[image: First Edition]
Embedded Android

Karim Yaghmour

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To Anaïs, Thomas, and Vincent.
 May your journeys be filled with the joys of sharing and discovery.

Praise for Embedded Android

“This is the definitive book for anyone wanting to create a system
 based on Android. If you don’t work for Google and you are working with
 the low-level Android interfaces, you need
 this book.”
—Greg Kroah-Hartman, Core
 Linux Kernel Developer

“If you or your team works on creating custom Android images,
 devices, or ROM mods, you want this book! Other than the source code
 itself, this is the only place where you’ll find an explanation of how
 Android works, how the Android build system works, and an overall view of
 how Android is put together. I especially like the chapters on the build
 system and frameworks (4, 6, and 7), where there are many nuggets of
 information from the AOSP source that are hard to reverse-engineer. This
 book will save you and your team a lot of time. I wish we had it back when
 our teams were starting on the Frozen Yogurt version of Android two years
 ago. This book is likely to become required reading for new team members
 working on Intel Android stacks for the Intel reference phones.”
—Mark Gross, Android/Linux
 Kernel Architect, Platform System Integration/Mobile Communications
 Group/Intel Corporation

“Karim methodically knocks out the many mysteries Android poses to
 embedded system developers. This book is a practical treatment of working
 with the open source software project on all classes of devices, beyond
 just consumer phones and tablets. I’m personally pleased to see so many
 examples provided on affordable hardware, namely BeagleBone, not just on
 emulators.”
—Jason Kridner, Sitara
 Software Architecture Manager at Texas Instruments and cofounder of
 BeagleBoard.org

“This book contains information that previously took hundreds of
 hours for my engineers to discover. It is required reading for any new
 person that is working with Android on my
 team.”
—Dr. Mark Micire, Researcher
 in Space and Mobile Field Robotics, Carnegie Mellon
 University

“Thanks to this book, for the first time embedded system developers
 have access to an open and vertically integrated stack that contains
 everything they need to build robust and high-performing Linux-based
 products. Android’s revolutionary execution model transcends phones and
 tablets, and its application developer platform is unmatched in the
 industry for features and development speed. This book will give
 developers a valuable resource for understanding everything between the
 application layer and the kernel, and how to extend and change things to
 create an infinite variety of Androids.”
—Zach Pfeffer, Tech Lead for
 Linaro’s Android team

“Finally, a book on the Android platform from a systems perspective!
 There are plenty of books on creating Android applications, but for too
 long no single, comprehensive source for information on Android’s
 internals. In Embedded Android, Karim has collected a
 vast quantity of material that is essential and helpful for Android
 systems programmers and integrators (although, to be sure, application
 developers would benefit from a reading as well). Karim’s copious
 examples, references, and explanations are gleaned from his extensive
 experience with and analysis of Android. It’s the book I wish I had had
 when I walked my own trail of tears learning Android for work at Sony.
 With this book, I could have saved myself months learning the ins and outs
 of Android. No doubt this will be the canonical reference book for Android
 system developers for years to come.”
—Tim Bird, Senior Staff
 Engineer, Sony Network Entertainment, and Architecture Group Chair, CE
 Workgroup of the Linux Foundation

“Karim Yaghmour’s book is an excellent guide for those wishing to
 get into the burgeoning field of Android-based embedded projects and
 products. The book covers the full range from kernel support through
 licensing and trademark issues, including information on running Android
 systems in “headless” mode as well. This book deserves a place on every
 serious embedded Android developer’s bookshelf.”
—Paul E. McKenney, IBM
 Distinguished Engineer and Linux Kernel RCU Maintainer

“Although Android is officially designed for mobile and tablet
 segments, it’s unquestionably getting considered for many other product
 segments, like automotive, UI panels like HMI, wearable gadgets, and so
 on. This book is highly recommended, as it covers all the essential
 fundamentals and concepts that help developers port and develop
 Android-based solutions for both mobile and nonmobile product
 segments.”
—Khasim Syed Mohammed, Lead
 Engineer, Texas Instruments

“A great resource not only for embedded Android developers, but also
 for Android app developers to learn the wiring below the Java
 surface.”
—Lars Vogel, CEO, vogella
 GmbH

“Once again, Karim has hit the nail on the head. If you’re
 interested in porting Android to a new device or just interested in the
 guts of how Android runs on a piece of hardware, this is the book you’ve
 been searching for. This book leads you through all of the facets of
 build-environment setup, getting the AOSP sources, adding your hardware to
 the Android sources and deploying a new Android build to the hardware. It
 discusses the underpinnings of Android including the HAL and how to give
 your custom hardware support within the Android framework. In short, of
 all the books on Android, this is the one book that targets the Android
 device builder rather than Android application developer or end user. I
 just wish this book would have been available when I first got into
 Android porting. It could have saved me months of trial and error
 efforts.”
—Mike Anderson, Chief
 Scientist, The PTR Group, Inc.

“Embedded Android has been a great resource for
 our company. It is a must-have when porting Android to new hardware or
 integrating new features at a low level. Karim is a great instructor, and
 his writing captures his style well.”
—Jim Steele, VP of
 Engineering, Sensor Platforms

“Embedded Android is a must-read for anyone who
 wants to seriously work the Android internals and bring up Android on new
 platforms. It helps in navigating the extensive AOSP codebase, and
 understanding the overall architecture and design of the system.”
—Balwinder Kaur, Senior
 Member, Technical Staff, Aptina Imaging

“So you thought you knew about Android internals? Well, think again!
 Chapter after chapter, you’ll discover what’s behind the scenes and why
 Android is not just another embedded Linux distribution. Get yourself
 ready for stepping into a whirlpool, ’cause Embedded
 Android is a gold mine for anyone looking to do serious hacking
 on Google’s OS.”
—Benjamin Zores, Android
 Platform Architect, Alcatel-Lucent

“Definitely one of the most valuable and complete resources about
 the Android system stack. A must-have for every Android system
 engineer.”
—Maxime Ripard, Android Lead,
 Free Electrons

“When I was handed a development board running Linux, and was told
 to ‘get Android running on it,’ it was difficult to find much information
 about how to bring Android up on a new device. Luckily for me,
 Embedded Android became available about the same time
 that I was beginning development. What a lifesaver! Embedded
 Android gave me the kick-start I needed to understand the
 underpinnings of Android and what I would need to do to bring Android up
 on a new piece of hardware. I loved all the details and background, from
 the boot sequence to the build system. After having read
 Embedded Android, I felt I had a much better grasp of
 Android and how it interacted with the Linux kernel.”
—Casey Anderson, Embedded
 Systems Architect, Trendril

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

Android’s growth is phenomenal. In a very short time span, it has
 succeeded in becoming one of the top mobile platforms in the market.
 Clearly, the unique combination of open source licensing, aggressive
 go-to-market, and trendy interface is bearing fruit for Google’s Android
 team. Needless to say, the massive user uptake generated by Android has not
 gone unnoticed by handset manufacturers, mobile network operators, silicon
 manufacturers, and app developers. Products, apps, and devices “for,”
 “compatible with,” or “based on” Android seem to be coming out ever so
 fast.
Beyond its mobile success, however, Android is also attracting the
 attention of yet another, unintended crowd: embedded systems developers.
 While a large number of embedded devices have little to no human interface,
 a substantial number of devices that would traditionally be considered
 “embedded” do have user interfaces. For a goodly number of modern machines,
 in addition to pure technical functionality, developers creating user-facing
 devices must also contend with human-computer interaction (HCI) factors.
 Therefore, designers must either present users with an experience they are
 already familiar with or risk alienating users by requiring them to learn a
 lesser-known or entirely new user experience. Before Android, the user
 interface choices available to the developers of such devices were fairly
 limited and limiting.
Clearly, embedded developers prefer to offer users an interface they
 are already familiar with. Although that interface might have been
 window-based in the past—and hence a lot of embedded devices were based on
 classic window-centric, desktop-like, or desktop-based interfaces—Apple’s
 iOS and Google’s Android have forever democratized the use of touch-based,
 iPhone-like graphical interfaces. This shift in user paradigms and
 expectations, combined with Android’s open source licensing, have created a
 groundswell of interest about Android within the embedded world.
Unlike Android app developers, however, developers wanting to do any
 sort of platform work in Android, including porting or adapting Android to
 an embedded device, rapidly run into quite a significant problem: the almost
 total lack of documentation on how to do that. So, while Google provides app
 developers with a considerable amount of online documentation, and while
 there are a number of books on the topic, such as O’Reilly’s Learning
 Android, embedded developers have to contend with the
 minimalistic set of documents provided by Google at http://source.android.com. In sum, embedded developers
 seriously entertaining the use of Android in their systems were essentially
 reduced to starting with Android’s source code.
The purpose of this book is to remedy that situation and to enable you
 to embed Android in any device. You will, therefore, learn about Android’s
 architecture, how to navigate its source code, how to modify its various
 components, and how to create your own version for your particular device.
 In addition, you will learn how Android integrates into the Linux kernel and
 understand the commonalities and differences it has with its Linux roots.
 For instance, we will discuss how Android leverages Linux’s driver model to
 create its very own hardware layer and how to take “legacy” Linux components
 such as glibc and BusyBox and package them as part of Android. Along the
 way, you will learn day-to-day tips and tricks, such as how to use Android’s
 repo tool and how to integrate with or
 modify Android’s build system.
Learning How to Embed Android

I’ve been involved with open source software since the mid-’90s. I
 was fortunate enough to join in before it became recognized as the
 powerful software movement that it is today and, therefore, witness its
 rise firsthand in the early 2000s. I’ve also made my share of open source
 contributions and, yes, participated in a couple of, shall we say,
 colorful flame wars here and there. Among other things, I also wrote the
 first edition of O’Reilly’s Building
 Embedded Linux Systems.
So when Android—which I knew was Linux-based—started becoming
 popular, I knew enough about Linux’s history and embedded Linux to know
 that it was worth investigating. Then, I was naively thinking: “I know
 Linux fairly well and Android is based on Linux; how hard could it be?”
 That is, until I actually started to seriously look into and, most
 importantly, inside Android. That’s when I realized that Android was very
 foreign. Little of what I knew about Linux and the packages it’s commonly
 used with in embedded systems applied to Android. Not only that, but the
 abstractions built in Android were even weirder still.
So began a very long (and ongoing) quest to figure things out. How
 does Android work? How is it different from regular Linux? How can I
 customize it? How can I use it in an embedded system? How do I build it?
 How does its app development API translate into what I know about Linux’s
 user-space? etc. And the more I dug into Android, the more alien it felt
 and the more questions I had.
The first thing I did was to actually go to http://developer.android.com
 and http://source.android.com and
 print out everything I could get my hands on, save for the actual
 developer API reference. I ended up with a stack of about 8 to 10 inches
 of paper. I read through most of it, underlined a lot of the key passages
 I found, added plenty of notes in the margins, and created a whole list of
 questions I couldn’t find answers for. In parallel, I started exploring
 the sources made available by Google through the Android Open Source
 Project (AOSP). In all honesty, it took me about 6 to 12 months before I
 actually started feeling confident enough to navigate within the
 AOSP.
The book you presently hold is a result of the work I’ve done on
 Android since starting to explore it—including the various projects I’ve
 been involved in, such as helping different development teams customizing
 Android for use in their embedded designs. And I’ve learned enough about
 Android to say this: By no means is this book exhaustive. There are a lot
 of things about Android and its internals that this book doesn’t and can’t
 cover. This book should, nevertheless, allow you to jump-start your
 efforts in molding Android to fit your needs.

Audience for This Book

This book is primarily geared toward developers who intend to create
 embedded systems based on Android or who would like to take Android and
 customize it for specific uses. It’s assumed you know about embedded
 systems development and have at least a good handle on how Linux works and
 how to interact with its command line.
I don’t assume you have any knowledge of Java, and you can get away
 without knowing Java for quite a few of the tasks required to customize
 Android. However, as your work within Android progresses, you’ll find it
 necessary to start becoming familiar with Java to a certain degree.
 Indeed, many of Android’s key parts are written in Java, and you’ll
 therefore need to learn the language in order to properly integrate most
 additions to specific parts of the stack.
This book isn’t, however, about either app development or Java
 programming in any way. If these are the topics you are interested in, I
 recommend you look elsewhere. There are quite a few books on each of these
 topics already available. This book isn’t about embedded systems, either,
 and there are books on that topic, too. Finally, this book isn’t about
 embedded Linux, which also has its own books. Still, being familiar with
 Linux’s use in embedded systems is something of a plus when it comes to
 Android. Indeed, though Android is a departure from all things
 traditionally known as “embedded Linux,” many of the techniques typically
 used for creating embedded Linux systems can guide and help in the
 creation of embedded Android systems.
This book will also be helpful to you if you’re interested in
 understanding Android’s internals. Indeed, customizing Android for use in
 embedded systems requires knowing at least some basics about its
 internals. So while the discussion isn’t geared toward a thorough
 exploration of Android’s sources, the explanations do show how to interact
 with the various parts of the Android stack at a fairly intimate
 level.

Organization of the Material

Like many other titles, this book gradually builds in complexity as
 it goes, with the early chapters serving as background material for later
 chapters. If you’re a manager and just want to grab the essentials, or if
 you’re wondering which set of chapters you have to read through before you
 can start skipping chapters and read material selectively, I recommend you
 at least read through the first three chapters. That doesn’t mean that the
 rest isn’t relevant, but the content is much more modular after
 that.
Chapter 1, Introduction, covers the
 general things you should know about Android’s use in embedded systems,
 such as where it comes from, how its development model and licensing
 differ from conventional open source projects, and the type of hardware
 required to run Android.
Chapter 2, Internals Primer, digs into
 Android’s internals and exposes you to the main abstractions it comprises.
 We start by introducing the app development model that app developers are
 accustomed to. Then we dig into the Android-specific kernel modifications,
 how hardware support is added in Android, the Android native user-space,
 Dalvik, the system server, and the overall system startup.
Chapter 3, AOSP Jump-Start, explains how
 to get the Android sources from Google, how to compile them into a
 functional emulator image, and how to run that image and shell into it.
 Using the emulator is an easy way to explore Android’s underpinnings
 without requiring actual hardware.
Chapter 4, The Build System, provides a
 detailed explanation of Android’s build system. Indeed, unlike most open
 source projects out there, Android’s build system is nonrecursive. This
 chapter explains the architecture of Android’s build system, how it’s
 typically used within the AOSP, and how to add your own modifications to
 the AOSP.
Chapter 5, Hardware Primer, introduces
 you to the types of hardware for which Android is designed. This includes
 covering the System-on-Chips (SoCs) typically used with Android, the
 memory layout of typical Android systems, the typical development setup to
 use with Android, and a couple of evaluation boards you can easily use for
 prototyping embedded Android systems.
Chapter 6, Native User-Space, covers the
 root filesystem layout, the adb tool,
 Android’s command line, and its custom init.
Chapter 7, Android Framework, discusses how
 the Android Framework is kick-started, the utilities and commands used to
 interact with it, and the support daemons required for it to operate
 properly.
Appendix A, explains how
 to get a legacy stack of “embedded Linux” software to coexist with
 Android’s user-space.
Appendix B, shows you how
 to extend the Android stack to add support for new hardware. This includes
 showing you how to add a new system service and how to extend Android’s
 Hardware Abstraction Layer (HAL).
Appendix C, provides you
 with pointers to help you customize what’s included by default in
 AOSP-generated images.
Appendix D, contains a
 commented set of the default init.rc
 files used in version 2.3/Gingerbread and version 4.2/Jelly Bean.
Appendix E, lists a
 number of resources you may find useful, such as websites, mailing lists,
 books, and events.

Software Versions

If you hadn’t already guessed it when you picked up this book, the
 versions we cover here are likely way behind the current Android version.
 And that is likely to be the case forever forward. In fact, I don’t ever
 expect any version of this book to be able to apply to the latest release
 of Android. The reason is very simple: Android releases occur every six
 months. It took almost two years to write this book and, from past
 experience, it takes anywhere from six months to a year, if not more, to
 update an existing title to the latest version of the software it
 covers.
So either you stop reading right now and return this book right
 away, or you read on for a cogent explanation on how to best use this book
 despite its almost guaranteed obsolescence.
Despite its very rapid release cycle, Android’s internal
 architecture and the procedures for building it have remained almost
 unchanged since its introduction about five years ago. So while this book
 was first written with 2.3/Gingerbread in mind, it’s been relatively
 straightforward to update it to also cover 4.2/Jelly Bean with references
 included to other versions, including 4.0/Ice-Cream Sandwich and 4.1/Jelly
 Bean where relevant. Hence, while new versions add new features, and many
 of the software components we discuss here will be enriched with every new
 version, the underlying procedures and mechanisms are likely to remain
 applicable for quite some time still.
Therefore, while you can be assured that I am committed to
 continuing to monitor Android’s development and updating this title as
 often as I humanly can, you should still be able to benefit from the
 explanations contained in this book for quite a few more versions than the
 ones covered.
Note
Some actually expect 2.3/Gingerbread to be around for a very long
 time given that its hardware requirements are much more modest than
 later versions. At the AnDevCon IV conference in December 2012, for
 instance, the keynote speaker from Facebook explained that it expected
 to have to support its app on devices running 2.3/Gingerbread for a very
 long time, given that that version runs on cheaper hardware than more
 recent versions.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Embedded Android by Karim Yaghmour (O’Reilly).
 Copyright 2013 Karim Yaghmour, 978-1-449-30829-2.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/embedded-android.
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This is my second book ever and my first in 10 years. I’m somewhat
 skeptical about self-diagnosis, especially when I’m doing it myself—as I’m
 doing right here, but I clearly seem to have a tendency to be naively
 drawn to exploring uncharted territory. When I set out to write my first
 book, Building Embedded Linux Systems, in 2001, there
 wasn’t any book describing in full what embedded Linux was about. It took
 me two years to write down what was in fact half the material I originally
 thought would take me one year to write. In the same way, there was
 practically no information about embedded Android when I set out to write
 the present book in 2011. Somewhat coincidentally, it’s taken me two years
 to finish the manuscript you’re presently holding in your hands (or, these
 days, looking at on your screen, tablet, phone, or whichever device hadn’t
 yet been conceived as I’m writing these lines.)
Overall, I’ve found that writing books feels like attrition warfare.
 Maybe that’s because of the topics I choose, or maybe it’s just my own
 quirks. Still, akin to attrition warfare, writing books on ambitious
 topics isn’t something that can be done alone. Indeed, when I set out
 writing this book, I knew but a fraction of what you’ll find in these
 pages. While you can bet that I’ve done a tremendous amount of research, I
 should also highlight that what you have here is the result of a very
 large number of interactions I’ve had with many talented developers, each
 of whom taught me a little bit more than what I knew then. Therefore, if
 you’ve ever asked me a question at a conference or during a class, or if
 you’ve ever explained to me what you’re doing with Android or what
 problems you’re encountering with it or, better yet, have sent me in the
 right direction when I was lost with Android, know that part of you is
 somewhere in here.
It also takes a special breed of publisher to make this type of book
 possible. As with my first book, everyone at O’Reilly has simply been
 exceptional. I would like to first thank Mike Hendrickson for believing in
 this project and in my ability to deliver it. It’s also been a tremendous
 privilege to once more have the chance to work with Andy Oram as an
 editor. He’s again done a fantastic job at vetting the text you’re reading
 and, oftentimes, pointing out technical issues. In addition to Andy, I’d
 also like to thank Rachel Roumeliotis and Maria Stallone for gently
 reminding me to continue pushing this book forward.
Another aspect of writing this type of book is that utmost caution
 has to be exercised in order to ensure technical accuracy. It was
 therefore crucial for me to have a strong technical review team. As such,
 I would like to start by thanking Magnus Bäck, Mark Gross, and Amit Pundir
 for agreeing very early on in this project to review the book and for
 having provided generous feedback over the long period when it was
 written. This initial group was joined along the way by many other
 talented individuals. Hardware guru David Anders provided key feedback on
 the hardware chapter. Robert PJ Day did a great job of making sure it made
 sense for those who’ve never been exposed to Android. Benjamin Zores
 ironed out several aspects of the stack’s internals. Finally, some readers
 of the book’s early versions, such as Andrew Van Uitert and Maxime Ripard,
 gracefully shared with me some issues they found along the way.
I would like to most especially thank Linaro’s Android team and
 Bernhard Rosenkränzer specifically for almost single-handedly pointing out
 the vast majority of discrepancies between the earlier version of this
 book, which was very 2.3/Gingerbread-centric, and 4.2/Jelly Bean. If
 you’re happy to hold a book that covers two major Android versions, one of
 which is the latest one at the time of this writing, thank Bernhard. Not
 only did he force my hand in updating the book, but his input was by far
 the most extensive—and often the most detailed. I would therefore like to
 warmly thank Zach Pfeffer for offering his team’s help and making it
 possible for Bernhard to contribute, along with Vishal Bhoj, Fahad
 Kunnathadi, and YongQin Liu.
As I said earlier, people I’ve met along the way at conferences have
 been instrumental in this writing. I would therefore like to single out
 two organizations that have gone out of their way to make it possible for
 me to participate in their conferences. First, I’d like to thank the BZ
 Media team, who’ve been organizing the AnDevCon conferences since early
 2011 and who trusted me early on to talk about Android’s internals and
 have continued inviting me since. Special thanks to Alan Zeichick, Ted
 Bahr, Stacy Burris, and Katie Serignese. I’d also like to thank the Linux
 Foundation for giving me the chance to keynote, speak, and participate in
 a number of events they’ve been organizing over the years, including the
 Android Builders Summit, the Embedded Linux Conference, and the Embedded
 Linux Conference Europe. Special thanks to Mike Woster, Amanda McPherson,
 Angela Brown, Craig Ross, Maresa Fowler, Rudolf Streif, Dominic Duval,
 Ibrahim Haddad, and Jerry Cooperstein.
A special thanks also to the team at RevolutionLinux, especially
 Benoit des Ligneris, Bruno Lambert, and Patrick Turcotte, for agreeing to
 be my guinea pigs early on. Your trust has borne fruit.
Finally, a very special thanks to Google’s Android team for having
 created one of the best brain-teasers I’ve run into in a while. I say this
 sincerely: Exploring this operating system has been one of the funnest
 things I’ve done in some time. Kudos to the entire team for creating an
 amazing piece of software and making it available so generously under such
 a permissive license. And while I understand this is an unconventional
 open-source project where
 transparency isn’t (for good reason) on the agenda, I’d like to thank
 those Android developers who’ve helped (or in some cases at least tried)
 in various ways. Thanks to Brian Swetland for filling in the blanks every
 so often on LWN and to Chet Haase.
These acknowledgments would be incomplete without closing with those
 who are closest to my heart. Thank you Sonia, Anaïs, Thomas, and Vincent
 for your loving patience throughout. Les mains invisibles qui
 ont écrit les espaces entre les lignes sont les leurs et je leur en suis
 profondémment reconnaissant.[1]

[1] The invisible hands that wrote the spaces between the lines are
 theirs, and for this I am profoundly grateful to them.

Chapter 1. Introduction

Putting Android on an embedded device is a complex task involving an
 intricate understanding of its internals and a clever mix of modifications
 to the Android Open Source Project (AOSP) and the kernel on which it runs,
 Linux. Before we get into the details of embedding Android, however, let’s
 start by covering some essential background that embedded developers should
 factor in when dealing with Android, such as Android’s hardware
 requirements, as well as the legal framework surrounding Android and its
 implications within an embedded setting. First, let’s look at where Android
 comes from and how it was developed.
History

The story goes[2] that back in early 2002, Google’s Larry Page and Sergey Brin
 attended a talk at Stanford about the development of the then-new Sidekick
 phone by Danger Inc. The speaker was Andy Rubin, Danger’s CEO at the time,
 and the Sidekick was one of the first multifunction, Internet-enabled
 devices. After the talk, Larry went up to look at the device and was happy
 to see that Google was the default search engine. Soon after, both Larry
 and Sergey became Sidekick users.
Despite its novelty and enthusiastic users, however, the Sidekick
 didn’t achieve commercial success. By 2003, Rubin and Danger’s board
 agreed it was time for him to leave. After trying out a few things, Rubin
 decided he wanted to get back into the phone OS business. Using a domain
 name he owned, android.com, he set out to create an
 open OS for phone manufacturers. After investing most of his savings in
 the project and having received some additional seed money, he set out to
 get the company funded. Soon after, in August 2005, Google acquired
 Android Inc. with little fanfare.
Between its acquisition and its announcement to the world in
 November 2007, Google released little to no information about Android.
 Instead, the development team worked furiously on the OS while deals and
 prototypes were being worked on behind the scenes. The initial
 announcement was made by the Open Handset Alliance (OHA), a group of
 companies unveiled for the occasion with its stated mission being the
 development of open standards for mobile devices and Android being its
 first product. A year later, in September 2008, the first open source
 version of Android, 1.0, was made available.
Several Android versions have been released since then, and the OS’s
 progression and development is obviously more public. As we will see
 later, though, much of the work on Android continues to be done behind
 closed doors. Table 1-1 provides a summary of the
 various Android releases and the most notable features found in the
 corresponding AOSP.
Table 1-1. Android versions
	Version	Release date	Codename	Most notable feature(s)	Open source
	1.0	September 2008	Unknown	 	Yes
	1.1	February 2009	Unknown[a]	 	Yes
	1.5	April 2009	Cupcake	Onscreen soft keyboard	Yes
	1.6	September 2009	Donut	Battery usage screen and VPN support	Yes
	2.0, 2.0.1, 2.1	October 2009	Eclair	Exchange support	Yes
	2.2	May 2010	Froyo	Just-in-Time (JIT) compile	Yes
	2.3	December 2010	Gingerbread	SIP and NFC support	Yes
	3.0	January 2011	Honeycomb	Tablet form-factor support	No
	3.1	May 2011	Honeycomb	USB host support and APIs	No
	4.0	November 2011	Ice-Cream Sandwich	Merged phone and tablet form-factor support	Yes
	4.1	June 2012	Jelly Bean	Lots of performance optimizations	Yes
	4.2	November 2012	Jelly Bean	Multiuser support	Yes
	[a] This version is rumored to have been called “Petit
 Four.” Have a look at this Google+
 post for more information.

Features and Characteristics

Around the time 2.3.x/Gingerbread was released, Google used to
 advertise the following features about Android on its developer
 site:
	Application framework
	The application framework used by app developers to create
 what is commonly referred to as Android apps. The use of this
 framework is documented
 online and in books like O’Reilly’s Learning
 Android.

	Dalvik virtual machine
	The clean-room byte-code interpreter implementation used in
 Android as a replacement for the Sun Java virtual machine (VM).
 While the latter interprets .class files, Dalvik interprets .dex files. These files are generated by
 the dx utility using the
 .class files generated by the
 Java compiler part of the JDK.

	Integrated browser
	Android includes a WebKit-based browser as part of its
 standard list of applications. App developers can use the
 WebView class to use the WebKit engine within
 their own apps.

	Optimized graphics
	Android provides its own 2D graphics library but relies on
 OpenGL ES[3] for its 3D capabilities.

	SQLite
	This is the standard SQLite database found here and made available to app
 developers through the application framework.

	Media support
	Android provides support for a wide range of media formats
 through StageFright, its custom media framework. Prior to 2.2,
 Android used to rely on PacketVideo’s OpenCore framework.

	GSM telephony support[4]
	The telephony support is hardware dependent, and device
 manufacturers must provide a HAL module to enable Android to
 interface with their hardware. HAL modules will be discussed in the
 next chapter.

	Bluetooth, EDGE, 3G, and WiFi
	Android includes support for most wireless connection
 technologies. While some are implemented in Android-specific
 fashion, such as EDGE and 3G, others are provided in the same way as
 in plain Linux, as in the case of Bluetooth and WiFi.

	Camera, GPS, compass, and accelerometer
	Interfacing with the user’s environment is key to Android.
 APIs are made available in the application framework to access these
 devices, and some HAL modules are required to enable their
 support.

	Rich development environment
	This is likely one of Android’s greatest assets. The
 development environment available to developers makes it very easy
 to get started with Android. A full SDK is freely available to
 download, along with an emulator, an Eclipse plug-in, and a number
 of debugging and profiling tools.

There are of course a lot more features that could be listed for
 Android, such as USB support, multitasking, multitouch, SIP, tethering,
 voice-activated commands, etc., but the previous list should give you a
 good idea of what you’ll find in Android. Also note that every new Android
 release brings in its own new set of features. Check the Platform
 Highlights published with every version for more information on features
 and enhancements.
In addition to its basic feature set, the Android platform has a few
 characteristics that make it an especially interesting platform for
 embedded development. Here’s a quick summary:
	Broad app ecosystem
	At the time of this writing, there were 700,000 apps in Google
 Play, previously known as the Android Market. This compares quite
 favorably to the Apple App Store’s 700,000 apps and ensures that you
 have a large pool to choose from should you want to prepackage applications with your embedded
 device. Bear in mind that you likely need to enter into some kind of
 agreement with an app’s publisher before you can package that app.
 The app’s availability in Google Play doesn’t imply the right for
 you as a third party to redistribute it.

	Consistent app APIs
	All APIs provided in the application framework are meant to be
 forward-compatible. Hence, custom apps that you develop for
 inclusion in your embedded system should continue working in future
 Android versions. In contrast, modifications you make to Android’s
 source code are not guaranteed to continue applying or even working
 in the next Android release.

	Replaceable components
	Because Android is open source, and as a benefit of its
 architecture, a lot of its components can be replaced outright. For
 instance, if you don’t like the default Launcher app (home screen),
 you can write your own. More fundamental changes can also be made to
 Android. The GStreamer[5] developers, for example, were able to replace
 StageFright, the default media framework in Android, with GStreamer
 without modifying the app API.

	Extendable
	Another benefit of Android’s openness and its architecture is
 that adding support for additional features and hardware is
 relatively straightforward. You just need to emulate what the
 platform is doing for other hardware or features of the same type.
 For instance, you can add support for custom hardware to the HAL by
 adding a handful of files, as is explained in Appendix B.

	Customizable
	If you’d rather use existing components, such as the existing
 Launcher app, you can still customize them to your liking. Whether
 it be tuning their behavior or changing their look and feel, you are
 again free to modify the AOSP as needed.

Development Model

When considering whether to use Android, it’s crucial that you
 understand the ramifications its development process may have on any
 modifications you make to it or to any dependencies you may have on its
 internals.
Differences From “Classic” Open Source Projects

Android’s open source nature is one of its most trumpeted
 features. Indeed, as we’ve just seen, many of the software engineering
 benefits that derive from being open source apply to Android.
Despite its licensing, however, Android is unlike most open source
 projects in that its development is done mostly behind closed doors. The
 vast majority of open source projects, for example, have public mailing
 lists and forums where the main developers can be found interacting with
 one another, and public source repositories providing access to the main
 development branch’s tip. No such thing can be found for Android.
This is best summarized by Andy Rubin himself: “Open source is
 different than a community-driven project. Android is light on
 community-driven, somewhat heavy on open source.”
Whether we like it or not, Android is mainly developed within
 Google by the Android development team, and the public is not privy to
 either internal discussions nor the tip of the development branch.
 Instead, Google makes code-drops every time a new version of Android
 ships on a new device, which is usually every six months. For instance,
 a few days after the Samsung Nexus S was released in December 2010, the
 code for the new version of the Android it was running, 2.3/Gingerbread,
 was made publicly available at http://android.googlesource.com/.
Obviously there is a certain amount of discomfort in the open
 source community with the continued use of the term “open source” in the
 context of a project whose development model contradicts the standard
 modus operandi of open source projects, especially given Android’s
 popularity. The open source community has not historically been well
 served by projects that have adopted a similar development model. Others
 fear this development model also makes them vulnerable to potential
 changes in Google’s business objectives.
Political issues aside, though, Android’s development model means
 that as a developer, your ability to make contributions to Android is
 limited. Indeed, unless you become part of the Android development team
 at Google, you will not be able to make contributions to the tip of the
 development branch. Also, save for a handful of exceptions, it’s
 unlikely you will be able to discuss your enhancements one-on-one with
 the core development team members. However, you are still free to submit
 enhancements and fixes to the AOSP code dumps made available at
 http://android.googlesource.com/.
The worst side effect of Google’s approach is that you have
 absolutely no way to get inside information about the platform decisions
 being made by the Android development team. If new features are added
 within the AOSP, for example, or if modifications are made to core
 components, you will find out how such changes are made and how they
 impact changes you might have made to a previous version only by
 analyzing the next code dump. Furthermore, you will have no way to learn
 about the underlying requirement, restriction, or issue that justified
 the modification or inclusion. Had this been a true open source project,
 a public mailing list archive would exist where all this information, or
 pointers to it, would be available.
That being said, it’s important to remember how significant a
 contribution Google is making by distributing Android under an open
 source license. Despite its awkward development model from an open
 source community perspective, it remains that Google’s work on Android
 is a godsend for a large number of developers. Plus, it has accomplished
 one thing no other open source project was ever able to: created a
 massively successful Linux distribution. It would, therefore, be hard to
 fault Android’s development team for its work.
Furthermore, it can easily be argued that from a business and
 go-to-market perspective that a community-driven process would
 definitely knock the wind out of any product announcements Google would
 attempt to release, making it impossible to create “buzz” around press
 announcements and the like, since every new feature would be developed
 in the open. That is to say nothing of the nondeterministic nature of
 community-driven processes that can see a group of people take years to
 agree on the best way to implement a given feature set. And, simply
 based on track record, Android’s success has definitely benefited from
 Google’s ability to rapidly move it forward and to generate press
 interest based on releases of cool new products.

Feature Inclusion, Roadmaps, and New Releases

In brief, there is no publicly available roadmap for features and
 capabilities in future Android releases. At best, Google will announce
 ahead of time the name and approximate release date of the next version.
 Usually you can expect a new Android release to be made in time for the
 Google I/O conference, which is typically held in May, and another
 release by year-end. What will be in that release, though, is anyone’s
 guess.
Typically, however, Google will choose a single manufacturer to
 work with on the next Android release. During that period, Google will
 work very closely with that single manufacturer’s engineers to ready the
 next Android version to work on a targeted upcoming lead (or flagship)
 device. During that period, the manufacturer’s team is reported to have
 access to the tip of the development branch. Once the device is put on
 the market, the corresponding source code dump is made to the public
 repositories. For the next release, it chooses another manufacturer and
 starts over.
There is one notable exception to that cycle: Android
 3.x/Honeycomb. In that specific case, Google didn’t release the source
 code to the corresponding lead device, the Motorola Xoom. The rationale
 seems to have been that the Android development team essentially forked
 the Android codebase at some point in time to start getting a
 tablet-ready version of Android out ASAP, in response to market timing
 prerogatives. Hence, in that version, very little regard was given to
 preserving backward compatibility with the phone form factor. And given
 that, Google did not wish to make the code available to avoid
 fragmentation of its platform. Instead, both phone and tablet form
 factor support were merged into the subsequent Android 4.0/Ice-Cream
 Sandwich release.

Ecosystem

As of January 2013:
	1.3 million Android phones are activated each day, up from
 400,000 in June 2011 and 200,000 in August 2010.

	Google Play contains around 700,000 apps. In comparison, the
 Apple App Store has about the same number of apps.[6]

	Android holds 72% of the global smartphone market.

Android is clearly on the upswing. In fact, Gartner predicted in October 2012 that
 Android would be the dominant OS, besting the venerable Windows, by 2016.
 Much as Linux disrupted the embedded market about a decade ago, Android is
 poised to make its mark. Not only will it flip the mobile market on its
 head, eliminating or sidelining even some of the strongest players, but in
 the embedded space it is likely going to become the de facto standard UI
 for a vast majority of user-centric embedded devices. There are even signs
 that it might displace classic “embedded Linux” in headless
 (non-user-centric) devices.
An entire ecosystem is therefore rapidly building around Android.
 Silicon and System-on-Chip (SoC) manufacturers such as ARM, TI, Qualcomm,
 Freescale, and Nvidia have added Android support for their products, and
 handset and tablet manufacturers such as Motorola, Samsung, HTC, Sony, LG,
 Archos, Dell, and ASUS ship an ever-increasing number of Android-equipped
 devices. This ecosystem also includes a growing number of diverse players,
 such as Amazon, Verizon, Sprint, and Barnes & Noble, creating their
 own application markets.
Grassroots communities and projects are also starting to sprout
 around Android, even though it is developed behind closed doors. Many of
 those efforts are done using public mailing lists and forums, like classic
 open source projects. Such community efforts typically start by forking
 the official Android source releases to create their own Android
 distributions with custom features and enhancements. Such is the case, for
 instance, with the CyanogenMod
 project, which provides aftermarket images for power users. There are also
 efforts by various silicon vendors to provide Android versions enabled or
 enhanced for their platforms. For example, Linaro—a nonprofit organization
 created by ARM SoC vendors to consolidate their platform-enablement
 work—provides its own optimized Android tree. Other efforts follow in the
 footsteps of phone modders, which essentially rely on hacking the binaries
 provided by the manufacturers to create their own modifications or
 variants. Have a look at Appendix E for a full list of
 AOSP forks and the communities developing them.
A Word on the Open Handset Alliance

As I mentioned earlier, the OHA was the initial vehicle through
 which Android was first announced. It describes itself on its website as
 “a group of 82 technology and mobile companies who have come together to
 accelerate innovation in mobile and offer consumers a richer, less
 expensive, and better mobile experience. Together we have developed
 Android, the first complete, open, and free mobile platform.”
Beyond the initial announcement, however, it is unclear what role
 the OHA plays. For example, an attendee at the “Fireside Chat with the
 Android Team” at Google I/O 2010 asked the panel what privileges were
 conferred to him as a developer for belonging to a company that is part
 of the OHA. After asking around the panel, the speaker essentially
 answered that the panel didn’t know because they aren’t the OHA. Hence,
 it would appear that OHA membership benefits are not clear to the
 Android development team itself.
The role of the OHA is further blurred by the fact that it does
 not seem to be a full-time organization with board members and permanent
 staff. Instead, it’s just an “alliance.” In addition, there is no
 mention of the OHA within any of Google’s Android announcements, nor do
 any new Android announcements emanate from the OHA. In sum, one would be
 tempted to speculate that Google likely put the OHA together mainly as a
 marketing front to show the industry’s support for Android, but that in
 practice it has little to no bearing on Android’s development.

Getting “Android”

There are two main pieces required to get Android working on your
 embedded system: an Android-compatible Linux kernel and the Android
 Platform.
For a very long time, getting an Android-compatible Linux kernel was
 a difficult task; it continues to be in some cases at the time of this
 writing. Instead of using a “vanilla” kernel from http://kernel.org to run the
 Platform, you needed either to use one of the kernels available within the
 AOSP or to patch a vanilla kernel to make it Android-compatible. The
 underlying issue was that many additions were made to the kernel by the
 Android developers in order to allow their custom Platform to work. In
 turn, these additions’ inclusion in the official mainline kernel were
 historically met with a lot of resistance.
While we’ll discuss kernel issues in greater detail in the next
 chapter, know that starting from the Kernel Summit of 2011 in Prague, the
 kernel developers decided to proactively seek to mainline the features
 required to run the Android Platform on top of the official Linux kernel
 releases. As such, many of the required features have since been merged,
 while others have been (or, at the time of this writing, are currently
 being) replaced or superseded by other mechanisms. At the time of this
 writing, the easiest way to get yourself an Android-ready kernel was to
 ask your SoC vendor. Indeed, given Android’s popularity, most major SoC
 vendors provide active support for all Android-required components for
 their products.
The Android Platform is essentially a custom Linux distribution
 containing the user-space packages that make up what is typically called
 “Android.” The releases listed in Table 1-1 are
 actually Platform releases. We will discuss the content and architecture
 of the Platform in the next chapter. For the time being, keep in mind that
 a Platform release has a role similar to that of standard Linux
 distributions such as Ubuntu or Fedora. It’s a self-coherent set of
 software packages that, once built, provides a specific user experience
 with specific tools, interfaces, and developer APIs.
Note
While the proper term to identify the source code corresponding to
 the Android distribution running on top of an Android-compatible kernel
 is “Android Platform,” it is commonly referred to as “the AOSP”—as is
 the case in fact throughout this book—even though the Android Open
 Source Project proper, which is hosted on this site, contains a
 few more components in addition to the Platform, such as sample Linux kernel
 trees and additional packages that would not typically be downloaded
 when the Platform is fetched using the usual repo command.

Hacking Binaries
Lack of access to Android sources hasn’t discouraged passionate
 modders from actually hacking and customizing Android to their liking.
 For example, the fact that Android 3.x/Honeycomb wasn’t available didn’t
 preclude modders from getting it to run on the Barnes & Noble Nook.
 They achieved this by retrieving the executable binaries found in the
 emulator image provided as part of the Honeycomb SDK and used those as
 is on the Nook, albeit forfeiting hardware acceleration. The same type
 of hack has been used to “root” or update versions of various Android
 components on actual devices for which the manufacturer provides no
 source code.

Legal Framework

Like any other piece of software, Android’s use and distribution is
 limited by a set of licenses, intellectual property restrictions, and
 market realities. Let’s look at a few of these.
Warning
Obviously I’m not a lawyer and this isn’t legal advice. You should
 talk to competent legal counsel to see how any of the applicable terms
 or licenses apply to your specific case. Still, I’ve been around open
 source software long enough that you could consider what follows as an
 engineer’s educated point of view.

Code Licenses

As we discussed earlier, there are two parts to “Android”: an
 Android-compatible Linux kernel and an AOSP release. Even though it’s
 modified to run the AOSP, the Linux kernel continues to be subject to
 the same GNU GPLv2 license that it has always been under. As such,
 remember that you are not allowed to distribute any modifications you
 make to the kernel under any other license than the GPL. Hence, if you
 take a kernel version from http://android.googlesource.com or
 your SoC vendor and modify it to make it run on your system, you are
 allowed to distribute the resulting kernel image in your product only so
 long as you abide by the GPL. This means you must make the sources used
 to create the image, including your modifications, available to
 recipients under the terms of the GPL.
The COPYING file in the
 kernel’s sources includes a notice by Linus Torvalds that clearly
 identifies that only the kernel is subject to the GPL, and that
 applications running on top of it are not considered “derived works.” Hence, you are
 free to create applications that run on top of the Linux kernel and
 distribute them under the license of your choice.
These rules and their applicability are generally well understood
 and accepted within open source circles and by most companies that opt
 to support the Linux kernel or to use it as the basis for their
 products. In addition to the kernel, a large number of key components of
 Linux-based distributions are typically licensed under one form or
 another of the GPL. The GNU C library (glibc) and the GNU compiler
 (GCC), for example, are licensed under the LGPL and the GPL
 respectively. Important packages commonly used in embedded Linux systems
 such as uClibc and BusyBox are also licensed under the LGPL and the
 GPL.
Not everyone is comfortable with the GNU GPL, however. Indeed, the
 restrictions it imposes on the licensing of derived works can pose a
 serious challenge to large organizations, especially given geographic
 distribution, cultural differences among the various locations of
 development subunits, and the reliance on external subcontractors. A
 manufacturer selling a product in North America, for example, might have
 to deal with dozens, if not hundreds, of suppliers to get that product
 to the market. Each of these suppliers might deliver a piece that may or
 may not contain GPL’ed code. Yet the manufacturer whose name appears on
 the item sold to the customer will be bound to provide the sources to
 the GPL components regardless of which supplier originated them. In
 addition, processes must be put in place to ensure that engineers who
 work on GPL-based projects are abiding by the licenses.
When Google set out to work with manufacturers on its
 “open” phone OS, therefore, it appears that very rapidly it became clear
 that the GPL had to be avoided as much as possible. In fact, other
 kernels than Linux were apparently considered, but Linux was chosen
 because it already had strong industry support, particularly from ARM
 silicon manufacturers, and because it was fairly well isolated from the
 rest of the system, so that its GPL licensing would have little
 impact.[7]
It was decided, though, that every effort would be made to make
 sure that the vast majority of user-space components would be based on
 licenses that did not pose the same logistical issues as the GPL. That
 is why many of the common GPL- and LGPL-licensed components typically
 found in embedded Linux systems, such as glibc, uClibc, and BusyBox,
 aren’t included in the AOSP. Instead, the bulk of the components created
 by Google for the AOSP are published under the Apache License 2.0
 (a.k.a. ASL) with some key components, such as the Bionic library (a
 replacement for glibc and uClibc) and the Toolbox utility (a replacement
 for BusyBox), licensed under the BSD license. Some classic open source
 projects are also incorporated, mostly as is in source form under their
 original licensing, into the AOSP within the external/ directory. This means that parts of
 the AOSP are made of software that is neither ASL nor BSD. The AOSP
 does, in fact, still contain GPL and LGPL components. The distribution
 of the binaries resulting from the compiling of such components, however, should not pose any problems since they aren’t meant to be
 typically customized by the OEM (i.e., no derived works are expected to
 be created) and the original sources of those components as used in the
 AOSP are readily available for all to download at http://android.googlesource.com, thereby complying, where
 necessary, with the GPL’s requirement that redistribution of derivative
 works continue being made under the GPL.
Unlike the GPL, the ASL does not require that derivative works be
 published under a specific license. In fact, you can choose whatever
 license best suits your needs for the modifications you make. Here are
 the relevant portions from the ASL (the full license is available from
 the Apache Software
 Foundation):
	“Subject to the terms and conditions of this License, each
 Contributor hereby grants to You a perpetual, worldwide,
 non-exclusive, no-charge, royalty-free, irrevocable copyright
 license to reproduce, prepare Derivative Works of, publicly display,
 publicly perform, sublicense, and distribute the Work and such
 Derivative Works in Source or Object form.”

	“You may add Your own copyright statement to Your
 modifications and may provide additional or different license terms
 and conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole, provided
 Your use, reproduction, and distribution of the Work otherwise
 complies with the conditions stated in this License.”

Furthermore, the ASL explicitly provides a patent license grant,
 meaning that you do not require any patent license from Google for using
 the ASL-licensed Android code. It also imposes a few “administrative”
 requirements—such as the need to clearly mark modified files, to provide
 recipients with a copy of the ASL license, and to preserve NOTICE files as is.
 Essentially, though, you are free to license your modifications under
 the terms that fit your purpose. The BSD license that covers Bionic and
 Toolbox allows similar binary-only distribution.
Hence, manufacturers can take the AOSP and customize it to their
 needs while keeping those modifications proprietary if they wish, so
 long as they continue abiding by the rest of the provisions of the ASL.
 If nothing else, this diminishes the burden of having to implement a
 process to track all modifications in order to provide those
 modifications back to recipients who would be entitled to request them
 had the GPL been used instead.
Adding GPL-Licensed Components
Although every effort has been made to keep the GPL out of
 Android’s user-space as much as possible, there are cases where you
 may want to explicitly add GPL-licensed components to your Android
 distribution. For example, you want to include either glibc or uClibc,
 which are POSIX-compliant C libraries—in contrast to Android’s Bionic,
 which is not—because you would like to run preexisting Linux
 applications on Android without having to port them over to Bionic. Or
 you may want to use BusyBox in addition to Toolbox, since the latter
 is much more limited in functionality than the former.
These additions may be specific to your development environment
 and may be removed in the final product, or they may be permanent
 fixtures of your own customized Android. No matter which avenue you
 decide on, whether it be plain Android or Android with some additional
 GPL packages, remember that you must follow the licenses’
 requirements.

Branding Use

While being very generous with Android’s source code, Google
 controls most Android-related branding elements more strictly. Let’s
 take a look at some of those elements and their associated terms of use.
 For the official list, along with the official terms, have a look at this site.
	Android robot
	This is the familiar green robot seen everywhere around all
 things Android. Its role is similar to the Linux penguin, and the
 permissions for its use are similarly permissive. In fact, Google
 states that it “can be used, reproduced, and modified freely in
 marketing communications.” The only requirement is that proper
 attribution be made according to the terms of the Creative Commons
 Attribution license.

	Android logo
	This is the set of letters in custom typeface that spell out
 A-N-D-R-O-I-D and that appear during the device and emulator
 bootup, and on the Android
 website. You are not authorized to use that logo under any
 circumstance. Chapter 7 shows you how to replace
 the bootup logo.

	Android custom typeface
	This is the custom typeface used to render the Android logo,
 and its use is as restricted as the logo.

	“Android” in official names and messaging
	As Google states, “ ‘Android’ by itself cannot be used in
 the name of an application name or accessory product. Instead use
 ‘for Android.’ ” Therefore, you can’t say “Android MediaPlayer,”
 but you can say “MediaPlayer for Android.” Google also states that
 “Android may be used as a descriptor, as long as it is followed by
 a proper generic term” such as “Android™ application” for example.
 Of course, proper trademark attribution must always be made. In
 sum, you can’t name your product “Android Foo” without Google’s
 permission, though “Foo for Android” is fine.

	“Android”-branded devices
	As the FAQ for
 the Android Compatibility Program (ACP) states: “[I]f a
 manufacturer wishes to use the Android name with their
 product...they must first demonstrate that the device is
 compatible.” Branding your device as being “Android” is therefore
 a privilege that Google intends to police. In essence, you will
 have to make sure your device is compliant and then talk to Google
 and enter into some kind of agreement with it before you can
 advertise your device as being “Foo Android.” We will cover the
 Android Compatibility Program later in this chapter.

	“Droid” in official names
	You may not use “Droid” alone in a name, such as “Foo
 Droid,” for example. For some reason the I haven’t yet entirely
 figured out, “Droid” is a trademark of Lucasfilm. Achieve a Jedi
 rank, you likely must, before you can use it.

Word (and Brand) Play
While Google holds strict control over the use of the
 Android brand, the ASL used for licensing the bulk of the AOSP states
 the following: “This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use in
 describing the origin of the Work and reproducing the content of the
 NOTICE file.”
While this clearly says you have no right to use the associated
 trademark, the “reasonable and customary use in describing the origin”
 exception is seen by many as allowing you to state that your device is
 “AOSP based.” Some push this further and simply state that their
 product is “based on Android” or “Android based.” You’ll even find
 some clever marketing material sporting the Android robot to advertise
 a product without mentioning the word “Android.”
Probably one of the sneakiest wordplays I’ve seen is when a
 product lists the following as part of one of its features: “Runs
 Android applications.” You can bet yourself a couple of green robots
 that if it runs Android applications, it’s almost guaranteed to
 contain the AOSP in some way, shape, or form.

Google’s Own Android Apps

While the AOSP contains a core set of applications that are
 available under the ASL, “Android”-branded phones usually contain an
 additional set of “Google” applications that are not part of the AOSP,
 such as Play Store (the “app market” app), YouTube, “Maps and
 Navigation,” Gmail, etc. Obviously, users expect to have these apps as
 part of Android, and you might therefore want to make them available on
 your device. If that is the case, you will need to abide by the ACP and
 enter into an agreement with Google, very much in line with what you
 need to do to be allowed to use “Android” in your product’s name. We
 will cover the ACP shortly.

Alternative App Markets

Though the main app market (i.e., Google Play) is the one hosted
 by Google and made available to users through the Play Store app
 installed on “Android”-branded devices, other players are leveraging
 Android’s open APIs and open source licensing to offer alternative app
 markets. Such is the case with online merchants such as Amazon and
 Barnes & Noble, as well as mobile network operators such as Verizon
 and Sprint. In fact, I know of nothing that would preclude you from
 creating your own app store. There is even at least one open source
 project, the Affero-licensed F-Droid Repository, that
 provides both an app market application and a corresponding server
 backend under the GPL.

Oracle versus Google

As part of acquiring Sun Microsystems, Oracle also
 acquired Sun’s intellectual property (IP) rights to the Java language
 and, according to Java creator James Gosling,[8] it was clear during the acquisition process that Oracle
 intended from the outset to go after Google with Sun’s Java IP
 portfolio. And in August 2010 it did just that, filing suit against
 Google, claiming that it infringed on several patents and committed
 copyright violations.
Without going into the merits of the case, it’s obvious that
 Android does indeed heavily rely on Java. And clearly Sun created Java
 and owned a lot of intellectual property around the language it created.
 In what appears to have been an effort to anticipate any claims Sun may
 put forward against Android, the Android development team went out of
 its way to use as little of Sun’s Java in the Android OS as possible.
 Java is in fact composed mainly of three things: the language and its
 semantics, the virtual machine that runs the Java byte-code generated by
 the Java compiler, and the class library that contains the packages used
 by Java applications at runtime.
The official versions of the Java components are provided by
 Oracle as part of the Java Development Kit (JDK) and the Java Runtime
 Environment (JRE). Android, on the other hand, relies only on the Java
 compiler found in the JDK for building parts of the AOSP; that compiler
 isn’t included as part of the images generated by the AOSP. Also,
 instead of using Oracle’s Java VM, Android relies on Dalvik, a VM custom
 built for Android, and instead of using the official class library,
 Android relies on Apache Harmony, a clean-room reimplementation of the
 class library. Hence, it would seem that Google made every reasonable
 effort to at least avoid any copyright and/or distribution
 issues.
Still, it remains to be seen where these legal proceedings will
 go. Although by May 2012 Google had prevailed on both the copyright and
 patent fronts of the initial trial, Oracle appealed the verdict in
 October of that same year. There is of course a lot at stake, and it
 will likely take many years for this saga to play itself out. If you
 want to follow the latest round of these proceedings or read up on past
 episodes, I suggest you have a look at the Groklaw website and consult the
 relevant Wikipedia
 entry.
Another indirectly related, yet very relevant, development is that
 IBM joined Oracle’s OpenJDK efforts in October 2010. IBM had been the
 driving force behind the Apache Harmony project, which is the class
 library used in Android, and its departure pretty much ensures that the
 project will become orphaned. How this development impacts Android is
 unknown at the time of this writing.
Incidentally, though he later left, James Gosling joined Google in
 March 2011.

Mobile Patent Warfare

The previous section is to some extent but the tip of the
 iceberg with regard to litigation and legal wranglings ongoing in the
 mobile world at the time of this writing. Sales of mobile phones have
 overtaken the sales of traditional PCs, and the mobile market’s growth
 has resulted in the majority of players being somehow involved in legal
 maneuvers against and/or because of its competitors. There’s even a
 Wikipedia entry entitled Smartphone
 wars dedicated to listing the ongoing battles.
It’s hard to say where any of this will go. There seems to be no
 end to the variety of strategies companies will employ or the lengths to
 which they’ll go to ensure they prevail. Apple and Samsung, for
 instance, are at the time of this writing involved in court cases against each other in
 quite a few countries. Microsoft is also rumored to be contacting
 various manufacturers to request royalties for the use of Android; as
 evidenced by some of the filings made by Barnes & Noble with the
 courts after it was sued by Microsoft for refusing to pay.
How any of this might affect your own product is difficult to say.
 As always, consult with competent legal counsel as needed. Usually it’s
 a question of volume. So if your product is for a niche market, you’re
 probably too small a fish to matter. If you’re creating a mass-market product, on the other hand,
 you’ll likely want to make sure you’ve covered all your bases.

Hardware and Compliance Requirements

In principle, Android should run on any hardware that runs Linux.
 Android has in fact been made to run on ARM, x86, MIPS, SuperH, and
 PowerPC—all architectures supported by Linux. A corollary to this is that
 if you want to port Android to your hardware, you must first port Linux to
 it. Beyond being able to run Linux, though, there are few other hardware
 requirements for running the AOSP, apart from the logical requirement of
 having some kind of display and pointer mechanism to allow users to
 interact with the interface. Obviously, you might have to modify the AOSP to make it work on your hardware configuration, if you don’t
 support a peripheral it expects. For instance, if you don’t have a GPS
 unit in your product, you might want to provide a mock GPS HAL module, as
 the Android emulator does, to the AOSP. You will also need to make sure
 you have enough memory to store the Android images and a sufficiently
 powerful CPU to give the user a decent experience.
In sum, therefore, there are few restrictions if you just want to
 get the AOSP up and running on your hardware. If, however, you are working
 on a device that must carry “Android” branding or must include the
 standard Google-owned applications found in typical consumer Android
 devices—such as the Maps or Play Store applications—you need to go through
 the Android Compatibility Program (ACP) mentioned earlier. There are two
 separate yet complementary parts to the ACP: the Compliance Definition
 Document (CDD) and the Compliance Test Suite (CTS). Even if you don’t
 intend to participate in the ACP, you might still want to take a look at
 the CDD and the CTS, as they give a very good idea about the general
 mind-set that went into the design goals of the Android version you intend
 to use.
Warning
Every Android release has its own CDD and CTS. You must therefore
 use the CDD and CTS that match the version you intend to use for your
 final product. If you switch Android releases midway through your
 project—because, for instance, a new Android release comes out with cool
 new features you’d like to have—you will need to make sure you comply
 with that release’s CDD and CTS. Keep in mind also that you need to
 interact with Google to confirm compliance. Hence, switching may involve
 jumping through a few hoops and potential product delivery
 delays.

The overarching goal of the ACP, and therefore the CDD and the CTS,
 is to ensure a uniform ecosystem for users and application developers.
 Hence, before you are allowed to ship an “Android”-branded device, Google
 wants to make sure you aren’t fragmenting the Android ecosystem by
 introducing incompatible or crippled products. This, in turn, makes sense
 for manufacturers since they are benefiting from the compliance of others
 when they use the “Android” branding. Look at this site for
 more details about the ACP.
Warning
Note that Google reserves the right to decline your participation
 in the Android ecosystem, and therefore prevent your ability to ship the
 Play Store app with your device and use the “Android” branding. As
 stated on their site: “Unfortunately, for a variety of legal and
 business reasons, we aren’t able to automatically license Google Play to
 all compatible devices.”

Compliance Definition Document

The CDD is the policy part of the ACP and is available at the ACP
 URL above. It specifies the requirements that must be met for a device
 to be considered compatible. The language in the CDD is based on
 RFC2119, with a heavy use of “MUST,” “SHOULD,” “MAY,” etc. to describe
 the different attributes. Around 25 pages in length, it covers all
 aspects of the device’s hardware and software capabilities. Essentially,
 it goes over every aspect that cannot simply be automatically tested
 using the CTS. Let’s go over some of what the CDD requires.
Warning
This discussion is based on the Android 2.3/Gingerbread CDD. The
 specific version you use will likely have slightly different
 requirements.

Software

This section lists the Java and native APIs along with the web,
 virtual machine, and user interface compatibility requirements.
 Essentially, if you are using the AOSP, you should readily conform to
 this section of the CDD.

Application packaging compatibility

This section specifies that your device must be able to install
 and run .apk files. All Android
 apps developed using the Android SDK are compiled into .apk files, and these are the files that
 are distributed through Google Play and installed on users’
 devices.

Multimedia compatibility

Here the CDD describes the media codecs (decoders and encoders),
 audio recording, and audio latency requirements for the device. The
 AOSP includes the StageFright multimedia framework, and you can
 therefore conform to the CDD by using the AOSP. However, you should
 read the audio recording and latency sections, as they contain
 specific technical information that may impact the type of hardware or
 hardware configuration your device must be equipped with.

Developer tool compatibility

This section lists the Android-specific tools that must be
 supported on your device. Basically, these are the common tools used
 during app development and testing: adb, ddms, and monkey. Typically, developers don’t interact
 with these tools directly. Instead, they usually develop within the
 Eclipse development environment and use the Android Development Tool
 (ADT) plug-in, which takes care of interacting with the lower-level
 tools.

Hardware compatibility

This is probably the most important section for embedded
 developers, as it likely has profound ramifications on the design
 decisions made for the targeted device. Here’s a summary of what each
 subsection spells out.
	Display and graphics
		Your device’s screen must be at least 2.5 inches in
 physical diagonal size.

	Its density must be at least 100dpi.

	Its aspect ratio must be between 4:3 and 16:9.

	It must support dynamic screen orientation from
 portrait to landscape and vice versa. If orientation can’t
 be changed, then it must support letterboxing, since apps
 may force orientation changes.

	It must support OpenGL ES 1.0, though it may omit 2.0
 support.

	Input devices
		Your device must support the Input Method Framework,
 which allows developers to create custom onscreen, soft
 keyboards.

	It must provide at least one soft keyboard.

	It can’t include a hardware keyboard that doesn’t
 conform to the API.

	It must provide Home, Menu, and Back buttons.

	It must have a touch screen, whether it be capacitive
 or resistive.

	It should support independent tracked points
 (multitouch) if possible.

	Sensors
	While all sensors are qualified using “SHOULD,” meaning
 that they aren’t compulsory, your device must accurately report
 the presence or absence of sensors and must return an accurate
 list of supported sensors.

	Data connectivity
	The most important item here is an explicit statement that
 Android may be used on devices that don’t have telephony
 hardware. This was added to allow for Android-based tablet
 devices. Furthermore, your device should have hardware support
 for 802.11x, Bluetooth, and near field communication (NFC).
 Ultimately, your device must support some form of networking
 that permits a bandwidth of 200Kbps.

	Cameras
	Your device should include a rear-facing camera and may
 include a front-facing one as well.

	Memory and storage
		Your device must have at least 128MB for storing the
 kernel and user-space.

	It must have at least 150MB for storing user
 data.

	It must have at least 1GB of “shared storage.” This is
 typically, though not always, the removable SD card.

	It must also provide a mechanism to access shared data
 from a PC. In other words, when the device is connected
 through USB, the content of the SD card must be accessible
 on the PC.

	USB
	This requirement is likely the one that most heavily
 demonstrates how user-centric “Android”-branded devices must be,
 since it essentially assumes that the user owns the device and
 therefore requires you to allow users to fully control the
 device when it’s connected to a computer. In some cases this
 might be a showstopper for you, as you may not actually want or
 may not be able to have users connect your embedded device to a
 computer. Nevertheless, the CDD requires the following:
	Your device must implement a USB client, connectable
 through USB-A.

	It must implement the Android Debug Bridge (ADB)
 protocol as provided in the adb command over USB.

	It must implement USB mass storage, thereby allowing
 the device’s SD card to be accessed on the host.

Newer CDDs obviously have evolved from this list. There’s no
 longer a need to have physical Home, Menu, and Back buttons since 3.0,
 since those can be displayed onscreen. OpenGL ES 2.0 support is also
 now mandatory. In addition to USB mass storage support, the device can
 also now provide Media Transfer Protocol (MTP) instead.

Performance compatibility

Although the CDD doesn’t specify CPU speed requirements, it does
 specify app-related time limitations that will impact your choice of
 CPU speed. For instance:
	The Browser app must launch in less than 1300ms.

	The MMS/SMS app must launch in less than 700ms.

	The AlarmClock app must launch in less than 650ms.

	Relaunching an already-running app must take less time than
 the original launch.

Security model compatibility

Your device must conform to the security environment enforced by
 the Android application framework, Dalvik, and the Linux kernel.
 Specifically, apps must have access and be submitted to the permission
 model described as part of the SDK’s documentation. Apps must also be
 constrained by the same sandboxing limitations they have by running as
 separate processes with distinct user IDs (UIDs) in Linux. The
 filesystem access rights must also conform to those described in the
 developer documentation. Finally, if you aren’t using Dalvik, whatever
 VM you use should impose the same security behavior as Dalvik.

Software compatibility testing

Your device must pass the CTS, including the human-operated CTS
 Verifier part. In addition, your device must be able to run specific
 reference applications from Google Play.

Updatable software

There has to be a mechanism for your device to be updated. This
 may be done over the air (OTA) with an offline update via reboot. It
 also may be done using a “tethered” update via a USB connection to a
 PC, or be done “offline” using removable storage.

Compliance Test Suite

The CTS comes as part of the AOSP, and we will discuss how to
 build and use it in Chapter 4. The AOSP includes a special build target that generates the cts command-line tool, the main interface for
 controlling the test suite. The CTS relies on adb to push and run tests on the USB-connected
 target. The tests are based on the JUnit Java unit testing framework,
 and they exercise different parts of the framework, such as the APIs,
 Dalvik, Intents, Permissions, etc. Once the tests are done, they will
 generate a ZIP file containing XML files and screenshots that you need
 to submit to cts@android.com.

Development Setup and Tools

There are two separate sets of tools for Android development: those
 used for application development and those used for platform development.
 If you want to set up an application development environment, have a look
 at Learning Android or at Google’s online documentation. If you want to do platform development, as we will do here, your tool needs
 will vary, as you will see later in this book.
At the most basic level, though, you need to have a Linux-based
 workstation to build the AOSP. In fact, at the time of this writing,
 Google’s only supported build environment is 64-bit Ubuntu 10.04. That
 doesn’t mean that another Ubuntu version or even another Linux
 distribution won’t work or, in the case of Android versions up to
 Gingerbread, that you won’t be able to build the AOSP on a 32-bit system,[9] but essentially that configuration reflects Google’s own Android compile farms configuration.
 An easy way to get your hands dirty with AOSP work without changing your
 workstation OS is to create an Ubuntu virtual machine using your favorite
 virtualization tool. I typically use VirtualBox, since I’ve found that
 it makes it easy to access the host’s serial ports in the guest OS.
Note
In some cases, even though 32-bit build support wasn’t available
 for a given Android version, patches were created to make such compiling
 possible. This is especially true for Gingerbread. So even though the
 official tree may not support 32-bit builds, you may be able to find
 another tree that does or a mailing list posting that explains how to do
 it. Still, it remains that newer AOSP versions require more and more
 powerful machines to build in a reasonable amount of time, and most of
 these systems end up being 64 bit. Hence, the impetus for supporting
 builds on 32-bit systems diminishes with every new version of
 Android.

No matter what your setup is, keep in mind that the AOSP is several
 gigabytes in size before building, and its final size is much larger.
 Gingerbread, for example, is about 3GB in size uncompiled and grows to
 about 10GB once compiled, while 4.2/Jelly Bean is 6GB uncompiled and grows
 to about 24GB once compiled.[10] When you factor in that you are likely going to operate on a
 few separate versions—for testing purposes if for no other reason—you
 rapidly realize that you’ll need tens if not hundreds of gigabytes for
 serious AOSP work. Also note that during the period this book was written
 (2011 to 2013), build times for the latest AOSP on the highest-end
 machines have always hovered between
 30 minutes to an hour. Even minor modifications may result in a
 five-minute run to complete the build or regenerate output images. You
 will therefore also likely want to make sure you have a fairly powerful
 machine when developing Android-based embedded systems. We’ll discuss the
 AOSP build and its requirements in greater detail in Chapter 4.

[2] Coinciding with Android’s initial announcement in November 2007,
 The New York Times ran an article entitled “I,
 Robot: The Man Behind the Google Phone” by John Markoff, which
 gave an insightful background portrait of Andy Rubin and his career.
 By extension, it provided a lot of insight on the story behind
 Android. This section is partly based on that article.

[3] OpenGL ES is a version of the OpenGL
 standard aimed at embedded systems.

[4] Android obviously supports more than just GSM telephony.
 Nevertheless, this is the feature’s name as it was officially
 advertised.

[5] GStreamer is the default media framework used in most
 desktop Linux environments, including Gnome, KDE, and
 XFCE.

[6] At the time of this writing, it’s the first time ever that
 Google Play catches up to the number of apps in the App
 Store.

[7] See this LWN post
 by Brian Swetland, a member of Android’s kernel development
 team, for more information on the rationale behind these
 choices.

[8] See Gosling’s blog postings on the topic at http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the
 and http://nighthacks.com/roller/jag/entry/quite_the_firestorm
 for more details.

[9] More recent versions such as JellyBean 4.1 and 4.2 can be built
 only on 64-bit systems.

[10] These uncompiled numbers don’t count the space taken by the
 .git and .repo directories in the tree. The
 uncompiled size of 2.3.7/Gingerbread with those directories is 5.5GB
 and that of 4.2/Jelly Bean is 18GB.

Chapter 2. Internals Primer

As we’ve just seen, Android’s sources are freely available for you to
 download, modify, and install for any device you choose. In fact, it is
 fairly trivial to just grab the code, build it, and run it in the Android
 emulator. To customize the AOSP to your device and its hardware, however,
 you’ll need to first understand Android’s internals to a certain extent. So
 you’ll get a high-level view of Android internals in this chapter, and have
 the opportunity in later chapters to dig into parts of internals in greater
 detail, including tying said internals to the actual AOSP sources.
Note
As mentioned in the Preface, this book is
 mainly based on 2.3.x/Gingerbread. That said, Android’s internals had
 remained fairly stable over its lifetime up to that version of Android,
 and they’ve changed very little from that version to the current 4.2/Jelly
 Bean. Still, while the bulk of the internals remains relatively unchanged,
 critical changes can come unannounced thanks to Android’s closed
 development process. For instance, in 2.2/Froyo and previous versions, the
 Status Bar was an integral part of the System Server. In 2.3/Gingerbread,
 the Status Bar was moved out of the System Server and now runs
 independently from it.[11]

App Developer’s View

Given that Android’s development API is unlike any other existing
 API, including anything found in the Linux world, it’s important to spend
 some time understanding what “Android” looks like from the app developers’
 perspective, even though it’s very different from what Android looks like
 for anyone hacking the AOSP. As an embedded developer working on embedding
 Android on a device, you might not have to actually deal directly with the
 idiosyncrasies of Android’s app development API, but some of your
 colleagues might. If nothing else, you might as well share a common lingo
 with app developers. Of course, this section is merely a summary, and I
 recommend you read up on Android app development for more in-depth
 coverage.
Android Concepts

Application developers must take a few key concepts into account
 when developing Android apps. These concepts shape the architecture of
 all Android apps and dictate what developers can and cannot do. Overall,
 they make users’ lives better, but they can sometimes be challenging to
 deal with.
Components

Android applications consist of loosely tied
 components. Components of one app can invoke or
 use components of other apps. Most importantly, there is no single
 entry point to an Android app: no main() function or any equivalent. Instead,
 there are predefined events called intents that
 developers can tie their components to, thereby enabling their
 components to be activated on the occurrence of the corresponding
 events. A simple example is the component that handles the user’s
 contacts database, which is invoked when the user presses a Contacts
 button in the Dialer or another app. An app, therefore, can have as
 many entry points as it has components.
There are four main types of components:
	Activities
	Just as the “window” is the main building block of all
 visual interaction in window-based GUI systems, activities are
 the main building block in an Android app. Unlike a window,
 however, activities cannot be “maximized,” “minimized,” or
 “resized.” Instead, activities always take the entirety of the
 visual area and are made to be stacked on top of one another in
 the same way as a browser remembers web pages in the sequence
 they were accessed, allowing the user to go back to where he was
 previously. In fact, as described in the previous chapter, all
 Android devices have a Back button, whether it be a physical
 button on the device or a soft button displayed onscreen, to
 make this behavior available to the user. In contrast to web browsing, though, there is no
 button corresponding to the “forward” browsing action; only
 “back” is possible.
One globally defined Android intent allows an activity to
 be displayed as an icon on the app launcher (the main app list
 on the device). Because the vast majority of apps want to appear
 on the main app list, they provide at least one activity that is
 defined as capable of responding to that intent. Typically, the
 user will start from a particular activity and move through
 several others and end up creating a stack of activities all
 related to the original one they launched; this stack of
 activities is called a task. The user can
 then switch to another task by clicking the Home button and
 starting another activity stack from the app launcher.

	Services
	Android services are akin to background processes or
 daemons in the Unix world. Essentially, a service is activated
 when another component requires its services and typically
 remains active for the duration required by its caller. Most
 importantly, though, services can be made available to
 components outside an app, thereby exposing some of that app’s
 core functionality to other apps. There is usually no visual
 sign of a service being active.

	Broadcast receivers
	Broadcast receivers are akin to interrupt handlers. When a
 key event occurs, a broadcast receiver is triggered to handle
 that event on the app’s behalf. For instance, an app might want
 to be notified when the battery level is low or when “airplane
 mode” (to shut down the wireless connections) has been
 activated. When not handling a specific event for which they are
 registered, broadcast receivers are otherwise inactive.

	Content providers
	Content providers are essentially databases. Usually, an
 app will include a content provider if it needs to make its data
 accessible to other apps. If you’re building a Twitter client
 app, for instance, you could give other apps on the device
 access to the tweet feed you’re presenting to the user through a
 content provider. All content providers present the same API to
 apps, regardless of how they are actually implemented
 internally. Most content providers rely on the SQLite
 functionality included in Android, but they can also use files
 or other types of storage.

Intents

Intents are one of the most important concepts in Android. They
 are the late-binding mechanisms that allow components to interact. An
 app developer could send an intent for an activity to “view” a web
 page or “view” a PDF, hence making it possible for the user to view a
 designated HTML or PDF document even if the requesting app itself
 doesn’t include the capabilities to do so. More fancy use of intents
 is also possible. An app developer could, for instance, send a
 specific intent to trigger a phone call.
Think of intents as polymorphic Unix signals that don’t
 necessarily have to be predefined or require a specific designated
 target component or app. If you are familiar with Qt, you can think of
 an intent as similar to, though not entirely the same as, a Qt signal.
 The intent itself is a passive object. The effects of its dispatching
 will depend on its content, the mechanism used to dispatch it, the
 system’s built-in rules, and the set of installed apps. One of the system’s rules, for instance, is that intents are tied to the
 type of component they are sent
 to. An intent sent to a service, for example, can be received only by
 a service, not by an activity or a broadcast receiver.
Components can be declared as capable of dealing with given
 intent types using filters in the manifest file.
 The system will thereafter match intents to that filter and trigger
 the corresponding component at runtime. This is typically called an
 “implicit” intent. An intent can also be sent to a specific component
 in an “explicit” fashion, bypassing the need to declare that intent
 within the receiving component’s filter. The explicit invocation,
 though, requires the app to know about the designated component ahead
 of time, which typically applies only when intents are sent within
 components of the same app.

Component lifecycle

Another central tenet of Android is that the user shouldn’t have
 to manage task switching. While there are a number of ways to switch
 among tasks, including a built-in mechanism that’s typically accessed
 with a long press on the Home button, as well as a number of task
 manager apps available for Android, the user experience doesn’t rely
 on those. Instead, the user is expected to start as many apps as he wants
 and “switch” among them by clicking Home to go to the home screen and
 clicking any other app. The app he clicks may be an entirely new one,
 or one that he previously started and for which an activity stack
 (a.k.a. a “task”) already exists.
The corollary to, or consequence of, this design decision is
 that apps gradually use up more and more system resources as they are
 started, a process that can’t go on forever. At some point, the system
 will have to start reclaiming the resources of the least recently used
 or nonpriority components in order to make way for newly activated
 components. Still, this resource recycling should be entirely
 transparent to the user. In other words, when a component is taken
 down to make way for a new one, and then the user returns to the
 original component, it should start up at the point where it was taken
 down and act as if it had been waiting in memory all along.
To make this behavior possible, Android defines a standard
 lifecycle for each component type. An app
 developer must manage her components’ lifecycle by implementing a
 series of callbacks for each component. These callbacks are then
 triggered by events related to the component lifecycle. For instance,
 when an activity is no longer in the foreground (and therefore more
 likely to be destroyed than if it’s in the foreground), its onPause() callback is triggered. Google
 uses a state
 diagram to explain the activity’s lifecycle to app
 developers.
Managing component lifecycles is one of the greatest challenges
 faced by app developers, because they must carefully save and restore
 component states on key transitional events. The desired end result is
 that the user never needs to “task switch” between apps or be aware
 that components from previously used apps were destroyed to make way
 for new ones he started.

Manifest file

If there has to be a “main” entry point to an app, the
 manifest file is likely it. Basically, it informs the system of the
 app’s components, the capabilities required to run the app, the
 minimum level of the API required, any hardware requirements, etc. The
 manifest is formatted as an XML file and resides at the topmost
 directory of the app’s sources as AndroidManifest.xml. The apps’ components
 are typically all described statically in the manifest file. In fact,
 apart from broadcast receivers, which can be registered at runtime,
 all other components must be declared at build time in the manifest
 file.

Processes and threads

Whenever an app’s component is activated, whether it be by the
 system or by another app, a process will be started to house that
 app’s components. And unless the app developer does anything to
 override the system defaults, all other components of that app that
 start after the initial component is activated will run within the
 same process as that component. In other words, all components of an
 app are contained within a single Linux process. Hence, developers
 should avoid making long or blocking operations in standard components
 and use threads instead.
And because the user is essentially allowed to activate as many
 components as he wants, several Linux processes are typically active
 at any time to serve the many apps containing the user’s components.
 When there are too many processes running to allow for new ones to
 start, the Linux kernel’s out-of-memory (OOM) killing mechanisms will
 kick in. At that point, Android’s in-kernel OOM handler will get
 called, and it will determine which processes must be killed to make
 space.
Put simply, the entirety of Android’s behavior is predicated on
 low-memory conditions.
If the developer of the app whose process is killed by Android’s
 OOM handler has implemented his components’ lifecycles properly, the
 user shouldn’t see any adverse behavior. For all practical purposes,
 in fact, the user shouldn’t even notice that the process housing the
 app’s components went away and got re-created “automagically”
 later.

Remote procedure calls (RPCs)

Much like many other components of the system, Android defines
 its own RPC/IPC (remote procedure call/inter-process communication)
 mechanism: Binder. So communication across
 components is not typically done using the usual socket or System V
 IPC. Instead, components use the in-kernel Binder mechanism,
 accessible through /dev/binder, which will be
 covered later in this chapter.
App developers, however, do not use the Binder mechanism
 directly. Instead, they must define and interact with interfaces using
 Android’s Interface Definition Language (IDL). Interface definitions
 are usually stored in an .aidl
 file and are processed by the aidl
 tool to generate the proper stubs and marshaling/unmarshaling code
 required to transfer objects and data back and forth using the Binder
 mechanism.

Framework Intro

In addition to the concepts we just discussed, Android also
 defines its own development framework, which allows developers to access
 functionality typically found in other development frameworks. Let’s
 take a brief look at this framework and its capabilities.
	User interface
	UI elements in Android include traditional widgets such as
 buttons, text boxes, dialogs, menus, and event handlers. This part
 of the API is relatively straightforward, and developers usually
 find their way around it fairly easily if they’ve already coded
 for any other UI framework.
All UI objects in Android are built as descendants of the
 View class and are organized
 within a hierarchy of ViewGroups. An activity’s UI can
 actually be specified either statically in XML (which is the usual
 way) or declared dynamically in Java. The UI can also be modified
 at runtime in Java if need be. An activity’s UI is displayed when
 its content is set as the root of a ViewGroup hierarchy.

	Data storage
	Android presents developers with several storage options.
 For simple storage needs, Android provides shared
 preferences, which allow developers to store key-value
 pairs either in a data set shared by all components of the app or
 within a specific separate file. Developers can also manipulate
 files directly. These files may be stored privately by the app, so
 they are inaccessible to other apps, or they can be made readable
 and/or writable by other apps. App developers can also use the
 SQLite functionality included in Android to manage their own
 private databases. Such a database can then be made available to
 other apps by hosting it within a content provider
 component.

	Security and permissions
	Security in Android is enforced at the process level. In
 other words, Android relies on Linux’s existing process isolation
 mechanisms to implement its own policies. To that end, every app
 installed gets its own UID and group identifier (GID).
 Essentially, it’s as if every app is a separate “user” in the
 system. And as in any multiuser Unix system, these “users” cannot
 access one another’s resources unless permissions are explicitly
 granted to do so. In effect, each app lives in its own separate
 sandbox.
To exit the sandbox and access key system functionality or
 resources, apps must use Android’s permission mechanisms, which
 require developers to statically declare the permissions needed by
 an app in its manifest file. Some permissions, such as the right
 to access the Internet (i.e., use sockets), dial the phone, or use
 the camera, are predefined by Android. Other permissions can be
 declared by app developers and then be required for other apps to
 interact with a given app’s components. When an app is installed,
 the user is prompted to approve the permissions required to run an
 app.
Access enforcement is based on per-process operations and
 requests to access a specific URI (universal resource identifier),
 and the decision to grant access to a specific functionality or
 resource is based on certificates and user prompts. The
 certificates are the ones used by app developers to sign the apps
 they make available through Google Play. Hence, developers can
 restrict access to their apps’ functionality to other apps they
 themselves created in the past.

The Android development framework provides a lot more
 functionality, of course, than can be covered here. I invite you to read
 up on Android app development elsewhere or visit http://developer.android.com
 for more information on 2D and 3D graphics, multi-media, location and
 maps, Bluetooth, NFC, etc.

App Development Tools

The typical way to develop Android applications is to use the freely
 available Android Software
 Development Kit (SDK). This SDK—along with Eclipse, its
 corresponding Android Development Tools (ADT) plug-in, and the
 QEMU-based emulator in the SDK—allows developers to do the vast majority
 of development work straight from their workstations. Developers will
 also usually want to test their apps on real devices prior to making
 them available through Google Play, as there are usually runtime
 behavior differences between the emulator and actual devices. Some
 software publishers take this to the extreme and test their apps on
 several dozen devices before shipping a new release.
Testing on Several Hundred Devices
Obviously, app developers can’t be expected to have every
 possible device at their disposal for testing. A few companies have
 therefore sprung up to allow app developers to test their apps on
 several hundred devices by simply uploading their apps to these
 companies’ websites.
These companies typically have a web interface allowing
 developers to submit their app for execution on their device farm.
 Developers are then given detailed reports about failures and
 sometimes fairly explicit output from the failed devices’ logs. Have a
 look at Apkudo, Bitbar’s Testdroid products, and
 LessPainful if you
 need such functionality.
Interestingly, Apkudo also provides a service to allow you to
 test devices prior to their release by running several hundred popular
 apps on the device to ensure that the AOSP it runs performs
 correctly.

Even if you don’t plan to develop any apps for your embedded
 system, I highly suggest you set up the development environment on your
 workstation. If nothing else, this will allow you to validate the
 effects of modifications you make to the AOSP using basic test
 applications. It will also be essential if you plan to extend the AOSP’s
 API and create and distribute your own custom SDK.
To set up an app development environment, follow the instructions
 provided by Google for the SDK, or have a look at the book Learning
 Android by Marko Gargenta (O’Reilly).

Native Development

While the majority of apps are developed exclusively in Java using
 the development environment we just discussed, certain developers need
 to run natively compiled code. To this end, Google has made the Native Development Kit (NDK) available. As advertised, this is mostly
 aimed at game developers needing to squeeze every last bit of
 performance out of the device their game is running on. As such, the
 APIs made available in the NDK are mostly geared toward graphics
 rendering and sensor input retrieval. The infamous Angry Birds game, for
 example, relies heavily on code running natively.
Another possible use of the NDK is obviously to port over an
 existing codebase to Android. If you’ve developed a lot of legacy C code
 over several years (a common situation for development houses that have
 created applications for other mobile devices), you won’t necessarily
 want to rewrite it in Java. Instead, you can use the NDK to compile it
 for Android and package it with some Java code to use some of the more
 Android-specific functionality made available by the SDK. The Firefox
 browser, for instance, relies heavily on the NDK to run some of its
 legacy code on Android.
As I just hinted, the nice thing about the NDK is that you can
 combine it with the SDK and therefore have parts of your app in Java and
 parts of your app in C. That said, it’s crucial to understand that the
 NDK gives you access only to a very limited subset of the Android API.
 There is, for instance, presently no API allowing you to send an intent
 from within C code compiled with the NDK; the SDK must be used to do it
 in Java instead. Again, the APIs made available through the NDK are
 mostly geared toward game development.
Sometimes embedded and system developers coming to Android expect
 to be able to use the NDK to do platform-level work. The word “native”
 in the NDK can be misleading in that regard, because the use of the NDK
 still involves all the limitations and requirements that apply to Java app
 developers. So, as an embedded developer, remember that the NDK is useful for app
 developers to run native code that they can call from their Java code.
 Apart from that, the NDK will be of little to no use for the type of
 work you are likely to undertake.

Overall Architecture

Figure 2-1 is probably one of the most
 important diagrams presented in this book, and I suggest you find a way to
 bookmark its location, as I will often refer back to it, if not explicitly
 then implicitly. Although it’s a simplified view—and we will get the
 chance to enrich it as we go—it gives a pretty good idea of Android’s
 architecture and how the various bits and pieces fit together.
[image: Android’s architecture]

Figure 2-1. Android’s architecture

If you are familiar with some form of Linux development, then the
 first thing that should strike you is that beyond the Linux kernel itself,
 there is little in that stack that resembles anything typically seen in
 the Linux or Unix world. There is no glibc, no X Window System, no GTK, no
 BusyBox, no bash shell, and so on. Many veteran Linux and embedded Linux practitioners have indeed
 noted that Android feels very alien. Though the Android stack starts from
 a clean slate with regard to user-space, we will discuss how to get
 “legacy” or “classic” Linux applications and utilities to coexist side by
 side with the Android stack in Appendix A.
Note
The Google developer documentation presents a different architectural diagram from
 that shown in Figure 2-1. The former is likely
 well suited for app developers, but it omits key information that must
 be understood by embedded developers. For instance, Google’s diagram and
 developer documentation offer little to no reference at the time of this
 writing to the System Server. Yet, as an embedded developer, you need to
 know what that component is, because it’s one of the most important
 parts of Android, and you might need to extend or interact with it
 directly.
This is especially important to understand because you’ll see
 Google’s diagram presented and copied in several documents and
 presentations. If nothing else, remember that the internals and
 significance of the System Server are rarely if at all explained to app
 developers, and that the bulk of information out there is aimed at app
 developers, not developers doing platform work.

Let’s take a deeper look into each part of Android’s architecture,
 starting from the bottom of Figure 2-1 and going
 up. Once we are done covering the various components, we’ll end this
 chapter by going over the system’s startup process.

Linux Kernel

The Linux kernel is the centerpiece of all distributions
 traditionally labeled as “Linux,” including mainstream distributions such
 as Ubuntu, Fedora, and Debian. And while it’s available in “vanilla” form
 from the Linux Kernel Archives,
 most distributions apply their own patches to it to fix bugs and enhance
 the performance or customize the behavior of certain aspects before
 distributing it to their users. Android, as such, is no different in that
 the Android developers patch the “vanilla” kernel to meet their
 needs.
Historically, Android differed from standard practice, however, in
 relying on several custom functionalities that were significantly
 different from what was found in the “vanilla” kernel. In fact, whereas
 the kernel shipped by a Linux distribution can easily be replaced by a
 kernel from kernel.org with little to no impact on
 the rest of the distribution’s components, Android’s user-space components
 would simply not work unless they were running on an “Androidized” kernel.
 As I mentioned in the previous chapter, Android kernels were, up until
 recently, major forks from the mainline kernel. As I also mentioned, the
 situation has since progressed a lot, and many of the features required to
 run Android are finding their way into the mainline kernel.
Note
Hopefully things will have progressed enough by the time you read
 this that you can just grab a kernel straight from http://kernel.org and run the
 AOSP on top of it. However, if past is prelude and the history of
 embedded Linux is an indication of what’s to come, then your best source
 for getting a proper, Android-compatible kernel to run on your hardware
 is likely going to be the vendor of the SoC you’re using.

Although it’s beyond the scope of this book to discuss the Linux
 kernel’s internals, let’s go over the main “Androidisms” added to the
 kernel. You can get information about the kernel’s internals by having a
 look at Robert Love’s Linux Kernel Development, 3rd
 ed. (Addison-Wesley Professional, 2010) and starting to follow
 the Linux Weekly News (LWN) site. LWN
 contains several seminal articles on the kernel’s internals and provides
 the latest news regarding the Linux kernel’s development.
Note that the following subsections cover only the most important
 Androidisms. Androidized kernels typically contain several hundred patches
 over the standard kernel, often to provide device-specific functionality,
 fixes, and enhancements. You can use git[12] to do an exhaustive analysis of the commit deltas between one of the
 kernels at http://android.googlesource.com and the mainline kernel it
 was forked from. Also, note that some of the functionality in some
 Androidized kernels, such as the PMEM driver, is device-specific and isn’t
 necessarily used in all Android devices.
Creating Your Own Androidized Kernel
If you’d like to know how to create Androidized kernels from
 scratch or if you’re tasked with this, say because you work for an SoC
 vendor, have a look at the Androidization of linux kernel blog
 post by Linaro engineer Vishal Bhoj, published in March 2012. In this
 post, Vishal explains how to create an Androidized kernel using the
 git rebase command. For more
 information about that specific command, have a look at the
 corresponding online git
 documentation.
Incidentally, Linaro, whose role is to assist its members with
 platform enablement, maintains an Androidized kernel that closely
 follows Linus’s HEAD. For more information on this work, have a look at
 this thread.

Wakelocks

Of all the Androidisms, this is likely the one that was
 most contentious. The discussion threads covering its inclusion in the
 mainline kernel generated close to 2,000 emails, and even then there was
 no clear path for merging the wakelock functionality. It was only after
 the 2011 Kernel Summit, where kernel developers agreed to merge most
 Androidisms into the mainline, that efforts were made to try to
 rehabilitate the wakelock mechanism or, as was ultimately decided, to
 create an equivalent that was more palatable to the rest of the kernel
 development community.
As of the end of May 2012, equivalents to the wakelocks and their
 correlated early suspend mechanisms have been
 merged into the mainline kernel. The early suspend replacement is called
 autosleep, and the wakelock mechanism has been
 replaced by a new epoll() flag
 called EPOLLWAKEUP. The API is also
 therefore different from the original functionality added by the Android
 team, but the resulting functionality is effectively the same. At the
 time of this writing, it’s expected that the new versions of the AOSP
 would start using the new mechanisms instead of the old ones.
To understand what wakelocks are and do, we must first discuss how
 power management is typically used in Linux. The most common use case of
 Linux’s power management is a laptop computer. When the lid is closed on
 a laptop running Linux, it will usually go into “suspend” or “sleep”
 mode. In that mode, the system’s state is preserved in RAM, but all
 other parts of the hardware are shut down. Hence, the computer uses as
 little battery power as possible. When the lid is raised, the laptop
 “wakes up,” and the user can resume using it almost
 instantaneously.
That modus operandi works fine for laptops and desktop-like
 devices, but it doesn’t fit mobile devices such as handsets as well.
 Hence, Android’s development team devised a mechanism that changes the
 rules slightly to make them more palatable for such use cases. Instead
 of letting the system be put to sleep at the user’s behest, an
 Androidized kernel is made to go to sleep as soon and as often as
 possible. And to keep the system from going to sleep while important
 processing is being done or while an app is waiting for the user’s
 input, wakelocks are provided to keep the system awake.
The wakelocks and early suspend functionality are actually built
 on top of Linux’s existing power management functionality. However, they
 introduce a different development model, since application and driver
 developers must explicitly grab wakelocks whenever they conduct critical
 operations or must wait for user input. Usually, app developers don’t
 need to deal with wakelocks directly, because the abstractions they use
 automatically take care of the required locking. They can, nonetheless,
 communicate with the Power Manager Service if they require explicit
 wakelocks. Driver developers, on the other hand, can call on the added
 in-kernel wakelock primitives to grab and release wakelocks. The
 downside of using wakelocks in a driver, however, used to be that it
 became impossible to push that driver into the mainline kernel, because the
 mainline didn’t include wakelock support. Given the recent inclusion of
 equivalent functionality into the mainline, this is no longer an
 issue.
Note
The following LWN articles describe wakelocks in more detail and
 explain the various issues surrounding their inclusion in the mainline
 kernel:
	Wakelocks and
 the embedded problem

	From wakelocks
 to a real solution

	Suspend
 block

	Blocking
 suspend blockers

	What comes
 after suspend blockers

	An alternative
 to suspend blockers

	KS2011: Patch
 review

	Bringing
 Android closer to the mainline

	Autosleep and
 wake locks

	3.5 merge
 window part 2

Low-Memory Killer

As mentioned earlier, Android’s behavior is very much predicated
 on low-memory conditions. Hence, out-of-memory behavior is crucial. For
 this reason, the Android development team has added an additional
 low-memory killer to the kernel that kicks in before the default kernel
 OOM killer. Android’s low-memory killer applies the policies described
 in the app development documentation, weeding out processes hosting
 components that haven’t been used in a long time and are not high
 priority.
Android’s low-memory killer is based on the OOM adjustments
 mechanism available in Linux that enables the enforcement of different
 OOM kill priorities for different processes. Basically, the OOM
 adjustments allow the user-space to control part of the kernel’s OOM
 killing policies. The OOM adjustments range from −17 to 15, with a
 higher number meaning the associated process is a better candidate for
 being killed if the system is out of memory.
Android therefore attributes different OOM adjustment levels to
 different types of processes according to the components they are
 running and configures its own low-memory killer to apply different
 thresholds for each category of process. This effectively allows it to
 preempt the activation of the kernel’s own OOM killer—which kicks in
 only when the system has no memory left—by kicking in when the given
 thresholds are reached, not when the system runs out of memory.
The user-space policies are themselves applied by the init process
 at startup (see Init), and readjusted
 and partly enforced at runtime by the Activity Manager Service, which is
 part of the System Server. The Activity Manager is one of the most
 important services in the System Server and is responsible for, among
 many other things, carrying out the component lifecycle presented
 earlier.
Note
Have a look at the Taming the OOM killer
 LWN article if you’d like to get more information regarding the
 kernel’s OOM killer and how Android traditionally builds on
 it.

At the time of this writing, Android’s low-memory killer is found
 in the kernel’s staging tree along with many of the other
 Android-specific drivers. Work is currently under way to rewrite this
 functionality within a more general framework for low-memory conditions.
 Have a look at the Userspace low memory killer
 daemon post to the Linux Kernel Mailing List (LKML) and the
 linux-vmevent
 patch for a glimpse of what’s currently being worked on. Essentially,
 the goal is to move the decision process about what to do in low-memory
 conditions to a daemon in user-space.
Android and the Linux Staging Tree
At the time of this writing, many of the drivers required to run
 Android have been merged into the staging tree.
 While this means they are still found in mainline kernels available at
 http://kernel.org, it also means that kernel developers
 believe those drivers require work before being considered mature
 enough to be merged alongside the “clean” set of drivers found in the
 rest of the kernel tree.
Specifically, many Android drivers are currently found in the
 drivers/staging/android directory
 of the kernel. They should remain there until they have been
 refactored or rewritten to suit the criteria for them to be admitted
 as official Linux drivers into the relevant location within the
 drivers/ directory.
If you aren’t familiar with the staging tree, have a look at
 Greg Kroah-Hartman’s[13] The
 Linux Staging Tree, what it is and is not blog post from March
 2009: “The Linux Staging tree (or just ‘staging’ from now on) is used
 to hold standalone drivers and filesystems that are not ready to be
 merged into the main portion of the Linux kernel tree at this point in
 time for various technical reasons. It is contained within the main
 Linux kernel tree so that users can get access to the drivers much
 easier than before, and to provide a common place for the development
 to happen, resolving the ‘hundreds of different download sites’
 problem that most out-of-tree drivers have had in the past.”

Binder

Binder is an RPC/IPC mechanism akin to COM under Windows. Its
 roots actually date back to work done within BeOS prior to Be’s assets
 being bought by Palm. It continued life within Palm, and the fruits of
 that work were eventually released as the
 OpenBinder project. Though OpenBinder never
 survived as a standalone project, a few key developers who had worked on
 it, such as Dianne Hackborn and Arve Hjønnevåg, eventually ended up
 working on the Android development team.
Android’s Binder mechanism is therefore inspired by that previous
 work, but Android’s implementation does not derive from the OpenBinder
 code. Instead, it’s a clean-room rewrite of a subset of the OpenBinder
 functionality. The OpenBinder
 Documentation remains a must-read if you want to understand the
 mechanism’s underpinnings and its design philosophy, and so is Dianne
 Hackborn’s explanation on the LKML
 of how the Binder is used in Android.
In essence, Binder attempts to provide remote object invocation
 capabilities on top of a classic OS. In other words, instead of
 reengineering traditional OS concepts, Binder “attempts to embrace and
 transcend them.” Hence, developers get the benefits of dealing with remote
 services as objects without having to deal with a new OS. It therefore
 becomes very easy to extend a system’s functionality by adding remotely
 invocable objects instead of implementing new daemons for providing new
 services, as would usually be the case in the Unix philosophy. The
 remote object can therefore be implemented in any desired language and
 may share the same process space as other remote services or have its
 own separate process. All that is needed to invoke its methods is its
 interface definition and a reference to it.
And as you can see in Figure 2-1, Binder
 is a cornerstone of Android’s architecture. It’s what allows apps to
 talk the System Server, and it’s what apps use to talk to each others’
 service components, although, as I mentioned earlier, app developers
 don’t actually talk to the Binder directly. Instead, they use the
 interfaces and stubs generated by the aidl tool. Even when apps interface with the
 System Server, the android.* APIs
 abstract its services, and the developer never actually sees that Binder
 is being used.
Warning
Though they sound semantically similar, there is a very big
 difference between services running within the System Server and
 services exposed to other apps through the “service” component model I
 introduced in Components as being one
 of the components available to app developers. Most importantly,
 service components are subject to the same system mechanics as any
 other component. Hence, they are lifecycle-managed and run within the
 same privilege sandbox associated with the app they are part of.
 Services running within the System Server, on the other hand,
 typically run with system privileges and live from boot to reboot. The
 only things these two types of services share are: a) their name, and
 b) the use of Binder to interact with them.

The in-kernel driver part of the Binder mechanism is a character
 driver accessible through /dev/binder. It’s used to transmit parcels of
 data between the communicating parties using calls to ioctl(). It also allows one process to
 designate itself as the “Context Manager.” The importance of the Context
 Manager, along with the actual user-space use of the Binder driver, will
 be discussed in more detail later in this chapter.
Since the 3.3 release of the Linux kernel, the Binder driver has
 been merged into the staging tree. There is currently no project under
 way to clean this driver up or to rewrite it to make it applicable
 and/or useful for more general-purpose use in standard Linux desktop and
 server systems. It’s therefore likely to remain in drivers/staging/android/ for the foreseeable
 future.

Anonymous Shared Memory (ashmem)

Another IPC mechanism available in most OSes is shared memory. In
 Linux, this is usually provided by the POSIX SHM functionality, part of
 the System V IPC mechanisms. If you look at the bionic/libc/docs/SYSV-IPC.TXT file included
 in the AOSP, however, you’ll discover that the Android development team
 seems to have a dislike for SysV IPC. Indeed, the argument is made in
 that file that the use of SysV IPC mechanisms in Linux can lead to
 resource leakage within the kernel, opening the door for malicious or
 misbehaving software to cripple the system.
Though it isn’t stated as such by Android developers or any of the
 documentation within the ashmem code or surrounding its use, ashmem very
 likely owes part of its existence to SysV IPC’s shortcomings as seen by
 the Android development team. Ashmem is therefore described as being
 similar to POSIX SHM “but with different behavior.” For instance, it
 uses reference counting to destroy memory regions when all processes
 referring to them have exited, and will shrink mapped regions if the
 system is in need of memory. “Unpinning” a region allows it to be
 shrunk, whereas “pinning” a region disallows the shrinking.
Typically, a first process creates a shared memory region using
 ashmem, and uses Binder to share the corresponding file descriptor with
 other processes with which it wishes to share the region. Dalvik’s JIT
 code cache, for instance, is provided to Dalvik instances through
 ashmem. A lot of System Server components, such as the Surface Flinger
 and the Audio Flinger, rely on ashmem—through the IMemory interface, rather than
 directly.
Note
IMemory is an internal
 interface available only within the AOSP, not to app developers. The
 closest class exposed to app developers is MemoryFile.

At the time of this writing, the ashmem driver is included in the
 mainline’s drivers/staging/android/
 directory and is slated for rewriting.

Alarm

The alarm driver added to the kernel is another case where the
 default kernel functionality wasn’t sufficient for Android’s
 requirements. Android’s alarm driver is actually layered on top of the
 kernel’s existing Real-Time Clock (RTC) and High-Resolution Timers (HRT)
 functionalities. The kernel’s RTC functionality provides a framework for
 driver developers to create board-specific RTC functions, while the
 kernel exposes a single hardware-independent interface through the main
 RTC driver. The kernel HRT functionality, on the other hand, allows
 callers to get woken up at very specific points in time.
In “vanilla” Linux, application developers typically call the
 setitimer() system call to get a
 signal when a given time value expires; for more information, see the setitimer()’s man page. The system call
 allows for a handful of types of timers, one of which, ITIMER_REAL, uses the kernel’s HRT. This
 functionality, however, doesn’t work when the system is suspended. In
 other words, if an application uses setitimer() to request being woken up at a
 given time and then in the interim the device is suspended, that
 application will get its signal only when the device is woken up
 again.
Separately from the setitimer() system call, the kernel’s RTC
 driver is accessible through /dev/rtc and enables its users to use an
 ioctl() to, among other things, set
 an alarm that will be activated by the RTC hardware device in the
 system. That alarm will fire off whether the system is suspended or not,
 since it’s predicated on the behavior of the RTC device, which remains
 active even when the rest of the system is suspended.
Android’s alarm driver cleverly combines the best of both worlds.
 By default, the driver uses the kernel’s HRT functionality to provide
 alarms to its users, much like the kernel’s own built-in timer
 functionality. However, if the system is about to suspend itself, it
 programs the RTC so that the system gets woken up at the appropriate
 time. Hence, whenever an application from user-space needs a specific
 alarm, it just needs to use Android’s alarm driver to be woken up at the
 appropriate time, regardless of whether the system is suspended in the
 interim.
From user-space, the alarm driver appears as the /dev/alarm character device and allows its
 users to set up alarms and adjust the system’s time (wall time) through
 ioctl() calls. There are a few key
 AOSP components that rely on /dev/alarm. For instance, Toolbox and the
 SystemClock class, available
 through the app development API, rely on it to set/get the system’s
 time. Most importantly, though, the Alarm Manager service part of the
 System Server uses it to provide alarm services to apps that are exposed
 to app developers through the AlarmManager class.
Both the driver and Alarm Manager use the wakelock mechanism
 wherever appropriate to maintain consistency between alarms and the rest
 of Android’s wakelock-related behavior. Hence, when an alarm is fired,
 its consuming app gets the chance to do whatever operation is required before the
 system is allowed to suspend itself again, if need be.
At the time of this writing, Android’s alarm driver is in the
 kernel’s staging tree with upstreaming work pending.

Logger

Logging is another essential component of any Linux system,
 embedded ones included. Being able to analyze a system’s logs for errors
 or warnings either postmortem or in real time can be vital to isolate
 fatal errors, especially transient ones. By default, most Linux
 distributions include two logging systems: the kernel’s own log,
 typically accessed through the dmesg
 command, and the system logs, typically stored in files in the /var/log directory. The kernel’s log usually
 contains the messages printed out by the various printk() calls made within the kernel, either
 by core kernel code or by device drivers. For their part, the system
 logs contain messages coming from various daemons and utilities running
 in the system. In fact, you can use the logger command to send your own messages to
 the system log.
With regard to Android, the kernel’s logging functionality is used
 as is. However, none of the usual system logging software packages
 typically found in most Linux distributions are found in Android.
 Instead, Android defines its own logging mechanisms based on the Android
 logger driver added to the kernel. The classic syslog relies on sending
 messages through sockets, and therefore generates a task switch. It also
 uses files to store its information, therefore generating writes to a
 storage device. In contrast, Android’s logging functionality manages a
 handful of separate kernel-hosted buffers for logging data coming from
 user-space. Hence, no task-switches or file-writes are required for each
 event being logged. Instead, the driver maintains circular buffers in
 RAM where it logs every incoming event and returns immediately back to
 the caller.
There are numerous benefits to avoiding file-writes in the
 settings in which Android is used. For example, unlike in a desktop or
 server environment, it isn’t necessarily desirable to have a log that
 grows indefinitely in an embedded system. It’s also desirable to have a
 system that enables logging even though the filesystem types used may be
 read-only. Furthermore, most Android devices rely on solid-state storage
 devices, which have a limited number of erase cycles. Avoiding
 superfluous writes is crucial in those cases.
Because of its lightweight, efficient, and
 embedded-system-friendly design, Android’s logger can actually be used
 by user-space components at runtime to regularly log events. In fact,
 the Log class available to app
 developers more or less directly invokes the logger driver to write to
 the main event buffer. Obviously, all good things can be abused, and
 it’s preferable to keep the logging light, but still the level of use
 made possible by exposing Log
 through the app API, along with the level of use of logging within the
 AOSP itself, likely would have been very difficult to sustain had
 Android’s logging been based on syslog.
Figure 2-2 describes Android’s
 logging framework in more detail. As you can see, the logger driver is
 the core building block on which all other logging-related functionality
 relies. Each buffer it manages is exposed as a separate entry within
 /dev/log/. However, no user-space
 component directly interacts with that driver. Instead, they all rely on
 liblog, which provides a number of different logging functions.
 Depending on the functions being used and the parameters being passed,
 events will get logged to different buffers. The liblog functions used
 by the Log and Slog classes, for instance, will test whether
 the event being dispatched comes from a radio-related module. If so, the
 event is sent to the “radio” buffer. If not, the Log class will send the event to the “main”
 buffer, whereas the Slog class will
 send it to the “system” buffer. The “main” buffer is the one whose
 events are shown by the logcat
 command when it’s issued without any parameters.
[image: Android’s logging framework]

Figure 2-2. Android’s logging framework

Both the Log and EventLog classes are exposed through the app
 development API, while Slog is for
 internal AOSP use only. Despite being available to app developers,
 though, EventLog is clearly
 identified in the documentation as mainly for system integrators, not
 app developers. In fact, the vast majority of code samples and examples
 provided as part of the developer documentation use the Log class. Typically, EventLog is used by system components to log
 binary events to the Android’s “events” buffer. Some system components,
 especially System Server−hosted services, will use a combination of
 Log, Slog, and EventLog to log different events. An event
 that might be relevant to app developers, for instance, might be logged
 using Log, while an event relevant
 to platform developers or system integrators might be logged using
 either Slog or EventLog.
Note that the logcat utility,
 which is commonly used by app developers to dump the Android logs, also
 relies on liblog. In addition to providing access functions to the
 logger driver, liblog also provides functionality for formatting events
 for pretty printing and filtering. Another feature of liblog is that it
 requires every event being logged to have a priority, a tag, and data.
 The priority is either verbose,
 debug, info, warn,
 or error. The tag is a unique string
 that identifies the component or module writing to the log, and the data
 is the actual information that needs to be logged. This description
 should in fact sound fairly familiar to anyone exposed to the app
 development API, as this is exactly what’s spelled out by the developer
 documentation for the Log
 class.
The final piece of the puzzle here is the adb command. As we’ll discuss later, the AOSP
 includes an Android Debug Bridge (ADB) daemon that runs on the Android
 device and that is accessed from the host using the adb command-line tool. When you type adb logcat on the host, the daemon actually
 launches the logcat command locally
 on the target to dump its “main” buffer and then transfers that back to
 the host to be shown on the terminal.
At the time of this writing, the logger driver has been merged
 into the kernel’s drivers/staging/android/ directory. Have a
 look at the Mainline Android
 logger project for more information regarding the state of this
 driver’s mainlining.

Other Notable Androidisms

A few other Androidisms, in addition to those already covered, are
 worth mentioning, even if I don’t cover them in much detail.
	Paranoid networking
	Usually in Linux, all processes are allowed to create
 sockets and interact with the network. Per Android’s security
 model, however, access to network capabilities has to be
 controlled. Hence, an option is added to the kernel to gate access
 to socket creation and network interface administration based on
 whether the current process belongs to a certain group of
 processes or possesses certain capabilities. This applies to IPv4,
 IPv6, and Bluetooth.
At the time of this writing, this functionality hasn’t been
 merged into the mainline, and the path for its inclusion is
 unclear. You could run an AOSP on a kernel that doesn’t have this
 functionality, but Android’s permission system, especially with
 regard to socket creation, would be broken.

	RAM console
	 As I mentioned earlier, the kernel manages its own
 log, which you can access using the dmesg command. The content of this log
 is very useful, as it often contains critical messages from
 drivers and kernel subsystems. On a crash or a kernel panic, its
 content can be instrumental for postmortem analysis. Since this
 information is typically lost on reboot, Android adds a driver
 that registers a RAM-based console that survives reboots and makes
 its content accessible through /proc/last_kmsg.
At the time of this writing, the RAM console’s functionality
 seems to have been merged into mainline within the pstore
 filesystem in the kernel’s fs/pstore/ directory.

	Physical memory (pmem)
	Like ashmem, the pmem driver allows for sharing
 memory between processes. However, unlike ashmem, it allows the
 sharing of large chunks of physically contiguous memory regions,
 not virtual memory. In addition, these memory regions may be
 shared between processes and drivers. For the G1 handset, for
 instance, pmem heaps are used for 2D hardware acceleration. Note,
 though, that pmem was used in very few devices. In fact, according
 to Brian Swetland, one of the Android kernel development team
 members, it was written to specifically address the MSM7201A’s
 limitations, the MSM7201A being the SoC in the G1.
At the time of this writing, this driver is considered
 obsolete and has been dropped. It isn’t found in the mainline
 kernel, and there are no plans to revive it. It appears that the
 ION memory
 allocator is poised to replace whatever uses pmem
 had.

Hardware Support

Android’s hardware support approach is significantly different from
 the classic approach typically found in the Linux kernel and Linux-based
 distributions. Specifically, the way hardware support is implemented, the
 abstractions built on that hardware support, and the mind-set surrounding
 the licensing and distribution of the resulting code are all
 different.
The Linux Approach

The usual way to provide support for new hardware in Linux is to
 create device drivers that are either built as part of the kernel or
 loaded dynamically at runtime through modules. The corresponding
 hardware is thereafter generally accessible in user-space through
 entries in /dev. Linux’s driver
 model defines three basic types of devices: character devices (devices
 that appear as a stream of bytes), block devices (essentially hard
 disks), and networking devices. Over the years, quite a few additional
 device and subsystem types have been added, such as for USB or Memory
 Technology Device (MTD) devices. Nevertheless, the APIs and methods for
 interfacing with the /dev entry
 corresponding to a given type of device have remained fairly
 standardized and stable.
This has allowed various software stacks to be built on top of
 /dev nodes either to interact with
 the hardware directly or to expose generic APIs that are used by user
 applications to provide access to the hardware. The vast majority of
 Linux distributions in fact ship with a similar set of core libraries
 and subsystems, such as the ALSA audio libraries and the X Window
 System, to interface with hardware devices exposed through /dev.
With regard to licensing and distribution, the general “Linux”
 approach has always been that drivers should be merged and maintained as
 part of the mainline kernel and distributed with it under the terms of
 the GPL. So, while some device drivers are developed and maintained
 independently and some are even distributed under other licenses, the
 consensus has been that this isn’t the preferred approach. In fact, with
 regard to licensing, non-GPL drivers have always been a contentious
 issue. Hence, the conventional wisdom is that users’ and distributors’
 best bet for getting the latest drivers is usually to get the latest
 mainline kernel from http://kernel.org. This has been true since the kernel’s
 early days and remains true despite some additions having been made to
 the kernel to allow the creation of user-space drivers.

Android’s General Approach

Although Android builds on the kernel’s hardware abstractions and
 capabilities, its approach is very different. On a purely technical
 level, the most glaring difference is that its subsystems and libraries
 don’t rely on standard /dev entries
 to function properly. Instead, the Android stack typically relies on
 shared libraries provided by manufacturers to interact with hardware. In
 effect, Android relies on what can be considered a Hardware Abstraction
 Layer (HAL), although, as we will see, the interface, behavior, and
 function of abstracted hardware components differ greatly from type to
 type.
In addition, most software stacks typically found in Linux
 distributions to interact with hardware are not found in Android. There
 is no X Window System, for instance, and while ALSA drivers are
 sometimes used—a decision left up to the hardware manufacturer who
 provides the shared library implementing audio support for the
 HAL—access to their functionality is different from that on standard
 Linux distributions. The ALSA libraries typically used in Linux desktop
 environments to interface with ALSA drivers, for example, aren’t used in
 the official AOSP tree. Instead, recent Android releases include a
 BSD-licensed tinyalsa library as a
 replacement.
Figure 2-3 presents the typical way in
 which hardware is abstracted and supported in Android, along with the
 corresponding distribution and licensing. As you can see, Android still
 ultimately relies on the kernel to access the hardware. However, this is
 done through shared libraries that are either implemented by the device
 manufacturer or provided as part of the AOSP. Generally speaking, you
 can consider the HAL layer as being the hardware library loader shown in
 the diagram, along with the header files defining the various hardware
 types, with those same header files being used as the API definitions
 for the hardware library .so
 files.
[image: Android’s “Hardware Abstraction Layer”]

Figure 2-3. Android’s “Hardware Abstraction Layer”

One of the main features of this approach is that the license
 under which the shared library is distributed is up to the hardware
 manufacturer. Hence, a device manufacturer can create a simplistic
 device driver that implements the most basic primitives to access a
 given piece of hardware and make that driver available under the GPL.
 Not much would be revealed about the hardware, since the driver wouldn’t
 do anything fancy. That driver would then expose the hardware to
 user-space through mmap() or
 ioctl(), and the bulk of the
 intelligence would be implemented within a proprietary shared library in
 user-space that uses those functions to drive the hardware.
Android does not in fact specify how the shared library and the
 driver or kernel subsystem should interact. Only the API provided by the
 shared library to the upper layers is specified by the HAL. Hence, it’s
 up to you to determine the specific driver interface that best fits your
 hardware, so long as the shared library you provide implements the
 appropriate API. Nevertheless, we will cover the typical methods used by
 Android to interface to hardware in the next section.
Where Android is relatively inconsistent is the way the
 hardware-supporting shared libraries are loaded by the upper layers.
 Remember for now that for most hardware types, there has to be a
 .so file that is either provided by
 the AOSP or that you must provide for Android to function
 properly.
No matter which mechanism is used to load a hardware-supporting
 shared library, a system service corresponding to the type of hardware
 is typically responsible for loading and interfacing with the shared
 library. That system service will be responsible for interacting and coordinating with the
 other system services to make the hardware behave coherently with the
 rest of the system and the APIs exposed to app developers. If you’re
 adding support for a given type of hardware, it’s therefore crucial that
 you try to understand in as much detail as possible the internals of the
 system service corresponding to your hardware. Usually, the system
 service will be split in two parts: one part in Java that implements
 most of the Android-specific intelligence, and another part in C/C++
 whose main job is to interact with the HAL, the hardware-supporting
 shared library and other low-level functions.

Loading and Interfacing Methods

As I mentioned earlier, there are various ways in which system
 services and Android in general interact with the shared libraries
 implementing hardware support and hardware devices in general. It’s
 difficult to fully understand why there is such a variety of methods,
 but I suspect that some of them evolved organically. Luckily, there
 seems to be a movement toward a more uniform way of doing things. Given
 that Android moves at a fairly rapid pace, this is one area that will
 require keeping an eye on for the foreseeable future, as it’s likely to
 evolve.
Note that the methods described here are not necessarily mutually
 exclusive. Often a combination of these is used within the Android stack
 to load and interface with a shared library or some software layer
 before or after it. I’ll cover specific hardware in the next
 section.
	dlopen()-loading through
 HAL
	 Applies to: GPS, Lights, Sensors, and Display.
 Also applies to Audio and Camera starting from 4.0/Ice-Cream
 Sandwich.
Some hardware-supporting shared libraries are loaded by the
 libhardware library. This
 library is part of Android’s HAL and exposes hw_get_module(), which is used by some
 system services and subsystems to explicitly load a given specific
 hardware-supporting shared library (a.k.a. a “module” in HAL
 terminology). hw_get_module()
 in turn relies on the classic dlopen() to load libraries into the
 caller’s address space.
Warning
HAL “modules” shouldn’t be confused with loadable kernel
 modules, which are a completely different and unrelated software
 construct, even though they share some similar properties.

	Linker-loaded .so
 files
	 Applies to: Audio, Camera, Wifi, Vibrator, and
 Power Management
In some cases, system services are simply linked against a
 given .so file at build time.
 Hence, when the corresponding binary is run, the dynamic linker
 automatically loads the shared library into the process’s address
 space.

	Hardcoded dlopen()s
	 Applies to: StageFright and Radio Interface Layer
 (RIL)
In a few cases, the code invokes dlopen() directly instead of going
 through libhardware to fetch
 a hardware-enabling shared library. The rationale for using this
 method instead of the HAL is unclear.

	Sockets
	 Applies to: Bluetooth, Network Management, Disk
 Mounting, and Radio Interface Layer (RIL)
Sockets are sometimes used by system services or framework
 components to talk to a remote daemon or service that actually
 interacts with the hardware.

	Sysfs entries
	 Applies to: Vibrator and Power Management

Some entries in sysfs (/sys) can be used to control the
 behavior of hardware and/or kernel subsystems. In some cases,
 Android uses this method instead of /dev entries to control the hardware.
 Use of sysfs entries instead of /dev nodes makes sense, for instance,
 when defaults need to be set during system initialization when no
 part of the framework is yet running.

	/dev nodes
	 Applies to: Almost every type of hardware

Arguably, any hardware abstraction must at some point
 communicate with an entry in /dev, because that’s how drivers are
 exposed to user-space. Some of this communication is likely hidden
 from Android itself because it interacts with a shared library
 instead, but in some corner cases AOSP components directly access
 device nodes. Such is the case of input libraries used by the
 Input Manager.

	D-Bus
	 Applies to: Bluetooth
D-Bus is a classic messaging system found in most Linux
 distributions for facilitating communication between various
 desktop components. It’s included in Android because it’s the
 prescribed way for a non-GPL component to talk to the GPL-licensed
 BlueZ stack—Linux’s default Bluetooth stack and the one used in
 Android—without being subject to the GPL’s redistribution
 requirements; D-Bus itself being dual-licensed under the Academic
 Free License (AFL) and the GPL. Have a look at freedesktop.org’s D-Bus
 page for more information.
Given that BlueZ has been removed from the AOSP starting
 with 4.2/Jelly Bean, it’s unclear what uses D-Bus will have, if
 any, in future Android releases.

Device Support Details

Table 2-1 summarizes the way in which
 each type of hardware is supported in Android. As you’ll notice, there
 is a wide variety of combinations of mechanisms and interfaces. If you
 plan on implementing support for a specific type of hardware, the best
 way forward is to start from an existing sample implementation. The AOSP
 typically includes hardware support code for a few handsets, generally
 those that were used by Google to develop new Android releases and
 therefore served as lead devices. Sometimes the sources for hardware
 support are quite extensive, as was the case for the Samsung Nexus S (a.k.a. “Crespo,” its code name)
 in Gingerbread, and the Galaxy Nexus (a.k.a. “Maguro”) and the Nexus 7
 (a.k.a. “Grouper”) in Jelly Bean.
The only type of hardware for which you are unlikely to find
 publicly available implementations on which to base your own is the RIL.
 For various reasons, it’s best not to let everyone be able to play with
 the airwaves. Hence, manufacturers don’t make such implementations
 available. Instead, Google provides a reference RIL implementation in
 the AOSP should you want to implement a RIL.
Table 2-1. Android’s hardware support methods and interfaces
	Hardware	System Service	Interface to User-Space Hardware Support	Interface to Hardware
	Audio	Audio Flinger	Linker-loaded[a] libaudio.so	Up to hardware manufacturer, though ALSA is
 typical
	Bluetooth	Bluetooth Service	Socket/D-Bus to BlueZ[b]	BlueZ stack
	Camera	Camera Service	Linker-loaded[c] libcamera.so	Up to hardware manufacturer, sometimes
 Video4Linux
	Display	Surface Flinger	HAL-loaded gralloc
 module[d]	Up to hardware manufacturer, /dev/fb0 or /dev/graphics/fb0
	GPS	Location Manager	HAL-loaded gps
 module	Up to hardware manufacturer
	Input	Input Manager	Native libui.so
 library[e]	Entries in /dev/input/
	Lights	Lights Service	HAL-loaded lights
 module	Up to hardware manufacturer
	Media	N/A, StageFright framework within Media Service	dlopen on libstagefrighthw.so	Up to hardware manufacturer
	Network interfaces[f]	Network Management Service	Socket to netd	ioctl() on
 interfaces
	Power management	Power Manager Service	Linker-loaded
 libhardware_legacy.so	Entries in /sys/power/ or, in older days,
 /sys/android_power/
	Radio (Phone)	Phone Service	Socket to rild, which
 itself does a dlopen()on
 manufacturer-provided .so	Up to hardware manufacturer
	Storage	Mount Service	Socket to vold	System calls and /sys entries
	Sensors	Sensor Service	HAL-loaded sensors
 module	Up to hardware manufacturer
	Vibrator	Vibrator Service	Linker-loaded
 libhardware_legacy.so	Up to hardware manufacturer
	WiFi	Wifi Service	Linker-loaded
 libhardware_legacy.so	Classic wpa_supplicant[g] in most cases
	[a] This is HAL-loaded starting with 4.0/Ice-Cream
 Sandwich.

[b] BlueZ has been removed starting with 4.2/Jelly Bean. A
 Broadcom-supplied Bluetooth stack called
 bluedroid has replaced it. The new
 Bluetooth stack relies on HAL-loading like most other
 hardware types.

[c] This is HAL-loaded starting with 4.0/Ice-Cream
 Sandwich.

[d] The module used by the Surface Flinger is hwcomposer starting with
 4.0/Ice-Cream Sandwich

[e] This has been replaced by the libinput.so library starting with
 4.0/Ice-Cream Sandwich.

[f] This is for Tether, NAT, PPP, PAN, USB RNDIS
 (Windows). It isn’t for WiFi.

[g] wpa_supplicant is
 the same software package used on any Linux desktop to
 manage WiFi networks and connections.

Native User-Space

Now that we’ve covered the low-level layers on which Android is built,
 let’s start going up the stack. First off, we’ll cover the native
 user-space environment in which Android operates. By “native user-space,”
 I mean all the user-space components that run outside the Dalvik virtual
 machine. This includes quite a few binaries that are compiled to run
 natively on the target’s CPU architecture. These are generally started
 either automatically or as needed by the init process according to its
 configuration files, or are available to be invoked from the command line
 once a developer shells into the device. Such binaries usually have direct
 access to the root filesystem and the native libraries included in the
 system. Their capabilities are restricted only by the filesystem rights
 granted to them and their effective UID and GID. They aren’t subject to
 any of the restrictions imposed on a typical Android app by the Android
 Framework because they are running outside it.
Note that Android’s user-space was designed pretty much from a blank
 slate and differs greatly from what you’d find in a standard Linux
 distribution. Hence, I will try as much as possible to explain where
 Android’s user-space is different from or similar to what you’d usually
 find in a Linux-based system.
Filesystem Layout

Like any other Linux-based distribution, Android uses a
 root filesystem to store applications, libraries, and data. Unlike the
 vast majority of Linux-based distributions, however, the layout of
 Android’s root filesystem does not adhere to the Filesystem Hierarchy
 Standard (FHS).[14] The kernel itself doesn’t enforce the FHS, but most
 software packages built for Linux assume that the root filesystem they
 are running on conforms to the FHS. Hence, if you intend to port a
 standard Linux application to Android, you’ll likely need to do some
 legwork to ensure that the filepaths it relies on are still valid, or
 use some form of “chroot jail” to isolate it and
 its supporting packages from the rest of the root filesystem (see
 chroot’s man page for details).
Given that most of the packages running in Android’s user-space
 were written from scratch specifically for Android, this lack of
 conformity is of little to no consequence to Android itself. In fact, it
 has some benefits, as we’ll see shortly. Still, it’s important to learn
 how to navigate Android’s root filesystem. If nothing else, you’ll
 likely have to spend quite some time inside it as you bring Android up
 on your hardware or customize it for that hardware.
The two main directories in which Android operates are /system and /data. These directories do not emanate from
 the FHS. In fact, I can’t think of any mainstream Linux distribution
 that uses either of these directories. Rather, they reflect the Android
 development team’s own design. This is one of the first signs hinting
 that it might be possible to host Android side by side with a common
 Linux distribution on the same root filesystem. Have a look at Appendix A for more information on how to create such a
 hybrid.
/system is the main Android
 directory for storing immutable components generated by the build of the
 AOSP. This includes native binaries, native libraries, framework
 packages, and stock apps. It’s usually mounted read-only from a separate
 image from the root filesystem, which is itself mounted from a RAM disk
 image. /data, on the other hand, is
 Android’s main directory for storing data and apps that change over
 time. This includes the data generated and stored by apps installed by
 the user alongside data generated by Android system components at
 runtime. It, too, is usually mounted from its own separate image, though
 in read-write mode.
Android also includes many directories commonly found in any Linux
 system, such as /dev, /proc, /sys, /sbin, /root, /mnt, and /etc. These directories often serve similar
 if not identical purposes to the ones they serve on any Linux system,
 although they are very often trimmed down, as is the case of /sbin and /etc, and in some cases are empty, such as
 /root.
Interestingly, Android doesn’t include any /bin or /lib directories. These directories are
 typically crucial in a Linux system, containing, respectively, essential
 binaries and essential libraries. This is yet another artifact that
 opens the door for making Android coexist with standard Linux
 components.
There is of course more to be said about Android’s root filesystem. The
 directories just mentioned, for instance, contain their own hierarchies.
 Also, Android’s root filesystem contains other directories I haven’t
 covered here. We will revisit the Android root filesystem and its makeup
 in more detail in Chapter 6.

Libraries

Android relies on about 100 dynamically loaded libraries, all stored in the /system/lib directory. A certain
 number of these come from external projects that were merged into
 Android’s codebase to make their functionality available within the
 Android stack, but a large portion of the libraries in /system/lib are actually generated from
 within the AOSP itself. Table 2-2 lists
 the libraries included in the AOSP that come from external projects,
 whereas Table 2-3 summarizes the
 Android-specific libraries generated from within the AOSP.
Table 2-2. Libraries generated from external projects imported into the
 AOSP
	Library(ies)	External Project	Original Location	License
	audio.so, liba2dp, input.so, libbluetooth and libbluetoothd	BlueZ[a]	http://www.bluez.org	GPL
	libcrypto.so and
 libssl.so	OpenSSL	http://www.openssl.org	Custom, BSD-like
	libdbus.so	D-Bus	http://dbus.freedesktop.org	AFL and GPL
	libexif.so[b]	Exif JPEG header manipulation tool	http://www.sentex.net/~mwandel/jhead/	Public Domain
	libexpat.so	Expat XML Parser	http://expat.sourceforge.net	MIT
	libFFTEm.so	neven face recognition library	N/A	ASL
	libicui18n.so and
 libicuuc.so	International Components for Unicode	http://icu-project.org	MIT
	libiprouteutil.so
 and libnetlink.so	iproute2 TCP/IP networking and traffic control	http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2	GPL
	libjpeg.so	libjpeg	http://www.ijg.org	Custom, BSD-like
	libnfc_ndef.so	NXP Semiconductor’s NFC library	N/A	ASL
	libskia.so and, in
 2.3/Gingerbread, libskiagl.so	skia 2D graphics library	http://code.google.com/p/skia/	ASL
	libsonivox	Sonic Network’s Audio Synthesis library	N/A	ASL
	libsqlite.so	SQLite database	http://www.sqlite.org	Public domain
	libSR_AudioIn.so
 and, in 2.3/Gingerbread, libsrec_jni.so	Nuance Communications’ Speech Recognition engine	N/A	ASL
	libstlport.so	Implementation of the C++ Standard Template
 Library	http://stlport.sourceforge.net	Custom, BSD-like
	libttspico.so	SVOX’s Text-to-Speech speech synthesizer engine	N/A	ASL
	libvorbisidec.so	Tremolo ARM-optimized Ogg Vorbis decompression
 library	http://wss.co.uk/pinknoise/tremolo/	Custom, BSD-like
	libwebcore.so	WebKit Open Source Project	http://www.webkit.org	LGPL and BSD
	libwpa_client.so	Library used by legacy HAL to talk to wpa_supplicant
 daemon	http://hostap.epitest.fi/wpa_supplicant/	GPL and BSD
	libz.so	zlib compression library	http://zlib.net	Custom, BSD-like
	[a] BlueZ has been replaced by an ASL-licensed,
 Broadcom-supplied Bluetooth stack called
 bluedroid that is also found in
 external/. The
 libraries generated by bluedroid are different from those
 listed here.

[b] Note that Android’s libexif.so’s API is very
 different from that library’s API as available in
 traditional Linux distributions.

Table 2-3. Android-specific libraries generated from within the
 AOSP
	Category	Library(ies)	Description
	Bionic	libc.so	C library
	libm.so	Math library
	libdl.so	Dynamic linking library
	libstdc++.so	C++ support library[a]
	libthread_db.so	Thread debugging library
	Core[b]	libbinder.so	The Binder library
	libutils.so,
 libcutils.so, libnetutils.so, and libsysutils.so	Various utility libraries
	libsystem_server.so,
 libandroid_servers.so,
 libaudioflinger.so,
 libsurfaceflinger.so,
 libsensorservice.so, and
 libcameraservice.so	System-services-related libraries
	libcamera_client.so
 and, in 2.3/Gingerbread, libsurfaceflinger_client.so[c]	Client libraries for certain system services
	libpixelflinger.so	The PixelFlinger library
	libui.so	Low-level user-interface-related functionalities, such as
 user input events handling and dispatching and graphics buffer
 allocation and manipulation
	libgui.so	Library for functions related to sensors and, starting
 with 4.0/Ice-Cream Sandwich, client communication with the
 Surface Flinger
	liblog.so	The logging library
	libandroid_runtime.so	The Android Runtime library
	libandroid.so	C interface to lifecycle management, input events, window
 management, assets, and Storage Manager
	Dalvik	libdvm.so	The Dalvik VM library
	libnativehelper.so	JNI-related helper functions
	Hardware	libhardware.so	The HAL library that provides hw_get_module() and uses dlopen() to load hardware support
 modules (i.e., shared libraries that provide hardware support to
 the HAL) on demand
	libhardware_legacy.so	Legacy HAL library providing hardware support for WiFi,
 power-management, and vibrator
	Various hardware-supporting shared libraries	Libraries that provide support for various hardware
 components; some are loaded through the HAL, while others are
 loaded automatically by the linker
	Media	libmediaplayerservice.so	The Media Player service library
	libmedia.so	The low-level media functions used by the Media Player
 service
	libstagefright*.so	The many libraries that make up the StageFright media
 framework
	libeffects.so and
 the libraries in the soundfx/ directory	The sound effects libraries
	libdrm1.so and
 libdrm1_jni.so	The DRM (Digital Rights Management) framework
 libraries
	OpenGL	libEGL.so, libETC1.so, libGLESv1_CM.so, libGLESv2.so, and egl/ligGLES_android.so	Android’s OpenGL implementation
	[a] Some say that this library is similar in its role to
 the libsupc++.a found
 in standard Linux systems, while Android’s libstlport.so is closer to
 traditional Linux systems’ libstdc++.so.

[b] I’m using this category as catchall for many core
 Android functionalities.

[c] Starting with 4.0/Ice-Cream Sandwich, the
 functionality corresponding to libsurfaceflinger_client.so has
 been merged into libgui.so.

Since 2.3/Gingerbread, many libraries have been added to
 that AOSP. Tables 2-4 and 2-5
 list some of the most notable additions you’ll find in 4.1/Jelly
 Bean.
Table 2-4. Important libraries from external projects found in 4.1/Jelly
 Bean
	Library(ies)	External Project	Original Location	License
	libtinyalsa.so	tinyalsa	http://github.com/tinyalsa	ASL
	libmtp.so	libmtp	http://libmtp.sourceforge.net/	LGPL
	libchromium_net.so	WebKit	http://webkit.org/	LGPL and BSD
	libmdnssd.so	mDNSResponder	http://www.opensource.apple.com/tarballs/mDNSResponder/	ASL

Table 2-5. Important Android-specific libraries found in 4.1/Jelly
 Bean
	Category	Library(ies)	Description
	Core	libjnigraphics.so	C interface to the 2D graphics system
	libcorkscrew.so	Debugging library
	libRS.so	Interface to RenderScript
	Media	libOpenMAXAL.so	Native multimedia library, based on Khronos OpenMAX
 AL
	libOpenSLES.so	Khronos OpenSL EL compatible audio system
	libaudioutils.so	Echo cancellation and other audio tools

Init

One thing Android doesn’t change is the kernel’s boot process.
 Hence, whatever you know about the kernel’s startup continues to apply
 just the same to Android’s use of Linux. What changes in Android is what
 happens once the kernel finishes booting. Indeed, after it’s finished
 initializing itself and the drivers it contains, the kernel starts just
 one user-space process, the init process. This process is then responsible for
 spawning all other processes and services in the system and for
 conducting critical operations such as reboots. Traditionally, Linux
 distributions have relied on SystemV init for the init process, although
 in recent years many distributions have created their own variants.
 Ubuntu, for instance, uses Upstart. In embedded Linux
 systems, the classic package that provides init is BusyBox.
Android introduces its own custom init, which brings with it a few
 novelties.
Configuration language

Unlike traditional inits, which are predicated on the use of
 scripts that run per the current run-levels’ configuration or on
 request, Android’s init defines its own configuration semantics and
 relies on changes to global properties to trigger the execution of
 specific instructions.
The main configuration file for init is usually stored as
 /init.rc, but there’s also
 usually a device-specific configuration file stored as /init.<device_name>.rc, where <device_name>
 is the name of the device. In some cases, such as the emulator, for
 example, there’s also a device-specific
 script stored as /system/etc/init.<device_name>.sh. You can get a high degree of control
 over the system’s startup and its behavior by modifying those
 files. For instance, you can disable the Zygote—a key system component
 that we’ll cover in greater detail later in this chapter and in Chapter 7—from starting up automatically and then starting it manually yourself after having used adb to shell into the device.
We’ll discuss the init’s configuration language in depth in
 Chapter 6.

Global properties

A very interesting aspect of Android’s init is how it manages a
 global set of properties that can be accessed and set from many parts
 of the system, with the appropriate rights. Some of these properties
 are set at build time, while others are set in init’s configuration
 files, and still others are set at runtime. Some properties are also
 persisted to storage for permanent use. Since init manages the
 properties, it can detect any changes and therefore trigger the
 execution of a set of commands based on its configuration.
The OOM adjustments mentioned earlier, for instance, are set on
 startup by the init.rc file. So are
 network properties. Some of the properties set at build time are stored in the
 /system/build.prop file and
 include the build date and build system details. At runtime, the system will have over 100
 different properties, ranging from IP and GSM configuration parameters
 to the battery’s level. Use the getprop command to get the current list of
 properties and their values.
We’ll discuss the init’s global properties, the files used to
 provide its default values, and the relevant commands in greater
 detail in Chapter 6.

udev events

As I explained earlier, access to devices in Linux is done
 through nodes within the /dev
 directory. In the old days, Linux distributions would ship with thousands of entries in that
 directory to accommodate all possible device configurations.
 Eventually, though, a few schemes were proposed to make the creation
 of such nodes dynamic. For some time now, the system in use has been
 udev, which relies on runtime events generated by
 the kernel every time hardware is added or removed from the
 system.
In most Linux distributions, the handling of udev hotplug events
 is done by the udevd daemon. In
 Android, these events are handled by the ueventd daemon built as part of Android’s
 init and accessed through a symbolic link from /sbin/ueventd to /init. To know which entries to create in
 /dev, ueventd relies on the /ueventd.rc and /ueventd.<device_name>.rc files.
We’ll discuss the ueventd and
 its configuration files in detail in Chapter 6.

Toolbox

Much like the root filesystem’s directory hierarchy, there are
 essential binaries on most Linux systems, listed by the FHS for the
 /bin and /sbin directories. In most Linux
 distributions, the binaries in those directories are built from separate
 packages coming from different projects available on the Internet. In an
 embedded system, it doesn’t make sense to have to deal with so many
 packages, nor necessarily to have that many separate binaries.
The approach taken by the classic BusyBox package is to build a
 single binary that essentially has what amounts to a huge switch-case, which checks for the first
 parameter on the command line and executes the corresponding
 functionality. All commands are then made to be symbolic links to the
 busybox command. So when you type
 ls, for example, you’re actually
 invoking BusyBox. But since BusyBox’s behavior is predicated on the
 first parameter on the command line and that parameter is ls, it will behave as if you had run that
 command from a standard Linux shell.
Android doesn’t use BusyBox but includes its own tool, Toolbox,
 that basically functions in the very same way, using symbolic links to
 the toolbox command. Unfortunately,
 Toolbox is nowhere as feature-rich as BusyBox. In fact, if you’ve ever
 used BusyBox, you’re likely going to be very disappointed when using
 Toolbox. The rationale for creating a tool from scratch in this case
 seems to be the licensing angle, BusyBox being GPL licensed. In
 addition, some Android developers have stated that their goal was to
 create a minimal tool for shell-based debugging and not to provide a
 full replacement for shell tools, as BusyBox is. At any rate, Toolbox is BSD licensed, and manufacturers can therefore
 modify it and distribute it without having to track the modifications
 made by their developers or making any sources available to their
 customers.
You might still want to include BusyBox alongside Toolbox to
 benefit from its capabilities. If you don’t want to ship it as part of
 your final product because of its licensing, you could include it
 temporarily during development and strip it from the final production
 release. I’ll cover this in more detail in Appendix A.

Daemons

As part of the system startup, Android’s init starts a few key
 daemons that continue to run throughout the lifetime of the system. Some
 daemons, such as adbd, are started on
 demand, depending on build options and changes to global properties.
 Table 2-6 provides a list of some of the more
 prominent daemons that Android runs. Many of these are discussed in much
 greater detail in Chapters 6 and 7.
Table 2-6. Android daemons
	Daemon	Description
	ueventd	Android’s replacement for udev.
	servicemanager	The Binder Context Manager. Acts as an index of all
 Binder services running in the system.
	vold	The volume manager. Handles the mounting and formatting
 of mounted volumes and images.
	netd	The network manager. Handles tethering, NAT, PPP, PAN,
 and USB RNDIS.
	debuggerd	The debugger daemon. Invoked by Bionic’s linker when a
 process crashes to do a postmortem analysis. Allows gdb to connect from the host.
	rild	The RIL daemon. Mediates all communication between the
 Phone Service and the Baseband Processor.
	Zygote	The Zygote process. It’s responsible for warming up the
 system’s cache and starting the System Server. We’ll discuss it
 in more detail later in this chapter.
	mediaserver	The Media server. Hosts most media-related services.
 We’ll discuss it in more detail later in this chapter.
	dbus-daemon	The D-Bus message daemon. Acts as an intermediary between
 D-Bus users. Have a look at its man page for more
 information.
	bluetoothd	The Bluetooth daemon. Manages Bluetooth devices. Provides
 services through D-Bus. No longer in the AOSP as of 4.2/Jelly
 Bean, since the BlueZ stack has been removed.
	installd	The .apk
 installation daemon. Takes care of installing and uninstalling
 .apk files and managing the
 related filesystem entries.
	keystore	The KeyStore daemon. Manages an encrypted key-value pair
 store for cryptographic keys, SSL certs for instance.
	system_server	Android’s System Server. This daemon hosts the vast
 majority of system services that run in Android.
	adbd	The ADB daemon. Manages all aspects of the connection
 between the target and the host’s adb command.

Command-Line Utilities

More than 150 command-line utilities are scattered throughout
 Android’s root filesystem.
 /system/bin contains the majority
 of them, but some “extras” are in /system/xbin, and a handful are in /sbin. Around 50 of those in /system/bin are actually symbolic links to
 /system/bin/toolbox. The majority
 of the rest come from the Android base framework, from external projects
 merged into the AOSP, or from various other parts of the AOSP. We’ll get
 the chance to cover the various binaries found in the AOSP in more
 detail in Chapters 6 and 7.

Dalvik and Android’s Java

In a nutshell, Dalvik is Android’s Java virtual machine. It allows
 Android to run the byte-code generated from Java-based apps and Android’s
 own system components and provides both with the required hooks and
 environment to interface with the rest of the system, including native
 libraries and the rest of the native user-space. There’s more to be said
 about Dalvik and Android’s brand of Java, though. But before I can delve
 into that explanation, I must first cover some Java basics.
Without boring you with yet another history lesson on the Java
 language and its origins, suffice it to say that Java was created by James
 Gosling at Sun in the early ’90s, that it rapidly became very popular, and
 that it was, in sum, more than well established before Android came
 around. From a developer perspective, two aspects are important to keep in
 mind with regard to Java: its differences from a traditional language such
 as C and C++, and the components that make up what we commonly refer to as
 “Java.”
By design, Java is an interpreted language. Unlike C and C++, where
 the code you write gets compiled by a compiler into binary assembly
 instructions to be executed by a CPU matching the architecture targeted by
 the compiler, the code you write in Java gets compiled by a Java compiler
 into architecture-independent byte-code that is executed at runtime by a
 byte-code interpreter, also commonly referred to as a “virtual machine.”
 This modus operandi, along with Java’s semantics, enables the language to
 include quite a few features not traditionally found in previous
 languages, such as reflection and anonymous classes. Also, unlike C and
 C++, Java doesn’t require you to keep track of objects you allocate. In
 fact, it requires you to lose track of all unused objects, since it has an
 integrated garbage collector that will ensure that all such objects are
 destroyed when no active code holds a reference to them any
 longer.
At a practical level, Java is actually made up of a few distinct
 things: the Java compiler, the Java byte-code interpreter—more commonly
 known as the Java Virtual Machine (JVM)—and the Java libraries commonly
 used by Java developers. Together, these are usually obtained by
 developers through the Java Development Kit (JDK) provided free of charge
 by Oracle. Android actually relies on the JDK for the Java compiler at
 build time, but it doesn’t use the JVM or the libraries found in the JDK.
 Instead of the JVM it relies on Dalvik, and instead of the JDK libraries
 it relies on the Apache Harmony project, a clean-room implementation of
 the Java libraries hosted under the umbrella of the Apache project.
Note
None of the JDK components are found in the images generated by
 the build of the AOSP. Hence, none of the JDK’s components would be
 distributed by you when using Android for your embedded system.

Java Lingo
Java has its own specialized terminology. The following
 explanations should help you make sense of some of the terms being used
 in the text, if you aren’t already familiar with them:
	virtual machine
	This term was less ambiguous when Java came out, because
 “virtual machine” software products such as VMware and VirtualBox
 weren’t as common or as popular as they are today. Such virtual
 machines do far more than interpret byte-code, as Java virtual
 machines do.

	reflection
	The ability to ask an object whether it implements a certain
 method.

	anonymous classes
	Snippets of code that are passed as a parameter to a method
 being invoked. An anonymous class might be used, for instance, as
 a callback registration method, thereby enabling the developer to
 see the code handling an event at the same location in the source
 code where she invokes the callback registration method.

	.jar files
	.jar files are actually Java ARchives
 (JAR) containing many .class files, each of
 which contains only a single class.

According to its developer, Dan Bornstein, Dalvik distinguishes
 itself from the JVM by being specifically designed for embedded systems.
 Namely, it targets systems that have slow CPUs and relatively little RAM,
 run OSes that don’t use swap space, and are battery powered.
While the JVM munches on .class
 files, Dalvik prefers the .dex
 delicatessen. .dex files are actually
 generated by postprocessing the .class files generated by the Java compiler
 through Android’s dx utility. Among
 other things, an uncompressed .dex
 file is 50% smaller than its originating .jar file.
For more information about the features and internals of Dalvik, I
 strongly encourage you to take a look at Dan Bornstein’s Google I/O 2008
 presentation entitled “Dalvik Virtual Machine Internals.” It’s about one
 hour long and available on
 YouTube. You can also just go to YouTube and search for “Dan
 Bornstein Dalvik.”
Note
Another interesting factoid is that Dalvik is register-based,
 whereas the JVM is stack-based, though that is likely to have little to
 no meaning to you unless you’re an avid student of VM theory,
 architecture, and internals.
If you’d like to get the inside track on the benefits and
 trade-offs between stack-based VMs and register-based VMs, have a look
 at the paper entitled “Virtual Machine Showdown: Stack Versus Registers”
 by Shi et al. in proceedings of VEE’05, June 11−12, 2005, Chicago, p.
 153−163.

A feature of Dalvik very much worth highlighting, though, is that
 since 2.2/Froyo it has included a Just-in-Time (JIT) compiler for ARM,
 with x86 and MIPS having been added since. Historically, JIT has been a
 defining feature for many VMs, helping them close the gap with
 noninterpreted languages. Indeed, having a JIT means that Dalvik converts apps’ byte-codes to binary assembly
 instructions that run natively on the target’s CPU instead of being
 interpreted one instruction at a time by the VM. The result of this
 conversion is then stored for future use. Hence, apps take longer to load
 the first time, but once they’ve been JIT’ed, they load and run much
 faster. The only caveat here is that JIT is available for a limited number
 of architectures only, namely ARM, x86, and MIPS.
As an embedded developer, you’re unlikely to need to do anything
 specific to get Dalvik to work on your system. Dalvik was written to be
 architecture-independent. It has been reported that some of the early
 ports of Dalvik suffered from some endian issues. However, these issues
 seem to have subsided since.
Java Native Interface (JNI)

Despite its power and benefits, Java can’t always operate in a
 vacuum, and code written in Java sometimes needs to interface with code
 coming from other languages. This is especially true in an embedded
 environment such as Android, where low-level functionality is never too far away. To
 that end, the Java Native Interface (JNI) mechanism is provided. It’s
 essentially a call bridge to other languages such as C and C++. It’s an
 equivalent to P/Invoke in the .NET/C#
 world.
App developers sometimes use JNI to call the native code they
 compile with the NDK from their regular Java code built using the SDK.
 Internally, though, the AOSP relies massively on JNI to enable
 Java-coded services and components to interface with Android’s low-level
 functionality, which is mostly written in C and C++. Java-written system
 services, for instance, very often use JNI to communicate with matching
 native code that interfaces with a given service’s corresponding
 hardware.
A large part of the heavy lifting to allow Java to communicate
 with other languages through JNI is actually done by Dalvik. If you go
 back to Table 2-3 in the previous
 section, for instance, you’ll notice the libnativehelper.so library, which is provided
 as part of Dalvik for facilitating JNI calls.
Appendix B shows an example use of JNI to
 interface Java and C code. For the moment, keep in mind that JNI is central to platform work in Android and that it can be a relatively
 complex mechanism to use, especially to ensure that you use the
 appropriate call semantics and function parameters.
Note
Unfortunately, JNI seems to be a dark art reserved for the
 initiated. In other words, it’s rather difficult to find good
 documentation on it. There is one authoritative book on the topic,
 The Java Native Interface Programmer’s Guide and
 Specification by Sheng Liang (Addison-Wesley, 1999).

System Services

System services are Android’s man behind the curtain. Even
 if they aren’t explicitly mentioned in Google’s app development
 documentation, anything remotely interesting in Android goes through one
 of about 50 to 70 system services. These services cooperate to
 collectively provide what essentially amounts to an object-oriented OS
 built on top of Linux, which is exactly what Binder—the mechanism on which
 all system services are built—was intended for. The native user-space we
 just covered is actually designed very much as a support environment for
 Android’s system services. It’s therefore crucial to understand what
 system services exist and how they interact with one another and with the
 rest of the system. We’ve already covered some of this as part of
 discussing Android’s hardware support.
Figure 2-4 illustrates in greater detail
 the system services first introduced in Figure 2-1. As you can see, there are in fact a couple of major processes involved. Most prominent is the System Server,
 whose components all run under the same process, system_server, and which is mostly made up of
 Java-coded services with two services written in C/C++. The System Server
 also includes some native code access through JNI to allow some of the
 Java-based services to interface to Android’s lower layers. Another set of
 system services is housed within the Media Service, which runs as mediaserver. These services are all coded in
 C/C++ and are packaged alongside media-related components such as the
 StageFright multimedia framework and audio effects. Finally, the Phone
 application houses the Phone service separately from the rest. Since
 4.0/Ice-Cream Sandwich, note that the Surface Flinger has been forked off
 into a separate standalone process.
Warning
The terminology here isn’t my choosing, and it’s unfortunately
 confusing. The “System Server” process houses several system services within the same process.
 So does the “Media Service.” Both “System Server” and “Media Service”
 are spelled out as singular regardless
 of the number of system services they comprise. When this book refers to
 “system services,” plural, it refers to all system services available in
 the system regardless of the process they run under. So, in short,
 neither “System Server” nor “Media Service” are part of the “system
 services.” Instead, they are processes used to run the latter.

[image: System services]

Figure 2-4. System services

Note that despite there being only a handful of processes to house
 the entirety of the Android’s system services, they all appear to operate independently to
 anyone connecting to their services through Binder. Here’s the output of
 the service utility on an Android
 2.3/Gingerbread emulator:
service list
Found 50 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	diskstats: []
5	appwidget: [com.android.internal.appwidget.IAppWidgetService]
6	backup: [android.app.backup.IBackupManager]
7	uimode: [android.app.IUiModeManager]
8	usb: [android.hardware.usb.IUsbManager]
9	audio: [android.media.IAudioService]
10	wallpaper: [android.app.IWallpaperManager]
11	dropbox: [com.android.internal.os.IDropBoxManagerService]
12	search: [android.app.ISearchManager]
13	location: [android.location.ILocationManager]
14	devicestoragemonitor: []
15	notification: [android.app.INotificationManager]
16	mount: [IMountService]
17	accessibility: [android.view.accessibility.IAccessibilityManager]
18	throttle: [android.net.IThrottleManager]
19	connectivity: [android.net.IConnectivityManager]
20	wifi: [android.net.wifi.IWifiManager]
21	network_management: [android.os.INetworkManagementService]
22	netstat: [android.os.INetStatService]
23	input_method: [com.android.internal.view.IInputMethodManager]
24	clipboard: [android.text.IClipboard]
25	statusbar: [com.android.internal.statusbar.IStatusBarService]
26	device_policy: [android.app.admin.IDevicePolicyManager]
27	window: [android.view.IWindowManager]
28	alarm: [android.app.IAlarmManager]
29	vibrator: [android.os.IVibratorService]
30	hardware: [android.os.IHardwareService]
31	battery: []
32	content: [android.content.IContentService]
33	account: [android.accounts.IAccountManager]
34	permission: [android.os.IPermissionController]
35	cpuinfo: []
36	meminfo: []
37	activity: [android.app.IActivityManager]
38	package: [android.content.pm.IPackageManager]
39	telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
40	usagestats: [com.android.internal.app.IUsageStats]
41	batteryinfo: [com.android.internal.app.IBatteryStats]
42	power: [android.os.IPowerManager]
43	entropy: []
44	sensorservice: [android.gui.SensorServer]
45	SurfaceFlinger: [android.ui.ISurfaceComposer]
46	media.audio_policy: [android.media.IAudioPolicyService]
47	media.camera: [android.hardware.ICameraService]
48	media.player: [android.media.IMediaPlayerService]
49	media.audio_flinger: [android.media.IAudioFlinger]
Here’s the same output on a 4.2/Jelly Bean emulator:
root@android:/ # service list
Found 68 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	dreams: [android.service.dreams.IDreamManager]
5	commontime_management: []
6	samplingprofiler: []
7	diskstats: []
8	appwidget: [com.android.internal.appwidget.IAppWidgetService]
9	backup: [android.app.backup.IBackupManager]
10	uimode: [android.app.IUiModeManager]
11	serial: [android.hardware.ISerialManager]
12	usb: [android.hardware.usb.IUsbManager]
13	audio: [android.media.IAudioService]
14	wallpaper: [android.app.IWallpaperManager]
15	dropbox: [com.android.internal.os.IDropBoxManagerService]
16	search: [android.app.ISearchManager]
17	country_detector: [android.location.ICountryDetector]
18	location: [android.location.ILocationManager]
19	devicestoragemonitor: []
20	notification: [android.app.INotificationManager]
21	updatelock: [android.os.IUpdateLock]
22	throttle: [android.net.IThrottleManager]
23	servicediscovery: [android.net.nsd.INsdManager]
24	connectivity: [android.net.IConnectivityManager]
25	wifi: [android.net.wifi.IWifiManager]
26	wifip2p: [android.net.wifi.p2p.IWifiP2pManager]
27	netpolicy: [android.net.INetworkPolicyManager]
28	netstats: [android.net.INetworkStatsService]
29	textservices: [com.android.internal.textservice.ITextServicesManager]
30	network_management: [android.os.INetworkManagementService]
31	clipboard: [android.content.IClipboard]
32	statusbar: [com.android.internal.statusbar.IStatusBarService]
33	device_policy: [android.app.admin.IDevicePolicyManager]
34	lock_settings: [com.android.internal.widget.ILockSettings]
35	mount: [IMountService]
36	accessibility: [android.view.accessibility.IAccessibilityManager]
37	input_method: [com.android.internal.view.IInputMethodManager]
38	input: [android.hardware.input.IInputManager]
39	window: [android.view.IWindowManager]
40	alarm: [android.app.IAlarmManager]
41	vibrator: [android.os.IVibratorService]
42	battery: []
43	hardware: [android.os.IHardwareService]
44	content: [android.content.IContentService]
45	account: [android.accounts.IAccountManager]
46	user: [android.os.IUserManager]
47	permission: [android.os.IPermissionController]
48	cpuinfo: []
49	dbinfo: []
50	gfxinfo: []
51	meminfo: []
52	activity: [android.app.IActivityManager]
53	package: [android.content.pm.IPackageManager]
54	scheduling_policy: [android.os.ISchedulingPolicyService]
55	telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
56	display: [android.hardware.display.IDisplayManager]
57	usagestats: [com.android.internal.app.IUsageStats]
58	batteryinfo: [com.android.internal.app.IBatteryStats]
59	power: [android.os.IPowerManager]
60	entropy: []
61	sensorservice: [android.gui.SensorServer]
62	media.audio_policy: [android.media.IAudioPolicyService]
63	media.camera: [android.hardware.ICameraService]
64	media.player: [android.media.IMediaPlayerService]
65	media.audio_flinger: [android.media.IAudioFlinger]
66	drm.drmManager: [drm.IDrmManagerService]
67	SurfaceFlinger: [android.ui.ISurfaceComposer]
There is unfortunately not much documentation on how each of these
 services operates. You’ll have to look at each service’s source code to
 get a precise idea of how it works and how it interacts with other
 services.
Reverse-Engineering Source Code
Fully understanding the internals of Android’s system services is
 like trying to swallow a whale. In 2.3/Gingerbread there were about
 85,000 lines of Java code in the System Server alone, spread across 100
 different files. And that didn’t count any system service code written
 in C/C++. To add insult to injury, so to speak, the comments are few and
 far between and the design documents nonexistent. Arm yourself with a
 good dose of patience if you want to dig further here.
One trick is to create a new Java project in Eclipse and import
 the System Server’s code into that project. This won’t compile in any
 way, but it’ll allow you to benefit from Eclipse’s Java browsing
 capabilities in trying to understand the code. For instance, you can
 open a single Java file, right-click the source browsing scrollbar area,
 and select Folding → Collapse All. This
 will essentially collapse all methods into a single line next to a plus
 sign (+) and will allow you to see
 the trees (the method names lined up one after another) instead of the
 leaves (the actual content of each method.) You’ll very much still be in
 a forest, though.
You can also try using one of the commercial source code analysis
 tools on the market from vendors such as Imagix, Rationale, Lattix, or
 Scitools. Although there are some open source analysis tools out there,
 most seem geared toward locating bugs, not reverse-engineering the code
 being analyzed. Still, some have reported that they’ve found Ctags and
 the open source AndroidXRef
 projects helpful in their efforts.

Service Manager and Binder Interaction

As I explained earlier, the Binder mechanism used as system
 services’ underlying fabric enables object-oriented RPC/IPC. For a process in the system to invoke a system service through Binder, though,
 it must first have a handle to it. For instance, Binder will enable an
 app developer to request a wakelock from the Power Manager by invoking
 the acquire() method of its
 WakeLock nested class. Before that
 call can be made, though, the developer must first get a handle to the
 Power Manager service. As we’ll see in the next section, the app
 development API actually hides the details of how it gets this handle in
 an abstraction to the developer, but under the hood all system service
 handle lookups are done through the Service Manager, as illustrated in
 Figure 2-5.
[image: Service Manager and Binder interaction]

Figure 2-5. Service Manager and Binder interaction

Think of the Service Manager as a Yellow Pages book of all
 services available in the system. If a system service isn’t registered
 with the Service Manager, then it’s effectively invisible to the rest of
 the system. To provide this indexing capability, the Service Manager is
 started by init before any other
 service. It then opens /dev/binder
 and uses a special ioctl() call to
 set itself as the Binder’s Context Manager (A1 in
 Figure 2-5.) Thereafter, any process
 in the system that attempts to communicate with Binder ID 0 (a.k.a. the
 “magic” Binder or “magic object” in various parts of the code) is
 actually communicating through Binder to the Service Manager.
When the System Server starts, for instance, it registers every
 single service it instantiates with the Service Manager (A2). Later,
 when an app tries to talk to a system service, such as the Power Manager
 service, it first asks the Service Manager for a handle to the service
 (B1) and then invokes that service’s methods (B2). In contrast, a call
 to a service component running
 within an app goes directly through Binder (C1) and is not looked up
 through the Service Manager.
The Service Manager is also used in a special way by a number of
 command-line utilities such as the dumpsys utility, which allows you to dump the
 status of a single or all system services. To get the list of all
 services, dumpsys loops around to get
 every system service (D1), requesting the
 nth plus one at every
 iteration until there aren’t any more. To get each service, dumpsys just asks the Service Manager to
 locate that specific one (D2). With a service handle in hand, dumpsys invokes that service’s dump() function to dump its status (D3) and
 displays that on the terminal.

Calling on Services

All of what I just explained is, as I said earlier, almost
 invisible to regular app developers. Here’s a snippet, for instance,
 that allows us to grab a wakelock within an app using the regular
 application development API:
PowerManager pm = (PowerManager) getSystemService(POWER_SERVICE);
PowerManager.WakeLock wakeLock =
 pm.newWakeLock(PowerManager.FULL_WAKE_LOCK, "myPreciousWakeLock");
wakeLock.acquire(100);
Notice that we don’t see any hint of the Service Manager here.
 Instead, we’re using getSystemService() and passing it the
 POWER_SERVICE parameter. Internally,
 though, the code that implements getSystemService() does actually use the
 Service Manager to locate the Power Manager service so that we create a
 wakelock and acquire it. Appendix B shows you how to
 add a system service and make it available through getSystemService().

A Service Example: the Activity Manager

Although covering each and every system service is outside the
 scope of this book, let’s have a quick look at the Activity Manager, one
 of the key system services. In 2.3/Gingerbread, the Activity Manager’s
 sources actually span over 30 files and 20,000 lines of code. If there’s
 a core to Android’s internals, this service is very much near it. It
 takes care of the starting of new components, such as Activities and
 Services, along with the fetching of Content Providers and intent
 broadcasting. If you ever got the dreaded ANR (Application Not
 Responding) dialog box, know that the Activity Manager was behind it.
 It’s also involved in the maintenance of OOM adjustments used by the
 in-kernel low-memory handler, permissions, task management,
 etc.
For instance, when the user clicks an icon to start an app from
 his home screen, the first thing that happens is the Launcher’s
 onClick() callback is called (the Launcher being the
 default app packaged with the AOSP that takes care of the main interface
 with the user, the home screen). To deal with the event, the Launcher
 will then call, through Binder, the startActivity() method of the Activity
 Manager service. The service will then call the startViaZygote() method, which will open a
 socket to the Zygote and ask it to start the Activity. All this may make
 more sense after you read the final section of this chapter.
If you’re familiar with Linux’s internals, a good way to think of
 the Activity Manager is that it’s to Android what the content of the
 kernel/ directory in the kernel’s
 sources is to Linux. It’s that important.

Stock AOSP Packages

The AOSP ships with a certain number of default packages that are
 found in most Android devices. As I mentioned in the previous chapter,
 though, some apps such as Maps, YouTube, and Gmail aren’t part of the
 AOSP. Let’s take a look at some of the most notable packages included by
 default; as we’ll see below, the AOSP includes many more packages. Table 2-7 lists the most important stock apps included
 in the 2.3/Gingerbread AOSP; Table 2-8 lists
 that AOSP’s main content providers; and Table 2-9
 lists the corresponding IMEs (input method editors).
Warning
While stock apps are coded very much like standard apps, most
 won’t build outside the AOSP using the standard SDK. Hence, if you’d
 like to create your own version of one of these apps (i.e., fork it),
 you’ll either have to do it inside the AOSP or invest some time in
 getting the app to build outside the AOSP with the standard SDK. For one
 thing, these apps sometimes use APIs that are accessible within the AOSP
 but aren’t exported through the standard SDK.

Table 2-7. Stock AOSP apps
	App in AOSP	Name Displayed in Launcher	Description
	AccountsAndSyncSettings	N/A	Accounts management app
	Bluetooth	N/A	Bluetooth manager
	Browser	Browser	Default Android browser, includes bookmark widget
	Calculator	Calculator	Calculator app
	Calendar	Calendar	Calendar app
	Camera	Camera	Camera app
	CertInstaller	N/A	UI for installing certificates
	Contacts	Contacts	Contacts manager app
	DeskClock	Clock	Clock and alarm app, including the clock widget
	DownloadProviderUi	Downloads	UI for DownloadProvider
	Development	Dev Tools	Miscellaneous dev tools
	Email	Email	Default Android email app
	Gallery	Gallery	Default gallery app for viewing pictures
	Gallery3D	Gallery	Fancy gallery with “sexier” UI
	HTMLViewer	N/A	App for viewing HTML files
	Launcher2	N/A	Default home screen
	Mms	Messaging	SMS/MMS app
	Music	Music	Music player
	Nfc	N/A	NFC configuration UI and NFC system service
	PackageInstaller	N/A	App install/uninstall UI
	Phone	Phone	Default phone dialer/UI and phone system service
	Protips	N/A	Home screen tips
	Provision	N/A	App for setting a flag indicating whether a device was
 provisioned
	QuickSearchBox	Search	Search app and widget
	Settings	Settings	Settings app, also accessible through home screen
 menu
	SoundRecorder	N/A	Sound recording app; activated when recording intent is
 sent, not by user
	SpeechRecorder	Speech Recorder	Speech recording app
	SystemUI	N/A	Status bar

Table 2-8. Stock AOSP providers
	Provider	Description
	ApplicationsProvider	Provider to search installed apps
	CalendarProvider	Main Android calendar storage and provider
	ContactsProvider	Main Android contacts storage and provider
	DownloadProvider[a]	Download management, storage, and access
	DrmProvider	Management and access of DRM-protected storage
	MediaProvider	Media storage and provider
	TelephonyProvider	Carrier and SMS/MMS storage and provider
	UserDictionaryProvider	Storage and provider for user-defined words
 dictionary
	[a] Interestingly, this package’s source code includes a
 design document, a rarity in the AOSP.

Table 2-9. Stock AOSP input methods
	Input Method	Description
	LatinIME	Latin keyboard
	OpenWnn	Japanese keyboard
	PinyinIME	Chinese keyboard

The AOSP contains a lot more packages than those listed in the above
 tables. Indeed, if you search the sources, you’ll find that a 4.2/Jelly
 Bean release can generate about 500 apps. A large number of those are
 either tests or samples and aren’t worth focusing on in the current
 discussion. Roughly a quarter of these apps are worth putting into a final
 product, and they are mostly found in the following directories of the
 AOSP:
	packages/apps/

	packages/inputmethods/

	packages/providers/

	packages/screensavers/ (new
 to 4.2/Jelly Bean)

	packages/wallpapers/

	frameworks/base/packages/

	development/apps/

You’ll probably want to look at the content of those directories in
 conjunction with the above tables to determine which packages are worth
 further investigation in the context of your project. Like many other
 things in the AOSP, of course, the packages it contains change over time,
 as do their locations. Here’s a summary of some of the location changes
 that have occurred between 2.3.4/Gingerbread and 4.2/Jelly Bean:
	AccountAndSyncSettings and Gallery3D have been removed from
 packages/apps/, and the following
 packages have been added: CellBroadcastReceiver, SmartCardService,
 BasicSmsReceiver, Exchange, Gallery2, KeyChain, MusicFX, SpareParts,
 VideoEditor, and LegacyCamera.

	TtsService and VpnServices have been removed from frameworks/base/packages/, and the
 following packages have been added: BackupRestoreConfirmation, SharedStorageBackup, VpnDialogs,
 WAPPushManager, FakeOemFeatures, FusedLocation, and
 InputDevices.

System Startup

The best way to bring together everything we’ve discussed is
 to look at Android’s startup. As you can see in Figure 2-6, the first cog to turn is the CPU. It
 typically has a hardcoded address from which it fetches its first
 instructions. That address usually points to a chip that has the
 bootloader programmed on it. The bootloader then initializes the RAM, puts
 basic hardware in a quiescent state, loads the kernel and RAM disk, and
 jumps into the kernel. More recent SoC devices, which include a CPU and a
 slew of peripherals in a single chip, can actually boot straight from a
 properly formatted SD card or SD-card-like chip. The PandaBoard and recent
 editions of the BeagleBoard, for instance, don’t have any onboard flash
 chips because they boot straight from an SD card.
[image: Android’s boot sequence]

Figure 2-6. Android’s boot sequence

The initial kernel startup is very hardware dependent, but its
 purpose is to set things up so that the CPU can start executing C code as
 early as possible. Once that’s done, the kernel jumps to the
 architecture-independent start_kernel() function, initializes its
 various subsystems, and proceeds to call the “init” functions of all
 built-in drivers. The majority of messages printed out by the kernel at
 startup come from these steps. The kernel then mounts its root filesystem
 and starts the init process.
That’s when Android’s init kicks in and executes the instructions
 stored in its /init.rc file to set up
 environment variables such as the system path, create mount points, mount filesystems, set OOM
 adjustments, and start native daemons. We’ve already covered the various
 native daemons active in Android, but it’s worth focusing a little on the
 Zygote. The Zygote is a special daemon whose job is to launch apps. Its
 functionality is centralized here in
 order to unify the components shared by all apps and to shorten their
 start-up time. The init doesn’t actually start the Zygote directly;
 instead it uses the app_process command
 to get Zygote started by the Android Runtime. The runtime then starts the
 first Dalvik VM of the system and tells it to invoke the Zygote’s
 main().
Zygote is active only when a new app needs to be launched. To
 achieve a speedier app launch, the Zygote starts by preloading all Java
 classes and resources that an app may potentially need at runtime. This
 effectively loads those into the system’s RAM. The Zygote then listens for
 connections on its socket (/dev/socket/zygote) for requests to start new
 apps. When it gets a request to start an app, it forks itself and launches
 the new app. The beauty of having all apps fork from the Zygote is that
 it’s a “virgin” VM that has all the system classes and resources an app
 may need preloaded and ready to be used. In other words, new apps don’t
 have to wait until those are loaded to start executing.
All of this works because the Linux kernel implements a
 copy-on-write (COW) policy for forks. As you may know, forking in Unix
 involves creating a new process that is an exact copy of the parent
 process. With COW, Linux doesn’t actually copy anything. Instead, it maps
 the pages of the new process over to those of the parent process and makes
 copies only when the new process writes to a page. But in fact the classes
 and resources loaded are never written to, because they’re the default
 ones and are pretty much immutable within the lifetime of the system. So
 all processes directly forking from the Zygote are essentially using its
 own mapped copies. Therefore, regardless of the number of apps running on
 the system, only one copy of the system classes and the resources is ever
 loaded in RAM.
Although the Zygote is designed to listen to connections for
 requests to fork new apps, there is one “app” that the Zygote actually
 starts explicitly: the System Server. This is the first app started by the
 Zygote, and it continues to live on as an entirely separate process from
 its parent. The System Server then starts initializing each system service
 it houses and registering it with the previously started Service Manager.
 One of the services it starts, the Activity Manager, will end its
 initialization by sending an intent of type Intent.CATEGORY_HOME. This starts the Launcher
 app, which then displays the home screen familiar to all Android
 users.
When the user clicks an icon on the home screen, the process I
 described in A Service Example: the Activity Manager takes place. The
 Launcher asks the Activity Manager to start the process, which in turn
 “forwards” that request on to the Zygote, which itself forks and starts
 the new app, which is then displayed to the user.
Once the system has finished starting up, the process list will look
 something like this:
ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
root 2 0 0 0 c004e72c 00000000 S kthreadd
root 3 2 0 0 c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 c004b2c4 00000000 S events/0
root 5 2 0 0 c004b2c4 00000000 S khelper
root 6 2 0 0 c004b2c4 00000000 S suspend
root 7 2 0 0 c004b2c4 00000000 S kblockd/0
root 8 2 0 0 c004b2c4 00000000 S cqueue
root 9 2 0 0 c018179c 00000000 S kseriod
root 10 2 0 0 c004b2c4 00000000 S kmmcd
root 11 2 0 0 c006fc74 00000000 S pdflush
root 12 2 0 0 c006fc74 00000000 S pdflush
root 13 2 0 0 c0079750 00000000 D kswapd0
root 14 2 0 0 c004b2c4 00000000 S aio/0
root 22 2 0 0 c017ef48 00000000 S mtdblockd
root 23 2 0 0 c004b2c4 00000000 S kstriped
root 24 2 0 0 c004b2c4 00000000 S hid_compat
root 25 2 0 0 c004b2c4 00000000 S rpciod/0
root 26 1 232 136 c009b74c 0000875c S /sbin/ueventd
system 27 1 804 216 c01a94a4 afd0b6fc S /system/bin/servicemanager
root 28 1 3864 308 ffffffff afd0bdac S /system/bin/vold
root 29 1 3836 304 ffffffff afd0bdac S /system/bin/netd
root 30 1 664 192 c01b52b4 afd0c0cc S /system/bin/debuggerd
radio 31 1 5396 440 ffffffff afd0bdac S /system/bin/rild
root 32 1 60832 16348 c009b74c afd0b844 S zygote
media 33 1 17976 1104 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 280 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 232 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 212 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 272 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 204 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3368 172 ffffffff 00008294 S /sbin/adbd
system 65 32 123128 25232 ffffffff afd0b6fc S system_server
app_15 115 32 77232 17576 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 120 32 86060 17952 ffffffff afd0c51c S com.android.phone
system 122 32 73160 17656 ffffffff afd0c51c S com.android.systemui
app_27 125 32 80664 22900 ffffffff afd0c51c S com.android.launcher
app_5 173 32 74404 18024 ffffffff afd0c51c S android.process.acore
app_2 212 32 73112 17032 ffffffff afd0c51c S android.process.media
app_19 284 32 70336 16672 ffffffff afd0c51c S com.android.bluetooth
app_22 292 32 72752 17844 ffffffff afd0c51c S com.android.email
app_23 320 32 70276 15792 ffffffff afd0c51c S com.android.music
app_28 328 32 70744 16444 ffffffff afd0c51c S com.android.quicksearchbox
app_14 345 32 69708 15404 ffffffff afd0c51c S com.android.protips
app_21 354 32 70912 17152 ffffffff afd0c51c S com.cooliris.media
root 366 41 2128 292 c003da38 00110c84 S /bin/sh
root 367 366 888 324 00000000 afd0b45c R /system/bin/ps
This output actually comes from a 2.3/Gingerbread Android emulator,
 so it contains some emulator-specific artifacts such as the qemud daemon. Notice that the apps running all
 bear their fully qualified package names despite being forked from the
 Zygote. This is a neat trick that can be pulled in Linux by using the
 prctl() system call with PR_SET_NAME to tell the kernel to change the
 calling process’s name. Have a look at prctl()’s man page if you’re interested in it.
 Note also that the first process started by init is actually ueventd. All processes prior to that are
 actually started from within the kernel by subsystems or drivers.
Most importantly, notice that the Zygote’s process identifier (PID)
 is 32 and the the parent PID (PPID) of all apps is 32. This illustrates
 the earlier explanations that the Zygote is the parent of all apps in the
 system.

[11] Some speculate that this change was triggered because some app
 developers were doing too many fancy tricks with notification that
 were having negative impacts on the System Server, and that the
 Android team hence decided to make the Status Bar a separate process
 from the System Server.

[12] Git is a distributed source code management tool created by
 Linus Torvalds to manage the kernel sources. You can find more
 information about it at http://git-scm.com/.

[13] Greg is one of the top kernel developers and
 maintainers.

[14] The FHS is a
 community standard that describes the contents and use of the
 various directories within a Linux root filesystem.

Chapter 3. AOSP Jump-Start

Now that you have a solid understanding of the basics, let’s start
 getting our hands dirty with the Android Open Source Project (AOSP). We’ll start
 by covering how to get the AOSP distribution from http://android.googlesource.com/. Before actually building
 and running the AOSP, we’ll spend some time exploring the AOSP’s contents
 and explain how the sources reflect what we just saw in the previous
 chapter. Finally, we’ll close the chapter by covering the use of adb and the emulator, two very important tools
 when doing any sort of platform work.
Above all, this chapter is meant to be fun. The AOSP is an exciting
 piece of software with a tremendous amount of innovation. OK, I’ll admit
 it’s not all rosy, and some parts do have rough edges. Still, other parts
 are pure genius. The most amazing thing of all, obviously, is that we can
 all download it, modify it, and ship our own custom products based on it. So
 roll up your sleeves and let’s get started.
Development Host Setup

As we discussed in Development Setup and Tools, you’ll
 need an Ubuntu-based desktop in order to work on the AOSP. Even though
 other systems can be made to work, that’s the one Google documents as
 being supported. I suggest you flip back and reread that section to review
 the basic host setup required for AOSP work. Also, I suggest you have a
 look at the Initializing a
 Build Environment section of Google’s http://source.android.com website for
 the latest information on how to set up your host for building Android’s
 sources. That page also covers configuring udev to ensure permissions are properly set to
 let you access an Android device connected to your host.

Getting the AOSP

As I mentioned earlier, the official AOSP is available at
 http://android.googlesource.com, which sports the Gitweb
 interface (git’s Web interface) shown in Figure 3-1. When you visit the site, you will see a fairly large number of git
 repositories you can pull. Needless to say, pulling each and every one of
 these manually would be rather tedious; there are over 100. And, in fact,
 pulling them all would be quite useless because only a subset of these
 projects is needed. The right way to pull the AOSP is to use the repo tool, which is available at the very same
 location. First, though, you’ll need to get repo itself:
$ sudo apt-get install curl
$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
[image: The Android Git repositories web frontend]

Figure 3-1. The Android Git repositories web frontend

Warning
Under Ubuntu, ~/bin is
 automatically added to your path when you log in, if it
 already exists. So, if you don’t have a bin/ directory in your home directory, create
 it, and then log out and log back in to make it part of your path.
 Otherwise, the shell won’t be able to find repo, even if you fetch it as I just
 showed.
If this doesn’t work, either in Ubuntu or any other distribution
 you may be using, add a PATH=$PATH:~/bin to your ~/.profile manually, and then log out and log
 back in.

Note
You don’t have to put repo in
 ~/bin, but it has to be in your
 path. So regardless of where you put it, just make sure it’s available
 to you in all locations in the filesystem from the command line.

Despite its structure as a single shell script, repo is actually quite an intricate tool. It can simultaneously pull from multiple git repositories to create an Android
 distribution. The repositories it pulls from are given to it through a
 manifest file, which is an XML file describing the
 projects that need to be pulled from and their location. repo is in fact layered on top of git, and each project it pulls from is an
 independent git repository. You can
 find out more about what pushed Google to create repo from the blog post Gerrit
 and Repo, the Android Source Management Tools, published in
 November 2008, soon after Android’s first open source release.
Warning
Confusing as it may be, note that repo’s “manifest” file has absolutely
 nothing to do with “manifest” files
 (AndroidManifest.xml) used by app
 developers to describe their apps to the system. Their formats and uses
 are completely different. Fortunately, they rarely have to be used
 within the same context, so while you should keep this fact in mind, we
 won’t need to worry too much about it in the coming
 explanations.

Before you can use repo, you’ll
 need to make sure that git is installed
 on your system, as it may not have been there by default:
$ sudo apt-get install git
Now that we’ve got repo and
 git, let’s get ourselves a copy of the
 AOSP:
$ mkdir -p ~/android/aosp-2.3.x
$ cd ~/android/aosp-2.3.x
$ repo init -u https://android.googlesource.com/platform/manifest.git -b gingerbread
$ repo sync

The last command should run for quite some time as it goes and
 fetches the sources of all the projects described in the manifest file.
 After all, the AOSP is several gigabytes in size uncompiled, as mentioned
 in Development Setup and Tools. Keep in mind that network
 bandwidth and latencies will play a big role in how long this takes. Note
 also that we are fetching a specific branch of the tree, Gingerbread.
 That’s the -b gingerbread part of the
 third command. If you omit that part, you will be getting the
 master branch. It’s been the experience of many
 people that the master branch doesn’t always build or run properly,
 because it contains the tip of the open development branch. Tagged
 branches, on the other hand, mostly work out of the box. If you’re
 planning to make contributions back to the AOSP, however, note that Google
 accepts contributions to the master branch only.
You can get more information about repo’s capabilities by using its online
 help:
$ repo help
usage: repo COMMAND [ARGS]

The most commonly used repo commands are:

 abandon Permanently abandon a development branch
 branch View current topic branches
 branches View current topic branches
 checkout Checkout a branch for development
 cherry-pick Cherry-pick a change.
 diff Show changes between commit and working tree
 download Download and checkout a change
 grep Print lines matching a pattern
 init Initialize repo in the current directory
 list List projects and their associated directories
 overview Display overview of unmerged project branches
 prune Prune (delete) already merged topics
 rebase Rebase local branches on upstream branch
 smartsync Update working tree to the latest known good revision
 stage Stage file(s) for commit
 start Start a new branch for development
 status Show the working tree status
 sync Update working tree to the latest revision
 upload Upload changes for code review

See 'repo help <command>' for more information on a specific command.
See 'repo help --all' for a complete list of recognized commands.
As the above output indicates, you can also ask for more information
 about any of repo’s subcommands:
$ repo help init
Summary

Initialize repo in the current directory

Usage: repo init [options]

Options:
 -h, --help show this help message and exit

 Logging options:
 -q, --quiet be quiet

 Manifest options:
 -u URL, --manifest-url=URL
 manifest repository location
 -b REVISION, --manifest-branch=REVISION
 manifest branch or revision
 -m NAME.xml, --manifest-name=NAME.xml
 initial manifest file
 --mirror create a replica of the remote repositories rather
 than a client working directory
 --reference=DIR location of mirror directory
 --depth=DEPTH create a shallow clone with given depth; see git clone
 -g GROUP, --groups=GROUP
 restrict manifest projects to ones with a specified
 group
 -p PLATFORM, --platform=PLATFORM
 restrict manifest projects to ones with a specified
 platform group [auto|all|none|linux|darwin|...]

 repo Version options:
 --repo-url=URL repo repository location
 --repo-branch=REVISION
 repo branch or revision
 --no-repo-verify do not verify repo source code

 Other options:
 --config-name Always prompt for name/e-mail

Description

The 'repo init' command is run once to install and initialize repo. The
latest repo source code and manifest collection is downloaded from the
server and is installed in the .repo/ directory in the current working
directory.

The optional -b argument can be used to select the manifest branch to
checkout and use. If no branch is specified, master is assumed.

The optional -m argument can be used to specify an alternate manifest to
be used. If no manifest is specified, the manifest default.xml will be
used.

The --reference option can be used to point to a directory that has the
content of a --mirror sync. This will make the working directory use as
much data as possible from the local reference directory when fetching
from the server. This will make the sync go a lot faster by reducing
data traffic on the network.

Switching Manifest Branches

To switch to another manifest branch, `repo init -b otherbranch` may be
used in an existing client. However, as this only updates the manifest,
a subsequent `repo sync` (or `repo sync -d`) is necessary to update the
working directory files.
When you look at repo sync’s
 online help, for instance, one of the flags you will likely want to
 investigate further is -j, since it
 permits syncing several git trees in parallel. This is especially useful
 if you’ve got a generous corporate net connection and would like to speed
 up your downloading of the AOSP—by default, repo does
 four parallel downloads:
$ repo sync -j8
Getting other branches and tags is also relatively simple. Here’s
 getting 4.2/Jelly Bean:
$ mkdir -p ~/android/aosp-4.2
$ cd ~/android/aosp-4.2
$ repo init -u https://android.googlesource.com/platform/manifest -b android-4.2_r1
$ repo sync
In contrast to the earlier command, I’m using a specific version
 number instead of a version name. Codenames, Tags,
 and Build Numbers provides a full list of the official tags and
 version numbers. You can find the available tags and branches for yourself
 by doing something like this:[15]
$ mkdir ~/android/aosp-branches-tags
$ cd ~/android/aosp-branches-tags
$ git clone https://android.googlesource.com/platform/manifest.git
$ cd manifest
$ git tag
android-1.6_r1.1_
android-1.6_r1.2_
android-1.6_r1.3_
android-1.6_r1.4_
android-1.6_r1.5_
android-1.6_r1_
android-1.6_r2_
android-2.0.1_r1_
android-2.0_r1_
android-2.1_r1_
android-2.1_r2.1p2_
android-2.1_r2.1p_
...
android-4.1.1_r6
android-4.1.1_r6.1
android-4.1.2_r1
android-4.2.1_r1__
android-4.2_r1___
android-cts-2.2_r8
android-cts-2.3_r10
android-cts-2.3_r11
...
$ git branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/android-1.6_r1
 remotes/origin/android-1.6_r1.1
 remotes/origin/android-1.6_r1.2
 remotes/origin/android-1.6_r1.3
 remotes/origin/android-1.6_r1.4
 remotes/origin/android-1.6_r1.5
 remotes/origin/android-1.6_r2
 remotes/origin/android-2.0.1_r1
 remotes/origin/android-2.0_r1
 remotes/origin/android-2.1_r1
 remotes/origin/android-2.1_r2
 remotes/origin/android-2.1_r2.1p
 remotes/origin/android-2.1_r2.1p2
...
 remotes/origin/android-4.1.1_r6.1
 remotes/origin/android-4.1.2_r1
 remotes/origin/android-4.2.1_r1
 remotes/origin/android-4.2_r1
 remotes/origin/android-cts-2.2_r8
 remotes/origin/android-cts-2.3_r10
 remotes/origin/android-cts-2.3_r11
...
 remotes/origin/android-sdk-support_r11
 remotes/origin/froyo
 remotes/origin/gingerbread
 remotes/origin/gingerbread-release
 remotes/origin/ics-mr0
 remotes/origin/ics-mr1
 remotes/origin/ics-plus-aosp
 remotes/origin/jb-dev
 remotes/origin/jb-mr1-dev
 remotes/origin/jumper-stable
 remotes/origin/master
 remotes/origin/master-dalvik
 remotes/origin/tools_r20
 remotes/origin/tools_r21
 remotes/origin/tools_r21.1
 remotes/origin/tradefed
All of the above is, of course, limited to the official AOSP. Have a
 look at Appendix E for a list of other AOSP trees that
 may be relevant to your work, such as those maintained by Linaro and
 CynogenMod. Interestingly, most of these alternative trees also rely on
 repo, which is all the more reason to
 learn how to master this tool.

Inside the AOSP

Now that we’ve got a copy of the AOSP, let’s start looking at what’s
 inside and, most importantly, connect that to what we just saw in the
 previous chapter. Feel free to skip over this section and come back to it
 after the next section if you’re too eager to get your own custom Android
 running. For those of you still reading, have a look at Table 3-1 for a summary of the AOSP’s top-level directory
 for 2.3.7/Gingerbread and 4.2/Jelly Bean. Where “N/A” is listed in one of
 the Size columns for a directory, that directory doesn’t exist in that
 version. Also, the sizes given don’t include the .git directories that might have been included
 underneath any of the given entries.
Table 3-1. AOSP content summary
	Directory	Content	Size (in MB) in 2.3.7	Size (in MB) in 4.2
	abi	Minimal C++ Run-Time Type Information support	N/A	0.1
	bionic	Android’s custom C library	14	18
	bootable	OTA, recovery mechanism and reference bootloader	4	4
	build	Build system	4	5
	cts	Comptability Test Suite	77	136
	dalvik	Dalvik VM	35	40
	development	Development tools	64	87
	device	Device-specific files and components	17	43
	docs	Content of http://source.android.com	N/A	6
	external	External projects imported into the AOSP	849	1,595
	frameworks	Core components such as system services	360	1,150
	gdk	Unknown[a]	N/A	5
	hardware	HAL and hardware support libraries	27	52
	libcore	Apache Harmony	54	40
	libnativehelper[b]	Helper functions for use with JNI	N/A	0.1
	ndk	Native Development Kit	13	31
	packages	Stock Android apps, providers, and IMEs	115	278
	pdk	Platform Development Kit	N/A	0.3
	prebuilt	Prebuilt binaries, including toolchains	1,389	N/A
	prebuilts	Replacement for prebuilt	N/A	2,387
	sdk	Software Development Kit	14	54
	system	“Embedded Linux” platform that houses Android	32	9
	tools	Various IDE tools	N/A	34
	[a] Despite several attempts, the author has been unable to
 identify what purpose this directory serves, apart from it
 having something to do with the NDK and LLVM. Even the git
 logs don’t hint at what the acronym stands for. It’s possibly
 experimental code for future use.

[b] This was a subdirectory of dalvik/ in 2.3.7.

As you can see, prebuilt
 (prebuilts in 4.2/Jelly Bean) and
 external are the two largest
 directories in the tree, accounting for close to 75% of its size in
 2.3.7/Gingerbread and above 65% of its size in 4.2/Jelly Bean.
 Interestingly, both of these directories are mostly made up of content
 from other open source projects and include things like various GNU
 toolchain versions, kernel images, common libraries, and frameworks such
 as OpenSSL and WebKit, etc. libcore
 is also from another open source project, Apache Harmony. In essence, this
 is further evidence of how much Android relies on the rest of the open source ecosystem to exist. Still,
 Android contains a fair bit of “original” (or nearly) code: about 800 MB
 of it in 2.3.7/Gingerbread and about 2 GB in 4.2/Jelly Bean.
To best understand Android’s sources, it’s useful to refer back to
 Figure 2-1, which illustrated Android’s
 architecture. Figure 3-2 is a variant of that
 figure, which illustrates the location of each Android component in the
 AOSP sources. Obviously, a lot of key components come from frameworks/base/, which is where the bulk of
 Android’s “brains” are located. It’s in fact worth taking a closer look at
 that directory and at system/core/,
 in Tables 3-2 and 3-3 respectively, as they contain a large
 chunk of the moving parts you’ll likely be interested in interfacing with
 or modifying as an embedded developer.
[image: Android’s architecture]

Figure 3-2. Android’s architecture

Table 3-2. Content summary for frameworks/base/ in 2.3/Gingerbread
	Directory	Content
	cmds	Framework-related commands and daemons
	core	The android.* packages
	data	Fonts and sounds
	graphics	2D graphics and Renderscript
	include	C-language include files
	keystore	Security key store
	libs	C libraries
	location	Location provider
	media	Media Service, StageFright, codecs, etc.
	native	Native code for some framework components
	obex	Bluetooth Obex
	opengl	OpenGL library and Java code
	packages	A few core packages such as the Status Bar
	services	System services
	telephony	Telephony API, which talks to the rild radio layer interface
	tools	A few core tools such as aapt and aidl
	voip	RTP and SIP APIs
	vpn	VPN Manager
	wifi	Wifi Manager and API

In addition to base/, frameworks/ contained few other directories at
 the time of 2.3/Gingerbread. In between that version and 4.2/Jelly Bean,
 frameworks/base/ has gone through a
 number of cleanups, and several parts of it have been moved up a directory
 level and into frameworks/ (Table 3-4). frameworks/base/media/ for instance, is now
 frameworks/av/media/ instead. Also,
 frameworks/native/ now contains
 several native libraries and system services that were previously in
 frameworks/base/.
Table 3-3. Content summary for system/core/ in 2.3/Gingerbread
	Directory	Content
	adb[a]	The ADB daemon and client
	cpio	mkbootfs tool used to
 generate RAM disk images[b]
	debuggerd	debuggerd command
 mentioned in Chapter 2 and covered in Chapter 6
	fastboot	fastboot utility used to
 communicate with Android bootloaders using the “fastboot”
 protocol
	include	C-language headers for all things “system”
	init	Android’s init
	libacc	“Almost” C Compiler library for compiling C-like code; used
 by RenderScript in 2.3/Gingerbread[c]
	libcutils	Various C utility functions not part of the standard C
 library; used throughout the tree
	libdiskconfig	For reading and configuring disks; used by vold
	liblinenoise	BSD-licensed readline() replacement from
 http://github.com/antirez/linenoise; used by
 Android’s shell
	liblog	Logging library that interfaces with the Android kernel
 logger as seen in Figure 2-2; used
 throughout the tree
	libmincrypt	Basic RSA and SHA functions; used by the recovery mechanism
 and mkbootimg utility
	libnetutils	Network configuration library; used by netd
	libpixelflinger	Low-level graphic rendering functions
	libsysutils	Utility functions for talking with various components of
 the system, including the framework; used by netd and vold
	libzipfile	Wrapper around zlib for dealing with ZIP files
	logcat	The logcat
 utility
	logwrapper	Utility that forks and runs the command passed to it while
 redirecting stdout and stderr to Android’s logger
	mkbootimg	Utility for creating a boot image using a RAM disk and a
 kernel
	netcfg	Network configuration utility
	rootdir	Default Android root directory structure and
 content
	run-as	Utility for running a program as a given user ID
	sdcard	Emulates FAT using FUSE
	sh	Android shell
	toolbox	Android’s Toolbox (BusyBox replacement)
	[a] Some entries have been omitted because they aren’t
 currently used by any part of the AOSP. They are likely legacy
 components.

[b] This is used to create both the default RAM disk image
 used to boot Android and the recovery image.

[c] This description might not make any sense to you unless
 you know what RenderScript is. Have a look at Google’s
 documentation for RenderScript; the relevance of libacc in that context should be
 clearer.

Table 3-4. Major additions made to system/core/ between 2.3/Gingerbread and
 4.2/Jelly Bean.
	Directory	Content
	charger	Full-screen battery state display
	fs_mgr	Filesystem manager
	gpttool	Tool for dealing with GPT (UEFI) partition table
	libcorkscrew	Debugging/backtrace library
	libion	Library for interfacing with the ION driver
	libnl_2	Library for handling NetLink sockets
	libsuspend	Library for interfacing with the kernel’s power management
 functionality, including autosleep
	libsync	Library for interface with /dev/sw_sync
	libusbhost	Library for USB host mode handling

Apart from core/, system/ also includes a few more directories,
 such as netd/ and vold/, which contain the netd and vold daemons, respectively.
In addition to the top-level directories, the root directory also
 includes a single Makefile. That file is, however,
 mostly empty, its main use being to include the entry point to Android’s
 build system:
DO NOT EDIT THIS FILE
include build/core/main.mk
DO NOT EDIT THIS FILE
As you’ve likely figured out already, there’s far more to
 the AOSP than what I just presented to you. There are, after all, more
 than 14,000 directories and 100,000 files in 2.3.x/Gingerbread, and more
 than 40,000 directories and 265,000 files in 4.2/Jelly Bean. By most
 standards, it’s a fairly large project. In comparison, early 3.0.x
 releases of the Linux kernel have about 2,000 directories and 35,000
 files. We will certainly get the chance to explore more parts of the
 AOSP’s functionality and sources as we move forward. I highly recommend,
 though, that you start exploring and experimenting with the sources in
 earnest, as it will likely take several months before you can comfortably
 navigate your way through.

Build Basics

So now we have an AOSP and a general idea of what’s inside, so let’s
 get it up and running. There’s one last thing we need to do before we can
 build it, though. We need to make sure we’ve got all the packages
 necessary on our Ubuntu install. Here are the instructions for 64-bit
 Ubuntu 11.04, assuming we’re building 2.3/Gingerbread. Even if you are
 using an older or newer version of some Debian-based Linux distribution, the instructions will be fairly similar. (See also
 Building on Virtual Machines or Non-Linux Systems for other systems on which you can
 build the AOSP.) As I mentioned earlier, refer to Google’s Initializing a
 Build Environment for the latest version of packages required to
 build recent AOSPs on more recent Ubuntu versions.
Build System Setup

First, let’s get some of the basic packages installed on our
 development system. You might have some of these already installed as
 part of other development work you’ve been doing, and that’s fine.
 Ubuntu’s package management system will ignore your request to install
 those packages.
Note
Note that the following commands are broken down on several
 lines to fit this book’s width. The use of the \
 character at the end of a line on the shell forces it to start over on
 another line (the one starting with the >
 character) to give you the chance to continue entering your command.
 As such, you’re expected to type the \ characters
 at the end of the lines in the following commands, but the
 > at the beginning of the subsequent lines isn’t
 something you type; it’s inserted by the shell. Other commands in this
 book use the same trick for presentation purposes.

$ sudo apt-get install bison flex gperf git-core gnupg zip tofrodos \
> build-essential g++-multilib libc6-dev libc6-dev-i386 ia32-libs mingw32 \
> zlib1g-dev lib32z1-dev x11proto-core-dev libx11-dev \
> lib32readline5-dev libgl1-mesa-dev lib32ncurses5-dev

You might also need to fix a few symbolic links:
$ sudo ln -s /usr/lib32/libstdc++.so.6 /usr/lib32/libstdc++.so
$ sudo ln -s /usr/lib32/libz.so.1 /usr/lib32/libz.so
Finally, you need to install Sun’s JDK; it’s “officially”
 discouraged to use the OpenJDK with the AOSP (see this
 posting by Google’s Jean-Baptiste Queru), though some people are
 able to use it successfully (see sidebar below) and gcj won’t do. In Ubuntu, you used to be able
 to get the JDK by using the following sequence of commands:
$ sudo add-apt-repository "deb http://archive.canonical.com/ natty partner"
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk
Unfortunately there seems to have been some disagreement between
 Canonical (the company behind Ubuntu) and Oracle, and these instructions
 no longer work at the time of this writing. Instead, you should refer to
 Ubuntu’s instructions
 for getting the JDK version 6 working on your host. Note that version 7
 doesn’t work at the time of this writing for the AOSP. Essentially, the
 Ubuntu instructions explain that you need to get the JDK binary from

 Oracle’s site and install it. Here’s a slightly modified version
 of the currently published instructions, which you’re likely going to
 have to adapt to the latest version of the JDK:
$ chmod u+x jdk-6u38-linux-x64.bin
$./jdk-6u38-linux-x64.bin
$ sudo mkdir -p /usr/lib/jvm
$ sudo mv jdk1.6.0_38 /usr/lib/jvm/
$ sudo update-alternatives --install "/usr/bin/java" "java" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/java" 1
$ sudo update-alternatives --install "/usr/bin/javac" "javac" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javac" 1
$ sudo update-alternatives --install "/usr/bin/javah" "javah" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javah" 1
$ sudo update-alternatives --install "/usr/bin/javadoc" "javadoc" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/javadoc" 1
$ sudo update-alternatives --install "/usr/bin/jar" "jar" \
> "/usr/lib/jvm/jdk1.6.0_38/bin/jar" 1
You’ll then have to run the following commands and select the
 version you just installed:
$ sudo update-alternatives --config java
There are 2 choices for the alternative java (providing /usr/bin/java).

 Selection Path Priority Status

* 0 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 auto mode
 1 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 manual mode
 2 /usr/lib/jvm/jdk1.6.0_38/bin/java 1 manual mode

Press enter to keep the current choice[*], or type selection number: 2
$ sudo update-alternatives --display java
java - manual mode
 link currently points to /usr/lib/jvm/jdk1.6.0_38/bin/java
...
$ sudo update-alternatives --config javac
...
$ sudo update-alternatives --config javah
...
$ sudo update-alternatives --config javadoc
...
$ sudo update-alternatives --config jar
...
As you can see, Oracle’s JDK and the OpenJDK can coexist on the
 same Ubuntu installation. You just need to make sure the defaults point
 to the right JDK as needed. The above instructions have you installing
 Oracle’s JDK systemwide and changing the defaults of some commands to
 use the binaries in that package instead of whatever was installed by
 default in Ubuntu. Nothing precludes you from installing Oracle’s JDK
 somewhere into your home directory and changing the PATH variable to point to the bin/ directory extracted by the running of
 Oracle’s installation binary.
Using the OpenJDK instead of Oracle’s JDK
Following the rules can sometimes be boring. Despite the
 official recommendations to stick to Oracle’s JDK, many have actually
 successfully used the OpenJDK to build the AOSP. Here’s a patch from
 Linaro’s Bernhard Rosenkränzer that allows you to build the AOSP with
 the OpenJDK:
diff --git a/core/main.mk b/core/main.mk
index 87488f4..32e3aec 100644
--- a/core/main.mk
+++ b/core/main.mk
@@ -125,7 +125,14 @@ endif
 # Check for the correct version of java
 java_version := $(shell java -version 2>&1 | head -n 1 | grep '^java .*[
 "]1\.6[\. "$$]')
 ifneq ($(shell java -version 2>&1 | grep -i openjdk),)
-java_version :=
+$(warning **)
+$(warning AOSP errors out when using OpenJDK, saying you need to use)
+$(warning Java SE 1.6 instead.)
+$(warning A build with OpenJDK seems to work fine though - if you)
+$(warning run into any Java errors, you may want to try using the)
+$(warning version required by AOSP though.)
+$(warning **)
+#java_version :=
 endif
 ifeq ($(strip $(java_version)),)
 $(info **)
A few Linaro engineers report they have no problems either
 compiling the AOSP this way or running the resulting images. Others
 seem to report javadoc issues, as Google’s
 Jean-Baptiste Queru hints. We can hope that future efforts
 will provide further evidence as to the viability of using the
 OpenJDK.

Your system is now ready to build Android. Obviously you don’t
 need to do this package installation process every time you build
 Android. You’ll need to do it only once for every Android development
 system you set up.

Building Android

We are now ready to build Android. Let’s go to the directory where
 we downloaded Android and configure the build system:
$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
including device/acme/coyotepad/vendorsetup.sh
including device/htc/passion/vendorsetup.sh
including device/samsung/crespo4g/vendorsetup.sh
including device/samsung/crespo/vendorsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==
For 4.2/Jelly Bean, the same operations on Ubuntu 12.04 would
 yield this instead:
$ cd ~/android/aosp-4.2
$. build/envsetup.sh
including device/asus/grouper/vendorsetup.sh
including device/asus/tilapia/vendorsetup.sh
including device/generic/armv7-a-neon/vendorsetup.sh
including device/generic/armv7-a/vendorsetup.sh
including device/generic/mips/vendorsetup.sh
including device/generic/x86/vendorsetup.sh
including device/lge/mako/vendorsetup.sh
including device/samsung/maguro/vendorsetup.sh
including device/samsung/manta/vendorsetup.sh
including device/samsung/toroplus/vendorsetup.sh
including device/samsung/toro/vendorsetup.sh
including device/ti/panda/vendorsetup.sh
including sdk/bash_completion/adb.bash
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. full-eng
 2. full_x86-eng
 3. vbox_x86-eng
 4. full_mips-eng
 5. full_grouper-userdebug
 6. full_tilapia-userdebug
 7. mini_armv7a_neon-userdebug
 8. mini_armv7a-userdebug
 9. mini_mips-userdebug
 10. mini_x86-userdebug
 11. full_mako-userdebug
 12. full_maguro-userdebug
 13. full_manta-userdebug
 14. full_toroplus-userdebug
 15. full_toro-userdebug
 16. full_panda-userdebug

Which would you like? [full-eng] ENTER
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.2
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-35-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JOP40C
OUT_DIR=out
==
In both cases, note that we typed a period, a space, and then
 build/envsetup.sh. This forces the
 shell to run the envsetup.sh script
 within the current shell. If we were to just run the script, the shell
 would spawn a new shell and run the script in that new shell. That would
 be useless since envsetup.sh defines
 new shell commands, such as lunch,
 and sets up environment variables required for the rest of the
 build.
We will explore envsetup.sh and
 lunch in more detail later. For the
 moment, though, note that the generic-eng combo in 2.3/Gingerbread and
 full-eng combo in 4.2/Jelly Bean
 means that we configured the build system to create images for running
 in the Android emulator. This is the same QEMU emulator software used by
 developers to test their apps when developing using the SDK on a
 workstation. Here it will be running our own custom images instead of
 the default ones shipped with the SDK. It’s also the same emulator that
 was used by the Android development team to develop Android while there
 were no devices for it yet. So while it’s not real hardware and is
 therefore by no means a perfect target, it’s still more than sufficient
 to cover most of the terrain we need to cover. Once you know your
 specific target, you should be able to adapt the instructions found in
 the rest of this book, possibly with some help from the book
 Building Embedded Linux Systems, to get your custom
 Android images loaded on your device and your hardware to boot
 them.
Now that the environment has been set up, we can actually build
 Android:
$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==
Checking build tools versions...
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c
lasses)
Header: out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
Header: out/target/product/generic/obj/include/libexpat/expat_external.h
Header: out/host/linux-x86/obj/include/libpng/png.h
Header: out/host/linux-x86/obj/include/libpng/pngconf.h
Header: out/host/linux-x86/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libpng/png.h
Header: out/target/product/generic/obj/include/libpng/pngconf.h
Header: out/target/product/generic/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libwpa_client/wpa_ctrl.h
Header: out/target/product/generic/obj/include/libsonivox/eas_types.h
Header: out/target/product/generic/obj/include/libsonivox/eas.h
Header: out/target/product/generic/obj/include/libsonivox/eas_reverb.h
Header: out/target/product/generic/obj/include/libsonivox/jet.h
Header: out/target/product/generic/obj/include/libsonivox/ARM_synth_constants_gn
u.inc
host Java: clearsilver (out/host/common/obj/JAVA_LIBRARIES/clearsilver_intermedi
ates/classes)
target Java: core (out/target/common/obj/JAVA_LIBRARIES/core_intermediates/class
es)
host Java: dx (out/host/common/obj/JAVA_LIBRARIES/dx_intermediates/classes)
Notice file: frameworks/base/libs/utils/NOTICE -- out/host/linux-x86/obj/NOTICE_
FILES/src//lib/libutils.a.txt
Notice file: system/core/libcutils/NOTICE -- out/host/linux-x86/obj/NOTICE_FILES
/src//lib/libcutils.a.txt
...
Warning
Note that several lines, especially at the end of the output,
 are wrapped around to the following line because they wouldn’t fit in
 the width permitted by this book’s pages. You will see this occurring
 in several of the output screens printed throughout this book. I’ve
 tried to keep the line-wrap at 80 characters, though sometimes I could
 get away with a little more without it being too obvious.
In sum, make sure you keep an eye out for wrapped lines in
 output in the rest of the book.

Now is a good time to go for a snack or to watch tonight’s hockey
 game—it’s a Canadian thing, I can’t help it. On a more serious note,
 your build time will obviously depend on your system’s capabilities. On
 a laptop with a quad-core CORE i7 Intel processor with hyperthreading
 enabled and 8GB of RAM, this actual command will take about 20 minutes to build
 2.3/Gingerbread and 80 minutes to build 4.2/Jelly Bean. On an older
 laptop with a dual-core Centrino 2 Intel processor and 2GB of RAM, a
 make -j4 would take about an hour to
 build 2.3/Gingerbread—I wouldn’t try building 4.2/Jelly Bean on such a
 machine. Note that the -j parameter of make allows you to specify how many jobs to
 run in parallel. Some say that it’s best to use your number of
 processors times 2, which is what I’m doing here. Others say it’s best
 to add 2 to the number of processors you have. Following that advice, I
 would have used 10 and 4 instead of 16 and 4.
Generally speaking, the AOSP is a very heavy piece of software to
 build. I highly recommend you use the most powerful system you can get
 your hands on, no holds barred. Having lots of RAM is also very highly
 recommended. In fact, if the entire AOSP tree can fit in the filesystem
 cache maintained by the kernel in RAM, then you’ll minimize your build
 times. You can also use solid-state drives instead of regular hard
 drives. They’ve been shown to significantly reduce the AOSP’s build
 times.
Building on Virtual Machines or Non-Linux Systems
I often get asked about building the AOSP in virtual machines;
 most often because the development team, or their IT department, is
 standardized on Windows. While I’ve seen this work and have put
 together images to do that myself, your results will vary. It’ll
 usually take more than twice as much time to build in a VM than
 building natively on the same system. So if you’re going to do a lot
 of work on the AOSP, I strongly suggest you build it natively. And,
 yes, this involves having a Linux machine at hand.
An increasing number of developers also prefer Mac OS X over
 Linux and Windows, including many at Google itself. Hence, the
 official instructions at http://source.android.com also
 describe how to build on a Mac. These instructions, though, tend to
 break after Mac OS updates. Fortunately for Mac-based developers, they
 are many and they are rather zealous. Hence, you’ll eventually find
 updated instructions on the web or on the various Google Groups about
 how to build the AOSP on your new version of OS X. Here’s one posting
 explaining how to build Gingerbread on OS X Lion: Building
 Gingerbread on OS X Lion. Bear in mind, though, that as I
 mentioned in Chapter 1, Google’s own Android build
 farms are Ubuntu based. If you choose to build on OS X, you’ll likely
 always be playing catch-up. At worst, you can use a VM as in the
 Windows case.
If you do choose to go the VM route, make sure you configure the
 VM to use as many CPUs as there are available in your system. Most
 BIOSes I’ve seen seem to disable by default the instruction sets that
 allow multiple-CPU virtualization. VirtualBox, for instance, will
 complain about some obscure error if you try to allocate more than one
 CPU to an image while those instruction sets are disabled. You must go
 to the BIOS and enable those options for your VM software to be able
 to grant the guest OS multiple CPUs.

There are a few other things to consider regarding the build.
 First, note that in between printing out the build configuration and the
 printing of the first output of the actual build (where it prints out:
 host Java: apicheck (out/host/common/o...), there
 will be a rather long delay where nothing will get printed out, save for
 the “No such file or directory” warnings. I’ll explain this delay in
 more detail later, but suffice it to say that the build system is taking
 that time to figure out the rules of how to build every part of the
 AOSP.
Note also that you’ll see plenty of warning statements. These are
 rather “normal,” not so much in terms of maintaining software quality,
 but in that they are pervasive in Android’s build. They usually won’t
 have an impact on the final product being compiled. So, contrary to the
 best of my software engineering instincts, I have to recommend you
 completely ignore warnings and stick to fixing errors only. Unless, of
 course, those warnings stem from software you added yourself. By all
 means, make sure you get rid of those
 warnings.

Running Android

With the build completed, all you need to do is start the emulator
 to run your own custom-built images:
$ emulator &
This will start the emulator window that will boot into a full
 Android environment as illustrated in Figure 3-3 (showing 2.3/Gingerbread).
[image: Android emulator running custom images]

Figure 3-3. Android emulator running custom images

You can then interact with the AOSP you just built as if it were
 running on a real device. Since your monitor is likely not a touch screen,
 however, you will need to use your mouse as if it were your finger. A
 single touch is a click, and swiping is done by holding down the mouse
 button, moving around, and letting go of the mouse button to signify that
 your finger has been removed from the touch screen. You also have a full
 keyboard at your disposal, with all the buttons you would find on a phone
 equipped with a QWERTY keyboard, although you can use your regular
 keyboard to input text in text boxes.
Despite its features and realism, the emulator does have its issues.
 For one thing, it takes some time to boot. It will take longest to boot
 the first time, because Dalvik is creating a JIT cache for the apps
 running on the phone. Note that the creation of the Dalvik cache isn’t unique to the
 emulator. No matter what type of device you run Android on, modern Dalvik
 needs a JIT cache, whether it be created at boot time or, as we’ll see in
 Chapter 7, at build time.
Even after the first boot, though, you might find the emulator
 heavy, especially if you’re in a modify-compile-test loop. Also, it
 doesn’t perfectly emulate everything. For instance, it traditionally has a
 hard time firing off rotation change events when it’s made to rotate using
 F11 or F12. This, though, is mostly an issue for app developers.
If for any reason you close the shell where you had configured,
 built, and started Android—or if you need to start a new one and have
 access to all the tools and binaries created from the build, you must
 invoke the envsetup.sh script and the
 lunch commands again in order to set up
 environment variables. Here are commands from a new shell, for
 instance:
$ cd ~/android/aosp-2.3.x
$ emulator &
No command 'emulator' found, did you mean:
 Command 'qemulator' from package 'qemulator' (universe)
emulator: command not found
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
...
==
$ emulator &
$
Note that the second time we issued emulator, the shell didn’t complain that the
 command was missing anymore. The same goes for a lot of other Android
 tools, such as the adb command we’re
 about to look at. Note also that we didn’t need to issue any make commands, because we had already built
 Android. In this case, we just needed to make sure the environment
 variables were properly set in order for the results of the previous build
 to be available to us again.

Using the Android Debug Bridge (ADB)

One of the most interesting aspects of the development environment
 put together by the Android development team is that you can shell into
 the running emulator, or any real device connected through USB for that
 matter, using the adb tool:
$ adb shell [image: 1]
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
cat /proc/cpuinfo [image: 2]
Processor : ARM926EJ-S rev 5 (v5l)
BogoMIPS : 405.50
Features : swp half thumb fastmult vfp edsp java
CPU implementer : 0x41
CPU architecture: 5TEJ
CPU variant : 0x0
CPU part : 0x926
CPU revision : 5

Hardware : Goldfish
Revision : 0000
Serial : 0000000000000000
	[image: 1]
	This is issued in the same shell where you started the
 emulator.

	[image: 2]
	This is the target’s shell, and cat is actually running on the “target”
 (i.e., the emulator).

As you can see, the kernel running in the emulator reports that it’s
 seeing an ARM processor, which is in fact the predominant platform used
 with Android. Also, the kernel says it’s running on a platform called
 Goldfish. This is the code name for the emulator, and
 you will see it in quite a few places.
Now that you’ve got a shell into the emulator and you are root,
 which is the default in the emulator, you can run any command much as if
 you had shelled into a remote machine or a traditional, network-connected
 embedded Linux system. The Android Debug Bridge (ADB) is what makes this
 possible. To exit an ADB shell session, all you need to do is type
 Ctrl-D:
CTRL-D [image: 1]
$ [image: 2]
	[image: 1]
	This is in the target shell.

	[image: 2]
	This is back on the host.

When you start adb for the first
 time on the host, it starts a server in the background whose job is to
 manage the connections to all Android devices connected to the host. That
 was the part of the earlier output that said a daemon was being started on
 port 5037. You can actually ask that daemon what devices it sees:
$ adb devices
List of devices attached
emulator-5554	device
0000021459584822	device
emulator-5556	offline
This is the output with one emulator instance running, one device
 connected through USB, and another emulator instance starting up. If there
 are multiple devices connected, you can tell it which device you want to
 talk to using the -s flag to identify
 the serial number of the device:
$ adb -s 0000021459584822 shell
$ id
uid=2000(shell) gid=2000(shell) groups=1003(graphics),1004(input), ...
$ su
su: permission denied
Note that in this case, I’m getting a $ for my shell prompt instead of a #. This means that contrary to the earlier
 interaction, I’m not running as root, as can also be seen from the output
 of the id command. This is actually a
 real commercial Android phone, and my inability above to gain root
 privileges using the su command is
 typical. Hence, my ability to make any modifications to this device will
 be fairly limited. Unless, of course, I find some way to “root” the phone
 (i.e., gain root access).
Historically, device manufacturers have been very reluctant for
 various reasons to give root access to their devices and have put in a
 number of provisions to make that as difficult as possible, if not
 impossible. That’s why “rooting” devices is held up as a holy grail by
 many power users and hackers. As of early 2013, some manufacturers,
 including Motorola, HTC, and Sony Mobile, have spelled out policy changes
 that seem to be aimed at making it easier for users to root their devices,
 with caveats of course. But this isn’t mainstream yet. And, unfortunately,
 it’s subject to the whims of network operators, who can still decide to
 lock down devices left unlocked by the handset manufacturer.
Warning
You may be tempted to try to root a commercial phone or device for
 experimenting with Android platform development. I would suggest you
 think this through carefully. While there are plenty of instructions out
 there explaining how to replace your standard images with what is often
 referred to as “custom ROMs” such as CyanogenMod and others, you need to
 be aware that any false step could well result in “bricking” the device
 (i.e., rendering it unbootable or erasing critical boot-time code). You
 then have an expensive paperweight (hence the term “bricking”) instead
 of a phone.
If you want to experiment with running custom AOSP builds on real
 hardware, I suggest you get yourself something like a BeagleBoard xM or
 a PandaBoard. These boards are made for tinkering. If nothing else, they
 don’t have a built-in flash chip that you may risk damaging. Instead,
 the SoCs on those devices boot straight from SD cards. Hence, fixing a
 broken image is simply a matter of unplugging the SD card from the
 board, connecting it to your workstation, reprogramming it, and plugging
 it back into the board.
Some commercial phones and devices allow you to “unlock” the
 firmware, often with the fastboot oem
 unlock command, and therefore you can burn your own images
 with less risk of bricking your device. Still, the bootloader in those
 cases becomes the single point of failure; if you damage it for some
 reason, you could still end up with a bricked device. The best
 configuration is one where you can reprogram all storage devices no
 matter what commands you mistype.

adb can of course do a lot more
 than just give you a shell, and I encourage you to start it without any
 parameters to look at its usage output:
$ adb
Android Debug Bridge version 1.0.26

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is
 present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is
 running.
 -s <serial number> - directs command to the USB device or emulator
 with the given serial number. Overrides
 ANDROID_SERIAL
...
device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host->device only if changed
 (-l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively
 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
...
You can, for instance, use adb to
 dump the data contained in the main logger buffer:
$ adb logcat
I/DEBUG (30): debuggerd: Sep 10 2011 13:44:19
I/Netd (29): Netd 1.0 starting
I/Vold (28): Vold 2.1 (the revenge) firing up
D/qemud (38): entering main loop
D/Vold (28): USB mass storage support is not enabled in the kernel
D/Vold (28): usb_configuration switch is not enabled in the kernel
D/Vold (28): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/qemud (38): fdhandler_accept_event: accepting on fd 9
D/qemud (38): created client 0xe078 listening on fd 10
D/qemud (38): client_fd_receive: attempting registration for service 'boot-
properties'
D/qemud (38): client_fd_receive: -> received channel id 1
D/qemud (38): client_registration: registration succeeded for client 1
I/qemu-props(54): connected to 'boot-properties' qemud service.
I/qemu-props(54): receiving..
I/qemu-props(54): received: qemu.sf.lcd_density=160
I/qemu-props(54): receiving..
I/qemu-props(54): received: dalvik.vm.heapsize=16m
I/qemu-props(54): receiving..
D/qemud (38): fdhandler_event: disconnect on fd 10
I/qemu-props(54): exiting (2 properties set).
D/AndroidRuntime(32):
D/AndroidRuntime(32): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(32): CheckJNI is ON
I/ (33): ServiceManager: 0xad50
...
This is very useful for observing the runtime behavior of key system
 components, including services run by the System Server.
You can also copy files to and from the device:
$ adb push data.txt /data/local
1 KB/s (87 bytes in 0.043s)
$ adb pull /proc/config.gz
95 KB/s (7087 bytes in 0.072s)
Again, given its centrality to Android development, I invite you to
 read up on adb’s use. We will continue using it
 throughout the book and cover it in much greater detail in Chapter 6. Keep in mind, though, that adb
 can have its quirks. First and foremost, many have found its host-side
 daemon to be somewhat flaky. For some reason or another, it sometimes
 doesn’t correctly identify the state of connected devices and continues to
 state that they are offline while you try connecting to them. Or adb might just hang on the command line waiting
 for the device while the device is clearly active and able to receive ADB
 commands. The solution to those issues is almost invariably to kill the
 host-side daemon:[16]
$ adb kill-server
Not to worry—the next time you issue any adb command, the daemon will automatically be
 restarted. It’s unclear what causes this behavior, and maybe this problem
 will get resolved at some point in the future. In the meantime, keep in
 mind that if you see some odd behavior when using ADB, killing the
 host-side daemon is usually something you want to try before investigating
 other potential issues.
As I said above, we’ll discuss ADB in much greater detail in Chapter 6. Still, another source of information on adb is the Android Debug
 Bridge part of Google’s Android Developers Guide. As Tim
 Bird[17] recommends, you want to print a copy and put it under your
 pillow.

Mastering the Emulator

As I said earlier, you can go a long way in platform development by
 simply using the emulator. It effectively emulates an ARM target, and more
 recently an x86 target, too, with a minimal set of hardware. We’ll spend some time here going through some more
 advanced aspects of dealing with the emulator. As with many Android
 pieces, the emulator is quite a complex piece of software in and of
 itself. Still, we can get a very good idea of its capabilities by
 surveying a few key features.
Earlier we started the emulator by simply typing:
$ emulator &
But the emulator command can also
 take quite a few parameters. You can see the online help by adding the
 -help flag on the command line:
$ emulator -help
Android Emulator usage: emulator [options] [-qemu args]
 options:
 -sysdir <dir> search for system disk images in <dir>
 -system <file> read initial system image from <file>
 -datadir <dir> write user data into <dir>
 -kernel <file> use specific emulated kernel
 -ramdisk <file> ramdisk image (default <system>/ramdisk.img
 -image <file> obsolete, use -system <file> instead
 -init-data <file> initial data image (default <system>/
 userdata.img
 -initdata <file> same as '-init-data <file>'
 -data <file> data image (default <datadir>/userdata-
 qemu.img
 -partition-size <size> system/data partition size in MBs
...
One especially useful flag is -kernel. It allows you to tell the emulator to
 use another kernel than the default prebuilt one found in prebuilt/android-arm/kernel/:
$ emulator -kernel path_to_your_kernel_image/zImage
If you want to use a kernel that has module support, for instance,
 you’ll need to build your own, because the prebuilt one doesn’t have
 module support enabled by default. Also, by default, the emulator won’t
 show you the kernel’s boot messages. You can, however, pass the -show-kernel flag to see them:
$ emulator -show-kernel
Uncompressing Linux...
................................ done, booting the kernel.
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 24384
Kernel command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1
 android.ndns=3
Unknown boot option `android.checkjni=1': ignoring
Unknown boot option `android.qemud=ttyS1': ignoring
Unknown boot option `android.ndns=3': ignoring
PID hash table entries: 512 (order: 9, 2048 bytes)
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 96MB = 96MB total
Memory: 91548KB available (2616K code, 681K data, 104K init)
Calibrating delay loop... 403.04 BogoMIPS (lpj=2015232)
Mount-cache hash table entries: 512
Initializing cgroup subsys debug
Initializing cgroup subsys cpuacct
Initializing cgroup subsys freezer
CPU: Testing write buffer coherency: ok
...
You can also have the emulator print out information about its own
 execution using the -verbose flag,
 thereby allowing you to see, for example, which images files it’s
 using:
$ emulator -verbose
emulator: found Android build root: /home/karim/android/aosp-2.3.x
emulator: found Android build out: /home/karim/android/aosp-2.3.x/out/target/pr
oduct/generic
emulator: locking user data image at /home/karim/android/aosp-2.3.x/out/targ
et/product/generic/userdata-qemu.img
emulator: selecting default skin name 'HVGA'
emulator: found skin-specific hardware.ini: /home/karim/android/aosp-2.3.x/sdk/e
mulator/skins/HVGA/hardware.ini
emulator: autoconfig: -skin HVGA
emulator: autoconfig: -skindir /home/karim/android/aosp-2.3.x/sdk/emulator/skins
emulator: keyset loaded from: /home/karim/.android/default.keyset
emulator: trying to load skin file '/home/karim/android/aosp-2.3.x/sdk/emulator/
skins/HVGA/layout'
emulator: skin network speed: 'full'
emulator: skin network delay: 'none'
emulator: no SD Card image at '/home/karim/android/aosp-2.3.x/out/target/product
/generic/sdcard.img'
emulator: registered 'boot-properties' qemud service
emulator: registered 'boot-properties' qemud service
emulator: Adding boot property: 'qemu.sf.lcd_density' = '160'
emulator: Adding boot property: 'dalvik.vm.heapsize' = '16m'
emulator: argv[00] = "emulator"
emulator: argv[01] = "-kernel"
emulator: argv[02] = "/home/karim/android/aosp-2.3.x/prebuilt/android-arm/kernel
/kernel-qemu"
emulator: argv[03] = "-initrd"
emulator: argv[04] = "/home/karim/android/aosp-2.3.x/out/target/product/generic/
ramdisk.img"
emulator: argv[05] = "-nand"
emulator: argv[06] = "system,size=0x4200000,initfile=/home/karim/android/aosp-2.
3.x/out/target/product/generic/system.img"
emulator: argv[07] = "-nand"
emulator: argv[08] = "userdata,size=0x4200000,file=/home/karim/android/aosp-2.3.
x/out/target/product/generic/userdata-qemu.img"
emulator: argv[09] = "-nand"
...
Up to this point, I’ve used the terms QEMU and emulator
 interchangeably. The reality, though, is that the emulator command isn’t actually QEMU: It’s a
 custom wrapper around it created by the Android development team. You can,
 however, interact with the emulator’s QEMU by using the -qemu flag. Anything you pass after that flag is
 passed on to QEMU and not the emulator
 wrapper:
$ emulator -qemu -h
QEMU PC emulator version 0.10.50Android, Copyright (c) 2003-2008 Fabrice Bellard
usage: qemu [options] [disk_image]

'disk_image' is a raw hard image image for IDE hard disk 0

Standard options:
-h or -help display this help and exit
-version display version information and exit
-M machine select emulated machine (-M ? for list)
-cpu cpu select CPU (-cpu ? for list)
-smp n set the number of CPUs to 'n' [default=1]
-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]
-fda/-fdb file use 'file' as floppy disk 0/1 image
-hda/-hdb file use 'file' as IDE hard disk 0/1 image
...
$ emulator -qemu -...
We saw earlier how we can use adb
 to interact with the AOSP running within the emulator, and we just saw how
 we can use various options to change the way the emulator is started.
 Interestingly, we can also control the emulator’s behavior at runtime by
 telneting into it. Every emulator
 instance that starts is assigned a port number on the host. Look again at
 Figure 3-3 and check the top-left corner of
 the emulator’s window. The number up there (5554 in this case) is the port
 number at which that emulator instance is listening. The next emulator
 that starts simultaneously will get 5556, the next 5558, and so on. To
 gain access to the emulator’s special console, you can use the regular
 telnet command:
$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

 help|h|? print a list of commands
 event simulate hardware events
 geo Geo-location commands
 gsm GSM related commands
 kill kill the emulator instance
 network manage network settings
 power power related commands
 quit|exit quit control session
 redir manage port redirections
 sms SMS related commands
 avd manager virtual device state
 window manage emulator window

try 'help <command>' for command-specific help
OK
Using that console, you can do some nifty tricks like redirecting a
 port from the host to the target:
redir add tcp:8080:80
OK
redir list
tcp:8080 => 80
OK
From here on, anything accessing 8080 on your host will actually be
 speaking to whatever is listening to port 80 on that emulated Android.
 Nothing listens to that port by default on Android, but you can, for
 example, have BusyBox’s httpd running
 on Android and connect to it in this way.
The emulator also exposes a few “magic” IPs to the emulated Android.
 IP address 10.0.2.2, for instance, is an alias to your workstation’s
 127.0.0.1. If you have Apache running on your workstation, you can open
 the emulator’s browser and type http://10.0.2.2 and you’ll be able to browse
 whatever content is served up by Apache.
For more information on how to operate the emulator and its various
 options, have a look at the Using the
 Android Emulator section of Google’s Android Developers Guide. It’s
 written for an app developer audience, but it will still be very useful to
 you even if you’re doing platform work.

[15] Thanks to Linaro’s Bernhard Rosenkränzer for pointing out this
 really useful trick.

[16] It’s actually somewhat interesting that the Android development
 team felt the need to build such functionality right into adb. Clearly they were encountering issues
 with that daemon themselves.

[17] Tim is the maintainer of http://elinux.org, the guy behind
 the Embedded Linux Conference, and the chair of the Linux Foundation’s
 CE Workgroup, and he’s been doing a lot of cool Android stuff at
 Sony.

Chapter 4. The Build System

The goal of the previous chapter was to get you up and running as
 quickly as possible with custom AOSP development. There’s nothing precluding
 you from closing this book at this point and starting to dig in and modify
 your AOSP tree to fit your needs. All you need to do to test your
 modifications is to rebuild the AOSP, start the emulator again, and, if need
 be, shell back into it using ADB. If you want to maximize your efforts,
 however, you’ll likely want some insight into Android’s build
 system.
Despite its modularity, Android’s build system is fairly complex and
 doesn’t resemble any of the mainstream build systems out there; none that
 are used for most open source projects, at least. Specifically, it uses
 make in a fairly unconventional way and
 doesn’t provide any sort of menuconfig-based
 configuration (or equivalent for that matter). Android very much has its own
 build paradigm that takes some time to get used to. So grab yourself a good
 coffee or two—things are about to get serious.
Warning
Like the rest of the AOSP, the build system is a moving target. So
 while the following information should remain valid for a long time, you
 should be on the lookout for changes in the AOSP version you’re
 using.

Comparison with Other Build Systems

Before I start explaining how Android’s build system works, allow me
 to begin by emphasizing how it differs from what you might already know.
 First and foremost, unlike most make-based build systems, the Android build
 system doesn’t rely on recursive makefiles. Unlike the Linux kernel, for
 instance, there isn’t a top-level makefile that will recursively invoke
 subdirectories’ makefiles. Instead, there is a script that explores all
 directories and subdirectories until it finds an Android.mk file, whereupon it stops and doesn’t
 explore the subdirectories underneath that file’s location—unless the
 Android.mk
 found instructs the build system otherwise. Note that Android doesn’t rely on makefiles called Makefile. Instead, it’s the Android.mk files that specify how the local
 “module” is built.
Warning
Android build “modules” have nothing to do with kernel “modules.”
 Within the context of Android’s build system, a “module” is any
 component of the AOSP that needs to be built. This might be a binary, an
 app package, a library, etc., and it might have to be built for the
 target or the host, but it’s still a “module” with regards to the build
 system.

How Many Build Modules?
Just to give you an idea of how many modules can be built by the
 AOSP, try running this command in your tree:
$ find . -name Android.mk | wc -l
This will look for all Android.mk files and count how many there
 are. In 2.3.7/Gingerbread there are 1,143 and in 4.2/Jelly Bean,
 2,037.

Another Android specificity is the way the build system is
 configured. While most of us are used to systems based on kernel-style
 menuconfig or GNU autotools (i.e., autoconf, automake, etc.), Android
 relies on a set of variables that are either set dynamically as part of the shell’s environment by way
 of envsetup.sh and lunch or are defined statically ahead of time in
 a buildspec.mk file. Also—always
 seeming to be a surprise to newcomers—the level of configurability made
 possible by Android’s build system is fairly limited. So while you can
 specify the properties of the target for which you want the AOSP to be
 built and, to a certain extent, which apps should be included by default
 in the resulting AOSP, there is no way for you to enable or disable most
 features, as is possible à la menuconfig. You can’t, for instance, decide
 that you don’t want power management support or that you don’t want the
 Location Service to start by default.
Also, the build system doesn’t generate object files or any sort of
 intermediate output within the same location as the source files. You
 won’t find the .o files alongside
 their .c source files within the
 source tree, for instance. In fact, none of the existing AOSP directories
 are used in any of the output. Instead, the build system creates an
 out/ directory where it stores
 everything it generates. Hence, a make
 clean is very much the same thing as an rm -rf out/. In other words, removing the
 out/ directory wipes out anything
 that was built.
The last thing to say about the build system before we start
 exploring it in more detail is that it’s heavily tied to GNU
 make. And, more to the point, version 3.81; even the newer 3.82
 won’t work with many AOSP versions without patching. The build system in fact heavily relies on many GNU
 make-specific features such as the define, include, and ifndef directives.
Some Background on the Design of Android’s Build System
If you would like to get more insight into the design
 choices that were made when Android’s build system was put together,
 have a look at the build/core/build-system.html file in the
 AOSP. It’s dated May 2006 and seems to have been the document that went
 around within the Android dev team to get consensus on a rework of the
 build system. Some of the information and the hypothesis are out of date
 or have been obsoleted, but most of the nuggets of the current build
 system are there. In general, I’ve found that the further back the
 document was created by the Android dev team, the more insightful it is
 regarding raw motivations and technical background. Newer documents tend
 to be “cleaned up” and abstract, if they exist at all.
If you want to understand the technical underpinnings of why
 Android’s build system doesn’t use recursive make, have a look at the paper entitled “Recursive Make Considered
 Harmful” by Peter Miller in AUUGN Journal of AUUG Inc., 19(1),
 pp. 14−25. The paper explores the issues surrounding the use of
 recursive makefiles and explains a different approach involving the use
 of a single global makefile for building the entire project based on
 module-provided .mk files, which is
 exactly what Android does.

Architecture

As illustrated in Figure 4-1, the entry
 point to making sense of the build system is the main.mk file found in the build/core/ directory, which is invoked through
 the top-level makefile, as we saw earlier. The build/core/ directory actually contains the
 bulk of the build system, and we’ll cover key files from there. Again,
 remember that Android’s build system pulls everything into a single
 makefile; it isn’t recursive. Hence, each .mk file you see eventually becomes part of a
 single huge makefile that contains the rules for building all the pieces
 in the system.
[image: Android’s build system]

Figure 4-1. Android’s build system

Why Does make Hang?
Every time you type make, you
 witness the aggregation of the .mk
 files into a single set through what might seem like an annoying build
 artifact: The build system prints out the build configuration and seems
 to hang for quite some time without printing anything to the screen.
 After these long moments of screen silence, it actually starts
 proceeding again and builds every part of the AOSP, at which point you
 see regular output to your screen as you’d expect from any regular build
 system. Anyone who’s built the AOSP has wondered what in the world the
 build system is doing during that time. What it’s doing is incorporating
 every Android.mk file it can find
 in the AOSP.
If you want to see this in action, edit build/core/main.mk and replace this
 line:
include $(subdir_makefiles)
with this:
$(foreach subdir_makefile, $(subdir_makefiles), \
 $(info Including $(subdir_makefile)) \
 $(eval include $(subdir_makefile)) \
)
subdir_makefile :=
The next time you type make,
 you’ll actually see what’s happening:
$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
==
Including ./bionic/Android.mk
Including ./development/samples/Snake/Android.mk
Including ./libcore/Android.mk
Including ./external/elfutils/Android.mk
Including ./packages/apps/Camera/Android.mk
Including ./device/htc/passion-common/Android.mk
...

Configuration

One of the first things the build system does is pull in the build
 configuration through the inclusion of config.mk. The build can be configured either
 by the use of the envsetup.sh and lunch commands or by providing a buildspec.mk file at the top-level directory.
 In either case, some of the following variables need to be
 set.
	TARGET_PRODUCT
	Android flavor to be built. Each recipe can, for instance,
 include a different set of apps or locales or build different
 parts of the tree. Have a look at the various single product
 .mk files included by the
 AndroidProducts.mk files in
 build/target/product/,
 device/samsung/crespo/, and
 device/htc/passion/ for
 examples in 2.3/Gingerbread. In case of 4.2/Jelly Bean, look at
 device/asus/grouper/ and
 device/samsung/amgnuro/
 instead of Crespo and Passion. Values include the
 following:
	generic
	The “vanilla” kind, the most basic build of the AOSP
 parts you can have.

	full
	The “all dressed” kind, with most apps and the major
 locales enabled.

	full_crespo
	Same as full but
 for Crespo (Samsung Nexus S).

	full_grouper
	Same as full but
 for Grouper (Asus Nexus 7).

	sim
	Android simulator (see The Simulator: A Piece of Android’s History). Even though this is
 available in 2.3/Gingerbread, this target has since been
 removed and isn’t in 4.2/Jelly Bean.

	sdk
	The SDK; includes a vast number of locales.

	TARGET_BUILD_VARIANT
	Selects which modules to install. Each module is supposed to
 have a LOCAL_MODULE_TAGS
 variable set in its Android.mk to at least one of the
 following:[18] user, debug, eng, tests, optional, or samples. By selecting the variant, you
 will tell the build system which module subsets should be
 included—the only exception to this is packages (i.e., modules
 that generate .apk files) for
 which these rules don’t apply. Specifically:
	eng
	Includes all modules tagged as user, debug, or eng.

	userdebug
	Includes both modules tagged as user and debug.

	user
	Includes only modules tagged as user.

	TARGET_BUILD_TYPE
	Dictates whether or not special build flags are used or
 DEBUG variables are defined in
 the code. The possible values here are either release or debug. Most notably, the frameworks/base/Android.mk file chooses
 between either frameworks/base/core/config/debug or
 frameworks/base/core/config/ndebug,
 depending on whether or not this variable is set to debug. The former causes the ConfigBuildFlags.DEBUG Java constant to
 be set to true, whereas the
 latter causes it to be set to false. Some code in parts of the system
 services, for instance, is conditional on DEBUG. Typically, TARGET_BUILD_TYPE is set to release.

	TARGET_TOOLS_PREFIX
	By default, the build system will use one of the
 cross-development toolchains shipped with it underneath the
 prebuilt/ directory —
 prebuilts/ as of 4.2/Jelly
 Bean. However, if you’d like it to use another toolchain, you can
 set this value to point to its location.

	OUT_DIR
	By default, the build system will put all build output into
 the out/ directory. You can
 use this variable to provide an alternate output directory.

	BUILD_ENV_SEQUENCE_NUMBER
	If you use the template build/buildspec.mk.default to create
 your own buildspec.mk file,
 this value will be properly set. However, if you create a
 buildspec.mk with an older
 AOSP release and try to use it in a future AOSP release that
 contains important changes to its build system and, hence, a
 different value, this variable will act as a safety net. It will
 cause the build system to inform you that your buildspec.mk file doesn’t match your
 build system.

The Simulator: A Piece of Android’s History
If you go back to the menu printed by 2.3/Gingerbread’s lunch in Building Android,
 you’ll notice an entry called simulator. In fact you’ll find references to
 the simulator at a number of locations in 2.3/Gingerbread, including
 quite a few Android.mk files
 and subdirectories in the tree. The most important thing you need to
 know about the simulator is that it has nothing
 to do with the emulator. They are two completely different
 things.
That said, the simulator appears to be a remnant of the Android
 team’s early work to create Android. Since at the time they didn’t
 even have Android running in QEMU, they used their desktop OSes and
 the LD_PRELOAD mechanism to
 simulate an Android device, hence the term “simulator.” It appears
 that they stopped using it as soon as running Android on QEMU became
 possible. It continued being in the AOSP up until 4.0/Ice-Cream
 Sandwich, though, and was potentially useful for building parts of the
 AOSP for development and testing on developer workstations. 4.2/Jelly
 Bean, for instance, doesn’t have a simulator target.
The presence of the simulator build target in 2.3/Gingerbread
 and before didn’t mean that you could run the AOSP on your desktop. In
 fact you couldn’t, if only because you needed a kernel that had Binder
 included and you would’ve needed to be using Bionic instead of your
 system’s default C library. But, if you wanted to run parts of what’s
 built from the AOSP on your desktop, this product target allowed you
 to do so.
In 2.3/Gingerbread, various parts of the code build very
 differently if the target is the simulator. When browsing the code,
 for example, you’ll sometimes find conditional builds around the
 HAVE_ANDROID_OS C macro, which is
 only defined when compiling for the simulator. The code that talks to
 the Binder is one of these. If HAVE_ANDROID_OS is not defined, that code
 will return an error to its caller instead of trying to actually talk
 to the Binder driver.
For the full story behind the simulator, have a look at Android
 developer Andrew McFadden’s response
 to a post entitled “Android Simulator Environment” on the
 android-porting mailing list in April 2009.

In addition to selecting which parts of the AOSP to build and
 which options to build them with, the build system also needs to know
 about the target it’s building for. This is provided through a BoardConfig.mk file, which will specify
 things such as the command line to be provided to the kernel, the base
 address at which the kernel should be loaded, or the instruction set
 version most appropriate for the board’s CPU (TARGET_ARCH_VARIANT). Have a look at build/target/board/ for a set of per-target
 directories that each contain a BoardConfig.mk file. Also have a look at the
 various device/*/TARGET_DEVICE/BoardConfig.mk files included in the AOSP.
 The latter are much richer than the former because they contain a lot
 more hardware-specific information. The device name (i.e.,
 TARGET_DEVICE) is derived from the PRODUCT_DEVICE specified in the product
 .mk file provided for the TARGET_PRODUCT set in the configuration. In
 2.3/Gingerbread, for example, device/samsung/crespo/AndroidProducts.mk
 includes device/samsung/crespo/full_crespo.mk, which
 sets PRODUCT_DEVICE to crespo. Hence, the build system looks for a
 BoardConfig.mk in device/*/crespo/, and there happens to be one
 at that location. The same goes on in 4.2/Jelly Bean for the PRODUCT_DEVICE set in device/asus/grouper/full_grouper.mk to
 grouper, thereby pointing the build
 system to device/*/grouper/BoardConfig.mk.
The final piece of the puzzle with regard to configuration is the
 CPU-specific options used to build Android. For ARM, those are contained
 in build/core/combo/arch/arm/armv*.mk, with
 TARGET_ARCH_VARIANT determining the
 actual file to use. Each file lists CPU-specific cross-compiler and
 cross-linker flags used for building C/C++ files. They also contain a
 number of ARCH_ARM_HAVE_* variables
 that enable others parts of the AOSP to build code conditionally based
 on whether a given ARM feature is found in the target’s CPU.

envsetup.sh

Now that you understand the kinds of configuration input the build
 system needs, we can discuss the role of envsetup.sh in more detail. As its name
 implies, envsetup.sh actually is for
 setting up a build environment for Android. It does only part of the
 job, though. Mainly, it defines a series of shell commands that are
 useful to any sort of AOSP work:
$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ help
Invoke ". build/envsetup.sh" from your shell to add the following functions to
your environment:
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory.
- mmm: Builds all of the modules in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
add_lunch_combo cgrep check_product check_variant choosecombo chooseproduct choo
setype choosevariant cproj croot findmakefile gdbclient get_abs_build_var getbug
reports get_build_var getprebuilt gettop godir help isviewserverstarted jgrep lu
nch m mm mmm pgrep pid printconfig print_lunch_menu resgrep runhat runtest set_j
ava_home setpaths set_sequence_number set_stuff_for_environment settitle smokete
st startviewserver stopviewserver systemstack tapas tracedmdump
In 4.2/Jelly Bean, hmm has
 replaced help, and the command set
 made available to you has been expanded:
$ cd ~/android/aosp-4.2
$. build/envsetup.sh
$ hmm
Invoke ". build/envsetup.sh" from your shell to add the following functions to y
our environment:
- lunch: lunch <product_name>-<build_variant>
- tapas: tapas [<App1> <App2> ...] [arm|x86|mips] [eng|userdebug|user]
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory.
- mmm: Builds all of the modules in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
addcompletions add_lunch_combo cgrep check_product check_variant choosecombo cho
oseproduct choosetype choosevariant cproj croot findmakefile gdbclient get_abs_b
uild_var getbugreports get_build_var getlastscreenshot getprebuilt getscreenshot
path getsdcardpath gettargetarch gettop godir hmm isviewserverstarted jgrep key_
back key_home key_menu lunch _lunch m mm mmm pid printconfig print_lunch_menu re
sgrep runhat runtest set_java_home setpaths set_sequence_number set_stuff_for_en
vironment settitle smoketest startviewserver stopviewserver systemstack tapas tr
acedmdump
You’ll likely find the croot and godir commands quite useful for traversing the
 tree. Some parts of it are quite deep, given the use of Java and its
 requirement that packages be stored in directory trees bearing the same
 hierarchy as each subpart of the corresponding fully qualified package
 name. For instance, a file part of the com.foo.bar package must be stored under the
 com/foo/bar/ directory. Hence, it’s
 not rare to find yourself 7 to 10 directories underneath the AOSP’s
 top-level directory, and it rapidly becomes tedious to type something
 like cd ../../../ ... to return to an
 upper part of the tree.
m and mm are also quite useful since they allow you
 to, respectively, build from the top level regardless of where you are
 or just build the modules found in the current directory. For example,
 if you made a modification to the Launcher and are in packages/apps/Launcher2, you can rebuild just
 that module by typing mm instead of
 cd’ing back to the top level and
 typing make. Note that mm doesn’t rebuild the entire tree and,
 therefore, won’t regenerate AOSP images even if a dependent module has
 changed. m will do that, though.
 Still, mm can be useful to test
 whether your local changes break the build or not until you’re ready to
 regenerate the full AOSP.
Although the online help doesn’t mention lunch, it is one of the commands defined by
 envsetup.sh. When you run lunch without any parameters, it shows you a
 list of potential choices. This is the list from 2.3/Gingerbread:
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng]
This is the list from 4.2/Jelly Bean:
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. full-eng
 2. full_x86-eng
 3. vbox_x86-eng
 4. full_mips-eng
 5. full_grouper-userdebug
 6. full_tilapia-userdebug
 7. mini_armv7a_neon-userdebug
 8. mini_armv7a-userdebug
 9. mini_mips-userdebug
 10. mini_x86-userdebug
 11. full_mako-userdebug
 12. full_maguro-userdebug
 13. full_manta-userdebug
 14. full_toroplus-userdebug
 15. full_toro-userdebug
 16. full_panda-userdebug

Which would you like? [full-eng]
These choices are not static. Most depend on what’s in the
 AOSP at the time envsetup.sh runs.
 They’re in fact individually added using the add_lunch_combo() function that the script
 defines. In 2.3/Gingerbread, for instance, envsetup.sh adds generic-eng and simulator by default:
add the default one here
add_lunch_combo generic-eng

if we're on linux, add the simulator. There is a special case
in lunch to deal with the simulator
if ["$(uname)" = "Linux"] ; then
 add_lunch_combo simulator
fi
In 4.2/Jelly Bean, simulator is
 no longer a valid target and envsetup.sh does this instead:
add the default one here
add_lunch_combo full-eng
add_lunch_combo full_x86-eng
add_lunch_combo vbox_x86-eng
add_lunch_combo full_mips-eng
envsetup.sh also includes all
 the vendor-supplied scripts it can find. Here’s how it’s done in
 2.3/Gingerbread:
Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/build/vendorsetup.sh device/*
/*/vendorsetup.sh 2> /dev/null`
do
 echo "including $f"
 . $f
done
unset f
Here’s how it’s done in 4.2/Jelly Bean:
Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/*/vendorsetup.sh device/*/*/v
endorsetup.sh 2> /dev/null`
do
 echo "including $f"
 . $f
done
unset f
In 2.3/Gingerbread the device/samsung/crespo/vendorsetup.sh file,
 for instance, does this:
add_lunch_combo full_crespo-userdebug
Similarly, in 4.2/Jelly Bean the device/asus/grouper/vendorsetup.sh file does
 this:
add_lunch_combo full_grouper-userdebug
So that’s how you end up with the menu we saw earlier.
 Note that the menu asks you to choose a combo.
 Essentially, this is a combination of a TARGET_PRODUCT and TARGET_BUILD_VARIANT, with the exception of
 the simulator in 2.3/Gingerbread. The
 menu provides the default combinations, but the others remain valid and
 can be passed to lunch as parameters
 on the command line. In 2.3/Gingerbread, for instance, you can do
 something like this:
$ lunch generic-user

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=user
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ lunch full_crespo-eng

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_crespo
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==
Once lunch has finished running
 for a generic-eng combo, it will set
 up environment variables described in Table 4-1 in your current shell to provide the
 build system with the required configuration information.
Table 4-1. Environment variables set by lunch (in no particular order) for
 the default build target (i.e., generic-eng) in
 2.3/Gingerbread
	Variable	Value
	PATH	$ANDROID_JAVA_TOOLCHAIN:$PATH:$ANDROID_BUILD_PATHS
	ANDROID_EABI_TOOLCHAIN	aosp-root/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin
	ANDROID_TOOLCHAIN	$ANDROID_EABI_TOOLCHAIN
	ANDROID_QTOOLS	aosp-root/development/emulator/qtools
	ANDROID_BUILD_PATHS	aosp-root/out/host/linux-x86:$ANDROID_TOOLCHAIN:$ANDROID_QTOOLS:$ANDROID_TOOLCHAIN:$ANDROID_EABI_TOOLCHAIN
	ANDROID_BUILD_TOP	aosp-root
	ANDROID_JAVA_TOOLCHAIN	$JAVA_HOME/bin
	ANDROID_PRODUCT_OUT	aosp-root/out/target/product/generic
	OUT	ANDROID_PRODUCT_OUT
	BUILD_ENV_SEQUENCE_NUMBER	10
	OPROFILE_EVENTS_DIR	aosp-root/prebuilt/linux-x86/oprofile
	TARGET_BUILD_TYPE	release
	TARGET_PRODUCT	generic
	TARGET_BUILD_VARIANT	eng
	TARGET_BUILD_APPS	empty
	TARGET_SIMULATOR	false
	PROMPT_COMMAND	\"\033]0;[${TARGET_PRODUCT}-${TARGET_BUILD_VARIANT}]
 ${USER}@${HOSTNAME}: ${PWD}\007\"
	JAVA_HOME	/usr/lib/jvm/java-6-sun

Using ccache
If you’ve already done any AOSP building while reading these
 pages, you’ve noticed how long the process is. Obviously, unless you
 can construct yourself a bleeding-edge build farm, any sort of speedup
 on your current hardware would be greatly appreciated. As a sign that
 the Android development team might itself also feel the pain of the
 rather long builds, they’ve added support for ccache. ccache stands for Compiler
 Cache and is part of
 the Samba Project. It’s a mechanism that caches the object
 files generated by the compiler based on the preprocessor’s output.
 Hence, if under two separate builds the preprocessor’s output is
 identical, use of ccache will
 result in the second build not actually using the compiler to build
 the file. Instead, the cached object file will be copied to the
 destination where the compiler’s output would have been.
To enable the use of ccache,
 all you need to do is make sure that the USE_CCACHE environment variable is set to 1
 before you start your build:
$ export USE_CCACHE=1
You won’t gain any acceleration the first time you run, since
 the cache will be empty at that time. Every other time you build from
 scratch, though, the cache will help accelerate the build process. The
 only downside is that ccache is for
 C/C++ files only. Hence, it can’t accelerate the build of any Java
 file, I must add sadly. In 2.3/Gingerbread, there are about 15,000
 C/C++ files and 18,000 Java files in the AOSP. Those numbers are
 27,000 and 29,000 in 4.2/Jelly Bean. So, while the cache isn’t a
 panacea, it’s better than nothing.
If you’d like to learn more about ccache, have a look at the article titled
 “Improve
 collaborative build times with ccache” by Martin Brown on
 IBM’s developerWorks site. The article also explores the use of
 distcc, which allows you to
 distribute builds over several machines, so you can pool your team’s
 workstation caches together.
For all its benefits, some developers have reported weird errors
 in some cases when using ccache.
 For instance, I ran into such issues while maintaining my own AOSP
 fork. First, I got a version of the AOSP on my workstation and built
 it, creating a warm cache. I then proceeded to upload that tree to
 http://github.com. Finally, I did a repo sync on the tree I had just uploaded
 but from another directory on my workstation than the original one
 uploaded. Using diff to compare
 both trees showed both trees were identical. Yet, the original built
 fine with the warm cache while the second continued to fail building
 until the cache was erased.

Of course, if you get tired of always typing build/envsetup.sh and lunch, all you need to do is copy the
 build/buildspec.mk.default into the
 top-level directory, rename it to buildspec.mk, and edit it to match the
 configuration that would have otherwise been set by running those
 commands. The file already contains all the variables you need to
 provide; it’s just a matter of uncommenting the corresponding lines and
 setting the values appropriately. Once you’ve done that, all you have to
 do is go to the AOSP’s directory and invoke make directly. You can skip envsetup.sh and lunch.

Function Definitions

Because the build system is fairly large—there are more than 40
 .mk files in build/core/ alone—there are benefits in being
 able to reuse as much code as possible. This is why the build system
 defines a large number of functions in the definitions.mk file. That file
 is actually the largest one in the build system at about 60KB, with
 about 140 functions on about 1,800 lines of makefile code in
 2.3/Gingerbread. It’s still the largest file in the build system in
 4.2/Jelly Bean at about 73KB, 170 functions, and about 2,100 lines of
 makefile code. Functions offer a variety of operations, including file
 lookup (e.g., all-makefiles-under and
 all-c-files-under), transformation
 (e.g., transform-c-to-o and transform-java-to-classes.jar), copying (e.g.,
 copy-file-to-target), and utility
 (e.g., my-dir.)
Not only are these functions used throughout the rest of the build
 system’s components, acting as its core library, but they’re sometimes
 also directly used in modules’ Android.mk files.
 Here’s an example snippet from the Calculator app’s Android.mk:
LOCAL_SRC_FILES := $(call all-java-files-under, src)
Although thoroughly describing definitions.mk is outside the scope of this
 book, it should be fairly easy for you to explore it on your own. If
 nothing else, most of the functions in it are preceded with a comment
 explaining what they do. Here’s an example from 2.3/Gingerbread:
###
Find all of the java files under the named directories.
Meant to be used like:
SRC_FILES := $(call all-java-files-under,src tests)
###

define all-java-files-under
$(patsubst ./%,%, \
 $(shell cd $(LOCAL_PATH) ; \
 find $(1) -name "*.java" -and -not -name ".*") \
)
endef

Main Make Recipes

At this point you might be wondering where any of the goodies are
 actually generated. How are the various images such as RAM disk
 generated or how is the SDK put together, for example? Well, I hope you
 won’t hold a grudge, but I’ve been keeping the best for last. So without
 further ado, have a look at the Makefile in build/core/ (not the top-level one). The file
 starts with an innocuous-looking comment:
Put some miscellaneous rules here
But don’t be fooled. This is where some of the best meat is.
 Here’s the snippet that takes care of generating the RAM disk, for
 example, in 2.3/Gingerbread:

the ramdisk
INTERNAL_RAMDISK_FILES := $(filter $(TARGET_ROOT_OUT)/%, \
$(ALL_PREBUILT) \
$(ALL_COPIED_HEADERS) \
$(ALL_GENERATED_SOURCES) \
$(ALL_DEFAULT_INSTALLED_MODULES))

BUILT_RAMDISK_TARGET := $(PRODUCT_OUT)/ramdisk.img

We just build this directly to the install location.
INSTALLED_RAMDISK_TARGET := $(BUILT_RAMDISK_TARGET)
$(INSTALLED_RAMDISK_TARGET): $(MKBOOTFS) $(INTERNAL_RAMDISK_FILES) | $(MINIGZIP)
$(call pretty,"Target ram disk: $@")
$(hide) $(MKBOOTFS) $(TARGET_ROOT_OUT) | $(MINIGZIP) > $@
And here’s the snippet that creates the certs packages for
 checking over-the-air (OTA) updates in the same AOSP version:

Build a keystore with the authorized keys in it, used to verify the
authenticity of downloaded OTA packages.
#
This rule adds to ALL_DEFAULT_INSTALLED_MODULES, so it needs to come
before the rules that use that variable to build the image.
ALL_DEFAULT_INSTALLED_MODULES += $(TARGET_OUT_ETC)/security/otacerts.zip
$(TARGET_OUT_ETC)/security/otacerts.zip: KEY_CERT_PAIR :=
$(DEFAULT_KEY_CERT_PAIR)
$(TARGET_OUT_ETC)/security/otacerts.zip: $(addsuffix .x509.pem,
$(DEFAULT_KEY_CERT_PAIR))
$(hide) rm -f $@
$(hide) mkdir -p $(dir $@)
$(hide) zip -qj $@ $<

.PHONY: otacerts
otacerts: $(TARGET_OUT_ETC)/security/otacerts.zip
Obviously there’s a lot more than I can fit here, but have a look
 at Makefile for information on how
 any of the following are created:
	Properties (including the target’s /default.prop and /system/build.prop).

	RAM disk.

	Boot image (combining the RAM disk and a kernel image).

	NOTICE files: These are
 files required by the AOSP’s use of the Apache Software License
 (ASL). Have a look at the ASL for more information about NOTICE files.

	OTA keystore.

	Recovery image.

	System image (the target’s /system directory).

	Data partition image (the target’s /data directory).

	OTA update package.

	SDK.

Nevertheless, some things aren’t
 in this file:
	Kernel images
	Don’t look for any rule to build these. There is no kernel
 part of the official AOSP releases—some of the third-party
 projects listed in Appendix E, however, actually
 do package kernel sources directly into the AOSPs they distribute.
 Instead, you need to find an Androidized kernel for your target,
 build it separately from the AOSP, and feed it to the AOSP. You
 can find a few examples of this in the devices in the device/ directory. In 2.3/Gingerbread,
 for example, device/samsung/crespo/ includes a
 kernel image (file called kernel) and a loadable module for the
 Crespo’s WiFi (bcm4329.ko
 file). Both of these are built outside the AOSP and copied in
 binary form into the tree for inclusion with the rest of the
 build.

	NDK
	While the code to build the NDK is in the AOSP, it’s
 entirely separate from the AOSP’s build system in build/. Instead, the NDK’s build system
 is in ndk/build/. We’ll
 discuss how to build the NDK shortly.

	CTS
	The rules for building the CTS are in build/core/tasks/cts.mk.

Cleaning

As I mentioned earlier, a make
 clean is very much the equivalent of wiping out the out/ directory. The clean target itself is defined in main.mk. There are, however, other cleanup
 targets. Most notably, installclean,
 which is defined in cleanbuild.mk,
 is automatically invoked whenever you change TARGET_PRODUCT, TARGET_BUILD_VARIANT or PRODUCT_LOCALES. For instance, if I had first
 built 2.3/Gingerbread for the generic-eng combo and then used lunch to switch the combo to
 full-eng, the next time I started
 make, some of the build output would
 be automatically pruned using installclean:
$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
...
==
*** Build configuration changed: "generic-eng-{mdpi,nodpi}" -> "full-eng-{en_US,
en_GB,fr_FR,it_IT,de_DE,es_ES,mdpi,nodpi}"
*** Forcing "make installclean"...
*** rm -rf out/target/product/generic/data/* out/target/product/generic/data-qem
u/* out/target/product/generic/userdata-qemu.img out/host/linux-x86/obj/NOTICE_F
ILES out/host/linux-x86/sdk out/target/product/generic/*.img out/target/product/
generic/*.txt out/target/product/generic/*.xlb out/target/product/generic/*.zip
out/target/product/generic/data out/target/product/generic/obj/APPS out/target/p
roduct/generic/obj/NOTICE_FILES out/target/product/generic/obj/PACKAGING out/tar
get/product/generic/recovery out/target/product/generic/root out/target/product/
generic/system out/target/product/generic/dex_bootjars out/target/product/generi
c/obj/JAVA_LIBRARIES
*** Done with the cleaning, now starting the real build.
In contrast to clean, installclean doesn’t wipe out the entirety of
 out/. Instead, it only nukes the
 parts that need rebuilding given the combo configuration change. There’s
 also a clobber target which is
 essentially the same thing as a clean.

Module Build Templates

What I just described is the build system’s architecture and the
 mechanics of its core components. Having read that, you should have a
 much better idea of how Android is built from a top-down perspective.
 Very little of that, however, permeates down to the level of AOSP
 modules’ Android.mk files. The
 system has in fact been architected so that module build recipes are
 pretty much independent from the build system’s internals. Instead,
 build templates are provided so that module authors can get their
 modules built appropriately. Each template is tailored for a specific
 type of module, and module authors can use a set of documented
 variables, all prefixed by LOCAL_, to
 modulate the templates’ behavior and output. Of course, the templates
 and underlying support files (mainly base_rules.mk) closely interact with the rest
 of the build system to deal properly with each module’s build output.
 But that’s invisible to the module’s author.
The templates are themselves found in the same location as the
 rest of the build system in build/core/. Android.mk gets access to them through the
 include directive. Here’s an
 example:
include $(BUILD_PACKAGE)
As you can see, Android.mk
 files don’t actually include the .mk templates by name. Instead, they include
 a variable that is set to the corresponding .mk file. Table 4-2 provides the full list of
 available module templates.
Table 4-2. Module build templates list
	Variable	Template	What It Builds	Most Notable Use
	BUILD_EXECUTABLE	executable.mk	Target binaries	Native commands and daemons
	BUILD_HOST_EXECUTABLE	host_executable.mk	Host binaries	Development tools
	BUILD_RAW_EXECUTABLE	raw_executable.mk	Target binaries that run on bare metal	Code in the bootloader/ directory
	BUILD_JAVA_LIBRARY	java_library.mk	Target Java libaries	Apache Harmony and Android Framework
	BUILD_STATIC_JAVA_LIBRARY	static_java_library.mk	Target static Java libraries	N/A, few modules use this
	BUILD_HOST_JAVA_LIBRARY	host_java_library.mk	Host Java libraries	Development tools
	BUILD_SHARED_LIBRARY	shared_library.mk	Target shared libraries	A vast number of modules, including many in external/ and frameworks/base/
	BUILD_STATIC_LIBRARY	static_library.mk	Target static libraries	A vast number of modules, including many in external/
	BUILD_HOST_SHARED_LIBRARY	host_shared_library.mk	Host shared libraries	Development tools
	BUILD_HOST_STATIC_LIBRARY	host_static_library.mk	Host static libraries	Development tools
	BUILD_RAW_STATIC_LIBRARY	raw_static_library.mk	Target static libraries that run on bare metal	Code in bootloader/
	BUILD_PREBUILT	prebuilt.mk	Copies prebuilt target files	Configuration files and binaries
	BUILD_HOST_PREBUILT	host_prebuilt.mk	Copies prebuilt host files	Tools in prebuilt/
 and configuration files
	BUILD_MULTI_PREBUILT	multi_prebuilt.mk	Copies prebuilt modules of multiple but known types, like
 Java libraries or executables	Rarely used
	BUILD_PACKAGE	package.mk	Built-in AOSP apps (i.e., anything that ends up being an
 .apk)	All apps in the AOSP
	BUILD_KEY_CHAR_MAP	key_char_map.mk	Device character maps	All device character maps in AOSP

These build templates allow Android.mk files to be usually fairly
 lightweight:
LOCAL_PATH := $(call my-dir) [image: 1]
include $(CLEAR_VARS) [image: 2]

LOCAL_VARIABLE_1 := value_1 [image: 3]

LOCAL_VARIABLE_2 := value_2

...

include $(BUILD_MODULE_TYPE) [image: 4]
	[image: 1]
	Tells the build template where the current module is
 located.

	[image: 2]
	Clears all previously set LOCAL_* variables that might have been set
 for other modules.

	[image: 3]
	Sets various LOCAL_*
 variables to module-specific values.

	[image: 4]
	Invokes the build template that corresponds to the current
 module’s type.

Note
Note that CLEAR_VARS, which
 is provided by clear_vars.mk,[19] is very important. Recall that the build system includes
 all Android.mk into what amounts
 to a single huge makefile. Including CLEAR_VARS ensures that the LOCAL_* values set for modules preceding
 yours are zeroed out by the time your Android.mk is included. Also, a single
 Android.mk can describe multiple
 modules one after the other. Hence, CLEAR_VARS ensures that previous module
 recipes don’t pollute subsequent ones.

Here’s the Service Manager’s Android.mk in 2.3/Gingerbread, for instance
 (frameworks/base/cmds/servicemanager/):[20]
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SHARED_LIBRARIES := liblog
LOCAL_SRC_FILES := service_manager.c binder.c
LOCAL_MODULE := servicemanager
ifeq ($(BOARD_USE_LVMX),true)
 LOCAL_CFLAGS += -DLVMX
endif

include $(BUILD_EXECUTABLE)
And here’s the one[21] from 2.3/Gingerbread’s Desk Clock app (packages/app/DeskClock/):
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := DeskClock
LOCAL_OVERRIDES_PACKAGES := AlarmClock
LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

include $(call all-makefiles-under,$(LOCAL_PATH))
As you can see, essentially the same structure is used in both
 modules, even though they provide very different input and result in
 very different output. Notice also the last line from the Desk Clock’s
 Android.mk, which basically
 includes all subdirectories’ Android.mk files. As
 I said earlier, the build system looks for the first makefile in a
 hierarchy and doesn’t look in any subdirectories underneath the
 directory where one was found, hence the need to manually invoke those.
 Obviously, the code here just goes out and looks for all makefiles
 underneath. However, some parts of the AOSP either explicitly list
 subdirectories or conditionally select them based on
 configuration.
The documentation at http://source.android.com used to
 provide an exhaustive list of all the LOCAL_* variables with their meaning and use.
 Unfortunately, at the time of this writing, this list is no longer
 available. The build/core/build-system.html file, however,
 contains an earlier version of that list, and you should refer to that
 one until up-to-date lists become available again. Here are some of the
 most frequently encountered LOCAL_*
 variables:
	LOCAL_PATH
	The path of the current module’s sources, typically provided
 by invoking $(call
 my-dir).

	LOCAL_MODULE
	The name to attribute to this module’s build output. The
 actual filename or output and its location will depend on the
 build template you include. If this is set to foo, for example, and you build an
 executable, then the final executable will be a command called
 foo and it will be put in the
 target’s /system/bin/. If
 LOCAL_MODULE is set to libfoo and you include BUILD_SHARED_LIBRARY instead of BUILD_EXECUTABLE, the build system will
 generate libfoo.so and put it
 in /system/lib/.
Note that the name you provide here must be unique for the
 particular module class (i.e., build template type) you are
 building. There can’t be two libfoo.so libraries, for instance. It’s
 expected that the module name will have to be globally unique
 (i.e., across all module classes) at some point in the future.

	LOCAL_SRC_FILES
	The source files used to build the module. You may provide
 those by using one of the build system’s defined functions, as the
 Desk Clock uses all-java-files-under, or you may list
 the files explicitly, as the Service Manager does.

	LOCAL_PACKAGE_NAME
	Unlike all other modules, apps use this variable instead of
 LOCAL_MODULE to provide their
 names, as you can witness by comparing the two Android.mk files shown earlier.

	LOCAL_SHARED_LIBRARIES
	Use this to list all the libraries your module depends on.
 As mentioned earlier, the Service Manager’s dependency on liblog
 is specified using this variable.

	LOCAL_MODULE_TAGS
	As I mentioned earlier, this allows you to control under
 which TARGET_BUILD_VARIANT this
 module is built. Usually, this should just be set to optional.

	LOCAL_MODULE_PATH
	Use this to override the default install location for the
 type of module you’re building.

A good way to find out about more LOCAL_* variables is to look at existing
 Android.mk files in the AOSP. Also,
 clear_vars.mk contains the full
 list of variables that are cleared. So while it doesn’t give you the
 meaning of each, it certainly lists them all.
Also, in addition to the cleaning targets that affect the AOSP
 globally, each module can define its own cleaning rules by providing a
 CleanSpec.mk, much like modules
 provide Android.mk files. Unlike
 the latter, though, the former aren’t required. By default, the build
 system has cleaning rules for each type of module. But you can specify
 your own rules in a CleanSpec.mk in
 case your module’s build does something the build system doesn’t
 generate by default and, therefore, wouldn’t typically know how to clean
 up.

Output

Now that we’ve looked at how the build system works and how module
 build templates are used by modules, let’s look at the output it creates
 in out/. At a fairly high level,
 the build output operates in three stages and in two modes, one for the
 host and one for the target:
	Intermediates are generated using the
 module sources. These intermediates’ format and location depend on
 the module’s sources. They may be .o files for C/C++ code, for example, or
 .jar files for Java-based
 code.

	Intermediates are used by the build system to create actual
 binaries and packages: taking .o files, for example, and linking them
 into an actual binary.

	The binaries and packages are assembled together into the
 final output requested of the build system. Binaries, for instance,
 are copied into directories containing the root and /system filesystems, and images of those
 filesystems are generated for use on the actual device.

out/ is mainly separated into
 two directories, reflecting its operating modes: host/ and target/. In each directory, you will find a
 couple of obj/ directories that
 contain the various intermediates generated during the build. Most of
 these are stored in subdirectories named like the one that the BUILD_* macros presented earlier and serve a
 specific complementary purpose during the build system’s
 operation:
	 EXECUTABLES/

	 JAVA_LIBRARIES/

	 SHARED_LIBRARIES/

	 STATIC_LIBRARIES/

	 APPS/

	 DATA/

	 ETC/

	 KEYCHARS/

	 PACKAGING/

	 NOTICE_FILES/

	 include/

	 lib/

The directory you’ll likely be most interested in is out/target/product/PRODUCT_DEVICE/.
 That’s where the output images will be located for the PRODUCT_DEVICE defined in the corresponding
 product configuration’s .mk. Table 4-3 explains the content of that
 directory.
Table 4-3. Product output
	Entry	Description
	android-info.txt	Contains the code name for the board for which this
 product is configured
	clean_steps.mk	Contains a list of steps that must be executed to clean
 the tree, as provided in CleanSpec.mk files by calling the
 add-clean-step
 function
	data/	The target’s /data
 directory
	installed-files.txt	A list of all the files installed in data/ and system/ directories
	obj/	The target product’s intermediaries
	previous_build_config.mk	The last build target; will be used on the next make to check if the config has
 changed, thereby forcing an installclean
	ramdisk.img	The RAM disk image generated based on the content of the
 root/ directory
	root/	The content of the target’s root filesystem
	symbols/	Unstripped versions of the binaries put in the root
 filesystem and /system
 directory
	system/	The target’s /system
 directory
	system.img	The /system image,
 based on the content of the system/ directory
	userdata.img	The /data image,
 based on the content of the data/ directory

Have a look back at Chapter 2 for a refresher on
 the root filesystem, /system, and
 /data. Essentially, though, when
 the kernel boots, it will mount the RAM disk image and execute the
 /init found inside. That binary, in
 turn, will run the /init.rc script
 that will mount both the /system
 and /data images at their
 respective locations. We’ll come back to the root filesystem layout and
 the system’s operation at boot time in Chapter 6.

Build Recipes

With the build system’s architecture and functioning in mind, let’s
 take a look at some of the most common, and some slightly uncommon, build
 recipes. We’ll only lightly touch on using the results of each recipe, but
 you should have enough information to get started.
The Default droid Build

Earlier, we went through a number of plain make commands but never really explained the
 default target. When you run plain make, it’s as if you had typed:[22]
$ make droid
droid is in fact the default
 target as defined in main.mk. You
 don’t usually need to specify this target manually. I’m providing it
 here for completeness, so you know it exists.

Seeing the Build Commands

When you build the AOSP, you’ll notice that it doesn’t
 actually show you the commands it’s running. Instead, it prints out only
 a summary of each step it’s at. If you want to see everything it does,
 like the gcc command lines for
 example, add the showcommands target
 to the command line:
$ make showcommands
...
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/c
lasses)
for f in ; do if [! -f $f]; then echo Missing file $f; exit 1; fi; unzip -qo $
f -d out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes; (cd ou
t/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes && rm -rf META-I
NF); done
javac -J-Xmx512M -target 1.5 -Xmaxerrs 9999999 -encoding ascii -g -extdirs ""
 -d out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes \@out/host
/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list-uniq || (rm
-rf out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes ; exit 41
)
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
-uniq
jar -cfm out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/javalib.jar b
uild/tools/apicheck/src/MANIFEST.mf -C out/host/common/obj/JAVA_LIBRARIES/apich
eck_intermediates/classes .
Header: out/host/linux-x86/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
cp -f external/expat/lib/expat_external.h out/host/linux-x86/obj/include/libexpa
t/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/target/product/generic/obj/include/libexpat
/expat.h
...
Illustrating what I explained in the previous section, this is the
 same as:
$ make droid showcommands
As you’ll rapidly notice when using this, it generates a lot of
 output and is therefore hard to follow. You may, however, want to save
 the standard output and standard error into files if you’d like to
 analyze the actual commands used to build the AOSP:
$ make showcommands > aosp-build-stdout 2> aosp-build-stderr
You can also do something like this to merge all output into a
 single file:
$ make showcommands 2>&1 | tell build.log
Some also report that they prefer using the nohup command instead:
$ nohup make showcommands

Building the SDK for Linux and Mac OS

 The official Android SDK is available at http://developer.android.com. You
 can, however, build your own SDK using the AOSP if, for instance, you
 extended the core APIs to expose new functionality and would like to
 distribute the result to developers so they can benefit from your new
 APIs. To do so, you’ll need to select a special combo:
$. build/envsetup.sh
$ lunch sdk-eng
$ make sdk
Once this is done, the SDK will be in out/host/linux-x86/sdk/ when built on Linux
 and in out/host/darwin-x86/sdk/
 when built on a Mac. There will be two copies, one a ZIP file, much like
 the one distributed at http://developer.android.com, and one uncompressed and
 ready to use.
Assuming you had already configured Eclipse for Android
 development using the instructions at http://developer.android.com, you’ll
 need to carry out two additional steps to use your newly built SDK.
 First, you’ll need to tell Eclipse the location of the new SDK. To do
 so, go to Window→Preferences→Android, enter the path to the new SDK in the
 SDK Location box, and click OK. Also, for reasons that aren’t entirely
 clear to me at the time of this writing, you also need to go to
 Window→Android SDK Manager, deselect all
 the items that might be selected except the first two under Tools, and
 then click “Install 2 packages...” Once that is done, you’ll be able to
 create new projects using the new SDK and access any new APIs you expose
 in it. If you don’t do that second step, you’ll be able to create new
 Android projects, but none of them will resolve Java libraries properly
 and will, therefore, never build.

Building the SDK for Windows

The instructions for building the SDK for Windows are slightly
 different from Linux and Mac OS:
$. build/envsetup.sh
$ lunch sdk-eng
$ make win_sdk
The resulting output will be in out/host/windows/sdk/.

Building the CTS

If you want to build the CTS, you don’t need to use envsetup.sh or lunch. You can go right ahead and
 type:
$ make cts
...
Generating test description for package android.sax
Generating test description for package android.performance
Generating test description for package android.graphics
Generating test description for package android.database
Generating test description for package android.text
Generating test description for package android.webkit
Generating test description for package android.gesture
Generating test plan CTS
Generating test plan Android
Generating test plan Java
Generating test plan VM
Generating test plan Signature
Generating test plan RefApp
Generating test plan Performance
Generating test plan AppSecurity
Package CTS: out/host/linux-x86/cts/android-cts.zip
Install: out/host/linux-x86/bin/adb
The cts command includes its
 own online help. Here’s the corresponding sample output from
 2.3/Gingerbread:
$ cd out/host/linux-x86/bin/
$./cts
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
$ cts_host > help
Usage: command options
Available commands and options:
 Host:
 help: show this message
 exit: exit cts command line
 Plan:
 ls --plan: list available plans
 ls --plan plan_name: list contents of the plan with specified name
 add --plan plan_name: add a new plan with specified name
 add --derivedplan plan_name -s/--session session_id -r/--result result_type:
 derive a plan from the given session
 rm --plan plan_name/all: remove a plan or all plans from repository
 start --plan test_plan_name: run a test plan
 start --plan test_plan_name -d/--device device_ID: run a test plan using the
 specified device
 start --plan test_plan_name -t/--test test_name: run a specific test
...
$ cts_host > ls --plan
List of plans (8 in total):
Signature
RefApp
VM
Performance
AppSecurity
Android
Java
CTS
Once you have a target up and running, such as the emulator, you
 can launch the test suite and it will use adb to run tests on the target:
$./cts start --plan CTS
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
Device(emulator-5554) connected
cts_host > start test plan CTS

CTS_INFO >>> Checking API...

CTS_INFO >>> This might take several minutes, please be patient...
...

Building the NDK

As I had mentioned earlier, the NDK has its own separate build
 system, with its own setup and help system, which you can invoke like
 this:
$ cd ndk/build/tools
$ export ANDROID_NDK_ROOT=aosp-root/ndk
$./make-release --help
Usage: make-release.sh [options]

Valid options (defaults are in brackets):

 --help Print this help.
 --verbose Enable verbose mode.
 --release=name Specify release name [20110921]
 --prefix=name Specify package prefix [android-ndk]
 --development=path Path to development/ndk directory [/home/karim/
 opersys-dev/android/aosp-2.3.4/development/ndk]
 --out-dir=path Path to output directory [/tmp/ndk-release]
 --force Force build (do not ask initial question) [no]
 --incremental Enable incremental packaging (debug only). [no]
 --darwin-ssh=hostname Specify Darwin hostname to ssh to for the build.
 --systems=list List of host systems to build for [linux-x86]
 --toolchain-src-dir=path Use toolchain sources from path
When you are ready to build the NDK, you can invoke make-release as follows, and witness its
 rather emphatic warning:
$./make-release
IMPORTANT WARNING !!

This script is used to generate an NDK release package from scratch
for the following host platforms: linux-x86

This process is EXTREMELY LONG and may take SEVERAL HOURS on a dual-core
machine. If you plan to do that often, please read docs/DEVELOPMENT.TXT
that provides instructions on how to do that more easily.

Are you sure you want to do that [y/N]
y
Downloading toolchain sources...
...

Updating the API

The build systems has safeguards in case you modify the AOSP’s
 core API. If you do, the build will fail by default with a warning such
 as this:

You have tried to change the API from what has been previously approved.

To make these errors go away, you have two choices:
 1) You can add "@hide" javadoc comments to the methods, etc. listed in the
 errors above.

 2) You can update current.xml by executing the following command:
 make update-api

 To submit the revised current.xml to the main Android repository,
 you will need approval.

make: *** [out/target/common/obj/PACKAGING/checkapi-current-timestamp] Error 38
make: *** Waiting for unfinished jobs....
As the error message suggests, to get the build to continue,
 you’ll need to do something like this:
$ make update-api
...
Install: out/host/linux-x86/framework/apicheck.jar
Install: out/host/linux-x86/framework/clearsilver.jar
Install: out/host/linux-x86/framework/droiddoc.jar
Install: out/host/linux-x86/lib/libneo_util.so
Install: out/host/linux-x86/lib/libneo_cs.so
Install: out/host/linux-x86/lib/libneo_cgi.so
Install: out/host/linux-x86/lib/libclearsilver-jni.so
Copying: out/target/common/obj/JAVA_LIBRARIES/core_intermediates/emma_out/lib/cl
asses-jarjar.jar
Install: out/host/linux-x86/framework/dx.jar
Install: out/host/linux-x86/bin/dx
Install: out/host/linux-x86/bin/aapt
Copying: out/target/common/obj/JAVA_LIBRARIES/bouncycastle_intermediates/emma_ou
t/lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/ext_intermediates/emma_out/lib/cla
sses-jarjar.jar
Install: out/host/linux-x86/bin/aidl
Copying: out/target/common/obj/JAVA_LIBRARIES/core-junit_intermediates/emma_out/
lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/emma_out/l
ib/classes-jarjar.jar
Copying current.xml
The next time you start make,
 you won’t get any more errors regarding API changes. Obviously at this
 point you’re no longer compatible with the official APIs and are
 therefore unlikely to be able to get certified as an “Android” device by
 Google.

Building a Single Module

Up to now, we’ve looked at building the entire tree. You can also
 build individual modules. Here’s how you can ask the build system to
 build the Launcher2 module (i.e., the Home screen):
$ make Launcher2
You can also clean modules individually:
$ make clean-Launcher2
If you’d like to force the build system to regenerate the system
 image to include your updated module, you can add the snod target to the command line:
$ make Launcher2 snod
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
target Package: Launcher2 (out/target/product/generic/obj/APPS/Launcher2_interme
diates/package.apk)
 'out/target/common/obj/APPS/Launcher2_intermediates//classes.dex' as 'classes.d
ex'...
Install: out/target/product/generic/system/app/Launcher2.apk
Install: out/host/linux-x86/bin/mkyaffs2image
make snod: ignoring dependencies
Target system fs image: out/target/product/generic/system.img

Building Out of Tree

If you’d ever like to build code against the AOSP and its
 Bionic library but don’t want to incorporate that into the AOSP, you can
 use a makefile such as the following to get the job done:[23]
Paths and settings
TARGET_PRODUCT = generic
ANDROID_ROOT = /home/karim/android/aosp-2.3.x
BIONIC_LIBC = $(ANDROID_ROOT)/bionic/libc
PRODUCT_OUT = $(ANDROID_ROOT)/out/target/product/$(TARGET_PRODUCT)
CROSS_COMPILE = \
 $(ANDROID_ROOT)/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

Tool names
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
LD = $(CROSS_COMPILE)ld
NM = $(CROSS_COMPILE)nm
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF \
 SIZE STRINGS STRIP

Build settings
CFLAGS = -O2 -Wall -fno-short-enums
HEADER_OPS = -I$(BIONIC_LIBC)/arch-arm/include \
 -I$(BIONIC_LIBC)/kernel/common \
 -I$(BIONIC_LIBC)/kernel/arch-arm
LDFLAGS = -nostdlib -Wl,-dynamic-linker,/system/bin/linker \
 $(PRODUCT_OUT)/obj/lib/crtbegin_dynamic.o \
 $(PRODUCT_OUT)/obj/lib/crtend_android.o \
 -L$(PRODUCT_OUT)/obj/lib -lc -ldl

Installation variables
EXEC_NAME = example-app
INSTALL = install
INSTALL_DIR = $(PRODUCT_OUT)/system/bin

Files needed for the build
OBJS = example-app.o

Make rules
all: example-app

.c.o:
 $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

example-app: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: example-app
 test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
 $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
 rm -f *.o $(EXEC_NAME) core

distclean:
 rm -f *~
 rm -f *.o $(EXEC_NAME) core
In this case, you don’t need to care about either envsetup.sh or lunch. You can just go ahead and type the
 magic incantation:
$ make
Obviously this won’t add your binary to any of the images
 generated by the AOSP. Even the install target here will be of value only if
 you’re mounting the target’s filesystem off NFS, and that’s valuable
 only during debugging, which is what this makefile is assumed to be
 useful for. To an extent, it could also be argued that using such a
 makefile is actually counterproductive, since it’s far more complicated
 than the equivalent Android.mk that
 would result if this code were added as a module part of the
 AOSP.
Still, this kind of hack can have its uses. Under certain
 circumstances, for instance, it might make sense to modify the
 conventional build system used by a rather large codebase to build that project against the
 AOSP yet outside of it; the alternative being to copy the project into
 the AOSP and create Android.mk
 files to reproduce the mechanics of its original conventional build
 system, which might turn out to be a substantial endeavor in and of
 itself.

Building Recursively, In-Tree

You can, if you really want to, hack yourself a makefile to build
 within the AOSP a component that is based on recursive makefiles instead
 of trying to reproduce the same functionality using Android.mk files, as was suggested in the
 last section. Several of the AOSP forks mentioned in Appendix E, for instance, include the kernel sources at the
 top level of the AOSP and modify the AOSP’s main makefile to invoke the
 kernel’s existing build system.
Here’s another example where an Android.mk was created by Linaro’s Bernhard
 Rosenkränzer in order to build
 ffmpeg—which relies on a GNU autotools-like script—using its original
 build files:
include $(CLEAR_VARS)
FFMPEG_TCDIR := $(realpath $(shell dirname $(TARGET_TOOLS_PREFIX)))
FFMPEG_TCPREFIX := $(shell basename $(TARGET_TOOLS_PREFIX))
FIXME remove -fno-strict-aliasing once the aliasing violations are fixed
FFMPEG_COMPILER_FLAGS = $(subst -I ,-I../../,$(subst -include \
system/core/include/arch/linux-arm/AndroidConfig.h,,$(subst -include \
build/core/combo/include/arch/linux-arm/AndroidConfig.h,, \
$(TARGET_GLOBAL_CFLAGS)))) -fno-strict-aliasing -Wno-error=address \
 -Wno-error=format-security
ifneq ($(strip $(SHOW_COMMANDS)),)
FF_VERBOSE="V=1"
endif

.PHONY: ffmpeg

droidcore: ffmpeg

systemtarball: ffmpeg

REALTOP=$(realpath $(TOP))

ffmpeg: x264 $(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates/libvpx.a
mkdir -p $(PRODUCT_OUT)/obj/ffmpeg
cd $(PRODUCT_OUT)/obj/ffmpeg && \
export PATH=$(FFMPEG_TCDIR):$(PATH) && \
$(REALTOP)/external/ffmpeg/configure \
 --arch=arm \
 --target-os=linux \
 --prefix=/system \
 --bindir=/system/bin \
 --libdir=/system/lib \
 --enable-shared \
 --enable-gpl \
 --disable-avdevice \
 --enable-runtime-cpudetect \
 --disable-libvpx \
 --enable-libx264 \
 --enable-cross-compile \
 --cross-prefix=$(FFMPEG_TCPREFIX) \
 --extra-ldflags="-nostdlib -Wl,-dynamic-linker, \
/system/bin/linker,-z,muldefs$(shell if test $(PRODUCT_SDK_VERSION) -lt 16; \
then echo -n ',-T$(REALTOP)/$(BUILD_SYSTEM)/armelf.x'; fi),-z,nocopyreloc, \
--no-undefined -L$(REALTOP)/$(TARGET_OUT_STATIC_LIBRARIES) \
-L$(REALTOP)/$(PRODUCT_OUT)/system/lib \
-L$(REALTOP)/$(PRODUCT_OUT)/obj/STATIC_LIBRARIES/libvpx_intermediates -ldl -lc" \
 --extra-cflags="$(FFMPEG_COMPILER_FLAGS) \
-I$(REALTOP)/bionic/libc/include -I$(REALTOP)/bionic/libc/kernel/common \
-I$(REALTOP)/bionic/libc/kernel/arch-arm \
-I$(REALTOP)/bionic/libc/arch-arm/include -I$(REALTOP)/bionic/libm/include \
-I$(REALTOP)/external/libvpx -I$(REALTOP)/external/x264" \
 --extra-libs="-lgcc" && \
$(MAKE) \
TARGET_CRTBEGIN_DYNAMIC_O=$(REALTOP)/$(TARGET_CRTBEGIN_DYNAMIC_O) \
TARGET_CRTEND_O=$(REALTOP)/$(TARGET_CRTEND_O) $(FF_VERBOSE) && \
$(MAKE) install DESTDIR=$(REALTOP)/$(PRODUCT_OUT)

Basic AOSP Hacks

You most likely bought this book with one thing in mind: to hack the
 AOSP to fit your needs. Over the next few pages, we’ll start looking into
 some of the most obvious hacks you’ll likely want to try. Of course we’re
 only setting the stage here with the parts that pertain to the build
 system, which is where you’ll likely want to start anyway.
Note
While the following explanations are based on 2.3/Gingerbread,
 they’ll work just the same on 4.2/Jelly Bean, and likely many versions
 after that one, too. The fact is, these mechanisms have been constant
 for quite some time. Still, where relevant, changes in 4.2/Jelly Bean
 are highlighted.

Adding a Device

Adding a custom device is most likely one of the topmost items (if
 not the topmost) on your list of reasons for reading this book. I’m
 about to show you how to do just that, so you’ll likely want to bookmark
 this section. Of course I’m actually only showing you the build aspects
 of the work. There are a lot more steps involved in porting Android to
 new hardware. Still, adding the new device to the build system will definitely
 be one of the first things you do. Fortunately, doing that is relatively
 straightforward.
For the purposes of the current exercise, assume you work for a
 company called ACME and that you’re tasked with delivering its latest
 gizmo: the CoyotePad, intended to be the best platform for playing all
 bird games. Let’s get started by creating an entry for our new device in
 device/:
$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ mkdir -p device/acme/coyotepad
$ cd device/acme/coyotepad
The first thing we’ll need in here is an AndroidProducts.mk file to describe the
 various AOSP products that could be built for the CoyotePad:
PRODUCT_MAKEFILES := \
 $(LOCAL_DIR)/full_coyotepad.mk
While we could describe several products (see build/target/product/AndroidProducts.mk for
 an example), the typical case is to specify just one, as in this case,
 and it’s described in full_coyotepad.mk:
$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
If you're using 4.2/Jelly Bean, use full_base.mk instead of full.mk
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES +=

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep
It’s worth taking a closer look at this makefile. First, we’re
 using the inherit-product function to
 tell the build system to pull in other product descriptions as the basis
 of ours. This allows us to build on other people’s work and not have to
 specify from scratch every bit and piece of the AOSP that we’d like to
 include. languages_full.mk will
 pull in a vast number of locales, and full.mk will make sure we get the same set of
 modules as if we had built using the full-eng combo.
With regard to the other variables:
	DEVICE_PACKAGE_OVERLAYS
	Allows us to specify a directory that will form the basis of
 an overlay that will be applied onto the AOSP’s sources, thereby
 allowing us to substitute default package resources with
 device-specific resources. You’ll find this useful if you’d like
 to set custom layouts or colors for Launcher2 or other apps, for
 instance. We’ll look at how to use this in the next
 section.

	PRODUCT_PACKAGES
	Allows us to specify packages we’d like to have this product
 include in addition to those specified in the products we’re
 already inheriting from. If you have custom apps, binaries, or
 libraries located within device/acme/coyotepad/, for instance,
 you’ll want to add them here so that they are included in the
 final images generated. Notice the use of the += sign. It allows us to append to the
 existing values in the variable instead of substituting its
 content.

	PRODUCT_COPY_FILES
	Allows us to list specific files we’d like to see copied to
 the target’s filesystem and the location where they need to be
 copied. Each source/destination pair is colon-separated, and pairs
 are space-separated among themselves. This is useful for
 configuration files and prebuilt binaries such as firmware images
 or kernel modules.

	PRODUCT_NAME
	The TARGET_PRODUCT, which
 you can set either by selecting a lunch combo or passing it as part of the
 combo parameter to lunch, as
 in:
$ lunch full_coyotepad-eng

	PRODUCT_DEVICE
	The name of the actual finished product shipped to the
 customer. TARGET_DEVICE derives
 from this variable. PRODUCT_DEVICE has to match an entry in
 device/acme/, since that’s
 where the build looks for the corresponding BoardConfig.mk. In this case, the
 variable is the same as the name of the directory we’re already
 in.

	PRODUCT_MODEL
	The name of this product as provided in the “Model number”
 in the “About the phone” section of the settings. This variable
 actually gets stored as the ro.product.model global property
 accessible on the device.

Version 4.2/Jelly Bean also includes a PRODUCT_BRAND that is typically set to
 Android. The value of this variable is then available as the ro.product.brand global property. The latter
 is used by some parts of the stack that take action based on the
 device’s vendor.
Now that we’ve described the product, we must also provide some
 information regarding the board the device is using through a BoardConfig.mk file:
TARGET_NO_KERNEL := true
TARGET_NO_BOOTLOADER := true
TARGET_CPU_ABI := armeabi
BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true
This is a very skinny BoardConfig.mk and ensures that we actually
 build successfully. For a real-life version of that file, have a look at
 device/samsung/crespo/BoardConfigCommon.mk in
 2.3/Gingerbread, and also at device/asus/grouper/BoardConfigCommon.mk in
 4.2/Jelly Bean.
You’ll also need to provide a conventional Android.mk in order to build all the modules
 that you might have included in this device’s directory:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

ifneq ($(filter coyotepad,$(TARGET_DEVICE)),)
include $(call all-makefiles-under,$(LOCAL_PATH))
endif
It’s in fact the preferred modus operandi to put all
 device-specific apps, binaries, and libraries within the device’s
 directory instead of globally within the rest of the AOSP. If you do add
 modules here, don’t forget to also add them to PRODUCT_PACKAGES as I explained earlier. If
 you just put them here and provide them valid Android.mk files, they’ll build, but they
 won’t be in the final images.
If you have several products sharing the same set of packages, you
 may want to create a device/acme/common/ directory containing the
 shared packages. You can see an example of this in 4.2/Jelly Bean’s
 device/generic/ directory. In that
 same version, you can also check how device/samsung/maguro/device.mk inherits from
 device/samsung/tuna/device.mk for
 an example of how one device can be based on another device.
Lastly, let’s close the loop by making the device we just added
 visible to envsetup.sh and lunch. To do so, you’ll need to add a
 vendorsetup.sh in your device’s
 directory:
add_lunch_combo full_coyotepad-eng
You also need to make sure that it’s executable if it’s to be
 operational:
$ chmod 755 vendorsetup.sh
We can now go back to the AOSP’s root and take our brand-new ACME
 CoyotePad for a runchase:
$ croot
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_coyotepad-eng
 4. full_passion-userdebug
 5. full_crespo4g-userdebug
 6. full_crespo-userdebug

Which would you like? [generic-eng] 3

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_coyotepad
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ make -j16
As you can see, the AOSP now recognizes our new device and prints
 the information correspondingly. When the build is done, we’ll also have
 the same type of output provided in any other AOSP build, except that it
 will be a product-specific directory:
$ ls -al out/target/product/coyotepad/
total 89356
drwxr-xr-x 7 karim karim 4096 2011-09-21 19:20 .
drwxr-xr-x 4 karim karim 4096 2011-09-21 19:08 ..
-rw-r--r-- 1 karim karim 7 2011-09-21 19:10 android-info.txt
-rw-r--r-- 1 karim karim 4021 2011-09-21 19:41 clean_steps.mk
drwxr-xr-x 3 karim karim 4096 2011-09-21 19:11 data
-rw-r--r-- 1 karim karim 20366 2011-09-21 19:20 installed-files.txt
drwxr-xr-x 14 karim karim 4096 2011-09-21 19:20 obj
-rw-r--r-- 1 karim karim 327 2011-09-21 19:41 previous_build_config.mk
-rw-r--r-- 1 karim karim 2649750 2011-09-21 19:43 ramdisk.img
drwxr-xr-x 11 karim karim 4096 2011-09-21 19:43 root
drwxr-xr-x 5 karim karim 4096 2011-09-21 19:19 symbols
drwxr-xr-x 12 karim karim 4096 2011-09-21 19:19 system
-rw------- 1 karim karim 87280512 2011-09-21 19:20 system.img
-rw------- 1 karim karim 1505856 2011-09-21 19:14 userdata.img
Also, have a look at the build.prop file in system/. It contains various global
 properties that will be available at runtime on the target and that
 relate to our configuration and build:
begin build properties
autogenerated by buildinfo.sh
ro.build.id=GINGERBREAD
ro.build.display.id=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.1908
49 test-keys
ro.build.version.incremental=eng.karim.20110921.190849
ro.build.version.sdk=10
ro.build.version.codename=REL
ro.build.version.release=2.3.4
ro.build.date=Wed Sep 21 19:10:04 EDT 2011
ro.build.date.utc=1316646604
ro.build.type=eng
ro.build.user=karim
ro.build.host=w520
ro.build.tags=test-keys
ro.product.model=Full Android on CoyotePad, meep-meep
ro.product.brand=generic
ro.product.name=full_coyotepad
ro.product.device=coyotepad
ro.product.board=
ro.product.cpu.abi=armeabi
ro.product.manufacturer=unknown
ro.product.locale.language=en
ro.product.locale.region=US
ro.wifi.channels=
ro.board.platform=
ro.build.product is obsolete; use ro.product.device
ro.build.product=coyotepad
Do not try to parse ro.build.description or .fingerprint
ro.build.description=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.190
849 test-keys
ro.build.fingerprint=generic/full_coyotepad/coyotepad:2.3.4/GINGERBREAD/eng.kari
m.20110921.190849:eng/test-keys
end build properties
...
Warning
You may want to carefully vet the default properties before
 using the build on a real device. Some developers have encountered
 some severe issues due to default values. In both 2.3/Gingerbread and
 4.2/Jelly Bean, for instance, ro.com.android.dataroaming is set to
 true in some builds. Hence, if
 you’re doing development on a device connected to a live cell network,
 changing the value to false might
 save you some money.

As you can imagine, there’s a lot more to be done here to make
 sure the AOSP runs on our hardware. But the preceding steps give us the
 starting point. However, by isolating the board-specific changes in a
 single directory, this configuration will simplify adding support for
 the CoyotePad to the next version of the AOSP that gets released.
 Indeed, it’ll just be a matter of copying the corresponding directory to
 the new AOSP’s device/ directory
 and adjusting the code therein to use the new APIs.

Adding an App

Adding an app to your board is relatively straightforward. As a
 starter, try creating a HelloWorld! app with Eclipse and the default
 SDK; all new Android projects in Eclipse are a HelloWorld! by default.
 Then copy that app from the Eclipse workspace to its destination:
$ cp -a ~/workspace/HelloWorld ~/android/aosp-2.3.x/device/acme/coyotepad/
You’ll then have to create an Android.mk file in aosp-root/device/acme/coyotepad/HelloWorld/
 to build that app:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := HelloWorld

include $(BUILD_PACKAGE)
Given that we’re tagging this module as optional, it won’t be included by default in
 the AOSP build. To include it, you’ll need to add it to the PRODUCT_PACKAGES listed in the CoyotePad’s
 full_coyotepad.mk.
If, instead of adding your app for your board only, you would like
 to add a default app globally to all
 products generated by the AOSP alongside the existing stock apps, you’ll
 need to put it in packages/apps/
 instead of your board’s directory. You’ll also need to modify one of the
 built-in .mk files, such as
 aosp-root/build/target/product/core.mk, to
 have your app built by default. This is not recommended, though, as it’s
 not very portable since it will require you to make this modification to
 every new AOSP release. As I stated earlier, it’s best to keep your
 custom modifications in device/acme/coyotepad/ in as much as
 possible.

Adding an App Overlay

Sometimes you don’t actually want to add an app but would rather
 modify existing ones included by default in the AOSP. That’s what app
 overlays are for. Overlays are a mechanism included in the AOSP to allow
 device manufacturers to change the resources provided (such as for
 apps), without actually modifying the original resources included in the
 AOSP. To use this capability, you must create an overlay tree and tell
 the build system about it. The easiest location for an overlay is within
 a device-specific directory such as the one we created in the previous
 section:
$ cd device/acme/coyotepad/
$ mkdir overlay
To tell the build system to take this overlay into account, we
 need to modify our full_coyotepad.mk such that:
DEVICE_PACKAGE_OVERLAYS := device/acme/coyotepad/overlay
At this point, though, our overlay isn’t doing much. Let’s say we
 want to modify some of Launcher2’s default strings. We could then do
 something like this:
$ mkdir -p overlay/packages/apps/Launcher2/res/values
$ cp aosp-root/packages/apps/Launcher2/res/values/strings.xml \
> overlay/packages/apps/Launcher2/res/values/
You can then trim your local strings.xml to override only those strings
 that you need. Most importantly, your device will have a Launcher2 that
 has your custom strings, but the default Launcher2 will still have its
 original strings. So if someone relies on the same AOSP sources you’re
 using to build for another product, they’ll still get the original
 strings. You can, of course, replace most resources like this, including
 images and XML files. So long as you put the files in the same hierarchy
 as they are found in the AOSP but within device/acme/coyotepad/overlay/, they’ll be
 taken into account by the build system.
Warning
Overlays can be used only for resources. You can’t overlay
 source code. If you want to customize parts of Android’s internals,
 for instance, you’ll still have to make those modifications in situ.
 There’s no way, currently at least, to isolate those changes to your
 board.

Adding a Native Tool or Daemon

Like the example above of adding an app for your board, you can
 add your custom native tools and daemons as subdirectories of device/acme/coyotepad/. Obviously, you’ll
 need to provide an Android.mk in
 the directory containing the code to build that module:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := hello-world
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := hello-world.cpp
LOCAL_SHARED_LIBRARIES := liblog

include $(BUILD_EXECUTABLE)
As in the app’s case, you’ll also need to make sure hello-world is part of the CoyotePad’s
 PRODUCT_PACKAGES.
If you intend to add your binary globally for all product builds
 instead of just locally to your board, you need to know that there are a
 number of locations in the tree where native tools and daemons are
 located. Here are the most important ones:
	system/core/ and
 system/
	Custom Android binaries that are meant to be used outside
 the Android Framework or are standalone pieces.

	frameworks/base/cmds/
	Binaries that are tightly coupled to the Android Framework.
 This is where the Service Manager and installd are found, for example.

	external/
	Binaries that are generated by an external project that is
 imported into the AOSP. strace,
 for instance, is here.

Having identified from the list above where the code generating
 your binary should go, you’ll also need to add it as part of one of the
 global .mk files such as
 aosp-root/build/target/product/core.mk. As I said
 above, however, such global additions are not recommended since they
 can’t be transferred as easily to newer AOSP versions.

Adding a Native Library

Like apps and binaries, you can also add native libraries for your
 board. Assuming, as above, that the sources to build the library are in
 a subdirectory of device/acme/coyotepad/, you’ll need an
 Android.mk to build your
 library:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := libmylib
LOCAL_MODULE_TAGS := optional
LOCAL_PRELINK_MODULE := false
LOCAL_SRC_FILES := $(call all-c-files-under,.)

include $(BUILD_SHARED_LIBRARY)
Note
Note that LOCAL_PRELINK_MODULE has been removed and is
 no longer necessary as of 4.0/Ice-Cream Sandwich.

To use this library, you must add it to the libraries listed by
 the Android.mk file of whichever
 binaries depend on it:
LOCAL_SHARED_LIBRARIES := libmylib
You’ll also likely need to add relevant headers to an include/ directory located in about the same
 location as you put your library, so that the code that needs to link
 against your library can find those headers, such as device/acme/coyotepad/include/.
Should you want to make your library apply globally to all AOSP
 builds, not just your device, you’ll need a little bit more information
 regarding the various locations where libraries are typically found in
 the tree. First, you should know that, unlike binaries, a lot of
 libraries are used within a single module but nowhere else. Hence, these
 libraries will typically be placed within that module’s code and not in
 the usual locations where libraries used systemwide are found. The
 latter are typically in the following locations:
	system/core/
	Libraries used by many parts of the system, including some
 outside the Android Framework. This is where liblog is, for
 instance.

	frameworks/base/libs/
	Libraries intimately tied to the framework. This is where
 libbinder is.

	frameworks/native/libs/
	In 4.2/Jelly Bean, many libraries that were in frameworks/base/libs/ in
 2.3/Gingerbread have been moved out and into frameworks/native/libs/.

	external/
	Libraries generated by external projects imported into the
 AOSP. OpenSSL’s libssl is here.

Similarly, instead of using a CoyotePad-specific include
 directory, you’d use a global directory such as system/core/include/ or frameworks/base/include/ or, in 4.2/Jelly
 Bean, frameworks/base/include/.
 Again, as stated earlier, you should carefully review whether such
 global additions are truly required, as they’ll represent additional
 work when you try to port for your device to the next version of
 Android.
Library Prelinking
If you look closely at the example Android.mk we provide for the library,
 you’ll notice a LOCAL_PRELINK_MODULE variable. To reduce the
 time it takes to load libraries, Android versions up to
 2.3/Gingerbread used to prelink most of their
 libraries. Prelinking is done by specifying ahead of time the address
 location where the library will be loaded instead of letting it be
 figured out at runtime. The file where the addresses are specified in
 2.3/Gingerbread is build/core/prelink-linux-arm.map, and the
 tool that does the mapping is called apriori. It contains entries such as
 these:
core system libraries
libdl.so 0xAFF00000 # [<64K]
libc.so 0xAFD00000 # [~2M]
libstdc++.so 0xAFC00000 # [<64K]
libm.so 0xAFB00000 # [~1M]
liblog.so 0xAFA00000 # [<64K]
libcutils.so 0xAF900000 # [~1M]
libthread_db.so 0xAF800000 # [<64K]
libz.so 0xAF700000 # [~1M]
libevent.so 0xAF600000 # [???]
libssl.so 0xAF400000 # [~2M]
...
assorted system libraries
libsqlite.so 0xA8B00000 # [~2M]
libexpat.so 0xA8A00000 # [~1M]
libwebcore.so 0xA8300000 # [~7M]
libbinder.so 0xA8200000 # [~1M]
libutils.so 0xA8100000 # [~1M]
libcameraservice.so 0xA8000000 # [~1M]
libhardware.so 0xA7F00000 # [<64K]
libhardware_legacy.so 0xA7E00000 # [~1M]
...
If you want to add a custom native library to 2.3/Gingerbread,
 you need to either add it to the list of libraries in prelink-linux-arm.map or set the LOCAL_PRELINK_MODULE to false. The build will fail if you forget to
 do one of these.
Library prelinking was dropped starting in 4.0/Ice-Cream
 Sandwich.

[18] If you do not provide a value, defaults will be used.
 For instance, all apps are set to optional by default. Also, some
 modules are part of GRANDFATHERED_USER_MODULES in
 user_tags.mk. No LOCAL_MODULE_TAGS need be specified
 for those; they’re always included.

[19] This file contains a set list of variables starting with the
 string LOCAL_. If a variable
 isn’t specifically listed in this file, it won’t be taken into
 account by CLEAR_VARS.

[20] This version is cleaned up a little (removed commented code,
 for instance) and slightly reformatted.

[21] Also slightly modified to remove white space and
 comments.

[22] This assumes you had already run envsetup.sh and lunch.

[23] This makefile is inspired by a blog
 post by Row Boat developer Amit Pundir and is based on the
 example makefile provided in Chapter 4 of Building
 Embedded Linux Systems, 2nd ed. (O’Reilly).

Chapter 5. Hardware Primer

Now that you have a good handle on Android’s build system, the next
 step is to incrementally explore how the built images are used on the
 target. To best accomplish that, we must step back and look at the hardware
 configurations Android is typically run on. Indeed, while Android can be
 made to run on a wide variety of embedded systems, it remains deeply rooted
 in the world of consumer electronics and, most notably, handsets.
We’re going to start by going over the typical system architecture of
 a hardware platform made for running Android. We’ll then discuss the
 architecture of a typical SoC and provide an overview of some of the more
 notable SoCs out there used to run Android. We’ll also cover the difference
 between virtual and physical address spaces, the typical host-target debug
 setup, and finish the chapter with a list of evaluation boards that you
 could use to prototype your embedded Android system and/or use to learn the
 trade.
Typical System Architecture

As we discussed in Chapter 1, Android should run on
 any hardware that runs Linux. Android, however, wasn’t built in a vacuum.
 It was originally designed for handsets, and its current architecture
 still reflects that. Figure 5-1
 illustrates the architecture block diagram of a prototypical embedded
 system made to run Android. Your actual target will likely differ,
 possibly greatly, from the one I illustrate. But for the sake of
 discussion, this diagram should be good enough.
[image: Typical system architecture block diagram]

Figure 5-1. Typical system architecture block diagram

The most important thing to note is that at the center of this
 system lies an SoC. We’ll discuss SoCs in greater detail in the next
 section. Suffice it to say for now that an SoC comprises a CPU and a bunch
 of peripheral controllers all on the same integrated circuit (IC) die. All
 other components on the target’s board are typically connected in one way
 or another to the SoC. Android essentially runs on that SoC and therefore
 controls and/or accesses everything on the board from that vantage
 point.
The Baseband Processor

The next component you want to pay attention to is the Baseband
 Processor. The majority of handsets on the market have separate
 processing units for running the user-facing software and managing the
 radio functions. These are typically known as the Application Processor
 (AP) and the Baseband Processor (BP), respectively.
You might wonder why there are two separate processors instead of
 just one. The reasons are both legal and technical. First, in the US,
 the law requires that software-defined radio (SDR) devices be certified
 by the Federal Communications Commission (FCC). Part of this
 certification is a requirement that the software controlling the radio
 may not be modified without authorization. Essentially, this means that
 under no circumstance should the end user of the device be allowed to
 change the way the radio operates or which frequencies it uses. In
 addition, there are hard real-time constraints on the operation of the
 radio functions. Hence, controlling the radio from the same CPU running
 the user-facing OS is not an option. There are also benefits in being
 able to put the AP to sleep while the BP continues operating.
Of course this is but a summary, and there is much more to say on
 this topic. However, for the purposes of our current discussion, assume
 that there’s no way to have a single processor running both Android and
 the software that controls the radio. Obviously if your embedded system
 isn’t a handset, or doesn’t have radio functions, just assume that the
 diagram doesn’t have a BP or any of the components attached to
 it.
Nevertheless, it’s worth understanding the BP and its interaction
 with the AP, since the architecture of Android’s RIL is tightly coupled
 to the underlying hardware. At a very simple level, the BP and AP talk
 to each other over some form of serial bus using AT commands. Notice
 that the BP has its own flash and RAM. This guarantees that the
 certified software running on the BP is isolated from the software
 running on the AP, and that the real-time OS (RTOS) running on the BP is
 focused on running a single thing: the radio’s operation. The BP, for
 instance, runs software implementing the GSM stack. Notice also that the
 SIM card and an RF transceiver are connected to the BP. The transceiver takes care of the
 actual RF transmission and reception with the tower, while the SIM card
 is used to identify the handset user with the mobile network operator
 (MNO).
Note
Telephony and wireless radio technologies are a world of their
 own. There is definitely a lot more to this topic than I could cover
 here. In fact, I’m barely scratching the surface. Real-life designs
 are infinitely more subtle than my simplification. Modern AP-BP
 interaction, for instance, may not actually rely on either a serial
 line or AT commands, but rather use mapped memory and proprietary
 handshake protocols. For the sake of the current conversation, though,
 the simple explanation is again good enough.
If you’d like to get more information on the radio architecture
 of smartphones, I would suggest reading Harald Welte’s “Anatomy of contemporary GSM cellphone
 hardware” and visiting this
 xda-developers thread.

Core Components

Although many of the components we’ll discuss may or may not be
 present in your embedded system, a handful would most certainly be
 present in any embedded system, be it Android or another: RAM and
 storage. There isn’t much to be said about RAM, but the storage may come
 in different incarnations.
Traditionally, most embedded systems would be equipped with either
 NOR or NAND flash, and a flash filesystem would be used to manage those
 chips and implement wear-leveling. More recently, however, the trend has
 been toward using embedded MultiMediaCard (eMMC) chips. Essentially,
 these are chips that appear as SD cards and are managed by the Linux
 kernel as a traditional block device (i.e., the same as a conventional
 ATA hard drive). Hence, these systems don’t have any NOR or NAND flash,
 just an eMMC chip. Their SoC chips have the required modules to do basic
 reads and boot directly from a partition on the eMMC.
Also, there may be more than one storage device attached to the
 system. Android in fact distinguishes between “internal” and “external”
 storage. “Internal” storage typically designates the onboard eMMC, while
 “external” storage designates the user-removable SD card attached to the
 phone or tablet. The former hosts Android itself and is used for booting
 and regular filesystem operations. The latter stores pictures and other
 multimedia content. Of course, this distinction is of little use to you
 if your device isn’t a phone or a tablet, but the Android App
 Development API reflects Android’s phone heritage and makes a
 distinction between those two types of storage.
Note
Note that on some more recent devices, the “external” storage is
 nothing more than a FUSE (Filesystem in User SpacE)–mounted filesystem
 over a specific directory of the system’s “internal” storage. Such is
 the case of all modern Nexus devices, such as the Galaxy Nexus, Nexus
 4, 7, and 10.

Another component that you are likely to find in any
 battery-powered device is a Power Management IC (PMIC). The PMIC’s job
 is to manage all aspects of the battery, including regulating the
 voltage it provides and controlling its charging. The PMIC is typically
 connected to the battery and whatever DC power is used to feed the
 board. On most consumer devices, the external DC power comes from the
 USB On-the-Go (OTG) connector, which doubles as a plug for the power
 charger. In the case of nonmobile devices (and even in the case of some
 mobile devices), the external power isn’t provided through USB but
 through some other type of connector, such as a barrel connector.
The PMIC is connected to the SoC through SPI,
 I2C, and/or GPIO. It can generate interrupts
 for such things as low battery or the charger being attached. It can (and
 increasingly does) also include functionality other than just power
 management. For instance, it may include a real-time clock (RTC), an
 audio codec, and a USB transceiver.

Real-World Interaction

Android is of course mainly a user-facing system. As suggested by
 its Compatibility Definition Document (CDD), a system built with it
 should allow rich user interaction and comprise quite a few hardware
 components that allow tying in to the user’s immediate physical
 surroundings. This, in turn, means that there are quite a few hardware
 components dedicated to this task.
First and foremost, there are the parts tied to direct user
 interaction, such as the display, touch input, and the keyboard. While
 phones typically use the SoC’s integrated display capabilities directly,
 devices with larger displays, such as tablets, will typically have a
 display bridge for low-voltage differential signaling (LVDS)–driven LCD
 displays. There’s also typically a touch controller for handling the
 onscreen touch sensors and some form of circuitry for handling the use
 of a keyboard or any physical button on the device.
Second, there are parts that allow the user to have the device
 interact with the world around it. This includes things such as the
 camera (or cameras—e.g., some devices have both front- and rear-facing
 cameras, for video chatting), which is controlled by the SoC, and audio
 I/O, which is controlled by the audio codec IC. But hardware also
 includes a variety of components for sensing the physical properties of
 the device’s immediate environment and mechanically interacting with
 it.
A wide range of sensors, for example, may be found in an Android
 device, such as an accelerometer, a gyroscope, a thermometer, a
 barometer, a photometer, a magnetometer, and a proximity sensor. I’ve
 illustrated only a “Sensors” IC to simplify the diagram, but there can
 in fact be many sensor ICs on the board. There are also components for
 creating vibrations and/or providing haptic feedback to the user. Again,
 several components may be involved.

Connectivity

One of Android’s features is its connectivity, and the hardware
 used to run it reflects this with controllers, connectors, and antennas
 for a range of standards such as USB, WiFi, Bluetooth, GPS, and NFC.
 Again, these tend to increasingly be packaged together instead of being
 separate ICs.
Most consumer Android devices on the market provide only a USB OTG
 connector for connecting the device to a computer or plugging in another
 USB device, such as a camera or a USB stick. A very limited number of
 devices will also allow the USB OTG connector to be used as a USB host.
 Even fewer devices provide separate USB host connectors for plugging in
 peripherals, as you typically would to a USB host such as a PC or a
 Mac.

Expansion, Development, and Debugging

In addition to the typical components found in the mainstream
 Android devices I just covered, SoCs can also generally accommodate a
 slew of other components and peripherals. While most of these won’t be
 found in consumer handsets or tablets, they can definitely be used in
 other Android-based embedded systems. Some are more or less well
 supported by the Android stack, while others aren’t at all. But that’s
 what got you into embedded development anyway, right? To boldly go where
 no other sane developer would?
Hence, you’ll easily find development boards equipped with
 components and connectors for Ethernet, USB host, serial (RS-232), JTAG,
 and expansion headers. The popular BeagleBoard and PandaBoard, for
 instance, have most of these. JTAG is a hardware-level debugging interface and
 therefore doesn’t need any software support from either the Linux kernel
 or the Android stack. Expansion headers exposed by development boards
 will usually allow a peripheral board (i.e., add-on modules connected
 through the expansion headers) to be connected to some of the SoC’s
 pins, such as I2C or GPIO. It’ll then be up
 to you to make sure you load the appropriate device drivers to enable
 Linux to talk to the peripherals on the add-on module.
Serial port connectivity is provided by the Linux kernel’s TTY
 layer. So long as your kernel has support for console on serial for your
 SoC (as it typically would if Linux runs on your SoC), this should work
 practically “out of the box.” Serial-port connectivity is crucial for
 embedded systems, especially during board bringup, since it’s a simple
 yet effective way for the host and target to communicate.
USB host mode will work if you are using Android 3.1 or later.
 Earlier versions, including Gingerbread, do not have USB host mode
 support in the Android stack. But that doesn’t preclude the underlying
 Linux kernel from supporting the same set of USB devices it does by
 default. It only means that the app API for USB host mode, available
 starting with Android 3.1, won’t be available to you.
A similar situation affects Ethernet. While you can connect an
 Android device using an Ethernet connection to a network, the Android
 stack doesn’t recognize Ethernet as a valid data communication path—only
 WiFi and packet switching (i.e., your wireless carrier’s data
 connection.) Hence, while some applications will work when the Ethernet
 connection is properly set, some others won’t.
Adding Ethernet Support to Android
Android doesn’t currently deal properly with Ethernet by
 default, but that hasn’t stopped those needing Ethernet from
 supporting it. If you’re interested in this type of functionality,
 have a look at the following work:
	Fabien Brisset and Benjamin Zores have put together a set of
 patches for 4.0/Ice-Cream Sandwich and 4.1/Jelly Bean to support
 Ethernet. The patches are on GitHub, and
 you can find the presentation Benjamin did about this work at the
 Embedded
 Linux Conference Europe in November 2012.

	Linaro has created its own set of patches for adding the
 same functionality. These changes are available here,
 here,
 and here.

It’s understandable that the AOSP doesn’t officially support
 Ethernet at this point: It’s not a technology commonly found in the
 type of devices where Google is pushing Android. Should Android be
 aimed at other types of devices in the future, this may change.

What’s in a System-on-Chip (SoC)?

Up to this point, we’ve discussed the SoC as a black box. Let’s take
 a peek inside and see what’s in there. Have a look at Figure 5-2 for a representation of the internals of a
 typical SoC.
[image: A typical System-on-Chip (SoC)]

Figure 5-2. A typical System-on-Chip (SoC)

As you can see, there’s much more than the CPU cores. An SoC is to
 some extent its own circuit board, with a bus interconnecting a variety of
 different components (typically known as the “interconnect fabric”). The
 number and complexity of each component depends on the SoC and its
 manufacturer. There’s no real standard here, although most SoCs on the
 market include a similar set of basic components that are essentially
 interchangeable, even though they come from different manufacturers. And
 as in the case of the system architecture block diagram covered earlier,
 many of these components may be grouped together or even further divided
 into additional modules. This, after all, is a simplified view. Note also
 that not all components within an SoC operate at the same clock speed. So
 while the CPU may be listed as operating close to or above the gigahertz
 mark, for instance, the graphics processing unit (GPU) is likely operating
 at several hundred megahertz only.
Note
GPUs typically have a clock speed divided down from the CPU’s own
 speed. If the CPU is clocked at 1GHz, for instance, the GPU may be
 running at 250MHz. Though they run slower, GPUs are made up of massively
 parallel computing units. Even if the CPU is dual-core, the GPU may have
 16 or 64 cores.

Table 5-1 lists some of the most prominent
 SoCs used for Android at the time of this writing. As you can see, the
 market is increasingly offering dual-core Android devices, and quad-core
 devices are just around the corner. Manufacturers are “out-coring”
 themselves as fast as they can. That doesn’t mean your embedded Android
 system needs to have that much firepower, but chances are that component
 pricing will bring the cost of a multicore SoC within your design’s reach
 in the foreseeable future.
Table 5-1. SoC lineup
	SoC	Manufacturer	CPU	Speed	GPU
	OMAP3	Texas Instruments (TI)	ARM Cortex-A8	600MHz−1.2GHz	PowerVR SGX530
	OMAP4	TI	Dual-core ARM Cortex-A9	1−1.8GHz	PowerVR SGX54x
	OMAP5	TI	Dual-core ARM Cortex-A15	2GHz	PowerVR SGX544
	i.MX51	Freescale	Cortex-A8	800MHz	OpenGL ES 2.0-compatible[a]
	i.MX53	Freescale	Cortex-A8	1GHz	OpenGL ES 2.0-compatible
	i.MX6	Freescale	Dual- or quad-core Cortex-A9	1GHz	OpenGL ES 2.0-compatible
	Tegra 2	Nvidia	Dual-core ARM Cortex-A9	1−1.2GHz	GeForce
	Tegra 3	Nvidia	Quad-core ARM Cortex-A9	1.3GHz	GeForce
	Snapdragon S2	Qualcomm	Scorpion[b]	800MHz−1.5GHz	Adreno 205
	Snapdragon S3	Qualcomm	Dual-core Scorpion	1.2−1.5GHz	Adreno 220
	Snapdragon S4	Qualcomm	Dual-core Krait[c]	1−1.7GHz	Adreno 225 or 320
	Exynos	Samsung	Single or Dual-core ARM Cortex-A8	1−1.5GHz	PowerVR SGX540 or ARM MALI-400
	Exynos 4	Samsung	Quad-core Cortex-A9	1.4−1.6GHz	ARM MALI-400 MP4
	Exynos 5	Samsung	Quad-core Cortex-A15	2.0GHz	ARM MALI-T658
	Atom	Intel	Single core x86	1.6−2GHz	PowerVR SGX540
	MT6575	Mediatek	Cortex-A9	1GHz	PowerVR Series5 SGX
	MT6577	Mediatek	Dual-core Cortex-A9	1GHz	PowerVR Series5 SGX
	[a] No additional details about the origin of the GPU engine
 are provided in Freescale’s data sheet.

[b] This is specific to Qualcomm and, according to
 Wikipedia, is similar to an ARM Cortex-A8.

[c] This is specific to Qualcomm and, according to
 Wikipedia, is similar to an ARM Cortex-A15.

The Linux kernel has supported symmetric multiprocessing for quite
 some time, so you won’t have trouble with its handling of a multicore SoC.
 The Android stack has only recently started being run on multicore
 processors, and while it implicitly benefits from Linux’s multicore
 capabilities, the Android stack itself doesn’t, at the time of this
 writing, contain any specific multicore optimizations. Hence, if you have
 code that must run on multiple CPUs simultaneously, you will need to
 manually make sure that each thread has its CPU affinity properly set.
Traditionally, Android is used with ARM-based SoCs, as is well
 reflected by the table above. But as we saw earlier, it has been made to
 run on a variety of other architectures supported by Linux, such as x86,
 MIPS, SuperH, and PowerPC. In fact, a number of devices from the likes of
 Motorola and Lenovo have already shipped with Intel-based chips. Google
 and Intel collaborated, in fact, to bring x86 support into the upstream
 AOSP. Most of the tools, documentation, and examples found on the Net
 remain, however, ARM-centric for the time being.
Another important component in the SoC is the GPU, which is
 responsible for accelerating the rendering of graphics to the device’s
 display. While most CPU cores for Android SoCs are ARM-based, there’s no
 standard GPU used by all SoC manufacturers. Instead, each manufacturer
 uses a different GPU, as you can see in Table 5-1. As mentioned earlier, these are clocked at
 several hundred megahertz (300 to 500) even if the CPU core(s) they’re
 packaged with on the same SoC are clocked at speeds close to or above
 1GHz.
Apart from the CPU and the GPU, the role of most of the rest of the
 components in the SoC can be more modestly described:
	RAM controller
	Interfaces with the onboard RAM.

	DMA
	Handles the automated transfers of data between the RAM and
 memory-mapped hardware.

	USB controller
	Manages the hardware side of the device’s USB
 connections.

	DSP
	Provides hardware acceleration for some signal processing,
 such as JPEG encoding.

	Display
	Enables the SoC to drive various display types.

	Camera
	Allows the SoC to interface with a camera.

	Storage
	Manages I/O with the various types of storage that can be used
 with the SoC.

	Debug
	Enables the SoC to be connected to hardware debugging tools
 through various mechanisms, such as JTAG.

The SoC also likely contains some cryptographic and security
 functionality. This may consist simply of hardware acceleration for common
 cryptographic functions. It may also include security mechanisms made
 available by the SoC manufacturer to device manufacturers for locking the
 device and for preventing unauthorized code from running. Such mechanisms
 are often used to implement digital rights management (DRM) and can lead
 to frustration by people wanting to reprogram their devices.
 Unfortunately, however, consumers aren’t the SoC manufacturers’ direct
 customers, and the ethical issues surrounding the use of such technology
 far exceed our present scope.
Finally, the SoC most likely has capabilities to connect to
 additional external ICs using a variety of different buses and interfaces.
 This is how, for instance, most of the components described in the
 previous section are connected to the SoC through wiring on the PCB. Such
 buses and interfaces may include I2C, SPI,
 UART, and GPIO, but may include other mechanisms as well.
The specific capabilities and makeup of each SoC are typically
 documented by its manufacturer in data sheets it provides to device
 manufacturers, as well as OS and device-driver developers. Often, SoC
 manufacturers will provide a set of drivers for the most important
 components found in the SoC, such as the GPU, for instance. Most SoC
 vendors tend to, in fact, go much further and provide AOSP trees that are
 known to work “out of the box” on their own evaluation boards.

Memory Layout and Mapping

To be of any use, the hardware components we just saw must be
 accessible in some way from software. In general, this is done through
 device drivers in the Linux kernel. Applications then use the standard
 interfaces exposed by those drivers to, in effect, talk to the underlying
 hardware. Figure 5-3 illustrates how this
 works.
One of the buses connected to any CPU is an address bus. This bus is
 connected so as to allow the CPU access to the components attached to it
 using separate address ranges. In fact, most components occupy several,
 often consecutive, address regions. The addresses accessible by the CPU
 through its address bus are typically referred to as
 physical addresses, meaning they represent real,
 physical components connected to the CPU. When the CPU refers to any of
 these addresses, there are actual electrical signals being applied to the
 address bus on the printed circuit board (PCB) by the CPU, allowing it to
 designate a specific IC component.
[image: Virtual versus physical address spaces]

Figure 5-3. Virtual versus physical address spaces

The actual location of each of the components in the physical adress
 space is typically known as the physical address
 map and is determined by the device’s designers as they route
 the connections from the SoC to the various components included on the
 PCB. Two separate boards having identical components can have totally
 different physical memory maps. What’s important is that each device
 driver know the location of the component or components it needs to talk
 to. Sometimes, the component the driver communicates with is actually a
 bus itself. In that case, that component acts as a bridge for additional
 components connected to it using its own specific bus. Such is the case
 for components connected to the SoC through
 I2C, for instance.
Note
If you’d like to look at the physical memory map that your kernel
 sees at runtime, all you need to do is go to a command line and type
 cat /proc/iomem. That map might not
 contain all peripherals on your actual board, but it will contain those
 seen by the kernel. Some ICs or peripherals might not be listed because
 no driver registered with the kernel recognizes or deals with
 them.

The mapping between applications and devices works because
 the CPU manages two entirely separate address spaces through its memory
 management unit (MMU). Using its MMU, the CPU can present a virtual
 address space to applications running on it and still use a physical
 address space to communicate with components connected to it through its
 address bus.
One of the components residing in the physical address space is the
 system RAM. As you can see in Figure 5-3, the RAM
 location in the physical address space can vary greatly. Obviously, RAM is
 used to hold all active software code and data. However, this code and
 data is rarely addressed using references to its actual physical location.
 Instead, the OS collaborates with the MMU to implement a virtual address
 space wherein each process gets a similar view of the world. Virtual
 addresses eventually map to actual physical addresses, but the conversion
 is automatically handled by the MMU based on OS-maintained page
 tables.
It’s beyond the scope of this book to explain paging and MMUs’
 operation in full, but just remember that the address ranges you see in
 your applications have nothing to do with the actual addresses being put
 by the CPU on its address bus to access your code and data. Figure 5-3 illustrates the virtual address space where
 Android processes live—bear in mind that the layout is not proportional.
 Some objects may be larger or smaller than they appear. The kernel is
 always seen as occupying an address range starting at 0xC000 0000 as its low address. Android apps, on
 the other hand, occupy the entire address space below that address.
The actual application “text,” that is, the application’s code, sits
 very near the beginning of the virtual address space. It’s followed by
 mapped memory regions. These are virtual addresses that point either to
 RAM shared with other processes for interprocess communication, or
 physical address ranges mapped into the process’s address space using the
 corresponding driver’s mmap()
 function.
The mapping of physical address ranges into a process’s address
 space allows that process to directly drive an IC component or another
 connected device, instead of having to go through the kernel and the
 device’s driver for every operation. This is especially useful for
 performance-intensive operations such as graphics rendering. However, it’s
 also an effective means of exporting critical device-driver intelligence
 outside the kernel and, therefore, subtracting it from the kernel’s GPL requirements. In fact,
 it’s a very effective way of implementing key driver functionality in
 Android HAL components.
Finally, libraries start at 0x8000
 0000, and the process’s stack grows downward from the process’s
 topmost address. Except where your software uses memory-mapped registers
 and regions to operate on hardware, the path for calls affecting hardware
 is usually as follows:
	Your code calls on a function that interacts with a file
 descriptor associated with hardware. The immediate code called is
 actually in one of the system libraries mapped into your process’s
 address space. This function typically has more “sugar-coating” than
 the raw kernel system call.

	The library does some processing and eventually calls a matching
 system call.

	The system call handler then does further processing and invokes
 various functions inside the kernel.

	Eventually some part of the kernel invokes the device driver
 matching the device associated with the file descriptor held by your
 application.

	The device driver interacts with the hardware using whichever
 method is applicable. The result of this is of course hardware
 dependent. In some cases, the device driver may be able to read back a
 status and return it immediately. In other cases, the hardware
 feedback may occur only at a much later time. In other cases still,
 there may be no expected feedback.

	Assuming the hardware does provide some feedback to the driver
 or generates an interrupt in response to the earlier operation, the
 call path will start to return from where it came.

	The call path returns back from the driver to whatever invoked
 it.

	The call path returns back to the system call handler.

	The call path returns back to the system library.

	The call path returns back to your code.

The only part of the preceding call chain that might involve
 physical addresses is where the device driver code communicates with its
 designated hardware. The rest of the calls being made and data being
 exchanged all happen in virtual address space.

Development Setup

As soon as you have some prototype hardware, and continuing
 throughout board bringup and development, it’s very practical to have your
 target hooked up to your development workstation. Figure 5-4 illustrates a generic host-target debug setup. Your
 specific hookup will likely differ, but this setup represents the
 ideal.
[image: Host-target debug setup]

Figure 5-4. Host-target debug setup

Here, the connections between the host and the target can serve a
 variety of sometimes overlapping purposes. By connecting the target’s
 power to a software-controlled power source managed by the host, the
 power-on/power-off of the board can be scripted on the host and hence be
 used to automate the testing of various software versions on the board.
 There are several power strips on the market that allow you to set up
 something like this.
The classic way that a target is connected to its host is through a
 serial connection, typically RS-232. This usually allows you to interact
 with the board’s bootloader, upload and download small files, and
 generally interact with the target when nothing else works. Obviously this
 connection is relatively slow, and its purpose is really for basic
 interaction; transferring large amounts of data is best suited for
 something like Ethernet.
The Ethernet connection will allow the host to provide a wide range
 of services to the target, as illustrated in Figure 5-5. To ease the iterative debug process, for
 instance, it’s best to have the target use DHCP to retrieve its IP
 configuration, use TFTP to load its kernel images, and mount its root
 filesystem through NFS. If you do that, then any change you make to your
 project on the host will be deployed to the target via reboot, at worst.
 At best, you just update a file in the NFS-mounted root filesystem, and
 all you need to do is restart a command to run its new version. In all
 cases, you save yourself the trouble of having to manually reprogram the
 target’s storage every time you make a change.
[image: Development boot setup]

Figure 5-5. Development boot setup

Finally, and especially in the case of Android, USB can be very
 useful. Indeed, with Android you can rely on USB to connect to the target
 using ADB very much as an app developer would connect to a consumer phone
 or tablet for app development. All the typical ADB commands would then be
 available to you, including shelling into the target, forwarding ports,
 updating filesystems, etc. Whereas you can configure ADB to run over IP,
 and therefore over Ethernet, having it available through USB is great
 because it works “out of the box.”
Note
Setting up ADB over IP is actually relatively simple: It’s just
 that you have fewer command-line parameters to deal with if it’s over
 USB. Most importantly, USB is the case most widely covered by
 documentation you’ll find on the Net. We’ll cover this topic in greater
 detail in the next chapter.

Your specific setup will most likely contain its own quirks, but the
 configuration shown here should give you a general idea of what you want
 to aim for. Serial support is usually provided by the bootloader and the
 kernel. Unless you’re bringing up a board based on a whole new CPU, you
 should already have access to serial-port communication. Ethernet support
 will require a proper driver for the Ethernet chip used on your board.
 This may require some work on your part. Finally, USB support will depend
 on whether the USB hardware on your target is properly supported by the
 kernel. If you’re using a common SoC, this shouldn’t be an issue. If you
 need help setting up a DHCP server, TFTP, or NFS for servicing your
 target, have a look at O’Reilly’s Building
 Embedded Linux Systems, 2nd ed (2008).

Evaluation Boards

If you’re still early in your development process or are simply
 evaluating Android, you’ll likely want to rely on an evaluation board.
 Here are some factors that you may want to consider when selecting
 one:
	SoC
	Does it rely on the SoC you’re going to use in your final
 design? Is the SoC of the same family? Or is it a previous iteration
 of the yet-to-be-released SoC you plan on using from a given
 manufacturer?

	Community
	Is there a community around the board, or is the manufacturer
 the only source of support? How active is this community? Is it
 built around a single board or a family of boards?

	Cost
	What’s the up-front cost of the board, and what’s included for
 that price? How much do add-ons or extensions cost? What’s the price
 difference between the low-end option and the high-end option, and
 what are the feature differences?

	Features
	What functionality is included/exposed by the board? SoCs can
 increasingly support a wide range of functionality. Yet, the more
 SoC features the board makes available, the more expensive it tends
 to be. So does the board you’re looking at expose the features you
 need?

	Expandability
	The basic features provided by the board may suffice for a
 certain percentage of what you’re trying to accomplish, but does the
 board allow you to attach additional hardware so you can emulate the
 final functionality you’re aiming for?

	Availability
	How easy is it to get your hands on the board? Some boards
 look very nice on paper but have fluctuating supplies.

	Licensing
	Can you use the board as is for end products? Some
 manufacturers forbid you from doing that. Do you have access to the
 bill of materials (BOM) and the schematics? If you want to build a
 board based on the eval board, these will be critical.

	Catalog parts
	Is the board using catalog parts? If the board relies on
 noncatalog parts, then you’ll need to go to their manufacturer to
 get your hands on them. Usually, this situation occurs when the
 manufacturer wants to sell components only to very-high-volume
 buyers, making such parts beyond the reach of people doing small
 projects.

	Third-party parts
	Sometimes SoC vendors include third-party parts in their
 boards. Make sure you apply a similar set of criteria to those
 components. Keep in mind that, should you use third-party components
 in your design, you’ll be dependent on those suppliers for almost
 exactly the same kind of support you’d expect from the SoC
 vendor.

	Software support
	How well is Android supported on the board? And by whom? The
 manufacturer? A third party? Which versions of Android are
 supported? What’s the long-term commitment behind such
 support?

You’ll also most certainly have more criteria for your own project.
 If you’re building your own hardware, however, your starting point will
 usually be the SoC, as this is a critical decision point involving quite a
 few stakeholders in your organization, both on the hardware and software
 sides. And then, your next step will be to go to that SoC’s manufacturer
 site to check the eval board(s) it recommends for that SoC. If you’re
 looking only to get your hands on a decent board that will allow you to
 experiment with Android, you’re likely going to hit your favorite search
 engine for hours of fun looking at the various evaluation boards out
 there. Either way, have a look at Table 5-2
 for some of the more prominent eval boards as of early 2013.
Table 5-2. Evaluation boards lineup
	Board	SoC	Speed	RAM	I/O	Cost[a]
	BeagleBone	Sitara AM3358	500MHz (on USB) / 720MHz (on DC)	256MB	USB OTG, USB host, Ethernet, onboard serial, onboard JTAG,
 expansion headers, microSD	$89
	BeagleBoard xM	Davinci DM3730	1GHz	512MB	USB OTG, USB host, Ethernet, serial, JTAG, expansion
 headers, microSD, DVI-D, LCD header, S-Video, camera header,
 stereo in/out	$149
	iMX53 Quick Start Board	i.MX53	1GHz	1GB	USB OTG, USB host, Ethernet, serial, JTAG, expansion
 headers, SD, microSD, SATA, VGA, LCD header, stereo in/out	$149
	PandaBoard ES	OMAP4 dual-core	1.2GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, serial, JTAG,
 expansion headers, SD, HDMI, DVI, LCD header, camera header,
 stereo in/out	$182
	AM335x Starter Kit	Sitara AM3358	720MHz	256MB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, onboard
 serial, onboard JTAG, expansion headers, microSD, capacitive-touch
 LCD panel, accelerometer, stereo out	$199
	Nitrogen6X	i.MX6 quad-core	1GHz	1GB	USB OTG, USB host, serial, JTAG, SATA, SD, CAN, LCD
 headers	$199
	OrigenBoard	Exynos 4210 dual-core	1.2GHz	1GB	USB OTG, USB host, WLAN, Bluetooth, serial, JTAG, SD, HDMI,
 LCD header, camera header, stereo in/out	$199
	Origen 4 Quad	Exynos 4 quad-core	1.4GHz	1GB	USB OTG, USB host, Ethernet, SD, JTAG, serial, HDMI,
 onboard LCD header, audio	$199
	DragonBoard APQ8060A	Snapdragon dual-core	1.2GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS, FM
 radio, accelerometer, gyroscope, compass, magnetometer, pressure
 sensor, eMMC, SATA HDMI, camera, stereo out, serial,
 capacitive-touch LCD, JTAG	$499
	SABRE	i.MX53	1GHz	1GB	USB OTG, USB host, Ethernet, WLAN, Bluetooth, GPS, ZigBee,
 accelerometer, light sensor, serial, JTAG, eMMC, SD, SATA, NOR
 flash, VGA, HDMI, LCD panel, camera, stereo in/out	$999
	Snapdragon MDP	Snapdragon S4 dual-core	1.5GHz	1GB	USB OTG, WLAN, Bluetooth, GPS, accelerometer, gyroscope,
 compass, proximity sensor, temperature sensor, SD, HDMI, LCD
 panel, camera, stereo out	$999
	[a] Most common price at the time of this writing.

Save for the last two entries, all the eval boards listed in Table 5-2 look exactly like what their names
 imply: a PCB with chips and bare connectors on it. Few of the
 configurations I listed in Table 5-2 include
 an LCD panel, though most of these boards can have an LCD touch-panel
 added to them for anywhere between $100 and $200. The last two eval boards
 listed actually come in tablet and phone form factors, respectively, with
 the expected housing and mechanical specifications. If you’re trying to
 build a demo of a final product to show to an end customer, those two
 systems might be more presentable than a board with wires protruding here
 and there. They are, as you might have noticed, priced
 accordingly.

Chapter 6. Native User-Space

By this point, you’ve either already gotten your hands dirty trying a
 few things here and there or you’re very eager to actually play with a live
 Android system. As with any embedded system you are bringing up, your
 typical goal would be to get to a minimally functional system and then start
 adding support for more and more hardware and functionality until your
 requirements are met.
Obviously, to get a minimally functional Android system, you’ll first
 need to bring the kernel up on your board. As I mentioned earlier, the best
 way to get yourself an Android-compatible kernel is to talk to your SoC
 vendor; kernel porting and board bringup being somewhat outside the scope of
 this book. However, once you’ve got yourself a minimally functional kernel,
 the first Android component you’ll have to deal with is its native
 user-space.
As described in Chapter 2, this foundation serves as
 the hosting environment for all the upper layers of the Android stack,
 including the Dalvik virtual machine and the services and apps it runs. This
 is also where a part of Android’s hardware support is implemented. Now is
 therefore a good time to take a closer look at Android’s native user
 environment. If nothing else, it’s sufficiently different from what is found
 in most classic embedded Linux systems to warrant a separate
 discussion.
Filesystem

In Chapter 4, we discussed how the build system
 operates and what it generates. Specifically, Table 4-3 provided a detailed list of the images
 typically created by the build system. Conversely, Figure 6-1 illustrates how these images relate to
 one another at runtime. Save for a few exceptions that we’ll cover later,
 this filesystem layout is essentially the same in 2.3/Gingerbread and
 4.2/Jelly Bean.
To understand how we go from the images generated by the build system to
 the runtime configuration shown in Figure 6-1, you need to go back to the system
 startup explanation in Chapter 2 and, more specifically, you need to refer to the boot
 process illustrated in Figure 2-6. In essence,
 the kernel mounts the RAM disk image generated by the build system as its
 root filesystem and launches the init process found in that image. That
 init process’s configuration files will, as we’ll see later in this
 chapter, cause a number of additional images and virtual filesystems to be
 mounted onto existing directory entries in the root filesystem.
[image: Android root filesystem]

Figure 6-1. Android root filesystem

One of the first questions you might ask is, “Why so many
 filesystems?” Indeed, why not just a single filesystem image to store
 everything? The answer lies in the different purposes each image has,
 along with differences in the nature of the storage devices or
 technologies being used. The RAM disk image, for example, is meant to be
 as small as possible, and its sole purpose is to provide the initial
 skeleton required to get the system going. It’s typically stored as a
 compressed image on some media prior to being loaded into RAM by the
 kernel and then mounted as a read-only root filesystem.
/cache, /data, and /system, on the other hand, are typically
 mounted from separate partitions on actual storage media. Usually
 /cache and /data are mounted as read-write, while
 /system is mounted as
 read-only.
Using a Single Filesystem
There’s nothing preventing you from using a single filesystem for
 all of Android’s build output instead of using separate storage
 partitions. Texas Instruments’ RowBoat distribution, for instance, does
 exactly that. It generates a single root filesystem image, which is
 programmed on the target’s storage device for use as is. In the case of
 the BeagleBone or BeagleBoard, for example, the root filesystem in its
 entirety is programmed into a single partition of the microSD card used
 for booting and as the device’s main storage device.
By consolidating on a single filesystem, however, you’re assuming
 that you can update the entirety of the filesystem in one fell swoop. In
 sum, it’ll be very difficult to create a fail-safe update procedure for
 your system. In the case of RowBoat’s support for the Beagles, this
 might not be an issue because they are development boards, but in your
 actual product that has to go in the field, it might well turn out to be
 a problem.

In Android versions 2.2 and prior, all three directories would
 typically be mounted from YAFFS2-formatted NAND flash partitions. Since
 handset manufacturers have slowly been moving toward eMMC instead of NAND
 flash, YAFFS2 was replaced by ext4 in Google’s Android 2.3 lead device,
 the Samsung Nexus S. Since then, it’s been assumed that all Android-based
 handsets should be using ext4 instead of YAFFS2. Nothing, however,
 precludes you from using another filesystem type altogether. You just need
 to modify the build system’s makefiles to generate those images and update
 the parameters used with the mount
 commands as part of init’s
 configuration files, as we’ll see shortly.
eMMC versus NOR or NAND Flash
As explained in the book Building Embedded Linux
 Systems, 2nd ed., Linux’s MTD layer is used to manage, manipulate, and access flash devices
 in Linux; this includes NOR and NAND flash. Various filesystems are then
 used on top of the MTD layer, such as JFFS2, UBIFS, or YAFFS2, to make
 the flash device or partition accessible as part of Linux’s virtual
 filesystem switch (VFS.) Those flash filesystems typically implement
 wear leveling and bad-block management to properly handle the underlying
 flash devices.
An eMMC device, as explained in Chapter 5,
 appears as a traditional block device. Essentially, it contains a
 microcontroller and some RAM that allow it to do the required wear
 leveling and bad-block management transparently. Therefore, the OS can
 use a regular disk filesystem such as ext4. While the decision to move
 toward eMMC is, according
 to Android developer Brian Swetland, motivated by reduced
 pin-count on the PCB—and therefore overall cost—there are some
 additional side benefits to using this type of device.
First, it allows you to use all the traditional commands and
 methods you’re used to with a regular Linux filesystem. The MTD
 subsystem, while powerful, has always required some getting used to
 before one could effectively use it. Also, flash filesystems tend to be
 designed with single-processor systems in mind, while disk filesystems
 in Linux have had to contend with multiprocessor systems for quite some
 time. Hence, they’re likely a better fit for the coming wave of
 multicore Android devices.

The SD card always appears as a block device and typically
 has a VFAT filesystem on it. This should be expected because the user
 needs to be able to remove it from the Android device and plug it into his
 regular computer, whatever OS it may be running. /proc, /sys, and /acct are mounted using procfs, sysfs, and
 cgroupfs, respectively. While /proc and /sys are mounted at the same location as in
 traditional Linux-based systems, cgroups were traditionally mounted as
 /cgroup in Linux but are mounted as /acct in Android. Note also that
 /dev is mounted as tmpfs. This means
 its content is created on the fly and does not reside on any permanent
 storage. That’s fine, because Android relies on Linux’s udev mechanism to
 dynamically create entries in /dev as
 devices are plugged in and/or drivers are loaded or initialized.
Procfs, sysfs, tmpfs, and cgroup are all virtual filesystems
 maintained by the currently running kernel in the system. They don’t have any
 corresponding storage and are, in fact, data structures maintained inside
 the kernel. Procfs is the traditional way the kernel exports information
 about itself to user-space. Typically, entries in procfs are seen as text
 files, or directories containing text files, which can be dumped to the
 command line for extracting a given piece of information from the kernel.
 If you’re looking for the type of CPU your system is running, for example,
 you can dump the contents of the /proc/cpuinfo file.
As the kernel matured and had growing needs, it was eventually
 agreed that procfs was not necessarily the right mechanism for all interfaces between
 the kernel and user-space. Enter sysfs, which is very heavily tied to the
 kernel’s device and hardware management. Entries in sysfs can, for
 instance, be used to get detailed information regarding peripherals, or
 toggle bits controlling the behavior of certain drivers directly from
 user-space. Many of Android’s power-management features, for example, are
 controlled via entries in the /sys/power/ directory.
Tmpfs allows you to create a virtual RAM-only filesystem for storing
 temporary files. As long as power is applied to the RAM, the kernel will
 allow you to read and write those files. On reboot, however, it’s all
 gone. Cgroupfs is a relatively recent addition to the kernel for managing
 the control group functionality added in Linux 2.6.24. In sum, cgroups
 allow you to group certain processes and their children and dictate
 resource limits and priorities onto those groups. Android uses cgroups to
 prioritize foreground tasks.
The Root Directory

As we discussed in Chapter 2, the classic
 structure of Linux root filesystems is specified in the Filesystem Hierarchy Standard
 (FHS). Android, however, doesn’t abide by the FHS, but relies heavily
 instead on the /system and
 /data directories for hosting most
 of its key functionality.
Android’s root directory is mounted from the ramdisk.img generated by the AOSP’s build
 system. Typically, ramdisk.img will
 be stored along with the kernel in the device’s main storage device and
 loaded by the bootloader at system startup. Table 6-1 details the contents of the root
 directory once mounted.
Table 6-1. Android’s root directory
	Entry	Type	Description
	/acct	dir	cgroup mount-point.
	/cache	dir	Temporary location for downloads in progress and other
 nonessential data.
	/d	symlink	Points to /sys/kernel/debug, the typical mount
 location for debugfs.[a]
	/data	dir	The mount-point for the data
 partition. Usually, the contents of userdata.img are mounted
 here.
	/dev	dir	Mounted on tmpfs and contains the device nodes used by
 Android.
	/etc	symlink	Points to /system/etc.
	/mnt	dir	Temporary mount-point.
	/proc	dir	The mount-point for procfs.
	/root	dir	In traditional Linux systems, the
 root user’s home directory. It’s generally
 empty in Android.
	/sbin	dir	In Linux, this would hold binaries essential to the
 system administrator. In Android, it contains only ueventd and adbd.
	/sdcard	dir	The mount-point for the SD card.
	/sys	dir	The mount-point for sysfs.
	/system	dir	The mount-point for the system
 partition. system.img is
 mounted to this location.
	/vendor	symlink	Generally a symbolic link to /system/vendor. Not all devices
 actually have a /system/vendor
 directory.
	/init	file	The actual init binary
 executed by the kernel at the end of its initialization.
	/init.rc	file	init’s main
 configuration file.
	/init.<device_name>.rc	file	The board-specific configuration file for init.
	/ueventd.rc	file	ueventd’s main
 configuration file.
	/ueventd.<device_name>.rc	file	The board-specific configuration file for ueventd.
	/default.prop	file	The default global properties to be set for this system.
 These are automatically loaded by init at startup.
	[a] Debugfs is meant as a very flexible, RAM-based
 filesystem for exporting debugging information from
 kernel-space to user-space. It’s not meant for use in
 production systems.

As part of 4.2/Jelly Bean, you’ll also find some more entries in
 the root filesystem as listed in Table 6-2.
Table 6-2. Additions to Android’s root directory in 4.2/Jelly Bean
	Entry	Type	Description
	/config	dir	mount-point for configfs.[a]
	/storage	dir	Starting with 4.1/Jelly Bean, this directory is used to
 mount external storage. /storage/sdcard0, for instance, is
 typically the fake “external” storage[b] and /storage/sdcard1 is a real SD
 card.
	/charger	file	Native, standalone full-screen application that displays
 the battery’s charge status.
	/res	dir	Resources for the charger application.
	[a] Have at http://lwn.net/Articles/148973/ for more
 information on configfs.

[b] “Fake” in the sense that it’s essentially a
 FUSE-mounted “internal” directory made to appear as an
 external storage device.

/system

As mentioned earlier, /system
 contains the immutable components generated by the AOSP build system. To
 illustrate this further, Figure 6-2 takes
 the Android architecture diagram presented in Chapter 2
 and shows where each part of the stack is found in the
 filesystem.
[image: Filesystem location of key Android components]

Figure 6-2. Filesystem location of key Android components

As you can see, most of the components are found somewhere within
 /system once system.img is mounted. Table 6-3 further describes each entry in detail. You
 can also contrast Figure 6-2 with Figure 3-2 to see where each architecture
 component is located in the AOSP sources versus the final
 filesystem.
Table 6-3. /system directory contents
	Entry	Type	Description
	/app	dir	The stock apps built as part of the AOSP, such as the
 browser, email app, calendar, etc. All modules built with
 BUILD_PACKAGE are
 here.
	/bin	dir	All native binaries and daemons built as part of the
 AOSP. All modules built with BUILD_EXECUTABLE are here. The only
 exception is adbd, which has
 the LOCAL_MODULE_PATH set to
 /sbin and is therefore
 installed there instead.
	/etc	dir	Contains configuration files used by various daemons and
 utilities, including possibly an init.<device_name>.sh script
 that would be launched by one of init’s configuration files at
 startup.
	/fonts	dir	The fonts used by Android.
	/framework	dir	Framework .jar
 files.
	/lib	dir	The system’s native libraries. Essentially this means any
 module built using BUILD_SHARED_LIBRARY. It’s important
 to note again that Android doesn’t use /lib at all, only this lib directory within /system.
	/modules	dir	An optional directory for storing the dynamically
 loadable kernel modules required to run the system.
	/usr	dir	A miniature /usr
 akin to the classic /usr
 directory found in traditional Linux systems.
	/xbin	dir	“Extra” binaries generated by some of the packages that
 are built within the AOSP but aren’t essential to the system’s
 operation. This includes things like strace, ssh, and sqlite3.
	/build.prop	file	A set of properties generated during the build process of
 the AOSP. They are loaded by init at startup.

In 4.2/Jelly Bean, you’ll also find the entries in Table 6-4 in /system.
Table 6-4. New /system directory entries in 4.2/Jelly Bean
	Entry	Type	Description
	/media	dir	Files relating to the boot animation and other
 media.
	/tts	dir	Files related to the Text-to-Speech engine.

Generally /system is mounted
 read-only because it’s called on to change only if the entire Android OS
 is updated to a newer version. One benefit is that some OTA update
 scripts do binary patching, and given that this partition is assumed to
 not have changed since it was shipped, the application of the deltas is
 guaranteed to be clean.

/data

As discussed earlier, /data contains all data and apps that can
 change over time. For example, all the data stored by apps you download
 from Google Play is found here. The userdata.img image generated by the AOSP’s
 build system is mostly empty, so this directory starts off containing
 little to nothing. As the system starts getting used, however, the
 content of this directory is naturally populated, and it becomes
 important to preserve it across reboots. This is why /data is typically mounted in read-write mode
 from persistent storage. Table 6-5 shows the
 contents.
Table 6-5. /data directory contents
	Entry	Type	Description
	/anr	dir	ANR traces.
	/app	dir	Default install location for apps.
	/app-private	dir	Install location for apps with forward
 locking.[a] This mechanism has been replaced with an API
 allowing app developers to check if the running app is a
 legitimate copy obtained from Google Play. Have a look at the

 Application Licensing section of the app developers
 guide for more information on this topic.
	/backup	dir	For use by the BackupManager system service.
	/dalvik-cache	dir	Holds the cached JIT’ed[b] versions of all dex files.
	/data	dir	Contains one subdirectory for each app installed on the
 system. In effect, this is where each app’s “home” directory is
 located.
	/dontpanic	dir	Last panic output (console and threads)—for use by
 dumpstate.
	/local	dir	Shell-writable directory. In other words, any user who
 can shell into the device, using adb
 shell, for example, can copy anything, including
 binaries, into this directory and it will be preserved across
 reboots.
	/misc	dir	Miscellaneous data such as for WiFi, Bluetooth, or
 VPN.
	/property	dir	Persistent system properties.
	/secure	dir	Used to store user account information if the device uses
 an encrypted filesystem.
	/system	dir	Systemwide data, such as the accounts database and the
 list of installed packages.
	/tombstones	dir	Whenever a native binary crashes, a file whose name is
 tombstone_ followed by a
 sequence number is created here with information about the
 crash.
	[a] When an ISV publishes an app to Google Play, he can
 set the Copy Protection in the Publishing Options to On or
 Off. By setting it to Off, the app’s .apk can be copied off the
 device, while it can’t if it’s set to On. In essence, On
 means the app is installed in /data/app-private and Off means
 it’s installed in /data/app.

[b] Remember that Dalvik has a Just-in-Time compiler that
 converts the byte-code found in .dex files to native CPU
 instructions. This conversion is done once and cached for
 all future uses.

In 4.2/Jelly Bean, you’ll also find the entries described in Table 6-6.
Table 6-6. New /data directory entries in 4.2/Jelly Bean
	Entry	Type	Description
	/app-asec	dir	Encrypted apps.
	/drm	dir	DRM encryption data. Forward-locking control
 files.
	/radio	dir	Radio firmware.
	/resource-cache	dir	App resource cache.
	/user	dir	User specific data for multiuser systems.

Multiuser support

One of the most important features added to 4.2/Jelly Bean is
 multiuser support. In fact, some have argued that this addition was a
 watershed moment, opening Android to new use cases. Though available
 only in tablet mode, it allows multiple users to share the same device
 in a coherent fashion. Specifically, it means every user can utilize
 the device by logging in separately and can have her own set of
 account credentials and data for each application.
To achieve this, the AOSP’s data-storage mechanism has been
 slightly modified. For instance, /data/data is now the directory containing
 the app data for the device’s owner (i.e., “administrator”). All other
 users have their data stored in /data/user/<user_id>
 instead. Here’s the content of /data/user in an emulator running 4.2/Jelly
 Bean:[24]
root@android:/ # ls -l /data/user/
lrwxrwxrwx root root 2012-11-30 20:46 0 -> /data/data/
drwxrwx--x system system 2012-12-04 23:38 10
root@android:/ # ls -l /data/user/0/
drwxr-x--x u0_a27 u0_a27 2012-11-30 20:46 com.android.backupconfirm
drwxr-x--x bluetooth bluetooth 2012-11-30 20:46 com.android.bluetooth
drwxr-x--x u0_a17 u0_a17 2012-12-14 18:01 com.android.browser
drwxr-x--x u0_a43 u0_a43 2012-11-30 20:46 com.android.calculator2
drwxr-x--x u0_a20 u0_a20 2012-11-30 20:47 com.android.calendar
drwxr-x--x u0_a33 u0_a33 2012-11-30 20:46 com.android.certinstaller
drwxr-x--x u0_a0 u0_a0 2012-11-30 20:47 com.android.contacts
drwxr-x--x u0_a25 u0_a25 2012-11-30 20:46 com.android.defcontainer
drwxr-x--x u0_a6 u0_a6 2012-11-30 20:47 com.android.deskclock
...
root@android:/ # ls -l /data/user/10/
drwxr-x--x u10_system u10_system 2012-12-04 23:38 android
drwxr-x--x u10_a27 u10_a27 2012-12-04 23:38 com.android.backupconfirm
drwxr-x--x u10_bluetooth u10_bluetooth2012-12-04 23:38 com.android.bluetooth
drwxr-x--x u10_a17 u10_a17 2012-12-04 23:38 com.android.browser
drwxr-x--x u10_a43 u10_a43 2012-12-04 23:38 com.android.calculator2
drwxr-x--x u10_a20 u10_a20 2012-12-04 23:38 com.android.calendar
drwxr-x--x u10_a33 u10_a33 2012-12-04 23:38 com.android.certinstaller
drwxr-x--x u10_a0 u10_a0 2012-12-04 23:38 com.android.contacts
drwxr-x--x u10_a25 u10_a25 2012-12-04 23:38 com.android.defcontainer
drwxr-x--x u10_a6 u10_a6 2012-12-04 23:38 com.android.deskclock
...
Similarly, there are now per-user account credentials for each
 of the Internet accounts that may be tied to a given user. Prior to
 4.2/Jelly Bean, there was a single /data/system/accounts.db to hold all
 accounts. Now there is one such file for each user:
root@android:/ # ls /data/system/users/ -l
drwx------ system system 2013-01-19 01:03 0
-rw------- system system 155 2012-11-30 20:46 0.xml
drwx------ system system 2013-01-19 01:03 10
-rw------- system system 166 2012-12-04 23:38 10.xml
-rw------- system system 141 2013-01-19 01:03 userlist.xml
root@android:/ # ls /data/system/users/0 -l
-rw-rw---- system system 57344 2012-11-30 20:47 accounts.db
-rw------- system system 8720 2012-11-30 20:47 accounts.db-journal
-rw------- system system 534 2013-01-19 01:03 appwidgets.xml
-rw-rw---- system system 549 2013-01-19 01:03 package-restrictions.xml
-rw------- system system 97 2013-01-19 01:03 wallpaper_info.xml
root@android:/ # ls /data/system/users/10 -l
-rw-rw---- system system 57344 2012-12-04 23:39 accounts.db
-rw------- system system 8720 2012-12-04 23:39 accounts.db-journal
-rw-rw---- system system 129 2013-01-19 01:03 package-restrictions.xml

SD Card

As discussed earlier, consumer devices typically have a microSD
 card that the user can remove and plug into her computer. The content of
 this SD card is not critical to the system’s operation. In fact, you can
 relatively safely wipe it out without adverse effects. If a real user is
 using the device, however, you’ll at least want to understand what’s on
 it, because some apps store their information on the SD card, and it
 might matter to the user. Table 6-7 details some
 of what you might find in the /sdcard directory.
Table 6-7. Sample /sdcard directory contents
	Entry	Type	Description
	/Alarm	dir	Downloaded audio files that can be played as an
 alarm.
	/Android	dir	Contains apps’ “External” data and media directories. The
 former can be used for storing noncritical files and caches,
 while the latter is for app-specific media.
	/DCIM	dir	Pictures and videos taken by the Camera app.
	/Download	dir	Files downloaded from the web.
	/Movies	dir	Download location for movies.
	/Music	dir	The user’s music files.
	/Notifications	dir	Downloaded audio files that can be selected by the user
 for playing when notifications occur.
	/Pictures	dir	Downloaded pictures available to the user.
	/Podcasts	dir	The user’s podcasts.
	/Ringtones	dir	The downloaded ringtones the user should be able to
 choose from.

Because /sdcard is
 world-writable, the specific contents will depend on the apps running on
 the device and, of course, what the user decides to manually copy there.
 Again, just as a reminder, Android’s API distinguishes between
 “internal” and “external” storage, and the SD card is the latter. Also,
 note that some upgrade procedures use the SD card as the location where
 the update image is stored during the upgrade.

The Build System and the Filesystem

Chapter 4 covered how the build system generates
 the various parts of the filesystem. Let’s dig a little deeper into how
 you can control the build system’s filesystem generation.
Build templates and file locations

Table 4-2 listed the
 available build templates. Table 6-8 details the default install
 location for modules built using each target build template. Note how
 everything gets installed in one of /system’s subdirectories.
Table 6-8. Build templates and corresponding output locations
	Template	Default Output Location
	BUILD_EXECUTABLE	/system/bin
	BUILD_JAVA_LIBRARY	/system/framework
	BUILD_SHARED_LIBRARY	/system/lib
	BUILD_PREBUILT	No default. Make sure you explicitly specify either
 LOCAL_MODULE_CLASS or
 LOCAL_MODULE_PATH.
	BUILD_MULTI_PREBUILT	Depends on type of module being copied.
	BUILD_PACKAGE	/system/app
	BUILD_KEY_CHAR_MAP	/system/usr/keychars

Internally, the build system generates a LOCAL_MODULE_PATH for each module built,
 depending on the module’s build template. This is where the compiled output is
 installed. You can override the default by changing the value of
 LOCAL_MODULE_PATH within your
 Android.mk. Let’s say, for
 instance, that you have a custom tool for your board that has to be
 installed in /sbin instead of
 /system/bin. Your Android.mk could then look something like
 this:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-c-files-under, src)
LOCAL_PACKAGE_NAME := calibratebirdradar
LOCAL_MODULE_PATH := $(TARGET_ROOT_OUT_SBIN)

include $(BUILD_PACKAGE)
Note that this specifies $(TARGET_ROOT_OUT_SBIN), not /sbin. This is so the binary gets installed
 in the proper out/target/product/PRODUCT_DEVICE/
 directory. The TARGET_ROOT_OUT_*
 macros are defined in build/core/envsetup.mk, along with quite a
 few installation default macros. Here’s the relevant snippet for our
 purposes:
TARGET_ROOT_OUT := $(PRODUCT_OUT)/root
TARGET_ROOT_OUT_BIN := $(TARGET_ROOT_OUT)/bin
TARGET_ROOT_OUT_SBIN := $(TARGET_ROOT_OUT)/sbin
TARGET_ROOT_OUT_ETC := $(TARGET_ROOT_OUT)/etc
TARGET_ROOT_OUT_USR := $(TARGET_ROOT_OUT)/usr

Explicitly copying files

In the case of some files, you don’t need the build system to
 build them in any manner; you just need it to copy the files into the
 filesystem components it generates. That’s the purpose of the PRODUCT_COPY_FILES macro that you can use in
 your product’s .mk. Here’s an
 updated version of the CoyotePad’s full_coyote.mk from Chapter 4:
$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES += \
 device/acme/coyotepad/rfirmware.bin:system/vendor/firmware/rfirmware.bin \
 device/acme/coyotepad/rcalibrate.data:system/vendor/etc/rcalibrate.data

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep
This will copy rfirmware.bin and rcalibrate.data from device/acme/coyotepad/ to the target’s
 /system/vendor/firmware and
 /system/vendor/etc directories,
 respectively.

Default rights and ownership

One aspect we haven’t yet discussed is what and how filesystem
 rights and ownership are assigned to each directory and file in the
 Android filesystem. If you’re willing to get your hands dirty, I
 strongly encourage you to take a look at the system/core/include/private/android_filesystem_config.h
 file. It doesn’t get a lot of publicity and it’s not documented
 anywhere.[25] It is, however, extremely important, as it provides the
 list of predefined system users, as well as the rights and ownership
 assigned to everything in the system. Here’s a partial list of the
 UIDs/GIDs it defines, along with the associated user/group names in
 2.3/Gingerbread:
#define AID_ROOT 0 /* traditional unix root user */

#define AID_SYSTEM 1000 /* system server */

#define AID_RADIO 1001 /* telephony subsystem, RIL */
#define AID_BLUETOOTH 1002 /* bluetooth subsystem */
#define AID_GRAPHICS 1003 /* graphics devices */
#define AID_INPUT 1004 /* input devices */
...
#define AID_RFU2 1024 /* RFU */
#define AID_NFC 1025 /* nfc subsystem */

#define AID_SHELL 2000 /* adb and debug shell user */
#define AID_CACHE 2001 /* cache access */
#define AID_DIAG 2002 /* access to diagnostic resources */
...
#define AID_MISC 9998 /* access to misc storage */
#define AID_NOBODY 9999

#define AID_APP 10000 /* first app user */
...
static const struct android_id_info android_ids[] = {
 { "root", AID_ROOT, },
 { "system", AID_SYSTEM, },
 { "radio", AID_RADIO, },
 { "bluetooth", AID_BLUETOOTH, },
 { "graphics", AID_GRAPHICS, },
 { "input", AID_INPUT, },
...
If you go to your target’s shell and type ps, for instance, you’ll see something like
 this:
...
root 18048 1 61552 26700 c00a6548 afd0b844 S zygote
system 18090 18048 141756 50224 ffffffff afd0b6fc S system_server
system 18187 18048 75664 21828 ffffffff afd0c51c S com.android.systemui
app_16 18197 18048 78548 19292 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 18200 18048 86400 19580 ffffffff afd0c51c S com.android.phone
app_19 18201 18048 78636 23472 ffffffff afd0c51c S com.android.launcher
app_1 18234 18048 83904 22232 ffffffff afd0c51c S android.process.acore
app_2 18281 18048 72364 16696 ffffffff afd0c51c S com.android.deskclock
...
Notice how the system_server
 runs as the system user and how
 each app is run by a user called app_N, with each
 app having a separate N. The kernel
 itself doesn’t provide those names. Instead, Bionic uses the previous
 definitions to provide PID/GID-to-name conversion. In the case of
 apps, since each app is installed as a separate user (starting from
 the base UID/GID for apps, 10000), app user names all start with
 app_ and are followed by an integer
 value matching the actual UID/GID assigned to the app minus 10000.
 This is slightly different starting with 4.2/Jelly Bean, with
 multiuser support. Now app names also show user ownership with the
 form uM_appN,
 where M is the user ID and N is the app ID.
Unlike other aspects of the AOSP’s build system, which allow you
 to isolate most of your board-specific additions within a directory in
 device/, like device/acme/coyotepad from our earlier
 example, there’s no substitute for modifying the main android_filesystem_config.h if you need to
 add new default users. The bold lines in the following snippet, for
 instance, show modifications for adding a birdradar user:
...
#define AID_RFU2 1024 /* RFU */
#define AID_NFC 1025 /* nfc subsystem */
#define AID_BIRDRADAR 1999 /* Bird radar subsystem */

#define AID_SHELL 2000 /* adb and debug shell user */
#define AID_CACHE 2001 /* cache access */
#define AID_DIAG 2002 /* access to diagnostic resources */
...
static const struct android_id_info android_ids[] = {
 { "root", AID_ROOT, },
 { "system", AID_SYSTEM, },
 { "radio", AID_RADIO, },
...
 { "media", AID_MEDIA, },
 { "nfc", AID_NFC, },
 { "birdradar", AID_BIRDRADAR, },
 { "shell", AID_SHELL, },
 { "cache", AID_CACHE, },
...
Note
We’re using 1999 instead of 1026 for our new user to avoid as
 much as possible having to update this integer in future Android
 releases, should new users be added by Google. In fact, the above
 snippet is from 2.3/Gingerbread, where the factory IDs stop at 1025.
 In 4.2/Jelly Bean, the last number used by default by the AOSP is
 1028.

Reasons for adding new default users might include the addition
 of a new, still-unsupported hardware type to the Android stack, or the
 desire to isolate from the Android stack a custom stack you’re running
 side by side with Android. It could also simply be a matter of
 isolating a specific daemon using a separate user.
Conversely, here are snippets of the directory and file rights
 defined in android_filesystem_config.h:
static struct fs_path_config android_dirs[] = {
 { 00770, AID_SYSTEM, AID_CACHE, "cache" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/app" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/app-private" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/dalvik-cache" },
 { 00771, AID_SYSTEM, AID_SYSTEM, "data/data" },
...
 { 00750, AID_ROOT, AID_SHELL, "sbin" },
 { 00755, AID_ROOT, AID_SHELL, "system/bin" },
 { 00755, AID_ROOT, AID_SHELL, "system/vendor" },
...
 { 00755, AID_ROOT, AID_ROOT, 0 },
};
...
static struct fs_path_config android_files[] = {
 { 00440, AID_ROOT, AID_SHELL, "system/etc/init.goldfish.rc" },
 { 00550, AID_ROOT, AID_SHELL, "system/etc/init.goldfish.sh" },
...
 { 00644, AID_SYSTEM, AID_SYSTEM, "data/app/*" },
 { 00644, AID_SYSTEM, AID_SYSTEM, "data/app-private/*" },
 { 00644, AID_APP, AID_APP, "data/data/*" },
...
 { 00755, AID_ROOT, AID_SHELL, "system/bin/*" },
 { 00755, AID_ROOT, AID_SHELL, "system/xbin/*" },
 { 00755, AID_ROOT, AID_SHELL, "system/vendor/bin/*" },
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};
If, for any reason, you add a new directory or a file into an
 unlisted (new) directory in the filesystem, the default ownership and
 access rights will be dictated by the last entry in the array just
 shown—the one with a 0 instead of a
 path within quotes. In other words, a new directory will have 755
 access rights and be owned by the AID_ROOT user and group, and a file added to
 an unlisted directory will have 644 access rights and be owned by the
 AID_ROOT user and group.
If you’d like to add glibc-linked binaries to your target, as is
 shown in Appendix A, for instance, you’ll likely want
 to have a /lib directory to host
 the glibc-libraries; /lib being
 the default library for traditional C libraries under Linux. However,
 by default, the libraries in there won’t be executable, even if they
 were on your host as you generated them,[26] and, therefore, any binary linked against glibc will
 fail to run. To remedy this problem, you’ll need to modify the
 android_files array in android_filesystem_config.h to look
 something like this:
...
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00755, AID_ROOT, AID_ROOT, "lib/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};
This is yet another modification that you couldn’t isolate into
 a device-specific directory like device/acme/coyotepad.
Note that typically, the /system/vendor directory is reserved for
 vendor-specific extensions. In fact, android_filesystem_config.h states that all
 binaries in /system/vendor/bin
 should be executable. Hence, if you’re going to add a substantial
 number of files to the filesystem, you might want to look at putting
 your additions in the /system/vendor directory. That would be the
 clean way to do it. But, hey, who ever said
 embedded and clean were synonymous?
Note
Generally speaking, trying to stay within the boundaries of
 what’s permitted by the AOSP’s build system is especially useful if
 you want to simplify your device support for future Android
 versions. If you isolate all your device-specific code in a relevant
 directory in device/, adding
 support for your device in the next AOSP is, theoretically, just a
 matter of copying your directory into that AOSP’s device/ directory and fixing your code
 for any API modifications.
While this philosophy makes sense for handsets, embedded
 systems are often one-offs where previous products get nothing but
 the most essential updates, if any, and the next product’s hardware
 platform will be the subject of a selection process that might
 result in the use of a completely different SoC. Hence, abiding by
 the “rules” in such circumstances might actually be
 counterproductive, as it’ll impose unnecessary limitations and
 restrictions. I’ll keep pointing out the “Android way” and all other
 possibilities as we move forward, but I’ll leave it up to you to
 decide what’s best for your own project.

adb

The filesystem layout we just discussed is only a skeleton for the rest of
 Android to live in. During board bringup, the first piece of Android
 software you’ll probably want to make sure runs on your device after the
 kernel is likely going to be adb. We
 already covered its basic operation in Chapter 3. We’re
 now going to delve into its use in much greater detail.
Theory of Operation

While surprisingly simple in use, adb is a very powerful tool with uses both for
 app development and platform development. Whereas several areas of
 Android build on or replace functionality found in traditional embedded
 Linux systems, prior to Android there was no project or package that
 provided functionality similar to adb
 in the Linux world (as far as I know, at least). Hence, adb fills an important gap and is a refreshing
 take on how host-target interactions can be improved and
 mediated.
adb is actually made up of
 several components, which themselves connect to several other system
 components to deliver adb’s
 integrated set of capabilities. Figure 6-3
 illustrates adb’s interconnections
 and operation. Interestingly, both adb’s host side and target side, save for the
 ddms-related components, are built
 from a single codebase in system/core/adb/, which ensures version
 coherency among components.
[image: ADB and its interconnections]

Figure 6-3. ADB and its interconnections

adb acts both as a transparent
 transport mechanism and as a service provider. Its two most important
 components are the adb server running on the host and the
 adbd daemon running on the target.
 These two components effectively implement a proxy protocol on which all
 adb services are implemented. They
 can be linked together either through USB or regular TCP/IP. The command
 set that adb makes available is
 identical in both cases.
Note
The names used in Android can be confusing here. Usually, a
 server runs remotely from a client, and some
 client utility connects to the server through the network. In this
 case, the adb “server” is actually
 a daemon running in the background on the host, and adbd is another, separate daemon running on
 the target.

The adb server is started
 automatically whenever the adb
 command is invoked on the command line. It monitors connected devices
 and maintains communication with the remote adbd daemons. The latter interface with the
 native user-space, the Java user-space and the kernel to provide their
 functionality. We’ll discuss some of those interactions in greater
 detail as we go through adb’s
 functionality below.
On the host side, two major pieces of software initiate connection
 with the adb server: the adb command and the ddms (Dalvik Debug Monitor
 Server) libraries (ddmlib and ddmuilib). The ddms libraries are
 themselves used by the ddms utility,
 which is a standalone tool, and
 the ddms plug-in typically added to Eclipse through the installation of
 Android’s ADT plug-in for app developers. The ddms libraries provide
 primitives both to talk to the adb
 server (ddmlib) and display/manage UI parts (ddmuilib). This is why the
 user interfaces are identical between parts of the ddms utility and the ddms Eclipse
 plug-in.
Note that the adb command and
 the ddms libraries don’t fully expose the adb server’s capabilities in an equal way. The
 adb server, for instance, can grab
 the content of the target’s framebuffer for the purpose of providing
 screenshots. This functionality is exposed by the ddms utility, but it isn’t available on the
 command line through adb.
To provide its services, the adb server opens socket 5037 on the host and
 listens for connections. Anyone can connect to the server as long as he
 respects the procotol. Have a look at OVERVIEW.TXT and SERVICES.TXT in system/core/adb/ if you’d like to implement
 code that talks directly to the adb
 server. The adb server can also
 interact with an adbd daemon running
 inside an emulator on the host in the same way it would to the same
 daemon on a remote target.
In addition, adb can also
 interact with the emulator’s console. Every emulator instance that
 starts listens for connections on a different port number; the number is
 displayed on the upper-left corner of the emulator window and starts
 from 5554. When you connect to that port number using telnet, you are able to issue special commands to control the emulator’s behavior, as detailed
 in Using
 the Android Emulator in Google’s app developers guide. These
 commands include forwarding ports from the host to the emulator and
 resizing the emulator’s window. To simplify matters, adb makes it possible to send the same
 commands to the emulator without actually having to go through telnet.

Main Flags, Parameters, and Environment Variables

As alluded to in Chapter 3 and as we’ll see
 shortly in detail, adb provides a lot
 of commands. However, adb can be used
 to simultaneously interact with several Android devices and AOSP builds.
 Hence, there are several flags, parameters, and environment variables to
 gate its behavior, as presented in Table 6-9. If
 there’s only one device connected or emulator instance running, then
 adb’s operation is relatively simple,
 since it assumes that that single instance is the one you want to
 execute your commands on.
Table 6-9. adb’s flags, parameters, and environment variables
	Item	Description
	-d	This flag tells adb to
 execute the command passed on the USB-connected device. If you
 have both an emulator running and an Android device connected
 through USB to your host, then this will ensure adb executes your command on the
 device, not the emulator. Of course this won’t work if you have
 more than one device connected.
	-e	Similarly to -d, this
 tells adb to connect to the
 emulator instance running, even if there is an Android device
 connected. Again, it won’t work if you have multiple emulator
 instances running.
	-s <serial
 number>	This tells adb to
 connect to the device designated by the given serial number.
 Despite it being tedious to have to enter the full serial number
 of a device to use each adb
 command, this (and ANDROID_SERIAL below) will be the only
 way to go if you have multiple devices connected or multiple
 emulators running.
	-p <product name or
 path>	Some of adb’s commands
 require access to the sources that were used to build the
 target’s AOSP. If you’re running adb from the same shell where you
 built the AOSP, it will be able to properly find those since the
 ANDROID_PRODUCT_OUT
 environment variable will be set. If that’s not the case, you’ll
 need to use -p to indicate
 the path to the product’s output directory within an AOSP source
 tree.
	ANDROID_SERIAL	If you constantly have multiple devices connected and
 want to avoid having to use the -s flag to specify the serial of one
 specific device that you operate on very frequently, set the
 ANDROID_SERIAL environment
 variable to that device’s serial number, and adb will always connect to that device
 by default unless you explicitly use -s to override.
	ADB_TRACE	If you want to debug or monitor the interaction betweeen
 the adb server on the host
 and the adbd daemon on the
 target, you can set the ADB_TRACE environment variable to one
 of or a series of comma-, colon-, semicolon-, or space-separated
 combinations from the following values: 1, all, adb, sockets, packets, rwx, usb, sync, sysdeps, transport, jdwp.

Basic Local Commands

Let’s start with some of adb’s
 basic commands that run locally. First, if you’d like to start the
 adb server manually, you can do so
 like this:
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
The server will, however, start automatically whenever needed by
 any other adb command you type. So
 you can usually skip over starting the server manually. There are cases,
 unfortunately, where you actually have to manually shut the server
 down—usually you should do this whenever any of your adb commands seem to hang:
$ adb kill-server
If you’d like to know adb’s
 capabilities, you can either start the command without any parameters or
 type:
$ adb help
Android Debug Bridge version 1.0.26

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is
 present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is
 running.
 -s <serial number> - directs command to the USB device or emulator
 with the given serial number. Overrides
 ANDROID_SERIAL
...
device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host->device only if changed
 (-l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively
 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
...
The help screen above gave the command’s version number as part of
 the output. But you can ask adb to
 explicitly print its version number:
$ adb version
Android Debug Bridge version 1.0.26
Like the rest of the AOSP, adb
 is a moving target. Here’s the version in 4.2/Jelly Bean:
$ adb version
Android Debug Bridge version 1.0.31

Device Connection and Status

Let’s now take a look at the commands adb provides for managing its communications
 with devices. First, if you want to see which devices are visible to
 adb, you can type:
$ adb devices
List of devices attached
emulator-5554	device
0123456789ABCDEF	device
emulator-5556	device
If you’d like to connect to a remote device whose adbd daemon is running on TCP/IP instead of
 USB, you can use the connect
 command:
$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878
$ adb devices
List of devices attached
emulator-5554	device
0123456789ABCDEF	device
emulator-5556	device
192.168.202.79:7878	device
connect’s formal description is
 (5555 being the default port):
adb connect <host>[<:port>]
To designate that target as the one on which to issue a given
 command, just use the IP:PORT information displayed by adb devices as the serial number. To get a
 shell, for instance:
$ adb -s 192.168.202.79:7878 shell
When you’re done, you can disconnect from the device; it will then
 stop appearing in the list of devices seen by the adb server:
$ adb disconnect 192.168.202.79:7878
disconnect’s formal description
 is (if no device is specified then all TCP/IP-connected devices will be
 disconnected):
adb disconnect [<host>[<:port>]]
If you’d like adb to hang
 waiting for the device to come online, you can type this:
$ adb wait-for-device
The shell will then suspend until the device comes online.
 adb will return to the shell when the
 device is online. This is useful for scripting purposes, as you can make
 your script wait for a device to be ready before proceeding with other
 commands.
If you want to inquire about a device’s status, type:
$ adb -s 0123456789ABCDEF get-state
device
States include bootloader, device, offline, and unknown. The
 device value is synonymous with the device being
 online. offline is self-explanatory.
 bootloader means the device is currently in the
 bootloader. And unknown means adb can’t recognize the current state of the
 device.
If, for any reason, you need to explicitly ask about a device’s
 serial number, such as when you’re scripting adb commands, you can do so:
$ adb -d get-serialno
0123456789ABCDEF
Finally, if you need to have a shell window open that continuously
 reports the current device’s state, you can do so with this:
$ adb -d status-window
This will clear the screen and display something like this at the
 top of the terminal (the state reported beside State:
 being the device’s “real-time” state):
Android Debug Bridge
State: device
To exit, you just type Ctrl-C.

Basic Remote Commands

Up to now, the commands we’ve seen haven’t actually allowed us to
 do anything on the remote target or get any information about it. So
 let’s start having some fun.
Shell

Obviously, if you’re a geek like me, one of the first things
 you’ll want to do is shell into your device for fun and profit. With
 2.3/Gingerbread you’ll get this:
$ adb shell
#
4.2/Jelly Bean has a much richer shell, and you’ll get this
 instead:
$ adb shell
root@android:/ #
In both cases, the command results in the adbd daemon spawning a shell on the target
 to execute the commands you type. All input/output (i.e., stdin,
 stdout, and stderr) for the commands will then be proxied between the
 adb server running on the host and
 the adbd daemon running on the
 target.
To exit from the target’s shell and return to your host’s shell,
 just type Ctrl-D. You can also launch a specific command by passing it
 as a parameter to the shell
 command—in this case printing out the CPU information for a
 BeagleBone:
$ adb -d shell cat /proc/cpuinfo
Processor : ARMv7 Processor rev 2 (v7l)
BogoMIPS : 718.02
Features : swp half thumb fastmult vfp edsp thumbee neon vfpv3 tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x3
CPU part : 0xc08
CPU revision : 2

Hardware : am335xevm
Revision : 0000
Serial : 0000000000000000
This is shell’s formal description:
adb shell [<command>]

Dumping the logs

If you’d like to dump Android’s logger buffer, you can type
 this:
$ adb -d logcat
--------- beginning of /dev/log/main
I/DEBUG (59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system
I/Vold (57): Vold 2.1 (the revenge) firing up
D/Vold (57): USB mass storage support is not enabled in the kernel
D/Vold (57): usb_configuration switch is not enabled in the kernel
D/Vold (57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold (57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted)
I/Netd (58): Netd 1.0 starting
I/ (61): ServiceManager: 0xad50
W/AudioHardwareInterface(61): Using stubbed audio hardware. No sound will be
produced.
D/AudioHardwareInterface(61): setMode(NORMAL)
I/CameraService(61): CameraService started (pid=61)
I/AudioFlinger(61): AudioFlinger's thread 0xc638 ready to run
E/dhcpcd (65): timed out
D/AndroidRuntime(224):
D/AndroidRuntime(224): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(224): CheckJNI is ON
D/dalvikvm(224): creating instr width table
I/SamplingProfilerIntegration(224): Profiler is disabled.
I/Zygote (224): Preloading classes...
...
That command is actually an equivalent of this:
$ adb -d shell logcat
We’ll discuss the logcat
 command in greater detail later, but know that you can line up the
 same parameters after the adb
 logcat part you typed in as if you were running logcat straight from the target’s command
 line. So, for instance, if you want to dump the “radio” buffer instead
 of the “main” buffer, you can do this:
$ adb -d logcat -b radio
I/PHONE (394): Network Mode set to 0
I/PHONE (394): Cdma Subscription set to 1
I/PHONE (394): Creating GSMPhone
D/PHONE (394): mDoesRilSendMultipleCallRing=true
D/PHONE (394): mCallRingDelay=3000
W/GSM (394): Can't open /system/etc/voicemail-conf.xml
W/GSM (394): Can't open /system/etc/spn-conf.xml
D/GSM (394): [DSAC DEB] registerForPsRestrictedEnabled
D/GSM (394): [DSAC DEB] registerForPsRestrictedDisabled
D/GSM (394): [GsmDataConnection-1] DataConnection constructor E
D/GSM (394): [GsmDataConnection-1] clearSettings
D/GSM (394): [GsmDataConnection-1] DataConnection constructor X
D/GSM (394): [GsmDataConnection-1] Made GsmDataConnection-1
D/RILJ (394): [0000]> RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING
D/STK (394): StkService: StkService: is running
...
adb will also honor the
 ANDROID_LOG_TAGS environment
 variable if it’s set in the host’s shell when you start the command.
 ANDROID_LOG_TAGS is taken into
 account by logcat, as we’ll see
 later, for filtering the output it prints. This is logcat’s formal description:
adb logcat [<parameters>]
logcat with ddms Libraries
If you’ve ever used ddms or
 Android’s ADT plug-in, you know they can present the same Android
 logger information that’s printed to the command line by logcat. There’s a difference in how each
 retrieves its information, however. While, as I just explained, an
 adb logcat actually just runs the
 logcat command on the target and
 proxies the output back to the host, ddms’s libraries use a different adb server mechanism from the one used to
 proxy shell I/O, the log service. This service
 proxies the content of the relevant /dev/log buffer
 directly back to the host, without passing through the target’s
 logcat. This is a case where
 there are in fact two ways to skin a cat.
The protocol between the adb server and its client is in fact quite
 rich, as I alluded to earlier. You’ll need to dig into adb’s sources to get the full picture, but
 suffice it to say that the server communicates with the target’s
 adbd daemon to provide multiple
 types of services. The overall ADB functionality exposed through the
 adb command line and ddms all rely on those services. However,
 you can write code that talks directly to the adb server to tap into any of the services
 it provides.

Getting a bug report

Much like the logcat target
 command—for which there’s a shortcut with adb that doesn’t require explicitly telling
 it to invoke shell—adb provides a shortcut for bugreport. The latter is a target command
 that dumps the state of the system for bug-reporting purposes. It, in
 effect, results in the dumpstate
 command to run on the target:
$ adb -d bugreport
==
== dumpstate: 2000-01-01 05:05:08
==

Build: beaglebone-eng 2.3.4 GRJ22 eng.karim.20120327.052544 test-keys
Bootloader: unknown
Radio: unknown
Network: (unknown)
Kernel: Linux version 3.1.0-g62911f8-dirty (a0131746@sditapps03) (gcc version 4.
4.3 (GCC)) #1 Mon Nov 28 22:05:07 IST 2011
Command line: console=ttyO0,115200n8 androidboot.console=ttyO0 mem=256M root=/de
v/mmcblk0p2 rw rootfstype=ext3 rootwait init=/init ip=off

------ MEMORY INFO (/proc/meminfo) ------
MemTotal: 253264 kB
MemFree: 198308 kB
...
You might wonder, why not just do something like this instead,
 since the bugreport command invokes
 dumpstate?
$ adb -d shell dumpstate
The trouble is that dumpstate
 needs to run as root, and some devices don’t allow their shells to run
 as root. Such is the case of the vast majority of handsets on the
 market. On those devices, therefore, it wouldn’t be possible to type
 the above command, but it would still be possible to use bugreport. Here’s what happens on my
 phone:
$ adb -s 4xxxxxxxxxxxxxx shell dumpstate
dumpstate: permission denied
$ adb -s 4xxxxxxxxxxxxxx shell bugreport
==
== dumpstate: 2012-05-04 13:38:05
==

Build: GINGERBREAD.UCKI3
Bootloader: unknown
Radio: unknown
...
Essentially, bugreport causes
 init to start dumpsys in a mode where it opens a Unix
 domain socket and listens for connections for dumping its output.
 bugreport then connects to that
 socket and copies the content it reads to its own standard output,
 which is then proxied through adb
 to your host’s shell. Users or technicians can therefore create bug
 reports for your devices even if you don’t give them root
 access.

Port forwarding

Another very interesting feature of adb is that it allows you to forward ports
 between the host and the target. For instance, this command will
 forward local port 8080 to the target’s port 80:
$ adb -d forward tcp:8080 tcp:80
Thereafter, any connection you make to your host’s port 8080
 will be redirected to the target’s port 80. If you’re running a web
 server (which runs on port 80 by default) on your Android device, for
 example, you’ll be able to connect your host’s web browser to localhost:8080 to browse your device.
adb’s forward command can, however, do a lot more
 than that. It can in fact forward host ports to more than just ports
 on the target. For instance, you can forward local port 8000 to one of
 the target’s character devices:
$ adb -d forward tcp:8000 dev:/dev/ttyUSB0
In that case, any read/write operations conducted on port 8000
 will result in read/write operations on the remote /dev/ttyUSB0. Table 6-10 lists the connection types supported by
 forward and its formal description
 is:
adb forward <local> <remote>
Table 6-10. adb forward’s connection types
	Connection	Description
	tcp:<port>	Regular TCP port. This should be an nonnegative integer
 value.
	localfilesystem:<unix
 domain socket>	A regular Unix domain socket. This shows up as an entry
 in the filesystem.
	localabstract:<unix domain
 socket>	An “abstract” Unix domain socket. This is like a Unix
 Domain socket, but it’s a Linux-specific extension. Have a
 look at the unix man page
 for more detail: man 7
 unix.
	localreserved:<unix domain
 socket>	Android’s “reserved” Unix domain sockets. They’re all
 in /dev/socket, and they
 have very specific uses that we’ll cover as we go. These
 include dbus, installd, keystore, netd, property_service, rild, rild-debug, vold, and zygote.
	dev:<character device
 name>	Actual devices on the target. You must provide the full
 path to the device in the filesystem.
	jdwp:<pid>	Used to specify the PID of a Dalvik process for
 debugging purposes.

Dalvik debugging

It’s worth expanding a bit more on forward’s ability to proxy connections to
 Dalvik processes. Dalvik implements the Java Debug Wire Protocol
 (JDWP), thereby allowing you to use the regular Java debugger jdb to debug your apps. Obviously this is
 shrink-wrapped into Eclipse for app developers, but if you want to use
 jdb on the command line, forward’s ability to redirect Dalvik
 processes’ debug ports to your host becomes essential. Here’s an
 example:
$ adb forward tcp:8000 jdwp:376
$ jdb -attach localhost:8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>
To know which PIDs are debuggable through JDWP, you type:
$ adb jdwp
271
376
386
389
390
425
473
480
...
adb is in fact a crucial
 component for debugging any Java on the target. When the adbd daemon starts on the target, it opens
 the “abstract” Unix domain socket jdwp-control and awaits connections. Dalvik
 processes that start afterward
 connect to that socket and therefore make themselves “visible” for
 debugging. To allow app developers to debug their apps, the ddms
 Eclipse plug-in goes through ddmlib to talk to the adb server to debug the app. Or, as we just
 saw, you can use jdb to debug on
 the command line.
Note that all of this requires that adbd be running on the target before any
 Dalvik app is started. Only those Dalvik apps that you start after adbd
 will be debuggable.

Filesystem Commands

adb also allows you to
 manipulate and interact with the target’s filesystem in a variety of
 ways. If you want to copy a file to the device, for instance, you can
 use push:
$ adb push acme_user_manual.pdf /data/local
This will copy the acme_user_manual.pdf file to the target’s
 /data/local directory:
$ adb shell ls /data/local
acme_user_manual.pdf
You can also copy files from the target to the host:
$ adb pull /proc/cpuinfo
$ cat cpuinfo
Processor	: ARMv7 Processor rev 2 (v7l)
BogoMIPS	: 718.02
...
As I explained earlier in this chapter, the target’s filesystem
 parts aren’t all mounted with the same rights. /system, for example, is typically mounted as
 read-only. If you’d like to remount it in read-write mode, to add or
 modify a file on it, for instance, you can do so using remount. Here’s an example:
$ adb push acme_utility /system/bin
failed to copy 'acme_utility' to '/system/bin/acme_utility': Read-only file system
$ adb remount
remount succeeded
$ adb push acme_utility /system/bin
$
Of course push’s functionality
 is useful only for copying a handful of files. If you’re looking to
 update the entirety of either of the target’s /data or /system partitions, you can do so using the
 sync command. It will essentially
 conduct an operation similar to the rsync command, making sure that the target’s
 files are synchronized with those on the host. If you run adb sync from the same directory where the
 target’s AOSP was built, then it will automatically find the files to
 sync because the ANDROID_PRODUCT_OUT
 environment variable will point to the right directory. (Assuming, of
 course, that you ran build/envsetup.sh and lunch as required for your target.) Otherwise,
 you’ll need to manually point it to the right output directory like
 this:
$ adb -d -p ~/android/beaglebone/out/target/product/beaglebone/ sync
syncing /system...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
rasher -> /system/xbin/crasher
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/s
cp -> /system/xbin/scp
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
pcontrol -> /system/xbin/opcontrol
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
cpdump -> /system/xbin/tcpdump
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/o
profiled -> /system/xbin/oprofiled
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/t
imeinfo -> /system/xbin/timeinfo
push: /home/karim/android/beaglebone/out/target/product/beaglebone/system/xbin/c
pueater -> /system/xbin/cpueater
...
491 files pushed. 0 files skipped.
1317 KB/s (81337934 bytes in 60.310s)
syncing /data...
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/gles
2_texture_stream.apk -> /data/app/gles2_texture_stream.apk
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iterator_host -> /data/app/test_iterator_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_iostream_host -> /data/app/test_iostream_host
push: /home/karim/android/beaglebone/out/target/product/beaglebone/data/app/test
_string_host -> /data/app/test_string_host
...
25 files pushed. 0 files skipped.
2804 KB/s (4078615 bytes in 1.420s)
You probably want to reboot the target after such an update, as
 there might be stale file references lingering. Note that sync syncs only /system and /data. It doesn’t sync anything else. In
 other words, you can’t use sync to
 synchronize the contents of the RAM disk mounted as the root filesystem
 for the target. Even if it allowed you to, it wouldn’t be of much use,
 since the RAM disk lives only in RAM and its contents are not written
 through to persistent storage.
sync can also be told to sync
 only the data or the system partitions, instead of both. Simply pass the
 partition you’d like to sync as a parameter:
$ adb -e sync data
syncing /data...
...
sync’s formal description
 is:
adb sync [<directory>]
If, instead of copying single files or syncing entire partitions,
 all you’re looking for is to install new apps, then you should use
 install instead:
$ adb install FastBirds.apk
299 KB/s (13290 bytes in 0.043s)
	pkg: /data/local/tmp/FastBirds.apk
Success
Essentially, this will invoke the pm (short for “package manager”) command on
 the target. It will itself interact with the PackageManager system
 service to get your app installed. To remove it from the device, you can
 then use the uninstall
 command:
$ adb uninstall com.acme.fastbirds
Success
You’ve likely noted that while install relies on the filename, uninstall actually needs the full package
 name. Each command can actually take a few flags, as explained in Table 6-11:
adb install [-l] [-r] [-s] <file>
adb uninstall [-k] <package>
Table 6-11. Flags for install and uninstall
	Flag	Description
	-l	Tells install to
 ensure that the app is forward-locked. In other words, it
 disallows the user from copying the .apk off the device. In practice,
 this means that the app is installed in /data/app-private instead of
 /data/app.
	-r	Tells install to
 reinstall the app, preserving its data as is.
	-s	Tells install to
 install the app on external storage (the SD card) instead of
 internal storage.
	-k	Tells uninstall to
 keep the app’s data even though the .apk is removed.

State-Altering Commands

For lack of a better name for this category, I’ve lumped together
 in this section all the commands that in one way or another
 significantly alter the target’s behavior. It’s not like the previous
 commands couldn’t or didn’t alter the target, it’s just that those
 you’ll find here do so in especially significant ways.
Rebooting

Let’s start with one of the more obvious ones:
$ adb reboot
If you hadn’t already guessed, this reboots the target. This
 actually invokes the reboot()
 system call on the target’s kernel while passing it the appropriate
 magic values to effect a reboot. You can also pass a parameter to
 reboot to tell it to reboot either
 in the bootloader or the recovery mode:
$ adb reboot bootloader
And:
$ adb reboot recovery
Note, however, that this parameter is passed as is to the
 kernel. It’ll be the job of your board support code in the kernel to
 deal with this parameter appropriately. If your board-support kernel
 code doesn’t process the string passed to the reboot() function, it’s simply ignored, and
 all that happens is a plain reboot. Another way to reboot into the
 bootloader is:
$ adb reboot-bootloader
It’s important to highlight that all those reboot commands
 result in an immediate reboot. There
 is no graceful shutdown of any process or system service. Hence, if
 you need to do any cleanup, it’s best to do so prior to issuing the
 reboot command.

Running as root

By default on a development board, most of adb’s commands will work to their full
 capabilities without a problem, because the adbd daemon on the target will likely be
 running as root. On a production system like a commercial handset,
 however, it’s likely that adbd
 isn’t running as root but rather as the shell user, which has far fewer privileges.
 Hence, commands such as adb shell
 will also be running only with shell’s privileges.
The adbd daemon’s default
 privileges will depend on how the AOSP is built and the target that
 it’s running on. If it’s running on the emulator, for example,
 adbd will always run as root. In
 all other cases, adbd’s privileges
 will depend on the TARGET_BUILD_VARIANT chosen to build the
 AOSP. If it’s userdebug or user, adbd won’t run as root, it’ll run as the
 shell user when started. In the
 case of userdebug, you can ask it
 to restart as root by typing:
$ adb root
restarting adbd as root
If you issue the same command on a user build, you’ll get this—in other words,
 you can’t override the default:
$ adb root
adbd cannot run as root in production builds
If you build with the eng
 variant, as is likely the case during development, adbd will start as root, and here’s what
 happens when you insist:
$ adb root
adbd is already running as root
The same will happen if the system is already running adbd as root because of a previous adb root command. All of this behavior is
 gated by the ro.secure, ro.debuggable, and service.adb.root global properties. The two
 former are set at build time, while the latter is set by adb’s root command. Both user and userdebug cause ro.secure to be set to 1, but only userdebug and eng cause ro.debuggable to be set to 1. Obviously those global properties are
 checked by more than just adbd.

Switching connection type

By default, the adb server
 checks for running emulator instances running only on the host and
 devices physically connected to the host through USB. You can, as we
 saw earlier, nonetheless connect devices that have their adbd daemons listening on a TCP/IP port
 instead of USB using adb connect.
 What we haven’t looked at yet is how to get adbd to use TCP/IP instead of USB. Assuming
 the device is already connected through USB, you can ask it to use
 TCP/IP instead, like this:
$ adb -s 0123456789ABCDEF tcpip 7878
restarting in TCP mode port: 7878
Essentially, this will set the service.adb.tcp.port global property on the
 target to 7878 and restart the adbd
 daemon. Upon restarting, the daemon will then wait for connections on
 the given port instead of on USB. You can then connect to it like
 above:
$ adb connect 192.168.202.79:7878
connected to 192.168.202.79:7878
To switch it back to USB, you can type this:
$ adb -s 192.168.172.79:7878 usb
restarting in USB mode
Effectively, this command is equivalent to typing:
$ adb -s 192.168.172.79:7878 shell
setprop service.adb.tcp.port 0
ps
...
root 66 1 3412 164 ffffffff 00008294 S /sbin/adbd
...
kill 66
In both cases, adbd is made
 to exit and is automatically restarted by init. It then checks service.adb.tcp.port and starts accordingly.
 If, for any reason, you don’t have a USB connection to your device,
 you can always manually preset service.adb.tcp.port on the device so that
 adbd always starts on that port
 number. We’ll discuss global property setting later. connect’s formal description is:
adb tcpip <port>

Controlling the emulator

As explained earlier, you can connect to each emulator’s console
 using telnet:
$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

 help|h|? print a list of commands
 event simulate hardware events
 geo Geo-location commands
 gsm GSM related commands
 kill kill the emulator instance
 network manage network settings
 power power related commands
 quit|exit quit control session
 redir manage port redirections
 sms SMS related commands
 avd manager virtual device state
 window manage emulator window

try 'help <command>' for command-specific help
OK
Google’s online manual explains the use of each of these
 commands in detail. Unfortunately, having to use telnet to access each of these commands can
 be cumbersome, especially if you need to script part of what you need
 to do. Hence, adb allows you to
 launch these same exact commands like any of its other
 commands:
$ adb -e emu redir add tcp:8080:80
This will redirect all connections to the host’s port 8080 to
 the target’s port 80. The part of the command line after emu is exactly the same command that you
 could have typed through the telnet
 session to redirect the port.

Tunneling PPP

One of the external projects included in the AOSP is the standard
 PPP daemon used in most Linux-based distributions and available at
 https://ppp.samba.org/. You can ask adb to set up a PPP connection between the
 host and the target. This might be for tethering or simply to create a
 network connection between the host and the target when you have only a
 USB connection between both. Here’s the formal definition of the
 ppp command:
adb ppp <adb service name> [ppp opts]
Unfortunately, this by itself is insufficient to understand how to
 use this command. Worse, of all adb
 commands, this one is the most poorly documented. The more common way
 you’re likely to use this command is:[27]
adb ppp "shell:pppd nodetach noauth noipdefault /dev/tty" nodetach noauth \
> noipdefault notty <local-ip>:<remote-ip>
Essentially, what’s happening here is that the host’s pppd daemon is being started with the
 following parameters:
nodetach noauth noipdefault notty <local-ip>:<remote-ip>
And the target’s pppd is being
 started with the following parameters:
nodetach noauth noipdefault /dev/tty
adb then proxies the
 communication between the two pppd
 daemons and you therefore have a network connection established between
 the host and the target. You’ll likely need to do a little more legwork
 to figure out exactly what kind of networking connection you want to
 establish and the specific IP parameters. But with the above, you’ll at
 least have a good starting point. I would encourage you to read pppd’s man page on your host for more
 information on its full capabilities.
I also encourage you to have a look at some of the following
 articles on the web for more details and examples on the use of this
 adb feature:
	ppp over adb (for
 linux/unix users)

	device shows up in lsusb +
 adb but not in ifconfig

	USB Tether for Xperia X10
 Mini Pro

	creates a ppp link between
 my Ubuntu development machine and BeagleBoard running Android
 connected via USB

Android’s Command Line

As I said earlier, one of the first Android-specific tools you’re
 likely to encounter is adb, and one of
 its most common uses is shelling into the target. And since during board
 bringup you’re likely to spend quite some time on the command line before
 having a functional UI, it’s only fitting to now cover Android’s command
 line. In fact, it’s possible that you’ll likely have to deal directly with
 Android’s command line, probably through a serial console, even before ADB
 is fully functional: This will be the case if your device doesn’t possess
 USB capabilities or doesn’t yet have a functional USB driver or
 TCP/IP-capable network interface.
The Shell Up to 2.3/Gingerbread

The standard shell used in Android in versions up to
 2.3/Gingerbread is found in system/core/sh/ in the sources, and the
 resulting binary is /system/bin/sh
 on the target. Unlike many components in the system, this shell is one
 where Android doesn’t reinvent the wheel. Instead, Android uses the
 NetBSD sh utility with very few tweaks. The AOSP in fact preserves sh’s
 man page as is, so you can do something like this on your host to get
 more information on how to use the shell:
$ man system/core/sh/sh.1
This shell is unfortunately a lot more basic than bash or
 BusyBox’s ash. It doesn’t, for instance, have tab completion or
 color-coding of files. If for no other reason, these limitations have
 been good justification for developers to include BusyBox on their
 targets, at least during development. For a full comparison of Unix
 shells, minus BusyBox, have a look at Arnaud Taddei’s Shell Choice, A shell comparison. It
 dates back to 1994, but it’s one of the few documents that discusses
 this topic. There’s also Wikipedia’s
 comparison, but it’s more shallow.
Comparisons aside, here’s an overview of sh’s capabilities:
	Output redirection using > and
 <

	Piping using |

	Running background commands using
 &

	Scripting using if/then/fi,
 while/do/done, for/do/done, continue/break, and case/in/pattern/esac.

	Environment variables

	Parameter expansion (${...})

	Command substitution ($(...))

	Shell patterns (*, ?,
 !, etc.)

Table 6-12 describes sh’s built-in commands.
Table 6-12. sh built-in commands
	Command	Description
	alias	Substitute one command for another.
	bg	Run a suspended task in the background.
	command	Run specified command; useful when a script has the same
 name as a built-in command.
	cd	Change directory.
	eval	Evaluate an expression.
	exec	Replace the running shell with the specified
 command.
	exit	Quit the shell process.
	export	Export an environment variable’s value for all subsequent
 commands.
	fg	Move background job to the foreground.
	getopts	Parse command-line options.
	hash	Print out location of commands in shell’s cache.
	jobid	Print PIDs belonging to job ID.
	jobs	List currently running jobs.
	pwd	Print working directory.
	read	Read a variable from the command line.
	readonly	Set an environment variable as read-only.
	set	List the environment variables currently set.
	setvar	Set an environment variable to a given value.
	shift	Shift command-line parameters upward ($1 becomes $2,
 etc.).
	trap	Execute an action when given Unix signals are
 received.
	type	Print the filesystem location of a command or an alias’s
 definition.
	ulimit	Print/set the process limits (uses sysctl()).
	umask	Set default file creation mode.
	unalias	Delete a given alias.
	unset	Delete a given environment variable.
	wait	Wait for a given job to complete.

If you’re using any Android version up to 2.3/Gingerbread, I
 encourage you to look at sh’s man page for more information on how to
 use each of its features. You’ll also be able to benefit from the
 plethora of online examples and tutorials on Unix shell scripting. None
 of these aspects is unique to Android or the use of sh in an embedded setting.

The Shell Since 4.0/Ice-Cream Sandwich

Starting with 4.0/Ice-Cream Sandwich,[28] Android now relies on the MirBSD Korn Shell. It’s
 found in the external/mksh/
 directory in the host, and the binary is /system/bin/mksh on the
 target.
Note
Even though mksh was included
 in AOSP versions before 4.2/Jelly Bean, it was disabled when building
 for the emulator. There is a TARGET_SHELL configuration variable in the
 build system that is set by default to mksh. However, a board config can change the
 default to whatever is appropriate for that board. Prior to 4.2/Jelly
 Bean, this variable was set to ash,
 which is the new name of the executable that replaces the sh command described in the previous
 section.

mksh is a lot more powerful
 than sh. It includes tab completion,
 for instance, though it doesn’t support color-coding of files, and has
 bash/ksh93/zsh-like extensions. It also has a man page that you can
 check on the host by typing:
$ man system/external/mksh/src/mksh.1
Given that mksh has a lot more
 features and built-in commands than sh, it would be difficult to give it proper
 coverage in this book. Instead, I encourage you to look at its man page
 and its website for more information. It includes, for instance, an
 implementation for the very useful history command, which lists the previous
 commands you typed on the shell.

Toolbox

Like any other Linux-based system, Android’s shell provides only
 the bare minimum required to have a functional command line. The rest of
 the functionality comes from individual tools providing specific
 capabilities that can be started individually from the shell. As we
 discussed in Chapter 2, the package that provides these
 tools in Android is called Toolbox, and it’s distributed under the BSD
 license. Toolbox is in system/core/toolbox/ in the AOSP. The
 resulting binary and the symbolic links to it reside in /system/bin on the actual target.
Unfortunately, in addition to not being as feature-rich as
 BusyBox, Toolbox also severely lacks in documentation. Fortunately, the
 majority of the commands it provides already exist, albeit in more
 feature-full form, on the standard Linux desktop. Hence, you can use
 your development machine’s man pages as a primer for using the
 equivalent Toolbox commands. Beware, as some of the Toolbox variants
 have slightly different command-line semantics from their standard Linux
 brethren.
In some cases, this is easy to figure out, as the command will
 print out its usage if you pass it the wrong type of parameters.
 However, not all Toolbox commands provide online help. In some cases,
 you’ll even have to dig into Toolbox’s sources to figure out exactly how
 the command’s parameters are processed and what the command actually
 does.
Common Linux commands

Table 6-13 lists the common Linux
 commands found in Toolbox. If your favorite command isn’t in this
 list, I suggest you check BusyBox—it’s likely in there. We’ll discuss
 in Appendix A how to get BusyBox to sit side by side
 with Toolbox in the same filesystem. If even BusyBox doesn’t include
 the utility you’re looking for, then you can compile the full Linux
 utility for Android, possibly by importing it into the AOSP external/ directory and deriving an
 Android.mk for it based on its
 existing build scripts or makefiles.
Note
For the sake of brevity, I’m omitting the full list of command
 parameters in Table 6-13 for each
 command. Have a look at the Linux man pages to get an idea of what
 they likely are.

Table 6-13. Toolbox’s common Linux commands
	Command	Description
	cat	Dump the contents of a given file to the standard
 output
	chmod	Change the access rights on a file or a
 directory
	chown	Change the ownership of a file or a directory
	cmp	Compare two files
	date	Print out the current date and time
	dd	Copy a file while converting and formatting the
 content
	df	Print the filesystems’ disk usage
	dmesg	Dump the kernel’s log buffer
	hd	Dump a file in hexadecimal format
	id	Print the current user and group IDs
	ifconfig	Configure a networking interface
	iftop	Monitor the networking traffic in real-time
	insmod	Load a kernel module
	ionice	Get/set the I/O priority of a process
	ln	Create a symbolic link
	kill	Send the TERM signal
 to a process
	ls	List a directory’s contents
	lsmod	List the currently loaded kernel modules
	lsof	List the currently open file descriptors
	mkdir	Create a directory
	mount	Print the list of mounted filesystems or mount new
 ones
	mv	Rename a file
	netstat	Print network statistics
	printenv	Print all environment variables exported
	ps	Print running processes
	reboot	Reboot the system
	renice	Change a process’s “nice” value
	rm	Delete a file
	rmdir	Delete a directory
	rmmod	Remove a kernel module
	route	Print/modify the kernel’s routing table
	sleep	Sleep for a given number of seconds
	sync	Flush the filesystem cache back to persistent
 storage
	top	Monitor processes in real time
	umount	Unmount a filesystem
	uptime	Print the system’s uptime
	vmstat	Print out the system’s memory use

A few of these are downright annoying in their shortcomings. For
 example, until 4.0/Ice-Cream, ls
 was unable to print directory listings in alphabetical order or
 provide color-coding for files, which is standard in most Linux
 systems. Alphabetical ordering has since been added, but not
 color-coding. Also, contrary to its typical Linux or BusyBox version,
 ifconfig doesn’t actually print out
 the current network configuration if invoked without any
 parameters—you have to use netcfg
 instead. Table 6-14 lists additional
 Linux commands you’ll find in 4.2/Jelly Bean.
Table 6-14. Additional common Linux commands found in 4.2/Jelly
 Bean
	Command	Description
	cp	Copy files
	du	Show file-space usage
	grep	Look for strings in files
	md5	Like md5sum command
 in Linux, compute files’ MD5 checksum
	touch	Update a file’s timestamp (and create it if it doesn’t
 exist)

Global properties

Chapter 2 explained that one of Android’s init
 features is that it maintains a set of global properties that can be
 accessed from anywhere in the system. Naturally, Toolbox provides a few
 tools to interface with these global properties:
getprop <key>
setprop <key> <value>
watchprops
The first thing you’ll likely want to do is list all the
 properties with their current values:
getprop
[ro.ril.wake_lock_timeout]: [0]
[ro.secure]: [0]
[ro.allow.mock.location]: [1]
[ro.debuggable]: [1]
[persist.service.adb.enable]: [1]
[ro.factorytest]: [0]
[ro.serialno]: []
[ro.bootmode]: [unknown]
[ro.baseband]: [unknown]
[ro.carrier]: [unknown]
[ro.bootloader]: [unknown]
[ro.hardware]: [am335xevm]
[ro.revision]: [0]
[ro.build.id]: [GRJ22]
[ro.build.display.id]: [beaglebone-eng 2.3.4 GRJ22 eng.karim.20120504.160548
 test-keys]
[ro.build.version.incremental]: [eng.karim.20120504.160548]
[ro.build.version.sdk]: [10]
...
It should print out over 100, if not a lot more, global
 properties set for your system. If you just want to print out a single
 value, you can do this:
getprop ro.hardware
am335xevm
You can also set global properties straight from the command
 line:
setprop acme.birdradar.enable 1
getprop acme.birdradar.enable
1
Once a property has been set, you can change its value again
 using setprop. You can’t, however,
 delete a property that you “created” using setprop. The property will, however,
 disappear at the next reboot unless its name starts with persist. In that case, a file with the
 property’s full name will be created in /data/property containing the property’s
 value. To delete this property, you would need to delete this file or
 destroy the data partition.
You can also monitor properties being changed in
 real-time—assuming the acme.birdradar.enable is set after watchprop is started:
watchprops
 946709853 acme.birdradar.enable = '1'

Input events

Android relies heavily on Linux’s input layer to get the user’s
 input events. The devices that expose Linux’s input layer are
 available through entries in /dev/input which, as we saw in Chapter 2, is the basis of Android’s input support.
 Whenever the user touches or swipes the screen or touches any of the
 device’s buttons, an event is generated. While Android’s System Server
 already handles those events appropriately, you might want to either
 observe or generate your own events. Toolbox lets you do just
 that:
getevent [-t] [-n] [-s <switchmask>] [-S] [-v [<mask>]] [-p] [-q] [-c <count>]
[-r][<device>]
 -t: show time stamps
 -n: don't print newlines
 -s: print switch states for given bits
 -S: print all switch states
 -v: verbosity mask (errs=1, dev=2, name=4, info=8, vers=16, pos. events=32)
 -p: show possible events (errs, dev, name, pos. events)
 -q: quiet (clear verbosity mask)
 -c: print given number of events then exit
 -r: print rate events are received
sendevent <device> <type> <code> <value>
To observe the events, you can do something like this:
getevent
/dev/input/event0: 0003 0000 0000007d
/dev/input/event0: 0003 0001 0000011b
/dev/input/event0: 0001 014a 00000001
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 014a 00000000
/dev/input/event0: 0000 0000 00000000
/dev/input/event0: 0001 0066 00000001
/dev/input/event0: 0001 0066 00000000
...
getevent continuously
 displays events as they come in until you type Ctrl-C. The output
 format is event type, event code, and event value. This lets you
 verify whether your driver is reporting the appropriate information
 back to Android.
In a similar fashion, if you’d like to monitor Android’s
 handling of events, you can send events of your own:
sendevent /dev/input/event0 1 330 1
Note that if you were running getevent simultaneously, you would then see
 this new event:
/dev/input/event0: 0001 014a 00000001
In other words, while getevent’s output is hexadecimal, sendevent’s input is decimal.

Controlling services

As we saw in Chapter 2, Android’s init
 starts a number of native daemons for a variety of purposes.
 Typically, these are described as services in
 init’s configuration scripts—init’s “services” have nothing to do with
 either system services or the service components available to app
 developers. As we’ll see shortly, such services can be either started
 automatically or marked as disabled. Either way, you can start and
 stop services using the following:
start <servicename>
stop <servicename>
Neither of these generates any output. There’s also
 unfortunately no way to ask Android for the list of running services.
 Instead, you’re assumed to understand init’s configuration scripts
 enough to know which services you can start and stop. For instance, if
 you want to stop all the system’s Java components, you can do
 this:
stop zygote
Note that this specific command is a pretty drastic measure, as
 it will stop all apps and kill the System Server. But in some cases it
 might be exactly what you’re looking for. Say you wanted to stop a
 system service from accessing a given driver because it stopped
 operating properly, and you want to run some diagnostics on it without
 the system continuing to use it.
We’ll cover Android’s init and its handling of services in the
 next section.

Logging

Another interesting Toolbox feature is its ability to allow you
 to add your own events to Android’s logger:
log [-p <prioritychar>] [-t <tag>] <message>
prioritychar should be one of:
v,d,i,w,e
For example:
log -p i -t ACME Initiating bird tracking sequence
Now, if you check the logs with logcat, you see this:
logcat
...
I/ACME (336): Initiating bird tracking sequence
...
This can be very useful if you have shell scripts that execute
 alongside the rest of the Android stack. Also, if you’ve got custom
 code using Android’s logging capabilities, say within an app or a
 custom system service, you’ll be able to see the relative ordering of
 the events generated there and those generated from scripts or
 manually on the command line.

ioctl

As we discussed in Chapter 2, devices
 appear as entries in /dev. If you
 are familiar with Linux’s driver model, you know that if a device is
 controlled by a character device driver, then simply opening that
 device’s entry in /dev and
 reading/writing from/to it will result in its read()/write() functions getting invoked. So you
 can do something like this to read from a character device:
cat /dev/birdlocator0
Similarly, you can do something like this to write to a
 character device:
echo "Fire" > /dev/birdlaser0
Another very important file operation available on character
 devices is ioctl(). There is,
 however, no standard Linux utility for invoking this operation, since
 it’s driver-specific. On embedded systems, however, where those
 manipulating the system are typically either the driver authors
 themselves or working with them very closely, it makes sense to have a
 utility to enable developers to invoke drivers’ ioctl() functions. And Toolbox provides
 just that:
ioctl [-l <length>] [-a <argsize>] [-rdh] <device> <ioctlnr>
 -l <length> Length of io buffer
 -a <argsize> Size of each argument (1-8)
 -r Open device in read only mode
 -d Direct argument (no iobuffer)
 -h Print help
Obviously the use you make of this will be highly
 driver-specific. You’ll need to refer to your driver’s documentation
 and/or sources to know exactly the parameters you need to pass to this
 command and what effects they’ll have.
Warning
ioctl() is a very
 powerful driver operation. Uses can go from benign status reporting
 to outright hardware destruction. Make sure you know exactly what the specific I/O control
 operation you’re about to issue does on the designated device. You
 probably want to use it only on drivers you wrote.

Wiping the device

In some extreme cases, it’s necessary to destroy data on an
 Android device. This extreme and irreversible operation is made
 possible using Toolbox’s wipe
 command:
wipe <system|data|all>

system means '/system'
data means '/data'
If you need to destroy all data on a system, you can do
 this:
wipe data
Wiping /data
Done wiping /data
I’m sure you understand there’s no “undo” here, so be careful
 with this. You might want to use this as a failsafe in case you have
 sensitive data or binaries on the device and, for instance, destroy it
 in case you detect unauthorized access to key system parts.

Other Android-specific commands

Toolbox also includes a few other Android-specific commands,
 which we’ll review briefly, since their uses are either obvious or
 very limited.
nandread

This utility is for reading the contents of a NAND flash
 device to a file:
nandread [-d <dev>] [-f <file>] [-s <size>] [-vh]
 -d <dev> Read from <dev>
 -f <file> Write to <file>
 -s <size> Number of spare bytes in file (default 64)
 -R Raw mode
 -S <start> Start offset (default 0)
 -L <len> Length (default 0)
 -v Print info
 -h Print help

newfs_msdos

This command allows you to format a device as a VFAT
 filesystem:
newfs_msdos [-options] <device> [<disktype>]
where the options are:
-@ create file system at specified offset
-B get bootstrap from file
-C create image file with specified size
-F FAT type (12, 16, or 32)
-I volume ID
-L volume label
-N don't create file system: just print out parameters
-O OEM string
-S bytes/sector
-a sectors/FAT
-b block size
-c sectors/cluster
-e root directory entries
-f standard format
-h drive heads
-i file system info sector
-k backup boot sector
-m media descriptor
-n number of FATs
-o hidden sectors
-r reserved sectors
-s file system size (sectors)
-u sectors/track
newfs_msdos is the tool
 used by the vold daemon to format
 devices for VFAT; vold being
 itself used by the Mount system service for managing mounted
 devices.

notify

This command uses the inotify system call an API to monitor
 directories or files for modifications:
notify [-m <eventmask>] [-c <count>] [-p] [-v <verbosity>] <path> [<path> ...]

r

In 4.2/Jelly Bean, you’ll also find an r command. It’s shorthand for repeating
 the previous command you typed on the shell. So, instead of pressing
 the up arrow and then Enter, you can just type r. Here’s a simple example:
root@android:/ # ls -l /proc/cpuinfo
-r--r--r-- root root 0 2013-01-19 10:34 cpuinfo
root@android:/ # r
ls -l /proc/cpuinfo
-r--r--r-- root root 0 2013-01-19 10:34 cpuinfo

schedtop

Like top, schedtop is for continuous, real-time
 monitoring of the kernel’s scheduler. Unlike top, which only reports the real-time CPU
 usage percentage for each process, this command continuously reports
 on the cumulative execution time of each process:
schedtop [-d <delay>] [-bitamun]
 -d refresh every <delay> seconds
 -b batch - continuous prints instead of refresh
 -i hide idle tasks
 -t show threads
 -a use alternate screen
 -m use millisecond precision
 -u use microsecond precision
 -n use nanosecond precision
Note
The command description given here stems from my reading of
 Toolbox’s sources. schedtop
 itself doesn’t provide any online help, nor is there any
 documentation on its use.

setconsole

This command lets you switch consoles:
setconsole [-d <dev>] [-v <vc>] [-gtncpoh]
 -d <dev> Use <dev> instead of /dev/tty0
 -v <vc> Switch to virtual console <vc>
 -g Switch to graphics mode
 -t Switch to text mode
 -n Create and switch to new virtual console
 -c Close unused virtual consoles
 -p Print new virtual console
 -o Print old virtual console
 -h Print help

smd

Of all of Toolbox’s commands, this one is the most
 “mysterious.” I had a very hard time finding any useful information
 about the use of smd or actual
 usage examples. It appears that under certain devices, the Baseband
 Processor appears as one of /dev/smdN.
 This tool then allows you to send AT commands to the Baseband
 Processor:
smd [<port>] <commands>

Core Native Utilities and Daemons

As I mentioned in Chapter 2, Android has about
 150 utilities spread around its filesystem. In this chapter, we’ll cover
 those used independent of the Java framework and services. Specifically,
 we’ll focus in this section mostly on those in /system/bin, which we could consider
 core to Android. Some utilities are also found in
 /system/xbin, but they aren’t
 essential for the system to operate properly.
We already saw how Toolbox implements a lot of functionality
 commonly found in standard Linux systems, as well as Android-specific
 functionality. Similarly, there are two categories of core Android
 utilities and daemons, some which are derived from external projects and
 others that are Android specific. Table 6-15 presents a number of core
 utilities and daemons that are compiled from projects in the external/ directory.
Table 6-15. Core utilities and daemons from external projects
	Utility/Daemon	External Project	Original Location
	bluetoothd, sdptool, avinfo, hciconfig, hctitool, l2ping, hciattach and rfcomm.	BlueZ[a]	http://www.bluez.org/
	dbus-daemon	D-Bus	http://dbus.freedesktop.org
	dnsmasq	Dnsmasq	http://www.thekelleys.org.uk/dnsmasq/
	dhcpcd and showlease	dhcpcd	http://roy.marples.name/projects/dhcpcd/
	fsck_msdos	NetBSD fsck_msdos	http://cvsweb.netbsd.org/bsdweb.cgi/src/sbin/fsck_msdos/
	gdbserver	GNU Debugger	http://www.gnu.org/software/gdb/
	gzip	gzip utility	http://www.gzip.org/
	iptables	Netfilter	http://www.netfilter.org/
	ping	iputils	http://www.skbuff.net/iputils/
	pppd	PPP	http://ppp.samba.org/
	racoon	IPsec-Tools	http://ipsec-tools.sourceforge.net/
	tc	iproute2	http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
	wpa_supplicant and
 wpa_cli	WPA Supplicant	http://hostap.epitest.fi/wpa_supplicant/
	[a] No longer part of Android starting with 4.2/Jelly
 Bean.

Not all of these are actually necessary for your system to run. If
 your embedded system doesn’t have WiFi or Bluetooth support, for
 instance, then there’s no need to have either wpa_supplicant or any of the BlueZ utilities
 and daemons. In fact, in those specific cases, the binary isn’t built
 unless the board-specific .mk files
 require it. Remember that BlueZ has been replaced with another stack in
 4.2/Jelly Bean.
The following subsections look at the core Android-specific
 utilities and daemons. Many of these aren’t actually meant to be invoked
 by you directly on the command line but are automatically invoked
 instead by one part of the system or another. Some, however, are worth
 mastering.
logcat

Probably one of the commands you’ll use most often in Android,
 logcat allows you to dump the
 Android logger’s buffer as we saw earlier while covering adb. Here’s logcat’s full online help:
logcat --help
Usage: logcat [options] [filterspecs]
options include:
 -s Set default filter to silent.
 Like specifying filterspec '*:s'
 -f <filename> Log to file. Default to stdout
 -r [<kbytes>] Rotate log every kbytes. (16 if unspecified). Requires -f
 -n <count> Sets max number of rotated logs to <count>, default 4
 -v <format> Sets the log print format, where <format> is one of:

 brief process tag thread raw time threadtime long

 -c clear (flush) the entire log and exit
 -d dump the log and then exit (don't block)
 -t <count> print only the most recent <count> lines (implies -d)
 -g get the size of the log's ring buffer and exit
 -b <buffer> request alternate ring buffer
 ('main' (default), 'radio', 'events')
 -B output the log in binary
filterspecs are a series of
 <tag>[:priority]

where <tag> is a log component tag (or * for all) and priority is:
 V Verbose
 D Debug
 I Info
 W Warn
 E Error
 F Fatal
 S Silent (supress all output)

'*' means '*:d' and <tag> by itself means <tag>:v

If not specified on the commandline, filterspec is set from ANDROID_LOG_TAGS.
If no filterspec is found, filter defaults to '*:I'

If not specified with -v, format is set from ANDROID_PRINTF_LOG
or defaults to "brief"
You should be able to figure out most of logcat’s intricacies using this help and
 Chapter 2’s explanations of the Android logger. You
 can use the -b flag, for instance,
 to select which buffer you’d like to dump—main being the default. You can also set the
 ANDROID_LOG_TAGS environment
 variable to provide a default output filter. Still, a more confusing
 aspect of logcat is specifically
 its filtering capabilities. Indeed, the online help seems to indicate
 that just specifiying a <tag>[:priority] after the command is
 sufficient to limit the output to that belonging to tag. That doesn’t work, though:
logcat ActivityManager
--------- beginning of /dev/log/main
I/DEBUG (59): debuggerd: Mar 27 2012 05:30:39
--------- beginning of /dev/log/system
I/Vold (57): Vold 2.1 (the revenge) firing up
D/Vold (57): USB mass storage support is not enabled in the kernel
D/Vold (57): usb_configuration switch is not enabled in the kernel
D/Vold (57): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media
)
D/Vold (57): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
D/Vold (57): Volume sdcard state changing 0 (No-Media) -> 2 (Pending)
D/Vold (57): Volume sdcard state changing 2 (Pending) -> 1 (Idle-Unmounted
)
I/Netd (58): Netd 1.0 starting
D/AndroidRuntime(61):
D/AndroidRuntime(61): >>>>>> AndroidRuntime START com.android.internal.os.Zyg
oteInit <<<<<<
D/AndroidRuntime(61): CheckJNI is ON
D/dalvikvm(61): creating instr width table
...
Obviously, we’re seeing the output from all tags, not just the
 one matching ActivityManager. The
 trick is to use the -s flag:
logcat -s ActivityManager
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/ActivityManager(128): Memory class: 16
I/ActivityManager(128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=0 seq=1}
I/ActivityManager(128): System now ready
I/ActivityManager(128): Start proc com.android.systemui for service com.androi
d.systemui/.statusbar.StatusBarService: pid=245 uid=1000 gids={3002, 3001, 3003}
I/ActivityManager(128): Config changed: { scale=1.0 imsi=0/0 loc=md_US touch=1
 keys=1/1/2 nav=1/1 orien=2 layout=268435491 uiMode=17 seq=2}
I/ActivityManager(128): Start proc com.android.inputmethod.latin for service c
om.android.inputmethod.latin/.LatinIME: pid=247 uid=10016 gids={}
W/ActivityManager(128): Unable to start service Intent { act=@0 }: not found
W/ActivityManager(128): Unable to start service Intent { act=@0 }: not found
...
logcat’s online help is
 unfortunately not very helpful in figuring this out.

netcfg

In addition to Toolbox’s ifconfig, Android has another utility that
 lets you manipulate network interfaces:
netcfg [<interface> {dhcp|up|down}]
Confusingly, netcfg and
 ifconfig have overlapping
 functionality. Both can, for example, bring interfaces up and down.
 However, netcfg can initiate DHCP
 client requests and print out the current interface’s configuration,
 while ifconfig can do neither.
 ifconfig, on the other hand, can
 set an interface’s static IP address and its netmask, while netcfg can’t do that.
Mostly, netcfg is very useful
 for printing out the interfaces’ configurations:
netcfg
lo UP 127.0.0.1 255.0.0.0 0x00000049
eth0 UP 10.0.2.15 255.255.255.0 0x00001043
tunl0 DOWN 0.0.0.0 0.0.0.0 0x00000080
gre0 DOWN 0.0.0.0 0.0.0.0 0x00000080

debuggerd

This daemon is actually started by init early during startup. It opens the
 android:debuggerd abstract Unix
 domain socket[29] and awaits connections. It remains dormant until a
 user-space process crashes. It’s activated by Bionic’s linker, which sets up signal handlers for dealing with crashes and connects to
 debuggerd whenever that happens.
 debuggerd then does two things:
 creates a tombstone file in /data/tombstones and, if required, allows
 postmortem debugging to be done through gdbserver.
You don’t need to do anything special for tombstone files to be
 generated. They’ll be created automatically and will contain
 information about the crashing process that you might find useful for
 postmortem analysis. Here’s one from the frequently crashing VNC
 server on my BeagleBone:
cat /data/tombstones/tombstone_06
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'TI/beaglebone/beaglebone:2.3.4/GRJ22/eng.karim.20120504.1605
48:eng/test-keys'
pid: 4656, tid: 4656 >>> androidvncserver <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad
 r0 00000027 r1 deadbaad r2 a0000000 r3 00000000
 r4 00000001 r5 00000000 r6 00069ad8 r7 0005e000
 r8 00069cd8 r9 00000000 10 000003e8 fp 00000001
 ip afd46668 sp beeb4bd0 lr afd191d9 pc afd15ca4 cpsr 60000030
 d0 2e302e302e373220 d1 206f742074636567
 d2 000000000000006f d3 000000000000006e
...
 #00 pc 00015ca4 /system/lib/libc.so
 #01 pc 00013614 /system/lib/libc.so
 #02 pc 000144da /system/lib/libc.so
 #03 pc 00010290 /system/bin/androidvncserver
 #04 pc 00010296 /system/bin/androidvncserver
 #05 pc 0000fcbe /system/bin/androidvncserver
 #06 pc 0000bc66 /system/bin/androidvncserver
 #07 pc 0000a87e /system/bin/androidvncserver
 #08 pc 00014b52 /system/lib/libc.so

code around pc:
afd15c84 2c006824 e028d1fb b13368db c064f8df
afd15c94 44fc2401 4000f8cc 49124798 25002027
afd15ca4 f7f57008 2106ec7c edd8f7f6 460aa901
afd15cb4 f04f2006 95015380 95029303 e93ef7f6
afd15cc4 462aa905 f7f62002 f7f5e94a 2106ec68

code around lr:
afd191b8 4a0e4b0d e92d447b 589c41f0 26004680
afd191c8 686768a5 f9b5e006 b113300c 47c04628
afd191d8 35544306 37fff117 6824d5f5 d1ef2c00
afd191e8 e8bd4630 bf0081f0 00028344 ffffff88
afd191f8 b086b570 f602fb01 9004460c a804a901

stack:
 beeb4b90 0005e008
 beeb4b94 6f000001
 beeb4b98 6f2e6772
 beeb4b9c 7069616e
 beeb4ba0 afd4270c
 beeb4ba4 afd426b8
 beeb4ba8 00000000
 beeb4bac afd191d9 /system/lib/libc.so
...
Also, if you set the debug.db.uid to some UID larger than that of
 the crashing process (just use a large integer value such as 32767
 [2^15 - 1]), debuggerd will then
 use the ptrace() system call to
 attach to the dying process and allow you to start gdbserver to take control of it. Here’s the
 output printed out by debuggerd to
 the log when I do that on my BeagleBone:
I/DEBUG (59): **
I/DEBUG (59): * Process 4656 has been suspended while crashing. To
I/DEBUG (59): * attach gdbserver for a gdb connection on port 5039:
I/DEBUG (59): *
I/DEBUG (59): * adb shell gdbserver :5039 --attach 4656 &
I/DEBUG (59): *
I/DEBUG (59): * Press HOME key to let the process continue crashing.
I/DEBUG (59): **
Once gdbserver is attached to
 the dying process, you can then use one of the arm-eabi-gdb debuggers that are part of the
 AOSP’s prebuilt/ directory to
 attach to the gdbserver running on
 the target and proceed with debugging the dying process.

Other Android-specific core utilities and daemons

There are also a few other core utilities and daemons you should
 know about, though you’re unlikely to use these very often.
check_prereq

This allows you to check whether the currently running build
 is older than a given timestamp:
check_prereq 1336847591
current build time: [1336162137] new build time: [1336847591]
This is mainly useful for upgrading purposes, allowing you to
 invoke this command from adb to
 check whether your current builder is older or newer than the one
 running on your device. The build time is stored in the build.prop file found in the system/ partition in the ro.build.date.utc global property.

linker

This is Bionic’s dynamic linker. You never need to invoke this
 manually. It is automatically loaded whenever a Bionic-linked binary
 is executed, and its job is to load all the libraries required by
 that binary. The readelf utility
 part of the GNU toolchain provides some more insight as to what
 occurs during this process:
$ arm-eabi-readelf -a logcat
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: ARM
 Version: 0x1
 Entry point address: 0x8ed0
 Start of program headers: 52 (bytes into file)
 Start of section headers: 13020 (bytes into file)
 Flags: 0x5000000, Version5 EABI
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
...
Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 PHDR 0x000034 0x00008034 0x00008034 0x000e0 0x000e0 R 0x4
 INTERP 0x000114 0x00008114 0x00008114 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /system/bin/linker] [image: 1]
 LOAD 0x000000 0x00008000 0x00008000 0x02470 0x02470 R E 0x1000
 LOAD 0x003000 0x0000b000 0x0000b000 0x001cc 0x00608 RW 0x1000
 DYNAMIC 0x003020 0x0000b020 0x0000b020 0x000c8 0x000c8 RW 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0
 EXIDX 0x002410 0x0000a410 0x0000a410 0x00060 0x00060 R 0x4
...
Dynamic section at offset 0x3020 contains 25 entries:
 Tag Type Name/Value
 0x00000003 (PLTGOT) 0xb0fc
 0x00000002 (PLTRELSZ) 376 (bytes)
...
 0x00000001 (NEEDED) Shared library: [liblog.so] [image: 2]
 0x00000001 (NEEDED) Shared library: [libc.so]
 0x00000001 (NEEDED) Shared library: [libstdc++.so]
 0x00000001 (NEEDED) Shared library: [libm.so]
...
	[image: 1]
	This is the linker required by the binary.

	[image: 2]
	These are the libraries that must be loaded by the
 linker.

There’s of course a lot more output to readelf than the above, but this shows you
 that logcat’s “program
 interpreter” is /system/bin/linker and that it needs the
 following libraries: liblog.so,
 libc.so, libstdc++.so, and libm.so.

logwrapper

This command allows you to run another command and redirect
 its stdout and stderr to the Android logger:
logwrapper [-x] <binary> [<args> ...]
The log tag used in this case is the same string as the
 binary’s name. Using the -x option causes logwrapper to generate a segmentation
 fault (SIGSEGV) when binary terminates, with the fault address
 being the status returned by the wait() system call on the existing
 binary.

run-as

Allows you to run a binary as if it were executed with the
 rights associated with an app package:
run-as <package-name> <command> [<args>]
The command will run from
 the directory associated with package-name in /data/data with that app’s
 UID/GID.

sdcard utility

This utility uses Linux’s Filesystem in User SpacE (FUSE) to
 emulate in any directory on the filesystem the rights and
 permissions you’d find on any FAT-formatted SD card:
sdcard <path> <uid> <gid>
In other words, files and directories in the designated
 directory will all be executable, as you’d expect in FAT. The
 directory provided as path will
 be mounted to /mnt/sdcard. And
 while sdcard must be issued as
 root, it’ll run as uid/gid. This is useful for devices that don’t
 actually have a removable SD card. In those cases, the “external”
 storage is emulated on the “internal” storage using the sdcard command.

Extra Native Utilities and Daemons

Android also packs a certain number of extra utilities and daemons
 that aren’t essential to the system’s operation. Most of these are in
 /system/xbin, and they may, in some
 circumstances, be useful to you. Tables 6-16 and 6-17 list those utilities and daemons.
Table 6-16. Extra utilities and daemons from external projects
	Utility/Daemon	External Project	Original Location
	dbus-monitor and
 dbus-send	D-Bus	http://dbus.freedesktop.org
	ssh and scp	Dropbear	http://matt.ucc.asn.au/dropbear/
	nc	Netcat	http://nc110.sourceforge.net/
	skia_text	skia 2D graphics library	http://code.google.com/p/skia/
	sqlite3	SQLite	http://www.sqlite.org/
	strace	strace utility	http://sourceforge.net/projects/strace/
	tcpdump	tcpdump utility	http://www.tcpdump.org/
	netperf and netserver	netperf	http://www.netperf.org/netperf/
	oprofiled and opcontrol	OProfile	http://oprofile.sourceforge.net/

Table 6-17. Extra Android-specific utilities and daemons
	Utility/Daemon	Description
	cpueater and daemonize	cpueater does a
 while(1) loop, eating as
 much CPU as possible, and daemonize allows you to run it as a
 daemon in the background.
	crasher	This utility is packaged with debuggerd and essentially simulates a
 crashing process.
	directiotest	Provided with a block device’s mount, does write/readback
 tests on the block device to test it.
	latencytop	Provides per-process latency information.
	librank	Prints memory usage information for each object mapped
 into any process’s memory. This includes libraries and
 memory-mapped devices and regions.
	procmem	Prints memory usage information for each section of a
 running PID.
	procrank	Ranks processes by memory used.
	schedtest	Tests the scheduler to see how reliable it is at promptly
 waking up tasks that request 1ms sleeps.
	showmap	Prints out a process’s memory map.
	showslab	Prints out information on the slab allocator.
	su	Allows the root user to change his UID/GID.
	timeinfo	Reports realtime, uptime, awake percentage, and sleep
 percentage to the standard output.

Framework Utilities and Daemons

In addition to the utilities and daemons just covered, Android
 contains quite a number of others that are tightly tied to the system
 services and Android Framework, such as servicemanager, installd, and dumpsys. We’ll discuss those in the next
 chapter.

Init

One of the most important tasks in the system is initializing the
 user-space environment once the kernel has finished initializing device
 drivers and its own internal structures. As we discussed in Chapter 2, this is the init
 process’s job once it’s started by the kernel. And, as we discussed then,
 Android has its own custom init, with its own specific features. Now that
 we’ve covered a good part of what’s available in the native user-space
 once the system is up, let’s take a closer look at the process that’s
 responsible for starting it all.
Theory of Operation

Figure 6-4 illustrates how init integrates with the rest of the Android
 components. After getting started by the kernel, it essentially reads
 its configuration files, prints out a boot logo or text to the screen,
 opens a socket for its property service, and starts all the daemons and services that bring up
 the entire Android user-space. There’s of course more to each of these
 steps.
Android init versus “Normal” init
In a typical Linux system, init’s role would be limited to starting
 daemons, but, if only because of its property service, Android’s
 init is special. Like any Linux
 init, however, Android’s init isn’t expected to ever die. init is, as we discussed earlier, the first
 process started by the kernel and, as such, its PID is always 1.
 Should it ever die, the kernel would panic.

[image: Android’s init]

Figure 6-4. Android’s init

One of the first things init
 does is check whether it was invoked as ueventd. As I mentioned in Chapter 2, init includes
 an implementation of the udev hotplug events handler. Because this code
 is compiled within init’s own code,
 init checks the command-line that was
 used to invoke it, and if it was invoked through the /sbin/ueventd symbolic link to
 /init, then init immediately runs as ueventd.
The next thing init does is
 create and mount /dev, /proc, and /sys. These directories and their entries are
 crucial to many of the things init
 does next. init then reads the
 /init.rc and /init.<device_name>.rc files, parses
 their content into its internal structures, and proceeds to initialize
 the system based on a mix of its configuration files and built-in rules.
 We’ll discuss this in much greater detail in the next subsection.
Once all initialization is done, init then enters an infinite loop in which it
 restarts any services that might have exited and that need restarting,
 and then polls file descriptors it handles, such as the property
 service’s socket, for any input that needs to be processed. This is how
 setprop property setting requests are
 serviced, for instance.

Configuration Files

The main way to control init’s
 behavior is through its configuration files. Given that Android has its
 own init, there is much to say about
 those configuration files. Let’s go over their location and semantics.
 Then we’ll cover the main init.rc
 file and board-specific configuration files.
Location

The main location for all things init is the
 root directory (/). This is where you’ll find the
 actual init binary itself and its
 two configurations files: init.rc
 and init.<device_name>.rc.
 The first file’s name is fixed in stone, while the second file’s name
 depends on the hardware.
In essence, the <device_name> is
 extracted from /proc/cpuinfo.
 Earlier in this chapter, we used adb shell to dump the content of
 that file for the BeagleBone. In that dump, you’ll notice a line that
 starts with Hardware. It’s the
 content of that line that is parsed by init to retrieve the
 <device_name>. In the case of the
 BeagleBone, this is am335xevm, and
 in the case of the emulator, it’s goldfish.
Note
The string displayed beside Hardware is converted to lowercase before
 the final init.<device_name>.rc is fetched
 from disk. Hence, though the emulator reports Goldfish as being the hardware in
 /proc/cpuinfo, the file being
 fetched is /init.goldfish.rc.

One very important thing to highlight is that init reads both files before it executes any
 of the instructions. There is therefore little incentive for adding
 board-specific modifications to the main init.rc file instead of the board-specific
 .rc file. Also, while the .rc files typically have their execute
 permission enabled, init itself
 doesn’t really check for that.

Semantics

init’s .rc files contain a series of declarations
 that fall in one of two types: actions and services. Each
 declarative section starts with a keyword identifying the type of
 declaration, on for an action and
 service for a service, and is
 followed by a number of lines with more details on the
 declaration:
on <trigger>
 <command>
 <command>
 <command>
...
service <name> <pathname> [<argument>]*
 <option>
 <option>
 <option>
...
Warning
init’s “services” have
 nothing to do with system services or the
 service component used by app
 developers.

Note
Interestingly, there’s a readme.txt within init’s sources in the AOSP. You’ll find it
 in system/core/init/. Some of
 the things it describes are likely to have been initial design goals
 but aren’t actually in the current init, such as the device-added and device-removed triggers. Overall, though,
 it remains a good reference.

The configuration files can, of course, declare many actions and
 services. Typically, actions and services are left-aligned, and the
 commands or options that follow are indented as shown above. Action
 and service declarations are similar in scope in that a given
 declaration ends whenever the next on or service keyword appears. Only an action,
 however, results in the execution of commands. Service declarations
 serve only to describe services; they don’t actually start anything.
 The services are typically started or stopped when an action is
 triggered.
There are two types of action triggers: predefined triggers and
 triggers activated on property-value changes. init defines a fixed set of predefined
 triggers that are run in a specific order. Property-activated
 triggers, however, are activated whenever a given property takes on a
 certain value specified in the init.rc file. Here’s the list of predefined
 triggers that can be used in an init configuration file:
	early-init

	init

	early-fs

	fs

	post-fs

	early-boot

	boot

The meaning of each of these triggers and the commands they
 consist of will become clearer in the next section, as we look at the
 main init.rc file. For the time
 being, here’s the order in which predefined triggers and built-in
 actions are executed by init after
 having parsed its configuration files:
	Run early-init
 commands.

	coldboot: Check that ueventd has populated /dev.

	Initialize property service’s internal data
 structures.

	Set up handler for keychords.

	Initialize the console and display startup text or
 image.

	Set up initial properties such as ro.serialno, ro.baseband, and ro.carrier.

	Run init commands.

	Run early-fs
 commands.

	Run fs commands.

	Run post-fs
 commands.

	Start the property service.

	Prepare to receive SIGCHLD signals.

	Make sure that the property service socket and SIGCHLD handler are ready.

	Run early-boot
 commands.

	Run boot commands.

	Run all property-triggered commands based on current
 property values.

Property-based triggers

Actions can also be taken based on property value
 changes:
on property:<name>=<value>
Essentially, this allows you to run a set of commands when the
 property called name is set to
 value. A very good example of
 this is the default init.rc’s
 starting or stopping the adbd
 daemon based on the toggling of the “USB debugging” checkbox in
 Settings:
on property:persist.service.adb.enable=1
 start adbd

on property:persist.service.adb.enable=0
 stop adbd

Action commands

After having declared a new action using the on keyword, what’s important is what
 commands are actually executed as part of this action. init includes a slew of commands as part
 of its lexicon. While many of these bear a strong resemblance to
 their command-line equivalents and you should be able to recognize
 their use, some are Android-specific. Table 6-18 lists init’s commands.
Table 6-18. init’s commands in 2.3/Gingerbread
	Command	Description
	chdir
 <directory>	Same as cd
 command.
	chmod <octal-mode>
 <path>	Change path’s
 access permissions.
	chown <owner>
 <group> <path>	Change path’s
 ownership.
	chroot
 <directory>	Set process’s root directory.
	class_start
 <serviceclass>	Start all services that belong to serviceclass.
	class_stop
 <serviceclass>	Stop all services that belong to serviceclass and disable
 them.
	copy <path>
 <destination>	Copy a file to destination.
	domainname
 <name>	Set the system’s domain name.
	exec <path> [
 <argument>]*	Forks and executes a program. It’s suggested to use
 an init service instead, as this operation is
 blocking.
	export <name>
 <value>	Set environment variable name to value.
	ifup
 <interface>	Start interface
 up.
	import
 <filename>	Import an additional init config file to the one
 currently parsed.
	insmod
 <path>	Insert a kernel module.
	hostname
 <name>	Set the system’s hostname.
	loglevel
 <level>	Set the current log level.
	mkdir <path> [mode]
 [owner] [group]	Create the path
 directory with the appropriate permission and
 ownership.
	mount <type>
 <device> <dir> [<mountoption>
]*	Mount device to
 dir.
	restart
 <service>	Stop and then start service.
	setkey <table>
 <index> <value>	Set a keyboard entry value.
	setprop <name>
 <value>	Set property name
 to value.
	setrlimit <resource>
 <cur> <max>	Set the resource’s
 rlimit.
	start
 <service>	Start service.
	stop
 <service>	Stop service.
	symlink <target>
 <path>	Create a symbolic link.
	sysclktz
 <mins_west_of_gmt>	Set time zone.
	trigger
 <event>	Start action called event.
	wait
 <path>	Wait until a file appears in the filesystem.
	write <path>
 <string> [<string>]*	Open a file and write strings to it.

Warning
Even though many of init’s commands resemble command-line
 equivalents from Toolbox or elsewhere, it’s important to note that
 only those listed in Table 6-18 are
 recognized. init will not attempt to issue commands to the
 command line. Commands that aren’t recognized are simply
 ignored.

4.2/Jelly Bean also has a few additional commands that are
 recognized by init, as you can
 see in Table 6-19.
Table 6-19. New init commands in 4.2/Jelly Bean
	Command	Description
	class_reset
 <serviceclass>	Like class_stop
 but doesn’t disable the services.
	load_persist_props	Load persistent properties.
	mount_all
 <path>	Mount all the partitions based on the information
 found in the path
 file.
	restorecon
 <path>	Restore SELinux context.
	rm
 <path>	Delete file.
	rmdir
 <path>	Delete directory.
	setcon
 <string>	Set security context (SELinux.)
	setenforce
 <value>	Enable or disable security enforcement
 (SELinux.)
	setsebool	Set SELinux Boolean.

As you can see, a number of commands have been added to
 support SELinux. For more information about SEAndroid, which is an
 extension of the SELinux work, have a look at the project
 website.

Service declarations

init refers only to service
 names and cannot recognize pathnames to files in order to run
 processes. Therefore, any process that has to be run from a file
 must first be assigned to a service. As we saw earlier, services are
 declared this way:
service <name> <pathname> [<argument>]*
What’s important to highlight here is that once this line is parsed, the
 service will be known by init as
 name. The actual name of the
 binary that is pointed to by pathname will itself not be recognized.
 One of the best examples of that is the Zygote (note that the line
 is wrapped to fit the page’s width in this book):
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start
-system-server
The actual binary being run here is app_process. Yet that’s not the service
 being referred to by the rest of the main init.rc file. Instead, you’ll find
 references to zygote:
 onrestart restart zygote

Service options

Much like actions, the service declaration is often followed
 by a number of lines that provide more information on the options to
 use for the service and how to run it. Table 6-20 details those options.
Table 6-20. init’s service options
	Option	Description
	class
 <name>	This service belongs the class called name, the default class being
 default.
	console	Service requires and runs on console.
	critical	If this service crashes five times, reboot into
 recovery mode.
	disabled	Don’t automatically start this service. It’ll need to
 be manually started using start.
	group <groupname> [
 <groupname>]*	Run this service under the given group(s).
	ioprio <rt|be|idle>
 <ioprio 0-7>	Set the service’s I/O scheduler and
 priority.[a]
	keycodes <keycode> [
 <keycode>]*	Start the service whenever the given keycodes are
 activated.
	oneshot	Service runs only once. Service is set as disabled on
 exit.
	onrestart
 <command>	If the service restarts, run command.
	seclabel
 <string>	Set the service’s SELinux label; available starting
 in 4.1/Jelly Bean.
	setenv <name>
 <value>	Set the name
 environment variable before starting this service.
	socket <name>
 <type> <perm> [<user> [<group>]
]	Create a Unix domain socket and pass its file
 descriptor to the process as it starts.
	user
 <username>	Run this service as username.
	[a] Have a look at the man page for ioprio_set() for more
 information.

Obviously the use of some of these is more obvious than
 others. Running a service under a certain user or as part of some
 group should be straightforward. Running a service based on a
 certain set of key combinations may be less obvious, though. Here’s
 an example of how this is used by the board-specific .rc file for the Nexus S (a.k.a.
 “Crespo”) in 2.3/Gingerbread:
bugreport is triggered by holding down volume down, volume up and power
service bugreport /system/bin/dumpstate -d -v -o /sdcard/bugreports/bugreport
 disabled
 oneshot
 keycodes 114 115 116

Main init.rc

As we discussed earlier, init
 reads two .rc files to figure out
 its configuration. One of those is provided by default for all boards
 within the AOSP, and you’ll find two versions of that file in Appendix D: one for 2.3/Gingerbread and the other for
 4.2/Jelly Bean. I very strongly
 encourage you to read through that appendix, as init.rc is the cornerstone of a lot of the
 system’s behavior. If nothing else, have a look at the comments (i.e.,
 lines starting with #). Both
 default files are in fact commented well enough that you should be
 able to make sense of their content fairly easily using the earlier
 tables as guides for specifics.
Some of the operations conducted by init.rc are subtle but have profound
 repercussions on various pieces of Android. It’s wise to bookmark the
 version of the file that’s relevant to you and come back to it every
 so often when you’re trying to figure out one thing or another about
 the system. And while default init.rc files are typically an easy read,
 understanding what specific parts are doing often requires a very
 solid grasp of the rest of the system and the order in which init executes actions.
Warning
Always keep in mind that the specific order of actions,
 commands, and services found in the default init.rc file is crucial to the system’s
 operation. You could try to craft your own init.rc from scratch, but you’d rapidly
 find out that a lot of things in the system will break if the steps
 in the default aren’t preserved. Some of the services, for instance,
 will simply not operate properly unless the appropriate options are
 used to start them. You are much better off tweaking the default
 init.rc provided with your AOSP
 or, better yet, adding your own board-specific .rc file if you need board-specific
 actions or services to be started.

Note that not all predefined actions are necessarily in use in
 your AOSP’s default init.rc. Neither early-fs nor early-boot are actually used in
 2.3/Gingerbread’s, for example. You can therefore use these in your
 board-specific .rc file if you
 need to preempt commands run in the fs or boot actions.

Board-specific .rc files

If you need to add board-specific configuration instructions for
 init, the best way is to use an
 init.<device_name>.rc
 tailored to your system. What it does specifically is up to you.
 However, I suggest you take a look at the board-specific .rc files that are already part of your
 AOSP. Here are the files from 2.3/Gingerbread, for example:
	system/core/rootdir/etc/init.goldfish.rc

	device/htc/passion/init.mahimahi.rc

	device/samsung/crespo4g/init.herring.rc

	device/samsung/crespo/init.herring.rc

Here are the ones in 4.2/Jelly Bean:
	system/core/rootdir/etc/init.goldfish.rc

	build/target/board/vbox_x86/init.vbox_x86.rc

	device/asus/tilapia/init.tilapia.rc

	device/asus/grouper/init.grouper.rc

	device/samsung/tuna/init.tuna.rc

	device/ti/panda/init.omap4pandaboard.rc

	device/lge/mako/init.mako.rc

As you’d expect, these files typically contain hardware-specific
 commands. Very often, for instance, they’ll include specific mount
 instructions for the board. Here’s an example from the Crespo-specific
 file in 2.3/Gingerbread:
on fs
 mkdir /efs 0775 radio radio
 mount yaffs2 mtd@efs /efs nosuid nodev
 chmod 770 /efs/bluetooth
 chmod 770 /efs/imei
 mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/system /system wait ro
 mount ext4 /dev/block/platform/s3c-sdhci.0/by-name/userdata /data wait noati
me nosuid nodev
As you can see, this mounts /system and /data from ext4 partitions found in the
 onboard eMMC. Another example is the snippet from an earlier section
 that showed how the bugreport
 command was activated when a certain key combination was pressed on
 the device.
Again, as I had mentioned earlier, init reads both its main init.rc and the board-specific .rc file before executing any of the
 actions therein. Hence, by declaring a boot action or an fs action in your board-specific file, the
 commands therein will be queued up for running right after the
 commands found in the same action in the main config file. They will,
 therefore, still run within that action. Hence, commands found in
 boot actions will run after
 commands found in fs actions,
 regardless of which file either set of commands are declared
 in.
Here’s, for example, an init.coyotepad.rc:
on property:acme.birdradar.enable=1
 start birdradar

service birdradar /system/vendor/bin/bradard -d /system/vendor/etc/rcalibrate.data
 user birdradar
 group birdradar
 disabled
This states that the birdradar service should be started whenever
 the acme.birdradar.enable property
 is set to 1. In the earlier explanation about Toolbox, we used the
 setprop command on the command line
 to set the property to 1. Had the above init.coyotepad.rc been part of the system
 at startup, that previous setprop
 command would have therefore resulted in bradard being started.
What about init.<device_name>.sh?
In some cases, it makes sense to have a shell script run in
 addition to the commands run by init’s configuration files. The emulator,
 for instance, relies on a init.goldfish.sh found in /system/etc. Despite the name of the
 file, init itself doesn’t
 recognize such scripts and has no code that looks for them. Instead,
 board-specific .rc files can be
 made to run shell scripts like they’d run any other service. Here’s
 how init.goldfish.rc gets
 init.goldfish.sh to be
 executed:
service goldfish-setup /system/etc/init.goldfish.sh
 oneshot
In this specific case, the shell script runs commands that are
 available on the shell but aren’t part of init’s lexicon. And that is in fact a very
 good reason for having a shell script such as this if you need
 one.

Global Properties

Though I’ve mentioned global properties a number of times already,
 we’ve yet to take a deeper look at that aspect of Android. As I hinted
 at earlier, global properties are an important part of Android’s overall
 architecture. As a somewhat distant cousin of the infamous Windows
 Registry, Android’s global properties very often serve as a trivial way
 of sharing important yet relatively stable values globally among all
 parts of the stack.
Theory of operation

As I mentioned earlier, init
 maintains a property service as part of its other responsibilities. As
 you can see in Figure 6-4, there are two ways that
 this property service is exposed to the rest of the system:
	/dev/socket/property_service
	This is a Unix domain socket that processes can open to
 talk to the property service and have it set and/or change the
 value of global properties.

	/dev/__properties__
	This is an “invisible” file (i.e., you won’t see it in
 /dev if you look for it)
 that is created within the tmpfs-mounted /dev and that is memory-mapped into
 the address space of all services started by init. It’s through this mapped region
 that descendants of init
 (i.e., all user-space processes in the system) can read global
 properties.

/dev/__properties__’s Invisibility
You won’t find /dev/__properties__ in the filesystem
 because of the way init handles
 the file. Here’s what it actually does to the file during
 initialization:
	Creates /dev/__properties__ in read-write
 mode.

	Sets its size to a desired global properties
 workspace size.

	Memory-maps the file into init’s address space.

	Closes the file descriptor.

	Opens the file as read-only.

	Deletes the file from the filesystem.

By deleting the file as a last step, anyone looking into
 /dev won’t actually see the
 file. However, since the file was memory-mapped while it was still
 open in read-write mode, init’s
 property service is able to continue writing to the memory-mapped
 file. Also, since it was opened in read-only mode before it was
 deleted, init also has a file
 descriptor it can pass to its children, so they can in turn
 memory-map the file, which will remain read-only for them.

As explained in the sidebar, the property service essentially
 maintains a RAM-based workspace where it stores all
 global properties. Because of the way it’s set up, only the property
 service can write to this workspace, though any process can read from
 it. Hence we have a single-writer/multiple-readers configuration. This
 design allows the property service to apply permission checks on the
 write requests submitted to it through the /dev/socket/property_service Unix domain
 socket. The specific permissions required to set certain global
 properties are hardcoded. Here’s the relevant snippet from
 2.3/Gingerbread’s system/core/init/property_service.c:
/* White list of permissions for setting property services. */
struct {
 const char *prefix;
 unsigned int uid;
 unsigned int gid;
} property_perms[] = {
 { "net.rmnet0.", AID_RADIO, 0 },
 { "net.gprs.", AID_RADIO, 0 },
 { "net.ppp", AID_RADIO, 0 },
 { "ril.", AID_RADIO, 0 },
 { "gsm.", AID_RADIO, 0 },
 { "persist.radio", AID_RADIO, 0 },
 { "net.dns", AID_RADIO, 0 },
 { "net.", AID_SYSTEM, 0 },
 { "dev.", AID_SYSTEM, 0 },
 { "runtime.", AID_SYSTEM, 0 },
 { "hw.", AID_SYSTEM, 0 },
 { "sys.", AID_SYSTEM, 0 },
 { "service.", AID_SYSTEM, 0 },
 { "wlan.", AID_SYSTEM, 0 },
 { "dhcp.", AID_SYSTEM, 0 },
 { "dhcp.", AID_DHCP, 0 },
 { "vpn.", AID_SYSTEM, 0 },
 { "vpn.", AID_VPN, 0 },
 { "debug.", AID_SHELL, 0 },
 { "log.", AID_SHELL, 0 },
 { "service.adb.root", AID_SHELL, 0 },
 { "persist.sys.", AID_SYSTEM, 0 },
 { "persist.service.", AID_SYSTEM, 0 },
 { "persist.security.", AID_SYSTEM, 0 },
 { NULL, 0, 0 }
};
To understand the meaning of each AID_* UID, please refer to the discussion
 about the android_filesystem_config.h file in The Build System and the Filesystem where user IDs and other core filesystem
 properties are defined. For instance, the above says that only
 processes running as the system
 user can change properties that start with sys. or hw., while only processes running as the
 radio user—the rild, for instance—can change properties
 that start with ril. or gsm.
Note that processes running as root can change any property they wish. Note
 also that in the case of properties whose names starts with ro., these three characters are stripped
 from the name before permissions are checked with the above array.
 Such properties can be set only once, however. Trying to change the
 value of an existing property whose name starts with ro. will fail. Furthermore, if a permission
 isn’t explicitly granted by the above array for a given property (or
 property set) to the user under which a process is running, that
 process won’t be allowed to set that property. Here’s an attempt to
 set acme.birdradar.enable from a
 non-root shell for example:
$ setprop acme.birdradar.enable 1
[1992.292414] init: sys_prop: permission denied uid:2000 name:acme.birdradar
.enable
As we discussed in the Toolbox section, you can use getprop, setprop, and watchprops to interact with the property
 service from the command line. You can also interact with the property
 service from within the code you build as part of the AOSP. If you’re
 coding in Java, have a look at the frameworks/base/core/java/android/os/SystemProperties.java
 class. To use this class, you would need to import android.os.SystemProperties. If you’re
 coding in C, have a look at system/core/include/cutils/properties.h. To
 use the functions in this header, you need to include <cutils/properties.h>.
Note
Global properties aren’t accessible through the regular app
 development API exposed by the SDK.

Nomenclature and sets

As you likely noticed from all previous discussions on global
 properties, they seem to follow a certain naming convention where each
 part of the name is separated by a period character (.), with each
 part of the name following the period, further narrowing the
 subcategory to which the property belongs. Beyond that, there are few
 conventions. Of course, the permissions array we saw earlier somewhat
 dictates a base set of root categories. And quite a few properties are
 created as part of the build system, as we’ll see shortly. There are
 also a few special properties worth keeping in
 mind. Still, each device has its own specific set of global
 properties. There is, therefore, no definitive dictionary or official
 list of global properties that are to be expected across Android
 devices.
There’s nothing stopping you from creating your own set of
 global properties specifically for your embedded system. Up to now,
 I’ve used the acme.birdradar.enable
 property to illustrate some of the examples. I could very much have a
 whole slew of acme.* properties,
 each used for a separate purpose in my system. You can also modify
 some of the existing global properties as needed for your purpose.
 Make sure you fully investigate how a specific global property you
 modify is used by the rest of Android, as some of these properties are
 read or set by vastly different parts of the stack. A good grep across the entire codebase for the
 property should rapidly help you isolate its users.
Note
You should use getprop
 after the initial boot of your system to get your device’s base list
 of properties. Also, you can look at the default list of properties
 loaded at startup from property files. We’ll take a look at those in
 the next section.

There are, as I said, some special properties, as well as some
 properties that are processed differently based on their
 prefixes:
	ro.*
	Properties that start with this prefix are meant to be
 read-only. Hence, they can be set only once in the system’s
 lifetime. The only way to change their value is to change the
 source of the information to which they are set and reboot the
 system. Such is the case for ro.hardware and ro.build.id, for example.

	persist.*
	Properties marked with this prefix are committed to
 persistent storage each time they are set. Such is the case for
 persist.service.adb.enable,
 which is used to start/stop adbd.

	ctl.*
	There’s a ctl.start and
 a ctl.stop, and setting them
 doesn’t actually result in any property being saved to the
 global set of properties. Instead, when the property service
 receives a request to set either of these, it starts/stops the
 service whose name is provided as the value for the property.
 The Surface Flinger, for instance, does this as part of its
 startup:
 property_set("ctl.start", "bootanim");
This effectively results in the bootanim service being started by
 init. The bootanim service and its options are
 described in the init.rc
 file we covered earlier. Toolbox’s start and stop also rely on ctl.* to start/stop services.

	net.change
	Whenever a net.*
 property is changed, net.change is set to the name of that
 property. Hence, net.change
 always contains the name of the last net.* property that was
 modified.

Storage

There isn’t a single location in which global properties are
 stored or from which they’re set. Instead, different pieces of the
 system are responsible for setting different sets of global
 properties, and several system parts are involved in creating the
 final set of global properties found in any single Android
 device.
The build system

Two property files are generated by the build system:
	/system/build.prop
	This one contains information about the build itself,
 such as the version of Android and the date it was
 built.

	/default.prop
	This one contains default values for certain key
 properties, such as the persist.service.adb.enable property
 that we saw earlier.

Both of these files are found in the target’s root filesystem
 for the initial boot and serve as the base set of properties for the
 system. You can find them in the root/ and system/ subdirectories of out/target/product/PRODUCT_DEVICE/.
The files contain one-liner name-value pairs. They’re read and
 parsed by the property service started early during init’s own startup. Most of the content of
 these files is generated by the core AOSP build code in build/core/. Still, as in the following
 snippet from Crespo’s makefiles in 2.3/Gingerbread, some of it is
 device specific:
PRODUCT_PROPERTY_OVERRIDES += \
 wifi.interface=eth0 \
 wifi.supplicant_scan_interval=15 \
 dalvik.vm.heapsize=32m

Additional property files

In addition to the files generated by the build system, you
 can add your own target-specific /system/default.prop and device-specific
 /data/local.prop, both of which
 will be read by the property service alongside the files generated
 by the build system we just discussed.

.rc files

As we saw earlier, both the init.rc file and init.<device_name>.rc can set
 global properties. init.rc in
 fact sets quite a few crucial global properties.

Code

Some parts of the code also set properties. The Connectivity
 Service, for instance, does this:
 SystemProperties.set("net.hostname", name);
To confuse things even further, some parts of the code attempt
 to read global properties and apply defaults if the value isn’t
 found. The following is from frameworks/base/core/jni/AndroidRuntime.cpp:
 property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");
In this case, the caller attempts to get dalvik.vm.heapsize, and if it isn’t found,
 the value 16m is used as the
 default.

/data/property

All the storage methods we’ve seen thus far require manual
 intervention to either make changes to the AOSP before it’s built or
 to edit files on the device. Obviously, the system needs to be able
 to automatically update values at runtime and have them available at
 the next reboot. That’s the role of the entries in the /data/property directory. Indeed, any
 property that starts with persist. is stored as an individual file
 in that directory. Each of the files there contains the value
 assigned to the property. Hence, the /data/property/persist.service.adb.enable
 file contains the value of persist.service.adb.enable.
Properties found in /data/property are read by the property
 service at startup and restored. As I mentioned earlier when
 discussing Toolbox’s setprop, the
 only way to destroy a persistent stored property is to delete its
 file from /data/property.

ueventd

As discussed earlier, init
 includes functionality to handle kernel hotplug events. When the
 /init binary is invoked through the
 /sbin/ueventd symbolic link, it
 immediately switches its identity from running as the regular init to running as ueventd. Figure 6-5 illustrates ueventd’s operation.
[image: Android’s ueventd]

Figure 6-5. Android’s ueventd

ueventd is one of the very
 first services started by the default init.rc. It proceeds to read its main
 configuration files, /ueventd.rc
 and /ueventd.<device_name>.rc,[30] replays all kernel uevents (i.e., hotplug events), and
 then waits, listening for all future uevents. Kernel uevents are
 delivered to ueventd through a
 netlink socket, a common way for certain kernel functionalities to
 communicate with user-space tools and daemons.
Based on the events ueventd
 receives and its configuration files, it automatically creates device
 node entries in /dev. And since the
 latter is mounted as a tmpfs filesystem, and therefore lives only in
 RAM, these entries are re-created from scratch, based on ueventd’s configuration files, at every
 reboot. The key to ueventd’s
 operation, therefore, is its configuration files.
Unlike init, ueventd’s configuration files have a rather
 simple format. Essentially, every device entry is described with a
 one-liner such as this:
/dev/<node> <mode> <user> <group>
When a uevent corresponding to node occurs, ueventd creates /dev/node with access permissions set to
 mode and assigns the entry to
 user/group. Permissions and ownership are very
 important, since key daemons and services must have access to relevant
 /dev entries in order to operate
 properly. The System Server, for instance, runs as the system user.
Here’s a snippet from the default ueventd.rc from 2.3/Gingerbread, for
 example:
/dev/null 0666 root root
/dev/zero 0666 root root
/dev/full 0666 root root
/dev/ptmx 0666 root root
/dev/tty 0666 root root
...
these should not be world writable
/dev/diag 0660 radio radio
/dev/diag_arm9 0660 radio radio
/dev/android_adb 0660 adb adb
/dev/android_adb_enable 0660 adb adb
/dev/ttyMSM0 0600 bluetooth bluetooth
/dev/ttyHS0 0600 bluetooth bluetooth
/dev/uinput 0660 system bluetooth
/dev/alarm 0664 system radio
/dev/tty0 0660 root system
/dev/graphics/* 0660 root graphics
/dev/msm_hw3dm 0660 system graphics
/dev/input/* 0660 root input
/dev/eac 0660 root audio
...
As with init, you should put
 your board-specific node entries in ueventd.<device_name>.rc. Here’s a
 device entry from ueventd.coyotepad.rc, for example:
/dev/bradar 0660 system birdradar
Note that some uevents might require ueventd to load firmware files on behalf of
 the kernel. There’s no configuration option available for that in
 ueventd’s configuration files.
 Instead, make sure those firmware files are in either /etc/firmware or /vendor/firmware. In the case of the
 CoyotePad, for instance, we put rfirmware.bin in /system/vendor/firmware using PRODUCT_COPY_FILES.

Boot Logo

Not counting whatever the device’s bootloader might display at
 startup, Android devices’ screens typically go through four stages
 during boot:
	Kernel boot screen
	Usually, an Android device won’t show the kernel boot
 messages to its LCD screen during boot. Instead, the kernel might
 either maintain the screen black until init starts, or it might display a
 static logo, built as part of the kernel image, to the
 framebuffer. Any such display is beyond the scope of this
 book.

	Init boot logo
	This is a text string or an image displayed very early by
 init while it initializes the
 console. This section’s purpose is to discuss what init displays here.

	Boot animation
	This is a series of animated images, possibly a loop, that
 displays during the Surface Flinger’s start up. We’ll discuss the
 boot animation when we cover the Java user-space later.

	Home screen
	This is the starting screen of the Launcher, which is
 activated at the complete end of the boot sequence. You’ll need to
 dig into the Launcher’s sources if you’d like to customize what it
 displays.

If you refer back to the earlier explanation in Configuration Files of the execution order enforced by
 init on predefined actions and
 built-in commands, you’ll notice that the fifth step is initializing the
 console and display startup text or image. During this step, init attempts to load a logo image from the
 /initlogo.rle file and display it
 to the screen. If it doesn’t find such a file, it displays the familiar
 text string that is displayed by the emulator as it starts, as shown in
 Figure 6-6.
[image: init’s boot logo]

Figure 6-6. init’s boot logo

If you’d like to change that string, have a look at the console_init_action() in system/core/init/init.c. If you’d like to
 have a graphic logo to display instead of just text, you’ll need to
 create a proper initlogo.rle. Let’s
 see how that’s done.
First, you’ll need to figure out the screen size of your device.
 For instance, the emulator’s default resolution when started from the
 AOSP’s command line after build is 320 by 480 pixels. Assuming you have
 a PNG of that size, you first need to convert it to the format
 recognized by init. Two tools on the
 host are required to do that: convert, which is part of the ImageMagick package, and
 rgb2565, which is built as part of
 the AOSP:[31]
$ cd device/acme/coyotepad
$ convert -depth 8 acmelogo.png rgb:acmelogo.raw
$ rgb2565 -rle < acmelogo.raw > acmelogo.rle
153600 pixels
This will take the acmelogo.png and convert it into an acmelogo.rle, which you can then copy by
 modifying the CoyotePad’s full_coyote.mk to add this snippet:
PRODUCT_COPY_FILES += \
 device/acme/coyotepad/acmelogo.rle:root/initlogo.rle
After you rebuild the AOSP, update your device, and restart it,
 you’ll see the logo instead of the previous text string, as illustrated
 in Figure 6-7.
[image: CoyotePad’s boot logo]

Figure 6-7. CoyotePad’s boot logo

Generally, the LCD screen will then remain unchanged until the
 Surface Flinger starts and launches the boot animation while the rest of
 the system services are starting.

[24] The emulator doesn’t support multiple users by default. A
 few hacks must be made to get it to add a fake user.

[25] The file was actually pointed out to me by then–Sony
 Ericsson engineer Magnus Bäck, who helped review this book, on the
 android-building mailing list after I inquired about Android’s
 filesystem rights management.

[26] That’s because the tools used to generate the filesystem
 images ignore the rights and ownership set for files on the host.
 Instead, they rely completely on android_filesystem_config.h.

[27] Note that this command is too long to fit in a single line in
 this book and is therefore line-wrapped. The \ at
 the end of the first line and the > at the
 beginning of the second line are there just to show the
 line-wrapping.

[28] The change was apparently made in the 3.x series, but the
 sources for that version were never made available as properly
 tagged branches, even though newer Android versions include that
 code.

[29] Unlike typical Unix domain sockets, which appear as entries
 in the filesystem, abstract sockets are not
 visible on the filesystem.

[30] This file’s naming is similar to that of the /init.<device_name>.rc we saw
 earlier.

[31] Remember that you’ll need to run build/envsetup.sh and lunch before the paths are properly set to
 use host tools built as part of the AOSP.

Chapter 7. Android Framework

Ultimately, your goal is to get your embedded system to run the
 Android environment users and developers are accustomed to, not simply the
 native user-space we just covered. That includes not only the full set of
 system services and the packages that provide the standard APIs used by app
 developers, but also some less visible components, such as a set of native
 daemons that support the system services and the Hardware Abstraction Layer.
 This chapter will cover how the Android Framework operates on top of the
 native user-space and will discuss how to interact with and customize
 it.
Note that unlike the previously discussed components of Android, whose
 behavior can be modified in a number of ways, most of the Android Framework
 has to be used as is. You can’t, for instance, pick and choose which system
 services to run, as they aren’t started from a script or based on a
 configuration file. Instead, modifying the Framework typically requires
 diving into its sources and/or adding your own code to customize its
 behavior.
Such customization work therefore requires becoming intimately
 familiar with Android’s sources and is inherently version dependent. Still,
 we’ll try to cover enough of the essentials to enable you to start
 navigating Android’s internals on your own. Nevertheless, expect this to be the start of a
 long-term endeavor, as Android’s sources are fairly big, and new releases
 come out at a very rapid pace.
What Exactly Is the “Android Framework”?
If you refer back to Figure 2-1, the
 Android Framework includes the android.* packages, the System Services, the
 Android Runtime, and some of the native daemons. Sourcewise, the Android Framework is
 typically composed of all the code located in the frameworks/ directory of the AOSP.
At a certain level, I’m using “Android Framework” here to designate
 practically everything “Android” that runs on top of native user-space. So
 my explanations here do sometimes go beyond just frameworks/. Namely, I will discuss such things
 as Dalvik and the HAL, which are intrinsic to the Android
 Framework.

Kick-Starting the Framework

We closed the last chapter on the init command, and how it can be configured and
 used. I only briefly hinted, however, at how the Android Framework is
 started by way of the Zygote when describing the default init.rc. There is of course much to say on this
 topic, as we’ll see shortly. Much of what I described in the last chapter
 can be easily compared to components that exist in the embedded Linux
 world; however, very little of what follows has any such equivalent.
 Indeed, the Android developers’ contribution to the world of mobile is the
 stack they built on top of a BSD/ASL-licensed embedded Linux
 equivalent.
Building the AOSP Without the Framework
As odd as it may seem, there are cases where you actually may want
 to build the AOSP without all the fancy, Java-based system services and
 apps that Android is most widely known for. Whether it be to run
 “Android” on a “headless” system or simply because you’re in the midst
 of a board bringup and would like a minimal build of the AOSP to get
 just the basic tools and environment of the native user-space, there’s
 an AOSP build for you: Tiny Android.
To make the AOSP generate Tiny Android, you just need to go to the
 AOSP’s source directory and type this:
$ BUILD_TINY_ANDROID=true make -j16
This will get you a set of output images with the minimal set of
 Android components for a functional native Android user-space to run
 with a kernel. Mainly, you’ll get Toolbox, Bionic, init, adbd,
 logcat, sh, and a few other key binaries and
 libraries. No part of the Android Framework, such as the system services
 or any of the apps, will be included in those images.
It’s questionable whether this is “Android” anymore, but in some
 cases it’s exactly what you’re looking for. Whether you want to refer to
 the end result as “Android” is really up to you. Hey, apparently beauty
 is in the eye of the beholder.

Core Building Blocks

The Framework’s operation relies on a handful of key building
 blocks: the Service Manager, the Android Runtime, the Zygote, and
 Dalvik. Without these, none of the components that make up what we know
 to be Android work. We’ve already covered most of these and their role
 in the system’s startup in Chapter 2. I encourage you
 to go back to that chapter for an in-depth discussion, but let’s still
 recap the highlights here, especially now that we’ve just looked at
 init and its scripts. You may, in
 fact, want a finger on the pages from Appendix D about
 the main init.rc file as you read
 the following explanations.
One of the first services started by init is the servicemanager. As I explained earlier, this
 is the “Yellow Pages” or the directory of all system services running.
 Obviously, at the time it starts no system services have started, but it
 needs to be available very early on so that system services that do
 start can register with it and therefore become visible to the rest of
 the system.
If the servicemanager isn’t
 running, none of the system services will be able to advertise
 themselves, and the Framework simply will not work. Hence, the servicemanager is not an optional component,
 and its ordering in the init.rc
 file isn’t subject to customization. You must leave it exactly where it
 is in the main init.rc file with
 the options that are specified for it by default.
The next core component to get started is the Zygote. Here’s the
 relevant line from init.rc:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
There is a lot happening in that simple line. First, note that
 what’s actually getting run is this app_process command. Here’s its formal
 parameter list:
Usage: app_process [java-options] cmd-dir start-class-name [options]
app_process is a little-known
 command that packs a punch. It lets you start a new Dalvik VM for
 running Android code straight from the command line. This doesn’t mean
 you can use it to start regular Android apps from the command line; in
 fact you can’t use it for that purpose, but you’ll soon learn about a
 command that does: am. However, some
 key system components and tools must be started from the command line
 without a reference to any existing Dalvik VM instance. The Zygote is
 one of these, as it’s the first Dalvik process to run; am and pm
 are two more, which we’ll cover later.
To do its magic, app_process
 relies on the Android Runtime. Packaged as a shared library, libandroid_runtime.so, the Android Runtime is
 capable of starting and managing a Dalvik VM for the purpose of running
 Android-type code. Among other things, it preloads this VM with a number
 of libraries that are typically used by any code that relies on the
 Android APIs. This includes all the native calls, which are required by
 any of the Android Framework’s Java code. These are registered with the
 VM so it can find them whenever a Java-coded Android Framework package
 calls on one of its native functions.
The Runtime also includes functions for facilitating operations
 typically done for all Android-type applications running on Dalvik. You
 can, in fact, consider Dalvik to be a very raw, low-level VM that
 doesn’t assume you’re running Android-type code on top of it. To run
 Android-type code on top of Dalvik, the Runtime starts Dalvik with
 parameters specifically tailored for its use to run Java code that
 relies on the Android Java APIs—either those publicly documented in the
 developer documentation and made available through the SDK, or internal
 APIs available only as part of building internal Android code within the
 AOSP.
Furthermore, the Runtime relies on many native user-space
 functionalities. For instance, it takes into account some of the
 init-maintained global properties in order to gate the starting of the
 Dalvik VM, and it uses Android’s logging functions to log the progress
 of the Dalvik VM’s initialization. In addition to setting up the
 parameters used to start the Dalvik VM used to run Java code, the
 Runtime also initializes some key aspects of the Java and Android
 environment before calling the code’s main() method. Most importantly, it provides
 a default exception handler for all threads running on the
 just-instantiated VM.
Note that the Runtime doesn’t preload classes: That’s something
 the Zygote does when it sets up the system for running Android apps. And
 since each use of the app_process
 command results in starting a separate VM, all non-Zygote instances of
 Dalvik will load classes on demand, not before your code starts
 running.
Dalvik’s Global Properties
In addition to the global properties maintained by init that we discussed in the last chapter,
 Dalvik continues to provide the property system found in Java through
 java.lang.System. As such, if
 you’re browsing some of the system services’ sources, you might notice
 calls to System.getProperty() or
 System.setProperty(). Note that
 those calls and the underlying set of properties are completely
 independent from init’s global
 properties.
The Package Manager Service, for instance, reads the java.boot.class.path at startup. Yet, if you
 use getprop on the command line,
 you won’t find this property as part of the list of properties
 returned by init. Instead, such
 variables are maintained within each Dalvik instance for retrieval
 and/or use by running Java code. The specific java.boot.class.path, for instance, is set
 in dalvik/vm/Properties.c using
 the BOOTCLASSPATH variable set in
 init.rc.
You can find out more about Java System Properties in Java’s
 official
 documentation. Note that the semantics of the variable names
 used by init’s global properties
 are very similar to those used by Java System Properties.

Once it’s started, a Java class launched using app_process can start using “regular” Android
 APIs and talk to existing system services. If it’s built as part of the
 AOSP, it can use many of the android.* packages available to it at build
 time. The am and pm commands, for instance, do exactly that. It
 follows that you, too, could write your own command-line tool completely
 in Java, using the Android API, and have it start separately from the rest of the Framework. In other words, it would be
 started and would run independently of the Zygote and everything that
 the Zygote causes to start as part of its own initialization.
But this still won’t let you write a regular Android app that is
 started by app_process. Android apps
 can be started only by the Activity Manager using intents, and the
 Activity Manager is itself started as part of the rest of the system
 services once the Zygote itself is started. Which brings the discussion
 back to the startup of the Zygote.
For the Zygote to start properly and have it start the System
 Server, you must leave its corresponding app_process line intact in init.rc, in its default location. There’s
 nothing that you can configure about the Zygote’s startup. You can,
 however, influence the way the Android Runtime starts any of its Dalvik
 VMs by modifying some of the system’s global properties. Have a look at
 the AndroidRuntime::startVm(JavaVM** pJavaVM,
 JNIEnv** pEnv) function in frameworks/base/core/jni/AndroidRuntime.cpp
 in either 2.3/Gingerbread or 4.2/Jelly Bean to see which global
 properties are read by the Android Runtime as it prepares to start a new
 VM. Note that any use of these properties to influence the setup of
 Dalvik VMs is likely to be version specific.
Once the Zygote’s VM is started, the com.android.internal.os.ZygoteInit class’s
 main() function is called, and it
 will preload the entire set of Android packages, proceed to start the
 System Server, and then start looping around and listening for
 connections from the Activity Manager asking it to fork and start new
 Android apps. Again, there is nothing to be customized here unless you
 can see something relevant to you in the list of parameters used to
 start the System Server in the startSystemServer() function in frameworks/base/core/java/com/android/internal/os/ZygoteInit.java.
 My recommendation is to leave this as is unless you have a very strong
 understanding of Android’s internals.
Disabling the Zygote
While you can’t configure what the Zygote does at startup, you
 can nevertheless disable its startup entirely by adding the disabled option to its section in init.rc. Here’s how this is done in
 2.3/Gingerbread:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote
--start-system-server
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd
 disabled
This will effectively prevent init from starting the Zygote at boot time,
 so none of the Android Framework’s parts will start, including the
 System Server. This may be very useful if you’re in the process of
 debugging critical system errors or developing one of the HAL modules,
 and you must manually set up debugging tools, load files, or monitor
 system behavior before key system
 services start up.
You can then start the Zygote, and the rest of the
 system:
start zygote

System Services

As we saw in the last section, the System Server is started as
 part of the Zygote’s startup, and we’ll continue delving into that part
 of the process in this section. However, and as was discussed in Chapter 2, there are also system services started from
 processes other than the System Server, and we’ll discuss those in this
 section.
Starting with 4.0/Ice-Cream Sandwich, the very first system
 service to get started is the Surface Flinger. Up to 2.3/Gingerbread, it
 had been started as part of the System Server, but with 4.0/Ice-Cream
 Sandwich, it’s started right before the Zygote and runs independently
 from the System Server and the rest of the system services. Here’s the
 relevant snippet that precedes the Zygote’s entry in init.rc in 4.2/Jelly Bean:
service surfaceflinger /system/bin/surfaceflinger
 class main
 user system
 group graphics drmrpc
 onrestart restart zygote
The Surface Flinger’s sources are in frameworks/base/services/surfaceflinger/ in
 2.3/Gingerbread and frameworks/native/services/surfaceflinger/ in
 4.2/Jelly Bean. Its role is to composite the drawing surfaces used by
 apps into the final image displayed to the user. As such, it’s one of
 Android’s most fundamental building blocks.
In Android 4.0, because the Surface Flinger is started before the
 Zygote, the system’s boot animation comes up much faster than in earlier
 versions. We’ll discuss the boot animation later in this chapter.
To start the System Server, the Zygote forks and runs the com.android.server.SystemServer class’
 main() function. The latter loads
 the libandroid_servers.so library,
 which contains the JNI parts required by some of the system services and
 then invokes native code in frameworks/base/cmds/system_server/library/system_init.cpp,
 which starts C-coded system services that run in the system_server process. In 2.3/Gingerbread,
 this includes the Surface Flinger and the Sensor Service. In 4.2/Jelly
 Bean, however, the Surface Flinger
 is started separately, as we just saw, and the only C-coded system
 service started by system_server is
 the Sensor Service.
The System Server then goes back to Java and starts initializing
 the critical system services such as the Power Manager, Activity
 Manager, and Package Manager. It then continues to initialize all the
 system services it hosts and registers them with the Service Manager.
 This is all done in code in frameworks/base/services/java/com/android/server/SystemServer.java.
 None of this is configurable. It’s all hardcoded into SystemServer.java, and there are no flags or
 parameters you can pass to tell the System Server not to start some of
 the system services. If you want to disable any, you’ll have to go in by
 hand and comment out the corresponding code.
Warning
The system services are interdependent, and almost all of
 Android’s parts, including the Android API, assume that all the system
 services built into the AOSP are available at all times. As I
 mentioned in Chapter 2, as a whole, the system
 services form an object-oriented OS built on top of Linux—and the
 parts of that OS weren’t built with modularity in mind. So if you take
 one of the system services away, it’s fair to assume that some of
 Android’s parts will start breaking under your feet.
That doesn’t mean it can’t be done, though. As part of a
 presentation titled “Headless
 Android” at the 2012 Android Builders Summit, I showed how I
 successfully disabled the Surface Flinger, the Window Manager, and a
 couple of other key system services, to run the full Android stack on
 a headless system. As I warned in that presentation, that work was
 very much a proof of concept and would require a lot more effort to be
 production ready.[32]
So, by all means, feel free to tinker around, but you’ve been
 warned that if you’re going to play this deep in Android’s guts, you’d
 better saddle up.

What’s /system/bin/system_server?
You might notice while browsing your target’s root filesystem
 that there’s a binary called system_server in /system/bin. That binary, however, has
 nothing to do with the startup of the System Server or with any of the
 system services. It’s unclear what purpose, if any, this binary has.
 It’s very likely that this is a legacy utility from Android’s early
 days.
This factoid is often a source of confusion, because a quick
 look at the list of binaries and the output of ps may lead you to believe that the system_server process is in fact started by
 the system_server command. I was in
 fact very skeptical of my own reading of the sources on that matter
 and posted a question about it to the android-building mailing list.
 The ensuing response
 seems to confirm my reading of the sources, however.

In addition to the Surface Flinger and the system services started
 by the System Server, another set of system services stems from the
 starting of mediaserver. Here’s the
 relevant snippet from 2.3/Gingerbread’s init.rc (4.2/Jelly Bean’s is practically
 identical):
service media /system/bin/mediaserver
 user media
 group system audio camera graphics inet net_bt net_bt_admin net_raw
 ioprio rt 4
The mediaserver, whose sources
 are in frameworks/base/media in
 2.3/Gingerbread and frameworks/av/media in 4.2/Jelly Bean, starts
 the following system services: Audio Flinger, Media Player Service,
 Camera Service, and Audio Policy Service. Again, none of this is
 configurable, and it’s recommended that you leave the relevant init.rc portions untouched unless you fully
 understand the implications of your modifications. For instance, if you
 try to remove the startup of the mediaplayer service from init.rc or use the disabled option to prevent it from starting,
 you will notice messages such as these in logcat’s output:
...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
W/AudioSystem(56): AudioPolicyService not published, waiting...
I/ServiceManager(56): Waiting for service media.audio_policy...
I/ServiceManager(56): Waiting for service media.audio_policy...
...
And the system will hang and continue to print out those messages
 until the mediaserver is
 started.
Note that the mediaserver is
 one of the only init services that uses the ioprio option. Presumably—and there’s
 unfortunately no official documentation to confirm this—this is used to
 make sure that media playback has an appropriate priority to avoid
 choppy playback.
There is finally one odd player in this game, the Phone app, which
 provides the Phone system service. Generally speaking, apps are the
 wrong place to put system services because apps are lifecycle managed
 and can therefore be stopped and restarted at will. System services, on
 the other hand, are supposed to live from boot to reboot and cannot
 therefore be stopped midstream without affecting the rest of the system.
 The Phone app is different, however, because its manifest file has the
 android:persistent property of the
 application XML element set to
 true. This indicates to the system
 that this app should not be lifecycle managed, which therefore enables
 it to house a system service. It will also lead to this app being
 automatically started as part of the initialization of the Activity
 Manager.
Again, there’s nothing typically configurable about the Phone
 app’s startup. You can, however, relatively easily remove the Phone app
 from the list of apps built into the AOSP. The result, however, will be
 that any part of the system depending on that system service will fail
 to function correctly. Again, you might as well leave it in. If you want
 to remove the dialer icon from the home screen, then what you actually
 want to remove is the Contacts app. As counterintuitive as it may sound,
 the typical phone dialer Android users are accustomed to isn’t part of
 the Phone app; it’s part of the Contacts app.
Note
Another example of an app that houses a system service
 is the NFC app found in packages/apps/Nfc/.

The Phone app way of providing a system service is very
 interesting, because it opens the door for us to emulate its example and
 to add system services as apps within our own device/acme/coyotepad/ directory—without
 having to modify the sources of the default system services in frameworks/base/services/.

Boot Animation

As I explained when discussing the boot logo in the previous
 chapter, Android’s LCD goes through four stages during boot. One of
 those is a boot animation. Here’s the corresponding entry in
 2.3/Gingerbread’s init.rc (the one
 in 4.2/Jelly Bean is practically identical):
service bootanim /system/bin/bootanimation
 user graphics
 group graphics
 disabled
 oneshot
Notice that this service is marked as disabled. Hence, init won’t actually start this right away.
 Instead, it must be explicitly started somewhere else. In this case,
 it’s the Surface Flinger that actually starts the boot animation
 after it has finished its own initialization by
 setting the ctl.start global
 property. Here’s code from the SurfaceFlinger::readyToRun() function in
 2.3/Gingerbread’s frameworks/base/services/surfaceflinger/SurfaceFlinger.cpp:
 // start boot animation
 property_set("ctl.start", "bootanim");
The code in 4.2/Jelly Bean’s frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
 does effectively the same thing:
...
void SurfaceFlinger::startBootAnim() {
 // start boot animation
 property_set("service.bootanim.exit", "0");
 property_set("ctl.start", "bootanim");
}
...
status_t SurfaceFlinger::readyToRun()
{
...

 // start boot animation
 startBootAnim();

 return NO_ERROR;
}
...
And given that the Surface Flinger is one of the first system
 services started—if not the first—the boot animation ends up
 continuously displaying while critical parts of the system are
 initializing. Typically, it will stop only when the phone’s home screen
 finally comes to the fore. We’ll take a look at some of the things
 happening during the boot animation shortly.
As you can see in the previous init.rc snippet, the bootanim service corresponds to the bootanimation binary. The latter’s sources are
 in frameworks/base/cmds/bootanimation/, and if
 you dig into them you’ll notice that this utility talks directly through
 Binder to the Surface Flinger in order to render its animation; hence
 the need for the Surface Flinger to be live before the animation can
 start. Figure 7-1 illustrates the default
 Android boot animation displayed by bootanimation, with the moving light
 reflection projected on the Android logo.
[image: Default boot animation]

Figure 7-1. Default boot animation

bootanimation actually has two
 modes of operation. In one mode it creates the default Android logo boot
 animation using the images in frameworks/base/core/res/assets/images/. It’s
 likely best not to try modifying the boot animation by touching these
 files. Instead, by providing either /data/local/bootanimation.zip or /system/media/bootanimation.zip, you will
 force bootanimation to enter its
 other mode of operation, where it uses the content of one of those ZIP
 files to render a boot animation. It’s worth taking some time to see how
 that can be done, even though a book is not the ideal medium for
 illustrating a running animation.
bootanimation.zip

The bootanimation.zip is a
 regular, uncompressed ZIP file with
 at least a desc.txt file at the
 top-level directory inside and a bunch of directories containing PNG
 files. The latter are animated in sequence according to the rules in
 the desc.txt file. Note that
 bootanimation doesn’t support
 anything but PNG files. Here are the semantics of the desc.txt file:
<width> <height> <fps>
p <count> <pause> <path>
p <count> <pause> <path>
Note that the file’s format is very simplistic and doesn’t allow
 for any fluff. So stick to the above semantics as is. The first line
 indicates the width, height, and frame rate (frames per second) for
 the animation. Each subsequent line is a part of
 the animation. For each part, you must provide the number of times
 this part is played (count), the
 number of frames to pause after each time the part is played (pause), and the directory where that part of
 the animation is located (path).
 Parts are played in the order they appear in the desc.txt.
Each animation part, and therefore the associated directory, is
 made of several PNG files, with filenames being a string representing
 the sequential number of that frame in the full sequence. Files could,
 for instance, be named 001.png,
 002.png, 003.png, etc. If the count is set to zero, the part will loop
 playing until the system has finished booting and the Launcher starts.
 Typically, initial parts are likely to have a count of 1, while the
 last part usually has a count of 0, so it continues playing until the
 boot is done.
The best way to create your own boot animation is to look at the
 existing bootanimation.zip files
 that have been created by others. If you look for that filename in
 your favorite search engine, you should find a few examples relatively
 easily. Have a look, for example, at some of the latest boot
 animations created for the CyanogenMod aftermarket Android distribution.
Warning
Again, make sure the ZIP file you created isn’t compressed.
 Otherwise it won’t work. Have a look at the zip command’s man page—especially the
 -0 flag.

Disabling the boot animation

You can also outright disable the boot animation if you don’t
 want it. Just use the setprop
 command in init.rc to set the
 debug.sf.nobootanimation to
 1:
 setprop debug.sf.nobootanimation 1
In this case, the screen will go black at some point after the
 boot logo has been displayed, and stay black until the Launcher app
 displays the home screen.

Dex Optimization

One of the system services started during the boot animation is
 the Package Manager. We haven’t covered its functionality in detail, but
 suffice it to say that the Package Manager manages all the .apks in the system. Among other things,
 it’ll deal with the installation and removal of .apks and help the Activity Manager resolve
 intents.
One of the Package Manager’s responsibilities is also to make sure
 that JIT-ready versions of any DEX byte-code are available prior to the
 corresponding Java code ever executing. To achieve this, the Package
 Manager’s constructor (the Package Manager system service is implemented
 as a Java class) goes through all .apk and .jar files in the system and requests that
 installd run the dexopt command on them.
This process should happen on the first boot only. Subsequently,
 the /data/dalvik-cache directory
 will contain JIT-ready versions of all .dex files, and the boot sequence should be
 substantially faster. If you look into logcat’s output at first boot, you’ll actually
 see entries like these:
D/dalvikvm(32): DexOpt: --- BEGIN 'core.jar' (bootstrap=1) ---
D/dalvikvm(62): Ignoring duplicate verify attempt on Ljava/lang/Object;
D/dalvikvm(62): Ignoring duplicate verify attempt on Ljava/lang/Class;
D/dalvikvm(62): DexOpt: load 349ms, verify+opt 4153ms
D/dalvikvm(32): DexOpt: --- END 'core.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/core.jar': unzip in 405ms, rewrit
e 5337ms
D/dalvikvm(32): DexOpt: --- BEGIN 'bouncycastle.jar' (bootstrap=1) ---
D/dalvikvm(63): DexOpt: load 54ms, verify+opt 779ms
D/dalvikvm(32): DexOpt: --- END 'bouncycastle.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/bouncycastle.jar': unzip in 48ms,
 rewrite 1023ms
D/dalvikvm(32): DexOpt: --- BEGIN 'ext.jar' (bootstrap=1) ---
D/dalvikvm(64): DexOpt: load 129ms, verify+opt 1497ms
D/dalvikvm(32): DexOpt: --- END 'ext.jar' (success) ---
D/dalvikvm(32): DEX prep '/system/framework/ext.jar': unzip in 91ms, rewrite
1923ms
...
D/installd(35): DexInv: --- BEGIN '/system/framework/am.jar' ---
D/dalvikvm(95): DexOpt: load 15ms, verify+opt 58ms
D/installd(35): DexInv: --- END '/system/framework/am.jar' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/framework/input.jar' ---
D/dalvikvm(96): DexOpt: load 5ms, verify+opt 28ms
D/installd(35): DexInv: --- END '/system/framework/input.jar' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/framework/pm.jar' ---
D/dalvikvm(97): DexOpt: load 12ms, verify+opt 64ms
D/installd(35): DexInv: --- END '/system/framework/pm.jar' (success) ---
...
D/installd(35): DexInv: --- BEGIN '/system/app/ApplicationsProvider.apk' ---
D/dalvikvm(249): DexOpt: load 31ms, verify+opt 110ms
D/installd(35): DexInv: --- END '/system/app/ApplicationsProvider.apk' (succe
ss) ---
D/installd(35): DexInv: --- BEGIN '/system/app/UserDictionaryProvider.apk' --
-
D/dalvikvm(253): DexOpt: load 19ms, verify+opt 52ms
D/installd(35): DexInv: --- END '/system/app/UserDictionaryProvider.apk' (suc
cess) ---
D/installd(35): DexInv: --- BEGIN '/system/app/Settings.apk' ---
D/dalvikvm(254): DexOpt: load 155ms, verify+opt 894ms
D/installd(35): DexInv: --- END '/system/app/Settings.apk' (success) ---
D/installd(35): DexInv: --- BEGIN '/system/app/Launcher2.apk' ---
D/dalvikvm(256): DexOpt: load 178ms, verify+opt 581ms
D/installd(35): DexInv: --- END '/system/app/Launcher2.apk' (success) ---
At first, the Package Manager Service isn’t yet running, so we can
 see Dalvik running dexopt directly
 for some .jar files instead of
 being run by installd, as happens
 when the Package Manager Service requests it. Once the Package Manager
 is started, it then runs the rest of this optimization process in the
 following order:
	.jar files listed in the
 BOOTCLASSPATH variable in
 init.rc

	.jar files listed as
 libraries in /system/etc/permission/platform.xml

	.apk and .jar files found in /system/framework

	.apk files found in
 /system/app

	.apk files found in
 /vendor/app

	.apk files found in
 /data/app

	.apk files found in
 /data/app-private

Obviously this process takes some time. On my quad-core CORE i7,
 it takes the emulator image of a freshly compiled 2.3/Gingerbread AOSP
 75 seconds for its first full boot (i.e., up to the home screen) and 24
 seconds for subsequent boots. In a production system, such as a phone,
 boot times like this can be unacceptable.
You’ll therefore be happy to hear that you can actually stop this
 optimization process from happening at boot time and do it at build time
 instead. You just need to set the WITH_DEXPREOPT build flag to true when building the AOSP:
$ make WITH_DEXPREOPT=true -j16
You can also set this variable in your device’s BoardConfig.mk instead, and avoid having to
 add it to the make command every
 time. In the case of the emulator build, this wasn’t done by default in
 2.3/Gingerbread but is in 4.2/Jelly Bean.
The build will of course take more time, but the first boot will
 be significantly faster. On the same workstation mentioned previously,
 it takes 30 minutes to build 2.3/Gingerbread instead of 20 with the
 WITH_DEXPREOPT flag. However, the
 emulator image comes up in 40 seconds instead of 75 on a first boot.
 When the option is used, the /data/dalvik-cache directory ends up being
 empty on the target after the first boot. Instead, at build time,
 .odex files are placed side by side
 in the same filesystem path as their corresponding .jar and .apk files.

Apps Startup

As the startup of the system services nears its end, apps start to
 get activated, including the home screen. As I explained in Chapter 2, the Activity Manager ends its initialization by
 sending an intent of type Intent.CATEGORY_HOME, which causes the
 Launcher app to start and the home screen to appear. That’s only part of
 the story, though. The startup of the system services will in fact cause
 quite a few apps to start. Here’s a portion of the output of the
 ps command on a freshly booted
 2.3/Gingerbread emulator image:
ps
...
root 32 1 60832 16240 c009b74c afd0b844 S zygote
media 33 1 17976 1056 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 220 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 232 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 212 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 268 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 200 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3364 168 ffffffff 00008294 S /sbin/adbd
system 61 32 124096 26352 ffffffff afd0b6fc S system_server
app_19 113 32 80336 17400 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 121 32 87112 17972 ffffffff afd0c51c S com.android.phone
system 122 32 73160 18452 ffffffff afd0c51c S com.android.systemui
app_26 132 32 76608 20812 ffffffff afd0c51c S com.android.launcher
app_1 169 32 85368 20584 ffffffff afd0c51c S android.process.acore
app_12 234 32 70752 15748 ffffffff afd0c51c S com.android.quicksearchbox
app_8 242 32 73108 16908 ffffffff afd0c51c S android.process.media
app_10 266 32 70928 16572 ffffffff afd0c51c S com.android.providers.
 calendar
app_29 300 32 72764 17484 ffffffff afd0c51c S com.android.email
app_18 315 32 70272 15428 ffffffff afd0c51c S com.android.music
app_22 323 32 69712 15220 ffffffff afd0c51c S com.android.protips
app_3 335 32 71432 16756 ffffffff afd0c51c S com.cooliris.media
...
All the processes that have a Java-style process name[33] are actually apps that were automatically started with no
 user intervention whatsoever at system startup. Various system mechanisms cause these apps to start given the content of
 their respective manifest files. And this is a welcome change, since
 controlling apps’ activation requires a lot less internals work than is
 required for controlling many other aspects of the startup, as we’ve
 seen above. Instead, it’s all about creating carefully crafted apps for
 packaging with the AOSP. Sure, there’s the case where you’ll want to
 modify a stock app to make it behave or start differently, but at least
 we’re into the app world, where functionality is more loosely coupled
 and documentation more readily accessible.
Which leads us to discussing the triggers that cause stock apps to
 be activated.
Input methods

One of the earliest types of apps to start are input methods.
 The Input Method Manager Service’s constructor goes around and
 activates all app services that have an intent filter for android.view.InputMethod. This is how, for
 example, the LatinIME app, which runs as the com.android.inputmethod.latin process, is
 activated.
As you can see by reading the Creating
 an Input Method blog post on the Android Developers Blog,
 input methods are actually carefully crafted services.

Persistent apps

Apps that have the android:persistent="true" attribute in the
 <application> element of
 their manifest file will be automatically spawned at startup by the
 Activity Manager. In fact, should such an app ever die, it will also
 be automatically restarted by the Activity Manager.
As I explained earlier, unlike regular apps, apps that are
 marked as persistent are not lifecycle managed by the Activity
 Manager. Instead, they are kept alive throughout the lifetime of the
 system. This allows using such apps to implement special
 functionality. The status bar and the phone app, for example, running
 as the com.android.systemui and
 com.android.phone processes, are
 persistent apps.
Warning
While the app development documentation does explain the role
 of android:persistent, the use of
 that attribute is reserved for apps that are built within the
 AOSP.

Home screen

Typically there’s only one home
 screen app, and it reacts to the Intent.CATEGORY_HOME intent,
 which is sent by the Activity Manager at the end of the system
 services’ startup. There’s a sample home app in development/samples/Home/, but the real
 home app activated is in packages/apps/Launcher2/. Here’s the
 Launcher’s main activity and its intent filter in 2.3/Gingerbread
 (4.2/Jelly Bean’s is basically the same):
 <activity
 android:name="com.android.launcher2.Launcher"
 android:launchMode="singleTask"
 android:clearTaskOnLaunch="true"
 android:stateNotNeeded="true"
 android:theme="@style/Theme"
 android:screenOrientation="nosensor"
 android:windowSoftInputMode="stateUnspecified|adjustPan">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.HOME" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.MONKEY"/>
 </intent-filter>
 </activity>
Obviously, if you want to start a custom app to be the home
 screen instead of Launcher2, you’ll need to remove the latter and add
 your own that reacts to that same intent. If more than one app reacts
 to that intent, users will get a dialog asking them which of the home
 screens they want to use.
Note that this intent isn’t sent just at startup. Depending on
 the state of the system, the Activity Manager will send this intent
 whenever it needs to bring the home screen to the
 foreground.

BOOT_COMPLETED intent

The Activity Manager also broadcasts the Intent.BOOT_COMPLETED intent at startup.
 This is an intent commonly used by apps to be notified that the system
 has finished booting. A number of stock apps in the AOSP actually rely
 on this intent, such as Media provider, Calendar provider, Mms app,
 and Email app. Here’s the broadcast receiver used by the Media
 Provider in 2.3/Gingerbread, along with its intent filter (4.2/Jelly
 Bean’s is very similar):
 <receiver android:name="MediaScannerReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_MOUNTED" />
 <data android:scheme="file" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_SCANNER_SCAN_
 FILE" />
 <data android:scheme="file" />
 </intent-filter>
 </receiver>
In order to receive this intent, apps must explicitly request
 permission to do so:
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

APPWIDGET_UPDATE intent

In addition to apps, the App Widget Service, which is itself a
 system service, registers itself to receive the Intent.BOOT_COMPLETED. It uses the receipt
 of that intent as a trigger to activate all app widgets in the system
 by sending Intent.APPWIDGET_UPDATE.
 Hence, if you’ve developed an app widget as part of your app, your
 code will be activated at this point. Have a look at the App Widgets section of the Android
 developer documentation for more information on how to write your own
 app widget.
Several stock AOSP apps have app widgets, such as Quick Search
 Box, Music, Protips, and Media. Here’s the Quick Search Box’s app
 widget declaration in its manifest file, for example:
 <receiver android:name=".SearchWidgetProvider"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_
 UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider" android:
 resource="@xml/search_widget_info" />
 </receiver>

Utilities and Commands

Once the Framework and the basic set of apps is up and running,
 there are quite a few commands that you can use to query or interact with
 system services and the Framework. Much like the commands covered in Chapter 6, these can be used on the command line once you shell
 into the device. But these commands have no meaning, and therefore no
 effect, unless the Framework is running. Of course you’ll find many of
 these useful, even crucial, as you’re bringing up Android on new devices
 and/or debugging parts of the Framework. And as with the commands in the
 native user-space, the tools available for interacting with the Framework
 vary greatly in terms of documentation and capabilities. Yet they provide
 the essential capabilities required to bring Android up on new hardware or
 to troubleshoot it on existing products. Let’s take a look at the command
 set available to you for interacting with the Android Framework.
Note
Many of the commands here are located in the frameworks/base/cmds/ directory of the AOSP
 sources, though in 4.2/Jelly Bean, some of those commands have been
 moved to frameworks/native/cmds/. I
 encourage you to refer to those sources when using some of these
 commands, as their effects aren’t always obvious just by looking at
 their online help, when it exists.

General-Purpose Utilities

In contrast with some utilities we’ll see later, a certain number
 of utilities are useful for interacting with various parts of the
 Framework. Some of these are very powerful.
service

The service command allows us
 to interact with any system service registered with the Service
 Manager:
service -h
Usage: service [-h|-?]
 service list
 service check SERVICE
 service call SERVICE CODE [i32 INT | s16 STR] ...
Options:
 i32: Write the integer INT into the send parcel.
 s16: Write the UTF-16 string STR into the send parcel.
As you can see, it can be used for querying but can also be used
 for invoking methods from system services. Here’s how it can be used
 to query the list of existing system services in
 2.3/Gingerbread:
service list
Found 50 services:
0	phone: [com.android.internal.telephony.ITelephony]
1	iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2	simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3	isms: [com.android.internal.telephony.ISms]
4	diskstats: []
5	appwidget: [com.android.internal.appwidget.IAppWidgetService]
6	backup: [android.app.backup.IBackupManager]
7	uimode: [android.app.IUiModeManager]
8	usb: [android.hardware.usb.IUsbManager]
9	audio: [android.media.IAudioService]
10	wallpaper: [android.app.IWallpaperManager]
11	dropbox: [com.android.internal.os.IDropBoxManagerService]
12	search: [android.app.ISearchManager]
13	location: [android.location.ILocationManager]
14	devicestoragemonitor: []
15	notification: [android.app.INotificationManager]
16	mount: [IMountService]
17	accessibility: [android.view.accessibility.IAccessibilityManager]
...
The interface names provided in between square brackets allow
 you to browse the AOSP sources to find the matching .aidl file that defines the
 interface.
You can also check if a given service exists:
service check power
Service power: found
Most interestingly, you can use service
 call to directly invoke system services’ Binder-exposed
 methods. In order to do that, you first need to understand that
 service’s interface. Here’s the IStatusBarService interface definition from
 2.3/Gingerbread’s frameworks/base/core/java/com/android/internal/statusbar/IStatusBarService.aidl
 (4.2/Jelly Bean’s interface name is the same, though setIcon()’s prototype has
 changed):
...
interface IStatusBarService
{
 void expand();
 void collapse();
 void disable(int what, IBinder token, String pkg);
 void setIcon(String slot, String iconPackage, int iconId, int iconLevel);
...
Note that service call
 actually needs a method code, not a method’s name. To find the codes
 matching the method names defined in the interface, you’ll need to
 look up the code generated by the aidl tool based on the interface definition.
 Here’s the relevant snippet from the IStatusBarService.java file generated in
 out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/src/core/java/com/android/internal/statusbar/:
...
static final int TRANSACTION_expand = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 0);
static final int TRANSACTION_collapse = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 1);
static final int TRANSACTION_disable = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 2);
static final int TRANSACTION_setIcon = (android.os.IBinder.FIRST_CALL_
TRANSACTION + 3);
...
Also, note that frameworks/base/core/java/android/os/IBinder.java
 has the following definition for FIRST_CALL_TRANSACTION:
 int FIRST_CALL_TRANSACTION = 0x00000001;
Hence, expand()’s code is
 1 and collapse()’s code is 2. Therefore, this command will cause the
 status bar to expand:
service call statusbar 1
While this command will cause the status bar to collapse:
service call statusbar 2
This is a very simple case where the action is rather obvious
 and the methods invoked don’t take any parameters. In other cases,
 you’ll need to look more closely at the system service’s API and
 understand the parameters expected. In addition, keep in mind that
 system services’ interfaces aren’t necessarily exposed through
 .aidl files. In some cases, such
 as for the Activity Manager, the interface definition is hardcoded
 directly into a regular Java file instead of being autogenerated. And
 in the case of C-based system services, the Binder marshaling and
 unmarshaling is all done straight in C code. Hence, try using grep on the AOSP’s frameworks/ directory in addition to
 out/target/common/ to find all
 instances of FIRST_CALL_TRANSACTION.

dumpsys

Another interesting thing to do is to query system services’
 internal state. Indeed, every system service implements a dump() method internally that can be
 queried using the dumpsys
 command:
dumpsys [<service>]
By default, if no system service name is provided as a
 parameter, dumpsys will first print
 out the list of system services and will then dump their
 status:
dumpsys
Currently running services:
 SurfaceFlinger
 accessibility
 account
 activity
 alarm
 appwidget
 audio
 backup
 battery
 batteryinfo
 clipboard
 connectivity
 content
 cpuinfo
 device_policy
 devicestoragemonitor
 diskstats
 dropbox
 entropy
 hardware
...

DUMP OF SERVICE SurfaceFlinger:
+ Layer 0x1e5788
 z= 21000, pos=(0, 0), size=(320, 480), needsBlending=0, needsDith
ering=0, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
 name=com.android.internal.service.wallpaper.ImageWallpaper
 client=0x1ed2a8, identity=3
 [head= 1, available= 2, queued= 0] reallocMask=00000000, identity=3, sta
tus=0
 format= 4, [320x480:320] [320x480:320], freezeLock=0x0, bypass=0, dq-q-tim
e=2034 us
 Region transparentRegion (this=0x1e5918, count=1)
 [0, 0, 0, 0]
 Region transparentRegionScreen (this=0x1e57bc, count=1)
 [0, 0, 0, 0]
 Region visibleRegionScreen (this=0x1e5798, count=1)
 [0, 25, 320, 480]
+ Layer 0x268b70
 z= 21005, pos=(0, 0), size=(320, 480), needsBlending=1, needsDith
ering=1, invalidate=0, alpha=0xff, flags=0x00000000, tr=[1.00, 0.00][0.00, 1.00]
...

DUMP OF SERVICE accessibility:

DUMP OF SERVICE account:
Accounts: 0

Active Sessions: 0

RegisteredServicesCache: 1 services
 ServiceInfo: AuthenticatorDescription {type=com.android.exchange}, ComponentIn
fo{com.android.email/com.android.email.service.EasAuthenticatorService}, uid 100
29

DUMP OF SERVICE activity:
Providers in Current Activity Manager State:
 Published content providers (by class):
 * ContentProviderRecord{4060d0e0 com.android.deskclock.AlarmProvider}
...
Obviously the output is very verbose and, most importantly,
 requires understanding the corresponding system service’s internals.
 If you’re implementing your own system service, however, being able to
 query its state at runtime can be crucial. Of course, if you’re not
 interested in dumping the state of all system services, you just need
 to provide the name of the specific service you’d like to get
 information about as a parameter to dumpsys:
dumpsys power
Power Manager State:
 mIsPowered=true mPowerState=1 mScreenOffTime=46793204 ms
 mPartialCount=1
 mWakeLockState=SCREEN_ON_BIT
 mUserState=
 mPowerState=SCREEN_ON_BIT
 mLocks.gather=SCREEN_ON_BIT
 mNextTimeout=94351 now=46880555 -46786s from now
 mDimScreen=true mStayOnConditions=1
 mScreenOffReason=0 mUserState=0
 mBroadcastQueue={-1,-1,-1}
 mBroadcastWhy={0,0,0}
 mPokey=0 mPokeAwakeonSet=false
...

dumpstate

In some cases, what you’re trying to do is get a snapshot of the
 entire system, not just the system services. This is what dumpstate takes care of. In fact, you might
 recall our discussion of this command when we covered adb’s bugreport in Chapter 6,
 since dumpstate is what provides
 bugreport with its information.
 Here’s dumpstate’s detailed help in
 2.3/Gingerbread:
dumpstate -h
usage: dumpstate [-d] [-o file] [-s] [-z]
 -d: append date to filename (requires -o)
 -o: write to file (instead of stdout)
 -s: write output to control socket (for init)
 -z: gzip output (requires -o)
In 4.2/Jelly Bean, dumpstate’s capabilities have
 expanded:
root@android:/ # dumpstate -h
usage: dumpstate [-b soundfile] [-e soundfile] [-o file [-d] [-p] [-z]] [-s] [-q]
 -o: write to file (instead of stdout)
 -d: append date to filename (requires -o)
 -z: gzip output (requires -o)
 -p: capture screenshot to filename.png (requires -o)
 -s: write output to control socket (for init)
 -b: play sound file instead of vibrate, at beginning of job
 -e: play sound file instead of vibrate, at end of job
 -q: disable vibrate
If you invoke it without any parameters, it goes ahead and
 queries several parts of the sytem to provide you with a complete
 snapshot of the system’s status:
dumpstate
==
== dumpstate: 2012-10-10 03:15:26
==

Build: generic-eng 2.3.4 GINGERBREAD eng.karim.20120913.141233 test-keys
Bootloader: unknown
Radio: unknown
Network: Android
Kernel: Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.c
om) (gcc version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
Command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1 androi
d.ndns=1

------ MEMORY INFO (/proc/meminfo) ------
MemTotal: 94096 kB
MemFree: 1296 kB
Buffers: 0 kB
Cached: 32424 kB
...
------ CPU INFO (top -n 1 -d 1 -m 30 -t) ------

User 2%, System 11%, IOW 33%, IRQ 0%
User 3 + Nice 0 + Sys 15 + Idle 67 + IOW 42 + IRQ 0 + SIRQ 0 = 127

 PID TID CPU% S VSS RSS PCY UID Thread Proc
 339 339 13% R 976K 440K fg shell top top
 121 121 0% S 86100K 18484K fg radio m.android.phone com.android.phone
 3 3 0% S 0K 0K fg root ksoftirqd/0
 4 4 0% S 0K 0K fg root events/0
...
------ PROCRANK (procrank) ------
 PID Vss Rss Pss Uss cmdline
 61 25676K 25076K 10581K 8552K system_server
 124 21412K 21412K 6851K 4908K com.android.launcher
 122 19268K 19268K 5698K 4388K com.android.systemui
 121 18484K 18484K 4744K 3568K com.android.phone
 295 18176K 18176K 4337K 3132K com.android.email
 115 17836K 17836K 4118K 2960K com.android.inputmethod.latin
...
------ VIRTUAL MEMORY STATS (/proc/vmstat) ------
nr_free_pages 553
nr_inactive_anon 6708
nr_active_anon 6068
nr_inactive_file 3449
nr_active_file 2062
...
------ VMALLOC INFO (/proc/vmallocinfo) ------
0xc684c000-0xc684e000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6850000-0xc6852000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6854000-0xc6856000 8192 __arm_ioremap_pfn+0x68/0x2fc ioremap
0xc6880000-0xc68a1000 135168 binder_mmap+0xb4/0x200 ioremap
...
------ SLAB INFO (/proc/slabinfo) ------
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>
 : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_s
labs> <sharedavail>
rpc_buffers 8 8 2048 2 1 : tunables 24 12 0 : sla
bdata 4 4 0
rpc_tasks 8 24 160 24 1 : tunables 120 60 0 : sla
bdata 1 1 0
rpc_inode_cache 0 0 416 9 1 : tunables 54 27 0 : sla
bdata 0 0 0
bridge_fdb_cache 0 0 64 59 1 : tunables 120 60 0 : sla
bdata 0 0 0
...
------ ZONEINFO (/proc/zoneinfo) ------
Node 0, zone Normal
 pages free 550
 min 312
 low 390
 high 468
 scanned 0 (aa: 0 ia: 0 af: 26 if: 0)
...
------ SYSTEM LOG (logcat -v time -d *:v) ------
10-10 01:38:02.762 I/DEBUG (30): debuggerd: Feb 26 2012 21:06:53
10-10 01:38:02.882 I/Netd (29): Netd 1.0 starting
10-10 01:38:02.932 D/qemud (38): entering main loop
10-10 01:38:02.972 I/Vold (28): Vold 2.1 (the revenge) firing up
10-10 01:38:02.972 D/Vold (28): USB mass storage support is not enabled in
 the kernel
...
------ VM TRACES JUST NOW (/data/anr/traces.txt.bugreport: 2012-10-10 03:15:26)

----- pid 61 at 2012-10-10 03:15:26 -----
Cmd line: system_server

DALVIK THREADS:
(mutexes: tll=0 tsl=0 tscl=0 ghl=0 hwl=0 hwll=0)
"main" prio=5 tid=1 NATIVE
 | group="main" sCount=1 dsCount=0 obj=0x4001f1a8 self=0xce48
 | sysTid=61 nice=0 sched=0/0 cgrp=default handle=-1345006528
 | schedstat=(1116789165 392598071 782)
 at com.android.server.SystemServer.init1(Native Method)
 at com.android.server.SystemServer.main(SystemServer.java:625)
...
------ EVENT LOG (logcat -b events -v time -d *:v) ------
10-10 01:38:03.642 I/boot_progress_start(32): 5126
10-10 01:38:04.221 I/boot_progress_preload_start(32): 5706
10-10 01:38:04.251 I/dvm_gc_info(32): [8825198673194415294,-90644969689662529
97,-4012584086963399109,0]
10-10 01:38:04.281 I/dvm_gc_info(32): [8825198673194406507,-92148046065296736
57,-4012584086963329465,0]
10-10 01:38:04.331 I/dvm_gc_info(32): [8825198673194406993,-91348657131437777
12,-4012584086963259824,0]
10-10 01:38:04.371 I/dvm_gc_info(32): [8825198673194415172,-91399322627244589
19,-4012584086963149223,0]
...
------ RADIO LOG (logcat -b radio -v time -d *:v) ------
10-10 01:58:04.988 D/AT (31): AT< +CSQ: 7,99
10-10 01:58:04.988 D/AT (31): AT< OK
10-10 01:58:04.988 D/RILJ (121): [0114]< SIGNAL_STRENGTH {7, 99, 0, 0, 0
, 0, 0}
10-10 01:58:24.998 D/RILJ (121): [0115]> SIGNAL_STRENGTH
10-10 01:58:25.008 D/RIL (31): onRequest: SIGNAL_STRENGTH
...
------ NETWORK INTERFACES (netcfg) ------
*** exec(netcfg): Permission denied
*** netcfg: Exit code 255
[netcfg: 0.1s elapsed]

------ NETWORK ROUTES (/proc/net/route) ------
Iface Destination Gateway Flags RefCnt Use Metric Mask
 MTU Window IRTT
eth0 0002000A 00000000 0001 0 0 0 00FFFFFF
 0 0 0

eth0 00000000 0202000A 0003 0 0 0 00000000
 0 0 0

------ ARP CACHE (/proc/net/arp) ------
IP address HW type Flags HW address Mask Device
10.0.2.2 0x1 0x2 52:54:00:12:35:02 * eth0

------ SYSTEM PROPERTIES ------
[dalvik.vm.heapsize]: [16m]
[dalvik.vm.stack-trace-file]: [/data/anr/traces.txt]
[dev.bootcomplete]: [1]
[gsm.current.phone-type]: [1]
[gsm.defaultpdpcontext.active]: [true]
...
------ KERNEL LOG (dmesg) ------
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com) (gcc
 version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
On node 0 totalpages: 24576
...
------ KERNEL WAKELOCKS (/proc/wakelocks) ------
name count expire_count wake_count active_since total_time
sleep_time max_time last_change
"alarm" 106 0 0 0 1632946980 0 41697763
5822030632794
"KeyEvents" 27 0 0 0 123592046 0 94064309
 27084159991
"event0-61" 26 0 0 0 48780811 0 12891126
 27083608920
"radio-interface" 3 0 0 0 3472899963 0
1459986280 25362482435
...
------ KERNEL CPUFREQ (/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state)

*** /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state: No such file or di
rectory

------ VOLD DUMP (vdc dump) ------
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
...
------ SECURE CONTAINERS (vdc asec list) ------
200 asec operation succeeded
[vdc: 0.1s elapsed]

------ PROCESSES (ps -P) ------
USER PID PPID VSIZE RSS PCY WCHAN PC NAME
root 1 0 268 180 fg c009b74c 0000875c S /init
root 2 0 0 0 fg c004e72c 00000000 S kthreadd
root 3 2 0 0 fg c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 fg c004b2c4 00000000 S events/0
root 5 2 0 0 fg c004b2c4 00000000 S khelper
root 6 2 0 0 fg c004b2c4 00000000 S suspend
...
------ PROCESSES AND THREADS (ps -t -p -P) ------
USER PID PPID VSIZE RSS PRIO NICE RTPRI SCHED PCY WCHAN PC
 NAME
root 1 0 268 180 20 0 0 0 fg c009b74c 0000875c
 S /init
root 2 0 0 0 15 -5 0 0 fg c004e72c 00000000
 S kthreadd
root 3 2 0 0 15 -5 0 0 fg c003fdc8 00000000
 S ksoftirqd/0
root 4 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S events/0
root 5 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S khelper
root 6 2 0 0 15 -5 0 0 fg c004b2c4 00000000
 S suspend
...
------ LIBRANK (librank) ------
 RSStot VSS RSS PSS USS Name/PID
 16658K /dev/ashmem/dalvik-heap
 6980K 6980K 3218K 2896K system_server [61]
 5208K 5208K 1371K 1048K com.android.launcher [124]
 5272K 5272K 1343K 1012K com.android.phone [121]
...
------ BINDER FAILED TRANSACTION LOG (/sys/kernel/debug/binder/failed_transactio
n_log) ------
*** /sys/kernel/debug/binder/failed_transaction_log: No such file or directory

------ BINDER TRANSACTION LOG (/sys/kernel/debug/binder/transaction_log) ------
*** /sys/kernel/debug/binder/transaction_log: No such file or directory

------ BINDER TRANSACTIONS (/sys/kernel/debug/binder/transactions) ------
*** /sys/kernel/debug/binder/transactions: No such file or directory

------ BINDER STATS (/sys/kernel/debug/binder/stats) ------
*** /sys/kernel/debug/binder/stats: No such file or directory

------ BINDER STATE (/sys/kernel/debug/binder/state) ------
*** /sys/kernel/debug/binder/state: No such file or directory

------ FILESYSTEMS & FREE SPACE (df) ------
Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs 47048 32 47016 0% /dev
tmpfs 47048 0 47048 0% /mnt/asec
tmpfs 47048 0 47048 0% /mnt/obb
/dev/block/mtdblock0 65536 65536 0 100% /system
/dev/block/mtdblock1 65536 25292 40244 39% /data
/dev/block/mtdblock2 65536 1156 64380 2% /cache
[df: 0.1s elapsed]

------ PACKAGE SETTINGS (/data/system/packages.xml: 2012-10-10 01:38:16) ------
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<packages>
<last-platform-version internal="10" external="0" />
...
------ PACKAGE UID ERRORS (/data/system/uiderrors.txt: 2012-09-24 21:06:14) ----
--
2012-09-24 21:06: No settings file; creating initial state

------ LAST KMSG (/proc/last_kmsg) ------
*** /proc/last_kmsg: No such file or directory

------ LAST RADIO LOG (parse_radio_log /proc/last_radio_log) ------
*** exec(parse_radio_log): Permission denied
*** parse_radio_log: Exit code 255
[parse_radio_log: 0.1s elapsed]

------ LAST PANIC CONSOLE (/data/dontpanic/apanic_console) ------
*** /data/dontpanic/apanic_console: No such file or directory

------ LAST PANIC THREADS (/data/dontpanic/apanic_threads) ------
*** /data/dontpanic/apanic_threads: No such file or directory

------ BLOCKED PROCESS WAIT-CHANNELS ------
------ BACKLIGHTS ------
LCD brightness=*** /sys/class/leds/lcd-backlight/brightness: No such file or dir
ectory
Button brightness=*** /sys/class/leds/button-backlight/brightness: No such file
or directory
Keyboard brightness=*** /sys/class/leds/keyboard-backlight/brightness: No such f
ile or directory
ALS mode=*** /sys/class/leds/lcd-backlight/als: No such file or directory
LCD driver registers:
*** /sys/class/leds/lcd-backlight/registers: No such file or directory

==
== Android Framework Services
==
------ DUMPSYS (dumpsys) ------
Currently running services:
 SurfaceFlinger
...
In most cases, as you can see, dumpstate is in fact invoking other commands
 such as logcat, dumpsys, and ps to retrieve its information. As you can
 also see, the command is very verbose.

rawbu

In some cases, you may want to back up and later restore the
 contents of /data. You can use
 the rawbu command to do
 that:
rawbu help
Usage: rawbu COMMAND [options] [backup-file-path]
commands are:
 help Show this help text.
 backup Perform a backup of /data.
 restore Perform a restore of /data.
options include:
 -h Show this help text.
 -a Backup all files.

The rawbu command allows you to perform low-level
backup and restore of the /data partition. This is
where all user data is kept, allowing for a fairly
complete restore of a device's state. Note that
because this is low-level, it will only work across
builds of the same (or very similar) device software.
Here’s how it can be used to create a backup:
rawbu backup /sdcard/backup.dat
Stopping system...
Backing up /data to /sdcard/backup.dat...
Saving dir /data/local...
Saving dir /data/local/tmp...
Saving dir /data/app-private...
Saving dir /data/app...
Saving dir /data/property...
Saving file /data/property/persist.sys.localevar...
Saving file /data/property/persist.sys.country...
Saving file /data/property/persist.sys.language...
Saving file /data/property/persist.sys.timezone...
...
Backup complete! Restarting system...
The first thing the command does is stop the Zygote, thereby
 stopping all system services. It then proceeds to copy everything from
 /data and finishes by restarting
 the Zygote. Once data is backed up, you can restore it later:
rawbu restore /sdcard/backup.dat
Stopping system...
Wiping contents of /data...
warning -- rmdir() error on '/data/system': Directory not empty
warning -- rmdir() error on '/data/system': Directory not empty
Restoring from /sdcard/backup.dat to /data...
Restoring dir /data/local...
Restoring dir /data/local/tmp...
Restoring dir /data/app-private...
Restoring dir /data/app...
...
Restore complete! Restarting system, cross your fingers...
Obviously, as the command’s output implies, this is a fragile
 operation and you should be aware that results will vary.

Service-Specific Utilities

As we saw earlier, there are dozens of system services. Typically,
 using these system services requires writing code that interacts with
 their Binder-exposed API in some way, shape, or form. In some cases,
 however, the AOSP includes command-line utilities for directly
 interacting with certain system services. Some of these utilities are
 very powerful and allow us to tap into Android’s functionality straight
 from the command line. This opens the door for using many of the
 following utilities as part of scripts either in production or during
 development.
Circumventing Android’s Permission System
The system services’ APIs are typically protected by Android’s
 permission system, which requires apps’ manifest files to declare
 upfront which permissions they require. Generally, a system service
 will check whether its caller has the appropriate permissions before
 going ahead and servicing the caller’s request. Part of this checking
 will require checking the caller’s PID and using the Package Manager’s
 services to verify the originating .apk’s rights.
There is one case, however, that circumvents all safeguards:
 when the caller is running as root. Indeed, if you look at the
 permission-checking code of the Activity Manager, which is used by the
 other system services to check for permissions, you will see this
 snippet in frameworks/base/services/java/com/android/server/am/ActivityManagerService.java
 in 2.3/Gingerbread:
 int checkComponentPermission(String permission, int pid, int uid,
...
 // Root, system server and our own process get to do everything.
 if (uid == 0 || uid == Process.SYSTEM_UID || pid == MY_PID ||
 !Process.supportsProcesses()) {
 return PackageManager.PERMISSION_GRANTED;
 }
...
In 4.2/Jelly Bean, you’ll find this instead:
 int checkComponentPermission(String permission, int pid, int uid,
...
 if (pid == MY_PID) {
 return PackageManager.PERMISSION_GRANTED;
 }

 return ActivityManager.checkComponentPermission(permission, uid,
 owningUid, exported);
 }
With ActivityManager.checkComponentPermission()
 being defined as the following in frameworks/base/core/java/android/app/ActivityManager.java:
 public static int checkComponentPermission(String permission, int uid,
 int owningUid, boolean exported) {
 // Root, system server get to do everything.
 if (uid == 0 || uid == Process.SYSTEM_UID) {
 return PackageManager.PERMISSION_GRANTED;
 }
...
Hence, in both versions of the AOSP, any of the commands you see
 here that talk to a system service will typically be granted a green
 light on anything they ask for from a system service. You must,
 therefore, be very careful when
 talking to system services while running as root. The same applies if
 you write a command-line utility that mimics the way many of the
 commands we cover in this section interact with system
 services.

am

As I mentioned earlier, one of the most important system
 services is the Activity Manager. It should come as no surprise,
 therefore, that there’s a command that allows us to directly invoke
 its functionality. Here’s its online help in
 2.3/Gingerbread:
am
usage: am [subcommand] [options]

 start an Activity: am start [-D] [-W] <INTENT>
 -D: enable debugging
 -W: wait for launch to complete

 start a Service: am startservice <INTENT>

 send a broadcast Intent: am broadcast <INTENT>

 start an Instrumentation: am instrument [flags] <COMPONENT>
 -r: print raw results (otherwise decode REPORT_KEY_STREAMRESULT)
 -e <NAME> <VALUE>: set argument <NAME> to <VALUE>
 -p <FILE>: write profiling data to <FILE>
 -w: wait for instrumentation to finish before returning

 start profiling: am profile <PROCESS> start <FILE>
 stop profiling: am profile <PROCESS> stop

 start monitoring: am monitor [--gdb <port>]
 --gdb: start gdbserv on the given port at crash/ANR

 <INTENT> specifications include these flags:
 [-a <ACTION>] [-d <DATA_URI>] [-t <MIME_TYPE>]
 [-c <CATEGORY> [-c <CATEGORY>] ...]
 [-e|--es <EXTRA_KEY> <EXTRA_STRING_VALUE> ...]
 [--esn <EXTRA_KEY> ...]
 [--ez <EXTRA_KEY> <EXTRA_BOOLEAN_VALUE> ...]
 [-e|--ei <EXTRA_KEY> <EXTRA_INT_VALUE> ...]
 [-n <COMPONENT>] [-f <FLAGS>]
 [--grant-read-uri-permission] [--grant-write-uri-permission]
 [--debug-log-resolution]
 [--activity-brought-to-front] [--activity-clear-top]
 [--activity-clear-when-task-reset] [--activity-exclude-from-recents]
 [--activity-launched-from-history] [--activity-multiple-task]
 [--activity-no-animation] [--activity-no-history]
 [--activity-no-user-action] [--activity-previous-is-top]
 [--activity-reorder-to-front] [--activity-reset-task-if-needed]
 [--activity-single-top]
 [--receiver-registered-only] [--receiver-replace-pending]
 [<URI>]
Note
In 4.2/Jelly Bean, am’s
 capabilities have expanded, and so, too, has its online help. Since
 the latter now covers three pages, it’s impractical to print it in
 its entirety in this book. The previous snippet is sufficient for
 the present discussion; still, I encourage you to read the am command’s online help in 4.2/Jelly
 Bean.

As we saw in Chapter 2, there are four types of
 components available to app developers: activities, services,
 broadcast receivers, and content providers. The first three types of
 components are activated through intents, and one of am’s major features is its ability to send
 intents straight from the command line.
Here’s how you can use am to
 get the browser to navigate to a given website along with the relevant
 log excerpts:
am start -a android.intent.action.VIEW -d http://source.android.com
Starting: Intent { act=android.intent.action.VIEW dat=http://source.android.com }

logcat
...
D/AndroidRuntime(786):
D/AndroidRuntime(786): >>>>>> AndroidRuntime START com.android.internal.os.Run
timeInit <<<<<<
D/AndroidRuntime(786): CheckJNI is ON
D/AndroidRuntime(786): Calling main entry com.android.commands.am.Am
I/ActivityManager(62): Starting: Intent { act=android.intent.action.VIEW dat=
http://source.android.com flg=0x10000000 cmp=com.android.browser/.BrowserActivit
y } from pid 786
I/ActivityManager(62): Start proc com.android.browser for activity com.androi
d.browser/.BrowserActivity: pid=794 uid=10015 gids={3003, 1015}
D/AndroidRuntime(786): Shutting down VM
D/dalvikvm(786): GC_CONCURRENT freed 100K, 69% free 317K/1024K, external 0K/0K
, paused 1ms+1ms
D/jdwp (786): adbd disconnected
I/ActivityThread(794): Pub browser: com.android.browser.BrowserProvider
I/BrowserSettings(794): Selected search engine: ActivitySearchEngine{android.a
pp.SearchableInfo@40593270}
D/dalvikvm(794): GC_CONCURRENT freed 447K, 51% free 2909K/5831K, external 934K
/1038K, paused 5ms+14ms
I/ActivityManager(62): Displayed com.android.browser/.BrowserActivity: +1s924
ms
D/dalvikvm(794): GC_EXTERNAL_ALLOC freed 51K, 50% free 2953K/5831K, external 9
51K/1038K, paused 62ms
...
That’s a rather straightforward example. Let’s look at something
 a little more customized. Here’s a broadcast receiver declaration from
 a custom application:
 <receiver android:name="FastBirdApproaching">
 <intent-filter >
 	<action android:name="com.acme.coyotebirdmonitor.FAST_BIRD"/>
 </intent-filter>
 </receiver>
And here’s the corresponding code:
public class FastBirdApproaching extends BroadcastReceiver {
 private static final String TAG = "FastBirdApproaching";

 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub
 Log.i(TAG, "**********");
 Log.i(TAG, "Meep Meep!");
 Log.i(TAG, "**********");
 }
}
Here’s how you can use am to
 trigger this broadcast receiver and the resulting output in the
 logs:
am broadcast -a com.acme.coyotebirdmonitor.FAST_BIRD
Broadcasting: Intent { act=com.acme.coyotebirdmonitor.FAST_BIRD }
Broadcast completed: result=0

logcat
...
I/ActivityManager(62): Start proc com.acme.coyotebirdmonitor for broadcast co
m.acme.coyotebirdmonitor/.FastBirdApproaching: pid=466 uid=10029 gids={}
I/FastBirdApproaching(466): **********
I/FastBirdApproaching(466): Meep Meep!
I/FastBirdApproaching(466): **********
...
As you can see from am’s
 online help, you can specify a lot of details regarding the intent to
 be sent. Whereas the previous two examples used implicit intents, you
 can also send explicit intents to activate designated
 components:
am start -n com.android.settings/.Settings
In this case, this will start the Settings
 activity of the settings app in the system. Interestingly, am can start components in ways you can’t
 replicate using the officially published app development API. That’s
 because it’s built as part of the AOSP and has therefore access to
 hidden calls available only to code
 building within the AOSP.
am is in fact a shell script,
 as you can see in frameworks/based/cmds/am/am/:
Script to start "am" on the device, which has a very rudimentary
shell.
#
base=/system
export CLASSPATH=$base/framework/am.jar
exec app_process $base/bin com.android.commands.am.Am "$@"
The script uses app_process
 to start Java code that implements am’s functionality. All parameters passed on
 the command line are actually passed on to the Java code as is.
You can also use am for
 instrumentation, profiling, and monitoring. Have a look at the Testing Fundamentals and Testing from Other IDEs sections
 of the Android developer manual for more information on Android
 testing and the use of the am
 instrument command.
The am profile commands allow
 us to generate data that can then be visualized on the host using the
 traceview command. You can find
 more information about traceview in
 the relevant section of the Android
 developer manual. Note that the documentation says there are
 two ways to create trace files, and the use of the am command on the command line isn’t listed
 as one of them.
Finally, the am monitor
 command allows us to monitor apps run by the Activity Manager. Here’s
 a session where I start the command and then start several
 apps:
am monitor
Monitoring activity manager... available commands:
(q)uit: finish monitoring
** Activity starting: com.android.browser
** Activity resuming: com.android.launcher
** Activity starting: com.android.settings
** Activity resuming: com.android.launcher
** Activity starting: com.android.browser
** Activity starting: com.android.launcher
...
Note that when you start an app and click Back, the command
 reports that the Launcher is resuming, whereas if you click the Home
 button, the Launcher is reported as starting. This monitoring capability will
 also allow you to catch ANRs (Application Not Responding) and enable
 you to attach gdb to a crashing
 process.
Note
Don’t let this brief coverage of am mislead you: This is an extremely
 powerful and useful command that you should keep well in mind. If
 you ever need to script the starting of apps from the command line,
 you will find it to be very useful.

pm

Another very important system service is the Package Manager
 and, much like the Activity Manager, it’s got its own command-line
 tool. Here’s its online help from 2.3/Gingerbread:
pm
usage: pm [list|path|install|uninstall]
 pm list packages [-f] [-d] [-e] [-u] [FILTER]
 pm list permission-groups
 pm list permissions [-g] [-f] [-d] [-u] [GROUP]
 pm list instrumentation [-f] [TARGET-PACKAGE]
 pm list features
 pm list libraries
 pm path PACKAGE
 pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f] PATH
 pm uninstall [-k] PACKAGE
 pm clear PACKAGE
 pm enable PACKAGE_OR_COMPONENT
 pm disable PACKAGE_OR_COMPONENT
 pm setInstallLocation [0/auto] [1/internal] [2/external]

The list packages command prints all packages, optionally only
those whose package name contains the text in FILTER. Options:
 -f: see their associated file.
 -d: filter to include disabled packages.
 -e: filter to include enabled packages.
 -u: also include uninstalled packages.

The list permission-groups command prints all known
permission groups.

The list permissions command prints all known
permissions, optionally only those in GROUP. Options:
 -g: organize by group.
 -f: print all information.
 -s: short summary.
 -d: only list dangerous permissions.
 -u: list only the permissions users will see.

The list instrumentation command prints all instrumentations,
or only those that target a specified package. Options:
 -f: see their associated file.

The list features command prints all features of the system.

The path command prints the path to the .apk of a package.

The install command installs a package to the system. Options:
 -l: install the package with FORWARD_LOCK.
 -r: reinstall an existing app, keeping its data.
 -t: allow test .apks to be installed.
 -i: specify the installer package name.
 -s: install package on sdcard.
 -f: install package on internal flash.

The uninstall command removes a package from the system. Options:
 -k: keep the data and cache directories around.
after the package removal.

The clear command deletes all data associated with a package.

The enable and disable commands change the enabled state of
a given package or component (written as "package/class").

The getInstallLocation command gets the current install location
 0 [auto]: Let system decide the best location
 1 [internal]: Install on internal device storage
 2 [external]: Install on external media

The setInstallLocation command changes the default install location
 0 [auto]: Let system decide the best location
 1 [internal]: Install on internal device storage
 2 [external]: Install on external media
Note
Much like am, pm’s capabilities have grown through the
 versions, and the online help in 4.2/Jelly Bean for this tool is now
 much larger than can reasonably fit in this book. I still encourage
 you to take a look at it.

Fortunately, this command is actually pretty well documented, as
 you can see from the output above. Listing the installed packages, for
 example, is as simple as:
pm list packages
package:android
package:android.tts
package:com.android.bluetooth
package:com.android.browser
package:com.android.calculator2
package:com.android.calendar
package:com.android.camera
package:com.android.certinstaller
package:com.android.contacts
package:com.android.defcontainer
...
Installing an app (the command used by the adb install command
 covered in the last chapter):
pm install FastBirds.apk
 pkg: FastBirds.apk
Success
Note that removing the app requires knowing its package name,
 not the original .apk’s
 name:
pm uninstall com.acme.fastbirds
Success
pm is also a shell script
 that starts Java code:
Script to start "pm" on the device, which has a very rudimentary
shell.
#
base=/system
export CLASSPATH=$base/framework/pm.jar
exec app_process $base/bin com.android.commands.pm.Pm "$@"
Note
As with am, there’s much
 more to pm than I can cover in
 this book. I encourage you to explore its many uses, as it can be
 very helpful for scripts, either during development and/or in
 production.

svc

Unlike the two previous commands, svc is something of a Swiss Army knife in
 attempting to provide you with the ability to control several system
 services. Here’s the online help for 2.3/Gingerbread:
svc
Available commands:
 help Show information about the subcommands
 power Control the power manager
 data Control mobile data connectivity
 wifi Control the Wi-Fi manager
The online help for 4.2/Jelly Bean shows that it can now also
 deal with USB:
root@android:/ # svc
Available commands:
 help Show information about the subcommands
 power Control the power manager
 data Control mobile data connectivity
 wifi Control the Wi-Fi manager
 usb Control Usb state
Note how svc’s capabilities
 are limited to enabling and disabling the behavior of the designated
 system services:
svc help power
Control the power manager

usage: svc power stayon [true|false|usb|ac]
 Set the 'keep awake while plugged in' setting.

svc help data
Control mobile data connectivity

usage: svc data [enable|disable]
 Turn mobile data on or off.

 svc data prefer
 Set mobile as the preferred data network

svc help wifi
Control the Wi-Fi manager

usage: svc wifi [enable|disable]
 Turn Wi-Fi on or off.

 svc wifi prefer
 Set Wi-Fi as the preferred data network
Overall, you should be aware of svc, but it’s unlikely that you’ll make
 regular use of it. Like am and
 pm, svc is also a script that uses app_process to start Java code.

ime

The ime command lets you
 communicate with the Input Method system service to control the
 system’s use of available input methods, and it’s the same in
 2.3/Gingerbread and 4.2/Jelly Bean:
ime
usage: ime list [-a] [-s]
 ime enable ID
 ime disable ID
 ime set ID

The list command prints all enabled input methods. Use
the -a option to see all input methods. Use
the -s option to see only a single summary line of each.

The enable command allows the given input method ID to be used.

The disable command disallows the given input method ID from use.

The set command switches to the given input method ID.
Here’s the list of input methods available on the
 2.3/Gingerbread emulator, for example:
ime list
com.android.inputmethod.latin/.LatinIME:
 mId=com.android.inputmethod.latin/.LatinIME mSettingsActivityName=com.android.
inputmethod.latin.LatinIMESettings
 mIsDefaultResId=0x7f080001
 Service:
 priority=0 preferredOrder=0 match=0x108000 specificIndex=-1 isDefault=false
 ServiceInfo:
 name=com.android.inputmethod.latin.LatinIME
 packageName=com.android.inputmethod.latin
 labelRes=0x7f0c001f nonLocalizedLabel=null icon=0x0
 enabled=true exported=true processName=com.android.inputmethod.latin
 permission=android.permission.BIND_INPUT_METHOD
Again, ime uses app_process from within a script to start
 Java code. Like svc, ime is a command worth keeping in mind, but
 you’re unlikely to use it very often.

input

input connects to the Window
 Manager system service and injects text or key events into the system.
 Here’s how it operates on 2.3/Gingerbread:
input
usage: input [text|keyevent]
 input text <string>
 input keyevent <event_code>
Here’s how it works on 4.2/Jelly Bean:
root@android:/ # input
usage: input ...
 input text <string>
 input keyevent <key code number or name>
 input [touchscreen|touchpad] tap <x> <y>
 input [touchscreen|touchpad] swipe <x1> <y1> <x2> <y2>
 input trackball press
 input trackball roll <dx> <dy>
input’s functionality is very
 simple, however. It doesn’t, for instance, know anything about what’s
 receiving the events, just that the events are sent to whatever
 presently has focus. It’s therefore up to you to make sure that
 whatever needs to receive your input actually has focus. Evidently
 this is difficult when you’re not in front of the screen and are,
 instead, trying to script such behavior. Still, input gives you a tool to provide raw input
 from the command line. And, in some cases, the meaning of the input
 you send doesn’t require focus. Here’s how to click the Home button
 from the command line, for example:
input keyevent 3
You’re probably wondering how I know that 3 is the Home key. Have a look at frameworks/base/core/java/android/view/KeyEvent.java
 and frameworks/base/native/include/android/keycodes.h
 in 2.3/Gingerbread or frameworks/native/include/android/keycodes.h
 in 4.2/Jelly Bean for the full list of key codes recognized by
 Android. The former, for example, contains code such as this:
...
 public static final int KEYCODE_HOME = 3;
 /** Key code constant: Back key. */
 public static final int KEYCODE_BACK = 4;
 /** Key code constant: Call key. */
 public static final int KEYCODE_CALL = 5;
 /** Key code constant: End Call key. */
 public static final int KEYCODE_ENDCALL = 6;
 /** Key code constant: '0' key. */
 public static final int KEYCODE_0 = 7;
...
Like all other commands, input is a script that relies on app_process.

monkey

There’s another tool that allows you to provide input to
 Android. It’s called monkey, and
 there’s an entire section about it in the app developer documentation
 entitled UI/Application
 Exerciser Monkey. As the documentation says, monkey can be used to provide random yet
 repeatable input to your application. This command, for instance, will
 send 50 pseudo-random inputs to the browser app:
monkey -p com.android.browser -v 50
monkey can, however, do much
 more, as you can see from this output on 2.3/Gingerbread (4.2/Jelly
 Bean’s is fairly similar):
monkey
usage: monkey [-p ALLOWED_PACKAGE [-p ALLOWED_PACKAGE] ...]
 [-c MAIN_CATEGORY [-c MAIN_CATEGORY] ...]
 [--ignore-crashes] [--ignore-timeouts]
 [--ignore-security-exceptions]
 [--monitor-native-crashes] [--ignore-native-crashes]
 [--kill-process-after-error] [--hprof]
 [--pct-touch PERCENT] [--pct-motion PERCENT]
 [--pct-trackball PERCENT] [--pct-syskeys PERCENT]
 [--pct-nav PERCENT] [--pct-majornav PERCENT]
 [--pct-appswitch PERCENT] [--pct-flip PERCENT]
 [--pct-anyevent PERCENT]
 [--pkg-blacklist-file PACKAGE_BLACKLIST_FILE]
 [--pkg-whitelist-file PACKAGE_WHITELIST_FILE]
 [--wait-dbg] [--dbg-no-events]
 [--setup scriptfile] [-f scriptfile [-f scriptfile] ...]
 [--port port]
 [-s SEED] [-v [-v] ...]
 [--throttle MILLISEC] [--randomize-throttle]
 [--profile-wait MILLISEC]
 [--device-sleep-time MILLISEC]
 [--randomize-script]
 [--script-log]
 [--bugreport]
 COUNT
Most interestingly, you can provide a script to monkey for running a predefined set of input
 instead of providing random input. This is a very useful feature for
 development, testing, and in-the-field diagnostics. Unfortunately,
 there’s virtually no documentation whatsoever on this very powerful
 feature of monkey. So, for
 reference, here’s a sample script file:
This is a sample test script
Lines starting with '#' are comments

This part is the "header"
monkey doesn't actually look for 'type', but does require 'count', 'speed' and
'start data >>'
type= custom
count= 100
speed= 1.0
start data >>

These are the actual instructions to carry out
LaunchActivity(com.android.contacts,com.android.contacts.TwelveKeyDialer)
Use this instead in 4.2./Jelly Bean (line-wrap is for book, remove to run)
LaunchActivity(com.android.contacts,com.android.contacts.activities.Dialtact
sActivity)
UserWait(2500)
DispatchPress(KEYCODE_1)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_0)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_8)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_6)
UserWait(200)
DispatchPress(KEYCODE_9)
UserWait(200)
DispatchPress(KEYCODE_ENTER)
UserWait(10000)
DispatchPress(KEYCODE_ENDCALL)
UserWait(200)
RunCmd(input keyevent 3)
UserWait(1000)
RunCmd(service call statusbar 1)
UserWait(2000)
RunCmd(service call statusbar 2)
To run this script, use this command line:
monkey -f myscript 1
This script will essentially start the standard dialer, dial
 1-800-889-8969,[34] wait 10 seconds, hang up, return to the home screen, and
 then expand and collapse the status bar. Notice that the last part
 uses the RunCmd instruction to make
 the script run commands straight from the command line; incidentally
 these are commands we saw earlier. Of course this script is rather
 short and simple. You can create much longer scripts; you can possibly
 even integrate the invocation of such scripts into much more
 complicated shell scripts.
For a detailed understanding of the scripting language
 understood by monkey, along with
 the parameters each command can take, I invite you to take a look at
 monkey’s script interpreting code
 in development/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
 and look for EVENT_KEYWORD_. You
 should then find event keywords such as DispatchPress, UserWait, and many others.
To do its magic, monkey
 communicates with the Activity Manager, the Window Manager, and the
 Package Manager. It too is a shell script that relies on app_process to start the Java code that
 implements the utility.
Warning
If you look into the tool’s sources in development/cmds/monkey/, you will find a
 file called example_script.txt
 that appears to contain some scripted instructions. It’s unclear why
 this file is in the sources, as the semantics in that file do not
 correspond to the actual semantics expected by the monkey utility.

bmgr

Since 2.2/Froyo, Android has included a backup
 capability, allowing users to have their data backed up into the cloud
 so it can be restored later should they lose or change their device.
 Google itself provides some of this capability by acting as one of the possible transports,[35] but others could provide alternative transports. The API
 provided within Android and to app developers is
 transport-independent. This remains, however, a functionality that is
 very specific to the use of Android for phones and tablets and may not
 be required in an embedded environment. There’s a tool that allows you
 to control the behavior of the Backup Manager system service from the
 command line:[36]
bmgr
usage: bmgr [backup|restore|list|transport|run]
 bmgr backup PACKAGE
 bmgr enable BOOL
 bmgr enabled
 bmgr list transports
 bmgr list sets
 bmgr transport WHICH
 bmgr restore TOKEN
 bmgr restore PACKAGE
 bmgr run
 bmgr wipe PACKAGE

The 'backup' command schedules a backup pass for the named package.
Note that the backup pass will effectively be a no-op if the package
does not actually have changed data to store.

The 'enable' command enables or disables the entire backup mechanism.
If the argument is 'true' it will be enabled, otherwise it will be
disabled. When disabled, neither backup or restore operations will
be performed.

The 'enabled' command reports the current enabled/disabled state of
the backup mechanism.

The 'list transports' command reports the names of the backup transports
currently available on the device. These names can be passed as arguments
to the 'transport' command. The currently selected transport is indicated
with a '*' character.

The 'list sets' command reports the token and name of each restore set
available to the device via the current transport.

The 'transport' command designates the named transport as the currently
active one. This setting is persistent across reboots.

The 'restore' command when given a restore token initiates a full-system
restore operation from the currently active transport. It will deliver
the restore set designated by the TOKEN argument to each application
that had contributed data to that restore set.

The 'restore' command when given a package name initiates a restore of
just that one package according to the restore set selection algorithm
used by the RestoreSession.restorePackage() method.

The 'run' command causes any scheduled backup operation to be initiated
immediately, without the usual waiting period for batching together
data changes.

The 'wipe' command causes all backed-up data for the given package to be
erased from the current transport's storage. The next backup operation
that the given application performs will rewrite its entire data set.
If this is relevant to your use of Android, have a look at the
 Data
 Backup section of the app developer manual, along with the
 information provided by
 Google regarding its own backup transport. Much like many of
 the other commands we saw, app_process is used to start the actual Java
 code that interfaces with the Backup Manager service.

stagefright

One of Android’s key features is its rich media layer, and the
 AOSP includes tools that enable you to interact with it. More
 specifically, the stagefright
 command interacts with the Media Player service to allow you to do
 media playback. Here’s its online help in 2.3/Gingerbread (4.2/Jelly
 Bean’s is slightly expanded):
stagefright -h
usage: stagefright
 -h(elp)
 -a(udio)
 -n repetitions
 -l(ist) components
 -m max-number-of-frames-to-decode in each pass
 -b bug to reproduce
 -p(rofiles) dump decoder profiles supported
 -t(humbnail) extract video thumbnail or album art
 -s(oftware) prefer software codec
 -o playback audio
 -w(rite) filename (write to .mp4 file)
 -k seek test
Here’s how you can play an .mp3 file, for example:
stagefright -a -o /sdcard/trainwhistle.mp3
You might also want to investigate the record and audioloop utilities found alongside stagefright’s sources in frameworks/base/cmds/stagefright/ in
 2.3/Gingerbread and frameworks/av/cmds/stagefright/ in
 4.2/Jelly Bean. Their documentation is severely lacking, though, and
 few examples of their uses can be found online or elsewhere.
 Interestingly, though, all three utilities are coded in C, unlike the
 majority of the system service-specific utilities we’ve seen thus far,
 which were mostly written in Java and activated through a script using
 app_process. Also, while stagefright directly communicates with the
 Media Player service, the record
 and audioloop commands use an
 OMXClient, which conveniently wraps
 the communication to the same service.

Dalvik Utilities

We’ve already seen how we can send intents with the am command and therefore trigger the starting
 of new apps, each of which comes with its own Zygote-forked Dalvik
 instances. We’ve also seen how the app_process command can be used to start
 Java-coded command-line tools using the Android Runtime. There are some
 cases, however, where you may want to forgo all the Android-specific
 layers and dabble directly with Dalvik. Here are the commands that allow
 you to do just that.
dalvikvm

If you haven’t yet already asked yourself if there’s a way to
 actually start just a Dalvik VM without any Android-specific
 functionality, here’s the command you’ve been looking for:[37]
dalvikvm -help

dalvikvm: [options] class [argument ...]
dalvikvm: [options] -jar file.jar [argument ...]

The following standard options are recognized:
 -classpath classpath
 -Dproperty=value
 -verbose:tag ('gc', 'jni', or 'class')
 -ea[:<package name>... |:<class name>]
 -da[:<package name>... |:<class name>]
 (-enableassertions, -disableassertions)
 -esa
 -dsa
 (-enablesystemassertions, -disablesystemassertions)
 -showversion
 -help

The following extended options are recognized:
 -Xrunjdwp:<options>
 -Xbootclasspath:bootclasspath
 -Xcheck:tag (e.g. 'jni')
 -XmsN (min heap, must be multiple of 1K, >= 1MB)
 -XmxN (max heap, must be multiple of 1K, >= 2MB)
 -XssN (stack size, >= 1KB, <= 256KB)
 -Xverify:{none,remote,all}
 -Xrs
 -Xint (extended to accept ':portable', ':fast' and ':jit')

These are unique to Dalvik:
 -Xzygote
 -Xdexopt:{none,verified,all}
 -Xnoquithandler
 -Xjnigreflimit:N (must be multiple of 100, >= 200)
 -Xjniopts:{warnonly,forcecopy}
 -Xjnitrace:substring (eg NativeClass or nativeMethod)
 -Xdeadlockpredict:{off,warn,err,abort}
 -Xstacktracefile:<filename>
 -Xgc:[no]precise
 -Xgc:[no]preverify
 -Xgc:[no]postverify
 -Xgc:[no]concurrent
 -Xgc:[no]verifycardtable
 -Xgenregmap
 -Xcheckdexsum
 -Xincludeselectedop
 -Xjitop:hexopvalue[-endvalue][,hexopvalue[-endvalue]]*
 -Xincludeselectedmethod
 -Xjitthreshold:decimalvalue
 -Xjitblocking
 -Xjitmethod:signature[,signature]* (eg Ljava/lang/String\;replace)
 -Xjitcheckcg
 -Xjitverbose
 -Xjitprofile
 -Xjitdisableopt

Configured with: debugger profiler hprof jit(armv5te) show_exception=1

Dalvik VM init failed (check log file)
dalvikvm is actually a raw
 Dalvik VM without any connection to “Android” whatsoever. It doesn’t
 rely on the Zygote, nor does it include the Android Runtime. It simply
 starts a VM to run whatever class or JAR file you provide it. It’s
 actually not used very often in the AOSP itself, probably because
 there isn’t much in the AOSP that doesn’t run in the context of
 “Android.” The “preload” Java library in 2.3/Gingerbread, for example,
 uses it in frameworks/base/tools/preload/MemoryUsage.java
 in conjunction with adb to check
 the amount of memory used by a class on the target.

dvz

Yet another way to start a Dalvik VM is the dvz command:
dvz --help
Usage: dvz [--help] [-classpath <classpath>]
[additional zygote args] fully.qualified.java.ClassName [args]

Requests a new Dalvik VM instance to be spawned from the zygote
process. stdin, stdout, and stderr are hooked up. This process remains
while the spawned VM instance is alive and forwards some signals.
The exit code of the spawned VM instance is dropped.
As the description implies, dvz actually acts in a similar fashion to
 the Activity Manager by requesting the Zygote to fork and start a new
 process. The only difference here is that the resulting process isn’t
 managed by the Activity Manager. Instead, it’s very much
 standalone.
It’s unclear whether this utility is meant to be heavily used,
 as the only instances of its use within 2.3/Gingerbread are in test
 code, specifically in dalvik/tests/etc/push-and-run-test-jar, and
 it’s not even included in the default builds in 4.2/Jelly Bean.
 Nevertheless, there might be instances where having this in your
 arsenal could be useful.
The Many Ways to Start Dalvik
Up to now, we’ve seen four different ways to start a
 Dalvik VM. It’s worth taking a moment to put them all in
 perspective. Table 7-1 describes each way
 to get a working Dalvik VM, along with what’s included in the VM and
 how it’s started.
Table 7-1. Ways to start Dalvik
	Command	Dalvik VM	Android Runtime	Zygote	Activity Manager	Mechanism
	dalvikvm	X	 	 	 	Uses libdvm.so
	app_process	X	X	 	 	Uses libandroid_runtime.so
	dvz	X	X	X	 	Uses libcutils[a]
	am	X	X	X	X	Talks to Activity Manager service
	[a] See system/core/libcutils/zygote.c,
 which contains a zygote_run_wait() and a
 zygote_run_oneshot().

am is the only command that
 provides us with a Dalvik VM instance that’s actually controlled by
 the Activity Manager. In all other cases, the VM is independent and
 does not have its lifecycle managed. am is also the only command that allows us
 to automatically trigger the execution of code contained in an
 .apk. All other commands
 require us to provide a specific class or JAR file.

dexdump

If you’d like to reverse-engineer Android apps or JAR files, you
 can do so with dexdump:
dexdump
dexdump: no file specified
Copyright (C) 2007 The Android Open Source Project

dexdump: [-c] [-d] [-f] [-h] [-i] [-l layout] [-m] [-t tempfile] dexfile...

 -c : verify checksum and exit
 -d : disassemble code sections
 -f : display summary information from file header
 -h : display file header details
 -i : ignore checksum failures
 -l : output layout, either 'plain' or 'xml'
 -m : dump register maps (and nothing else)
 -t : temp file name (defaults to /sdcard/dex-temp-*)
Here’s how it can be used on a JAR file:
dexdump /system/framework/services.jar
Processing '/system/framework/services.jar'...
Opened '/system/framework/services.jar', DEX version '035'
Class #0 -
 Class descriptor : 'Lcom/android/server/AccessibilityManagerService$1;'
 Access flags : 0x0000 ()
 Superclass : 'Landroid/os/Handler;'
 Interfaces -
 Static fields -
 Instance fields -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : 'this$0'
 type : 'Lcom/android/server/AccessibilityManagerService;'
 access : 0x1010 (FINAL SYNTHETIC)
 Direct methods -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : '<init>'
 type : '(Lcom/android/server/AccessibilityManagerService;)V'
 access : 0x10000 (CONSTRUCTOR)
 code -
 registers : 2
 ins : 2
 outs : 1
 insns size : 6 16-bit code units
 catches : (none)
 positions :
 0x0000 line=113
 locals :
 0x0000 - 0x0006 reg=0 this Lcom/android/server/AccessibilityManagerServi
ce$1;
 Virtual methods -
 #0 : (in Lcom/android/server/AccessibilityManagerService$1;)
 name : 'handleMessage'
...
You can also ask it to dissassemble code:
dexdump -d /system/app/Launcher2.apk
...
00ea5c: |[00ea5c] com.android.common.Arra
yListCursor.<init>:([Ljava/lang/String;Ljava/util/ArrayList;)V
00ea6c: 1206 |0000: const/4 v6, #int 0 // #0
00ea6e: 1a07 e804 |0001: const-string v7, "_id" //
string@04e8
00ea72: 7010 b400 0800 |0003: invoke-direct {v8}, Landro
id/database/AbstractCursor;.<init>:()V // method@00b4
00ea78: 2190 |0006: array-length v0, v9
00ea7a: 1201 |0007: const/4 v1, #int 0 // #0
00ea7c: 1202 |0008: const/4 v2, #int 0 // #0
00ea7e: 3502 0f00 |0009: if-ge v2, v0, 0018 // +000
f
00ea82: 4604 0902 |000b: aget-object v4, v9, v2
00ea86: 1a05 e804 |000d: const-string v5, "_id" //
string@04e8
00ea8a: 6e20 dd07 7400 |000f: invoke-virtual {v4, v7}, L
java/lang/String;.compareToIgnoreCase:(Ljava/lang/String;)I // method@07dd
00ea90: 0a04 |0012: move-result v4
00ea92: 3904 3e00 |0013: if-nez v4, 0051 // +003e
00ea96: 5b89 3600 |0015: iput-object v9, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00ea9a: 1211 |0017: const/4 v1, #int 1 // #1
00ea9c: 3901 1400 |0018: if-nez v1, 002c // +0014
00eaa0: d804 0001 |001a: add-int/lit8 v4, v0, #int
1 // #01
00eaa4: 2344 d901 |001c: new-array v4, v4, [Ljava/l
ang/String; // class@01d9
00eaa8: 5b84 3600 |001e: iput-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
00eaac: 5484 3600 |0020: iget-object v4, v8, Lcom/a
ndroid/common/ArrayListCursor;.mColumnNames:[Ljava/lang/String; // field@0036
...
Obviously the topic of reverse-engineering Android goes way
 beyond the scope of this book, but if this topic is of general
 interest, I recommend taking a look at your favorite online bookstore
 for books that specialize in Android security and forensics.

Support Daemons

While the bulk of Android’s intelligence is implemented in system
 services, there are a number of cases where a system service acts partly
 as intermediary to a native daemon that actually does the key operations
 required. There are likely two main reasons why this approach has been
 favored instead of conducting the actual operations directly as part of a
 system server: security and reliability.
As I explained in Chapter 1, Android’s permission
 model requires app developers who need to call on privileged operations to
 request specific permissions at build time. Typically, these permissions
 will resemble something like this in an app’s manifest file:
...
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
...
In this case, these permissions ask for the ability to open sockets
 and grab wakelocks. There are obviously a whole lot more permissions than
 this. Have a look at the app developer documentation on the full list of
 permissions
 available. Without these permissions, an app can’t conduct some of
 the most critical Android operations. And the main reason is that apps run
 as unprivileged users that can’t, for instance, invoke any system call
 that requires root privileges or access most of the key devices in
 /dev. Instead, apps must ask system
 services to act on their behalf and, in turn, system services check apps’
 permissions before following through with any requests they get.
System services don’t, however, themselves run as root. Instead, the
 system_server process runs as system; the mediaserver process runs as media; and the Phone app runs as radio. And if you check in /dev, you’ll see that some entries belong
 exclusively to some of these users. You’ll also see quite a few entries
 that belong to the root user. Hence,
 much like apps, system services can’t typically use system calls that
 require root privileges nor access key devices in /dev.
Instead, many key operations require system services to communicate
 through Unix domain sockets in /dev/socket/ with native daemons running as
 either root or as a specific user to conduct privileged operations. Many
 of those daemons are Android-specific, though some, such as bluetoothd prior to 4.2/Jelly Bean, we’ve
 already covered in Chapter 6 as being legacy Linux
 daemons.
In some specific cases, such as rild, for example, which takes care of the
 communication with the Baseband Processor, it seems that the choice to run as a separate process might likely have more
 to do with reliability. Indeed, the phone functionality of a smartphone is
 so critical that it’s worth ensuring that its operation is independent of
 any potential issues that could affect the system services housed in the
 system_server process.
Let’s take a look at the main support daemons used by system
 services, their configuration, and related command-line tools. Note that
 we won’t cover the daemons we covered earlier, such as the Zygote; or
 those that aren’t tied to system services, such as ueventd and dumpsys; or those, such as bluetoothd or wpa_supplicant, that are not Android
 specific.
installd

While the Package Manager service’s job is to deal with the
 management of .apk files, it
 doesn’t have the proper privileges to carry out many of the
 manipulations and/or operations required to set up an app to run.
 Instead, it relies on installd, which
 runs as root in 2.3/Gingerbread and as the install user in 4.2/Jelly Bean, for key
 filesystem operations and commands. Running dexopt on an .apk to generate JIT-optimized .dex files for Dalvik, for instance, is done
 by installd on the Package Manager’s
 behalf at install time.
installd is started by this
 section of init.rc in
 2.3/Gingerbread (4.2/Jelly Bean does something fairly similar):
service installd /system/bin/installd
 socket installd stream 600 system system
It then opens /dev/socket/installd and listens for a
 connection, and thereafter listens for commands from the Package
 Manager. It doesn’t have a configuration file, nor does it take any
 command-line parameters. Neither is there any command-line tool to
 communicate with it independently of the Package Manager. Hence, the
 only way to activate installd from
 the command line is to use the pm
 command, which will communicate with the Package Manager, which will, in
 turn, communicate with installd if
 required.
installd’s sources are in
 frameworks/base/cmds/installd/, and
 you may want to take a look at install.c and commands.c. The former contains the list of
 commands recognized by installd, and
 the latter contains the actual implementation of those commands. For
 reference, here’s the snippet from 2.3/Gingerbread’s install.c that lists the commands recognized
 by installd (4.2/Jelly Bean adds a
 few more commands to that list):
struct cmdinfo cmds[] = {
 { "ping", 0, do_ping },
 { "install", 4, do_install },
 { "dexopt", 3, do_dexopt },
 { "movedex", 2, do_move_dex },
 { "rmdex", 1, do_rm_dex },
 { "remove", 2, do_remove },
 { "rename", 3, do_rename },
 { "freecache", 1, do_free_cache },
 { "rmcache", 2, do_rm_cache },
 { "protect", 2, do_protect },
 { "getsize", 4, do_get_size },
 { "rmuserdata", 2, do_rm_user_data },
 { "movefiles", 0, do_movefiles },
 { "linklib", 2, do_linklib },
 { "unlinklib", 1, do_unlinklib },
};
Note that, much like many of the other daemons we’ll see below,
 the wire protocol between installd
 and the Package Manager is string based. Hence, the above snippet
 contains three entries per command: the command’s string as sent “on the
 wire,” the number of parameters expected, and the function within
 install.c to call when the command
 is received.

vold

vold takes care of many of the
 key operations required by the Mount Service, such as mounting and
 formatting volumes. Unlike installd,
 vold runs as root in both
 2.3/Gingerbread and 4.2/Jelly Bean, while the Mount Service is part of
 the System Server. vold is started by
 this section of 2.3/Gingerbread’s init.rc (the snippet in 4.2/Jelly Bean is
 similar):
service vold /system/bin/vold
 socket vold stream 0660 root mount
 ioprio be 2
Unlike the rest of the support daemons covered here, vold actually has a configuration file,
 /etc/vold.fstab. Here’s a snippet
 from the default vold.fstab found
 in system/core/rootdir/etc/
 describing the file’s semantics:
#######################
Regular device mount
##
Format: dev_mount <label> <mount_point> <part> <sysfs_path1...>
label - Label for the volume
mount_point - Where the volume will be mounted
part - Partition # (1 based), or 'auto' for first usable partition.
<sysfs_path> - List of sysfs paths to source devices
######################
Here’s the section that relates to the SD card in the emulator,
 for example:
dev_mount sdcard /mnt/sdcard auto /devices/platform/goldfish_mmc.0 /devices/plat
form/msm_sdcc.2/mmc_host/mmc1
When vold starts, it parses
 this file and then opens /dev/socket/vold to listen for connections
 and commands. Unlike installd,
 there’s a command-line tool to communicate directly with vold:
Usage: vdc <monitor>|<cmd> [arg1] [arg2...]
The actual parameters expected by vdc on the command line are the same as those
 expected by vold from the Mount
 Service when it connects through the designated socket. There is,
 unfortunately, no document or online help that describes the complete
 command set. Instead, you must look at the CommandListener.cpp file in system/vold/ to see the implementation of
 vold’s command set.
You can, for instance, dump vold’s internal status:
vdc dump
000 Dumping loop status
000 Dumping DM status
000 Dumping mounted filesystems
000 rootfs / rootfs ro 0 0
000 tmpfs /dev tmpfs rw,mode=755 0 0
000 devpts /dev/pts devpts rw,mode=600 0 0
000 proc /proc proc rw 0 0
000 sysfs /sys sysfs rw 0 0
000 none /acct cgroup rw,cpuacct 0 0
000 tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0
000 tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0
000 none /dev/cpuctl cgroup rw,cpu 0 0
000 /dev/block/mtdblock0 /system yaffs2 ro 0 0
000 /dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0
000 /dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
200 dump complete
In some cases, vdc actually
 offers online help:
vdc volume format
500 Usage: volume format <path>
To customize the list of storage devices for your device in
 4.2/Jelly Bean, have a look at frameworks/base/core/res/res/xml/storage_list.xml.
 You may want to create an overlay version of that file in your device/acme/coyotepad/overlay/ to customize
 it for your device.

netd

The Network Management Service relies on netd for critical network configuration
 operations such as configuring network interfaces, setting up tethering,
 and running pppd. In this case, too,
 netd runs as root, while the Network
 Management Service is part of the System Server. netd is started by the following section of
 init.rc in
 2.3/Gingerbread:
service netd /system/bin/netd
 socket netd stream 0660 root system
In 4.2/Jelly Bean, however, the declaration has changed:
service netd /system/bin/netd
 class main
 socket netd stream 0660 root system
 socket dnsproxyd stream 0660 root inet
 socket mdns stream 0660 root system
netd opens /dev/socket/netd and listens for connections
 and commands. It doesn’t take any command-line parameters, nor does it
 rely on any configuration file. Like vold, however, it has a command-line tool to
 communicate with it. Here’s the online help for that command in
 2.3/Gingerbread:
ndc
Usage: ndc <monitor>|<cmd> [arg1] [arg2...]
Here’s the same help on 4.2/Jelly Bean:
root@android:/ # ndc
Usage: ndc [sockname] <monitor>|<cmd> [arg1] [arg2...]
Like vdc, the command-line
 parameters expected by ndc are the
 same as those expected by netd on its
 socket. And as with vold, you need to
 look at netd’s CommandListener.cpp in system/netd/ to understand its command
 semantics.
As with vdc, you can request
 netd status info with ndc:
ndc interface list
110 lo
110 eth0
110 tunl0
110 gre0
200 Interface list completed
The Command Sets of vold and netd
Both vold and netd are constructed using the same C++
 mechanism provided by libsysutils
 and rely on a CommandListener.cpp
 to parse and dispatch commands sent to them. To understand the
 specific commands accepted by each, have a look at the constructors in
 CommandListener.cpp:
CommandListener::CommandListener() :
 FrameworkListener("...") {
...
Each will contain calls to registerCmd(), which register objects
 defined farther below in the same file. Here’s an excerpt from
 vold for the dump command in 2.3/Gingerbread:
CommandListener::CommandListener() :
 FrameworkListener("vold") {
 registerCmd(new DumpCmd());
 registerCmd(new VolumeCmd());
...
CommandListener::DumpCmd::DumpCmd() :
 VoldCommand("dump") {
}

int CommandListener::DumpCmd::runCommand(SocketClient *cli,
 int argc, char **argv) {
 cli->sendMsg(0, "Dumping loop status", false);
 if (Loop::dumpState(cli)) {
 cli->sendMsg(ResponseCode::CommandOkay, "Loop dump failed", true);
 }
...
Every command accepted by vold or netd has a corresponding runCommand() that parses the parameters
 passed to that command. By running vdc
 dump on the command line as we did earlier, for instance,
 we’re invoking the runCommand()
 in the snippet above. Conversely, typing vdc
 volume list will invoke the following function and pass
 list as one part of the
 arguments:
int CommandListener::VolumeCmd::runCommand(SocketClient *cli,
 int argc, char **argv) {
...

rild

The Phone system service, which is hosted in the Phone app, uses
 rild to communicate with the Baseband
 Processor. rild itself uses dlopen() to load a baseband-specific
 .so to interface to the actual
 baseband hardware. As I mentioned before, rild likely exists to ensure that the phone
 side of the system remains active even if a problem occurs with the rest
 of the stack.
In the case of the emulator, rild is started by this portion of the
 init.rc file in 2.3/Gingerbread
 (4.2/Jelly Bean’s version is practically identical):
service ril-daemon /system/bin/rild
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio sdcard_rw
While it doesn’t have a configuration file, rild itself can take a few command-line
 parameters:
Usage: rild -l <ril impl library> [-- <args for impl library>]
If no RIL implementation library is provided on the command line,
 rild will attempt to locate the
 library using the rild.libpath global
 property. If that isn’t specified either, it’ll assume there’s no radio
 on the system loop around calls to sleep(). In the case of the emulator, the
 system relies on /system/lib/libreference-ril.so, which, as
 its name implies, is a reference implementation for manufacturers that
 need to implement real RIL libraries.
There are two Unix domain sockets used by rild: /dev/socket/rild, which is used by the Phone
 system service, and /dev/socket/rild-debug, which can be used by
 the radiooptions command to interact.
 Indeed, the latter is a command-line tool to communicate with rild:
Usage: radiooptions [option] [extra_socket_args]
 0 - RADIO_RESET,
 1 - RADIO_OFF,
 2 - UNSOL_NETWORK_STATE_CHANGE,
 3 - QXDM_ENABLE,
 4 - QXDM_DISABLE,
 5 - RADIO_ON,
 6 apn- SETUP_PDP apn,
 7 - DEACTIVE_PDP,
 8 number - DIAL_CALL number,
 9 - ANSWER_CALL,
 10 - END_CALL
If you’d like to know more about rild and radiooptions, have a look at their sources in
 hardware/ril/rild. The reference
 RIL implementation is itself in hardare/ril/reference-ril/.

keystore

Unlike the rest of the daemons I’ve presented thus far, keystore doesn’t actually service any of the
 system services. Instead, it’s used by a variety of different pieces of
 the system for the storage and retrieval of key-value pairs. The values
 it maintains are mainly security keys for connecting to networks or
 network infrastructure such as access points and VPNs, and the means to
 secure the values is a user-defined password. Clearly, the goal of
 having a separate daemon for the storage of this information is to
 increase the system’s overall security.
keystore is started by this
 portion of the init.rc file in
 2.3/Gingerbread (4.2/Jelly Bean does substantially the same):
service keystore /system/bin/keystore /data/misc/keystore
 user keystore
 group keystore
 socket keystore stream 666
keystore doesn’t have a
 configuration file, but it does expect to be provided with a directory
 to store each key-pair value. Typically, this is /data/misc/keystore, as you can see before.
 keystore then listens in to /dev/socket/keystore for connections and
 commands. Several native daemons connect to keystore to retrieve keys, such as wpa_supplicant, mtpd, and racoon. But the Settings app also connects to
 keystore to list and insert new
 keys.
There’s also a command-line utility for communicating with
 keystore:
Usage: keystore_cli action [parameter ...]
You’ll find both the sources of keystore and keystore_cli in frameworks/base/cmds/keystore/ in
 2.3/Gingerbread and in system/security/keystore/ in 4.2/Jelly
 Bean.

Other Support Daemons

There are a few additional daemons that play a more minor role,
 which we won’t cover here, such as mtpd and racoon. The former is used for VPNs and is
 found in external/mtpd/, and the
 latter is for IPsec and is found in external/ipsec-tools/.
There are possibly, of course, other daemons that may be running
 on your system for specific purposes, and/or you may want to add your
 own custom daemons. Have a look back at Chapter 4 for
 instructions on how to add your own custom binaries to the AOSP’s build
 system. Remember that if you want a daemon to be started at startup by
 init, you need to add a service declaration for it in either the main
 init.rc or in the board-specific
 init.<device_name>.rc.

Hardware Abstraction Layer

As I explained in Chapter 2, Android relies on a
 Hardware Abstraction Layer (HAL) to interface with hardware. Indeed,
 system services almost never interact with devices through /dev entries directly. Instead, they go through
 HAL modules, typically shared libraries, to talk to hardware, as is
 detailed in Table 2-1.
Android’s HAL implementation is found in hardware/. Most importantly, you’ll find the
 definitions of the interfaces between the Framework and the HAL modules in
 header files in hardware/libhardware/include/hardware/ and
 hardware/libhardware_legacy/include/hardware_legacy/.
 The header files therein provide the exact API required for each type of
 hardware to be supported under Android. You’ll also find example
 implementations of some of those HAL modules in the sources for the lead
 devices in device/.
Ideally, you want to avoid having to implement your own HAL modules
 for existing system services. Instead, you should query your SoC or board
 vendor for such modules. HAL module writing requires intricate knowledge
 of the internals of the system server that the module has to interact with
 and the specific Linux device driver required to interact with the
 hardware. Learning how to do this right can be a very time-intensive
 process, especially since the HAL interface tends to evolve with every new
 version of Android. I therefore strongly recommend that you use
 components/boards for which most HAL modules have already been made by the
 manufacturer or the SoC vendor.
Generally, given Android’s market success, component and SoC vendors
 make a big effort to ensure that Android runs well with their products.
 This means they either provide you with fully functional AOSPs and
 Android-ready kernels for eval boards, and/or HAL modules and Linux
 drivers for their components. So, at the risk of sounding redundant,
 implement your own HAL modules for hardware types already recognized by
 Android only as a last resort. Instead, talk to your SoC or component
 vendor to get your hands on the HAL modules and drivers (or kernel)
 required to run Android on your hardware.
Note
All major SoC vendors provide—in one way or another—access to
 ready-to-use AOSPs and kernels for running on the eval boards. Such is
 the case for TI, Qualcomm, Freescale, Samsung, and many others. If
 you’re building your own custom board based on one of their designs, I
 recommend that you grab those reference AOSP trees and customize them
 for your own use. Attempting to start from scratch to port Android to
 your hardware using the AOSP trees provided directly from Google is not
 likely to be a good use of your time or fit your time-to-market
 requirements.

If you absolutely must implement your own HAL modules for existing
 system services, then refer to the header files I alluded to previously,
 which define the APIs required by each HAL module type, and take as much
 inspiration as possible from the reference HAL implementations provided
 for the lead devices in the device/
 directory. For 2.3/Gingerbread, for example, have a look at the various
 lib*/ directories in device/samsung/crespo/. In the case of
 4.2/Jelly Bean, have a look at device/asus/grouper/ and device/samsung/tuna/.

[32] Interestingly, a new ro.config.headless global property has
 been added to the official AOSP releases since 4.1/Jelly Bean.
 That property appears to allow the execution of the stack without
 a user interface.

[33] These are dot-separated names, such as com.android.launcher for the Launcher app,
 for example.

[34] The publisher’s phone number, if you’re wondering.

[35] A “transport” in the context of bmgr is the required engine to interface
 with a given cloud service.

[36] This is the output on 2.3/Gingerbread. 4.2/Jelly Bean’s is
 fairly similar.

[37] This is the output from 2.3/Gingerbread. 4.2/Jelly Bean’s
 output is fairly similar.

Appendix A. Legacy User-Space

As I explained in Chapter 2, despite being based on
 the Linux kernel, Android bears little resemblance to any other Linux system
 out there. Indeed, as you can see in Figure 2-1,
 Android’s user-space, which we explored in Chapters 6 and 7, is a custom creation of Google. Hence,
 if you’re familiar with “legacy” Linux systems or come from an embedded
 Linux background, you may find yourself reminiscing about classic Linux
 tools and components you’ve been using for a long time. This appendix will
 show you how to get a legacy Linux user-space to coexist side by side with
 the AOSP on top of the same Linux kernel.
Basics

To start, we need to agree on what exactly a “legacy” Linux
 user-space is. For the present discussion, we’ll assume we’re talking
 about a Filesystem Hierarchy Standard (FHS)-compliant root filesystem. As
 I mentioned earlier, Android’s root filesystem isn’t FHS-compliant, and it
 crucially doesn’t use key FHS directories such as /bin and /lib, allowing us to superimpose, side by side
 with it, a root filesystem that does use these directories.
Now, I’m not saying you’ll be able to use these instructions to get
 yourself a root filesystem that houses both the AOSP and, say, a large
 distribution like Ubuntu. There are a lot more details about Ubuntu as a
 distribution and the AOSP that you’d need to take into account than
 resolving how to match a few of the top-level directories of the root
 filesystem. Nevertheless, if you are familiar with how to create a basic
 root filesystem for an embedded Linux system, it should become relatively
 clear how you could get your favorite tools and libraries, such as BusyBox
 and glibc, loaded on the same root filesystem as the AOSP. And if you’re
 interested in something more ambitious, such as getting Ubuntu or Fedora
 to sit side by side with the AOSP in the same root filesystem, these
 explanations offer a good introduction to getting started.
Before starting on this path, though, it’s worth answering a general
 question on this approach: Why bother? Indeed, why take the time to try to
 get any sort of legacy Linux software package to sit on the same kernel
 alongside the AOSP? Why not just use the AOSP, since it’s already got a C
 library, command-line tools, a rich user-space, etc.? Can’t the AOSP do
 everything needed? No?
The main reason a developer would want a legacy Linux user-space
 alongside Android is to be able to port existing Linux applications over
 to a system that runs Android without
 having to port them over to Android. For instance, if you have legacy code
 that works just fine on glibc, it might be easier to just get glibc onto
 your root filesystem than to try to port your legacy code over to Bionic.
 Indeed, as you can see by reading Bionic’s own documentation in bionic/libc/, especially those files in the
 docs/ directory, Bionic has many
 limitations and differences when compared with something more mainstream
 like glibc. It’s not Posix-compliant, for example, nor does it expose
 System V IPC calls. By relying on a well-known C library such as glibc,
 you avoid any of these portability issues.
Another good reason for reusing components from classic Linux
 systems is to avoid having to deal with Android’s build system. As we saw
 in Chapter 4, Android’s build system is nonrecursive.
 Therefore, if you would like to reuse large, legacy software packages,
 you’d typically have to convert their build systems to use Android’s build
 system .mk files. As a matter of
 fact, some of the very well-known packages imported into the AOSP’s
 external/ directory have had their
 build files re-created for use within the AOSP. D-Bus, for instance, which
 is traditionally based on autoconf/automake, has had Android.mk files added to its sources in
 external/dbus/ so it will build
 within the AOSP. None of the files originally used for its build, such as
 the configure script, are used when
 it’s built within the AOSP. An easy way out of this is to generate a root
 filesystem independently of the AOSP for those legacy packages you need
 and then merge the result with the AOSP.
Put another way, there’s benefit to reusing existing legacy build
 systems. For example, there’s no reason not to use something like Yocto or
 Buildroot to generate a root filesystem that fits your needs and then
 merge the result with the AOSP. Indeed, there are a lot of existing build
 systems and packaging systems that can generate very useful output using
 legacy methods to mix with the AOSP. In some cases, the cost/benefit
 equation might make it inconceivable to port a package’s build system over
 to the AOSP’s simply because of the original project’s codebase
 size.
Note
None of the present explanations should preclude you from trying
 to build your legacy code against Bionic. There is a slight chance that
 the changes required are marginal. Also, as I showed in Chapter 4, you can put together Android.mk files that call on existing
 recursive make-based build scripts.
Still, knowing how to circumvent Bionic is a very useful trick. So
 I encourage you to read on.

Theory of Operation

Once you’ve decided that you want to get legacy Linux user-space
 components to work alongside with the AOSP, the next question is how. This
 is actually a two-part question. First, how do we get the legacy
 user-space and the AOSP onto the same filesystem images? And second, how
 does this legacy user-space interact with the AOSP’s components? Let’s
 start by addressing the former.
Assuming you’re using a method like that covered in
 Building Embedded Linux Systems, 2nd ed. to generate
 a glibc-based root filesystem, Figure A-1
 illustrates the general approach of how this root filesystem can be made
 to integrate with the AOSP. Essentially, the project environment PRJROOT is made to host the creation of a
 glibc-based root filesystem. The AOSP build system is then modified to
 copy the contents of that root filesystem into the images generated by the
 AOSP. And since the AOSP doesn’t originally contain a /bin and a /lib, these directories will be created and
 populated by the contents of the glibc-based root filesystem.
Note
The rest of these explanations assume that you either already have
 a glibc-based root filesystem that you want to merge with the AOSP or
 you know how to create one. If you don’t have one and don’t know how to
 create one, I recommend you take a look at Building Embedded
 Linux Systems, 2nd ed. (which was originally written by yours
 truly).

Once the matter of merging the legacy components into the AOSP is
 solved, the other key issue to discuss is how to use those components
 and/or interact with them within the AOSP. Put simply, all command-line
 utilities and binaries can be used as is, straight from Android’s command
 line. For example, if you have /bin/foo and /bin is in the Android path, you can just go
 ahead and type something like adb shell
 and then type foo on the command line
 to run the binary. There’s likely more you’ll want to do, such as
 integrating into Android’s init; we’ll
 discuss this shortly.
[image: Merging a legacy Linux user-space with the AOSP]

Figure A-1. Merging a legacy Linux user-space with the AOSP

Basic command-line operations and init configuration aside, though, a more
 fundamental discussion point is how to get components running on different
 C libraries to communicate together. How does a daemon linked against
 glibc, for instance, sync with a daemon linked against Bionic? Or how does
 a command-line tool linked against glibc communicate with a Bionic-linked
 daemon?
Remember that despite being linked against different C libraries,
 everything is running on the same kernel. Hence, whatever IPC mechanisms
 exist in the kernel can still be used by whatever binary is running on it.
 And as you can see in Figure A-2, it’s perfectly
 feasible to have a glibc-based component use regular IPC mechanisms to
 communicate with a Bionic-based component within the AOSP. Sockets, for
 instance, are a prime candidate, given that they’re implemented in both
 glibc and Bionic. System V IPC mechanisms, on the other hand, are
 available only in glibc. You could also look at using Binder, though you’d
 have to get libbinder to compile against glibc.
[image: Communication between a glibc-based stack and the AOSP]

Figure A-2. Communication between a glibc-based stack and the AOSP

Many development teams I work with, for instance, have developed
 substantial glibc-based stacks over the years that they typically run in
 embedded Linux systems. And while working on integrating Android in their
 product lines, they’re often confronted with having to make a choice
 between porting those stacks and their control logic over to Bionic or
 figuring out a way for those legacy stacks to coexist in a friendly
 fashion with the AOSP. One potential path for most of these teams is to
 create a setup like the one I just described and then have the control
 logic of the legacy stack communicate with newly created Android
 components using sockets. It’s not a silver bullet, but it’s a useful
 trick to master in case it applies to your design, or to part of
 it.

Merging with the AOSP

Now that we’ve covered the essentials, let’s actually put this
 method into practice. The first thing you’ll need, of course, is a
 functional legacy filesystem to merge with the AOSP. In this specific
 case, assume that I followed the instructions described in
 Building Embedded Linux Systems, 2nd ed. to create a
 root filesystem based on glibc that contains BusyBox. Hence, we have
 something like this:
$ ls -l ${PRJROOT}/rootfs
total 16
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 bin
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 lib
lrwxrwxrwx 1 karim karim 11 2012-10-26 23:12 linuxrc -> bin/busybox
drwxr-xr-x 2 karim karim 4096 2012-10-26 23:12 sbin
drwxr-xr-x 4 karim karim 4096 2012-10-26 23:12 usr
To make things simpler, I’m going to copy that root filesystem into
 a new directory in my AOSP:
$ cp -a ${PRJROOT}/rootfs path_to_my_aosp/rootfs-glibc/
I now have a rootfs-glibc
 directory at the top level of my AOSP. This directory won’t be of much
 use, however, given that there’s no Android.mk that takes it into account, and if
 you build the AOSP at this point, it’ll be completely ignored. To fix
 this, we can create such an Android.mk to force the AOSP’s build system to
 copy the content of our glibc-based root filesystem. Here’s my rootfs-glibc/Android.mk, as an example of
 making this work in 2.3/Gingerbread:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

This part is a hack, we're doing "addprefix" because if we don't,
this dependency will be stripped out by the build system
GLIBC_ROOTFS := $(addprefix $(TARGET_ROOT_OUT)/, rootfs-glibc)

$(GLIBC_ROOTFS):
mkdir -p $(TARGET_ROOT_OUT)
cp -af $(TOPDIR)rootfs-glibc/* $(TARGET_ROOT_OUT)
rm $(TARGET_ROOT_OUT)/Android.mk
The last command just gets rid of this very .mk since it's copied as is

ALL_PREBUILT += $(GLIBC_ROOTFS)
This will cause the content of rootfs-glibc to be merged into the ramdisk.img generated by the AOSP. That,
 though, is insufficient to make our glibc-based stack function properly on
 the resulting root filesystem. Indeed, as I explained in Chapter 6, the filesystem permissions of all files in the
 rootfs are dictated by the system/core/include/private/android_filesystem_config.h,
 and it has to be amended in order to keep the files in the /lib directory
 executable. Otherwise, the glibc components are put into the root
 filesystem’s /lib directory but
 aren’t executable and, therefore, all the binaries linked against glibc
 will fail to run. Hence, as I did in Chapter 6, you need
 to find the android_files array in
 android_filesystem_config.h and
 modify it so that it looks something like this in 2.3/Gingerbread:
...
 { 00750, AID_ROOT, AID_SHELL, "sbin/*" },
 { 00755, AID_ROOT, AID_ROOT, "bin/*" },
 { 00755, AID_ROOT, AID_ROOT, "lib/*" },
 { 00750, AID_ROOT, AID_SHELL, "init*" },
 { 00644, AID_ROOT, AID_ROOT, 0 },
};
With these modifications, our glibc-linked binaries will work just
 fine in the root filesystem generated by the AOSP. Yet this isn’t ideal
 since we’re using Android’s shell and Toolbox’s commands, both of which
 are severely limited when compared with BusyBox’s capabilities. Ideally,
 we should use BusyBox’s shell and its command-line utilities. A few more
 changes are required to make that a reality. First, we need to modify
 init.rc so that the newly added
 /bin, which contains BusyBox’s
 commands, appears in the PATH prior to
 /system/bin, which contains Toolbox’s
 commands. Here’s the modified system/core/rootdir/init.rc from
 2.3/Gingerbread:
...
setup the global environment
 export PATH /bin:/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
...
Finally, at least in the case of 2.3/Gingerbread, we’ll want to use
 BusyBox’s shell instead of the default Android shell. There are two things
 to change to do that. First, we need to modify init.rc so that it uses BusyBox’s shell for the
 console. By default, here’s how init.rc starts the console:
service console /system/bin/sh
...
To use BusyBox’s shell instead of the default Android shell, all we
 need to do is make init.rc run
 /bin/sh instead of /system/bin/sh:
service console /bin/sh
...
Also, it would be great if adb
 shell gave us access to BusyBox’s shell as well. The shell run
 by adbd on the target is defined in
 system/core/adb/services.c:
...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
#define SHELL_COMMAND "/system/bin/sh"
#endif
...
All we need to do here is comment out the default and make adbd run /bin/sh instead:
...
#if ADB_HOST
#define SHELL_COMMAND "/bin/sh"
#else
//#define SHELL_COMMAND "/system/bin/sh"
#define SHELL_COMMAND "/bin/sh"
#endif
...
The sum of these changes will give us a new AOSP root filesystem
 that contains glibc and BusyBox, and which uses BusyBox’s shell as its
 default shell and BusyBox’s commands as its default commands.
Warning
If you’re using 4.2/Jelly Bean, replacing the default shell or
 Toolbox’s default commands may not be as useful as in 2.3/Gingerbread.
 The reason is that the AOSP has replaced the old sh
 with mksh, which provides many of the
 features of modern shells, and some of the Toolbox’s basic commands,
 such as ls, have been fixed to remove
 their most obvious annoyances.

Using the Combined Stacks

Once you boot the system with the new root filesystem, you’ll get
 all the benefits of having BusyBox and glibc. Here’s a shell session in
 2.3/Gingerbread with Android’s shell and Toolbox’s commands:
ls
config
cache
sdcard
acct
mnt
vendor
d
etc
...
init
default.prop
data
root
dev
grep -A 5 -i "\-Xzygote" init.rc
grep: not found
ls sysTAB TAB TAB
As you can see, ls’s output is
 not alphabetically ordered, grep is an
 unrecognized command, and tab completion simply doesn’t exist. Here are
 the same commands with BusyBox:
/ # ls
acct init sdcard
bin init.goldfish.rc sys
cache init.rc system
config lib ueventd.goldfish.rc
d linuxrc ueventd.rc
data mnt usr
default.prop proc vendor
dev root
etc sbin
/ # grep -A 5 -i "\-Xzygote" init.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote
--start-system-server
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd
/ # ls sysTABTAB
sys/ system/
/ # ls sys
Furthermore, while Android’s shell doesn’t have any sort of
 color-coding to differentiate file types or files from directories,
 BusyBox’s does, as you can see in Figure A-3.
[image: Sample BusyBox shell session]

Figure A-3. Sample BusyBox shell session

But BusyBox doesn’t stop there. In addition to including commands
 such as vi, thereby allowing you to
 edit files straight on the target, BusyBox also includes some common
 daemons like httpd and sendmail. If you try to connect to port 80 using
 the regular browser on a typical Android device, you’ll get something like
 Figure A-4.
If BusyBox is available on your target, however, you can add a
 service declaration for httpd in
 init.rc:
service httpd /usr/sbin/httpd
 oneshot
And then you can actually connect to it as you can see in Figure A-5—the 404 message is in fact the
 proper message from the web server, indicating that there’s no index.html available.
[image: The browser trying to connect to localhost]

Figure A-4. The browser trying to connect to localhost

[image: The browser connecting to BusyBox’s httpd]

Figure A-5. The browser connecting to BusyBox’s httpd

As a general rule, BusyBox’s command set is far larger than
 Toolbox’s. Here’s Toolbox’s command set in 2.3/Gingerbread, for
 instance:
cat, chmod, chown, cmp, date, dd, df, dmesg, getevent, getprop, hd, id,
ifconfig, iftop, insmod, ioctl, ionice, kill, ln, log, ls, lsmod, lsof, mkdir,
mount, mv, nandread, netstat, newfs_msdos, notify, printenv, ps, reboot, renice,
rm, rmdir, rmmod, route, schedtop, sendevent, setconsole, setprop, sleep, smd,
start, stop, sync, toolbox, top, umount, uptime, vmstat, watchprops, wipe
4.2/Jelly Bean has about a half-dozen more commands. In contrast,
 here’s BusyBox’s command set:
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arp, arping, ash, awk,
base64, basename, beep, blkid, blockdev, bootchartd, brctl, bunzip2, bzcat,
bzip2, cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst,
chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df,
dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand,
expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole,
fgrep, find, findfs, flock, fold, free, freeramdisk, fsck, fsck.minix, fsync,
ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, halt, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat,
ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc,
ln, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr,
ls, lsattr, lsmod, lspci, lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime,
man, md5sum, mdev, mesg, microcom, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2,
mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more,
mount, mountpoint, mpstat, mt, mv, nameif, nbd-client, nc, netstat, nice,
nmeter, nohup, nslookup, ntpd, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop,
printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readahead, readlink,
readprofile, realpath, reboot, reformime, remove-shell, renice, reset, resize,
rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch,
setconsole, setfont, setkeycodes, setlogcons, setsid, setuidgid, sh, sha1sum,
sha256sum, sha512sum, showkey, slattach, sleep, smemcap, softlimit, sort, split,
start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, tcpsvd, tee, telnet,
telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute,
traceroute6, true, tty, ttysize, tunctl, udhcpc, udhcpd, udpsvd, umount, uname,
unexpand, uniq, unix2dos, unlzma, unlzop, unxz, unzip, uptime, usleep, uudecode,
uuencode, vconfig, vi, vlock, volname, wall, watch, watchdog, wc, wget, which,
who, whoami, xargs, xz, xzcat, yes, zcat, zcip
Hence, even if you were to include BusyBox during development only
 and stripped it out for the production images, the benefits are obvious.
 In fact, if you’ve been used to BusyBox, being forced to use plain Toolbox
 is likely akin to torture.
Also, if you look in /lib,
 you’ll find all the regular glibc components you’re used to, whereas none
 of this exists if you’re using the plain AOSP:
/ # ls /lib
ld-2.9.so libm-2.9.so libnss_nisplus-2.9.so
ld-linux.so.3 libm.so.6 libnss_nisplus.so.2
libBrokenLocale-2.9.so libmemusage.so libpcprofile.so
libBrokenLocale.so.1 libnsl-2.9.so libpthread-2.9.so
libSegFault.so libnsl.so.1 libpthread.so.0
libanl-2.9.so libnss_compat-2.9.so libresolv-2.9.so
libanl.so.1 libnss_compat.so.2 libresolv.so.2
libc-2.9.so libnss_dns-2.9.so librt-2.9.so
libc.so.6 libnss_dns.so.2 librt.so.1
libcrypt-2.9.so libnss_files-2.9.so libthread_db-1.0.so
libcrypt.so.1 libnss_files.so.2 libthread_db.so.1
libdl-2.9.so libnss_hesiod-2.9.so libutil-2.9.so
libdl.so.2 libnss_hesiod.so.2 libutil.so.1
libgcc_s.so libnss_nis-2.9.so
libgcc_s.so.1 libnss_nis.so.2

Caveats and Pending Issues

Now that you can see what can be done, let’s look at what this type
 of configuration entails. First, the new C library and whatever binaries
 you’re adding are going to make the root filesystem larger. Whereas the
 default ramdisk.img built by a 2.3.x
 AOSP is about 144KB, the one containing the glibc and BusyBox above is
 2.6MB. You can of course trim the glibc-based root filesystem as embedded
 Linux developers have always done, by removing unnecessary glibc
 components and using the strip command.
 It may also be that storage is a nonissue in your embedded system. After
 all, on this same build, system.img
 is 66MB.
Note
You could, of course, also install glibc libraries in another
 location from /lib and avoid using
 /bin if you wanted to. For
 instance, you could create a /legacy directory and put all your legacy
 content in that directory and mount it from a separate image to keep the
 root filesystem RAM disk minimal in size, as it is by default. Still,
 it’s obviously simpler to just use the traditional /bin and /lib as spelled out by the FHS.

There’s also the fact that you’ve now got two C libraries that need
 to be loaded into RAM, Bionic and glibc. Again, this might be a nonissue
 in your design, but you should be aware of this. One area where adding
 libraries has no impact, however, is CPU performance. Only the load
 imposed by the additional binaries you package will actually impact the
 CPU.
A more subtle problem is what to do with /etc. Indeed, in Android’s root filesystem,
 /etc is a symbolic link to /system/etc. This is a departure from the FHS
 and works fine for the AOSP. If you’ve got a legacy embedded Linux
 filesystem you want to merge with the AOSP’s root filesystem, you’re going
 to have to make a choice. Either copy the contents of your /etc to /system/etc and keep the symbolic link as is,
 or copy the contents of /system/etc to your
 /etc. This is an annoyance, but it
 shouldn’t stop you from using the technique explained here.
At runtime you may encounter a few quirks, because Toolbox’s tools
 operate under different assumptions from their regular Linux counterparts.
 Usually, for instance, ps uses
 /etc/passwd to match UIDs to user
 names. In the case of Android, there’s no /etc/passwd. Instead, users and groups are
 hardcoded into the android_filesystem_config.h file we covered
 earlier. Hence, BusyBox’s ps is unable
 to match processes with usernames:
/ # ps
PID USER TIME COMMAND
 1 0 0:08 /init
...
 26 0 0:00 /sbin/ueventd
 27 1000 0:00 /system/bin/servicemanager
 28 0 0:00 /system/bin/vold
 29 0 0:00 /system/bin/netd
 30 0 0:00 /system/bin/debuggerd
 31 1001 0:00 /system/bin/rild
 32 0 0:10 zygote /bin/app_process -Xzygote /system/bin --zygote --s
 33 1013 0:00 /system/bin/mediaserver
 34 1002 0:00 /system/bin/dbus-daemon --system --nofork
 35 0 0:00 /system/bin/installd
 36 1017 0:00 /system/bin/keystore /data/misc/keystore
 38 0 0:00 /system/bin/qemud
 40 2000 0:00 /system/bin/sh
 41 0 0:00 /sbin/adbd
 64 1000 0:22 system_server
 116 10018 0:01 com.android.inputmethod.latin
 124 1001 0:03 com.android.phone
 125 1000 0:18 com.android.systemui
...
Toolbox’s ps has no such
 issues:
ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
...
root 26 1 232 136 c009b74c 0000875c S /sbin/ueventd
system 27 1 804 188 c01a94a4 afd0b6fc S /system/bin/servicemanager
root 28 1 3864 300 ffffffff afd0bdac S /system/bin/vold
root 29 1 3836 316 ffffffff afd0bdac S /system/bin/netd
root 30 1 664 176 c01b52b4 afd0c0cc S /system/bin/debuggerd
radio 31 1 5396 432 ffffffff afd0bdac S /system/bin/rild
root 32 1 60876 16396 c009b74c afd0b844 S zygote
media 33 1 17976 1000 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 216 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 220 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 200 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 260 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 192 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3364 168 ffffffff 00008294 S /sbin/adbd
system 64 32 119832 26144 ffffffff afd0b6fc S system_server
app_18 116 32 77272 17604 ffffffff afd0c51c S com.android.inputmethod.
 latin
radio 124 32 86120 17996 ffffffff afd0c51c S com.android.phone
system 125 32 73320 19012 ffffffff afd0c51c S com.android.systemui
...
Also, Toolbox commands sometimes have different parameters from
 traditional Linux commands. Toolbox’s ps for instance, accepts the -t parameter to list the threads in addition to
 the processes:
ps -t
...
system 64 32 119832 26144 ffffffff afd0b6fc S system_server
system 65 64 119832 26144 c0059e24 afd0c738 S HeapWorker
system 66 64 119832 26144 c0059e24 afd0c738 S GC
system 67 64 119832 26144 c0047be8 afd0bfec S Signal Catcher
system 68 64 119832 26144 c02181f4 afd0c22c S JDWP
system 69 64 119832 26144 c0059e24 afd0c738 S Compiler
system 70 64 119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system 71 64 119832 26144 c01a94a4 afd0b6fc S Binder Thread #
system 72 64 119832 26144 c0059e24 afd0c738 S SurfaceFlinger
system 74 64 119832 26144 c0047be8 afd0bfec S DisplayEventThr
system 75 64 119832 26144 c00b8fec afd0c51c S er.ServerThread
system 77 64 119832 26144 c00b8fec afd0c51c S ActivityManager
system 81 64 119832 26144 c0059f2c afd0c738 S ProcessStats
system 82 64 119832 26144 c00b8fec afd0c51c S PackageManager
system 83 64 119832 26144 c00b7db0 afd0b45c S FileObserver
system 84 64 119832 26144 c00b8fec afd0c51c S AccountManagerS
system 86 64 119832 26144 c00b8fec afd0c51c S SyncHandlerThre
...
BusyBox’s ps expects -T (uppercase T instead of
 lowercase t) instead and complains:
/ # ps -t
ps: invalid option -- 't'
BusyBox v1.18.3 (2011-03-09 09:33:40 PST) multi-call binary.

Usage: ps [-o COL1,COL2=HEADER] [-T]

Show list of processes

Options:
	-o COL1,COL2=HEADER	Select columns for display
	-T			Show threads
In most cases, these incompatibilities cause annoyances, not actual
 breakage. And, ultimately, we haven’t gotten rid of Toolbox or any of the
 default AOSP commands. So you can still invoke any of Toolbox’s commands
 by providing the full command path:
/ /system/bin/ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
root 2 0 0 0 c004e72c 00000000 S kthreadd
root 3 2 0 0 c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 c004b2c4 00000000 S events/0
root 5 2 0 0 c004b2c4 00000000 S khelper
root 6 2 0 0 c004b2c4 00000000 S suspend
root 7 2 0 0 c004b2c4 00000000 S kblockd/0
...
There is at least one case I have noticed where putting BusyBox
 ahead of Toolbox in the PATH causes
 breakage. In the case of dumpstate, for
 instance, the default ps command from
 the path is used to retrieve the list of running threads. Yet, since
 BusyBox’s ps expects -T instead of -t, the corresponding parts of dumpstate’s output are broken.
Another area of substantial difference worth mentioning is name
 resolution. Indeed, the way Android manages DNSes is very different from
 the way it’s done in glibc and BusyBox. So this may be an issue in your
 case.
Warning
Some people are of the opinion that there’s a benefit to Toolbox’s
 very restricted command set: It limits that attack surface that a
 malicious user or third party could leverage against the system. From
 that point of view, using BusyBox would lead to an increased security
 risk. Caveat emptor.

Linking BusyBox Against Bionic
As demonstrated in this section, BusyBox shines when compared with
 the AOSP’s default command-line tools. So much so, in fact, that many
 people felt the need to get it to work with their AOSP trees. Hence, the
 default tree from http://busybox.net now contains support for Android out
 of the box. Namely, patches have been added to enable the running of
 BusyBox against Bionic in addition to the libraries that it already
 supported, such as glibc. Also, there’s an android-build script in the examples/ directory of BusyBox’s sources for
 building it against a given set of AOSP sources.
Whether you link it against Bionic or glibc, however, you still
 have to find a way to get it to coexist with the rest of the AOSP on the
 same filesystem. Hence, the above explanations remain relevant
 regardless of the library you link against.

Moving Forward

There’s obviously a lot more you can do with this approach than I’ve
 showed you. Even, for instance, if you were to not include BusyBox or if
 you chose to link it against a library other than glibc, such as uClibc or
 eglibc, knowing how to get a “classic” C library onto your root filesystem
 is a useful trick.
I would encourage you to look at projects like Buildroot and Yocto
 to see how you can leverage their work to gain additional tools and
 libraries to merge with your AOSP, for an even more versatile end result.
 Remember that Android’s vision and development approach restricts
 admission to the AOSP to only the packages conforming to Google’s plans.
 Your specific project may, in fact, have nothing in common with any of
 Google’s current market aims, so the plain AOSP may be seriously lacking
 with regard to your project.
In no way are the explanations given here the only way to achieve
 the targeted result. There are many ways to skin this cat. Generally
 speaking, this explanation should allow you to see that you can
 constructively break from the AOSP’s stringent mold and incorporate into
 your final root filesystem elements that derive from classic embedded
 Linux work. And this is huge, because it opens the door for leveraging the
 very large body of work that has been created through the years for Linux
 in embedded systems. This includes being able to tap into mailing lists,
 conferences, books, and, most importantly, a very large development
 community.

Appendix B. Adding Support for New Hardware

There are cases where your embedded system includes hardware that
 isn’t already supported in Android. And while some of the work you can do
 inside the AOSP is modular, adding support for new types of hardware is
 trickier since it requires knowledge of some of Android’s internals. This
 appendix shows you how to extend Android’s various layers to support your
 own type of hardware.
Note
While you may not be interested in actually adding support for new
 types of hardware in your system, you might find this appendix instructive
 if you’re trying to understand the intricate details of how the various
 layers of the Android stack actually come together.
Also, while this appendix demonstrates the modifications using a
 2.3/Gingerbread codebase, the mechanisms and Java code being modified are
 very similar in 4.2/Jelly Bean. Where major differences exist, they will
 be pointed out in the text.

The Basics

As we discussed in Chapter 2, contrary to standard
 “vanilla Linux,” Android requires more than just proper device drivers to
 function on hardware. It in fact defines a new Hardware Abstraction Layer
 (HAL), which defines an API for each type of hardware supported by
 Android’s core. In order for a hardware component to properly interface
 with Android, it must have a corresponding hardware “module” (unrelated to
 kernel modules) that conforms to the API specified for that type of
 hardware.
Generally, each type of hardware supported by Android has a
 corresponding system service and HAL definition. There’s a Lights Service and a lights
 HAL definition. There’s a Wifi Service and a WiFi HAL definition. The same
 goes for power management, location, sensors, etc. Figure 2-3 illustrates the overall architecture of
 Android’s hardware support. Most of these system services are, of course,
 typically running within the System Server as we discussed earlier.
There are two general categories of HAL modules: those loaded
 explicitly (through a runtime call to dlopen()) and those automatically loaded by the
 dynamic linker (since they’re all linked into libhardware_legacy.so). The APIs for the former
 are in hardware/libhardware/include/hardware/, and the
 APIs for the latter are in hardware/libhardware_legacy/include/hardware_legacy/.
 The trend seems to be that Android is moving away from “legacy.” The
 interface between those .so files and
 the actual drivers through /dev
 entries or otherwise is up to the manufacturer to specify. Android doesn’t
 care about that. It cares only about finding the appropriate HAL .so modules.
One of the questions I often get is, “How do I add support for my
 own type of hardware in Android?” To illustrate this, I’ve created an
 opersys-hal-hw type and have posted the code that
 implements this HAL type on GitHub, along with
 a very basic circular buffer
 driver.
If you copy the content of the opersys-hal-hw project over an
 existing 2.3.7_r1 release of the AOSP and build it for the emulator, you
 should get yourself an image that comes up with the opersys service. The latter relies on the
 circular buffer to implement a very basic new hardware type. Obviously,
 this is but a skeleton to give you an idea of what it takes to add support
 for a new hardware type. Your hardware is likely going to have completely
 different interfaces.

The System Service

To illustrate how a new system service is implemented, I first added
 a OpersysService.java in frameworks/base/services/java/com/android/server/.
 This file implements the OpersysService
 class, which provides two very basic calls to the outside world:
 public String read(int maxLength)
 {
...
 }

 public int write(String mString)
 {
...
 }
If you follow the code for the new type of hardware, you will see
 how I added an implementation corresponding to each of these calls at
 every layer of Android. So, for example, if you look at the system
 service’s read() function, it does
 something like this:
 public String read(int maxLength)
 {
 int length;
 byte[] buffer = new byte[maxLength];

 length = read_native(mNativePointer, buffer);
 return new String(buffer, 0, length);
 }
The most important part here being the call to read_native(), which is itself declared as
 follows in the OpersysService
 class:
 private static native int read_native(int ptr, byte[] buffer);
By declaring the method as native, we instruct the compiler not to look for
 the method in any Java code. Instead, it’ll be provided to Dalvik at
 runtime through JNI. And, indeed, if you look at the frameworks/base/services/jni/ directory, you’ll
 notice that Android.mk and onload.cpp have been modified to take into
 account a new com_android_server_OpersysService.cpp. The
 latter has a register_android_server_OpersysService()
 function which is called at the loading of libandroid_servers.so, which is itself
 generated by the Android.mk I just
 mentioned. That registration function tells Dalvik about the native
 methods implemented in com_android_server_OpersysService.cpp for the
 OpersysService class and how they can
 be called:
static JNINativeMethod method_table[] = {
 { "init_native", "()I", (void*)init_native },
 { "finalize_native", "(I)V", (void*)finalize_native },
 { "read_native", "(I[B)I", (void*)read_native },
 { "write_native", "(I[B)I", (void*)write_native },
 { "test_native", "(II)I", (void*)test_native},
};

int register_android_server_OpersysService(JNIEnv *env)
{
 return jniRegisterNativeMethods(env, "com/android/server/OpersysService",
 method_table, NELEM(method_table));

};
The above structure contains three fields per method. The first
 field is the name of the method as defined in the Java class, while the
 last field is the corresponding C implementation in the present file. In
 this case the names match, as they do in most cases in Android, but that
 doesn’t have to be the case. The middle parameter might seem a little bit
 more mysterious. The content of the parentheses are the parameters passed
 from Java, and the letter on the right of the parentheses is the return
 value. init_native() for instance
 takes no parameters and returns an integer, while read_native() has two parameters, an integer,
 and a byte array, and returns an integer.
Note
As you start playing around wtih Android’s internals, you will
 often have to deal with JNI-isms such as these. I recommend you take a
 look at Java Native Interface: Programmer’s Guide and
 Specificaition by Sheng Liang (Addison-Wesley) for more
 information on the use of JNI.

And here’s the implementation of read_native():
static int read_native(JNIEnv *env, jobject clazz, int ptr, jbyteArray buffer)
{
 opersyshw_device_t* dev = (opersyshw_device_t*)ptr;
 jbyte* real_byte_array;
 int length;

 real_byte_array = env->GetByteArrayElements(buffer, NULL);

 if (dev == NULL) {
 return 0;
 }

 length = dev->read((char*) real_byte_array, env->GetArrayLength(buffer));

 env->ReleaseByteArrayElements(buffer, real_byte_array, 0);

 return length;
}
First, notice that there are two more parameters than in the JNI
 declaration above. All JNI’ed calls start with the same two parameters: a
 handle to the VM making the call (env),
 and the this object corresponding to
 the class making the call (clazz).
 Also, notice that the byte array isn’t used as is. Instead, env->GetByteArrayElements() and env->ReleaseByteArrayElements() are used at
 the begining and the end to obtain and, later, release a C array that can
 be used by the present C code. Indeed, don’t forget that JNI calls are
 carrying Java-typed objects into the C world. While some things (such as
 integers) can be used as is, other objects (such as arrays) need to be
 converted before and after use.
Most importantly, the operative part of read_native() is the call to dev->read(). But what does this function
 pointer lead to? To understand that part, you need to look at init_native():
static jint init_native(JNIEnv *env, jobject clazz)
{
 int err;
 hw_module_t* module;
 opersyshw_device_t* dev = NULL;

 err = hw_get_module(OPERSYSHW_HARDWARE_MODULE_ID, (hw_module_t const**)
 &module);
 if (err == 0) {
 if (module->methods->open(module, "", ((hw_device_t**) &dev)) != 0)
 return 0;
 }

 return (jint)dev;
}
Two important things are happening in this function. First,
 the call to hw_get_module() which
 requests that the HAL load the module that implements support for the
 OPERSYSHW_HARDWARE_MODULE_ID type of
 hardware. Second, there’s the call to the loaded module’s open() function. We’ll take a look at both of
 these below, but, for the moment, note that the former will result in a
 .so being loaded into the system
 service’s address space, and the latter will result in the
 hardware-specific functions implemented in that library’s functions, such
 as read() and write(), being callable from com_android_server_OpersysService.cpp, which is
 essentially the C side of the new system service we’re adding.

The HAL and Its Extension

The HAL, which is in hardware/,
 provides the hw_get_module() call
 above. And if you follow the code, you’ll see that hw_get_module() ends up calling the classic
 dlopen(), which enables us to load a
 shared library into a process’s address space.
Note
Type man dlopen on any Linux
 workstation if you’d like to get more information about dlopen and its uses.

The HAL won’t, however, just load any shared library. When you
 request a given hardware type, it’ll look in /system/lib/hw for a filename that matches that
 given hardware type and the device it’s running on. So, for instance, in
 the case of the present new type of hardware, it’ll look for opersyshw.goldfish.so, goldfish being the code name for the emulator.
 The actual name of the device used for the middle part of the filename is
 retrieved from one of the following global properties: ro.hardware, ro.product.board, ro.board.platform, or ro.arch. Also, the shared library must have a
 struct that provides HAL information and that is called HAL_MODULE_INFO_SYM_AS_STR. We’ll see an example
 next.
The definition for the new hardware type itself is just another
 header file, in this case opersyshw.h, along with the other hardware
 definitions in hardware/libhardware/include/hardware/:
#ifndef ANDROID_OPERSYSHW_INTERFACE_H
#define ANDROID_OPERSYSHW_INTERFACE_H

#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/types.h>

#include <hardware/hardware.h>

__BEGIN_DECLS

#define OPERSYSHW_HARDWARE_MODULE_ID "opersyshw"

struct opersyshw_device_t {
 struct hw_device_t common;

 int (*read)(char* buffer, int length);
 int (*write)(char* buffer, int length);
 int (*test)(int value);
};

__END_DECLS

#endif // ANDROID_OPERSYSHW_INTERFACE_H
In addition to the prototype definitions for read() and write(), note that this is where OPERSYSHW_HARDWARE_MODULE_ID is defined. The
 latter serves as the basis for the filename looked for on the filesystem
 that contains the actual HAL module implementation.

The HAL Module

The theory is that each device will require a different HAL module
 to support a given hardware type for Android. Phones from separate
 vendors, for instance, will likely use different graphic chips and are
 therefore likely to have different gralloc modules. Typically, the HAL
 modules are added to the AOSP sources in the lib* directory within device/<vendor>/<product>/. In the
 case of the emulator, however, the virtual devices it supports are in
 sdk/emulator/, so this is where the
 Goldfish implementation for our type of hardware is added.
The opersyshw hardware type isn’t really fancy, and therefore the
 implementation for Goldfish fits in a single file, opersyshw_qemu.c. In order for the library
 resulting from the build of this file to be recognized as a real HAL
 module, it ends with this snippet:
static struct hw_module_methods_t opersyshw_module_methods = {
 .open = open_opersyshw
};

const struct hw_module_t HAL_MODULE_INFO_SYM = {
 .tag = HARDWARE_MODULE_TAG,
 .version_major = 1,
 .version_minor = 0,
 .id = OPERSYSHW_HARDWARE_MODULE_ID,
 .name = "Opersys HW Module",
 .author = "Opersys inc.",
 .methods = &opersyshw_module_methods,
};
Note the presence of the structure called HAL_MODULE_INFO_SYM. Furthermore, note the
 opersyshw_module_methods and the
 open() function pointer it contains.
 This is the very same open() called
 by init_native() earlier once the HAL
 module is loaded. And here’s what the corresponding open_opersyshw() does:
static int open_opersyshw(const struct hw_module_t* module, char const* name,
 struct hw_device_t** device)
{
 struct opersyshw_device_t *dev = malloc(sizeof(struct opersyshw_device_t));
 memset(dev, 0, sizeof(*dev));

 dev->common.tag = HARDWARE_DEVICE_TAG;
 dev->common.version = 0;
 dev->common.module = (struct hw_module_t*)module;
 dev->read = opersyshw_read;
 dev->write = opersyshw_write;
 dev->test = opersyshw_test;

 device = (struct hw_device_t) dev;

 fd = open("/dev/circchar", O_RDWR);

 D("OPERSYS HW has been initialized");

 return 0;
}
This function’s main purpose is to initialize the dev struct, which is of opersyshw_device_t type, the same type defined
 by opersyshw.h, and open the
 corresponding device entry in /dev,
 thereby connecting to the underlying device driver loaded into the kernel.
 Obviously some device drivers might require some initialization here, but
 for our purposes this is sufficient.
Finally, here’s what opersyshw_read() does:
int opersyshw_read(char* buffer, int length)
{
 int retval;

 D("OPERSYS HW - read()for %d bytes called", length);

 retval = read(fd, buffer, length);

 return retval;
}
We’re not doing too much error-checking here, but you should in your
 case. For instance, we’re not even checking that the call to open the
 device driver succeeded. We usually should. Still, the call path should be
 clear. The system service’s read()
 call results in a JNI call to read_native() which, by way of the HAL, results
 in a call to the HAL module’s opersyshw_read().
Existing system services and HAL components have similar types of
 call paths. Most, however, have a much larger number of calls defined in
 their system services and therefore a lot more happening in between the
 various layers involved in providing support for their specific type of
 hardware.

Calling the System Service

Up to this point we’ve mostly focused on how the new system
 service interfaces to the layers below. We haven’t yet discussed how a
 system service makes itself available to be called through Binder to other
 system services and apps. At a bare minimum, there must be an interface
 definition in order for a system service to be callable through Binder. In
 the case of the opersys service, we can
 add a IOpersysService.aidl file to
 frameworks/base/core/java/android/os/:
package android.os;
/**
* {@hide}
*/
interface IOpersysService {
 String read(int maxLength);
 int write(String mString);
}
This addition makes our system service callable from code that
 builds within the AOSP. We could, for instance, add an app to device/acme/coyotepad/ or packages/apps/ and have its onCreate() callback do something like
 this:
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 IOpersysService om =
 IOpersysService.Stub.asInterface(ServiceManager.getService("opersys"));
 try {
 	Log.d(DTAG, "Going to write to the \"opersys\" service");
 	om.write("Hello Opersys");
 	Log.d(DTAG, "Service returned: " + om.read(20));
 }
 catch (Exception e) {
 	Log.d(DTAG, "FAILED to call service");
 	e.printStackTrace();
 }
 }
Notice, however, that we’re using ServiceManager.getService() to get a Binder
 handle to the system service, and then we’re using IOpersysService.Stub.asInterface() to convert
 this to an IOpersysService object that
 we can call. This works fine if we’re building within the AOSP but won’t
 work for a regular app. Namely, ServiceManager.getService() isn’t exposed in
 the SDK. Also, if you’re familiar with app development, you’ll likely
 notice that this is different from the regular way that handles to system
 services are usually obtained—through a call to getSystemService().
To make our system service available through an SDK we build using
 the AOSP, we need to carry out a few more steps. First, we need to create
 a manager class that acts as a shrink-wrap for our
 Binder-callable system service. We do this by adding a OpersysManager.java file to frameworks/base/core/java/android/os/:
package android.os;

import android.os.IOpersysService;

public class OpersysManager
{
 public String read(int maxLength) {
 try {
 return mService.read(maxLength);
 } catch (RemoteException e) {
 return null;
 }
 }

 public int write(String mString) {
 try {
 return mService.write(mString);
 } catch (RemoteException e) {
 return 0;
 }
 }

 public OpersysManager(IOpersysService service) {
 mService = service;
 }

 IOpersysService mService;
}
Note how all calls are essentially redirected to the system service
 through Binder. Most predefined managers have similar semantics, although
 most will have some additional logic before making the calls, and others
 will define more calls than those available from the system service. This
 is similar to what a C library does before it makes calls to the kernel it
 runs on.
To make that manager available through getSystemService(), there are two more steps
 required. First, we’ll amend frameworks/base/core/java/android/content/Context.java
 to recognize a new type of system service:
 /**
 * Use with {@link #getSystemService} to retrieve a
 * {@link android.os.OpersysManager} for using Opersys Service.
 *
 * @see #getSystemService
 */
 public static final String OPERSYS_SERVICE = "opersys";
Then, we’ll patch frameworks/base/core/java/android/content/app/ContextImpl.java
 to make getSystemService() recognize
 our new system service:
 @Override
 public Object getSystemService(String name) {
 if (WINDOW_SERVICE.equals(name)) {
 return WindowManagerImpl.getDefault();
 } else if (LAYOUT_INFLATER_SERVICE.equals(name)) {
 synchronized (mSync) {
...
 } else if (DOWNLOAD_SERVICE.equals(name)) {
 return getDownloadManager();
 } else if (NFC_SERVICE.equals(name)) {
 return getNfcManager();
} else if (OPERSYS_SERVICE.equals(name)) { return getOpersysManager();
...
private OpersysManager getOpersysManager() { synchronized (mSync) { if (mOpersysManager == null) { IBinder b = ServiceManager.getService(OPERSYS_SERVICE);IOpersysService service = IOpersysService.Stub.asInterface(b);mOpersysManager = new OpersysManager(service);}}return mOpersysManager;}
...
Warning
In 4.2/Jelly Bean, getSystemService()’s internal implementation
 is very different from the code shown previously. Have a look at how the
 registerService() is used in the
 ContextImpl class in ContextImpl.java to declare new managers.
 Specifically, have a look at the way it’s done for POWER_SERVICE. You should be able to easily
 adapt the above snippet to resemble the one used to register a PowerManager object for use by getSystemService().

And now, after we build an SDK using this AOSP, we can create an app
 that calls on this new system service like any other predefined
 service:
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 OpersysManager om = (OpersysManager) getSystemService(OPERSYS_SERVICE);

 Log.d(DTAG, "Going to write to the \"opersys\" service");
 om.write("Hello Opersys");
 Log.d(DTAG, "Service returned: " + om.read(20));
 }

Starting the System Service

There’s one last thing I haven’t explained—that’s how the
 system service is started in this case. Generally, as I mentioned in Chapter 7, Java-based system services are started in SystemServer.java. Hence, we can patch this
 file to have it instantiate our system service and register it with the
 Service Manager:
...
 try {
 Slog.i(TAG, "DiskStats Service");
 ServiceManager.addService("diskstats",
 new DiskStatsService(context));
 } catch (Throwable e) {
 Slog.e(TAG, "Failure starting DiskStats Service", e);
 }
try { Slog.i(TAG, "Opersys Service"); ServiceManager.addService(Context.OPERSYS_SERVICE, new OpersysService(context)); } catch (Throwable e) { Slog.e(TAG, "Failure starting OpersysService Service", e);}
 }
...

Caveats and Recommendations

The method I just showed you and the code I referred you to works
 just fine for adding new types of hardware to the AOSP. However, it’s very
 version-specific since you need to patch a few files. In essence, I showed
 you how to add support for a new type of hardware in the AOSP as if it
 were meant to be upstreamed. Usually that won’t be your case and,
 therefore, as I suggested in Chapter 4, custom extensions
 are better added into a device/<manufacturer/product_name>/
 directory, which you can just copy into any new AOSP tree you
 get.
Despite its shortcoming, the benefit of the method I just showed is
 that you’ve got plenty of examples of other system services and HAL
 modules already in the AOSP from which you can easily copy, since you’re
 adding your code in exactly the same location as the built-in
 components.
Still, you should know that there are various ways you could add a
 system service to your product-specific directory in device/ in order to make a new type of hardware
 accessible to apps and other system services. The most straightforward one
 is to create an app that has its persistent flag set to true in its manifest file. As we discussed
 earlier, apps are lifecycle-managed by the Activity Manager. Hence,
 implementing hardware support in a regular app can be an issue because it
 could be stopped and restarted at any time, and if hardware state must be
 maintained, such restarting will likely cause issues. By enabling the
 persistent flag, you disable lifecycle
 management for this app. As I explained in Chapter 7, the
 Phone app, for instance, uses this trick in order to be able to host the
 Phone Service.
The downside with this approach is that any failure of the System
 Server, which houses the Activity Manager, will bring your system service
 down. Note that the same holds true for the method I showed you above.
 Another, more substantive, downside is that there are few examples to base
 your work on. You’ll also need to create an SDK add-on instead of using
 the plain SDK generated by the AOSP that would’ve been patched by the
 method shown above. Callers to your system service won’t, for instance, be
 able to use the standard getSystemService() to get a handle for an
 object allowing them to talk to your system service, as is the case for
 the default set of system services.
You can also probably create a standalone system service in Java
 that is started in a similar fashion as am and pm,
 using app_process. This would make your
 system service immune to any failure of the System Server, but I can’t
 currently point you to any examples of system services implemented this
 way. And again, even if you followed this path, you’d still have a system
 service that doesn’t appear like the other system services to app
 developers.
Finally, you could also create a native system service (i.e., in C)
 that starts the same way as the mediaserver. In that case, while you’d benefit
 from running natively, you wouldn’t benefit from the aidl tool’s capability to generate marshaling
 and unmarshaling code in Java for callers and callees. Instead, you’d have
 to marshal and unmarshal everything sent through Binder manually—a very
 tedious process. And again, your system service will look different from
 standard system services.

Appendix C. Customizing the Default Lists of Packages

As we saw in Chapter 4, the build system can
 be modified to add new packages to those it builds by default. What we
 didn’t cover in that chapter is how the build system creates the default
 list of packages that it uses when creating images or how we can customize
 it. Obviously, playing around with something as fundamental as the default
 set of packages required to get a functional AOSP has its risks, as you may
 end up generating stale images. Still, it’s worth taking a look at how this
 works and what’s in there. If nothing else, you’ll get a better idea of
 where to look in case you have to get your hands in there.
Overall Dependencies

In 2.3/Gingerbread, there are two main variables that dictate what
 gets included in the AOSP: GRANDFATHERED_USER_MODULES and PRODUCT_PACKAGES. The first is generated from a
 static list found in build/core/user_tags.mk and contains the bulk
 of the “core” packages required for the AOSP, with such things as adbd, the system services, and Bionic. This file
 isn’t meant to be edited and starts with a warning to that effect:
This is the list of modules grandfathered to use a user tag

DO NOT ADD ANY NEW MODULE TO THIS FILE
#
user modules are hard to control and audit and we don't want
to add any new such module in the system
In effect, the list of packages in GRANDFATHERED_USER_MODULES is more or less fixed
 in stone—what we want to focus our attention on is the packages added to
 PRODUCT_PACKAGES. There’s in fact a
 whole series of files that gradually help add more packages to PRODUCT_PACKAGES, as the full list of .mk files are included one after the other, per
 the product description found in the relevant files in device/<vendor>/<product>/.
In 4.2/Jelly Bean, neither GRANDFATHERED_USER_MODULES nor build/core/user_tags.mk exist. Instead, there’s
 a much-trimmed-down GRANDFATHERED_ALL_PREBUILT and a build/core/legacy_prebuilts.mk that carries a
 warning like the previous one. The bulk of 2.3/Gingerbread’s GRANDFATHERED_USER_MODULES are now either in
 build/target/product/base.mk or
 build/target/product/core.mk and are
 added to PRODUCT_PACKAGES, which is
 used the same way as in 2.3/Gingerbread.

Assembling the Final PRODUCT_PACKAGES

 Generally speaking, products will use the inherit-product makefile function, as we did
 when adding the CoyotePad in Chapter 4, to import other
 .mk files that include previous
 declarations of the PRODUCT_PACKAGES
 variable on which they can build.
The core file used for most PRODUCT_PACKAGES sets is build/target/product/core.mk. In
 2.3/Gingerbread, this file doesn’t inherit from any other .mk file. In 4.2/Jelly Bean, however, it
 inherits from build/target/product/base.mk. In both versions,
 build/target/product/core.mk includes
 packages such as the SSL library and the Browser app. Most product
 descriptions, except the one used for building the SDK, don’t actually
 rely solely on the set of packages defined in this file. Instead, they’ll
 at least rely on build/target/product/generic.mk in
 2.3/Gingerbread and build/target/product/generic_no_telephony.mk in
 4.2/Jelly Bean, both of which rely on core.mk in addition to including packages for
 many of the main apps such as Calendar, Launcher2, and Settings. The
 default emulator build in 2.3/Gingerbread, for instance, relies on
 generic.mk. So does the default tree
 provided by TI for the BeagleBone, which I used in some parts of this
 book.
Most products will, however, go a step further. In 2.3/Gingerbread
 they’ll use build/target/product/full.mk, which depends on
 generic.mk, to get a few additional
 input methods, such as PinyinIME (the simplified Chinese keyboard) and
 some language locales. full.mk, for
 instance, is what’s used as the baseline for the device/samsung/crespo/ (Nexus S). And this is
 what I used in Chapter 4 for the CoyotePad.
In 4.2/Jelly Bean, most products will use build/target/product/full_base.mk instead of
 build/target/product/full.mk. The
 former depends on generic_no_telephony.mk instead of depending on
 generic.mk. You can see example uses
 of full_base.mk in device/asus/grouper/ and device/samsung/tuna/.

Trimming Packages

 One request I often get from developers is to explain how
 to trim the size of the AOSP. To do that, you’d have to go through the
 list of packages included in GRANDFATHERED_USER_MODULES if you’re using
 2.3/Gingerbread or GRANDFATHERED_ALL_PREBUILT if you’re using
 4.2/Jelly Bean and PRODUCT_PACKAGES in
 either case and remove whatever you think isn’t necessary for your system.
 As I alluded to earlier, this is a tricky proposition because you’re
 likely to generate a nonfunctional AOSP. Indeed, the AOSP’s build system
 doesn’t provide any type of dependency checks between packages.
You can, however, proceed with a few basic rules. Generally, I would
 recommend against trying to play around with the list of grandfathered
 packages or the packages in base.mk
 in 4.2/Jelly Bean, unless you feel pretty confident that you understand
 the AOSP’s internals and the impact of the changes you’re making. Starting
 with core.mk, you’re in a little bit
 safer territory for removing packages. And the further you are down in the
 dependency chain from core.mk, the
 safer it is to remove modules without causing AOSP breakage. You can, for
 instance, remove the Launcher2 from generic.mk in 2.3/Gingerbread or from generic_no_telephony.mk in 4.2/Jelly Bean, and
 you’ll generate a functional AOSP. It won’t have the home screen you’re
 used to, but it’ll still work. The same goes for many of the apps in those
 same files.

Appendix D. Default init.rc Files

This appendix contains the default init.rc files found in 2.3/Gingerbread and
 4.2/Jelly Bean.[38] I usually dislike books where files are printed for pages on
 end, and you won’t find much of this in my writings. However, init.rc is one case where the best way to explain
 something is to actually show it to you. To make it easier for you to follow
 the operations conducted in the file, I’ve added some callouts throughout to
 provide insight on key parts of the files. Refer to Chapter 6 for more information regarding the actions, triggers,
 commands, services, and service options used in init.rc files.
2.3/Gingerbread’s default init.rc

on early-init [image: 1]
 start ueventd

on init [image: 2]

sysclktz 0

loglevel 3

setup the global environment [image: 3]
 export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
 export ANDROID_ASSETS /system/app
 export ANDROID_DATA /data
 export EXTERNAL_STORAGE /mnt/sdcard
 export ASEC_MOUNTPOINT /mnt/asec
 export LOOP_MOUNTPOINT /mnt/obb
 export BOOTCLASSPATH /system/framework/core.jar:/system/framework/bouncycast
le.jar:/system/framework/ext.jar:/system/framework/framework.jar:/system/framewo
rk/android.policy.jar:/system/framework/services.jar:/system/framework/core-juni
t.jar

Backward compatibility
 symlink /system/etc /etc
 symlink /sys/kernel/debug /d

Right now vendor lives on the same filesystem as system,
but someday that may change.
 symlink /system/vendor /vendor

create mountpoints
 mkdir /mnt 0775 root system
 mkdir /mnt/sdcard 0000 system system

Create cgroup mount point for cpu accounting
 mkdir /acct
 mount cgroup none /acct cpuacct
 mkdir /acct/uid

Backwards Compat - XXX: Going away in G*
 symlink /mnt/sdcard /sdcard

 mkdir /system
 mkdir /data 0771 system system
 mkdir /cache 0770 system cache
 mkdir /config 0500 root root

 # Directory for putting things only root should see.
 mkdir /mnt/secure 0700 root root

 # Directory for staging bindmounts
 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container
 # imagefile directory will be bind-mounted
 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.
 mkdir /mnt/asec 0700 root system
 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 # Filesystem image public mount points.
 mkdir /mnt/obb 0700 root system
 mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

 write /proc/sys/kernel/panic_on_oops 1 [image: 4]
 write /proc/sys/kernel/hung_task_timeout_secs 0
 write /proc/cpu/alignment 4
 write /proc/sys/kernel/sched_latency_ns 10000000
 write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
 write /proc/sys/kernel/sched_compat_yield 1
 write /proc/sys/kernel/sched_child_runs_first 0

Create cgroup mount points for process groups
 mkdir /dev/cpuctl
 mount cgroup none /dev/cpuctl cpu
 chown system system /dev/cpuctl
 chown system system /dev/cpuctl/tasks
 chmod 0777 /dev/cpuctl/tasks
 write /dev/cpuctl/cpu.shares 1024

 mkdir /dev/cpuctl/fg_boost
 chown system system /dev/cpuctl/fg_boost/tasks
 chmod 0777 /dev/cpuctl/fg_boost/tasks
 write /dev/cpuctl/fg_boost/cpu.shares 1024

 mkdir /dev/cpuctl/bg_non_interactive
 chown system system /dev/cpuctl/bg_non_interactive/tasks
 chmod 0777 /dev/cpuctl/bg_non_interactive/tasks
 # 5.0 %
 write /dev/cpuctl/bg_non_interactive/cpu.shares 52

on fs [image: 5]
mount mtd partitions
 # Mount /system rw first to give the filesystem a chance to save a checkpoint
 mount yaffs2 mtd@system /system
 mount yaffs2 mtd@system /system ro remount
 mount yaffs2 mtd@userdata /data nosuid nodev
 mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs [image: 6]
 # once everything is setup, no need to modify /
 mount rootfs rootfs / ro remount

 # We chown/chmod /data again so because mount is run as root + defaults
 chown system system /data
 chmod 0771 /data

 # Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.

 mkdir /data/dontpanic
 chown root log /data/dontpanic
 chmod 0750 /data/dontpanic

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # Same reason as /data above
 chown system cache /cache
 chmod 0770 /cache

 # This may have been created by the recovery system with odd permissions
 chown system cache /cache/recovery
 chmod 0770 /cache/recovery

 #change permissions on vmallocinfo so we can grab it from bugreports
 chown root log /proc/vmallocinfo
 chmod 0440 /proc/vmallocinfo

 #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
 stacks
 chown root system /proc/kmsg
 chmod 0440 /proc/kmsg
 chown root system /proc/sysrq-trigger
 chmod 0220 /proc/sysrq-trigger

create basic filesystem structure
 mkdir /data/misc 01771 system misc
 mkdir /data/misc/bluetoothd 0770 bluetooth bluetooth
 mkdir /data/misc/bluetooth 0770 system system
 mkdir /data/misc/keystore 0700 keystore keystore
 mkdir /data/misc/vpn 0770 system system
 mkdir /data/misc/systemkeys 0700 system system
 mkdir /data/misc/vpn/profiles 0770 system system
 # give system access to wpa_supplicant.conf for backup and restore
 mkdir /data/misc/wifi 0770 wifi wifi
 chmod 0770 /data/misc/wifi
 chmod 0660 /data/misc/wifi/wpa_supplicant.conf
 mkdir /data/local 0771 shell shell
 mkdir /data/local/tmp 0771 shell shell
 mkdir /data/data 0771 system system
 mkdir /data/app-private 0771 system system
 mkdir /data/app 0771 system system
 mkdir /data/property 0700 root root

 # create dalvik-cache and double-check the perms
 mkdir /data/dalvik-cache 0771 system system
 chown system system /data/dalvik-cache
 chmod 0771 /data/dalvik-cache

 # create the lost+found directories, so as to enforce our permissions
 mkdir /data/lost+found 0770
 mkdir /cache/lost+found 0770

 # double check the perms, in case lost+found already exists, and set owner
 chown root root /data/lost+found
 chmod 0770 /data/lost+found
 chown root root /cache/lost+found
 chmod 0770 /cache/lost+found

on boot [image: 7]
basic network init
 ifup lo
 hostname localhost
 domainname localdomain

set RLIMIT_NICE to allow priorities from 19 to -20
 setrlimit 13 40 40

Define the oom_adj values for the classes of processes that can be
killed by the kernel. These are used in ActivityManagerService.
 setprop ro.FOREGROUND_APP_ADJ 0
 setprop ro.VISIBLE_APP_ADJ 1
 setprop ro.PERCEPTIBLE_APP_ADJ 2
 setprop ro.HEAVY_WEIGHT_APP_ADJ 3
 setprop ro.SECONDARY_SERVER_ADJ 4
 setprop ro.BACKUP_APP_ADJ 5
 setprop ro.HOME_APP_ADJ 6
 setprop ro.HIDDEN_APP_MIN_ADJ 7
 setprop ro.EMPTY_APP_ADJ 15

Define the memory thresholds at which the above process classes will
be killed. These numbers are in pages (4k).
 setprop ro.FOREGROUND_APP_MEM 2048
 setprop ro.VISIBLE_APP_MEM 3072
 setprop ro.PERCEPTIBLE_APP_MEM 4096
 setprop ro.HEAVY_WEIGHT_APP_MEM 4096
 setprop ro.SECONDARY_SERVER_MEM 6144
 setprop ro.BACKUP_APP_MEM 6144
 setprop ro.HOME_APP_MEM 6144
 setprop ro.HIDDEN_APP_MEM 7168
 setprop ro.EMPTY_APP_MEM 8192

Write value must be consistent with the above properties. [image: 8]
Note that the driver only supports 6 slots, so we have combined some of
the classes into the same memory level; the associated processes of higher
classes will still be killed first.
 write /sys/module/lowmemorykiller/parameters/adj 0,1,2,4,7,15

 write /proc/sys/vm/overcommit_memory 1
 write /proc/sys/vm/min_free_order_shift 4
 write /sys/module/lowmemorykiller/parameters/minfree 2048,3072,4096,6144,
 7168,8192

 # Set init its forked children's oom_adj.
 write /proc/1/oom_adj -16

 # Tweak background writeout
 write /proc/sys/vm/dirty_expire_centisecs 200
 write /proc/sys/vm/dirty_background_ratio 5

 # Permissions for System Server and daemons.
 chown radio system /sys/android_power/state
 chown radio system /sys/android_power/request_state
 chown radio system /sys/android_power/acquire_full_wake_lock
 chown radio system /sys/android_power/acquire_partial_wake_lock
 chown radio system /sys/android_power/release_wake_lock
 chown radio system /sys/power/state
 chown radio system /sys/power/wake_lock
 chown radio system /sys/power/wake_unlock
 chmod 0660 /sys/power/state
 chmod 0660 /sys/power/wake_lock
 chmod 0660 /sys/power/wake_unlock
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/class/leds/keyboard-backlight/brightness
 chown system system /sys/class/leds/lcd-backlight/brightness
 chown system system /sys/class/leds/button-backlight/brightness
 chown system system /sys/class/leds/jogball-backlight/brightness
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/module/sco/parameters/disable_esco
 chown system system /sys/kernel/ipv4/tcp_wmem_min
 chown system system /sys/kernel/ipv4/tcp_wmem_def
 chown system system /sys/kernel/ipv4/tcp_wmem_max
 chown system system /sys/kernel/ipv4/tcp_rmem_min
 chown system system /sys/kernel/ipv4/tcp_rmem_def
 chown system system /sys/kernel/ipv4/tcp_rmem_max
 chown root radio /proc/cmdline

Define TCP buffer sizes for various networks
ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
 setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.wifi 4095,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.umts 4094,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.edge 4093,26280,35040,4096,16384,35040
 setprop net.tcp.buffersize.gprs 4092,8760,11680,4096,8760,11680

 class_start default [image: 9]

Daemon processes to be run by init. [image: 10]
##
service ueventd /sbin/ueventd
 critical

service console /system/bin/sh
 console
 disabled
 user shell
 group log

on property:ro.secure=0
 start console

adbd is controlled by the persist.service.adb.enable system property
service adbd /sbin/adbd [image: 11]
 disabled

adbd on at boot in emulator
on property:ro.kernel.qemu=1
 start adbd

on property:persist.service.adb.enable=1
 start adbd

on property:persist.service.adb.enable=0
 stop adbd

service servicemanager /system/bin/servicemanager [image: 12]
 user system
 critical
 onrestart restart zygote
 onrestart restart media

service vold /system/bin/vold
 socket vold stream 0660 root mount
 ioprio be 2

service netd /system/bin/netd
 socket netd stream 0660 root system

service debuggerd /system/bin/debuggerd

service ril-daemon /system/bin/rild
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio sdcard_rw

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server [image: 13]
 socket zygote stream 666
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

service media /system/bin/mediaserver [image: 14]
 user media
 group system audio camera graphics inet net_bt net_bt_admin net_raw
 ioprio rt 4

service bootanim /system/bin/bootanimation
 user graphics
 group graphics
 disabled
 oneshot

service dbus /system/bin/dbus-daemon --system --nofork
 socket dbus stream 660 bluetooth bluetooth
 user bluetooth
 group bluetooth net_bt_admin

service bluetoothd /system/bin/bluetoothd -n
 socket bluetooth stream 660 bluetooth bluetooth
 socket dbus_bluetooth stream 660 bluetooth bluetooth
 # init.rc does not yet support applying capabilities, so run as root and
 # let bluetoothd drop uid to bluetooth with the right linux capabilities
 group bluetooth net_bt_admin misc
 disabled

service hfag /system/bin/sdptool add --channel=10 HFAG
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service hsag /system/bin/sdptool add --channel=11 HSAG
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service opush /system/bin/sdptool add --channel=12 OPUSH
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service pbap /system/bin/sdptool add --channel=19 PBAP
 user bluetooth
 group bluetooth net_bt_admin
 disabled
 oneshot

service installd /system/bin/installd
 socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
 oneshot

service racoon /system/bin/racoon
 socket racoon stream 600 system system
 # racoon will setuid to vpn after getting necessary resources.
 group net_admin
 disabled
 oneshot

service mtpd /system/bin/mtpd
 socket mtpd stream 600 system system
 user vpn
 group vpn net_admin net_raw
 disabled
 oneshot

service keystore /system/bin/keystore /data/misc/keystore
 user keystore
 group keystore
 socket keystore stream 666

service dumpstate /system/bin/dumpstate -s [image: 15]
 socket dumpstate stream 0660 shell log
 disabled
 oneshot
	[image: 1]
	The early-init action is the
 earliest part of the init.rc that
 is executed, per the list of actions and triggers run by init, as explained in Chapter 6. As you can see, only ueventd is run here. In fact, the next step
 performed by init during its
 initialization is to check that ueventd was properly started as part of
 early-init.

	[image: 2]
	The init action is the first
 major chunk of commands that init
 is made to run. It sets the time zone to GMT, sets the log level to
 3,[39] exports a core set of environment variables, and
 proceeds to conduct a number of filesystem operations on the root
 filesystem.

	[image: 3]
	This part of the initialization is pretty important. This is
 where the default PATH for all
 binaries in the system is set. This is also where the dynamic linker’s
 default search path, LD_LIBRARY_PATH, is set. Note that /bin isn’t in PATH and /lib isn’t in LD_LIBRARY_PATH.

	[image: 4]
	Here, some of the kernel’s parameters are tweaked by way of
 writing values to /proc entries. This and
 writing values to /sys entries
 are common ways of controlling the kernel and/or drivers’
 behavior.

	[image: 5]
	The fs action is where the
 /system, /data, and /cache partitions are mounted. Note that by
 default this config file attempts to mount those from MTD partitions
 using the YAFFS2 filesystem. Your board may neither have MTD devices
 nor use YAFFS2. In that case, these commands will fail, and that’s
 fine. Nothing precludes you from having an fs action in your board-specific .rc file that mounts other partitions using
 other filesystems.

	[image: 6]
	The post-fs action is where
 all filesystem commands that depend on all filesystems having been
 mounted to operate properly are executed. Again, a large number of
 filesystem operations are being conducted here.

	[image: 7]
	The boot action is executed
 once all filesystems are set up, and by the end of the set of commands
 in here, the entire set of services will be started. This section
 starts by setting up the basic network functionality, sets up the OOM
 adjustments and memory thresholds used by the Activity Manager and the
 kernel, sets permissions for allowing the system server to access
 entries in /sys, sets networking
 properties, and finally starts all default services.

	[image: 8]
	This set of /proc and
 /sys operations are the way that
 the low-memory driver, which we discussed in Chapter 2, has its parameters set from user-space.

	[image: 9]
	This seemingly innocuous command is actually one of the most
 important ones in this file. All the services you see declared later
 in the file are started by this command. The fact is that any service
 declared in an .rc file is set to
 have default as its class, unless a
 specific class option is used in
 the service’s description. And since none of the services listed in
 this file contains a specific class
 option, they’re all part of the default class and started by this class_start command.

	[image: 10]
	Now that the majority of actions have been defined, the rest of
 the file focuses on describing the services to run. Since they’re all
 part of the default class, they are
 started in the order they are found in the file.

	[image: 11]
	Notice how adbd is set to be
 disabled at startup unless the persist.service.adb.enable property is set
 to 1.

	[image: 12]
	This is the all-important Service Manager, which we covered in
 Chapter 2. Note how it’s marked as critical, and its restarting will cause the
 System Server and Media Service to restart.

	[image: 13]
	This is the Zygote, also described in Chapter 2. Note how the actual binary being started is
 app_process. The latter is in fact
 a C-based binary that is made to start a Dalvik VM instance, which the
 Zygote Java class is started from. From there, the System Server will
 be started by the Zygote.

	[image: 14]
	This is the Media Server proper. Notice how its I/O nice value
 is set to mimic the “real time” scheduler and how its priority is set
 to 4.

	[image: 15]
	This dumpstate is necessary
 for Toolbox’s bugreport command to
 operate properly. See the explanation in Chapter 6
 about bugreport for more
 information on how it interacts with dumpstate.

4.2/Jelly Bean’s Default init Files

Unlike 2.3/Gingerbread, 4.2/Jelly Bean has three main .rc files for all builds: init.rc, init.usb.rc, and init.trace.rc. Let’s take a look at
 these.
init.rc

Here’s the main init.rc from 4.2/Jelly Bean. As you can see
 by comparing this version with 2.3/Gingerbread’s, many of the important
 parts have remained unchanged. Still, some novelties have appeared in
 this newer version that are worth highlighting.
Note
Even if you’re using 4.2/Jelly Bean, I would recommend reading
 the previous section about 2.3/Gingerbread’s init.rc before reading this one, as I’m not
 repeating explanations I’ve already made for the latter.

Copyright (C) 2012 The Android Open Source Project
#
IMPORTANT: Do not create world writable files or directories.
This is a common source of Android security bugs.
#

import /init.usb.rc [image: 1]
import /init.${ro.hardware}.rc
import /init.trace.rc

on early-init
 # Set init and its forked children's oom_adj.
 write /proc/1/oom_adj -16

 # Set the security context for the init process.
 # This should occur before anything else (e.g. ueventd) is started.
 setcon u:r:init:s0 [image: 2]

 start ueventd

create mountpoints
 mkdir /mnt 0775 root system

on init

sysclktz 0

loglevel 3

setup the global environment
 export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /vendor/lib:/system/lib
 export ANDROID_BOOTLOGO 1
 export ANDROID_ROOT /system
 export ANDROID_ASSETS /system/app
 export ANDROID_DATA /data
 export ANDROID_STORAGE /storage
 export ASEC_MOUNTPOINT /mnt/asec
 export LOOP_MOUNTPOINT /mnt/obb
 export BOOTCLASSPATH /system/framework/core.jar:/system/framework/core-junit
.jar:/system/framework/bouncycastle.jar:/system/framework/ext.jar:/system/framew
ork/framework.jar:/system/framework/telephony-common.jar:/system/framework/mms-c
ommon.jar:/system/framework/android.policy.jar:/system/framework/services.jar:/s
ystem/framework/apache-xml.jar

Backward compatibility
 symlink /system/etc /etc
 symlink /sys/kernel/debug /d

Right now vendor lives on the same filesystem as system,
but someday that may change.
 symlink /system/vendor /vendor

Create cgroup mount point for cpu accounting
 mkdir /acct
 mount cgroup none /acct cpuacct
 mkdir /acct/uid

 mkdir /system
 mkdir /data 0771 system system
 mkdir /cache 0770 system cache
 mkdir /config 0500 root root

 # See storage config details at http://source.android.com/tech/storage/
 mkdir /mnt/shell 0700 shell shell
 mkdir /storage 0050 root sdcard_r

 # Directory for putting things only root should see.
 mkdir /mnt/secure 0700 root root
 # Create private mountpoint so we can MS_MOVE from staging
 mount tmpfs tmpfs /mnt/secure mode=0700,uid=0,gid=0

 # Directory for staging bindmounts
 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container
 # imagefile directory will be bind-mounted
 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.
 mkdir /mnt/asec 0700 root system
 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 # Filesystem image public mount points.
 mkdir /mnt/obb 0700 root system
 mount tmpfs tmpfs /mnt/obb mode=0755,gid=1000

 write /proc/sys/kernel/panic_on_oops 1
 write /proc/sys/kernel/hung_task_timeout_secs 0
 write /proc/cpu/alignment 4
 write /proc/sys/kernel/sched_latency_ns 10000000
 write /proc/sys/kernel/sched_wakeup_granularity_ns 2000000
 write /proc/sys/kernel/sched_compat_yield 1
 write /proc/sys/kernel/sched_child_runs_first 0
 write /proc/sys/kernel/randomize_va_space 2
 write /proc/sys/kernel/kptr_restrict 2
 write /proc/sys/kernel/dmesg_restrict 1
 write /proc/sys/vm/mmap_min_addr 32768
 write /proc/sys/kernel/sched_rt_runtime_us 950000
 write /proc/sys/kernel/sched_rt_period_us 1000000

Create cgroup mount points for process groups
 mkdir /dev/cpuctl
 mount cgroup none /dev/cpuctl cpu
 chown system system /dev/cpuctl
 chown system system /dev/cpuctl/tasks
 chmod 0660 /dev/cpuctl/tasks
 write /dev/cpuctl/cpu.shares 1024
 write /dev/cpuctl/cpu.rt_runtime_us 950000
 write /dev/cpuctl/cpu.rt_period_us 1000000

 mkdir /dev/cpuctl/apps
 chown system system /dev/cpuctl/apps/tasks
 chmod 0666 /dev/cpuctl/apps/tasks
 write /dev/cpuctl/apps/cpu.shares 1024
 write /dev/cpuctl/apps/cpu.rt_runtime_us 800000
 write /dev/cpuctl/apps/cpu.rt_period_us 1000000

 mkdir /dev/cpuctl/apps/bg_non_interactive
 chown system system /dev/cpuctl/apps/bg_non_interactive/tasks
 chmod 0666 /dev/cpuctl/apps/bg_non_interactive/tasks
 # 5.0 %
 write /dev/cpuctl/apps/bg_non_interactive/cpu.shares 52
 write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_runtime_us 700000
 write /dev/cpuctl/apps/bg_non_interactive/cpu.rt_period_us 1000000

Allow everybody to read the xt_qtaguid resource tracking misc dev.
This is needed by any process that uses socket tagging.
 chmod 0644 /dev/xt_qtaguid

on fs
mount mtd partitions
 # Mount /system rw first to give the filesystem a chance to save a
 checkpoint
 mount yaffs2 mtd@system /system
 mount yaffs2 mtd@system /system ro remount
 mount yaffs2 mtd@userdata /data nosuid nodev
 mount yaffs2 mtd@cache /cache nosuid nodev

on post-fs
 # once everything is setup, no need to modify /
 mount rootfs rootfs / ro remount
 # mount shared so changes propagate into child namespaces
 mount rootfs rootfs / shared rec
 mount tmpfs tmpfs /mnt/secure private rec

 # We chown/chmod /cache again so because mount is run as root + defaults
 chown system cache /cache
 chmod 0770 /cache
 # We restorecon /cache in case the cache partition has been reset.
 restorecon /cache

 # This may have been created by the recovery system with odd permissions
 chown system cache /cache/recovery
 chmod 0770 /cache/recovery
 # This may have been created by the recovery system with the wrong context.
 restorecon /cache/recovery

 #change permissions on vmallocinfo so we can grab it from bugreports
 chown root log /proc/vmallocinfo
 chmod 0440 /proc/vmallocinfo

 chown root log /proc/slabinfo
 chmod 0440 /proc/slabinfo

 #change permissions on kmsg & sysrq-trigger so bugreports can grab kthread
 stacks
 chown root system /proc/kmsg
 chmod 0440 /proc/kmsg
 chown root system /proc/sysrq-trigger
 chmod 0220 /proc/sysrq-trigger
 chown system log /proc/last_kmsg
 chmod 0440 /proc/last_kmsg

 # create the lost+found directories, so as to enforce our permissions
 mkdir /cache/lost+found 0770 root root

on post-fs-data
 # We chown/chmod /data again so because mount is run as root + defaults
 chown system system /data
 chmod 0771 /data
 # We restorecon /data in case the userdata partition has been reset.
 restorecon /data

 # Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.
 mkdir /data/dontpanic 0750 root log

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # create basic filesystem structure
 mkdir /data/misc 01771 system misc
 mkdir /data/misc/adb 02750 system shell
 mkdir /data/misc/bluedroid 0770 bluetooth net_bt_stack
 mkdir /data/misc/bluetooth 0770 system system
 mkdir /data/misc/keystore 0700 keystore keystore
 mkdir /data/misc/keychain 0771 system system
 mkdir /data/misc/sms 0770 system radio
 mkdir /data/misc/vpn 0770 system vpn
 mkdir /data/misc/systemkeys 0700 system system
 # give system access to wpa_supplicant.conf for backup and restore
 mkdir /data/misc/wifi 0770 wifi wifi
 chmod 0660 /data/misc/wifi/wpa_supplicant.conf
 mkdir /data/local 0751 root root

 # For security reasons, /data/local/tmp should always be empty.
 # Do not place files or directories in /data/local/tmp
 mkdir /data/local/tmp 0771 shell shell
 mkdir /data/data 0771 system system
 mkdir /data/app-private 0771 system system
 mkdir /data/app-asec 0700 root root
 mkdir /data/app-lib 0771 system system
 mkdir /data/app 0771 system system
 mkdir /data/property 0700 root root
 mkdir /data/ssh 0750 root shell
 mkdir /data/ssh/empty 0700 root root

 # create dalvik-cache, so as to enforce our permissions
 mkdir /data/dalvik-cache 0771 system system

 # create resource-cache and double-check the perms
 mkdir /data/resource-cache 0771 system system
 chown system system /data/resource-cache
 chmod 0771 /data/resource-cache

 # create the lost+found directories, so as to enforce our permissions
 mkdir /data/lost+found 0770 root root

 # create directory for DRM plug-ins - give drm the read/write access to
 # the following directory.
 mkdir /data/drm 0770 drm drm

 # If there is no fs-post-data action in the init.<device>.rc file, you
 # must uncomment this line, otherwise encrypted filesystems
 # won't work.
 # Set indication (checked by vold) that we have finished this action
 #setprop vold.post_fs_data_done 1

on boot
basic network init
 ifup lo
 hostname localhost
 domainname localdomain

set RLIMIT_NICE to allow priorities from 19 to -20
 setrlimit 13 40 40

Memory management. Basic kernel parameters, and allow the high
level system server to be able to adjust the kernel OOM driver
parameters to match how it is managing things.
 write /proc/sys/vm/overcommit_memory 1
 write /proc/sys/vm/min_free_order_shift 4
 chown root system /sys/module/lowmemorykiller/parameters/adj
 chmod 0664 /sys/module/lowmemorykiller/parameters/adj
 chown root system /sys/module/lowmemorykiller/parameters/minfree
 chmod 0664 /sys/module/lowmemorykiller/parameters/minfree

 # Tweak background writeout
 write /proc/sys/vm/dirty_expire_centisecs 200
 write /proc/sys/vm/dirty_background_ratio 5

 # Permissions for System Server and daemons.
 chown radio system /sys/android_power/state
 chown radio system /sys/android_power/request_state
 chown radio system /sys/android_power/acquire_full_wake_lock
 chown radio system /sys/android_power/acquire_partial_wake_lock
 chown radio system /sys/android_power/release_wake_lock
 chown system system /sys/power/autosleep
 chown system system /sys/power/state
 chown system system /sys/power/wakeup_count
 chown radio system /sys/power/wake_lock
 chown radio system /sys/power/wake_unlock
 chmod 0660 /sys/power/state
 chmod 0660 /sys/power/wake_lock
 chmod 0660 /sys/power/wake_unlock

 chown system system /sys/devices/system/cpu/cpufreq/interactive/timer_rate
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/timer_rate
 chown system system /sys/devices/system/cpu/cpufreq/interactive/min_sample_
 time
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/min_sample_time
 chown system system /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/hispeed_freq
 chown system system /sys/devices/system/cpu/cpufreq/interactive/go_
 hispeed_load
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/go_hispeed_load
 chown system system /sys/devices/system/cpu/cpufreq/interactive/above_
 hispeed_delay
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/above_hispeed_delay
 chown system system /sys/devices/system/cpu/cpufreq/interactive/boost
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/boost
 chown system system /sys/devices/system/cpu/cpufreq/interactive/boostpulse
 chown system system /sys/devices/system/cpu/cpufreq/interactive/input_boost
 chmod 0660 /sys/devices/system/cpu/cpufreq/interactive/input_boost

 # Assume SMP uses shared cpufreq policy for all CPUs
 chown system system /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
 chmod 0660 /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/class/leds/keyboard-backlight/brightness
 chown system system /sys/class/leds/lcd-backlight/brightness
 chown system system /sys/class/leds/button-backlight/brightness
 chown system system /sys/class/leds/jogball-backlight/brightness
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/leds/red/brightness
 chown system system /sys/class/leds/green/brightness
 chown system system /sys/class/leds/blue/brightness
 chown system system /sys/class/leds/red/device/grpfreq
 chown system system /sys/class/leds/red/device/grppwm
 chown system system /sys/class/leds/red/device/blink
 chown system system /sys/class/timed_output/vibrator/enable
 chown system system /sys/module/sco/parameters/disable_esco
 chown system system /sys/kernel/ipv4/tcp_wmem_min
 chown system system /sys/kernel/ipv4/tcp_wmem_def
 chown system system /sys/kernel/ipv4/tcp_wmem_max
 chown system system /sys/kernel/ipv4/tcp_rmem_min
 chown system system /sys/kernel/ipv4/tcp_rmem_def
 chown system system /sys/kernel/ipv4/tcp_rmem_max
 chown root radio /proc/cmdline

Define TCP buffer sizes for various networks
ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax,
 setprop net.tcp.buffersize.default 4096,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.wifi 524288,1048576,2097152,262144,524288,
 1048576
 setprop net.tcp.buffersize.lte 524288,1048576,2097152,262144,524288,
 1048576
 setprop net.tcp.buffersize.umts 4094,87380,110208,4096,16384,110208
 setprop net.tcp.buffersize.hspa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hsupa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hsdpa 4094,87380,262144,4096,16384,262144
 setprop net.tcp.buffersize.hspap 4094,87380,1220608,4096,16384,1220608
 setprop net.tcp.buffersize.edge 4093,26280,35040,4096,16384,35040
 setprop net.tcp.buffersize.gprs 4092,8760,11680,4096,8760,11680
 setprop net.tcp.buffersize.evdo 4094,87380,262144,4096,16384,262144

Set this property so surfaceflinger is not started by system_init
 setprop system_init.startsurfaceflinger 0

 class_start core [image: 3]
 class_start main

on nonencrypted
 class_start late_start

on charger
 class_start charger

on property:vold.decrypt=trigger_reset_main
 class_reset main

on property:vold.decrypt=trigger_load_persist_props
 load_persist_props

on property:vold.decrypt=trigger_post_fs_data
 trigger post-fs-data

on property:vold.decrypt=trigger_restart_min_framework
 class_start main

on property:vold.decrypt=trigger_restart_framework
 class_start main
 class_start late_start

on property:vold.decrypt=trigger_shutdown_framework
 class_reset late_start
 class_reset main

Daemon processes to be run by init.
##
service ueventd /sbin/ueventd
 class core [image: 4]
 critical
 seclabel u:r:ueventd:s0

on property:selinux.reload_policy=1
 restart ueventd
 restart installd

service console /system/bin/sh
 class core
 console
 disabled
 user shell
 group log

on property:ro.debuggable=1
 start console

adbd is controlled via property triggers in init.<platform>.usb.rc [image: 5]
service adbd /sbin/adbd
 class core
 socket adbd stream 660 system system
 disabled
 seclabel u:r:adbd:s0

adbd on at boot in emulator
on property:ro.kernel.qemu=1
 start adbd

service servicemanager /system/bin/servicemanager
 class core
 user system
 group system
 critical
 onrestart restart zygote
 onrestart restart media
 onrestart restart surfaceflinger
 onrestart restart drm

service vold /system/bin/vold
 class core
 socket vold stream 0660 root mount
 ioprio be 2

service netd /system/bin/netd
 class main [image: 6]
 socket netd stream 0660 root system
 socket dnsproxyd stream 0660 root inet
 socket mdns stream 0660 root system

service debuggerd /system/bin/debuggerd
 class main

service ril-daemon /system/bin/rild
 class main
 socket rild stream 660 root radio
 socket rild-debug stream 660 radio system
 user root
 group radio cache inet misc audio log

service surfaceflinger /system/bin/surfaceflinger [image: 7]
 class main
 user system
 group graphics drmrpc
 onrestart restart zygote

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys
tem-server
 class main
 socket zygote stream 660 root system
 onrestart write /sys/android_power/request_state wake
 onrestart write /sys/power/state on
 onrestart restart media
 onrestart restart netd

service drm /system/bin/drmserver
 class main
 user drm
 group drm system inet drmrpc

service media /system/bin/mediaserver
 class main
 user media
 group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc
 ioprio rt 4

service bootanim /system/bin/bootanimation
 class main
 user graphics
 group graphics
 disabled
 oneshot

service installd /system/bin/installd
 class main
 socket installd stream 600 system system

service flash_recovery /system/etc/install-recovery.sh
 class main
 oneshot

service racoon /system/bin/racoon
 class main
 socket racoon stream 600 system system
 # IKE uses UDP port 500. Racoon will setuid to vpn after binding the port.
 group vpn net_admin inet
 disabled
 oneshot

service mtpd /system/bin/mtpd
 class main
 socket mtpd stream 600 system system
 user vpn
 group vpn net_admin inet net_raw
 disabled
 oneshot

service keystore /system/bin/keystore /data/misc/keystore
 class main
 user keystore
 group keystore drmrpc
 socket keystore stream 666

service dumpstate /system/bin/dumpstate -s
 class main
 socket dumpstate stream 0660 shell log
 disabled
 oneshot

service sshd /system/bin/start-ssh
 class main
 disabled

service mdnsd /system/bin/mdnsd
 class main
 user mdnsr
 group inet net_raw
 socket mdnsd stream 0660 mdnsr inet
 disabled
 oneshot
	[image: 1]
	4.2/Jelly Bean uses the import mechanism to bring in other
 .rc files. In this case, three
 files are imported. init.usb.rc
 and init.trace.rc are global to
 all device builds, and I’ve included them below for reference. This
 init.rc, however, also imports
 a board-specific init.${ro.hardware}.rc, which will be
 loaded according to the value of the ro.hardware global property. Have a look
 at the board-specific .rc files
 in the device/ directory for
 examples.

	[image: 2]
	This is new to init.rc
 and is intricately related to the SEAndroid project. Have a look at
 http://selinuxproject.org/page/SEAndroid for more
 information about SEAndroid.

	[image: 3]
	In the 2.3/Gingerbread init.rc, class_start is used only to start the
 default class of services, which
 in that version is all services in the default init.rc. In 4.2/Jelly Bean, however, two
 classes are used in this file: core and main. Their names are self-explanatory,
 and you can see later in the file that the services are marked as
 either core or main. Generally speaking, the first class
 is listed first.

	[image: 4]
	Here’s the first instance of a service definition where the
 class property is used to
 indicate the service’s class, which in this case is core.

	[image: 5]
	Unlike in 2.3/Gingerbread, the starting and stopping of
 adbd isn’t controlled by the
 persist.service.adb.enable
 property. Instead, as the comment suggests, it’s controlled in the
 init.usb.rc files. We’ll
 discuss this in more detail below.

	[image: 6]
	netd is the first service
 in the list that’s part of the main class.

	[image: 7]
	As I mentioned in Chapter 2, the Surface
 Flinger is no longer part of the System Server. Instead, it’s
 started as a separate process, as we can see here.

init.usb.rc

This .rc file is related to
 all things USB. Specifically, to better understand its operation and the
 values being set, you need to take a look at the USB system service code
 in frameworks/base/services/java/com/android/server/usb/.
Copyright (C) 2012 The Android Open Source Project
#
USB configuration common for all android devices
#

on post-fs-data
 chown system system /sys/class/android_usb/android0/f_mass_storage/lun/file
 chmod 0660 /sys/class/android_usb/android0/f_mass_storage/lun/file
 chown system system /sys/class/android_usb/android0/f_rndis/ethaddr
 chmod 0660 /sys/class/android_usb/android0/f_rndis/ethaddr

Used to disable USB when switching states
on property:sys.usb.config=none [image: 1]
 stop adbd [image: 2]
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/bDeviceClass 0
 setprop sys.usb.state ${sys.usb.config}

adb only USB configuration
This should only be used during device bringup
and as a fallback if the USB manager fails to set a standard configuration
on property:sys.usb.config=adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct D002
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd [image: 3]
 setprop sys.usb.state ${sys.usb.config}

USB accessory configuration
on property:sys.usb.config=accessory
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d00
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

USB accessory configuration, with adb
on property:sys.usb.config=accessory,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d01
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

audio accessory configuration
on property:sys.usb.config=audio_source
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d02
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

audio accessory configuration, with adb
on property:sys.usb.config=audio_source,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d03
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

USB and audio accessory configuration
on property:sys.usb.config=accessory,audio_source
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d04
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

USB and audio accessory configuration, with adb
on property:sys.usb.config=accessory,audio_source,adb
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18d1
 write /sys/class/android_usb/android0/idProduct 2d05
 write /sys/class/android_usb/android0/functions ${sys.usb.config}
 write /sys/class/android_usb/android0/enable 1
 start adbd
 setprop sys.usb.state ${sys.usb.config}

Used to set USB configuration at boot and to switch the configuration
when changing the default configuration
on property:persist.sys.usb.config=*
 setprop sys.usb.config ${persist.sys.usb.config} [image: 4]
	[image: 1]
	The sys.usb.config global
 property is what controls the state of the USB connection. It’s
 either explicitly set by the code in frameworks/base/services/java/com/android/server/usb/UsbDeviceManager.java
 or updated based on changes to persist.sys.usb.config as is done farther
 down in the file.

	[image: 2]
	Here’s adbd being stopped
 based on a change to sys.usb.config.

	[image: 3]
	This is one of several instances where adbd is started based on a change to
 sys.usb.config.

	[image: 4]
	Whenever persist.sys.usb.config is modified,
 sys.usb.config is automatically
 updated here. That, in turn, is likely to trigger other parts of
 this file based on the above-declared triggers.

init.trace.rc

Since 4.1/Jelly Bean, Android has included a systrace command for use by app developers.
 The systrace tool on the host side
 actually depends on an atrace tool on
 the target, which is invoked via ADB. For its part, atrace uses the kernel’s ftrace functionality
 to trace the system. This init.trace.rc sets up ftrace for use by
 Android’s tracing tools. A quick search for “ftrace” in your favorite
 search engine should allow you to easily find more documentation on this
 mechanism.
Permissions to allow system-wide tracing to the kernel trace buffer.
##
on boot

Allow writing to the kernel trace log.
 chmod 0222 /sys/kernel/debug/tracing/trace_marker

Allow the shell group to enable (some) kernel tracing.
 chown root shell /sys/kernel/debug/tracing/trace_clock
 chown root shell /sys/kernel/debug/tracing/buffer_size_kb
 chown root shell /sys/kernel/debug/tracing/options/overwrite
 chown root shell /sys/kernel/debug/tracing/events/sched/sched_switch/enable
 chown root shell /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
 chown root shell /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
 chown root shell /sys/kernel/debug/tracing/events/power/cpu_idle/enable
 chown root shell /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
 chown root shell /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
 chown root shell /sys/kernel/debug/tracing/tracing_on

 chmod 0664 /sys/kernel/debug/tracing/trace_clock
 chmod 0664 /sys/kernel/debug/tracing/buffer_size_kb
 chmod 0664 /sys/kernel/debug/tracing/options/overwrite
 chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_switch/enable
 chmod 0664 /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_frequency/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/cpu_idle/enable
 chmod 0664 /sys/kernel/debug/tracing/events/power/clock_set_rate/enable
 chmod 0664 /sys/kernel/debug/tracing/events/cpufreq_interactive/enable
 chmod 0664 /sys/kernel/debug/tracing/tracing_on

Allow only the shell group to read and truncate the kernel trace.
 chown root shell /sys/kernel/debug/tracing/trace
 chmod 0660 /sys/kernel/debug/tracing/trace

[38] Both files are configuration files part of the AOSP sources and
 are therefore assumed to be licensed under the Apache license.

[39] See the man page for klogctl() for more details as to the
 specific effect of this.

Appendix E. Resources

 There is more to Android than could ever be covered in a
 single book. For starters, Android has a living ecosystem around it and a
 lot of community projects. This appendix highlights the major resources you
 should explore as your work with Android progresses.
Websites and Communities

A vast number of websites and communities are either directly or
 indirectly related to Android. I’ve tried to categorize them below as
 neatly as possible.
Google

	Android Open Source
 Project
	Google’s main site for the Android platform. It historically
 contained more information about the system, but it has been
 removed. It still is a very good reference on how to get the
 sources and how to set up your development system to build the
 AOSP. It also contains the latest documentation on the Android
 Compatibility Program, including the Compliance Definition
 Document.

	Android
 Developer
	This is Google’s site for app developers. Unlike the
 platform site, this site is quite rich in documentation. It
 contains tutorials, an API reference, guidelines for graphic
 designers, and more. In sum, if you’re developing an app, you’re
 in good hands with this site.

	Android Tools Project
 Site
	This is the site that contains the information about
 Android’s developer tools. This includes the SDK, the Eclipse
 plug-in, the NDK, etc.

SoC Vendors

	TI
 Android Development Kit for Sitara
	This dev kit includes a set of AOSP sources that have been
 customized to run on boards based on TI’s chips such as the
 BeagleBone. You may also find the porting information available
 here.

	Linaro
 Android
	Per its website, “Linaro is a not-for-profit engineering
 organization consolidating and optimizing open source Linux
 software and tools for the ARM architecture.” Effectively, it’s an
 organization serving several SoC vendors, helping them with
 platform enablement. They maintain an Android tree for their
 members that is freely available to download.

	CodeAurora
	This is part of Linux Foundation Labs and provides
 enablement for various open source projects for Qualcomm chips. As
 such, it maintains an Android tree.

Forks

Apart from the information provided on their sites, many of these
 forks have public mailing lists that you may find useful.
	CyanogenMod
	This is probably the most popular Android fork. It’s
 essentially an aftermarket AOSP distribution aimed at techies and
 power users, with additional features and enhancements. Most
 interestingly, all the development is done in the open.

	Android-x86
	This is a separate project from the work done by Intel to
 get x86 support merged into the main AOSP tree. Instead, this is
 geared to porting Android to PCs, netbooks, and laptops.

	RowBoat
	This is the community project maintained by TI from which
 the TI Android Development Kit is derived.

	Replicant
	This project aims to replace as many Android components with
 free software as possible. For instance, it includes F-Droid, a free software
 application catalog (essentially a free software version of Google
 Play).

Apart from the above list, there’s also a large and growing number
 of closed-source forks of the AOSP. Remember that Android’s licensing is
 very permissive.

Documentation and Forums

	Linux Weekly News
	The primary news site for all things relating to the
 kernel’s development. Android is covered when relevant, but the
 focus is certainly on classic Linux distributions and the Linux
 kernel.

	Embedded Linux
 Wiki
	A wiki site that has a large collection of information
 related to embedded Linux. For some time now, it’s also had an
 Android
 section.

	OMAPpedia
	This wiki contains information about the use of Linux and
 Android on TI’s OMAP processors. Some of the articles include a
 lot of detailed instructions.

	xdadevelopers
	While this site is traditionally frequented by modders, it
 sometimes contains information that is very difficult to obtain
 otherwise. Have a look at the Android
 section. Most of the valuable information found here is in
 the site’s forums.

	Slideshare
	This is a general-purpose site for sharing slides. It
 contains a large number of Android-related slides, including many
 about its internals or various internal components.

	Vogella
	This site is maintained by Lars Vogel and provides various
 tutorials about Android app development. It’s a very good
 complement to the official Android app development information
 distributed by Google.

Embedded Linux Build Tools

	BuildRoot
	This project has been around for over a decade now, and
 allows you to build a target embedded Linux root filesystem and
 tools based on a configuration fed to it using a menu-based
 system.

	Yocto
 Project
	Similar to BuildRoot but much more ambitious in its goals.
 It contains a framework and tools for generating entire embedded
 Linux distributions.

Open Hardware Projects

	BeagleBoard and
 BeagleBone
	There are many inexpensive evaluation boards on the market.
 However, the BeagleBoard and BeagleBone have accrued a very active
 community. Schematics provided.

Books

	Building Embedded Linux Systems, 2nd ed.,
 by Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum
 (O’Reilly, 2008)
	The classic book on the topic of embedded Linux, originally
 written by yours truly and since updated under Jon Masters’
 lead.

	Embedded Linux Primer, 2nd ed., by
 Christopher Hallinan (Prentice Hall, 2010)
	Another good embedded Linux book.

	Linux Device Drivers, 3rd ed., by Jonathan
 Corbet, Alessandro Rubini, and Greg Kroah-Hartman (O’Reilly,
 2005)
	Despite its age, this remains the reference for Linux device
 driver authors.

	Linux Kernel Development, 3rd ed., by
 Robert Love (Addison-Wesley, 2010)
	One of the kernel internals books that has withstood the test
 of time.

	Linux Kernel Architecture, by Wolfgang
 Mauerer (Wrox, 2008)
	Another internals title.

	Programming Android, 2nd ed., by Zigurd
 Mednieks, Laird Dornin, Blake Meike, and Masumi Nakamura (O’Reilly,
 2012)
	An in-depth book on app development.

	Learning Android, by Marko Gargenta
 (O’Reilly, 2011)
	An introductory book on app development.

	Professional Android 4 Application
 Development, by Reto Meier (Wrox, 2012)
	An app development book by the tech lead for the Android
 Developer Relations team at Google.

Conferences and Events

	Android
 Builders Summit
	The primary event for developers doing work inside the AOSP
 stack.

	Embedded
 Linux Conference
	The main event for all things related to embedded
 Linux.

	Embedded
 Linux Conference Europe
	The European run of the ELC.

	Linaro
 Connect
	The event Linaro uses to bring together its members and
 developers.

	AnDevCon
	The main app developer conference. Also has some platform
 talks.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	2.3/Gingerbread (see Gingerbread, Android 2.3/)
	
	3G, support for, Features and Characteristics
	
	4.0/Ice-Cream Sandwich (see Ice-Cream Sandwich, Android 4.0/)
	
	4.2/Jelly Bean (see see JellyBean, Android 4.2/)
	

A
	accelerometer, support for, Features and Characteristics
	
	access enforcement, using URIs, Framework Intro
	
	ACP (Android Compatibility Program), Branding Use, Hardware and Compliance Requirements–Updatable software
	
	acquire() method, Service Manager and Binder Interaction
	
	activities, as Android component, Android Concepts
	
	Activity Manager, A Service Example: the Activity Manager–A Service Example: the Activity Manager, logcat, Input methods, am
	
	adb (Android debug bridge)
		command-line tool, Logger
	
	connecting to USB target using commands, Development Setup
	
	device connection and status, Device Connection and Status–Device Connection and Status
	
	filesystem commands, Filesystem Commands–State-Altering Commands
	
	local commands, Basic Local Commands–Device Connection and Status
	
	main flags, parameters, and environment
 variables, Main Flags, Parameters, and Environment Variables–Basic Local Commands
	
	setting up, Evaluation Boards
	
	state-altering commands, State-Altering Commands
	
	theory of operation, Theory of Operation–Theory of Operation
	
	tunneling PPP, Tunneling PPP
	
	using in AOSP, Using the Android Debug Bridge (ADB)–Using the Android Debug Bridge (ADB)
	

	address bus, Memory Layout and Mapping, Memory Layout and Mapping
	
	add_lunch_combo() function, envsetup.sh
	
	ADT (Android Development Tools) plugin, App Development Tools
	
	Affero-licensed FDroid Repository, Google’s Own Android Apps
	
	.aidl files, IDL
 stored in, Remote procedure calls (RPCs)
	
	aidl tool, Remote procedure calls (RPCs), Binder
	
	alarm driver, Alarm–Alarm
	
	AlarmManager class, Alarm
	
	ALSA drivers, Android’s General Approach
	
	am command, am–am
	
	“Anatomy of contemporary
 GSM cellphone hardware” (Welte), The Baseband Processor
	
	Android
		about developers, Preface–Preface
	
	architecture vs. Linux, Overall Architecture
	
	characteristics, Features and Characteristics–Features and Characteristics
	
	daemons, Daemons–Command-Line Utilities
	
	development model, Development Model–Feature Inclusion, Roadmaps, and New Releases
	
	development setup and tools, Development Setup and Tools
	
	ecosystem, Ecosystem–Ecosystem
	
	features, Features and Characteristics–Features and Characteristics
	
	finding drivers, Low-Memory Killer
	
	getting to work on embedded system, Getting “Android”–Getting “Android”
	
	hacking and customizing, Getting “Android”
	
	hardware
		compliance requirements and, Hardware and Compliance Requirements–Updatable software
	
	support for, Adding Support for New Hardware–Caveats and Recommendations
	
	support of, Android’s General Approach–Android’s General Approach
	

	history of, History–Features and Characteristics
	
	legal framework, Legal Framework–Mobile Patent Warfare
	
	libraries, Libraries–Init
	
	resources for information about, Resources–Conferences and Events
	

	Android 3.x/Honeycomb, Feature Inclusion, Roadmaps, and New Releases, Getting “Android”
	
	Android Compatibility Program (ACP), Branding Use, Hardware and Compliance Requirements–Updatable software
	
	Android debug bridge (adb)
		command-line tool, Logger
	
	connecting to USB target using commands, Development Setup
	
	device connection and status, Device Connection and Status–Device Connection and Status
	
	filesystem commands, Filesystem Commands–State-Altering Commands
	
	local commands, Basic Local Commands–Device Connection and Status
	
	main flags, parameters, and environment
 variables, Main Flags, Parameters, and Environment Variables–Basic Local Commands
	
	remote commands, Basic Remote Commands–Filesystem Commands
	
	state-altering commands, State-Altering Commands–Controlling the emulator
	
	theory of operation, Theory of Operation–Theory of Operation
	
	tunneling PPP, Tunneling PPP
	
	using in AOSP, Using the Android Debug Bridge (ADB)–Using the Android Debug Bridge (ADB)
	

	Android Developers Guide (Google), Using the Android Debug Bridge (ADB), Mastering the Emulator
	
	Android Developers website, Learning How to Embed Android
	
	Android Development Tool (ADT) plug-in, Developer tool compatibility, App Development Tools
	
	Android Inc., History
	
	Android Market (see Google Play)
	
	Android Open Source Project (AOSP) (see AOSP (Android Open Source Project))
	
	Android Platform
		AOSP and, Getting “Android”
	
	requirement, Getting “Android”–Getting “Android”
	

	Android Runtime, Core Building Blocks–Core Building Blocks
	
	“Android Simulator
 Environment” (website post), Configuration
	
	Android Software Development Kit (SDK)
		accessing, App Development Tools
	
	building for Mac OS, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	building for Windows, Building the SDK for Linux and Mac OS
	

	Android.mk files, Comparison with Other Build Systems, Comparison with Other Build Systems, Module Build Templates–Module Build Templates
	
	android:persistent, Persistent apps
	
	Androidisms, merging into mainline, Wakelocks–Low-Memory Killer
	
	Androidized kernels, Overall Architecture–Linux Kernel
	
	ANDROID_LOG_TAGS variable, Dumping the logs, logcat
	
	anonymous shared memory (ashmem), Anonymous Shared Memory (ashmem)
	
	ANR (Application Not Responding) dialog box, A Service Example: the Activity Manager
	
	AOSP (Android Open Source Project)
		Android Platform and, Getting “Android”
	
	basic hacks, Basic AOSP Hacks–Adding a Native Library
	
	build environment for, Development Setup and Tools
	
	build system setup, Build System Setup–Build System Setup
	
	building Android, Building Android–Building Android
	
	building without framework, Kick-Starting the Framework
	
	coexisting with legacy Linux user-space, Legacy User-Space–Moving Forward
	
	communication between glibc-based stack and, Theory of Operation
	
	development host setup, Development Host Setup
	
	device support, Device Support Details–Native User-Space
	
	generated libraries, Libraries–Libraries
	
	getting, Getting the AOSP–Getting the AOSP
	
	GPL requirements in, Code Licenses
	
	hardware requirements for running, Hardware and Compliance Requirements
	
	inside, Inside the AOSP–Inside the AOSP
	
	legacy Linux user-space merging with, Theory of Operation
	
	logging within, Logger
	
	mastering emulator, Mastering the Emulator–Mastering the Emulator
	
	modifying, Features and Characteristics
	
	packages, Stock AOSP Packages–Stock AOSP Packages
	
	running Android, Running Android–Running Android
	
	submitting fixes to code, Differences From “Classic” Open Source Projects
	
	trimming size of, Trimming Packages–Trimming Packages
	
	using adb, Using the Android Debug Bridge (ADB)–Using the Android Debug Bridge (ADB)
	

	AP (Application Processor), in system
 architecture, The Baseband Processor
	
	Apache Harmony project, IBM and, Oracle versus Google
	
	Apache License 2.0 (ASL) licensing, Code Licenses, Branding Use
	
	API
		in application framework, Features and Characteristics
	
	updating, Updating the API–Updating the API
	

	Apkudo, testing apps on devices at, App Development Tools
	
	app developers, view of Android, App Developer’s View–Native Development
	
	app development tools, App Development Tools–App Development Tools
	
	app overlay, adding, Adding an App Overlay–Adding a Native Tool or Daemon
	
	app, adding, Adding a Device–Adding an App
	
	Apple, mobile patent issues, Mobile Patent Warfare
	
	application components, Android Concepts–Components
	
	application framework, Android
		APIs in, Features and Characteristics
	
	SUB1, Features and Characteristics
	

	Application Not Responding (ANR) dialog box, A Service Example: the Activity Manager
	
	Application Processor (AP), in system
 architecture, The Baseband Processor
	
	apps startup, Apps Startup–APPWIDGET_UPDATE intent
	
	APPWIDGET_UPDATE intent, APPWIDGET_UPDATE intent
	
	architecture
		Binder as cornerstone of, Binder
	
	build system
		about, Architecture–Configuration
	
	cleaning, Cleaning
	
	configuration of, Configuration–Configuration
	
	envsetup.sh, envsetup.sh–envsetup.sh
	
	function definitions, Function Definitions–Main Make Recipes
	
	main make recipes, Main Make Recipes–Main Make Recipes
	
	module build templates, Cleaning–Module Build Templates
	
	output, Output–Output
	

	overview of, Overall Architecture–Overall Architecture, Inside the AOSP
	
	system, Hardware Primer–Connectivity
	

	ARCH_ARM_HAVE_* variables, Configuration
	
	ashmem (anonymous shared memory), Anonymous Shared Memory (ashmem)
	
	asInterface(), Calling the System Service
	
	ASL (Apache License 2.0) licensing, Code Licenses–Branding Use
	
	Audio Flinger, reliance on ashmem, Anonymous Shared Memory (ashmem)
	
	autosleep mechanisms, Wakelocks, Wakelocks
	

B
	backing up data, bmgr–bmgr
	
	Backup Manager service, bmgr
	
	Baseband Processor (BP), in system architecture, The Baseband Processor–Core Components
	
	battery-powered device, managing, Core Components
	
	BeagleBoard, Using the Android Debug Bridge (ADB), Expansion, Development, and Debugging
	
	Bhoj, Vishal, Linux Kernel
	
	Binder
		about, Binder–Binder
	
	against glibc based stacks, Theory of Operation
	
	as RPC/IPC mechanism, Binder
	
	calling system services through, Calling the System Service–Calling the System Service
	
	developers using aidl tool to, Binder
	
	interaction and Service Manager, Service Manager and Binder Interaction–Service Manager and Binder Interaction
	
	OpenBinder Documentation, Binder
	
	using through dev/binder, Remote procedure calls (RPCs)
	

	Binder driver, merging into staging tree, Binder
	
	Bionic
		building legacy code against, Basics, Theory of Operation
	
	BusyBox linking against, Caveats and Pending Issues
	
	dynamic linker, linker
	

	Bird, Tim, Using the Android Debug Bridge (ADB)
	
	Bitbar’s Testdroid products, testing apps on devices
 at, App Development Tools
	
	Bluetooth, support for, Features and Characteristics
	
	bmgr, bmgr–bmgr
	
	BoardConfig.mk file, Configuration
	
	boot animation, ueventd, Boot Animation–Disabling the boot animation
	
	boot logo, Boot Logo–Boot Logo
	
	bootanimation.zip, bootanimation.zip
	
	BOOTCLASS PATH variable, Core Building Blocks
	
	BOOT_COMPLETED intent, BOOT_COMPLETED intent
	
	Bornstein, Dan, Dalvik and Android’s Java
	
	BP (Baseband Processor), in system architecture, The Baseband Processor–Core Components
	
	branding elements, Branding Use
	
	Brin, Sergey, History
	
	Brisset, Fabien, Expansion, Development, and Debugging
	
	broadcast receivers, as Android component, Components
	
	Brown, Martin “Improve collaborative build times with
 ccache”, envsetup.sh
	
	browsers
		connecting to port 80 on Android device using, Using the Combined Stacks–Using the Combined Stacks
	
	WebKit-based, Features and Characteristics
	

	BSD license, Code Licenses, Code Licenses
	
	bug report, adb, Getting a bug report–Getting a bug report
	
	build commands, seeing, Seeing the Build Commands–Seeing the Build Commands
	
	build environment, Google supported, Development Setup and Tools
	
	build recipes, Build Recipes–Basic AOSP Hacks
	
	build system
		about, The Build System
	
	AOSP hacks in, Basic AOSP Hacks–Adding a Native Library
	
	architecture
		about, Architecture–Configuration
	
	cleaning, Cleaning
	
	configuration of, Configuration–Configuration
	
	envsetup.sh, envsetup.sh–envsetup.sh
	
	function definitions, Function Definitions–Main Make Recipes
	
	main make recipes, Main Make Recipes–Main Make Recipes
	
	module build templates, Cleaning–Module Build Templates
	
	output, Output–Output
	

	build recipes, Build Recipes–Basic AOSP Hacks
	
	comparison with other build systems, Comparison with Other Build Systems–Comparison with Other Build Systems
	
	configuring, Building Android–Building Android
	
	creating and customizing default list of packages, Customizing the Default Lists of Packages–Trimming Packages
	
	design background of, Comparison with Other Build Systems
	
	filesystem and, The Build System and the Filesystem–Default rights and ownership
	
	reuse large legacy software packages in, Basics
	
	setup, Build System Setup–Build System Setup
	

	Building Embedded Linux Systems (Yaghmour), Learning How to Embed Android, Building Android, Building Out of Tree, Theory of Operation
	
	Buildroot, Basics, Moving Forward
	
	BUILD_* macros, Output
	
	BUILD_ENV_SEQUENCE_NUMBER variable, Configuration
	
	BusyBox
		connecting to port 80 on Android device, Using the Combined Stacks–Using the Combined Stacks
	
	linking against Bionic, Caveats and Pending Issues
	
	providing init, Init
	
	shell session with Android’s shell and Toolbox’s commands
 in, Using the Combined Stacks–Using the Combined Stacks
	
	using instead of Android shell, Merging with the AOSP–Merging with the AOSP
	
	vs. Toolbox, Toolbox, Caveats and Pending Issues–Caveats and Pending Issues
	

C
	C/C++
		interacting with HAL modules, Android’s General Approach
	
	vs. Java, Dalvik and Android’s Java
	

	camera
		component in SoC, What’s in a System-on-Chip (SoC)?
	
	support for, Features and Characteristics
	

	Canonical, Build System Setup
	
	ccache (Compiler Cache), envsetup.sh
	
	CDD (Compliance Definition Document), Hardware and Compliance Requirements–Updatable software, Real-World Interaction
	
	check_prereq, check_prereq
	
	clean, Cleaning
	
	CLEAR_VARS, Module Build Templates
	
	Code Licenses, Code Licenses–Code Licenses
	
	command line
		adb tool, Logger
	
	Android, Android’s Command Line–Framework Utilities and Daemons
	
	utilities, Command-Line Utilities
	

	commands and utilities
		command line, schedtop–Framework Utilities and Daemons
	
	framework
		bmgr, bmgr–bmgr
	
	Dalvik Utilities, Dalvik Utilities–dexdump
	
	dumpstate, dumpstate–dumpstate
	
	dumpsys, dumpsys–dumpsys
	
	ime command, svc–ime
	
	input command, input–input
	
	monkey, monkey–monkey
	
	pm command, am–svc
	
	rawbu, rawbu–rawbu
	
	service, Utilities and Commands–service
	
	stagefright command, stagefright
	
	svc command, svc–svc
	

	compass, support for, Features and Characteristics
	
	Compliance Definition Document (CDD), Hardware and Compliance Requirements–Updatable software, Real-World Interaction
	
	Compliance Test Suite (CTS), Hardware and Compliance Requirements–Hardware and Compliance Requirements, Updatable software, Main Make Recipes
	
	component lifecycles, Component lifecycle
	
	components, Android Concepts–Components
	
	concepts, Android, Android Concepts–Remote procedure calls (RPCs)
	
	connectivity, in system architecture, Connectivity
	
	console_init_action(), ueventd
	
	content providers, as Android component, Components
	
	Copy-on-Write (COW), System Startup
	
	core components, in system architecture, Core Components–Core Components
	
	COW (Copy-on-Write), System Startup
	
	CPUs
		address bus in, Memory Layout and Mapping, Memory Layout and Mapping
	
	handling SoCs, What’s in a System-on-Chip (SoC)?–What’s in a System-on-Chip (SoC)?
	

	crespo, Configuration
	
	croot command, envsetup.sh
	
	CTS (Compliance Test Suite), Hardware and Compliance Requirements–Hardware and Compliance Requirements, Updatable software, Main Make Recipes, Building the CTS–Building the NDK
	
	CyanogenMod project, A Word on the Open Handset Alliance
	

D
	D-Bus method, Loading and Interfacing Methods
	
	daemons, Daemons–Command-Line Utilities, Adding a Native Tool or Daemon, schedtop–Framework Utilities and Daemons, Support Daemons–Other Support Daemons
	
	Dalvik Debug Monitor Server (ddms) libraries, Theory of Operation, Dumping the logs
	
	Dalvik Virtual Machine
		about, Features and Characteristics
	
	Android’s Java and, Dalvik and Android’s Java
	
	global properties, Core Building Blocks
	
	in framework, Core Building Blocks–Core Building Blocks
	
	JIT code cache, Anonymous Shared Memory (ashmem), Running Android
	
	starting up, dvz
	
	utilities, Dalvik Utilities–dexdump
	
	vs. JVM, Dalvik and Android’s Java–Dalvik and Android’s Java
	

	dalvikvm command, dalvikvm–dalvikvm
	
	Danger Inc., development of Sidekick phone, History
	
	/data directory, Filesystem Layout, Output, /data–SD Card
	
	data storage options, Framework Intro
	
	data, backing up, bmgr–bmgr
	
	ddms (Dalvik Debug Monitor Server) libraries, Theory of Operation, Dumping the logs
	
	debuggerd, netcfg
	
	debugging components
		host-target debug setup, Development Setup–Development Setup
	
	in SoC, What’s in a System-on-Chip (SoC)?
	
	in system architecture, Expansion, Development, and Debugging–Expansion, Development, and Debugging
	

	debugging, Dalvik, Dalvik debugging
	
	default droid build, Build Recipes
	
	default properties, vet, Adding a Device
	
	/dev nodes method, Loading and Interfacing Methods
	
	dev struct, initializing, The HAL Module
	
	dev/binder, Remote procedure calls (RPCs), Binder
	
	development application tools, App Development Tools
	
	development components, in system architecture, Expansion, Development, and Debugging–Expansion, Development, and Debugging
	
	development environment, Android, Features and Characteristics
	
	development setup
		hardware components in, Development Setup–Development Setup
	

	development setup and tools, Development Setup and Tools, Development Host Setup
	
	device support details, Device Support Details–Native User-Space
	
	device, adding custom, Adding a Device–Adding a Device
	
	DEVICE_PACKAGE_OVERLAYS variable, Adding a Device, Adding an App Overlay
	
	Dex Optimization, Dex Optimization–Dex Optimization
	
	dexdump command, dexdump–dexdump
	
	display, in SoC, What’s in a System-on-Chip (SoC)?
	
	dlopen() method
		hardcoded, Loading and Interfacing Methods–Native User-Space
	
	loading through HAL, Loading and Interfacing Methods, Device Support Details–Native User-Space, The Basics, The HAL and Its Extension
	
	rild using, rild
	

	DMA, in SoC, What’s in a System-on-Chip (SoC)?
	
	driver operation, ioctl() as, ioctl
	
	drivers, finding Android, Low-Memory Killer
	
	droid, Build Recipes
	
	DSP, in SoC, What’s in a System-on-Chip (SoC)?
	
	dump() function, Service Manager and Binder Interaction
	
	dump() method, dumpsys
	
	dumpstate, dumpstate–dumpstate
	
	dumpsys, dumpsys–dumpsys
	
	dvz command, dvz
	

E
	Eclipse, App Development Tools, System Services, Adding a Device
	
	EDGE, support for, Features and Characteristics
	
	embedded Multi- MediaCard (eMMC) chips, Core Components, Filesystem
	
	embedding Android, about, Preface–Preface
	
	eMMC (embedded Multi- MediaCard) chips, Core Components, Filesystem
	
	emulator, Building Android
		(see also QEMU-based emulator)
	
	adb
		controlling, Controlling the emulator–Controlling the emulator
	
	interacting with, Theory of Operation
	

	mastering, Mastering the Emulator–Mastering the Emulator
	
	starting, Running Android
	
	vs. QEMU-based emulator, Mastering the Emulator
	
	vs. simulator, Configuration
	

	enhancements, submitting, Differences From “Classic” Open Source Projects
	
	envsetup.sh, envsetup.sh–envsetup.sh
	
	EPOLLWAKEUP, Wakelocks
	
	Ethernet connections, Expansion, Development, and Debugging–Expansion, Development, and Debugging, Development Setup
	
	evaluation boards, Evaluation Boards–Evaluation Boards
	
	EventLog class, Logger
	
	expand(), service
	
	expansion components, in system architecture, Expansion, Development, and Debugging–Expansion, Development, and Debugging
	
	expansion headers, Expansion, Development, and Debugging
	
	explicit intents, Intents–Intents
	
	external directory, Inside the AOSP
	

F
	Federal Communications Commission (FCC), certification of
 SDR devices, The Baseband Processor
	
	filesystem
		adb commands, Filesystem Commands–State-Altering Commands
	
	build system and, The Build System and the Filesystem–Default rights and ownership
	
	native user space, Native User-Space–SD Card
	

	Filesystem Hierarchy Standard (FHS), Filesystem Layout, Basics
	
	filesystem layout, Filesystem Layout–Libraries
	
	FIRST_CALL_TRANSACTION variable, service
	
	forward, connection types of adb, Port forwarding–Dalvik debugging
	
	framework
		about, Framework Intro–Framework Intro, Android Framework
	
	apps startup, Apps Startup–APPWIDGET_UPDATE intent
	
	boot animation, Boot Animation–Disabling the boot animation
	
	building AOSP without, Kick-Starting the Framework
	
	building blocks of, Core Building Blocks–Core Building Blocks
	
	daemons, Support Daemons–Other Support Daemons
	
	Dex Optimization, Dex Optimization–Dex Optimization
	
	Hardware Abstraction Layer, Hardware Abstraction Layer–Hardware Abstraction Layer
	
	system services in, System Services–System Services
	
	utilities and commands, Utilities and Commands–dexdump
		am command, am–am
	
	bmgr, bmgr–bmgr
	
	Dalvik Utilities, Dalvik Utilities–dexdump
	
	dumpstate, dumpstate–dumpstate
	
	dumpsys, dumpsys–dumpsys
	
	ime command, svc–ime
	
	input command, input–input
	
	monkey, monkey–monkey
	
	pm command, am–svc
	
	rawbu, rawbu–rawbu
	
	service, Utilities and Commands–service
	
	stagefright command, stagefright
	
	svc command, svc–svc
	

	full-eng combo, Building Android, Adding a Device
	
	function definitions, build system architecture, Function Definitions–Main Make Recipes
	
	FUSE (Filesystem in User SpacE), Core Components
	

G
	game developers, NDK for, Native Development
	
	generic-eng combo, Building Android, envsetup.sh
	
	GetByteArrayElements(), The System Service
	
	getprop command, Global properties
	
	getProperty(), Core Building Blocks
	
	getService(), Calling the System Service
	
	getSystemService(), Service Manager and Binder Interaction, Calling the System Service, Calling the System Service, Calling the System Service, Caveats and Recommendations
	
	GID (Group Identifier), Framework Intro
	
	Gingerbread, Android 2.3/
		Android code in, Inside the AOSP–Inside the AOSP
	
	availability, Development Model
	
	build environment for, Development Setup and Tools
	
	default init.rc files, Default init.rc Files–init.rc
	
	function definitions in, Function Definitions
	
	generic-eng combo in, Building Android
	
	shell session with Android’s shell and Toolbox’s commands
 in, Merging with the AOSP
	
	simulator, Configuration
	
	Status bar in, Internals Primer
	
	stock apps in, Stock AOSP Packages, Stock AOSP Packages
	
	time to build, Building Android
	
	Toolbox commands in, Using the Combined Stacks
	
	variables set by lunch in, envsetup.sh
	

	git rebase command, Androidized kernel using, Linux Kernel
	
	git web interface, Getting the AOSP–Getting the AOSP
	
	GitHub website, Expansion, Development, and Debugging
	
	glibc library
		about, Basics
	
	BusyBox linking against, Caveats and Pending Issues
	
	installing, Using the Combined Stacks
	

	glibc-based stacks, communication between AOSP and, Theory of Operation
	
	global properties, Configuration language, Global properties, Global Properties–/data/property
	
	GNU autotools kernel style, Comparison with Other Build Systems
	
	GNU GPLv2 license, Code Licenses–Code Licenses
	
	GNU make, Comparison with Other Build Systems
	
	godir command, envsetup.sh
	
	Goldfish, Using the Android Debug Bridge (ADB)
	
	Google
		Android Developers Guide, Using the Android Debug Bridge (ADB), Mastering the Emulator
	
	apps owned by, Google’s Own Android Apps
	
	aquiring Android Inc., History
	
	architecture overview from, Overall Architecture
	
	build forms, Building Android
	
	developing in, Preface–Preface, Development Model
	
	Initializing a Build Environment, Development Host Setup, Inside the AOSP
	
	online documentation to set up application development
 environment, Development Setup and Tools
	
	right to decline participation in Android
 ecosystem, Hardware and Compliance Requirements
	
	vs. Oracle, Oracle versus Google–Oracle versus Google
	

	Google Play
		apps available through, Features and Characteristics, Ecosystem
	
	marketing apps outside of, Google’s Own Android Apps
	

	Gosling, James, Oracle versus Google–Oracle versus Google, Dalvik and Android’s Java
	
	GPL-licensed components, Code Licenses–Code Licenses, Code Licenses
	
	GPS, support for, Features and Characteristics
	
	Graphics Processing Units (GPUs), What’s in a System-on-Chip (SoC)?, What’s in a System-on-Chip (SoC)?
	
	Groklaw website, Oracle versus Google
	
	Group Identifier (GID), Framework Intro
	
	grouper, Configuration
	
	GSM telelphony, support for, Features and Characteristics
	
	GStreamer, Features and Characteristics
	

H
	Hackborn, Dianne, Binder
	
	hacks, basic AOSP, Basic AOSP Hacks–Adding a Native Library
	
	HAL (Hardware Abstraction Layer)
		audio support for, Android’s General Approach
	
	C/C++ interacting with, Android’s General Approach
	
	definitions with hardware, The Basics
	
	device manufacturers providing, Features and Characteristics
	
	dlopen() method-loading through, Loading and Interfacing Methods, Device Support Details–Native User-Space, The Basics, The HAL and Its Extension
	
	extension, The HAL and Its Extension–The HAL and Its Extension
	
	framework, Hardware Abstraction Layer–Hardware Abstraction Layer
	
	vs. loadable kernel modules, Loading and Interfacing Methods
	

	HAL modules
		to support hardware types, The HAL Module–The HAL Module
	

	hardware
		compliance requirements and, Hardware and Compliance Requirements–Updatable software
	
	support, Hardware Support–Native User-Space, Adding Support for New Hardware–Caveats and Recommendations
	

	Hardware Abstraction Layer (HAL) (see HAL (Hardware Abstraction Layer))
	
	hardware components
		development setup, Development Setup
	
	evaluation boards, Evaluation Boards–Evaluation Boards
	
	for memory layout and mapping, Memory Layout and Mapping–Development Setup
	
	inside SoC, What’s in a System-on-Chip (SoC)?–What’s in a System-on-Chip (SoC)?
	
	system architecture, Hardware Primer–Connectivity
	

	High-Resolution Timers (HRT), alarm driver and, Alarm
	
	Hjønnevåg, Arve, Binder
	
	hmm command, envsetup.sh
	
	home screen, ueventd, Home screen–Home screen
	
	Honeycomb, Android 3.x/, Feature Inclusion, Roadmaps, and New Releases, Getting “Android”
	
	host-target debug setup, Development Setup–Development Setup
	
	HRT (High-Resolution Timers), alarm driver and, Alarm
	
	httpd daemon, Using the Combined Stacks
	
	hw_get_module(), Loading and Interfacing Methods, The System Service, The System Service
	

I
	“I, Robot: The Man Behind the Google Phone”
 (Markoff), History
	
	IBM, Apache Harmony project and, Oracle versus Google
	
	Ice-Cream Sandwich, Android 4.0/
		library prelinking in, Adding a Native Library
	
	support for Ethernet, Expansion, Development, and Debugging
	

	IDL (Interface Definition Language), Remote procedure calls (RPCs)
	
	ime command, svc–ime
	
	IMemory interface, Anonymous Shared Memory (ashmem)
	
	IMEs (Input Method Editors), Stock AOSP Packages
	
	implicit intents, Intents
	
	“Improve
 collaborative build times with ccache” (Brown), envsetup.sh
	
	in-tree, building recursively, Building Recursively, In-Tree–Basic AOSP Hacks
	
	include directive, Module Build Templates
	
	inherit-product function, Adding a Device
	
	inherit-product makefile function, Assembling the Final PRODUCT_PACKAGES
	
	init, Default init.rc Files
		(see also .rc files, init)
	
	about, Init
	
	boot logo, Boot Logo–Boot Logo
	
	configuration files, Configuration Files–Board-specific .rc files
	
	configuration of, Init–Configuration language
	
	global properties, Global Properties–/data/property
	
	normal vs. Android, Configuration Files–Board-specific .rc files
	
	shell scripts and, Board-specific .rc files
	
	theory of operation, Theory of Operation–Theory of Operation
	
	ueventd, ueventd–ueventd
	

	init boot logo, ueventd
	
	/init directory, Output
	
	Initializing a Build Environment (Google), Development Host Setup, Inside the AOSP
	
	init_native(), The System Service, The System Service
	
	input command, input–input
	
	input events, Input events
	
	input method, Input methods
	
	Input Method Editors (IMEs), Stock AOSP Packages
	
	installd, installd–installd
	
	intents
		about, Intents–Intents, am
	
	APPWIDGET_UPDATE, APPWIDGET_UPDATE intent
	
	BOOT_COMPLETED, BOOT_COMPLETED intent
	
	globally defined, Android Concepts
	

	Inter-Process Communication (IPC) mechanism,
 communicating with Binder, Remote procedure calls (RPCs)
	
	Interface Definition Language (IDL), Remote procedure calls (RPCs)
	
	interfacing methods, Loading and Interfacing Methods–Loading and Interfacing Methods
	
	intermediates, Output
	
	Internals, Android
		alarm driver, Alarm–Alarm
	
	anonymous shared memory, Anonymous Shared Memory (ashmem)
	
	AOSP packages, Stock AOSP Packages
	
	app developers view of, App Developer’s View–Native Development
	
	architecture overview, Overall Architecture–Overall Architecture
	
	Binder interaction and Service Manager, Service Manager and Binder Interaction–Service Manager and Binder Interaction
	
	Binder mechanism, Binder–Binder
	
	Dalvik Virtual Machine vs. JVM, Dalvik and Android’s Java–Dalvik and Android’s Java
	
	hardware support, Hardware Support–Native User-Space, Adding Support for New Hardware–Caveats and Recommendations
	
	Linux kernel, Overall Architecture–Linux Kernel
	
	logging, Logger–Logger
	
	low-memory killer, Low-Memory Killer–Low-Memory Killer
	
	native-user space environment, Native User-Space–Command-Line Utilities
	
	paranoid networking, Other Notable Androidisms
	
	physical memory driver, Other Notable Androidisms
	
	RAM console, Other Notable Androidisms
	
	system services, System Services–A Service Example: the Activity Manager
	
	system startup, System Startup–System Startup
	
	WakeLock mechanism, Wakelocks–Low-Memory Killer
	

	ioctl(), Binder, Alarm, Android’s General Approach, ioctl–ioctl
	
	ioprio option, System Services
	
	IPC (Inter-Process Communication) mechanism
		RPC/, Remote procedure calls (RPCs)
	
	shared memory as, Anonymous Shared Memory (ashmem)
	

	IStatusBarService interface, service
	
	ITIMER_REAL, Alarm
	

J
	Java
		Dalvik Virtual Machine and Android’s, Dalvik and Android’s Java–Dalvik and Android’s Java
	
	rights to, Oracle versus Google–Oracle versus Google
	
	terminology, Dalvik and Android’s Java
	
	vs. C/C++, Dalvik and Android’s Java
	

	Java ARchives (JAR), Dalvik and Android’s Java
	
	Java Debug Wire Protocol (JDWP), Dalvik debugging
	
	Java Development Kit (JDK), Dalvik and Android’s Java, Build System Setup–Build System Setup
	
	Java Native Interface (JNI), Java Native Interface (JNI), The System Service, The HAL Module
	
	Java Native Interface (Liang), The System Service
	
	Java System Properties, Core Building Blocks
	
	Java Virtual Machine (JVM)
		building Android on, Building Android
	

	Java Virtual Machine (JVM) vs. Dalvic, Dalvik and Android’s Java
	
	JDK (Java Development Kit), Dalvik and Android’s Java, Build System Setup–Build System Setup
	
	JellyBean, Android 4.1/
		build environment for, Development Setup and Tools
	
	libraries, Init
	

	JellyBean, Android 4.2/
		Android code in, Inside the AOSP
	
	build environment for, Development Setup and Tools
	
	BusyBox commands in, Using the Combined Stacks–Using the Combined Stacks
	
	configuring build system results, Building Android–Building Android
	
	default init.rc files, init.rc–init.trace.rc
	
	full-eng combo in, Building Android
	
	function definitions in, Function Definitions
	
	getSystemService() in, Calling the System Service
	
	hmm command, envsetup.sh
	
	prebuilts in, Inside the AOSP
	
	support for Ethernet, Expansion, Development, and Debugging
	
	time to build, Building Android
	

	JIT code cache, Dalvik Virtual Machine, Anonymous Shared Memory (ashmem), Running Android
	
	JNI (Java Native Interface), Java Native Interface (JNI), The System Service, The HAL Module
	
	JTAG, Expansion, Development, and Debugging
	
	JVM (Java Virtual Machine)
		building Android on, Building Android
	

K
	kernel, Manifest file
		(see also Linux kernel)
	
	Androidized, Overall Architecture–Linux Kernel
	
	boot process of, Init
	
	code license for, Code Licenses
	
	features of, Getting “Android”
	
	images, Main Make Recipes
	
	loadable modules, vs. HAL modules, Loading and Interfacing Methods
	
	styles, Comparison with Other Build Systems
	

	kernel boot screen, ueventd
	
	kernel.org, Overall Architecture, Low-Memory Killer
	
	keystore, keystore
	
	Kroah-Hartman, Greg, The Linux Staging Tree (blog
 post), Low-Memory Killer
	

L
	LCD displays, display bridge for, Real-World Interaction
	
	Learning Android (O’Reilly), Preface–Preface, Development Setup and Tools, App Development Tools
	
	legacy Linux user-space
		communication between glibc-based stack and
 AOSP, Theory of Operation
	
	merging with AOSP, Theory of Operation
	

	legal framework, Android, Legal Framework–Mobile Patent Warfare
	
	LessPainful, testing apps on devices at, App Development Tools
	
	LGPL licensed components, Code Licenses
	
	Liang, Sheng, Java Native Interface, The System Service
	
	liblog functions, Logger
	
	libraries, Libraries–Init, Memory Layout and Mapping
	
	library
		adding native, Adding a Native Library–Adding a Native Library
	
	ddms, Theory of Operation–Theory of Operation, Dumping the logs
	
	prelinking, Adding a Native Library
	
	RIL, rild
	

	Linaro
		about, A Word on the Open Handset Alliance
	
	Androidized kernel, Linux Kernel
	
	patches for adding Ethernet functionality, Expansion, Development, and Debugging
	

	linker, linker
	
	Linker method, loaded .so files, Loading and Interfacing Methods, Device Support Details–Native User-Space
	
	Linux
		architecture vs. Android, Overall Architecture
	
	building SDK for, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	commands from Toolbox, Common Linux commands–Common Linux commands
	
	hardware support of, The Linux Approach–The Linux Approach
	
	logging systems vs. Android, Logger
	
	MTD layer, Filesystem
	
	staging tree, Low-Memory Killer
	

	Linux kernel
		Androidization of, Overall Architecture–Linux Kernel
	
	code license for, Code Licenses
	
	handling multicore SoC, What’s in a System-on-Chip (SoC)?
	
	hardware running Android and, Hardware and Compliance Requirements
	
	Out-of-Memory killing mechanisms, Manifest file
	
	requirement, Getting “Android”–Getting “Android”
	

	Linux Kernel Development, 3rd ed. (Love), Linux Kernel
	
	LInux Kernel Mailing List (LKML), Userspace low memory
 killer daemon posted at, Low-Memory Killer
	
	The Linux Staging Tree (blog
 post), Low-Memory Killer
	
	Linux user-space, legacy
		coexisting with AOSP, Legacy User-Space–Moving Forward
	

	Linux user-space, legacy, coexisting with AOSP, Legacy User-Space–Moving Forward
	
	LKML (LInux Kernel Mailing List), Userspace low memory
 killer daemon posted at, Low-Memory Killer
	
	loading methods, Loading and Interfacing Methods–Loading and Interfacing Methods
	
	LOCAL_, prefix, Cleaning, Module Build Templates, Module Build Templates
	
	LOCAL_MODULE variable, Module Build Templates
	
	LOCAL_MODULE_PATH variable, Module Build Templates, The Build System and the Filesystem
	
	LOCAL_MODULE_TAGS variable, Module Build Templates
	
	LOCAL_PACKAGE_NAME variable, Module Build Templates
	
	LOCAL_PATH variable, Module Build Templates–Module Build Templates
	
	LOCAL_PRELINK_MODULE variable, Adding a Native Library
	
	LOCAL_SHARED_LIBRARIES variable, Module Build Templates
	
	LOCAL_SHARED_LIBRARIES, variable, Adding a Native Library
	
	LOCAL_SRC_FILES variable, Module Build Templates
	
	Log class, Logger
	
	logcat command, Logger, Dumping the logs, logcat–logcat
	
	logging
		about, Logger–Logger
	
	Android framework for, Logger–Logger
	
	using Toolbox, Logging
	

	logs, adb, dumping, Dumping the logs–Dumping the logs
	
	logwrapper command, logwrapper
	
	Love, Robert, Linux Kernel Development, 3rd ed., Linux Kernel
	
	low-memory killer, Low-Memory Killer–Low-Memory Killer
	
	Low-Voltage Differential Signaling (LVDS), Real-World Interaction
	
	lunch command, envsetup.sh, envsetup.sh–envsetup.sh
	
	LVDS (Low-Voltage Differential Signaling), Real-World Interaction
	

M
	m and mm commands, envsetup.sh
	
	Mac OS X Lion, building Gingerbread on, Building Android
	
	Mac OS, building SDK for, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	MAIN, sdcard utility, netd
	
	MAIN HEADING, Utilities and Commands–service
	
	main() method, System Startup, Core Building Blocks
	
	make
		clean, Cleaning
	
	recipes, Main Make Recipes–Main Make Recipes
	

	makefile, for building out of tree, Building Out of Tree–Building Out of Tree
	
	man dlopen, The HAL and Its Extension
	
	man page, sh’s, The Shell Up to 2.3/Gingerbread–The Shell Up to 2.3/Gingerbread
	
	manifest file, Manifest file–Manifest file
		repo’s “manifest” file and, Getting the AOSP
	

	marketing apps, Google’s Own Android Apps
	
	Markoff, John, “I Robot: The Man Behind the Google
 Phone”, History
	
	McFadden, Andrew, response to post “Android Simulator
 Environment”, Configuration
	
	Media Service, System Services
	
	mediaserver, System Services–System Services
	
	memory layout and mapping, hardware components for, Memory Layout and Mapping–Development Setup
	
	Memory Management Unit (MMU), Memory Layout and Mapping–Memory Layout and Mapping
	
	menuconfig kernel style, Comparison with Other Build Systems
	
	methods, loading and interfacing, Loading and Interfacing Methods–Loading and Interfacing Methods
	
	Microsoft, mobile patent issues, Mobile Patent Warfare
	
	Miller, Peter “Recursive Make Considered Harmful”, Comparison with Other Build Systems
	
	MirBSD Korn Shell, The Shell Since 4.0/Ice-Cream Sandwich
	
	mmap(), Android’s General Approach, Memory Layout and Mapping
	
	MMU (Memory Management Unit), Memory Layout and Mapping–Memory Layout and Mapping
	
	Mobile Network Operator (MNO), The Baseband Processor
	
	mobile patent issues, Mobile Patent Warfare–Mobile Patent Warfare
	
	module
		build templates, Cleaning–Module Build Templates
	
	build templates list, Module Build Templates–Module Build Templates
	
	building single, Updating the API–Building Out of Tree
	
	definition of, Comparison with Other Build Systems
	

	monkey, monkey–monkey
	
	MTD layer, Linux, Filesystem
	

N
	NAND flash
		embedded systems equipped with, Core Components
	
	vs. eMMC, Filesystem
	

	nandread utility, Toolbox, Other Android-specific commands
	
	Native Development Kit (NDK), Native Development, Main Make Recipes, Building the NDK
	
	native library, adding, Adding a Native Library–Adding a Native Library
	
	native tool, adding, Adding a Native Tool or Daemon
	
	native user-space
		adb (see adb (Android debug bridge))
	
	Android command line tools, Android’s Command Line–Framework Utilities and Daemons
	
	filesystem, Native User-Space–Default rights and ownership
	
	init
		about, Init
	
	boot logo, Boot Logo–Boot Logo
	
	global properties, Global Properties–/data/property
	
	theory of operation, Theory of Operation–Theory of Operation
	
	ueventd, ueventd–ueventd
	

	native-user space
		about, Native User-Space–Command-Line Utilities
	

	NDK (Native Development Kit), Native Development, Main Make Recipes, Building the NDK
	
	NetBSD sh utility, The Shell Up to 2.3/Gingerbread
	
	netcfg utility, netcfg–netcfg
	
	netd, netd–netd
	
	newfs_msdos command, Toolbox, Other Android-specific commands
	
	NFC app, System Services
	
	non-Linux systems, building Android on, Building Android
	
	NOR flash
		embedded systems equipped with, Core Components
	
	vs. eMMC, Filesystem
	

	notify command, Toolbox, notify–schedtop
	

O
	obj/ directories, Output
	
	OHA (Open Handset Alliance), History, A Word on the Open Handset Alliance
	
	On the Go (OTG) connector, Core Components
	
	onCreate() callback, Calling the System Service
	
	OOM (Out-of-Memory)
		adjustments, Global properties
	
	killing mechanism, Manifest file, Low-Memory Killer, Low-Memory Killer
	

	Open Binder project, Binder
	
	open source projects (classic) vs. Android development
 model, Development Model–Differences From “Classic” Open Source Projects
	
	open source software movement, Preface
	
	open() function, The System Service
	
	OpenBinder Documentation, Binder
	
	OpenGL ES, Features and Characteristics
	
	OpenJDK, Build System Setup, Build System Setup
	
	OPERSYSHW_HARDWARE_MODULE_ID type of hardware, The System Service, Calling the System Service
	
	OpersysService class, The System Service
	
	Oracle
		dispute with Canonical, Build System Setup
	

	Oracle vs. Google, Oracle versus Google–Oracle versus Google
	
	OS X Lion, building Gingerbread on, Building Android
	
	OTG (On the Go) connector, Core Components
	
	Out-of-Memory (OOM)
		adjustments, Global properties
	
	killing mechanism, Manifest file, Low-Memory Killer, Low-Memory Killer
	

	output, build, Output–Output
	
	OUT_DIR variable, Configuration
	
	overlays, adding app, Adding an App Overlay–Adding a Native Tool or Daemon
	

P
	Package Manager Service, Core Building Blocks, Dex Optimization–Dex Optimization, am, installd
	
	packages
		trimming, Trimming Packages–Trimming Packages
	

	packages, AOSP, Stock AOSP Packages–Stock AOSP Packages
	
	PacketVideo’s OpenCore framework, Features and Characteristics
	
	Page, Larry, History
	
	PandaBoard, Using the Android Debug Bridge (ADB), Expansion, Development, and Debugging
	
	paranoid networking, Other Notable Androidisms
	
	PCB (Printed Circuit Board), address bus on, Memory Layout and Mapping
	
	performance compatibility requirements, Updatable software
	
	permission system, circumventing, Service-Specific Utilities
	
	permissions and security, Framework Intro–Framework Intro
	
	persistent apps, Input methods
	
	persistent flag, enabling, Caveats and Recommendations
	
	physical memory (pmem) driver, Other Notable Androidisms
	
	physical memory vs. virtual memory, Memory Layout and Mapping–Memory Layout and Mapping
	
	PID (Process Identifier), System Startup
	
	pm command, am–svc
	
	PMIC (Power Management IC), Core Components
	
	port 80, connecting Android device using browser to, Using the Combined Stacks–Using the Combined Stacks
	
	port forwarding, adb, Port forwarding–Dalvik debugging
	
	POSIX SHM vs. Ashmem, Anonymous Shared Memory (ashmem)
	
	Power Management IC (PMIC), Core Components
	
	PPP connection, using adb for, Tunneling PPP
	
	prebuilt directory, Inside the AOSP
	
	Printed Circuit Board (PCB), address bus on, Memory Layout and Mapping
	
	printk(), Logger
	
	Process Identifier (PID), System Startup
	
	processes and threads, Manifest file
	
	PRODUCT_BRAND variable, Adding a Device
	
	PRODUCT_COPY_FILES variable, Adding a Device, Explicitly copying files
	
	PRODUCT_DEVICE variable, Configuration, Adding a Device
	
	PRODUCT_MODEL variable, Adding a Device
	
	PRODUCT_NAME variable, Adding a Device
	
	PRODUCT_PACKAGES variable, Adding a Device–Adding a Device, Adding an App, Adding a Native Tool or Daemon
	
	PRODUCT_PACKAGES, assembling, Assembling the Final PRODUCT_PACKAGES
	
	ps command, Toolbox vs. Busybox, Caveats and Pending Issues–Caveats and Pending Issues
	
	Pundir, Amit, Building Out of Tree–Building Out of Tree
	
	push functionality, Filesystem Commands–Filesystem Commands
	

Q
	QEMU-based emulator, App Development Tools, Building Android, Building Android, Mastering the Emulator
		(see also emulator)
	

	Queru, Jean-Baptiste, Build System Setup, Build System Setup
	

R
	RAM
		console, Other Notable Androidisms
	
	controller in SoC, What’s in a System-on-Chip (SoC)?
	
	location in physical address, Memory Layout and Mapping
	

	rawbu, rawbu–rawbu
	
	.rc files, init
		about, Semantics, Main init.rc–Board-specific .rc files
	
	default
		2.3/Gingerbread, Default init.rc Files–init.rc
	
	4.2/Jelly Bean, init.rc–init.trace.rc
	

	read() function, The System Service, The HAL Module
	
	read_native(), The System Service–The System Service
	
	Real-Time Clock (RTC), Alarm, Core Components
	
	Real-Time OS (RTOS), The Baseband Processor
	
	real-world interaction, in system architecture, Real-World Interaction
	
	reboot command, adb, State-Altering Commands
	
	“Recursive Make
 Considered Harmful” (Miller), Comparison with Other Build Systems
	
	registerService(), Calling the System Service
	
	ReleaseByteArrayElements(), The System Service
	
	Remote Procedure Calls (RPCs), Remote procedure calls (RPCs)
	
	remount, Filesystem Commands
	
	repo tool, Getting the AOSP–Getting the AOSP
	
	Repo, the Android Source Management Tools (blog
 post), Getting the AOSP
	
	RF transceiver, connection to BP, The Baseband Processor
	
	RIL implementations, Device Support Details–Native User-Space
	
	RIL libraries, rild
	
	RIL, Android, The Baseband Processor
	
	rild, rild–rild
	
	root access to devices, Using the Android Debug Bridge (ADB)
	
	root command, adb, State-Altering Commands–Running as root
	
	root directory, The Root Directory–The Root Directory
	
	root filesystem layout, Filesystem Layout–Libraries, Filesystem–Filesystem
	
	rootfs-glibc directory, using, Merging with the AOSP
	
	Rosenkränzer, Bernhard
		building AOSP with OpenJDK, Build System Setup
	
	building recursively, in-tree, Building Recursively, In-Tree
	

	RPCs (Remote Procedure Calls) mechanism, IPC/, Remote procedure calls (RPCs)
	
	RTC (Real-Time Clock), Alarm, Core Components
	
	RTOS (Real-Time OS), The Baseband Processor
	
	Rubin, Andy, History, Development Model
	
	Runtime, Android, Core Building Blocks–Core Building Blocks
	

S
	Safari Books Online, Safari® Books Online
	
	Samba Project, envsetup.sh
	
	Samsung, mobile patent issues, Mobile Patent Warfare
	
	SD card, appearance in filesystem, Filesystem
	
	/sdcard directory, SD Card
	
	SDK (Software Development Kit), Android
		accessing, App Development Tools
	
	building for Linux, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	building for Mac OS, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	building for Windows, Building the SDK for Linux and Mac OS
	

	SDR (Software Defined Radio) devices, The Baseband Processor
	
	security and permissions, Framework Intro–Framework Intro
	
	security model compatibility requirements, Updatable software
	
	sendmail daemon, Using the Combined Stacks
	
	serial (RS-232), Expansion, Development, and Debugging
	
	Service Manager, Binder interaction and, Service Manager and Binder Interaction–Service Manager and Binder Interaction
	
	service-specific utilities, Service-Specific Utilities–stagefright
		am, am–am
	
	bmgr, bmgr–bmgr
	
	ime command, svc–ime
	
	input command, input–input
	
	monkey, monkey–monkey
	
	pm, am–svc
	
	stagefright command, stagefright
	
	svc, svc–svc
	

	servicemanager, as building block of framework, Core Building Blocks
	
	services
		controlling, Controlling services–Controlling services
	

	services, as Android component, Components
		vs.System Server, Binder
	

	setconsole command, Toolbox, smd
	
	setitimer(), Alarm
	
	setProperty(), Core Building Blocks
	
	shared memory, as IPC mechanism, Anonymous Shared Memory (ashmem)
	
	shell
		adb, Basic Remote Commands–Shell, State-Altering Commands
	
	init and, Board-specific .rc files
	
	MirBSD Korn, The Shell Since 4.0/Ice-Cream Sandwich
	
	running from Toolbox, The Shell Since 4.0/Ice-Cream Sandwich–smd
	
	sh’s man page, The Shell Up to 2.3/Gingerbread–The Shell Up to 2.3/Gingerbread
	

	show commands target, adding, Seeing the Build Commands
	
	Sidekick phone, History
	
	SIM card, connection to BP, The Baseband Processor
	
	simulator, Configuration, envsetup.sh
	
	single module, building, Updating the API
	
	sleep(), rild
	
	Slog class, Logger
	
	smd command, Toolbox, smd
	
	Sockets method, Loading and Interfacing Methods, Device Support Details–Native User-Space
	
	SoCs (System-on-Chips)
		about, What’s in a System-on-Chip (SoC)?–What’s in a System-on-Chip (SoC)?
	
	connection to PMIC, Core Components
	
	in system architecture, Hardware Primer–Typical System Architecture, Expansion, Development, and Debugging
	
	vendors for, Hardware Abstraction Layer–Hardware Abstraction Layer
	

	software compatibility testing requirements, Updatable software
	
	Software Defined Radio (SDR) devices, The Baseband Processor
	
	Software Development Kit (SDK), Android
		building for Linux, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	building for Mac OS, Building the SDK for Linux and Mac OS–Building the SDK for Linux and Mac OS
	
	building for Windows, Building the SDK for Linux and Mac OS
	

	SQLite database, Features and Characteristics
	
	StageFright
		GStreamer replacing, Features and Characteristics
	
	support for media formats through, Features and Characteristics
	

	stagefright command, stagefright
	
	staging tree, Linux
		Android and, Low-Memory Killer
	
	Binder driver merged into, Binder
	

	startActivity() method, A Service Example: the Activity Manager
	
	startViaZygote() method, A Service Example: the Activity Manager
	
	start_kernel() function, System Startup
	
	state-altering adb commands, State-Altering Commands–Controlling the emulator
	
	storage, component in SoC, What’s in a System-on-Chip (SoC)?
	
	Sun Java Virtual Machine (VM)
		about, Features and Characteristics
	
	building Android on, Building Android
	

	Sun Microsystems, acquisiton by Oracle, Oracle versus Google–Oracle versus Google
	
	Surface Flinger
		as first system service, System Services
	
	reliance on ashmem, Anonymous Shared Memory (ashmem)
	

	svc command, svc–svc
	
	Swetland, Brian, Code Licenses, Filesystem
	
	switch-case, Toolbox
	
	switching connection type, adb, Running as root–Switching connection type
	
	Sysfs entries method, Loading and Interfacing Methods
	
	syslog, Logger
	
	system architecture, Hardware Primer–Connectivity
	
	/system directory, Filesystem Layout, Output, /system–/system
	
	System Server
		about, System Services
	
	in framework, System Services–System Services
	
	Java code in, System Services
	
	system services running within, The Basics
	
	vs. services running in services
 component, Components, Binder
	

	system services
		about, System Services–A Service Example: the Activity Manager
	
	calling, Calling the System Service–Calling the System Service
	
	implementing new, The System Service–The System Service
	
	in framework, System Services–System Services
	
	starting, Starting the System Service–Caveats and Recommendations
	
	to support hardware types, The Basics
	

	system startup, System Startup–System Startup
	
	System V IPC mechanisms
		ashmem code and, Anonymous Shared Memory (ashmem)
	
	available in glibc, Theory of Operation
	

	System-on-Chips (SoCs)
		about, What’s in a System-on-Chip (SoC)?–What’s in a System-on-Chip (SoC)?
	
	connection to PMIC, Core Components
	
	in system architecture, Hardware Primer–Typical System Architecture, Expansion, Development, and Debugging
	
	vendors for, Hardware Abstraction Layer–Hardware Abstraction Layer
	

	System.getProperty(), Core Building Blocks
	
	System.setProperty(), Core Building Blocks
	
	/system/bin/system_server, System Services
	
	SystemClock class, Alarm
	

T
	TARGET_ARCH_VARIANT variable, Configuration
	
	TARGET_BUILD_TYPE variable, Configuration
	
	TARGET_BUILD_VARIANT variable, Configuration, Running as root
	
	TARGET_DEVICE variable, Configuration
	
	TARGET_PRODUCT variable, Configuration–Configuration, Configuration
	
	TARGET_SHELL variable, The Shell Since 4.0/Ice-Cream Sandwich
	
	TARGET_TOOLS_PREFIX variable, Configuration
	
	telephony support
		about, The Baseband Processor
	
	GSM, Features and Characteristics
	

	telnet, using emulator console to connect to, Controlling the emulator
	
	templates, module build, Cleaning–Module Build Templates
	
	testing apps on devices, websites for, App Development Tools
	
	threads and processes, Manifest file
	
	Toolbox
		about, Toolbox
	
	commands in Jelly Bean, Using the Combined Stacks–Using the Combined Stacks
	
	running shell from, The Shell Since 4.0/Ice-Cream Sandwich–smd
	
	vs. Busybox, Toolbox, Caveats and Pending Issues–Caveats and Pending Issues
	

	Torvalds, Linus, Code Licenses, Linux Kernel
	
	tree
		building out of, Building Out of Tree–Building Out of Tree
	
	building recursively in-, Building Recursively, In-Tree–Basic AOSP Hacks
	

U
	Ubuntu 10.04, 64-bit, as Google supported build
 environment, Development Setup and Tools
	
	udev events, Global properties, Development Host Setup
	
	ueventd, ueventd–ueventd
	
	UI/Application Exerciser Monkey (website), monkey
	
	UID (Unique Identifier), Framework Intro
	
	Unix domain sockets, netcfg, rild–rild
	
	URIs (Universal Resource Identifiers), access enforcement
 using, Framework Intro
	
	USB
		connecting to target, Development Setup–Development Setup
	
	controller in SoC, What’s in a System-on-Chip (SoC)?
	
	host, Expansion, Development, and Debugging
	

	User Interface (UI), Framework Intro
	
	user-facing system, Android as, Real-World Interaction
	
	user-space environment, native, Native User-Space–Command-Line Utilities
	
	Userspace low memory killer daemon, Low-Memory Killer
	
	USE_CCACHE variable, envsetup.sh
	
	Using the Android Emulator (posting), Theory of Operation
	
	utilities and commands
		command line, schedtop–Framework Utilities and Daemons
	
	framework, Utilities and Commands–dexdump
		am command, am–am
	
	bmgr, bmgr–bmgr
	
	Dalvik Utilities, Dalvik Utilities–dexdump
	
	dumpstate, dumpstate–dumpstate
	
	dumpsys, dumpsys–dumpsys
	
	ime command, svc–ime
	
	input command, input–input
	
	monkey, monkey–monkey
	
	pm command, am–svc
	
	rawbu, rawbu–rawbu
	
	service, Utilities and Commands–service
	
	stagefright command, stagefright
	
	svc command, svc–svc
	

V
	vet default properties, Adding a Device
	
	vi command, Using the Combined Stacks
	
	virtual filesystems, Filesystem
	
	virtual machine, Dalvik and Android’s Java–Dalvik and Android’s Java
	
	“Virtual Machine
 Showdown” (Shi et al.), Dalvik and Android’s Java
	
	virtual machines, Building Android
		(see also Dalvik Virtual Machine)
	
	building Android on, Building Android
	

	virtual memory vs. physical memory, Memory Layout and Mapping–Memory Layout and Mapping
	
	VM (Sun Java Virtual Machine)
		about, Features and Characteristics
	
	building Android on, Building Android
	

	vold, vold–vold, netd
	

W
	WakeLock mechanism, Wakelocks–Low-Memory Killer, Service Manager and Binder Interaction
	
	web browsers
		connecting to port 80 on Android device using, Using the Combined Stacks–Using the Combined Stacks
	
	WebKit-based, Features and Characteristics
	

	WebKit-based browser, Features and Characteristics
	
	WebView class, using WebKit engine, Features and Characteristics
	
	Welte, Harald, “Anatomy of contemporary GSM cellphone
 hardware”, The Baseband Processor
	
	WiFi, support for, Features and Characteristics
	
	Windows, building SDK for, Building the SDK for Linux and Mac OS
	
	wipe command, Toolbox, Wiping the device
	
	wireless connection technologies, support for, Features and Characteristics
	
	wireless radio technologies, The Baseband Processor
	
	write() function, The System Service, The HAL Module
	

X
	X Window System, Android’s General Approach
	

Y
	YAFFS2-formatted NAND flash partitions, Filesystem
	
	Yaghmour, Karim, Building Embedded Linux Systems, Learning How to Embed Android, Building Android, Building Out of Tree, Theory of Operation
	
	Yocto, Basics, Moving Forward
	

Z
	ZIP files, uncompressed, bootanimation.zip
	
	Zores, Benjamin, Expansion, Development, and Debugging
	
	Zygote daemon, System Startup–System Startup, Core Building Blocks–System Services
	

About the Author
Karim J. Yaghmour is part serial entrepreneur part unrepentant geek. He is the CEO of Opersys Inc., a company providing development and training services on Embedded Android and Embedded Linux, and is most widely known for having authored O'Reilly's Building Embedded Linux Systems — which sold tens of thousands of copies worldwide and has been translated into several different languages.

Karim pioneered the world of Linux tracing by introducing the Linux Trace Toolkit (LTT) in the late '90s. He continued maintaining LTT through 2005 and was joined in this effort by developers from several companies, including IBM, HP, and Intel. LTT users have included: Google, IBM, HP, Oracle, Alcatel, Nortel, Ericsson, Qualcomm, NASA, Boeing, Airbus, Sony, Samsung, NEC, Fujitsu, SGI, RedHat, Thales, Oerlikon, Bull, Motorola, ARM, ST Micro. Other contributions include relayfs and Adeos.

Karim has presented and published as part of a number of peer-reviewed scientific and industry conferences, magazines and online publications, including Usenix, the Linux Kernel Summit, the Embedded Linux Conference, the Android Builders Summit, AnDevCon, the Embedded Systems Conference, the Ottawa Linux Symposium, LinuxJournal, the O'Reilly Network and the Real-Time Linux Workshop.

Colophon
The animal on the cover of Embedded Android is a
 Moorish wall gecko (Tarentola mauritanica), which is a
 species of gecko native to the Western Mediterranean region of Europe and
 North Africa and also found in North America and Asia. It is commonly
 observed on walls in urban environments, mainly in warm coastal areas,
 though it can spread inland, especially in Spain. The adoption of this
 species as a pet has led to populations becoming established in Florida and
 elsewhere.
The Moorish wall gecko is mainly nocturnal or crepuscular, but it is
 also active during the day, especially on sunny days at the end of the
 winter. It lays two almost-spherical eggs twice a year around April and
 June. After 4 months, little salamanquesas of less than
 5 centimeters in length are born. They are slow to mature, taking 4 to 5
 years in captivity.
Adults can measure up to 15 centimeters, including the tail. They have
 a robust body and flat head and their tubercules are enlarged, which give
 the species a spiny, armored appearance. They are brownish gray or brown
 with darker or lighter spots; these colors change in intensity according to
 the light.
The cover image is from Heck’s Nature & Science. The cover font is
 Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is
 Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
 Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Embedded Android

Karim Yaghmour

Editor
Mike Hendrickson

Editor
Andy Oram

	Revision History
	2013-03-11	First release

Copyright © 2013 Karim Yaghmour

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Embedded
 Android, the image of a Moorish wall gecko, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-30T17:02:02-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/httpatomoreillycomsourceoreillyimages1560325.png
System Services

System Server

Java-built Services

Power Manager
Activity Manager
Package Manager
Battery Service
Window Manager
Status Bar
Clipboard Service

C-built Services

Surface Flinger
Sensor Service

Mount Service
Notification Manager
Location Manager
Search Service
Wallpaper Service
Headset Observer

Native Methods for
Java-built Services

Phone App
Phone Service

Media Service

Audio Flinger

Media Player Service
Camera Service
Audio Policy Service

Includes:

- StageFright

- Audio effects

- DRM framework

Hardware Abstraction Layer

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1560340.png
Config and resources

[init.rc
[init.device_name.rc
/initlog.rle

Kernel

Boot logo output
/dev/graphics/fb0

Global properties socket
/dev/socket/property_service

Global properties workspace
/dev/__properties__

starts

Native daemons
- uneventd
-adbd
- servicemanager
-vold
- netd
- debuggerd
- rild

- zygote

- mediaserver

- bootanimation
- dbus-daemon
- bluetoothd

- installd

- keystore

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1560328.png
android Git repositories - Git at Google -

History Bookmarks Tool

) android Git repositories-Gita.

e < - [an googlesource.com -¢| [\ QO
GOOSIQ (Code Review | Generate New Password | Revoke Prior Passwords | Sign in

android Git repositories

o clone one of these repositones. nstall g, and v

| sic clone hetps: //android.googiesaurce.con/name
Name Descrption

[rr—

Piatom Proects B0 prject for s acie Ancro lfom profcts, contag ghs it a pao mainaners hava or i projects
Pltom Unestictec Pfects 50 profec o Andesd o whrs s ifor maintanershavefl aproval and b g

Publc-Profcts

accessores/maniest
Govicorasusigroupor Fls specifcto Nexus 7
devicersustiapia

aevicercommon

devcelgenerciamr-a

dovicelgenerclamy-aneon

devicergenercicommon

devicergenercigoctisn

devicelgenercimips.

Govicelgenaic/xes.

dovicelgooglelaccessary/adk20i2

Goviceigoogiaaccessory/ak2012_demo

devicgoogle/accessorylardin Ancroid accessory support - arcin fles.
devicelgoogieaccessoryidemoki Android accessory support - demo ki

deviceigoogilphantasm

dovicainteicommon Flles specific to HTC dovices but shared batween mulipie HTC devicas

deviceintcisream Flles specific to HTC ream harcware

devicaintcisream-sappnie

Govicatcipassion Flles specific to HTC passion hardware

Govicainte/passion-common Flles specifc to HTC passion hardware

doviceintcisapphire Flles specific to HTC sapphir hardvare -

® 8 3 vt

OEBPS/callouts/6.png

OEBPS/bk01-toc.html
Embedded Android

Table of Contents
		Dedication

		Praise for Embedded Android

		Special Upgrade Offer

		Preface		Learning How to Embed Android

		Audience for This Book

		Organization of the Material

		Software Versions

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Introduction		History

		Features and Characteristics

		Development Model		Differences From “Classic” Open Source Projects

		Feature Inclusion, Roadmaps, and New Releases

		Ecosystem		A Word on the Open Handset Alliance

		Getting “Android”

		Legal Framework		Code Licenses

		Branding Use

		Google’s Own Android Apps

		Alternative App Markets

		Oracle versus Google

		Mobile Patent Warfare

		Hardware and Compliance Requirements		Compliance Definition Document		Software

		Application packaging compatibility

		Multimedia compatibility

		Developer tool compatibility

		Hardware compatibility

		Performance compatibility

		Security model compatibility

		Software compatibility testing

		Updatable software

		Compliance Test Suite

		Development Setup and Tools

		2. Internals Primer		App Developer’s View		Android Concepts		Components

		Intents

		Component lifecycle

		Manifest file

		Processes and threads

		Remote procedure calls (RPCs)

		Framework Intro

		App Development Tools

		Native Development

		Overall Architecture

		Linux Kernel		Wakelocks

		Low-Memory Killer

		Binder

		Anonymous Shared Memory (ashmem)

		Alarm

		Logger

		Other Notable Androidisms

		Hardware Support		The Linux Approach

		Android’s General Approach

		Loading and Interfacing Methods

		Device Support Details

		Native User-Space		Filesystem Layout

		Libraries

		Init		Configuration language

		Global properties

		udev events

		Toolbox

		Daemons

		Command-Line Utilities

		Dalvik and Android’s Java		Java Native Interface (JNI)

		System Services		Service Manager and Binder Interaction

		Calling on Services

		A Service Example: the Activity Manager

		Stock AOSP Packages

		System Startup

		3. AOSP Jump-Start		Development Host Setup

		Getting the AOSP

		Inside the AOSP

		Build Basics		Build System Setup

		Building Android

		Running Android

		Using the Android Debug Bridge (ADB)

		Mastering the Emulator

		4. The Build System		Comparison with Other Build Systems

		Architecture		Configuration

		envsetup.sh

		Function Definitions

		Main Make Recipes

		Cleaning

		Module Build Templates

		Output

		Build Recipes		The Default droid Build

		Seeing the Build Commands

		Building the SDK for Linux and Mac OS

		Building the SDK for Windows

		Building the CTS

		Building the NDK

		Updating the API

		Building a Single Module

		Building Out of Tree

		Building Recursively, In-Tree

		Basic AOSP Hacks		Adding a Device

		Adding an App

		Adding an App Overlay

		Adding a Native Tool or Daemon

		Adding a Native Library

		5. Hardware Primer		Typical System Architecture		The Baseband Processor

		Core Components

		Real-World Interaction

		Connectivity

		Expansion, Development, and Debugging

		What’s in a System-on-Chip (SoC)?

		Memory Layout and Mapping

		Development Setup

		Evaluation Boards

		6. Native User-Space		Filesystem		The Root Directory

		/system

		/data		Multiuser support

		SD Card

		The Build System and the Filesystem		Build templates and file locations

		Explicitly copying files

		Default rights and ownership

		adb		Theory of Operation

		Main Flags, Parameters, and Environment Variables

		Basic Local Commands

		Device Connection and Status

		Basic Remote Commands		Shell

		Dumping the logs

		Getting a bug report

		Port forwarding

		Dalvik debugging

		Filesystem Commands

		State-Altering Commands		Rebooting

		Running as root

		Switching connection type

		Controlling the emulator

		Tunneling PPP

		Android’s Command Line		The Shell Up to 2.3/Gingerbread

		The Shell Since 4.0/Ice-Cream Sandwich

		Toolbox		Common Linux commands

		Global properties

		Input events

		Controlling services

		Logging

		ioctl

		Wiping the device

		Other Android-specific commands		nandread

		newfs_msdos

		notify

		r

		schedtop

		setconsole

		smd

		Core Native Utilities and Daemons		logcat

		netcfg

		debuggerd

		Other Android-specific core utilities and daemons		check_prereq

		linker

		logwrapper

		run-as

		sdcard utility

		Extra Native Utilities and Daemons

		Framework Utilities and Daemons

		Init		Theory of Operation

		Configuration Files		Location

		Semantics		Property-based triggers

		Action commands

		Service declarations

		Service options

		Main init.rc

		Board-specific .rc files

		Global Properties		Theory of operation

		Nomenclature and sets

		Storage		The build system

		Additional property files

		.rc files

		Code

		/data/property

		ueventd

		Boot Logo

		7. Android Framework		Kick-Starting the Framework		Core Building Blocks

		System Services

		Boot Animation		bootanimation.zip

		Disabling the boot animation

		Dex Optimization

		Apps Startup		Input methods

		Persistent apps

		Home screen

		BOOT_COMPLETED intent

		APPWIDGET_UPDATE intent

		Utilities and Commands		General-Purpose Utilities		service

		dumpsys

		dumpstate

		rawbu

		Service-Specific Utilities		am

		pm

		svc

		ime

		input

		monkey

		bmgr

		stagefright

		Dalvik Utilities		dalvikvm

		dvz

		dexdump

		Support Daemons		installd

		vold

		netd

		rild

		keystore

		Other Support Daemons

		Hardware Abstraction Layer

		A. Legacy User-Space		Basics

		Theory of Operation

		Merging with the AOSP

		Using the Combined Stacks

		Caveats and Pending Issues

		Moving Forward

		B. Adding Support for New Hardware		The Basics

		The System Service

		The HAL and Its Extension

		The HAL Module

		Calling the System Service

		Starting the System Service

		Caveats and Recommendations

		C. Customizing the Default Lists of Packages		Overall Dependencies

		Assembling the Final PRODUCT_PACKAGES

		Trimming Packages

		D. Default init.rc Files		2.3/Gingerbread’s default init.rc

		4.2/Jelly Bean’s Default init Files		init.rc

		init.usb.rc

		init.trace.rc

		E. Resources		Websites and Communities		Google

		SoC Vendors

		Forks

		Documentation and Forums

		Embedded Linux Build Tools

		Open Hardware Projects

		Books

		Conferences and Events

		Index

		About the Author

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1560339.png
Eclipse
ddms plug-in ddms utility

ddms libraries

Emulator

USB or TCP/IP

OEBPS/httpatomoreillycomsourceoreillyimages1560329.png
Stock Android Apps Your Apps / Market Apps
packages/ N/A

java.*
(Apache Harmony)
System Services libcore/
frameworks/base/services/,
frameworks/base/media/

Libraries HAL Native Daemons Init / Toolbox
bionic/, external/, hardware/, device/ system/, external, system/core/
frameworks/base/ frameworks/base/cmds/

Linux Kernel
N/A, the kernel isn't part of the AOSP tree

OEBPS/callouts/14.png

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages1560346.png
“Classic” Linux

App

glibc

App

Bionic

AOSP

Linux kernel

OEBPS/callouts/13.png

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages1560336.png
Target

System boot ¢

DHcp
3 co““

Irrp

v

. (4
yernd e

[

NFs mo ung

NFS rootfs

»
Ld

<
d

Host

OEBPS/callouts/11.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages1560344.png
n
o
)8
N
c
G

R |T |Y |U

E

w

DEL

B3

F |G [H K
Z [X [C |V |B M

A
2

@

SYM

OEBPS/httpatomoreillycomsourceoreillyimages1560341.png
Config and resources

/ueventd.rc
/ueventd.device name.rc

Device nodes
/dev/*

starts
ueventd

uevents

OEBPS/callouts/12.png

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages1560348.png
5554:<build> L

326

//localhost/ (%]

Web page not available

The Web page at http:/localnost/ might
be temporarily down or it may have
moved permanently to a new web
address.

Here are some suggestions:
o Check to make sure your device has
asignal and data connection

o Reload this web page later.
o View a cached copy of the web page

Jals 6 |7 [s |s [o |
Jrfn v Ju i fo e |
rrrrrFrF
e Jv o [n |m[. [e]
ol __ /]|

from Google

OEBPS/orm_front_cover.jpg
Embedded
Android

O’REILLY*® Karim Yaghmour

OEBPS/httpatomoreillycomsourceoreillyimages1560347.png.jpg
karim@ws520: ~/fopersys-dev/android/aosp-2.3.7-glibc-1

File Edit arch Terminal Help

/ # s

acct init sdeard

bin init.goldfish.rc sys

cache init.re system

config lib ueventd. goldfish. rc
d linuxre ueventd. rc

data mnt usr

default.prop proc vendor

dev root

etc sbin

/ # grep -A 5 -i "\-Xzygote" init.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-sys|
tem-server
socket zygote stream 666
onrestart write /sys/android_power/request state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd
/ # 1s sys
sys/ system/
/# 1s sys

OEBPS/httpatomoreillycomsourceoreillyimages1560345.png
Host

AOSP (blonlc)

iframeworks/;
ipackages/ |
iexternal/ i

PRJROQT (glibc)

sysapps/
Tootfs/

build-tools/
")

Target

- ramdlsk img =>/

" -systemimg => /system
-userdata.img =>/data

Kernel

Kernel

OEBPS/httpatomoreillycomsourceoreillyimages1560333.png
MMC Flash ATA

1’
Storage
SPI

170 UART

GPIO

RAM UsB Crypto/ (amera

controller controller Security Display controller Debug
UsB USB TFT DSI HDMI Camera

host 0TG

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages1560324.png
Binder

Provider: AOSP
License: ASL

HW lib loader

HW lib“so” Provider: Manuf. or AOSP

License: Manuf. or ASL
_Us_er_-S_pa_ce_____$ _________

Dri Provider: Manuf. or Android
o License: GPL
Subsystem

OEBPS/callouts/3.png

OEBPS/callouts/5.png

OEBPS/httpatomoreillycomsourceoreillyimages1560326.png
Service Manager System Server dumpsys
(servicemanager) (system_server)

Services List ActivityManager: Activity Activity
(*svclist): -
- ActivityManager - dump()

ger0

- PowerManager -

- %;0()
- WindowManager e

PowerManager:

- 'a'équire()

WakeLock.acquire()
service->dump()

checkService()

addService()

8
=
S
E
=
z
£
g
o
=
S
o
=
5
=]
=
=

o
L]
ioctl(BINDER_SET_CONTEXT_MGR)

/* the one magic object */
#define BINDER_SERVICE_MANAGER ((void*) 0) Binder Driver (/dev/binder)

OEBPS/httpatomoreillycomsourceoreillyimages1560330.png.jpg
~ sssa:cbuild>

see all your apps.
Touch the Launcher icon.

W 1535

a.‘

OEBPS/httpatomoreillycomsourceoreillyimages1560338.png
Stock Android Apps Your Apps / Market Apps
/system/app/ /data/app-private

java.*
(Apache Harmony)
System Services /system/framework/
/system/framework/services.jar,
/system/bin/

Libraries HAL Native Daemons Init /Toolbox
/system/1ib/ /system/1ib/hw/ /system/bin/ /init and
/system/bin/

Linux Kernel
N/A, the kernel s typically not within the Android target filesystem

OEBPS/callouts/2.png

OEBPS/httpatomoreillycomsourceoreillyimages1560327.png
Kernel Bootloader Launcher
- Init. env. to run C code - Initialize RAM - Init itself

- Init kernel subsystems - Put basic HW in quiescent state - Register onClick() handlers
- Init all drivers - Load kernel and RAM disk

- Mount root FS - Jump to kernel startActivity()
- Start“init” process

Init

- Set up env. variables
- Create mount points
- Mount FSes

~Setup FS : Iygote
" S:t B%M a%eijS - Register Zygote socket For each service:

~ Start native daemons - Preload all Java classes - Initservice
- Preload resources - Reg. w/ Service Manager
- Start System Server
- Open socket Incl. start Activity Manager

Native daemons - Listen for connections

= servicemanager

Android Runtime
- app_process -X Zygote - Start a Dalvik VM

- mediaserver - (all Zygote's main()
- bootanimation

- bluetoothd

- dbus-daemon

- installd

Click

OEBPS/httpatomoreillycomsourceoreillyimages1560332.png
[~
©

Serial / RS232

Baseband s E

Processor Expansion Headers

Exp./ Debug/ Dev

OEBPS/httpatomoreillycomsourceoreillyimages1560337.png
Root ("/”) RAM disk “/cache” Image “/data” Image
fanr
/app
/app-private
u ” /backup
/syster/l;p:)mage /dalvik-cache
/data
/dontpanic
/local
/framework /misc
/lib /property
Just /secure
/system

/vendor

SD Card
("/mnt/sdcard”)

OEBPS/callouts/15.png

OEBPS/httpatomoreillycomsourceoreillyimages1560334.png
Software (Virtual Address Space)

Process 1 Process 2 ProcessN
040000 0000 —
0X0000 8000 —
App Text
— 1
044000 0000 — |
|[Mapped Memory ||
048000 0000 — —,
lvhranes
o rrrr Skt
[System Call | Kernel 4
Handler |
7 Device
L4 Driver |
|
|(PU MU G
Hardware (Physical Address Space) g
Goldfish (emulator) BeagleBone Rev.

00000000-05FFFFFF
f£000000-Ff000fff :
££001000-Ff00LFFF :
££002000-Ff002fFF :
££003000-ff003FFf :
££004000-ff004fFf =
££006000-FO06FFF :
£010000-Ff010fFF :
££011000-FO11FFF :
f£012000-ffo12fff :
£013000-FO13FFF :
$£014000-Ff014FFf
££015000-FfO15FFF
£015000-FfO15FFF
£017000-FfO17FFf :
$£018000-ff018FFf :

System RAM
goldfish_interrupt_
goldfish device bus
goldfish_tty.o
golfish tiner
goldfish audio.o
goldfish_menlog.o
golfish rtc
goldfish_tty.1
Smc91x.0
goldfish b.0
goldfish-battery.o
goldfish events.o
goldfish nand.o
goldfish-switch.o
goldfish-switch.1

~—00000000=00000000
44605000-44€053FF :
44209000-44€07FFf :
44e09000-44e0afff :
44e0b000-44e0bfFf =
4431000-44e313FF :
44e35000-44e35FFF :
44€3000-44e3efFf :
47400000-47400FF :
47404000-474017F :
47401800-47401FFF :
47810100-478200F
48022000-48023FFf :
48015000-48025FFF :
48022000-4802aff :
48030100-480304FF :
48040000-480403FF :

42101200-421012 ©
80000000-8FFFFFFf :

omap_hsmmc.0
omap_hsmmc.0
omap_gpio.3
omap_hsmmc.0
omap_i2c.1
omap_timer.1
onap_wdt
omap_rtc
usbss

musbo

musbl
omap_hsmmc.0
omap_hsmmc.0
omap_hsmmc.0
omap_i2c.1
omap2_mcspi.1
omap_timer.2

cpswi.0
Systen RAM

OEBPS/httpatomoreillycomsourceoreillyimages1560322.png
Stock Android Apps

Launcher2 Phone AlarmClock

Email Settings ~ Camera Your Apps / Market Apps
Gallery Mms DeskClock

Calendar Browser Bluetooth

Calculator Contracts

System Services java.*

Power Manager ~ Mount Service Status Bar Manager (Apache Harmony)

Activity Manager Notification Manager ~ Sensor Service
Package Manager Location Manager Window Manager
Battery Service Surface Flinger

Dalvik / Android Runtime / Zygote

Libraries Hardware
Bionic / OpenGL / Abstraction Native Daemons Init / Toolbox
WebKit /... Layer

Linux Kernel
Wakelocks / Lowmem / Binder / Ashmem / Logger / RAM Concole/ ...

OEBPS/httpatomoreillycomsourceoreillyimages1560342.png
R |T |Y |U

E

w

DEL

B3

K
M

G |H

3
Z [X [C |V |B

<|<=

@

SYM

OEBPS/httpatomoreillycomsourceoreillyimages1560335.png
Serial
UsB Target
Ethernet 9

Host ——

Software-controlled | (™)

power

\AA A 4

OEBPS/httpatomoreillycomsourceoreillyimages1560323.png
Java-based software

android.*

Events log System log Radio log Main log
256 kb 64 kb 64 kb 64kb

Logger driver (/dev/log/*)

OEBPS/httpatomoreillycomsourceoreillyimages1560331.png
Build System

Build Configuration

- Scripted (environment)
-build/envsetup.sh
-lunch

OR

- Fixed (file-based)
- buildspec.mk

Core (main.mk) Intermediates

- Configuration (config.mk)

- Definitions (definitions.mk)

- Main rules (Makefile)

- (lean rules (cleanbuild.mk) Output (out/)

Module Build Rules - Images:
- Android.mk - RAM disk
- CleanSpec.mk - /syst.
et Module Build Templates _;zzaem
-BUILD_* ~SDK

Product Descriptions
- AndroidProducts.mk
- Single Product .mk

Board Description
-BoardConfig.mk

-(S

OEBPS/httpatomoreillycomsourceoreillyimages1560349.png
5554:<build>

» 329
SO0

404 Not Found

P
e

MmO O

The requested URL was nof t found d

1 2 |3 [a [s 6 |2 |8 |s [o]
o Jw [[r |1 v [u i jo[e |
I S P P P P 1
2]z [x [c v [o v [w[. [&]
1 2 N P R

OEBPS/httpatomoreillycomsourceoreillyimages1560343.png
5554:<build>

ﬁ—ﬂ
e
Ao

ez e Iside l7ile 1o o
I_I_I_I_I_I_I_I_I_I_
f_f_f_fif_f_f_

ALT ALT

OEBPS/callouts/7.png

