these won’t be
      found in consumer handsets or tablets, they can definitely be used in
      other Android-based embedded systems. Some are more or less well
      supported by the Android stack, while others aren’t at all. But that’s
      what got you into embedded development anyway, right? To boldly go where
      no other sane developer would?
Hence, you’ll easily find development boards equipped with
      components and connectors for Ethernet, USB host, serial (RS-232), JTAG,
      and expansion headers. The popular BeagleBoard and PandaBoard, for
      instance,  have most of these. JTAG is a hardware-level debugging interface and
      therefore doesn’t need any software support from either the Linux kernel
      or the Android stack. Expansion headers exposed by development boards
      will usually allow a peripheral board (i.e., add-on modules connected
      through the expansion headers) to be connected to some of the SoC’s
      pins, such as I2C or GPIO. It’ll then be up
      to you to make sure you load the appropriate device drivers to enable
      Linux to talk to the peripherals on the add-on module.
Serial port connectivity is provided by the Linux kernel’s TTY
      layer. So long as your kernel has support for console on serial for your
      SoC (as it typically would if Linux runs on your SoC), this should work
      practically “out of the box.” Serial-port connectivity is crucial for
      embedded systems, especially during board bringup, since it’s a simple
      yet effective way for the host and target to communicate.
USB host mode will work if you are using Android 3.1 or later.
      Earlier versions, including Gingerbread, do not have USB host mode
      support in the Android stack. But that doesn’t preclude the underlying
      Linux kernel from supporting the same set of USB devices it does by
      default. It only means that the app API for USB host mode, available
      starting with Android 3.1, won’t be available to you.
A similar situation affects Ethernet. While you can connect an
      Android device using an Ethernet connection to a network, the Android
      stack doesn’t recognize Ethernet as a valid data communication path—only
      WiFi and packet switching (i.e., your wireless carrier’s data
      connection.) Hence, while some applications will work when the Ethernet
      connection is properly set, some others won’t. 
Adding Ethernet Support to Android
Android doesn’t currently deal properly with Ethernet by
        default, but that hasn’t stopped those needing Ethernet from
        supporting it. If you’re interested in this type of functionality,
        have a look at the following work:
	Fabien Brisset and Benjamin Zores have put together a set of
            patches for 4.0/Ice-Cream Sandwich and 4.1/Jelly Bean to support
            Ethernet. The patches are on GitHub, and
            you can find the presentation Benjamin did about this work at the
            Embedded
            Linux Conference Europe in November 2012.

	Linaro has created its own set of patches for adding the
            same functionality. These changes are available here,
            here,
            and here.



It’s understandable that the AOSP doesn’t officially support
        Ethernet at this point: It’s not a technology commonly found in the
        type of devices where Google is pushing Android. Should Android be
        aimed at other types of devices in the future, this may change.



What’s in a System-on-Chip (SoC)?



Up to this point, we’ve discussed the SoC as a black box. Let’s take
    a peek inside and see what’s in there. Have a look at Figure 5-2 for a representation of the internals of a
    typical SoC.
[image: A typical System-on-Chip (SoC)]

Figure 5-2. A typical System-on-Chip (SoC)

As you can see, there’s much more than the CPU cores. An SoC is to
    some extent its own circuit board, with a bus interconnecting a variety of
    different components (typically known as the “interconnect fabric”). The
    number and complexity of each component depends on the SoC and its
    manufacturer. There’s no real standard here, although most SoCs on the
    market include a similar set of basic components that are essentially
    interchangeable, even though they come from different manufacturers. And
    as in the case of the system architecture block diagram covered earlier,
    many of these components may be grouped together or even further divided
    into additional modules. This, after all, is a simplified view. Note also
    that not all components within an SoC operate at the same clock speed. So
    while the CPU may be listed as operating close to or above the gigahertz
    mark, for instance, the graphics processing unit (GPU) is likely operating
    at several hundred megahertz only.
Note
GPUs typically have a clock speed divided down from the CPU’s own
      speed. If the CPU is clocked at 1GHz, for instance, the GPU may be
      running at 250MHz. Though they run slower, GPUs are made up of massively
      parallel computing units. Even if the CPU is dual-core, the GPU may have
      16 or 64 cores.

Table 5-1 lists some of the most prominent
    SoCs used for Android at the time of this writing. As you can see, the
    market is increasingly offering dual-core Android devices, and quad-core
    devices are just around the corner. Manufacturers are “out-coring”
    themselves as fast as they can. That doesn’t mean your embedded Android
    system needs to have that much firepower, but chances are that component
    pricing will bring the cost of a multicore SoC within your design’s reach
    in the foreseeable future.
Table 5-1. SoC lineup
	SoC	Manufacturer	CPU	Speed	GPU
	OMAP3	Texas Instruments (TI)	ARM Cortex-A8	600MHz−1.2GHz	PowerVR SGX530
	OMAP4	TI	Dual-core ARM Cortex-A9	1−1.8GHz	PowerVR SGX54x
	OMAP5	TI	Dual-core ARM Cortex-A15	2GHz	PowerVR SGX544
	i.MX51	Freescale	Cortex-A8	800MHz	OpenGL ES 2.0-compatible[a]
	i.MX53	Freescale	Cortex-A8	1GHz	OpenGL ES 2.0-compatible
	i.MX6	Freescale	Dual- or quad-core Cortex-A9	1GHz	OpenGL ES 2.0-compatible
	Tegra 2	Nvidia	Dual-core ARM Cortex-A9	1−1.2GHz	GeForce
	Tegra 3	Nvidia	Quad-core ARM Cortex-A9	1.3GHz	GeForce
	Snapdragon S2	Qualcomm	Scorpion[b]	800MHz−1.5GHz	Adreno 205
	Snapdragon S3	Qualcomm	Dual-core Scorpion	1.2−1.5GHz	Adreno 220
	Snapdragon S4	Qualcomm	Dual-core Krait[c]	1−1.7GHz	Adreno 225 or 320
	Exynos	Samsung	Single or Dual-core ARM Cortex-A8	1−1.5GHz	PowerVR SGX540 or ARM MALI-400
	Exynos 4	Samsung	Quad-core Cortex-A9	1.4−1.6GHz	ARM MALI-400 MP4
	Exynos 5	Samsung	Quad-core Cortex-A15	2.0GHz	ARM MALI-T658
	Atom	Intel	Single core x86	1.6−2GHz	PowerVR SGX540
	MT6575	Mediatek	Cortex-A9	1GHz	PowerVR Series5 SGX
	MT6577	Mediatek	Dual-core Cortex-A9	1GHz	PowerVR Series5 SGX
	[a] No additional details about the origin of the GPU engine
                are provided in Freescale’s data sheet.

[b] This is specific to Qualcomm and, according to
                Wikipedia, is similar to an ARM Cortex-A8.

[c] This is specific to Qualcomm and, according to
                Wikipedia, is similar to an ARM Cortex-A15.





The Linux kernel has supported symmetric multiprocessing for quite
    some time, so you won’t have trouble with its handling of a multicore SoC.
    The Android stack has only recently started being run on multicore
    processors, and while it implicitly benefits from Linux’s multicore
    capabilities, the Android stack itself doesn’t, at the time of this
    writing, contain any specific multicore optimizations. Hence, if you have
    code that must run on multiple CPUs simultaneously, you will need to
    manually make sure that each thread has its CPU affinity properly set.
Traditionally, Android is used with ARM-based SoCs, as is well
    reflected by the table above. But as we saw earlier, it has been made to
    run on a variety of other architectures supported by Linux, such as x86,
    MIPS, SuperH, and PowerPC. In fact, a number of devices from the likes of
    Motorola and Lenovo have already shipped with Intel-based chips. Google
    and Intel collaborated, in fact, to bring x86 support into the upstream
    AOSP. Most of the tools, documentation, and examples found on the Net
    remain, however, ARM-centric for the time being.
Another important component in the SoC is the GPU, which is
    responsible for accelerating the rendering of graphics to the device’s
    display. While most CPU cores for Android SoCs are ARM-based, there’s no
    standard GPU used by all SoC manufacturers. Instead, each manufacturer
    uses a different GPU, as you can see in Table 5-1. As mentioned earlier, these are clocked at
    several hundred megahertz (300 to 500) even if the CPU core(s) they’re
    packaged with on the same SoC are clocked at speeds close to or above
    1GHz.
Apart from the CPU and the GPU, the role of most of the rest of the
    components in the SoC can be more modestly described:
	RAM controller
	Interfaces with the onboard RAM.

	DMA
	Handles the automated transfers of data between the RAM and
          memory-mapped hardware.

	USB controller
	Manages the hardware side of the device’s USB
          connections.

	DSP
	Provides hardware acceleration for some signal processing,
          such as JPEG encoding.

	Display
	Enables the SoC to drive various display types.

	Camera
	Allows the SoC to interface with a camera.

	Storage
	Manages I/O with the various types of storage that can be used
          with the SoC.

	Debug
	Enables the SoC to be connected to hardware debugging tools
          through various mechanisms, such as JTAG.



The SoC also likely contains some cryptographic and security
    functionality. This may consist simply of hardware acceleration for common
    cryptographic functions. It may also include security mechanisms made
    available by the SoC manufacturer to device manufacturers for locking the
    device and for preventing unauthorized code from running. Such mechanisms
    are often used to implement digital rights management (DRM) and can lead
    to frustration by people wanting to reprogram their devices.
    Unfortunately, however, consumers aren’t the SoC manufacturers’ direct
    customers, and the ethical issues surrounding the use of such technology
    far exceed our present scope.
Finally, the SoC most likely has capabilities to connect to
    additional external ICs using a variety of different buses and interfaces.
    This is how, for instance, most of the components described in the
    previous section are connected to the SoC through wiring on the PCB. Such
    buses and interfaces may include I2C, SPI,
    UART, and GPIO, but may include other mechanisms as well.
The specific capabilities and makeup of each SoC are typically
    documented by its manufacturer in data sheets it provides to device
    manufacturers, as well as OS and device-driver developers. Often, SoC
    manufacturers will provide a set of drivers for the most important
    components found in the SoC, such as the GPU, for instance. Most SoC
    vendors tend to, in fact, go much further and provide AOSP trees that are
    known to work “out of the box” on their own evaluation boards.

Memory Layout and Mapping



To be of any use, the hardware components we just saw must be
    accessible in some way from software. In general, this is done through
    device drivers in the Linux kernel. Applications then use the standard
    interfaces exposed by those drivers to, in effect, talk to the underlying
    hardware. Figure 5-3 illustrates how this
    works.
One of the buses connected to any CPU is an address bus. This bus is
    connected so as to allow the CPU access to the components attached to it
    using separate address ranges. In fact, most components occupy several,
    often consecutive, address regions. The addresses accessible by the CPU
    through its address bus are typically referred to as
    physical addresses, meaning they represent real,
    physical components connected to the CPU. When the CPU refers to any of
    these addresses, there are actual electrical signals being applied to the
    address bus on the printed circuit board (PCB) by the CPU, allowing it to
    designate a specific IC component.
[image: Virtual versus physical address spaces]

Figure 5-3. Virtual versus physical address spaces

The actual location of each of the components in the physical adress
    space is typically known as the physical address
    map and is determined by the device’s designers as they route
    the connections from the SoC to the various components included on the
    PCB. Two separate boards having identical components can have totally
    different physical memory maps. What’s important is that each device
    driver know the location of the component or components it needs to talk
    to. Sometimes, the component the driver communicates with is actually a
    bus itself. In that case, that component acts as a bridge for additional
    components connected to it using its own specific bus. Such is the case
    for components connected to the SoC through
    I2C, for instance.
Note
If you’d like to look at the physical memory map that your kernel
      sees at runtime, all you need to do is go to a command line and type
      cat /proc/iomem. That map might not
      contain all peripherals on your actual board, but it will contain those
      seen by the kernel. Some ICs or peripherals might not be listed because
      no driver registered with the kernel recognizes or deals with
      them.

The mapping between applications and devices works because
    the CPU manages two entirely separate address spaces through its memory
    management unit (MMU). Using its MMU, the CPU can present a virtual
    address space to applications running on it and still use a physical
    address space to communicate with components connected to it through its
    address bus.
One of the components residing in the physical address space is the
    system RAM. As you can see in Figure 5-3, the RAM
    location in the physical address space can vary greatly. Obviously, RAM is
    used to hold all active software code and data. However, this code and
    data is rarely addressed using references to its actual physical location.
    Instead, the OS collaborates with the MMU to implement a virtual address
    space wherein each process gets a similar view of the world. Virtual
    addresses eventually map to actual physical addresses, but the conversion
    is automatically handled by the MMU based on OS-maintained page
    tables.
It’s beyond the scope of this book to explain paging and MMUs’
    operation in full, but just remember that the address ranges you see in
    your applications have nothing to do with the actual addresses being put
    by the CPU on its address bus to access your code and data. Figure 5-3 illustrates the virtual address space where
    Android processes live—bear in mind that the layout is not proportional.
    Some objects may be larger or smaller than they appear. The kernel is
    always seen as occupying an address range starting at 0xC000 0000 as its low address. Android apps, on
    the other hand, occupy the entire address space below that address.
The actual application “text,” that is, the application’s code, sits
    very near the beginning of the virtual address space. It’s followed by
    mapped memory regions. These are virtual addresses that point either to
    RAM shared with other processes for interprocess communication, or
    physical address ranges mapped into the process’s address space using the
    corresponding driver’s mmap()
    function.
The mapping of physical address ranges into a process’s address
    space allows that process to directly drive an IC component or another
    connected device, instead of having to go through the kernel and the
    device’s driver for every operation. This is especially useful for
    performance-intensive operations such as graphics rendering. However, it’s
    also an effective means of exporting critical device-driver intelligence
    outside the kernel and,  therefore, subtracting it from the kernel’s GPL requirements. In fact,
    it’s a very effective way of implementing key driver functionality in
    Android HAL components.
Finally, libraries start at 0x8000
    0000, and the process’s stack grows downward from the process’s
    topmost address. Except where your software uses memory-mapped registers
    and regions to operate on hardware, the path for calls affecting hardware
    is usually as follows:
	Your code calls on a function that interacts with a file
        descriptor associated with hardware. The immediate code called is
        actually in one of the system libraries mapped into your process’s
        address space. This function typically has more “sugar-coating” than
        the raw kernel system call.

	The library does some processing and eventually calls a matching
        system call.

	The system call handler then does further processing and invokes
        various functions inside the kernel.

	Eventually some part of the kernel invokes the device driver
        matching the device associated with the file descriptor held by your
        application.

	The device driver interacts with the hardware using whichever
        method is applicable. The result of this is of course hardware
        dependent. In some cases, the device driver may be able to read back a
        status and return it immediately. In other cases, the hardware
        feedback may occur only at a much later time. In other cases still,
        there may be no expected feedback.

	Assuming the hardware does provide some feedback to the driver
        or generates an interrupt in response to the earlier operation, the
        call path will start to return from where it came.

	The call path returns back from the driver to whatever invoked
        it.

	The call path returns back to the system call handler.

	The call path returns back to the system library.

	The call path returns back to your code.



The only part of the preceding call chain that might involve
    physical addresses is where the device driver code communicates with its
    designated hardware. The rest of the calls being made and data being
    exchanged all happen in virtual address space.

Development Setup



As soon as you have some prototype hardware, and continuing
    throughout board bringup and development, it’s very practical to have your
    target hooked up to your development workstation. Figure 5-4 illustrates a generic host-target debug setup. Your
    specific hookup will likely differ, but this setup represents the
    ideal.
[image: Host-target debug setup]

Figure 5-4. Host-target debug setup

Here, the connections between the host and the target can serve a
    variety of sometimes overlapping purposes. By connecting the target’s
    power to a software-controlled power source managed by the host, the
    power-on/power-off of the board can be scripted on the host and hence be
    used to automate the testing of various software versions on the board.
    There are several power strips on the market that allow you to set up
    something like this.
The classic way that a target is connected to its host is through a
    serial connection, typically RS-232. This usually allows you to interact
    with the board’s bootloader, upload and download small files, and
    generally interact with the target when nothing else works. Obviously this
    connection is relatively slow, and its purpose is really for basic
    interaction; transferring large amounts of data is best suited for
    something like Ethernet.
The Ethernet connection will allow the host to provide a wide range
    of services to the target, as illustrated in Figure 5-5. To ease the iterative debug process, for
    instance, it’s best to have the target use DHCP to retrieve its IP
    configuration, use TFTP to load its kernel images, and mount its root
    filesystem through NFS. If you do that, then any change you make to your
    project on the host will be deployed to the target via reboot, at worst.
    At best, you just update a file in the NFS-mounted root filesystem, and
    all you need to do is restart a command to run its new version. In all
    cases, you save yourself the trouble of having to manually reprogram the
    target’s storage every time you make a change.
[image: Development boot setup]

Figure 5-5. Development boot setup

Finally, and especially in the case of Android, USB can be very
    useful. Indeed, with Android you can rely on USB to connect to the target
    using ADB very much as an app developer would connect to a consumer phone
    or tablet for app development. All the typical ADB commands would then be
    available to you, including shelling into the target, forwarding ports,
    updating filesystems, etc. Whereas you can configure ADB to run over IP,
    and therefore over Ethernet, having it available through USB is great
    because it works “out of the box.”
Note
Setting up ADB over IP is actually relatively simple: It’s just
      that you have fewer command-line parameters to deal with if it’s over
      USB. Most importantly, USB is the case most widely covered by
      documentation you’ll find on the Net. We’ll cover this topic in greater
      detail in the next chapter.

Your specific setup will most likely contain its own quirks, but the
    configuration shown here should give you a general idea of what you want
    to aim for. Serial support is usually provided by the bootloader and the
    kernel. Unless you’re bringing up a board based on a whole new CPU, you
    should already have access to serial-port communication. Ethernet support
    will require a proper driver for the Ethernet chip used on your board.
    This may require some work on your part. Finally, USB support will depend
    on whether the USB hardware on your target is properly supported by the
    kernel. If you’re using a common SoC, this shouldn’t be an issue. If you
    need help setting up a DHCP server, TFTP, or NFS for servicing your
    target, have a look at O’Reilly’s Building
    Embedded Linux Systems, 2nd ed (2008).

Evaluation Boards



If you’re still early in your development process or are simply
    evaluating Android, you’ll likely want to rely on an evaluation board.
    Here are some factors that you may want to consider when selecting
    one:
	SoC
	Does it rely on the SoC you’re going to use in your final
          design? Is the SoC of the same family? Or is it a previous iteration
          of the yet-to-be-released SoC you plan on using from a given
          manufacturer?

	Community
	Is there a community around the board, or is the manufacturer
          the only source of support? How active is this community? Is it
          built around a single board or a family of boards?

	Cost
	What’s the up-front cost of the board, and what’s included for
          that price? How much do add-ons or extensions cost? What’s the price
          difference between the low-end option and the high-end option, and
          what are the feature differences?

	Features
	What functionality is included/exposed by the board? SoCs can
          increasingly support a wide range of functionality. Yet, the more
          SoC features the board makes available, the more expensive it tends
          to be. So does the board you’re looking at expose the features you
          need?

	Expandability
	The basic features provided by the board may suffice for a
          certain percentage of what you’re trying to accomplish, but does the
          board allow you to attach additional hardware so you can emulate the
          final functionality you’re aiming for?

	Availability
	How easy is it to get your hands on the board? Some boards
          look very nice on paper but have fluctuating supplies.

	Licensing
	Can you use the board as is for end products? Some
          manufacturers forbid you from doing that. Do you have access to the
          bill of materials (BOM) and the schematics? If you want to build a
          board based on the eval board, these will be critical.

	Catalog parts
	Is the board using catalog parts? If the board relies on
          noncatalog parts, then you’ll need to go to their manufacturer to
          get your hands on them. Usually, this situation occurs when the
          manufacturer wants to sell components only to very-high-volume
          buyers, making such parts beyond the reach of people doing small
          projects.

	Third-party parts
	Sometimes SoC vendors include third-party parts in their
          boards. Make sure you apply a similar set of criteria to those
          components. Keep in mind that, should you use third-party components
          in your design, you’ll be dependent on those suppliers for almost
          exactly the same kind of support you’d expect from the SoC
          vendor.

	Software support
	How well is Android supported on the board? And by whom? The
          manufacturer? A third party? Which versions of Android are
          supported? What’s the long-term commitment behind such
          support?



You’ll also most certainly have more criteria for your own project.
    If you’re building your own hardware, however, your starting point will
    usually be the SoC, as this is a critical decision point involving quite a
    few stakeholders in your organization, both on the hardware and software
    sides. And then, your next step will be to go to that SoC’s manufacturer
    site to check the eval board(s) it recommends for that SoC. If you’re
    looking only to get your hands on a decent board that will allow you to
    experiment with Android, you’re likely going to hit your favorite search
    engine for hours of fun looking at the various evaluation boards out
    there. Either way, have a look at Table 5-2
    for some of the more prominent eval boards as of early 2013.
Table 5-2. Evaluation boards lineup
	Board	SoC	Speed	RAM	I/O	Cost[a]
	BeagleBone	Sitara AM3358	500MHz (on USB) / 720MHz (on DC)	256MB	USB OTG, USB host, Ethernet, onboard serial, onboard JTAG,
            expansion headers, microSD	$89
	BeagleBoard xM	Davinci DM3730	1GHz	512MB	USB OTG, USB host, Ethernet, serial, JTAG, expansion
            headers, microSD, DVI-D, LCD header, S-Video, camera header,
            stereo in/out	$149
	iMX53 Quick Start Board	i.MX53	1GHz	1GB	USB OTG, USB host, Ethernet, serial, JTAG, expansion
            headers, SD, microSD, SATA, VGA, LCD header, stereo in/out	$149
	PandaBoard ES	OMAP4 dual-core	1.2GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, serial, JTAG,
            expansion headers, SD, HDMI, DVI, LCD header, camera header,
            stereo in/out	$182
	AM335x Starter Kit	Sitara AM3358	720MHz	256MB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, onboard
            serial, onboard JTAG, expansion headers, microSD, capacitive-touch
            LCD panel, accelerometer, stereo out	$199
	Nitrogen6X	i.MX6 quad-core	1GHz	1GB	USB OTG, USB host, serial, JTAG, SATA, SD, CAN, LCD
            headers	$199
	OrigenBoard	Exynos 4210 dual-core	1.2GHz	1GB	USB OTG, USB host, WLAN, Bluetooth, serial, JTAG, SD, HDMI,
            LCD header, camera header, stereo in/out	$199
	Origen 4 Quad	Exynos 4 quad-core	1.4GHz	1GB	USB OTG, USB host, Ethernet, SD, JTAG, serial, HDMI,
            onboard LCD header, audio	$199
	DragonBoard APQ8060A	Snapdragon dual-core	1.2GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS, FM
            radio, accelerometer, gyroscope, compass, magnetometer, pressure
            sensor, eMMC, SATA HDMI, camera, stereo out, serial,
            capacitive-touch LCD, JTAG	$499
	SABRE	i.MX53	1GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS, ZigBee,
            accelerometer, light sensor, serial, JTAG, eMMC, SD, SATA, NOR
            flash, VGA, HDMI, LCD panel, camera, stereo in/out	$999
	Snapdragon MDP	Snapdragon S4 dual-core	1.5GHz	1GB	USB OTG, WLAN, Bluetooth, GPS, accelerometer, gyroscope,
            compass, proximity sensor, temperature sensor, SD, HDMI, LCD
            panel, camera, stereo out	$999
	[a] Most common price at the time of this writing.





Save for the last two entries, all the eval boards listed in Table 5-2 look exactly like what their names
    imply: a PCB with chips and bare connectors on it. Few of the
    configurations I listed in Table 5-2 include
    an LCD panel, though most of these boards can have an LCD touch-panel
    added to them for anywhere between $100 and $200. The last two eval boards
    listed actually come in tablet and phone form factors, respectively, with
    the expected housing and mechanical specifications. If you’re trying to
    build a demo of a final product to show to an end customer, those two
    systems might be more presentable than a board with wires protruding here
    and there. They are, as you might have noticed, priced
    accordingly.

Chapter 6. Native User-Space



By this point, you’ve either already gotten your hands dirty trying a
  few things here and there or you’re very eager to actually play with a live
   Android system. As with any embedded system you are bringing up, your
  typical goal would be to get to a minimally functional system and then start
  adding support for more and more hardware and functionality until your
  requirements are met.
Obviously, to get a minimally functional Android system, you’ll first
  need to bring the kernel up on your board. As I mentioned earlier, the best
  way to get yourself an Android-compatible kernel is to talk to your SoC
  vendor; kernel porting and board bringup being somewhat outside the scope of
  this book. However, once you’ve got yourself a minimally functional kernel,
  the first Android component you’ll have to deal with is its native
  user-space.
As described in Chapter 2, this foundation serves as
  the hosting environment for all the upper layers of the Android stack,
  including the Dalvik virtual machine and the services and apps it runs. This
  is also where a part of Android’s hardware support is implemented. Now is
  therefore a good time to take a closer look at Android’s native user
  environment. If nothing else, it’s sufficiently different from what is found
  in most classic embedded Linux systems to warrant a separate
  discussion.
Filesystem



In Chapter 4, we discussed how the build system
    operates and what it generates. Specifically, Table 4-3 provided a detailed list of the images
    typically created by the build system. Conversely, Figure 6-1 illustrates how these images relate to
    one another at runtime. Save for a few exceptions that we’ll cover later,
    this filesystem layout is essentially the same in 2.3/Gingerbread and
    4.2/Jelly Bean.
To understand how we go from the images generated by the build system to
    the runtime configuration shown in Figure 6-1, you need to go back to the system
    startup explanation in Chapter 2 and, more specifically, you need to refer to the boot
    process illustrated in Figure 2-6. In essence,
    the kernel mounts the RAM disk image generated by the build system as its
    root filesystem and launches the init process found in that image. That
    init process’s configuration files will, as we’ll see later in this
    chapter, cause a number of additional images and virtual filesystems to be
    mounted onto existing directory entries in the root filesystem.
[image: Android root filesystem]

Figure 6-1. Android root filesystem

One of the first questions you might ask is, “Why so many
    filesystems?” Indeed, why not just a single filesystem image to store
    everything? The answer lies in the different purposes each image has,
    along with differences in the nature of the storage devices or
    technologies being used. The RAM disk image, for example, is meant to be
    as small as possible, and its sole purpose is to provide the initial
    skeleton required to get the system going. It’s typically stored as a
    compressed image on some media prior to being loaded into RAM by the
    kernel and then mounted as a read-only root filesystem.
/cache, /data, and /system, on the other hand, are typically
    mounted from separate partitions on actual storage media. Usually
    /cache and /data are mounted as read-write, while
    /system is mounted as
    read-only.
Using a Single Filesystem
There’s nothing preventing you from using a single filesystem for
      all of Android’s build output instead of using separate storage
      partitions. Texas Instruments’ RowBoat distribution, for instance, does
      exactly that. It generates a single root filesystem image, which is
      programmed on the target’s storage device for use as is. In the case of
      the BeagleBone or BeagleBoard, for example, the root filesystem in its
      entirety is programmed into a single partition of the microSD card used
      for booting and as the device’s main storage device.
By consolidating on a single filesystem, however, you’re assuming
      that you can update the entirety of the filesystem in one fell swoop. In
      sum, it’ll be very difficult to create a fail-safe update procedure for
      your system. In the case of RowBoat’s support for the Beagles, this
      might not be an issue because they are development boards, but in your
      actual product that has to go in the field, it might well turn out to be
      a problem.

In Android versions 2.2 and prior, all three directories would
    typically be mounted from YAFFS2-formatted NAND flash partitions. Since
    handset manufacturers have slowly been moving toward eMMC instead of NAND
    flash, YAFFS2 was replaced by ext4 in Google’s Android 2.3 lead device,
    the Samsung Nexus S. Since then, it’s been assumed that all Android-based
    handsets should be using ext4 instead of YAFFS2. Nothing, however,
    precludes you from using another filesystem type altogether. You just need
    to modify the build system’s makefiles to generate those images and update
    the parameters used with the mount
    commands as part of init’s
    configuration files, as we’ll see shortly.
eMMC versus NOR or NAND Flash
As explained in the book Building Embedded Linux
      Systems, 2nd ed., Linux’s MTD layer is used to manage, manipulate, and access flash devices
      in Linux; this includes NOR and NAND flash. Various filesystems are then
      used on top of the MTD layer, such as JFFS2, UBIFS, or YAFFS2, to make
      the flash device or partition accessible as part of Linux’s virtual
      filesystem switch (VFS.) Those flash filesystems typically implement
      wear leveling and bad-block management to properly handle the underlying
      flash devices.
An eMMC device, as explained in Chapter 5,
      appears as a traditional block device. Essentially, it contains a
      microcontroller and some RAM that allow it to do the required wear
      leveling and bad-block management transparently. Therefore, the OS can
      use a regular disk filesystem such as ext4. While the decision to move
      toward eMMC is, according
      to Android developer Brian Swetland, motivated by reduced
      pin-count on the PCB—and therefore overall cost—there are some
      additional side benefits to using this type of device.
First, it allows you to use all the traditional commands and
      methods you’re used to with a regular Linux filesystem. The MTD
      subsystem, while powerful, has always required some getting used to
      before one could effectively use it. Also, flash filesystems tend to be
      designed with single-processor systems in mind, while disk filesystems
      in Linux have had to contend with multiprocessor systems for quite some
      time. Hence, they’re likely a better fit for the coming wave of
      multicore Android devices.

The SD card always appears as a block device and typically
    has a VFAT filesystem on it. This should be expected because the user
    needs to be able to remove it from the Android device and plug it into his
    regular computer, whatever OS it may be running. /proc, /sys, and /acct are mounted using procfs, sysfs, and
    cgroupfs, respectively. While /proc and /sys are mounted at the same location as in
    traditional Linux-based systems, cgroups were traditionally mounted as
    /cgroup in Linux but are mounted  as /acct in Android. Note also that
    /dev is mounted as tmpfs. This means
    its content is created on the fly and does not reside on any permanent
    storage. That’s fine, because Android relies on Linux’s udev mechanism to
    dynamically create entries in /dev as
    devices are plugged in and/or drivers are loaded or initialized.
Procfs, sysfs, tmpfs, and cgroup are all virtual filesystems
    maintained  by the currently running kernel in the system. They don’t have any
    corresponding storage and are, in fact, data structures maintained inside
    the kernel. Procfs is the traditional way the kernel exports information
    about itself to user-space. Typically, entries in procfs are seen as text
    files, or directories containing text files, which can be dumped to the
    command line for extracting a given piece of information from the kernel.
    If you’re looking for the type of CPU your system is running, for example,
    you can dump the contents of the /proc/cpuinfo file.
As the kernel matured and had growing needs, it was eventually
    agreed that  procfs was not necessarily the right mechanism for all interfaces between
    the kernel and user-space. Enter sysfs, which is very heavily tied to the
    kernel’s device and hardware management. Entries in sysfs can, for
    instance, be used to get detailed information regarding peripherals, or
    toggle bits controlling the behavior of certain drivers directly from
    user-space. Many of Android’s power-management features, for example, are
    controlled via entries in the /sys/power/ directory.
Tmpfs allows you to create a virtual RAM-only filesystem for storing
    temporary files. As long as power is applied to the RAM, the kernel will
    allow you to read and write those files. On reboot, however, it’s all
    gone. Cgroupfs is a relatively recent addition to the kernel for managing
    the control group functionality added in Linux 2.6.24. In sum, cgroups
    allow you to group certain processes and their children and dictate
    resource limits and priorities onto those groups. Android uses cgroups to
    prioritize foreground tasks.
The Root Directory



As we discussed in Chapter 2, the classic
      structure of Linux root filesystems is specified in the Filesystem Hierarchy Standard
      (FHS). Android, however, doesn’t abide by the FHS, but relies heavily
      instead on the /system and
      /data directories for hosting most
      of its key functionality.
Android’s root directory is mounted from the ramdisk.img generated by the AOSP’s build
      system. Typically, ramdisk.img will
      be stored along with the kernel in the device’s main storage device and
      loaded by the bootloader at system startup. Table 6-1 details the contents of the root
      directory once mounted.
Table 6-1. Android’s root directory
	Entry	Type	Description
	/acct	dir	cgroup mount-point.
	/cache	dir	Temporary location for downloads in progress and other
              nonessential data.
	/d	symlink	Points to /sys/kernel/debug, the typical mount
              location for debugfs.[a]
	/data	dir	The mount-point for the data
              partition. Usually, the contents of userdata.img are mounted
              here.
	/dev	dir	Mounted on tmpfs and contains the device nodes used by
              Android.
	/etc	symlink	Points to /system/etc.
	/mnt	dir	Temporary mount-point.
	/proc	dir	The mount-point for procfs.
	/root	dir	In traditional Linux systems, the
              root user’s home directory. It’s generally
              empty in Android.
	/sbin	dir	In Linux, this would hold binaries essential to the
              system administrator. In Android, it contains only ueventd and adbd.
	/sdcard	dir	The mount-point for the SD card.
	/sys	dir	The mount-point for sysfs.
	/system	dir	The mount-point for the system
              partition. system.img is
              mounted to this location.
	/vendor	symlink	Generally a symbolic link to /system/vendor. Not all devices
              actually have a /system/vendor
              directory.
	/init	file	The actual init binary
              executed by the kernel at the end of its initialization.
	/init.rc	file	init’s main
              configuration file.
	/init.<device_name>.rc	file	The board-specific configuration file for init.
	/ueventd.rc	file	ueventd’s main
              configuration file.
	/ueventd.<device_name>.rc	file	The board-specific configuration file for ueventd.
	/default.prop	file	The default global properties to be set for this system.
              These are automatically loaded by init at startup.
	[a] Debugfs is meant as a very flexible, RAM-based
                  filesystem for exporting debugging information from
                  kernel-space to user-space. It’s not meant for use in
                  production systems.





As part of 4.2/Jelly Bean, you’ll also find some more entries in
      the root filesystem as listed in Table 6-2.
Table 6-2. Additions to Android’s root directory in 4.2/Jelly Bean
	Entry	Type	Description
	/config	dir	mount-point for configfs.[a]
	/storage	dir	Starting with 4.1/Jelly Bean, this directory is used to
              mount external storage. /storage/sdcard0, for instance, is
              typically the fake “external” storage[b] and /storage/sdcard1 is a real SD
              card.
	/charger	file	Native, standalone full-screen application that displays
              the battery’s charge status.
	/res	dir	Resources for the charger application.
	[a] Have at http://lwn.net/Articles/148973/ for more
                  information on configfs.

[b] “Fake” in the sense that it’s essentially a
                  FUSE-mounted “internal” directory made to appear as an
                  external storage device.






/system



As mentioned earlier, /system
      contains the immutable components generated by the AOSP build system. To
      illustrate this further, Figure 6-2 takes
      the Android architecture diagram presented in Chapter 2
      and shows where each part of the stack is found in the
      filesystem.
[image: Filesystem location of key Android components]

Figure 6-2. Filesystem location of key Android components

As you can see, most of the components are found somewhere within
      /system once system.img is mounted. Table 6-3 further describes each entry in detail. You
      can also contrast Figure 6-2 with Figure 3-2 to see where each architecture
      component is located in the AOSP sources versus the final
      filesystem.
Table 6-3. /system directory contents
	Entry	Type	Description
	/app	dir	The stock apps built as part of the AOSP, such as the
              browser, email app, calendar, etc. All modules built with
              BUILD_PACKAGE are
              here.
	/bin	dir	All native binaries and daemons built as part of the
              AOSP. All modules built with BUILD_EXECUTABLE are here. The only
              exception is adbd, which has
              the LOCAL_MODULE_PATH set to
              /sbin and is therefore
              installed there instead.
	/etc	dir	Contains configuration files used by various daemons and
              utilities, including possibly an init.<device_name>.sh script
              that would be launched by one of init’s configuration files at
              startup.
	/fonts	dir	The fonts used by Android.
	/framework	dir	Framework .jar
              files.
	/lib	dir	The system’s native libraries. Essentially this means any
              module built using BUILD_SHARED_LIBRARY. It’s important
              to note again that Android doesn’t use /lib at all, only this lib directory within /system.
	/modules	dir	An optional directory for storing the dynamically
              loadable kernel modules required to run the system.
	/usr	dir	A miniature /usr
              akin to the classic /usr
              directory found in traditional Linux systems.
	/xbin	dir	“Extra” binaries generated by some of the packages that
              are built within the AOSP but aren’t essential to the system’s
              operation. This includes things like strace, ssh, and sqlite3.
	/build.prop	file	A set of properties generated during the build process of
              the AOSP. They are loaded by init at startup.



In 4.2/Jelly Bean, you’ll also find the entries in Table 6-4 in /system.
Table 6-4. New /system directory entries in 4.2/Jelly Bean
	Entry	Type	Description
	/media	dir	Files relating to the boot animation and other
              media.
	/tts	dir	Files related to the Text-to-Speech engine.



Generally /system is mounted
      read-only because it’s called on to change only if the entire Android OS
      is updated to a newer version. One benefit is that some OTA update
      scripts do binary patching, and given that this partition is assumed to
      not have changed since it was shipped, the application of the deltas is
      guaranteed to be clean.

/data



As discussed earlier, /data contains all data and apps that can
      change over time. For example, all the data stored by apps you download
      from Google Play is found here. The userdata.img image generated by the AOSP’s
      build system is mostly empty, so this directory starts off containing
      little to nothing. As the system starts getting used, however, the
      content of this directory is naturally populated, and it becomes
      important to preserve it across reboots. This is why /data is typically mounted in read-write mode
      from persistent storage. Table 6-5 shows the
      contents.
Table 6-5. /data directory contents
	Entry	Type	Description
	/anr	dir	ANR traces.
	/app	dir	Default install location for apps.
	/app-private	dir	Install location for apps with forward
              locking.[a] This mechanism has been replaced with an API
              allowing app developers to check if the running app is a
              legitimate copy obtained from Google Play. Have a look at the
              
              Application Licensing section of the app developers
              guide for more information on this topic.
	/backup	dir	For use by the BackupManager system service.
	/dalvik-cache	dir	Holds the cached JIT’ed[b] versions of all dex files.
	/data	dir	Contains one subdirectory for each app installed on the
              system. In effect, this is where each app’s “home” directory is
              located.
	/dontpanic	dir	Last panic output (console and threads)—for use by
              dumpstate.
	/local	dir	Shell-writable directory. In other words, any user who
              can shell into the device, using adb
              shell, for example, can copy anything, including
              binaries, into this directory and it will be preserved across
              reboots.
	/misc	dir	Miscellaneous data such as for WiFi, Bluetooth, or
              VPN.
	/property	dir	Persistent system properties.
	/secure	dir	Used to store user account information if the device uses
              an encrypted filesystem.
	/system	dir	Systemwide data, such as the accounts database and the
              list of installed packages.
	/tombstones	dir	Whenever a native binary crashes, a file whose name is
              tombstone_ followed by a
              sequence number is created here with information about the
              crash.
	[a] When an ISV publishes an app to Google Play, he can
                  set the Copy Protection in the Publishing Options to On or
                  Off. By setting it to Off, the app’s .apk can be copied off the
                  device, while it can’t if it’s set to On. In essence, On
                  means the app is installed in /data/app-private and Off means
                  it’s installed in /data/app.

[b] Remember that Dalvik has a Just-in-Time compiler that
                  converts the byte-code found in .dex files to native CPU
                  instructions. This conversion is done once and cached for
                  all future uses.





In 4.2/Jelly Bean, you’ll also find the entries described in Table 6-6.
Table 6-6. New /data directory entries in 4.2/Jelly Bean
	Entry	Type	Description
	/app-asec	dir	Encrypted apps.
	/drm	dir	DRM encryption data. Forward-locking control
              files.
	/radio	dir	Radio firmware.
	/resource-cache	dir	App resource cache.
	/user	dir	User specific data for multiuser systems.



Multiuser support



One of the most important features added to 4.2/Jelly Bean is
        multiuser support. In fact, some have argued that this addition was a
        watershed moment, opening Android to new use cases. Though available
        only in tablet mode, it allows multiple users to share the same device
        in a coherent fashion. Specifically, it means every user can utilize
        the device by logging in separately and can have her own set of
        account credentials and data for each application.
To achieve this, the AOSP’s data-storage mechanism has been
        slightly modified. For instance, /data/data is now the directory containing
        the app data for the device’s owner (i.e., “administrator”). All other
        users have their data stored in /data/user/<user_id>
        instead. Here’s the content of /data/user in an emulator running 4.2/Jelly
        Bean:[24]
root@android:/ # ls -l /data/user/
lrwxrwxrwx root     root              2012-11-30 20:46 0 -> /data/data/
drwxrwx--x system   system            2012-12-04 23:38 10
root@android:/ # ls -l /data/user/0/
drwxr-x--x u0_a27   u0_a27            2012-11-30 20:46 com.android.backupconfirm
drwxr-x--x bluetooth bluetooth        2012-11-30 20:46 com.android.bluetooth
drwxr-x--x u0_a17   u0_a17            2012-12-14 18:01 com.android.browser
drwxr-x--x u0_a43   u0_a43            2012-11-30 20:46 com.android.calculator2
drwxr-x--x u0_a20   u0_a20            2012-11-30 20:47 com.android.calendar
drwxr-x--x u0_a33   u0_a33            2012-11-30 20:46 com.android.certinstaller
drwxr-x--x u0_a0    u0_a0             2012-11-30 20:47 com.android.contacts
drwxr-x--x u0_a25   u0_a25            2012-11-30 20:46 com.android.defcontainer
drwxr-x--x u0_a6    u0_a6             2012-11-30 20:47 com.android.deskclock
...
root@android:/ # ls -l /data/user/10/
drwxr-x--x u10_system u10_system      2012-12-04 23:38 android
drwxr-x--x u10_a27  u10_a27           2012-12-04 23:38 com.android.backupconfirm
drwxr-x--x u10_bluetooth u10_bluetooth2012-12-04 23:38 com.android.bluetooth
drwxr-x--x u10_a17  u10_a17           2012-12-04 23:38 com.android.browser
drwxr-x--x u10_a43  u10_a43           2012-12-04 23:38 com.android.calculator2
drwxr-x--x u10_a20  u10_a20           2012-12-04 23:38 com.android.calendar
drwxr-x--x u10_a33  u10_a33           2012-12-04 23:38 com.android.certinstaller
drwxr-x--x u10_a0   u10_a0            2012-12-04 23:38 com.android.contacts
drwxr-x--x u10_a25  u10_a25           2012-12-04 23:38 com.android.defcontainer
drwxr-x--x u10_a6   u10_a6            2012-12-04 23:38 com.android.deskclock
...
Similarly, there are now per-user account credentials for each
        of the Internet accounts that may be tied to a given user. Prior to
        4.2/Jelly Bean, there was a single /data/system/accounts.db to hold all
        accounts. Now there is one such file for each user:
root@android:/ #  ls /data/system/users/ -l
drwx------ system   system            2013-01-19 01:03 0
-rw------- system   system        155 2012-11-30 20:46 0.xml
drwx------ system   system            2013-01-19 01:03 10
-rw------- system   system        166 2012-12-04 23:38 10.xml
-rw------- system   system        141 2013-01-19 01:03 userlist.xml
root@android:/ #  ls /data/system/users/0 -l
-rw-rw---- system   system      57344 2012-11-30 20:47 accounts.db
-rw------- system   system       8720 2012-11-30 20:47 accounts.db-journal
-rw------- system   system        534 2013-01-19 01:03 appwidgets.xml
-rw-rw---- system   system        549 2013-01-19 01:03 package-restrictions.xml
-rw------- system   system         97 2013-01-19 01:03 wallpaper_info.xml
root@android:/ #  ls /data/system/users/10 -l
-rw-rw---- system   system      57344 2012-12-04 23:39 accounts.db
-rw------- system   system       8720 2012-12-04 23:39 accounts.db-journal
-rw-rw---- system   system        129 2013-01-19 01:03 package-restrictions.xml


SD Card



As discussed earlier, consumer devices typically have a microSD
      card that the user can remove and plug into her computer. The content of
      this SD card is not critical to the system’s operation. In fact, you can
      relatively safely wipe it out without adverse effects. If a real user is
      using the device, however, you’ll at least want to understand what’s on
      it, because some apps store their information on the SD card, and it
      might matter to the user. Table 6-7 details some
      of what you might find in the /sdcard directory.
Table 6-7. Sample /sdcard directory contents
	Entry	Type	Description
	/Alarm	dir	Downloaded audio files that can be played as an
              alarm.
	/Android	dir	Contains apps’ “External” data and media directories. The
              former can be used for storing noncritical files and caches,
              while the latter is for app-specific media.
	/DCIM	dir	Pictures and videos taken by the Camera app.
	/Download	dir	Files downloaded from the web.
	/Movies	dir	Download location for movies.
	/Music	dir	The user’s music files.
	/Notifications	dir	Downloaded audio files that can be selected by the user
              for playing when notifications occur.
	/Pictures	dir	Downloaded pictures available to the user.
	/Podcasts	dir	The user’s podcasts.
	/Ringtones	dir	The downloaded ringtones the user should be able to
              choose from.



Because /sdcard is
      world-writable, the specific contents will depend on the apps running on
      the device and, of course, what the user decides to manually copy there.
      Again, just as a reminder, Android’s API distinguishes between
      “internal” and “external” storage, and the SD card is the latter. Also,
      note that some upgrade procedures use the SD card as the location where
      the update image is stored during the upgrade.

The Build System and the Filesystem



Chapter 4 covered how the build system generates
      the various parts of the filesystem. Let’s dig a little deeper into how
      you can control the build system’s filesystem generation.
Build templates and file locations



Table 4-2 listed the
        available build templates. Table 6-8 details the default install
        location for modules built using each target build template. Note how
        everything gets installed in one of /system’s subdirectories.
Table 6-8. Build templates and corresponding output locations
	Template	Default Output Location
	BUILD_EXECUTABLE	/system/bin
	BUILD_JAVA_LIBRARY	/system/framework
	BUILD_SHARED_LIBRARY	/system/lib
	BUILD_PREBUILT	No default. Make sure you explicitly specify either
                LOCAL_MODULE_CLASS or
                LOCAL_MODULE_PATH.
	BUILD_MULTI_PREBUILT	Depends on type of module being copied.
	BUILD_PACKAGE	/system/app
	BUILD_KEY_CHAR_MAP	/system/usr/keychars



Internally, the build system generates a LOCAL_MODULE_PATH for each module built,
        depending  on the module’s build template. This is where the compiled output is
        installed. You can override the default by changing the value of
        LOCAL_MODULE_PATH within your
        Android.mk. Let’s say, for
        instance, that you have a custom tool for your board that has to be
        installed in /sbin instead of
        /system/bin. Your Android.mk could then look something like
        this:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-c-files-under, src)
LOCAL_PACKAGE_NAME := calibratebirdradar
LOCAL_MODULE_PATH := $(TARGET_ROOT_OUT_SBIN)

include $(BUILD_PACKAGE)
Note that this specifies $(TARGET_ROOT_OUT_SBIN), not /sbin. This is so the binary gets installed
        in the proper out/target/product/PRODUCT_DEVICE/
        directory. The TARGET_ROOT_OUT_*
        macros are defined in build/core/envsetup.mk, along with quite a
        few installation default macros. Here’s the relevant snippet for our
        purposes:
TARGET_ROOT_OUT := $(PRODUCT_OUT)/root
TARGET_ROOT_OUT_BIN := $(TARGET_ROOT_OUT)/bin
TARGET_ROOT_OUT_SBIN := $(TARGET_ROOT_OUT)/sbin
TARGET_ROOT_OUT_ETC := $(TARGET_ROOT_OUT)/etc
TARGET_ROOT_OUT_USR := $(TARGET_ROOT_OUT)/usr

Explicitly copying files



In the case of some files, you don’t need the build system to
        build them in any manner; you just need it to copy the files into the
        filesystem components it generates. That’s the purpose of the PRODUCT_COPY_FILES macro that you can use in
        your product’s .mk. Here’s an
        updated version of the CoyotePad’s full_coyote.mk from Chapter 4:
$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES += \
  device/acme/coyotepad/rfirmware.bin:system/vendor/firmware/rfirmware.bin \
  device/acme/coyotepad/rcalibrate.data:system/vendor/etc/rcalibrate.data

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep
This will copy rfirmware.bin and rcalibrate.data from device/acme/coyotepad/ to the target’s
        /system/vendor/firmware and
        /system/vendor/etc directories,
        respectively.

Default rights and ownership



One aspect we haven’t yet discussed is what and how filesystem
        rights and ownership are assigned to each directory and file in the
        Android filesystem. If you’re willing to get your hands dirty, I
        strongly encourage you to take a look at the system/core/include/private/android_filesystem_config.h
        file. It doesn’t get a lot of publicity and it’s not documented
        anywhere.[25] It is, however, extremely important, as it provides the
        list of predefined system users, as well as the rights and ownership
        assigned to everything in the system. Here’s a partial list of the
        UIDs/GIDs it defines, along with the associated user/group names in
        2.3/Gingerbread:
#define AID_ROOT             0  /* traditional unix root user */

#define AID_SYSTEM        1000  /* system server */

#define AID_RADIO         1001  /* telephony subsystem, RIL */
#define AID_BLUETOOTH     1002  /* bluetooth subsystem */
#define AID_GRAPHICS      1003  /* graphics devices */
#define AID_INPUT         1004  /* input devices */
...
#define AID_RFU2          1024  /* RFU */
#define AID_NFC           1025  /* nfc subsystem */

#define AID_SHELL         2000  /* adb and debug shell user */
#define AID_CACHE         2001  /* cache access */
#define AID_DIAG          2002  /* access to diagnostic resources */
...
#define AID_MISC          9998  /* access to misc storage */
#define AID_NOBODY        9999

#define AID_APP          10000 /* first app user */
...
static const struct android_id_info android_ids[] = {
    { "root",      AID_ROOT, },
    { "system",    AID_SYSTEM, },
    { "radio",     AID_RADIO, },
    { "bluetooth", AID_BLUETOOTH, },
    { "graphics",  AID_GRAPHICS, },
    { "input",     AID_INPUT, },
...
If you go to your target’s shell and type ps, for instance, you’ll see something like
        this:
...
root      18048 1     61552  26700 c00a6548 afd0b844 S zygote
system    18090 18048 141756 50224 ffffffff afd0b6fc S system_server
system    18187 18048 75664  21828 ffffffff afd0c51c S com.android.systemui
app_16    18197 18048 78548  19292 ffffffff afd0c51c S com.android.inputmethod.
                                                       latin
radio     18200 18048 86400  19580 ffffffff afd0c51c S com.android.phone
app_19    18201 18048 78636  23472 ffffffff afd0c51c S com.android.launcher
app_1     18234 18048 83904  22232 ffffffff afd0c51c S android.process.acore
app_2     18281 18048 72364  16696 ffffffff afd0c51c S com.android.deskclock
...
Notice how the system_server
        runs as the system user and how
        each app is run by a user called app_N, with each
        app having a separate N. The kernel
        itself doesn’t provide those names. Instead, Bionic uses the previous
        definitions to provide PID/GID-to-name conversion. In the case of
        apps, since each app is installed as a separate user (starting from
        the base UID/GID for apps, 10000), app user names all start with
        app_ and are followed by an integer
        value matching the actual UID/GID assigned to the app minus 10000.
        This is slightly different starting with 4.2/Jelly Bean, with
        multiuser support. Now app names also show user ownership with the
        form uM_appN,
        where M is the user ID and N is the app ID.
Unlike other aspects of the AOSP’s build system, which allow you
        to isolate most of your board-specific additions within a directory in
        device/, like device/acme/coyotepad from our earlier
        example, there’s no substitute for modifying the main android_filesystem_config.h if you need to
        add new default users. The bold lines in the following snippet, for
        instance, show modifications for adding a birdradar user:
...
#define AID_RFU2          1024  /* RFU */
#define AID_NFC           1025  /* nfc subsystem */
#define AID_BIRDRADAR     1999  /* Bird radar subsystem */

#define AID_SHELL         2000  /* adb and debug shell user */
#define AID_CACHE         2001  /* cache access */
#define AID_DIAG          2002  /* access to diagnostic resources */
...
static const struct android_id_info android_ids[] = {
    { "root",      AID_ROOT, },
    { "system",    AID_SYSTEM, },
    { "radio",     AID_RADIO, },
...
    { "media",     AID_MEDIA, },
    { "nfc",       AID_NFC, },
    { "birdradar", AID_BIRDRADAR, },
    { "shell",     AID_SHELL, },
    { "cache",     AID_CACHE, },
...
Note
We’re using 1999 instead of 1026 for our new user to avoid as
          much as possible having to update this integer in future Android
          releases, should new users be added by Google. In fact, the above
          snippet is from 2.3/Gingerbread, where the factory IDs stop at 1025.
          In 4.2/Jelly Bean, the last number used by default by the AOSP is
          1028.

Reasons for adding new default users might include the addition
        of a new, still-unsupported hardware type to the Android stack, or the
        desire to isolate from the Android stack a custom stack you’re running
        side by side with Android. It could also simply be a matter of
        isolating a specific daemon using a separate user.
Conversely, here are snippets of the directory and file rights
        defined in android_filesystem_config.h:
static struct fs_path_config android_dirs[] = {
    { 00770, AID_SYSTEM, AID_CACHE,  "cache" },
    { 00771, AID_SYSTEM, AID_SYSTEM, "data/app" },
    { 00771, AID_SYSTEM, AID_SYSTEM, "data/app-private" },
    { 00771, AID_SYSTEM, AID_SYSTEM, "data/dalvik-cache" },
    { 00771, AID_SYSTEM, AID_SYSTEM, "data/data" },
...
    { 00750, AID_ROOT,   AID_SHELL,  "sbin" },
    { 00755, AID_ROOT,   AID_SHELL,  "system/bin" },
    { 00755, AID_ROOT,   AID_SHELL,  "system/vendor" },
...
    { 00755, AID_ROOT,   AID_ROOT,   0 },
};
...
static struct fs_path_config android_files[] = {
    { 00440, AID_ROOT,      AID_SHELL,     "system/etc/init.goldfish.rc" },
    { 00550, AID_ROOT,      AID_SHELL,     "system/etc/init.goldfish.sh" },
...
    { 00644, AID_SYSTEM,    AID_SYSTEM,    "data/app/*" },
    { 00644, AID_SYSTEM,    AID_SYSTEM,    "data/app-private/*" },
    { 00644, AID_APP,       AID_APP,       "data/data/*" },
...
    { 00755, AID_ROOT,      AID_SHELL,     "system/bin/*" },
    { 00755, AID_ROOT,      AID_SHELL,     "system/xbin/*" },
    { 00755, AID_ROOT,      AID_SHELL,     "system/vendor/bin/*" },
    { 00750, AID_ROOT,      AID_SHELL,     "sbin/*" },
    { 00755, AID_ROOT,      AID_ROOT,      "bin/*" },
    { 00750, AID_ROOT,      AID_SHELL,     "init*" },
    { 00644, AID_ROOT,      AID_ROOT,       0 },
};
If, for any reason, you add a new directory or a file into an
        unlisted (new) directory in the filesystem, the default ownership and
        access rights will be dictated by the last entry in the array just
        shown—the one with a 0 instead of a
        path within quotes. In other words, a new directory will have 755
        access rights and be owned by the AID_ROOT user and group, and a file added to
        an unlisted directory will have 644 access rights and be owned by the
        AID_ROOT user and group.
If you’d like to add glibc-linked binaries to your target, as is
        shown in Appendix A, for instance, you’ll likely want
        to have a /lib directory to host
        the glibc-libraries; /lib being
        the default library for traditional C libraries under Linux. However,
        by default, the libraries in there won’t be executable, even if they
        were on your host as you generated them,[26] and, therefore, any binary linked against glibc will
        fail to run. To remedy this problem, you’ll need to modify the
        android_files array in android_filesystem_config.h to look
        something like this:
...
    { 00750, AID_ROOT,      AID_SHELL,     "sbin/*" },
    { 00755, AID_ROOT,      AID_ROOT,      "bin/*" },
    { 00755, AID_ROOT,      AID_ROOT,      "lib/*" },
    { 00750, AID_ROOT,      AID_SHELL,     "init*" },
    { 00644, AID_ROOT,      AID_ROOT,       0 },
};
This is yet another modification that you couldn’t isolate into
        a device-specific directory like device/acme/coyotepad.
Note that typically, the /system/vendor directory is reserved for
        vendor-specific extensions. In fact, android_filesystem_config.h states that all
        binaries in /system/vendor/bin
        should be executable. Hence, if you’re going to add a substantial
        number of files to the filesystem, you might want to look at putting
        your additions in the /system/vendor directory. That would be the
        clean way to do it. But, hey, who ever said
        embedded and clean were synonymous?
Note
Generally speaking, trying to stay within the boundaries of
          what’s permitted by the AOSP’s build system is especially useful if
          you want to simplify your device support for future Android
          versions. If you isolate all your device-specific code in a relevant
          directory in device/, adding
          support for your device in the next AOSP is, theoretically, just a
          matter of copying your directory into that AOSP’s device/ directory and fixing your code
          for any API modifications.
While this philosophy makes sense for handsets, embedded
          systems are often one-offs where previous products get nothing but
          the most essential updates, if any, and the next product’s hardware
          platform will be the subject of a selection process that might
          result in the use of a completely different SoC. Hence, abiding by
          the “rules” in such circumstances might actually be
          counterproductive, as it’ll impose unnecessary limitations and
          restrictions. I’ll keep pointing out the “Android way” and all other
          possibilities as we move forward, but I’ll leave it up to you to
          decide what’s best for your own project.




adb



The filesystem layout we just discussed is only a skeleton for the rest of
    Android to live in. During board bringup, the first piece of Android
    software you’ll probably want to make sure runs on your device after the
    kernel is likely going to be adb. We
    already covered its basic operation in Chapter 3. We’re
    now going to delve into its use in much greater detail.
Theory of Operation



While surprisingly simple in use, adb is a very powerful tool with uses both for
      app development and platform development. Whereas several areas of
      Android build on or replace functionality found in traditional embedded
      Linux systems, prior to Android there was no project or package that
      provided functionality similar to adb
      in the Linux world (as far as I know, at least). Hence, adb fills an important gap and is a refreshing
      take on how host-target interactions can be improved and
      mediated.
adb is actually made up of
      several components, which themselves connect to several other system
      components to deliver adb’s
      integrated set of capabilities. Figure 6-3
      illustrates adb’s interconnections
      and operation. Interestingly, both adb’s host side and target side, save for the
      ddms-related components, are built
      from a single codebase in system/core/adb/, which ensures version
      coherency among components.
[image: ADB and its interconnections]

Figure 6-3. ADB and its interconnections

adb acts both as a transparent
      transport mechanism and as a service provider. Its two most important
      components are the  adb server running on the host and the
      adbd daemon running on the target.
      These two components effectively implement a proxy protocol on which all
      adb services are implemented. They
      can be linked together either through USB or regular TCP/IP. The command
      set that adb makes available is
      identical in both cases.
Note
The names used in Android can be confusing here. Usually, a
        server runs remotely from a client, and some
        client utility connects to the server through the network. In this
        case, the adb “server” is actually
        a daemon running in the background on the host, and adbd is another, separate daemon running on
        the target.

The adb server is started
      automatically whenever the adb
      command is invoked on the command line. It monitors connected devices
      and maintains communication with the remote adbd daemons. The latter interface with the
      native user-space, the Java user-space and the kernel to provide their
      functionality. We’ll discuss some of those interactions in greater
      detail as we go through adb’s
      functionality below.
On the host side, two major pieces of software initiate connection
      with the adb server: the adb command and the ddms (Dalvik Debug Monitor
      Server) libraries (ddmlib and ddmuilib). The ddms libraries are
      themselves used by the ddms utility,
      which is a standalone tool, and
      the ddms plug-in typically added to Eclipse through the installation of
      Android’s ADT plug-in for app developers. The ddms libraries provide
      primitives both to talk to the adb
      server (ddmlib) and display/manage UI parts (ddmuilib). This is why the
      user interfaces are identical between parts of the ddms utility and the ddms Eclipse
      plug-in.
Note that the adb command and
      the ddms libraries don’t fully expose the adb server’s capabilities in an equal way. The
      adb server, for instance, can grab
      the content of the target’s framebuffer for the purpose of providing
      screenshots. This functionality is exposed by the ddms utility, but it isn’t available on the
      command line through adb.
To provide its services, the adb server opens socket 5037 on the host and
      listens for connections. Anyone can connect to the server as long as he
      respects the procotol. Have a look at OVERVIEW.TXT and SERVICES.TXT in system/core/adb/ if you’d like to implement
      code that talks directly to the adb
      server. The adb server can also
      interact with an adbd daemon running
      inside an emulator on the host in the same way it would to the same
      daemon on a remote target.
In addition, adb can also
      interact with the emulator’s console. Every emulator instance that
      starts listens for connections on a different port number; the number is
      displayed on the upper-left corner of the emulator window and starts
      from 5554. When you connect to that port number using telnet, you are able  to issue special commands to control the emulator’s behavior, as detailed
      in Using
      the Android Emulator in Google’s app developers guide. These
      commands include forwarding ports from the host to the emulator and
      resizing the emulator’s window. To simplify matters, adb makes it possible to send the same
      commands to the emulator without actually having to go through telnet.

Main Flags, Parameters, and Environment Variables



As alluded to in Chapter 3 and as we’ll see
      shortly in detail, adb provides a lot
      of commands. However, adb can be used
      to simultaneously interact with several Android devices and AOSP builds.
      Hence, there are several flags, parameters, and environment variables to
      gate its behavior, as presented in Table 6-9. If
      there’s only one device connected or emulator instance running, then
      adb’s operation is relatively simple,
      since it assumes that that single instance is the one you want to
      execute your commands on.
Table 6-9. adb’s flags, parameters, and environment variables
	Item	Description
	-d	This flag tells adb to
              execute the command passed on the USB-connected device. If you
              have both an emulator running and an Android device connected
              through USB to your host, then this will ensure adb executes your command on the
              device, not the emulator. Of course this won’t work if you have
              more than one device connected.
	-e	Similarly to -d, this
              tells adb to connect to the
              emulator instance running, even if there is an Android device
              connected. Again, it won’t work if you have multiple emulator
              instances running.
	-s <serial
              number>	This tells adb to
              connect to the device designated by the given serial number.
              Despite it being tedious to have to enter the full serial number
              of a device to use each adb
              command, this (and ANDROID_SERIAL below) will be the only
              way to go if you have multiple devices connected or multiple
              emulators running.
	-p <product name or
              path>	Some of adb’s commands
              require access to the sources that were used to build the
              target’s AOSP. If you’re running adb from the same shell where you
              built the AOSP, it will be able to properly find those since the
              ANDROID_PRODUCT_OUT
              environment variable will be set. If that’s not the case, you’ll
              need to use -p to indicate
              the path to the product’s output directory within an AOSP source
              tree.
	ANDROID_SERIAL	If you constantly have multiple devices connected and
              want to avoid having to use the -s flag to specify the serial of one
              specific device that you operate on very frequently, set the
              ANDROID_SERIAL environment
              variable to that device’s serial number, and adb will always connect to that device
              by default unless you explicitly use -s to override.
	ADB_TRACE	If you want to debug or monitor the interaction betweeen
              the adb server on the host
              and the adbd daemon on the
              target, you can set the ADB_TRACE environment variable to one
              of or a series of comma-, colon-, semicolon-, or space-separated
              combinations from the following values: 1, all, adb, sockets, packets, rwx, usb, sync, sysdeps, transport, jdwp.




Basic Local Commands



Let’s start with some of adb’s
      basic commands that run locally. First, if you’d like to start the
      adb server manually, you can do so
      like this:
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
The server will, however, start automatically whenever needed by
      any other adb command you type. So
      you can usually skip over starting the server manually. There are cases,
      unfortunately, where you actually have to manually shut the server
      down—usually you should do this whenever any of your adb commands seem to hang:
$ adb kill-server
If you’d like to know adb’s
      capabilities, you can either start the command without any parameters or
      type:
$ adb help
Android Debug Bridge version 1.0.26

 -d                            - directs command to the only connected USB device
                                 returns an error if more than one USB device is
                                 present.
 -e                            - directs command to the only running emulator.
                                 returns an error if more than one emulator is 
                                 running.
 -s <serial number>            - directs command to the USB device or emulator
                                 with the given serial number. Overrides
                                 ANDROID_SERIAL
...
device commands:
  adb push <local> <remote>    - copy file/dir to device
  adb pull <remote> [<local>]  - copy file/dir from device
  adb sync [ <directory> ]     - copy host->device only if changed
                                 (-l means list but don't copy)
                                 (see 'adb help all')
  adb shell                    - run remote shell interactively
  adb shell <command>          - run remote shell command
  adb emu <command>            - run emulator console command
...
The help screen above gave the command’s version number as part of
      the output. But you can ask adb to
      explicitly print its version number:
$ adb version
Android Debug Bridge version 1.0.26
Like the rest of the AOSP, adb
      is a moving target. Here’s the version in 4.2/Jelly Bean:
$ adb version
Android Debug Bridge version 1.0.31

Device Connection and Status



Let’s now take a look at the commands adb provides for managing its communications
      with devices. First, if you want to see which devices are visible to
      adb, you can type:
$ adb devices
List of devices attached
emulator-5554	device
0123456789ABCDEF	device
emulator-5556	device
If you’d like to connect to a remote device whose adbd daemon is running on TCP/IP instead of
      USB, you can use the connect
      command:
$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878
$ adb devices
List of devices attached
emulator-5554	device
0123456789ABCDEF	device
emulator-5556	device
192.168.202.79:7878	device
connect’s formal description is
      (5555 being the default port):
adb connect <host>[<:port>]
To designate that target as the one on which to issue a given
      command, just use the IP:PORT information displayed by adb devices as the serial number. To get a
      shell, for instance:
$ adb -s 192.168.202.79:7878 shell
When you’re done, you can disconnect from the device; it will then
      stop appearing in the list of devices seen by the adb server:
$ adb disconnect 192.168.202.79:7878
disconnect’s formal description
      is (if no device is specified then all TCP/IP-connected devices will be
      disconnected):
adb disconnect [<host>[<:port>]]
If you’d like adb to hang
      waiting for the device to come online, you can type this:
$ adb wait-for-device
The shell will then suspend until the device comes online.
      adb will return to the shell when the
      device is online. This is useful for scripting purposes, as you can make
      your script wait for a device to be ready before proceeding with other
      commands.
If you want to inquire about a device’s status, type:
$ adb -s 0123456789ABCDEF get-state
device
States include bootloader, device, offline, and unknown. The
      device value is synonymous with the device being
      online. offline is self-explanatory.
      bootloader means the device is currently in the
      bootloader. And unknown means adb can’t recognize the current state of the
      device.
If, for any reason, you need to explicitly ask about a device’s
      serial number, such as when you’re scripting adb commands, you can do so:
$ adb -d get-serialno
0123456789ABCDEF
Finally, if you need to have a shell window open that continuously
      reports the current device’s state, you can do so with this:
$ adb -d status-window
This will clear the screen and display something like this at the
      top of the terminal (the state reported beside State:
      being the device’s “real-time” state):
Android Debug Bridge
State: device
To exit, you just type Ctrl-C.

Basic Remote Commands



Up to now, the commands we’ve seen haven’t actually allowed us to
      do anything on the remote target or get any information about it. So
      let’s start having some fun.
Shell



Obviously, if you’re a geek like me, one of the first things
        you’ll want to do is shell into your device for fun and profit. With
        2.3/Gingerbread you’ll get this:
$ adb shell
#
4.2/Jelly Bean has a much richer shell, and you’ll get this
        instead:
$ adb shell
root@android:/ #
In both cases, the command results in the adbd daemon spawning a shell on the target
        to execute the commands you type. All input/output (i.e., stdin,
        stdout, and stderr) for the commands will then be proxied between the
        adb server running on the host and
        the adbd daemon running on the
        target.
To exit from the target’s shell and return to your host’s shell,
        just type Ctrl-D. You can also launch a specific command by passing it
        as a parameter to the shell
        command—in this case printing out the CPU information for a
        BeagleBone:
$ adb -d shell cat /proc/cpuinfo
Processor       : ARMv7 Processor rev 2 (v7l)
BogoMIPS        : 718.02
Features        : swp half thumb fastmult vfp edsp thumbee neon vfpv3 tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant     : 0x3
CPU part        : 0xc08
CPU revision    : 2

Hardware        : am335xevm
Revision        : 0000
Serial          : 0000000000000000
This is shell’s formal description:
adb shell [ <command> ]

Dumping the logs



If you’d like to dump Android’s logger buffer, you can type
        this:
$ adb -d logcat
--------- beginning of /dev/log/main
I/DEBUG   (   59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system
I/Vold    (   57): Vold 2.1 (the revenge) firing up
D/Vold    (   57): USB mass storage support is not enabled in the kernel
D/Vold    (   57): usb_configuration switch is not enabled in the kernel
D/Vold    (   57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media)
D/Vold    (   57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold    (   57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold    (   57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted)
I/Netd    (   58): Netd 1.0 starting
I/        (   61): ServiceManager: 0xad50
W/AudioHardwareInterface(   61): Using stubbed audio hardware. No sound will be
produced.
D/AudioHardwareInterface(   61): setMode(NORMAL)
I/CameraService(   61): CameraService started (pid=61)
I/AudioFlinger(   61): AudioFlinger's thread 0xc638 ready to run
E/dhcpcd  (   65): timed out
D/AndroidRuntime(  224):
D/AndroidRuntime(  224): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(  224): CheckJNI is ON
D/dalvikvm(  224): creating instr width table
I/SamplingProfilerIntegration(  224): Profiler is disabled.
I/Zygote  (  224): Preloading classes...
...
That command is actually an equivalent of this:
$ adb -d shell logcat
We’ll discuss the logcat
        command in greater detail later, but know that you can line up the
        same parameters after the adb
        logcat part you typed in as if you were running logcat straight from the target’s command
        line. So, for instance, if you want to dump the “radio” buffer instead
        of the “main” buffer, you can do this:
$ adb -d logcat -b radio
I/PHONE   (  394): Network Mode set to 0
I/PHONE   (  394): Cdma Subscription set to 1
I/PHONE   (  394): Creating GSMPhone
D/PHONE   (  394): mDoesRilSendMultipleCallRing=true
D/PHONE   (  394): mCallRingDelay=3000
W/GSM     (  394): Can't open /system/etc/voicemail-conf.xml
W/GSM     (  394): Can't open /system/etc/spn-conf.xml
D/GSM     (  394): [DSAC DEB] registerForPsRestrictedEnabled
D/GSM     (  394): [DSAC DEB] registerForPsRestrictedDisabled
D/GSM     (  394): [GsmDataConnection-1] DataConnection constructor E
D/GSM     (  394): [GsmDataConnection-1] clearSettings
D/GSM     (  394): [GsmDataConnection-1] DataConnection constructor X
D/GSM     (  394): [GsmDataConnection-1] Made GsmDataConnection-1
D/RILJ    (  394): [0000]> RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING
D/STK     (  394): StkService: StkService: is running
...
adb will also honor the
        ANDROID_LOG_TAGS environment
        variable if it’s set in the host’s shell when you start the command.
        ANDROID_LOG_TAGS is taken into
        account by logcat, as we’ll see
        later, for filtering the output it prints. This is logcat’s formal description:
adb logcat [ <parameters> ]
logcat with ddms Libraries
If you’ve ever used ddms or
          Android’s ADT plug-in, you know they can present the same Android
          logger information that’s printed to the command line by logcat. There’s a difference in how each
          retrieves its information, however. While, as I just explained, an
          adb logcat actually just runs the
          logcat command on the target and
          proxies the output back to the host, ddms’s libraries use a different adb server mechanism from the one used to
          proxy shell I/O, the log service. This service
          proxies the content of the relevant /dev/log buffer
          directly back to the host, without passing through the target’s
          logcat. This is a case where
          there are in fact two ways to skin a cat. 
The protocol between the adb server and its client is in fact quite
          rich, as I alluded to earlier. You’ll need to dig into adb’s sources to get the full picture, but
          suffice it to say that the server communicates with the target’s
          adbd daemon to provide multiple
          types of services. The overall ADB functionality exposed through the
          adb command line and ddms all rely on those services. However,
          you can write code that talks directly to the adb server to tap into any of the services
          it provides.


Getting a bug report



Much like the logcat target
        command—for which there’s a shortcut with adb that doesn’t require explicitly telling
        it to invoke shell—adb provides a shortcut for bugreport. The latter is a target command
        that dumps the state of the system for bug-reporting purposes. It, in
        effect, results in the dumpstate
        command to run on the target:
$ adb -d bugreport
========================================================
== dumpstate: 2000-01-01 05:05:08
========================================================

Build: beaglebone-eng 2.3.4 GRJ22 eng.karim.20120327.052544 test-keys
Bootloader: unknown
Radio: unknown
Network: (unknown)
Kernel: Linux version 3.1.0-g62911f8-dirty (a0131746@sditapps03) (gcc version 4.
4.3 (GCC) ) #1 Mon Nov 28 22:05:07 IST 2011
Command line: console=ttyO0,115200n8 androidboot.console=ttyO0 mem=256M root=/de
v/mmcblk0p2 rw rootfstype=ext3 rootwait init=/init ip=off

------ MEMORY INFO (/proc/meminfo) ------
MemTotal:         253264 kB
MemFree:          198308 kB
...
You might wonder, why not just do something like this instead,
        since the bugreport command invokes
        dumpstate?
$ adb -d shell dumpstate
The trouble is that dumpstate
        needs to run as root, and some devices don’t allow their shells to run
        as root. Such is the case of the vast majority of handsets on the
        market. On those devices, therefore, it wouldn’t be possible to type
        the above command, but it would still be possible to use bugreport. Here’s what happens on my
        phone:
$ adb -s 4xxxxxxxxxxxxxx shell dumpstate
dumpstate: permission denied
$ adb -s 4xxxxxxxxxxxxxx shell bugreport
========================================================
== dumpstate: 2012-05-04 13:38:05
========================================================

Build: GINGERBREAD.UCKI3
Bootloader: unknown
Radio: unknown
...
Essentially, bugreport causes
        init to start dumpsys in a mode where it opens a Unix
        domain socket and listens for connections for dumping its output.
        bugreport then connects to that
        socket and copies the content it reads to its own standard output,
        which is then proxied through adb
        to your host’s shell. Users or technicians can therefore create bug
        reports for your devices even if you don’t give them root
        access.

Port forwarding



Another very interesting feature of adb is that it allows you to forward ports
        between the host and the target. For instance, this command will
        forward local port 8080 to the target’s port 80:
$ adb -d forward tcp:8080 tcp:80
Thereafter, any connection you make to your host’s port 8080
        will be redirected to the target’s port 80. If you’re running a web
        server (which runs on port 80 by default) on your Android device, for
        example, you’ll be able to connect your host’s web browser to localhost:8080 to browse your device.
adb’s forward command can, however, do a lot more
        than that. It can in fact forward host ports to more than just ports
        on the target. For instance, you can forward local port 8000 to one of
        the target’s character devices:
$ adb -d forward tcp:8000 dev:/dev/ttyUSB0
In that case, any read/write operations conducted on port 8000
        will result in read/write operations on the remote /dev/ttyUSB0. Table 6-10 lists the connection types supported by
        forward and its formal description
        is:
adb forward <local> <remote>
Table 6-10. adb forward’s connection types
	Connection	Description
	tcp:<port>	Regular TCP port. This should be an nonnegative integer
                value.
	localfilesystem:<unix
                domain socket>	A regular Unix domain socket. This shows up as an entry
                in the filesystem.
	localabstract:<unix domain
                socket>	An “abstract” Unix domain socket. This is like a Unix
                Domain socket, but it’s a Linux-specific extension. Have a
                look at the unix man page
                for more detail: man 7
                unix.
	localreserved:<unix domain
                socket>	Android’s “reserved” Unix domain sockets. They’re all
                in /dev/socket, and they
                have very specific uses that we’ll cover as we go. These
                include dbus, installd, keystore, netd, property_service, rild, rild-debug, vold, and zygote.
	dev:<character device
                name>	Actual devices on the target. You must provide the full
                path to the device in the filesystem.
	jdwp:<pid>	Used to specify the PID of a Dalvik process for
                debugging purposes.




Dalvik debugging



It’s worth expanding a bit more on forward’s ability to proxy connections to
        Dalvik processes. Dalvik implements the Java Debug Wire Protocol
        (JDWP), thereby allowing you to use the regular Java debugger jdb to debug your apps. Obviously this is
        shrink-wrapped into Eclipse for app developers, but if you want to use
        jdb on the command line, forward’s ability to redirect Dalvik
        processes’ debug ports to your host becomes essential. Here’s an
        example:
$ adb forward tcp:8000 jdwp:376
$ jdb -attach localhost:8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>
To know which PIDs are debuggable through JDWP, you type:
$ adb jdwp
271
376
386
389
390
425
473
480
...
adb is in fact a crucial
        component for debugging any Java on the target. When the adbd daemon starts on the target, it opens
        the “abstract” Unix domain socket jdwp-control and awaits connections. Dalvik
        processes that start afterward
        connect to that socket and therefore make themselves “visible” for
        debugging. To allow app developers to debug their apps, the ddms
        Eclipse plug-in goes through ddmlib to talk to the adb server to debug the app. Or, as we just
        saw, you can use jdb to debug on
        the command line.
Note that all of this requires that adbd be running on the target before any
        Dalvik app is started. Only those Dalvik apps that you start after adbd
        will be debuggable.


Filesystem Commands



adb also allows you to
      manipulate and interact with the target’s filesystem in a variety of
      ways. If you want to copy a file to the device, for instance, you can
      use push:
$ adb push acme_user_manual.pdf /data/local
This will copy the acme_user_manual.pdf file to the target’s
      /data/local directory:
$ adb shell ls /data/local
acme_user_manual.pdf
You can also copy files from the target to the host:
$ adb pull /proc/cpuinfo
$ cat cpuinfo
Processor	: ARMv7 Processor rev 2 (v7l)
BogoMIPS	: 718.02
...
As I explained earlier in this chapter, the target’s filesystem
      parts aren’t all mounted with the same rights. /system, for example, is typically mounted as
      read-only. If you’d like to remount it in read-write mode, to add or
      modify a file on it, for instance, you can do so using remount. Here’s an example:
$ adb push acme_utility /system/bin
failed to copy 'acme_utility' to '/system/bin/acme_utility': Read-only file system
$ adb remount
remount succeeded
$ adb push acme_utility /system/bin
$
Of course push’s functionality
      is useful only for copying a handful of files. If you’re looking to
      update the entirety of either of the target’s /data or /system partitions, you can do so using the
      sync command. It will essentially
      conduct an operation similar to the rsync command, making sure that the target’s
      files are synchronized with those on the host. If you run adb sync from the same directory where the
      target’s AOSP was built, then it will automatically find the files to
      sync because the ANDROID_PRODUCT_OUT
      environment variable will point to the right directory. (Assuming, of
      course, that you ran build/envsetup.sh and lunch as required for your target.) Otherwise,
      you’ll need to manually point it to the right output directory like
      this:
$ adb -d -p ~/android/beaglebone/out/target/product/beaglebone/ sync
syncing /system...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
rasher -> /system/xbin/crasher
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/s
cp -> /system/xbin/scp
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
pcontrol -> /system/xbin/opcontrol
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
cpdump -> /system/xbin/tcpdump
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
profiled -> /system/xbin/oprofiled
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
imeinfo -> /system/xbin/timeinfo
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
pueater -> /system/xbin/cpueater
...
491 files pushed. 0 files skipped.
1317 KB/s (81337934 bytes in 60.310s)
syncing /data...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/gles
2_texture_stream.apk -> /data/app/gles2_texture_stream.apk
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iterator_host -> /data/app/test_iterator_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iostream_host -> /data/app/test_iostream_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_string_host -> /data/app/test_string_host
...
25 files pushed. 0 files skipped.
2804 KB/s (4078615 bytes in 1.420s)
You probably want to reboot the target after such an update, as
      there might be stale file references lingering. Note that sync syncs only /system and /data. It doesn’t sync anything else. In
      other words, you can’t use sync to
      synchronize the contents of the RAM disk mounted as the root filesystem
      for the target. Even if it allowed you to, it wouldn’t be of much use,
      since the RAM disk lives only in RAM and its contents are not written
      through to persistent storage.
sync can also be told to sync
      only the data or the system partitions, instead of both. Simply pass the
      partition you’d like to sync as a parameter:
$ adb -e sync data
syncing /data...
...
sync’s formal description
      is:
adb sync [ <directory> ]
If, instead of copying single files or syncing entire partitions,
      all you’re looking for is to install new apps, then you should use
      install instead:
$ adb install FastBirds.apk
299 KB/s (13290 bytes in 0.043s)
	pkg: /data/local/tmp/FastBirds.apk
Success
Essentially, this will invoke the pm (short for “package manager”) command on
      the target. It will itself interact with the PackageManager system
      service to get your app installed. To remove it from the device, you can
      then use the uninstall
      command:
$ adb uninstall com.acme.fastbirds
Success
You’ve likely noted that while install relies on the filename, uninstall actually needs the full package
      name. Each command can actually take a few flags, as explained in Table 6-11:
adb install [-l] [-r] [-s] <file>
adb uninstall [-k] <package>
Table 6-11. Flags for install and uninstall
	Flag	Description
	-l	Tells install to
              ensure that the app is forward-locked. In other words, it
              disallows the user from copying the .apk off the device. In practice,
              this means that the app is installed in /data/app-private instead of
              /data/app.
	-r	Tells install to
              reinstall the app, preserving its data as is.
	-s	Tells install to
              install the app on external storage (the SD card) instead of
              internal storage.
	-k	Tells uninstall to
              keep the app’s data even though the .apk is removed.




State-Altering Commands



For lack of a better name for this category, I’ve lumped together
      in this section all the commands that in one way or another
      significantly alter the target’s behavior. It’s not like the previous
      commands couldn’t or didn’t alter the target, it’s just that those
      you’ll find here do so in especially significant ways.
Rebooting



Let’s start with one of the more obvious ones:
$ adb reboot
If you hadn’t already guessed, this reboots the target. This
        actually invokes the reboot()
        system call on the target’s kernel while passing it the appropriate
        magic values to effect a reboot. You can also pass a parameter to
        reboot to tell it to reboot either
        in the bootloader or the recovery mode:
$ adb reboot bootloader
And:
$ adb reboot recovery
Note, however, that this parameter is passed as is to the
        kernel. It’ll be the job of your board support code in the kernel to
        deal with this parameter appropriately. If your board-support kernel
        code doesn’t process the string passed to the reboot() function, it’s simply ignored, and
        all that happens is a plain reboot. Another way to reboot into the
        bootloader is:
$ adb reboot-bootloader
It’s important to highlight that all those reboot commands
        result in an immediate reboot. There
        is no graceful shutdown of any process or system service. Hence, if
        you need to do any cleanup, it’s best to do so prior to issuing the
        reboot command.

Running as root



By default on a development board, most of adb’s commands will work to their full
        capabilities without a problem, because the adbd daemon on the target will likely be
        running as root. On a production system like a commercial handset,
        however, it’s likely that adbd
        isn’t running as root but rather as the shell user, which has far fewer privileges.
        Hence, commands such as adb shell
        will also be running only with shell’s privileges.
The adbd daemon’s default
        privileges will depend on how the AOSP is built and the target that
        it’s running on. If it’s running on the emulator, for example,
        adbd will always run as root. In
        all other cases, adbd’s privileges
        will depend on the TARGET_BUILD_VARIANT chosen to build the
        AOSP. If it’s userdebug or user, adbd won’t run as root, it’ll run as the
        shell user when started. In the
        case of userdebug, you can ask it
        to restart as root by typing:
$ adb root
restarting adbd as root
If you issue the same command on a user build, you’ll get this—in other words,
        you can’t override the default:
$ adb root
adbd cannot run as root in production builds
If you build with the eng
        variant, as is likely the case during development, adbd will start as root, and here’s what
        happens when you insist:
$ adb root
adbd is already running as root
The same will happen if the system is already running adbd as root because of a previous adb root command. All of this behavior is
        gated by the ro.secure, ro.debuggable, and service.adb.root global properties. The two
        former are set at build time, while the latter is set by adb’s root command. Both user and userdebug cause ro.secure to be set to 1, but only userdebug and eng cause ro.debuggable to be set to 1. Obviously those global properties are
        checked by more than just adbd.

Switching connection type



By default, the adb server
        checks for running emulator instances running only on the host and
        devices physically connected to the host through USB. You can, as we
        saw earlier, nonetheless connect devices that have their adbd daemons listening on a TCP/IP port
        instead of USB using adb connect.
        What we haven’t looked at yet is how to get adbd to use TCP/IP instead of USB. Assuming
        the device is already connected through USB, you can ask it to use
        TCP/IP instead, like this:
$ adb -s 0123456789ABCDEF tcpip 7878
restarting in TCP mode port: 7878
Essentially, this will set the service.adb.tcp.port global property on the
        target to 7878 and restart the adbd
        daemon. Upon restarting, the daemon will then wait for connections on
        the given port instead of on USB. You can then connect to it like
        above:
$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878
To switch it back to USB, you can type this:
$ adb -s 192.168.172.79:7878 usb
restarting in USB mode
Effectively, this command is equivalent to typing:
$ adb -s 192.168.172.79:7878 shell
# setprop service.adb.tcp.port 0
# ps
...
root      66    1     3412   164   ffffffff 00008294 S /sbin/adbd
...
# kill 66
In both cases, adbd is made
        to exit and is automatically restarted by init. It then checks service.adb.tcp.port and starts accordingly.
        If, for any reason, you don’t have a USB connection to your device,
        you can always manually preset service.adb.tcp.port on the device so that
        adbd always starts on that port
        number. We’ll discuss global property setting later. connect’s formal description is:
adb tcpip <port>

Controlling the emulator



As explained earlier, you can connect to each emulator’s console
        using telnet:
$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

    help|h|?         print a list of commands
    event            simulate hardware events
    geo              Geo-location commands
    gsm              GSM related commands
    kill             kill the emulator instance
    network          manage network settings
    power            power related commands
    quit|exit        quit control session
    redir            manage port redirections
    sms              SMS related commands
    avd              manager virtual device state
    window           manage emulator window

try 'help <command>' for command-specific help
OK
Google’s online manual explains the use of each of these
        commands in detail. Unfortunately, having to use telnet to access each of these commands can
        be cumbersome, especially if you need to script part of what you need
        to do. Hence, adb allows you to
        launch these same exact commands like any of its other
        commands:
$ adb -e emu redir add tcp:8080:80
This will redirect all connections to the host’s port 8080 to
        the target’s port 80. The part of the command line after emu is exactly the same command that you
        could have typed through the telnet
        session to redirect the port.


Tunneling PPP



One of the external projects included in the AOSP is the standard
      PPP daemon used in most Linux-based distributions and available at
      https://ppp.samba.org/. You can ask adb to set up a PPP connection between the
      host and the target. This might be for tethering or simply to create a
      network connection between the host and the target when you have only a
      USB connection between both. Here’s the formal definition of the
      ppp command:
adb ppp <adb service name> [ppp opts]
Unfortunately, this by itself is insufficient to understand how to
      use this command. Worse, of all adb
      commands, this one is the most poorly documented. The more common way
      you’re likely to use this command is:[27]
adb ppp "shell:pppd nodetach noauth noipdefault /dev/tty" nodetach noauth \
> noipdefault notty <local-ip>:<remote-ip>
Essentially, what’s happening here is that the host’s pppd daemon is being started with the
      following parameters:
nodetach noauth noipdefault notty <local-ip>:<remote-ip>
And the target’s pppd is being
      started with the following parameters:
nodetach noauth noipdefault /dev/tty
adb then proxies the
      communication between the two pppd
      daemons and you therefore have a network connection established between
      the host and the target. You’ll likely need to do a little more legwork
      to figure out exactly what kind of networking connection you want to
      establish and the specific IP parameters. But with the above, you’ll at
      least have a good starting point. I would encourage you to read pppd’s man page on your host for more
      information on its full capabilities.
I also encourage you to have a look at some of the following
      articles on the web for more details and examples on the use of this
      adb feature:
	ppp over adb (for
          linux/unix users)

	device shows up in lsusb +
          adb but not in ifconfig

	USB Tether for Xperia X10
          Mini Pro

	creates a ppp link between
          my Ubuntu development machine and BeagleBoard running Android
          connected via USB





Android’s Command Line



As I said earlier, one of the first Android-specific tools you’re
    likely to encounter is adb, and one of
    its most common uses is shelling into the target. And since during board
    bringup you’re likely to spend quite some time on the command line before
    having a functional UI, it’s only fitting to now cover Android’s command
    line. In fact, it’s possible that you’ll likely have to deal directly with
    Android’s command line, probably through a serial console, even before ADB
    is fully functional: This will be the case if your device doesn’t possess
    USB capabilities or doesn’t yet have a functional USB driver or
    TCP/IP-capable network interface.
The Shell Up to 2.3/Gingerbread



The standard shell used in Android in versions up to
      2.3/Gingerbread is found in system/core/sh/ in the sources, and the
      resulting binary is /system/bin/sh
      on the target. Unlike many components in the system, this shell is one
      where Android doesn’t reinvent the wheel. Instead, Android uses the
      NetBSD sh utility with very few tweaks. The AOSP in fact preserves sh’s
      man page as is, so you can do something like this on your host to get
      more information on how to use the shell:
$ man system/core/sh/sh.1
This shell is unfortunately a lot more basic than bash or
      BusyBox’s ash. It doesn’t, for instance, have tab completion or
      color-coding of files. If for no other reason, these limitations have
      been good justification for developers to include BusyBox on their
      targets, at least during development. For a full comparison of Unix
      shells, minus BusyBox, have a look at Arnaud Taddei’s Shell Choice, A shell comparison. It
      dates back to 1994, but it’s one of the few documents that discusses
      this topic. There’s also Wikipedia’s
      comparison, but it’s more shallow.
Comparisons aside, here’s an overview of sh’s capabilities:
	Output redirection using > and
          <

	Piping using |

	Running background commands using
          &

	Scripting using if/then/fi,
          while/do/done, for/do/done, continue/break, and case/in/pattern/esac.

	Environment variables

	Parameter expansion (${...})

	Command substitution ($(...))

	Shell patterns (*, ?,
          !, etc.)



Table 6-12 describes sh’s built-in commands.
Table 6-12. sh built-in commands
	Command	Description
	alias	Substitute one command for another.
	bg	Run a suspended task in the background.
	command	Run specified command; useful when a script has the same
              name as a built-in command.
	cd	Change directory.
	eval	Evaluate an expression.
	exec	Replace the running shell with the specified
              command.
	exit	Quit the shell process.
	export	Export an environment variable’s value for all subsequent
              commands.
	fg	Move background job to the foreground.
	getopts	Parse command-line options.
	hash	Print out location of commands in shell’s cache.
	jobid	Print PIDs belonging to job ID.
	jobs	List currently running jobs.
	pwd	Print working directory.
	read	Read a variable from the command line.
	readonly	Set an environment variable as read-only.
	set	List the environment variables currently set.
	setvar	Set an environment variable to a given value.
	shift	Shift command-line parameters upward ($1 becomes $2,
              etc.).
	trap	Execute an action when given Unix signals are
              received.
	type	Print the filesystem location of a command or an alias’s
              definition.
	ulimit	Print/set the process limits (uses sysctl()).
	umask	Set default file creation mode.
	unalias	Delete a given alias.
	unset	Delete a given environment variable.
	wait	Wait for a given job to complete.



If you’re using any Android version up to 2.3/Gingerbread, I
      encourage you to look at sh’s man page for more information on how to
      use each of its features. You’ll also be able to benefit from the
      plethora of online examples and tutorials on Unix shell scripting. None
      of these aspects is unique to Android or the use of sh in an embedded setting.

The Shell Since 4.0/Ice-Cream Sandwich



Starting with 4.0/Ice-Cream Sandwich,[28] Android now relies on the MirBSD Korn Shell. It’s
      found in the external/mksh/
      directory in the host, and the binary is /system/bin/mksh on the
      target.
Note
Even though mksh was included
        in AOSP versions before 4.2/Jelly Bean, it was disabled when building
        for the emulator. There is a TARGET_SHELL configuration variable in the
        build system that is set by default to mksh. However, a board config can change the
        default to whatever is appropriate for that board. Prior to 4.2/Jelly
        Bean, this variable was set to ash,
        which is the new name of the executable that replaces the sh command described in the previous
        section.

mksh is a lot more powerful
      than sh. It includes tab completion,
      for instance, though it doesn’t support color-coding of files, and has
      bash/ksh93/zsh-like extensions. It also has a man page that you can
      check on the host by typing:
$ man system/external/mksh/src/mksh.1
Given that mksh has a lot more
      features and built-in commands than sh, it would be difficult to give it proper
      coverage in this book. Instead, I encourage you to look at its man page
      and its website for more information. It includes, for instance, an
      implementation for the very useful history command, which lists the previous
      commands you typed on the shell.

Toolbox



Like any other Linux-based system, Android’s shell provides only
      the bare minimum required to have a functional command line. The rest of
      the functionality comes from individual tools providing specific
      capabilities that can be started individually from the shell. As we
      discussed in Chapter 2, the package that provides these
      tools in Android is called Toolbox, and it’s distributed under the BSD
      license. Toolbox is in system/core/toolbox/ in the AOSP. The
      resulting binary and the symbolic links to it reside in /system/bin on the actual target.
Unfortunately, in addition to not being as feature-rich as
      BusyBox, Toolbox also severely lacks in documentation. Fortunately, the
      majority of the commands it provides already exist, albeit in more
      feature-full form, on the standard Linux desktop. Hence, you can use
      your development machine’s man pages as a primer for using the
      equivalent Toolbox commands. Beware, as some of the Toolbox variants
      have slightly different command-line semantics from their standard Linux
      brethren.
In some cases, this is easy to figure out, as the command will
      print out its usage if you pass it the wrong type of parameters.
      However, not all Toolbox commands provide online help. In some cases,
      you’ll even have to dig into Toolbox’s sources to figure out exactly how
      the command’s parameters are processed and what the command actually
      does.
Common Linux commands



Table 6-13 lists the common Linux
        commands found in Toolbox. If your favorite command isn’t in this
        list, I suggest you check BusyBox—it’s likely in there. We’ll discuss
        in Appendix A how to get BusyBox to sit side by side
        with Toolbox in the same filesystem. If even BusyBox doesn’t include
        the utility you’re looking for, then you can compile the full Linux
        utility for Android, possibly by importing it into the AOSP external/ directory and deriving an
        Android.mk for it based on its
        existing build scripts or makefiles.
Note
For the sake of brevity, I’m omitting the full list of command
          parameters in Table 6-13 for each
          command. Have a look at the Linux man pages to get an idea of what
          they likely are.

Table 6-13. Toolbox’s common Linux commands
	Command	Description
	cat	Dump the contents of a given file to the standard
                output
	chmod	Change the access rights on a file or a
                directory
	chown	Change the ownership of a file or a directory
	cmp	Compare two files
	date	Print out the current date and time
	dd	Copy a file while converting and formatting the
                content
	df	Print the filesystems’ disk usage
	dmesg	Dump the kernel’s log buffer
	hd	Dump a file in hexadecimal format
	id	Print the current user and group IDs
	ifconfig	Configure a networking interface
	iftop	Monitor the networking traffic in real-time
	insmod	Load a kernel module
	ionice	Get/set the I/O priority of a process
	ln	Create a symbolic link
	kill	Send the TERM signal
                to a process
	ls	List a directory’s contents
	lsmod	List the currently loaded kernel modules
	lsof	List the currently open file descriptors
	mkdir	Create a directory
	mount	Print the list of mounted filesystems or mount new
                ones
	mv	Rename a file
	netstat	Print network statistics
	printenv	Print all environment variables exported
	ps	Print running processes
	reboot	Reboot the system
	renice	Change a process’s “nice” value
	rm	Delete a file
	rmdir	Delete a directory
	rmmod	Remove a kernel module
	route	Print/modify the kernel’s routing table
	sleep	Sleep for a given number of seconds
	sync	Flush the filesystem cache back to persistent
                storage
	top	Monitor processes in real time
	umount	Unmount a filesystem
	uptime	Print the system’s uptime
	vmstat	Print out the system’s memory use



A few of these are downright annoying in their shortcomings. For
        example, until 4.0/Ice-Cream, ls
        was unable to print directory listings in alphabetical order or
        provide color-coding for files, which is standard in most Linux
        systems. Alphabetical ordering has since been added, but not
        color-coding. Also, contrary to its typical Linux or BusyBox version,
        ifconfig doesn’t actually print out
        the current network configuration if invoked without any
        parameters—you have to use netcfg
        instead. Table 6-14 lists additional
        Linux commands you’ll find in 4.2/Jelly Bean.
Table 6-14. Additional common Linux commands found in 4.2/Jelly
          Bean
	Command	Description
	cp	Copy files
	du	Show file-space usage
	grep	Look for strings in files
	md5	Like md5sum command
                in Linux, compute files’ MD5 checksum
	touch	Update a file’s timestamp (and create it if it doesn’t
                exist)




Global properties



Chapter 2 explained that one of Android’s init
        features is that it maintains a set of global properties that can be
         accessed from anywhere in the system. Naturally, Toolbox provides a few
        tools to interface with these global properties:
getprop <key>
setprop <key> <value>
watchprops
The first thing you’ll likely want to do is list all the
        properties with their current values:
# getprop
[ro.ril.wake_lock_timeout]: [0]
[ro.secure]: [0]
[ro.allow.mock.location]: [1]
[ro.debuggable]: [1]
[persist.service.adb.enable]: [1]
[ro.factorytest]: [0]
[ro.serialno]: []
[ro.bootmode]: [unknown]
[ro.baseband]: [unknown]
[ro.carrier]: [unknown]
[ro.bootloader]: [unknown]
[ro.hardware]: [am335xevm]
[ro.revision]: [0]
[ro.build.id]: [GRJ22]
[ro.build.display.id]: [beaglebone-eng 2.3.4 GRJ22 eng.karim.20120504.160548
 test-keys]
[ro.build.version.incremental]: [eng.karim.20120504.160548]
[ro.build.version.sdk]: [10]
...
It should print out over 100, if not a lot more, global
        properties set for your system. If you just want to print out a single
        value, you can do this:
# getprop ro.hardware
am335xevm
You can also set global properties straight from the command
        line:
# setprop acme.birdradar.enable 1
# getprop acme.birdradar.enable
1
Once a property has been set, you can change its value again
        using setprop. You can’t, however,
        delete a property that you “created” using setprop. The property will, however,
        disappear at the next reboot unless its name starts with persist. In that case, a file with the
        property’s full name will be created in /data/property containing the property’s
        value. To delete this property, you would need to delete this file or
        destroy the data partition.
You can also monitor properties being changed in
        real-time—assuming the acme.birdradar.enable is set after watchprop is started:
# watchprops
 946709853 acme.birdradar.enable = '1'

Input events



Android relies heavily on Linux’s input layer to get the user’s
        input events. The devices that expose Linux’s input layer are
        available through entries in /dev/input which, as we saw in Chapter 2, is the basis of Android’s input support.
        Whenever the user touches or swipes the screen or touches any of the
        device’s buttons, an event is generated. While Android’s System Server
        already handles those events appropriately, you might want to either
        observe or generate your own events. Toolbox lets you do just
        that:
getevent [-t] [-n] [-s <switchmask>] [-S] [-v [<mask>]] [-p] [-q] [-c <count>] 
[-r][<device>]
    -t: show time stamps
    -n: don't print newlines
    -s: print switch states for given bits
    -S: print all switch states
    -v: verbosity mask (errs=1, dev=2, name=4, info=8, vers=16, pos. events=32)
    -p: show possible events (errs, dev, name, pos. events)
    -q: quiet (clear verbosity mask)
    -c: print given number of events then exit
    -r: print rate events are received
sendevent <device> <type> <code> <value>
To observe the events, you can do something like this:
# getevent
/dev/input/event0: 0003 0000 0000007d
/dev/input/event0: 0003 0001 0000011b
/dev/input/event0: 0001 014a 00000001
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 014a 00000000
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 0066 00000001
/dev/input/event0: 0001 0066 00000000
...
getevent continuously
        displays events as they come in until you type Ctrl-C. The output
        format is event type, event code, and event value. This lets you
        verify whether your driver is reporting the appropriate information
        back to Android.
In a similar fashion, if you’d like to monitor Android’s
        handling of events, you can send events of your own:
# sendevent /dev/input/event0 1 330 1
Note that if you were running getevent simultaneously, you would then see
        this new event:
/dev/input/event0: 0001 014a 00000001
In other words, while getevent’s output is hexadecimal, sendevent’s input is decimal.

Controlling services



As we saw in Chapter 2, Android’s init
        starts a number of native daemons for a variety of purposes.
        Typically, these are described as services in
        init’s configuration scripts—init’s “services” have nothing to do with
        either system services or the service components available to app
        developers. As we’ll see shortly, such services can be either started
        automatically or marked as disabled. Either way, you can start and
        stop services using the following:
start <servicename>
stop <servicename>
Neither of these generates any output. There’s also
        unfortunately no way to ask Android for the list of running services.
        Instead, you’re assumed to understand init’s configuration scripts
        enough to know which services you can start and stop. For instance, if
        you want to stop all the system’s Java components, you can do
        this:
# stop zygote
Note that this specific command is a pretty drastic measure, as
        it will stop all apps and kill the System Server. But in some cases it
        might be exactly what you’re looking for. Say you wanted to stop a
        system service from accessing a given driver because it stopped
        operating properly, and you want to run some diagnostics on it without
        the system continuing to use it.
We’ll cover Android’s init and its handling of services in the
        next section.

Logging



Another interesting Toolbox feature is its ability to allow you
        to add your own events to Android’s logger:
log [-p <prioritychar>] [-t <tag>] <message>
prioritychar should be one of:
v,d,i,w,e
For example:
# log -p i -t ACME Initiating bird tracking sequence
Now, if you check the logs with logcat, you see this:
# logcat
...
I/ACME    (  336): Initiating bird tracking sequence
...
This can be very useful if you have shell scripts that execute
        alongside the rest of the Android stack. Also, if you’ve got custom
        code using Android’s logging capabilities, say within an app or a
        custom system service, you’ll be able to see the relative ordering of
        the events generated there and those generated from scripts or
        manually on the command line.

ioctl



As we discussed in Chapter 2, devices
        appear as entries in /dev. If you
        are familiar with Linux’s driver model, you know that if a device is
        controlled by a character device driver, then simply opening that
        device’s entry in /dev and
        reading/writing from/to it will result in its read()/write() functions getting invoked. So you
        can do something like this to read from a character device:
# cat /dev/birdlocator0
Similarly, you can do something like this to write to a
        character device:
# echo "Fire" > /dev/birdlaser0
Another very important file operation available on character
        devices is ioctl(). There is,
        however, no standard Linux utility for invoking this operation, since
        it’s driver-specific. On embedded systems, however, where those
        manipulating the system are typically either the driver authors
        themselves or working with them very closely, it makes sense to have a
        utility to enable developers to invoke drivers’ ioctl() functions. And Toolbox provides
        just that:
ioctl [-l <length>] [-a <argsize>] [-rdh] <device> <ioctlnr>
  -l <length>   Length of io buffer
  -a <argsize>  Size of each argument (1-8)
  -r            Open device in read only mode
  -d            Direct argument (no iobuffer)
  -h            Print help
Obviously the use you make of this will be highly
        driver-specific. You’ll need to refer to your driver’s documentation
        and/or sources to know exactly the parameters you need to pass to this
        command and what effects they’ll have.
Warning
ioctl() is a very
          powerful driver operation. Uses can go from benign status reporting
          to outright hardware destruction. Make sure you know exactly what the specific I/O control
          operation you’re about to issue does on the designated device. You
          probably want to use it only on drivers you wrote.


Wiping the device



In some extreme cases, it’s necessary to destroy data on an
        Android device. This extreme and irreversible operation is made
        possible using Toolbox’s wipe
        command:
wipe <system|data|all>

system means '/system'
data means '/data'
If you need to destroy all data on a system, you can do
        this:
# wipe data
Wiping /data
Done wiping /data
I’m sure you understand there’s no “undo” here, so be careful
        with this. You might want to use this as a failsafe in case you have
        sensitive data or binaries on the device and, for instance, destroy it
        in case you detect unauthorized access to key system parts.

Other Android-specific commands



Toolbox also includes a few other Android-specific commands,
        which we’ll review briefly, since their uses are either obvious or
        very limited.
nandread



This utility is for reading the contents of a NAND flash
          device to a file:
nandread [-d <dev>] [-f <file>] [-s <size>] [-vh]
  -d <dev>   Read from <dev>
  -f <file>  Write to <file>
  -s <size>  Number of spare bytes in file (default 64)
  -R         Raw mode
  -S <start> Start offset (default 0)
  -L <len>   Length (default 0)
  -v         Print info
  -h         Print help

newfs_msdos



This command allows you to format a device as a VFAT
          filesystem:
newfs_msdos [ -options ] <device> [<disktype>]
where the options are:
-@ create file system at specified offset
-B get bootstrap from file
-C create image file with specified size
-F FAT type (12, 16, or 32)
-I volume ID
-L volume label
-N don't create file system: just print out parameters
-O OEM string
-S bytes/sector
-a sectors/FAT
-b block size
-c sectors/cluster
-e root directory entries
-f standard format
-h drive heads
-i file system info sector
-k backup boot sector
-m media descriptor
-n number of FATs
-o hidden sectors
-r reserved sectors
-s file system size (sectors)
-u sectors/track
newfs_msdos is the tool
          used by the vold daemon to format
          devices for VFAT; vold being
          itself used by the Mount system service for managing mounted
          devices.

notify



This command uses the inotify system call an API to monitor
          directories or files for modifications:
notify [-m <eventmask>] [-c <count>] [-p] [-v <verbosity>] <path> [<path> ...]

r



In 4.2/Jelly Bean, you’ll also find an r command. It’s shorthand for repeating
          the previous command you typed on the shell. So, instead of pressing
          the up arrow and then Enter, you can just type r. Here’s a simple example:
root@android:/ # ls -l /proc/cpuinfo
-r--r--r-- root     root            0 2013-01-19 10:34 cpuinfo
root@android:/ # r
ls -l /proc/cpuinfo
-r--r--r-- root     root            0 2013-01-19 10:34 cpuinfo

schedtop



Like top, schedtop is for continuous, real-time
          monitoring of the kernel’s scheduler. Unlike top, which only reports the real-time CPU
          usage percentage for each process, this command continuously reports
          on the cumulative execution time of each process:
schedtop [-d <delay>] [-bitamun]
        -d refresh every <delay> seconds
        -b batch - continuous prints instead of refresh
        -i hide idle tasks
        -t show threads
        -a use alternate screen
        -m use millisecond precision
        -u use microsecond precision
        -n use nanosecond precision
Note
The command description given here stems from my reading of
            Toolbox’s sources. schedtop
            itself doesn’t provide any online help, nor is there any
            documentation on its use.


setconsole



This command lets you switch consoles:
setconsole [-d <dev>] [-v <vc>] [-gtncpoh]
  -d <dev>   Use <dev> instead of /dev/tty0
  -v <vc>    Switch to virtual console <vc>
  -g         Switch to graphics mode
  -t         Switch to text mode
  -n         Create and switch to new virtual console
  -c         Close unused virtual consoles
  -p         Print new virtual console
  -o         Print old virtual console
  -h         Print help

smd



Of all of Toolbox’s commands, this one is the most
          “mysterious.” I had a very hard time finding any useful information
          about the use of smd or actual
          usage examples. It appears that under certain devices, the Baseband
          Processor appears as one of /dev/smdN.
          This tool then allows you to send AT commands to the Baseband
          Processor:
smd [<port>] <commands>



Core Native Utilities and Daemons



As I mentioned in Chapter 2, Android has about
      150 utilities spread around its filesystem. In this chapter, we’ll cover
      those used independent of the Java framework and services. Specifically,
      we’ll focus in this section mostly on those in /system/bin, which we could consider
      core to Android. Some utilities are also found in
      /system/xbin, but they aren’t
      essential for the system to operate properly.
We already saw how Toolbox implements a lot of functionality
      commonly found in standard Linux systems, as well as Android-specific
      functionality. Similarly, there are two categories of core Android
      utilities and daemons, some which are derived from external projects and
      others that are Android specific. Table 6-15 presents a number of core
      utilities and daemons that are compiled from projects in the external/ directory.
Table 6-15. Core utilities and daemons from external projects
	Utility/Daemon	External Project	Original Location
	bluetoothd, sdptool, avinfo, hciconfig, hctitool, l2ping, hciattach and rfcomm.	BlueZ[a]	http://www.bluez.org/
	dbus-daemon	D-Bus	http://dbus.freedesktop.org
	dnsmasq	Dnsmasq	http://www.thekelleys.org.uk/dnsmasq/
	dhcpcd and showlease	dhcpcd	http://roy.marples.name/projects/dhcpcd/
	fsck_msdos	NetBSD fsck_msdos	http://cvsweb.netbsd.org/bsdweb.cgi/src/sbin/fsck_msdos/
	gdbserver	GNU Debugger	http://www.gnu.org/software/gdb/
	gzip	gzip utility	http://www.gzip.org/
	iptables	Netfilter	http://www.netfilter.org/
	ping	iputils	http://www.skbuff.net/iputils/
	pppd	PPP	http://ppp.samba.org/
	racoon	IPsec-Tools	http://ipsec-tools.sourceforge.net/
	tc	iproute2	http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
	wpa_supplicant and
              wpa_cli	WPA Supplicant	http://hostap.epitest.fi/wpa_supplicant/
	[a] No longer part of Android starting with 4.2/Jelly
                  Bean.





Not all of these are actually necessary for your system to run. If
      your embedded system doesn’t have WiFi or Bluetooth support, for
      instance, then there’s no need to have either wpa_supplicant or any of the BlueZ utilities
      and daemons. In fact, in those specific cases, the binary isn’t built
      unless the board-specific .mk files
      require it. Remember that BlueZ has been replaced with another stack in
      4.2/Jelly Bean.
The following subsections look at the core Android-specific
      utilities and daemons. Many of these aren’t actually meant to be invoked
      by you directly on the command line but are automatically invoked
      instead by one part of the system or another. Some, however, are worth
      mastering.
logcat



Probably one of the commands you’ll use most often in Android,
        logcat allows you to dump the
        Android logger’s buffer as we saw earlier while covering adb. Here’s logcat’s full online help:
# logcat --help
Usage: logcat [options] [filterspecs]
options include:
  -s              Set default filter to silent.
                  Like specifying filterspec '*:s'
  -f <filename>   Log to file. Default to stdout
  -r [<kbytes>]   Rotate log every kbytes. (16 if unspecified). Requires -f
  -n <count>      Sets max number of rotated logs to <count>, default 4
  -v <format>     Sets the log print format, where <format> is one of:

                  brief process tag thread raw time threadtime long

  -c              clear (flush) the entire log and exit
  -d              dump the log and then exit (don't block)
  -t <count>      print only the most recent <count> lines (implies -d)
  -g              get the size of the log's ring buffer and exit
  -b <buffer>     request alternate ring buffer
                  ('main' (default), 'radio', 'events')
  -B              output the log in binary
filterspecs are a series of
  <tag>[:priority]

where <tag> is a log component tag (or * for all) and priority is:
  V    Verbose
  D    Debug
  I    Info
  W    Warn
  E    Error
  F    Fatal
  S    Silent (supress all output)

'*' means '*:d' and <tag> by itself means <tag>:v

If not specified on the commandline, filterspec is set from ANDROID_LOG_TAGS.
If no filterspec is found, filter defaults to '*:I'

If not specified with -v, format is set from ANDROID_PRINTF_LOG
or defaults to "brief"
You should be able to figure out most of logcat’s intricacies using this help and
        Chapter 2’s explanations of the Android logger. You
        can use the -b flag, for instance,
        to select which buffer you’d like to dump—main being the default. You can also set the
        ANDROID_LOG_TAGS environment
        variable to provide a default output filter. Still, a more confusing
        aspect of logcat is specifically
        its filtering capabilities. Indeed, the online help seems to indicate
        that just specifiying a <tag>[:priority] after the command is
        sufficient to limit the output to that belonging to tag. That doesn’t work, though:
# logcat ActivityManager
--------- beginning of /dev/log/main
I/DEBUG   (   59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system
I/Vold    (   57): Vold 2.1 (the revenge) firing up
D/Vold    (   57): USB mass storage support is not enabled in the kernel
D/Vold    (   57): usb_configuration switch is not enabled in the kernel
D/Vold    (   57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/Vold    (   57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold    (   57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold    (   57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted
)
I/Netd    (   58): Netd 1.0 starting
D/AndroidRuntime(   61):
D/AndroidRuntime(   61): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(   61): CheckJNI is ON
D/dalvikvm(   61): creating instr width table
...
Obviously, we’re seeing the output from all tags, not just the
        one matching ActivityManager. The
        trick is to use the -s flag:
# logcat -s ActivityManager
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/ActivityManager(  128): Memory class: 16
I/ActivityManager(  128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=0 seq=1}
I/ActivityManager(  128): System now ready
I/ActivityManager(  128): Start proc com.android.systemui for service com.androi
d.systemui/.statusbar.StatusBarService: pid=245 uid=1000 gids={3002, 3001, 3003}
I/ActivityManager(  128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=17 seq=2}
I/ActivityManager(  128): Start proc com.android.inputmethod.latin for service c
om.android.inputmethod.latin/.LatinIME: pid=247 uid=10016 gids={}
W/ActivityManager(  128): Unable to start service Intent { act=@0 }: not found
W/ActivityManager(  128): Unable to start service Intent { act=@0 }: not found
...
logcat’s online help is
        unfortunately not very helpful in figuring this out.

netcfg



In addition to Toolbox’s ifconfig, Android has another utility that
        lets you manipulate network interfaces:
netcfg [<interface> {dhcp|up|down}]
Confusingly, netcfg and
        ifconfig have overlapping
        functionality. Both can, for example, bring interfaces up and down.
        However, netcfg can initiate DHCP
        client requests and print out the current interface’s configuration,
        while ifconfig can do neither.
        ifconfig, on the other hand, can
        set an interface’s static IP address and its netmask, while netcfg can’t do that.
Mostly, netcfg is very useful
        for printing out the interfaces’ configurations:
# netcfg
lo       UP    127.0.0.1       255.0.0.0       0x00000049
eth0     UP    10.0.2.15       255.255.255.0   0x00001043
tunl0    DOWN  0.0.0.0         0.0.0.0         0x00000080
gre0     DOWN  0.0.0.0         0.0.0.0         0x00000080

debuggerd



This daemon is actually started by init early during startup. It opens the
        android:debuggerd abstract Unix
        domain socket[29] and awaits connections. It remains dormant until a
        user-space process crashes. It’s activated by Bionic’s linker,  which sets up signal handlers for dealing with crashes and connects to
        debuggerd whenever that happens.
        debuggerd then does two things:
        creates a tombstone file in /data/tombstones and, if required, allows
        postmortem debugging to be done through gdbserver.
You don’t need to do anything special for tombstone files to be
        generated. They’ll be created automatically and will contain
        information about the crashing process that you might find useful for
        postmortem analysis. Here’s one from the frequently crashing VNC
        server on my BeagleBone:
# cat /data/tombstones/tombstone_06
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'TI/beaglebone/beaglebone:2.3.4/GRJ22/eng.karim.20120504.1605
48:eng/test-keys'
pid: 4656, tid: 4656  >>> androidvncserver <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad
 r0 00000027  r1 deadbaad  r2 a0000000  r3 00000000
 r4 00000001  r5 00000000  r6 00069ad8  r7 0005e000
 r8 00069cd8  r9 00000000  10 000003e8  fp 00000001
 ip afd46668  sp beeb4bd0  lr afd191d9  pc afd15ca4  cpsr 60000030
 d0  2e302e302e373220  d1  206f742074636567
 d2  000000000000006f  d3  000000000000006e
...
         #00  pc 00015ca4  /system/lib/libc.so
         #01  pc 00013614  /system/lib/libc.so
         #02  pc 000144da  /system/lib/libc.so
         #03  pc 00010290  /system/bin/androidvncserver
         #04  pc 00010296  /system/bin/androidvncserver
         #05  pc 0000fcbe  /system/bin/androidvncserver
         #06  pc 0000bc66  /system/bin/androidvncserver
         #07  pc 0000a87e  /system/bin/androidvncserver
         #08  pc 00014b52  /system/lib/libc.so

code around pc:
afd15c84 2c006824 e028d1fb b13368db c064f8df
afd15c94 44fc2401 4000f8cc 49124798 25002027
afd15ca4 f7f57008 2106ec7c edd8f7f6 460aa901
afd15cb4 f04f2006 95015380 95029303 e93ef7f6
afd15cc4 462aa905 f7f62002 f7f5e94a 2106ec68

code around lr:
afd191b8 4a0e4b0d e92d447b 589c41f0 26004680
afd191c8 686768a5 f9b5e006 b113300c 47c04628
afd191d8 35544306 37fff117 6824d5f5 d1ef2c00
afd191e8 e8bd4630 bf0081f0 00028344 ffffff88
afd191f8 b086b570 f602fb01 9004460c a804a901

stack:
    beeb4b90  0005e008
    beeb4b94  6f000001
    beeb4b98  6f2e6772
    beeb4b9c  7069616e
    beeb4ba0  afd4270c
    beeb4ba4  afd426b8
    beeb4ba8  00000000
    beeb4bac  afd191d9  /system/lib/libc.so
...
Also, if you set the debug.db.uid to some UID larger than that of
        the crashing process (just use a large integer value such as 32767
        [2^15 - 1]), debuggerd will then
        use the ptrace() system call to
        attach to the dying process and allow you to start gdbserver to take control of it. Here’s the
        output printed out by debuggerd to
        the log when I do that on my BeagleBone:
I/DEBUG   (   59): ********************************************************
I/DEBUG   (   59): * Process 4656 has been suspended while crashing.  To
I/DEBUG   (   59): * attach gdbserver for a gdb connection on port 5039:
I/DEBUG   (   59): *
I/DEBUG   (   59): *     adb shell gdbserver :5039 --attach 4656 &
I/DEBUG   (   59): *
I/DEBUG   (   59): * Press HOME key to let the process continue crashing.
I/DEBUG   (   59): ********************************************************
Once gdbserver is attached to
        the dying process, you can then use one of the arm-eabi-gdb debuggers that are part of the
        AOSP’s prebuilt/ directory to
        attach to the gdbserver running on
        the target and proceed with debugging the dying process.

Other Android-specific core utilities and daemons



There are also a few other core utilities and daemons you should
        know about, though you’re unlikely to use these very often.
check_prereq



This allows you to check whether the currently running build
          is older than a given timestamp:
# check_prereq 1336847591
current build time: [1336162137]  new build time: [1336847591]
This is mainly useful for upgrading purposes, allowing you to
          invoke this command from adb to
          check whether your current builder is older or newer than the one
          running on your device. The build time is stored in the build.prop file found in the system/ partition in the ro.build.date.utc global property.

linker



This is Bionic’s dynamic linker. You never need to invoke this
          manually. It is automatically loaded whenever a Bionic-linked binary
          is executed, and its job is to load all the libraries required by
          that binary. The readelf utility
          part of the GNU toolchain provides some more insight as to what
          occurs during this process:
$ arm-eabi-readelf -a logcat
ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF32
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           ARM
  Version:                           0x1
  Entry point address:               0x8ed0
  Start of program headers:          52 (bytes into file)
  Start of section headers:          13020 (bytes into file)
  Flags:                             0x5000000, Version5 EABI
  Size of this header:               52 (bytes)
  Size of program headers:           32 (bytes)
...
Program Headers:
  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  PHDR           0x000034 0x00008034 0x00008034 0x000e0 0x000e0 R   0x4
  INTERP         0x000114 0x00008114 0x00008114 0x00013 0x00013 R   0x1
      [Requesting program interpreter: /system/bin/linker] [image: 1]
  LOAD           0x000000 0x00008000 0x00008000 0x02470 0x02470 R E 0x1000
  LOAD           0x003000 0x0000b000 0x0000b000 0x001cc 0x00608 RW  0x1000
  DYNAMIC        0x003020 0x0000b020 0x0000b020 0x000c8 0x000c8 RW  0x4
  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0
  EXIDX          0x002410 0x0000a410 0x0000a410 0x00060 0x00060 R   0x4
...
Dynamic section at offset 0x3020 contains 25 entries:
  Tag        Type                         Name/Value
 0x00000003 (PLTGOT)                     0xb0fc
 0x00000002 (PLTRELSZ)                   376 (bytes)
...
 0x00000001 (NEEDED)                     Shared library: [liblog.so] [image: 2]
 0x00000001 (NEEDED)                     Shared library: [libc.so]
 0x00000001 (NEEDED)                     Shared library: [libstdc++.so]
 0x00000001 (NEEDED)                     Shared library: [libm.so]
...
	[image: 1] 
	This is the linker required by the binary.

	[image: 2] 
	These are the libraries that must be loaded by the
              linker.



There’s of course a lot more output to readelf than the above, but this shows you
          that logcat’s “program
          interpreter” is /system/bin/linker and that it needs the
          following libraries: liblog.so,
          libc.so, libstdc++.so, and libm.so.

logwrapper



This command allows you to run another command and redirect
          its stdout and stderr to the Android logger:
logwrapper [-x] <binary> [ <args> ...]
The log tag used in this case is the same string as the
          binary’s name. Using the -x option causes logwrapper to generate a segmentation
          fault (SIGSEGV) when binary terminates, with the fault address
          being the status returned by the wait() system call on the existing
          binary.

run-as



Allows you to run a binary as if it were executed with the
          rights associated with an app package:
run-as <package-name> <command> [<args>]
The command will run from
          the directory associated with package-name in /data/data with that app’s
          UID/GID.

sdcard utility



This utility uses Linux’s Filesystem in User SpacE (FUSE) to
          emulate in any directory on the filesystem the rights and
          permissions you’d find on any FAT-formatted SD card:
sdcard <path> <uid> <gid>
In other words, files and directories in the designated
          directory will all be executable, as you’d expect in FAT. The
          directory provided as path will
          be mounted to /mnt/sdcard. And
          while sdcard must be issued as
          root, it’ll run as uid/gid. This is useful for devices that don’t
          actually have a removable SD card. In those cases, the “external”
          storage is emulated on the “internal” storage using the sdcard command.



Extra Native Utilities and Daemons



Android also packs a certain number of extra utilities and daemons
      that aren’t essential to the system’s operation. Most of these are in
      /system/xbin, and they may, in some
      circumstances, be useful to you. Tables 6-16 and 6-17 list those utilities and daemons.
Table 6-16. Extra utilities and daemons from external projects
	Utility/Daemon	External Project	Original Location
	dbus-monitor and
              dbus-send	D-Bus	http://dbus.freedesktop.org
	ssh and scp	Dropbear	http://matt.ucc.asn.au/dropbear/
	nc	Netcat	http://nc110.sourceforge.net/
	skia_text	skia 2D graphics library	http://code.google.com/p/skia/
	sqlite3	SQLite	http://www.sqlite.org/
	strace	strace utility	http://sourceforge.net/projects/strace/
	tcpdump	tcpdump utility	http://www.tcpdump.org/
	netperf and netserver	netperf	http://www.netperf.org/netperf/
	oprofiled and opcontrol	OProfile	http://oprofile.sourceforge.net/



Table 6-17. Extra Android-specific utilities and daemons
	Utility/Daemon	Description
	cpueater and daemonize	cpueater does a
              while(1) loop, eating as
              much CPU as possible, and daemonize allows you to run it as a
              daemon in the background.
	crasher	This utility is packaged with debuggerd and essentially simulates a
              crashing process.
	directiotest	Provided with a block device’s mount, does write/readback
              tests on the block device to test it.
	latencytop	Provides per-process latency information.
	librank	Prints memory usage information for each object mapped
              into any process’s memory. This includes libraries and
              memory-mapped devices and regions.
	procmem	Prints memory usage information for each section of a
              running PID.
	procrank	Ranks processes by memory used.
	schedtest	Tests the scheduler to see how reliable it is at promptly
              waking up tasks that request 1ms sleeps.
	showmap	Prints out a process’s memory map.
	showslab	Prints out information on the slab allocator.
	su	Allows the root user to change his UID/GID.
	timeinfo	Reports realtime, uptime, awake percentage, and sleep
              percentage to the standard output.




Framework Utilities and Daemons



In addition to the utilities and daemons just covered, Android
      contains quite a number of others that are tightly tied to the system
      services and Android Framework, such as servicemanager, installd, and dumpsys. We’ll discuss those in the next
      chapter.


Init



One of the most important tasks in the system is initializing the
    user-space environment once the kernel has finished initializing device
    drivers and its own internal structures. As we discussed in Chapter 2, this is the init
    process’s job once it’s started by the kernel. And, as we discussed then,
    Android has its own custom init, with its own specific features. Now that
    we’ve covered a good part of what’s available in the native user-space
    once the system is up, let’s take a closer look at the process that’s
    responsible for starting it all.
Theory of Operation



Figure 6-4 illustrates how init integrates with the rest of the Android
      components. After getting started by the kernel, it essentially reads
      its configuration files, prints out a boot logo or text to the screen,
      opens a socket for its  property service, and starts all the daemons and services that bring up
      the entire Android user-space. There’s of course more to each of these
      steps.
Android init versus “Normal” init
In a typical Linux system, init’s role would be limited to starting
        daemons, but, if only because of its property service, Android’s
        init is special. Like any Linux
        init, however, Android’s init isn’t expected to ever die. init is, as we discussed earlier, the first
        process started by the kernel and, as such, its PID is always 1.
        Should it ever die, the kernel would panic.

[image: Android’s init]

Figure 6-4. Android’s init

One of the first things init
      does is check whether it was invoked as ueventd. As I mentioned in Chapter 2, init includes
      an implementation of the udev hotplug events handler. Because this code
      is compiled within init’s own code,
      init checks the command-line that was
      used to invoke it, and if it was invoked through  the /sbin/ueventd symbolic link to
      /init, then init immediately runs as ueventd.
The next thing init does is
      create and mount /dev, /proc, and /sys. These directories and their entries are
      crucial to many of the things init
      does next. init then reads the
      /init.rc and /init.<device_name>.rc files, parses
      their content into its internal structures, and proceeds to initialize
      the system based on a mix of its configuration files and built-in rules.
      We’ll discuss this in much greater detail in the next subsection.
Once all initialization is done, init then enters an infinite loop in which it
      restarts any services that might have exited and that need restarting,
      and then polls file descriptors it handles, such as the property
      service’s socket, for any input that needs to be processed. This is how
      setprop property setting requests are
      serviced, for instance.

Configuration Files



The main way to control init’s
      behavior is through its configuration files. Given that Android has its
      own init, there is much to say about
      those configuration files. Let’s go over their location and semantics.
      Then we’ll cover the main init.rc
      file and board-specific configuration files.
Location



The main location for all things init is the
        root directory (/). This is where you’ll find the
        actual init binary itself and its
        two configurations files: init.rc
        and init.<device_name>.rc.
        The first file’s name is fixed in stone, while the second file’s name
        depends on the hardware.
In essence, the <device_name> is
        extracted from /proc/cpuinfo.
        Earlier in this chapter, we  used adb shell to dump the content of
        that file for the BeagleBone. In that dump, you’ll notice a line that
        starts with Hardware. It’s the
        content of that line that is parsed by init to retrieve the
        <device_name>. In the case of the
        BeagleBone, this is am335xevm, and
        in the case of the emulator, it’s goldfish.
Note
The string displayed beside Hardware is converted to lowercase before
          the final init.<device_name>.rc is fetched
          from disk. Hence, though the emulator reports Goldfish as being the hardware in
          /proc/cpuinfo, the file being
          fetched is /init.goldfish.rc.

One very important thing to highlight is that init reads both files before it executes any
        of the instructions. There is therefore little incentive for adding
        board-specific modifications to the main init.rc file instead of the board-specific
        .rc file. Also, while the .rc files typically have their execute
        permission enabled, init itself
        doesn’t really check for that.

Semantics



init’s .rc files contain a series of declarations
        that fall in one of two types:  actions and services. Each
        declarative section starts with a keyword identifying the type of
        declaration, on for an action and
        service for a service, and is
        followed by a number of lines with more details on the
        declaration:
on <trigger>
   <command>
   <command>
   <command>
...
service <name> <pathname> [ <argument> ]*
   <option>
   <option>
   <option>
...
Warning
init’s “services” have
          nothing to do with system services or the
          service component used by app
          developers.

Note
Interestingly, there’s a readme.txt within init’s sources in the AOSP. You’ll find it
          in system/core/init/. Some of
          the things it describes are likely to have been initial design goals
          but aren’t actually in the current init, such as the device-added and device-removed triggers. Overall, though,
          it remains a good reference.

The configuration files can, of course, declare many actions and
        services. Typically, actions and services are left-aligned, and the
        commands or options that follow are indented as shown above. Action
        and service declarations are similar in scope in that a given
        declaration ends whenever the next on or service keyword appears. Only an action,
        however, results in the execution of commands. Service declarations
        serve only to describe services; they don’t actually start anything.
        The services are typically started or stopped when an action is
        triggered.
There are two types of action triggers: predefined triggers and
        triggers activated on property-value changes. init defines a fixed set of predefined
        triggers that are run in a specific order. Property-activated
        triggers, however, are activated whenever a given property takes on a
        certain value specified in the init.rc file. Here’s the list of predefined
        triggers that can be used in an init configuration file:
	early-init

	init

	early-fs

	fs

	post-fs

	early-boot

	boot



The meaning of each of these triggers and the commands they
        consist of will become clearer in the next section, as we look at the
        main init.rc file. For the time
        being, here’s the order in which predefined triggers and built-in
        actions are executed by init after
        having parsed its configuration files:
	Run early-init
            commands.

	coldboot: Check that ueventd has populated /dev.

	Initialize property service’s internal data
            structures.

	Set up handler for keychords.

	Initialize the console and display startup text or
            image.

	Set up initial properties such as ro.serialno, ro.baseband, and ro.carrier.

	Run init commands.

	Run early-fs
            commands.

	Run fs commands.

	Run post-fs
            commands.

	Start the property service.

	Prepare to receive SIGCHLD signals.

	Make sure that the property service socket and SIGCHLD handler are ready.

	Run early-boot
            commands.

	Run boot commands.

	Run all property-triggered commands based on current
            property values.



Property-based triggers



Actions can also be taken based on property value
          changes:
on property:<name>=<value>
Essentially, this allows you to run a set of commands when the
          property called name is set to
          value. A very good example of
          this is the default init.rc’s
          starting or stopping the adbd
          daemon based on the toggling of the “USB debugging” checkbox in
          Settings:
on property:persist.service.adb.enable=1
    start adbd

on property:persist.service.adb.enable=0
    stop adbd

Action commands



After having declared a new action using the on keyword, what’s important is what
          commands are actually executed as part of this action. init includes a slew of commands as part
          of its lexicon. While many of these bear a strong resemblance to
          their command-line equivalents and you should be able to recognize
          their use, some are Android-specific. Table 6-18 lists init’s commands.
Table 6-18. init’s commands in 2.3/Gingerbread
	Command	Description
	chdir
                  <directory>	Same as cd
                  command.
	chmod <octal-mode>
                  <path>	Change path’s
                  access permissions.
	chown <owner>
                  <group> <path>	Change path’s
                  ownership.
	chroot
                  <directory>	Set process’s root directory.
	class_start
                  <serviceclass>	Start all services that belong to serviceclass.
	class_stop
                  <serviceclass>	Stop all services that belong to serviceclass and disable
                  them.
	copy <path>
                  <destination>	Copy a file to destination.
	domainname
                  <name>	Set the system’s domain name.
	exec <path> [
                  <argument> ]*	Forks and executes a program. It’s suggested to use
                  an init service instead, as this operation is
                  blocking.
	export <name>
                  <value>	Set environment variable name to value.
	ifup
                  <interface>	Start interface
                  up.
	import
                  <filename>	Import an additional init config file to the one
                  currently parsed.
	insmod
                  <path>	Insert a kernel module.
	hostname
                  <name>	Set the system’s hostname.
	loglevel
                  <level>	Set the current log level.
	mkdir <path> [mode]
                  [owner] [group]	Create the path
                  directory with the appropriate permission and
                  ownership.
	mount <type>
                  <device> <dir> [ <mountoption>
                  ]*	Mount device to
                  dir.
	restart
                  <service>	Stop and then start service.
	setkey <table>
                  <index> <value>	Set a keyboard entry value.
	setprop <name>
                  <value>	Set property name
                  to value.
	setrlimit <resource>
                  <cur> <max>	Set the resource’s
                  rlimit.
	start
                  <service>	Start service.
	stop
                  <service>	Stop service.
	symlink <target>
                  <path>	Create a symbolic link.
	sysclktz
                  <mins_west_of_gmt>	Set time zone.
	trigger
                  <event>	Start action called event.
	wait
                  <path>	Wait until a file appears in the filesystem.
	write <path>
                  <string> [ <string> ]*	Open a file and write strings to it.



Warning
Even though many of init’s commands resemble command-line
            equivalents from Toolbox or elsewhere, it’s important to note that
            only those listed in Table 6-18 are
            recognized. init will not attempt to issue commands to the
            command line. Commands that aren’t recognized are simply
            ignored.

4.2/Jelly Bean also has a few additional commands that are
          recognized by init, as you can
          see in Table 6-19.
Table 6-19. New init commands in 4.2/Jelly Bean
	Command	Description
	class_reset
                  <serviceclass>	Like class_stop
                  but doesn’t disable the services.
	load_persist_props	Load persistent properties.
	mount_all
                  <path>	Mount all the partitions based on the information
                  found in the path
                  file.
	restorecon
                  <path>	Restore SELinux context.
	rm
                  <path>	Delete file.
	rmdir
                  <path>	Delete directory.
	setcon
                  <string>	Set security context (SELinux.)
	setenforce
                  <value>	Enable or disable security enforcement
                  (SELinux.)
	setsebool	Set SELinux Boolean.



As you can see, a number of commands have been added to
          support SELinux. For more information about SEAndroid, which is an
          extension of the SELinux work, have a look at the project
          website.

Service declarations



init refers only to service
          names and cannot recognize pathnames to files in order to run
          processes. Therefore, any process that has to be run from a file
          must first be assigned to a service. As we saw earlier, services are
          declared this way:
service <name> <pathname> [ <argument> ]*
What’s important to highlight here is that once this line is parsed, the
          service will be known by init as
          name. The actual name of the
          binary that is pointed to by pathname will itself not be recognized.
          One of the best examples of that is the Zygote (note that the line
          is wrapped to fit the page’s width in this book):
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start
-system-server
The actual binary being run here is app_process. Yet that’s not the service
          being referred to by the rest of the main init.rc file. Instead, you’ll find
          references to zygote:
    onrestart restart zygote

Service options



Much like actions, the service declaration is often followed
          by a number of lines that provide more information on the options to
          use for the service and how to run it. Table 6-20 details those options.
Table 6-20. init’s service options
	Option	Description
	class
                  <name>	This service belongs the class called name, the default class being
                  default.
	console	Service requires and runs on console.
	critical	If this service crashes five times, reboot into
                  recovery mode.
	disabled	Don’t automatically start this service. It’ll need to
                  be manually started using start.
	group <groupname> [
                  <groupname> ]*	Run this service under the given group(s).
	ioprio <rt|be|idle>
                  <ioprio 0-7>	Set the service’s I/O scheduler and
                  priority.[a]
	keycodes <keycode> [
                  <keycode> ]*	Start the service whenever the given keycodes are
                  activated.
	oneshot	Service runs only once. Service is set as disabled on
                  exit.
	onrestart
                  <command>	If the service restarts, run command.
	seclabel
                  <string>	Set the service’s SELinux label; available starting
                  in 4.1/Jelly Bean.
	setenv <name>
                  <value>	Set the name
                  environment variable before starting this service.
	socket <name>
                  <type> <perm> [ <user> [ <group>]
                  ]	Create a Unix domain socket and pass its file
                  descriptor to the process as it starts.
	user
                  <username>	Run this service as username.
	[a] Have a look at the man page for ioprio_set() for more
                      information.





Obviously the use of some of these is more obvious than
          others. Running a service under a certain user or as part of some
          group should be straightforward. Running a service based on a
          certain set of key combinations may be less obvious, though. Here’s
          an example of how this is used by the board-specific .rc file for the Nexus S (a.k.a.
          “Crespo”) in 2.3/Gingerbread:
# bugreport is triggered by holding down volume down, volume up and power
service bugreport /system/bin/dumpstate -d -v -o /sdcard/bugreports/bugreport
    disabled
    oneshot
    keycodes 114 115 116


Main init.rc



As we discussed earlier, init
        reads two .rc files to figure out
        its configuration. One of those is provided by default for all boards
        within the AOSP, and you’ll find two versions of that file in Appendix D: one for 2.3/Gingerbread and the other for
        4.2/Jelly Bean. I very strongly
        encourage you to read through that appendix, as init.rc is the cornerstone of a lot of the
        system’s behavior. If nothing else, have a look at the comments (i.e.,
        lines starting with #). Both
        default files are in fact commented well enough that you should be
        able to make sense of their content fairly easily using the earlier
        tables as guides for specifics.
Some of the operations conducted by init.rc are subtle but have profound
        repercussions on various pieces of Android. It’s wise to bookmark the
        version of the file that’s relevant to you and come back to it every
        so often when you’re trying to figure out one thing or another about
        the system. And while default init.rc files are typically an easy read,
        understanding what specific parts are doing often requires a very
        solid grasp of the rest of the system and the order in which init executes actions.
Warning
Always keep in mind that the specific order of actions,
          commands, and services found in the default init.rc file is crucial to the system’s
          operation. You could try to craft your own init.rc from scratch, but you’d rapidly
          find out that a lot of things in the system will break if the steps
          in the default aren’t preserved. Some of the services, for instance,
          will simply not operate properly unless the appropriate options are
          used to start them. You are much better off tweaking the default
          init.rc provided with your AOSP
          or, better yet, adding your own board-specific .rc file if you need board-specific
          actions or services to be started.

Note that not all predefined actions are necessarily in use in
        your AOSP’s default init.rc. Neither early-fs nor early-boot are actually used in
        2.3/Gingerbread’s, for example. You can therefore use these in your
        board-specific .rc file if you
        need to preempt commands run in the fs or boot actions.

Board-specific .rc files



If you need to add board-specific configuration instructions for
        init, the best way is to use an
        init.<device_name>.rc
        tailored to your system. What it does specifically is up to you.
        However, I suggest you take a look at the board-specific .rc files that are already part of your
        AOSP. Here are the files from 2.3/Gingerbread, for example:
	system/core/rootdir/etc/init.goldfish.rc

	device/htc/passion/init.mahimahi.rc

	device/samsung/crespo4g/init.herring.rc

	device/samsung/crespo/init.herring.rc



Here are the ones in 4.2/Jelly Bean:
	system/core/rootdir/etc/init.goldfish.rc

	build/target/board/vbox_x86/init.vbox_x86.rc

	device/asus/tilapia/init.tilapia.rc

	device/asus/grouper/init.grouper.rc

	device/samsung/tuna/init.tuna.rc

	device/ti/panda/init.omap4pandaboard.rc

	device/lge/mako/init.mako.rc



As you’d expect, these files typically contain hardware-specific
        commands. Very often, for instance, they’ll include specific mount
        instructions for the board. Here’s an example from the Crespo-specific
        file in 2.3/Gingerbread:
on fs
    mkdir /efs 0775 radio radio
    mount yaffs2 mtd@efs /efs nosuid nodev
        chmod 770 /efs/bluetooth
        chmod 770 /efs/imei
    mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/system /system wait ro
    mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/userdata /data wait noati
me nosuid nodev
As you can see, this mounts /system and /data from ext4 partitions found in the
        onboard eMMC. Another example is the snippet from an earlier section
        that showed how the bugreport
        command was activated when a certain key combination was pressed on
        the device.
Again, as I had mentioned earlier, init reads both its main init.rc and the board-specific .rc file before executing any of the
        actions therein. Hence, by declaring a boot action or an fs action in your board-specific file, the
        commands therein will be queued up for running right after the
        commands found in the same action in the main config file. They will,
        therefore, still run within that action. Hence, commands found in
        boot actions will run after
        commands found in fs actions,
        regardless of which file either set of commands are declared
        in.
Here’s, for example, an init.coyotepad.rc:
on property:acme.birdradar.enable=1
    start birdradar

service birdradar /system/vendor/bin/bradard -d /system/vendor/etc/rcalibrate.data
    user birdradar
    group birdradar
    disabled
This states that the birdradar service should be started whenever
        the acme.birdradar.enable property
        is set to 1. In the earlier explanation about Toolbox, we used the
        setprop command on the command line
        to set the property to 1. Had the above init.coyotepad.rc been part of the system
        at startup, that previous setprop
        command would have therefore resulted in bradard being started.
What about init.<device_name>.sh?
In some cases, it makes sense to have a shell script run in
          addition to the commands run by init’s configuration files. The emulator,
          for instance, relies on a init.goldfish.sh found in /system/etc. Despite the name of the
          file, init itself doesn’t
          recognize such scripts and has no code that looks for them. Instead,
          board-specific .rc files can be
          made to run shell scripts like they’d run any other service. Here’s
          how init.goldfish.rc gets
          init.goldfish.sh to be
          executed:
service goldfish-setup /system/etc/init.goldfish.sh
    oneshot
In this specific case, the shell script runs commands that are
          available on the shell but aren’t part of init’s lexicon. And that is in fact a very
          good reason for having a shell script such as this if you need
          one.



Global Properties



Though I’ve mentioned global properties a number of times already,
      we’ve yet to take a deeper look at that aspect of Android. As I hinted
      at earlier, global properties are an important part of Android’s overall
      architecture. As a somewhat distant cousin of the infamous Windows
      Registry, Android’s global properties very often serve as a trivial way
      of sharing important yet relatively stable values globally among all
      parts of the stack.
Theory of operation



As I mentioned earlier, init
        maintains a property service as part of its other responsibilities. As
        you can see in Figure 6-4, there are two ways that
        this property service is exposed to the rest of the system:
	/dev/socket/property_service
	This is a Unix domain socket that processes can open to
              talk to the property service and have it set and/or change the
              value of global properties.

	/dev/__properties__
	This is an “invisible” file (i.e., you won’t see it in
              /dev if you look for it)
              that is created within the tmpfs-mounted /dev and that is memory-mapped into
              the address space of all services started by init. It’s through this mapped region
              that descendants of init
              (i.e., all user-space processes in the system) can read global
              properties.



/dev/__properties__’s Invisibility
You won’t find /dev/__properties__ in the filesystem
          because of the way init handles
          the file. Here’s what it actually does to the file during
          initialization:
	Creates /dev/__properties__ in read-write
              mode.

	Sets its size to a desired global properties
              workspace size.

	Memory-maps the file into init’s address space.

	Closes the file descriptor.

	Opens the file as read-only.

	Deletes the file from the filesystem.



By deleting the file as a last step, anyone looking into
          /dev won’t actually see the
          file. However, since the file was memory-mapped while it was still
          open in read-write mode, init’s
          property service is able to continue writing to the memory-mapped
          file. Also, since it was opened in read-only mode before it was
          deleted, init also has a file
          descriptor it can pass to its children, so they can in turn
          memory-map the file, which will remain read-only for them.

As explained in the sidebar, the property service essentially
         maintains a RAM-based workspace where it stores all
        global properties. Because of the way it’s set up, only the property
        service can write to this workspace, though any process can read from
        it. Hence we have a single-writer/multiple-readers configuration. This
        design allows the property service to apply permission checks on the
        write requests submitted to it through the /dev/socket/property_service Unix domain
        socket. The specific permissions required to set certain global
        properties are hardcoded. Here’s the relevant snippet from
        2.3/Gingerbread’s system/core/init/property_service.c:
/* White list of permissions for setting property services. */
struct {
    const char *prefix;
    unsigned int uid;
    unsigned int gid;
} property_perms[] = {
    { "net.rmnet0.",      AID_RADIO,    0 },
    { "net.gprs.",        AID_RADIO,    0 },
    { "net.ppp",          AID_RADIO,    0 },
    { "ril.",             AID_RADIO,    0 },
    { "gsm.",             AID_RADIO,    0 },
    { "persist.radio",    AID_RADIO,    0 },
    { "net.dns",          AID_RADIO,    0 },
    { "net.",             AID_SYSTEM,   0 },
    { "dev.",             AID_SYSTEM,   0 },
    { "runtime.",         AID_SYSTEM,   0 },
    { "hw.",              AID_SYSTEM,   0 },
    { "sys.",             AID_SYSTEM,   0 },
    { "service.",         AID_SYSTEM,   0 },
    { "wlan.",            AID_SYSTEM,   0 },
    { "dhcp.",            AID_SYSTEM,   0 },
    { "dhcp.",            AID_DHCP,     0 },
    { "vpn.",             AID_SYSTEM,   0 },
    { "vpn.",             AID_VPN,      0 },
    { "debug.",           AID_SHELL,    0 },
    { "log.",             AID_SHELL,    0 },
    { "service.adb.root", AID_SHELL,    0 },
    { "persist.sys.",     AID_SYSTEM,   0 },
    { "persist.service.", AID_SYSTEM,   0 },
    { "persist.security.", AID_SYSTEM,   0 },
    { NULL, 0, 0 }
};
To understand the meaning of each AID_* UID, please refer to the discussion
        about the android_filesystem_config.h file in The Build System and the Filesystem where user IDs and other core filesystem
        properties are defined. For instance, the above says that only
        processes running as the system
        user can change properties that start with sys. or hw., while only processes running as the
        radio user—the rild, for instance—can change properties
        that start with ril. or gsm.
Note that processes running as root can change any property they wish. Note
        also that in the case of properties whose names starts with ro., these three characters are stripped
        from the name before permissions are checked with the above array.
        Such properties can be set only once, however. Trying to change the
        value of an existing property whose name starts with ro. will fail. Furthermore, if a permission
        isn’t explicitly granted by the above array for a given property (or
        property set) to the user under which a process is running, that
        process won’t be allowed to set that property. Here’s an attempt to
        set acme.birdradar.enable from a
        non-root shell for example:
$ setprop acme.birdradar.enable 1
[ 1992.292414] init: sys_prop: permission denied uid:2000  name:acme.birdradar
.enable
As we discussed in the Toolbox section, you can use getprop, setprop, and watchprops to interact with the property
        service from the command line. You can also interact with the property
        service from within the code you build as part of the AOSP. If you’re
        coding in Java, have a look at the frameworks/base/core/java/android/os/SystemProperties.java
        class. To use this class, you would need to import android.os.SystemProperties. If you’re
        coding in C, have a look at system/core/include/cutils/properties.h. To
        use the functions in this header, you need to include <cutils/properties.h>.
Note
Global properties aren’t accessible through the regular app
          development API exposed by the SDK.


Nomenclature and sets



As you likely noticed from all previous discussions on global
        properties, they seem to follow a certain naming convention where each
        part of the name is separated by a period character (.), with each
        part of the name following the period, further narrowing the
        subcategory to which the property belongs. Beyond that, there are few
        conventions. Of course, the permissions array we saw earlier somewhat
        dictates a base set of root categories. And quite a few properties are
        created as part of the build system, as we’ll see shortly. There are
        also a few special properties worth keeping in
        mind. Still, each device has its own specific set of global
        properties. There is, therefore, no definitive dictionary or official
        list of global properties that are to be expected across Android
        devices.
There’s nothing stopping you from creating your own set of
        global properties specifically for your embedded system. Up to now,
        I’ve used the acme.birdradar.enable
        property to illustrate some of the examples. I could very much have a
        whole slew of acme.* properties,
        each used for a separate purpose in my system. You can also modify
        some of the existing global properties as needed for your purpose.
        Make sure you fully investigate how a specific global property you
        modify is used by the rest of Android, as some of these properties are
        read or set by vastly different parts of the stack. A good grep across the entire codebase for the
        property should rapidly help you isolate its users.
Note
You should use getprop
          after the initial boot of your system to get your device’s base list
          of properties. Also, you can look at the default list of properties
          loaded at startup from property files. We’ll take a look at those in
          the next section.

There are, as I said, some special properties, as well as some
        properties that are processed differently based on their
        prefixes:
	ro.*
	Properties that start with this prefix are meant to be
              read-only. Hence, they can be set only once in the system’s
              lifetime. The only way to change their value is to change the
              source of the information to which they are set and reboot the
              system. Such is the case for ro.hardware and ro.build.id, for example.

	persist.*
	Properties marked with this prefix are committed to
              persistent storage each time they are set. Such is the case for
              persist.service.adb.enable,
              which is used to start/stop adbd.

	ctl.*
	There’s a ctl.start and
              a ctl.stop, and setting them
              doesn’t actually result in any property being saved to the
              global set of properties. Instead, when the property service
              receives a request to set either of these, it starts/stops the
              service whose name is provided as the value for the property.
              The Surface Flinger, for instance, does this as part of its
              startup:
    property_set("ctl.start", "bootanim");
This effectively results in the bootanim service being started by
              init. The bootanim service and its options are
              described in the init.rc
              file we covered earlier. Toolbox’s start and stop also rely on ctl.* to start/stop services.

	net.change
	Whenever a net.*
              property is changed, net.change is set to the name of that
              property. Hence, net.change
              always contains the name of the last net.* property that was
              modified.




Storage



There isn’t a single location in which global properties are
        stored or from which they’re set. Instead, different pieces of the
        system are responsible for setting different sets of global
        properties, and several system parts are involved in creating the
        final set of global properties found in any single Android
        device.
The build system



Two property files are generated by the build system:
	/system/build.prop
	This one contains information about the build itself,
                such as the version of Android and the date it was
                built.

	/default.prop
	This one contains default values for certain key
                properties, such as the persist.service.adb.enable property
                that we saw earlier.



Both of these files are found in the target’s root filesystem
          for the initial boot and serve as the base set of properties for the
          system. You can find them in the root/ and system/ subdirectories of out/target/product/PRODUCT_DEVICE/.
The files contain one-liner name-value pairs. They’re read and
          parsed by the property service started early during init’s own startup. Most of the content of
          these files is generated by the core AOSP build code in build/core/. Still, as in the following
          snippet from Crespo’s makefiles in 2.3/Gingerbread, some of it is
          device specific:
PRODUCT_PROPERTY_OVERRIDES += \
       wifi.interface=eth0 \
       wifi.supplicant_scan_interval=15 \
       dalvik.vm.heapsize=32m

Additional property files



In addition to the files generated by the build system, you
          can add your own target-specific /system/default.prop and device-specific
          /data/local.prop, both of which
          will be read by the property service alongside the files generated
          by the build system we just discussed.

.rc files



As we saw earlier, both the init.rc file and init.<device_name>.rc can set
          global properties. init.rc in
          fact sets quite a few crucial global properties.

Code



Some parts of the code also set properties. The Connectivity
          Service, for instance, does this:
            SystemProperties.set("net.hostname", name);
To confuse things even further, some parts of the code attempt
          to read global properties and apply defaults if the value isn’t
          found. The following is from frameworks/base/core/jni/AndroidRuntime.cpp:
    property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");
In this case, the caller attempts to get dalvik.vm.heapsize, and if it isn’t found,
          the value 16m is used as the
          default.

/data/property



All the storage methods we’ve seen thus far require manual
          intervention to either make changes to the AOSP before it’s built or
          to edit files on the device. Obviously, the system needs to be able
          to automatically update values at runtime and have them available at
          the next reboot. That’s the role of the entries in the /data/property directory. Indeed, any
          property that starts with persist. is stored as an individual file
          in that directory. Each of the files there contains the value
          assigned to the property. Hence, the /data/property/persist.service.adb.enable
          file contains the value of persist.service.adb.enable.
Properties found in /data/property are read by the property
          service at startup and restored. As I mentioned earlier when
          discussing Toolbox’s setprop, the
          only way to destroy a persistent stored property is to delete its
          file from /data/property.



ueventd



As discussed earlier, init
      includes functionality to handle kernel hotplug events. When the
      /init binary is invoked through the
      /sbin/ueventd symbolic link, it
      immediately switches its identity from running as the regular init to running as ueventd. Figure 6-5 illustrates ueventd’s operation.
[image: Android’s ueventd]

Figure 6-5. Android’s ueventd

ueventd is one of the very
      first services started by the default init.rc. It proceeds to read its main
      configuration files, /ueventd.rc
      and /ueventd.<device_name>.rc,[30] replays all kernel uevents (i.e., hotplug events), and
      then waits, listening for all future uevents. Kernel uevents are
      delivered to ueventd through a
      netlink socket, a common way for certain kernel functionalities to
      communicate with user-space tools and daemons.
Based on the events ueventd
      receives and its configuration files, it automatically creates device
      node entries in /dev. And since the
      latter is mounted as a tmpfs filesystem, and therefore lives only in
      RAM, these entries are re-created from scratch, based on ueventd’s configuration files, at every
      reboot. The key to ueventd’s
      operation, therefore, is its configuration files.
Unlike init, ueventd’s configuration files have a rather
      simple format. Essentially, every device entry is described with a
      one-liner such as this:
/dev/<node>               <mode>   <user>       <group>
When a uevent corresponding to node occurs, ueventd creates /dev/node with access permissions set to
      mode and assigns the entry to
      user/group. Permissions and ownership are very
      important, since key daemons and services must have access to relevant
      /dev entries in order to operate
      properly. The System Server, for instance, runs as the system user.
Here’s a snippet from the default ueventd.rc from 2.3/Gingerbread, for
      example:
/dev/null                 0666   root       root
/dev/zero                 0666   root       root
/dev/full                 0666   root       root
/dev/ptmx                 0666   root       root
/dev/tty                  0666   root       root
...
# these should not be world writable
/dev/diag                 0660   radio      radio
/dev/diag_arm9            0660   radio      radio
/dev/android_adb          0660   adb        adb
/dev/android_adb_enable   0660   adb        adb
/dev/ttyMSM0              0600   bluetooth  bluetooth
/dev/ttyHS0               0600   bluetooth  bluetooth
/dev/uinput               0660   system     bluetooth
/dev/alarm                0664   system     radio
/dev/tty0                 0660   root       system
/dev/graphics/*           0660   root       graphics
/dev/msm_hw3dm            0660   system     graphics
/dev/input/*              0660   root       input
/dev/eac                  0660   root       audio
...
As with init, you should put
      your board-specific node entries in ueventd.<device_name>.rc. Here’s a
      device entry from ueventd.coyotepad.rc, for example:
/dev/bradar               0660   system     birdradar
Note that some uevents might require ueventd to load firmware files on behalf of
      the kernel. There’s no configuration option available for that in
      ueventd’s configuration files.
      Instead, make sure those firmware files are in either /etc/firmware or /vendor/firmware. In the case of the
      CoyotePad, for instance, we put rfirmware.bin in /system/vendor/firmware using PRODUCT_COPY_FILES.

Boot Logo



Not counting whatever the device’s bootloader might display at
      startup, Android devices’ screens typically go through four stages
      during boot:
	Kernel boot screen
	Usually, an Android device won’t show the kernel boot
            messages to its LCD screen during boot. Instead, the kernel might
            either maintain the screen black until init starts, or it might display a
            static logo, built as part of the kernel image, to the
            framebuffer. Any such display is beyond the scope of this
            book.

	Init boot logo
	This is a text string or an image displayed very early by
            init while it initializes the
            console. This section’s purpose is to discuss what init displays here.

	Boot animation
	This is a series of animated images, possibly a loop, that
            displays during the Surface Flinger’s start up. We’ll discuss the
            boot animation when we cover the Java user-space later.

	Home screen
	This is the starting screen of the Launcher, which is
            activated at the complete end of the boot sequence. You’ll need to
            dig into the Launcher’s sources if you’d like to customize what it
            displays.



If you refer back to the earlier explanation in Configuration Files of the execution order enforced by
      init on predefined actions and
      built-in commands, you’ll notice that the fifth step is initializing the
      console and display startup text or image. During this step, init attempts to load a logo image from the
      /initlogo.rle file and display it
      to the screen. If it doesn’t find such a file, it displays the familiar
      text string that is displayed by the emulator as it starts, as shown in
      Figure 6-6.
[image: init’s boot logo]

Figure 6-6. init’s boot logo

If you’d like to change that string, have a look at the console_init_action() in system/core/init/init.c. If you’d like to
      have a graphic logo to display instead of just text, you’ll need to
      create a proper initlogo.rle. Let’s
      see how that’s done.
First, you’ll need to figure out the screen size of your device.
      For instance, the emulator’s default resolution when started from the
      AOSP’s command line after build is 320 by 480 pixels. Assuming you have
      a PNG of that size, you first need to convert it to the format
      recognized by init. Two tools on the
      host are required to do that: convert, which is part of the ImageMagick package, and
      rgb2565, which is built as part of
      the AOSP:[31]
$ cd device/acme/coyotepad
$ convert -depth 8 acmelogo.png rgb:acmelogo.raw
$ rgb2565 -rle < acmelogo.raw > acmelogo.rle
153600 pixels
This will take the acmelogo.png and convert it into an acmelogo.rle, which you can then copy by
      modifying the CoyotePad’s full_coyote.mk to add this snippet:
PRODUCT_COPY_FILES += \
        device/acme/coyotepad/acmelogo.rle:root/initlogo.rle
After you rebuild the AOSP, update your device, and restart it,
      you’ll see the logo instead of the previous text string, as illustrated
      in Figure 6-7.
[image: CoyotePad’s boot logo]

Figure 6-7. CoyotePad’s boot logo

Generally, the LCD screen will then remain unchanged until the
      Surface Flinger starts and launches the boot animation while the rest of
      the system services are starting.




[24] The emulator doesn’t support multiple users by default. A
            few hacks must be made to get it to add a fake user.

[25] The file was actually pointed out to me by then–Sony
            Ericsson engineer Magnus Bäck, who helped review this book, on the
            android-building mailing list after I inquired about Android’s
            filesystem rights management.

[26] That’s because the tools used to generate the filesystem
            images ignore the rights and ownership set for files on the host.
            Instead, they rely completely on android_filesystem_config.h.

[27] Note that this command is too long to fit in a single line in
          this book and is therefore line-wrapped. The \ at
          the end of the first line and the > at the
          beginning of the second line are there just to show the
          line-wrapping.

[28] The change was apparently made in the 3.x series, but the
          sources for that version were never made available as properly
          tagged branches, even though newer Android versions include that
          code.

[29] Unlike typical Unix domain sockets, which appear as entries
            in the filesystem, abstract sockets are not
            visible on the filesystem.

[30] This file’s naming is similar to that of the /init.<device_name>.rc we saw
          earlier.

[31] Remember that you’ll need to run build/envsetup.sh and lunch before the paths are properly set to
          use host tools built as part of the AOSP.


Chapter 7. Android Framework



Ultimately, your goal is to get your embedded system to run the
  Android environment users and developers are accustomed to, not simply the
  native user-space we just covered. That includes not only the full set of
  system services and the packages that provide the standard APIs used by app
  developers, but also some less visible components, such as a set of native
  daemons that support the system services and the Hardware Abstraction Layer.
  This chapter will cover how the Android Framework operates on top of the
  native user-space and will discuss how to interact with and customize
  it.
Note that unlike the previously discussed components of Android, whose
  behavior can be modified in a number of ways, most of the Android Framework
  has to be used as is. You can’t, for instance, pick and choose which system
  services to run, as they aren’t started from a script or based on a
  configuration file. Instead, modifying the Framework typically requires
  diving into its sources and/or adding your own code to customize its
  behavior.
Such customization work therefore requires becoming intimately
  familiar with Android’s sources and is inherently version dependent. Still,
  we’ll try to cover enough of the essentials to enable you to start
  navigating Android’s internals on your own. Nevertheless, expect this to be the start of a
  long-term endeavor, as Android’s sources are fairly big, and new releases
  come out at a very rapid pace.
What Exactly Is the “Android Framework”?
If you refer back to Figure 2-1, the
    Android Framework includes the android.* packages, the System Services, the
    Android Runtime, and some of the native daemons. Sourcewise, the Android Framework is
    typically composed of all the code located in the frameworks/ directory of the AOSP.
At a certain level, I’m using “Android Framework” here to designate
    practically everything “Android” that runs on top of native user-space. So
    my explanations here do sometimes go beyond just frameworks/. Namely, I will discuss such things
    as Dalvik and the HAL, which are intrinsic to the Android
    Framework.

Kick-Starting the Framework



We closed the last chapter on the init command, and how it can be configured and
    used. I only briefly hinted, however, at how the Android Framework is
    started by way of the Zygote when describing the default init.rc. There is of course much to say on this
    topic, as we’ll see shortly. Much of what I described in the last chapter
    can be easily compared to components that exist in the embedded Linux
    world; however, very little of what follows has any such equivalent.
    Indeed, the Android developers’ contribution to the world of mobile is the
    stack they built on top of a BSD/ASL-licensed embedded Linux
    equivalent.
Building the AOSP Without the Framework
As odd as it may seem, there are cases where you actually may want
      to build the AOSP without all the fancy, Java-based system services and
      apps that Android is most widely known for. Whether it be to run
      “Android” on a “headless” system or simply because you’re in the midst
      of a board bringup and would like a minimal build of the AOSP to get
      just the basic tools and environment of the native user-space, there’s
      an AOSP build for you: Tiny Android.
To make the AOSP generate Tiny Android, you just need to go to the
      AOSP’s source directory and type this:
$ BUILD_TINY_ANDROID=true make -j16
This will get you a set of output images with the minimal set of
      Android components for a functional native Android user-space to run
      with a kernel. Mainly, you’ll get Toolbox, Bionic, init, adbd,
      logcat, sh, and a few other key binaries and
      libraries. No part of the Android Framework, such as the system services
      or any of the apps, will be included in those images.
It’s questionable whether this is “Android” anymore, but in some
      cases it’s exactly what you’re looking for. Whether you want to refer to
      the end result as “Android” is really up to you. Hey, apparently beauty
      is in the eye of the beholder.

Core Building Blocks



The Framework’s operation relies on a handful of key building
      blocks: the Service Manager, the Android Runtime, the Zygote, and
      Dalvik. Without these, none of the components that make up what we know
      to be Android work. We’ve already covered most of these and their role
      in the system’s startup in Chapter 2. I encourage you
      to go back to that chapter for an in-depth discussion, but let’s still
      recap the highlights here, especially now that we’ve just looked at
      init and its scripts. You may, in
      fact, want a finger on the pages from Appendix D about
      the main init.rc file as you read
      the following explanations.
One of the first services started by init is the servicemanager. As I explained earlier, this
      is the “Yellow Pages” or the directory of all system services running.
      Obviously, at the time it starts no system services have started, but it
      needs to be available very early on so that system services that do
      start can register with it and therefore become visible to the rest of
      the system.
If the servicemanager isn’t
      running, none of the system services will be able to advertise
      themselves, and the Framework simply will not work. Hence, the servicemanager is not an optional component,
      and its ordering in the init.rc
      file isn’t subject to customization. You must leave it exactly where it
      is in the main init.rc file with
      the options that are specified for it by default.
The next core component to get started is the Zygote. Here’s the
      relevant line from init.rc:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
There is a lot happening in that simple line. First, note that
      what’s actually getting run is this app_process command. Here’s its formal
      parameter list:
Usage: app_process [java-options] cmd-dir start-class-name [options]
app_process is a little-known
      command that packs a punch. It lets you start a new Dalvik VM for
      running Android code straight from the command line. This doesn’t mean
      you can use it to start regular Android apps from the command line; in
      fact you can’t use it for that purpose, but you’ll soon learn about a
      command that does: am. However, some
      key system components and tools must be started from the command line
      without a reference to any existing Dalvik VM instance. The Zygote is
      one of these, as it’s the first Dalvik process to run; am and pm
      are two more, which we’ll cover later.
To do its magic, app_process
      relies on the Android Runtime. Packaged as a shared library, libandroid_runtime.so, the Android Runtime is
      capable of starting and managing a Dalvik VM for the purpose of running
      Android-type code. Among other things, it preloads this VM with a number
      of libraries that are typically used by any code that relies on the
      Android APIs. This includes all the native calls, which are required by
      any of the Android Framework’s Java code. These are registered with the
      VM so it can find them whenever a Java-coded Android Framework package
      calls on one of its native functions.
The Runtime also includes functions for facilitating operations
      typically done for all Android-type applications running on Dalvik. You
      can, in fact, consider Dalvik to be a very raw, low-level VM that
      doesn’t assume you’re running Android-type code on top of it. To run
      Android-type code on top of Dalvik, the Runtime starts Dalvik with
      parameters specifically tailored for its use to run Java code that
      relies on the Android Java APIs—either those publicly documented in the
      developer documentation and made available through the SDK, or internal
      APIs available only as part of building internal Android code within the
      AOSP.
Furthermore, the Runtime relies on many native user-space
      functionalities. For instance, it takes into account some of the
      init-maintained global properties in order to gate the starting of the
      Dalvik VM, and it uses Android’s logging functions to log the progress
      of the Dalvik VM’s initialization. In addition to setting up the
      parameters used to start the Dalvik VM used to run Java code, the
      Runtime also initializes some key aspects of the Java and Android
      environment before calling the code’s main() method. Most importantly, it provides
      a default exception handler for all threads running on the
      just-instantiated VM.
Note that the Runtime doesn’t preload classes: That’s something
      the Zygote does when it sets up the system for running Android apps. And
      since each use of the app_process
      command results in starting a separate VM, all non-Zygote instances of
      Dalvik will load classes on demand, not before your code starts
      running.
Dalvik’s Global Properties
In addition to the global properties maintained by init that we discussed in the last chapter,
        Dalvik continues to provide the property system found in Java through
        java.lang.System. As such, if
        you’re browsing some of the system services’ sources, you might notice
        calls to System.getProperty() or
        System.setProperty(). Note that
        those calls and the underlying set of properties are completely
        independent from init’s global
        properties.
The Package Manager Service, for instance, reads the java.boot.class.path at startup. Yet, if you
        use getprop on the command line,
        you won’t find this property as part of the list of properties
        returned by init. Instead, such
        variables are maintained within each Dalvik instance for retrieval
        and/or use by running Java code. The specific java.boot.class.path, for instance, is set
        in dalvik/vm/Properties.c using
        the BOOTCLASSPATH variable set in
        init.rc.
You can find out more about Java System Properties in Java’s
        official
        documentation. Note that the semantics of the variable names
        used by init’s global properties
        are very similar to those used by Java System Properties.

Once it’s started, a Java class launched using app_process can start using “regular” Android
      APIs and talk to existing system services. If it’s built as part of the
      AOSP, it can use many of the android.* packages available to it at build
      time. The am and pm commands, for instance, do exactly that. It
      follows that you, too, could write your own command-line tool completely
      in Java, using the Android API, and have it start  separately from the rest of the Framework. In other words, it would be
      started and would run independently of the Zygote and everything that
      the Zygote causes to start as part of its own initialization.
But this still won’t let you write a regular Android app that is
      started by app_process. Android apps
      can be started only by the Activity Manager using intents, and the
      Activity Manager is itself started as part of the rest of the system
      services once the Zygote itself is started. Which brings the discussion
      back to the startup of the Zygote.
For the Zygote to start properly and have it start the System
      Server, you must leave its corresponding app_process line intact in init.rc, in its default location. There’s
      nothing that you can configure about the Zygote’s startup. You can,
      however, influence the way the Android Runtime starts any of its Dalvik
      VMs by modifying some of the system’s global properties. Have a look at
      the AndroidRuntime::startVm(JavaVM** pJavaVM,
      JNIEnv** pEnv) function in frameworks/base/core/jni/AndroidRuntime.cpp
      in either 2.3/Gingerbread or 4.2/Jelly Bean to see which global
      properties are read by the Android Runtime as it prepares to start a new
      VM. Note that any use of these properties to influence the setup of
      Dalvik VMs is likely to be version specific.
Once the Zygote’s VM is started, the com.android.internal.os.ZygoteInit class’s
      main() function is called, and it
      will preload the entire set of Android packages, proceed to start the
      System Server, and then start looping around and listening for
      connections from the Activity Manager asking it to fork and start new
      Android apps. Again, there is nothing to be customized here unless you
      can see something relevant to you in the list of parameters used to
      start the System Server in the startSystemServer() function in frameworks/base/core/java/com/android/internal/os/ZygoteInit.java.
      My recommendation is to leave this as is unless you have a very strong
      understanding of Android’s internals.
Disabling the Zygote
While you can’t configure what the Zygote does at startup, you
        can nevertheless disable its startup entirely by adding the disabled option to its section in init.rc. Here’s how this is done in
        2.3/Gingerbread:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote
--start-system-server
    socket zygote stream 666
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
    disabled
This will effectively prevent init from starting the Zygote at boot time,
        so none of the Android Framework’s parts will start, including the
        System Server. This may be very useful if you’re in the process of
        debugging critical system errors or developing one of the HAL modules,
        and you must manually set up debugging tools, load files, or monitor
        system behavior before key system
        services start up.
You can then start the Zygote, and the rest of the
        system:
# start zygote


System Services



As we saw in the last section, the System Server is started as
      part of the Zygote’s startup, and we’ll continue delving into that part
      of the process in this section. However, and as was discussed in Chapter 2, there are also system services started from
      processes other than the System Server, and we’ll discuss those in this
      section.
Starting with 4.0/Ice-Cream Sandwich, the very first system
      service to get started is the Surface Flinger. Up to 2.3/Gingerbread, it
      had been started as part of the System Server, but with 4.0/Ice-Cream
      Sandwich, it’s started right before the Zygote and runs independently
      from the System Server and the rest of the system services. Here’s the
      relevant snippet that precedes the Zygote’s entry in init.rc in 4.2/Jelly Bean:
service surfaceflinger /system/bin/surfaceflinger
    class main
    user system
    group graphics drmrpc
    onrestart restart zygote
The Surface Flinger’s sources are in frameworks/base/services/surfaceflinger/ in
      2.3/Gingerbread and frameworks/native/services/surfaceflinger/ in
      4.2/Jelly Bean. Its role is to composite the drawing surfaces used by
      apps into the final image displayed to the user. As such, it’s one of
      Android’s most fundamental building blocks.
In Android 4.0, because the Surface Flinger is started before the
      Zygote, the system’s boot animation comes up much faster than in earlier
      versions. We’ll discuss the boot animation later in this chapter.
To start the System Server, the Zygote forks and runs the com.android.server.SystemServer class’
      main() function. The latter loads
      the libandroid_servers.so library,
      which contains the JNI parts required by some of the system services and
      then invokes native code in frameworks/base/cmds/system_server/library/system_init.cpp,
      which starts C-coded system services that run in the system_server process. In 2.3/Gingerbread,
      this includes the Surface Flinger and the Sensor Service. In 4.2/Jelly
      Bean, however, the Surface Flinger
      is started separately, as we just saw, and the only C-coded system
      service started by system_server is
      the Sensor Service.
The System Server then goes back to Java and starts initializing
      the critical system services such as the Power Manager, Activity
      Manager, and Package Manager. It then continues to initialize all the
      system services it hosts and registers them with the Service Manager.
      This is all done in code in frameworks/base/services/java/com/android/server/SystemServer.java.
      None of this is configurable. It’s all hardcoded into SystemServer.java, and there are no flags or
      parameters you can pass to tell the System Server not to start some of
      the system services. If you want to disable any, you’ll have to go in by
      hand and comment out the corresponding code.
Warning
The system services are interdependent, and almost all of
        Android’s parts, including the Android API, assume that all the system
        services built into the AOSP are available at all times. As I
        mentioned in Chapter 2, as a whole, the system
        services form an object-oriented OS built on top of Linux—and the
        parts of that OS weren’t built with modularity in mind. So if you take
        one of the system services away, it’s fair to assume that some of
        Android’s parts will start breaking under your feet.
That doesn’t mean it can’t be done, though. As part of a
        presentation titled “Headless
        Android” at the 2012 Android Builders Summit, I showed how I
        successfully disabled the Surface Flinger, the Window Manager, and a
        couple of other key system services, to run the full Android stack on
        a headless system. As I warned in that presentation, that work was
        very much a proof of concept and would require a lot more effort to be
        production ready.[32]
So, by all means, feel free to tinker around, but you’ve been
        warned that if you’re going to play this deep in Android’s guts, you’d
        better saddle up.

What’s /system/bin/system_server?
You might notice while browsing your target’s root filesystem
        that there’s a binary called system_server in /system/bin. That binary, however, has
        nothing to do with the startup of the System Server or with any of the
        system services. It’s unclear what purpose, if any, this binary has.
        It’s very likely that this is a legacy utility from Android’s early
        days.
This factoid is often a source of confusion, because a quick
        look at the list of binaries and the output of ps may lead you to believe that the system_server process is in fact started by
        the system_server command. I was in
        fact very skeptical of my own reading of the sources on that matter
        and posted a question about it to the android-building mailing list.
        The ensuing response
        seems to confirm my reading of the sources, however.

In addition to the Surface Flinger and the system services started
      by the System Server, another set of system services stems from the
      starting of mediaserver. Here’s the
      relevant snippet from 2.3/Gingerbread’s init.rc (4.2/Jelly Bean’s is practically
      identical):
service media /system/bin/mediaserver
    user media
    group system audio camera graphics inet net_bt net_bt_admin net_raw
    ioprio rt 4
The mediaserver, whose sources
      are in frameworks/base/media in
      2.3/Gingerbread and frameworks/av/media in 4.2/Jelly Bean, starts
      the following system services: Audio Flinger, Media Player Service,
      Camera Service, and Audio Policy Service. Again, none of this is
      configurable, and it’s recommended that you leave the relevant init.rc portions untouched unless you fully
      understand the implications of your modifications. For instance, if you
      try to remove the startup of the mediaplayer service from init.rc or use the disabled option to prevent it from starting,
      you will notice messages such as these in logcat’s output:
...
I/ServiceManager(   56): Waiting for service media.audio_policy...
I/ServiceManager(   56): Waiting for service media.audio_policy...
I/ServiceManager(   56): Waiting for service media.audio_policy...
W/AudioSystem(   56): AudioPolicyService not published, waiting...
I/ServiceManager(   56): Waiting for service media.audio_policy...
I/ServiceManager(   56): Waiting for service media.audio_policy...
...
And the system will hang and continue to print out those messages
      until the mediaserver is
      started.
Note that the mediaserver is
      one of the only init services that uses the ioprio option. Presumably—and there’s
      unfortunately no official documentation to confirm this—this is used to
      make sure that media playback has an appropriate priority to avoid
      choppy playback.
There is finally one odd player in this game, the Phone app, which
      provides the Phone system service. Generally speaking, apps are the
      wrong place to put system services because apps are lifecycle managed
      and can therefore be stopped and restarted at will. System services, on
      the other hand, are supposed to live from boot to reboot and cannot
      therefore be stopped midstream without affecting the rest of the system.
      The Phone app is different, however, because its manifest file has the
      android:persistent property of the
      application XML element set to
      true. This indicates to the system
      that this app should not be lifecycle managed, which therefore enables
      it to house a system service. It will also lead to this app being
      automatically started as part of the initialization of the Activity
      Manager.
Again, there’s nothing typically configurable about the Phone
      app’s startup. You can, however, relatively easily remove the Phone app
      from the list of apps built into the AOSP. The result, however, will be
      that any part of the system depending on that system service will fail
      to function correctly. Again, you might as well leave it in. If you want
      to remove the dialer icon from the home screen, then what you actually
      want to remove is the Contacts app. As counterintuitive as it may sound,
      the typical phone dialer Android users are accustomed to isn’t part of
      the Phone app; it’s part of the Contacts app.
Note
Another example of an app that houses a system service
        is the NFC app found in packages/apps/Nfc/.

The Phone app way of providing a system service is very
      interesting, because it opens the door for us to emulate its example and
      to add system services as apps within our own device/acme/coyotepad/ directory—without
      having to modify the sources of the default system services in frameworks/base/services/.

Boot Animation



As I explained when discussing the boot logo in the previous
      chapter, Android’s LCD goes through four stages during boot. One of
      those is a boot animation. Here’s the corresponding entry in
      2.3/Gingerbread’s init.rc (the one
      in 4.2/Jelly Bean is practically identical):
service bootanim /system/bin/bootanimation
    user graphics
    group graphics
    disabled
    oneshot
Notice that this service is marked as disabled. Hence, init won’t actually start this right away.
      Instead, it must be explicitly started somewhere else. In this case,
      it’s the Surface Flinger that actually starts the boot animation
      after it has finished its own initialization by
      setting the ctl.start global
      property. Here’s code from the SurfaceFlinger::readyToRun() function in
      2.3/Gingerbread’s frameworks/base/services/surfaceflinger/SurfaceFlinger.cpp:
    // start boot animation
    property_set("ctl.start", "bootanim");
The code in 4.2/Jelly Bean’s frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
      does effectively the same thing:
...
void SurfaceFlinger::startBootAnim() {
    // start boot animation
    property_set("service.bootanim.exit", "0");
    property_set("ctl.start", "bootanim");
}
...
status_t SurfaceFlinger::readyToRun()
{
...

    // start boot animation
    startBootAnim();

    return NO_ERROR;
}
...
And given that the Surface Flinger is one of the first system
      services started—if not the first—the boot animation ends up
      continuously displaying while critical parts of the system are
      initializing. Typically, it will stop only when the phone’s home screen
      finally comes to the fore. We’ll take a look at some of the things
      happening during the boot animation shortly.
As you can see in the previous init.rc snippet, the bootanim service corresponds to the bootanimation binary. The latter’s sources are
      in frameworks/base/cmds/bootanimation/, and if
      you dig into them you’ll notice that this utility talks directly through
      Binder to the Surface Flinger in order to render its animation; hence
      the need for the Surface Flinger to be live before the animation can
      start. Figure 7-1 illustrates the default
      Android boot animation displayed by bootanimation, with the moving light
      reflection projected on the Android logo.
[image: Default boot animation]

Figure 7-1. Default boot animation

bootanimation actually has two
      modes of operation. In one mode it creates the default Android logo boot
      animation using the images in frameworks/base/core/res/assets/images/. It’s
      likely best not to try modifying the boot animation by touching these
      files. Instead, by providing either /data/local/bootanimation.zip or /system/media/bootanimation.zip, you will
      force bootanimation to enter its
      other mode of operation, where it uses the content of one of those ZIP
      files to render a boot animation. It’s worth taking some time to see how
      that can be done, even though a book is not the ideal medium for
      illustrating a running animation.
bootanimation.zip



The bootanimation.zip is a
        regular, uncompressed ZIP file with
        at least a desc.txt file at the
        top-level directory inside and a bunch of directories containing PNG
        files. The latter are animated in sequence according to the rules in
        the desc.txt file. Note that
        bootanimation doesn’t support
        anything but PNG files. Here are the semantics of the desc.txt file:
<width> <height> <fps>
p <count> <pause> <path>
p <count> <pause> <path>
Note that the file’s format is very simplistic and doesn’t allow
        for any fluff. So stick to the above semantics as is. The first line
        indicates the width, height, and frame rate (frames per second) for
        the animation. Each subsequent line is a part of
        the animation. For each part, you must provide the number of times
        this part is played (count), the
        number of frames to pause after each time the part is played (pause), and the directory where that part of
        the animation is located (path).
        Parts are played in the order they appear in the desc.txt.
Each animation part, and therefore the associated directory, is
        made of several PNG files, with filenames being a string representing
        the sequential number of that frame in the full sequence. Files could,
        for instance, be named 001.png,
        002.png, 003.png, etc. If the count is set to zero, the part will loop
        playing until the system has finished booting and the Launcher starts.
        Typically, initial parts are likely to have a count of 1, while the
        last part usually has a count of 0, so it continues playing until the
        boot is done.
The best way to create your own boot animation is to look at the
        existing bootanimation.zip files
        that have been created by others. If you look for that filename in
        your favorite search engine, you should find a few examples relatively
        easily. Have a look, for example, at some of the latest boot
        animations created for the CyanogenMod aftermarket Android distribution.
Warning
Again, make sure the ZIP file you created isn’t compressed.
          Otherwise it won’t work. Have a look at the zip command’s man page—especially the
          -0 flag.


Disabling the boot animation



You can also outright disable the boot animation if you don’t
        want it. Just use the setprop
        command in init.rc to set the
        debug.sf.nobootanimation to
        1:
    setprop debug.sf.nobootanimation 1
In this case, the screen will go black at some point after the
        boot logo has been displayed, and stay black until the Launcher app
        displays the home screen.


Dex Optimization



One of the system services started during the boot animation is
      the Package Manager. We haven’t covered its functionality in detail, but
      suffice it to say that the Package Manager manages all the .apks in the system. Among other things,
      it’ll deal with the installation and removal of .apks and help the Activity Manager resolve
      intents.
One of the Package Manager’s responsibilities is also to make sure
      that JIT-ready versions of any DEX byte-code are available prior to the
      corresponding Java code ever executing. To achieve this, the Package
      Manager’s constructor (the Package Manager system service is implemented
      as a Java class) goes through all .apk and .jar files in the system and requests that
      installd run the dexopt command on them.
This process should happen on the first boot only. Subsequently,
      the /data/dalvik-cache directory
      will contain JIT-ready versions of all .dex files, and the boot sequence should be
      substantially faster. If you look into logcat’s output at first boot, you’ll actually
      see entries like these:
D/dalvikvm(   32): DexOpt: --- BEGIN 'core.jar' (bootstrap=1) ---
D/dalvikvm(   62): Ignoring duplicate verify attempt on Ljava/lang/Object;
D/dalvikvm(   62): Ignoring duplicate verify attempt on Ljava/lang/Class;
D/dalvikvm(   62): DexOpt: load 349ms, verify+opt 4153ms
D/dalvikvm(   32): DexOpt: --- END 'core.jar' (success) ---
D/dalvikvm(   32): DEX prep '/system/framework/core.jar': unzip in 405ms, rewrit
e 5337ms
D/dalvikvm(   32): DexOpt: --- BEGIN 'bouncycastle.jar' (bootstrap=1) ---
D/dalvikvm(   63): DexOpt: load 54ms, verify+opt 779ms
D/dalvikvm(   32): DexOpt: --- END 'bouncycastle.jar' (success) ---
D/dalvikvm(   32): DEX prep '/system/framework/bouncycastle.jar': unzip in 48ms,
 rewrite 1023ms
D/dalvikvm(   32): DexOpt: --- BEGIN 'ext.jar' (bootstrap=1) ---
D/dalvikvm(   64): DexOpt: load 129ms, verify+opt 1497ms
D/dalvikvm(   32): DexOpt: --- END 'ext.jar' (success) ---
D/dalvikvm(   32): DEX prep '/system/framework/ext.jar': unzip in 91ms, rewrite
1923ms
...
D/installd(   35): DexInv: --- BEGIN '/system/framework/am.jar' ---
D/dalvikvm(   95): DexOpt: load 15ms, verify+opt 58ms
D/installd(   35): DexInv: --- END '/system/framework/am.jar' (success) ---
D/installd(   35): DexInv: --- BEGIN '/system/framework/input.jar' ---
D/dalvikvm(   96): DexOpt: load 5ms, verify+opt 28ms
D/installd(   35): DexInv: --- END '/system/framework/input.jar' (success) ---
D/installd(   35): DexInv: --- BEGIN '/system/framework/pm.jar' ---
D/dalvikvm(   97): DexOpt: load 12ms, verify+opt 64ms
D/installd(   35): DexInv: --- END '/system/framework/pm.jar' (success) ---
...
D/installd(   35): DexInv: --- BEGIN '/system/app/ApplicationsProvider.apk' ---
D/dalvikvm(  249): DexOpt: load 31ms, verify+opt 110ms
D/installd(   35): DexInv: --- END '/system/app/ApplicationsProvider.apk' (succe
ss) ---
D/installd(   35): DexInv: --- BEGIN '/system/app/UserDictionaryProvider.apk' --
-
D/dalvikvm(  253): DexOpt: load 19ms, verify+opt 52ms
D/installd(   35): DexInv: --- END '/system/app/UserDictionaryProvider.apk' (suc
cess) ---
D/installd(   35): DexInv: --- BEGIN '/system/app/Settings.apk' ---
D/dalvikvm(  254): DexOpt: load 155ms, verify+opt 894ms
D/installd(   35): DexInv: --- END '/system/app/Settings.apk' (success) ---
D/installd(   35): DexInv: --- BEGIN '/system/app/Launcher2.apk' ---
D/dalvikvm(  256): DexOpt: load 178ms, verify+opt 581ms
D/installd(   35): DexInv: --- END '/system/app/Launcher2.apk' (success) ---
At first, the Package Manager Service isn’t yet running, so we can
      see Dalvik running dexopt directly
      for some .jar files instead of
      being run by installd, as happens
      when the Package Manager Service requests it. Once the Package Manager
      is started, it then runs the rest of this optimization process in the
      following order:
	.jar files listed in the
          BOOTCLASSPATH variable in
          init.rc

	.jar files listed as
          libraries in /system/etc/permission/platform.xml

	.apk and .jar files found in /system/framework

	.apk files found in
          /system/app

	.apk files found in
          /vendor/app

	.apk files found in
          /data/app

	.apk files found in
          /data/app-private



Obviously this process takes some time. On my quad-core CORE i7,
      it takes the emulator image of a freshly compiled 2.3/Gingerbread AOSP
      75 seconds for its first full boot (i.e., up to the home screen) and 24
      seconds for subsequent boots. In a production system, such as a phone,
      boot times like this can be unacceptable.
You’ll therefore be happy to hear that you can actually stop this
      optimization process from happening at boot time and do it at build time
      instead. You just need to set the WITH_DEXPREOPT build flag to true when building the AOSP:
$ make WITH_DEXPREOPT=true -j16
You can also set this variable in your device’s BoardConfig.mk instead, and avoid having to
      add it to the make command every
      time. In the case of the emulator build, this wasn’t done by default in
      2.3/Gingerbread but is in 4.2/Jelly Bean.
The build will of course take more time, but the first boot will
      be significantly faster. On the same workstation mentioned previously,
      it takes 30 minutes to build 2.3/Gingerbread instead of 20 with the
      WITH_DEXPREOPT flag. However, the
      emulator image comes up in 40 seconds instead of 75 on a first boot.
      When the option is used, the /data/dalvik-cache directory ends up being
      empty on the target after the first boot. Instead, at build time,
      .odex files are placed side by side
      in the same filesystem path as their corresponding .jar and .apk files.

Apps Startup



As the startup of the system services nears its end, apps start to
      get activated, including the home screen. As I explained in Chapter 2, the Activity Manager ends its initialization by
      sending an intent of type Intent.CATEGORY_HOME, which causes the
      Launcher app to start and the home screen to appear. That’s only part of
      the story, though. The startup of the system services will in fact cause
      quite a few apps to start. Here’s a portion of the output of the
      ps command on a freshly booted
      2.3/Gingerbread emulator image:
# ps
...
root      32    1     60832  16240 c009b74c afd0b844 S zygote
media     33    1     17976  1056  ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34    1     1256   220   c009b74c afd0c59c S /system/bin/dbus-daemon
root      35    1     812    232   c02181f4 afd0b45c S /system/bin/installd
keystore  36    1     1744   212   c01b52b4 afd0c0cc S /system/bin/keystore
root      38    1     824    268   c00b8fec afd0c51c S /system/bin/qemud
shell     40    1     732    200   c0158eb0 afd0b45c S /system/bin/sh
root      41    1     3364   168   ffffffff 00008294 S /sbin/adbd
system    61    32    124096 26352 ffffffff afd0b6fc S system_server
app_19    113   32    80336  17400 ffffffff afd0c51c S com.android.inputmethod.
                                                       latin
radio     121   32    87112  17972 ffffffff afd0c51c S com.android.phone
system    122   32    73160  18452 ffffffff afd0c51c S com.android.systemui
app_26    132   32    76608  20812 ffffffff afd0c51c S com.android.launcher
app_1     169   32    85368  20584 ffffffff afd0c51c S android.process.acore
app_12    234   32    70752  15748 ffffffff afd0c51c S com.android.quicksearchbox
app_8     242   32    73108  16908 ffffffff afd0c51c S android.process.media
app_10    266   32    70928  16572 ffffffff afd0c51c S com.android.providers.
                                                       calendar
app_29    300   32    72764  17484 ffffffff afd0c51c S com.android.email
app_18    315   32    70272  15428 ffffffff afd0c51c S com.android.music
app_22    323   32    69712  15220 ffffffff afd0c51c S com.android.protips
app_3     335   32    71432  16756 ffffffff afd0c51c S com.cooliris.media
...
All the processes that have a Java-style process name[33] are actually apps that were automatically started with no
      user intervention whatsoever at system startup.  Various system mechanisms cause these apps to start given the content of
      their respective manifest files. And this is a welcome change, since
      controlling apps’ activation requires a lot less internals work than is
      required for controlling many other aspects of the startup, as we’ve
      seen above. Instead, it’s all about creating carefully crafted apps for
      packaging with the AOSP. Sure, there’s the case where you’ll want to
      modify a stock app to make it behave or start differently, but at least
      we’re into the app world, where functionality is more loosely coupled
      and documentation more readily accessible.
Which leads us to discussing the triggers that cause stock apps to
      be activated.
Input methods



One of the earliest types of apps to start are input methods.
        The Input Method Manager Service’s constructor goes around and
        activates all app services that have an intent filter for android.view.InputMethod. This is how, for
        example, the LatinIME app, which runs as the com.android.inputmethod.latin process, is
        activated.
As you can see by reading the Creating
        an Input Method blog post on the Android Developers Blog,
        input methods are actually carefully crafted services.

Persistent apps



Apps that have the android:persistent="true" attribute in the
        <application> element of
        their manifest file will be automatically spawned at startup by the
        Activity Manager. In fact, should such an app ever die, it will also
        be automatically restarted by the Activity Manager.
As I explained earlier, unlike regular apps, apps that are
        marked as persistent are not lifecycle managed by the Activity
        Manager. Instead, they are kept alive throughout the lifetime of the
        system. This allows using such apps to implement special
        functionality. The status bar and the phone app, for example, running
        as the com.android.systemui and
        com.android.phone processes, are
        persistent apps.
Warning
While the app development documentation does explain the role
          of android:persistent, the use of
          that attribute is reserved for apps that are built within the
          AOSP.


Home screen



Typically there’s only one home
        screen app, and it reacts to the Intent.CATEGORY_HOME intent,
        which is sent by the Activity Manager at the end of the system
        services’ startup. There’s a sample home app in development/samples/Home/, but the real
        home app activated is in packages/apps/Launcher2/. Here’s the
        Launcher’s main activity and its intent filter in 2.3/Gingerbread
        (4.2/Jelly Bean’s is basically the same):
        <activity
            android:name="com.android.launcher2.Launcher"
            android:launchMode="singleTask"
            android:clearTaskOnLaunch="true"
            android:stateNotNeeded="true"
            android:theme="@style/Theme"
            android:screenOrientation="nosensor"
            android:windowSoftInputMode="stateUnspecified|adjustPan">
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.HOME" />
                <category android:name="android.intent.category.DEFAULT" />
                <category android:name="android.intent.category.MONKEY"/>
            </intent-filter>
        </activity>
Obviously, if you want to start a custom app to be the home
        screen instead of Launcher2, you’ll need to remove the latter and add
        your own that reacts to that same intent. If more than one app reacts
        to that intent, users will get a dialog asking them which of the home
        screens they want to use.
Note that this intent isn’t sent just at startup. Depending on
        the state of the system, the Activity Manager will send this intent
        whenever it needs to bring the home screen to the
        foreground.

BOOT_COMPLETED intent



The Activity Manager also broadcasts the Intent.BOOT_COMPLETED intent at startup.
        This is an intent commonly used by apps to be notified that the system
        has finished booting. A number of stock apps in the AOSP actually rely
        on this intent, such as Media provider, Calendar provider, Mms app,
        and Email app. Here’s the broadcast receiver used by the Media
        Provider in 2.3/Gingerbread, along with its intent filter (4.2/Jelly
        Bean’s is very similar):
        <receiver android:name="MediaScannerReceiver">
            <intent-filter>
                <action android:name="android.intent.action.BOOT_COMPLETED" />
            </intent-filter>
            <intent-filter>
                <action android:name="android.intent.action.MEDIA_MOUNTED" />
                <data android:scheme="file" />
            </intent-filter>
            <intent-filter>
                <action android:name="android.intent.action.MEDIA_SCANNER_SCAN_
                 FILE" />
                <data android:scheme="file" />
            </intent-filter>
        </receiver>
In order to receive this intent, apps must explicitly request
        permission to do so:
    <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

APPWIDGET_UPDATE intent



In addition to apps, the App Widget Service, which is itself a
        system service, registers itself to receive the Intent.BOOT_COMPLETED. It uses the receipt
        of that intent as a trigger to activate all app widgets in the system
        by sending Intent.APPWIDGET_UPDATE.
        Hence, if you’ve developed an app widget as part of your app, your
        code will be activated at this point. Have a look at the App Widgets section of the Android
        developer documentation for more information on how to write your own
        app widget.
Several stock AOSP apps have app widgets, such as Quick Search
        Box, Music, Protips, and Media. Here’s the Quick Search Box’s app
        widget declaration in its manifest file, for example:
        <receiver android:name=".SearchWidgetProvider"
                  android:label="@string/app_name">
            <intent-filter>
                <action android:name="android.appwidget.action.APPWIDGET_
                 UPDATE" />
            </intent-filter>
            <meta-data android:name="android.appwidget.provider" android:
             resource="@xml/search_widget_info" />
        </receiver>



Utilities and Commands



Once the Framework and the basic set of apps is up and running,
    there are quite a few commands that you can use to query or interact with
    system services and the Framework. Much like the commands covered in Chapter 6, these can be used on the command line once you shell
    into the device. But these commands have no meaning, and therefore no
    effect, unless the Framework is running. Of course you’ll find many of
    these useful, even crucial, as you’re bringing up Android on new devices
    and/or debugging parts of the Framework. And as with the commands in the
    native user-space, the tools available for interacting with the Framework
    vary greatly in terms of documentation and capabilities. Yet they provide
    the essential capabilities required to bring Android up on new hardware or
    to troubleshoot it on existing products. Let’s take a look at the command
    set available to you for interacting with the Android Framework.
Note
Many of the commands here are located in the frameworks/base/cmds/ directory of the AOSP
      sources, though in 4.2/Jelly Bean, some of those commands have been
      moved to frameworks/native/cmds/. I
      encourage you to refer to those sources when using some of these
      commands, as their effects aren’t always obvious just by looking at
      their online help, when it exists.

General-Purpose Utilities



In contrast with some utilities we’ll see later, a certain number
      of utilities are useful for interacting with various parts of the
      Framework. Some of these are very powerful.
service



The service command allows us
        to interact with any system service registered with the Service
        Manager:
# service -h
Usage: service [-h|-?]
       service list
       service check SERVICE
       service call SERVICE CODE [i32 INT | s16 STR] ...
Options:
   i32: Write the integer INT into the send parcel.
   s16: Write the UTF-16 string STR into the send parcel.
As you can see, it can be used for querying but can also be used
        for invoking methods from system services. Here’s how it can be used
        to query the list of existing system services in
        2.3/Gingerbread:
# service list
Found 50 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	diskstats: []
5	appwidget: [com.android.internal.appwidget.IAppWidgetService]
6	backup: [android.app.backup.IBackupManager]
7	uimode: [android.app.IUiModeManager]
8	usb: [android.hardware.usb.IUsbManager]
9	audio: [android.media.IAudioService]
10	wallpaper: [android.app.IWallpaperManager]
11	dropbox: [com.android.internal.os.IDropBoxManagerService]
12	search: [android.app.ISearchManager]
13	location: [android.location.ILocationManager]
14	devicestoragemonitor: []
15	notification: [android.app.INotificationManager]
16	mount: [IMountService]
17	accessibility: [android.view.accessibility.IAccessibilityManager]
...
The interface names provided in between square brackets allow
        you to browse the AOSP sources to find the matching .aidl file that defines the
        interface.
You can also check if a given service exists:
# service check power
Service power: found
Most interestingly, you can use service
        call to directly invoke system services’ Binder-exposed
        methods. In order to do that, you first need to understand that
        service’s interface. Here’s the IStatusBarService interface definition from
        2.3/Gingerbread’s frameworks/base/core/java/com/android/internal/statusbar/IStatusBarService.aidl
        (4.2/Jelly Bean’s interface name is the same, though setIcon()’s prototype has
        changed):
...
interface IStatusBarService
{
    void expand();
    void collapse();
    void disable(int what, IBinder token, String pkg);
    void setIcon(String slot, String iconPackage, int iconId, int iconLevel);
...
Note that service call
        actually needs a method code, not a method’s name. To find the codes
        matching the method names defined in the interface, you’ll need to
        look up the code generated by the aidl tool based on the interface definition.
        Here’s the relevant snippet from the IStatusBarService.java file generated in
        out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/src/core/java/com/android/internal/statusbar/:
...
static final int TRANSACTION_expand = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 0);
static final int TRANSACTION_collapse = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 1);
static final int TRANSACTION_disable = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 2);
static final int TRANSACTION_setIcon = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 3);
...
Also, note that frameworks/base/core/java/android/os/IBinder.java
        has the following definition for FIRST_CALL_TRANSACTION:
    int FIRST_CALL_TRANSACTION  = 0x00000001;
Hence, expand()’s code is
        1 and collapse()’s code is 2. Therefore, this command will cause the
        status bar to expand:
# service call statusbar 1
While this command will cause the status bar to collapse:
# service call statusbar 2
This is a very simple case where the action is rather obvious
        and the methods invoked don’t take any parameters. In other cases,
        you’ll need to look more closely at the system service’s API and
        understand the parameters expected. In addition, keep in mind that
        system services’ interfaces aren’t necessarily exposed through
        .aidl files. In some cases, such
        as for the Activity Manager, the interface definition is hardcoded
        directly into a regular Java file instead of being autogenerated. And
        in the case of C-based system services, the Binder marshaling and
        unmarshaling is all done straight in C code. Hence, try using grep on the AOSP’s frameworks/ directory in addition to
        out/target/common/ to find all
        instances of FIRST_CALL_TRANSACTION.

dumpsys



Another interesting thing to do is to query system services’
        internal state. Indeed, every system service implements a dump() method internally that can be
        queried using the dumpsys
        command:
dumpsys [ <service> ]
By default, if no system service name is provided as a
        parameter, dumpsys will first print
        out the list of system services and will then dump their
        status:
# dumpsys
Currently running services:
  SurfaceFlinger
  accessibility
  account
  activity
  alarm
  appwidget
  audio
  backup
  battery
  batteryinfo
  clipboard
  connectivity
  content
  cpuinfo
  device_policy
  devicestoragemonitor
  diskstats
  dropbox
  entropy
  hardware
...
-------------------------------------------------------------------------------
DUMP OF SERVICE SurfaceFlinger:
+ Layer 0x1e5788
      z=    21000, pos=(   0,   0), size=( 320, 480), needsBlending=0, needsDith
ering=0, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
      name=com.android.internal.service.wallpaper.ImageWallpaper
      client=0x1ed2a8, identity=3
      [ head= 1, available= 2, queued= 0 ] reallocMask=00000000, identity=3, sta
tus=0
      format= 4, [320x480:320] [320x480:320], freezeLock=0x0, bypass=0, dq-q-tim
e=2034 us
  Region transparentRegion (this=0x1e5918, count=1)
    [  0,   0,   0,   0]
  Region transparentRegionScreen (this=0x1e57bc, count=1)
    [  0,   0,   0,   0]
  Region visibleRegionScreen (this=0x1e5798, count=1)
    [  0,  25, 320, 480]
+ Layer 0x268b70
      z=    21005, pos=(   0,   0), size=( 320, 480), needsBlending=1, needsDith
ering=1, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
...
-------------------------------------------------------------------------------
DUMP OF SERVICE accessibility:
-------------------------------------------------------------------------------
DUMP OF SERVICE account:
Accounts: 0

Active Sessions: 0

RegisteredServicesCache: 1 services
  ServiceInfo: AuthenticatorDescription {type=com.android.exchange}, ComponentIn
fo{com.android.email/com.android.email.service.EasAuthenticatorService}, uid 100
29
-------------------------------------------------------------------------------
DUMP OF SERVICE activity:
Providers in Current Activity Manager State:
  Published content providers (by class):
  * ContentProviderRecord{4060d0e0 com.android.deskclock.AlarmProvider}
...
Obviously the output is very verbose and, most importantly,
        requires understanding the corresponding system service’s internals.
        If you’re implementing your own system service, however, being able to
        query its state at runtime can be crucial. Of course, if you’re not
        interested in dumping the state of all system services, you just need
        to provide the name of the specific service you’d like to get
        information about as a parameter to dumpsys:
# dumpsys power
Power Manager State:
  mIsPowered=true mPowerState=1 mScreenOffTime=46793204 ms
  mPartialCount=1
  mWakeLockState=SCREEN_ON_BIT
  mUserState=
  mPowerState=SCREEN_ON_BIT
  mLocks.gather=SCREEN_ON_BIT
  mNextTimeout=94351 now=46880555 -46786s from now
  mDimScreen=true mStayOnConditions=1
  mScreenOffReason=0 mUserState=0
  mBroadcastQueue={-1,-1,-1}
  mBroadcastWhy={0,0,0}
  mPokey=0 mPokeAwakeonSet=false
...

dumpstate



In some cases, what you’re trying to do is get a snapshot of the
        entire system, not just the system services. This is what dumpstate takes care of. In fact, you might
        recall our discussion of this command when we covered adb’s bugreport in Chapter 6,
        since dumpstate is what provides
        bugreport with its information.
        Here’s dumpstate’s detailed help in
        2.3/Gingerbread:
# dumpstate -h
usage: dumpstate [-d] [-o file] [-s] [-z]
  -d: append date to filename (requires -o)
  -o: write to file (instead of stdout)
  -s: write output to control socket (for init)
  -z: gzip output (requires -o)
In 4.2/Jelly Bean, dumpstate’s capabilities have
        expanded:
root@android:/ # dumpstate -h
usage: dumpstate [-b soundfile] [-e soundfile] [-o file [-d] [-p] [-z]] [-s] [-q]
  -o: write to file (instead of stdout)
  -d: append date to filename (requires -o)
  -z: gzip output (requires -o)
  -p: capture screenshot to filename.png (requires -o)
  -s: write output to control socket (for init)
  -b: play sound file instead of vibrate, at beginning of job
  -e: play sound file instead of vibrate, at end of job
  -q: disable vibrate
If you invoke it without any parameters, it goes ahead and
        queries several parts of the sytem to provide you with a complete
        snapshot of the system’s status:
# dumpstate
========================================================
== dumpstate: 2012-10-10 03:15:26
========================================================

Build: generic-eng 2.3.4 GINGERBREAD eng.karim.20120913.141233 test-keys
Bootloader: unknown
Radio: unknown
Network: Android
Kernel: Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.c
om) (gcc version 4.4.0 (GCC) ) #20 Wed Mar 31 09:54:02 PDT 2010
Command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1 androi
d.ndns=1

------ MEMORY INFO (/proc/meminfo) ------
MemTotal:          94096 kB
MemFree:            1296 kB
Buffers:               0 kB
Cached:            32424 kB
...
------ CPU INFO (top -n 1 -d 1 -m 30 -t) ------



User 2%, System 11%, IOW 33%, IRQ 0%
User 3 + Nice 0 + Sys 15 + Idle 67 + IOW 42 + IRQ 0 + SIRQ 0 = 127

  PID   TID CPU% S     VSS     RSS PCY UID      Thread          Proc
  339   339  13% R    976K    440K  fg shell    top             top
  121   121   0% S  86100K  18484K  fg radio    m.android.phone com.android.phone
    3     3   0% S      0K      0K  fg root     ksoftirqd/0
    4     4   0% S      0K      0K  fg root     events/0
...
------ PROCRANK (procrank) ------
  PID      Vss      Rss      Pss      Uss  cmdline
   61   25676K   25076K   10581K    8552K  system_server
  124   21412K   21412K    6851K    4908K  com.android.launcher
  122   19268K   19268K    5698K    4388K  com.android.systemui
  121   18484K   18484K    4744K    3568K  com.android.phone
  295   18176K   18176K    4337K    3132K  com.android.email
  115   17836K   17836K    4118K    2960K  com.android.inputmethod.latin
...
------ VIRTUAL MEMORY STATS (/proc/vmstat) ------
nr_free_pages 553
nr_inactive_anon 6708
nr_active_anon 6068
nr_inactive_file 3449
nr_active_file 2062
...
------ VMALLOC INFO (/proc/vmallocinfo) ------
0xc684c000-0xc684e000    8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6850000-0xc6852000    8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6854000-0xc6856000    8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6880000-0xc68a1000  135168 binder_mmap+0xb4/0x200 ioremap
...
------ SLAB INFO (/proc/slabinfo) ------
slabinfo - version: 2.1
# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>
 : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_s
labs> <sharedavail>
rpc_buffers            8      8   2048    2    1 : tunables   24   12    0 : sla
bdata      4      4      0
rpc_tasks              8     24    160   24    1 : tunables  120   60    0 : sla
bdata      1      1      0
rpc_inode_cache        0      0    416    9    1 : tunables   54   27    0 : sla
bdata      0      0      0
bridge_fdb_cache       0      0     64   59    1 : tunables  120   60    0 : sla
bdata      0      0      0
...
------ ZONEINFO (/proc/zoneinfo) ------
Node 0, zone   Normal
  pages free     550
        min      312
        low      390
        high     468
        scanned  0 (aa: 0 ia: 0 af: 26 if: 0)
...
------ SYSTEM LOG (logcat -v time -d *:v) ------
10-10 01:38:02.762 I/DEBUG   (   30): debuggerd: Feb 26 2012 21:06:53
10-10 01:38:02.882 I/Netd    (   29): Netd 1.0 starting
10-10 01:38:02.932 D/qemud   (   38): entering main loop
10-10 01:38:02.972 I/Vold    (   28): Vold 2.1 (the revenge) firing up
10-10 01:38:02.972 D/Vold    (   28): USB mass storage support is not enabled in
 the kernel
...
------ VM TRACES JUST NOW (/data/anr/traces.txt.bugreport: 2012-10-10 03:15:26)
------


----- pid 61 at 2012-10-10 03:15:26 -----
Cmd line: system_server

DALVIK THREADS:
(mutexes: tll=0 tsl=0 tscl=0 ghl=0 hwl=0 hwll=0)
"main" prio=5 tid=1 NATIVE
  | group="main" sCount=1 dsCount=0 obj=0x4001f1a8 self=0xce48
  | sysTid=61 nice=0 sched=0/0 cgrp=default handle=-1345006528
  | schedstat=( 1116789165 392598071 782 )
  at com.android.server.SystemServer.init1(Native Method)
  at com.android.server.SystemServer.main(SystemServer.java:625)
...
------ EVENT LOG (logcat -b events -v time -d *:v) ------
10-10 01:38:03.642 I/boot_progress_start(   32): 5126
10-10 01:38:04.221 I/boot_progress_preload_start(   32): 5706
10-10 01:38:04.251 I/dvm_gc_info(   32): [8825198673194415294,-90644969689662529
97,-4012584086963399109,0]
10-10 01:38:04.281 I/dvm_gc_info(   32): [8825198673194406507,-92148046065296736
57,-4012584086963329465,0]
10-10 01:38:04.331 I/dvm_gc_info(   32): [8825198673194406993,-91348657131437777
12,-4012584086963259824,0]
10-10 01:38:04.371 I/dvm_gc_info(   32): [8825198673194415172,-91399322627244589
19,-4012584086963149223,0]
...
------ RADIO LOG (logcat -b radio -v time -d *:v) ------
10-10 01:58:04.988 D/AT      (   31): AT< +CSQ: 7,99
10-10 01:58:04.988 D/AT      (   31): AT< OK
10-10 01:58:04.988 D/RILJ    (  121): [0114]< SIGNAL_STRENGTH {7, 99, 0, 0, 0
, 0, 0}
10-10 01:58:24.998 D/RILJ    (  121): [0115]> SIGNAL_STRENGTH
10-10 01:58:25.008 D/RIL     (   31): onRequest: SIGNAL_STRENGTH
...
------ NETWORK INTERFACES (netcfg) ------
*** exec(netcfg): Permission denied
*** netcfg: Exit code 255
[netcfg: 0.1s elapsed]

------ NETWORK ROUTES (/proc/net/route) ------
Iface   Destination     Gateway         Flags   RefCnt  Use     Metric  Mask
        MTU     Window  IRTT
eth0    0002000A        00000000        0001    0       0       0       00FFFFFF
        0       0       0

eth0    00000000        0202000A        0003    0       0       0       00000000
        0       0       0


------ ARP CACHE (/proc/net/arp) ------
IP address       HW type     Flags       HW address            Mask     Device
10.0.2.2         0x1         0x2         52:54:00:12:35:02     *        eth0

------ SYSTEM PROPERTIES ------
[dalvik.vm.heapsize]: [16m]
[dalvik.vm.stack-trace-file]: [/data/anr/traces.txt]
[dev.bootcomplete]: [1]
[gsm.current.phone-type]: [1]
[gsm.defaultpdpcontext.active]: [true]
...
------ KERNEL LOG (dmesg) ------
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC) ) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
On node 0 totalpages: 24576
...
------ KERNEL WAKELOCKS (/proc/wakelocks) ------
name    count   expire_count    wake_count      active_since    total_time
sleep_time      max_time        last_change
"alarm" 106     0       0       0       1632946980      0       41697763
5822030632794
"KeyEvents"     27      0       0       0       123592046       0       94064309
        27084159991
"event0-61"     26      0       0       0       48780811        0       12891126
        27083608920
"radio-interface"       3       0       0       0       3472899963      0
1459986280      25362482435
...
------ KERNEL CPUFREQ (/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state)
 ------
*** /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state: No such file or di
rectory

------ VOLD DUMP (vdc dump) ------
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
...
------ SECURE CONTAINERS (vdc asec list) ------
200 asec operation succeeded
[vdc: 0.1s elapsed]

------ PROCESSES (ps -P) ------
USER     PID   PPID  VSIZE  RSS    PCY  WCHAN    PC         NAME
root      1     0     268    180   fg  c009b74c 0000875c S /init
root      2     0     0      0     fg  c004e72c 00000000 S kthreadd
root      3     2     0      0     fg  c003fdc8 00000000 S ksoftirqd/0
root      4     2     0      0     fg  c004b2c4 00000000 S events/0
root      5     2     0      0     fg  c004b2c4 00000000 S khelper
root      6     2     0      0     fg  c004b2c4 00000000 S suspend
...
------ PROCESSES AND THREADS (ps -t -p -P) ------
USER     PID   PPID  VSIZE  RSS   PRIO  NICE  RTPRI SCHED  PCY  WCHAN    PC
    NAME
root      1     0     268    180   20    0     0     0     fg  c009b74c 0000875c
 S /init
root      2     0     0      0     15    -5    0     0     fg  c004e72c 00000000
 S kthreadd
root      3     2     0      0     15    -5    0     0     fg  c003fdc8 00000000
 S ksoftirqd/0
root      4     2     0      0     15    -5    0     0     fg  c004b2c4 00000000
 S events/0
root      5     2     0      0     15    -5    0     0     fg  c004b2c4 00000000
 S khelper
root      6     2     0      0     15    -5    0     0     fg  c004b2c4 00000000
 S suspend
...
------ LIBRANK (librank) ------
 RSStot      VSS      RSS      PSS      USS  Name/PID
 16658K                                      /dev/ashmem/dalvik-heap
           6980K    6980K    3218K    2896K    system_server [61]
           5208K    5208K    1371K    1048K    com.android.launcher [124]
           5272K    5272K    1343K    1012K    com.android.phone [121]
...
------ BINDER FAILED TRANSACTION LOG (/sys/kernel/debug/binder/failed_transactio
n_log) ------
*** /sys/kernel/debug/binder/failed_transaction_log: No such file or directory

------ BINDER TRANSACTION LOG (/sys/kernel/debug/binder/transaction_log) ------
*** /sys/kernel/debug/binder/transaction_log: No such file or directory

------ BINDER TRANSACTIONS (/sys/kernel/debug/binder/transactions) ------
*** /sys/kernel/debug/binder/transactions: No such file or directory

------ BINDER STATS (/sys/kernel/debug/binder/stats) ------
*** /sys/kernel/debug/binder/stats: No such file or directory

------ BINDER STATE (/sys/kernel/debug/binder/state) ------
*** /sys/kernel/debug/binder/state: No such file or directory

------ FILESYSTEMS & FREE SPACE (df) ------
Filesystem           1K-blocks      Used Available Use% Mounted on
tmpfs                    47048        32     47016   0% /dev
tmpfs                    47048         0     47048   0% /mnt/asec
tmpfs                    47048         0     47048   0% /mnt/obb
/dev/block/mtdblock0     65536     65536         0 100% /system
/dev/block/mtdblock1     65536     25292     40244  39% /data
/dev/block/mtdblock2     65536      1156     64380   2% /cache
[df: 0.1s elapsed]

------ PACKAGE SETTINGS (/data/system/packages.xml: 2012-10-10 01:38:16) ------
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<packages>
<last-platform-version internal="10" external="0" />
...
------ PACKAGE UID ERRORS (/data/system/uiderrors.txt: 2012-09-24 21:06:14) ----
--
2012-09-24 21:06: No settings file; creating initial state

------ LAST KMSG (/proc/last_kmsg) ------
*** /proc/last_kmsg: No such file or directory

------ LAST RADIO LOG (parse_radio_log /proc/last_radio_log) ------
*** exec(parse_radio_log): Permission denied
*** parse_radio_log: Exit code 255
[parse_radio_log: 0.1s elapsed]

------ LAST PANIC CONSOLE (/data/dontpanic/apanic_console) ------
*** /data/dontpanic/apanic_console: No such file or directory

------ LAST PANIC THREADS (/data/dontpanic/apanic_threads) ------
*** /data/dontpanic/apanic_threads: No such file or directory


------ BLOCKED PROCESS WAIT-CHANNELS ------
------ BACKLIGHTS ------
LCD brightness=*** /sys/class/leds/lcd-backlight/brightness: No such file or dir
ectory
Button brightness=*** /sys/class/leds/button-backlight/brightness: No such file
or directory
Keyboard brightness=*** /sys/class/leds/keyboard-backlight/brightness: No such f
ile or directory
ALS mode=*** /sys/class/leds/lcd-backlight/als: No such file or directory
LCD driver registers:
*** /sys/class/leds/lcd-backlight/registers: No such file or directory

========================================================
== Android Framework Services
========================================================
------ DUMPSYS (dumpsys) ------
Currently running services:
  SurfaceFlinger
...
In most cases, as you can see, dumpstate is in fact invoking other commands
        such as logcat, dumpsys, and ps to retrieve its information. As you can
        also see, the command is very verbose.

rawbu



In some cases, you may want to back up and later restore the
        contents of /data. You can use
        the rawbu command to do
        that:
# rawbu help
Usage: rawbu COMMAND [options] [backup-file-path]
commands are:
  help            Show this help text.
  backup          Perform a backup of /data.
  restore         Perform a restore of /data.
options include:
  -h              Show this help text.
  -a              Backup all files.

The rawbu command allows you to perform low-level
backup and restore of the /data partition.  This is
where all user data is kept, allowing for a fairly
complete restore of a device's state.  Note that
because this is low-level, it will only work across
builds of the same (or very similar) device software.
Here’s how it can be used to create a backup:
# rawbu backup /sdcard/backup.dat
Stopping system...
Backing up /data to /sdcard/backup.dat...
Saving dir /data/local...
Saving dir /data/local/tmp...
Saving dir /data/app-private...
Saving dir /data/app...
Saving dir /data/property...
Saving file /data/property/persist.sys.localevar...
Saving file /data/property/persist.sys.country...
Saving file /data/property/persist.sys.language...
Saving file /data/property/persist.sys.timezone...
...
Backup complete!  Restarting system...
The first thing the command does is stop the Zygote, thereby
        stopping all system services. It then proceeds to copy everything from
        /data and finishes by restarting
        the Zygote. Once data is backed up, you can restore it later:
# rawbu restore /sdcard/backup.dat
Stopping system...
Wiping contents of /data...
warning -- rmdir() error on '/data/system': Directory not empty
warning -- rmdir() error on '/data/system': Directory not empty
Restoring from /sdcard/backup.dat to /data...
Restoring dir /data/local...
Restoring dir /data/local/tmp...
Restoring dir /data/app-private...
Restoring dir /data/app...
...
Restore complete!  Restarting system, cross your fingers...
Obviously, as the command’s output implies, this is a fragile
        operation and you should be aware that results will vary.   


Service-Specific Utilities



As we saw earlier, there are dozens of system services. Typically,
      using these system services requires writing code that interacts with
      their Binder-exposed API in some way, shape, or form. In some cases,
      however, the AOSP includes command-line utilities for directly
      interacting with certain system services. Some of these utilities are
      very powerful and allow us to tap into Android’s functionality straight
      from the command line. This opens the door for using many of the
      following utilities as part of scripts either in production or during
      development.
Circumventing Android’s Permission System
The system services’ APIs are typically protected by Android’s
        permission system, which requires apps’ manifest files to declare
        upfront which permissions they require. Generally, a system service
        will check whether its caller has the appropriate permissions before
        going ahead and servicing the caller’s request. Part of this checking
        will require checking the caller’s PID and using the Package Manager’s
        services to verify the originating .apk’s rights.
There is one case, however, that circumvents all safeguards:
        when the caller is running as root. Indeed, if you look at the
        permission-checking code of the Activity Manager, which is used by the
        other system services to check for permissions, you will see this
        snippet in frameworks/base/services/java/com/android/server/am/ActivityManagerService.java
        in 2.3/Gingerbread:
    int checkComponentPermission(String permission, int pid, int uid,
...
        // Root, system server and our own process get to do everything.
        if (uid == 0 || uid == Process.SYSTEM_UID || pid == MY_PID ||
            !Process.supportsProcesses()) {
            return PackageManager.PERMISSION_GRANTED;
        }
...
In 4.2/Jelly Bean, you’ll find this instead:
    int checkComponentPermission(String permission, int pid, int uid,
...
        if (pid == MY_PID) {
            return PackageManager.PERMISSION_GRANTED;
        }

        return ActivityManager.checkComponentPermission(permission, uid,
                owningUid, exported);
    }
With ActivityManager.checkComponentPermission()
        being defined as the following in frameworks/base/core/java/android/app/ActivityManager.java:
    public static int checkComponentPermission(String permission, int uid,
            int owningUid, boolean exported) {
        // Root, system server get to do everything.
        if (uid == 0 || uid == Process.SYSTEM_UID) {
            return PackageManager.PERMISSION_GRANTED;
        }
...
Hence, in both versions of the AOSP, any of the commands you see
        here that talk to a system service will typically be granted a green
        light on anything they ask for from a system service. You must,
        therefore, be very careful when
        talking to system services while running as root. The same applies if
        you write a command-line utility that mimics the way many of the
        commands we cover in this section interact with system
        services.

am



As I mentioned earlier, one of the most important system
        services is the Activity Manager. It should come as no surprise,
        therefore, that there’s a command that allows us to directly invoke
        its functionality. Here’s its online help in
        2.3/Gingerbread:
# am
usage: am [subcommand] [options]

    start an Activity: am start [-D] [-W] <INTENT>
        -D: enable debugging
        -W: wait for launch to complete

    start a Service: am startservice <INTENT>

    send a broadcast Intent: am broadcast <INTENT>

    start an Instrumentation: am instrument [flags] <COMPONENT>
        -r: print raw results (otherwise decode REPORT_KEY_STREAMRESULT)
        -e <NAME> <VALUE>: set argument <NAME> to <VALUE>
        -p <FILE>: write profiling data to <FILE>
        -w: wait for instrumentation to finish before returning

    start profiling: am profile <PROCESS> start <FILE>
    stop profiling: am profile <PROCESS> stop

    start monitoring: am monitor [--gdb <port>]
        --gdb: start gdbserv on the given port at crash/ANR

    <INTENT> specifications include these flags:
        [-a <ACTION>] [-d <DATA_URI>] [-t <MIME_TYPE>]
        [-c <CATEGORY> [-c <CATEGORY>] ...]
        [-e|--es <EXTRA_KEY> <EXTRA_STRING_VALUE> ...]
        [--esn <EXTRA_KEY> ...]
        [--ez <EXTRA_KEY> <EXTRA_BOOLEAN_VALUE> ...]
        [-e|--ei <EXTRA_KEY> <EXTRA_INT_VALUE> ...]
        [-n <COMPONENT>] [-f <FLAGS>]
        [--grant-read-uri-permission] [--grant-write-uri-permission]
        [--debug-log-resolution]
        [--activity-brought-to-front] [--activity-clear-top]
        [--activity-clear-when-task-reset] [--activity-exclude-from-recents]
        [--activity-launched-from-history] [--activity-multiple-task]
        [--activity-no-animation] [--activity-no-history]
        [--activity-no-user-action] [--activity-previous-is-top]
        [--activity-reorder-to-front] [--activity-reset-task-if-needed]
        [--activity-single-top]
        [--receiver-registered-only] [--receiver-replace-pending]
        [<URI>]
Note
In 4.2/Jelly Bean, am’s
          capabilities have expanded, and so, too, has its online help. Since
          the latter now covers three pages, it’s impractical to print it in
          its entirety in this book. The previous snippet is sufficient for
          the present discussion; still, I encourage you to read the am command’s online help in 4.2/Jelly
          Bean.

As we saw in Chapter 2, there are four types of
        components available to app developers: activities, services,
        broadcast receivers, and content providers. The first three types of
        components are activated through intents, and one of am’s major features is its ability to send
        intents straight from the command line.
Here’s how you can use am to
        get the browser to navigate to a given website along with the relevant
        log excerpts:
# am start -a android.intent.action.VIEW -d http://source.android.com
Starting: Intent { act=android.intent.action.VIEW dat=http://source.android.com }

# logcat
...
D/AndroidRuntime(  786):
D/AndroidRuntime(  786): >>>>>> AndroidRuntime START com.android.internal.os.Run
timeInit <<<<<<
D/AndroidRuntime(  786): CheckJNI is ON
D/AndroidRuntime(  786): Calling main entry com.android.commands.am.Am
I/ActivityManager(   62): Starting: Intent { act=android.intent.action.VIEW dat=
http://source.android.com flg=0x10000000 cmp=com.android.browser/.BrowserActivit
y } from pid 786
I/ActivityManager(   62): Start proc com.android.browser for activity com.androi
d.browser/.BrowserActivity: pid=794 uid=10015 gids={3003, 1015}
D/AndroidRuntime(  786): Shutting down VM
D/dalvikvm(  786): GC_CONCURRENT freed 100K, 69% free 317K/1024K, external 0K/0K
, paused 1ms+1ms
D/jdwp    (  786): adbd disconnected
I/ActivityThread(  794): Pub browser: com.android.browser.BrowserProvider
I/BrowserSettings(  794): Selected search engine: ActivitySearchEngine{android.a
pp.SearchableInfo@40593270}
D/dalvikvm(  794): GC_CONCURRENT freed 447K, 51% free 2909K/5831K, external 934K
/1038K, paused 5ms+14ms
I/ActivityManager(   62): Displayed com.android.browser/.BrowserActivity: +1s924
ms
D/dalvikvm(  794): GC_EXTERNAL_ALLOC freed 51K, 50% free 2953K/5831K, external 9
51K/1038K, paused 62ms
...
That’s a rather straightforward example. Let’s look at something
        a little more customized. Here’s a broadcast receiver declaration from
        a custom application:
        <receiver android:name="FastBirdApproaching">
            <intent-filter >
                	<action android:name="com.acme.coyotebirdmonitor.FAST_BIRD"/>
            </intent-filter>
        </receiver>
And here’s the corresponding code:
public class FastBirdApproaching extends BroadcastReceiver {
  private static final String TAG = "FastBirdApproaching";

  @Override
  public void onReceive(Context context, Intent intent) {
  // TODO Auto-generated method stub
  Log.i(TAG, "**********");
  Log.i(TAG, "Meep Meep!");
  Log.i(TAG, "**********");
  }
}
Here’s how you can use am to
        trigger this broadcast receiver and the resulting output in the
        logs:
# am broadcast -a com.acme.coyotebirdmonitor.FAST_BIRD
Broadcasting: Intent { act=com.acme.coyotebirdmonitor.FAST_BIRD }
Broadcast completed: result=0

# logcat
...
I/ActivityManager(   62): Start proc com.acme.coyotebirdmonitor for broadcast co
m.acme.coyotebirdmonitor/.FastBirdApproaching: pid=466 uid=10029 gids={}
I/FastBirdApproaching(  466): **********
I/FastBirdApproaching(  466): Meep Meep!
I/FastBirdApproaching(  466): **********
...
As you can see from am’s
        online help, you can specify a lot of details regarding the intent to
        be sent. Whereas the previous two examples used implicit intents, you
        can also send explicit intents to activate designated
        components:
# am start -n com.android.settings/.Settings
In this case, this will start the Settings
        activity of the settings app in the system. Interestingly, am can start components in ways you can’t
        replicate using the officially published app development API. That’s
        because it’s built as part of the AOSP and has therefore access to
        hidden calls available only to code
        building within the AOSP.
am is in fact a shell script,
        as you can see in frameworks/based/cmds/am/am/:
# Script to start "am" on the device, which has a very rudimentary
# shell.
#
base=/system
export CLASSPATH=$base/framework/am.jar
exec app_process $base/bin com.android.commands.am.Am "$@"
The script uses app_process
        to start Java code that implements am’s functionality. All parameters passed on
        the command line are actually passed on to the Java code as is.
You can also use am for
        instrumentation, profiling, and monitoring. Have a look at the Testing Fundamentals and Testing from Other IDEs sections
        of the Android developer manual for more information on Android
        testing and the use of the am
        instrument command.
The am profile commands allow
        us to generate data that can then be visualized on the host using the
        traceview command. You can find
        more information about traceview in
        the relevant section of the Android
        developer manual. Note that the documentation says there are
        two ways to create trace files, and the use of the am command on the command line isn’t listed
        as one of them.
Finally, the am monitor
        command allows us to monitor apps run by the Activity Manager. Here’s
        a session where I start the command and then start several
        apps:
# am monitor
Monitoring activity manager...  available commands:
(q)uit: finish monitoring
** Activity starting: com.android.browser
** Activity resuming: com.android.launcher
** Activity starting: com.android.settings
** Activity resuming: com.android.launcher
** Activity starting: com.android.browser
** Activity starting: com.android.launcher
...
Note that when you start an app and click Back, the command
        reports that the Launcher is resuming, whereas if you click the Home
        button, the Launcher is reported as starting. This monitoring capability will
        also allow you to catch ANRs (Application Not Responding) and enable
        you to attach gdb to a crashing
        process.
Note
Don’t let this brief coverage of am mislead you: This is an extremely
          powerful and useful command that you should keep well in mind. If
          you ever need to script the starting of apps from the command line,
          you will find it to be very useful.


pm



Another very important system service is the Package Manager
        and, much like the Activity Manager, it’s got its own command-line
        tool. Here’s its online help from 2.3/Gingerbread:
# pm
usage: pm [list|path|install|uninstall]
       pm list packages [-f] [-d] [-e] [-u] [FILTER]
       pm list permission-groups
       pm list permissions [-g] [-f] [-d] [-u] [GROUP]
       pm list instrumentation [-f] [TARGET-PACKAGE]
       pm list features
       pm list libraries
       pm path PACKAGE
       pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f] PATH
       pm uninstall [-k] PACKAGE
       pm clear PACKAGE
       pm enable PACKAGE_OR_COMPONENT
       pm disable PACKAGE_OR_COMPONENT
       pm setInstallLocation [0/auto] [1/internal] [2/external]

The list packages command prints all packages, optionally only
those whose package name contains the text in FILTER.  Options:
  -f: see their associated file.
  -d: filter to include disabled packages.
  -e: filter to include enabled packages.
  -u: also include uninstalled packages.

The list permission-groups command prints all known
permission groups.

The list permissions command prints all known
permissions, optionally only those in GROUP.  Options:
  -g: organize by group.
  -f: print all information.
  -s: short summary.
  -d: only list dangerous permissions.
  -u: list only the permissions users will see.

The list instrumentation command prints all instrumentations,
or only those that target a specified package.  Options:
  -f: see their associated file.

The list features command prints all features of the system.

The path command prints the path to the .apk of a package.

The install command installs a package to the system.  Options:
  -l: install the package with FORWARD_LOCK.
  -r: reinstall an existing app, keeping its data.
  -t: allow test .apks to be installed.
  -i: specify the installer package name.
  -s: install package on sdcard.
  -f: install package on internal flash.

The uninstall command removes a package from the system. Options:
  -k: keep the data and cache directories around.
after the package removal.

The clear command deletes all data associated with a package.

The enable and disable commands change the enabled state of
a given package or component (written as "package/class").

The getInstallLocation command gets the current install location
  0 [auto]: Let system decide the best location
  1 [internal]: Install on internal device storage
  2 [external]: Install on external media

The setInstallLocation command changes the default install location
  0 [auto]: Let system decide the best location
  1 [internal]: Install on internal device storage
  2 [external]: Install on external media
Note
Much like am, pm’s capabilities have grown through the
          versions, and the online help in 4.2/Jelly Bean for this tool is now
          much larger than can reasonably fit in this book. I still encourage
          you to take a look at it.

Fortunately, this command is actually pretty well documented, as
        you can see from the output above. Listing the installed packages, for
        example, is as simple as:
# pm list packages
package:android
package:android.tts
package:com.android.bluetooth
package:com.android.browser
package:com.android.calculator2
package:com.android.calendar
package:com.android.camera
package:com.android.certinstaller
package:com.android.contacts
package:com.android.defcontainer
...
Installing an app (the command used by the adb install command
        covered in the last chapter):
# pm install FastBirds.apk
  pkg: FastBirds.apk
Success
Note that removing the app requires knowing its package name,
        not the original .apk’s
        name:
# pm uninstall com.acme.fastbirds
Success
pm is also a shell script
        that starts Java code:
# Script to start "pm" on the device, which has a very rudimentary
# shell.
#
base=/system
export CLASSPATH=$base/framework/pm.jar
exec app_process $base/bin com.android.commands.pm.Pm "$@"
Note
As with am, there’s much
          more to pm than I can cover in
          this book. I encourage you to explore its many uses, as it can be
          very helpful for scripts, either during development and/or in
          production.


svc



Unlike the two previous commands, svc is something of a Swiss Army knife in
        attempting to provide you with the ability to control several system
        services. Here’s the online help for 2.3/Gingerbread:
# svc
Available commands:
    help     Show information about the subcommands
    power    Control the power manager
    data     Control mobile data connectivity
    wifi     Control the Wi-Fi manager
The online help for 4.2/Jelly Bean shows that it can now also
        deal with USB:
root@android:/ # svc
Available commands:
    help     Show information about the subcommands
    power    Control the power manager
    data     Control mobile data connectivity
    wifi     Control the Wi-Fi manager
    usb      Control Usb state
Note how svc’s capabilities
        are limited to enabling and disabling the behavior of the designated
        system services:
# svc help power
Control the power manager

usage: svc power stayon [true|false|usb|ac]
         Set the 'keep awake while plugged in' setting.

# svc help data
Control mobile data connectivity

usage: svc data [enable|disable]
         Turn mobile data on or off.

       svc data prefer
          Set mobile as the preferred data network

# svc help wifi
Control the Wi-Fi manager

usage: svc wifi [enable|disable]
         Turn Wi-Fi on or off.

       svc wifi prefer
          Set Wi-Fi as the preferred data network
Overall, you should be aware of svc, but it’s unlikely that you’ll make
        regular use of it. Like am and
        pm, svc is also a script that uses app_process to start Java code.

ime



The ime command lets you
        communicate with the Input Method system service to control the
        system’s use of available input methods, and it’s the same in
        2.3/Gingerbread and 4.2/Jelly Bean:
# ime
usage: ime list [-a] [-s]
       ime enable ID
       ime disable ID
       ime set ID

The list command prints all enabled input methods.  Use
the -a option to see all input methods.  Use
the -s option to see only a single summary line of each.

The enable command allows the given input method ID to be used.

The disable command disallows the given input method ID from use.

The set command switches to the given input method ID.
Here’s the list of input methods available on the
        2.3/Gingerbread emulator, for example:
# ime list
com.android.inputmethod.latin/.LatinIME:
  mId=com.android.inputmethod.latin/.LatinIME mSettingsActivityName=com.android.
inputmethod.latin.LatinIMESettings
  mIsDefaultResId=0x7f080001
  Service:
    priority=0 preferredOrder=0 match=0x108000 specificIndex=-1 isDefault=false
    ServiceInfo:
      name=com.android.inputmethod.latin.LatinIME
      packageName=com.android.inputmethod.latin
      labelRes=0x7f0c001f nonLocalizedLabel=null icon=0x0
      enabled=true exported=true processName=com.android.inputmethod.latin
      permission=android.permission.BIND_INPUT_METHOD
Again, ime uses app_process from within a script to start
        Java code. Like svc, ime is a command worth keeping in mind, but
        you’re unlikely to use it very often.

input



input connects to the Window
        Manager system service and injects text or key events into the system.
        Here’s how it operates on 2.3/Gingerbread:
# input
usage: input [text|keyevent]
       input text <string>
       input keyevent <event_code>
Here’s how it works on 4.2/Jelly Bean:
root@android:/ # input
usage: input ...
       input text <string>
       input keyevent <key code number or name>
       input [touchscreen|touchpad] tap <x> <y>
       input [touchscreen|touchpad] swipe <x1> <y1> <x2> <y2>
       input trackball press
       input trackball roll <dx> <dy>
input’s functionality is very
        simple, however. It doesn’t, for instance, know anything about what’s
        receiving the events, just that the events are sent to whatever
        presently has focus. It’s therefore up to you to make sure that
        whatever needs to receive your input actually has focus. Evidently
        this is difficult when you’re not in front of the screen and are,
        instead, trying to script such behavior. Still, input gives you a tool to provide raw input
        from the command line. And, in some cases, the meaning of the input
        you send doesn’t require focus. Here’s how to click the Home button
        from the command line, for example:
# input keyevent 3
You’re probably wondering how I know that 3 is the Home key. Have a look at frameworks/base/core/java/android/view/KeyEvent.java
        and frameworks/base/native/include/android/keycodes.h
        in 2.3/Gingerbread or frameworks/native/include/android/keycodes.h
        in 4.2/Jelly Bean for the full list of key codes recognized by
        Android. The former, for example, contains code such as this:
...
    public static final int KEYCODE_HOME            = 3;
    /** Key code constant: Back key. */
    public static final int KEYCODE_BACK            = 4;
    /** Key code constant: Call key. */
    public static final int KEYCODE_CALL            = 5;
    /** Key code constant: End Call key. */
    public static final int KEYCODE_ENDCALL         = 6;
    /** Key code constant: '0' key. */
    public static final int KEYCODE_0               = 7;
...
Like all other commands, input is a script that relies on app_process.

monkey



There’s another tool that allows you to provide input to
        Android. It’s called monkey, and
        there’s an entire section about it in the app developer documentation
        entitled UI/Application
        Exerciser Monkey. As the documentation says, monkey can be used to provide random yet
        repeatable input to your application. This command, for instance, will
        send 50 pseudo-random inputs to the browser app:
# monkey -p com.android.browser -v 50
monkey can, however, do much
        more, as you can see from this output on 2.3/Gingerbread (4.2/Jelly
        Bean’s is fairly similar):
# monkey
usage: monkey [-p ALLOWED_PACKAGE [-p ALLOWED_PACKAGE] ...]
              [-c MAIN_CATEGORY [-c MAIN_CATEGORY] ...]
              [--ignore-crashes] [--ignore-timeouts]
              [--ignore-security-exceptions]
              [--monitor-native-crashes] [--ignore-native-crashes]
              [--kill-process-after-error] [--hprof]
              [--pct-touch PERCENT] [--pct-motion PERCENT]
              [--pct-trackball PERCENT] [--pct-syskeys PERCENT]
              [--pct-nav PERCENT] [--pct-majornav PERCENT]
              [--pct-appswitch PERCENT] [--pct-flip PERCENT]
              [--pct-anyevent PERCENT]
              [--pkg-blacklist-file PACKAGE_BLACKLIST_FILE]
              [--pkg-whitelist-file PACKAGE_WHITELIST_FILE]
              [--wait-dbg] [--dbg-no-events]
              [--setup scriptfile] [-f scriptfile [-f scriptfile] ...]
              [--port port]
              [-s SEED] [-v [-v] ...]
              [--throttle MILLISEC] [--randomize-throttle]
              [--profile-wait MILLISEC]
              [--device-sleep-time MILLISEC]
              [--randomize-script]
              [--script-log]
              [--bugreport]
              COUNT
Most interestingly, you can provide a script to monkey for running a predefined set of input
        instead of providing random input. This is a very useful feature for
        development, testing, and in-the-field diagnostics. Unfortunately,
        there’s virtually no documentation whatsoever on this very powerful
        feature of monkey. So, for
        reference, here’s a sample script file:
# This is a sample test script
# Lines starting with '#' are comments

# This part is the "header"
# monkey doesn't actually look for 'type', but does require 'count', 'speed' and
# 'start data >>'
type= custom
count= 100
speed= 1.0
start data >>

# These are the actual instructions to carry out
LaunchActivity(com.android.contacts,com.android.contacts.TwelveKeyDialer)
# Use this instead in 4.2./Jelly Bean (line-wrap is for book, remove to run)
#   LaunchActivity(com.android.contacts,com.android.contacts.activities.Dialtact
#   sActivity)
UserWait(2500)
DispatchPress(KEYCODE_1)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_6)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_ENTER)
UserWait(10000)
DispatchPress(KEYCODE_ENDCALL)
UserWait(200)
RunCmd(input keyevent 3)
UserWait(1000)
RunCmd(service call statusbar 1)
UserWait(2000)
RunCmd(service call statusbar 2)
To run this script, use this command line:
# monkey -f myscript 1
This script will essentially start the standard dialer, dial
        1-800-889-8969,[34] wait 10 seconds, hang up, return to the home screen, and
        then expand and collapse the status bar. Notice that the last part
        uses the RunCmd instruction to make
        the script run commands straight from the command line; incidentally
        these are commands we saw earlier. Of course this script is rather
        short and simple. You can create much longer scripts; you can possibly
        even integrate the invocation of such scripts into much more
        complicated shell scripts.
For a detailed understanding of the scripting language
        understood by monkey, along with
        the parameters each command can take, I invite you to take a look at
        monkey’s script interpreting code
        in development/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
        and look for EVENT_KEYWORD_. You
        should then find event keywords such as DispatchPress, UserWait, and many others.
To do its magic, monkey
        communicates with the Activity Manager, the Window Manager, and the
        Package Manager. It too is a shell script that relies on app_process to start the Java code that
        implements the utility.
Warning
If you look into the tool’s sources in development/cmds/monkey/, you will find a
          file called example_script.txt
          that appears to contain some scripted instructions. It’s unclear why
          this file is in the sources, as the semantics in that file do not
          correspond to the actual semantics expected by the monkey utility.


bmgr



Since 2.2/Froyo, Android has included a backup
        capability, allowing users to have their data backed up into the cloud
        so it can be restored later should they lose or change their device.
        Google itself provides some of this capability by acting as  one of the possible transports,[35] but others could provide alternative transports. The API
        provided within Android and to app developers is
        transport-independent. This remains, however, a functionality that is
        very specific to the use of Android for phones and tablets and may not
        be required in an embedded environment. There’s a tool that allows you
        to control the behavior of the Backup Manager system service from the
        command line:[36]
# bmgr
usage: bmgr [backup|restore|list|transport|run]
       bmgr backup PACKAGE
       bmgr enable BOOL
       bmgr enabled
       bmgr list transports
       bmgr list sets
       bmgr transport WHICH
       bmgr restore TOKEN
       bmgr restore PACKAGE
       bmgr run
       bmgr wipe PACKAGE

The 'backup' command schedules a backup pass for the named package.
Note that the backup pass will effectively be a no-op if the package
does not actually have changed data to store.

The 'enable' command enables or disables the entire backup mechanism.
If the argument is 'true' it will be enabled, otherwise it will be
disabled.  When disabled, neither backup or restore operations will
be performed.

The 'enabled' command reports the current enabled/disabled state of
the backup mechanism.

The 'list transports' command reports the names of the backup transports
currently available on the device.  These names can be passed as arguments
to the 'transport' command.  The currently selected transport is indicated
with a '*' character.

The 'list sets' command reports the token and name of each restore set
available to the device via the current transport.

The 'transport' command designates the named transport as the currently
active one.  This setting is persistent across reboots.

The 'restore' command when given a restore token initiates a full-system
restore operation from the currently active transport.  It will deliver
the restore set designated by the TOKEN argument to each application
that had contributed data to that restore set.

The 'restore' command when given a package name initiates a restore of
just that one package according to the restore set selection algorithm
used by the RestoreSession.restorePackage() method.

The 'run' command causes any scheduled backup operation to be initiated
immediately, without the usual waiting period for batching together
data changes.

The 'wipe' command causes all backed-up data for the given package to be
erased from the current transport's storage.  The next backup operation
that the given application performs will rewrite its entire data set.
If this is relevant to your use of Android, have a look at the
        Data
        Backup section of the app developer manual, along with the
        information provided by
        Google regarding its own backup transport. Much like many of
        the other commands we saw, app_process is used to start the actual Java
        code that interfaces with the Backup Manager service.

stagefright



One of Android’s key features is its rich media layer, and the
        AOSP includes tools that enable you to interact with it. More
        specifically, the stagefright
        command interacts with the Media Player service to allow you to do
        media playback. Here’s its online help in 2.3/Gingerbread (4.2/Jelly
        Bean’s is slightly expanded):
# stagefright -h
usage: stagefright
       -h(elp)
       -a(udio)
       -n repetitions
       -l(ist) components
       -m max-number-of-frames-to-decode in each pass
       -b bug to reproduce
       -p(rofiles) dump decoder profiles supported
       -t(humbnail) extract video thumbnail or album art
       -s(oftware) prefer software codec
       -o playback audio
       -w(rite) filename (write to .mp4 file)
       -k seek test
Here’s how you can play an .mp3 file, for example:
# stagefright -a -o /sdcard/trainwhistle.mp3
You might also want to investigate the record and audioloop utilities found alongside stagefright’s sources in frameworks/base/cmds/stagefright/ in
        2.3/Gingerbread and frameworks/av/cmds/stagefright/ in
        4.2/Jelly Bean. Their documentation is severely lacking, though, and
        few examples of their uses can be found online or elsewhere.
        Interestingly, though, all three utilities are coded in C, unlike the
        majority of the system service-specific utilities we’ve seen thus far,
        which were mostly written in Java and activated through a script using
        app_process. Also, while stagefright directly communicates with the
        Media Player service, the record
        and audioloop commands use an
        OMXClient, which conveniently wraps
        the communication to the same service.


Dalvik Utilities



We’ve already seen how we can send intents with the am command and therefore trigger the starting
      of new apps, each of which comes with its own Zygote-forked Dalvik
      instances. We’ve also seen how the app_process command can be used to start
      Java-coded command-line tools using the Android Runtime. There are some
      cases, however, where you may want to forgo all the Android-specific
      layers and dabble directly with Dalvik. Here are the commands that allow
      you to do just that.
dalvikvm



If you haven’t yet already asked yourself if there’s a way to
        actually start just a Dalvik VM without any Android-specific
        functionality, here’s the command you’ve been looking for:[37]
# dalvikvm -help

dalvikvm: [options] class [argument ...]
dalvikvm: [options] -jar file.jar [argument ...]

The following standard options are recognized:
  -classpath classpath
  -Dproperty=value
  -verbose:tag  ('gc', 'jni', or 'class')
  -ea[:<package name>... |:<class name>]
  -da[:<package name>... |:<class name>]
   (-enableassertions, -disableassertions)
  -esa
  -dsa
   (-enablesystemassertions, -disablesystemassertions)
  -showversion
  -help

The following extended options are recognized:
  -Xrunjdwp:<options>
  -Xbootclasspath:bootclasspath
  -Xcheck:tag  (e.g. 'jni')
  -XmsN  (min heap, must be multiple of 1K, >= 1MB)
  -XmxN  (max heap, must be multiple of 1K, >= 2MB)
  -XssN  (stack size, >= 1KB, <= 256KB)
  -Xverify:{none,remote,all}
  -Xrs
  -Xint  (extended to accept ':portable', ':fast' and ':jit')

These are unique to Dalvik:
  -Xzygote
  -Xdexopt:{none,verified,all}
  -Xnoquithandler
  -Xjnigreflimit:N  (must be multiple of 100, >= 200)
  -Xjniopts:{warnonly,forcecopy}
  -Xjnitrace:substring (eg NativeClass or nativeMethod)
  -Xdeadlockpredict:{off,warn,err,abort}
  -Xstacktracefile:<filename>
  -Xgc:[no]precise
  -Xgc:[no]preverify
  -Xgc:[no]postverify
  -Xgc:[no]concurrent
  -Xgc:[no]verifycardtable
  -Xgenregmap
  -Xcheckdexsum
  -Xincludeselectedop
  -Xjitop:hexopvalue[-endvalue][,hexopvalue[-endvalue]]*
  -Xincludeselectedmethod
  -Xjitthreshold:decimalvalue
  -Xjitblocking
  -Xjitmethod:signature[,signature]* (eg Ljava/lang/String\;replace)
  -Xjitcheckcg
  -Xjitverbose
  -Xjitprofile
  -Xjitdisableopt

Configured with: debugger profiler hprof jit(armv5te) show_exception=1

Dalvik VM init failed (check log file)
dalvikvm is actually a raw
        Dalvik VM without any connection to “Android” whatsoever. It doesn’t
        rely on the Zygote, nor does it include the Android Runtime. It simply
        starts a VM to run whatever class or JAR file you provide it. It’s
        actually not used very often in the AOSP itself, probably because
        there isn’t much in the AOSP that doesn’t run in the context of
        “Android.” The “preload” Java library in 2.3/Gingerbread, for example,
        uses it in frameworks/base/tools/preload/MemoryUsage.java
        in conjunction with adb to check
        the amount of memory used by a class on the target.

dvz



Yet another way to start a Dalvik VM is the dvz command:
# dvz --help
Usage: dvz [--help] [-classpath <classpath>]
[additional zygote args] fully.qualified.java.ClassName [args]

Requests a new Dalvik VM instance to be spawned from the zygote
process. stdin, stdout, and stderr are hooked up. This process remains
while the spawned VM instance is alive and forwards some signals.
The exit code of the spawned VM instance is dropped.
As the description implies, dvz actually acts in a similar fashion to
        the Activity Manager by requesting the Zygote to fork and start a new
        process. The only difference here is that the resulting process isn’t
        managed by the Activity Manager. Instead, it’s very much
        standalone.
It’s unclear whether this utility is meant to be heavily used,
        as the only instances of its use within 2.3/Gingerbread are in test
        code, specifically in dalvik/tests/etc/push-and-run-test-jar, and
        it’s not even included in the default builds in 4.2/Jelly Bean.
        Nevertheless, there might be instances where having this in your
        arsenal could be useful.
The Many Ways to Start Dalvik
Up to now, we’ve seen four different ways to start a
          Dalvik VM. It’s worth taking a moment to put them all in
          perspective. Table 7-1 describes each way
          to get a working Dalvik VM, along with what’s included in the VM and
          how it’s started.
Table 7-1. Ways to start Dalvik
	Command	Dalvik VM	Android Runtime	Zygote	Activity Manager	Mechanism
	dalvikvm	X	 	 	 	Uses libdvm.so
	app_process	X	X	 	 	Uses libandroid_runtime.so
	dvz	X	X	X	 	Uses libcutils[a]
	am	X	X	X	X	Talks to Activity Manager service
	[a] See system/core/libcutils/zygote.c,
                      which contains a zygote_run_wait() and a
                      zygote_run_oneshot().





am is the only command that
          provides us with a Dalvik VM instance that’s actually controlled by
          the Activity Manager. In all other cases, the VM is independent and
          does not have its lifecycle managed. am is also the only command that allows us
          to automatically trigger the execution of code contained in an
          .apk. All other commands
          require us to provide a specific class or JAR file.


dexdump



If you’d like to reverse-engineer Android apps or JAR files, you
        can do so with dexdump:
# dexdump
dexdump: no file specified
Copyright (C) 2007 The Android Open Source Project

dexdump: [-c] [-d] [-f] [-h] [-i] [-l layout] [-m] [-t tempfile] dexfile...

 -c : verify checksum and exit
 -d : disassemble code sections
 -f : display summary information from file header
 -h : display file header details
 -i : ignore checksum failures
 -l : output layout, either 'plain' or 'xml'
 -m : dump register maps (and nothing else)
 -t : temp file name (defaults to /sdcard/dex-temp-*)
Here’s how it can be used on a JAR file:
# dexdump /system/framework/services.jar
Processing '/system/framework/services.jar'...
Opened '/system/framework/services.jar', DEX version '035'
Class #0            -
  Class descriptor  : 'Lcom/android/server/AccessibilityManagerService$1;'
  Access flags      : 0x0000 ()
  Superclass        : 'Landroid/os/Handler;'
  Interfaces        -
  Static fields     -
  Instance fields   -
    #0              : (in Lcom/android/server/AccessibilityManagerService$1;)
      name          : 'this$0'
      type          : 'Lcom/android/server/AccessibilityManagerService;'
      access        : 0x1010 (FINAL SYNTHETIC)
  Direct methods    -
    #0              : (in Lcom/android/server/AccessibilityManagerService$1;)
      name          : '<init>'
      type          : '(Lcom/android/server/AccessibilityManagerService;)V'
      access        : 0x10000 (CONSTRUCTOR)
      code          -
      registers     : 2
      ins           : 2
      outs          : 1
      insns size    : 6 16-bit code units
      catches       : (none)
      positions     :
        0x0000 line=113
      locals        :
        0x0000 - 0x0006 reg=0 this Lcom/android/server/AccessibilityManagerServi
ce$1;
  Virtual methods   -
    #0              : (in Lcom/android/server/AccessibilityManagerService$1;)
      name          : 'handleMessage'
...
You can also ask it to dissassemble code:
# dexdump -d /system/app/Launcher2.apk
...
00ea5c:                                        |[00ea5c] com.android.common.Arra
yListCursor.<init>:([Ljava/lang/String;Ljava/util/ArrayList;)V
00ea6c: 1206                                   |0000: const/4 v6, #int 0 // #0
00ea6e: 1a07 e804                              |0001: const-string v7, "_id" //
string@04e8
00ea72: 7010 b400 0800                         |0003: invoke-direct {v8}, Landro
id/database/AbstractCursor;.<init>:()V // method@00b4
00ea78: 2190                                   |0006: array-length v0, v9
00ea7a: 1201                                   |0007: const/4 v1, #int 0 // #0
00ea7c: 1202                                   |0008: const/4 v2, #int 0 // #0
00ea7e: 3502 0f00                              |0009: if-ge v2, v0, 0018 // +000
f
00ea82: 4604 0902                              |000b: aget-object v4, v9, v2
00ea86: 1a05 e804                              |000d: const-string v5, "_id" //
string@04e8
00ea8a: 6e20 dd07 7400                         |000f: invoke-virtual {v4, v7}, L
java/lang/String;.compareToIgnoreCase:(Ljava/lang/String;)I // method@07dd
00ea90: 0a04                                   |0012: move-result v4
00ea92: 3904 3e00                              |0013: if-nez v4, 0051 // +003e
00ea96: 5b89 3600                              |0015: iput-object v9, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00ea9a: 1211                                   |0017: const/4 v1, #int 1 // #1
00ea9c: 3901 1400                              |0018: if-nez v1, 002c // +0014
00eaa0: d804 0001                              |001a: add-int/lit8 v4, v0, #int
1 // #01
00eaa4: 2344 d901                              |001c: new-array v4, v4, [Ljava/l
ang/String; // class@01d9
00eaa8: 5b84 3600                              |001e: iput-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00eaac: 5484 3600                              |0020: iget-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
...
Obviously the topic of reverse-engineering Android goes way
        beyond the scope of this book, but if this topic is of general
        interest, I recommend taking a look at your favorite online bookstore
        for books that specialize in Android security and forensics.



Support Daemons



While the bulk of Android’s intelligence is implemented in system
    services, there are a number of cases where a system service acts partly
    as intermediary to a native daemon that actually does the key operations
    required. There are likely two main reasons why this approach has been
    favored instead of conducting the actual operations directly as part of a
    system server: security and reliability.
As I explained in Chapter 1, Android’s permission
    model requires app developers who need to call on privileged operations to
    request specific permissions at build time. Typically, these permissions
    will resemble something like this in an app’s manifest file:
...
    <uses-permission android:name="android.permission.INTERNET" />
    <uses-permission android:name="android.permission.WAKE_LOCK" />
...
In this case, these permissions ask for the ability to open sockets
    and grab wakelocks. There are obviously a whole lot more permissions than
    this. Have a look at the app developer documentation on the full list of
    permissions
    available. Without these permissions, an app can’t conduct some of
    the most critical Android operations. And the main reason is that apps run
    as unprivileged users that can’t, for instance, invoke any system call
    that requires root privileges or access most of the key devices in
    /dev. Instead, apps must ask system
    services to act on their behalf and, in turn, system services check apps’
    permissions before following through with any requests they get.
System services don’t, however, themselves run as root. Instead, the
    system_server process runs as system; the mediaserver process runs as media; and the Phone app runs as radio. And if you check in /dev, you’ll see that some entries belong
    exclusively to some of these users. You’ll also see quite a few entries
    that belong to the root user. Hence,
    much like apps, system services can’t typically use system calls that
    require root privileges nor access key devices in /dev.
Instead, many key operations require system services to communicate
    through Unix domain sockets in /dev/socket/ with native daemons running as
    either root or as a specific user to conduct privileged operations. Many
    of those daemons are Android-specific, though some, such as bluetoothd prior to 4.2/Jelly Bean, we’ve
    already covered in Chapter 6 as being legacy Linux
    daemons.
In some specific cases, such as rild, for example, which takes care of the
    communication with the Baseband Processor, it  seems that the choice to run as a separate process might likely have more
    to do with reliability. Indeed, the phone functionality of a smartphone is
    so critical that it’s worth ensuring that its operation is independent of
    any potential issues that could affect the system services housed in the
    system_server process.
Let’s take a look at the main support daemons used by system
    services, their configuration, and related command-line tools. Note that
    we won’t cover the daemons we covered earlier, such as the Zygote; or
    those that aren’t tied to system services, such as ueventd and dumpsys; or those, such as bluetoothd or wpa_supplicant, that are not Android
    specific.
installd



While the Package Manager service’s job is to deal with the
      management of .apk files, it
      doesn’t have the proper privileges to carry out many of the
      manipulations and/or operations required to set up an app to run.
      Instead, it relies on installd, which
      runs as root in 2.3/Gingerbread and as the install user in 4.2/Jelly Bean, for key
      filesystem operations and commands. Running dexopt on an .apk to generate JIT-optimized .dex files for Dalvik, for instance, is done
      by installd on the Package Manager’s
      behalf at install time.
installd is started by this
      section of init.rc in
      2.3/Gingerbread (4.2/Jelly Bean does something fairly similar):
service installd /system/bin/installd
    socket installd stream 600 system system
It then opens /dev/socket/installd and listens for a
      connection, and thereafter listens for commands from the Package
      Manager. It doesn’t have a configuration file, nor does it take any
      command-line parameters. Neither is there any command-line tool to
      communicate with it independently of the Package Manager. Hence, the
      only way to activate installd from
      the command line is to use the pm
      command, which will communicate with the Package Manager, which will, in
      turn, communicate with installd if
      required.
installd’s sources are in
      frameworks/base/cmds/installd/, and
      you may want to take a look at install.c and commands.c. The former contains the list of
      commands recognized by installd, and
      the latter contains the actual implementation of those commands. For
      reference, here’s the snippet from 2.3/Gingerbread’s install.c that lists the commands recognized
      by installd (4.2/Jelly Bean adds a
      few more commands to that list):
struct cmdinfo cmds[] = {
    { "ping",                 0, do_ping },
    { "install",              4, do_install },
    { "dexopt",               3, do_dexopt },
    { "movedex",              2, do_move_dex },
    { "rmdex",                1, do_rm_dex },
    { "remove",               2, do_remove },
    { "rename",               3, do_rename },
    { "freecache",            1, do_free_cache },
    { "rmcache",              2, do_rm_cache },
    { "protect",              2, do_protect },
    { "getsize",              4, do_get_size },
    { "rmuserdata",           2, do_rm_user_data },
    { "movefiles",            0, do_movefiles },
    { "linklib",              2, do_linklib },
    { "unlinklib",            1, do_unlinklib },
};
Note that, much like many of the other daemons we’ll see below,
      the wire protocol between installd
      and the Package Manager is string based. Hence, the above snippet
      contains three entries per command: the command’s string as sent “on the
      wire,” the number of parameters expected, and the function within
      install.c to call when the command
      is received.

vold



vold takes care of many of the
      key operations required by the Mount Service, such as mounting and
      formatting volumes. Unlike installd,
      vold runs as root in both
      2.3/Gingerbread and 4.2/Jelly Bean, while the Mount Service is part of
      the System Server. vold is started by
      this section of 2.3/Gingerbread’s init.rc (the snippet in 4.2/Jelly Bean is
      similar):
service vold /system/bin/vold
    socket vold stream 0660 root mount
    ioprio be 2
Unlike the rest of the support daemons covered here, vold actually has a configuration file,
      /etc/vold.fstab. Here’s a snippet
      from the default vold.fstab found
      in system/core/rootdir/etc/
      describing the file’s semantics:
#######################
## Regular device mount
##
## Format: dev_mount <label> <mount_point> <part> <sysfs_path1...>
## label        - Label for the volume
## mount_point  - Where the volume will be mounted
## part         - Partition # (1 based), or 'auto' for first usable partition.
## <sysfs_path> - List of sysfs paths to source devices
######################
Here’s the section that relates to the SD card in the emulator,
      for example:
dev_mount sdcard /mnt/sdcard auto /devices/platform/goldfish_mmc.0 /devices/plat
form/msm_sdcc.2/mmc_host/mmc1
When vold starts, it parses
      this file and then opens /dev/socket/vold to listen for connections
      and commands. Unlike installd,
      there’s a command-line tool to communicate directly with vold:
Usage: vdc <monitor>|<cmd> [arg1] [arg2...]
The actual parameters expected by vdc on the command line are the same as those
      expected by vold from the Mount
      Service when it connects through the designated socket. There is,
      unfortunately, no document or online help that describes the complete
      command set. Instead, you must look at the CommandListener.cpp file in system/vold/ to see the implementation of
      vold’s command set.
You can, for instance, dump vold’s internal status:
# vdc dump
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
000 tmpfs /dev tmpfs rw,mode=755 0 0
000 devpts /dev/pts devpts rw,mode=600 0 0
000 proc /proc proc rw 0 0
000 sysfs /sys sysfs rw 0 0
000 none /acct cgroup rw,cpuacct 0 0
000 tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0
000 tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0
000 none /dev/cpuctl cgroup rw,cpu 0 0
000 /dev/block/mtdblock0 /system yaffs2 ro 0 0
000 /dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0
000 /dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
200 dump complete
In some cases, vdc actually
      offers online help:
# vdc volume format
500 Usage: volume format <path>
To customize the list of storage devices for your device in
      4.2/Jelly Bean, have a look at frameworks/base/core/res/res/xml/storage_list.xml.
      You may want to create an overlay version of that file in your device/acme/coyotepad/overlay/ to customize
      it for your device.

netd



The Network Management Service relies on netd for critical network configuration
      operations such as configuring network interfaces, setting up tethering,
      and running pppd. In this case, too,
      netd runs as root, while the Network
      Management Service is part of the System Server. netd is started by the following section of
      init.rc in
      2.3/Gingerbread:
service netd /system/bin/netd
    socket netd stream 0660 root system
In 4.2/Jelly Bean, however, the declaration has changed:
service netd /system/bin/netd
    class main
    socket netd stream 0660 root system
    socket dnsproxyd stream 0660 root inet
    socket mdns stream 0660 root system
netd  opens /dev/socket/netd and listens for connections
      and commands. It doesn’t take any command-line parameters, nor does it
      rely on any configuration file. Like vold, however, it has a command-line tool to
      communicate with it. Here’s the online help for that command in
      2.3/Gingerbread:
# ndc
Usage: ndc <monitor>|<cmd> [arg1] [arg2...]
Here’s the same help on 4.2/Jelly Bean:
root@android:/ # ndc
Usage: ndc [sockname] <monitor>|<cmd> [arg1] [arg2...]
Like vdc, the command-line
      parameters expected by ndc are the
      same as those expected by netd on its
      socket. And as with vold, you need to
      look at netd’s CommandListener.cpp in system/netd/ to understand its command
      semantics.
As with vdc, you can request
      netd status info with ndc:
# ndc interface list
110 lo
110 eth0
110 tunl0
110 gre0
200 Interface list completed
The Command Sets of vold and netd
Both vold and netd are constructed using the same C++
        mechanism provided by libsysutils
        and rely on a CommandListener.cpp
        to parse and dispatch commands sent to them. To understand the
        specific commands accepted by each, have a look at the constructors in
        CommandListener.cpp:
CommandListener::CommandListener() :
                 FrameworkListener("...") {
...
Each will contain calls to registerCmd(), which register objects
        defined farther below in the same file. Here’s an excerpt from
        vold for the dump command in 2.3/Gingerbread:
CommandListener::CommandListener() :
                 FrameworkListener("vold") {
    registerCmd(new DumpCmd());
    registerCmd(new VolumeCmd());
...
CommandListener::DumpCmd::DumpCmd() :
                 VoldCommand("dump") {
}

int CommandListener::DumpCmd::runCommand(SocketClient *cli,
                                         int argc, char **argv) {
    cli->sendMsg(0, "Dumping loop status", false);
    if (Loop::dumpState(cli)) {
        cli->sendMsg(ResponseCode::CommandOkay, "Loop dump failed", true);
    }
...
Every command accepted by vold or netd has a corresponding runCommand() that parses the parameters
        passed to that command. By running vdc
        dump on the command line as we did earlier, for instance,
        we’re invoking the runCommand()
        in the snippet above. Conversely, typing vdc
        volume list will invoke the following function and pass
        list as one part of the
        arguments:
int CommandListener::VolumeCmd::runCommand(SocketClient *cli,
                                                  int argc, char **argv) {
...


rild



The Phone system service, which is hosted in the Phone app, uses
      rild to communicate with the Baseband
      Processor. rild itself uses dlopen() to load a baseband-specific
      .so to interface to the actual
      baseband hardware. As I mentioned before, rild likely exists to ensure that the phone
      side of the system remains active even if a problem occurs with the rest
      of the stack.
In the case of the emulator, rild is started by this portion of the
      init.rc file in 2.3/Gingerbread
      (4.2/Jelly Bean’s version is practically identical):
service ril-daemon /system/bin/rild
    socket rild stream 660 root radio
    socket rild-debug stream 660 radio system
    user root
    group radio cache inet misc audio sdcard_rw
While it doesn’t have a configuration file, rild itself can take a few command-line
      parameters:
Usage: rild -l <ril impl library> [-- <args for impl library>]
If no RIL implementation library is provided on the command line,
      rild will attempt to locate the
      library using the rild.libpath global
      property. If that isn’t specified either, it’ll assume there’s no radio
      on the system loop around calls to sleep(). In the case of the emulator, the
      system relies on /system/lib/libreference-ril.so, which, as
      its name implies, is a reference implementation for manufacturers that
      need to implement real RIL libraries.
There are two Unix domain sockets used by rild: /dev/socket/rild, which is used by the Phone
      system service, and /dev/socket/rild-debug, which can be used by
      the radiooptions command to interact.
      Indeed, the latter is a command-line tool to communicate with rild:
Usage: radiooptions [option] [extra_socket_args]
           0 - RADIO_RESET,
           1 - RADIO_OFF,
           2 - UNSOL_NETWORK_STATE_CHANGE,
           3 - QXDM_ENABLE,
           4 - QXDM_DISABLE,
           5 - RADIO_ON,
           6 apn- SETUP_PDP apn,
           7 - DEACTIVE_PDP,
           8 number - DIAL_CALL number,
           9 - ANSWER_CALL,
           10 - END_CALL
If you’d like to know more about rild and radiooptions, have a look at their sources in
      hardware/ril/rild. The reference
      RIL implementation is itself in hardare/ril/reference-ril/.

keystore



Unlike the rest of the daemons I’ve presented thus far, keystore doesn’t actually service any of the
      system services. Instead, it’s used by a variety of different pieces of
      the system for the storage and retrieval of key-value pairs. The values
      it maintains are mainly security keys for connecting to networks or
      network infrastructure such as access points and VPNs, and the means to
      secure the values is a user-defined password. Clearly, the goal of
      having a separate daemon for the storage of this information is to
      increase the system’s overall security.
keystore is started by this
      portion of the init.rc file in
      2.3/Gingerbread (4.2/Jelly Bean does substantially the same):
service keystore /system/bin/keystore /data/misc/keystore
    user keystore
    group keystore
    socket keystore stream 666
keystore doesn’t have a
      configuration file, but it does expect to be provided with a directory
      to store each key-pair value. Typically, this is /data/misc/keystore, as you can see before.
      keystore then listens in to /dev/socket/keystore for connections and
      commands. Several native daemons connect to keystore to retrieve keys, such as wpa_supplicant, mtpd, and racoon. But the Settings app also connects to
      keystore to list and insert new
      keys.
There’s also a command-line utility for communicating with
      keystore:
Usage: keystore_cli action [parameter ...]
You’ll find both the sources of keystore and keystore_cli in frameworks/base/cmds/keystore/ in
      2.3/Gingerbread and in system/security/keystore/ in 4.2/Jelly
      Bean.

Other Support Daemons



There are a few additional daemons that play a more minor role,
      which we won’t cover here, such as mtpd and racoon. The former is used for VPNs and is
      found in external/mtpd/, and the
      latter is for IPsec and is found in external/ipsec-tools/.
There are possibly, of course, other daemons that may be running
      on your system for specific purposes, and/or you may want to add your
      own custom daemons. Have a look back at Chapter 4 for
      instructions on how to add your own custom binaries to the AOSP’s build
      system. Remember that if you want a daemon to be started at startup by
      init, you need to add a service declaration for it in either the main
      init.rc or in the board-specific
      init.<device_name>.rc.


Hardware Abstraction Layer



As I explained in Chapter 2, Android relies on a
    Hardware Abstraction Layer (HAL) to interface with hardware. Indeed,
    system services almost never interact with devices through /dev entries directly. Instead, they go through
    HAL modules, typically shared libraries, to talk to hardware, as is
    detailed in Table 2-1.
Android’s HAL implementation is found in hardware/. Most importantly, you’ll find the
    definitions of the interfaces between the Framework and the HAL modules in
    header files in hardware/libhardware/include/hardware/ and
    hardware/libhardware_legacy/include/hardware_legacy/.
    The header files therein provide the exact API required for each type of
    hardware to be supported under Android. You’ll also find example
    implementations of some of those HAL modules in the sources for the lead
    devices in device/.
Ideally, you want to avoid having to implement your own HAL modules
    for existing system services. Instead, you should query your SoC or board
    vendor for such modules. HAL module writing requires intricate knowledge
    of the internals of the system server that the module has to interact with
    and the specific Linux device driver required to interact with the
    hardware. Learning how to do this right can be a very time-intensive
    process, especially since the HAL interface tends to evolve with every new
    version of Android. I therefore strongly recommend that you use
    components/boards for which most HAL modules have already been made by the
    manufacturer or the SoC vendor.
Generally, given Android’s market success, component and SoC vendors
    make a big effort to ensure that Android runs well with their products.
    This means they either provide you with fully functional AOSPs and
    Android-ready kernels for eval boards, and/or HAL modules and Linux
    drivers for their components. So, at the risk of sounding redundant,
    implement your own HAL modules for hardware types already recognized by
    Android only as a last resort. Instead, talk to your SoC or component
    vendor to get your hands on the HAL modules and drivers (or kernel)
    required to run Android on your hardware.
Note
All major SoC vendors provide—in one way or another—access to
      ready-to-use AOSPs and kernels for running on the eval boards. Such is
      the case for TI, Qualcomm, Freescale, Samsung, and many others. If
      you’re building your own custom board based on one of their designs, I
      recommend that you grab those reference AOSP trees and customize them
      for your own use. Attempting to start from scratch to port Android to
      your hardware using the AOSP trees provided directly from Google is not
      likely to be a good use of your time or fit your time-to-market
      requirements.

If you absolutely must implement your own HAL modules for existing
    system services, then refer to the header files I alluded to previously,
    which define the APIs required by each HAL module type, and take as much
    inspiration as possible from the reference HAL implementations provided
    for the lead devices in the device/
    directory. For 2.3/Gingerbread, for example, have a look at the various
    lib*/ directories in device/samsung/crespo/. In the case of
    4.2/Jelly Bean, have a look at device/asus/grouper/ and device/samsung/tuna/.



[32] Interestingly, a new ro.config.headless global property has
            been added to the official AOSP releases since 4.1/Jelly Bean.
            That property appears to allow the execution of the stack without
            a user interface.

[33] These are dot-separated names, such as com.android.launcher for the Launcher app,
          for example.

[34] The publisher’s phone number, if you’re wondering.

[35] A “transport” in the context of bmgr is the required engine to interface
            with a given cloud service.

[36] This is the output on 2.3/Gingerbread. 4.2/Jelly Bean’s is
            fairly similar.

[37] This is the output from 2.3/Gingerbread. 4.2/Jelly Bean’s
            output is fairly similar.


Appendix A. Legacy User-Space



As I explained in Chapter 2, despite being based on
  the Linux kernel, Android bears little resemblance to any other Linux system
  out there. Indeed, as you can see in Figure 2-1,
  Android’s user-space, which we explored in Chapters 6 and 7, is a custom creation of Google. Hence,
  if you’re familiar with “legacy” Linux systems or come from an embedded
  Linux background, you may find yourself reminiscing about classic Linux
  tools and components you’ve been using for a long time. This appendix will
  show you how to get a legacy Linux user-space to coexist side by side with
  the AOSP on top of the same Linux kernel.
Basics



To start, we need to agree on what exactly a “legacy” Linux
    user-space is. For the present discussion, we’ll assume we’re talking
    about a Filesystem Hierarchy Standard (FHS)-compliant root filesystem. As
    I mentioned earlier, Android’s root filesystem isn’t FHS-compliant, and it
    crucially doesn’t use key FHS directories such as /bin and /lib, allowing us to superimpose, side by side
    with it, a root filesystem that does use these directories.
Now, I’m not saying you’ll be able to use these instructions to get
    yourself a root filesystem that houses both the AOSP and, say, a large
    distribution like Ubuntu. There are a lot more details about Ubuntu as a
    distribution and the AOSP that you’d need to take into account than
    resolving how to match a few of the top-level directories of the root
    filesystem. Nevertheless, if you are familiar with how to create a basic
    root filesystem for an embedded Linux system, it should become relatively
    clear how you could get your favorite tools and libraries, such as BusyBox
    and glibc, loaded on the same root filesystem as the AOSP. And if you’re
    interested in something more ambitious, such as getting Ubuntu or Fedora
    to sit side by side with the AOSP in the same root filesystem, these
    explanations offer a good introduction to getting started.
Before starting on this path, though, it’s worth answering a general
    question on this approach: Why bother? Indeed, why take the time to try to
    get any sort of legacy Linux software package to sit on the same kernel
    alongside the AOSP? Why not just use the AOSP, since it’s already got a C
    library, command-line tools, a rich user-space, etc.? Can’t the AOSP do
    everything needed? No?
The main reason a developer would want a legacy Linux user-space
    alongside Android is to be able to port existing Linux applications over
    to a system that runs Android without
    having to port them over to Android. For instance, if you have legacy code
    that works just fine on glibc, it might be easier to just get glibc onto
    your root filesystem than to try to port your legacy code over to Bionic.
    Indeed, as you can see by reading Bionic’s own documentation in bionic/libc/, especially those files in the
    docs/ directory, Bionic has many
    limitations and differences when compared with something more mainstream
    like glibc. It’s not Posix-compliant, for example, nor does it expose
    System V IPC calls. By relying on a well-known C library such as glibc,
    you avoid any of these portability issues.
Another good reason for reusing components from classic Linux
    systems is to avoid having to deal with Android’s build system. As we saw
    in Chapter 4, Android’s build system is nonrecursive.
    Therefore, if you would like to reuse large, legacy software packages,
    you’d typically have to convert their build systems to use Android’s build
    system .mk files. As a matter of
    fact, some of the very well-known packages imported into the AOSP’s
    external/ directory have had their
    build files re-created for use within the AOSP. D-Bus, for instance, which
    is traditionally based on autoconf/automake, has had Android.mk files added to its sources in
    external/dbus/ so it will build
    within the AOSP. None of the files originally used for its build, such as
    the configure script, are used when
    it’s built within the AOSP. An easy way out of this is to generate a root
    filesystem independently of the AOSP for those legacy packages you need
    and then merge the result with the AOSP.
Put another way, there’s benefit to reusing existing legacy build
    systems. For example, there’s no reason not to use something like Yocto or
    Buildroot to generate a root filesystem that fits your needs and then
    merge the result with the AOSP. Indeed, there are a lot of existing build
    systems and packaging systems that can generate very useful output using
    legacy methods to mix with the AOSP. In some cases, the cost/benefit
    equation might make it inconceivable to port a package’s build system over
    to the AOSP’s simply because of the original project’s codebase
    size.
Note
None of the present explanations should preclude you from trying
      to build your legacy code against Bionic. There is a slight chance that
      the changes required are marginal. Also, as I showed in Chapter 4, you can put together Android.mk files that call on existing
      recursive make-based build scripts.
Still, knowing how to circumvent Bionic is a very useful trick. So
      I encourage you to read on.


Theory of Operation



Once you’ve decided that you want to get legacy Linux user-space
    components to work alongside with the AOSP, the next question is how. This
    is actually a two-part question. First, how do we get the legacy
    user-space and the AOSP onto the same filesystem images? And second, how
    does this legacy user-space interact with the AOSP’s components? Let’s
    start by addressing the former.
Assuming you’re using a method like that covered in
    Building Embedded Linux Systems, 2nd ed. to generate
    a  glibc-based root filesystem, Figure A-1
    illustrates the general approach of how this root filesystem can be made
    to integrate with the AOSP. Essentially, the project environment PRJROOT is made to host the creation of a
    glibc-based root filesystem. The AOSP build system is then modified to
    copy the contents of that root filesystem into the images generated by the
    AOSP. And since the AOSP doesn’t originally contain a /bin and a /lib, these directories will be created and
    populated by the contents of the glibc-based root filesystem.
Note
The rest of these explanations assume that you either already have
      a glibc-based root filesystem that you want to merge with the AOSP or
      you know how to create one. If you don’t have one and don’t know how to
      create one, I recommend you take a look at Building Embedded
      Linux Systems, 2nd ed. (which was originally written by yours
      truly).

Once the matter of merging the legacy components into the AOSP is
    solved, the other key issue to discuss is how to use those components
    and/or interact with them within the AOSP. Put simply, all command-line
    utilities and binaries can be used as is, straight from Android’s command
    line. For example, if you have /bin/foo and /bin is in the Android path, you can just go
    ahead and type something like adb shell
    and then type foo on the command line
    to run the binary. There’s likely more you’ll want to do, such as
    integrating into Android’s init; we’ll
    discuss this shortly.
[image: Merging a legacy Linux user-space with the AOSP]

Figure A-1. Merging a legacy Linux user-space with the AOSP

Basic command-line operations and init configuration aside, though, a more
    fundamental discussion point is how to get components running on different
    C libraries to communicate together. How does a daemon linked against
    glibc, for instance, sync with a daemon linked against Bionic? Or how does
    a command-line tool linked against glibc communicate with a Bionic-linked
    daemon?
Remember that despite being linked against different C libraries,
    everything is running on the same kernel. Hence, whatever IPC mechanisms
    exist in the kernel can still be used by whatever binary is running on it.
    And as you can see in Figure A-2, it’s perfectly
    feasible to have a glibc-based component use regular IPC mechanisms to
    communicate with a Bionic-based component within the AOSP. Sockets, for
    instance, are a prime candidate, given that they’re implemented in both
    glibc and Bionic. System V IPC mechanisms, on the other hand, are
    available only in glibc. You could also look at using Binder, though you’d
    have to get libbinder to compile against glibc.
[image: Communication between a glibc-based stack and the AOSP]

Figure A-2. Communication between a glibc-based stack and the AOSP

Many development teams I work with, for instance, have developed
    substantial glibc-based stacks over the years that they typically run in
    embedded Linux systems. And while working on integrating Android in their
    product lines, they’re often confronted with having to make a choice
    between porting those stacks and their control logic over to Bionic or
    figuring out a way for those legacy stacks to coexist in a friendly
    fashion with the AOSP. One potential path for most of these teams is to
    create a setup like the one I just described and then have the control
    logic of the legacy stack communicate with newly created Android
    components using sockets. It’s not a silver bullet, but it’s a useful
    trick to master in case it applies to your design, or to part of
    it.

Merging with the AOSP



Now that we’ve covered the essentials, let’s actually put this
    method into practice. The first thing you’ll need, of course, is a
    functional legacy filesystem to merge with the AOSP. In this specific
    case, assume that I followed the instructions described in
    Building Embedded Linux Systems, 2nd ed. to create a
    root filesystem based on glibc that contains BusyBox. Hence, we have
    something like this:
$ ls -l ${PRJROOT}/rootfs
total 16
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 bin
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 lib
lrwxrwxrwx 1 karim karim   11 2012-10-26 23:12 linuxrc -> bin/busybox
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 sbin
drwxr-xr-x 4 karim karim 4096 2012-10-26 23:12 usr
To make things simpler, I’m going to copy that root filesystem into
    a new directory in my AOSP:
$ cp -a ${PRJROOT}/rootfs path_to_my_aosp/rootfs-glibc/
I now have a rootfs-glibc
    directory at the top level of my AOSP. This directory won’t be of much
    use, however, given that there’s no Android.mk that takes it into account, and if
    you build the AOSP at this point, it’ll be completely ignored. To fix
    this, we can create such an Android.mk to force the AOSP’s build system to
    copy the content of our glibc-based root filesystem. Here’s my rootfs-glibc/Android.mk, as an example of
    making this work in 2.3/Gingerbread:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

# This part is a hack, we're doing "addprefix" because if we don't,
# this dependency will be stripped out by the build system
GLIBC_ROOTFS := $(addprefix $(TARGET_ROOT_OUT)/, rootfs-glibc)

$(GLIBC_ROOTFS):
mkdir -p $(TARGET_ROOT_OUT)
cp -af $(TOPDIR)rootfs-glibc/* $(TARGET_ROOT_OUT)
rm $(TARGET_ROOT_OUT)/Android.mk
# The last command just gets rid of this very .mk since it's copied as is

ALL_PREBUILT += $(GLIBC_ROOTFS)
This will cause the content of rootfs-glibc to be merged into the ramdisk.img generated by the AOSP. That,
    though, is insufficient to make our glibc-based stack function properly on
    the resulting root filesystem. Indeed, as I explained in Chapter 6, the filesystem permissions of all files in the
    rootfs are dictated by the system/core/include/private/android_filesystem_config.h,
    and it has to be amended in order to keep the files in the /lib directory
    executable. Otherwise, the glibc components are put into the root
    filesystem’s /lib directory but
    aren’t executable and, therefore, all the binaries linked against glibc
    will fail to run. Hence, as I did in Chapter 6, you need
    to find the android_files array in
    android_filesystem_config.h and
    modify it so that it looks something like this in 2.3/Gingerbread:
...
    { 00750, AID_ROOT,      AID_SHELL,     "sbin/*" },
    { 00755, AID_ROOT,      AID_ROOT,      "bin/*" },
    { 00755, AID_ROOT,      AID_ROOT,      "lib/*" },
    { 00750, AID_ROOT,      AID_SHELL,     "init*" },
    { 00644, AID_ROOT,      AID_ROOT,       0 },
};
With these modifications, our glibc-linked binaries will work just
    fine in the root filesystem generated by the AOSP. Yet this isn’t ideal
    since we’re using Android’s shell and Toolbox’s commands, both of which
    are severely limited when compared with BusyBox’s capabilities. Ideally,
    we should use BusyBox’s shell and its command-line utilities. A few more
    changes are required to make that a reality. First, we need to modify
    init.rc so that the newly added
    /bin, which contains BusyBox’s
    commands, appears in the PATH prior to
    /system/bin, which contains Toolbox’s
    commands. Here’s the modified system/core/rootdir/init.rc from
    2.3/Gingerbread:
...
# setup the global environment
    export PATH /bin:/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
    export LD_LIBRARY_PATH /vendor/lib:/system/lib
    export ANDROID_BOOTLOGO 1
    export ANDROID_ROOT /system
...
Finally, at least in the case of 2.3/Gingerbread, we’ll want to use
    BusyBox’s shell instead of the default Android shell. There are two things
    to change to do that. First, we need to modify init.rc so that it uses BusyBox’s shell for the
    console. By default, here’s how init.rc starts the console:
service console /system/bin/sh
...
To use BusyBox’s shell instead of the default Android shell, all we
    need to do is make init.rc run
    /bin/sh instead of /system/bin/sh:
service console /bin/sh
...
Also, it would be great if adb
    shell gave us access to BusyBox’s shell as well. The shell run
    by adbd on the target is defined in
    system/core/adb/services.c:
...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
#define SHELL_COMMAND "/system/bin/sh"
#endif
...
All we need to do here is comment out the default and make adbd run /bin/sh instead:
...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
//#define SHELL_COMMAND "/system/bin/sh"
#define SHELL_COMMAND "/bin/sh"
#endif
...
The sum of these changes will give us a new AOSP root filesystem
    that contains glibc and BusyBox, and which uses BusyBox’s shell as its
    default shell and BusyBox’s commands as its default commands.
Warning
If you’re using 4.2/Jelly Bean, replacing the default shell or
      Toolbox’s default commands may not be as useful as in 2.3/Gingerbread.
      The reason is that the AOSP has replaced the old sh
      with mksh, which provides many of the
      features of modern shells, and some of the Toolbox’s basic commands,
      such as ls, have been fixed to remove
      their most obvious annoyances.


Using the Combined Stacks



Once you boot the system with the new root filesystem, you’ll get
    all the benefits of having BusyBox and glibc. Here’s a shell session in
    2.3/Gingerbread with Android’s shell and Toolbox’s commands:
# ls
config
cache
sdcard
acct
mnt
vendor
d
etc
...
init
default.prop
data
root
dev
# grep -A 5 -i "\-Xzygote" init.rc
grep: not found
# ls sysTAB   TAB       TAB
As you can see, ls’s output is
    not alphabetically ordered, grep is an
    unrecognized command, and tab completion simply doesn’t exist. Here are
    the same commands with BusyBox:
/ # ls
acct                 init                 sdcard
bin                  init.goldfish.rc     sys
cache                init.rc              system
config               lib                  ueventd.goldfish.rc
d                    linuxrc              ueventd.rc
data                 mnt                  usr
default.prop         proc                 vendor
dev                  root
etc                  sbin
/ # grep -A 5 -i "\-Xzygote" init.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote 
--start-system-server
    socket zygote stream 666
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
/ # ls sysTABTAB
sys/     system/
/ # ls sys
Furthermore, while Android’s shell doesn’t have any sort of
    color-coding to differentiate file types or files from directories,
    BusyBox’s does, as you can see in Figure A-3.
[image: Sample BusyBox shell session]

Figure A-3. Sample BusyBox shell session

But BusyBox doesn’t stop there. In addition to including commands
    such as vi, thereby allowing you to
    edit files straight on the target, BusyBox also includes some common
    daemons like httpd and sendmail. If you try to connect to port 80 using
    the regular browser on a typical Android device, you’ll get something like
    Figure A-4.
If BusyBox is available on your target, however, you can add a
    service declaration for httpd in
    init.rc:
service httpd /usr/sbin/httpd
    oneshot
And then you can actually connect to it as you can see in Figure A-5—the 404 message is in fact the
    proper message from the web server, indicating that there’s no index.html available.
[image: The browser trying to connect to localhost]

Figure A-4. The browser trying to connect to localhost

[image: The browser connecting to BusyBox’s httpd]

Figure A-5. The browser connecting to BusyBox’s httpd

As a general rule, BusyBox’s command set is far larger than
    Toolbox’s. Here’s Toolbox’s command set in 2.3/Gingerbread, for
    instance:
cat, chmod, chown, cmp, date, dd, df, dmesg, getevent, getprop, hd, id,
ifconfig, iftop, insmod, ioctl, ionice, kill, ln, log, ls, lsmod, lsof, mkdir,
mount, mv, nandread, netstat, newfs_msdos, notify, printenv, ps, reboot, renice,
rm, rmdir, rmmod, route, schedtop, sendevent, setconsole, setprop, sleep, smd,
start, stop, sync, toolbox, top, umount, uptime, vmstat, watchprops, wipe
4.2/Jelly Bean has about a half-dozen more commands. In contrast,
    here’s BusyBox’s command set:
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arp, arping, ash, awk,
base64, basename, beep, blkid, blockdev, bootchartd, brctl, bunzip2, bzcat,
bzip2, cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst,
chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df,
dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand,
expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole,
fgrep, find, findfs, flock, fold, free, freeramdisk, fsck, fsck.minix, fsync,
ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, halt, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat,
ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc,
ln, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr,
ls, lsattr, lsmod, lspci, lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime,
man, md5sum, mdev, mesg, microcom, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2,
mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more,
mount, mountpoint, mpstat, mt, mv, nameif, nbd-client, nc, netstat, nice,
nmeter, nohup, nslookup, ntpd, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop,
printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readahead, readlink,
readprofile, realpath, reboot, reformime, remove-shell, renice, reset, resize,
rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch,
setconsole, setfont, setkeycodes, setlogcons, setsid, setuidgid, sh, sha1sum,
sha256sum, sha512sum, showkey, slattach, sleep, smemcap, softlimit, sort, split,
start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, tcpsvd, tee, telnet,
telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute,
traceroute6, true, tty, ttysize, tunctl, udhcpc, udhcpd, udpsvd, umount, uname,
unexpand, uniq, unix2dos, unlzma, unlzop, unxz, unzip, uptime, usleep, uudecode,
uuencode, vconfig, vi, vlock, volname, wall, watch, watchdog, wc, wget, which,
who, whoami, xargs, xz, xzcat, yes, zcat, zcip
Hence, even if you were to include BusyBox during development only
    and stripped it out for the production images, the benefits are obvious.
    In fact, if you’ve been used to BusyBox, being forced to use plain Toolbox
    is likely akin to torture.
Also, if you look in /lib,
    you’ll find all the regular glibc components you’re used to, whereas none
    of this exists if you’re using the plain AOSP:
/ # ls /lib
ld-2.9.so               libm-2.9.so             libnss_nisplus-2.9.so
ld-linux.so.3           libm.so.6               libnss_nisplus.so.2
libBrokenLocale-2.9.so  libmemusage.so          libpcprofile.so
libBrokenLocale.so.1    libnsl-2.9.so           libpthread-2.9.so
libSegFault.so          libnsl.so.1             libpthread.so.0
libanl-2.9.so           libnss_compat-2.9.so    libresolv-2.9.so
libanl.so.1             libnss_compat.so.2      libresolv.so.2
libc-2.9.so             libnss_dns-2.9.so       librt-2.9.so
libc.so.6               libnss_dns.so.2         librt.so.1
libcrypt-2.9.so         libnss_files-2.9.so     libthread_db-1.0.so
libcrypt.so.1           libnss_files.so.2       libthread_db.so.1
libdl-2.9.so            libnss_hesiod-2.9.so    libutil-2.9.so
libdl.so.2              libnss_hesiod.so.2      libutil.so.1
libgcc_s.so             libnss_nis-2.9.so
libgcc_s.so.1           libnss_nis.so.2

Caveats and Pending Issues



Now that you can see what can be done, let’s look at what this type
    of configuration entails. First, the new C library and whatever binaries
    you’re adding are going to make the root filesystem larger. Whereas the
    default ramdisk.img built by a 2.3.x
    AOSP is about 144KB, the one containing the glibc and BusyBox above is
    2.6MB. You can of course trim the glibc-based root filesystem as embedded
    Linux developers have always done, by removing unnecessary glibc
    components and using the strip command.
    It may also be that storage is a nonissue in your embedded system. After
    all, on this same build, system.img
    is 66MB.
Note
You could, of course, also install glibc libraries in another
      location from /lib and avoid using
      /bin if you wanted to. For
      instance, you could create a /legacy directory and put all your legacy
      content in that directory and mount it from a separate image to keep the
      root filesystem RAM disk minimal in size, as it is by default. Still,
      it’s obviously simpler to just use the traditional /bin and /lib as spelled out by the FHS.

There’s also the fact that you’ve now got two C libraries that need
    to be loaded into RAM, Bionic and glibc. Again, this might be a nonissue
    in your design, but you should be aware of this. One area where adding
    libraries has no impact, however, is CPU performance. Only the load
    imposed by the additional binaries you package will actually impact the
    CPU.
A more subtle problem is what to do with /etc. Indeed, in Android’s root filesystem,
    /etc is a symbolic link to /system/etc. This is a departure from the FHS
    and works fine for the AOSP. If you’ve got a legacy embedded Linux
    filesystem you want to merge with the AOSP’s root filesystem, you’re going
    to have to make a choice. Either copy the contents of your /etc to /system/etc and keep the symbolic link as is,
    or copy the contents of /system/etc to your
    /etc. This is an annoyance, but it
    shouldn’t stop you from using the technique explained here.
At runtime you may encounter a few quirks, because Toolbox’s tools
    operate under different assumptions from their regular Linux counterparts.
    Usually, for instance, ps uses
    /etc/passwd to match UIDs to user
    names. In the case of Android, there’s no /etc/passwd. Instead, users and groups are
    hardcoded into the android_filesystem_config.h file we covered
    earlier. Hence, BusyBox’s ps is unable
    to match processes with usernames:
/ # ps
PID   USER     TIME   COMMAND
    1 0          0:08 /init
...
   26 0          0:00 /sbin/ueventd
   27 1000       0:00 /system/bin/servicemanager
   28 0          0:00 /system/bin/vold
   29 0          0:00 /system/bin/netd
   30 0          0:00 /system/bin/debuggerd
   31 1001       0:00 /system/bin/rild
   32 0          0:10 zygote /bin/app_process -Xzygote /system/bin --zygote --s
   33 1013       0:00 /system/bin/mediaserver
   34 1002       0:00 /system/bin/dbus-daemon --system --nofork
   35 0          0:00 /system/bin/installd
   36 1017       0:00 /system/bin/keystore /data/misc/keystore
   38 0          0:00 /system/bin/qemud
   40 2000       0:00 /system/bin/sh
   41 0          0:00 /sbin/adbd
   64 1000       0:22 system_server
  116 10018      0:01 com.android.inputmethod.latin
  124 1001       0:03 com.android.phone
  125 1000       0:18 com.android.systemui
...
Toolbox’s ps has no such
    issues:
# ps
USER     PID   PPID  VSIZE  RSS     WCHAN    PC         NAME
root      1     0     268    180   c009b74c 0000875c S /init
...
root      26    1     232    136   c009b74c 0000875c S /sbin/ueventd
system    27    1     804    188   c01a94a4 afd0b6fc S /system/bin/servicemanager
root      28    1     3864   300   ffffffff afd0bdac S /system/bin/vold
root      29    1     3836   316   ffffffff afd0bdac S /system/bin/netd
root      30    1     664    176   c01b52b4 afd0c0cc S /system/bin/debuggerd
radio     31    1     5396   432   ffffffff afd0bdac S /system/bin/rild
root      32    1     60876  16396 c009b74c afd0b844 S zygote
media     33    1     17976  1000  ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34    1     1256   216   c009b74c afd0c59c S /system/bin/dbus-daemon
root      35    1     812    220   c02181f4 afd0b45c S /system/bin/installd
keystore  36    1     1744   200   c01b52b4 afd0c0cc S /system/bin/keystore
root      38    1     824    260   c00b8fec afd0c51c S /system/bin/qemud
shell     40    1     732    192   c0158eb0 afd0b45c S /system/bin/sh
root      41    1     3364   168   ffffffff 00008294 S /sbin/adbd
system    64    32    119832 26144 ffffffff afd0b6fc S system_server
app_18    116   32    77272  17604 ffffffff afd0c51c S com.android.inputmethod.
                                                       latin
radio     124   32    86120  17996 ffffffff afd0c51c S com.android.phone
system    125   32    73320  19012 ffffffff afd0c51c S com.android.systemui
...
Also, Toolbox commands sometimes have different parameters from
    traditional Linux commands. Toolbox’s ps for instance, accepts the -t parameter to list the threads in addition to
    the processes:
# ps -t
...
system    64    32    119832 26144 ffffffff afd0b6fc S system_server
system    65    64    119832 26144 c0059e24 afd0c738 S HeapWorker
system    66    64    119832 26144 c0059e24 afd0c738 S GC
system    67    64    119832 26144 c0047be8 afd0bfec S Signal Catcher
system    68    64    119832 26144 c02181f4 afd0c22c S JDWP
system    69    64    119832 26144 c0059e24 afd0c738 S Compiler
system    70    64    119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system    71    64    119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system    72    64    119832 26144 c0059e24 afd0c738 S SurfaceFlinger
system    74    64    119832 26144 c0047be8 afd0bfec S DisplayEventThr
system    75    64    119832 26144 c00b8fec afd0c51c S er.ServerThread
system    77    64    119832 26144 c00b8fec afd0c51c S ActivityManager
system    81    64    119832 26144 c0059f2c afd0c738 S ProcessStats
system    82    64    119832 26144 c00b8fec afd0c51c S PackageManager
system    83    64    119832 26144 c00b7db0 afd0b45c S FileObserver
system    84    64    119832 26144 c00b8fec afd0c51c S AccountManagerS
system    86    64    119832 26144 c00b8fec afd0c51c S SyncHandlerThre
...
BusyBox’s ps expects -T (uppercase T instead of
    lowercase t) instead and complains:
/ # ps -t
ps: invalid option -- 't'
BusyBox v1.18.3 (2011-03-09 09:33:40 PST) multi-call binary.

Usage: ps [-o COL1,COL2=HEADER] [-T]

Show list of processes

Options:
	-o COL1,COL2=HEADER	Select columns for display
	-T			Show threads
In most cases, these incompatibilities cause annoyances, not actual
    breakage. And, ultimately, we haven’t gotten rid of Toolbox or any of the
    default AOSP commands. So you can still invoke any of Toolbox’s commands
    by providing the full command path:
# / /system/bin/ps
USER     PID   PPID  VSIZE  RSS     WCHAN    PC         NAME
root      1     0     268    180   c009b74c 0000875c S /init
root      2     0     0      0     c004e72c 00000000 S kthreadd
root      3     2     0      0     c003fdc8 00000000 S ksoftirqd/0
root      4     2     0      0     c004b2c4 00000000 S events/0
root      5     2     0      0     c004b2c4 00000000 S khelper
root      6     2     0      0     c004b2c4 00000000 S suspend
root      7     2     0      0     c004b2c4 00000000 S kblockd/0
...
There is at least one case I have noticed where putting BusyBox
    ahead of Toolbox in the PATH causes
    breakage. In the case of dumpstate, for
    instance, the default ps command from
    the path is used to retrieve the list of running threads. Yet, since
    BusyBox’s ps expects -T instead of -t, the corresponding parts of dumpstate’s output are broken.
Another area of substantial difference worth mentioning is name
    resolution. Indeed, the way Android manages DNSes is very different from
    the way it’s done in glibc and BusyBox. So this may be an issue in your
    case.
Warning
Some people are of the opinion that there’s a benefit to Toolbox’s
      very restricted command set: It limits that attack surface that a
      malicious user or third party could leverage against the system. From
      that point of view, using BusyBox would lead to an increased security
      risk. Caveat emptor.

Linking BusyBox Against Bionic
As demonstrated in this section, BusyBox shines when compared with
      the AOSP’s default command-line tools. So much so, in fact, that many
      people felt the need to get it to work with their AOSP trees. Hence, the
      default tree from http://busybox.net now contains support for Android out
      of the box. Namely, patches have been added to enable the running of
      BusyBox against Bionic in addition to the libraries that it already
      supported, such as glibc. Also, there’s an android-build script in the examples/ directory of BusyBox’s sources for
      building it against a given set of AOSP sources.
Whether you link it against Bionic or glibc, however, you still
      have to find a way to get it to coexist with the rest of the AOSP on the
      same filesystem. Hence, the above explanations remain relevant
      regardless of the library you link against.


Moving Forward



There’s obviously a lot more you can do with this approach than I’ve
    showed you. Even, for instance, if you were to not include BusyBox or if
    you chose to link it against a library other than glibc, such as uClibc or
    eglibc, knowing how to get a “classic” C library onto your root filesystem
    is a useful trick.
I would encourage you to look at projects like Buildroot and Yocto
    to see how you can leverage their work to gain additional tools and
    libraries to merge with your AOSP, for an even more versatile end result.
    Remember that Android’s vision and development approach restricts
    admission to the AOSP to only the packages conforming to Google’s plans.
    Your specific project may, in fact, have nothing in common with any of
    Google’s current market aims, so the plain AOSP may be seriously lacking
    with regard to your project.
In no way are the explanations given here the only way to achieve
    the targeted result. There are many ways to skin this cat. Generally
    speaking, this explanation should allow you to see that you can
    constructively break from the AOSP’s stringent mold and incorporate into
    your final root filesystem elements that derive from classic embedded
    Linux work. And this is huge, because it opens the door for leveraging the
    very large body of work that has been created through the years for Linux
    in embedded systems. This includes being able to tap into mailing lists,
    conferences, books, and, most importantly, a very large development
    community.

Appendix B. Adding Support for New Hardware



There are cases where your embedded system includes hardware that
  isn’t already supported in Android. And while some of the work you can do
  inside the AOSP is modular, adding support for new types of hardware is
  trickier since it requires knowledge of some of Android’s internals. This
  appendix shows you how to extend Android’s various layers to support your
  own type of hardware.
Note
While you may not be interested in actually adding support for new
    types of hardware in your system, you might find this appendix instructive
    if you’re trying to understand the intricate details of how the various
    layers of the Android stack actually come together.
Also, while this appendix demonstrates the modifications using a
    2.3/Gingerbread codebase, the mechanisms and Java code being modified are
    very similar in 4.2/Jelly Bean. Where major differences exist, they will
    be pointed out in the text.

The Basics



As we discussed in Chapter 2, contrary to standard
    “vanilla Linux,” Android requires more than just proper device drivers to
    function on hardware. It in fact defines a new Hardware Abstraction Layer
    (HAL), which defines an API for each type of hardware supported by
    Android’s core. In order for a hardware component to properly interface
    with Android, it must have a corresponding hardware “module” (unrelated to
    kernel modules) that conforms to the API specified for that type of
    hardware.
Generally, each type of hardware supported by Android has a
    corresponding  system service and HAL definition. There’s a Lights Service and a lights
    HAL definition. There’s a Wifi Service and a WiFi HAL definition. The same
    goes for power management, location, sensors, etc. Figure 2-3 illustrates the overall architecture of
    Android’s hardware support. Most of these system services are, of course,
    typically running within the System Server as we discussed earlier.
There are two general categories of HAL modules: those loaded
    explicitly (through a runtime call to dlopen()) and those automatically loaded by the
    dynamic linker (since they’re all linked into libhardware_legacy.so). The APIs for the former
    are in hardware/libhardware/include/hardware/, and the
    APIs for the latter are in hardware/libhardware_legacy/include/hardware_legacy/.
    The trend seems to be that Android is moving away from “legacy.” The
    interface between those .so files and
    the actual drivers through /dev
    entries or otherwise is up to the manufacturer to specify. Android doesn’t
    care about that. It cares only about finding the appropriate HAL .so modules.
One of the questions I often get is, “How do I add support for my
    own type of hardware in Android?” To illustrate this, I’ve created an
    opersys-hal-hw type and have posted the code that
    implements this HAL type on GitHub, along with
    a very basic circular buffer
    driver.
If you copy the content of the opersys-hal-hw project over an
    existing 2.3.7_r1 release of the AOSP and build it for the emulator, you
    should get yourself an image that comes up with the opersys service. The latter relies on the
    circular buffer to implement a very basic new hardware type. Obviously,
    this is but a skeleton to give you an idea of what it takes to add support
    for a new hardware type. Your hardware is likely going to have completely
    different interfaces.

The System Service



To illustrate how a new system service is implemented, I first added
    a OpersysService.java in frameworks/base/services/java/com/android/server/.
    This file implements the OpersysService
    class, which provides two very basic calls to the outside world:
    public String read(int maxLength)
    {
...
    }

    public int write(String mString)
    {
...
    }
If you follow the code for the new type of hardware, you will see
    how I added an implementation corresponding to each of these calls at
    every layer of Android. So, for example, if you look at the system
    service’s read() function, it does
    something like this:
    public String read(int maxLength)
    {
        int length;
        byte[] buffer = new byte[maxLength];

        length = read_native(mNativePointer, buffer);
        return new String(buffer, 0, length);
    }
The most important part here being the call to read_native(), which is itself declared as
    follows in the OpersysService
    class:
    private static native int read_native(int ptr, byte[] buffer);
By declaring the method as native, we instruct the compiler not to look for
    the method in any Java code. Instead, it’ll be provided to Dalvik at
    runtime through JNI. And, indeed, if you look at the frameworks/base/services/jni/ directory, you’ll
    notice that Android.mk and onload.cpp have been modified to take into
    account a new com_android_server_OpersysService.cpp. The
    latter has a register_android_server_OpersysService()
    function which is called at the loading of libandroid_servers.so, which is itself
    generated by the Android.mk I just
    mentioned. That registration function tells Dalvik about the native
    methods implemented in com_android_server_OpersysService.cpp for the
    OpersysService class and how they can
    be called:
static JNINativeMethod method_table[] = {
    { "init_native", "()I", (void*)init_native },
    { "finalize_native", "(I)V", (void*)finalize_native },
    { "read_native", "(I[B)I", (void*)read_native },
    { "write_native", "(I[B)I", (void*)write_native },
    { "test_native", "(II)I", (void*)test_native},
};

int register_android_server_OpersysService(JNIEnv *env)
{
    return jniRegisterNativeMethods(env, "com/android/server/OpersysService",
            method_table, NELEM(method_table));

};
The above structure contains three fields per method. The first
    field is the name of the method as defined in the Java class, while the
    last field is the corresponding C implementation in the present file. In
    this case the names match, as they do in most cases in Android, but that
    doesn’t have to be the case. The middle parameter might seem a little bit
    more mysterious. The content of the parentheses are the parameters passed
    from Java, and the letter on the right of the parentheses is the return
    value. init_native() for instance
    takes no parameters and returns an integer, while read_native() has two parameters, an integer,
    and a byte array, and returns an integer.
Note
As you start playing around wtih Android’s internals, you will
      often have to deal with JNI-isms such as these. I recommend you take a
      look at Java Native Interface: Programmer’s Guide and
      Specificaition by Sheng Liang (Addison-Wesley) for more
      information on the use of JNI.

And here’s the implementation of read_native():
static int read_native(JNIEnv *env, jobject clazz, int ptr, jbyteArray buffer)
{
    opersyshw_device_t* dev = (opersyshw_device_t*)ptr;
    jbyte* real_byte_array;
    int length;

    real_byte_array = env->GetByteArrayElements(buffer, NULL);

    if (dev == NULL) {
        return 0;
    }

    length = dev->read((char*) real_byte_array, env->GetArrayLength(buffer));

    env->ReleaseByteArrayElements(buffer, real_byte_array, 0);

    return length;
}
First, notice that there are two more parameters than in the JNI
    declaration above. All JNI’ed calls start with the same two parameters: a
    handle to the VM making the call (env),
    and the this object corresponding to
    the class making the call (clazz).
    Also, notice that the byte array isn’t used as is. Instead, env->GetByteArrayElements() and env->ReleaseByteArrayElements() are used at
    the begining and the end to obtain and, later, release a C array that can
    be used by the present C code. Indeed, don’t forget that JNI calls are
    carrying Java-typed objects into the C world. While some things (such as
    integers) can be used as is, other objects (such as arrays) need to be
    converted before and after use.
Most importantly, the operative part of read_native() is the call to dev->read(). But what does this function
    pointer lead to? To understand that part, you need to look at init_native():
static jint init_native(JNIEnv *env, jobject clazz)
{
    int err;
    hw_module_t* module;
    opersyshw_device_t* dev = NULL;

    err = hw_get_module(OPERSYSHW_HARDWARE_MODULE_ID, (hw_module_t const**)
          &module);
    if (err == 0) {
        if (module->methods->open(module, "", ((hw_device_t**) &dev)) != 0)
           return 0;
    }

    return (jint)dev;
}
Two important things are happening in this function. First,
    the call to hw_get_module() which
    requests that the HAL load the module that implements support for the
    OPERSYSHW_HARDWARE_MODULE_ID type of
    hardware. Second, there’s the call to the loaded module’s open() function. We’ll take a look at both of
    these below, but, for the moment, note that the former will result in a
    .so being loaded into the system
    service’s address space, and the latter will result in the
    hardware-specific functions implemented in that library’s functions, such
    as read() and write(), being callable from com_android_server_OpersysService.cpp, which is
    essentially the C side of the new system service we’re adding.

The HAL and Its Extension



The HAL, which is in hardware/,
    provides the hw_get_module() call
    above. And if you follow the code, you’ll see that hw_get_module() ends up calling the classic
    dlopen(), which enables us to load a
    shared library into a process’s address space.
Note
Type man dlopen on any Linux
      workstation if you’d like to get more information about dlopen and its uses.

The HAL won’t, however, just load any shared library. When you
    request a given hardware type, it’ll look in /system/lib/hw for a filename that matches that
    given hardware type and the device it’s running on. So, for instance, in
    the case of the present new type of hardware, it’ll look for opersyshw.goldfish.so, goldfish being the code name for the emulator.
    The  actual name of the device used for the middle part of the filename is
    retrieved from one of the following global properties: ro.hardware, ro.product.board, ro.board.platform, or ro.arch. Also, the shared library must have a
    struct that provides HAL information and that is called HAL_MODULE_INFO_SYM_AS_STR. We’ll see an example
    next.
The definition for the new hardware type itself is just another
    header file, in this case opersyshw.h, along with the other hardware
    definitions in hardware/libhardware/include/hardware/:
#ifndef ANDROID_OPERSYSHW_INTERFACE_H
#define ANDROID_OPERSYSHW_INTERFACE_H

#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/types.h>

#include <hardware/hardware.h>

__BEGIN_DECLS

#define OPERSYSHW_HARDWARE_MODULE_ID "opersyshw"

struct opersyshw_device_t {
    struct hw_device_t common;

    int (*read)(char* buffer, int length);
    int (*write)(char* buffer, int length);
    int (*test)(int value);
};

__END_DECLS

#endif // ANDROID_OPERSYSHW_INTERFACE_H
In addition to the prototype definitions for read() and write(), note that this is where OPERSYSHW_HARDWARE_MODULE_ID is defined. The
    latter serves as the basis for the filename looked for on the filesystem
    that contains the actual HAL module implementation.

The HAL Module



The theory is that each device will require a different HAL module
    to support a given hardware type for Android. Phones from separate
    vendors, for instance, will likely use different graphic chips and are
    therefore likely to have different gralloc modules. Typically, the HAL
    modules are added to the AOSP sources in the lib* directory within device/<vendor>/<product>/. In the
    case of the emulator, however, the virtual devices it supports are in
    sdk/emulator/, so this is where the
    Goldfish implementation for our type of hardware is added.
The opersyshw hardware type isn’t really fancy, and therefore the
    implementation for Goldfish fits in a single file, opersyshw_qemu.c. In order for the library
    resulting from the build of this file to be recognized as a real HAL
    module, it ends with this snippet:
static struct hw_module_methods_t opersyshw_module_methods = {
    .open = open_opersyshw
};

const struct hw_module_t HAL_MODULE_INFO_SYM = {
    .tag = HARDWARE_MODULE_TAG,
    .version_major = 1,
    .version_minor = 0,
    .id = OPERSYSHW_HARDWARE_MODULE_ID,
    .name = "Opersys HW Module",
    .author = "Opersys inc.",
    .methods = &opersyshw_module_methods,
};
Note the presence of the structure called HAL_MODULE_INFO_SYM. Furthermore, note the
    opersyshw_module_methods and the
    open() function pointer it contains.
    This is the very same open() called
    by init_native() earlier once the HAL
    module is loaded. And here’s what the corresponding open_opersyshw() does:
static int open_opersyshw(const struct hw_module_t* module, char const* name,
        struct hw_device_t** device)
{
    struct opersyshw_device_t *dev = malloc(sizeof(struct opersyshw_device_t));
    memset(dev, 0, sizeof(*dev));

    dev->common.tag = HARDWARE_DEVICE_TAG;
    dev->common.version = 0;
    dev->common.module = (struct hw_module_t*)module;
    dev->read = opersyshw_read;
    dev->write = opersyshw_write;
    dev->test = opersyshw_test;

    *device = (struct hw_device_t*) dev;

    fd = open("/dev/circchar", O_RDWR);

    D("OPERSYS HW has been initialized");

    return 0;
}
This function’s main purpose is to initialize the dev struct, which is of opersyshw_device_t type, the same type defined
    by opersyshw.h, and open the
    corresponding device entry in /dev,
    thereby connecting to the underlying device driver loaded into the kernel.
    Obviously some device drivers might require some initialization here, but
    for our purposes this is sufficient.
Finally, here’s what opersyshw_read() does:
int opersyshw_read(char* buffer, int length)
{
    int retval;

    D("OPERSYS HW - read()for %d bytes called", length);

    retval = read(fd, buffer, length);

    return retval;
}
We’re not doing too much error-checking here, but you should in your
    case. For instance, we’re not even checking that the call to open the
    device driver succeeded. We usually should. Still, the call path should be
    clear. The system service’s read()
    call results in a JNI call to read_native() which, by way of the HAL, results
    in a call to the HAL module’s opersyshw_read().
Existing system services and HAL components have similar types of
    call paths. Most, however, have a much larger number of calls defined in
    their system services and therefore a lot more happening in between the
    various layers involved in providing support for their specific type of
    hardware.

Calling the System Service



Up to this point we’ve mostly focused on how the new system
    service interfaces to the layers below. We haven’t yet discussed how a
    system service makes itself available to be called through Binder to other
    system services and apps. At a bare minimum, there must be an interface
    definition in order for a system service to be callable through Binder. In
    the case of the opersys service, we can
    add a IOpersysService.aidl file to
    frameworks/base/core/java/android/os/:
package android.os;
/**
* {@hide}
*/
interface IOpersysService {
    String read(int maxLength);
    int write(String mString);
}
This addition makes our system service callable from code that
    builds within the AOSP. We could, for instance, add an app to device/acme/coyotepad/ or packages/apps/ and have its onCreate() callback do something like
    this:
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);

        IOpersysService om =
          IOpersysService.Stub.asInterface(ServiceManager.getService("opersys"));
        try {
        	Log.d(DTAG, "Going to write to the \"opersys\" service");
        	om.write("Hello Opersys");
        	Log.d(DTAG, "Service returned: " + om.read(20));
        }
        catch (Exception e) {
        	Log.d(DTAG, "FAILED to call service");
        	e.printStackTrace();
        }
    }
Notice, however, that we’re using ServiceManager.getService() to get a Binder
    handle to the system service, and then we’re using IOpersysService.Stub.asInterface() to convert
    this to an IOpersysService object that
    we can call. This works fine if we’re building within the AOSP but won’t
    work for a regular app. Namely, ServiceManager.getService() isn’t exposed in
    the SDK. Also, if you’re familiar with app development, you’ll likely
    notice that this is different from the regular way that handles to system
    services are usually obtained—through a call to getSystemService().
To make our system service available through an SDK we build using
    the AOSP, we need to carry out a few more steps. First, we need to create
    a manager class that acts as a shrink-wrap for our
    Binder-callable system service. We do this by adding a OpersysManager.java file to frameworks/base/core/java/android/os/:
package android.os;

import android.os.IOpersysService;

public class OpersysManager
{
    public String read(int maxLength) {
        try {
            return mService.read(maxLength);
        } catch (RemoteException e) {
            return null;
        }
    }

    public int write(String mString) {
        try {
            return mService.write(mString);
        } catch (RemoteException e) {
            return 0;
        }
    }

    public OpersysManager(IOpersysService service) {
        mService = service;
    }

    IOpersysService mService;
}
Note how all calls are essentially redirected to the system service
    through Binder. Most predefined managers have similar semantics, although
    most will have some additional logic before making the calls, and others
    will define more calls than those available from the system service. This
    is similar to what a C library does before it makes calls to the kernel it
    runs on.
To make that manager available through getSystemService(), there are two more steps
    required. First, we’ll amend frameworks/base/core/java/android/content/Context.java
    to recognize a new type of system service:
    /**
     * Use with {@link #getSystemService} to retrieve a
     * {@link android.os.OpersysManager} for using Opersys Service.
     *
     * @see #getSystemService
     */
    public static final String OPERSYS_SERVICE = "opersys";
Then, we’ll patch frameworks/base/core/java/android/content/app/ContextImpl.java
    to make getSystemService() recognize
    our new system service:
    @Override
    public Object getSystemService(String name) {
        if (WINDOW_SERVICE.equals(name)) {
            return WindowManagerImpl.getDefault();
        } else if (LAYOUT_INFLATER_SERVICE.equals(name)) {
            synchronized (mSync) {
...
        } else if (DOWNLOAD_SERVICE.equals(name)) {
            return getDownloadManager();
        } else if (NFC_SERVICE.equals(name)) {
            return getNfcManager();
} else if (OPERSYS_SERVICE.equals(name)) { return getOpersysManager();
...
private OpersysManager getOpersysManager() { synchronized (mSync) { if (mOpersysManager == null) { IBinder b = ServiceManager.getService(OPERSYS_SERVICE);IOpersysService service = IOpersysService.Stub.asInterface(b);mOpersysManager = new OpersysManager(service);}}return mOpersysManager;}
...
Warning
In 4.2/Jelly Bean, getSystemService()’s internal implementation
      is very different from the code shown previously. Have a look at how the
      registerService() is used in the
      ContextImpl class in ContextImpl.java to declare new managers.
      Specifically, have a look at the way it’s done for POWER_SERVICE. You should be able to easily
      adapt the above snippet to resemble the one used to register a PowerManager object for use by getSystemService().

And now, after we build an SDK using this AOSP, we can create an app
    that calls on this new system service like any other predefined
    service:
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);

        OpersysManager om = (OpersysManager) getSystemService(OPERSYS_SERVICE);

        Log.d(DTAG, "Going to write to the \"opersys\" service");
        om.write("Hello Opersys");
        Log.d(DTAG, "Service returned: " + om.read(20));
    }

Starting the System Service



There’s one last thing I haven’t explained—that’s how the
    system service is started in this case. Generally, as I mentioned in Chapter 7, Java-based system services are started in SystemServer.java. Hence, we can patch this
    file to have it instantiate our system service and register it with the
    Service Manager:
...
            try {
                Slog.i(TAG, "DiskStats Service");
                ServiceManager.addService("diskstats",
                                           new DiskStatsService(context));
            } catch (Throwable e) {
                Slog.e(TAG, "Failure starting DiskStats Service", e);
            }
try { Slog.i(TAG, "Opersys Service"); ServiceManager.addService(Context.OPERSYS_SERVICE, new OpersysService(context)); } catch (Throwable e) { Slog.e(TAG, "Failure starting OpersysService Service", e);}
        }
...

Caveats and Recommendations



The method I just showed you and the code I referred you to works
    just fine for adding new types of hardware to the AOSP. However, it’s very
    version-specific since you need to patch a few files. In essence, I showed
    you how to add support for a new type of hardware in the AOSP as if it
    were meant to be upstreamed. Usually that won’t be your case and,
    therefore, as I suggested in Chapter 4, custom extensions
    are better added into a device/<manufacturer/product_name>/
    directory, which you can just copy into any new AOSP tree you
    get.
Despite its shortcoming, the benefit of the method I just showed is
    that you’ve got plenty of examples of other system services and HAL
    modules already in the AOSP from which you can easily copy, since you’re
    adding your code in exactly the same location as the built-in
    components.
Still, you should know that there are various ways you could add a
    system service to your product-specific directory in device/ in order to make a new type of hardware
    accessible to apps and other system services. The most straightforward one
    is to create an app that has its persistent flag set to true in its manifest file. As we discussed
    earlier, apps are lifecycle-managed by the Activity Manager. Hence,
    implementing hardware support in a regular app can be an issue because it
    could be stopped and restarted at any time, and if hardware state must be
    maintained, such restarting will likely cause issues. By enabling the
    persistent flag, you disable lifecycle
    management for this app. As I explained in Chapter 7, the
    Phone app, for instance, uses this trick in order to be able to host the
    Phone Service.
The downside with this approach is that any failure of the System
    Server, which houses the Activity Manager, will bring your system service
    down. Note that the same holds true for the method I showed you above.
    Another, more substantive, downside is that there are few examples to base
    your work on. You’ll also need to create an SDK add-on instead of using
    the plain SDK generated by the AOSP that would’ve been patched by the
    method shown above. Callers to your system service won’t, for instance, be
    able to use the standard getSystemService() to get a handle for an
    object allowing them to talk to your system service, as is the case for
    the default set of system services.
You can also probably create a standalone system service in Java
    that is started in a similar fashion as am and pm,
    using app_process. This would make your
    system service immune to any failure of the System Server, but I can’t
    currently point you to any examples of system services implemented this
    way. And again, even if you followed this path, you’d still have a system
    service that doesn’t appear like the other system services to app
    developers.
Finally, you could also create a native system service (i.e., in C)
    that starts the same way as the mediaserver. In that case, while you’d benefit
    from running natively, you wouldn’t benefit from the aidl tool’s capability to generate marshaling
    and unmarshaling code in Java for callers and callees. Instead, you’d have
    to marshal and unmarshal everything sent through Binder manually—a very
    tedious process. And again, your system service will look different from
    standard system services.

Appendix C. Customizing the Default Lists of Packages



As we saw in Chapter 4, the build system can
  be modified to add new packages to those it builds by default. What we
  didn’t cover in that chapter is how the build system creates the default
  list of packages that it uses when creating images or how we can customize
  it. Obviously, playing around with something as fundamental as the default
  set of packages required to get a functional AOSP has its risks, as you may
  end up generating stale images. Still, it’s worth taking a look at how this
  works and what’s in there. If nothing else, you’ll get a better idea of
  where to look in case you have to get your hands in there.
Overall Dependencies



In 2.3/Gingerbread, there are two main variables that dictate what
    gets included in the AOSP: GRANDFATHERED_USER_MODULES and PRODUCT_PACKAGES. The first is generated from a
    static list found in build/core/user_tags.mk and contains the bulk
    of the “core” packages required for the AOSP, with such things as adbd, the system services, and Bionic. This file
    isn’t meant to be edited and starts with a warning to that effect:
# This is the list of modules grandfathered to use a user tag

# DO NOT ADD ANY NEW MODULE TO THIS FILE
#
# user modules are hard to control and audit and we don't want
# to add any new such module in the system
In effect, the list of packages in GRANDFATHERED_USER_MODULES is more or less fixed
    in stone—what we want to focus our attention on is the packages added to
    PRODUCT_PACKAGES. There’s in fact a
    whole series of files that gradually help add more packages to PRODUCT_PACKAGES, as the full list of .mk files are included one after the other, per
    the product description found in the relevant files in device/<vendor>/<product>/.
In 4.2/Jelly Bean, neither GRANDFATHERED_USER_MODULES nor build/core/user_tags.mk exist. Instead, there’s
    a much-trimmed-down GRANDFATHERED_ALL_PREBUILT and a build/core/legacy_prebuilts.mk that carries a
    warning like the previous one. The bulk of 2.3/Gingerbread’s GRANDFATHERED_USER_MODULES are now either in
    build/target/product/base.mk or
    build/target/product/core.mk and are
    added to PRODUCT_PACKAGES, which is
    used the same way as in 2.3/Gingerbread.

Assembling the Final PRODUCT_PACKAGES



 Generally speaking, products will use the inherit-product makefile function, as we did
    when adding the CoyotePad in Chapter 4, to import other
    .mk files that include previous
    declarations of the PRODUCT_PACKAGES
    variable on which they can build.
The core file used for most PRODUCT_PACKAGES sets is build/target/product/core.mk. In
    2.3/Gingerbread, this file doesn’t inherit from any other .mk file. In 4.2/Jelly Bean, however, it
    inherits from build/target/product/base.mk. In both versions,
    build/target/product/core.mk includes
    packages such as the SSL library and the Browser app. Most product
    descriptions, except the one used for building the SDK, don’t actually
    rely solely on the set of packages defined in this file. Instead, they’ll
    at least rely on build/target/product/generic.mk in
    2.3/Gingerbread and build/target/product/generic_no_telephony.mk in
    4.2/Jelly Bean, both of which rely on core.mk in addition to including packages for
    many of the main apps such as Calendar, Launcher2, and Settings. The
    default emulator build in 2.3/Gingerbread, for instance, relies on
    generic.mk. So does the default tree
    provided by TI for the BeagleBone, which I used in some parts of this
    book.
Most products will, however, go a step further. In 2.3/Gingerbread
    they’ll use build/target/product/full.mk, which depends on
    generic.mk, to get a few additional
    input methods, such as PinyinIME (the simplified Chinese keyboard) and
    some language locales. full.mk, for
    instance, is what’s used as the baseline for the device/samsung/crespo/ (Nexus S). And this is
    what I used in Chapter 4 for the CoyotePad.
In 4.2/Jelly Bean, most products will use build/target/product/full_base.mk instead of
    build/target/product/full.mk. The
    former depends on generic_no_telephony.mk instead of depending on
    generic.mk. You can see example uses
    of full_base.mk in device/asus/grouper/ and device/samsung/tuna/.

Trimming Packages



 One request I often get from developers is to explain how
    to trim the size of the AOSP. To do that, you’d have to go through the
    list of packages included in GRANDFATHERED_USER_MODULES if you’re using
    2.3/Gingerbread or GRANDFATHERED_ALL_PREBUILT if you’re using
    4.2/Jelly Bean and PRODUCT_PACKAGES in
    either case and remove whatever you think isn’t necessary for your system.
    As I alluded to earlier, this is a tricky proposition because you’re
    likely to generate a nonfunctional AOSP. Indeed, the AOSP’s build system
    doesn’t provide any type of dependency checks between packages.
You can, however, proceed with a few basic rules. Generally, I would
    recommend against trying to play around with the list of grandfathered
    packages or the packages in base.mk
    in 4.2/Jelly Bean, unless you feel pretty confident that you understand
    the AOSP’s internals and the impact of the changes you’re making. Starting
    with core.mk, you’re in a little bit
    safer territory for removing packages. And the further you are down in the
    dependency chain from core.mk, the
    safer it is to remove modules without causing AOSP breakage. You can, for
    instance, remove the Launcher2 from generic.mk in 2.3/Gingerbread or from generic_no_telephony.mk in 4.2/Jelly Bean, and
    you’ll generate a functional AOSP. It won’t have the home screen you’re
    used to, but it’ll still work. The same goes for many of the apps in those
    same files.

Appendix D. Default init.rc Files



This appendix contains the default init.rc files found in 2.3/Gingerbread and
  4.2/Jelly Bean.[38] I usually dislike books where files are printed for pages on
  end, and you won’t find much of this in my writings. However, init.rc is one case where the best way to explain
  something is to actually show it to you. To make it easier for you to follow
  the operations conducted in the file, I’ve added some callouts throughout to
  provide insight on key parts of the files. Refer to Chapter 6 for more information regarding the actions, triggers,
  commands, services, and service options used in init.rc files.
2.3/Gingerbread’s default init.rc



on early-init [image: 1]
    start ueventd

on init [image: 2]

sysclktz 0

loglevel 3

# setup the global environment [image: 3]
    export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
    export LD_LIBRARY_PATH /vendor/lib:/system/lib
    export ANDROID_BOOTLOGO 1
    export ANDROID_ROOT /system
    export ANDROID_ASSETS /system/app
    export ANDROID_DATA /data
    export EXTERNAL_STORAGE /mnt/sdcard
    export ASEC_MOUNTPOINT /mnt/asec
    export LOOP_MOUNTPOINT /mnt/obb
    export BOOTCLASSPATH /system/framework/core.jar:/system/framework/bouncycast
le.jar:/system/framework/ext.jar:/system/framework/framework.jar:/system/framewo
rk/android.policy.jar:/system/framework/services.jar:/system/framework/core-juni
t.jar

# Backward compatibility
    symlink /system/etc /etc
    symlink /sys/kernel/debug /d

# Right now vendor lives on the same filesystem as system,
# but someday that may change.
    symlink /system/vendor /vendor

# create mountpoints
    mkdir /mnt 0775 root system
    mkdir /mnt/sdcard 0000 system system

# Create cgroup mount point for cpu accounting
    mkdir /acct
    mount cgroup none /acct cpuacct
    mkdir /acct/uid

# Backwards Compat - XXX: Going away in G*
    symlink /mnt/sdcard /sdcard

    mkdir /system
    mkdir /data 0771 system system
    mkdir /cache 0770 system cache
    mkdir /config 0500 root root

    # Directory for putting things only root should see.
    mkdir /mnt/secure 0700 root root

    # Directory for staging bindmounts
    mkdir /mnt/secure/staging 0700 root root

    # Directory-target for where the secure container
    # imagefile directory will be bind-mounted
    mkdir /mnt/secure/asec  0700 root root

    # Secure container public mount points.
    mkdir /mnt/asec  0700 root system
    mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

    # Filesystem image public mount points.
    mkdir /mnt/obb 0700 root system
    mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

    write /proc/sys/kernel/panic_on_oops 1 [image: 4]
    write /proc/sys/kernel/hung_task_timeout_secs 0
    write /proc/cpu/alignment 4
    write /proc/sys/kernel/sched_latency_ns 10000000
    write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
    write /proc/sys/kernel/sched_compat_yield 1
    write /proc/sys/kernel/sched_child_runs_first 0

# Create cgroup mount points for process groups
    mkdir /dev/cpuctl
    mount cgroup none /dev/cpuctl cpu
    chown system system /dev/cpuctl
    chown system system /dev/cpuctl/tasks
    chmod 0777 /dev/cpuctl/tasks
    write /dev/cpuctl/cpu.shares 1024

    mkdir /dev/cpuctl/fg_boost
    chown system system /dev/cpuctl/fg_boost/tasks
    chmod 0777 /dev/cpuctl/fg_boost/tasks
    write /dev/cpuctl/fg_boost/cpu.shares 1024

    mkdir /dev/cpuctl/bg_non_interactive
    chown system system /dev/cpuctl/bg_non_interactive/tasks
    chmod 0777 /dev/cpuctl/bg_non_interactive/tasks
    # 5.0 %
    write /dev/cpuctl/bg_non_interactive/cpu.shares 52

on fs [image: 5]
# mount mtd partitions
    # Mount /system rw first to give the filesystem a chance to save a checkpoint
    mount yaffs2 mtd@system /system
    mount yaffs2 mtd@system /system ro remount
    mount yaffs2 mtd@userdata /data nosuid nodev
    mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs [image: 6]
    # once everything is setup, no need to modify /
    mount rootfs rootfs / ro remount

    # We chown/chmod /data again so because mount is run as root + defaults
    chown system system /data
    chmod 0771 /data

    # Create dump dir and collect dumps.
    # Do this before we mount cache so eventually we can use cache for
    # storing dumps on platforms which do not have a dedicated dump partition.

    mkdir /data/dontpanic
    chown root log /data/dontpanic
    chmod 0750 /data/dontpanic

    # Collect apanic data, free resources and re-arm trigger
    copy /proc/apanic_console /data/dontpanic/apanic_console
    chown root log /data/dontpanic/apanic_console
    chmod 0640 /data/dontpanic/apanic_console

    copy /proc/apanic_threads /data/dontpanic/apanic_threads
    chown root log /data/dontpanic/apanic_threads
    chmod 0640 /data/dontpanic/apanic_threads

    write /proc/apanic_console 1

    # Same reason as /data above
    chown system cache /cache
    chmod 0770 /cache

    # This may have been created by the recovery system with odd permissions
    chown system cache /cache/recovery
    chmod 0770 /cache/recovery

    #change permissions on vmallocinfo so we can grab it from bugreports
    chown root log /proc/vmallocinfo
    chmod 0440 /proc/vmallocinfo

    #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
    stacks
    chown root system /proc/kmsg
    chmod 0440 /proc/kmsg
    chown root system /proc/sysrq-trigger
    chmod 0220 /proc/sysrq-trigger

# create basic filesystem structure
    mkdir /data/misc 01771 system misc
    mkdir /data/misc/bluetoothd 0770 bluetooth bluetooth
    mkdir /data/misc/bluetooth 0770 system system
    mkdir /data/misc/keystore 0700 keystore keystore
    mkdir /data/misc/vpn 0770 system system
    mkdir /data/misc/systemkeys 0700 system system
    mkdir /data/misc/vpn/profiles 0770 system system
    # give system access to wpa_supplicant.conf for backup and restore
    mkdir /data/misc/wifi 0770 wifi wifi
    chmod 0770 /data/misc/wifi
    chmod 0660 /data/misc/wifi/wpa_supplicant.conf
    mkdir /data/local 0771 shell shell
    mkdir /data/local/tmp 0771 shell shell
    mkdir /data/data 0771 system system
    mkdir /data/app-private 0771 system system
    mkdir /data/app 0771 system system
    mkdir /data/property 0700 root root

    # create dalvik-cache and double-check the perms
    mkdir /data/dalvik-cache 0771 system system
    chown system system /data/dalvik-cache
    chmod 0771 /data/dalvik-cache

    # create the lost+found directories, so as to enforce our permissions
    mkdir /data/lost+found 0770
    mkdir /cache/lost+found 0770

    # double check the perms, in case lost+found already exists, and set owner
    chown root root /data/lost+found
    chmod 0770 /data/lost+found
    chown root root /cache/lost+found
    chmod 0770 /cache/lost+found

on boot [image: 7]
# basic network init
    ifup lo
    hostname localhost
    domainname localdomain

# set RLIMIT_NICE to allow priorities from 19 to -20
    setrlimit 13 40 40

# Define the oom_adj values for the classes of processes that can be
# killed by the kernel.  These are used in ActivityManagerService.
    setprop ro.FOREGROUND_APP_ADJ 0
    setprop ro.VISIBLE_APP_ADJ 1
    setprop ro.PERCEPTIBLE_APP_ADJ 2
    setprop ro.HEAVY_WEIGHT_APP_ADJ 3
    setprop ro.SECONDARY_SERVER_ADJ 4
    setprop ro.BACKUP_APP_ADJ 5
    setprop ro.HOME_APP_ADJ 6
    setprop ro.HIDDEN_APP_MIN_ADJ 7
    setprop ro.EMPTY_APP_ADJ 15

# Define the memory thresholds at which the above process classes will
# be killed.  These numbers are in pages (4k).
    setprop ro.FOREGROUND_APP_MEM 2048
    setprop ro.VISIBLE_APP_MEM 3072
    setprop ro.PERCEPTIBLE_APP_MEM 4096
    setprop ro.HEAVY_WEIGHT_APP_MEM 4096
    setprop ro.SECONDARY_SERVER_MEM 6144
    setprop ro.BACKUP_APP_MEM 6144
    setprop ro.HOME_APP_MEM 6144
    setprop ro.HIDDEN_APP_MEM 7168
    setprop ro.EMPTY_APP_MEM 8192

# Write value must be consistent with the above properties. [image: 8]
# Note that the driver only supports 6 slots, so we have combined some of
# the classes into the same memory level; the associated processes of higher
# classes will still be killed first.
    write /sys/module/lowmemorykiller/parameters/adj 0,1,2,4,7,15

    write /proc/sys/vm/overcommit_memory 1
    write /proc/sys/vm/min_free_order_shift 4
    write /sys/module/lowmemorykiller/parameters/minfree 2048,3072,4096,6144,
    7168,8192

    # Set init its forked children's oom_adj.
    write /proc/1/oom_adj -16

    # Tweak background writeout
    write /proc/sys/vm/dirty_expire_centisecs 200
    write /proc/sys/vm/dirty_background_ratio  5

    # Permissions for System Server and daemons.
    chown radio system /sys/android_power/state
    chown radio system /sys/android_power/request_state
    chown radio system /sys/android_power/acquire_full_wake_lock
    chown radio system /sys/android_power/acquire_partial_wake_lock
    chown radio system /sys/android_power/release_wake_lock
    chown radio system /sys/power/state
    chown radio system /sys/power/wake_lock
    chown radio system /sys/power/wake_unlock
    chmod 0660 /sys/power/state
    chmod 0660 /sys/power/wake_lock
    chmod 0660 /sys/power/wake_unlock
    chown system system /sys/class/timed_output/vibrator/enable
    chown system system /sys/class/leds/keyboard-backlight/brightness
    chown system system /sys/class/leds/lcd-backlight/brightness
    chown system system /sys/class/leds/button-backlight/brightness
    chown system system /sys/class/leds/jogball-backlight/brightness
    chown system system /sys/class/leds/red/brightness
    chown system system /sys/class/leds/green/brightness
    chown system system /sys/class/leds/blue/brightness
    chown system system /sys/class/leds/red/device/grpfreq
    chown system system /sys/class/leds/red/device/grppwm
    chown system system /sys/class/leds/red/device/blink
    chown system system /sys/class/leds/red/brightness
    chown system system /sys/class/leds/green/brightness
    chown system system /sys/class/leds/blue/brightness
    chown system system /sys/class/leds/red/device/grpfreq
    chown system system /sys/class/leds/red/device/grppwm
    chown system system /sys/class/leds/red/device/blink
    chown system system /sys/class/timed_output/vibrator/enable
    chown system system /sys/module/sco/parameters/disable_esco
    chown system system /sys/kernel/ipv4/tcp_wmem_min
    chown system system /sys/kernel/ipv4/tcp_wmem_def
    chown system system /sys/kernel/ipv4/tcp_wmem_max
    chown system system /sys/kernel/ipv4/tcp_rmem_min
    chown system system /sys/kernel/ipv4/tcp_rmem_def
    chown system system /sys/kernel/ipv4/tcp_rmem_max
    chown root radio /proc/cmdline

# Define TCP buffer sizes for various networks
#   ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
    setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
    setprop net.tcp.buffersize.wifi    4095,87380,110208,4096,16384,110208
    setprop net.tcp.buffersize.umts    4094,87380,110208,4096,16384,110208
    setprop net.tcp.buffersize.edge    4093,26280,35040,4096,16384,35040
    setprop net.tcp.buffersize.gprs    4092,8760,11680,4096,8760,11680

    class_start default [image: 9]

## Daemon processes to be run by init. [image: 10]
##
service ueventd /sbin/ueventd
    critical

service console /system/bin/sh
    console
    disabled
    user shell
    group log

on property:ro.secure=0
    start console

# adbd is controlled by the persist.service.adb.enable system property
service adbd /sbin/adbd [image: 11]
    disabled

# adbd on at boot in emulator
on property:ro.kernel.qemu=1
    start adbd

on property:persist.service.adb.enable=1
    start adbd

on property:persist.service.adb.enable=0
    stop adbd

service servicemanager /system/bin/servicemanager [image: 12]
    user system
    critical
    onrestart restart zygote
    onrestart restart media

service vold /system/bin/vold
    socket vold stream 0660 root mount
    ioprio be 2

service netd /system/bin/netd
    socket netd stream 0660 root system

service debuggerd /system/bin/debuggerd

service ril-daemon /system/bin/rild
    socket rild stream 660 root radio
    socket rild-debug stream 660 radio system
    user root
    group radio cache inet misc audio sdcard_rw

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server [image: 13]
    socket zygote stream 666
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd

service media /system/bin/mediaserver [image: 14]
    user media
    group system audio camera graphics inet net_bt net_bt_admin net_raw
    ioprio rt 4

service bootanim /system/bin/bootanimation
    user graphics
    group graphics
    disabled
    oneshot

service dbus /system/bin/dbus-daemon --system --nofork
    socket dbus stream 660 bluetooth bluetooth
    user bluetooth
    group bluetooth net_bt_admin

service bluetoothd /system/bin/bluetoothd -n
    socket bluetooth stream 660 bluetooth bluetooth
    socket dbus_bluetooth stream 660 bluetooth bluetooth
    # init.rc does not yet support applying capabilities, so run as root and
    # let bluetoothd drop uid to bluetooth with the right linux capabilities
    group bluetooth net_bt_admin misc
    disabled

service hfag /system/bin/sdptool add --channel=10 HFAG
    user bluetooth
    group bluetooth net_bt_admin
    disabled
    oneshot

service hsag /system/bin/sdptool add --channel=11 HSAG
    user bluetooth
    group bluetooth net_bt_admin
    disabled
    oneshot

service opush /system/bin/sdptool add --channel=12 OPUSH
    user bluetooth
    group bluetooth net_bt_admin
    disabled
    oneshot

service pbap /system/bin/sdptool add --channel=19 PBAP
    user bluetooth
    group bluetooth net_bt_admin
    disabled
    oneshot

service installd /system/bin/installd
    socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
    oneshot

service racoon /system/bin/racoon
    socket racoon stream 600 system system
    # racoon will setuid to vpn after getting necessary resources.
    group net_admin
    disabled
    oneshot

service mtpd /system/bin/mtpd
    socket mtpd stream 600 system system
    user vpn
    group vpn net_admin net_raw
    disabled
    oneshot

service keystore /system/bin/keystore /data/misc/keystore
    user keystore
    group keystore
    socket keystore stream 666

service dumpstate /system/bin/dumpstate -s [image: 15]
    socket dumpstate stream 0660 shell log
    disabled
    oneshot
	[image: 1] 
	The early-init action is the
        earliest part of the init.rc that
        is executed, per the list of actions and triggers run by init, as explained in Chapter 6. As you can see, only ueventd is run here. In fact, the next step
        performed by init during its
        initialization is to check that ueventd was properly started as part of
        early-init.
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	The init action is the first
        major chunk of commands that init
        is made to run. It sets the time zone to GMT, sets the log level to
        3,[39] exports a core set of environment variables, and
        proceeds to conduct a number of filesystem operations on the root
        filesystem.
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	This part of the initialization is pretty important. This is
        where the default PATH for all
        binaries in the system is set. This is also where the dynamic linker’s
        default search path, LD_LIBRARY_PATH, is set. Note that /bin isn’t in PATH and /lib isn’t in LD_LIBRARY_PATH.
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	Here, some of the kernel’s parameters are tweaked by way of
        writing values to /proc entries. This and
        writing values to /sys entries
        are common ways of controlling the kernel and/or drivers’
        behavior.
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	The fs action is where the
        /system, /data, and /cache partitions are mounted. Note that by
        default this config file attempts to mount those from MTD partitions
        using the YAFFS2 filesystem. Your board may neither have MTD devices
        nor use YAFFS2. In that case, these commands will fail, and that’s
        fine. Nothing precludes you from having an fs action in your board-specific .rc file that mounts other partitions using
        other filesystems.
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	The post-fs action is where
        all filesystem commands that depend on all filesystems having been
        mounted to operate properly are executed. Again, a large number of
        filesystem operations are being conducted here.
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	The boot action is executed
        once all filesystems are set up, and by the end of the set of commands
        in here, the entire set of services will be started. This section
        starts by setting up the basic network functionality, sets up the OOM
        adjustments and memory thresholds used by the Activity Manager and the
        kernel, sets permissions for allowing the system server to access
        entries in /sys, sets networking
        properties, and finally starts all default services.
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	This set of /proc and
        /sys operations are the way that
        the low-memory driver, which we discussed in Chapter 2, has its parameters set from user-space.
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	This seemingly innocuous command is actually one of the most
        important ones in this file. All the services you see declared later
        in the file are started by this command. The fact is that any service
        declared in an .rc file is set to
        have default as its class, unless a
        specific class option is used in
        the service’s description. And since none of the services listed in
        this file contains a specific class
        option, they’re all part of the default class and started by this class_start command.
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	Now that the majority of actions have been defined, the rest of
        the file focuses on describing the services to run. Since they’re all
        part of the default class, they are
        started in the order they are found in the file.
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	Notice how adbd is set to be
        disabled at startup unless the persist.service.adb.enable property is set
        to 1.
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	This is the all-important Service Manager, which we covered in
        Chapter 2. Note how it’s marked as critical, and its restarting will cause the
        System Server and Media Service to restart.

	[image: 13] 
	This is the Zygote, also described in Chapter 2. Note how the actual binary being started is
        app_process. The latter is in fact
        a C-based binary that is made to start a Dalvik VM instance, which the
        Zygote Java class is started from. From there, the System Server will
        be started by the Zygote.
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	This is the Media Server proper. Notice how its I/O nice value
        is set to mimic the “real time” scheduler and how its priority is set
        to 4.
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	This dumpstate is necessary
        for Toolbox’s bugreport command to
        operate properly. See the explanation in Chapter 6
        about bugreport for more
        information on how it interacts with dumpstate.




4.2/Jelly Bean’s Default init Files



Unlike 2.3/Gingerbread, 4.2/Jelly Bean has three main .rc files for all builds: init.rc, init.usb.rc, and init.trace.rc. Let’s take a look at
    these.
init.rc



Here’s the main init.rc from 4.2/Jelly Bean. As you can see
      by comparing this version with 2.3/Gingerbread’s, many of the important
      parts have remained unchanged. Still, some novelties have appeared in
      this newer version that are worth highlighting.
Note
Even if you’re using 4.2/Jelly Bean, I would recommend reading
        the previous section about 2.3/Gingerbread’s init.rc before reading this one, as I’m not
        repeating explanations I’ve already made for the latter.

# Copyright (C) 2012 The Android Open Source Project
#
# IMPORTANT: Do not create world writable files or directories.
# This is a common source of Android security bugs.
#

import /init.usb.rc [image: 1]
import /init.${ro.hardware}.rc
import /init.trace.rc

on early-init
    # Set init and its forked children's oom_adj.
    write /proc/1/oom_adj -16

    # Set the security context for the init process.
    # This should occur before anything else (e.g. ueventd) is started.
    setcon u:r:init:s0 [image: 2]

    start ueventd

# create mountpoints
    mkdir /mnt 0775 root system

on init

sysclktz 0

loglevel 3

# setup the global environment
    export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
    export LD_LIBRARY_PATH /vendor/lib:/system/lib
    export ANDROID_BOOTLOGO 1
    export ANDROID_ROOT /system
    export ANDROID_ASSETS /system/app
    export ANDROID_DATA /data
    export ANDROID_STORAGE /storage
    export ASEC_MOUNTPOINT /mnt/asec
    export LOOP_MOUNTPOINT /mnt/obb
    export BOOTCLASSPATH /system/framework/core.jar:/system/framework/core-junit
.jar:/system/framework/bouncycastle.jar:/system/framework/ext.jar:/system/framew
ork/framework.jar:/system/framework/telephony-common.jar:/system/framework/mms-c
ommon.jar:/system/framework/android.policy.jar:/system/framework/services.jar:/s
ystem/framework/apache-xml.jar

# Backward compatibility
    symlink /system/etc /etc
    symlink /sys/kernel/debug /d

# Right now vendor lives on the same filesystem as system,
# but someday that may change.
    symlink /system/vendor /vendor

# Create cgroup mount point for cpu accounting
    mkdir /acct
    mount cgroup none /acct cpuacct
    mkdir /acct/uid

    mkdir /system
    mkdir /data 0771 system system
    mkdir /cache 0770 system cache
    mkdir /config 0500 root root

    # See storage config details at http://source.android.com/tech/storage/
    mkdir /mnt/shell 0700 shell shell
    mkdir /storage 0050 root sdcard_r

    # Directory for putting things only root should see.
    mkdir /mnt/secure 0700 root root
    # Create private mountpoint so we can MS_MOVE from staging
    mount tmpfs tmpfs /mnt/secure mode=0700,uid=0,gid=0

    # Directory for staging bindmounts
    mkdir /mnt/secure/staging 0700 root root

    # Directory-target for where the secure container
    # imagefile directory will be bind-mounted
    mkdir /mnt/secure/asec  0700 root root

    # Secure container public mount points.
    mkdir /mnt/asec  0700 root system
    mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

    # Filesystem image public mount points.
    mkdir /mnt/obb 0700 root system
    mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

    write /proc/sys/kernel/panic_on_oops 1
    write /proc/sys/kernel/hung_task_timeout_secs 0
    write /proc/cpu/alignment 4
    write /proc/sys/kernel/sched_latency_ns 10000000
    write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
    write /proc/sys/kernel/sched_compat_yield 1
    write /proc/sys/kernel/sched_child_runs_first 0
    write /proc/sys/kernel/randomize_va_space 2
    write /proc/sys/kernel/kptr_restrict 2
    write /proc/sys/kernel/dmesg_restrict 1
    write /proc/sys/vm/mmap_min_addr 32768
    write /proc/sys/kernel/sched_rt_runtime_us 950000
    write /proc/sys/kernel/sched_rt_period_us 1000000

# Create cgroup mount points for process groups
    mkdir /dev/cpuctl
    mount cgroup none /dev/cpuctl cpu
    chown system system /dev/cpuctl
    chown system system /dev/cpuctl/tasks
    chmod 0660 /dev/cpuctl/tasks
    write /dev/cpuctl/cpu.shares 1024
    write /dev/cpuctl/cpu.rt_runtime_us 950000
    write /dev/cpuctl/cpu.rt_period_us 1000000

    mkdir /dev/cpuctl/apps
    chown system system /dev/cpuctl/apps/tasks
    chmod 0666 /dev/cpuctl/apps/tasks
    write /dev/cpuctl/apps/cpu.shares 1024
    write /dev/cpuctl/apps/cpu.rt_runtime_us 800000
    write /dev/cpuctl/apps/cpu.rt_period_us 1000000

    mkdir /dev/cpuctl/apps/bg_non_interactive
    chown system system /dev/cpuctl/apps/bg_non_interactive/tasks
    chmod 0666 /dev/cpuctl/apps/bg_non_interactive/tasks
    # 5.0 %
    write /dev/cpuctl/apps/bg_non_interactive/cpu.shares 52
    write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_runtime_us 700000
    write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_period_us 1000000

# Allow everybody to read the xt_qtaguid resource tracking misc dev.
# This is needed by any process that uses socket tagging.
    chmod 0644 /dev/xt_qtaguid

on fs
# mount mtd partitions
    # Mount /system rw first to give the filesystem a chance to save a 
    checkpoint
    mount yaffs2 mtd@system /system
    mount yaffs2 mtd@system /system ro remount
    mount yaffs2 mtd@userdata /data nosuid nodev
    mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs
    # once everything is setup, no need to modify /
    mount rootfs rootfs / ro remount
    # mount shared so changes propagate into child namespaces
    mount rootfs rootfs / shared rec
    mount tmpfs tmpfs /mnt/secure private rec

    # We chown/chmod /cache again so because mount is run as root + defaults
    chown system cache /cache
    chmod 0770 /cache
    # We restorecon /cache in case the cache partition has been reset.
    restorecon /cache

    # This may have been created by the recovery system with odd permissions
    chown system cache /cache/recovery
    chmod 0770 /cache/recovery
    # This may have been created by the recovery system with the wrong context.
    restorecon /cache/recovery

    #change permissions on vmallocinfo so we can grab it from bugreports
    chown root log /proc/vmallocinfo
    chmod 0440 /proc/vmallocinfo

    chown root log /proc/slabinfo
    chmod 0440 /proc/slabinfo

    #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
    stacks
    chown root system /proc/kmsg
    chmod 0440 /proc/kmsg
    chown root system /proc/sysrq-trigger
    chmod 0220 /proc/sysrq-trigger
    chown system log /proc/last_kmsg
    chmod 0440 /proc/last_kmsg

    # create the lost+found directories, so as to enforce our permissions
    mkdir /cache/lost+found 0770 root root

on post-fs-data
    # We chown/chmod /data again so because mount is run as root + defaults
    chown system system /data
    chmod 0771 /data
    # We restorecon /data in case the userdata partition has been reset.
    restorecon /data

    # Create dump dir and collect dumps.
    # Do this before we mount cache so eventually we can use cache for
    # storing dumps on platforms which do not have a dedicated dump partition.
    mkdir /data/dontpanic 0750 root log

    # Collect apanic data, free resources and re-arm trigger
    copy /proc/apanic_console /data/dontpanic/apanic_console
    chown root log /data/dontpanic/apanic_console
    chmod 0640 /data/dontpanic/apanic_console

    copy /proc/apanic_threads /data/dontpanic/apanic_threads
    chown root log /data/dontpanic/apanic_threads
    chmod 0640 /data/dontpanic/apanic_threads

    write /proc/apanic_console 1

    # create basic filesystem structure
    mkdir /data/misc 01771 system misc
    mkdir /data/misc/adb 02750 system shell
    mkdir /data/misc/bluedroid 0770 bluetooth net_bt_stack
    mkdir /data/misc/bluetooth 0770 system system
    mkdir /data/misc/keystore 0700 keystore keystore
    mkdir /data/misc/keychain 0771 system system
    mkdir /data/misc/sms 0770 system radio
    mkdir /data/misc/vpn 0770 system vpn
    mkdir /data/misc/systemkeys 0700 system system
    # give system access to wpa_supplicant.conf for backup and restore
    mkdir /data/misc/wifi 0770 wifi wifi
    chmod 0660 /data/misc/wifi/wpa_supplicant.conf
    mkdir /data/local 0751 root root

    # For security reasons, /data/local/tmp should always be empty.
    # Do not place files or directories in /data/local/tmp
    mkdir /data/local/tmp 0771 shell shell
    mkdir /data/data 0771 system system
    mkdir /data/app-private 0771 system system
    mkdir /data/app-asec 0700 root root
    mkdir /data/app-lib 0771 system system
    mkdir /data/app 0771 system system
    mkdir /data/property 0700 root root
    mkdir /data/ssh 0750 root shell
    mkdir /data/ssh/empty 0700 root root

    # create dalvik-cache, so as to enforce our permissions
    mkdir /data/dalvik-cache 0771 system system

    # create resource-cache and double-check the perms
    mkdir /data/resource-cache 0771 system system
    chown system system /data/resource-cache
    chmod 0771 /data/resource-cache

    # create the lost+found directories, so as to enforce our permissions
    mkdir /data/lost+found 0770 root root

    # create directory for DRM plug-ins - give drm the read/write access to
    # the following directory.
    mkdir /data/drm 0770 drm drm

    # If there is no fs-post-data action in the init.<device>.rc file, you
    # must uncomment this line, otherwise encrypted filesystems
    # won't work.
    # Set indication (checked by vold) that we have finished this action
    #setprop vold.post_fs_data_done 1

on boot
# basic network init
    ifup lo
    hostname localhost
    domainname localdomain

# set RLIMIT_NICE to allow priorities from 19 to -20
    setrlimit 13 40 40

# Memory management.  Basic kernel parameters, and allow the high
# level system server to be able to adjust the kernel OOM driver
# parameters to match how it is managing things.
    write /proc/sys/vm/overcommit_memory 1
    write /proc/sys/vm/min_free_order_shift 4
    chown root system /sys/module/lowmemorykiller/parameters/adj
    chmod 0664 /sys/module/lowmemorykiller/parameters/adj
    chown root system /sys/module/lowmemorykiller/parameters/minfree
    chmod 0664 /sys/module/lowmemorykiller/parameters/minfree

    # Tweak background writeout
    write /proc/sys/vm/dirty_expire_centisecs 200
    write /proc/sys/vm/dirty_background_ratio  5

    # Permissions for System Server and daemons.
    chown radio system /sys/android_power/state
    chown radio system /sys/android_power/request_state
    chown radio system /sys/android_power/acquire_full_wake_lock
    chown radio system /sys/android_power/acquire_partial_wake_lock
    chown radio system /sys/android_power/release_wake_lock
    chown system system /sys/power/autosleep
    chown system system /sys/power/state
    chown system system /sys/power/wakeup_count
    chown radio system /sys/power/wake_lock
    chown radio system /sys/power/wake_unlock
    chmod 0660 /sys/power/state
    chmod 0660 /sys/power/wake_lock
    chmod 0660 /sys/power/wake_unlock

    chown system system /sys/devices/system/cpu/cpufreq/interactive/timer_rate
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/timer_rate
    chown system system /sys/devices/system/cpu/cpufreq/interactive/min_sample_
    time
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/min_sample_time
    chown system system /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
    chown system system /sys/devices/system/cpu/cpufreq/interactive/go_
    hispeed_load
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/go_hispeed_load
    chown system system /sys/devices/system/cpu/cpufreq/interactive/above_
    hispeed_delay
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/above_hispeed_delay
    chown system system /sys/devices/system/cpu/cpufreq/interactive/boost
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/boost
    chown system system /sys/devices/system/cpu/cpufreq/interactive/boostpulse
    chown system system /sys/devices/system/cpu/cpufreq/interactive/input_boost
    chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/input_boost

    # Assume SMP uses shared cpufreq policy for all CPUs
    chown system system /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
    chmod 0660 /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

    chown system system /sys/class/timed_output/vibrator/enable
    chown system system /sys/class/leds/keyboard-backlight/brightness
    chown system system /sys/class/leds/lcd-backlight/brightness
    chown system system /sys/class/leds/button-backlight/brightness
    chown system system /sys/class/leds/jogball-backlight/brightness
    chown system system /sys/class/leds/red/brightness
    chown system system /sys/class/leds/green/brightness
    chown system system /sys/class/leds/blue/brightness
    chown system system /sys/class/leds/red/device/grpfreq
    chown system system /sys/class/leds/red/device/grppwm
    chown system system /sys/class/leds/red/device/blink
    chown system system /sys/class/leds/red/brightness
    chown system system /sys/class/leds/green/brightness
    chown system system /sys/class/leds/blue/brightness
    chown system system /sys/class/leds/red/device/grpfreq
    chown system system /sys/class/leds/red/device/grppwm
    chown system system /sys/class/leds/red/device/blink
    chown system system /sys/class/timed_output/vibrator/enable
    chown system system /sys/module/sco/parameters/disable_esco
    chown system system /sys/kernel/ipv4/tcp_wmem_min
    chown system system /sys/kernel/ipv4/tcp_wmem_def
    chown system system /sys/kernel/ipv4/tcp_wmem_max
    chown system system /sys/kernel/ipv4/tcp_rmem_min
    chown system system /sys/kernel/ipv4/tcp_rmem_def
    chown system system /sys/kernel/ipv4/tcp_rmem_max
    chown root radio /proc/cmdline

# Define TCP buffer sizes for various networks
#   ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
    setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
    setprop net.tcp.buffersize.wifi    524288,1048576,2097152,262144,524288,
                                       1048576
    setprop net.tcp.buffersize.lte     524288,1048576,2097152,262144,524288,
                                       1048576
    setprop net.tcp.buffersize.umts    4094,87380,110208,4096,16384,110208
    setprop net.tcp.buffersize.hspa    4094,87380,262144,4096,16384,262144
    setprop net.tcp.buffersize.hsupa   4094,87380,262144,4096,16384,262144
    setprop net.tcp.buffersize.hsdpa   4094,87380,262144,4096,16384,262144
    setprop net.tcp.buffersize.hspap   4094,87380,1220608,4096,16384,1220608
    setprop net.tcp.buffersize.edge    4093,26280,35040,4096,16384,35040
    setprop net.tcp.buffersize.gprs    4092,8760,11680,4096,8760,11680
    setprop net.tcp.buffersize.evdo    4094,87380,262144,4096,16384,262144

# Set this property so surfaceflinger is not started by system_init
    setprop system_init.startsurfaceflinger 0

    class_start core [image: 3]
    class_start main

on nonencrypted
    class_start late_start

on charger
    class_start charger

on property:vold.decrypt=trigger_reset_main
    class_reset main

on property:vold.decrypt=trigger_load_persist_props
    load_persist_props

on property:vold.decrypt=trigger_post_fs_data
    trigger post-fs-data

on property:vold.decrypt=trigger_restart_min_framework
    class_start main

on property:vold.decrypt=trigger_restart_framework
    class_start main
    class_start late_start

on property:vold.decrypt=trigger_shutdown_framework
    class_reset late_start
    class_reset main

## Daemon processes to be run by init.
##
service ueventd /sbin/ueventd
    class core [image: 4]
    critical
    seclabel u:r:ueventd:s0

on property:selinux.reload_policy=1
    restart ueventd
    restart installd

service console /system/bin/sh
    class core
    console
    disabled
    user shell
    group log

on property:ro.debuggable=1
    start console

# adbd is controlled via property triggers in init.<platform>.usb.rc [image: 5]
service adbd /sbin/adbd
    class core
    socket adbd stream 660 system system
    disabled
    seclabel u:r:adbd:s0

# adbd on at boot in emulator
on property:ro.kernel.qemu=1
    start adbd

service servicemanager /system/bin/servicemanager
    class core
    user system
    group system
    critical
    onrestart restart zygote
    onrestart restart media
    onrestart restart surfaceflinger
    onrestart restart drm

service vold /system/bin/vold
    class core
    socket vold stream 0660 root mount
    ioprio be 2

service netd /system/bin/netd
    class main [image: 6]
    socket netd stream 0660 root system
    socket dnsproxyd stream 0660 root inet
    socket mdns stream 0660 root system

service debuggerd /system/bin/debuggerd
    class main

service ril-daemon /system/bin/rild
    class main
    socket rild stream 660 root radio
    socket rild-debug stream 660 radio system
    user root
    group radio cache inet misc audio log

service surfaceflinger /system/bin/surfaceflinger [image: 7]
    class main
    user system
    group graphics drmrpc
    onrestart restart zygote

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd

service drm /system/bin/drmserver
    class main
    user drm
    group drm system inet drmrpc

service media /system/bin/mediaserver
    class main
    user media
    group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc
    ioprio rt 4

service bootanim /system/bin/bootanimation
    class main
    user graphics
    group graphics
    disabled
    oneshot

service installd /system/bin/installd
    class main
    socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
    class main
    oneshot

service racoon /system/bin/racoon
    class main
    socket racoon stream 600 system system
    # IKE uses UDP port 500. Racoon will setuid to vpn after binding the port.
    group vpn net_admin inet
    disabled
    oneshot

service mtpd /system/bin/mtpd
    class main
    socket mtpd stream 600 system system
    user vpn
    group vpn net_admin inet net_raw
    disabled
    oneshot

service keystore /system/bin/keystore /data/misc/keystore
    class main
    user keystore
    group keystore drmrpc
    socket keystore stream 666

service dumpstate /system/bin/dumpstate -s
    class main
    socket dumpstate stream 0660 shell log
    disabled
    oneshot

service sshd /system/bin/start-ssh
    class main
    disabled

service mdnsd /system/bin/mdnsd
    class main
    user mdnsr
    group inet net_raw
    socket mdnsd stream 0660 mdnsr inet
    disabled
    oneshot
	[image: 1] 
	4.2/Jelly Bean uses the import mechanism to bring in other
          .rc files. In this case, three
          files are imported. init.usb.rc
          and init.trace.rc are global to
          all device builds, and I’ve included them below for reference. This
          init.rc, however, also imports
          a board-specific init.${ro.hardware}.rc, which will be
          loaded according to the value of the ro.hardware global property. Have a look
          at the board-specific .rc files
          in the device/ directory for
          examples.
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	This is new to init.rc
          and is intricately related to the SEAndroid project. Have a look at
          http://selinuxproject.org/page/SEAndroid for more
          information about SEAndroid.
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	In the 2.3/Gingerbread init.rc, class_start is used only to start the
          default class of services, which
          in that version is all services in the default init.rc. In 4.2/Jelly Bean, however, two
          classes are used in this file: core and main. Their names are self-explanatory,
          and you can see later in the file that the services are marked as
          either core or main. Generally speaking, the first class
          is listed first.
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	Here’s the first instance of a service definition where the
          class property is used to
          indicate the service’s class, which in this case is core.

	[image: 5] 
	Unlike in 2.3/Gingerbread, the starting and stopping of
          adbd isn’t controlled by the
          persist.service.adb.enable
          property. Instead, as the comment suggests, it’s controlled in the
          init.usb.rc files. We’ll
          discuss this in more detail below.
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	netd is the first service
          in the list that’s part of the main class.

	[image: 7] 
	As I mentioned in Chapter 2, the Surface
          Flinger is no longer part of the System Server. Instead, it’s
          started as a separate process, as we can see here.




init.usb.rc



This .rc file is related to
      all things USB. Specifically, to better understand its operation and the
      values being set, you need to take a look at the USB system service code
      in frameworks/base/services/java/com/android/server/usb/.
# Copyright (C) 2012 The Android Open Source Project
#
# USB configuration common for all android devices
#

on post-fs-data
    chown system system /sys/class/android_usb/android0/f_mass_storage/lun/file
    chmod 0660 /sys/class/android_usb/android0/f_mass_storage/lun/file
    chown system system /sys/class/android_usb/android0/f_rndis/ethaddr
    chmod 0660 /sys/class/android_usb/android0/f_rndis/ethaddr

# Used to disable USB when switching states
on property:sys.usb.config=none [image: 1]
    stop adbd [image: 2]
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/bDeviceClass 0
    setprop sys.usb.state ${sys.usb.config}

# adb only USB configuration
# This should only be used during device bringup
# and as a fallback if the USB manager fails to set a standard configuration
on property:sys.usb.config=adb
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct D002
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    start adbd [image: 3]
    setprop sys.usb.state ${sys.usb.config}

# USB accessory configuration
on property:sys.usb.config=accessory
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d00
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    setprop sys.usb.state ${sys.usb.config}

# USB accessory configuration, with adb
on property:sys.usb.config=accessory,adb
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d01
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    start adbd
    setprop sys.usb.state ${sys.usb.config}

# audio accessory configuration
on property:sys.usb.config=audio_source
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d02
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    setprop sys.usb.state ${sys.usb.config}

# audio accessory configuration, with adb
on property:sys.usb.config=audio_source,adb
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d03
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    start adbd
    setprop sys.usb.state ${sys.usb.config}

# USB and audio accessory configuration
on property:sys.usb.config=accessory,audio_source
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d04
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    setprop sys.usb.state ${sys.usb.config}

# USB and audio accessory configuration, with adb
on property:sys.usb.config=accessory,audio_source,adb
    write /sys/class/android_usb/android0/enable 0
    write /sys/class/android_usb/android0/idVendor 18d1
    write /sys/class/android_usb/android0/idProduct 2d05
    write /sys/class/android_usb/android0/functions ${sys.usb.config}
    write /sys/class/android_usb/android0/enable 1
    start adbd
    setprop sys.usb.state ${sys.usb.config}

# Used to set USB configuration at boot and to switch the configuration
# when changing the default configuration
on property:persist.sys.usb.config=*
    setprop sys.usb.config ${persist.sys.usb.config} [image: 4]
	[image: 1] 
	The sys.usb.config global
          property is what controls the state of the USB connection. It’s
          either explicitly set by the code in frameworks/base/services/java/com/android/server/usb/UsbDeviceManager.java
          or updated based on changes to persist.sys.usb.config as is done farther
          down in the file.

	[image: 2] 
	Here’s adbd being stopped
          based on a change to sys.usb.config.

	[image: 3] 
	This is one of several instances where adbd is started based on a change to
          sys.usb.config.

	[image: 4] 
	Whenever persist.sys.usb.config is modified,
          sys.usb.config is automatically
          updated here. That, in turn, is likely to trigger other parts of
          this file based on the above-declared triggers.




init.trace.rc



Since 4.1/Jelly Bean, Android has included a systrace command for use by app developers.
      The systrace tool on the host side
      actually depends on an atrace tool on
      the target, which is invoked via ADB. For its part, atrace uses the kernel’s ftrace functionality
      to trace the system. This init.trace.rc sets up ftrace for use by
      Android’s tracing tools. A quick search for “ftrace” in your favorite
      search engine should allow you to easily find more documentation on this
      mechanism. 
## Permissions to allow system-wide tracing to the kernel trace buffer.
##
on boot

# Allow writing to the kernel trace log.
    chmod 0222 /sys/kernel/debug/tracing/trace_marker

# Allow the shell group to enable (some) kernel tracing.
    chown root shell /sys/kernel/debug/tracing/trace_clock
    chown root shell /sys/kernel/debug/tracing/buffer_size_kb
    chown root shell /sys/kernel/debug/tracing/options/overwrite
    chown root shell /sys/kernel/debug/tracing/events/sched/sched_switch/enable
    chown root shell /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
    chown root shell /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
    chown root shell /sys/kernel/debug/tracing/events/power/cpu_idle/enable
    chown root shell /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
    chown root shell /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
    chown root shell /sys/kernel/debug/tracing/tracing_on

    chmod 0664 /sys/kernel/debug/tracing/trace_clock
    chmod 0664 /sys/kernel/debug/tracing/buffer_size_kb
    chmod 0664 /sys/kernel/debug/tracing/options/overwrite
    chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_switch/enable
    chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
    chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
    chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_idle/enable
    chmod 0664 /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
    chmod 0664 /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
    chmod 0664 /sys/kernel/debug/tracing/tracing_on

# Allow only the shell group to read and truncate the kernel trace.
    chown root shell /sys/kernel/debug/tracing/trace
    chmod 0660 /sys/kernel/debug/tracing/trace




[38] Both files are configuration files part of the AOSP sources and
      are therefore assumed to be licensed under the Apache license.

[39] See the man page for klogctl() for more details as to the
            specific effect of this.


Appendix E. Resources



 There is more to Android than could ever be covered in a
  single book. For starters, Android has a living ecosystem around it and a
  lot of community projects. This appendix highlights the major resources you
  should explore as your work with Android progresses.
Websites and Communities



A vast number of websites and communities are either directly or
    indirectly related to Android. I’ve tried to categorize them below as
    neatly as possible.
Google



	Android Open Source
          Project
	Google’s main site for the Android platform. It historically
            contained more information about the system, but it has been
            removed. It still is a very good reference on how to get the
            sources and how to set up your development system to build the
            AOSP. It also contains the latest documentation on the Android
            Compatibility Program, including the Compliance Definition
            Document.

	Android
          Developer
	This is Google’s site for app developers. Unlike the
            platform site, this site is quite rich in documentation. It
            contains tutorials, an API reference, guidelines for graphic
            designers, and more. In sum, if you’re developing an app, you’re
            in good hands with this site.

	Android Tools Project
          Site
	This is the site that contains the information about
            Android’s developer tools. This includes the SDK, the Eclipse
            plug-in, the NDK, etc.




SoC Vendors



	TI
          Android Development Kit for Sitara
	This dev kit includes a set of AOSP sources that have been
            customized to run on boards based on TI’s chips such as the
            BeagleBone. You may also find the porting information available
            here.

	Linaro
          Android
	Per its website, “Linaro is a not-for-profit engineering
            organization consolidating and optimizing open source Linux
            software and tools for the ARM architecture.” Effectively, it’s an
            organization serving several SoC vendors, helping them with
            platform enablement. They maintain an Android tree for their
            members that is freely available to download.

	CodeAurora
	This is part of Linux Foundation Labs and provides
            enablement for various open source projects for Qualcomm chips. As
            such, it maintains an Android tree.




Forks



Apart from the information provided on their sites, many of these
      forks have public mailing lists that you may find useful.
	CyanogenMod
	This is probably the most popular Android fork. It’s
            essentially an aftermarket AOSP distribution aimed at techies and
            power users, with additional features and enhancements. Most
            interestingly, all the development is done in the open.

	Android-x86
	This is a separate project from the work done by Intel to
            get x86 support merged into the main AOSP tree. Instead, this is
            geared to porting Android to PCs, netbooks, and laptops.

	RowBoat
	This is the community project maintained by TI from which
            the TI Android Development Kit is derived.

	Replicant
	This project aims to replace as many Android components with
            free software as possible. For instance, it includes F-Droid, a free software
            application catalog (essentially a free software version of Google
            Play).



Apart from the above list, there’s also a large and growing number
      of closed-source forks of the AOSP. Remember that Android’s licensing is
      very permissive.

Documentation and Forums



	Linux Weekly News
	The primary news site for all things relating to the
            kernel’s development. Android is covered when relevant, but the
            focus is certainly on classic Linux distributions and the Linux
            kernel.

	Embedded Linux
          Wiki
	A wiki site that has a large collection of information
            related to embedded Linux. For some time now, it’s also had an
            Android
            section.

	OMAPpedia
	This wiki contains information about the use of Linux and
            Android on TI’s OMAP processors. Some of the articles include a
            lot of detailed instructions.

	xdadevelopers
	While this site is traditionally frequented by modders, it
            sometimes contains information that is very difficult to obtain
            otherwise. Have a look at the Android
            section. Most of the valuable information found here is in
            the site’s forums.

	Slideshare
	This is a general-purpose site for sharing slides. It
            contains a large number of Android-related slides, including many
            about its internals or various internal components.

	Vogella
	This site is maintained by Lars Vogel and provides various
            tutorials about Android app development. It’s a very good
            complement to the official Android app development information
            distributed by Google.
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	BuildRoot
	This project has been around for over a decade now, and
            allows you to build a target embedded Linux root filesystem and
            tools based on a configuration fed to it using a menu-based
            system.

	Yocto
          Project
	Similar to BuildRoot but much more ambitious in its goals.
            It contains a framework and tools for generating entire embedded
            Linux distributions.




Open Hardware Projects



	BeagleBoard and
          BeagleBone
	There are many inexpensive evaluation boards on the market.
            However, the BeagleBoard and BeagleBone have accrued a very active
            community. Schematics provided.





Books



	Building Embedded Linux Systems, 2nd ed.,
        by Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum
        (O’Reilly, 2008)
	The classic book on the topic of embedded Linux, originally
          written by yours truly and since updated under Jon Masters’
          lead.

	Embedded Linux Primer, 2nd ed., by
        Christopher Hallinan (Prentice Hall, 2010)
	Another good embedded Linux book.

	Linux Device Drivers, 3rd ed., by Jonathan
        Corbet, Alessandro Rubini, and Greg Kroah-Hartman (O’Reilly,
        2005)
	Despite its age, this remains the reference for Linux device
          driver authors.

	Linux Kernel Development, 3rd ed., by
        Robert Love (Addison-Wesley, 2010)
	One of the kernel internals books that has withstood the test
          of time.

	Linux Kernel Architecture, by Wolfgang
        Mauerer (Wrox, 2008)
	Another internals title.

	Programming Android, 2nd ed., by Zigurd
        Mednieks, Laird Dornin, Blake Meike, and Masumi Nakamura (O’Reilly,
        2012)
	An in-depth book on app development.

	Learning Android, by Marko Gargenta
        (O’Reilly, 2011)
	An introductory book on app development.

	Professional Android 4 Application
        Development, by Reto Meier (Wrox, 2012)
	An app development book by the tech lead for the Android
          Developer Relations team at Google.




Conferences and Events




	Android
        Builders Summit
	The primary event for developers doing work inside the AOSP
          stack.

	Embedded
        Linux Conference
	The main event for all things related to embedded
          Linux.

	Embedded
        Linux Conference Europe
	The European run of the ELC.

	Linaro
        Connect
	The event Linaro uses to bring together its members and
          developers.

	AnDevCon
	The main app developer conference. Also has some platform
          talks.
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Adults can measure up to 15 centimeters, including the tail. They have
  a robust body and flat head and their tubercules are enlarged, which give
  the species a spiny, armored appearance. They are brownish gray or brown
  with darker or lighter spots; these colors change in intensity according to
  the light.
The cover image is from Heck’s Nature & Science. The cover font is
  Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is
  Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
  Mono.
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